Security -- table of contents

Overview

5: Securing applications -- special topics
5.1: Security components
5.1.1: Security features
5.1.2: Authentication model

5.1.3: Authorization model
5.1.3.1: Securing resources and applications

5.1.4: Delegation model
5.1.6: Operating environment

5.3: Changes to security

Development

5.4: Overview: Using programmatic and custom logins

5.4.1: Client-side login
5.4.1.1: The TestClient
5.4.1.2: LoginHelper

5.4.2: Server-sidelogin
5.4.2.1: The TestServer

5.4.2.2: ServerSideAuthenticator
5.4.2.3: Accessing secured resources from Java clients

5.4.3: Form login challenges
5.4.3.1: AbstractL oginServlet
5.4.3.2: CustomLoginServlet
5.4.3.3: SSOA uthenticator

Using certificates

5.5: Introduction to security certificates
5.5.1: Public-key cryptography

5.5.2: Digital signatures

5.5.3: Digital certificates

5.5.4: Requesting certificates
5.5.4.1: Getting atest certificate
5.5.4.2: Getting a production certificate
5.5.4.3: Using test certificates

5.5.5: Mapping certificates to users

5.5.6: Toolsfor certificates and keys

5.5.6.1: The CFWK tools
5.5.6.1.1: KeyGenTool
5.5.6.1.2: MakeCertRequest
5.5.6.1.3: MakeCertTool
5.5.6.1.4: VaultTool
5.5.6.1.5: Example: test certificates

5.5.6.2: The iKeyman tool
5.5.6.2.1: iKeyman: test certificates
5.5.6.2.2: iKeyman: Certification requests
5.5.6.2.3: Placing asigned digital certificate into akeyring
5.5.6.2.4: Using the CA certificate
5.5.6.2.5: Making keyrings accessible

SSL-LDAP

5.5.7: SSL-LDAP setup
5.5.7.1: Establishing connections between application servers and LDAP servers
5.5.7.2: Enabling SSL connections between WebSphere and LDAP
5.5.7.3: Example: Generating and using atest keyring
5.5.7.4. Example: Generating keyring files for SSL

Trust association

5.6: Establishing trust association with areverse proxy server
5.6.1: Configuring trust association between WebSphere and WebSeal
5.6.2: Fregquently asked questions about trust association

5.6.3: Writing a custom interceptor

Administration

6.6.18: Securing applications
6.6.18.1: Securing applications with the Java administrative console

6.6.18.1.1: Securing applications
6.6.18.1.1a: Specifying global settings with the Java administrative console
6.6.18.1.1b: Configuring application security
6.6.18.1.1c: Configuring custom method groups
Viewing custom method groups
6.6.18.1.1d: Configuring resource security
Default method groups
6.6.18.1.1e: Configuring permissions
6.6.18.1.2: Securing cloned applications
6.6.18.1.4: Properties related to security
6.6.18.1.4a Properties for configuring global settings
General settings of the Configure Global Settings task
Application Default settings of the Configure Global Settings task
Authentication Mechanism settings
User Registry settings of the Configure Global Settings task
Supported directory services
6.6.18.1.4b: Properties for configuring application security
6.6.18.1.4c: Properties for configuring method groups
6.6.18.1.4d: Properties for configuring resource security
6.6.18.1.4e: Properties for configuring permissions
6.6.18.1.4f: Properties for the security search dialog
6.6.18.1ac Summary of security settings with the Java administrative console
6.6.18.1a01: About enabling security with the Java administrative console
6.6.18.1a02: About setting application security defaults with the Java administrative console
6.6.18.1a03: About specifying how to authenticate users with the Java administrative console
6.6.18.1a04: About providing authentication mechanism details with the Java administrative console
6.6.18.1b: About configuring application security with the Java console
6.6.18.1c: About assigning method groups with the Java console
6.6.18.1d: About assigning methods to method groups with the Java console
6.6.18.1e: About assigning permissions
6.6.18.5: Managing security IDs for the application server and administrative accounts
6.6.18.6: Avoiding known security risks in the runtime environment
6.6.18.7: Protecting individual application components and methods
6.6.18.8: LDAP with MS Active Directory
6.6.18.9: Specifying authentication options in sas.client.props
6.6.18.10: The demo keyring
6.6.18.11: SecureWay Directory Version 2.1

5. Securing applications -- special topics

IBM WebSphere Application Server provides security components thatcollaborate with other security elements
in your WebSphere environment,as discussed in article 5.1.

Security is established at two levels. Thefirst level is globalsecurity. Global security applies to all applications
running in theenvironment and determines whether security isused at all, the type of registry against which
authentication takes place, andother values, many of which act as defaults.

The second level is application security. Application security, whichcan vary with each application, determines
the requirements specificto the application. In some cases, these values can overrideglobal defaults. Application
security includes settings likemechanisms for authenticating users and authorization regquirements.

Both types of security information are supplied in the administrativeconsole for WebSphere Application Server.
Genera administrative tasks,including standard security tasks, are described in6.6.0.3: Web administrative

console overview.Information about the standard security tasks appearsin 6.6.18: Securing applications.

The rest of the material in this section concentrates on more specializedissues related to security. Some of these
are programmatic innature, and some are administrative. The discussions assume familiaritywith genera
security procedures in the WebSphere Application Serverenvironment.

Article 5.1, The WebSphere security componentsgives an overview of WebSphere Application Server security.

Article 5.3, Changes to security describeschanges in security since the previous version of WebSphere
Application Server.

Article 5.4, Using programmatic and custom |ogindescribes the use of programmatic client and server login

routines that work with the authentication policies and other settings specified by the administrator of
WebSphere Application Server. This allows sitesto customize the way in which authentication information is
collectedfrom users.

Article 5.5, Certificate-based authenticationprovides an introduction to the concepts of certificate-based
authentication and its use in the WebSphereenvironment. This includes a discussion of general
cryptographicconcepts like public-key encryption and digital signatures as well asinformation on the use of
certificates in the WebSphere environment,tools for managing certificates and keys, and other related topics:
« 5.5.1: Introduction to public-key cryptography isthefirst article in a sequence that explainsencryption,
signatures, certificates, and other related topics.

« 5.5.6: Tools for managing certificates and keys documents WebSphere Application Server's
command-line and GUI certificate and key management tools. It also includes common procedures for
managing certificates and keys with the tools.

e 5.5.7: Setting up an LDAP connection over SSL describes how to establish an SSL connection between
WebSphere Application Server and an LDAP server.

Article 5.6, Establishing trust association with areverse proxy serverdescribes how to use areverse proxy server
to perform authentication for applications within WebSphereA pplication Server.

http://localhost/v355makePDF/advanced/nav_Securityguidenav/06060003.html
http://localhost/v355makePDF/advanced/nav_Securityguidenav/06060003.html

5.1: The WebSphere security components

Security for the WebSphere Application Server product is managed as acollaborative effort by these
components distributed throughout WebSphereA pplication Server:

o Security server
« Security collaborator
« Security plug-in

These components collectively make up the WebSphere securityapplication. Each is attached to a primary
WebSphere Application Server component:

« The security server is attached to the WebSphere administrative server.
« The security collaborator is attached to application servers.
« The security plug-in is attached to supported Web servers.

Together, the security components provide a unified security model, allowing a single policy to govern the
security of adiverse set of resources.

A realm isthe domain in which a security system operates. All of the related applications reside in the same

realm. The administrator sets the name for the realm, and applications and their supporting services like security
operate within that single realm.

The security server

The run-time security components (the plug-in and the collaborator)consult the security server, which controls
security policies andprovides authentication and authorization services. The run-timecomponents enforce these
policies.
The security server has two primary purposes:

« To centralize control over security policies such as permissions.

« To provide application-wide services like authentication and authorization.
In both of these capacities, the security server acts as atrusted third-party for security policy and control.

Therun-time components consult the security server for policyinformation and for services such as
authentication and authorization,including token services for Lightweight Third-Party Authentication (LTPA).

The security server provides authentication services.

The security server uses persistent storage (like a DB2database) to store its configuration information
permanently.

The security collaborator

The security collaborator is acomponent of the application server process, which acts as a common run-time
environment for servlets, JavaServer Pages(JSP) files, and enterprise beans. When a Java client attempts
toinvoke a method on a servlet or an enterprise bean, the securitycollaborator does the following:

« Performs an authorization check.
« Logs security-tracing information.
« Enforcesthe delegation policy.

For example, when a Web client invokes a servlet,the user is prompted for auser ID and password, and

http://localhost/v355makePDF/advanced/nav_Securityguidenav/0028.html
http://localhost/v355makePDF/advanced/nav_Securityguidenav/001807.html

themethod invocation is passed to the application server. Thesecurity collaborator authenticates the user against
theuser registry, and if the authentication succeeds, thecollaborator consults the security server to determine if
theuser is authorized to invoke the servlet.

If s0, the collaborator then consults the security server for anydel egation information. The security collaborator
builds a securitycontext that contains the appropriate information for the user. If,for example, the delegation
policy says that methods are invoked underthe user's credentials, the directly requested servlet and any
methodsit calls are invoked under the user's credentials. For each indirectinvocation, the collaborator ensures
that the user has permission onthe invoked method as well.

The security plug-in

The security plug-in resides with the Web server and protectsaccess to HTML pages served by the Web server.
(The securitycollaborator performs all other security checks.)When a Web resource is protected by WebSphere
ApplicationServer security, the security plug-in consults the security serverfor authentication and authorization
services.

For example, when a user invokes a servlet by entering itsURL in a Web browser, the target Web server
receives the request.It ascertains whether the URL is protected. If the URL isprotected, it challenges the user to
provide auser ID and password. The plug-in collects this informationand passesiit to the security server for
authentication. Ifthe authentication succeeds, the plug-in consults the securityserver to determineif the user has
the permissions necessaryto access the URL. If the user is authorized, the plug-in sets upa security context for
the user, including the security credentials,and passes the request to the servlet engine in the application server
process. Before invoking a specific method onthe servlet, the security collaborator extracts the credential sand
verifies that the user is authorized to invoke thatmethod.

[il The security plug-in protects the URL name space, not thephysical files. This means that if two URLS point
to the samephysical resource, security on one URL can grant accesswhile security on another URL can deny it.

IBM WebSphere Application Server Version 3.5 Security Overview is available from the IBM White Papers
Site.

http://www.ibm.com/software/webservers/appserv/whitepapers.html
http://www.ibm.com/software/webservers/appserv/whitepapers.html

5.1.1: Security features

This section briefly describes some of the features of WebSphereA pplication Server that you can use to secure
your applications.

The security system has two facets. First, it enables administratorsto define security policies to establish control
of resources. Administrators use security policiesto tell WebSphere ApplicationServer how security isto be
handled. The security system also provides built-in security services to enforce the policies.

The IBM WebSphere Application Server security system provides a numberof features, including the following:

Authentication policies and services

Authentication is the process of verifying that users are who they say they are. Y ou can indicate how
you want WebSphere Application Server to verify the identity of users who try to access your resources.
Y ou can choose a supported directory service, the operating system registry, or a custom registry to
verify the identity of users and groups.

Authorization policies and services

Authorization is the process of determining what a user is allowed to do with aresource. Y ou can
specify policies that give different users differing levels of access to your resources. If you define
authorization policies, WebSphere Application Server will enforce them for you.

Delegation policies
Delegation alows an intermediary to do work initiated by a client under an identity based on the
associated delegation policy. Therefore, enforcement of delegation policies affect the identity under
which the intermediary performs downstream invocations, that is, the calls made to complete the current
request. When making downstream requests, the intermediary uses the client's credentials by default;
other choices are also possible. The result is that the downstream resources do not know the identity of
the intermediary; they see the identity under which the intermediary is operating. There are three
possibilities for the identity under which the intermediary operates are when making the downstream
requests:

o Theclient'sidentity (default)

o ltsown identity

o Anidentity specified by configuration
A unified security administration model

The different components of WebSphere Application Server use the same model for security, so after
you learn how to set up security for one type of resource, you can apply that knowledge to other
resources. Enterprise beans, servlets, JSP files, and Web pages are all administered similarly in terms of
security. You can combine al of these resources into an application for which you also establish
security.

Single sign-on support
Application Server supports third-party authentication, a mechanism for achieving single sign-on across

the Internet domain that contains your resources. Y ou can use single sign-on to allow usersto log on
once per session rather than requiring them to log on to each resource or application separately.

Passwor d encoding in configuration files

Severa of the WebSphere configuration files contain user |Ds and passwords. These are needed at run
time to access external secure resources such as databases. Passwords are encoded, not encrypted, to
deter casual observation of sensitive information. Password encoding combined with proper operating
system file system security isintended to protect the passwords stored in these files.

5.1.2: The WebSphere authentication model

Authenticationis the process of determining if auser iswho the userclaimsto be. WebSphere Application

Server authenticates usersby using one of several authentication mechanisms.For example, it can challenge
usersto provide a password, or it canrequire them to provide adigital certificate.Available authentication
procedures include the following:

o No authentication

If no authentication is used, users are not required to prove their identities.
« Basic authentication

Basic authentication is afamiliar form of authentication, in which the security service requests an
identifier and password combination from a user when the user attempts to access a resource.

After auser provides an identifier and password, the security service validates them against a database
of known users, which can take the form of asimple registry or a distributed directory service. If the
user-provided information is valid, the security system considers the user authenticated.

« Digital certificates

Instead of requiring identifier-and-password combinations from users, an application can require users
to present digital certificates, which act as electronic identification cards. The security service examines

the information in the certificate to authenticate the user.
« Theform-based login challenge
Instead of using identifier-and-password combinations or digital certificates, application designers can

write custom challenges for applications. The authentication procedure in a custom challenge can take
any form the application devel opers can implement.

http://localhost/v355makePDF/advanced/nav_Securityguidenav/001801.html
http://localhost/v355makePDF/advanced/nav_Securityguidenav/001802.html
http://localhost/v355makePDF/advanced/nav_Securityguidenav/001808.html
http://localhost/v355makePDF/advanced/nav_Securityguidenav/001808.html
http://localhost/v355makePDF/advanced/nav_Securityguidenav/001803.html

5.1.3: The WebSphere authorization model

Authorization information is used todetermine if a caller has the necessary privilege to request aservice.
Authorization information can be stored in many ways. Forexample, with each resource, you can store alist of
users and whatthey are permitted to do. Such alist is called an access-controllist. Another way to store the
information is to associate with eachuser alist of resources and the corresponding privilege held by theuser.
Thisiscalled a capability list.

WebSphere, like the Java security manager, uses a capability-basedmodel for security. In WebSphere,
individual resources are collectedinto applications, and methods are collected into method groups. Eachuser has
aset of (application, method-group) pairs, which indicatesthe methods within an application on which the user
has rights. Each(application, method-group) pair is called a permission. The WebSphereadministrator grants
users access to applications by doing thefollowing:

1. Mapping sets of related resource into applications.
2. Mapping sets of related methods into method groups.
3. Granting users permissions lists.
When a user attempts to perform an operation, the security runtime determines thepermissions that will grant

access. If the requesting user has at least one of thenecessary lists, the authorization check succeeds and the user
is permitted to perform theoperation.

http://localhost/v355makePDF/advanced/nav_Securityguidenav/001801.html

5.1.3.1: Securing applications and resources

Within WebSphere Application Server, you define security requirementsin terms of:
» Resources
« Applications

This file describes applications and their component resources.

Resources

A resourceisaspecific file or program to which you wantto control access. It belongs to an application and its
methods areassociated with method groups. Examples of resources include servlets,enterprise beans, Web
pages, and JSP files. For example,a bank can implement accounts as enterprise beans and provide aweb-based
user interface.

Resources are divided into the following types:
Web resour ces

Web resources represent components that can be accessed only from Web clients, like servlets, HTML
files, and JSP files. The Web resourceisalogical representation of aphysical resource; precisely, the
Uniform Resource Identifier (URI), the part of the address used to access the resource). For example, a
servlet called HelloWorld and accessed through the URL http://host.com/servlet/hello is protected by
protecting the URI (the logical resource) servlet/hello.

A Web resource is protected only if its URI is protected, and any particular resource can have several
URIs pointing toit. If a physical resource must be securely protected from Web access, then every URI
that represents the physical resource must be protected. A physical Web resource can be accessed
through more than one URI. To completely secure the application, all URIs must be secured.

Enter prise-bean resour ces

An enterprise-bean resource is either a particular instance of a bean within an enterprise bean home, or
the homeitself (including all beans it represents). Each bean belongs to a single home, and all beans
within a home are of the same class.

An enterprise bean resource can belong to multiple enterprise applications. Therefore, security is
expressed in terms of homes, not particular bean instances. For example, if an application has an
enterprise bean called AccountBean that encapsulates account information, and if auser isgiven
permission on the AccountBean, the user can access every account in the system. (It is not possible, at
this level, to specify that a user can access only the user's account. That degree of granularity must be
accomplished programmatically within the bean itself.)

Applications

An application is a collection of resources that can beprotected as a unit. An application usually consists related
resourcesthat encapsulate a piece of business logic. For example, a bank cancreate a Savings application to track
the balances of savings accounts.This application includes the resources related to savings accounts.

Applications are divided into the following types:

Web applications
A Web application is agroup of servlets that share acommon servlet context. URIs representing HTML
and JSP files can be included indirectly in a Web application by adding the file invoker servlet

(represented by "/") that services the files or the JSP file enabler ("/*.JSP fil€") to the Web application.
10

A Web application can be added to an enterprise application, but a specific Web application can belong
to only one enterprise application.

Enterprise applications

An enterprise application is a collection of Web applications and optional enterprise-bean resources.
Administrators can define authentication and authorization policies for enterprise applications.

A Web application can belong to only one enterprise application, but enterprise-bean resources can
belong to multiple enterprise applications.

11

5.1.4: The WebSphere delegation model

Delegation allows an intermediary to perform atask initiated by a clientunder an identity determined by the
associated policy. Therefore,enforcement of delegation policies affects the identity under whichthe intermediary
performs downstream invocations, that is, invocation madeby the intermediary in order to complete the current
request, on other objects.By default, if no delegation policy is set, the intermediary will use theidentity of the
the requesting client while making the downstream calls.Alternatively, the intermediary can perform the
downstream invocations underits own identity or under an identity specified by configuration.

When the intermediary operates under an identity other than its own,downstream resources do not know the
identity of the intermediary. Therefore,they make their access decisions based on the privileges associated with
theidentity being used.

The administrator specifies a delegation policy bysetting the run-as mode for each enterprise-bean method. For
each,the administrator can choose among three policies:

o Theclient identity

« The system identity, the identity of the intermediary

« A specified identity, named in the delegation policy
For example, suppose that a client invokes a session bean thatinvokes an entity bean. If the delegation policy
states thatmethods are invoked under the client's identity, the session beanmakes its invocations under the
client'sidentity. Therefore,it isthe client, rather than the session bean, that must havepermission to invoke the
entity-bean methods. If the delegationpolicy requires the system identity, the session bean makes itsinvocation
under the identity of the server in whichthe session bean resides; it isthis server that must have permissionon

the entity-bean methods. Finally, if the delegation policyrequires a specified identity, the session bean invokes
themethods under this identity, so the specified identity must havepermission on the entity-bean methods.

In WebSphere Application Server, every enterprise application (acollection of resources) can have an associated
identity. Therefore, youcan use the specified-identity delegation policy to run beans under theidentity of the
application to which they belong.

Creating a delegation policy

In WebSphere Application Server, the delegation policy is determined byval ues associated with the methods of
enterprise bean. The initialvalues are retrieved from the deployment descriptor of a bean,but the administrator
can modify them. Delegation policiescan be applied jointly to all the methods in a bean orseparately to
individual methods.
A delegation policy is created by setting the values ofone (or two) attributes:
« RunAsMode: determines the identity under which methods art to be run. The valid values follow:
o CLI ENT_I DENTI TY
o SYSTEM_ | DENTI TY
o SPECI FI ED_| DENTI TY
« RunAsldentity: specifies the principal when the RunAsMode is SPECI FI ED | DENTI TY.

12

5.1.6: Relationship to the operating environment

This section discusses how Application Server security relatesto the security provided by your operating system
and by Java.

WebSphere Application Server security sits on top of your operatingsystem security and the security features
provided by other components,including the Java language.

The types of security involved include:

Operating-system security support, for example, authentication against, the local user registry.

Java-language security, provided through the Java Virtual Machine (JVM) used by WebSphere and the
programmatic security classes.

CORBA security, in applications involve interprocess communication between secure ORBs.
EJB security, in applications involving Enterprise Java Beans.
WebSphere security, which relies on and enhances al of the above.

See the Sun Microsystems Enterprise JavaBeans specification, Versionl.1, for adescription of enterprise bean
security in general.

13

5.3: Changes to security since Version 2.0x

Some security features have changed with respect to the security offered by IBMWebSphere Application Server

Version 2.0x. This table summarizes the differences.

| Version 3/3.5

Version 2

Users and groups must originate in adirectory service or
user registry.

Users and groups could be created directly in
WebSphere Application Server, independent of a
directory service product or the user registry of
the operating system.

Y ou protect resources individually and at the application
level. The security properties at the application level differ
from those you set for individual resources.

Individual resources were secured, but the product
did not offer protection to applications
(collections of related resources).

Enterprise beans are protected. The method group concept
discussed in the Enterprise JavaBeans (EJB) specification
Version 1.1 isintegral to security policy for all types of
resourcesin Version 3+.

Only servlets and other Web files, such asHTML
pages and JavaServer Pages (JSP) files, were
protected.

Method groups and application-level security define
authorization policies.

Realms and access-control lists defined
authorization policies.

Thereisjust one realm, to which all items belong. The
administrator names the realm.

Multiple realms were offered.

A discrete security server process provides centralized
security services and policy enforcement to one or more
application server runtimes.

Security features were part of asingle application
server runtime.

Sophisticated functionality, including Single Sign On
(SS0), delegation, and the use of LTPA and digital
certificates, is supported.

Basic security policy and services were provided.

14

5.4: Overview: Using programmatic and custom
logins

This section describes the use of programmatic login techniques and custom challenge capabilitiesin
WebSphere Application Server.

When applications require user to provide identifying information,the writer of the application must collect that
informationand authenticate the user. The work of the programmer can be broadlyclassified in terms of where
the actual user authentication is performed:

1. Inaclient program

2. Inaserver program
Users can be prompted for authentication data in many ways. The challengetype configured for the application
defines the mechanism used to collectthis information. Programmers who want to customize login

procedures,rather than relying on general-purpose devices like a 401 dialog windowin a browser, can use a
custom challenge to provide an application-specificHTML form for collecting login information.

When Java enterprise-bean client applications require the user to provide identifying information,the writer of
the application must collect that informationand authenticate the user. The work of the programmer can be
broadlyclassified in terms of where the actual user authentication is performed:

1. Inaclient program

2. Inaserver program
Users of Web applications can be prompted for authentication datain many ways. The login-config element in
the Web application's deployment descriptor defines the mechanism used to collectthis information.
Programmers who want to customize login procedures,rather than relying on general -purpose devices like a 401

dialog windowin a browser, can use aform based login to provide an application-specificHTML form for
collecting login information.

No authentication work will occur unless WebSphere security is enabled.Additionally, if you want to use the
custom challenge type,you must configure security as follows (click an item to linkto detailed property help for
the item):

« Set the challenge type to Custom.

« Set the authentication mechanism to LTPA.

« Setthe LoginURL and ReloginURL field to the URL of your HTML login form.
« Enable Single Sign-On, if used.

15

5.4.1: Client-side login

Use aclient-side login when a pure Java client needs to log usersinto the security domain but does not need to use the authenticationdata itself.

Client-side login works in the following manner:
1. The user makes arequest to the client application.

2. The client presents the user with alogin form for collecting authentication data. The user inserts his or her user ID and password into the
form and submitsiit.

. The client programmatically places the user's authentication data into an ORB-related data structure called the security context.
. The client program invokes a method on a server.
. The server processes the request, extracting the authentication data from the context and performing authentication.

. If the authentication was successful, the server grants the request and returns the security credentials for further use. If the authentication
fails, the server denies service.

o 01~ W

The client programmer is responsible for writing the code toextract the authentication data and insert it into the CORBAdata structures.
WebSphere provides a utility class, the LoginHel perclass, that can be used to simplify the CORBA programming needed todo this kind of
programmatic login. The TestClient applicationillustrates the use of the LoginHelper class.

In order to use the LoginHelper class, the client needs to knowthe security properties of the ORB, so you must load a propertiesfile containing
those values when you start the client program.The file sas.client.props file installed with WebSphere containsvalid values. Specify the properties
file on the command lineas follows:

-Dcom i bm CORBA. Confi gURL=URL of properties file

For example, to load the sas.client.props file and run the TestClientprogram, issue the following command:
java -Dcom i bm CORBA. client. ConfigURL=file://<install_root>/properties/sas.client.props TestCient

Because the JDK which requires a call to System.exit()any time the AWT is activated, the client programmerneeds to call System.exit() at the end
to exitthe program.

16

5.4.1.1: The TestClient program

The TestClient program illustrates the use of the LoginHelper class,a utility class provided to help simplify programming client-sidelogin. The
excerpt below shows the performLogin method.

TestClient class

public class Testdient { private void performnlogin() { /1l Get the user's ID and
passwor d. String userid = custonGetUserid(); String password = custonmCet Password();

/1l Create a new security context to hold /] authentication data. Logi nHel per | ogi nHel per =
new Logi nHel per () ; try { // Provide the user's ID and password for authentication.
org.onyg. SecuritylLevel 2. Credentials credentials = | ogi nHel per. | ogi n(userid,
passwor d) ; /1l Use the new credentials for all future invocations.

| ogi nHel per. setlnvocati onCredenti al s(credential s); /!l Retrieve the user's nane from
the credentials /'l so we can tell the user that |ogin succeeded.

String username = | ogi nHel per. get User Nane(credenti al s); System out. println("Security context

set for user: "+usernane); } catch (org.ong. SecuritylLevel 2. Logi nFai |l ed e) {
/1 Handl e the LoginFail ed exception. C

17

5.4.1.2: The LoginHelper class

The LoginHelper classis a WebSphere-provided utility class thatprovides wrappers around CORBA security methods. It can be usedby pure
Java clients that need the ability to programmaticallyauthenticate users but don't need to use the authentication data onthe client side.

The methods in this class give a client program away tocollect authentication information from a user and packageit to be sent to a server. The
server authenticates the userand returns security credentials to the client.

The following list summarizes the public methods in the LoginHel per class. The sourcefileisinstalled at:

<instal | ati on_root>/ hosts/default_host/exanpl es/security/Logi nHel per.java

and the classfileisinstalled at:

<instal | ati on_root>/servl ets/Logi nHel per.cl ass

LoginHelper ()

The constructor obtains a new security-context object from the underlying ORB. This object is used to carry authentication information
and resulting credentials for the client.

Syntax:
Logi nHel per() throws |11 egal Stat eException
login()

This method takes the user's authentication data (identifier and password), authenticates the user (validates the authentication data), and
returns the resulting Credentials object.

Syntax:

org.ong. SecuritylLevel 2. Credentials login(String userlD, String password) t hr ows
I'l'I egal St at eExcepti on

setlnvocationCredentials()
This method sets the specified credentials so that all future methods invocations will occur under those credentials.

Syntax:
voi d setlnvocationCredential s(org.ong. SecuritylLevel 2. Credenti al s i nvokedCr eds) t hr ows
org.ong. Security.lnvalidCredential Type, org.ong. SecuritylLevel 2. I nval i dCredenti al

getl nvocationCredentials()
This method returns the credentials under which methods are currently being invoked.

Syntax:
org.ong. SecuritylLevel 2. Credenti al s getlnvocati onCredenti al s() t hrows
org.ong. Security.lnvalidCredential Type
getUser Name()
This method returns the user name from the credentials in a human-readable format.
Syntax:
String getUserNane(org. ong. SecuritylLevel 2. Credenti al s creds) t hr ows
org.ong. Security.DuplicateAttributeType, org.ong. Security.lnvalidAttributeType

18

5.4.2: Server-side login

Use a server-side login when a program needs to log users into the securitydomain and to use the authentication
dataitself. A client-side logincollects the authentication data and sends it to another programfor actual
authentication; a server-side login does both tasks.

Server-side login works in the following manner:

1. The user makes arequest that triggers a servlet.

2. The servlet presents the user with alogin form for collecting authentication data. The user inserts his or
her user ID and password into the form and submitsit.

3. The servlet presents the request to the server.

4. The server processes the request, extracting the authentication data from the context and performing
authentication.

5. If the authentication was successful, the server grants the request. If the authentication fails, the server
denies service.

The server programmer is responsible for writing the code toextract the authentication data, insert it into the
CORBAdata structures, and authenticate the user. WebSphere provides autility class, the
ServerSideAuthenticator class, that can be usedto simplify the CORBA programming needed to do thiskind
ofprogrammatic login. This class extends the LoginHel per classused for client-side login. The TestServer
applicationillustrates the use of the ServerSideAuthenticator class.

19

5.4.2.1: The TestServer program

The TestServer program illustrates the use of the ServerSideAuthenticatorclass, a utility class provided to help simplify programming
server-sidelogin. The excerpt below shows the performL oginAndA uthentication method.

TestServer class

public class Test Server{ .. private void perfornLogi nAndAut henti cati on() { /'l Get the
user's | D and password. String userid = custontGetUserid(); String password =
cust onGet Password(); // Ensure imedi ate authentication. bool ean forceAut hentication = true;
/1l Create a new security context to hold /1 authentication data. Server Si deAut hent i cat or
server Auth = new Server Si deAut henti cator(); try { /1l Perform aut hentication based
on supplied data. org.ong. SecuritylLevel 2. Credentials credentials =
server Aut h. | ogi n(userid, password, forceAuthentication); /'l Retrieve the user's nane from
the credentials /'l so we can tell the user that |ogin succeeded. String usernane =
server Aut h. get User Nane(cr edenti al s); System out. println("Authentication successful for
user: "+usernane); } catch (Exception e) { /1 Handl e excepti ons. } }

-}

20

5.4.2.2: The ServerSideAuthenticator class

The ServerSideAuthenticator class is a WebSphere-provided utility class thatprovides wrappers around CORBA security methods. It extends the
LoginHelperclass for use by servers.

The following list summarizes the public methods in theServerSideAuthenticator class. The source fileisinstalled at:
<installation_root>/ hosts/default_host/exanpl es/security/ Server Si deAut henti cator.java

and the classfileisinstalled at:

<installation_root>/servlets/ServerSi deAut henti cator. cl ass

Server SideAuthenticator ()

The constructor obtains a new security-context object from the underlying ORB. This object is used to carry authentication information and resulting
credentials.

Syntax:
Server Si deAut henticator() throws |l egal StateException
login()

This method takes the user's authentication data (identifier and password), authenticates the the user (if the force_authn argument is set to TRUE),
and returns the resulting Credentials object.

Syntax:

org.ong. SecuritylLevel 2. Credentials login(String userlD, String password,

bool ean force_aut hn) throws org.ong. Securitylevel 2. Logi nFai | ed,

com i bm | Ext endedSecurity. Real mNot Regi st er ed, com i bm | Ext endedSecurity. UnknownMappi ng,

com i bm | Ext endedSecuri ty. Mechani snTypeNot Regi st er ed,
comibm | Ext endedSecurity. I nvalidAdditional Criteria

authenticate()
This method does the actual authentication work.

Syntax:

org.ong. SecuritylLevel 2. Credentials authenticate(String userlD, String password) t hr ows
org.ong. SecuritylLevel 2. Logi nFai | ed, org. ong. SecuritylLevel 2. 1 nval i dCredenti al,
org.ong. Security.lnvalidCredential Type, com i bm | Ext endedSecurity. Real mNot Regi st er ed,

com i bm | Ext endedSecurity. UnknownMappi ng,
com i bm | Ext endedSecurity. Mechani snTypeNot Regi st er ed,
com i bm | Ext endedSecurity. | nvalidAdditional Criteria

21

5.4.2.3: Accessing secured resources from Java clients

A Javaclient that needs to access a secured resource must knowthat resource is secured. This page describes how to provide clientswith the
information they need.

1. Create atext file. Init, specify the following property-value pairs:
o com i bm CORBA. securityEnabl ed=true
o Configure SSL.

Y ou can use the properties file sas.client.props installed with WebSphere Application Server as amodel.

2. When you start the client, load the properties file you just created. Specify the properties file on the command line as follows:
-Dcom i bm CORBA. Confi gURL= <URL of properties file>

For example, to load a properties file called my.client.props located in the product installation directory for aclient called MyClient App:
java -Dcom i bm CORBA. client. ConfigURL=file://install _root/properties/my.client.props M/CientApp

22

http://localhost/v355makePDF/advanced/nav_Securityguidenav/root.html

5.4.3: Form-based login

Applications can present site-specific login forms by making use of WebSphere's customchallenge type. A
custom challenge works in the following manner:

1. Anunauthenticated user attempts to use a resource secured with a custom challenge.

2. The user isredirected to the LoginURL, which takes the user to an HTML form that collects
authentication information.

3. The user inserts hisor her user ID and password into the form and submitsit.
4. The submission triggers a servlet that authenticates the user.

WebSphere provides two servlets that can be used as a basis for writingcustom-challenge servlets, an
AbstractLoginServlet and the CustomL oginServlet, whichextends the AbstractL oginServlet.

In web-based applications, it is often desirable to maintain login information acrossmultiple sites so each site
doesn't have to require the user retype the information. Y oucan use the WebSphere single sign-on framework to
allow the authentication information tobe passed along automatically. WebSphere provides a helper class called
SSOA uthenticatorthat simplifies the handling of single sign-on.

23

5.4.3.1: The AbstractLoginServlet class

The AbstractLoginServlet class that encapsulatesall of the functionality of a server side login.
The following list summarizes the public methods in the AbstractL oginServletclass. The source and classfiles areinstalled in the
directory<i nst al | ati on_r oot >/ servlets/.
init()
This method initializes the servlet.

Syntax:
void init() throws ServletException
login()
This authenticates the user and, if requested, sets up the necessary information for single sign-on.
Syntax:
hject login (HtpServl et Request req, HttpServl et Response res, bool ean set SSO
throws Servl et Exception
postL ogin()
Thisis an abstract method.
Syntax:
voi d postLogi n(HttpServl et Request req, HttpServl et Response res) throws Servl et Exception
logout()

This destroys the user's credentials and, if necessary, unsets the single sign-on information.

Syntax:

voi d | ogout (Htt pServl et Request req, HttpServl et Response res, (bj ect ret Creds)
throws Servl et Exception

24

5.4.3.2: The CustomLoginServlet class

The CustomL oginServlet extracts the user 1D, password, and redirect URLinformation from the HTML form by which the user logged in. The
redirectURL specifies the Web site to which the user is requesting access.The CustomL oginServlet invokes the necessary methods on its parent
servlet,AbstractL oginServlet.

The following list summarizes the public methods in the CustomL oginServletclass. The source and classfilesareinstalled in the
directory<i nst al | ati on_r oot >/ servl ets/.

init()
This method initializes the servlet, reading the default redirect URL if it exists. The default redirect URL specifies the Web page to which
the user will be forwarded if authentication is successful.
Syntax:
void init(ServletConfig conf) throws Servl et Exception
doPost()
The primary entry point into the servlet, this method is designed to be called as the result of an HTML form post. The method reads and
validates the posted parameters, then calls the login method in the base class LoginServiet.
Syntax:
voi d doPost (Htt pServl et Request req, H tpServl et Response res) throws Servl et Excepti on,
| OExcepti on
postL ogin()

This method is called after performing a successful login, so it isagood place to establish an HTTP session or perform other actions
related to the logged-on user. This method runs under the identity of the user.

Syntax:

voi d postLogi n(Htt pServl et Request req, HttpServl et Response res) throws Servl et Exception

25

5.4.3.3: The SSOAuthenticator class

The SSOA uthenticator classis a WebSphere-provided utility class thatcan be used by servlet devel opers to write custom-login servlets.
The following list summarizes the public methods in the SSOAuthenticator class. The classfilesisinstalled

a<i nstal | ati on_root >/ servl et s/ SSOQAut hent i cat or. cl ass.

SSOAuthenticator ()

The constructor creates an SSOA uthenticator object and initializes it based on the SSO configuration within WebSphere Application Server. The
folliwing conditions must be met for successful construction:

0 WebSphere security is enabled
0 LTPA isselected as the authentication mechanism
o Single Sign-On (SSO) is enabled

Syntax:
SSQAut henti cator() throws |11 egal StateException
login()
These methods create an LPTA cookie and set the cookie on the HTTP response header. The first method takes a boolean argument, force_auith,

whose value determines if the user (based on the identifier and password) is authenticated. If force_auth is TRUE, authentication occurs; if not, only
the identifier and password are used in the cookie.

The second login method does not take the force_auth argument. It always attempts authentication and is equivalent to calling the first with the
force_auth argument set to TRUE.

Both methods return CORBA security credentials.

Syntax:
org.ong. SecuritylLevel 2. Credentials login(String userlD, String password,
Htt pSer vl et Request req, Ht t pSer vl et Response res
bool ean force_auth) throws org.ong. SecuritylLevel 2. Logi nFai | edor g. ong. SecuritylLevel 2. Credenti al s
login(String userl D, String password, Ht t pSer vl et Request
req, Ht t pSer vl et Response res) t hr ows
org. ong. SecuritylLevel 2. Logi nFai | ed
logout()

This method logs the user out. After this method runs, the user must be authenticated again before making any additional requests.

Syntax:
void | ogout (Htt pServl et Request req, HttpServl et Response res)

26

5.5: Certificate-based authentication

Certificates and keys are part of an authorization mechanismsupported in WebSphere Application Server.
Instead of requiringeach component of an application to log users in, acertificate-based authentication
mechanism centralizes thelogin process. In such a system, users need to explicitlyprove their identities only to a
certificate authority (CA).A CA isatrusted third party; components of a system agree totrust the CA to do the
necessary authentication for them.

When the CA authenticates a user, it issues the user a certificatethat contains avariety of data, including the
identity of theissuing CA, how much the CA trusts the user, and an expirydate for the certificate. Other
components of the system canread the user's certificate to determine if the certificate(and thus the identity it
represents) isvalid.

To use certificates for authentication in WebSphere ApplicationServer, choose Lightweight Third-Party
Authentication (LTPA) as your authentication mechanism.

Certificate-based authentication relies on several relatedtechnologies:
« Public-key encryption
« Digital signatures
« Certificate- and key-management systems

In order for certification to work, a system requires three things:
« Trustworthy certificate authorities
« A way to protect certificates from tampering or forgery
« A way to guarantee that the holder of the certificate is the owner of the certificate.

Trust

In order to accept third-party certificates from users,the components of the system need some way to know
which CAsto trust. Thisis handled by creating atrust base, a collection of certificates authenticating the CAs
themselves. Certificate authoritiescan be commercial ventures--companies that offer certificationas their
business--or they can be local entities. Creating thetrust base is part of the work of the system administrator,who
must contact commercial CAs (if used), configure local CAs (ifused), and build the trust base.

Each certificate issued to a user identifies the CA that issuedthe certificate. The component examining the
certificate decideswhether the certificate is trustworthy by determining ifthe issuing CA isin the trust base.
Maintaining the integrityof the trust base is acrucial part of third-party authentication.

Aswith any authentication mechanism, a user's ability topresent avalid certificate from avalid CA provesonly
thatthe user was able to meet the CA's requirements for proving identity.It does not prove that the user is not
malicious, usinga stolen identity, or otherwise undesirable. Procedures forestablishing trust in those scenarios
are application- and site-specific.A site with stringent requirements can choose to pay a commercialcertification
company that agrees to impose requirements onthose who request certificates, and a site doing testing cancreate
certificates that impose no requirements at all. Administratorsfor each application must determine how thorough
the CAs must be.

Protection from forgery

Evenif all the certificates in a system appear to be issued by trustedCAs, the certificates are worthless if they
can be easily forged(for example, to create certificates for unauthorized users) ortampered with (for example, to
give users "better" certificatesthan they are permitted to have). To preserve their contents,certificates are

protected using digital signatures based on apublic-key encryption strategy, making the forgery of and
27

tamperingwith certificates (or any other data) impossible in practice.
Use of certificates by owners

If an intact certificate issued by atrusted CA can be used bysomeone other than the rightful owner of the
certificate, theauthentication system has failed. The system of digital signaturesbased on public-key encryption
provides not only away to ensurethat certificates are intact; it also guarantees that thecertificate can be used
only by itsrightful owner. The mechanicsof public-key encryption ensure that a stolen certificate is useless.

28

5.5.1: Introduction to public-key cryptography

All encryption systemsrely on the notion of akey. A key isthe basisfor atransformation, usually mathematical,
of an ordinarymessage into a unreadable one. For centuries, most encryption systemshave relied on what is
called private-key encryption. Only withinthe last 30 years has a challenge to private-key encryptionappeared:
public-key encryption.

Private-key encryption

Private-key encryption systems use asingle key. This requires thesender and the receiver to share the key. Both
must have the key; the sender encrypts the message by using the key, and the receiverdecrypts the message with
the same key. Both must keep the key privateto keep their communication private. This kind of encryption
hascharacteristics that make it unsuitable for widespread, general use:

« Itrequiresakey for every pair of individuals who need to communicate privately. The necessary
number of keys rises dramatically as the number of participants increases.

« Thefact that keys must be shared between pairs of communicators means the keys must somehow be
distributed to the participants. The need to transmit secret keys makes them vulnerable to theft.

« Participants can communicate only by prior arrangement. There isno way to send a usable encrypted
message to someone spontaneoudly. Y ou and the other participant must have made arrangements to
communicate by sharing keys.

Private-key encryption is also called symmetric encryption, becausethe same key is used to encrypt and decrypt
the message.

Public-key encryption

In the 1970s, a mathematical breakthrough led to the development ofanother major cryptographic system,
public-key encryption. Public-keyencryption uses a pair of mathematically related keys. A messageencrypted
with the first key must be decrypted with the second,and a message encrypted with the second key must be
decrypted withthe first. Each participant in a public-key system has a pairof keys. One of these keysis kept
secret; thisisthe private key.The other is distributed to anyone who wantsiit; thisis thepublic key .

To send an encrypted message to you, the sender encrypts themessage by using your public key. When you
receive it, you decrypt itby using your private key. When you wish to send a message to someone,you encrypt it
by using the recipient's public key. The message canbe decrypted only with the recipient's private key. This kind
ofencryption has characteristics that make it very attractive for general use:

« Public-key encryption requires only two keys per participant. The total number of keys rises much less
dramatically asthe number of participants increases than it does in private-key encryption.

« The need for secrecy is more easily met. The only thing that needs to be kept private is the private key,
and since it does not need to be shared, it isless vulnerable to theft in transmission than the shared key
in a private-key system.

« Public keys can be published. This eliminates the need for prior sharing of a secret key before
communication. Anyone who knows your public key can use it to send you a message that only you can
read.

Public-key encryption is also called asymmetric encryption, becausethe same key cannot be used to encrypt and
decrypt the message. Instead,one key of apair is used to undo the work of the other. WebSphere
ApplicationServer uses the RSA public/private key-encryption agorithm.

With private-key encryption, you have to be careful of stolenor intercepted keys. In public-key encryption,
where anyone cancreate a key pair and publish the public key, the challenge isin verifying that the owner of the

29

public key really isthe personyou think it is. Thereis nothing to stop a user from creatinga key pair and
publishing the public key under afalse name. The person listed as the owner of the public key will notbe able to
read messages encrypted with that key because heor she will not have the private key. If the creator of the
falsepublic key can intercept these messages, that person candecrypt and read messages intended for someone
else.To counteract the potential for forged keys, public-key systemsprovide mechanisms for validating public
keys (and otherinformation) with digital signatures and digital certificates.

30

5.5.2: Introduction to digital signatures

A digital signature isanumber attached to a document. For example,in an authentication system that uses
public-key encryption, digitalsignatures are used to sign certificates. This signature establishestwo different
things for you:

« Theintegrity of the message: Isthe message intact? That is, has the message been modified between the
time it was digitally signed and now?

« Theidentity of the signer of the message: |s the message authentic? That is, was the message actually
signed by the user who claims to have signed it?

A digital signatureis created in two steps. The first consistsof distilling the document down into alarge number.
This number isthe digest code or fingerprint. The digest codeitself is then encrypted, resulting in the digital
signature. Thedigital signature is appended to the document from which thedigest code was generated.

There are several ways of generating the digest code--WebSphere ApplicationServer supports the MD5
message digest function and the SHA 1 secure hashalgorithm--but al of them reduce a message to a number.
This process isnot encryption; rather, it is a sophisticated checksum. The messagecannot be regenerated from
the resulting digest code. The crucial aspect of distilling the document down to a number is this:if the message is
changed, even in trivial way, a different digest coderesults. This means that when the recipient gets a message
and verifiesthe digest code by recomputing it, any changesin the document willresult in a mismatch between
the stated and the computed digest codes.If a message is changed, the resulting digest code changes as well.

So far, there is nothing to stop someone from intercepting a message,changing it, recomputing the digest code,
and retransmitting themodified message and code. We need away to verify the digest code aswell.Thisis done
by reversing the use of the public and private keys.For private communication, it makes no sense to encrypt
messages withyour private key; these can be decrypted by anyone with your public key.But this technique can
be useful for proving that a message must havecome from you. No one else could have created it, since no one
elsehas your private key. If some meaningful message results from decryptinga document by using someone's
public key, it verifies the fact thatthe holder of the corresponding private key did, in fact, encryptthe message.

The second step in creating a digital signature takes advantageof this reverse application of public and private
keys. After a digestcode has been computed for a document, the digest code itself is encryptedwith the sender's
private key. The result isthe digital signature,which is simply attached to the end of the message.
When the message is received, the recipient follows these steps to verifythe signature:

« Recompute the digest code for the message.

« Decrypt the signature by using the sender's public key. Thisyields the original digest code for the
message.

« Compare the original and recomputed digest codes. If they match, the message is both intact and
authentic. If not, something has changed and the message is not to be trusted.

31

5.5.3: Introduction to digital certificates

A digital certificate is equivalent to an electronic ID card. ltserves two purposes:
« To establish the identity of the owner of the certificate
« Todistribute the owner's public key

Certificates provide away of authenticating users, referred to asauthentication by trusted third parties. Instead
of requiring eachparticipant in an application to authenticate every user, third-partyauthentication relies on the
use of certificates, electronic ID cards.

Certificates are issued by trusted parties, called certificateauthorities (CASs). These authorities can be
commercia venturesor they can belocal entities, depending on the requirements of yourapplication. Regardless,
the CA istrusted to adequately authenticateusers before issuing certificates to them. Also, when a CA
issuescertificates, it digitally signs them. When a user presents a certificate,the recipient of the certificate
validatesit by using the digitalsignature. If the digital signature validates the certificate,the certificate is known
to be intact and authentic. Participantsin an application need only to validate certificates; they do not needto
authenticate users themselves. The fact that a user can present avalid certificate proves that the CA has
authenticated the user.The descriptor trusted third-party indicates that the systemrelies on the trustworthiness of
the CAs.

Contents of a digital certificate

A certificate contains severa pieces of information, includinginformation about the owner of the certificate and
theissuing CA.Specificaly, acertificate includes:

« Thedistinguished name (DN) of the owner. A DN isaunique identifier, afully qualified name including
not only the common name (CN) of the owner, but the owner's organization and other distinguishing
information.

« The public key of the owner.

« The date on which the certificate was issued.
« The date on which the certificate expires.

« Thedistinguished name of theissuing CA.

« Thedigital signature of theissuing CA. (The message-digest function isrun over all the preceding
fields.)

The coreidea of acertificate isthat a CA takes the owner'spublic key, signs the public key with the its own
private key, andreturns this to the owner as a certificate. When the owner distributesthe certificate to another
party, it signs the certificate with itsprivate key. The receiver can extract the certificate (containingthe CA's
signature) with the owner's public key. By using theCA's public key and the CA's signature on the
extractedcertificate, the receiver can validate the CA's signature. If it isvalid, the public key used to extract the
certificate is known to be good.The owner's signature is then validated, and if the validationsucceeds, the owner
has successfully authenticated to the receiver.

The additional information in a certificate allows an application todecide if it should honor the certificate. With
the expiration date, theapplication can determineif the certificate is still valid.With the name of the issuing CA,
the application can check thatthe CA is considered trustworthy by the site.

A process that uses certificates must be able to provide its personal certificate, the one containing its public key,

and the certificateof the CA that signed its certificate, called a signing certificate.In cases where chains of trust
are established, several signingcertificates may be involved.

Requesting certificates

32

To get a certificate, you must send a certificate request to theCA. The certificate request includes the following:
« The distinguished name of the owner (the user for whom the certificate is being requested).
o The public key of the owner.
« Thedigital signature of the owner.

The message-digest function isrun over all these fields.

The CA verifies the signature with the public key in the requestto ensure that the request is intact and authentic.
The CA thenauthenticates the owner. Exactly what the authentication consists of depends on a prior agreement
between the CA and the requestingorganization. If the owner in the request is successfully authenticated,the CA
issues a certificate for that owner.

Using certificates: Chains of trust and self-signed certificates

To verify the digital signature on a certificate, you must have thepublic key of theissuing CA. Since public keys
are distributed incertificates, you must have a certificate for the issuing CA. Thatcertificate will be signed by the
issuer. One CA can certifyother CAs, so there can be a chain of CAsissuing certificates forother CAs, all of
whose public keys you need. Eventually, though,you reach a starting point. The starting point is aroot CAthat
issuesitself a self-signed certificate. In order tovalidate a user's certificate, you need certificates for all
interveningparticipants, back to the root CA. Then you have the public keysyou need to validate each

certificate, including the user's.

A self-signed certificate contains the public key of theissuer and is signed with the private key. The digital
signatureis validated like any other, and if the certificate is valid,the public key it contains can be used to check
the validityof other certificates issued by the CA. However, anyone cangenerate a self-signed certificate. In fact,
you will probablygenerate self-signed certificates for testing purposes beforeinstalling production certificates.
The fact that a self-signedcertificate contains avalid public key does not mean that theissuer isreally atrusted
certificate authority. In order toensure that self-signed certificates are generated by trustedCAs, such certificates
must be distributed by secure means(hand-delivered on floppy disks, downloaded from secure sites,and so
forth).

Applications that use certificates store those certificatesin key, or keyring, files. Thisfile typically containsthe
necessary personal certificates, its signing certificates,and its private key. The private key is used by the
applicationto create digital signatures. Servers will always have personalcertificates in their key files. A client
requires a personal certificateonly if the client must authenticate to the server, that is, whenmutual
authentication is enabled.

To allow aclient to authenticate to a server, a server's keyringfile contains the server's private key and
certificate and thecertificates of its CA. A client's keyring must contain thecertificates of the CAs of each server
to which the client mustauthenticate.

If mutual authentication is needed, the client's keyring must contain the client's private key and certificate and
thecertificates of any CAs. The server's keyring needsa copy of the certificate of the client's CA aswell.

33

5.5.4: Requesting certificates

When you request a certificate from a certificate authority,you need to take into account:
« Thetimeit takesto get a certificate
« Reguirements the CA imposes on the format of information

Time requirements

Because of the diligence expected of acommercial CA, the authenticationprocess for principals can take a
significant amount of time. Commercial CAs often require up to aweek to complete their authentication
process.Even on-site CAs can take between minutes and days to complete theirauthentication process.

Asaresult, when planning to add a new application server or host (nameserver) to your enterprise, you must
take into account the time ittakes to get a certificate. Although primarily of concern for productioncertificates, it
can also be a concern in getting test certificates aswell.

Note that if your server's certificate is compromised, or if someother server in its trust-base is compromised,
you must acquirea replacement certificate. Thisinvolves similar time requirements.

Requirements on the format of information

When you create a certificate request, you need to provide the informationabout the owner of the certificate.
The required information and itsformat vary across certificate authorities. Also, the WebSphere
ApplicationServer graphical tool and command-line tools vary in the way they representthe name.

Certificates use names in the X.500 format. A name in this styleconsists of many components. The entire name
is called a distinguishedname (DN). It consists of a set of components, which often includesa common name
(CN), and organization (O), an organizationunit (OU), a country (C), alocality (L) and many others.
Forexample, an X.500 name for a server called PolicyServerl aspart of the Accounting division of the US-based
AccountingCorpcan look like this:

"CN=Pol i cyServer1l, QOU=Accounting, O=AccountingCorp, c=US"

Certificates are often used to represent server principals, so atypicalconvention isto create CNs of the
formhost_name/server _name, for example,for the server PolicyServerl on the host central ops.acctcorp.com,
thecommon name is central ops.acctcorp.com/PolicyServerl.

Some CAs require the use of fully-qualified host names in commonnames. For example, VeriSign does not sign
your certificate unlessthe domain portion of the host name is owned by your organization.Check with the CA
for any requirements on common-name fields.

The distinguished name can include other information as well. Some certificateauthorities, including VeriSign,
require that you spell out completelythe state or province fields. For example, you need to specify "New

Y ork"rather than "NY." Check with the CA for any such requirements before generatingyour certificate
requests.

34

5.5.4.1: Getting a test certificate from acertificate
authority

To obtain a certificate from a certificate authority, youmust create file containing a certificate signing request
(CSR).Y ou then send the file to the CA. The procedure for gettingthe file to the CA varies with the CA and with
the type of certificate, test or production, being requested. It is oftenhelpful to request atest certificate from a
CA before requestinga production certificate.

Thisfile describes how to get atest certificate from a specificcommercial CA, VeriSign, which offers a test
certificate for free. The test certificate is alegitimate certificate, fully signedand endorsed for actual use, and it
can be used to validateyour configuration before you acquire a production certificate.However, the test
certificate is only good for two weeks afterreceipt, so it is not useful for production use.

After you have created file containing a certificate signing request,request atest certificate by following these
steps:
1. Start your Web browser and link to VeriSign's home page at http://www.verisign.com.

2. Choosethefreetrial SSL trial 1D option. This displays a page where you can request afreetrial of a
secure server |D.

3. Follow theinstructions for requesting afreetrial 1D. Be sure to read the frequently asked questions
(FAQ) list, the legal agreement for VeriSign trial subscribers, and the information comparing Tria
Secure Server IDsto Secure Server Digital IDs. VeriSign also provides online help for each step of the
process.

4. When you get to the page on which you submit the CSR file, scroll down to the edit box. Thisis where
you insert the CSR.

5. Open the file containing the CSR; use any text editor that supports cut-and-paste actions.
6. Inyour editor window, select all of the text, including the header
----- BEG N NEW CERTI FI CATE REQUEST- - - - -
and the corresponding trailer.
7. Paste the test into the edit box on the Enrollment page in your browser.
8. Click the Continue button.
9. On theresulting page, verify and complete the following information:

o Verify Distinguished Name: Check all of the information displayed about your certificate. In
particular, ensure that the Common Name is correct and unique.

o Enter Technical Contact Information: Enter the requested information about you. VeriSign
needs this information to send you your signed certificate. In particular, make sure that your
e-mail addressis correct. VeriSign will e-mail your certificate to this address.

o Read the Digital ID Subscriber Agreement: Read the terms and conditions stipul ated by
VeriSign about the Test ID you are requesting.
If you do not accept these conditions, do not continue.

10. When the information is complete, and if you accept the VeriSign's Subscriber Agreement, click the
Accept button.

Y ou will recieve an acknowledgement, usually by e-mail, that you havesuccessfully completed your request.
Y ou will probably be instructedto download the certificate and to install it in your browser.

[il Do not install the certificate in your browser. For use withWebSphere, the certificate must beinstalled in a
keyring,not in your browser.

35

http://www.verisign.com/

5.5.4.2: Getting a production certificate from a
certificate authority

To obtain a certificate from a certificate authority, youmust create file containing a certificate signing request
(CSR).Y ou then send the file to the CA. The procedure for gettingthe file to the CA varies with the CA and with
the type of certificate, test or production, being requested.

Thisfile describes how to get a production certificate from a specificcommercial CA, VeriSign. Getting a
production certificate can beexpensive, depending on the type of certificate and its strength.lt is often
instructive to request atest certificate from a CAbefore requesting a production certificate.

After you have created file containing a certificate signing request,request a production certificate by following
these steps:

1. Start your Web browser and link to VeriSign's home page at http://www.verisign.com.

2. Choose Web Server Certificates --> Buy Now --> [Buy] Global Site Services. This begins a series of
pages that collect the information VeriSign needs to process your certificate request. Read each page
carefully. When you complete a page, display the next page by clicking the Continue button.

The page titled Before Y ou Start lists the things you should do before beginning this process, including
installing web server software, setting up your Internet proxies, determining how you will pay for the
certificate, reviewing the legal agreement and, if necessary, printing the enrollment guide. Y ou should
treat any referencesto "web server software” as references to the WebSphere software.

3. The pagetitled Step 1: Obtain Proof of Right provides instructions on one of the authentication steps
that VeriSign performs. In this case, you must prove that your enterprise has the right to operate under
the Organization name that you specified in your CSR. The VeriSign process is optimized to using
D-U-N-S numbers for this purpose. If you take this approach, you must provide your D-U-N-S number
or, if you areaU.S. company, VeriSign can look it up for you.

If you don't have a D-U-N-S number, or if you don't want to use thisto prove your right to the
Organization name, you can provide alternate proof of right. For example, if you have aletter of
incorporation or similar article, you can fax acopy to VeriSign. Using an alternate proof of right will
slow the process down, because you will not be able to continue until VeriSign has received and
processed the alternative proof.

4. The pagetitled Step 2: Confirm Domain Name informs you that you (your enterprise) must own the
domain name indicated in the common name of your certificate. These domain names are registered
with NIC, and VeriSign will verify that the domain name you specified belongs to your enterprise; this
is part of the authentication process completed by certificate authorities.

5. The pagetitled Step 3: Generate CSR instructs you to create your CSR. If you have aready created a
CSR file, you can skip this step.

6. The pagetitled Step 4: Submit CSR provides you with an edit box. Thisiswhere you will insert the
CSR.

7. Open the file containing the CSR; use any text editor that supports cut-and-paste actions.
8. Inyour editor window, select all of the text, including the header

----- BEG N NEW CERTI FI CATE REQUEST- - - - -

and the corresponding trailer.
9. Paste thetest into the edit box on the Submit CSR page in your browser.

10. The pagetitled Step 5: Complete Application page requires you to enter alot of information. Verify
your distinguished name and enter the following:

o Server information
36

http://www.verisign.com/

= Vendor of the server software: Click the pull-down button and select IBM.

= A challenge phrase: A text string. This can be anything you like, and you should treat it
like a password. You will be asked to present this same challenge phrase when you
submit arenewal request or if you ask to have the certificate revoked (for example, if the
certificate is compromised). Y ou may aso be asked to supply this challenge phrase when
speaking with VeriSign.

o Technical contact information: This should identify you. Your e-mail addressis particularly
important; VeriSign will e-mail the certificate to this address.

o Organizational contact information: This should be someone other than yourself whoisa
member of your enterprise. VeriSign will contact this person during the authentication process,
to verify the legitimacy of your request.

o Billing contact information: Enter the person in your organization who is responsible for
payment.

o Thetype of Secure Server 1D that you are requesting
o Payment information

o Organizational information (your D-U-N-S number): If you use an alternate proof of right, then
VeriSign will instruct you on how to fill out this information.

11. Review the Server Certificate Agreement. To accept the conditions and submit your request, click the
Accept button. If reject the conditions, click the Decline button.

VeriSign will send you an e-mail message containing your signedproduction certificate. The certificate must be
installed ina keyring class.

37

5.5.4.3: Using test certificates

If you need to start using a server before you get a productioncertificate from a CA -- for example, to test your
installation --you can do either of the following, less secure, alternatives:

« You can use the test certificate (in the DummyServerKeyFile) provided with WebSphere to perform
some early tests. However, you should replace it with a certificate that |egitimately represents your
server as soon as possible. For this, you do can either of the following:

o Acquire production (or test) certificates from the CA
o Create your own test CA and issue test certificates
« You can configure the server initially without its certificate keyring. This means that clients cannot
access the server securely. Again, this situation is acceptable only for testing purposes.

When you receive the certificate from the CA, you can modify theconfiguration of the server to use the new
certificate. Clients canthen access the server with the security provided by the certificate.

38

5.5.5: Mapping certificates to users for client authentication
and authorization

Client-side certificates allow access to secured resources from Webclients. A client presents an X.509-compliant digital
certificateto perform mutual authentication with a Web server. The WebSpheresecurity run time attempts to map the
certificate to a known user inthe associated LDAP directory. If the certificate is successfullymapped to a user, then the holder
of the certificate is believedto be the user in the registry and is authorized as this user.

After the Web server gets the client's certificate, there mustbe away to map the certificate to a user. WebSphere
ApplicationServer supports two techniques for mapping certificates to entriesin LDAP registries:

« By exact distinguished name

« By matching attributes in the certificate to attributes of LDAP entries

Mapping by exact distinguished name

This approach attempts to map the distinguished name (DN) associatedwith the Subject in the certificate to an entry in the
LDAP directory.If the mapping is successful, the user is authenticated and isauthorized according to the privileges granted to
the identity in the LDAPdirectory.

The mapping is case insensitive. For example, the following twoDNs match on a case-insensitive comparison:

"cn=Sm th, ou=NewlUnit, o=NewConpany, c=us""cn=smth, ou=newunit, o=NewConpany, c=US"

If amatch is found, authentication succeeds, and if nomatch is found, authentication fails.

Mapping by filtering certificate attributes

This approach maps certificate attributes to attributes of entriesin anLDAP directory. For example, you can specify that the
common name (CN)attribute of the Subject field in the certificate isto be matched againstthe uid attribute of your LDAP
entry. If the mapping is successful, the useris authenticated and is authorized according to the privileges granted to theidentity
in the LDAP directory.

If you are matching the Subject CN field in the certificate to theuid attribute of the LDAP entry, a certificate with the Subject
DN"cn=Snmi th, ou=NewUnit, o=NewConpany, c=us" maichesanLDAP userentry with uid=Smith.

To use this mapping technique, you must request CertificateM apping and set up the certificate filter in the administrative
console.
1. Click Task --> Configure Application Security
Set the Challenge Type to " Certificate"
Click Task --> Global Security Settings --> User Registry
Click the Advanced button
Set the Certificate Mapping choice to " Certificate Filter"

Enter the certificate filter you want to implement. For example, to match the CN attribute of the Subject in the
certificate to the uid attribute in the LDAP entry, enter (ui d=${ Subj ect CN})

o g0k~ wDbd

This specification extracts the CN field from the Subject attribute in thecertificate ("Smith") and creates afilter ("uid=Smith")
fromit.The LDAP directory is searched for a user entry that matches thefilter. If an entry matches the filter, authentication
succeeds.Note that the search and match of the LDAP directory arebased in part on how your LDAP directory is configured.

39

5.5.6: Tools for managing certificates and keys

WebSphere Application Server, Advanced Edition provides utilities for managing certificatesand keys:
« A graphical tool, called iKeyman, the IBM Key Management tool.
« A package of Java command-line tools, com.ibm.cfwk.tools. The package contains four tools:
o KeyGenTool, which generates keys
o MakeCertRequest, which generates certificate requests
o MakeCertTool, which generates certificates
o VaultTool, which is used to manage the certificate database
The graphical tool is easier to use than the command-linetools, which makes it ideal for occasional or casual

use. However,command-line tools support scripting of certificate management,which is useful for
administrators who do alot of thiswork or whowant to automate the work.

40

5.5.6.1: The CFWK tools for certificate and key management

WebSphere provides command-line tools for managing certificates and keyringsin the com.ibm.cfwk.tools Java package, which contains four tools:
« KeyGenTool, which generates keys
« MakeCertRequest, which generates certificate requests
« MakeCertTool, which generates certificates
« VaultTool, which is used to manage the certificate database

You can do all the necessary work for managing certificatesand keyrings with these tools. The first three tools aresingle-purposes commands; there
isonly one way to run each.The last, VaultTool, supports of suite of subcommands.

Using the tools

To use the certificate-management tools, you must put the filescfwk.zip and cfwk-tools.zip at the front of your classpath. These files are located in
the AppServer/lib directory of thewebSphere installation. For example, on Windows NT, set the CLASSPATHvariable as shown:

set
cl asspat h=<W5-i nstal | >\ AppServer\|ib\cfwk. zi p; <W5-i nstal |l >\ AppServer\|ib\cfwk-tools.zip; LASSPATH%

41

5.5.6.1.1: The KeyGenTool tool

This command creates apair of RSA keys (private and public) andplacesthem in afile.
Syntax:
java comibm cfwk. tool s. KeyGenTool --forge U keyalg U keyfile

Arguments:

U _keyalg

The key algorithm: "RSA/512/F4" or "RSA/1024/F4"
U_keyfile

Thefilein which to place the key

Examples:

java comibm cfwk. tool s. KeyGenTool --forge
"RSA/ 512/ F4" D: \ pr oj ect s\ webspher e\ keyri ngs\ WebAS. Test Server. keyGenerati ng key. Mght take a while...

The exampl e above creates keys for the server called TestServerand places them in afile called WebA S.TestServer.key.

java comibm cfwk. tool s. KeyGenTool --forge
"RSA/ 512/ F4" D: \ pr oj ect s\ webspher e\ keyri ngs\ WebAS. Test CA. keyGenerating key. Mght take a while...

The example above creates keys for alocal, non-production CA calledTestCA and placesthem in afile called WebAS.TestCA .key.

[l Thisisageneral-purpose tool with applications beyond those discussedhere. This page discusses only the subset of options relevant tomanaging
certificates for WebSphere Application Server programs.

42

5.5.6.1.2: The MakeCertRequest tool

Thistool generates a certification request, which can be sent toa certificate authority (CA).

Syntax:

java comibm cfwk. tool s. MakeCert Request [--from U_frondat e]

[[--to U todate] | [--for Ufor]] U_X500Narne
U keyfile U signal g

Ucsrfile

Arguments:

--from U_fromdate
The start date for the certificate, in the format dd/mm/yyyy

--to U_todate

The expiration date for the certificate, in the format dd/mm/yyyy
--for U_for

The lifetime of the certificate, in the format nd, where nis an integer and d stands for "days"
U_X500Name

The distinguished name of the owner, in valid X.500 format
U_keyfile

Thefile holding the owner's public key
U_signalg

The signature algorithm, either "M D5 with RSA" or "SHA1 with RSA"
U_csrfile

Thefilein which to store the certification request

[} Thisisageneral-purposetool with applications beyond those discussedhere. This page discusses only the subset of options relevant tomanaging
certificates for WebSphere Application Server programs.

43

5.5.6.1.3;: The MakeCertTool tool

This command generates a certificate.

Syntax:

java comibm cfwk.tool s. MakeCert Tool [--serial U serial] [--from
U frondat e] [[--to U_todate] | [--for UTfor]]

[--issuer U X500Nane] [--subject U X500Nane]

[--sign-alg U signalqg] [--sign-key U keyfile]

[--subject-key U keyfile] [--cert-file Ucertfile]

Arguments:

--serial U_serial

A serial number to be placed in a certificate, to uniquely identify the certificate
--from U_fromdate

The start date for the certificate, in the format dd/mm/yyyy
--to U_todate

The expiration date for the certificate, in the format dd/mm/yyyy
--for U_for

The lifetime of the certificate, in the format n d, where nis an integer and d stands for "days"
--issuer U_X500Name

The distinguished name of theissuer, in valid X.500 format
--subject U_X500Name

The distinguished name of the owner, in valid X.500 format
--sign-alg U_signalg

The signature algorithm, either "M D5 with RSA" or "SHA1 with RSA"
--sign-key U_keyfile

The file containing the issuer's public key
--subject-key U_keyfile

The file containing the owner's public key
--cert-file U_certfile

Thefile to hold the generated certificate

Examples:

java comibm cfwk. tool s. MakeCert Tool --serial 0 --for 2y--issuer "cn=WbAS Test CA OU=SW5 O=I BM
c=US"--sign-alg "MD5 with RSA"--sign-key d:\projects\websphere\keyrings\ WbAS. Test CA. key--cert-file
d: \ proj ect s\ webspher e\ keyri ngs\ WebAS. Test CA. certCreating certificate...

The example above creates a self-signed certificate for TestCA. ltuses the MD5 digest function and TestCA's public key to sign thecertificate. (Since
the subject and the issuer are the same, thecertificate is "self-signed.") The resulting certificate isstored in afile called WebAS. TestCA .cert.

java comibm cfwk.tools. MakeCert Tool --serial 0 --for 2y--issuer "cn=WebAS Test CA, OU=SW5 O=I BM
c=US"--subj ect "cn=WebAS Test Server, OJ=SW5 O=IBM c=US"--sign-alg "MD)5 w th RSA"--sign-key

d: \ proj ect s\webspher e\ keyri ngs\ WbAS. Test CA. key- - subj ect - key

d: \ proj ect s\ webspher e\ keyri ngs\ WbAS. Test Server. key--cert-file

d: \ proj ect s\ webspher e\ keyri ngs\ WebAS. Test Server.certCreating certificate...

The example above creates a certificate for the TestServer signedby the TestCA. The server's certificate includes the server's publickey and is signed
by theissuing CA (our TestCA) using the MD5 digestfunction and the TestCA's public key. The server's certificate isplaced in afile called
WebAS. TestServer.cert.

[} Thisisageneral-purposetool with applications beyond those discussedhere. This page discusses only the subset of options relevant tomanaging
certificates for WebSphere Application Server programs.

44

5.5.6.1.4;: The VaultTool tool

The VaultTool command supports a suite of subcommands forcreating and managing keyrings. This tool maintains a masterdatabase of certificates
and keys, the vault, from whichselected contents can be exported to keyrings for individual susers.

The tool does not directly manipulate keyring files;all manipulation is done in the vault. For example, to adda new certificate to a server's keyring,
you add the certificateto the vault and export a new edition of the keyring file forthe server to use.

Common syntax

When invoking VaultTool, you must specify a password and thefile in which the vault is stored. The password simply protectsaccess to the vaullt file.
This syntax is common to all VaultToolcommands. Each subcommand takes a specific set of arguments.

java comibm cfwk.tools.Vaul t Tool --password U vaultpasswd U vaultfile subcommand
subcommand- ar gs

Subcommands

The tool supports the following subcommands;
« list: lists the contents of the vault
« delete: deletes specific information from the vault
« add public cert: adds the certificate for a CA to the vault
« add private key: places aprivate key in the vault
« add public chain: adds a chain of certificates to the vault
« container: writes information from the vault to akeyring file
Although each VaultTool subcommand takes its own set ofarguments, they are drawn from a common set. The followinglists the arguments used by
the VaultTool subcommands.
U_label

A string used to categorize information for a specific principal; al keys, certificates, and chains used by a principal should have the same
label.

U_info

User information to be stored with an entry. Thisinformation can be stored in one of three encodings, hexadecimal, binary, or base 64. The
U_infoitself is expressed as a string appended by -hex, -bin or -b64, for example, A1269E-hex.

U_keyfile
Thefile holding a user's keys.
U_certfile
A file containing a certificate.
U_signerfile
A file containing a certificate for aprincipal that has signed certificates for others, used when adding a chain to the vault.
U_sdlightpassword
The password for the keyring database.
U_class
The class name for the keyring file (an SSLight database). Do not include the .class file extension.
list: Lists the contents of the vault, in ashort or long format.
Syntax:
list --1ong
delete: Removes entries under a specific label from the vault.
Syntax:
del ete U | abel

add public cert: Addsthe certificate for atrustworthyCA to the vault. Use this to build the trust base for your application.
Syntax:

add public cert U_l abel [U_info] U certfile
Example:
java comibm cfwk. tool s. Vaul t Tool --password

"WebAS" d: \ proj ect s\ webspher e\ keyri ngs\ WebAS. Test. Vaul t. vl tadd public certWbASt est CA 00- hex
d: \ proj ect s\webspher e\ keyri ngs\ WbAS. Test CA. cert

The example above adds the self-signed certificate for thelocal TestCA to the vault. Thisentry in the vault is stored under thelabel WebAStestCA.
45

add private key: Copiesthe private key from a keyfile and adds it to the vault.

Syntax:

add private key U_| abel [Ui nfo] U keyfile
Example:

java comibm cfwk.tools.Vaul t Tool --password

"WebAS" d: \ proj ect s\ webspher e\ keyri ngs\ WebAS. Test. Vaul t. vl tadd private keyWbASt est Server 00- hex
d: \ proj ect s\ webspher e\ keyri ngs\ WbAS. Test Ser ver. key

The exampl e above adds the private key for the TestServer, storedin the file WebA S.TestServer.key, to the vault stored in the
fileWebAS.Test.Vault.vlt. Thisentry in the vault is stored under thelabel WebAStestServer.

add public chain: Adds achain of certificates tothe vault. A certificate chain includes a server includes theserver's certificate and the certificate of
each prior issuingCA (there may be more than one). The complete chain must be addedat one invocation of the tool, and each certificate must beread
from a separate file.

Syntax:

add public chain U_| abel [U_i nfo] Ucertfile
U signerfile+

When adding both akey and a certificate chain for the same owner tothe vault, the values specified for U_label and U_info must matchin both the
"add private key" and "add public chain" invocations.

Example:

java comibm cfwk. tool s. Vaul t Tool --password
"WebAS" d: \ proj ect s\ webspher e\ keyri ngs\ WebAS. Test. Vaul t. vl tadd public chai nWebASt est Server 00- hex
d: \ proj ect s\ webspher e\ keyri ngs\ WbAS. Test Server. certd:\ proj ect s\webspher e\ keyri ngs\ WebAS. Test CA. cert

The example above achain of certificates for the TestServer to thevault. The chain includes two certificates: the TestServer's certificateand the
certificate the issuing CA. Note that the U_label ("WebA StestServer")and the U_info ("00-hex") used in this example match those used in the"add
private key" example for the TestServer.

container : Writes the contents (or labeled components) of thevault out to a keyring file. The keyring class is written to the currentdirectory,
regardless of the specified Java package name. Y ou must thencopy it to alocation matching the Java package.

Syntax:

cont ai ner -p U_sslight password U cl ass [U_I abel *]
Example:

java comibm cfwk.tools.Vaul t Tool --password

"WebAS" d: \ pr oj ect s\ webspher e\ keyri ngs\ WebAS. Test. Vaul t. vl tcontai ner -p "WbAS"
com i bm webspher e. DutmmyKeyri ngWebASt est Server WebASt est CA

The exampl e above exports the information in the vault forthe TestServer and TestCA (requested by the |abels "WebA StestServer"and
"WebAStestCA") to the WebSphere provided keyring filecalled DummyKeyring. This keyring file is protected with thepassword "WebAS."

[l Thisisageneral-purpose tool with applications beyond those discussedhere. This page discusses only the subset of options relevant tomanaging
certificates for WebSphere Application Server programs.

46

5.5.6.1.5: Example: generating and using testcertificates

The following sequence of commands illustrates how to createatest CA, use the test CA to generate test certificates for aserver, and put the necessary
information into akeyring class. This example uses the default password ("WebAS") for the vaultand the keyring class, and writes to the default
keyring class(com.ibm.websphere. DummyKeyring).

Setting the classpath

To use the certificate-management tools, you must put the filescfwk.zip and cfwk-tools.zip at the front of your classpath.These files are located in the
AppServer/lib directory of theWebSphere installation. For example, on Windows NT, set the CLASSPATHvariable as shown:

set
cl asspat h=<W&-i nstal | >\ AppServer\1lib\cfwk. zi p; <W5-instal | >\AppServer\lib\cfwk-tools. zi p; “CLASSPATH%

Creating the keys, certificates, and files

Create apair of keysfor thetest CA, called "TestCA."

% java com i bm cfwk.tools. KeyGenTool --forge
"RSA/ 512/ F4" D: \ pr oj ect s\ webspher e\ keyri ngs\ WebAS. Test CA. key

Create apair of keysfor the test server, called "TestServer."

% java com i bm cfwk.tools. KeyGenTool --forge
"RSA/ 512/ F4" D: \ pr oj ect s\ webspher e\ keyri ngs\ WebAS. Test Server . key

Create a self-signed certificate for the test CA and place itin the file called WebA S.TestCA .cert. This uses the CA's keysfrom the
WebAS.TestCA .key file created above.

% java comibm cfwk.tools. MakeCert Tool --serial 0 --for 2y--issuer "cn=WebAS Test CA, OULESW5G O=I BM
c=US"--sign-alg "MD)5 with RSA"--sign-key d:\projects\websphere\keyrings\ WbAS. Test CA. key--cert-file
d: \ proj ect s\ webspher e\ keyri ngs\ WbAS. Test CA. cert

Create a certificate for the TestServer using the server's key(in the file WebAS. TestServer.key), signed by the CA'skey (in the
fileWebAS.TestCA .key). Put the new certificate in afile calledWebAS. TestServer.cert.

% java comibm cfwk.tools. MakeCert Tool --serial 0 --for 2y--issuer "cn=WebAS Test CA, OLESW5 O=I BM
c=US"--subj ect "cn=WebAS Test Server, OU=SW5 O=IBM c=US"--sign-alg "MD)5 w th RSA"--sign-key

d: \ proj ect s\ webspher e\ keyri ngs\ WbAS. Test CA. key- - subj ect - key

d: \ proj ect s\ webspher e\ keyri ngs\ WbAS. Test Server. key--cert-file

d: \ proj ect s\ webspher e\ keyri ngs\ WebAS. Test Server. cert

Add the private key of the server to the vault. The vault is storedin the file WebAS.Test.Vault.vit.

% java com i bm cfwk.tools. Vault Tool --password
"WebAS" d: \ proj ect s\ webspher e\ keyri ngs\ WebAS. Test. Vaul t. vl tadd private keyWebASt est Server 00- hex
d: \ proj ect s\ webspher e\ keyri ngs\ WebAS. Test Server . key

Add the certificate chain for the server to the vault. This chainincludes the certificates for the server and for the CA that signedthe server's certificate
(from the files WebAS.TestServer.cert andWebAS.TestCA .cert, respectively).

% java comibm cfwk.tools.Vaul t Tool --password
"WebAS" d: \ pr oj ect s\ webspher e\ keyri ngs\ WebAS. Test. Vaul t. vl tadd public chai nWebASt est Ser ver 00- hex
d: \ proj ect s\webspher e\ keyri ngs\ WbAS. Test Server. certd:\ proj ect s\webspher e\ keyri ngs\ WebAS. Test CA. cert

Add the CA's self-signed certificate (WebAS. TestCA .cert) to the vault.

% java comibm cfwk.tools.Vaul t Tool --password
"WebAS" d: \ pr oj ect s\ webspher e\ keyri ngs\ WebAS. Test. Vaul t. vl tadd public certWbASt est CA 00- hex
d: \ proj ect s\ webspher e\ keyri ngs\ WebAS. Test CA. cert

Export the information about the TestCA and the TestServer from thevault to akeyring class (the default DummyKeyring).

% java comibm cfwk.tools.Vaul t Tool --password
"WebAS" d: \ proj ect s\ webspher e\ keyri ngs\ WbAS. Test. Vaul t. vl tcontai ner -p
"WebAS"com i bm webspher e. DunmyKeyri ng WebASt est Server WbASt est CA

[} Thekeyring classiswritten to the current directory, regardless of thespecified Java package name. Y ou must copy it to alocation
correspondingto the Java package. For example, keyring class name iscom.ibm.websphere. DummyKeyring, the file must be moved to
thecom/ibm/websphere directory and that directory must be on the CLASSPATHvariable.

47

5.5.6.2: The IBM Key Management tool

WebSphere provides agraphical tool, the IBM Key Management tool (iKeyman)for managing keys and certificates. The graphical tool is easierto use than the command-line tools, which makesiit ideal for occasionalor
casual use.

Using the tool

To use theiKeyman tool, you must put the necessary files at thefront of your classpath. Three of the files, gsk4cls,jar,cfwk.zip and cfwk.sec, are included as part of WebSphere (in theAppServer/lib directory). The fourth,
swingall.jar, is part of Javaitself. For example, on Windows NT, set the CLASSPATH variable as shown:

set
cl asspat h=<W5-i nst al | >\ AppServer\lib\cfwk. zi p; <Ws-i nstal | >\ AppServer\lib\gsk4cls.jar; <JdkDir>\|ib\swi ngall.jar; <Ws-install>\AppServer\lib; UCLASSPATHY

To start the iKeyman tool, use this command:
java -Dkeyman.j avaOnl y=true comibm gsk.ikeyman. | keyman

The iKeyman window appears as shown below.

BM Key Management !IE[ﬁ

Key Database File Create View Help

IS

Hey database information
DB-Type: | |
File Name: |
Key database content
| Personal Certificates hd | | Receive.., |

| Delete |

| View/(Edit... |

| Import.., |

| Recreate Request.. |

| New seirsigned... |

| Extract Certificate... |

A personal certificate has its associated private key in the database. |

48

5.5.6.2.1: Creating a self-signed test certificate

For test purposes, you can create a self-signed certificatespecifically for a server and its Secure Sockets Layer (SSL) basedJava clients.
Y ou can also set up atemporary certificateauthority by creating a self-signed certificate and using it to signother certificates.

This procedure is useful when the WebSphere test certificate hasexpired, or if you want a self-signed test certificate thatspecifically
recognizes your server. If you need atest certificatethat has been signed by a Certificate Authority (CA), follow theprocedurein article

5.5.6.2.2, Creating acertification request.

To create your own self-signed test certificate, complete the followingsteps:
1. Start the IBM Key Management tool. This displaysthe IBM Key Management window.
java -Dkeyman.javaOnl y=true com i bm gsk. i keynman. | keyman

IBH Key Management _ (O] x|
Key Database Eile Create ‘-._ﬂew Help

D[ﬁﬂi‘ﬁ«:l-ﬁ.

—Hey database information
DB-Type:
File Name: |

Key database content

Personal Certificates -

A personal certificate has its associated private Key in the database.

2. Open anew key database file by selecting K ey Database File --> New from the menu bar. The New dialog box is displayed.

3. Enter the name (including the .class extension) and location of the file for your new key database class. Files are typically named
for the servers they belong to.

49

Mew |
Key database type | SSLight Key database [:-I'ass -

File Name: |keyring.class

|| Browse...
Location: |G:Uskit4 Cisamplesh |
OK Cancel

4. Click the OK button to continue.
5. The Password Prompt dialog box is displayed. Enter a password to restrict access to the key database. Y ou will need to set the

50

keyring-password properties (e.g., com.ibm.CORBA.SSL K eyRingPassword and

com.ibm.CORBA .SSL ClientK eyRingPassword) to this password so that the keyring class can be opened by iKeyman during
runtime.

Pazsword Prompt i

Password: | |

Confirm Password: | |

[_| Set expiration time?

Password Strenagth:

OK Reset Cancel

[l Do not set an expiration date on the password or save the password to afile. Y ou must then reset the password when it
expires or protect the password file. This password is used only to rel ease the information stored by iKeyman during runtime.

. Click the OK button to continue.

Thetool now displays all of the available default signer certificates. Y ou can add, view or delete signer certificates from this

screen. To continue creating a self-signed certificate, either click the New Self-Signed... button on the tool bar or select Create
--> New Self-Signed Certificate... from the menu bar.

The Create New Self-Signed Certificate form is displayed. Enter the appropriate information for your self-signed certificate.

Ereate Mew Self-Signed Certificate

Please provide the following:

Key Lahel | |
Version X500W3 -

Key Size 1024 -

Common Hame |sectest1.austin.ihm.cnm

Organization

|
Organization Unit {(optional) |
Locality (optional) |
|

|

State/Province {optional)

Zipcode {optional) |
Countny us -
Yalidity Period J64 Days
OK Resot Cancel
Key Label

Give the certificate akey label, which is used to uniquely identify the certificate within the keyring. If you have only one
certificate in each keyring, you can assign any value to the label, but it is good practice to use a unique label, related to
the server name.

Common Name

Enter the server's common name. Thisis the primary, universal identity for the certificate; it should uniquely identify the
principal that it represents. In a WebSphere environment, certificates frequently represent server principals, and the
common convention is to use CNs of the form <host_name>/<server_name>.

Organization
Enter the name of your organization.
Other X.500 fields

Enter the organization unit (a department or division), location (city), state/province (if applicable), zipcode (if
applicable), and select the two-letter identifier of the country in which the server belongs.
For a self-signed certificate, these fields are optional. Commercial CAs may require them.

Validity period
Specify the lifetime of the certificate, in days, or accept the defaullt.

9. Click the OK button to continue. The resulting key database class contains a self-signed certificate and its private key, and the
class can be used for both a server and aclient. Y ou must copy the keyring file to the designated directory on the server's host.

[il 1f you have only one personal certificate, it will be set as the default certificate for the database. If you have more than one,
you must select one as the default certificate. Y ou can change the default certificate as follows:

1. Highlight the certificate
2. Click the View/Edit... button
3. Check the box on the resulting screen to make the chosen certificate the default

4. Click the OK button
5.

10. Exit the Ikeyman tool by closing the IBM Key Management window.

51

5.5.6.2.2: Creating a certification request

To obtain a certificate from a certificate authority, you mustsubmit a certificate signing request (CSR). Y ou can request eitherproduction
or test certificates from a CA with aCSR.

With iKeyman, generating a certificate signing request also generatesa private key for the server for which the certificate is
beingrequested. The private key remains in the server's keyring class,so it stays private: the public key isincluded in the CSR.

To create a certificate signing request (CSR), complete the followingsteps:
1. Start the IBM Key Management tool. This displaysthe IBM Key Management window.
j ava -Dkeyman. j avaOnl y=true com i bm gsk. i keynman. | keyman

IBI'-'I Key Management Hi=] E3
Key Database File Create View Help

1)) o) el | N S

-Hey database information
DB-Tvpe:
File Name: _

Key datahase content

Personal Certificates -

A personal certificate has its associated private Key in the database.

2. Open anew key database file by selecting K ey Database File --> New from the menu bar.

3. The New dialog box is displayed. Enter the name (including the .class extension) and location of the file for your new key
database class. Files are typically named for the servers they belong to.

52

Mew |
Key database type | SSLight Key database [:'I'ass -

File Name: |Heyring.c|ass

|| Browse...
Location: |G:U5I{it4 Clsamplest |
oK Cancel

4. Click the OK button to continue.

5. The Password Prompt dialog box is displayed. Enter a password to restrict access to the key database. Y ou will need to set the
keyring-password properties (e.g., com.ibm.CORBA.SSLK eyRingPassword and com.ibm.CORBA.SSL ClientK eyRingPassword)
to this password so that the keyring class can be opened by iKeyman during runtime.

Password Prompt i

Password: | |

Confirm Password: | |

[_| Set expiration time?

Password Strength;

OK Reset Cancel

[l Do not set an expiration date on the password or save the password to afile. You must then reset the password when it
expires or protect the password file. This password is used only to release the information stored by iKeyman during runtime.

6. Click the OK button to continue.

7. Locate the Key database content portion in the center of the main window Select K ey Database Content --> Per sonal
Certificate Requests. This updates the IBM Key Management window with any existing personal certificate requests.

8. Click the New... button.

9. The Create New Key and Certificate Request dialog box is displayed. Enter the necessary information to complete your request.

Theinformation certificate authorities require varies; be sure to determine the necessary fields and formats before sending your
request.

53

Eleate Mew Kep and Certificate Request

Please provide the following:

Key Label [|
Key Size 1024 -

Comimon Hame |sectest1.austin.ihm.cnm

Organization |

Organization Unit (optional) |
Locality (bptional) |
State/Province (optional) | |

Fipcode {optional) | |

Countny s -

Enter the name of a file in which to store the certificate reguest;

Gdskitd Clsamplesicertren.arm Browse...

OK Reset Cancel

Key Label

Give the certificate a key label, which is used to uniquely identify the certificate within the keyring. If you have only one
certificate in each keyring, you can assign any value to the label, but it is good practice to use a unique label, related to the
server name.

Common Name

Enter the server's common name. Thisisthe primary, universal identity for the certificate; it should uniquely identify the
principal that it represents. In a WebSphere environment, certificates frequently represent server principals, and the
common convention is to use CNs of the form <host_name>/<server_name>.

Organization
Enter the name of your organization.
Other X.500 fields

Enter the organization unit (a department or division), location (city), state/province (if applicable), zipcode (if
applicable), and select the two-letter identifier of the country in which the server belongs.

File name for the certificate request
Enter the name of thefile for the request. CSR files are typically named for the server, with a.arm extension.
10. Click the OK button.

11. AnInformation pandl is displayed to indicate that the request file has been successfully created. Click the OK button to dismiss
the panel.

12. Exit the Ikeyman tool by closing the IBM Key Management window.

Y ou must how submit the certificate-request file to the CA. Theprocedure will vary with the CA and with the type of certificate(test or
production) being requested.

54

5.5.6.2.3: Placing a signed digital certificate intoa keyring

When a certificate authority issues you a signed certificate for aserver, you need to place that certificate in that server's keyring.The certificate is used by the
server to authenticate its identity andto distribute its public key. Thisfile describes how to place a newcertificate (either atest or a production certificate) into a
keyringusing the iKeyman tool.

To place asigned certificate into a server's keyring, complete thefollowing steps:

1. When you receive e-mail from the CA containing your certificate, save the message into afile. In this example, the certificate was saved to afile called
PolicyServerl.responseMail.arm.

2. Start the IBM Key Management tool. This displays the IBM Key Management window.
java -Dkeyman. javaOnl y=true com i bm gsk.ikeyman. | keyman

IBI'-'I K.ey Management Hi= e
Key Database File Create Yiew Help

w0

-Hey database information
DB-Type:

File Name:

Key database content

Personal Certificates o g

A personal certificate has its associated private key in the database.

. Open a destination key database file by selecting Key Database File --> Open from the menu bar.

. Enter the name and location of the keyring file at the prompt.

. Click the OK button to continue.

. Click on the certificate types pull-down list beneath K ey Database Context, and select Personal Certificates (the default).
. Click the Receive... button.

. The Receive Certificate from aFile dialog window is displayed. Enter the name of the file containing the saved e-mail. Y ou can also use the Browse...
button to find and select thefile.

00 N O 01 AW

55

Receive Certificate from a File

Data type | Basefi4-encoded ASCll data |
Certificate file name: |*.arm || Browse..
Location: |G:U5kit4 Cisamples |

OK | | Cancel

9. Click the OK button to continue to add the certificate in the file to the previously selected keyring.
10. Optionally, to verify that the certificate has been added, click the View/Edit... button in the main window.

At this point, the server's keyring contains both its private key(which was generated as part of requesting the certificate) and thecertificate.

56

5.5.6.2.4: Adding a CA certificate to aclient's keyring class

To alow aclient to authenticate to a server, the client needs acopy of the certificate of the server's CA. To add a CA certificateto a client's key database class,
complete the following steps:

1. Start the IBM Key Management tool. This displays the IBM Key Management window.
java -Dkeyman. javaOnl y=true com i bm gsk.i keyman. | keynman

IBI'-'I K.ey Management Hi= e
Key Database File Create Yiew Help

w0

-Hey database information
DB-Type:

File Hame:

Key database content

Personal Certificates g

A personal certificate has its associated private key in the database.

. Open the client's key database file by selecting K ey Database File --> Open from the menu bar.

. Enter the name and location of the keyring file at the prompt.

. Click the OK button to continue.

. Click on the certificate types pull-down list beneath K ey Database Context, and select Signer Certificates.

. Click the Add button.
. The Add CA's Certificate from a File dialog window is displayed. Enter the name of the file containing the certificate.
Add CA's Certificate from a File

0N OoOU A WN

Data type | Base64-encoded ASCll data v |
Certificate file name: |*.arm || Browse..
Location: |G:U5kit4 Cisamplesi |

OK | | Cancel

9. Click the OK button to continue.
10. Closethe IBM Key Management window to exit iKeyman.

Y ou aso need to make the keyring class available to Java clientsby setting the apppropriate properties. 57

5.5.6.2.5: Making client and server keyrings
accessible

After you have created keyring classes and inserted the necessary certificates, youneed to make the keyring
classes accessible to the client and server programs.

To use created server and client keyrings in your WebSphere environment, you mustspecify them in a number
of files:

« admin.config

« adminserver.bat

« adminclient.bat

o S3S.SErver.props

« Sas.client.props
If you created client and server keyrings called testclient.class and testser ver .classrespectively, and you used
"WebAS" as the password when you generated them, youneed to make the following changes:

« Intheadmin.config file: Add the directory holding the keyring classes to the front of the
com.ibm.gjs.sm.adminserver.classpath variable.

« Intheadminclient.bat and adminserver.bat files. Add the directory holding the keyring classes to the
front of the %WAS CP% variable.

« Inthe sas.client.propsfile, set the following properties:

o com.ibm.CORBA.SSLK eyRing=testclient

o com.ibm.CORBA.SSLKeyRingPassword=WebAS

o com.ibm.CORBA.SSL ServerK eyRing=testserver

o com.ibm.CORBA.SSL ServerK eyRingPassword=WebA S
« Inthe sas.server.propsfile, set the following properties:

o com.ibm.CORBA.SSLK eyRing=testserver

o com.ibm.CORBA.SSLKeyRingPassword=WebAS

o com.ibm.CORBA .SSL ClientK eyRing=testclient

o com.ibm.CORBA.SSL ClientK eyRingPassword=WebA S

Managing the Server SSL Keyring Files

The administrative model in WebSphere Application Server allows theSSL settings for each WebSphere
component to be centrally andindividually managed. SSL settings are centrally managed in theadministrative
console through the default SSL Settings panel. Inaddition, any of the default settings can be overridden for
anindividual component by using the HTTPS, ORB, and LDAPS SSL settingspanels. See article 6.6.18,
Securingapplications, for more detailed information about using theadministrative console to configure

WebSphere security.

il Always use theadministrative console to manage the server keyring files as changesmade in the console
overwrite any manual changes to thesas.server.propsfile. Client keyring files are managed in thesas.client.props
file because clients can be located on a remotemachine.

The Default SSL Settings panel can be used to configure WebSphereA pplication Server components using SSL.
Parameters that are setthrough the ORB SSL Settings panel override the default SSL settingsfor the ORB.

58

Regardless of which settings are in effect, the ORB usesthese settings as follows. (Additionally, the ORB
requires the SA Sproperties files on the client and server to be configured asdescribed below.)

Key file name

The path of the SSL key file used by server connections. For the server keyring file generated in this
document, add the following to thisfield: product_installation_root/etc/ServerKeyring.jks

Key file password

The password for the SSL key file for server connections. On the server, the key file password is
configured in the administrative console and stored in the server-cfg.xmil file.

Key file format
The only key file format currently supported by the AESORB isJKS.
Trust file name

The path of the SSL trust file used by clients. On the server, the trust file nameis configured in the
administrative console and stored in the server-cfg.xml file. For the client keyring file generated in this
document, add the following to thisfield:

product_installation_root/etc/ClientKeyring.jks

Trust file password

The password for the SSL trust file for client connections. On the server, the trust file password is
configured in the administrative console and stored in the server-cfg.xmil file.

Client Authentication

The WebSphere AEs ORB does not currently support SSL client authentication using digital certificates.
Editing this value will have no effect.

Managing the Client SSL Keyring Files

Y ou need to modify the sas.client.props file, which islocated in the product installation root/properties
directory. If you used"WebAS" as the password when you generated the client and server keyrings, youneed to
make the following changes to the sas.client.propsfile:

« com.ibm.CORBA.SSL ClientKeyRing=product_installation_root/etc/ClientK eyring.jks

« com.ibm.CORBA.SSL ClientK eyRingPassword=WebA S
« com.ibm.CORBA.SSL ServerK eyRing=product_installation_root/etc/ServerKeyring.jks

o com.ibm.CORBA.SSL ServerK eyRingPassword=WebAS

Y ou can now start your WebSphere application using the newly created keyring classes.

59

http://localhost/v355makePDF/advanced/nav_Securityguidenav/root.html
http://localhost/v355makePDF/advanced/nav_Securityguidenav/root.html
http://localhost/v355makePDF/advanced/nav_Securityguidenav/root.html
http://localhost/v355makePDF/advanced/nav_Securityguidenav/root.html

5.5.7: Introduction: Setting up an LDAP connection
over SSL

Thistopic describes how to establish an SSL connection between WebSphereA pplication Server and an LDAP
server. This page gives an overview; referto the linked pages for more details.

Setting up an SSL connection between WebSphere Application Server andan LDAP server requires two logical
tasks:

1. Establishing a WebSphere-to-L DAP connection without SSL

2. Enabling SSL over the WebSphere-to-LDAP connection

To establish a connection between WebSphere and an LDAP server, you must:

1. Create certificates and keys for the WebSphere server to use in authentication, and create a trust store
that will also hold a certificate used for validating certificates for the LDAP server.

2. Configure the LDAP server of your choice.

After you have established the WebSphere-to-L DAP connection, you canadd the SSL constraint to the
connection. To do this, you must

1. Configure your LDAP server to use SSL.

2. Get the necessary certificates for authenticating the LDAP server and add them to your WebSphere trust
store.

3. Configure WebSphere to use SSL.

60

5.5.7.1: Establishing connections between application
servers and LDAP servers

1. Disable WebSphere security before shutting down the administrative server and client. Thisis not
strictly necessary, but it makes recovery easier if something goes wrong.

2. Create your own keyring. To use SSL between WebSphere Application Server and the LDAP server,
you have to create your own keyring. The DummyKeyring file that comes with WebSphere is not
sufficient because it does not contain the necessary information about the servers involved. See the
articlesunder section 5.5.6, Tools for managingcertificates and keys, for instructions on how to create

keyringswith the WebSphere Application Server key tools.

3. Placeyour keyring classin the appropriate directory. Because you are replacing the default keyring class
with your own, make sure that WebSphere Application Server is able to find the new classfile. The
keyring classis a Java class, so the CLASSPATH variableis used to find it. For example, if you give the
file a class name like com.mycompany.test.keyring, you need to add the search path
com/mycompany/test to the CLASSPATH.

If your chosen search path is not on WebSphere's default CLASSPATH, then you have to update the
following files:

o admin.config: Add the search pathtothecom i bm ej s. sm adm nserver. cl asspat h
property.
o adminserver.bat and adminclient.bat: Add the search path to the WAS _CP variable. Insert aline

likethis:
set WAS_CP=9%M\AS CP% sear ch- pat h

4. Update the property files.

o WebSphere determines the keyring file to use and its password by examining propertiesin the
files sas.server.props and sas.client.props. The following properties determine the keyring to use:

= com.ibm.CORBA.SSLKeyRing
= com.ibm.CORBA.SSL ClientKeyRing
= com.ibm.CORBA.SSL ServerKeyRing

Set these properties to the name of your keyring class, for example,
com.ibm.websphere. TestKeyring.

o When you create afile for akeyring class, you specify a password for the file. This password
protects the file from unrestricted use. The following properties are used to specify the password
for aapplication that needs to use the keyring:

= com.ibm.CORBA.SSLKeyRingPassword
= com.ibm.CORBA .SSL ClientK eyRingPassword
= com.ibm.CORBA.SSL ServerK eyRingPassword

These properties default to the value "WebAS," so if you used a different password when you
created the keyring file, change the value of these properties accordingly.

After you modify the properties files, you need to delete the file sas.server.props.future, or your changes
to the other properties files will not take effect when you restart the administrative server.

5. Restart the administrative server and client and configure LDAP.

1. Set the Challenge Type to Basic (under Security --> Specify Global Settings --> Application
Defaults)
2. Set the Authentication Mechanism to LDAP (under Security --> Specify Global Settings -->
Authentication M echanism)
61

3. Set up your LDAP registry (under Security --> Specify Global Settings--> User Registry)
1. Set the port to 389.
2. Do not check the box that says "Use SSL to connect to directory” yet.

4. Click Finish. The application server now communicates with the LDAP server. Y ou can verify
the communication with your LDAP server by monitoring its connections.

6. Stop and restart the administrative server and client. Y ou will now be prompted to authenticate against
the LDAP registry.

At this point, you know that WebSphere Application Server can communicatewith the LDAP server
successfully.

62

5.5.7.2: Enabling SSL connections between WebSphere ApplicationServer and
an LDAP Server

1. Configure SSL in the LDAP server. The procedure varies with the LDAP server being used. Consult the documentation for your server for details. For
example, with the SecureWay LDAP server, the following must be done:

1. Setthe SSL statusto SSL ON.

2. Set the Authentication Method to Server Authentication. The SSL protocol requires the server to be authenticated. In this case, the LDAP server is
the server and WebSphere Application Server isthe client. If you need mutual authentication, choose Server and Client Authentication.

3. Make sure that the secure port is set to 636. (Y ou can optionally choose a different port, but you must set this port correctly when configuring LDAP
SSL in WebSphere Application Server.)

4. Point the Key Database path and filename to the LDAP server's keyfile. In SSL, certificates are used for authentication. Therefore, the LDAP server
requires a certificate, which must be included in its keyfile.

5. Set the Key Label to the label used for the LDAP server's certificate.

2. Update your WebSphere keyring class. The keyring classis the repository for the WebSphere server's trust base. Because it needs to authenticate the LDAP
server during SSL initialization, the keyring class must provide information about the LDAP server.

In order to validate the LDAP server's certificate, your server needs the public key of the CA that issued the LDAP server's certificate. Thiskey isfound in
that CA's certificate, so you need to add the certificate of the CA that issued the LDAP server's certificate to your keyring. (For more information on
authentication by certificate, see 5.5: Certificate-based authentication.)

To add the additional certificate to the keyring class, you must:
1. Add the certificate to the keyring class. For example, you can use the VaultTool add public cert command:

% java comibm cfwk.tools.VaultTool --password "vltpwd" nyVaul t. vl t
add public cert LDAPCA 00-hex nyLDAPCA. cert

2. Create anew filefor the keyring class, including the new certificate. For example, you can use the VaultTool container command:

% java com i bm cfwk.tools.Vault Tool --password "vltpwd" nyVaul t. vlt
container -p "ringpwd" comibm websphere. TestKeyring nyTest Server nyTest CA LDAPCA

3. Enablethe SSL connection in WebSphere.
1. Modify your LDAP configuration (under Security --> Specify Global Settings--> User Registry).
1. Set the port to 636.
2. Check the box labelled Use SSL to connect to directory.
2. Click Finish.
4. Stop and restart the administrative server and client. After they restart, you are prompted to login to the LDAP registry.

Tips

« |f your SSL connection does not work, try the following:
1. Verify that your LDAP server islistening to port 636.
2. Verify that the LDAP server's certificate is still valid.

« |f you need to export the certificate for the LDAP server's CA from keyring or other type of file, look for an option that lets you export the certificate in DER
binary format. The tools you have can vary with the LDAP server.

« |f you transfer a certificate file from aremote host by using FTP, be sure to set the transfer mode to binary.
« Make sure that your place your updated keyring class in the correct location.

63

5.5.7.3: Example: Generating and using a test keyring

The following sequence of commands illustrates the steps usedin creating a keyring for atest server and adding a certificatefor an LDAP server so
that the WebSphere-to-L DAP communicationcan occur over an SSL connection.

Until the addition of the LDAP certificate to the vault,this exampleis structurally identical to the example forgenerating and using test certificates,
with one exception:that example exports the vault to the DummyKeyring class, andthis one creates an application-specific TestKeyring class.

Setting the classpath

To use the certificate-management tools, you must put the filescfwk.zip and cfwk-tools.zip at the front of your classpath.These files are located in the
AppServer/lib directory of theWebSphere installation. For example, on Windows NT, set the CLASSPATHvariable as shown:

set
cl asspat h=<W5-i nstal | >\ AppServer\|lib\cfwk. zi p; <W5-i nstal | >\ AppServer\lib\cfwk-tools. zi p; “UCLASSPATH%

Creating the keys, certificates, and files

Create pairs of keysfor TestServer and TestCA.

% java comibm cfwk.tool s. KeyGenTool --forge "RSA/ 512/ F4" nyTest Serv. key % java

comibm cfwk. tools. KeyGenTool --forge "RSA/ 512/ F4" nyTest CA. key

Create a self-signed certificate for the TestCA.

% java comibm cfwk.tools. MakeCert Tool --serial O --for 2y--issuer "cn=nyTestCA"--sign-alg "MD5 with
RSA" - - si gn- key nyTest CA. key--cert-file nyTest CA cert

Create a certificate for the TestServer.

% java com i bm cfwk.tools. MakeCert Tool --serial 0 --for 2y--issuer "cn=nyTest CA"--subject
"cn=nyTest Server"--sign-alg "MD5 with RSA"--sign-key nyTest CA key--subj ect-key

myTest Serv. key--cert-file nyTest Serv. cert

Add TestServer's private key to the vault.

% java comibm cfwk.tools.Vault Tool --password "vltpwd" nmyVault.vltadd private key myTest Server
00- hex nyTest Serv. key

Add the chain of certificates for TestServer to the vault.

% java com i bm cfwk.tools.Vault Tool --password "vltpwd" myVault.vltadd public chain nmyTest Server
00- hex nyTest Serv.cert nyTest CA cert

Add the TestCA's self-signed certificate to the vaullt.

% java com i bm cfwk.tools.VaultTool --password "vltpwd" nyVault.vltadd public cert mnmyTest CA 00-hex
myTest CA. cert

Export the information for TestServer and TestCA to the TestKeying file.

% java com i bm cfwk.tools.VaultTool --password "vltpwd" nyVault.vltcontainer -p "ringpwd"

com i bm webspher e. Test Keyri ng nyTest Server myTest CA

After establishing the WebSphere-to-L DAP connection, you need toadd the LDAP server's CA certificate to the keyring. With thisin placethe
WebSphere-to-L DAP communication can take place over SSL.

To add this certificate to the keyring, you must add it to thevault and then regenerate the keyring file.

First, add the LDAP CA's certificate to the vaullt.

% java comibm cfwk.tools.Vault Tool --password "vltpwd" nyVault.vltadd public cert LDAPCA 00- hex
my LDAPCA. cert

Second, generate anew version of the keyring class, includingthe LDAP CA's label in the set of information to export.

% java comibm cfwk.tools.Vaul t Tool --password "vltpwd" myVault.vltcontainer -p "ringpwd"
com i bm webspher e. Test Keyri ngnyTest Server nyTest CA LDAPCA

[l Thekeyring classiswritten to the current directory, regardless of thespecified Java package hame. Y ou must copy it to alocation
correspondingto the Java package. Thisis true each time you regenerate the keyringfile.

64

5.5.7.4: Example: Generating keyring files for SSL

This procedure describes how to create keyring files that permitSSL communications between WebSphere Application Server and anLDAP server. This require the
creation of two keyring files,one for the server and one for the client. The server's keyring storesthe public and private key of the server, and the certificate
authority'scertificate. The client's keyring stores the server's public key and the CA'sroot certificate.

1. Download the external public certificate for the root certificate authority (root CA) and saveit to afile. In this example, thefileis called caroot.arm.
2. Generate the server-side keyring file.
1. Request acertificate for the server, if it doesn't already have one.
1. Generate a certificate request and saveit to afile. In this example, the fileis called certreg.arm.
2. Submit the request to the certificate authority.
3. Savethe newly obtained certificate to afile. In this example, thefile is called newcert.arm.

2. Place the certificate into akeyring file. This can be done using either the keytool command-line tool or the graphical IBM Key Managment
(lkeyman) tool. For example, if you are using the Ikeyman tool, you must:
1. Create anew keyring-classfile. In this example, thefileis called ServerKeyring.class.
2. Specify the the certificate in the newcert.arm file as the certificate to be received into the keyring file. Thisis done on the Personal

Certificates panel in the Ikeyman tool.
3.

4. The client will also need access to the server's certificate, so extract the certificate and save it to afile. In this example, thefileis called
websphere.arm.

5. Add the certificate of the signing CA, saved in the file caroot.arm, to the keyring file. Thisis done on the Signer Certificates panel in the
Ikeyman tool.

3. Generate the client-side keyring file. This can be done using either the keytool command-line tool or the graphical IBM Key Managment (Ikeyman) tool. For
example, if you are using the Ikeyman tool, you must:

1. Create anew keyring-classfile. In this example, the file is called ClientKeyring.class.

2. Add the certificate of the signing CA, saved in the file caroot.arm, to the keyring file. Thisis done on the Signer Certificates panel in the Ikeyman
tool.

3. Add the certificate of the server, saved in the file websphere.arm, to the keyring file. Thisis also done on the Signer Certificates panel in the Ikeyman
tool.

4. Install the new keyring files into the WebSphere Application Server environment:
o Both the ServerKeyring.class and ClientKeyring.class files must be placed on the server. Modify the following lines in the sas.server.props file:

com i bm CORBA. KeyRi ngFi | e=Ser ver Keyri ng
com i bm CORBA. KeyRi ngPasswor d=WbAS com i bm CORBA. SSLC i ent KeyRi ngPasswor d=WbAS
com i bm CORBA. SSLO i ent KeyRi ng=Cl i ent Keyri ng

o Theclient side requires only the ClientKeyring.class file. Modify the following linesin the sas.client.props file:

com i bm CORBA. SSLKeyRi ng=Cl i ent Keyri ng
com i bm CORBA. SSLKeyRi ngPasswor d=WbAS com i bm CORBA. SSLSer ver KeyRi ng=C i ent Keyri ng
com i bm CORBA. SSLSer ver KeyRi ngPasswor d=WWebAS

65

5.6: Establishing trust association with areverse
proxy server

WebSphere Application Server can authenticate incoming user requests, but in somescenarios, like Web-based
applications, it is often desirable to delegate this work toanother process, typically areverse proxy server. This
delegation requires theestablishment of atrust relationship, or trust association, between
WebSphereApplication Server and the proxy server. In this case, the proxy server authenticates theclients for
WebSphere Application Server, which accepts the authentication because ittrusts the proxy. WebSphere
Application Server applies its authorization policies to therequests.

To delegate authentication work to a third-party server, two things must be done:

« You must have an interceptor, that is, a Java class, which is used by WebSphere Application Server to
receive requests from the proxy server.

« You must establish trust between the proxy server and WebSphere Application Server. Thistypically
requires the proxy to authenticate to WebSphere Application Server.

WebSphere Application Server provides a ready-to-use interceptor for Tivoli WebSealVersion 3.6, but you can
also write your own; see Writing a custominterceptor for more information. The other related information

discusses theconfiguration of WebSphere Application Server and WebSeal.

When the interceptor isin place and atrust relationship is established, WebSphereApplication Server is ableto
accept and process HTTP requests that come through the proxyserver rather than directly from the HTTP client.
The proxy server authenticates the HTTPclients and passes authenticated requests to WebSphere Application
Server. WebSphereApplication Server authorizes access to the requested resources based on the
application'sauthorization policies.

Before the authorization of clients can be delegated to a proxy server, the followingWebSphere prerequisites
must be met:

« Security must be enabled in WebSphere Application Server. If it security is disabled, incoming requests
cannot be selectively authorized and refused.

« The authentication mechanism used by WebSphere Application Server must be Lightweight Third-Party
Authentication (LTPA). You cannot delegate authentication to a proxy if you are using the local
operating system as your authentication mechanism.

« If you are using WebSeal Version 3.6 as your reverse proxy server, certificates are not supported as a
challenge mechanism. Only the basic authentication, that is, auser ID and password combination, is
supported.

« Trust Association must be enabled in the Authentication tab of the Security Center in the administrative
console.

66

5.6.1: Configuring trust association between WebSphereApplication Server and WebSeal Version 3.6

To atrust iation between i and WebSeal, you must perform configuration work for each ofthe following:
« WebSphere Application Server
+ Theinterceptor for WebSeal (configuration is optional)
« WebSeal

This file describes the configuration for each component andprovides a sample configuration.

Configuring WebSphere Application Server to run in trust association
WebSphere Application Server must be configured to run intrust-assocation mode by setting up the trust-association interceptorsthat are going to receive HTTP requests from the trusted proxy server.
Create afile called named trustedservers properties, and place the filein the product_installation_root/properties directory.

The trustedservers properties file for WebSeal must include the followingthree lines and an optional fourth line:
com i bm webspher e. securi ty. trustassoci ati on. enabl ed=t ruecom i bm webspher e. securi ty. trustassoci ati on. t ypes=webseal 36com i bm webspher e. secur i ty. trust associ at i on. webseal 36. i nt er cept or =com i bm ej s. secur i ty. web. VebSeal Tr ust Associ ati onl nt er cept or com i bm webspher e. securi ty. trust associ at i on. webseal 36. conf i g=webseal 36

i g descri of the prop
« comibm websphere. security.trustassociation. enabl ed=true
This property-value pair enables the Use of trust assocation.
+ com i bm webspher e. security. trustassoci ati on. t ypes=webseal 36
Thi; Pz types which you trust. If you are using multiple proxy servers, you can specify acomma-delimited list as the value.
« comibm websphere security. trusl associ at f on. webseal 36. i nt er cept or = com i bm e s. secur ty. vieb. WebSeal 36Tr ust Associ at i onl nt er cept or
for the proxy. When specifying this class, note the following:

o Thedﬁmui" heil ion on
o Youonly needtospecifylhenmpla‘rmalmcl&formmtaceptoronoe even if multiple pr servers use il ion class for the il eptor.
« com i bm webspher e. securi ty. trust associ at i on. webseal 36. conf i g=webseal 36
OPTIONAL. This property-value pair specifi file for the 6 interceptor. Th of thisfi described under "Configuring the WebSeal interceptor.”
Each property-value pair must appear on asingle line in the file. Pairsappearing on more than onelinein have been broken il

Configuring the WebSeal interceptor (optional)

WebSphere Application Server provides aJavadiasscom i bm ej s. secur i ty. web. VebSeal 36Tr ust Associ at i onl nt er cept or ,that implements the essential interceptor for enabling trust associationbetween WebSeal 3.6 and WebSphere Application Server.

By default, the interceptor processes all HTTP requests it receives Y ou can configure eptor to restrict the y. Tl by identifier,originating host, and originating port, and by combinations This configuration is optional
To configure the interceptor, create a property file for theoptional configuration-file property, and place the file in the<product_ii g ies dif y. Inthi: | 36. to the the optional property-value paircom i bm webspher e. securi ty. trustassoci ati on. webseal 36. conf i i in
Usethisfileto set will process. The properties act as requirements onrequests, and each request must meet all of the reqi meeting all of not i they are passed on to WebSphere ApplicationServer for processing.

The file can set values for any of the following WebSedl properties, forexample:
« comibm websphere. security.webseal 36. i d=i v-user, iv-creds

This property-value pair tells the interceptor to filter incoming HTTP requests by identifier. The value is a comma-delimited list of identifiers. Every HTTP request by Only those contain all of the listed ID: header names. for processing by Al other requests are passed on to WebSp ppl Server for processing in the usual way. By defavilt, all HTTP requests
are considered by the interceptor for processing.
Because the WebSeal 36 interceptor should HTTP WebSed, th value for use with WebSphere Application Server sets this property to one or both of these values:

0 iv-user

o iv-creds

The example property-value pair uses both.
« com i bm websphere. security.webseal 36. host names= <host namel>, <host name2>
This property-value pair specifies alist of names of the machines on which WebSeal servers run and from which the interceptor can accept HTTP requests. If this property is not set, the interceptor accepts requests from any host.
« comibm webspher e. securi ty. webseal 36. por t =444
T a which HTTP requests must origi order to from other ports are ignored. The list applies to all hosts from which the interceptor accepts requests. There s no way to specify alist of ports for one host and adifferent list for a different host. If thi ty is not set, request ating from any port dered for processing

Configuring WebSeal

The last step isto configure Tivoli's WebSeal product. This product is notpart of WebSphere Application Server, so you should consult the WebSeal documentation for details and in case of problems.

To enable communication between WebSeal and WebSphere Application Serverthe the Web server being used by WebSphere Application Server must becomean SSL junction in the schema of the Tivoli Policy Director. If the Webserver is using the default SSL port, port 443, create an SSL junctionwith the following junctioncp command:

create -¢ -t ssl -h <hostname> /<junction-name>

where
+ The- ¢ flag directs WebSeal to passit: in the basic header of every request that it sendsto pplication Server. Th isthe user 1D and password of the WebSeal server. This allows pp Serverto y request that it receives from the WebSeal server.
+ The-t ssl| option requests the creation of junction of the type SSL.
. The-h <host name> option specifies the host machine of the Web server used by WebSphere Application Server.

For example, the command:
create -¢ -t ssl -h was_host. ralei gh.ibm com /nyj unction
creates an SSL junction called myjunction for the machine was_host.raleigh.ibm.com.

If the Web server is not listening to the defauit SSL. port, port 443, port option to command to portbeing used:
-p <port_nunber>

The WebSeal server must have a user ID and password it can use whenit [ppl Server. To set up you must do
1. Designate alD from the WebSphere Application Server user registry for use by WebSeal. Y ou can create aspecial WebSeal 1D in WebSphere Application Server, or you can s muy use an existing 1D from the WebSphere Application Server registry.
2. Putthis user 1D and associated password in the WebSeal configuration file, iv.cont. In this file, you must have the following:

basi c_aut h_user nane=<userld > basi ¢_aut h_passwd=<passwor d>
where <userld> and <password> are valid account from the ppl Server registry.
Because SSL isinvolved in the junction, you must ensure that the Webserver being used by ppl Server i with SSL \gser ion only. In thi i lion, WebSeal pl i le. Therefore, you must copy the certificate of theissuing CA of theweb into the WebSeal i dif

Please consult the WebSeal Policy Director manual for detailed informationon setting up SSL connections between WebSeal and ajunction server.During the procedure, be sure to update the configuration file for thesecurity manager, secmgrd.conf, to include the following line:
junction-ca-cert-file = <ca-certfile>

where <ca-certfile> isthe aboslute peth of the the CA servers, for example,
Jopt/intraverse/lib/certs/junctioncacert.pem
Without the line, basi ication will not tak and WebSphere Application Server.

Finally, to access aresource through WebSeal, you need to use SSL. Therefore,you must ensure that WebSeal itself is configured for SSL
Sample configuration

This section describes a sample configuration.
+ WebSphere Application Server isinstalled on the machine was_host.raleigh.ibm.com.
+ The Web server is Netscape Enterprise Server, also installed on the machine was_host.raleigh.ibm.com. The Web server is listening on port 4343 for SSL requests.
« TheLTPA security mechanism is used, with the LDAP server residing on the machine |dap_host.raleigh.ibm.com.
+ WebSeal isinstalled on the machine webseal_host.raleigh.ibm.com. It listens on port 444 for SSL requests.

« A junction was created using the following command:
junctioncp create -c -t ssl -h was_host.ral ei gh.ibm com -p 4343 /nyjunction

« Inthe WebSedl iv.conf file, the following lines are included:

basi c_aut h_user nane=web_user basi c_aut h_passwd=t est passwor d
where the ID web_user with password inthe pplication Server regisiry.
+ Inthe Policy Director secmgrd.cont file, the following line is included:
junction-ca-cert-file=/opt/intraverse/lib/certs/junctioncacert.pem

« ThelD testuserl with password sherlock is avalid WebSeal user. Itis also avalid WebSphere Application Server user.

A user tests the system by logging in as testuser1 and attempting accessthe pplication Server serviet p:

« Totest access without WebSedl, the user enters the following in the Web browser:
https:// was_host. ral ei gh. i bm coni servl et/ snoop

+ Totest access through WebSeal, the user enters the following:
https://webseal _host.ral ei gh.i bm com 444/ ai n servl et/ snoop

In both cases, a prompt is displayed in which the user Usherlock and the snoop serv the Web browser.

http://localhost/v355makePDF/advanced/nav_Securityguidenav/root.html
http://localhost/v355makePDF/advanced/nav_Securityguidenav/root.html

5.6.2: Frequently asked questions about trust
associationbetween WebSphere Application Server
and WebSeal

Can | still submit requestsdirectly to WebSphere Application Server,without passing through Web Seal ?
Y es. WebSphere Application Server will behave in the usual manner when requests are not received from the
WebSeal server. However, please review the above section about the WebSeal 36 interceptor.

What happensif security isnot enabled in WebSphere Application Server,and the HTTP request is given
tothe WebSeal server?

The WebSeal server will still try to authenticate the user. If authenticationis successful, WebSphere Application
Server is going to serve the requestwhether or not the user has permissions to access the resource.

Can | havetrust associations with several WebSeal servers, possiblyfrom different locations, at the same
time?
Y es, to the extent that different WebSeal servers are alowed to createjunctions to the same Web server.

Will WebSphere Application Server single sign-on (SSO) work with WebSeal 3.6 as a front-end?

Yes. If your setup is such that there is only one WebSeal server andseveral junctions to Web servers, SSO itself
is taken care of by WebSeal,and in this case, the SSO domain name of WebSphere ApplicationServer
installation might not even matter. WebSphere Application ServerSSO will work the usual way even for a setup
consisting of several WebSeal servers, each one having ajunction to a Web server being used byWebSphere
Application Server.

Can | usethe same LDAP directory for my WebSeal server and WebSphereApplication Server?
Y es. However, users and groups that were created by the Policy Directoritself may not be shared with
WebSphere Application Server as schema specificto the Policy Director might be in use.

What if | want to demand that all requests pass through my WebSeal server?
To have all requests pass through the WebSeal server, simplydo none of the optional configuration of the
interceptor.In that case, every HTTP request is processed by the interceptor.

Can | use custom login with trust association?
No. Thereis no point in doing so. Remember that WebSeal does theauthentication. Therefore, when the request
reaches WebSphere ApplicationServer, it ignores any challenge type declared for your application.

What happensif | disabletrust association and access a WebSphereApplication Server resource through
the WebSeal server?

The WebSeal server will still try to authenticate the user. However, because there is no interceptor involved,
WebSphere Application Server will applywhatever challenge type is appropriate for the resource requested. If
thechallenge type is basic, the WebSeal ID and password will alwaysbe used. Thus, the end user ID and
password will be ignored.Certificate challenge type will not work. Custom login will notwork either.

68

5.6.3: Writing a custom interceptor

If you are using athird-part reverse proxy server other than TivoliWebSeal Version 3.6, you must provide an implementation
class for theWehSphere interceptor interface for your proxy server. This filedescribes the interface you must implement.

Using the TrustAssociationInterceptor interface

WebSphere Application Server provides the interceptor Java
interface,com.ibm.websphere.security. TrustA ssociationl nterceptor, whichdefines the following methods:

e public boolean isTargetlnterceptor(HtpServl et Request req) t hr ows
WebTr ust Associ ati onExcepti on;

e public void validateEstablishedTrust(HttpServl et Request req) t hr ows
WebTr ust Associ ati onExcepti on;

e« public String getAuthenticatedUsernanme(HttpServl et Request req) t hr ows

WebTr ust Associ ati onExcepti on;

The isTargetlnterceptor method is used to determine whether therequest originated with the proxy server associated with the
interceptor.The implementation code must examine the incoming request objectand determine if the proxy server forwarding
the request is avalid proxy server for thisinterceptor. The result of this methoddetermines whether the interceptor processes the
request or not.

The validateEstablishedTrust method determines if the proxy serverfrom which the request originated is trusted or not. This
methodis called after the isTargetl nterceptor method. The implementationcode must authenticate the proxy server. The
authentication mechanismis proxy-server-specific. For example, in the WebSphere-providedimplementation for the WebSeal
server, this method retrieves thebasi c-authentication information from the HTTP header and validatesthe information against
the user registry used by WebSphere ApplicationServer. If the credentials are invalid, the code throws
theWebTrustA ssoci ationException exception, indicating that the proxyserver is not trusted and the request is to be denied.

The getAuthenti catedUsername method is called after trust hasbeen established between the proxy server and WebSphere
ApplicationServer. WebSphere Application Server has accepted the proxy server'sauthentication of the request and must now
authorize the request. To authorize the request, the name of the original requestor must be subjectedto an authorization policy to
determine if the requestorhas the necessary privilege. The implementation code for thismethod must extract the user name
from the HTTP request headerand determine if that user is entitled to the requested resource.For example, in the
WebSphere-provided implementation for theWebSeal server, the method looks for an iv-userattribute in the HT TP request
header and extracts the user | Dassociated with it for authorization.

After the interceptor class has been created, WebSphere ApplicationServer must be configured to use it by setting propertiesin
thetrustedservers.properties file. This procedure is described for the WebSealinterceptor in Configuring trustassociation

between WebSphere and WebSeal, and the proceduredescribed there varies as follows:

» Establish aname for your proxy to use in the WebSphere Application Server configuration properties. Use this name
when you set the property com i bm websphere. security. trustassoci ati on. types. For example, if
you call your proxy myProxy, then set the property as follows:
com i bm websphere. security.trustassoci ati on.types=myproxy

» Based on the name you specified as the type of the proxy, WebSphere Application Server looks for a property that
names the implementation class. Set the value of this property to the name of your implementation class. The
implementation class must be locatable from the information on the class path.

The name of the property is based on the name you assigned to your proxy according to this pattern:

com i bm websphere. trustassoci ati on. <proxyname>. i nt erceptor

For example, for the proxy called myProxy, the property nameis

com i bm websphere. trustassoci ati on. nyproxy. i nter cept or, and for the proxy type webseal 36, the
property nameisiscom i bm webspher e. trust associ ati on. webseal 36. 1 ntercept or.

Making your custom interceptor configurable

To allow configuration of your custom interceptor by reading aconfiguration file, you can subclass the
WebSphere-providedclass com.ibm.websphere.security. WebSphereBaseT rustA ssoci ationl nterceptorand provide
implementations of the following methods:

o abstract public int init(String propsfile);
69

o abstract public void cleanup();

The init method reads the configuration file specified for theinterceptor. The configuration file is specified in the
trustedservers.properties file by using a property, the name of which is determined by thispattern:

com i bm websphere. trustassoci ati on. <proxynane>. confi g

For example, for the proxy called myProxy, the property name

iscom i bm websphere. trustassoci ati on. nypr oxy. confi g, and forthe proxy type webseal 36, the property

nameiscom i bm websphere. trustassoci ati on. webseal 36. conf i g.The value of the property is the name of
the configuration file for theinterceptor.

The cleanup method does any necessary termination work for the interceptor.

70

6.6.18: Securing applications

For purposes of security, Application Server categorizes assetsinto two classes: resources and applications.
» Resources areindividual components, such as servlets and enterprise beans.
« Applications are collections of related resources.

Security can be applied to applications and to individual resources. Setting up security involves the following
general steps:

1. Setting global values for use by all applications.
2. Refining settings for individual applications.
3. Securing specific HTTP and EJB methods (optional).
Securing applications with IBM WebSphere ApplicationServer product security involves a series of tasks.

Completing thetasks results in a set of policies defining whichusers have access to which methods or operations
in whichapplications.

For example, the security administrator establishes policies specifyingwhether the user Bob is permitted to use
the company's I nventoryapplication to perform a write operation, such as changing the numberunits of
merchandise recorded in the company's inventory database.

The product security server works withthe selected user registry or directory product to enforce thepolicies
whenever a user tries toaccess a protected application. For example, Bob might beprompted for a digital
certificate verifying hisidentity when hetries to use the Inventory application.

Security task wizards in Java console

Of the current administrative clients, WebSphere AdministrativeConsol e provides the most comprehensive
support for securingapplications, in the form of security task wizards for:

« Enabling product security

« Defining a security realm and set of valid users

« Specifying how to authenticate users seeking access to applications

« Organizing methods (functions, operations) into groups for protection
« Granting users permissions to access applications

71

6.6.18.1: Securing applications with the Java
administrative console

The table summarizes the security wizards provided for accomplishingthe tasks necessary to secure an
application.

| Goal | Wizard |Conceptual overview |Instructions
1. Enable security; set application

security default and global Configure Global Settings 6.6.18.1a 6.6.18.1.1a
values;specify how to authenticate users

2. Secure a particular application, , N

making users authenticate their gggj'rﬁ;re Application 6.6.18.1b 6.6.18.1.1b

identitiesbefore using it
3. Configure custom method groups as

an optional step towardsdefining who Configure Method Groups 6.6.18.1c 6.6.18.1.1c
will be allowed to access applications

4. Assign the methods in aresource, such
asaservlet, to a custom ordefault Configure Resource Security |6.6.18.1d 6.6.18.1.1d
method group for protection

5. Specify which users and groups can
access which methods in which Configure Permissions 6.6.18.1e 6.6.18.1.1e
applications

Test the application

At this point, your resources will be secure. A user who runs aclient program that accesses secured resources
will be promptedto log in. The user must log in with an account that has beengranted access to the resources,
otherwise the user will be deniedaccess. The visible effect of this denial isthat the clientprogram will trigger an
authorization failure, for example,a java.rmi.ServerException that contains acom.ibm.egjs.EJSSecurityException.

72

6.6.18.1.1: Securing applications

The procedure for securing an application with the Java console (WebSphereAdministrative Console) is as
follows:

[EEN

2
3
4
5

. Specify global and default security settingsfor all applications

. Configure security for the particular application

. Configure custom method groups to protect methods

. Assign methods to custom or default method groups

. Assign permissions allowing users access to methodgroups and applications

73

6.6.18.1.1a: Specifying global settings with the Java

administrative console
1. Start the Configure Global Settings task by one of two methods:
o By clicking Console -> Tasks -> Configure Global Settings from the console menu bar.
o By clicking Configure Global Settings from the drop-down list on the Wizards toolbar button.

2. Complete the task, referring to the information below for assistance.
3. Stop the administrative server and start it again for the changes to takeeffect.
The next time the administrator opens the WebSphere AdministrativeConsole, the administrator will be

prompted to log in (if security is enabled) using an ID and password specified during Global
Settingsconfiguration.

General

Use the Gener al tab to specify whether to enable security. If the check box is not selected, any other security
settings you specify will be disregarded.

Additional settings are available on this page, including the security cache timeoutand default SSL
configuration.

Application Defaults

Specify a default security realm andchallenge type for applications. The administrator can later override
thesevalues in the security settings for an individual application.

The challenge type is the way in which users will be challenged for their credentials,for example, using adigital
certificate or user ID and password combination.

To refuse to service requests that not are transmitted over SSL (Secure Sockets Layer),click the option for using
SSL to connect the client and Web server.

Authentication Mechanism

Use the Authentication M echanism tabbed page to specify how to authenticate theinformation presented by
users trying to access an application or resources.

The administrator canhave users or groups authenticated against either the local operating system userregistry
(such as Windows NT User Manager program) or an L TPA-enabled LDAP or custom directory service product.

User Registry

Use the User Registry page to specify details about the authentication mechanism youchose.

The contents of this page vary according to the authentication mechanism. If youchose the directory service
option, consult the properties help forfilling in the filters and other values.

74

6.6.18.1.1b: Configuring application security

1. Start the Configure Application Security task by one of two methods:
o By clicking Console -> Tasks -> Configure Application Security from theconsole menu bar.

o By clicking Configure Application Security from the drop-down list on theWizards tool bar
button.

2. Specify the enterprise application to which to apply security.
3. Click Next to proceed. Modify the application security defaults if necessary.
4. Click Finish.

75

6.6.18.1.1c: Configuring custom method groups

1. Start the Configure Method Groups task by one of two methods:
o By clicking Console -> Tasks -> Configure Method Groups from theconsole menu bar.
o By clicking Configure Method Groups from the drop-down list on theWizards toolbar button.
2. Specify to add a new method group.
3. Click Next to proceed. Type a name for a new method group.
4. Click Finish.

When finished configuring method groups, exit the task by clickingany other resource or task in the
administrative console.

76

6.6.18.1.1c.1: Viewing custom method groups

To confirm the existence of a custom method group:
1. Start the Configure Method Groups task.
2. Specify to remove an existing method group.

3. On the resultingpage, verify that the new custom method group is displayedin the set of existing method
groups.

4. Cancel the task without actually removing a method group.

Of course, even if the administrator does not perform the abovetask, the administrator will detect any problems
with custom method groupcreation when he or she proceeds to assign methods to the method groups.

77

6.6.18.1.1d: Configuring resource security

1. Start the Configure Resource Security task by one of two methods:

o By clicking Console -> Tasks -> Configure Resource Security from theconsole menu bar.
o By clicking Configure Resource Security from the drop-down list on theWizards toolbar button.

2. Specify the resource to which to apply security.

Note that servlets, JSP files, and Web pages are not represented directly,but can be selected according to
their "Web resource” configurations. Web resourcesspecify Web paths to these resources. If configuring
resource security fora servlet, JSP file, or Web page, select the appropriate Web resource.

Click Next. A prompt asks whether to use the default method groups.

If you specify Y es, the security system will take afirst pass at groupingthe methods of the resource into
the default method groups. It will use the methodnames to decide which groupsto put them in.

For example, it will protect HTTP PUT methods with the WriteM ethods group.

If you decline to use the default method groups, you will need to specifya method group for each
method in the resource.

[il Thedistribution of the methods into thedefault method groups is not finalized until you finish this
task wizard. Y oucan always try the default method groups, then reverse the operation if youdo not like
the results. Just do not click the Finish button until youare sure about the method groups!

If the Finish button is available, click it. If configuring resourcesecurity for an enterprise bean, click
Next to proceed to afinal panel forspecifying delegation settings.

Delegation allows an enterprise bean method to execute under another identity.

Thetop half of the task panel isfor specifying the default identity underwhich bean methods will
execute. If you click SPECIFIED, specify the user.

Use the bottom half of the task panel to select a particular enterprise beanfor which you want to override
the default run-as identity. Click the bean, thenspecify SY STEM, CLIENT, or SPECIFIED in the areato
the right of the enterprisebean list box. If you click SPECIFIED, specify arun-asidentity.

The delegation settings you specify here override any run-as information in the deployment descriptor of
the enterprise bean.

6. Click Finisn.

[il 1t your Web server is aready running when you configure resourcesecurity for an HTML file, JSPfile, or
other Web resource, you needto stop the WebSphere administrative server and start it again forthe change to
take effect.

78

6.6.18.1.1d.1: Default method groups

The product predefines these method groups:

| Method group | Typical Web resource methods | Typical EJB methods
ReadMethods |GET and POST g/letelt\lhz;)r(rj]?e(t)))egl nnf ng Wfth the strf ng "get" (such as
WriteMethods |PUT gﬂa%k;?g:(t)))egl nning with the string "set" (such as
RemoveM ethods | DELETE ,g\kI)JI ercetmove() methods of an enterprise bean home
CreateMethods |None ,g\kI)JI e(érteate() methods of an enterprise bean home
FinderMethods |None ,g\kI)JI ef(I: ?d* () methods of an enterprise bean home

|ExecuteMethods |Methods that do not fit in other groups|Methods that do not fit in other groups

In addition, the administrator can create custom method groups.

79

6.6.18.1.1e: Configuring permissions

1. Start the Configure Permissions task by one of two methods:

o By clicking Console -> Tasks -> Configure Permissions from theconsole menu bar.

o By clicking Configure Permissions from the drop-down list on theWizards toolbar button.
2. Click a permission, such as AnyApplicationName-ReadM ethods.

The administrator can view permissions by application or bymethod group:

o Viewing by application shows only the permissions associatedwith a particular application, such
as:

= Application_A-CreateMethods
= Application_A-WriteMethods
= Application_A-CustomMethodGroup

o Viewing by method group shows only the permissions associatedwith a particular method group,
such as:

= Application_A-CreateMethods
= Application_B-CreateMethods
= Application_C-CreateMethods
3. Click the Add button to produce a search dialog.

4. Usethe search dialog to give permission to everyone or selected users or groups.Y ou can search for a
user or group in your local operatingsystem user registry or directory service product.

5. When finished with the search dialog, click the OK button.

6. Back in the main console window, verify that the user or group is listedunder the permission you granted
to the user or group.

When finished configuring method groups, exit the task by clickingany other resource or task in the
administrative console.

Securing WebSphere administrative accounts

Ability to administer WebSphere Application Server after it has beensecured is governed by a Web application.
Y ou can set up an initial accountand additional administrative accounts to access the secured product. Seethe

information about administrative accounts for details and instructions.

Setting permissions to authenticiate against local and domain registries
(Windows)

WebSphere Application Server security supports authentication both against the domain registry and the local
registry of a supported, Windows-based machine. The administrator can force authentication against the local
registry by setting permissions appropriately.

If amachineis part of a Windows domain, when a user authenticates to WebSphere Application Server
security, the user isfirst authenticated against the domain registry. If that fails, the user is authenticated against
the local operating system registry.

If the user existsin both the local and domain registries, and authorization has been granted to the local user, it
becomes necessary to qualify the user name when logging on to WebSphere security.

80

For an example of the implications of setting permissions, suppose a machine named "LOCAL" belongsto a
domain named "DOMAIN." The users"userl" and "user2" exist in both the LOCAL and DOMAIN registries:

o LOCAL\userl

o LOCAL\user2

« DOMAIN\userl

« DOMAIN\user2
Suppose the WebSphere administrator configures permissions such that the following users can access a
WebSphere resource:

o LOCAL\userl

« DOMAIN\user2

When userl logs on to access aresource, he or she must specify LOCAL\userl (not simply userl) as the user
name for successful authentication. When user2 logs on, he or she can specify simply user2.

81

6.6.18.1.2: Securing cloned applications

In an environment containing models and clones, each model and clonemust be secured individually. Securing a
model does not automaticallysecure its clones.

For example, if you clone an application server that contains secure enterprise applications, then you need to
secure those same enterpriseapplications (if you want to) on the cloned application servers.

Secure a cloned application as you would secure any new application.

82

6.6.18.1.4: Properties related to security

The WebSphere Administrative Console provides security wizards foraccomplishing various goals. Property
(field) help provides detail edinformation about options and data fields in the wizards.

| Goal

| Wizard

Property help

Enable security; set application security
default and global values;specify how to
authenticate users

Configure Global Settings

6.6.18.1.4a: Global Security
settings

Secure a particular application, making
users authenticate their identitiesbefore
using it

Configure Application Security

6.6.18.1.4b: Application
security settings

Configure custom method groups as an
optional step towardsdefining who will be
allowed to access applications

Configure Method Groups

6.6.18.1.4c. Method group
settings

Assign the methods in aresource, such as a
servlet, to a custom ordefault method group
for protection

Configure Resource Security

6.6.18.1.4d: Resource Security
settings

Specify which users and groups can access
which methods in which applications

Configure Permissions

6.6.18.1.4e: Permission settings

Search for users defined in the operating
system registry or LDAPserver

Available from multiple

security tasks

6.6.18.1.4f: Security search
dialog

83

6.6.18.1.4a: Properties for configuring global settings

Settings on the General, Authentication Mechanism, and User Registry tabbedpages specify global settings for
all applicationsto share. These values cannotbe customized for individual applications.

The Application Defaults page specifies default settings that the administrator canaccept or override for

individual applications.

| Goal

Wizard page/Property help

Enable security; specify how long to cache authentication
lookup results

6.6.18.1.4a.1: Genera page

Define a security realm; specify a default challenge type;
specify awWeb page for user logon

6.6.18.1.4a.2: Application Defaults page

Select either the operating system registry or an LDAP
directory serviceto authenticate users

6.6.18.1.4a.3: Authentication Mechanism page

Specify the identity under which the product security server
will run;provide details about LDAP directory if it isthe
chosen authentication mechanism

6.6.18.1.4a.4: User Registry page

84

6.6.18.1.4a.1: General settings
of the Configure Global Settings task

Enable security
Specifies whether to enable or turn off WebSphere Application Server security.
If the administrator deselects the check box, all other security settings will be disregarded
andapplications and resources will be unprotected.

Security Cache Timeout
Specifies how many seconds servers should cache security information received from the user registry
or directory service, improving the performance with respect to authorization |ookups.

To make changes to this property take effect, stop and restart the application server or servers under
which the applications using the security settings will run.

85

6.6.18.1.4a.2: Application Default settings
of the Configure Global Settings task

Realm Name
Specify the security realm to which the application should belong. See article 0.18.7 to learn more.

Challenge Type - None
Specifies that clients will not be challenged for authentication information.

{™ If the administrator has protected a resource within an application, selecting None will deny users
access to that resource.
Challenge Type - Basic

Specifiesthat clients will be prompted for a user 1D and password, usually acquired through a basic
HTTP 401 challenge.

Challenge Type - Certificate
Specifies that clients must provide adigital certificate for authentication.
If the administrator additionally selects Default to Basic, clients without certificates will be permitted to
use the basic authentication scheme.

Challenge Type - Custom
Specifiesthat clients will log in using servlet-generated Web pages you specify in the Login URL and
Relogin URL fields.

Currently, the administrator needs to enter the same URL in each of the two fields. The URL isintended
to reference a Web page containing an HTML -based login form, but the administrator can enter the
URL of any Web page, whether or not it offersalogin form.
For example, the field could contain the URL
http://host. nane. com | ogi n/ deny. ht m
for aWeb page created to deny access to users without allowing the users to attempt login.

Login URL

Specifies the fully-qualified path to the Web page to be presented for usersto log on to. The
administrator should complete thisfield if he or she specified the Custom challenge type. Currently, this
field must match the Relogin URL .

The product does not validate thisfield or the Relogin URL.
If Single Sign-On (SSO) is enabled, the URL must be contained within thedomain specified in the
Single Sign-On configuration.

Relogin URL

Specifies the fully-qualified path to the Web page to be presented when the connection is released and a
user must log on again. Complete thisfield if you specified the Custom challenge type. Currently, this
field must match the Login URL.

Use SSL to connect client and Web server

Specifies that an SSL connection is required between the client and Web server. Requests that do not
arrive over SSL will be refused.

This check box applies to the Basic, Certificate, and Custom challenge types.
86

http://localhost/v355makePDF/advanced/nav_Securityguidenav/001807.html

6.6.18.1.4a.3: Authentication Mechanism settings
of the Configure Global Settings task

L ocal Operating System

Specifies that information will be authenticated with the underlying operating system's user registry.
Usually, such registries apply basic authentication, checking a user ID and password.

This selection influences the fields displayed on subsequent tabbed pages. If the administrator enables
authentication by the Local Operating System, some properties described in thisfile will not be
displayed because they do not apply to that situation.

If using a Windows-based operating system belonging to a domain, see the note about configuring
permissions.

Lightweight Third Party Authentication (L TPA)

Specifiesthat basic or certificate authentication will be used to authenticate the user with an LDAP
directory service. If you select LTPA, provide additional information:

o Token Expiration: Specifies how many minutes can pass before a client using an LTPA token
must authenticate again. LTPA uses tokens to store the authenticated status of a client.

Lega Vaues:
= A positiveinteger indicates the token life, in minutes

o Generate Keys: Specifies whether the LTPA mechanism should generate a new set of encrypted
keys right now. When prompted for a password, supply a string that is used by the underlying
key generation mechanism.

When the administrator selects LTPA as the authentication mechanism, encryption keys are
generated automatically. The administrator need not click this button unless he or she would like
those initial keysto be replaced by new keys.

o Import from File: Specifies whether to import afile containing the encryption keys. This allows
IBM WebSphere Application Server to share keys from other IBM products that support this
functionality.

[il If the administrator specified a password when he or she created the key file, the
administrator will be prompted for that password when he or she tries to import the key file.

o Export to File: Specifies whether to export afile containing the encryption keys. This allows
IBM WebSphere Application Server to share the keys with other IBM products that support this
functionality.

o Enable Single Sign On: Enabling Single Sign On (SSO) tells LTPA to store extrainformation
in the tokens so that other applications can accept clients as already authenticated by WebSphere
Application Server. When clients try to access the other applications, they will not be interrupted
and asked to log in.

= Domain: Restrict SSO to serversin the domain you specify in thisfield.
= Limit to SSL connections only Specifies to use a connection with SSL for Single Sign
On, to prevent the SSO token from flowing over non-secure connections.

WebSphere Application Server Version 3.5 introduces support for Single Sign On with Domino
Server. WebSphere Application Server can import and export keys and provide a Single Sign On
between the WebSphere Application Server and Domino environments.

87

6.6.18.1.4a.4: User Registry settings
of the Configure Global Settings task

The content of the User Registrytabbed page changes depending on the selections on the
Authenti cationM echanism tabbed page:

« If the administrator selected Local Operating System on the Authentication Mechanism tabbed page,
only the Security Server ID and Security Server Password properties will be displayed on the User

Registry page.
« If the administrator selected LTPA on the Authentication Mechanism tabbed page, severa additional
properties described in thisfile will be available on the User Registry tabbed page.

Security Server 1D
Specifies the user ID the Application Server Version 3 security server component will run under.
The ID corresponds either to an operating system ID or an LDAP directory 1D, depending on the
selection on the Authentication Mechanism tabbed page.

Security Server Password
Specifies the password the Application Server Version 3 security server will run under.

Directory Type
Sp((jacifies the directory service product to use to locate information against which to authenticate users
and groups.

View supported directory services

All of the supported directory service choices have predefined filters and ID maps the administrator can
view by clicking the Advanced button. If the administrator changes the filters or ID maps, the Directory
Type will automatically change to Custom.

"Custom"” can refer to any of the supported directory types, with customized filters and ID maps, or to an
unsupported directory service for which the administrator has defined filters and ID maps using the
Advanced options.

Advanced

Specifies optional properties the administrator can use to define search filtersand 1D maps for the
selected directory service. The administrator can also specify how certificates will be used to locate
entriesin the LDAP directory service.

o Initial INDI Context Factory: Specifies the INDI Context Factory to use. If thefield is blank,
Application Server uses the Context Factory provided by IBM.

o Directory Type: Specifiesthe brand of the directory service. Only directory services compatible
with Application Server Version 3 are listed.

If the administrator changes the filter and ID map values on the Advanced dialog box, the
Directory Type will change to Custom, even if the filters and ID maps the administrator is
defining apply to a supported directory service.

o User Filter: Specifiesthe property by which to look up usersin the directory service. For
example, to look up users based on their user IDs, specify
(anper sand(ui d=%) (obj ect cl ass=i net Or gPerson) where anpersand is
t he anmpersand synbol .

For more information about this syntax, see the LDAP directory service documentation.

o Group Filter: Specifiesthe property by which to look up groupsin the directory service.
88

o User ID Map: Specifies the piece of information that should represent users when users are
displayed. For example, to display entries of the type object class = inetOrgPerson by their IDs,
specify i net Or gPer son: ui d.

Thisfield takes multiple obj ect cl ass: property pairsdelimited by asemicolon (";").

o Group ID Map: Specifies the piece of information that should represent groups when groups are
displayed. For example, to display groups by their names, specify *: cn.

The* isawildcard character that searches on any object classin this case. Thisfield takes
multiple obj ect cl ass: property pairsdelimited by asemicolon (;").

o Group Member ID Map: Specifies which property of an objectclass stores the list of members
belonging to the group represented by the objectclass.

Thisfield takes multiple obj ect cl ass: property pairsdelimited by a semicolon (";"). For
more information about this syntax, see the LDAP directory service documentation.

o Certificate Mapping: Specifiesthe certificate field(s) against which to check certificate validity.

» Exact Distinguished Name: Checks certificate validity against the exact distinguished
name held by the LDAP directory service. It locates the subject DN of the certificate in
the directory.

= Unique Key: Checks certificate validity using a hash function on two predetermined
attributes.

= Certificate Filter: Enablesthe Filter field for specifying an property of your choice.
Create an LDAP search filter with the contents of the certificate that will attempt to
match asingle Directory entry. An example of a search filter is:
(anper sand(cn=${ Subj ect: cn}) (versi on=${ Ver si on}))
where ampersand is the ampersand symbol.
Thelist of possible variable substitutions referring to portions of the certificate is given
here (in the format "variable = meaning"):
= PublicKey = Public Key of the certificate

= |ssuer:attribute = Theissuer distinguished name of the certificate. An attribute
value must be specified that allows the administrator to select a specific attribute
of the Distinguished Name. To retrieve the entire Distinguished Name, use the
"DN" attribute.

= NotAfter = The date at which the certificate is no longer valid

= NotBefore = The date before which the certificate is not valid

= SerialNumber = The serial number of the certificate

= SigAlgName = The signature algorithm name

= SigAIgOID =The OID of the signature algorithm

» SigAlgParams = The DER encoded signature algorithm parameters

= Subject:attribute = The subject distinguished name of the certificate. An
attribute value must be specified that allows the administrator to select a specific
attribute of the Distinguished Name. To retrieve the entire Distinguished Name,
use the attribute DN.

s Version = The version number

o Certificate Filter: If you specified the Filter Certificate Mapping, this property specifies the
certificate property against which to check certificate validity.

89

Host
Specifies the host name of the machine on which the directory service resides.
Port
Specifies a port number for the directory service. Port 389 isthe LDAP default.
Base Distinguished Name
Specifies the base distinguished name of the directory service, indicating the starting point for LDAP
searches of the directory service. (See RFC 1779 for adiscussion of thistechnique).
Some examples include:
0 uid=anyusername
0 ou=people
o o=ibm

Thisfield is required unless the product will be using a Domino directory service, in which case the
administrator can leave the field blank to bind anonymously.

The host name, port, and base DN you specify in the Host, Port, and Base Distinguished Name fields are
combined to form an LDAP URL, such as
| dap: // nyserver: 1234/ o=i bm

where myserver:1234 is the host name and optional port number for the directory service, and o=ibmis
the base distinguished name.

Bind Distinguished Name
Specifies the distinguished name for Application Server to use to bind to the directory service. If left
blank, the Application Server binds anonymously.
See the previous Base Distinguished Name field description for examples of distinguished names.
Bind Password
Specifies the password for the Application Server to use to bind to the directory service.
Use SSL to connect to directory
Spec_ifieswhether to use an SSL connection between the security server and your LDAP directory
service.

If the administrator selects this option, the SSL connection will use the same SSL keyring as the one
defined for SSL connections between application servers.

90

6.6.18.1.4a.4.1: Supported directory services

For alist of supported directory services, see the prerequisites Web site discussed in the article about the site.
An additional Custom option is available for tailoring any of the default filtersto fit a supported LDAP
directory service.

91

http://localhost/v355makePDF/advanced/nav_Securityguidenav/0103.html

6.6.18.1.4b: Properties for configuring application
security

Application Identity - User ID

Specifies the user 1D under which the application will run. The ID is usedfor delegation of the
application's resources,

Application I dentity - Password
Specifies a password for the Application Identity.

92

6.6.18.1.4: Properties for configuring method groups
New Method Group
Specifies anew method group. Type the group name and click Add.

To see the new method group, expand the Method Groups folder.
Remove M ethod Group
Removes the selected method group. Note, the default (predefined) methodgroups cannot be removed.

93

6.6.18.1.4d: Properties for configuring resource
security

Run-AsMode

Indicates the Run As mode specified by the deployment descriptor of the enterprise bean.
o SYSTEM - The bean method will run with the security identity of a privileged system account
o CLIENT - The bean method will run with the security identity of the client
o SPECIFIED - The bean method will run with the Run As Identity you specify

If the value is SPECIFIED, the administrator must map the delegation ID(Run As Identity) to an
application identity established using the ConfigureApplication Security wizard.

The Run As Identity is specified in the bean deployment descriptor.For more information, see the Sun
Microsystems Enterprise JavaBeans 1.0 specification.

Note, the product maps enterprise bean methods to application identities, rather than to Run As
| dentities,for methods whose Run As Modes are SPECIFIED. The deployment tooldoes not allow roles
to be specified by the Run As Identity of a beandeployment descriptor.

Run-As ldentity

Specifies the security identity under which the enterprise bean method will be executed.
Thisvalueisignored if the Run AsMode is CLIENT or SYSTEM.

The Run As Identity is specified in the bean deployment descriptor. For more information,see the Sun
Microsystems Enterprise JavaBeans 1.0 specification.

Mapped Application I dentity

Specifies the application identity to which to map a bean or bean method. Y ou need onlydo thisif the
bean method's Run As Modeis"SPECIFIED."

The application identity isauser ID and password the administrator specifiesusing the Configure
Application Security task. It isthe user ID and passwordunder which the application and its methods
will run.

Specified M ethods

Specifies the enterprise bean methods for which delegation properties (Run As Mode, and so on)
arebeing established.

Resource

94

Indicates the resource with which the administrator is working. To changethe selected resource, return to
aprevious wizard page, on which you canselect a different resource.

6.6.18.1.4e: Properties for configuring permissions

WebSphere Permissions

Specifies the cross product of all available Applications and MethodGroups. Eachpair (permission) is
represented by aAppl i cat i on Nane- Met hodG oup Name notation. Expand a permission to see
the users granted that permission.

95

6.6.18.1.4f: Properties for the security search dialog

The search dialog |ets the administrator locate users and groups inthe underlying operating system user registry
or in the directoryservice, whichever is the current authentication mechanism.

Use thisreference to look up a particular property as you configurethis object type. Please note, not all
properties are available from every administrative interface. To learn how to access these propertiesfrom a
given administrative interface, refer to the task help forconfiguring this object type.

Everyone, All Authenticated Users, or Selection
Specifies for who to search for, with respect to the userregistry or directory service.
Sear ch For

Specify whether to search for users, groups, or roles. The administratorcan only search for roles if the
directory service supports them.

Sear ch Filter
Specify a pattern against which to search for principals. Awildcard character ("*") can be used.
Sear ch Results

Lists matches to the specified Search Filter. The SearchResults area remains empty until the
administrator clicks the Search button.

96

6.6.18.1a: Summary of security settings with the Java
administrative console
Use the Configure Global Settings task wizard to specify global and default security settings for all applications:

« Global settings apply to existing and future applications and cannot be customized.
« Default settings apply only to future applications and can be customized.

The default settings are used as atemplate or starting point for configuring individual applications. The
administrator should still explicitly configure security settings foreach application.

| Goal | Wizard page description |Global or default?
Enable security; specify how long to cache)

authentication lookup results 6.6.18.1aL: Genera Global

Specify default security realm and challenge type) P

for applications 6.6.18.1a.2: Application Defaults Default

’Specify how to authenticate users 6.6.18.1a.3: Authentication Mechanism |Global

Provide detail about the selected authentication) :

mechanism 6.6.18.1a.4: User Registry Global

IBM WebSphere Application Server provides security at several levels. The security characteristics of an
individual application can come fromany of these levels. At the most general level are the global
securitycharacteristics set up to act as application defaults. Thisfilebriefly describes these global values.

In WebSphere, the global defaults for security apply to allapplications. Some of the values can be changed on
anapplication-by-application basis, and others remain constant acrossall applications.

An example of avalue that can be set on a per-application basisis the type of authentication procedure. You
must establish adefault procedure, but this value is used for applicationsthat do not explicitly indicate how they

will authenticate users.

An example of value that cannot be changed on a per-applicationbasis is whether to ignore security or not. In
Application Server,security is either enabled or disabled. If it is enabled, allapplications are secured according
to their configurations. Ifsecurity is disabled, all applications run unsecurely, regardliessof their configurations.

97

6.6.18.1a.1: About enabling security with the Java
administrative console

Configure Global Settings task:

P 1. Enable security
2. Set application security defaults
3. Specify how to authenticate users
4. Provide details about the authentication mechanism

IBM WebSphere Application Server security can be enabled or not enabled. If securityis not enabled, all other
security settings are ignored.

98

6.6.18.1a.2: About setting application security
defaults with the Java administrative console

Configure Global Settings task:
1. Enable security

P 2. Set application security defaults
3. Specify how to authenticate users
4. Provide details about the authentication mechanism

Use the Application Defaults tab of the Configure Global Settingswizard to specify the default security realm
and challenge typefor applications. These values provide a starting configuration for applications, but some can
be refined on an application-by-application basis. For example, you can set a default challenge type for
authentication but alow some applications to use different challenge types.

Selecting a default security realm

All applications need to belong to a security realm. In Version 3,all applications must belong to the same
security realm.

The administrator can specify a default realm. When a particular applicationis configured, the administrator can
override thedefault realm by specifying a different realm for the application.

Single Sign-On (SSO) support is applied to realms. If a user who haslogged on to one realm tries to access an
application in anotherrealm, the user will be prompted to log into the second realm.

Selecting a default challenge type

The challenge type specifies how users will be challenged for authentication credentials whenthey try to access
aresource or application.

Challenge types range from no challenge, auser ID and password, or adigital certificate to a custom challenge
using Web pages.

99

6.6.18.1.a.3: About specifying how to authenticate
users with the Java administrative console

Configure Global Settings task:

1. Enable security
2. Set application security defaults

P 3. Specify how to authenticate users
4. Provide detail s about the authentication mechanism

Use the Authentication Mechanism tab of the Configure Global Settingswizard to specify how to authenticate or
verify the user data receivedas aresult of achallenge (such as alogon screen).

The WebSphere security server must havesome way to check the user ID and password, digital certificate, or
otheruser identification for credibility. It relies on the authenticationmechanism specified by the administrator.

Before performing this subtask

Before completing the Authentication Mechanism subtask, theadministrator needs to use other Configure
Global Settings subtasks tospecify how to challenge users for identification when theytry to access applications.

Selecting how to authenticate user data

Users can be authenticated by one of two authentication mechanisms, either theoperating system user registry,
or a supported directory service.

Whichever authentication mechanism the administrator selects, theadministrator can use the General tabbed
pageto specify a Security Cache Timeout value. The timeout specifies how long the securitysystem should keep
authentication data received from the directory service or user registry.

The timeout value specifies the number of seconds after which authenticationinformation will be considered
unreliable. The next time the information is needed, it will be sought again using the authentication mechanism.

100

6.6.18.1a.4: About providing authentication
mechanism details with the Java administrative
console

Configure Global Settings task:

1. Enable security
2. Set application security defaults
3. Specify how to authenticate users

P 4. Provide details about the authentication mechanism

Use the User Registry tab of the Configure Global Settings wizard tospecify details about the chosen
authentication mechanism, such as anoperating system user registry or LDAP directory service.

Before performing this subtask...

Before completing the User Registry information, the administrator needsto use other Configure Global Settings
subtasks to specify (1) how to collect identity informationfrom users trying to access applications and other
resources and (2) how toauthenticate the information received.

Selecting either the OS user registry or LDAP directory service

The user registry or directory service keeps records of users with permission to access resources in the systems
administration domain. The security systemlooks to the user registry or directory service to provide information
for determiningwhether to authenticate a user or group successfully.

The operating system user registry simply compares users to valid usersin the underlying operating system.
When the administrator selects the Local Operating Systemchallenge type, the User Registry tabbed page
dynamically changes to allow theadministrator to set a security 1D and password under which the application
will run. Theinformation is used for delegation of the application resource.

When the administrator selects Lightweight Third-Party Authentication (LTPA) as theauthentication
mechanism, the User Registry tabbed page changes. This change enables theadministrator to specify
information about the Lightweight Directory Access Protocol (LDAP)-compliant directory service product to be
used.

101

6.6.18.1b: About configuring application security with
the Java console

IBM WebSphere Application Server provides security at several levels. The security characteristics of an
individual application can come fromany of these levels. At the most general level are the global
securitycharacteristics set up to act as application defaults. However,the administrator can and should set
application-specific values that either comply with or override the global defaults.

The Configure Application Security task lets the administrator override the challenge typeand realm defaults
specified as the global settings. Usingthe task wizard, the administrator specifies the realm, challenge type and

security identity(user 1D and password) for a particular application.

For other properties, such as the authentication mechanism and userregistry details, the application will share
the global settings. These settingscannot be customized for a particular application.

Enabling security inthe administrative console is also a global setting, applied as "all or none"to applicationsin
the administrative domain.

102

6.6.18.1c: About assigning method groups with the
Java console

The Work with Method Groups task wizard provides an easy way to create custommethod groups.

Assuming you have configured one or more applications already, defining custom methods groups can be
considered the optioal first step of athree-part task:

1. Create custom method groups, if desired. WebSphere provides a set of default method groups, which
you can use instead of creating your own.

2. Assign the methods of each resource to method groups. WebSphere provides a default assignment of
methods to the predefined method groups, if you choose to useit. If you do, you should check the
assignment and modify it appropriately.

3. Assign permissions (access to method groups of applications) to users.

Example

Suppose you have defined an application namedM onthlySalesChart. The application contains a servlet. Y oucan
configure application-specific security as follows:

Y ou can protect all methods that allow writing to a database with a method group

%ﬁﬁgd%uaom called AllowedToWrite and put read-only methods in a method group called
AllowedToRead.
Assign methods to You can put the HTTP_PUT method of the servlet into the AllowedToWrite method
method groups group, and the HTTP_POST method into the AllowedToRead method group.
Give users the following permissions as appropriate:
Assign permissions « MonthlySalesChart-AllowedToRead
« MonthlySalesChart-AllowedToWrite

103

6.6.18.1d: About assignhing methods to method
groups with the Java console

After defining optional custom method groups, the administrator can specify whichmethods in application
resources belong to each method group.

Because IBM WebSphere Application Server provides default method groups, definingcustom groupsis
optional.

If the administrator specifies to use the default groups when working with methodgroups, WebSphere
ApplicationServer will take afirst pass at categorizing the bean methods into the various groups, basedon the
method names.

Afterwards, the administrator can create additional groups and move methods there, ormove methods among the
default groups if needed. Use the Work with Method Groups task to establish new method groups.

To sort resource methods into method groups for protection, perform theConfigure Resource Security task once
for each resource in the application.

{™ |f the Web server is already runningwhen the administrator configures resource security for an HTML file,
JSP file, or otherWeb resource, the administrator must stop the WebSphere administrative server andstart it
again for the protection to take effect.

104

6.6.18.1e: About assigning permissions

Use the Assign Permissions task to assign permissions to users and groups,giving them access to method groups
in enterprise applications.

105

6.6.18.5: Managing security IDs for the application
server and administrative accounts

Choosing the process identity

During installation, you must identify an existing user 1D and password under which the WebSphere
administrative server and application serverswill run. It is the operating system identity associated with
theprocess. The operating system uses the identity to determine accessto resources such as files and sockets. It
isnot an ID that istypicallyused by a human user.

If you are using the operating system registry as the authenticationmechanism for checking the identity, then the
identify must meetthe following requirements:

« On UNIX platforms, you must use the r oot account.

« On Windows NT, the account must be a member of the Administrators group and must have the rights
to "Log on asaservice' and to "Act as part of the operating system."

il Do not use an account whose hame matches the name of your machine or Windows Domain. The
WebSphere administrative server will not work in such a case.

il WebSphere requiresthe NT Browser Service to be active because WebSphere uses this service to
contact the NT Primary Domain Controller (PDC). Also, be aware that, although WebSphere uses the
NT PDC, it does not make use of the NT Backup Domain Controller (BDC). If the PDC isnot available,
WebSphere does not default to the BDC.

If you are using an LDAP directory service for authentication,then the process identity does not need any
special privileges. See the information about running as non-root on UNIX-based systems.

Establishing the administrative identity

When you enable WebSphere security by using the Configure Global Settings security administration task,you

configure an initial administrative identity for WebSphere. This identity needsto be avalid user for
theauthentication mechanism you have chosen (an operating system userregistry or LDAP directory service),
but it does not need "root" orother special privileges.

After configuring the administrative identity, when you restart theadministrative server and try to administer the
product, you must login with the administrative identity when you are prompted for a userID and password.

Y ou can also configure the product security to allow administrativeaccess by other IDs, in addition to theinitial
ID you established.

Setting up additional administrative accounts

During the installation of WebSphere Application Server, you mustidentify an existing account that will act as
the first administrativeaccount for WebSphere. After enabling security, this account willbe the only one
authorized to administer WebSphere. Y ou can, however,use the account to authorize other administrative users.

To authorize other valid accounts defined in the operating systemuser registry or in your directory service
product, use the AssignPermissions task on the Tasks tab of the WebSphere administrativeconsole (in the
Security task group). With this task, you can grantusers access to the protected functions, which are listed in the
formatAdminA pplication-function_namein the task.

Access to the administrative functions of the IBM WebSphereApplication Server product is controlled by the

106

http://localhost/v355makePDF/advanced/nav_Securityguidenav/0606a.html

adminapplication, to which the functions belong.

Steps

Click the Taskstab to display the Tasks tree.

Click Security --> Assign Permissions.

Click an AdminApplication-function_namefunction.
Click the Add button to produce a search dialog.

Use the search dialog to give permission to everyone or selected users or groups. Y ou can search for a
user or group in your local operating system user registry or directory service product.

Click the OK button when you are finished with the search dialog.

7. Back in the main console window, verify that the user or group is listed under the permission you
granted to the user or group.

8. Exit thistask by choosing another task on the Tasks tab.

ok DN PRF

ISk

Giving NT users administrative privileges

During the installation of WebSphere Application Server, you mustidentify an existing account that will act as
the first administrativeaccount for WebSphere. On Windows NT, the account must be a member ofthe
Administrators group and must have the rights to "L og on as a service'and to "Act as part of the operating
system."

To give an account these rights, follow this procedure:

1. Start the user manager for Windows NT or Domains and click Start --> Programs --> Administrative
Tools (Common) --> User Manager.

Select Policies --> User Rights from the menu bar on the dialog box.
Check the Show Advanced User Rights check box in the dialog box.
From the list labeled Right:, select Log on as a service.
If the administrative account is not listed in the Grant To: list:

o Click Add.

o Click the Show Users button in the resulting dialog box.

o Select theindividual User or Group.

o Click Add to include the account in the Add Names list.

o Click OK to exit the dialog box.
6. Click OK inthe User Rights Policy dialog box.

7. Return to the second step and repeat the procedure, specifying the "Act as part of the operating system”
right instead of the "Log on as a service' right.

8. Close the User Manager window.

o~ D

If you then open the Services menu and modify the Log On As accountfor the service, the account you specify
here will automatically begranted the "Log on as a service" right.

[il Do not use an account whose name matches the name of your machineor Windows Domain as the
administrative account. The WebSphereadministrative server will not work in such a case.

Changing passwords for administrative accounts
107

Good security requires the periodic changing of passwords, and thisincludes those for your WebSphere
administrative accounts. These passwordshave to be changed in two places, in a particular order. If thisis
doneincorrectly, it can create a situation in which the WebSphere administrativeserver cannot restart. Thisfile
describes the best way to change anadministrative password.

Steps

1. Make sure the WebSphere administrative server isrunning. Thisis crucial. Do not change an
administrative password unless the server is running.

2. Change the password in the user registry by using the utility for your operating system or LDAP service.

3. Login to the WebSphere administrative console using the new password. Attempts to use the old
password will fail.

4. Click Security --> Specify Global Settings --> User Registry in the administrative console.
5. Change the password for the administrative user to the new password.
6. Stop and restart the administrative server.

108

6.6.18.6: Avoiding known security risks in the runtime
environment

Securing the properties files

WebSphere Application Server depends on several configuration filescreated during installation. These files
contain password informationand should be protected accordingly. Although the files are protectedto a limited
degree during installation, this basic level of protectionis probably not sufficient for your site. Y ou should
ensure that thesefiles are protected in compliance with the policies of your site.

The files are found in the bin and properties subdirectories in theWebSphere <product_installation_root>.The
configuration filesinclude:

« Inthe bin directory: admin.config
« Inthe properties directory:

0 Sas.server.props

0 sas.client.props

0 sas.server.props.future

[il Failure to adequately secure these files can lead to abreach of security in your WebSphere applications.

Securing properties files on Windows NT

To secure the properties files on Windows NT, follow this procedurefor each file:
1. Open the Windows Explorer for aview of the files and directories on the machine.
Locate and right-click the file to be protected.
On the resulting menu, click Properties.
On the resulting dialog, click the Security tab.
Click the Permissions button.
Remove the Everyone entry.
Remove any other users or groups who should not be granted access to thefile.

Add the users who should be allowed to access the file. At minimum, add the identity under which the
administrative server runs.

O N O U~ DN

Securing properties files on UNIX systems

This procedure applies only to the ordinary UNIX filesystem. If yoursite uses access-control lists, secure the
files by using that mechanism.

For example, if your site's policy dictates that the only user who shouldhave permission to read and write the
propertiesfilesis the root user,to secure the properties files on a UNIX system follow this procedurefor each
file:

1. Go to thedirectory where the propertiesfiles reside.

2. Ensurethat the desired user (in this case, root) owns each file and that the owner's permissions are
appropriate (for example, rw-).

3. Delete any permissions given to the "group".
109

http://localhost/v355makePDF/advanced/nav_Securityguidenav/root.html

4. Delete any permissions given to the "world".
Any site-specific requirements can affect the desired owner, group andcorresponding privileges.

Risks illustrated by example applications

The level of security appropriate to aresource varies with thesensitivity of the resource. Information considered
confidentialor secret deserves a higher level of security than public information,and different enterprises will
assess the same information differently. Therefore, a security system needs to be able to accommodate a
widerange of needs. What is reasonable in one environment can be considereda breach of security in another.

In WebSphere, Web resources are not protected by default. Additionally,the WebSphere example applications
install some demonstrationservlets that perform administrative tasks. Because Web resourcesare not secured by
default, and because these servlets performwork usually reserved for administrators, they represent a
possiblesecurity problem, particularly for production applications.

The following describes some user practices and their potential risks.When applicable, it uses components of
the example application to illustrate the point.

Serving static HTML files

Purpose: This servlet serves static HTML pages. For example, the "file" servlet in the default configuration
under Web applicationcalled "examples' serves static pages from the application's documentdirectory (e.g.,
<WAS HOME>/hosts/default_host/examples/web).If you access http://<host>/webapp/examples/index.html this
servlet isinvoked to serve the page.

Security consideration: If you place afile containing confidential information within these directories, someone
who knows the filename butdoes not have access to it through the operating system can invoke thisservlet to
obtain thefile.

Solution: Protect all the files by protecting the URI associated with the "file" servlet. Such a URI typically ends
witha"/" (e.g.,/webapp/examples). Alternatively, if you want to protect only certainfiles (e.g.,
Iwebapp/exampl es/test.html) served by this servlet, thenprotect the filesindividually. To do this, you must:

1. Create aURI for eachfile.
2. Associate the URI with the file servlet by adding the URI to the web-path list of the servlet.
3. Secure access to the URI.

Invoker Servlet

Purpose: Theinvoker servlet serves servlets by class name.For example, if you invoke
/servlet/com.test.HelloServlet, the invokerwill load the servlet class (if it isin its classpath) and executethe
serviet.

Security consideration: By using this servlet, a user can accessany other servlet in the application, without
going through the proper channels. For example, if /servlet/testHello is a URI associated with
com.test.HelloServlet, and if that URI is protected, user must beauthenticated to invokes /servlet/testHello, but
any user can invoke/servlet/com.test.HelloServlet, circumventing the security on the URI.Thisis a security
exposure if you have secured servletsinstalled inthe system.

Solution: Avoid installing this servlet in your configuration.
An application's error page

110

Purpose: In case of application errors, users are redirectedto an error page associated with the Web application.
This can beany type of Web resource to which customers should be redirectedin case of an error.

Security consideration: This page should be unprotected. Ifit is protected, the server cannot authenticate the
user from the context and therefore cannot send the user to the error page whenan error occurs.

Solution: Do not secure these resources.

The web application "examples"

Purpose: This application is available as part of the defaultinstallation.

Security consideration: The servlets available in this application can export sensitive information, for example,
theconfiguration of your server.

Solution: The "examples' Web application should not beinstalled in a production environment.

The Web application "admin”

Purpose: To administer WebSphere configuration.

Security consideration: Currently, security is notsupported for this feature, even if you have enabled security. If
youinstall this application, anyone can change the configuration, evenif WebSphere security is enabled.

Solution: The "admin™ Web application should not beinstalled in a production environment.

Avoiding other known security risks

Thisfile addresses specific problem areas. As aways, periodically check the product Web site Library page for
the latest information. See alsothe product Release Notes.

« Toavoid asecurity risk, ensure that the WebSphere Application Server document root and the Web
server document root are different. Keep your JSP filesin the WebSphere Application Server document
root or it will be possible for users to view the source code of the JSP files.

WebSphere Application Server checks browser requests against its list of virtual hosts. If the host header
of the request does not match any host on the list, WebSphere Application Server lets the Web server
serve the file. Suppose the requested file is a JSP file in the Web server document root -- the JSPfileis
served asaregular file.

This problem has been noticed in scenarios using Netscape Enterprise Server. Due to the nature of the
problem, it is possible that other Web server brands are susceptible.

o Microsoft Internet Information Server users:
To use the Microsoft Internet Information Server with security enabled, in combination with IBM
WebSphere Application Server security, you need to:

o Configure 11S authentication settings to Anonymous.
o Disable NTLM (Windows NT Challenge/Response) in the Microsoft Management Console
o Disable Basic Authentication on the Microsoft Management Console

L ook for the setting on the Directory Security tab of the WWW Services properties.

Problems are common when Internet Information Server NTLM is enabled along with IBM WebSphere
Application Server security. The above settings are recommended to avoid problems.

111

http://www.ibm.com/software/websphere/appserver/library.html
http://localhost/v355makePDF/advanced/nav_Securityguidenav/relnotesindx.html

112

Usersof Distinguish Names (DN) in LDAP:
The "unique key certificate" filter is offered as a security option in the WebSphere administrative
console, but is not supported for Application Server Version 3.x.

Make sure you use Distinguished Names (DNs) that your directory service product supports. Although
WebSphere Application Server security supports valid LDAP DNs, some directory-service products
support only a subset. For example, testing revealed that some directory services do not support al valid
LDAP DNs. Specifically, avalid DN of the form OID.9.2.x.y.z=foo was rejected by one or more of the
supported directory services.

Also, directory services vary in how they represent DNs, and DNs are both case- and space-sensitive. In
some cases, this leads to situations in which a user entersavalid DN and is authenticated but is still
refused access. This problem is often solved by using the Common Name (the short name) rather than
the full Distinguished Name.

Users of digital certificateswith European characters:

If you use the iKeyman GUI tool to obtain manage certificates that contain European charactersin
names, the GUI will not display them. For example, adigital certificate contains the name of the
company that owns the certificate and the name of the company that issued the certificate. In the US,
there are companies that use symbolsinstead of letters in their names, like @Home and $mart $hopper.
European charactersin certificate names will not be displayed by the GUI.

6.6.18.7: Protecting individual application
components and methods

Protecting enterprise beans after redeployment

Security is not automatically updated when changes are made to a bean.Y ou must redeploy the resource security
in order for the method groups topick up the changes to the bean.

Adding a method to a bean

If you add a method to a bean, you must go back into resource securityand associate the new method with a
method group.

Modifying a method on a bean

If you modify a method on a bean, you must resecure the bean as follows:
1. Delete the method group for the bean.
2. Click Finish.
3. Re-associate the method group with the modified method.

Unprotecting resources

Resources protected under WebSphere can be unprotected, if necessary.Depending on the resources and how
they are configured into applications,the techniques for removing security differ. This file describes howto
remove security in the following situations:

« All resources associated with an enterprise application

« A particular bean associated with an enterprise application
« All URIsassociated with aweb application

« A particular URI associated with aweb application

Unprotecting all resources associated with an enterprise application

If you want to remove protection from all the resources associated withan enterprise application, the most
efficient approach isto unprotectthe application itself. For example, if you have granted the permissions
associated with the application (" application-methodgroup”pairs) to a specific user, group or to all authenticated
users, the resourcesare considered protected. To unprotect these resource, you can grant thosepermissions to
"Everyone'. By granting the permissions to everyone, a user need not be authenticated to access the resources
under that application.

Unprotecting an enterprise bean associated with an
enterpriseapplication

If you want to remove protection from a specific bean (or set of beans)associated with an application while
maintaining the security on the otherresources in the application, remove the bean (or beans) from
theapplication and create a new application that is explicitly unprotected.

When you remove beans from the application, the security configuration associated with the application no
113

longer applies to them. However, enterprisebeans are protected unless security policies to the contrary are
specified. To completely unsecure them, you need to create a new application consistingof the beansto be
unsecured. After performing security configurationsteps, grant the permissions associated with the new
application to"Everyone." Thisis equivalent to unprotecting all the resourcesassociated with the new
application.

To remove resources from a secured enterprise application, use the "EditEnterprise Application™” task. On the
last panel, you can remove resourcesassociated with the application. Use it to remove the desired beans.

Unprotecting all URIs associated with a web application

If you want to remove protection from a web application (including allassociated URIS) while maintaining the
security on the other resourcesin the enterprise application, remove the web application (or applications)from
the enterprise application.

To remove resources from a secured enterprise application, use the "EditEnterprise Application” task. On the
last panel, you can remove resourcesassociated with the application. Use it to remove the desired
webapplications.

Unprotecting specific URIs

If you want to remove protection from specific URIs in aweb application,remove the method-group
configuration for the URIs. Use the " ConfigureSecurity Method Groups' task and select the URI you want to
unprotect.After the URI is selected, proceed to the next screen, where you viewthe classification of methods
into method groups. For example, theHTTP_GET method may belong to the ReadM ethods method group.
Selectthe method groups associated with the methods you want to unprotectand remove them. This eliminates
the associate between a method groupand a URI, leaving the URI unprotected. Because web resources
areunprotected by default, no authentication is required to access them.

Protecting individual JSP files

Thisfile describes the steps necessary for selectively protecting JSP files, that is, how to protect individual JSP
filesbased on their Web paths (URIs) when you do not want to applythe same protection to all the JSPfilesin
the system.

Note, the instructions for adding a JSP Web path to a webapplication advise you to use the "Add a JSP or aweb
resource” taskwizard in the administrative console. This action adds theJSP Web path, not the actual JSP file, to
the Web application.But when you follow the configuration steps to protect a JSP Web path, the Web path is
treated separately from theWeb application; instead, it is treated as a Web server resource.Therefore, security
does not work as intended.

The following procedure will be needed until product defect number88065 is addressed. Check the "fixed
defects” list accompanying IBMWebSphere Application Server fix packs to ascertain whether a givenfix pack
has addressed the defect.

To protect individual JSP files using WebSphere security, follow these steps:

1. If you used the "Add a JSP or web resource task™ to introduce a new JSP Web path and associate with
Web applications, remove al of the Web paths.

2. Start the WebSphere administrative console.
3. Select the Topology view.

4. Expand the Topology tree to show the node, application server, and servlet engine containing the Web
application to which you want to add the JSP.

114

http://localhost/v355makePDF/advanced/nav_Securityguidenav/06060001a.html

10.
11.

Select the JSP processor servlet in that Web application.

In the list of Web paths, locate:

[def aul t _host/ <webapp- pat h>/*. | sp

where default_host is the default virtual host or one that you have created, and <webapp-path> isthe
path to the Web application.

Click "Add" to add to the Web path list.

Enter the JSP Web path (URI) that you want to protect, such as:
[def aul t _host/ <webapp- pat h>/t oBePr ot ect ed. j sp.
If you have multiple files to protect, enter the URI for each one.

Apply your changes.
Follow the resource security configuration steps to protect these newly added JSP files,

Restart the application server hosting the Web application and JSP files.

115

6.6.18.8: Using Microsoft Active Directory as an LDAP
Server

To use Miscrosoft Active Directory as the LDAP server for authenticationwith WebSphere Application Server,
there are some specific steps you musttake. By default, Microsoft Active Directory does not allowanonymous
LDAP queries. To make LDAP queries or browse thedirectory, an LDAP client must bind to the LDAP server
usingthe distinguished name (DN) of an account that belongs to theAdministrator group of the Windows
system.

To set up Microsoft Active Directory as your LDAP server, followthis procedure:

1. Determine the full DN and password of an account in the Administrators group. For example, if the
Active Directory administrator creates an account in the Users folder of the Active Directory Users and
Computers Windows NT/2000 control panel and the DNS domain isibm.com, the resulting DN has the
following structure:
cn=<adm nUser nane>, cn=users, dc=ibm dc=com

2. Determine the short name and password of any account in the Microsoft Active Directory. This does not
have to be the same account as used in the previous step.

3. Usethe WebSphere Application Server administrative console to set up the information needed to use
Microsoft Active Directory:

1. Start the administrative server for the domain, if necessary.
Start the administrative console, if necessary.
On the administrative console, click Wizards.
Select the Configure Global Security Settings task.
Click the User Registry tab and set the following fields as described:
= Security Server I1D: The short name of the account chosen in 2
= Security Server Password: the password of the account chosen in step 2
= Directory Type: Active Directory
= Host: The DNS name of the machine running Microsoft Active Directory

» Base Distinguished Name: the domain components of the DN of the account chosen in
step 1. For example:
dc=i bm dc=com

= Bind Distinguished Name: the full DN of the account chosen in step 1. For example:
cn=<adm nUser nane>, cn=users, dc=ibm dc=com

= Bind Password: the password of the account chosen in step 1
6. Click OK button to save the changes.
7. Stop and restart the administrative server to make the changes take effect.

gk 0N

116

6.6.18.9: Specifying authentication options in
sas.client.props

Y ou can use the sas.client.props file to direct WebSphere ApplicationServer to authenticate users by prompting
or by using auser ID and password set in the properties file. The following steps describe theprocedure:

1. Locate the sas.client.props file. By default, it islocated in the properties directory under the
<product_installation_root> of your WebSphere Application Server installation.
2. Edit thefileto set up the authentication procedure:

o To authenticate by prompting, set the loginSource property to the value "prompt”:
com i bm CORBA. | ogi nSour ce=pr onpt

o To authenticate by the values configured in the file, set the loginSource property to the value
"properties’ and set the desired values for the loginUserid and loginPassword properties:
com i bm CORBA. | ogi nSour ce=properties
com i bm CORBA. | ogi nUseri d=<user _| D>
com i bm CORBA. | ogi nPasswor d=<passwor d>

3. Savethefile.

117

http://localhost/v355makePDF/advanced/nav_Securityguidenav/root.html

6.6.18.10: The demo keyring

During product installation, you must decide whether or not to check a boxlabeled "Use demo keyring file."
Keyrings are used for certain typesof authentication.

If you plan to produce your own keyrings, you do not need tocheck this check box. If you are not sure, check
the box. Thisway, if you later need the functionality for testing, you'll haveit.Y our decision for this check box
will not affect theoverall success of the security installation.

[il Do not use the demo keyring in production systems. It includesa self-signed certificate for testing purposes,
and the privatekey for this certificate can be obtained easily, which puts the securityof all certificates stored in
thefile at risk. This keyringisintended only for testing purposes.For information on obtainingproduction
certificates, see Requestingcertificates; for information on creating keyring files,see Tools for managing

certificates and keyrings.(The links will only work if you are reading this as part of the InfoCenter that you can
obtain fromhttp://www.ibm.com/software/webservers/appserv/infocenter.html).

118

http://www.ibm.com/software/webservers/appserv/infocenter.html

6.6.18.11: SecureWay Directory Version 2.1

e Overview

« Software requirements

Overview

Version 2.1 of the SecureWay Directory provides many newenhancements over its predecessor, eNetwork
LDAP Directory Versionl.1.1, which was originally only available on A1X4.3.1. The magjor enhancements
include:

« DB2Version 5.0 asthe directory data storage facility
« Alias support

« Improved search and ACL support

« Support for popular Web servers

« Significant scalability

« Improvements to replication and performance

The IBM SecureWay Directory V2.1 includes an LDAP Version 2 server(RFC 1777,1778, 1779). It is enhanced
to support aliases and IETF LDAPVersion 3 extensions for SSL, referrals, replication and accesscontrol.

SSL provides encryption of data and authentication using X.509v3public-key certificates. The server may be
configured to run with orwithout SSL support. The server supports LDAP referrals, allowingdirectories to be
distributed across multiple LDAP servers. Replicationis supported which makes additional read-only copies of
the directoryavailable, improving performance and reliability of access to the directoryinformation. A powerful,
easy-to-manage access control model issupported. Configuration and administration of the LDAP Directory
isaccomplished through an improved web-based interface.

This product is available on Al1X, Windows NT/Intel and Solarisplatforms. It currently supports ten languages
including English,French, German, Italian, Spanish and Brazilian Portuguese on Al1X andNT. Catalan is also
supported on Al X. It does not support DBCSlanguages on Solaris.

The SecureWay Directory, Version 2.1 supports up to fifteen millionentries with peak sub-second response time
for searches.

Performance of the Directory isimproved with statement caching andoptimization. Multi-threading
improvements allow Directory clients toperform true multi-threaded connections and make concurrent
operations withthe DB2 server. The DB2 program provided with the Directory may only beused by the
SecureWay Directory function.

ACL support provides role-based authorization, assigns multiple usersownership of an entry, and removes the
requirement to set ACLs on every nodeto give users access to their own information.

The Web servers Apache, Lotus Domino Go, Netscape FastTrack, and NetscapeEnterprise Web servers are
supported for LDAP administration.

Directory client accessis supported using LDAP or HTTP protocols.Client applications can be devel oped using
the enhanced elements provided forsupporting LDAP Version 3 protocols and APIs. Also included isthe
JavaNaming and Directory Interface (JNDI) client API that provides Javaapplications with access to
LDAP-enabled directories. Both clientssupport access to SecureWay Directories using LDAP Version 2 or
Version3. Directory client applications can be built for Windows NT, Windows95, Solaris, and HP-UX using
the IBM LDAP Client Pack, which can be orderedseparately (PRPQ 5799-GAN). Also shipped with the
SecureWay Directoryis Directory Sample 1, aclient application that creates a directory fortesting LDAP.

119

Directory Sample 1 is provided without support.

Also shipped with the SecureWay Directory is Directory Sample 1, a clientapplication that creates a directory
for testing LDAP. Directory Samplel is provided without support.
Standards:

o RFC 1777 Lightweight Directory Access Protocol

« RFC 1778 String Representation of Standard Attribute Syntaxes

« RFC 1779 String Representation of Distinguished Names

o RFC 1823 LDAP Application Program Interface

o RFC 1960 A String Representation of LDAP Search Filters

Interoperability/Compatibility: The SecuréWay Directory replicationinteroperates with the OS/390 LDAP
Server.

Software requirements

The product supports three operating systems:

« Microsoft Windows NT (3) Workstation/Server Version 4.0 withservice pack 3 or later (NTFSfile
system is required for security support)

e Sun SolarisVersion 2.5.1 (SunOS 5.5.1) orVersion 2.6 (SunOS 5.6) (4)
« IBM AIX Version 4.2.1 with APAR IX72127; or Versions4.3.0 and 4.3.1 with APAR 1 X72439,
IX74821,1X75022 and PTF U457544; or Version 4.3.2 (2)
The required IBM Universal Databases are:
« For NT, one of the following:
o UDB V5.0 for Windows NT with fixpak US9044f
o UDB V5.2 for Windows NT
« For Solaris, one of the following:
o UDB V5.0 for Solaris with fixpak U457228f
o UDB V5.2 for Solaris
« For AlX, one of the following:
o UDB V5.0 for AIX with fixpak U457227f
o UDB V5.2 for AlX

For Directory server, the requirements are:

« One of the following installed and configured Web servers:
o Apache 1.2.5 or later
o Lotus Domino Go Webserver 4.6.2 or later
o Netscape FastTrack Server, Version 2.0.1 or later
o Netscape Enterprise Server, Version 3.5.1 or later
o Microsoft 11S 2.0

« JavaRuntime 1.1.6

o A minimum of 64 MB RAM

« DB2for AlX, Version 5.0.0.39, Workgroup Edition

120

Note: Lotus Domino Go Webserver 4.6.2.5 and Netscape FastTrackVersion 3.0.1 are available in the AIX
Version 4.2 and4.3 Bonus Packs. DB2 for Al X, Version5.0.0.39 isincluded with the IBM
SecureWayDirectory. DB2 fixes to upgrade from Version5.0.0.0 can be found on the Web at URL :

http://www.software.ibm.com/data/db2/library
The Directory client requires:

e AlIX Vesion4.2.1, Verson 4.3, Version4.3.1, or Version 4.3.2

« A frame-enabled browser that supports HTML Version 3.0, or later,and a browser that supports Java
Runtime 1.1.6.

121

http://www.software.ibm.com/data/db2/library

	Numbx:
	L:
	C:
	R:

	P1:
	Numbers:
	Numbx:
	L:
	C:
	R: 1

	P2:
	Numbers:
	Numbx:
	L: 2
	C:
	R:

	P3:
	Numbers:
	Numbx:
	L:
	C:
	R: 3

	P4:
	Numbers:
	Numbx:
	L: 4
	C:
	R:

	P5:
	Numbers:
	Numbx:
	L:
	C:
	R: 5

	P6:
	Numbers:
	Numbx:
	L: 6
	C:
	R:

	P7:
	Numbers:
	Numbx:
	L:
	C:
	R: 7

	P8:
	Numbers:
	Numbx:
	L: 8
	C:
	R:

	P9:
	Numbers:
	Numbx:
	L:
	C:
	R: 9

	P10:
	Numbers:
	Numbx:
	L: 10
	C:
	R:

	P11:
	Numbers:
	Numbx:
	L:
	C:
	R: 11

	P12:
	Numbers:
	Numbx:
	L: 12
	C:
	R:

	P13:
	Numbers:
	Numbx:
	L:
	C:
	R: 13

	P14:
	Numbers:
	Numbx:
	L: 14
	C:
	R:

	P15:
	Numbers:
	Numbx:
	L:
	C:
	R: 15

	P16:
	Numbers:
	Numbx:
	L: 16
	C:
	R:

	P17:
	Numbers:
	Numbx:
	L:
	C:
	R: 17

	P18:
	Numbers:
	Numbx:
	L: 18
	C:
	R:

	P19:
	Numbers:
	Numbx:
	L:
	C:
	R: 19

	P20:
	Numbers:
	Numbx:
	L: 20
	C:
	R:

	P21:
	Numbers:
	Numbx:
	L:
	C:
	R: 21

	P22:
	Numbers:
	Numbx:
	L: 22
	C:
	R:

	P23:
	Numbers:
	Numbx:
	L:
	C:
	R: 23

	P24:
	Numbers:
	Numbx:
	L: 24
	C:
	R:

	P25:
	Numbers:
	Numbx:
	L:
	C:
	R: 25

	P26:
	Numbers:
	Numbx:
	L: 26
	C:
	R:

	P27:
	Numbers:
	Numbx:
	L:
	C:
	R: 27

	P28:
	Numbers:
	Numbx:
	L: 28
	C:
	R:

	P29:
	Numbers:
	Numbx:
	L:
	C:
	R: 29

	P30:
	Numbers:
	Numbx:
	L: 30
	C:
	R:

	P31:
	Numbers:
	Numbx:
	L:
	C:
	R: 31

	P32:
	Numbers:
	Numbx:
	L: 32
	C:
	R:

	P33:
	Numbers:
	Numbx:
	L:
	C:
	R: 33

	P34:
	Numbers:
	Numbx:
	L: 34
	C:
	R:

	P35:
	Numbers:
	Numbx:
	L:
	C:
	R: 35

	P36:
	Numbers:
	Numbx:
	L: 36
	C:
	R:

	P37:
	Numbers:
	Numbx:
	L:
	C:
	R: 37

	P38:
	Numbers:
	Numbx:
	L: 38
	C:
	R:

	P39:
	Numbers:
	Numbx:
	L:
	C:
	R: 39

	P40:
	Numbers:
	Numbx:
	L: 40
	C:
	R:

	P41:
	Numbers:
	Numbx:
	L:
	C:
	R: 41

	P42:
	Numbers:
	Numbx:
	L: 42
	C:
	R:

	P43:
	Numbers:
	Numbx:
	L:
	C:
	R: 43

	P44:
	Numbers:
	Numbx:
	L: 44
	C:
	R:

	P45:
	Numbers:
	Numbx:
	L:
	C:
	R: 45

	P46:
	Numbers:
	Numbx:
	L: 46
	C:
	R:

	P47:
	Numbers:
	Numbx:
	L:
	C:
	R: 47

	P48:
	Numbers:
	Numbx:
	L: 48
	C:
	R:

	P49:
	Numbers:
	Numbx:
	L:
	C:
	R: 49

	P50:
	Numbers:
	Numbx:
	L: 50
	C:
	R:

	P51:
	Numbers:
	Numbx:
	L:
	C:
	R: 51

	P52:
	Numbers:
	Numbx:
	L: 52
	C:
	R:

	P53:
	Numbers:
	Numbx:
	L:
	C:
	R: 53

	P54:
	Numbers:
	Numbx:
	L: 54
	C:
	R:

	P55:
	Numbers:
	Numbx:
	L:
	C:
	R: 55

	P56:
	Numbers:
	Numbx:
	L: 56
	C:
	R:

	P57:
	Numbers:
	Numbx:
	L:
	C:
	R: 57

	P58:
	Numbers:
	Numbx:
	L: 58
	C:
	R:

	P59:
	Numbers:
	Numbx:
	L:
	C:
	R: 59

	P60:
	Numbers:
	Numbx:
	L: 60
	C:
	R:

	P61:
	Numbers:
	Numbx:
	L:
	C:
	R: 61

	P62:
	Numbers:
	Numbx:
	L: 62
	C:
	R:

	P63:
	Numbers:
	Numbx:
	L:
	C:
	R: 63

	P64:
	Numbers:
	Numbx:
	L: 64
	C:
	R:

	P65:
	Numbers:
	Numbx:
	L:
	C:
	R: 65

	P66:
	Numbers:
	Numbx:
	L: 66
	C:
	R:

	P67:
	Numbers:
	Numbx:
	L:
	C:
	R: 67

	P68:
	Numbers:
	Numbx:
	L: 68
	C:
	R:

	P69:
	Numbers:
	Numbx:
	L:
	C:
	R: 69

	P70:
	Numbers:
	Numbx:
	L: 70
	C:
	R:

	P71:
	Numbers:
	Numbx:
	L:
	C:
	R: 71

	P72:
	Numbers:
	Numbx:
	L: 72
	C:
	R:

	P73:
	Numbers:
	Numbx:
	L:
	C:
	R: 73

	P74:
	Numbers:
	Numbx:
	L: 74
	C:
	R:

	P75:
	Numbers:
	Numbx:
	L:
	C:
	R: 75

	P76:
	Numbers:
	Numbx:
	L: 76
	C:
	R:

	P77:
	Numbers:
	Numbx:
	L:
	C:
	R: 77

	P78:
	Numbers:
	Numbx:
	L: 78
	C:
	R:

	P79:
	Numbers:
	Numbx:
	L:
	C:
	R: 79

	P80:
	Numbers:
	Numbx:
	L: 80
	C:
	R:

	P81:
	Numbers:
	Numbx:
	L:
	C:
	R: 81

	P82:
	Numbers:
	Numbx:
	L: 82
	C:
	R:

	P83:
	Numbers:
	Numbx:
	L:
	C:
	R: 83

	P84:
	Numbers:
	Numbx:
	L: 84
	C:
	R:

	P85:
	Numbers:
	Numbx:
	L:
	C:
	R: 85

	P86:
	Numbers:
	Numbx:
	L: 86
	C:
	R:

	P87:
	Numbers:
	Numbx:
	L:
	C:
	R: 87

	P88:
	Numbers:
	Numbx:
	L: 88
	C:
	R:

	P89:
	Numbers:
	Numbx:
	L:
	C:
	R: 89

	P90:
	Numbers:
	Numbx:
	L: 90
	C:
	R:

	P91:
	Numbers:
	Numbx:
	L:
	C:
	R: 91

	P92:
	Numbers:
	Numbx:
	L: 92
	C:
	R:

	P93:
	Numbers:
	Numbx:
	L:
	C:
	R: 93

	P94:
	Numbers:
	Numbx:
	L: 94
	C:
	R:

	P95:
	Numbers:
	Numbx:
	L:
	C:
	R: 95

	P96:
	Numbers:
	Numbx:
	L: 96
	C:
	R:

	P97:
	Numbers:
	Numbx:
	L:
	C:
	R: 97

	P98:
	Numbers:
	Numbx:
	L: 98
	C:
	R:

	P99:
	Numbers:
	Numbx:
	L:
	C:
	R: 99

	P100:
	Numbers:
	Numbx:
	L: 100
	C:
	R:

	P101:
	Numbers:
	Numbx:
	L:
	C:
	R: 101

	P102:
	Numbers:
	Numbx:
	L: 102
	C:
	R:

	P103:
	Numbers:
	Numbx:
	L:
	C:
	R: 103

	P104:
	Numbers:
	Numbx:
	L: 104
	C:
	R:

	P105:
	Numbers:
	Numbx:
	L:
	C:
	R: 105

	P106:
	Numbers:
	Numbx:
	L: 106
	C:
	R:

	P107:
	Numbers:
	Numbx:
	L:
	C:
	R: 107

	P108:
	Numbers:
	Numbx:
	L: 108
	C:
	R:

	P109:
	Numbers:
	Numbx:
	L:
	C:
	R: 109

	P110:
	Numbers:
	Numbx:
	L: 110
	C:
	R:

	P111:
	Numbers:
	Numbx:
	L:
	C:
	R: 111

	P112:
	Numbers:
	Numbx:
	L: 112
	C:
	R:

	P113:
	Numbers:
	Numbx:
	L:
	C:
	R: 113

	P114:
	Numbers:
	Numbx:
	L: 114
	C:
	R:

	P115:
	Numbers:
	Numbx:
	L:
	C:
	R: 115

	P116:
	Numbers:
	Numbx:
	L: 116
	C:
	R:

	P117:
	Numbers:
	Numbx:
	L:
	C:
	R: 117

	P118:
	Numbers:
	Numbx:
	L: 118
	C:
	R:

	P119:
	Numbers:
	Numbx:
	L:
	C:
	R: 119

	P120:
	Numbers:
	Numbx:
	L: 120
	C:
	R:

	P121:
	Numbers:
	Numbx:
	L:
	C:
	R: 121

