
WebSphere Application Server

Writing Enterprise Beans in WebSphere
Version 3.5

SC09-4431-02

IBM

WebSphere Application Server

Writing Enterprise Beans in WebSphere
Version 3.5

SC09-4431-02

IBM

Note
Before using this information and the product it supports, be sure to read the general information under
“Notices” on page 237.

Third Edition (June 2000)

This edition replaces SC09-4431-01.

Order publications through your IBM representative or through the IBM branch office serving your locality.

© Copyright International Business Machines Corporation 1999, 2000. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures vii

Tables xi

About this book xiii
Who should read this book. xiii
Document organization xiii
Related information xiv
Conventions used in this book xiv
How to send your comments xvi

Chapter 1. An architectural overview of the
EJB programming environment 1
Components of the EJB environment 1
The EJB server 2

The security service 4
The workload management service. . . . 6
The persistence service 6
The naming service 7
The transaction service 7

The data source 10
The EJB clients 11
The Web server 12
The administration interface 13

Chapter 2. An introduction to enterprise
beans 15
Bean basics 15

Entity beans 15
Session beans 17

Packaging enterprise beans 19
The deployment descriptor 19
The EJB JAR file 20

Deploying an enterprise bean 21
Developing EJB applications 21

An example: enterprise beans for a bank 22
Using the banking beans to develop EJB
banking applications 23

Life cycles of enterprise bean instances . . . 24
Session bean life cycle. 24
Entity bean life cycle 26

Chapter 3. Tools for developing and
deploying enterprise beans in the EJB
server (AE) environment 29
Using VisualAge for Java 29
Developing and deploying enterprise beans
with EJB server (AE) tools 30

Installing and configuring the software for
the EJB server (AE) 31
Setting the CLASSPATH environment
variable in the EJB server (AE)
environment 32
Creating the components of an enterprise
bean 32
Creating finder logic in the EJB server (AE) 33
Creating a deployment descriptor and an
EJB JAR file 33
Creating a database for use by entity beans 47

Restrictions in the EJB server (AE)
environment 47

Chapter 4. Tools for developing and
deploying enterprise beans in the EJB
server (CB) environment 49
Developing and deploying enterprise beans
with EJB server (CB) tools 49

Prerequisite software for the EJB server
(CB). 51
Setting the CLASSPATH environment
variable in the EJB server (CB)
environment 51
Creating the components of an enterprise
bean 52
Creating finder logic in the EJB server (CB) 53
Creating an EJB JAR file for an enterprise
bean 56
Deploying an enterprise bean 56
Building a data object during CMP entity
bean deployment 62
Installing an enterprise bean and
configuring its EJB server (CB) 72
Binding the JNDI name of an enterprise
bean into the JNDI namespace 73
Configuring systems management to
enable lazy enumeration 75

© Copyright IBM Corp. 1999, 2000 iii

Resolving to EJB homes using lifecycle
services in CBConnector 76

Default context-to-finder associations . . 77
Application-specific contexts and the
appbind tool 78

Creating an enterprise bean from an existing
CICS or IMS application 81
Creating an enterprise bean that
communicates with MQSeries 82
Restrictions in the EJB server (CB)
environment 84

Chapter 5. Developing enterprise beans . . 89
Developing entity beans with CMP 89

Writing the enterprise bean class (entity
with CMP) 90
Writing the home interface (entity with
CMP) 98
Writing the remote interface (entity with
CMP) 101
Writing the primary key class (entity with
CMP) 102

Developing session beans 104
Writing the enterprise bean class (session) 104
Writing the home interface (session). . . 113
Writing the remote interface (session) . . 115

Implementing interfaces common to multiple
types of enterprise beans 116

Methods inherited from
javax.ejb.EJBObject 116
The javax.ejb.EJBHome interface 116
The java.io.Serializable and
java.rmi.Remote interfaces 117

Using threads and reentrancy in enterprise
beans 117
Packaging enterprise beans. 118

Making bean components part of a Java
package 118
Creating the deployment descriptor file 118
Creating an EJB JAR file 119

Chapter 6. Enabling transactions and
security in enterprise beans 121
Setting transactional attributes in the
deployment descriptor 121

Setting the transaction attribute 122
Setting the transaction isolation level
attribute 124

Setting the security attribute in the
deployment descriptor 126

Chapter 7. Developing EJB clients . . . 129
Importing required Java packages 130
Creating and getting a reference to a bean’s
EJB object 131

Locating and creating an EJB home object 132
Creating an EJB object 136

Handling an invalid EJB object for a session
bean 137
Removing a bean’s EJB object 139
Managing transactions in an EJB client. . . 139
More information on EJB clients specific to
the EJB server (CB) 141

EJB clients that use ActiveX 142
C++ and Java EJB clients that use a
CORBA interface 142
Clients using the Component Broker
Session Service. 143

Chapter 8. Developing servlets that use
enterprise beans 145
An overview of standard servlet methods 145
Writing an HTML page that embeds a
servlet 145
Developing the servlet 147

The servlet’s instance variables 148
The servlet’s init method 149
The servlet’s doGet method 151
Creating an enterprise bean 152
Determining the content of the user
response 153
Sending the user response 154

Threading issues 155

Chapter 9. More-advanced programming
concepts for enterprise beans 157
Developing entity beans with BMP 157

Writing the enterprise bean class (entity
with BMP) 157
Writing the home interface (entity with
BMP) 168
Writing the remote interface (entity with
BMP) 170
Writing or selecting the primary key class
(entity with BMP). 172

Using a database with a BMP entity bean 173
Managing connections in the EJB server
(CB) environment 174
Managing database connections in the
EJB server (AE) environment 177
Manipulating data in a database 180

iv WebSphere: Writing Enterprise Beans in WebSphere

Using bean-managed transactions 181

Chapter 10. WebSphere Programming
Model Extensions 185
The distributed-exception package 185

Overview 186
Extending the DistributedException class 189
Implementing the
DistributedExceptionEnabled interface . . 190
Using distributed exceptions 195

The command package 196
Overview 197
Writing command interfaces 200
Implementing command interfaces . . . 203
Using a command. 211
Writing a command target (server) . . . 213
Targets and target policies 215
Writing a command target (client-side
adapter) 220

Appendix A. Example code provided with
WebSphere Application Server 225
Information about the examples described in
the documentation 225
Information about other examples in the EJB
server (AE) environment 226

Information about other examples in the EJB
server (CB) environment 227

Appendix B. Using XML in enterprise
beans 229
Creating the standard header and EJB JAR
tags 229
Creating the input file and output file tags 230
Creating the entity bean tags 230
Creating the session bean tags 231
Creating tags used by all enterprise beans 232

Appendix C. Extensions to the EJB
Specification 235
Access beans 235
Associations between enterprise beans . . . 236
Inheritance in enterprise beans 236

Notices 237
Trademarks and service marks 239

Index 243

Contents v

vi WebSphere: Writing Enterprise Beans in WebSphere

Figures

1. The components of the EJB environment 1
2. Example of a distributed transaction 9
3. The components of an entity bean 16
4. The components of a session bean 18
5. The major components of a deployed

entity bean 21
6. Conceptual view of EJB applications 22
7. Code example:

AccountBeanFinderHelper interface for
the EJB server (AE) 33

8. The initial window of jetace tool 34
9. The Basic page of the jetace tool . . . 37

10. The Entity page of the jetace tool 39
11. The Session page of the jetace tool 40
12. The Transactions page of the jetace tool 42
13. The Security page of the jetace tool 43
14. The Environment page of the jetace tool 45
15. The Dependencies page of the jetace tool 46
16. Code example: Generated

AccountFinderHelper class for the EJB
server (CB) 55

17. Code example: Completed
AccountFinderHelper class for the EJB
server (CB) 55

18. Code example: The AccountBean class 91
19. Code example: The variables of the

AccountBean class 92
20. Code example: The business methods of

the AccountBean class 94
21. Code example: The ejbCreate and

ejbPostCreate methods of the
AccountBean class 96

22. Code example: Implementing the
EntityBean interface in the AccountBean
class 98

23. Code example: The AccountHome home
interface 99

24. Code example: The findLargeAccounts
method 100

25. Code example: The Account remote
interface 102

26. Code example: The AccountKey
primary key class 103

27. Code example: The TransferBean class 106

28. Code example: The business methods
of the TransferBean class 108

29. Code example: Creating the
InitialContext object in the ejbCreate
method of the TransferBean class . . . 110

30. Code example: The getProviderURL
method 111

31. Code example: Creating the
AccountHome object in the ejbCreate
method of the TransferBean class . . . 112

32. Code example: Implementing the
SessionBean interface in the
TransferBean class 113

33. Code example: The TransferHome
home interface 114

34. Code example: The Transfer remote
interface 116

35. Code example: Fragment of the
manifest file for the Account EJB JAR
file 120

36. Code example: The import statements
for the Java application
TransferApplication 131

37. Code example: Creating the
InitialContext object 134

38. Code example: Creating the EJBHome
object 135

39. Code example: Narrowing the home
object in WebSphere Application Server
2.x 136

40. Code example: Narrowing the home
object in WebSphere Application Server
3.x 136

41. Code example: Creating the EJB object 137
42. Code example: Refreshing the EJB

object reference for a session bean . . 138
43. Code example: Removing a session EJB

object 139
44. Code example: Managing transactions

in an EJB client 141
45. Code example: Initializing the ORB (if

using access beans) 143
46. Code example: Creating the

InitialContext object (if not using access
beans) 144

© Copyright IBM Corp. 1999, 2000 vii

47. Code example: Creating and using the
sessionCurrent object 144

48. Code example: Content of the
create.html file used to access the
CreateAccount servlet 146

49. The initial form and output of the
CreateAccount servlet 147

50. Code example: The CreateAccount
class 148

51. Code example: The instance variables
of the CreateAccount class 149

52. Code example: The init method of the
CreateAccount servlet 150

53. Code example: The doGet method of
the CreateAccount servlet 152

54. Code example: Creating an enterprise
bean in the doGet method 153

55. Code example: Determining a user
response in the doGet method. . . . 154

56. Code example: Responding to the user
in the doGet method 155

57. Code example: The AccountBMBean
class 159

58. Code example: The instance variables
of the AccountBMBean class 160

59. Code example: The ejbCreate methods
of the AccountBMBean class 163

60. Code example: The
ejbFindByPrimaryKey method of the
AccountBMBean class 165

61. Code example: The
ejbFindLargeAccounts method of the
AccountBMBean class 166

62. Code example: The AccountBMHome
home interface 169

63. Code example: The AccountBM remote
interface 172

64. Code example: Loading and registering
a JDBC driver in the setEntityContext
method 175

65. Code example: The checkConnection
and makeConnection methods of the
AccountBMBean class 176

66. Code example: The dropConnection
method of the AccountBMBean class . 176

67. Code example: Getting an EJB object
reference to a data source bean instance
in the setEntityContext method
(rewritten to use DataSource) 178

68. Code example: The checkConnection
and makeConnection methods of the
AccountBMBean class (rewritten to use
DataSource) 179

69. Code example: The dropConnection
method of the AccountBMBean class
(rewritten to use DataSource) 179

70. Code example: Constructing and
executing an SQL update call in an
ejbCreate method 180

71. Code example: Manipulating a
ResultSet object in the ejbLoad method . 181

72. Code example: Getting an object that
encapsulates a transaction context . . 183

73. Code example: Constructors for the
DistributedException class 187

74. Code example: Constructors in an
exception class that extends the
DistributedException class 190

75. Code example: The structure of an
exception class that implements the
DistributedExceptionEnabled interface . 191

76. Code example: Constructors for an
exception class that implements the
DistributedExceptionEnabled interface . 192

77. Code example: Implementations of the
methods in the
DistributedExceptionEnabled interface . 194

78. Code example: Testing for an exception
that implements the
DistributedExceptionEnabled interface . 195

79. Code example: Adding an exception to
a chain 195

80. Code example: Extracting exceptions
from a chain. 196

81. Code example: The structure of an
interface for a targetable command . . 198

82. Code example: The structure of an
interface for a targetable, compensable
command 198

83. Code example: The structure of an
implementation class for a command
interface 199

84. Code example: The structure of a
command-target entity bean 200

85. Code example: The
ModifyCheckingAccountCmd interface . 202

86. Code example: The structure of the
ModifyCheckingAccountCmdImpl class 203

viii WebSphere: Writing Enterprise Beans in WebSphere

87. Code example: The variables in the
ModifyCheckingAccountCmdImpl class 204

88. Code example: Constructors in the
ModifyCheckingAccountCmdImpl class 205

89. Code example: Command-specific
methods in the
ModifyCheckingAccountCmdImpl class 206

90. Code example: Methods from the
Command interface in the
ModifyCheckingAccountCmdImpl class 207

91. Code example: Methods from the
TargetableCommand interface in the
ModifyCheckingAccountCmdImpl class 208

92. Code example: Method from the
CompensableCommand interface in the
ModifyCheckingAccountCmdImpl class 209

93. Code example: Variables and
constructor in the
ModifyCheckingAccountCompensatorCmd
class 210

94. Code example: Methods in
ModifyCheckingAccountCompensatorCmd
class 211

95. Code example: Using the
ModifyCheckingAccountCmd
command 212

96. Code example: Using the
ModifyCheckingAccountCompensator
command 213

97. Code example: The remote interface for
the CheckingAccount entity bean, also
a command target 214

98. Code example: The bean class for the
CheckingAccount entity bean, also a
command target 215

99. Code example: The TargetPolicyDefault
class 216

100. Code example: Identifying a target
with CommandTarget 217

101. Code example: Identifying a target
with CommandTargetName 218

102. Code example: Mapping a command to
a target in an external application . . 218

103. Code example: Creating a custom
target policy 219

104. Code example: Using a custom target
policy 220

105. Code example: The structure of a
client-side adapter for a target 221

106. Code example: Instantiating the
client-side adapter 221

107. Code example: A client-side
implementation of the
executeCommand method 223

108. Code example: Running the command
in the servlet 224

109. Code example: The standard header
and EJB JAR tags 230

110. Code example: The input file and
output file tags 230

111. Code example: The entity bean-specific
tags 231

112. Code example: The session
bean-specific tags 232

113. Code example: The tags used for all
enterprise beans 233

114. Code example: Method-specific tags 234

Figures ix

x WebSphere: Writing Enterprise Beans in WebSphere

Tables

1. Conventions used in this book xv
2. Effect of the enterprise bean’s

transaction attribute on the transaction
context 124

3. Examples available with the EJB server
(AE) 226

4. Examples available with the EJB server
(CB) 227

© Copyright IBM Corp. 1999, 2000 xi

xii WebSphere: Writing Enterprise Beans in WebSphere

About this book

This document focuses on the development of enterprise beans written to the
Sun MicroSystems Enterprise JavaBeans™ Specification in the WebSphere
Application Server programming environment. It also discusses development
of EJB clients that can access enterprise beans.

Who should read this book

This document is written for developers and system architects who want an
introduction to programming enterprise beans and EJB clients in WebSphere
Application Server. It is assumed that programmers are familiar with the
concepts of object-oriented programming, distributed programming, and
Web-based programming. Knowledge of the Sun Microsystems Java®

programming language is also assumed.

Document organization

This document is organized as follows:
v “Chapter 1. An architectural overview of the EJB programming

environment” on page 1 provides a high-level introduction to the EJB server
environment in WebSphere Application Server.

v “Chapter 2. An introduction to enterprise beans” on page 15 explains the
main concepts associated with enterprise beans.

v “Chapter 3. Tools for developing and deploying enterprise beans in the EJB
server (AE) environment” on page 29 explains how to set up and use the
tools contained in the EJB server (AE) environment. It also discusses the
major steps in developing and deploying enterprise beans in that
environment. The EJB server (AE) is the EJB server implementation
available with the WebSphere Application Server Advanced Edition.

v “Chapter 4. Tools for developing and deploying enterprise beans in the EJB
server (CB) environment” on page 49 explains how to set up and use the
tools contained in the EJB server (CB) environment. It also discusses the
major steps in developing and deploying enterprise beans in that
environment. The EJB server (CB) is the EJB server implementation
available with Component Broker as part of the WebSphere Application
Server Enterprise Edition.

v “Chapter 5. Developing enterprise beans” on page 89 explains how to
develop entity beans with container-managed persistence (CMP) and
session beans. It also provides information on how to package enterprise
beans for later deployment.

© Copyright IBM Corp. 1999, 2000 xiii

v “Chapter 6. Enabling transactions and security in enterprise beans” on
page 121 explains how to enable transactions in enterprise beans by using
the appropriate deployment descriptor attributes.

v “Chapter 7. Developing EJB clients” on page 129 explains the basic code
required by an EJB client to use an enterprise bean. This chapter covers
generic issues relevant to enterprise beans, Java applications, and Java
servlets that use enterprise beans.

v “Chapter 8. Developing servlets that use enterprise beans” on page 145
discusses the basic code required in a servlet that accesses an enterprise
bean.

v “Chapter 9. More-advanced programming concepts for enterprise beans” on
page 157 explains how to develop a simple entity bean with bean-managed
persistence and discusses the basic code required of an enterprise bean that
manages its own transactions.

v “Appendix A. Example code provided with WebSphere Application Server”
on page 225 describes the major example used throughout this book and
the additional examples that are delivered with the various editions of
WebSphere Application Server.

v “Appendix B. Using XML in enterprise beans” on page 229 describes the
extensible markup language (XML) that can be used to create deployment
descriptors for use with enterprise beans in WebSphere.

v “Appendix C. Extensions to the EJB Specification” on page 235 describes the
extensions to the EJB Specification that are specific to WebSphere
Application Server. Use of these extensions is supported in VisualAge for
Java only.

Related information

For further information on the topics discussed in this manual, see the
following documents:
v Building Business Solutions with WebSphere

v Component Broker Problem Determination Guide

v Component Broker System Administration Guide

v Getting Started with TXSeries

v Getting Started with Advanced Edition

v Getting Started with Component Broker

v Component Broker Release Notes

Conventions used in this book

This document uses the following typographical and keying conventions.

xiv WebSphere: Writing Enterprise Beans in WebSphere

Table 1. Conventions used in this book

Convention Meaning

Bold Indicates command names. When referring to graphical user interfaces
(GUIs), bold also indicates menus, menu items, labels, and buttons.

Monospace Indicates text you must enter at a command prompt and values you must
use literally, such as commands, functions, and resource definition attributes
and their values. Monospace also indicates screen text and code examples.

Italics Indicates variable values you must provide (for example, you supply the
name of a file for fileName). Italics also indicates emphasis and the titles of
books.

Ctrl-x Where x is the name of a key, indicates a control-character sequence. For
example, Ctrl-c means hold down the Ctrl key while you press the c key.

Return Refers to the key labeled with the word Return, the word Enter, or the left
arrow.

% Represents the UNIX command-shell prompt for a command that does not
require root privileges.

Represents the UNIX command-shell prompt for a command that requires
root privileges.

C:\> Represents the Windows NT
®

command prompt.

> When used to describe a menu, shows a series of menu selections. For
example, “Click File > New” means “From the File menu, click the New
command.”

When used to describe a tree view, shows a series of folder or object
expansions. For example, “Expand Management Zones > Sample Cell and
Work Group Zone > Configuration” means:

1. Expand the Management Zones folder

2. Expand the management zone named Sample Cell and Work Group Zone

3. Expand the Configurations folder

Note: An object in a view can be expanded when there is a plus sign (+)
beside that object. After an object is expanded, the plus sign is replaced by a
minus sign (-).

+ Expands a tree structure to show more objects. To expand, click the plus sign
(+) beside any object.

- Collapses a branch of a tree structure to remove from view the objects
contained in that branch. To collapse the branch of a tree structure, click the
minus sign (-) beside the object at the head of the branch.

Entering commands When instructed to “enter” or “issue” a command, type the command and
then press Return. For example, the instruction “Enter the ls command”
means type ls at a command prompt and then press Return.

[] Enclose optional items in syntax descriptions.

{ } Enclose lists from which you must choose an item in syntax descriptions.

About this book xv

Table 1. Conventions used in this book (continued)

Convention Meaning

| Separates items in a list of choices enclosed in braces ({ }) in syntax
descriptions.

... Ellipses in syntax descriptions indicate that you can repeat the preceding
item one or more times. Ellipses in examples indicate that information was
omitted from the example for the sake of brevity.

IN In function descriptions, indicates parameters whose values are used to pass
data to the function. These parameters are not used to return modified data
to the calling routine. (Do not include the IN declaration in your code.)

OUT In function descriptions, indicates parameters whose values are used to
return modified data to the calling routine. These parameters are not used to
pass data to the function. (Do not include the OUT declaration in your code.)

INOUT In function descriptions, indicates parameters whose values are passed to the
function, modified by the function, and returned to the calling routine. These
parameters serve as both IN and OUT parameters. (Do not include the
INOUT declaration in your code.)

$CICS Indicates the full pathname where the CICS product is installed; for example,
C:\opt\cics on Windows NT or /opt/cics on Solaris. If the environment
variable named CICS is set to the product pathname, you can use the
examples exactly as shown; otherwise, you must replace all instances of
$CICS with the CICS product pathname.

CICS on Open Systems Refers collectively to the CICS products for all supported UNIX platforms.

TXSeries CICS Refers collectively to the CICS for AIX, CICS for Solaris, and CICS for
Windows NT products.

CICS Refers generically to the CICS on Open Systems and CICS for Windows NT
products. References to a specific version of a CICS on Open Systems
product are used to highlight differences between CICS on Open Systems
products. Other CICS products in the CICS Family are distinguished by their
operating system (for example, CICS for OS/2 or IBM mainframe-based CICS
for the ESA, MVS, and VSE platforms).

How to send your comments

Your feedback is important in helping to provide the most accurate and
highest quality information. If you have any comments about this book, send
your comments by e-mail to waseedoc@us.ibm.com. Be sure to include the
name of the book, the document number of the book, the edition and version
of WebSphere Application Server, and, if applicable, the specific location of
the information you are commenting on (for example, a page number or table
number).

xvi WebSphere: Writing Enterprise Beans in WebSphere

Chapter 1. An architectural overview of the EJB
programming environment

In the past few years, the World Wide Web (the Web) has transformed the
way in which businesses work with their customers. At first, it was good
enough just to have a Web home page. Then, businesses began to deploy
active Web sites that allowed customers to order products and services. Today,
businesses not only need to use the Web in all of these ways, they need to
integrate their Web-based systems with their other business systems. The IBM
WebSphere Application Server, and specifically the support for enterprise
beans, provides the model and the tools to accomplish this integration.

Components of the EJB environment

IBM’s implementation of the Sun Microsystems Enterprise JavaBeans™ (EJB)
Specification enables users of the WebSphere Application Server Advanced
Edition and WebSphere Application Server Enterprise Edition to integrate
their Web-based systems with their other business systems. A major part of
this implementation is the WebSphere EJB server and its associated
components, which are illustrated in Figure 1.

Figure 1. The components of the EJB environment

© Copyright IBM Corp. 1999, 2000 1

The WebSphere EJB server environment contains the following components,
which are discussed in more detail in the specified sections:
v EJB server—A WebSphere EJB server contains and runs one or more

enterprise beans, which encapsulate the business logic and data used and
shared by EJB clients. The enterprise beans installed in an EJB server do not
communicate directly with the server; instead, an EJB container provides an
interface between the enterprise beans and the EJB server, providing many
low-level services such as threading, support for transactions, and
management of data storage and retrieval. For more information, see “The
EJB server”.

v Data source—There are two types of enterprise beans: session beans, which
encapsulate short-lived, client-specific tasks and objects, and entity beans,
which encapsulate permanent or persistent data. The EJB server stores and
retrieves this persistent data in a data source, which can be a database,
another application, or even a file. For more information, see “The data
source” on page 10.

v EJB clients—There are two general types of EJB clients:
– HTTP-based clients that interact with the EJB server by using either Java

servlets or JavaServer Pages (JSP) by way of the Hypertext Transfer
Protocol (HTTP).

– Java applications that interact directly with the EJB server by using Java
remote method invocation over the Internet Inter-ORB Protocol
(RMI/IIOP).

For more information, see “The EJB clients” on page 11.
v The administration interface—The administrative interface allows you to

manage the EJB server environment. For more information, see “The
administration interface” on page 13.

The EJB server

The EJB server is the application server tier of WebSphere Application Server’s
three-tier architecture, connecting the client tier (Java servlets, applets,
applications, and JSP) with the resource management tier (the data source).
The WebSphere Application Server contains two types of EJB servers. If you
have the Advanced Application Server, you get only one of these EJB servers;
if you have the Enterprise Application Server, you get both. When referring
generically to EJB servers, this documentation uses the phrase EJB server;
when the documentation needs to refer specifically to one or the other, it uses
the following terms:
v EJB server (AE)—The EJB server that comes with the Advanced Application

Server. (Because Advanced Application Server is available as a part of
Enterprise Application Server, this EJB server is also available with
Enterprise Application Server.)

2 WebSphere: Writing Enterprise Beans in WebSphere

v EJB server (CB)—The EJB server that comes only with the Enterprise
Application Server and is part of Component Broker (CB).

The EJB server has three components: the EJB server runtime, the EJB
containers, and the enterprise beans. EJB containers insulate the enterprise
beans from the underlying EJB server and provide a standard application
programming interface (API) between the beans and the container. The EJB
Specification defines this API.

The EJB server (CB) includes two standard types of containers: entity
containers and session containers. As their names imply, these containers are
specifically optimized to handle entity beans and session beans, respectively.
The EJB server (AE) has one standard container that supports both entity and
session beans.

Together, the EJB server and container components provide or give access to
the following services for the enterprise beans that are deployed into it:
v A tool that deploys enterprise beans. When a bean is deployed, the

deployment tool creates several classes that implement the interfaces that
make up the predeployed bean. In addition, the deployment tool generates
Java ORB, stub, and skeleton classes that enable remote method invocation.
For entity beans, the tool also generates persistor and finder classes to
handle interaction between the bean and the data source that stores the
bean’s persistent data. Before an enterprise bean can be deployed, the
developer must create a deployment descriptor that defines properties
associated with the bean; the deployment descriptor and the other
enterprise bean components are packaged in a file known as an EJB JAR
file. For more information on deployment, see “Deploying an enterprise
bean” on page 21.

v A security service that handles authentication and authorization for
principals that need to access resources in an EJB server environment. For
more information, see “The security service” on page 4.

v A workload management service that ensures that resources are used
efficiently. For more information, see “The workload management service”
on page 6.

v A persistence service that handles interaction between an entity bean and
its data source to ensure that persistent data is properly managed. For more
information, see “The persistence service” on page 6.

v A naming service that exports a bean’s name, as defined in the deployment
descriptor, into the name space. The EJB server uses the Java Naming and
Directory Interface (JNDI) to implement a naming service. For more
information, see “The naming service” on page 7.

v A transaction service that implements the transactional attributes in a bean’s
deployment descriptor. For more information, see “The transaction service”
on page 7.

Chapter 1. An architectural overview of the EJB programming environment 3

The security service
When enterprise computing was handled solely by a few powerful
mainframes located at a centralized site, ensuring that only authorized users
obtained access to computing services and information was a fairly
straightforward task. In distributed computing systems where users,
application servers, and resource managers can be spread out across the
world, securing computing resources has become a much more complicated
task. Nevertheless, the underlying issues are basically the same.

Authentication and authorization
A good security service provides two main functions: authentication and
authorization.

Authentication takes place when a principal (a user or a computer process)
initially attempts to gain access to a computing resource. At that point, the
security service challenges the principal to prove that the principal is who it
claims to be. Human users typically prove who they are by entering a user ID
and password; a process normally presents an encrypted key. If the password
or key is valid, the security service gives the user a token or ticket that
identifies the principal and indicates that the principal has been authenticated.

After a principal is authenticated, it can then attempt to use any of the
resources within the boundaries of the computing system protected by the
security service; however, a principal can use a particular computing resource
only if it has been authorized to do so. Authorization takes place when an
authenticated principal requests the use of a resource and the security service
determines if the user has been granted permission to use that resource.
Typically, authorization is handled by associating access control lists (ACLs)
with resources that define which principal (or groups of principals) are
authorized to use the resource. If the principal is authorized, it gains access to
the resource.

In a distributed computing environment, principals and resources must be
mutually suspicious of each other’s identity until both have proven that they
are who they say they are. This is necessary because principals can attempt to
falsify an identity to get access to a resource, and a resource can be a trojan
horse, attempting to get valuable information from the principal. To solve this
problem, the security service contains a security server that acts as a trusted
third party, authenticating principals and resources so that these entities can
prove their identities to each other. This security protocol is known as mutual
authentication.

Using the security server in the EJB server environment
There are some similarities between the security service in the two EJB server
environments. In both EJB server environments, the security service does not
use the access control and run-as identity security attributes defined in the

4 WebSphere: Writing Enterprise Beans in WebSphere

deployment descriptor. However, it does use the run-as mode attribute as the
basis for mapping a user identity to a user security context. For more
information on this attribute, see “The deployment descriptor” on page 19.

The major differences between the two security services are discussed in the
following sections.

Security in the EJB server (AE) environment: In the EJB server (AE)
environment, the main component of the security service is an EJB server that
contains security enterprise beans. When system administrators administer the
security service, they manipulate the security beans in the security EJB server.

Once an EJB client is authenticated, it can attempt to invoke methods on the
enterprise beans that it manipulates. A method is successfully invoked if the
principal associated with the method invocation has the required permissions
to invoke the method. These permissions can be set at the application level
(an administrator-defined set of Web and object resources) and at the method
group level (an administrator-defined set of Java interface/method pairs). An
application can contain multiple method groups.

In general, the principal under which a method is invoked is associated with
that invocation across multiple Web servers and EJB servers (this association is
known as delegation). Delegating the method invocations in this way ensures
that the user of an EJB client needs to authenticate only once. HTTP cookies
are used to propagate a user’s authentication information across multiple Web
servers. These cookies have a lifetime equal to the life of the browser session,
and a logout method is provided to destroy these cookies when the user is
finished.

For information on administering security in the EJB server (AE) environment,
see the online help available with the WebSphere Administrative Console.

Security in the EJB server (CB) environment: In the EJB server (CB)
environment, you must secure all the Component Broker name servers and
applications servers in the network. Securing the name server on each server
host prevents unauthorized access to the system objects (including name
contexts used in the Component Broker namespace) in that server. Securing an
application server prevents unauthorized access to the business objects for
applications in that server.

To secure your name servers and application servers, you must do the
following:
v Install and configure the Distributed Computing Environment (DCE) to

provide authentication services to the servers. This allows secure access
between servers.

Chapter 1. An architectural overview of the EJB programming environment 5

v Configure key rings for clients and servers to provide authentication
services to Java-based SSL clients.

v Configure authorization for access to business objects in the application
service.

v Create a delegation policy to allow the application server to pass the
requesting client principal to other servers.

v Configure credential mapping to provide access to any third tier system.
v Configure the qualities of protection to be used to protect messages that

flow between clients and the application server.

The Component Broker System Administration Guide provides more detail
about each of these tasks.

The workload management service
The workload management service improves the scalability of the EJB server
environment by grouping multiple EJB servers into server groups. Clients then
access these server groups as if they are a single EJB server, and the workload
management service ensures that the workload is evenly distributed across
the EJB servers in the server groups. An EJB server can belong to only one
server group.

The creation of server groups is an administrative task that is handled from
within the WebSphere Administrative Console for the EJB server (AE)
environment and from within the Systems Management End User Interface
for the EJB server (CB) environment. For more information on workload
management, consult the online help for the appropriate administrative
interface.

The persistence service
There are two types of enterprise beans: session beans and entity beans.
Session beans encapsulate temporary data associated with a particular client.
Entity beans encapsulate permanent data that is stored in a data source. For
more information, see “Chapter 2. An introduction to enterprise beans” on
page 15.

The persistence service ensures that the data associated with entity beans is
properly synchronized with their corresponding data in the data source. To
accomplish this task, the persistence service works with the transaction service
to insert, update, extract, and remove data from the data source at the
appropriate times.

There are two types of entity beans: those with container-managed persistence
(CMP) and those with bean-managed persistence (BMP). In entity beans with
CMP, the persistence service handles nearly all of the tasks required to
manage persistent data. In entity beans with BMP, the bean itself handles
most of the tasks required to manage persistent data.

6 WebSphere: Writing Enterprise Beans in WebSphere

In the EJB server (AE) environment, the persistence service uses the following
components to accomplish its task:
v The Java Database Connectivity (JDBC™) API, which gives entity beans a

common interface to relational databases.
v Java transaction support, which is discussed in “Using transactions in the

EJB server environment” on page 10. The EJB server ensures that persistent
data is always handled within the appropriate transactional context.

In the EJB server (CB) environment, the persistence service uses the following
components to accomplish its task:
v The X/Open XA interface, which gives entity beans a standard interface to

relational databases.
v The Object Management Group’s (OMG) Object Transaction Service (OTS),

which is also discussed in “Using transactions in the EJB server
environment” on page 10.

The naming service
In an object-oriented distributed computing environment, clients must have a
mechanism to locate and identify objects so that the clients, objects, and
resources appear to be on the same machine. A naming service provides this
mechanism. In the EJB server environment, JNDI is used to mask the actual
naming service and provide a common interface to the naming service.

JNDI provides naming and directory functionality to Java applications, but the
API is independent of any specific implementation of a naming and directory
service. This implementation independence ensures that different naming and
directory services can be used by accessing them by way of the JNDI API.
Therefore, Java applications can use many existing naming and directory
services such as the Lightweight Directory Access Protocol (LDAP), the
Domain Name Service (DNS), or the DCE Cell Directory Service (CDS).

JNDI was designed for Java applications by using Java’s object model. Using
JNDI, Java applications can store and retrieve named objects of any Java
object type. JNDI also provides methods for executing standard directory
operations, such as associating attributes with objects and searching for objects
by using their attributes.

In the EJB server environment, the deployment descriptor is used to specify
the JNDI name for an enterprise bean. When an EJB server is started, it
registers these names with JNDI.

The transaction service
A transaction is a set of operations that transforms data from one consistent
state to another. This set of operations is an indivisible unit of work, and in

Chapter 1. An architectural overview of the EJB programming environment 7

some contexts, a transaction is referred to as a logical unit of work (LUW). A
transaction is a tool for distributed systems programming that simplifies
failure scenarios.

Transactions provide the ACID properties:
v Atomicity: A transaction’s changes are atomic: either all operations that are

part of the transaction happen or none happen.
v Consistency: A transaction moves data between consistent states.
v Isolation: Even though transactions can run (or be executed) concurrently, no

transaction sees another’s work in progress. The transactions appear to run
serially.

v Durability: After a transaction completes successfully, its changes survive
subsequent failures.

As an example, consider a transaction that transfers money from one account
to another. Such a transfer involves money being deducted from one account
and deposited in the other. Withdrawing the money from one account and
depositing it in the other account are two parts of an atomic transaction: if
both cannot be completed, neither must happen. If multiple requests are
processed against an account at the same time, they must be isolated so that
only a single transaction can affect the account at one time. If the bank’s
central computer fails just after the transfer, the correct balance must still be
shown when the system becomes available again: the change must be durable.
Note that consistency is a function of the application; if money is to be
transferred from one account to another, the application must subtract the
same amount of money from one account that it adds to the other account.

Transactions can be completed in one of two ways: they can commit or roll
back. A successful transaction is said to commit. An unsuccessful transaction is
said to roll back. Any data modifications made by a rolled back transaction
must be completely undone. In the money-transfer example, if money is
withdrawn from one account but a failure prevents the money from being
deposited in the other account, any changes made to the first account must be
completely undone. The next time any source queries the account balance, the
correct balance must be shown.

Distributed transactions and the two-phase commit process
A distributed transaction is one that runs in multiple processes, often on several
machines. Each process participates in the transaction. This is illustrated in
Figure 2 on page 9, where each oval indicates work being done on a different
machine, and each arrow indicates a remote method invocation (RMI).

8 WebSphere: Writing Enterprise Beans in WebSphere

Distributed transactions, like local transactions, must adhere to the ACID
properties. However, maintaining these properties is greatly complicated for
distributed transactions because a failure can occur in any process, and in the
event of such a failure, each process must undo any work already done on
behalf of the transaction.

A distributed transaction processing system maintains the ACID properties in
distributed transactions by using two features:
v Recoverable processes: Recoverable processes are those that can restore earlier

states if a failure occurs.
v A commit protocol: A commit protocol enables multiple processes to

coordinate the committing or rolling back (aborting) of a transaction. The
most common commit protocol, and the one used by the EJB server, is the
two-phase commit protocol.

Transaction state information must be stored by all recoverable processes.
However, only processes that manage application data (such as resource
managers) must store descriptions of changes to data. Not all processes
involved in a distributed transaction need to be recoverable. In general, clients
are not recoverable because they do not interact directly with a resource
manager. Processes that are not recoverable are referred to as ephemeral
processes.

The two-phase commit protocol, as the name implies, involves two phases: a
prepare phase and a resolution phase. In each transaction, one process acts as
the coordinator. The coordinator oversees the activities of the other participants
in the transaction to ensure a consistent outcome.

In the prepare phase, the coordinator sends a message to each process in the
transaction, asking each process to prepare to commit. When a process
prepares, it guarantees that it can commit the transaction and makes a
permanent record of its work. After guaranteeing that it can commit, it can no

Figure 2. Example of a distributed transaction

Chapter 1. An architectural overview of the EJB programming environment 9

longer unilaterally decide to roll back the transaction. If a process cannot
prepare (that is, if it cannot guarantee that it can commit the transaction), it
must roll back the transaction.

In the resolution phase, the coordinator tallies the responses. If all participants
are prepared to commit, the transaction commits; otherwise, the transaction is
rolled back. In either case, the coordinator informs all participants of the
result. In the case of a commit, the participants acknowledge that they have
committed.

Using transactions in the EJB server environment
The enterprise bean transaction model corresponds in most respects to the
OMG OTS version 1.1. An enterprise bean instance that is transaction enabled
corresponds to an object of the OTS TransactionalObject interface. However,
the enterprise bean transaction model does not support transaction nesting.

In the EJB server environment, transactions are handled by three main
components of the transaction service:
v A transaction manager interface that enables the EJB server to control

transaction boundaries within its enterprise beans based on the
transactional attributes specified for the beans.

v An interface (UserTransaction) that allows an enterprise bean or an EJB
client to manage transactions. The container makes this interface available
to enterprise beans and EJB clients by way of the name service.

v Coordination by way of the X/Open XA interface that enables a
transactional resource manager (such as a database) to participate in a
transaction controlled by an external transaction manager.

For most purposes, the enterprise bean developers can delegate the tasks
involved in managing a transaction to the container. The developer performs
this delegation by setting the deployment descriptor attributes for
transactions. These attributes and their values are described in “Setting
transactional attributes in the deployment descriptor” on page 121.

In other cases, the enterprise bean developer will want or need to manage the
transactions at the bean level or involve the EJB client in the management of
transactions. For more information on this approach, see “Using
bean-managed transactions” on page 181.

The data source

Entity beans contain persistent data that must be permanently stored in a
recoverable data source. Although the EJB Specification often refers to
databases as the place to store persistent data associated with an entity bean,
it leaves open the possibility of using other data sources, including operating
system files and other applications.

10 WebSphere: Writing Enterprise Beans in WebSphere

If you want to let the container handle the interaction between an entity bean
and a data source, you must use the data sources supported by that container:
v The EJB server (AE) supports DB2®, Oracle, Sybase, and InstantDB.
v The EJB server (CB) supports DB2, Oracle, CICS®, IMS™, and MQSeries®.

If you write the additional code required to handle the interaction between a
BMP entity bean and the data source, you can use any data source that meets
your needs and is compatible with the persistence service. For more
information, see “Developing entity beans with BMP” on page 157.

The EJB clients

An EJB client can take one of the following forms: it can be a Java application,
a Java servlet, a Java applet-servlet combination, or a JSP file. For the EJB
server (CB), a Java applet can be used to directly interact with enterprise
beans. For the EJB server (AE), a Java applet can be used only in combination
with a servlet.

The EJB client code required to access and manipulate enterprise beans is very
similar across the different Java EJB clients. EJB client developers must
consider the following issues:
v Naming and communications—A Java EJB client must use either HTTP or

RMI to communicate with enterprise beans. Fortunately, there is very little
difference in the coding required to enable communications between the
EJB client and the enterprise bean, because JNDI masks the interaction
between the EJB client and the name service.
– Java applications communicate with enterprise beans by using RMI/IIOP.
– Java servlets and JSP files communicate with enterprise beans by using

HTTP. To use servlets with an EJB server, a Web server must be installed
and configured on a machine in the EJB server environment. For more
information, see “The Web server” on page 12.

v Threading—Java clients can be either single-threaded or multithreaded
depending on the tasks that the client needs to perform. Each client thread
that uses a service provided by a session bean must create or find a
separate instance of that bean and maintain a reference to that bean until
the thread completes; multiple client threads can access the same entity
bean.

v Security

– EJB clients that access an EJB server (AE) over HTTP (for example,
servlets and JSP files) encounter the following two layers of security:
1. Universal Resource Locator (URL) security enforced by the

WebSphere Application Server Security Plug-in attached to the Web
server in collaboration with the security service.

Chapter 1. An architectural overview of the EJB programming environment 11

2. Enterprise bean security enforced at the server working with the
security service.

When the user of an HTTP-based EJB client attempts to access an
enterprise bean, the Web server (using the WebSphere Server plug-in)
authenticates the user. This authentication can take the form of a request
for a user ID and password or it can happen transparently in the form of
a certificate exchange followed by the establishment of a Secure Sockets
Layer (SSL) session.

The authentication policy is governed by an additional option: secure
channel constraint. If the secure channel constraint is required, an SSL
session must be established as the final phase of authentication;
otherwise, SSL is optional.

– All EJB clients that access an EJB server (CB) and EJB clients that access
an EJB server (AE) by using RMI (for example, Java applications)
encounter the second security layer only. Like HTTP-based EJB clients,
these EJB clients must authenticate with the security service.
For more information, see “The security service” on page 4.

v Transactions—Both types of Java clients can use the transaction service by
way of the JTA interfaces to manage transactions. The code required for
transaction management is identical in the two types of clients. For general
information on transactions and the Java transaction service, see “The
transaction service” on page 7. For information on managing transactions in
a Java EJB client, see “Managing transactions in an EJB client” on page 139.

In the EJB server (CB) environment, an enterprise bean can also be accessed
by EJB clients that use Microsoft ActiveX™, CORBA-based Java, and to a
limited degree, CORBA-based C++. “More information on EJB clients specific
to the EJB server (CB)” on page 141 provides additional information.

Note: In the EJB server (AE) environment, ActiveX and CORBA-based access
to enterprise beans is not supported.

The Web server

To access the functionality in the EJB server, Java servlets and JSP files must
have access to a Web server. The Web server enables communication between
a Web client and the EJB server. The EJB server, Web server, and Java servlet
can each reside on different machines.

For information on the Web servers supported by the EJB servers, see the
Advanced Application Server Getting Started document.

12 WebSphere: Writing Enterprise Beans in WebSphere

The administration interface

The EJB server (CB) and EJB server (AE) each have their own administration
tools:
v The EJB server (AE) uses the WebSphere Administrative Console. For more

information on this interface, consult the online help available within the
WebSphere Administrative Console.

v The EJB server (CB) uses the System Management End User Interface (SM
EUI). For more information on this interface, see the Component Broker
System Administration Guide.

You can also administer the EJB server (AE) using the wscp command-line
tool. For more information, see the Advanced Edition Information Center.

Chapter 1. An architectural overview of the EJB programming environment 13

14 WebSphere: Writing Enterprise Beans in WebSphere

Chapter 2. An introduction to enterprise beans

This chapter looks at the characteristics and purpose of enterprise beans. It
describes the two basic types of enterprise beans and their life cycles, and it
provides an example of how enterprise beans can be combined to create
distributed, three-tiered applications.

Bean basics

An enterprise bean is a Java component that can be combined with other
enterprise beans and other Java components to create a distributed,
three-tiered application. There are two types of enterprise beans:
v An entity bean encapsulates permanent data, which is stored in a data

source such as a database or a file system, and associated methods to
manipulate that data. In most cases, an entity bean must be accessed in
some transactional manner. Instances of an entity bean are unique and they
can be accessed by multiple users.
For example, the information about a bank account can be encapsulated in
an entity bean. An account entity bean might contain an account ID, an
account type (checking or savings), and a balance variable and methods to
manipulate these variables.

v A session bean encapsulates ephemeral (nonpermanent) data associated with
a particular EJB client. Unlike the data in an entity bean, the data in a
session bean is not stored in a permanent data source, and no harm is
caused if this data is lost. However, a session bean can update data in an
underlying database, usually by accessing an entity bean. A session bean
can also participate in a transaction.
When created, instances of a session bean are identical, though some
session beans can store semipermanent data that makes them unique at
certain points in their life cycle. A session bean is always associated with a
single client; attempts to make concurrent calls result in an exception being
thrown.
For example, the task associated with transferring funds between two bank
accounts can be encapsulated in a session bean. Such a transfer session
bean can find two instances of an account entity bean (by using the account
IDs), and then subtract a specified amount from one account and add the
same amount to the other account.

Entity beans
This section discusses the basics of entity beans.

© Copyright IBM Corp. 1999, 2000 15

Basic components of an entity bean
Every entity bean must have the following components, which are illustrated
in Figure 3:
v Bean class—This class encapsulates the data for the entity bean and contains

the developer-implemented business methods that access the data. It also
contains the methods used by the container to manage the life cycle of an
entity bean instance. EJB clients (whether they are other enterprise beans or
user components such as servlets) never access objects of this class directly;
instead, they use the container-generated classes associated with the home
and remote interfaces to manipulate the entity bean instance.

v Home interface—This interface defines the methods used by the client to
create, find, and remove instances of the entity bean. This interface is
implemented by the container during deployment in a class known
generically as the EJB home class; instances are referred to as EJB home
objects.

v Remote interface—Once the client has used the home interface to gain access
to an entity bean, it uses this interface to invoke indirectly the business
methods implemented in the bean class. This interface is implemented by
the container during deployment in a class known generically as the EJB
object class; instances are referred to as EJB objects.

v Primary key class—This class encapsulates one or more variables that
uniquely identify a specific entity bean instance. It also contains methods to
create primary key objects and manipulate those objects.

Data persistence
Entity beans encapsulate and manipulate persistent (or permanent) business
data. For example, at a bank, entity beans can be used to model customer
profiles, checking and savings accounts, car loans, mortgages, and customer
transaction histories.

Figure 3. The components of an entity bean

16 WebSphere: Writing Enterprise Beans in WebSphere

To ensure that this important data is not lost, the entity bean stores its data in
a data source such as a database. When the data in an enterprise bean
instance is changed, the data in the data source is synchronized with the bean
data. Of course, this synchronization takes place within the context of the
appropriate type of transaction, so that if a router goes down or a server fails,
permanent changes are not lost.

When you design an entity bean, you must decide whether you want the
enterprise bean to handle this data synchronization or whether you want the
container to handle it. An enterprise bean that handles its own data
synchronization is said to implement bean-managed persistence (BMP), while an
enterprise bean whose data synchronization is handled by the container is
said to implement container-managed persistence (CMP).

Unless you have a good reason for implementing BMP, it is recommended
that you design your entity beans to use CMP. You must use entity beans with
BMP if you want to use a data source that is not supported by the EJB server.
The code for an enterprise bean with CMP is easier to write and does not
depend on any particular data storage product, making it more portable
between EJB servers.

Session beans
This section discusses the basics of session beans.

Basic components of a session bean
Every session bean must have the following components, which are illustrated
in Figure 4 on page 18:
v Bean class—This class encapsulates the data associated with the session bean

and contains the developer-implemented business methods that access this
data. It also contains the methods used by the container to manage the life
cycle of an session bean instance. EJB clients (whether they are other
enterprise beans or user applications) never access objects of this class
directly; instead, they use the container-generated classes associated with
the home and remote interfaces to manipulate the session bean.

v Home interface—This interface defines the methods used by the client to
create and remove instances of the session bean. This interface is
implemented by the container during deployment in a class known
generically as the EJB home class; instances are referred to as EJB home object.

v Remote interface—After the client has used the home interface to gain access
to an session bean, it uses this interface to invoke indirectly the business
methods implemented in the bean class. This interface is implemented by
the container during deployment in a class known generically as the EJB
object class; instances are referred to as EJB objects.

Chapter 2. An introduction to enterprise beans 17

Unlike an entity bean, a session bean does not have a primary key class. A
session bean does not require a primary key class because you do not need to
search for specific instances of session beans.

Stateless versus stateful session beans
Session beans encapsulate data and methods associated with a user session,
task, or ephemeral object. By definition, the data in a session bean instance is
ephemeral; if it is lost, no real harm is done. For example, at a bank, a session
bean represents a funds transfer, the creation of a customer profile or new
account, and a withdrawal or deposit. If information about a fund transfer is
already typed (but not yet committed), and a server fails, the balances of the
bank accounts remains the same. Only the transfer data is lost, which can
always be retyped.

The manner in which a session bean is designed determines whether its data
is shorter lived or longer lived:
v If a session bean needs to maintain specific data across methods, it is

referred to as a stateful session bean. When a session bean maintains data
across methods, it is said to have a conversational state. A Web-based
shopping cart is a classic use of a stateful session bean. As the shopping
cart user adds items to and subtracts items from the shopping cart, the
underlying session bean instance must maintain a record of the contents of
the cart. After a particular EJB client begins using an instance of a stateful
session bean, the client must continue to use that instance as long as the
specific state of that instance is required. If the session bean instance is lost
before the contents of the shopping cart are committed to an order, the
shopper must load a new shopping cart.

v If a session bean does not need to maintain specific data across methods, it
is referred to as a stateless session bean. The example Transfer session bean
developed in “Developing session beans” on page 104 provides an example

Figure 4. The components of a session bean

18 WebSphere: Writing Enterprise Beans in WebSphere

of a stateless session bean. For stateless session beans, a client can use any
instance to invoke any of the session bean’s methods because all instances
are the same.

Packaging enterprise beans

The last step in the development of an enterprise bean is the creation of the
deployment descriptor and the EJB JAR file. After the EJB JAR file is created,
the enterprise bean can be deployed into the container of an EJB server.

The deployment descriptor
The deployment descriptor contains attribute and environment settings that
define how the container invokes enterprise bean functionality. Every
enterprise bean (both session and entity) must have a deployment descriptor
that contains settings for the following attributes; these attributes can be set
for the entire enterprise bean or for the individual methods in the bean. The
container uses the definition of the bean-level attribute unless a method-level
attribute is defined, in which case the latter is used.
v JNDI home name attribute—Defines the Java Naming and Directory Interface

(JNDI) home name that is used to locate instances of an EJB home object.
The values for this attribute are described in “Creating and getting a
reference to a bean’s EJB object” on page 131.

v Transaction attribute—Defines the transactional manner in which the
container invokes a method. The values for this attribute are described in
“Chapter 6. Enabling transactions and security in enterprise beans” on
page 121.

v Transaction isolation level attribute—Defines the degree to which transactions
are isolated from each other by the container. The values for this attribute
are described in “Chapter 6. Enabling transactions and security in enterprise
beans” on page 121.

v Access control attribute—Defines an access control entry that identifies users
or roles that are permitted to access the methods in the enterprise bean.
This value is not used by the WebSphere EJB servers.

v RunAsMode and RunAsIdentity attributes—The RunAsMode attribute defines
the identity used to invoke the method. If a specific identity is required, the
RunAsIdentity attribute is used to specify that identity. The RunAsMode
attribute is used by the WebSphere EJB servers; the RunAsIdentity attribute
is not. The values for the RunAsMode attribute are described in “Chapter 6.
Enabling transactions and security in enterprise beans” on page 121.

The deployment descriptor for an entity bean must also contain settings for
the following attributes. These attributes can be set on the bean only; they
cannot be set on a per-method level.

Chapter 2. An introduction to enterprise beans 19

v Primary key class attribute—Identifies the primary key class for the bean. For
more information, see “Writing the primary key class (entity with CMP)” on
page 102 or “Writing or selecting the primary key class (entity with BMP)”
on page 172.

v Container-managed fields attribute—Lists those persistent variables in the
bean class that the container must synchronize with fields in a
corresponding data source to ensure that this data is persistent and
consistent. For more information, see “Defining variables” on page 91.

v Reentrant attribute—Specifies whether an enterprise bean can invoke
methods on itself or call another bean that invokes a method on the calling
bean. Only entity beans can be reentrant. For more information, see “Using
threads and reentrancy in enterprise beans” on page 117.

The deployment descriptor for a session bean must also contain settings for
the following attributes. These attributes can be set on the bean only; they
cannot be set on a per-method level.
v State management attribute—Defines the conversational state of the session

bean. This attribute must be set to either STATEFUL or STATELESS. For
more information on the meaning of these conversational states, see
“Stateless versus stateful session beans” on page 18.

v Timeout attribute—Defines the idle timeout value in seconds associated with
this session bean.

Deployment descriptors can be created by using the tools within an integrated
development environment (IDE) such as IBM VisualAge® for Java Enterprise
Edition or by using the stand-alone tools contained in Websphere Application
Server. For more information, see “Chapter 3. Tools for developing and
deploying enterprise beans in the EJB server (AE) environment” on page 29 or
“Chapter 4. Tools for developing and deploying enterprise beans in the EJB
server (CB) environment” on page 49.

The EJB JAR file
The EJB JAR file is used to package enterprise beans; this file uses the
standard Java archive file format. The EJB JAR file can be used to contain
individual enterprise beans, multiple enterprise beans, and entire enterprise
bean-based applications. For more information, see “Creating an EJB JAR file”
on page 119.

An EJB JAR file can be created by using the tools within an integrated
development environment (IDE) like IBM’s VisualAge for Java or by using the
stand-alone tools contained in Websphere. For more information, see
“Chapter 3. Tools for developing and deploying enterprise beans in the EJB
server (AE) environment” on page 29.

20 WebSphere: Writing Enterprise Beans in WebSphere

Deploying an enterprise bean

When you deploy an enterprise bean, the deployment tool creates or
incorporates the following elements:
v The container-implemented EJBObject and EJBHome classes (hereafter

referred to as the EJB object and EJB home classes) from the enterprise
bean’s home and remote interfaces (and the persistor and finder classes for
entity beans with CMP).

v The stub and skeleton files required for remote method invocation (RMI).

Figure 5 shows a simplified version of a deployed entity bean.

You can deploy an enterprise bean with a variety of different tools. For more
information, see “Chapter 3. Tools for developing and deploying enterprise
beans in the EJB server (AE) environment” on page 29 or “Chapter 4. Tools for
developing and deploying enterprise beans in the EJB server (CB)
environment” on page 49.

Developing EJB applications

To create EJB applications, create the enterprise beans and EJB clients that
encapsulate your business data and functionality and then combine them
appropriately. Figure 6 on page 22 provides a conceptual illustration of how
EJB applications are created by combining one or more session beans, one or
more entity beans, or both. Although individual entity beans and session
beans can be used directly in an EJB client, session beans are designed to be
associated with clients and entity beans are designed to store persistent data,

Figure 5. The major components of a deployed entity bean

Chapter 2. An introduction to enterprise beans 21

so most EJB applications contain session beans that, in turn, access entity
beans.

This section provides an example of the ways in which enterprise beans can
be combined to create EJB applications.

An example: enterprise beans for a bank
If you develop EJB applications for the banking industry, you can develop the
following entity beans to encapsulate your business data and associated
methods:
v Account bean—An entity bean that contains information about customer

checking and savings accounts.
v CarLoan bean—An entity bean that contains information about an

automobile loan.
v Customer bean—An entity bean that contains information about a customer,

including information on accounts held and loans taken out by the
customer.

v CustomerHistory bean—An entity bean that contains a record of customer
transactions for specified accounts.

v Mortgage bean—An entity bean that contains information about a home or
commercial mortgage.

An EJB client can directly access entity beans or session beans; however, the
EJB Specification suggests that EJB clients use session beans to in turn access
entity beans, especially in more complex applications. Therefore, as an EJB
developer for the banking industry, you can create the following session beans
to represent client tasks:

Figure 6. Conceptual view of EJB applications

22 WebSphere: Writing Enterprise Beans in WebSphere

v LoanApprover bean—A session bean that allows a loan to be approved by
using instances of the CarLoan bean, the Mortgage bean, or both.

v CarLoanCreator bean—A session bean that creates a new instance of a
CarLoan bean.

v MortgageCreator bean—A session bean that creates a new instance of a
Mortgage bean.

v Deposit bean—A session bean that credits a specified amount to an existing
instance of an Account bean.

v StatementGenerator bean—A session bean that generates a statement
summarizing the activities associated with a customer’s accounts by using
the appropriate instances of the Customer and CustomerHistory entity
beans.

v Payment bean—A session bean that credits a payment to a customer’s loan
by using instances of the CarLoan bean, the Mortgage bean, or both.

v NewAccount bean—A session bean that creates a new instance of an
Account bean.

v NewCustomer bean—A session bean that creates a new instance of a
Customer bean.

v LoanReviewer bean—A session bean that accesses information about a
customer’s outstanding loans (instances of the CarLoan bean, the Mortgage
bean, or both).

v Transfer bean—A session bean that transfers a specified amount between
two existing instances of an Account bean.

v Withdraw bean—A session bean that debits a specified amount from an
existing instance of an Account bean.

This example is simplified by necessity. Nevertheless, by using this set of
enterprise beans, you can create a variety of EJB applications for different
types of users by combining the appropriate beans within that application.
One or more EJB clients can then be built to access the application.

Using the banking beans to develop EJB banking applications
When using beans built to the Sun Microsystems JavaBeans™ Specification (as
opposed to the EJB Specification), you combine predefined components such
as buttons and text fields to create GUI applications. When using enterprise
beans, you combine predefined components such as the banking beans to
create three-tiered applications.

For example, you can use the banking enterprise beans to create the following
EJB applications:
v Home Banking application—An Internet application that allows a customer

to transfer funds between accounts (with the Transfer bean), to make
payments on a loan by using funds in an existing account (with the

Chapter 2. An introduction to enterprise beans 23

Payment bean), to apply for a car loan or home mortgage (with the
CarLoanCreator bean or the MortgageCreator bean).

v Teller application—An intranet application that allows a teller to create new
customer accounts (with the NewCustomer bean and the NewAccount
bean), transfer funds between accounts (with the Transfer bean), and record
customer deposits and withdrawals (with the Withdraw bean and the
Deposit bean).

v Loan Officer application—An intranet application that allows a loan officer
to create and approve car loans and home mortgages (with the
CarLoanCreator, MortgageCreator, LoanReviewer, and LoanApprover
beans).

v Statement Generator application—A batch application that prints monthly
customer statements related to account activity (with the
StatementGenerator bean).

These examples represent only a subset of the possible EJB applications that
can be created with the banking beans.

Life cycles of enterprise bean instances

After an enterprise bean is deployed into a container, clients can create and
use instances of that bean as required. Within the container, instances of an
enterprise bean go through a defined life cycle. The events in an enterprise
bean’s life cycle are derived from actions initiated by either the EJB client or
the container in the EJB server. You must understand this life cycle because
for some enterprise beans, you must write some of the code to handle the
different events in the enterprise bean’s life cycle.

The methods mentioned in this section are discussed in greater detail in
“Chapter 5. Developing enterprise beans” on page 89.

Session bean life cycle
This section describes the life cycle of a session bean instance. Differences
between stateful and stateless session beans are noted.

Creation state
A session bean’s life cycle begins when a client invokes a create method
defined in the bean’s home interface. In response to this method invocation,
the container does the following:
1. Creates a new memory object for the session bean instance.
2. Invokes the session bean’s setSessionContext method. (This method passes

the session bean instance a reference to a session context interface that can
be used by the instance to obtain container services and get information
about the caller of a client-invoked method.)

24 WebSphere: Writing Enterprise Beans in WebSphere

3. Invokes the session bean’s ejbCreate method corresponding to the create
method called by the EJB client.

Ready state
After a session bean instance is created, it moves to the ready state of its life
cycle. In this state, EJB clients can invoke the bean’s business methods defined
in the remote interface. The actions of the container at this state are
determined by whether a method is invoked transactionally or
nontransactionally:
v Transactional method invocations—When a client invokes a transactional

business method, the session bean instance is associated with a transaction.
After a bean instance is associated with a transaction, it remains associated
until that transaction completes. (Furthermore, an error results if an EJB
client attempts to invoke another method on the same bean instance if
invoking that method causes the container to associate the bean instance
with another transaction or with no transaction.)
The container then invokes the following methods:
1. The afterBegin method, if that method is implemented by the bean class.
2. The business method in the bean class that corresponds to the business

method defined in the bean’s remote interface and called by the EJB
client.

3. The bean instance’s beforeCompletion method, if that method is
implemented by the bean class and if a commit is requested prior to the
container’s attempt to commit the transaction.

The transaction service then attempts to commit the transaction, resulting
either in a commit or a roll back. When the transaction completes, the
container invokes the bean’s afterCompletion method, passing the
completion status of the transaction (either commit or rollback).

If a rollback occurs, a stateful session bean can roll back its conversational
state to the values contained in the bean instance prior to beginning the
transaction. Stateless session beans do not maintain a conversational state,
so they do not need to be concerned about rollbacks.

v Nontransactional method invocations—When a client invokes a
nontransactional business method, the container simply invokes the
corresponding method in the bean class.

Pooled state
The container has a sophisticated algorithm for managing which enterprise
bean instances are retained in memory. When a container determines that a
stateful session bean instance is no longer required in memory, it invokes the
bean instance’s ejbPassivate method and moves the bean instance into a
reserve pool. A stateful session bean instance cannot be passivated when it is
associated with a transaction.

Chapter 2. An introduction to enterprise beans 25

If a client invokes a method on a passivated instance of a stateful session
bean, the container activates the instance by restoring the instance’s state and
then invoking the bean instance’s ejbActivate method. When this method
returns, the bean instance is again in the ready state.

Because every stateless session bean instance of a particular type is the same
as every other instance of that type, stateless session bean instances are not
passivated or activated. These instances exist in a ready state at all times until
their removal.

Removal state
A session bean’s life cycle ends when an EJB client or the container invokes a
remove method defined in the bean’s home interface and remote interface. In
response to this method invocation, the container calls the bean instance’s
ejbRemove method.

If you attempt to remove a bean instance while it is associated with a
transaction, the javax.ejb.RemoveException is thrown. After a bean instance is
removed, any attempt to invoke a method on that instance causes the
java.rmi.NoSuchObjectException to be thrown.

A container can implicitly call a remove method on an instance after the
lifetime of the EJB object has expired. The lifetime of a session EJB object is set
in the deployment descriptor with the timeout attribute.

For more information on the remove methods, see “Removing a bean’s EJB
object” on page 139.

Entity bean life cycle
This section describes the life cycle of entity bean instances. Differences
between entity beans with CMP and BMP are noted.

Creation State
An entity bean instance’s life cycle begins when the container creates that
instance. After creating a new entity bean instance, the container invokes the
instance’s setEntityContext method. This method passes the bean instance a
reference to an entity context interface that can be used by the instance to
obtain container services and get information about the caller of a
client-invoked method.

Pooled State
After an entity bean instance is created, it is placed in a pool of available
instances of the specified entity bean class. While the instance is in this pool,
it is not associated with a specific EJB object. Every instance of the same
enterprise bean class in this pool is identical. While an instance is in this
pooled state, the container can use it to invoke any of the bean’s finder
methods.

26 WebSphere: Writing Enterprise Beans in WebSphere

Ready State
When a client needs to work with a specific entity bean instance, the container
picks an instance from the pool and associates it with the EJB object initialized
by the client. An entity bean instance is moved from the pooled to the ready
state if there are no available instances in the ready state.

There are two events that cause an entity bean instance to be moved from the
pooled state to the ready state:
v When a client invokes the create method in the bean’s home interface to

create a new and unique entity of the entity bean class (and a new record in
the data source). As a result of this method invocation, the container calls
the bean instance’s ejbCreate and ejbPostCreate methods, and the new EJB
object is associated with the bean instance.

v When a client invokes a finder method to manipulate an existing instance
of the entity bean class (associated with an existing record in the data
source). In this case, the container calls the bean instance’s ejbActivate
method to associate the bean instance with the existing EJB object.

When an entity bean instance is in the ready state, the container can invoke
the instance’s ejbLoad and ejbStore methods to synchronize the data in the
instance with the corresponding data in the data source. In addition, the client
can invoke the bean instance’s business methods when the instance is in this
state. All interactions required to handle an entity bean instance’s business
methods in the appropriate transactional (or nontransactional) manner are
handled by the container.

When a container determines that an entity bean instance in the ready state is
no longer required, it moves the instance to the pooled state. This transition to
the pooled state results from either of the following events:
v When the container invokes the ejbPassivate method.
v When the EJB client invokes a remove method on the EJB object or on the

EJB home object. When one of these methods is called, the underlying
entity is removed permanently from the data source.

Removal State
An entity bean instance’s life cycle ends when the container invokes the
unsetEntityContext method on an entity bean instance in the pooled state. Do
not confuse the removal of an entity bean instance with the removal of the
underlying entity whose data is stored in the data source. The former simply
removes an uninitialized object; the latter removes data from the data source.

For more information on the remove methods, see “Removing a bean’s EJB
object” on page 139.

Chapter 2. An introduction to enterprise beans 27

28 WebSphere: Writing Enterprise Beans in WebSphere

Chapter 3. Tools for developing and deploying enterprise
beans in the EJB server (AE) environment

There are two basic approaches to developing and deploying enterprise beans
in the EJB server (AE) environment:
v You can use one of the available integrated development environments

(IDEs) such as IBM VisualAge for Java Enterprise Edition. IDE tools
automatically generate significant parts of the enterprise bean code and
contain integrated tools for packaging and testing enterprise beans. In the
EJB server (AE) environment, use of VisualAge for Java is strongly
recommended. For more information on using VisualAge for Java, see
“Using VisualAge for Java”.

v You can use the tools available in the Java Software Development Kit (SDK)
and the Advanced Application Server. For more information, see
“Developing and deploying enterprise beans with EJB server (AE) tools” on
page 30.

Before beginning development of enterprise beans in the EJB server (AE)
environment, review the list of development restrictions contained in
“Restrictions in the EJB server (AE) environment” on page 47.

Note: Deployment and use of enterprise beans for the EJB server (AE)
environment must take place on the Microsoft Windows NT® operating
system, the IBM AIX™ operating systems, or the Sun Microsystems
Solaris® operating system.

For information on developing enterprise beans in the EJB server (CB)
environment, see “Chapter 4. Tools for developing and deploying enterprise
beans in the EJB server (CB) environment” on page 49.

Using VisualAge for Java

Before you can develop enterprise beans in VisualAge for Java, you must set
up the EJB development environment. You need to perform this setup task
only once. This setup procedure directs VisualAge for Java to import all of the
classes and interfaces required to develop enterprise beans.

To access the enterprise bean development window, click the EJB tab from the
Workbench. All enterprise beans must be part of an EJB group that is
associated with a VisualAge for Java project. You must create a project and an
EJB group before creating an enterprise bean.

© Copyright IBM Corp. 1999, 2000 29

After you have created an EJB group, you can add beans to the EJB group.
This action brings up the SmartGuide for creating enterprise beans. The
SmartGuide prompts you for the information needed to generate all of the
components of an enterprise bean and much of the required code.

After generating an enterprise bean, you complete its development by
following these general steps:
1. Implement the enterprise bean class.
2. Create the required abstract methods in the bean’s home and remote

interfaces by promoting the corresponding methods in the bean class to
the appropriate interface.

3. For entity beans, do the following:
a. Create any additional finder methods in the home interface by using

the appropriate menu items.
b. Create a finder helper class for the EJB server (CB) environment or a

finder helper interface for the EJB server (AE) environment, if required.
4. Define the deployment descriptor for the bean.
5. Package the bean components in an EJB JAR file.
6. Generate the deployment code for the bean.

VisualAge for Java contains a complete WebSphere Application Server runtime
environment and a mechanism to generate a test client to test your enterprise
beans. For much more detailed information on developing enterprise beans in
VisualAge for Java, refer to the VisualAge for Java documentation.

Developing and deploying enterprise beans with EJB server (AE) tools

If you have decided to develop enterprise beans without an IDE, you need at
minimum the following low-level tools:
v An ASCII text editor. (You can use also use a Java development tool that

does not support enterprise bean development.)
v The SDK Java compiler (javac) and Java Archiving tool (jar).
v The WebSphere Application Server jetace tool and the WebSphere

Administrative Console.

This section describes steps you can follow to develop enterprise beans by
using these tools. The following tasks are involved in the development of
enterprise beans:
1. Ensure that you have installed and configured the prerequisite software to

develop, deploy, and run enterprise beans in the EJB server (AE)
environment. For more information, see “Installing and configuring the
software for the EJB server (AE)” on page 31.

30 WebSphere: Writing Enterprise Beans in WebSphere

2. Set the CLASSPATH environment variable required by different
components of the EJB server (AE) environment. For more information, see
“Setting the CLASSPATH environment variable in the EJB server (AE)
environment” on page 32.

3. Write and compile the components of the enterprise bean. For more
information, see “Creating the components of an enterprise bean” on
page 32.

4. (Entity beans with CMP only) Create a finder helper interface for each entity
bean with CMP that contains specialized finder methods (other than the
findByPrimaryKey method). For more information, see “Creating finder
logic in the EJB server (AE)” on page 33.

5. Create a deployment descriptor file and an EJB JAR file for the enterprise
bean by using the jetace tool. For more information, see “Creating a
deployment descriptor and an EJB JAR file” on page 33.

6. (Entity beans only) Create a database schema to enable storage of the entity
bean’s persistent data in a database. For more information, see “Creating a
database for use by entity beans” on page 47.

7. Deploy the enterprise bean by using the WebSphere Administrative
Console. For more information, see the online help available with the
WebSphere Administrative Console.

8. Install the enterprise beans into an EJB server (AE) and start the server by
using the WebSphere Administrative Console. For more information, see
the online help available with the WebSphere Administrative Console.

Installing and configuring the software for the EJB server (AE)
You must ensure that you have installed and configured the following
prerequisite software products before you can begin developing enterprise
beans and EJB clients with the EJB server (AE):
v WebSphere Application Server Advanced Edition
v One or more of the following databases for use by entity beans with

container-managed persistence (CMP):
– DB2
– Oracle
– Sybase
– InstantDB

v The Java Software Development Kit (SDK)

For information on the appropriate version numbers of these products and
instructions for setting up the environment, see the Advanced application
server Getting Started document.

Chapter 3. Tools for developing and deploying enterprise beans in the EJB server (AE) environment 31

Setting the CLASSPATH environment variable in the EJB server (AE)
environment

In addition to the classes.zip file contained in the SDK, the following
WebSphere JAR files must be appended to the CLASSPATH environment
variable for the listed tasks:
v Developing an enterprise bean that does not use another enterprise bean:

– ejs.jar
– ujc.jar
– iioptools.jar

v Developing an enterprise bean that does use another enterprise bean:
– ejs.jar
– ujc.jar
– iioptools.jar
– otherDeployedBean.jar (the deployed JAR file containing the enterprise

bean being used by this enterprise bean)
v Developing an EJB client:

– ejs.jar
– ujc.jar
– iioptools.jar
– servlet.jar (required by EJB clients that are servlets)
– otherDeployedBean.jar (the deployed JAR file containing the enterprise

bean being used by this EJB client)
v Running an EJB client:

– ejs.jar
– ujc.jar
– servlet.jar (required by EJB clients that are servlets)
– otherDeployedBean.jar (the deployed JAR file containing the enterprise

bean being used by this EJB client)

Creating the components of an enterprise bean
If you use an ASCII text editor or a Java development tool that does not
support enterprise bean development, you must create each of the
components that compose the enterprise bean you are creating. You must
ensure that these components match the requirements described in
“Chapter 5. Developing enterprise beans” on page 89.

To manually develop a session bean, you must write the bean class, the bean’s
home interface, and the bean’s remote interface. To manually develop an
entity bean, you must write the bean class, the bean’s primary key class, the
bean’s home interface, the bean’s remote interface, and if necessary, the bean’s
finderHelper interface.

32 WebSphere: Writing Enterprise Beans in WebSphere

After you have properly coded these components, use the Java compiler to
create the corresponding Java class files. For example, since the components of
the example Account bean are stored in a specific directory, the bean
components can be compiled by issuing the following command:
C:\MYBEANS\COM\IBM\EJS\DOC\ACCOUNT> javac *.java

This command assumes that the CLASSPATH environment variable contains
all of the packages used by the Account bean.

Creating finder logic in the EJB server (AE)
For the EJB server (AE) environment, the following finder logic is required for
each finder method (other than the findByPrimaryKey method) contained in
the home interface of an entity bean with CMP:
v The logic must be defined in a public interface named

NameBeanFinderHelper, where Name is the name of the enterprise bean (for
example, AccountBeanFinderHelper).

v The logic must be contained in a String constant named
findMethodNameQueryString, where findMethodName is the name of the
finder method. The String constant can contain zero or more question
marks (?) that are replaced from left to right with the value of the finder
method’s arguments when that method is invoked.

If you define the findLargeAccounts method shown in Figure 24 on page 100,
you must also create the AccountBeanFinderHelper interface shown in
Figure 7.

Creating a deployment descriptor and an EJB JAR file
The WebSphere Application Server jetace tool can be used to create an EJB
JAR file for one or more enterprise beans and generate a deployment
descriptor file for each enterprise bean. The resulting EJB JAR file contains
each enterprise bean’s class files and deployment descriptor and an
EJB-compliant manifest file. The jetace tool is available in both the EJB server
(AE) and the EJB server (CB) environments.

Note: Before using the jetace tool in the EJB server (AE) environment, ensure
that the JAVA_HOME environment variable identifies the path to the

...
public interface AccountBeanFinderHelper{

String findLargeAccountsQueryString =
"select * from ejb.accountbeantbl where balance > ?";

}

Figure 7. Code example: AccountBeanFinderHelper interface for the EJB server (AE)

Chapter 3. Tools for developing and deploying enterprise beans in the EJB server (AE) environment 33

SDK installation directory. For example on Windows NT, if your SDK
installation directory is C:\SDK, set this environment variable as
follows:

C:\> set JAVA_HOME=C:\SDK

Before you create an EJB JAR file for one or more enterprise beans, you must
do one of the following:
v Place all of the components of each enterprise bean into a single directory.
v Create a standard JAR file that contains the class and interface files of each

enterprise bean by using the Java Archiving tool (jar). The following
command, when run from the root directory of the Account bean’s full
package name, can be used to create the file AccountIn.jar with a default
manifest file:
C:\MYBEANS> jar cfv AccountIn.jar com\ibm\ejs\doc\account*.class

v Create a standard ZIP file that contains the class and interface files of each
enterprise bean by using a tool like WinZip®.

Running the jetace tool
To run the jetace tool, type jetace on the command line. The window shown
in Figure 8 is displayed.

Figure 8. The initial window of jetace tool

34 WebSphere: Writing Enterprise Beans in WebSphere

To generate an EJB JAR file with the jetace tool, do the following:
1. Click the File->Load item, and select the JAR or ZIP file or the directory

containing one or more enterprise beans. Use the Browse button to obtain
the file or directory.

Note: To specify the current directory as the input source, type an =
(equals character) in the File Name field of the browser window
and click Open.

If you are creating a new EJB JAR file, click New and a default name for
the deployment descriptor (for example, UNAMED_BEAN_1.ser) appears
in the Current Enterprise Beans list box. (You can edit this name on any
of the remaining tabbed pages of the jetace GUI by editing the Deployed
Name field at the top of each tabbed page. This field is described in
“Specifying the enterprise bean components and JNDI home name” on
page 36.)

If you are editing an existing EJB JAR file, the name of the deployment
descriptor for each enterprise bean in the EJB JAR file is displayed in the
Current Enterprise Beans list box, as shown in Figure 8 on page 34.
v If you do not want to include a listed enterprise bean in the resulting

EJB JAR file, highlight that enterprise bean’s deployment descriptor and
click Delete. This action removes the deployment descriptor from the
list box.

v If you want to create a duplicate of an enterprise bean, highlight its
deployment descriptor and click Copy. This action adds a new default
deployment descriptor to the list box. Copying can be useful if you
want to create a deployment descriptor for one enterprise bean that is
similar to the deployment descriptor of the copied bean. You must then
edit the new deployment descriptor.

2. To create a new deployment descriptor or edit an existing one, highlight
the deployment descriptor and press the Edit button. This action causes
the Basic page to display. On this page, set or confirm the names of the
deployment descriptor file, the enterprise bean class, the home interface,
and the remote interface and specify the JNDI name of the enterprise bean.
For information, see “Specifying the enterprise bean components and JNDI
home name” on page 36.

3. Set the entity bean or session bean attributes for the enterprise bean’s
deployment descriptor on the Entity or Session page, respectively. For
information on setting deployment descriptor attributes for entity beans,
see “Setting the entity bean-specific attributes” on page 38. For information
on setting deployment descriptor attributes for session beans, see “Setting
the session bean-specific attributes” on page 40.

Chapter 3. Tools for developing and deploying enterprise beans in the EJB server (AE) environment 35

4. Set the transaction attributes for the enterprise bean’s deployment
descriptor on the Transactions page. For information, see “Setting
transaction attributes” on page 41.

5. Set the security attributes for the enterprise bean’s deployment descriptor
on the Security page. For information, see “Setting security attributes” on
page 43.

6. Set any environment variables to be associated with the enterprise bean on
the Environment page. For information, see “Setting environment
variables for an enterprise bean” on page 44.

7. Set any class dependencies to be associated with the enterprise bean on
the Dependencies page. For information, see “Setting class dependencies
for an enterprise bean” on page 46.

8. After you have set the appropriate deployment descriptor attributes for
each enterprise bean, click File->Save As to create an EJB JAR file. (If
desired, a ZIP file can be created instead of a JAR file.)

The jetace tool can also be used to read and generate an XML version of an
enterprise bean’s deployment descriptor. To read an XML file, click the
File->Read XML item. To generate an XML file from an existing enterprise
bean (after saving the output EJB JAR file) click the File->Write XML item.

The jetace tool can also be run from the command line to create an EJB JAR
file. The syntax of this command follows, where xmlFile is the name of an
XML file containing the enterprise bean’s deployment descriptor:
% jetace -f xmlFile

Note: In the EJB server (AE) environment, use of the XML feature provided
by the jetace tool is not recommended.

For more information on the syntax of the XML file required for this
command, see “Appendix B. Using XML in enterprise beans” on page 229.

Specifying the enterprise bean components and JNDI home name
The Basic page is used to set the full pathname of the deployment descriptor
file and the Java package name of the enterprise bean class, home interface,
and remote interface and to set the enterprise bean’s JNDI home name. To
access this page, which is shown in Figure 9 on page 37, click the Basic tab.

36 WebSphere: Writing Enterprise Beans in WebSphere

In the Basic page, you must select or confirm values for the following fields:
v Deployed Name—The pathname of the deployment descriptor file to be

created. It is recommended that this directory name match the full package
name of the enterprise bean class. For the Account bean, the full name is
com/ibm/ejs/doc/account/Account.ser.

v Enterprise Bean Class—Specify the full package name of the bean class.
For the Account bean, the full name is
com.ibm.ejs.doc.account.AccountBean.

v Home Interface—Specify the full package name of the bean’s home
interface. For the Account bean, the full name is
com.ibm.ejs.doc.account.AccountHome.

Figure 9. The Basic page of the jetace tool

Chapter 3. Tools for developing and deploying enterprise beans in the EJB server (AE) environment 37

v Remote Interface—Specify the full package name of the bean’s remote
interface. For the Account bean, the full name is
com.ibm.ejs.doc.account.Account.

v JNDI Home Name—Specify the JNDI home name of the bean’s home
interface. This the name under which the enteprise bean’s home interface is
registered and therefore is the name that must be specified when an EJB
client does a lookup of the home interface. For the Account bean, the JNDI
home name is Account.

Setting the entity bean-specific attributes
To set the deployment descriptor attributes associated specifically with an
entity bean, click the Entity tab in the jetace tool to display the Entity page
shown in Figure 10 on page 39. This tab is disabled if the highlighted
enterprise bean in the initial jetace window is a session bean.

38 WebSphere: Writing Enterprise Beans in WebSphere

In the Entity page, you must select or confirm values for the following fields:
v Primary Key Class—Specify the full package name of the bean’s primary

key class. For the example Account bean, the full name is
com.ibm.ejs.doc.account.AccountKey.

v Container-Managed Fields—Check the check boxes of the variables in the
bean class for which the container needs to handle persistence management.
This is required for entity beans with CMP only, and must not be done for
entity beans with BMP. For the Account bean, the type, balance, and
accountId variables are container managed, so each box is checked.

v Re-entrant?—Check this check box if the bean is reentrant. By default, an
entity bean is not reentrant. If an instance of a non-reentrant entity bean is
executing a client request in a transaction context and it receives another
request using the same transaction context, the EJB container throws the

Figure 10. The Entity page of the jetace tool

Chapter 3. Tools for developing and deploying enterprise beans in the EJB server (AE) environment 39

java.rmi.RemoteException exception to the second request. Since a container
cannot distinguish between a legal loopback call from another bean and an
illegal concurrent call from another client or client thread, a client must take
care to prevent concurrent calls to a reentrant bean. The example Account
bean is not reentrant.

Setting the session bean-specific attributes
To set the deployment descriptor attributes associated specifically with a
session bean, click the Session tab in the jetace tool to display the Session
page shown in Figure 11. This tab is disabled if the highlighted enterprise
bean in the initial jetace window is an entity bean.

Figure 11. The Session page of the jetace tool

40 WebSphere: Writing Enterprise Beans in WebSphere

On the Session page, you must select or confirm values for the following
fields:
v Session Timeout (seconds)—Specify the idle timeout value for this bean in

seconds; a 0 (zero) indicates that idle bean instances timeout after the
maximum allowable timeout period has elapsed (by default in the EJB
server (AE), this timeout is 600 seconds or 10 minutes). For the Transfer
bean, the value is left at 0 to indicate that the default timeout is used.

Note: In the EJB server (CB) environment, this attribute is not used.
v State Management Attribute—Specify whether the bean is stateless or

stateful. The example Transfer bean is STATELESS_SESSION. For more
information, see “Stateless versus stateful session beans” on page 18.

Setting transaction attributes
The Transactions page is used to set the transaction and transaction isolation
level attributes for all of the methods in an enterprise bean and for individual
methods in an enterprise bean. If an attribute is set for an individual method,
that attribute overrides the default attribute value set for the enterprise bean
as a whole.

Note: In the EJB server (CB), the transactional attribute can be set only for the
bean as a whole; the transaction attribute cannot be set on individual
methods in a bean.

To access the Transaction page, click the Transactions tab in the jetace tool.
Figure 12 on page 42 shows an example of this page.

Chapter 3. Tools for developing and deploying enterprise beans in the EJB server (AE) environment 41

On the Transactions page, you must select or confirm values for the following
fields in the Defaults group box:
v Transaction Attribute—Set a value for the transaction attribute. The values

for this attribute are described in “Chapter 6. Enabling transactions and
security in enterprise beans” on page 121. For the Account bean, the value
TX_MANDATORY is used because the methods in this bean must be associated
with an existing transaction when invoked; as a result, the Transfer bean
must use the value that begins a new transaction or passes on an existing
one.

v Isolation Level—Set a value for the transaction isolation level attribute. The
values for this attribute are described in “Chapter 6. Enabling transactions
and security in enterprise beans” on page 121. For the Account bean, the
value REPEATABLE_READ is used.

Figure 12. The Transactions page of the jetace tool

42 WebSphere: Writing Enterprise Beans in WebSphere

If necessary, you can also set these attributes on individual methods by
highlighting the appropriate method and setting one or both of the attributes
in the Specified Methods group box.

Setting security attributes
The Security page is used to set the security attributes for all of the methods
in an enterprise bean and for individual methods in an enterprise bean. If an
attribute is set for an individual method, that attribute overrides the default
attribute value set for the enterprise bean as a whole.

To access the Security page, click the Security tab in the jetace tool. Figure 13
shows an example of this page.

Figure 13. The Security page of the jetace tool

Chapter 3. Tools for developing and deploying enterprise beans in the EJB server (AE) environment 43

On the Security page, you must select or confirm values for the Run-As
Mode field in the Defaults group box. This field must be set to one of the
values described in “Setting the security attribute in the deployment
descriptor” on page 126. The run-as identity attribute is not used by WebSphere
EJB servers, so you cannot set the value for the corresponding field in the
jetace tool.

If necessary, you can also set the run-as mode attribute on individual methods
by highlighting the appropriate method and setting the attribute in the
Specified Methods group box.

Setting environment variables for an enterprise bean
The Environment page is used to associate environment variables (and their
corresponding values) with an enterprise bean. To access the Environment
page, click the Environment tab in the jetace tool. Figure 14 on page 45 shows
an example of this page.

44 WebSphere: Writing Enterprise Beans in WebSphere

To set an environment variable to its value, specify the environment variable
name in the Name field and specify the environment variables value in the
Value field. If desired, use the Comment field to further identify the
environment variable. Press the Set button to set the value. To delete an
environment variable, highlight the variable in the Environment Settings
window and press the Delete button.

For the example Transfer bean, the following environment variables are
required:
v JNDIName—The JNDI name of the Account bean, which is accessed by the

Transfer bean. For more information, see Figure 9 on page 37.

Figure 14. The Environment page of the jetace tool

Chapter 3. Tools for developing and deploying enterprise beans in the EJB server (AE) environment 45

v javax.naming.Context.INITIAL_CONTEXT_FACTORY—The name of the
initial context factory used by the Transfer bean to look up the JNDI name
of the Account bean

v javax.naming.Context.PROVIDER_URL—The location of the naming service
used by the Transfer bean to look up the JNDI name of the Account bean.

For more information on how these environment variables are used by the
Transfer bean, see “Implementing the ejbCreate methods” on page 108.

Setting class dependencies for an enterprise bean
The Dependencies page is used to specify classes on which the enterprise
bean depends. To access the Dependencies page, click the Dependencies tab
in the jetace tool. Figure 15 shows an example of this page.

Figure 15. The Dependencies page of the jetace tool

46 WebSphere: Writing Enterprise Beans in WebSphere

Generally, the jetace tool discovers class dependencies automatically and sets
them here. If there are other class dependencies required by an enterprise
bean, you must set them here by entering the fully-qualified Java class name
in the Classname field. If desired, use the Comment field to further identify
the dependency. Press the Add button to set the value. To remove a
dependency, highlight it in the Class Dependencies window and press the
Delete button.

For the example Account bean, the jetace tool set the dependencies shown in
Figure 15 on page 46.

Creating a database for use by entity beans
For entity beans with container-managed persistence (CMP), you must store the
bean’s persistent data in one of the supported databases. If you are not using
VisualAge for Java, it is strongly recommended that you use the WebSphere
Administrative Console to automatically create database tables for CMP entity
beans. The console names the database schema and table ejb.beanNamebeantbl,
where beanName is the name of the enterprise bean (for example,
ejb.accountbeantbl).

For entity beans with bean-managed persistence (BMP), you can create the
database and database table by using the database tools or use an existing
database and database table. Because entity beans with BMP handle the
database interaction, any database or database table name is acceptable.

For more information on creating databases and database tables, consult your
database documentation and the online help for the WebSphere
Administrative Console.

Restrictions in the EJB server (AE) environment

The following restrictions apply when developing enterprise beans for the EJB
server (AE) environment:
v The primary key class of a CMP entity bean must override the equals

method and the hashCode method inherited from the java.lang.Object class.
v The getUserTransaction method of the javax.ejb.EJBContext interface (which

is inherited by the SessionContext interface) returns an object of type
javax.transaction.UserTransaction rather than type javax.jts.UserTransaction.
While this is a deviation from the 1.0 version of the EJB Specification, the
1.1 version of the EJB Specification requires that the getUserTransaction
method return an object of type javax.transaction.UserTransaction and
drops the requirement to return objects of type javax.jts.UserTransaction.

v The value TX_BEAN_MANAGED is not a valid value for the transaction
deployment descriptor attribute in entity beans. In other words, entity
beans cannot manage transactions.

Chapter 3. Tools for developing and deploying enterprise beans in the EJB server (AE) environment 47

v The run-as identity and access control deployment descriptor attributes are
not used.

48 WebSphere: Writing Enterprise Beans in WebSphere

Chapter 4. Tools for developing and deploying enterprise
beans in the EJB server (CB) environment

The following are the basic approaches to developing and deploying
enterprise beans in the EJB server (CB) environment:
v You can use the tools available in the Java Software Development Kit (SDK)

and WebSphere Application Server, Enterprise Edition. For more
information, see “Developing and deploying enterprise beans with EJB
server (CB) tools”.

v You can use one of the available integrated development environments
(IDEs) such as IBM VisualAge for Java. IDE tools automatically generate
significant parts of the enterprise bean code and contain integrated tools for
packaging and testing enterprise beans. For more information, see “Using
VisualAge for Java” on page 29.

v You can create an enterprise bean from an existing CICS or Information
Management System (IMS) application by using the PAOToEJB tool. The
application must be mapped into a procedural adapter object (PAO) before
this tool is used. For more information, see “Creating an enterprise bean
from an existing CICS or IMS application” on page 81.

v You can create an enterprise bean that communicates with IBM MQSeries
by using the mqaaejb tool. For more information, see “Creating an
enterprise bean that communicates with MQSeries” on page 82.

Before beginning development of enterprise beans in the EJB server (CB)
environment, review the list of development restrictions contained in
“Restrictions in the EJB server (CB) environment” on page 84.

Note: Deployment and use of enterprise beans for the EJB server (CB)
environment must take place on the Microsoft Windows NT operating
system, the IBM AIX operating systems, or the Sun Solaris operating
system.

For information on developing and deploying enterprise beans in the EJB
server (AE) environment, see “Chapter 3. Tools for developing and deploying
enterprise beans in the EJB server (AE) environment” on page 29.

Developing and deploying enterprise beans with EJB server (CB) tools

You need the following tools to develop and deploy enterprise beans for the
EJB server (CB):
v An ASCII text editor. (You can use also use a Java development tool that

does not support enterprise bean development.)

© Copyright IBM Corp. 1999, 2000 49

v The SDK Java compiler (javac) and Java Archiving tool (jar).
v The following tools available in the WebSphere Application Server,

Enterprise Edition:
– jetace, which enables you to create or update an EJB JAR file for one or

more enterprise beans; this includes the creation of the enterprise bean’s
deployment descriptor, which instructs the EJB server on how to
properly manage the enterprise bean.

– Object Builder, which is the recommended tool for deploying enterprise
beans. Use of this tool is not documented in this book. For more
information on using Object Builder to deploy enterprise beans, see the
Component Broker Application Development Tools Guide.

– cbejb, which works with Object Builder to create and compile the
necessary files needed by the EJB server (CB) to manage an enterprise
bean. The cbejb tool looks inside the EJB JAR file to examine the EJB
home and EJB object classes and the deployment descriptors. The cbejb
tool generates a model that Object Builder uses to create the necessary
deployment library files. The output of this process is a set of server-side
and client-side JAR and library files.

– ejbbind, which binds an enterprise bean’s Java Naming and Directory
Interface (JNDI) home name (found in its deployment descriptor) to a
factory in an EJB server (CB). This tool is deprecated for servers running
on the AIX, Windows NT, and Solaris platforms.

– appbind, which allows enterprise bean deployers to create an
application-specific naming context and associate it with a selected
factory finder so that the EJB home lookup operations are resolved with
that factory finder. This tool is available only on the AIX, Windows NT,
and Solaris platforms and only be applied to servers installed on any of
those platforms.

This section describes the steps you must follow to manually develop and
deploy enterprise beans by using the EJB server (CB) tools. The following
tasks are involved:

1. Ensure that you have the prerequisite software to develop and deploy
enterprise beans in the EJB server (CB). For more information, see
“Prerequisite software for the EJB server (CB)” on page 51.

2. Set the CLASSPATH environment variable required by different
components of the EJB server (CB) environment. For more information,
see “Setting the CLASSPATH environment variable in the EJB server (CB)
environment” on page 51.

3. Write and compile the components of the enterprise bean. For more
information, see “Creating the components of an enterprise bean” on
page 52.

50 WebSphere: Writing Enterprise Beans in WebSphere

4. Create a finder helper class for each entity bean with CMP that contains
specialized finder methods (other than the findByPrimaryKey method).
For more information, see “Creating finder logic in the EJB server (CB)”
on page 53.

5. Use the jetace tool to create an EJB JAR file to contain the enterprise
bean. For more information, see “Creating a deployment descriptor and
an EJB JAR file” on page 33.

6. Deploy the enterprise bean by using the cbejb command. For more
information, see “Deploying an enterprise bean” on page 56.

7. Build a data object (DO) implementation for use by the enterprise bean
by using Object Builder (This step is part of the deployment process). For
more information, see “Building a data object during CMP entity bean
deployment” on page 62.

8. Install the deployed enterprise bean and configure its EJB server (CB).
For more information, see “Installing an enterprise bean and configuring
its EJB server (CB)” on page 72.

9. Bind the JNDI name of the enterprise bean into the JNDI namespace by
using the ejbbind tool. (This step is not necessary on the AIX, Windows
NT, or Solaris platforms.) For more information, see “Binding the JNDI
name of an enterprise bean into the JNDI namespace” on page 73.

10. Start the EJB server (CB). For more information see the Component
Broker System Administration Guide.

Prerequisite software for the EJB server (CB)

Note: Any items marked PAO only are needed only if you intend to use the
PAOToEJB tool and need the CICS- or IMS-related support.

You must configure the tools provided with the EJB server (CB) environment;
however, before you can configure the tools, you must ensure that you have
installed and configured the following prerequisite software products
contained in the Enterprise Application Server:
v CB Server
v CB Tools (including the Object Builder, VisualAge Component Development

toolkit, samples, the Server SDK, and (PAO only) CICS and IMS Application
Adapter SDK

v (PAO only) CICS/IMS Application run time
v (PAO only) CICS/IMS Application client

Setting the CLASSPATH environment variable in the EJB server (CB)
environment

To do any of the tasks listed below, make sure that the classes.zip file
contained in the Java Development Kit is included in the CLASSPATH

Chapter 4. Tools for developing and deploying enterprise beans in the EJB server (CB) environment 51

environment variable. In addition, make sure that the following files are
identified by the CLASSPATH environment variable to perform the associated
task:
v Developing an enterprise bean or an EJB client: no additional files.
v Deploying an EJB JAR file:

– somojor.zip
– The EJB JAR file being deployed and any JAR or ZIP files on which it

depends
v Running an EJB server (CB) managing an enterprise bean named beanName.

These JAR files are automatically added to the CLASSPATH environment
variable.
– beanNameS.jar
– The EJB JAR file used to create beanNameS.jar and any JAR or ZIP files

on which it depends
v Running a pure Java EJB client using an enterprise bean named beanName:

– beanNameC.jar
– somojor.zip

v Running an EJB server (CB) that contains an enterprise bean named
clientBeanName that accesses another enterprise bean named beanName as a
client. These JAR files are automatically added to the CLASSPATH
environment variable.
– clientBeanNameS.jar
– The EJB JAR file used to create clientBeanNameS.jar and any JAR or ZIP

files on which it depends
– beanNameC.jar

Creating the components of an enterprise bean
If you use an ASCII text editor or a Java development tool that does not
support enterprise bean development, you must create each of the
components that compose the enterprise bean you are creating. You must
ensure that these components match the requirements of the EJB specification.
These components are described in “Chapter 5. Developing enterprise beans”
on page 89.

To manually develop a session bean, you must write the bean class, the bean’s
home interface, and the bean’s remote interface. To manually develop an
entity bean, you must write the bean class, the bean’s primary key class, the
bean’s home interface, and the bean’s remote interface.

After you have properly coded these components, use the Java compiler to
create the corresponding Java class files. For example, since the components of
the example Account bean are stored in a specific directory, you can compile
the bean components by issuing the following command:

52 WebSphere: Writing Enterprise Beans in WebSphere

C:\MYBEANS\COM\IBM\EJS\DOC\ACCOUNT> javac *.java

This command assumes that the CLASSPATH environment variable contains
all of the packages used by the Account bean.

Creating finder logic in the EJB server (CB)
In the EJB server (CB), finder logic is contained in a finder helper class. The
enterprise bean deployer must implement the finder helper class before
deploying the enterprise bean and then specify the name of the class with the
-finderhelper option of the cbejb tool.

For each specialized finder method in the home interface (other than the
findByPrimaryKey method), the finder helper class must have a
corresponding method with the same name and parameter types. When an
EJB client invokes a specialized finder method, the generated CB home that
implements the enterprise bean’s home interface invokes the corresponding
finder helper method to determine what to return to the EJB client.

The finder helper class must also have a constructor that takes a single
argument of type com.ibm.IManagedClient.IHome. When the CB home
instantiates the finder helper class, the CB home passes a reference to itself to
the finder helper constructor. This allows the finder helper to invoke methods
on the CB home within the implementation of the finder helper methods,
which is particularly useful when the CB home is an IQueryableIterableHome
because the finder helper can narrow the IHome object passed to the
constructor and invoke query service methods on the CB home.

The names of the entity bean’s container-managed fields are mapped to
interface definition language (IDL) attributes of the same name, except that an
underscore (_) is appended, in the business object (BO) interface, the CB key
class, and the CB copy helper class. These names are mapped exactly to IDL
attributes in the DO interface. For example, in the AccountBean class, the
accountId variable is mapped to accountId_ in the BO interface, the CB key
class, and the CB copy helper class, but is mapped to accountId in the DO
interface.

This renaming is necessary, and relevant to finder helper classes implemented
by using the Component Broker Query Service, because the entity bean’s
remote interface can also have a property named accountId (of potentially a
different type) that must also be exposed through the BO interface. If that is
the case, then a query over the BO attribute accountId is done in object space,
whereas a query over the BO attribute accountId_ is done directly against the
underlying data source, which is typically more efficient.

If a home interface’s specialized finder method returns a single entity bean,
then the corresponding method in the finder helper class must return the

Chapter 4. Tools for developing and deploying enterprise beans in the EJB server (CB) environment 53

java.lang.Object type. When invoked, the finder helper method can return the
EJB object, the CB key object, or the entity bean’s primary key object. If the
finder helper method returns a CB object or a primary key object, the CB
home determines the corresponding EJB object to return to the EJB client.

If a home interface’s specialized finder method returns a java.util.Enumeration
type, the corresponding finder helper method must also return
java.util.Enumeration. When invoked, the finder helper method can return an
Enumeration of EJB objects, CB key objects, enterprise bean primary key
objects, or a heterogeneous mix of one or more of the three. The CB home
then constructs a serializable Enumeration object containing the corresponding
EJB objects, which is returned to the EJB client.

An optional base class, named com.ibm.ejb.cb.runtime.FinderHelperBase, is
provided with the EJB server (CB) environment to assist in the development
of a finder helper class. This class encapsulates the Component Broker Query
Service, so that the deployer does not need to write any CB-specific code. The
FinderHelperBase base class contains an evaluate method, which takes an
Object-Oriented Structured Query Language (OOSQL) predicate as a
parameter and returns an Enumeration of objects that meet the conditions of
the query. (The evaluate method calls the IQueryableIterableHome.evaluate
method, then iterates through the returned IIterator object to construct an
Enumeration object containing the search results. This method throws a
javax.ejb.FinderException if any errors occur; the finder helper class does not
need to catch this exception; instead, the class can pass it on to the EJB client.)

A utility class, named com.ibm.ejb.cb.emit.cb.FinderHelperGenerator
(contained in the developEJB.jar file), is also provided to further assist the
deployer in the development of a finder helper class. This utility takes the
name of an entity bean’s home interface and generates a Java source file
containing a class that extends com.ibm.ejb.cb.runtime.FinderHelperBase and
that contains skeleton methods for each specialized finder method in the
home interface. In addition, each finder helper method (with a corresponding
finder method that returns an Enumeration object) contains code to invoke the
evaluate method.

By using the FinderHelperGenerator utility, the deployer can easily
implement the finder helper class. You can use a batch file to run the utility.
For example, to generate a finder helper class for the example AccountHome
interface, enter the following command:
ejbfhgen com.ibm.ejs.doc.account.AccountHome

This command generates the finder helper class shown in Figure 16 on
page 55.

54 WebSphere: Writing Enterprise Beans in WebSphere

To enable the helper class for use in a deployed enterprise bean, the deployer
makes a few simple edits to the parameters of the evaluate invocations. For
example, for the AccountFinderHelper class, the "Place SQL String here"
String is replaced with "balance_>" + amount as shown in Figure 17. The
generated finder helper class can be used only with an enterprise bean that is
deployed to have a queryable home by using the -queryable option of the
cbejb tool.

Using lazy enumeration
The Enumeration returned by the evaluate method is called eager, because all
the enterprise bean references that match the query are brought into memory
and stored in the enumeration before being passed from the server to the
client. If the number of references returned by the query is large, the deployer
can use lazy enumeration; that is, it incrementally fetches more enterprise bean
references only when the client calls the nextElement method on the
Enumeration.

To use lazy enumeration, change the call to the evaluate method in the
FinderHelper to a call to the lazyEvaluate method. A transaction must already
be started before the home’s finder method is called. The caller must not call
the nextElement method on the Enumeration after the completion of the
transaction.

...
public class AccountFinderHelper extends FinderHelperBase {

...
AccountFinderHelper(IManagedClient.IHome iHome) {

...
}
public Enumeration findLargeAccounts(float amount) {

return evaluate("Place SQL String here");
}

}

Figure 16. Code example: Generated AccountFinderHelper class for the EJB server (CB)

...
public class AccountFinderHelper extends FinderHelperBase {

...
AccountFinderHelper(IManagedClient.IHome iHome) {

...
}
public Enumeration findLargeAccounts(float amount) {

return evaluate("balance_>" + amount);
}

}

Figure 17. Code example: Completed AccountFinderHelper class for the EJB server (CB)

Chapter 4. Tools for developing and deploying enterprise beans in the EJB server (CB) environment 55

At configuration time, the System Management End User Interface must be
used to enable the settings for lazy Enumerations. Refer to “Configuring
systems management to enable lazy enumeration” on page 75

Creating an EJB JAR file for an enterprise bean
Once the bean components are built, the next step is package them into an
EJB JAR file. The jetace tool is used to create an EJB JAR file for one or more
enterprise beans. For more information on creating an EJB JAR file, see
“Creating a deployment descriptor and an EJB JAR file” on page 33.

Deploying an enterprise bean
During deployment, a deployed JAR file is generated from an EJB JAR file.
Use the cbejb tool to deploy enterprise beans in the EJB server (CB)
environment. The deployed JAR file contains classes required by the EJB
server. The cbejb tool also generates the data definition language (DDL) file
used during installation of the enterprise bean into the EJB server (CB).

If you want to use an enterprise bean on a different machine from the one on
which it was developed (and on which you ran cbejb), follow the guidelines
for installing applications in the Component Broker document entitled System
Administration Guide. If an enterprise bean uses additional files (such as other
JAR files) that need to be copied with the enterprise bean, specify these files
in the properties notebook of the application (not the family).

The cbejb tool has the following syntax:
cbejb ejb-jarFile [-rsp responseFile][-ob projDir] [-nm] [-ng] [-nc] [-cc]
[-bean beanNames] [-platform [NT | AIX | OS390 | Solaris | HP]]
[-guisg] [-usecurdopo] [-nousraction] [-dllname DLLName beanName]
[-polymorphichome [beanNames]] [-queryable [beanNames]]
[-dbname DBName [beanName]]
[-cacheddb2v52 | -cacheddb2v61 | -db2v61 |-oracle | -informix |
-jdbcaa [beanNames]]
[-hod | -eci | -appc | -exci | -otma | -ccf [beanNames]]
[-family familyName [beanNames]]
[-finderhelper finderHelperClassName [beanNames]]
[-usewstringindo [beanNames]] [-workloadmanaged [beanNames]]
[-clientdep deployed-jarFile [beanNames]]
[-serverdep deployed-jarFile [beanNames]]
[-sentinel [JavaPrimitiveObjectType=]sentinelValue [beanNames[+CMFieldNames]]
[-strbehavior [strip | corba] [beanNames[+CMFieldNames]]

The ejb-jarFile parameter is required; it must be the first argument and it must
specify a valid EJB JAR file as described in “Creating an EJB JAR file” on
page 119. If the -ob option is used, it must come second on the command line.
The other options can be specified in any order. The beanNames argument is a
list of one or more fully qualified enterprise bean names delimited by colons
(:) (for example,
com.ibm.ejs.doc.transfer.Transfer:com.ibm.ejs.doc.account.Account). For the
enterprise bean name, specify either the bean’s remote interface name or the

56 WebSphere: Writing Enterprise Beans in WebSphere

name of its deployment descriptor. If the beanNames argument is not specified
for a particular option, then the effect of that option is applied to all
enterprise beans in the EJB JAR file for which the option is valid.

Note: The relative file name of the JAR files specified by the ejb-jarFile
variable and by the two deployed-jarFile variables must be different from
each other. JAR file names that have the same relative file names but
different paths are not valid.

The rest of the command parameters are optional and can be specified in any
order. For explanation purposes, the options can be grouped by function into
three general categories:
v Deployment options, which govern the generation and compilation of code.
v Storage options, which govern persistent storage.
v Execution options, which govern the run time environment.

The -rsp option does not fit into these categories. This option allows you to
create a file containing some or all of the other options and their values
(except the ejb-jarFile parameter). You can then submit the file to the cbejb
command. This allows the common setting to be saved and makes commands
easier to issue.
v Deployment options

– -ob projDir — Specifies the relative or full path of the project directory in
which the generated files are stored. If this option is not specified, the
current working directory is used as the project directory.

– Compilation modifiers — By default, the cbejb tool does the following
for each enterprise bean contained in the EJB JAR file:
1. Generate and import XML.
2. Generate code—Creates a DDL file, makefile, and other source files

for each enterprise bean contained in the EJB JAR file. These files are
placed in the specified project directory.

3. Compile and link—Invokes the generated makefile to compile an
application. Each application file is placed in the specified project
directory. While the Dynamic Link Libraries (DLLs) are being linked,
numerous duplicate symbol warnings appear; these warnings are
harmless and can be ignored.

The following command options modify the default compilation
behavior:
- -nm — Suppresses the XML-processing step.
- -ng — Suppresses the code-generation step.
- -nc — Suppresses the compilation-and-linking step.

Chapter 4. Tools for developing and deploying enterprise beans in the EJB server (CB) environment 57

- -cc — Removes previously compiled and linked code by invoking the
generated makefile to remove non-source files. This option must be
used if you specify either of these combinations:
v -ng -nc
v -nm -ng -nc

– -bean beanNames — Identifies the enterprise beans in the EJB JAR file to
be deployed. By default, all enterprise beans in the EJB JAR file are
deployed. To deploy multiple enterprise beans, delimit the bean names
with a : (colon). For example, Account:Transfer.

– -platform — Specifies the platform for which to generate code. This also
sets the deployment platform in the Object Builder tool, but it does not
set the platform for viewing, generating, or applying development
constraints. You must set these manually by using the choices on the
Platform menu.

– -guisg — Directs the tool to present the Object Builder graphical user
interface (GUI), which enables the tool to collect options from the user
rather than from the command line.

– -usecurdopo — Directs the tool to use the current mapping between the
data object and the persistent object in the existing model rather than
bringing up the Object Builder interface to build a mapping. Use this
option when redeploying beans for which a satisfactory mapping already
exists. The deployment will proceed automatically.
When you first deploy CMP entity beans, you must not use this option.
The tool will then build the default mapping between the data and
persistent objects and, if you specify the -guisg option, launch the Object
Builder interface.

– -nousraction — Directs the tool to use only the information on the
command line after building the mapping between data objects and
persistent objects. Otherwise, if you have also specified the -guisg option,
the tool prompts you for the next action.

– -polymorphichome — Specifies the beans that use polymorphic home
interfaces.

– -queryable — Directs the tool to generate a queryable CB home object.
This option can be used only for entity beans with CMP that store their
persistent data in a relational database. This option must be used if the
finder helper class, which is used to implement the finder methods in a
CMP entity bean, uses the CB query service. This option must not be
used if an entity bean uses CICS or IMS to store its persistent data.
By default, the interface definition language (IDL) interface of an
enterprise bean’s CB home extends the IManagedClient::IHome class,
and the home implementation extends the
IManagedAdvancedServer::ISpecializedHome class. An IDL interface of a
queryable home extends the

58 WebSphere: Writing Enterprise Beans in WebSphere

IManagedAdvancedClient::IQueryableIterableHome class, and the home
implementation extends the
IManagedAdvancedServer::ISpecializedQueryableIterableHome class.
In addition, the generated BO interface is marked as queryable. For
queryable homes, the EJB client programming model remains
unchanged; however, a Common Object Request Broker Architecture
(CORBA) EJB client can treat the EJB home as an
IManagedAdvancedClient::IQueryableIterableHome object.
For more information on queryable homes, see the Advanced Programming
Guide.

v Storage options
– -dbname DBName — Specifies the name of the database for beans with

CMP.
– Database choices—The default database for persistent storage of

container-managed beans is DB2 version 5.2 with embedded SQL. You
can override this default by using:
- -cacheddb2v52 — Identifies entity beans with CMP that require DB2

version 5.2 used with the Cache Service to store persistent data.
- -cacheddb2v61 — Identifies entity beans with CMP that require DB2

version 6.1 used with the Cache Service to store persistent data.
- -db2v61 — Identifies entity beans with CMP that require DB2 version

6.1 used with embedded SQL to store persistent data.
- -oracle — Identifies entity beans with CMP that require Oracle to store

persistent data. If you specify this option, you must also use the
-queryable option.

- -informix — Identifies entity beans with CMP that require Informix to
store persistent data. A given transaction cannot access more than one
Informix database from a CB server. To access two Informix databases
in one transaction, you must access each from a different CB server. If
you specify this option, you must also use the -queryable option.

- -jdbcaa — Identifies entity beans with BMP that require JDBC to store
persistent data. This option enables the beans to join distributed
transactions by allowing the bean implementation to connect to the
Transaction Service. Beans with BMP that do not use this option will
handle transactions in an implementation-dependent manner.

– -hod — Identifies entity beans with CMP that use Host-on Demand
(HOD) to store persistent data. These beans will use the Session Service.
This option must not be used for enterprise beans generated from the
PAOToEJB tool.

– -eci — Identifies entity beans with CMP that use the external call
interface (ECI) to store persistent data. These beans will use the Session
Service. This option must not be used for enterprise beans generated
from the PAOToEJB tool.

Chapter 4. Tools for developing and deploying enterprise beans in the EJB server (CB) environment 59

– -appc — Identifies entity beans with CMP that use advanced
program-to-program communications (APPC) to store persistent data.
These beans will use the Transaction Service. This option must not be
used for enterprise beans generated from the PAOToEJB tool.

– -exci — Identifies entity beans with CMP that use the EXCI to store
persistent data. These beans will use the Transaction Service. This option
must not be used for enterprise beans generated from the PAOToEJB
tool.

– -otma — Identifies entity beans with CMP that use the OTMA to store
persistent data. These beans will use the Transaction Service. This option
must not be used for enterprise beans generated from the PAOToEJB
tool.

– -ccf — Identifies entity beans with CMP that use the SAP interface,
which is a common connector framework (CCF) back end. These beans
will use the Transaction Service.

v Execution options
– -family familyName — Specifies the application family name to be

generated. By default, this name is set to the name of the EJB JAR file
with the word Family appended. This option can be specified more than
once, as long as the values are unique.

– -finderHelper finderHelperClassName remoteInterface— Specifies the finder
helper class name (finderHelperClassName) and remote interface name
(remoteInterface) for entity beans with CMP. If unspecified, it is assumed
that no finder helper class is provided by the deployer. This option can
be specified more than once, as long as the values are unique. For more
information on finder helper classes, see “Defining finder methods” on
page 100.

– -usewstringindo — Directs the tool to map the container-managed fields
of an entity bean to the wstring IDL type (rather than the string type) on
the DO. It is preferable to map to the string IDL type if the data source
contains single-byte character data; it is preferable to map to the wstring
IDL type if the data source contains double-byte or Unicode character
data.

– -workloadmanaged — Directs the tool to configure a CMP entity bean or
a stateless session bean into a workload managing container and with a
workload managed home interface. For a BMP entity bean or a stateful
session bean it directs the tool to configure the bean only with a
workload managed home interface.

– -clientdep deployed-jarFile — Specifies the name of a dependent JAR
required by an EJB client that uses the enterprise bean being deployed.
You must specify the full path of the file. To create multiple client JAR
files, you must specify this option for each JAR file. This option can be
specified more than once, as long as the values are unique.

60 WebSphere: Writing Enterprise Beans in WebSphere

– -serverdep deployed-jarFile — Specifies the name of a dependent JAR
required by the EJB server (CB) that runs the deployed enterprise bean.
You must specify the full path of the file. To create multiple dependent
JAR files, you must specify this option for each JAR file. This option can
also be used to identify existing JAR files that contain classes required by
the enterprise bean being deployed; when this is done, the EJB server’s
CLASSPATH environment variable is automatically updated to include
this specified JAR file. This option can be specified more than once, as
long as the values are unique.

– -sentinel sentinelValue — Specifies an value for a Java type or
container-managed field for the deployed beans. If you set a value for a
Java type, do not put spaces around the = (equals) sign.

– -strbehavior — Specifies how the tool should determine the behavior of
the strings for a container-managed string fields in deployed beans. The
corba value indicates that strings should be handled as CORBA strings;
the strip value directs the tool to remove trailing spaces from strings.

For session beans or entity beans with BMP, the code generation process runs
without additional user intervention. For entity beans with CMP, the Object
Builder GUI is displayed during execution of the command, and you must
create a DO implementation to manage the entity bean’s persistent data. For
more information, see “Building a data object during CMP entity bean
deployment” on page 62.

The cbejb tool deploys enterprise beans by generating extensible markup
language (XML) files and importing those files into Object Builder. If the XML
import fails, you can view any error messages generated by Object Builder in
the import_model.log file located in the project directory.

If your CLASSPATH environment variable is too long, the cbejb command file
fails. If this happens, shorten your CLASSPATH by removing any unnecessary
files.

The cbejb tool generates the following files for an EJB JAR file containing an
enterprise bean named Account:
v AccountS.jar and (Windows NT) AccountS.dll or (AIX or Solaris)

libAccountS.so—The files required by the EJB server (CB) that contains this
enterprise bean. The AccountS.jar file contains the code generated from the
Account EJB JAR file. The AccountS.dll and libAccountS.so files contain the
required C++ classes.
(Windows NT) To run the Account enterprise bean in an EJB server (CB), the
AccountS.jar file must be defined in the server’s CLASSPATH environment
variable, and the AccountS.dll file must be defined in the server’s PATH
environment variable. Typically, the System Management End User

Chapter 4. Tools for developing and deploying enterprise beans in the EJB server (CB) environment 61

Interface (SM EUI) sets these environment variables during installation of
the deployed enterprise bean into an EJB server (CB).
(AIX or Solaris) To run the Account enterprise bean in an EJB server (CB),
the AccountS.jar file must be defined in the server’s CLASSPATH
environment variable, and the libAccountS.so file must be defined in the
server’s LD_LIBRARY_PATH environment variable. Typically, the SM EUI
sets these environment variables during installation of the deployed
enterprise bean into an EJB server (CB).

v AccountC.jar—The file required by an EJB client, including enterprise beans
that access other enterprise beans. This JAR file contains everything in the
original EJB JAR file except the enterprise bean implementation class. To
use the Account enterprise bean, a Java EJB client must have the
AccountC.jar and the IBM Java ORB defined in its CLASSPATH
environment variable.

v (PAO only) paotoejbName.jar—This file is created by the PAOToEJB tool and
is used to wrap an existing procedural adapter object (PAO) in an
enterprise bean.

v EJBAccountFamily.DDL—This file is used during installation of the Account
family into an EJB server (CB) to update the database used by the SM EUI.
Its name is composed of the EJB JAR file name with the string Family.DDL
appended.

Building a data object during CMP entity bean deployment
When deploying an entity bean with CMP in the EJB server (CB), you must
create a DO implementation by using Component Broker’s Object Builder.
This DO implementation manages the entity bean’s persistent data.

To build a DO implementation, you must map the entity bean’s
container-managed fields to the appropriate data source as described in
“Guidelines for mapping the container-managed fields to a data source”.
Then, you must do one of the following:
v Use an existing DB2 or Oracle database to store the bean’s persistent data;

for more information, see “Using an existing DB2 or Oracle data source to
store persistent data” on page 65.

v Use an existing CICS or IMS application to store the bean’s persistent data;
for more information, see “Using an existing CICS or IMS application to
store persistent data” on page 67.

v Define a new DB2 or Oracle database to store the bean’s persistent data; for
more information, see “Defining a new DB2 or Oracle database to store
persistent data” on page 69.

Guidelines for mapping the container-managed fields to a data source
When you deploy enterprise beans with the cbejb tool, a Component Broker
DO IDL interface is created. The IDL attributes of this interface correspond to
the entity bean’s container-managed fields. You must then define the DO

62 WebSphere: Writing Enterprise Beans in WebSphere

implementation by using Object Builder to map the DO attributes to the
attributes of a Persistent Object (PO) or Procedural Adapter Object (PAO),
which correspond to the data types found in the data source.

This section contains information on how the cbejb tool maps the
container-managed fields of entity beans to DO IDL attributes, and how the
enterprise bean deployer maps DO IDL attributes to the entity bean’s data
source. These guidelines apply whether you are using an existing data source
(also known as meet-in-the-middle deployment) or defining a new one (also
known as top-down deployment).
v EJBObject or EJBHome variables—Objects of classes that implement the

EJBObject or EJBHome interface map to the Object IDL type. At run time,
this DO attribute contains the CORBA proxy for the EJBObject or EJBHome
object. The CB EJB run time automatically converts between the EJBObject
or EJBHome object (stored in the bean’s container-managed field) and the
CORBA::Object attribute (stored in the C++ DO). It is possible to deploy
container-managed beans that have container-managed fields of the same
type, for example, a linked list implementation where each node of the list
is a container-managed bean that has a reference to the next node. It is also
possible to have circular references in a container-managed field, for
example, a container-managed Bean A can have a container-managed field
of type Bean B, which in turn has a container-managed field of type Bean
A. When defining the DO-to-PO mapping in Object Builder, you can use
either a predefined Component Broker mapping of CORBA::Object to the
data source, or implement a C++ DO-to-PO mapping helper (in the
standard Component Broker way) to invoke methods on the C++ proxy to
obtain the persistent data. For more information on creating a C++
DO-to-PO mapping, see the Component Broker Programming Guide.

Note: Although Component Broker allows an entity bean’s
container-managed fields to be EJBObject or EJBHome objects, the
Enterprise JavaBeans 1.0 specification does not.

v Primary key variables—Do not map an enterprise bean’s primary key
variables to the SQL type long varchar in a DB2 or an Oracle database.
Instead, use either a varchar or a char type and set the length appropriately.

v java.lang.String variables—Objects of this class are mapped to a DO IDL
attribute of type string or wstring, depending on the command-line options
used when the entity bean was deployed by using the cbejb tool (see
“Deploying an enterprise bean” on page 56). By default, a variable of type
java.lang.String is mapped to a DO IDL attribute of type string; however,
the -usewstringindo option of the cbejb tool can be used to map
java.lang.String variables to DO IDL attributes of type wstring. (Mapping
some of a bean’s String fields to the IDL string type and others to the IDL
wstring type is not supported.) It is preferable to map to the string IDL

Chapter 4. Tools for developing and deploying enterprise beans in the EJB server (CB) environment 63

type if the data source contains single-byte character data; it is preferable to
map to the wstring IDL type if the data source contains double-byte or
Unicode character data.

v java.io.Serializable variables—Objects of classes that implement this
interface are mapped to a DO IDL attribute of type ByteString (which is a
typedef for sequence of octet defined in the IManagedClient.idl file). The
EJB server (CB) automatically converts serializable objects (stored in the
entity bean’s container-managed fields) to the C++ sequence of octets
containing the serialized form of the object (stored in the DO). Use the
Component Broker default DO-to-PO mapping for ByteString to store the
serialized object directly in the data source.
Unless you implement a C++ DO-to-PO mapping helper that passes the
C++ ByteString to a Java implementation by way of the interlanguage
object model (IOM), it is not possible to manipulate the serialized Java
object contained in a ByteString from within a C++ DO implementation.
Therefore, if you are doing top-down enterprise bean development and you
don’t want to store a serialized Java object in the data source, it is
recommended that you avoid defining container-managed fields of type
Serializable. Instead, make the Serializable variable a nonpersistent variable,
define primitive type container-managed fields to capture the state of the
Serializable variable, and convert between the Serializable variable and the
primitive variable in the ejbLoad and ejbStore methods of the enterprise
bean.

v Array variables—These variables are mapped to a DO IDL sequence of the
corresponding type in the same way that the individual types are mapped
to DO IDL attributes. For example, an array of the java.lang.String class is
mapped to a DO IDL attribute that is a sequence of type string (or a
sequence of type wstring, if the -usewstringindo option of the cbejb tool is
used). The EJB server (CB) automatically converts between the array (stored
in the entity bean’s container-managed fields) and the C++ sequence (stored
in the DO). You can store the entire sequence in the data source as a whole,
or you can write a C++ DO-to-PO mapping helper (in the standard
Component Broker way) to iterate through the sequence and store
individual elements in the data source separately. For more information on
creating a C++ DO-to-PO mapping, see the Component Broker Programming
Guide.

v Date/Time fields—The cbejb tool maps container-managed fields of type
java.util.Date and its subclasses (java.sql.Date, java.sql.Time,
java.sql.Timestamp only) differently from other Serializable fields. The
following mapping rules are used:
– java.util.Date: ISO-formatted timestamp string (yyyy-mm-dd-

hh.mm.ss.mmmmmm)
– java.sql.Date: ISO-formatted date string (yyyy-mm-dd)
– java.sql.Time: ISO-formatted time string (hh.mm.ss)

64 WebSphere: Writing Enterprise Beans in WebSphere

– java.sql.Timestamp: ISO-formatted timestamp string
(yyyy-mm-dd-hh.mm.ss.mmmmmm)

Therefore a container-managed field of one of the above types should be
mapped to either a string or a database-specific date/time field that can
take an ISO-formatted string as input. (For example, both DB2 and Oracle
Date/Time/Timestamp column types can take ISO strings as input values.)
If a deployer chooses to map a Date/Time container-managed field to
something other than the types mentioned above, then a special data
mapping code should be written in the DO implementation. The mapping
code must be able to convert an ISO-formatted string to a backend-specific
type and vice versa.

The java.sql.Timestamp class has a precision of nanoseconds, whereas ISO
timestamp format has a precision of microseconds. Therefore, precision is
compromised (by rounding nanoseconds to nearest microseconds) when a
Timestamp CMP field is mapped. Users should be particularly aware of this
when they use the java.sql.Timestamp class as one of the attributes of
bean’s primary key.

While mapping java.sql.Date to ISO Date format, the time field values are
ignored. Similarly while mapping java.sql.Time to ISO Time, the date field
values are ignored.

Note: For DB2 only: If an existing database outputs date/time in a non-ISO
format, then the deployer must rebind DB2 packages using the
″DATETIME ISO″ option.

Using an existing DB2 or Oracle data source to store persistent data
To use an existing DB2 or Oracle database to store a CMP entity bean’s
persistent data, follow these steps. The end result is a PO with attributes that
correspond to the items in the database schema.
1. When Object Builder starts, it presents the Open Project dialog. Choose the

location of the project directory for your enterprise bean and click Finish.
2. To import an existing relational database schema, click DBA-Defined

Schemas and right-click the appropriate database type.
a. On the pop-up menu, click Import and SQL.
b. On the Import SQL dialog box, click Find and browse for your SQL

file.
c. Double-click your SQL file.
d. Change the name in the Database Name text field from Database to

the actual name of the database.
e. Select the appropriate database type and click Finish.

3. To create a persistent object (PO) from the database schema, expand
DBA-Defined Schemas and expand your group.

Chapter 4. Tools for developing and deploying enterprise beans in the EJB server (CB) environment 65

a. Highlight your schema and then right-click it to display a pop-up
menu. Click Add->Persistent Object.

b. On the Names and Attributes dialog box, accept the defaults and click
Finish.

4. Create a DO implementation as follows:
a. Expand the User-Defined DOs, expand the DO File (for example

CBAccountDO), expand the DO Interface (for example,
com_ibm_ejs_doc_account_AccountDO), and select the DO
Implementation.

b. On the DO Implementation pop-up menu, select Properties.
c. On the Name and Platform page, select the Deployment Platform (for

example, NT, AIX, or Solaris) and click Next.
d. On the Behavior page, make the appropriate selections and click Next:
v For DB2, select BOIM with any Key for Environment, select

Embedded SQL for Form of Persistent Behavior and Implementation,
select Delegating for Data Access Pattern, and select Home name and
key for Handle for Storing Pointers.

v For Oracle, select BOIM with any Key for Environment, select
Oracle Caching services for Form of Persistent Behavior and
Implementation, select Delegating for Data Access Pattern, and
select Home name and key for Handle for Storing Pointers.

e. On the Implementation Inheritance page, make the appropriate
selections for the parent class and click Next:
v For DB2, select IRDBIMExtLocalToServer::IDataObject
v For Oracle, select

IRDBIMExtLocalToServer::ICachingServiceDataObject

f. Accept the defaults for the Attributes, Methods, and Key and Copy
Helper pages by clicking Next on each page.

g. On the Associated Persistent Objects page, click Add Another. Accept
the default for the instance name (iPO) and select the correct type.
Click Next.

h. On the Attribute Mapping page, map the container-managed fields of
the entity bean to the corresponding items in the database schema.
Object Builder creates default mappings for the data object attributes
for which it can identify corresponding persistent object attributes. The
default mapping is generally suitable for everything except for the
primary key variable, which you must map to a varchar or char type
rather than a long varchar type. For more information, see “Guidelines
for mapping the container-managed fields to a data source” on page 62.
After you finish mapping the attributes, click Finish.

i. Oracle only. When mapping an entity bean with CMP to an Oracle
database, expand the Container Definition folder and right-click the

66 WebSphere: Writing Enterprise Beans in WebSphere

EJB container. From the pop-up menu, click Properties. In the wizard,
click Next until you reach the Data Access Patterns; on that page, check
the Cache Service checkbox and click Finish.

j. Exit from Object Builder by clicking File->Exit; save any changes if
prompted.

k. Create the database specified by the Database text field and use the
SQL file specified by the Schema File text field to create a database
table. For more information on creating a database and database table
with an SQL file, consult your DB2 or Oracle documentation. The SQL
file can be found in the following directory, where projDir is the project
directory created by the cbejb tool:
v On Windows NT, projDir\Working\NT
v On AIX, projDir/Working/AIX
v On Solaris, projDir/Working/Solaris

Using an existing CICS or IMS application to store persistent data
To use CICS or IMS for Persistent Adaptor Object (PAO) storage, following
these instructions. Note that if the persistent store uses a CICS or IMS
application (by way of a PAO), only application data is used; the methods on
the CICS or IMS application are pushdown methods, which run
application-specific logic rather than storing and loading data.

The following prerequisites must be met to map an entity bean with CMP to
an existing CICS or IMS application:
v The entity bean’s transaction attribute must be set to TX_MANDATORY if

you want to map the bean to a HOD- or ECI-based application. The
transaction attribute must be set to either the TX_MANDATORY or
TX_REQUIRED if you want to map it to an APPC-based application.

v The existing CICS or IMS application must be represented as a procedural
adapter object (PAO). See the Procedural Application Adaptor Development
Guide for more information on creating PAOs.

v The PAO class files must be specified in the CLASSPATH environment
variable.

v The entity bean must implement all enterprise bean logic; the only
remaining requirement is to map the entity bean’s container-managed fields
to the PAO. Pushdown methods on the PAO cannot be utilized from the
enterprise bean. (PAO pushdown methods can be used from an entity bean
with CMP generated by using the PAOToEJB tool as described in “Creating
an enterprise bean from an existing CICS or IMS application” on page 81.)

v The cbejb tool must be run as follows, where the ejb-jarFile is the EJB JAR
file containing the entity bean:
cbejb ejb-jarFile [-hod | -eci | -appc [beanNames]]

Chapter 4. Tools for developing and deploying enterprise beans in the EJB server (CB) environment 67

For a description of the cbejb tool’s syntax, see “Deploying an enterprise
bean” on page 56.

If you have met the prerequisites, use Object Builder to create the mapping
between the entity bean and the CICS or IMS application:

1. When Object Builder starts, it presents the Open Project dialog. Choose
the location of the project directory for your enterprise bean and click
Finish.

2. From the main menu, click Platform and then Target. Uncheck the 390
platform.

3. Click User-Defined PA Schemas and right-click the selection.
4. From the pop-up menu, click Import and then Bean. On the Import Bean

dialog box, type the class name of the PAO bean and click Next.
5. Select the appropriate connector type and click Next.
6. Select the primary key attribute name from the Properties list.
7. Click >> to move the primary key to the Key Attributes list and click

Finish.
8. For HOD and ECI only, do the following for both the MO and the

HomeMO:
a. In the Tasks and Object panel, expand the User-Defined Business

Objects, expand the object, and expand the object’s BO. From the MO
file’s pop-up menu, click Properties.

b. Change the Service to use property from Transaction Service to
Session Service.

9. Create a DO implementation as follows:
a. On the Tasks and Object panel, expand the User-Defined DOs,

expand the DO File from the menu, and click the DO Interface.
b. On the DO Interface pop-up menu, select Add Implementation.
c. On the Behavior page, select BOIM with any Key for Environment,

select Procedural Adapters for Form of Persistent Behavior and
Implementation, select Delegating for Data Access Patterns, and select
Default for Handle for Storing Pointers. Click Next.

d. Click Next on the Implementation Inheritance page, the Attributes
page, the Methods page, and the Key and Copy Helper page.

e. On the Associated Persistent Object page, click Add Another, verify
that the PO that you previously created is selected, and click Next.

f. On the Attribute Mapping page, designate how the container-managed
fields of the entity bean correspond to the items in the existing PAO.
This designation is done by defining a mapping between the attributes
of the DO (which match the entity bean’s container-managed fields) to

68 WebSphere: Writing Enterprise Beans in WebSphere

the attributes of the PO (which match the existing PAO). In the
Attributes list, there is a DO attribute corresponding to each of the
bean’s container-managed fields.
For each DO attribute in the Attributes list, right-click the attribute and
click Primitive from the menu. From the Persistent Object Attribute
drop-down menu, select the PO attribute (the item from the existing
database schema) that corresponds to the DO attribute. For more
information, see “Guidelines for mapping the container-managed fields
to a data source” on page 62. After you have processed all
container-managed fields, click Next.

g. On the Methods Mapping page, for each method in the list of Special
Framework Methods, right-click a method and click Add Mapping.
From the Persistent Object Method drop-down menu, select the PO
method with the same name as the selected DO method. If there are
more methods than available mappings, map methods to similarly
named methods. For example, map update to update(). After you have
processed all of the methods, click Finish.

h. Expand the Container Definition folder and right-click the EJB
container. From the pop-up menu, click Properties. In the wizard, click
Next until you reach the Data Access Patterns page.

i. On the Data Access Patterns page, select one of the following items and
then click Next:
v For HOD or ECI, select Use PAA Session services.
v For APPC, select Use PAA Transaction services.

j. On the Service Details page, do the following and then click Next:
v For HOD or ECI, select Throw an exception and abandon the call for

Behavior for Methods Called Outside a Transaction; define a
connection name, for example, MY_PAA_Connection; select
Host on Demand or ECI connection, respectively, for the Type of
connection.

v For APPC, select Throw an exception and abandon the call for
enterprise beans with the TX_MANDATORY transaction attribute, or
select Start a new transaction and complete the call for enterprise
beans with the TX_REQUIRED transaction attribute.

k. Select Caching for Business Object.
l. Select Delegating for Data Object.
m. Click Finish.

10. Exit from Object Builder by clicking File->Exit; save any changes if
prompted.

Defining a new DB2 or Oracle database to store persistent data
When you use a top-down development approach to enterprise bean
development, enterprise bean deployment must occur in three phases:

Chapter 4. Tools for developing and deploying enterprise beans in the EJB server (CB) environment 69

1. Define the database schema, map the container-managed fields of the
entity bean with CMP to the database schema, and generate the code to
encapsulate this mapping. For more information, see “Mapping the
database schema”.

2. Create the database and database tables. For more information, see
“Creating the database and database table”.

3. Compile the code generated in phase 1; compilation fails if the database
and database tables do not exist.

Mapping the database schema: After you have defined the manner in which
the entity bean maps to a database, create the mapping by running the cbejb
tool with the -nc option to prevent automatic compilation after code
generation. For example, to create a mapping for an Account bean stored in
an EJB JAR file named EJBAccount.jar, enter the following command:

cbejb EJBAccount.jar -nc -queryable [-oracle | -cacheddb2]

Note: If the database being used to store the persistent data is either Oracle or
DB2, those options must also be specified.

Creating the database and database table: Follow these instructions to create
a database and database table by using the Object Builder GUI:
1. When Object Builder starts, it presents the Open Project dialog. Choose the

location of the project directory for your enterprise bean and click Finish.
2. Create a DO implementation as follows:

a. Expand the User-Defined DOs, expand the DO File from the menu,
and click the DO Interface.

b. On the DO Interface pop-up menu, select Add Implementation. If the
implementation is already present, you can modify it by selecting the
implementation, invoking the pop-up menu, and selecting Properties.

c. On the Name and Platform page, select the platform and click Next.
d. On the Behavior page, make the appropriate selections and click Next:
v For DB2: select BOIM with any Key for Environment, select

Embedded SQL for Form of Persistent Behavior and Implementation,
select Delegating for Data Access Pattern, and select Home name and
key for Handle for Storing Pointers.

v For Oracle: select BOIM with any Key for Environment, select
Oracle Caching services for Form of Persistent Behavior and
Implementation, select Delegating for Data Access Pattern, and
select Home name and key for Handle for Storing Pointers.

e. On the Implementation Inheritance page, make the appropriate
selections for the parent class and click Next:
v For DB2, select IRDBIMExtLocalToServer::IDataObject

70 WebSphere: Writing Enterprise Beans in WebSphere

v For Oracle, select
RDBIMExtLocalToServer::ICachingServiceDataObject

v For CICS or IMS PAO, select IRDBIMExtLocalToServer::IDataObject
f. Accept the defaults for the Attributes, Methods, and Key and Copy

Helper pages by clicking Next on each page.
g. On the Associated Persistent Objects page, click Add Another. Accept

the default for the instance name (iPO) and select the correct type.
Click Next.

h. On the Attribute Mapping page, map the container-managed fields of
the entity bean to the corresponding items in the database schema. The
default mapping is generally suitable for everything except for the
primary key variable, which you must map to a varchar or char type
rather than a long varchar type. Object Builder creates default
mappings for the data object attributes for which it can identify
corresponding persistent object attributes. For more information, see
“Guidelines for mapping the container-managed fields to a data
source” on page 62. After you finish mapping the attributes, click
Finish.

i. Oracle only. When mapping an entity bean with CMP to an Oracle
database, expand the Container Definition folder and right-click the
EJB container. From the pop-up menu, click Properties. In the wizard,
click Next until you reach the Data Access Patterns; on that page, check
the Cache Service checkbox and click Finish.

j. Exit from Object Builder by clicking File->Exit; save any changes if
prompted.

k. Create the database specified by the Database text field and use the
SQL file specified by the Schema File text field to create a database
table. For more information on creating a database and database table
with an SQL file, consult your DB2 or Oracle documentation. The SQL
file can be found in the following directory, where projDir is the project
directory created by the cbejb tool:
v On Windows NT, projDir\Working\NT
v On AIX, projDir/Working/AIX
v On Solaris, projDir/Working/Solaris

Compiling the generated code: After both the database and database table
are created, compile the enterprise bean code by using the following
commands:
v On Windows NT.

cd projDir\Working\NT

nmake -f all.mak

v On AIX.

Chapter 4. Tools for developing and deploying enterprise beans in the EJB server (CB) environment 71

cd projDir/Working/AIX

make -f all.mak

v On Solaris. Transfer the code that was generated on Windows NT or AIX,
then use the following commands.
cd projDir/Working/Solaris

make -f all.mak

Installing an enterprise bean and configuring its EJB server (CB)
Follow these steps to install an enterprise bean and configure the resulting EJB
server (CB):
1. (Entity bean with CMP using DB2 only) Use the bind file, which Object

Builder generates as a side effect of using the cbejb tool, to bind the
enterprise bean to the database (for example, db2 bind AccountTblPO.bnd).

2. Using the SM EUI, install the application generated by cbejb. In general,
this installation is the same as installing a Component Broker application
generated by Object Builder:
a. Load the application into a host image.
b. Add the application to a configuration.
c. Associate the EJB application with a server group or server. (If the

server group or server does not already exist, you must create it.)
d. (Entity bean with CMP only) Associate the entity bean’s data source

(DB2, Oracle, CICS, or IMS PAA) with the EJB application:
v DB2: associate the DB2 services (iDB2IMServices) with the EJB

server.
v Oracle: associate the Oracle services (iOAAServices) with the EJB

server.
v CICS or IMS PAA: associate the PAA services (iPAAServices) with

the EJB server.
e. Configure the EJB server (CB) with a host.
f. Set the ORB request timeout for both clients and servers to 300 seconds.
g. If the EJB server requires Java Virtual Machine (JVM) properties to be

set, edit the JVM properties. Do this in the server model instead of the
server image. For instance, if the enterprise bean performs a JNDI
lookup to access other enterprise beans, the server hosting the
enterprise bean must have its JVM properties set to include values for
JNDI properties.

h. Activate the EJB server configuration.
i. Start the EJB server.

72 WebSphere: Writing Enterprise Beans in WebSphere

Binding the JNDI name of an enterprise bean into the JNDI namespace

Note: This section does not apply to servers running on the AIX, Windows
NT, or Solaris platforms.

An enterprise bean’s JNDI home name is defined within its deployment
descriptor as described in “The deployment descriptor” on page 19. This name
is used by EJB clients (including other enterprise beans) to find the home
interface of an enterprise bean.

The ejbbind tool locates the CB home that implements the enterprise bean’s
EJBHome interface in the Component Broker namespace. It also rebinds the
home name into the namespace, using the JNDI home name specified in the
enterprise bean’s deployment descriptor. This binding enables an EJB client to
look up the EJB home by using the JNDI name specified in the bean’s
deployment descriptor. An enterprise bean can be bound on a different
machine from the one on which the bean was deployed.

The subtree of the Component Broker namespace in which the JNDI name is
bound can be controlled by the command-line options used with the ejbbind
tool. The manner in which the name is bound (the subtree chosen) affects the
JNDI name that EJB clients must use to look up the enterprise bean’s EJB
home and also affects the visibility of the enterprise bean’s EJB home.
Specifically, the JNDI name can be bound in one of the following ways:
v The JNDI name can be bound into the local root. Under this binding

approach, EJB clients use the JNDI name in the enterprise bean’s
deployment descriptor. The approach restricts the visibility of the EJB home
to EJB clients using the same name server (the same bootstrap host) and
can cause collisions with other names in the tree.

v The JNDI name can be bound into the host name tree (at
host/resources/factories/EJBHomes). Under this binding approach, EJB
clients must prefix the string host/resources/factories/EJBHomes to the
JNDI name given in the bean’s deployment descriptor. This approach
minimizes collisions with other names in the tree, but restricts visibility of
the enterprise bean home to clients using the same name server.

v The JNDI name can be bound into the workgroup name tree (at
workgroup/resources/factories/EJBHomes). Under this binding approach,
EJB clients must prefix the string workgroup/resources/factories/EJBHomes
to the JNDI name given in the enterprise bean’s deployment descriptor, and
the EJB home is visible to all EJB clients using a name server that belongs
to the same preferred workgroup.

v The JNDI name can be bound into the cell name tree (at
cell/resources/factories/EJBHomes). Under this binding approach, EJB

Chapter 4. Tools for developing and deploying enterprise beans in the EJB server (CB) environment 73

clients must prefix cell/resources/factories/EJBHomes to the JNDI name
in the bean’s deployment descriptor, and the EJB home is visible
throughout the cell.

Before running the ejbbind tool, do the following:
v Deploy your enterprise bean for Component Broker by using the cbejb tool.

For more information, see “Deploying an enterprise bean” on page 56.
v Install the Component Broker application that cbejb tool generates, and

configure it on a specific EJB server (CB) by using the SM EUI. For more
information, see “Installing an enterprise bean and configuring its EJB
server (CB)” on page 72.

v Start the CBConnector Service and a name server, if they are not already
running. For more information, see the Component Broker System
Administration Guide.

v Activate the configuration containing the EJB server (CB) that runs the
application.

v Determine the IP address (the bootstrap host name) and port number (the
bootstrap port) of the machine running the name server.

Invoke the ejbbind command with the following syntax:
ejbbind ejb-jarFile [beanParm] [-f]
[-BindLocalRoot] [-BindHost] [-BindWorkgroup] [-BindCell] [-BindAllTrees]
[-ORBInitialHost hostName] [-ORBInitialPort portNumber]
[-u] [-UnbindLocalRoot] [-UnbindHost] [-UnbindWorkgroup] [-UnbindCell]
[-UnbindAllTrees]

The ejb-jarFile is the fully-qualified path name of the EJB JAR file containing
the enterprise bean to be bound or unbound. The optional beanParm argument
is used to bind a single enterprise bean in the EJB JAR file; you can identify
this bean by supplying a fully qualified name (for example,
com.ibm.ejs.doc.account.Account, where Account is the bean name) or the
name of the enterprise bean’s deployment descriptor file without the .ser
extension. If an enterprise bean has multiple deployment descriptors in the
same EJB JAR file, you must supply the deployment descriptor file name
rather than the enterprise bean name.

When no options are specified, the JNDI name is bound into the local root’s
name tree, using the local host and port 900 for the bootstrap host (the name
server).

The other options do the following:
v -f — Force the bind, even if the JNDI name is already bound in the

namespace; this option is not valid with the unbind command options.
v -BindLocalRoot — Bind the JNDI name into the local root’s name tree.
v -BindHost — Bind the JNDI name into the host name tree.

74 WebSphere: Writing Enterprise Beans in WebSphere

v -BindWorkgroup — Bind the JNDI name into the workgroup name tree.
v -BindCell — Bind the JNDI name into the cell name tree.
v -BindAllTrees — Bind the JNDI name into the host, the workgroup, and the

cell name trees.
v -ORBInitialHost hostName — Identify the bootstrap host (the default is the

local host).
v -ORBInitiallPort portNumber — Identify the bootstrap port (the default is

port 900).
v -u — Unbind the JNDI name; this option is not valid with bind command

options.
v -UnbindLocalRoot — Unbind the JNDI name from the local root’s name

tree.
v -UnbindHost — Unbind the JNDI name from the host name tree.
v -UnbindWorkgroup — Unbind the JNDI name from the workgroup name

tree.
v -UnbindCell — Unbind the JNDI name from the cell name tree.
v -UnbindAllTrees — Unbind the JNDI name from the host, the workgroup,

and the cell name trees.

If the command is successful, it issues a message similar to the following:
Name AccountHome was bound to CB Home

You must run the ejbbind tool again if any of the following occurs:
v You modify the JNDI name of an enterprise bean. You can modify the JNDI

name by using the jetace tool. For more information, see “Creating a
deployment descriptor and an EJB JAR file” on page 33.

v You reconfigure Component Broker. In this case, you must rebind every
enterprise bean served by this configuration.

v You move the enterprise bean to a different EJB server (CB) or a different
machine.

Configuring systems management to enable lazy enumeration
To enable lazy enumeration (see “Creating finder logic in the EJB server (CB)”
on page 53), follow these steps:
1. From the System Management End User Interface (SM EUI), go to the

View menu, and set the View Level to Control.
2. Expand Host Images

3. Expand the name of your host.
4. Expand Server Images.
5. Expand the name of your server.
6. Expand Container Images.

Chapter 4. Tools for developing and deploying enterprise beans in the EJB server (CB) environment 75

7. Right-click iIteratorSysObjsNoPRef. From the pop-up menu, select
Properties. Change the following properties:
v Change the Default transaction policy to throwException.
v Change the Memory management policy to passivate

at end of transaction.

The transaction policy ensures that the caller starts a transaction. The memory
management policy ensures that the lazy enumerations are passivated when
the transaction completes.

Resolving to EJB homes using lifecycle services in CBConnector

Note: This section applies only to servers running on the AIX, Windows NT,
or Solaris platforms.

When an EJB client performs a simple JNDI lookup, a 1-to-1 mapping is made
between the name and the particular EJB home instance. In a distributed
environment, this model can be limiting. In such an environment, for
example, there may be many EJB homes supporting the same type of
enterprise bean. It is better to have an approach that does not require an
application to request a specific instance of that home. In addition, as changes
are made to the system, it is important that applications not have to be
changed or redeployed to specify a different instance of an EJB home. The
CBConnector LifeCycle Service provides a level of indirection and abstraction
that allows the application to request a home that is within a particular scope
of location within the distributed environment, yet be isolated from the
specifics of the exact configuration of the environment. For more info on
lifecycle factory finders, see the LifeCycle section in the Advanced Programming
Guide.

Using CBConnector, a JNDI context can be associated with a LifeCycle Service
factory finder so that the associated factory finder is used to resolve EJB home
lookup operations from the context. Contexts such as these enable deployers
of EJB applications to take advantage of the power of factory finders in a
manner that is transparent to clients of these applications.

To resolve EJB home lookups with factory finders, the application deployer
can use pre-defined default application contexts associated with the various
CBConnector-supplied default factory finders or use the appbind tool to
create application-specific contexts and associate them with any given factory
finder. For more information on each approach, see “Default context-to-finder
associations” on page 77 and “Application-specific contexts and the appbind
tool” on page 78.

76 WebSphere: Writing Enterprise Beans in WebSphere

Note: Default application contexts and application-specific contexts eliminate
the need for the ejbbind tool, which creates a simple 1-to-1 mapping of
a JNDI name and an EJB home instance. Clients must use one of the
default initial context factories or an application-specific context factory
generated by the appbind tool.

Default context-to-finder associations
There are several default factory finders built into CBConnector, each of which
searches particular scopes of location when finding a factory. When an EJB
application is deployed on a CBConnector server, the EJB homes for the
application are bound in the LifeCycle repository using the names for the EJB
homes as specified by the deployment descriptors contained in the
application’s EJB jar file. A factory finder can find any EJB home within the
scope of its particular search rules.

An EJB client can use a particular built-in CBConnector default factory finder
simply by using the initial context factory that corresponds to that factory
finder. The initial context returned by the context factory will use its
corresponding factory finder to resolve EJB home lookup requests.

Contexts returned by the following initial context factories:
1. com.ibm.ejb.cb.runtime.CBCtxFactoryHostDefault
2. com.ibm.ejb.cb.runtime.CBCtxFactoryHostWidenedDefault
3. com.ibm.ejb.cb.runtime.CBCtxFactoryHostServerDefault
4. com.ibm.ejb.cb.runtime.CBCtxFactoryHostServerWidenedDefault
5. com.ibm.ejb.cb.runtime.CBCtxFactoryWorkGroupDefault
6. com.ibm.ejb.cb.runtime.CBCtxFactoryWorkGroupWidenedDefault
7. com.ibm.ejb.cb.runtime.CBCtxFactoryWorkGroupServerDefault
8. com.ibm.ejb.cb.runtime.CBCtxFactoryWorkGroupServerWidenedDefault
9. com.ibm.ejb.cb.runtime.CBCtxFactoryCellDefault

10. com.ibm.ejb.cb.runtime.CBCtxFactoryCellServerDefault
11. com.ibm.ejb.cb.runtime.CBCtxFactoryCellServerWidenedDefault

resolve EJB home lookup operations with the corresponding factory finders:
1. host/resources/factory-finders/host-scope
2. host/resources/factory-finders/host-scope-widened
3. host/resources/factory-finders/server-server-scope
4. host/resources/factory-finders/server-server-scope-widened
5. workgroup/resources/factory-finders/workgroup-scope
6. workgroup/resources/factory-finders/workgroup-scope-widened
7. workgroup/resources/factory-finders/server-server-scope
8. workgroup/resources/factory-finders/server-server-scope-widened

Chapter 4. Tools for developing and deploying enterprise beans in the EJB server (CB) environment 77

9. cell/resources/factory-finders/host-scope
10. cell/resources/factory-finders/server-server-scope
11. cell/resources/factory-finders/server-server-scope-widened

Server-based context factories can only be used by a client that is running as a
CBConnector server, in which case, server is the name of the CBConnector
server.

Default context factories can only be used by client applications that issue
fully qualified EJB home lookups. If a client traverses to a subcontext and
then performs a partially qualified EJB home lookup, you must run the
appbind tool to create an application-specific context with home subcontexts
and to generate an application-specific initial context factory. For more
information, see “Application-specific contexts and the appbind tool”.

Application-specific contexts and the appbind tool
If a CBConnector-supplied default factory finder is being used to locate an
EJB home, CBConnector supplies a default mapping between application
contexts and default factory finders (for more information, see “Default
context-to-finder associations” on page 77). For added flexibility, an enterprise
bean deployer can create an application-specific context with optional EJB
home subcontexts and associate it with any factory finder. The factory finder
association can be changed at a later time if desired. To isolate clients from the
actual context name, the enterprise bean deployer generates an initial context
factory for the application-specific context by using the appbind tool.

The appbind tool allows deployers to create an application-specific naming
context and associate it with a selected factory finder so that lookup
operations are resolved with that factory finder. These application-specific
contexts are designed to be initial JNDI contexts for EJB clients so that JNDI
lookup calls on EJB homes are transparently resolved with the associated
factory finder. The appbind tool enables users to create, modify, and delete
such application-specific contexts. Note that the application’s EJB home
instances are not actually bound under the application-specific context.
Instead,they are bound to the LifeCycle repository. The associated factory
finder will resolve the EJB home lookups using the lifecycle rules defined for
it.

All application-specific contexts must have one of the following context name
stems:
v host/applications/initial-contexts
v workgroup/applications/initial-contexts
v cell/applications/initial-contexts

78 WebSphere: Writing Enterprise Beans in WebSphere

depending on whether a scope of host, workgroup, or cell is specified when
the context is created.

By default, the factory finder host/resources/factory-finders/host-scope-
widened is associated with an application-specific context created with the
appbind tool. However, the user can specify another factory finder. The
factory finder can be one of the other default factory finders, one created by
an administrator using System Management, or one created by an application
program you write. For more information, see the LifeCycle section in the
Advanced Programming Guide.

Under an application-specific context, subcontexts for EJB home names
optionally can be created. For example, if the name for a home is
com/mycom/myapp/MyHome, the subcontext com/mycom/myapp can be
created. These subcontexts provide additional transparency to the client. They
allow a client to traverse the JNDI name space from the application-specific
context down to any subcontext that corresponds to a non-leaf component of
an EJB home name. The factory finder associated with the application-specific
context is also used to resolve EJB home lookup operations from these
subcontexts. The appbind tool creates a subcontext for each home name in the
deployment descriptors within a specified EJB JAR file.

The appbind tool can optionally create a Java source file for an initial context
factory for the application-specific context being created. This initial context
factory can be used as the initial context factory by clients. The appbind tool
also allows the user to override the default bootstrap host to use for ORB
initialization.

Invoke the appbind tool with the following syntax:
appbind [-u] -name contextName [-sc jarFileName] [-host | -workgroup | -cell]
[-factoryfinder factoryFinderPath]
[-genctxfactory factoryClassName [-o targetDir]]
[-boothost bootstrapHostUrl]

The context being bound or unbound is specified with the required -name
option, where contextName is the name of the JNDI application-specific context
to bind or unbind. All application context names are relative to one of the
following context name stems
v host/applications/initial-contexts
v workgroup/applications/initial-contexts
v cell/applications/initial-contexts

depending on whether a scope of host, workgroup, or cell was specified. (See
the -host, -workgroup, and -cell options below.)

Chapter 4. Tools for developing and deploying enterprise beans in the EJB server (CB) environment 79

A bind operation is performed unless the -u option is specified, in which case,
an unbind operation is performed. If a bind operation is performed on an
existing context, the current factory finder association is added or replaced.
The context cannot be a child or parent of a context which already has a
factory finder association.

The other options do the following:
v -u—This flag is used to perform an unbind operation. An unbind operation

unbinds the context specified with the -name option and the -sc option, if
specified. If the -sc option is specified, only the subcontexts corresponding
to the JNDI home names in the JAR’s deployment descriptors are removed.
If the -sc option is not used, the context specified by the -name option and
all of its subcontexts are unbound. To help keep the name tree manageable,
once a context or subcontext is unbound, parent contexts are recursively
unbound up to the context name stem (see the -name option above) or until
a non-empty parent is encountered.

v -sc—This option is used to specify subcontexts, where file jarFileName is the
name of an EJB JAR file that contains deployment descriptors with EJB
home names. Each of the EJB home names, not including the leaf-name
component, is treated as a subcontext name. For example, if the name for a
home is com/mycom/myapp/MyHome, the subcontext name is
com/mycom/myapp.
When binding, the subcontext names are created under the
application-specific context specified by the -name flag. When unbinding,
the contexts which are unbound are restricted to the subcontext names
identified by the JAR file. Whether binding or unbinding, other subcontexts
are not affected.

v -host, -workgroup, -cell—These flags control the scope of the application
context being bound or unbound. Each scope has a corresponding context
name stem, as described in the -name flag section above. The -host,
-workgroup, and -cell flags specify a scope of host, workgroup, or cell,
respectively, for the context. The default scope is host scope. Only one
scope can be specified per bind or unbind operation.

v -factoryfinder—This option is used to specify which factory finder to
associate with the application-specific context being bound, where
factoryFinderPath is the name of the factory finder. The default factory finder
is host/resources/factory-finders/host-scope-widened.
This option does not apply to unbind operations.

v -genctxfactory—Typically, when an application-specific context is bound, it
is desirable to have an initial context factory for the application-specific
context. This option directs the appbind tool to create a Java source file for
an initial context factory, where factoryClassName is the fully-qualified class
name of the context factory. All package prefix subdirectories are created, if
necessary. If the source file already exists, it is replaced. The file and its

80 WebSphere: Writing Enterprise Beans in WebSphere

containing subdirectories are created relative to the directory specified with
the -o option or, by default, relative to the current directory.
This option does not apply to unbind operations.

v -o—This option is used to specify the target directory for the initial context
factory file (see the -genctxfactory option), where targetDir is the directory
path (not including package prefix directories). The default target directory
is the current directory.
This option does not apply to unbind operations.
If the -o option is used, use of the -genctxfactory flag is required.

v -boothost—This option is used to override the default host and port used
for ORB initialization, where bootstrapHostUrl is the URL of the bootstrap
host. The bootstrap host URL has the form
iiop:// hostName [: portNumber]

Creating an enterprise bean from an existing CICS or IMS application

You can create an enterprise bean from an existing CICS or IMS application
by using the PAOToEJB tool. The application must be mapped into a PAO
prior to creating the enterprise bean. For more information on creating PAOs,
see the Component Broker document entitled Procedural Application Adaptor
Development Guide and the VisualAge for Java, Enterprise Edition
documentation.

The PAOToEJB tool runs independently of the other tools described in this
chapter. To create an enterprise bean from a PAO class, do the following:
1. Change to the directory where your PAO class file exists.
2. Add the PAO class file’s directory, or the JAR file containing the class, to

your CLASSPATH environment variable.
3. Invoke the PAOToEJB command with the following syntax:

PAOToEJB -name [ejbName] paoClass -hod | -eci | -appc

The ejbName argument is optional and specifies the enterprise bean’s name
(for example, Account). If this name is not supplied, the enterprise bean is
named by using the short name of the PAO class. The paoClass argument is
required and specifies the fully qualified Java name of the PAO class
without the .class extension; the PAO class is always a subclass of
com.ibm.ivj.eab.paa.EntityProceduralAdapterObject. You must also specify
one of the following options:
v -hod —This indicates that the PAO class is for Host On-Demand (HOD).

HOD is a browser-based 3270 telnet connection.
v -eci —This indicates that the PAO class is for External Call Interface

(ECI). ECI is a proprietary protocol that provides a remote procedure
call (RPC)-like interface into CICS.

Chapter 4. Tools for developing and deploying enterprise beans in the EJB server (CB) environment 81

v -appc —This indicates that the PAO class is for advanced
program-to-program communications (APPC), which is the System
Network Architecture (SNA) for LU 6.2 communications.

Note: EJB clients that access entity beans with CMP that use HOD or ECI
for CICS or IMS applications must begin a transaction before
invoking a method on these entity beans. This is necessary because
these types of entity beans must use the TX_MANDATORY
transaction attribute.

4. If the paoClass is part of a Java package, then you must create the
corresponding directory structure and move the generated Java files into
this directory.

5. Compile the Java source files of the newly created enterprise bean:
javac ejbName*.java

6. Place the compiled class components of the enterprise bean into a JAR or
ZIP file and use the jetace tool to create an EJB JAR file for the bean, as
described in “Creating a deployment descriptor and an EJB JAR file” on
page 33.

7. Deploy the EJB JAR file by using the cbejb tool as described in
“Deploying an enterprise bean” on page 56.

Creating an enterprise bean that communicates with MQSeries

Component Broker contains tools for developing BOs that send or receive
MQSeries messages. It also allows access to MQSeries queues within
distributed transactions. The EJB server (CB) builds on this MQSeries support
and allows you to create an enterprise bean that wraps an MQSeries-based
BO.

The MQSeries EJB support enables an EJB client application to indirectly
interact with MQSeries through an EJB client interface. Both the Component
Broker support for MQSeries BOs and the EJB support described here require
you to modify the DO implementation generated by Object Builder. The main
difference between these two supported approaches is that when Component
Broker MQSeries-based BOs are built, the MQSeries message content is
specified through Object Builder, whereas the EJB support requires the
MQSeries message content to be specified in a Java properties file.

For more information on the MQSeries support in Component Broker, see the
MQSeries Application Adaptor Development Guide document.

The mqaaejb tool generates a session bean that wraps a Component Broker
BO based on the MQSeries Application Adaptor. The resulting session bean
implementation is specific to the EJB server (CB) and is not portable to other

82 WebSphere: Writing Enterprise Beans in WebSphere

EJB servers. To deploy the generated session bean, use the cbejb tool. The
mqaaejb tool runs independently of other EJB server (CB) tools.

To create a session bean for a particular MQSeries queue, do the following:
1. Create a Java properties file that contains these items:
v The message type specification—The property name must be

messageType, and its value must be either Inbound, Outbound, or
InOut. If InOut is chosen, a pair of enterprise beans, instead of a single
one, are created to accommodate paired inbound and outbound message
queues. Here is an example of this specification:
messageType=Inbound

v A list of message field specifications—For each message field, the
property name is the field name, and the property value is the field
type. Here is an example of this specification:
bankName=java.lang.String

accountNumber=int

Note: Java class names in the type specifications must be the fully
qualified package name.

2. Run the mqaaejb command with the following syntax:
mqaaejb -f propertiesFile -n baseBeanName [-p packageName]
[-i existingInboundBOInterfaceName]
[-o existingOutboundBOInterfaceName]
[-c existingOutboundCopyName

The -f and -n options are required. The propertiesFile specifies the name of
the properties file created in Step 1, and the baseBeanName argument
specifies the base name of the enterprise bean or beans to be generated.
For example, if the base name is Account and the properties file specifies
that it is for both an inbound and an outbound message, then the mqaaejb
command generates session beans, related interfaces, and artifacts with the
following names:

AccountInboundBean
AccountEJBObject
AccountInboundEJBHome
AccountOutboundBean
AccountOutboundEJBObject
AccountOutboundEJBHome
AccountMsgTemplate

The -p option specifies the package name of the enterprise bean; if not
specified, the package name defaults to mytest.ejb.mqaa.

Chapter 4. Tools for developing and deploying enterprise beans in the EJB server (CB) environment 83

Unless the -i option or the -o and -c options are specified, the mqaaejb
command makes a mark for the the cbejb command; later, when the the
cbejb command is run over the beans, it generates the required backing
message BOs for the session beans. If you have already created and tested
MQSeries Application Adaptor-based BOs (following the procedure
described in the MQSeries Application Adaptor Development Guide), you now
need only wrap them in session beans. You can specify the names of these
BOs and the Copy object to the mqaaejb command. The mqaaejb
command then creates session beans that use the specified BOs. The names
of these objects must be fully qualified. For example:
mqaaejb -f mymsg.properties -n Account -i TextMessage::TMInbound \

-o TextMessage::TMOutbound -c TextMessageCopy::TMOutboundCopy

You still must specify the base bean name with the -n option
independently of the existing BOs. You also must provide a properties file;
the message format specified in this file must be consistent with the
existing BOs. The correct mapping between the C++ field types in the BOs
and the Java types in the properties file can be established by referring to
the IDL C++/Java binding documentation.

The following items are generated in the working directory on successful
completion of the mqaaejb command:
v The Java source files (and the corresponding compiled class files) that

compose the enterprise bean in the subdirectory corresponding to the
package name.

v A JAR file containing the Java source files and compiled files that
compose the enterprise bean.

v An XML file containing the enterprise bean’s deployment descriptor.
3. Run the jetace tool as follows to generate an EJB JAR file for the enterprise

bean:
jetace -f beanName.xml

4. Run the cbejb tool to deploy the enterprise bean contained in the EJB JAR
file. For more information, see “Deploying an enterprise bean” on page 56.
When the cbejb command is complete, unless you are using existing BOs,
you possibly need to follow the steps in the MQSeries Application Adaptor
Development Guide to modify the DO implantation.

Restrictions in the EJB server (CB) environment

The following restrictions apply when developing enterprise beans for the EJB
server (CB) environment:
v Unqualified interface and exception names cannot be duplicated in

enterprise beans. For example, the com.ibm.ejs.doc.account.Account
interface must not be reused in a package named

84 WebSphere: Writing Enterprise Beans in WebSphere

com.ibm.ejs.doc.bank.Account. This restriction is necessary because the EJB
server (CB) tools generate enterprise bean support files that use the
unqualified name only.

v Container-managed fields in entity beans must be valid for use in CORBA
IDL files. Specifically, the variable names must use ISO Latin-1 characters;
they must not begin with an underscore character (_), they must not contain
the dollar character ($), and they must not be CORBA keywords. Variables
that have the same name but different cases are not allowed. (For example,
you cannot use the following variables in the same class: accountId and
AccountId. For more information on CORBA IDL, consult a CORBA
programming guide.
Also, container-managed fields in entity beans must be valid Java types, but
they cannot be of type ejb.javax.Handle or an array of type EJBObject or
EJBHome. Furthermore, container-managed fields of type String (or arrays
of type String) cannot be set to null at run time because these types map to
CORBA IDL type string or wstring, which are prohibited by CORBA from
having null values.

v The use of underscores (_) in the names of user-defined interfaces and
exception classes is discouraged.

v Method names in the remote interface must not match method names in the
Component Broker Managed Object Framework (that is, methods in the
IManagedServer::IManagedObjectWithCachedDataObject,
CosStream::Streamable, CosLifeCycle::LifeCycleObject, and
CosObjectIdentity::IdentifiableObject interfaces). For more information on
the Managed Object Framework, see the Component Broker Programming
Guide. In addition, do not use underscores (_) at the end of property or
method names; this restriction prevents name collision with queryable
attributes in BO interfaces that correspond to container-managed fields.

v The getUserTransaction method of the javax.ejb.EJBContext interface (which
is inherited by the SessionContext interface) returns an object of type
javax.transaction.UserTransaction rather than type javax.jts.UserTransaction.
While this is a deviation from the 1.0 version of the EJB Specification, the
1.1 version of the EJB Specification requires that the getUserTransaction
method return an object of type javax.transaction.UserTransaction and
drops the requirement to return objects of type javax.jts.UserTransaction.

v The javax.ejb.SessionSynchronization interface is not supported.
v Entity beans with BMP that use Java Database Connectivity (JDBC) to

access a database cannot participate in distributed transactions because the
environment does not support XA-enabled JDBC. In addition, a BMP entity
bean that uses JDBC to access a DB2 database must not be run in the same
server process as a CMP entity bean that uses DB2 or in the same server
process as an ordinary CB BO that uses DB2. Similarly, a BMP entity bean
that uses JDBC to access an Oracle database must not be run in the same
server process as a CMP entity bean (or other CB BO) that uses Oracle.

Chapter 4. Tools for developing and deploying enterprise beans in the EJB server (CB) environment 85

v The variables of the primary key class of a BMP entity bean must be public.
v The run-as identity and access control deployment descriptor attributes are

not used.
v The remove method inherited by an enterprise bean’s remote interface

(from the javax.ejb.EJBObject interface) does not throw the
javax.ejb.RemoveException exception, even if the enterprise bean’s
corresponding ejbRemove() method throws this exception. This restriction is
necessary because of the name conflict between the remove method and the
CORBA CosLifeCycle::LifeCycleObject::remove method, which is inherited
by all Component Broker managed objects.

v Single-threaded access to enterprise beans is enforced only if a bean’s
transaction attribute is set to either TX_NOT_SUPPORTED or
TX_BEAN_MANAGED. For other enterprise beans, access from different
transactions is serialized, but serialized access from different threads
running under the same transaction is not enforced. Illegal callbacks for
enterprise beans deployed with the TX_NOT_SUPPORTED or
TX_BEAN_MANAGED transaction attribute result in a
java.rmi.RemoteException exception being thrown to the EJB client.

v The session bean timeout attribute is not supported.
v The transaction attribute can be set only for the bean as a whole; the

transaction attribute cannot be set on individual methods in a bean.
v If a stateful session bean has the TX_BEAN_MANAGED transaction

attribute value, a method that begins a transaction must also complete that
transaction (commit or roll back the transaction). In other words, a
transaction cannot span multiple methods in a stateful session bean when
used in the EJB server (CB) environment.

v The TX_MANDATORY transaction attribute value must be used in entity
beans with container-managed persistence (CMP) that use HOD or ECI to
access CICS or IMS applications. As a result, EJB clients that access these
entity beans must do so within a client-initiated one-phase commit
transaction (CB session service).

v The TX_NOT_SUPPORTED transaction attribute value is not supported for
entity beans with CMP, because these beans must be accessed within a
transaction.

v The TX_REQUIRES_NEW transaction attribute is not supported.
v The TX_SUPPORTS transaction attribute can be used in entity beans with

CMP; however, EJB clients that access these beans must do so within a
client-initiated transaction.

v The transaction isolation level attribute is not supported.
v When using the com.ibm.ejb.cb.runtime.CBCtxFactory context factory, any

of the default initial context factories (see “Default context-to-finder
associations” on page 77), or an application-specific initial context factory
generated by the appbind tool (see “Application-specific contexts and the

86 WebSphere: Writing Enterprise Beans in WebSphere

appbind tool” on page 78), the javax.naming.Context.list and
javax.naming.Context.listBindings methods can return no more than 1000
elements in the javax.naming.NamingEnumeration object.

v C++ CORBA-based EJB clients are restricted to invoking methods that do
not use parameters that are arrays or that are of the java.io.Serializable type
or the java.lang.String type. This restriction effectively prohibits these EJB
clients from accessing entity beans directly because primary key classes
must be serializable. The String and array types in the remote or home
interface are mapped to IDL value types to allow null values to be passed
between a Java EJB client and an enterprise bean. CORBA C++ EJB clients
cannot invoke the javax.ejb.EJBHome.remove and
javax.ejb.EJBObject.getHandle methods because these methods contain
Serializable parameters. EJB clients cannot be built with Microsoft Visual
C++®.

Chapter 4. Tools for developing and deploying enterprise beans in the EJB server (CB) environment 87

88 WebSphere: Writing Enterprise Beans in WebSphere

Chapter 5. Developing enterprise beans

This chapter explains the basic tasks required to develop and package the
most common types of enterprise beans. Specifically, this chapter focuses on
creating stateless session beans and entity beans that use container-managed
persistence (CMP); in the discussion of stateless session beans, important
information about stateful beans is also provided. For information on
developing entity beans that use bean-managed persistence (BMP), see
“Developing entity beans with BMP” on page 157.

The information in this chapter is not exhaustive; however, it includes the
information you need to develop basic enterprise beans. For information on
developing more complicated enterprise beans, consult a commercially
available book on enterprise bean development. The example enterprise beans
discussed in this chapter and the example Java applications and servlets that
use them are described in “Information about the examples described in the
documentation” on page 225.

This chapter describes the requirements for building each of the major
components of an enterprise bean. If you do not intend to use one of the
commercially available integrated development environments (IDE), such as
IBM’s VisualAge for Java, you must build each of these components manually
(by using tools in the Java Development Kit and WebSphere). Manually
developing enterprise beans is much more difficult and error-prone than
developing them in an IDE. Therefore, it is strongly recommended that you
choose an IDE with which you are comfortable.

Note: In the EJB server (CB) environment, do not duplicate unqualified
interface and exception names in enterprise beans. For example, the
com.ibm.ejs.doc.account.Account interface must not be reused in a
package named com.ibm.ejs.doc.bank.Account. This restriction is
necessary because the EJB server (CB) tools generate enterprise bean
support files that use the unqualified name only.

Developing entity beans with CMP

In an entity bean with CMP, the container handles the interactions between
the entity bean and the data source. In an entity bean with BMP, the entity
bean must contain all of the code required for the interactions between the
entity bean and the data source. For this reason, developing an entity bean
with CMP is simpler than developing an entity bean with BMP.

© Copyright IBM Corp. 1999, 2000 89

This section examines the development of entity beans with CMP. While much
of the information in this section also applies to entity beans with BMP, there
are some major differences between the two types. For information on the
tasks required to develop an entity bean with BMP, see “Developing entity
beans with BMP” on page 157.

Every entity bean must contain the following basic parts:
v The enterprise bean class. For more information, see “Writing the enterprise

bean class (entity with CMP)”.
v The enterprise bean’s home interface. For more information, see “Writing

the home interface (entity with CMP)” on page 98.
v The enterprise bean’s remote interface. For more information, see “Writing

the remote interface (entity with CMP)” on page 101.
v The enterprise bean’s primary key class. For more information, see “Writing

the primary key class (entity with CMP)” on page 102.

Writing the enterprise bean class (entity with CMP)
In a CMP entity bean, the bean class defines and implements the business
methods of the enterprise bean, defines and implements the methods used to
create instances of the enterprise bean, and implements the methods used by
the container to inform the instances of the enterprise bean of significant
events in the instance’s life cycle. Enterprise bean clients never access the bean
class directly; instead, the classes that implement the home and remote
interfaces are used to indirectly invoke the methods defined in the bean class.

By convention, the enterprise bean class is named NameBean, where Name is
the name you assign to the enterprise bean. The enterprise bean class for the
example Account enterprise bean is named AccountBean.

Every entity bean class with CMP must meet the following requirements:
v It must be public, it must not be abstract, and it must implement the

javax.ejb.EntityBean interface. For more information, see “Implementing the
EntityBean interface” on page 96.

v It must define instance variables that correspond to persistent data
associated with the enterprise bean. For more information, see “Defining
variables” on page 91.

v It must implement the business methods used to access and manipulate the
data associated with the enterprise bean. For more information, see
“Implementing the business methods” on page 93.

v It must define and implement an ejbCreate method for each way in which
the enterprise bean can be instantiated. A corresponding ejbPostCreate
method must be defined for each ejbCreate method. For more information,
see “Implementing the ejbCreate and ejbPostCreate methods” on page 94.

90 WebSphere: Writing Enterprise Beans in WebSphere

Note: The enterprise bean class can implement the enterprise bean’s remote
interface, but this is not recommended. If the enterprise bean class
implements the remote interface, it is possible to inadvertently pass the
this variable as a method argument.

Figure 18 shows the main parts of the enterprise bean class for the example
Account enterprise bean. (Emphasized code is in bold type.) The sections that
follow discuss these parts in greater detail.

Defining variables
An entity bean class can contain both persistent and nonpersistent instance
variables; however, static variables are not supported in enterprise beans
unless they are also final (that is, they are constants). Static variables are not
supported because there is no way to guarantee that they remain consistent
across enterprise bean instances.

Container-managed fields (which are persistent variables) are stored in a
database. Container-managed fields must be public.

Nonpersistent variables are not stored in a database and are temporary.
Nonpersistent variables must be used with caution and must not be used to
maintain the state of an EJB client between method invocations. This
restriction is necessary because nonpersistent variables cannot be relied on to
remain the same between method invocations outside of a transaction because
other EJB clients can change these variables, or they can be lost when the
entity bean is passivated.

Note: In the EJB server (CB) environment, container-managed fields in entity
beans must be valid for use in CORBA IDL files. Specifically, the
variable names must use ISO Latin-1 characters, they must not begin
with an underscore character (_), they must not contain the dollar
character ($), and they must not be CORBA keywords. Variables that
have the same name but different cases are not allowed. (For example,

...
import java.rmi.RemoteException;
import java.util.Properties;
import javax.ejb.*;
import java.lang.*;
public class AccountBean implements EntityBean {

// Set instance variables here
...
// Implement methods here
...

}

Figure 18. Code example: The AccountBean class

Chapter 5. Developing enterprise beans 91

you cannot use the following variables in the same class: accountId and
AccountId. For more information on CORBA IDL, consult a CORBA
programming guide.

Also, container-managed fields in entity beans must be valid Java
types, but they cannot be of type ejb.javax.Handle or an array of type
EJBObject or EJBHome. Furthermore, container-managed fields of type
String (or arrays of type String) cannot be set to null at run time
because these types map to CORBA IDL type string or wstring, which
are prohibited by CORBA from having null values.

The AccountBean class contains three container-managed fields (shown in
Figure 19):
v accountId, which identifies the account ID associated with an account
v type, which identifies the account type as either savings (1) or checking (2)
v balance, which identifies the current balance of the account

The deployment descriptor is used to identify container-managed fields in
entity beans with CMP. In an entity bean with CMP, each container-managed
field must be initialized by each ejbCreate method (see “Implementing the
ejbCreate and ejbPostCreate methods” on page 94).

A subset of the container-managed fields is used to define the primary key
class associated with each instance of an enterprise bean. As is shown in
“Writing the primary key class (entity with CMP)” on page 102, the accountId
variable defines the primary key for the Account enterprise bean.

The AccountBean class contains two nonpersistent variables:
v entityContext, which identifies the entity context of each instance of an

Account enterprise bean. The entity context can be used to get a reference
to the EJB object currently associated with the bean instance and to get the
primary key object associated with that EJB object.

...
public class AccountBean implements EntityBean {

private EntityContext entityContext = null;
private ListResourceBundle bundle =

ResourceBundle.getBundle(
"com.ibm.ejs.doc.account.AccountResourceBundle");

public long accountId = 0;
public int type = 1;
public float balance = 0.0f;
...

}

Figure 19. Code example: The variables of the AccountBean class

92 WebSphere: Writing Enterprise Beans in WebSphere

v bundle, which encapsulates a resource bundle class
(com.ibm.ejs.doc.account.AccountResourceBundle) that contains
locale-specific objects used by the Account bean.

Implementing the business methods
The business methods of an entity bean class define the ways in which the
data encapsulated in the class can be manipulated. The business methods
implemented in the enterprise bean class cannot be directly invoked by an EJB
client. Instead, the EJB client invokes the corresponding methods defined in
the enterprise bean’s remote interface, by using an EJB object associated with
an instance of the enterprise bean, and the container invokes the
corresponding methods in the instance of the enterprise bean.

Therefore, for every business method implemented in the enterprise bean
class, a corresponding method must be defined in the enterprise bean’s
remote interface. The enterprise bean’s remote interface is implemented by the
container in the EJB object class when the enterprise bean is deployed.

Figure 20 on page 94 shows the business methods for the AccountBean class.
These methods are used to add a specified amount to an account balance and
return the new balance (add), to return the current balance of an account
(getBalance), to set the balance of an account (setBalance), and to subtract a
specified amount from an account balance and return the new balance
(subtract).

The subtract method throws the user-defined exception
com.ibm.ejs.doc.account.InsufficientFundsException if a client attempts to
subtract more money from an account than is contained in the account
balance. The subtract method in the Account bean’s remote interface must
also throw this exception as shown in Figure 25 on page 102. User-defined
exception classes for enterprise beans are created as are any other user-defined
exception class. The message content for the InsufficientFundsException
exception is obtained from the AccountResourceBundle class file by invoking
the getMessage method on the bundle object.

Note: In the EJB server (CB) environment, use of underscores (_) in the names
of user-defined interfaces and exception classes is discouraged.

Chapter 5. Developing enterprise beans 93

Implementing the ejbCreate and ejbPostCreate methods
You must define and implement an ejbCreate method for each way in which
you want a new instance of an enterprise bean to be created. For each
ejbCreate method, you must also define a corresponding ejbPostCreate
method. Each ejbCreate and ejbPostCreate method must correspond to a
create method in the home interface.

Like the business methods of the bean class, the ejbCreate and ejbPostCreate
methods cannot be invoked directly by the client. Instead, the client invokes
the create method of the enterprise bean’s home interface by using the EJB
home object, and the container invokes the ejbCreate method followed by the
ejbPostCreate method. If the ejbCreate and ejbPostCreate methods are
executed successfully, an EJB object is created and the persistent data
associated with that object is inserted into the data source.

...
public class AccountBean implements EntityBean {

...
public long accountId = 0;
public int type = 1;
public float balance = 0.0f;
...
public float add(float amount) {

balance += amount;
return balance;

}
...
public float getBalance() {

return balance;
}
...
public void setBalance(float amount) {

balance = amount;
}
...
public float subtract(float amount) throws InsufficientFundsException {

if(balance < amount) {
throw new InsufficientFundsException(

bundle.getMessage("insufficientFunds"));
}
balance -= amount;
return balance;

}
...

}

Figure 20. Code example: The business methods of the AccountBean class

94 WebSphere: Writing Enterprise Beans in WebSphere

For an entity bean with CMP, the container handles the required interaction
between the entity bean instance and the data source between calls to the
ejbCreate and ejbPostCreate methods. For an entity bean with BMP, the
ejbCreate method must contain the code to directly handle this interaction.
For more information on entity beans with BMP, see “Developing entity beans
with BMP” on page 157.

Each ejbCreate method in an entity bean with CMP must meet the following
requirements:
v It must be public and return void.
v Its arguments must be valid for Java remote method invocation (RMI). For

more information, see “The java.io.Serializable and java.rmi.Remote
interfaces” on page 117.

v It must initialize the container-managed fields of the enterprise bean
instance. The container extracts the values of these variables and writes
them to the data source after the ejbCreate method returns.

Each ejbPostCreate method must be public, return void, and have the same
arguments as the matching ejbCreate method.

If necessary, both the ejbCreate method and the ejbPostCreate method can
throw the java.rmi.RemoteException exception and the
javax.ejb.CreateException exception.

Figure 21 on page 96 shows two sets of ejbCreate and ejbPostCreate methods
required for the example AccountBean class. The first set of ejbCreate and
ejbPostCreate methods are wrappers that call the second set of methods and
set the type variable to 1 (corresponding to a savings account) and the balance
variable to 0 (zero dollars).

Chapter 5. Developing enterprise beans 95

Implementing the EntityBean interface
Each entity bean class must implement the methods inherited from the
javax.ejb.EntityBean interface. The container invokes these methods to inform
the bean instance of significant events in the instance’s life cycle. (For more
information, see “Entity bean life cycle” on page 26.) All of these methods
must be public and return void, and they can throw the
java.rmi.RemoteException exception.
v ejbActivate—This method is invoked by the container when the container

selects an entity bean instance from the instance pool and assigns that
instance to a specific existing EJB object. This method must contain any
code that you want to execute when the enterprise bean instance is
activated.

v ejbLoad—This method is invoked by the container to synchronize an entity
bean’s container-managed fields with the corresponding data in the data
source. (That is, the values of the fields in the data source are loaded into
the container-managed fields in the corresponding enterprise bean instance.)
This method must contain any code that you want to execute when the
enterprise bean instance is synchronized with associated data in the data
source.

...
public class AccountBean implements EntityBean {

...
public long accountId = 0;
public int type = 1;
public float balance = 0.0f;
...
public void ejbCreate(AccountKey key) {

ejbCreate(key, 1, 0.0f);
}
...
public void ejbCreate(AccountKey key, int type, float initialBalance)
throws RemoteException {

accountId = key.accountId;
type = type;
balance = initialBalance;

}
...
public void ejbPostCreate(AccountKey key) throws RemoteException {

ejbPostCreate(key, 1, 0);
}
...
public void ejbPostCreate(AccountKey key, int type, float initialBalance) { }
...

}

Figure 21. Code example: The ejbCreate and ejbPostCreate methods of the AccountBean class

96 WebSphere: Writing Enterprise Beans in WebSphere

v ejbPassivate—This method is invoked by the container when the container
disassociates an entity bean instance from its EJB object and places the
enterprise bean instance in the instance pool. This method must contain any
code that you want to execute when the enterprise bean instance is
″passivated″ or deactivated.

v ejbRemove—This method is invoked by the container when a client invokes
the remove method inherited by the enterprise bean’s home interface from
the javax.ejb.EJBHome interface. This method must contain any code that
you want to execute before an enterprise bean instance is removed from the
container (and the associated data is removed from the data source). This
method can throw the javax.ejb.RemoveException exception if removal of
an enterprise bean instance is not permitted.

v setEntityContext—This method is invoked by the container to pass a
reference to the javax.ejb.EntityContext interface to an enterprise bean
instance. If an enterprise bean instance needs to use this context at any time
during its life cycle, the enterprise bean class must contain an instance
variable to store this value. This method must contain any code required to
store a reference to a context.

v ejbStore—This method is invoked by the container when the container
needs to synchronize the data in the data source with the values of the
container-managed fields in an enterprise bean instance. (That is, the values
of the variables in the enterprise bean instance are copied to the data
source, overwriting the previous values.) This method must contain any
code that you want to execute when the data in the data source is
overwritten with the corresponding values in the enterprise bean instance.

v unsetEntityContext—This method is invoked by the container, before an
enterprise bean instance is removed, to free up any resources associated
with the enterprise bean instance. This is the last method called prior to
removing an enterprise bean instance.

In entity beans with CMP, the container handles the required data source
interaction for these methods. In entity beans with BMP, these methods must
directly handle the required data source interaction. For more information on
entity beans with BMP, see “Chapter 9. More-advanced programming concepts
for enterprise beans” on page 157.

These methods have several possible uses, including the following:
v They can contain audit or debugging code.
v They can contain code for allocating and deallocating additional resources

used by the bean instance (for example, an SNA connection to a
mainframe).

As shown in Figure 22 on page 98, except for the setEntityContext and
unsetEntityContext methods, all of these methods are empty in the
AccountBean class because no additional action is required by the bean for the

Chapter 5. Developing enterprise beans 97

particular life cycle states associated with the these methods. The
setEntityContext and unsetEntityContext methods are used in a conventional
way to set the value of the entityContext variable.

Writing the home interface (entity with CMP)
An entity bean’s home interface defines the methods used by clients to create
new instances of the bean, find and remove existing instances, and obtain
metadata about an instance. The home interface is defined by the enterprise
bean developer and implemented in the EJB home class created by the
container during enterprise bean deployment.

The container makes the home interface accessible to enterprise bean clients
through the Java Naming and Directory Interface (JNDI). JNDI is independent
of any specific naming and directory service and allows Java-based
applications to access any naming and directory service in a standard way.

By convention, the home interface is named NameHome, where Name is the
name you assign to the enterprise bean. For example, the Account enterprise
bean’s home interface is named AccountHome.

Every home interface must meet the following requirements:
v It must extend the javax.ejb.EJBHome interface. The home interface inherits

several methods from the javax.ejb.EJBHome interface. See “The
javax.ejb.EJBHome interface” on page 116 for information on these methods.

...
public class AccountBean implements EntityBean {

private EntityContext entityContext = null;
...
public void ejbActivate() throws RemoteException { }
...
public void ejbLoad () throws RemoteException { }
...
public void ejbPassivate() throws RemoteException { }
...
public void ejbRemove() throws RemoteException { }
...
public void ejbStore () throws RemoteException { }
...
public void setEntityContext(EntityContext ctx) throws RemoteException {

entityContext = ctx;
}
...
public void unsetEntityContext() throws RemoteException {

entityContext = null;
}

}

Figure 22. Code example: Implementing the EntityBean interface in the AccountBean class

98 WebSphere: Writing Enterprise Beans in WebSphere

v Each method in the interface must be either a create method that
corresponds to a set of ejbCreate and ejbPostCreate methods in the EJB
object class, or a finder method. For more information, see “Defining create
methods” and “Defining finder methods” on page 100.

v The parameters and return value of each method defined in the home
interface must be valid for Java RMI. For more information, see “The
java.io.Serializable and java.rmi.Remote interfaces” on page 117. In addition,
each method’s throws clause must include the java.rmi.RemoteException
exception class.

Figure 23 shows the relevant parts of the definition of the home interface
(AccountHome) for the example Account bean. This interface defines two
abstract create methods: the first creates an Account object by using an
associated AccountKey object, the second creates an Account object by using
an associated AccountKey object and specifying an account type and an initial
balance. The interface defines the required findByPrimaryKey method and a
findLargeAccounts method, which returns a collection of accounts containing
balances greater than a specified amount.

Defining create methods
A create method is used by a client to create an enterprise bean instance and
insert the data associated with that instance into the data source. Each create
method must be named create and it must have the same number and types
of arguments as a corresponding ejbCreate method in the enterprise bean
class. (The ejbCreate method must itself have a corresponding ejbPostCreate
method.)

Each create method must meet the following requirements:
v It must be named create.

...
import java.rmi.*;
import java.util.*;
import javax.ejb.*;
public interface AccountHome extends EJBHome {

...
Account create (AccountKey id) throws CreateException, RemoteException;
...
Account create(AccountKey id, int type, float initialBalance)

throws CreateException, RemoteException;
...
Account findByPrimaryKey (AccountKey id)

RemoteException, FinderException;
...
Enumeration findLargeAccounts(float amount)

throws RemoteException, FinderException;
}

Figure 23. Code example: The AccountHome home interface

Chapter 5. Developing enterprise beans 99

v It must return the type of the enterprise bean’s remote interface. For
example, the return type for the create methods in the AccountHome
interface is Account (as shown in Figure 23 on page 99).

v It must have a throws clause that includes the java.rmi.RemoteException
exception, the javax.ejb.CreateException exception, and all of the exceptions
defined in the throws clause of the corresponding ejbCreate and
ejbPostCreate methods.

Defining finder methods
A finder method is used to find one or more existing entity EJB objects. Each
finder method must be named findName, where Name further describes the
finder method’s purpose.

At minimum, each home interface must define the findByPrimaryKey method
that enables a client to locate an EJB object by using the primary key only. The
findByPrimaryKey method has one argument, an object of the bean’s primary
key class, and returns the type of the bean’s remote interface.

Every other finder method must meet the following requirements:
v It must return the type of the enterprise bean’s remote interface or the

java.util.Enumeration interface (when a finder method can return more than
one EJB object).

v It must have a throws clause that includes the java.rmi.RemoteException
and javax.ejb.FinderException exception classes.

While every entity bean must contain the default finder method, you can
write additional finder methods if needed. For example, the Account bean’s
home interface defines the findLargeAccounts method to find objects that
encapsulate accounts with balances of more than a specified amount, as
shown in Figure 24. Because this finder method can be expected to return a
reference to more than one EJB object, its return type is Enumeration.

Every EJB server can implement the findByPrimaryKey method. During
enterprise bean deployment, the container generates the code required to
search the database for the appropriate enterprise bean instance.

However, for each additional finder method that you define in the home
interface, the enterprise bean deployer must associate finder logic with that
finder method. This logic is used by the EJB server during deployment to
generate the code required to implement the finder method.

Enumeration findLargeAccounts(float amount)
throws RemoteException, FinderException;

Figure 24. Code example: The findLargeAccounts method

100 WebSphere: Writing Enterprise Beans in WebSphere

The EJB Specification does not define the format of the finder logic, so the
format can vary according to the EJB server you are using. For more
information on creating finder logic, see “Creating finder logic in the EJB
server (AE)” on page 33 or “Creating finder logic in the EJB server (CB)” on
page 53.

Writing the remote interface (entity with CMP)
An entity bean’s remote interface provides access to the business methods
available in the bean class. It also provides methods to remove an EJB object
associated with a bean instance and to obtain the bean instance’s home
interface, object handle, and primary key. The remote interface is defined by
the enterprise bean developer and implemented in the EJB object class created
by the container during enterprise bean deployment.

By convention, the remote interface is named Name, where Name is the name
you assign to the enterprise bean. For example, the Account enterprise bean’s
remote interface is named Account.

Every remote interface must meet the following requirements:
v It must extend the javax.ejb.EJBObject interface. The enterprise bean’s

remote interface inherits several methods from the javax.ejb.EJBObject
interface. See “Methods inherited from javax.ejb.EJBObject” on page 116 for
information on these methods.

v You must define a corresponding business method for every business
method implemented in the enterprise bean class.

v The parameters and return value of each method defined in the interface
must be valid for Java RMI. For more information, see “The
java.io.Serializable and java.rmi.Remote interfaces” on page 117.

v Each method’s throws clause must include the java.rmi.RemoteException
exception class.

Note: In the EJB server (CB) environment, do not use method names in the
remote interface that match method names in the Component Broker
Managed Object Framework (that is, methods in the
IManagedServer::IManagedObjectWithCachedDataObject,
CosStream::Streamable, CosLifeCycle::LifeCycleObject, and
CosObjectIdentity::IdentifiableObject interfaces). For more information
on the Managed Object Framework, see the Component Broker
Programming Guide. In addition, do not use underscores (_) at the end
of property or method names; this restriction prevents name collision
with queryable attributes in business object interfaces that correspond
to container-managed fields.

Figure 25 on page 102 shows the relevant parts of the definition of the remote
interface (Account) for the example Account enterprise bean. This interface

Chapter 5. Developing enterprise beans 101

defines four methods for displaying and manipulating the account balance
that exactly match the business methods implemented in the AccountBean
class.

All of the business methods throw the java.rmi.RemoteException exception
class. In addition, the subtract method must throw the user-defined exception
com.ibm.ejs.doc.account.InsufficientFundsException because the corresponding
method in the bean class throws this exception. Furthermore, any client that
calls this method must either handle the exception or pass it on by throwing
it.

Writing the primary key class (entity with CMP)
Within a container, every entity EJB object has a unique identity that is
defined by using a combination of the object’s home interface name and its
primary key, the latter of which is assigned to the object at creation. If two
EJB objects have the same identity, they are considered identical.

The primary key class is used to encapsulate an EJB object’s primary key. By
convention, the primary key class is named NameKey, where Name is the
name of the enterprise bean. For example, the Account enterprise bean’s
primary key class is named AccountKey.

A primary key class is used to create and manage the primary key for an EJB
object. The primary key class must meet the following requirements:
v It must be public and it must be serializable. For more information, see

“The java.io.Serializable and java.rmi.Remote interfaces” on page 117.
v Its instance variables must be public, and the variable names must match a

subset of the container-managed field names defined in the enterprise bean
class.

...
import java.rmi.*;
import javax.ejb.*;
public interface Account extends EJBObject
{

...
float add(float amount) throws RemoteException;
...
float getBalance() throws RemoteException;
...
void setBalance(float amount) throws RemoteException;
...
float subtract(float amount) throws InsufficientFundsException,

RemoteException;
}

Figure 25. Code example: The Account remote interface

102 WebSphere: Writing Enterprise Beans in WebSphere

v It must have a public default constructor, at a minimum.

Note: For the EJB server (AE) environment, the primary key class of a CMP
entity bean must override the equals method and the hashCode method
inherited from the java.lang.Object class.

Figure 26 shows the primary key class for the Account enterprise bean. In
effect, this class acts as a wrapper around the primitive long variable
accountId. The hashCode method for the AccountKey class simply invokes the
corresponding hashCode method in the java.lang.Long class after creating a
temporary Long object by using the value of the accountId variable. In
addition to the default constructor, the AccountKey class also defines a
constructor that sets the value of the primary key variable to a specified long.

More complicated enterprise beans are likely to have composite primary keys,
with multiple instance variables representing the primary key.

...
import java.io.*;
public class AccountKey implements Serializable {

public long accountId;
...
public AccountKey() {

super();
}
...
public AccountKey(long accountId) {

this.accountId = accountId;
}
...
// EJB server (AE)-specific method
public boolean equals(Object o) {

if (o instanceof AccountKey) {
AccountKey otherKey = (AccountKey) o;
return (((accountId == otherKey.accountId)));

}
else {

return false;
}

}
...
// EJB server (AE)-specific method
public int hashCode() {

return ((new Long(accountId).hashCode()));
}

}

Figure 26. Code example: The AccountKey primary key class

Chapter 5. Developing enterprise beans 103

Developing session beans

In their basic makeup, session beans are similar to entity beans. However,
their purposes are very different.

From a component perspective, one of the biggest differences between the two
types of enterprise beans is that session beans do not have a primary key class
and the session bean’s home interface does not define finder methods. Session
enterprise beans do not require primary keys and finder methods because
session EJB objects are created, associated with a specific client, and then
removed as needed, whereas entity EJB objects represent permanent data in a
data source and can be uniquely identified with a primary key. Because the
data for session beans is never permanently stored, the session bean class
does not have methods for storing data to and loading data from a data
source.

Every session bean must contain the following basic parts:
v The enterprise bean class. For more information, see “Writing the enterprise

bean class (session)”.
v The enterprise bean’s home interface. For more information, see “Writing

the home interface (session)” on page 113.
v The enterprise bean’s remote interface. For more information, see “Writing

the remote interface (session)” on page 115.

Writing the enterprise bean class (session)
A session bean class defines and implements the business methods of the
enterprise bean, implements the methods used by the container during the
creation of enterprise bean instances, and implements the methods used by
the container to inform the enterprise bean instance of significant events in
the instance’s life cycle. By convention, the enterprise bean class is named
NameBean, where Name is the name you assign to the enterprise bean. The
enterprise bean class for the example Transfer enterprise bean is named
TransferBean.

Every session bean class must meet the following requirements:
v It must define and implement the business methods that execute the tasks

associated with the enterprise bean. For more information, see
“Implementing the business methods” on page 106.

v It must define and implement an ejbCreate method for each way in which
you want it to be able to instantiate the enterprise bean class. For more
information, see “Implementing the ejbCreate methods” on page 108.

v It must be public, it must not be abstract, and it must implement the
javax.ejb.SessionBean interface. For more information, see “Implementing
the SessionBean interface” on page 112.

104 WebSphere: Writing Enterprise Beans in WebSphere

A session bean can be either stateful or stateless. In a stateless session bean,
none of the methods depend on the values of variables set by any other
method, except for the ejbCreate method, which sets the initial (identical) state
of each bean instance. In a stateful enterprise bean, one or more methods
depend on the values of variables set by some other method. As in entity
beans, static variables are not supported in session beans unless they are also
final.

Stateful session beans possibly need to synchronize their conversational state
with the transactional context in which they operate. For example, a stateful
session bean possibly needs to reset the value of some of its variables if a
transaction is rolled back or it possibly needs to change these variables if a
transaction successfully completes.

If a bean needs to synchronize its conversational state with the transactional
context, the bean class must implement the javax.ejb.SessionSynchronization
interface. This interface contains methods to notify the session bean when a
transaction begins, when it is about to complete, and when it has completed.
The enterprise bean developer can use these methods to synchronize the state
of the session enterprise bean instance with ongoing transactions.

Note: The SessionSynchronization interface is not supported in the EJB server
(CB) environment.

The enterprise bean class can implement the enterprise bean’s remote
interface, but this is not recommended. If the enterprise bean class implements
the remote interface, it is possible to inadvertently pass the this variable as a
method argument.

Figure 27 on page 106 shows the main parts of the enterprise bean class for
the example Transfer bean. The sections that follow discuss these parts in
greater detail.

The Transfer bean is stateless. If the Transfer bean’s transferFunds method
were dependent on the value of the balance variable returned by the
getBalance method, the TransferBean would be stateful.

Chapter 5. Developing enterprise beans 105

Implementing the business methods
The business methods of a session bean class define the ways in which an EJB
client can manipulate the enterprise bean. The business methods implemented
in the enterprise bean class cannot be directly invoked by an EJB client.
Instead, the EJB client invokes the corresponding methods defined in the

...
import java.rmi.RemoteException;
import java.util.Properties;
import java.util.ResurceBundle;
import java.util.ListResourceBundle;
import javax.ejb.*;
import java.lang.*;
import javax.naming.*;
import com.ibm.ejs.doc.account.*;
...
public class TransferBean implements SessionBean {

...
private SessionContext mySessionCtx = null;
private InitialContext initialContext = null;
private AccountHome accountHome = null;
private Account fromAccount = null;
private Account toAccount = null;
...
public void ejbActivate() throws RemoteException { }
...
public void ejbCreate() throws RemoteException {

...
}
...
public void ejbPassivate() throws RemoteException { }
...
public void ejbRemove() throws RemoteException { }
...
public float getBalance(long acctId) throws FinderException,

RemoteException {
...

}
...
public void setSessionContext(javax.ejb.SessionContext ctx)

throws java.rmi.RemoteException {
...

}
...
public void transferFunds(long fromAcctId, long toAcctId, float amount)

throws java.rmi.RemoteException {
...

}
}

Figure 27. Code example: The TransferBean class

106 WebSphere: Writing Enterprise Beans in WebSphere

enterprise bean’s remote interface, by using an EJB object associated with an
instance of the enterprise bean, and the container invokes the corresponding
methods in the enterprise bean instance.

Therefore, for every business method defined in the enterprise bean’s remote
interface, a corresponding method must be implemented in the enterprise
bean class. The enterprise bean’s remote interface is implemented by the
container in the EJBObject class when the enterprise bean is deployed.

Figure 28 on page 108 shows the business methods for the TransferBean class.
The getBalance method is used to get the balance for an account. It first
locates the appropriate Account EJB object and then calls that object’s
getBalance method.

The transferFunds method is used to transfer a specified amount between two
accounts (encapsulated in two Account entity EJB objects). After locating the
appropriate Account EJB objects by using the findByPrimaryKey method, the
transferFunds method calls the add method on one account and the subtract
method on the other.

Like all finder methods, findByPrimaryKey can throw both the
FinderException and RemoteException exceptions. The try/catch blocks are
set up around invocations of the findByPrimaryKey method to handle the
entry of invalid account IDs by users. If the session bean user enters an
invalid account ID, the findByPrimaryKey method cannot locate an EJB object,
and the finder method throws the FinderException exception. This exception
is caught and converted into a new FinderException exception containing
information on the invalid account ID.

To call the findByPrimaryKey method, both business methods need to be able
to access the EJB home object that implements the AccountHome interface
discussed in “Writing the home interface (entity with CMP)” on page 98.
Obtaining the EJB home object is discussed in “Implementing the ejbCreate
methods” on page 108.

Chapter 5. Developing enterprise beans 107

Implementing the ejbCreate methods
You must define and implement an ejbCreate method for each way in which
you want an enterprise bean to be instantiated. A stateless session bean must
have only one ejbCreate method, which must return void and contain no
arguments; a stateful session bean can have multiple ejbCreate methods.

...
public class TransferBean implements SessionBean {

...
private Account fromAccount = null;
private Account toAccount = null;
...
public float getBalance(long acctId) throws FinderException, RemoteException {

AccountKey key = new AccountKey(acctId);
try {

fromAccount = accountHome.findByPrimaryKey(key);
} catch(FinderException ex) {

throw new FinderException("Account " + acctId + " does not exist.");
}
return fromAccount.getBalance();

}
...
public void transferFunds(long fromAcctId, long toAcctId, float amount)

throws RemoteException, InsufficientFundsException, FinderException {
AccountKey fromKey = new AccountKey(fromAcctId);
AccountKey toKey = new AccountKey(toAcctId);
try {

fromAccount = accountHome.findByPrimaryKey(fromKey);
} catch(FinderException ex) {

throw new FinderException("Account " + fromAcctId
+ " does not exist.");

}
try {

toAccount = accountHome.findByPrimaryKey(toKey);
} catch(FinderException ex) {

throw new FinderException("Account " + toAcctId
+ " does not exist.");

}
try {

toAccount.add(amount);
fromAccount.subtract(amount);

} catch(InsufficientFundsException ex) {
mySessionCtx.setRollbackOnly();
throw new InsufficientFundsException("Insufficient funds in "

+ fromAcctId);
}

}
}

Figure 28. Code example: The business methods of the TransferBean class

108 WebSphere: Writing Enterprise Beans in WebSphere

Each ejbCreate method must correspond to a create method in the enterprise
bean’s home interface. (Note that there is no ejbPostCreate method in a
session bean as there is in an entity bean.) Like the business methods of the
enterprise bean class, the ejbCreate methods cannot be invoked directly by the
client. Instead, the client invokes the create method in the bean instance’s
home interface, and the container invokes the ejbCreate method. If an
ejbCreate method is executed successfully, an EJB object is created.

Each ejbCreate method must meet the following requirements:
v It must return void.
v It must contain code to set the values of any variables needed by the EJB

object.

Figure 29 on page 110 shows the ejbCreate method required by the example
TransferBean class. The Transfer bean’s ejbCreate method obtains a reference
to the Account bean’s home object. This reference is required by the Transfer
bean’s business methods. Getting a reference to an enterprise bean’s home
interface is a two-step process:
1. Construct an InitialContext object by setting the required property values.

For the example Transfer bean, these property values are defined in the
environment variables of the Transfer bean’s deployment descriptor.

2. Use the InitialContext object to create and get a reference to the home
object. For the example Transfer bean, the JNDI name of the Account bean
is stored in an environment variable in the Transfer bean’s deployment
descriptor.

Creating the InitialContext object: When a container invokes the Transfer
bean’s ejbCreate method, the enterprise bean’s initialContext object is
constructed by creating a Properties variable (env) that requires the following
values:
v The location of the name service (javax.naming.Context.PROVIDER_URL).
v The name of the initial context factory

(javax.naming.Context.INITIAL_CONTEXT_FACTORY).

The values of these properties are discussed in more detail in “Creating and
getting a reference to a bean’s EJB object” on page 131.

Chapter 5. Developing enterprise beans 109

Although the example Transfer bean stores some locale specific variables in a
resource bundle class, like the example Account bean, it also relies on the
values of environment variables stored in its deployment descriptor. Each of
these InitialContext Properties values is obtained from an environment
variable contained in the Transfer bean’s deployment descriptor. A private get
method that corresponds to the property variable is used to get each of the
values (getNamingFactory and getProviderURL); these methods must be
written by the enterprise bean developer. The following environment variables
must be set to the appropriate values in the deployment descriptor of the
Transfer bean.
v javax.naming.Context.INITIAL_CONTEXT_FACTORY
v javax.naming.Context.PROVIDER_URL

(“Setting environment variables for an enterprise bean” on page 44 shows an
example of the jetace page required to set these variables.)

Figure 30 on page 111 illustrates the relevant parts of the getProviderURL
method that is used to get the PROVIDER_URL property value. The
javax.ejb.SessionContext variable (mySessionCtx) is used to get the Transfer

...
public class TransferBean implements SessionBean {

private static final String INITIAL_NAMING_FACTORY_SYSPROP =
"javax.naming.Context.INITIAL_CONTEXT_FACTORY";

private static final String PROVIDER_URL_SYSPROP =
"javax.naming.Context.PROVIDER_URL";

...
private String nameService = null;
...
private String providerURL = null;
...
private InitialContext initialContext = null;
...
public void ejbCreate() throws RemoteException {

// Get the initial context
try {

Properties env = System.getProperties();
...
env.put(PROVIDER_URL_SYSPROP, getProviderUrl());
env.put(INITIAL_CONTEXT_FACTORY_SYSPROP, getNamingFactory());
initialContext = new InitialContext(env);

} catch(Exception ex) {
...

}
...
// Look up the home interface using the JNDI name
...

}

Figure 29. Code example: Creating the InitialContext object in the ejbCreate method of the
TransferBean class

110 WebSphere: Writing Enterprise Beans in WebSphere

bean’s environment in the deployment descriptor by invoking the
getEnvironment method. The object returned by the getEnvironment method
can then be used to get the value of a specific environment variable by
invoking the getProperty method.

Getting the reference to the home object: After constructing the
InitialContext object (initialContext), the ejbCreate method performs a JNDI
lookup using the JNDI name of the Account enterprise bean. Like the
PROVIDER_URL and INITIAL_CONTEXT_FACTORY properties, this name is
also retrieved from an environment variable contained in the Transfer bean’s
deployment descriptor (by invoking a private method named getHomeName).
The lookup method returns an object of type java.lang.Object.

The returned object is narrowed by using the static method
javax.rmi.PortableRemoteObject.narrow to obtain a reference to the EJB home
object for the specified enterprise bean. The parameters of the narrow method
are the object to be narrowed and the class of the object to be created as a
result of the narrowing. For a more thorough discussion of the code required
to locate an enterprise bean in JNDI and then narrow it to get an EJB home
object, see “Creating and getting a reference to a bean’s EJB object” on
page 131.

...
public class TransferBean implements SessionBean {

private SessionContext mySessionCtx = null;
...
private String getProviderURL() throws RemoteException {

//get the provider URL property either from
//the EJB properties or, if it isn't there
//use "iiop://", which causes a default to the local host
...
String pr = mySessionCtx.getEnvironment().getProperty(

PROVIDER_URL_SYSPROP);
if (pr == null)

pr = "iiop://";
return pr;

}
...

}

Figure 30. Code example: The getProviderURL method

Chapter 5. Developing enterprise beans 111

Implementing the SessionBean interface
Every session bean class must implement the methods inherited from the
javax.ejb.SessionBean interface. The container invokes these methods to inform
the enterprise bean instance of significant events in the instance’s life cycle.
All of these methods must be public, return void, and throw the
java.rmi.RemoteException exception.
v ejbActivate—This method is invoked by the container when the container

selects an enterprise bean instance from the instance pool and assigns it a
specific existing EJB object. This method must contain any code that you
want to execute when the enterprise bean instance is activated.

v ejbPassivate—This method is invoked by the container when the container
disassociates an enterprise bean instance from its EJB object and places the
enterprise bean instance in the instance pool. This method must contain any
code that you want to execute when the enterprise bean instance is
passivated (deactivated).

v ejbRemove—This method is invoked by the container when a client invokes
the remove method inherited by the enterprise bean’s home interface (from
the javax.ejb.EJBHome interface). This method must contain any code that
you want to execute when an enterprise bean instance is removed from the
container.

...
public class TransferBean implements SessionBean {

...
private String accountName = null;
...
private InitialContext initialContext = null;
...
public void ejbCreate() throws RemoteException {

// Get the initial context
...
// Look up the home interface using the JNDI name
try {

java.lang.Object ejbHome = initialContext.lookup(accountName);
accountHome = (AccountHome)javax.rmi.PortableRemoteObject.narrow(

(org.omg.CORBA.Object) ejbHome, AccountHome.class);
} catch (NamingException e) { // Error getting the home interface

...
}
...

}
...

}

Figure 31. Code example: Creating the AccountHome object in the ejbCreate method of the
TransferBean class

112 WebSphere: Writing Enterprise Beans in WebSphere

v setSessionContext—This method is invoked by the container to pass a
reference to the javax.ejb.SessionContext interface to a session bean instance.
If an enterprise bean instance needs to use this context at any time during
its life cycle, the enterprise bean class must contain an instance variable to
store this value. This method must contain any code required to store a
reference to the context.
A session context can be used to get a handle to a particular instance of a
stateful session bean. It can also be used to get a reference to a transaction
context object, as described in “Using bean-managed transactions” on
page 181.

Note: In the EJB server (CB) environment, the isCallerInRole and
getCallerIdentity methods inherited from the javax.ejb.EJBContext
interface are not supported.

As shown in Figure 32, except for the setSessionContext method, all of these
methods in the TransferBean class are empty because no additional action is
required by the bean for the particular life cycle states associated with the
these methods. The setSessionContext method is used in a conventional way
to set the value of the mySessionCtx variable.

Writing the home interface (session)
A session bean’s home interface defines the methods used by clients to create
and remove instances of the enterprise bean and obtain metadata about an
instance. The home interface is defined by the enterprise bean developer and
implemented in the EJB home class created by the container during enterprise
bean deployment. The container makes the home interface accessible to clients
through JNDI.

...
public class TransferBean implements SessionBean {

private SessionContext mySessionCtx = null;
...
public void ejbActivate() throws RemoteException { }
...
public void ejbPassivate() throws RemoteException { }
...
public void ejbRemove() throws RemoteException { }
...
public void setSessionContext(SessionContext ctx) throws RemoteException {

mySessionCtx = ctx;
}
...

}

Figure 32. Code example: Implementing the SessionBean interface in the TransferBean class

Chapter 5. Developing enterprise beans 113

By convention, the home interface is named NameHome, where Name is the
name you assign to the enterprise bean. For example, the Transfer enterprise
bean’s home interface is named TransferHome.

Every session bean’s home interface must meet the following requirements:
v It must extend the javax.ejb.EJBHome interface. The home interface inherits

several methods from the javax.ejb.EJBHome interface. See “The
javax.ejb.EJBHome interface” on page 116 for information on these methods.

v Each method in the interface must be a create method that corresponds to a
ejbCreate method in the enterprise bean class. For more information, see
“Implementing the ejbCreate methods” on page 108. Unlike entity beans,
the home interface of a session bean contains no finder methods.

v The parameters and return value of each method defined in the interface
must be valid for Java RMI. For more information, see “The
java.io.Serializable and java.rmi.Remote interfaces” on page 117. In addition,
each method’s throws clause must include the java.rmi.RemoteException
exception class.

Figure 33 shows the relevant parts of the definition of the home interface
(TransferHome) for the example Transfer bean.

A create method is used by a client to create an enterprise bean instance. A
stateful session bean can contain multiple create methods; however, a stateless
session bean can contain only one create method with no arguments. This
restriction on stateless session beans ensures that every instance of a stateless
session bean is the same as every other instance of the same type. (For
example, every Transfer bean instance is the same as every other Transfer
bean instance.)

Each create method must be named create and have the same number and
types of arguments as a corresponding ejbCreate method in the EJB object
class. The return types of the create method and its corresponding ejbCreate
method are always different.

Each create method must meet the following requirements:

...
import javax.ejb.*;
import java.rmi.*;
public interface TransferHome extends EJBHome {

Transfer create() throws CreateException, RemoteException;
}

Figure 33. Code example: The TransferHome home interface

114 WebSphere: Writing Enterprise Beans in WebSphere

v It must return the type of the enterprise bean’s remote interface. For
example, the return type for the create method in the TransferHome
interface is Transfer.

v It must have a throws clause that includes the java.rmi.RemoteException
exception, the javax.ejb.CreateException exception class, and all of the
exceptions defined in the throws clause of the corresponding ejbCreate
method.

Writing the remote interface (session)
A session bean’s remote interface provides access to the business methods
available in the enterprise bean class. It also provides methods to remove an
enterprise bean instance and to obtain the enterprise bean’s home interface
and handle. The remote interface is defined by the enterprise bean developer
and implemented in the EJB object class created by the container during
enterprise bean deployment.

By convention, the remote interface is named Name, where Name is the name
you assign to the enterprise bean. For example, the Transfer enterprise bean’s
remote interface is named Transfer.

Every remote interface must meet the following requirements:
v It must extend the javax.ejb.EJBObject interface. The remote interface

inherits several methods from the EJBObject interface. See “Methods
inherited from javax.ejb.EJBObject” on page 116 for information on these
methods.

v You must define a corresponding business method for every business
method implemented in the enterprise bean class.

v The parameters and return value of each method defined in the interface
must be valid for Java RMI. For more information, see “The
java.io.Serializable and java.rmi.Remote interfaces” on page 117.

v Each method’s throws clause must include the java.rmi.RemoteException
exception class.

Figure 34 on page 116 shows the relevant parts of the definition of the remote
interface (Transfer) for the example Transfer bean. This interface defines the
methods for transferring funds between two Account bean instances and for
getting the balance of an Account bean instance.

Chapter 5. Developing enterprise beans 115

Implementing interfaces common to multiple types of enterprise beans

Enterprise beans must implement the interfaces described here in the
appropriate enterprise bean component.

Methods inherited from javax.ejb.EJBObject
The remote interface inherits the following methods from the
javax.ejb.EJBObject interface, which are implemented by the container during
deployment:
v getEJBHome—Returns the enterprise bean’s home interface.
v getHandle—Returns the handle for the EJB object.
v getPrimaryKey—Returns the EJB object’s primary key. (For session beans,

this cannot be used because session beans do not have a primary key.)
v isIdentical—Compares this EJB object with the EJB object argument to

determine if they are the same.
v remove—Removes this EJB object.

These methods have the following syntax:

These methods are implemented by the container in the EJB object class.

The javax.ejb.EJBHome interface
The home interface inherits two remove methods and the getEJBMetaData
method from the javax.ejb.EJBHome interface. Just like the methods defined
directly in the home interface, these inherited methods are also implemented
in the EJB home class created by the container during deployment.

...
import javax.ejb.*;
import java.rmi.*;
import com.ibm.ejs.doc.account.*;
public interface Transfer extends EJBObject {

...
float getBalance(long acctId) throws FinderException, RemoteException;
...
void transferFunds(long fromAcctId, long toAcctId, float amount)

throws InsufficientFundsException, RemoteException;
}

Figure 34. Code example: The Transfer remote interface

public abstract EJBHome getEJBHome();
public abstract Handle getHandle();
public abstract Object getPrimaryKey();
public abstract boolean isIdentical(EJBObject obj);
public abstract void remove();

116 WebSphere: Writing Enterprise Beans in WebSphere

The remove methods are used to remove an existing EJB object (and its
associated data in the database) either by specifying the EJB object’s handle or
its primary key. (The remove method that takes a primaryKey variable can be
used only in entity beans.) The getEJBMetaData method is used to obtain
metadata about the enterprise bean and is mainly intended for use by
development tools.

These methods have the following syntax:

The java.io.Serializable and java.rmi.Remote interfaces
To be valid for use in a remote method invocation (RMI), a method’s
arguments and return value must be one of the following types:
v A primitive type; for example, an int or a long.
v An object of a class that directly or indirectly implements

java.io.Serializable; for example, java.lang.Long.
v An object of a class that directly or indirectly implements java.rmi.Remote.
v An array of valid types or objects.

If you attempt to use a parameter that is not valid, the
java.rmi.RemoteException exception is thrown. Note that the following
atypical types are not valid:
v An object of a class that directly or indirectly implements both Serializable

and Remote.
v An object of a class that directly or indirectly implements Remote, but

contains a method that does not throw the RemoteException or an
exception that inherits from RemoteException.

Using threads and reentrancy in enterprise beans

An enterprise bean must not contain code to start new threads (nor can
methods be defined with the keyword synchronized). Session beans can never
be reentrant; that is, they cannot call another bean that invokes a method on
the calling bean. Entity beans can be reentrant, but building reentrant entity
beans is not recommended and is not documented here.

The EJB server (AE) enforces single-threaded access to all enterprise beans.
Illegal callbacks result in a java.rmi.RemoteException exception being thrown
to the EJB client.

The EJB server (CB) enforces single-threaded access to enterprise beans only if
their transaction attribute is set to either TX_NOT_SUPPORTED or

public abstract EJBMetaData getEJBMetaData();
public abstract void remove(Handle handle);
public abstract void remove(Object primaryKey);

Chapter 5. Developing enterprise beans 117

TX_BEAN_MANAGED. For other enterprise beans, access from different
transactions is serialized, but serialized access from different threads running
under the same transaction is not enforced. For enterprise beans deployed
with the transaction attribute value of TX_NOT_SUPPORTED or
TX_BEAN_MANAGED, illegal callbacks result in a RemoteException
exception being thrown to the EJB client.

Packaging enterprise beans

There are three tasks involved in packaging an enterprise bean:
v Making the components of the bean part of the same Java package. For

more information, see “Making bean components part of a Java package”.
v Creating a deployment descriptor for the bean. For more information, see

“Creating the deployment descriptor file”.
v Creating an EJB JAR file. For more information, see “Creating an EJB JAR

file” on page 119.

If you develop enterprise beans in an IDE, these packaging tasks are handled
from within the tool that you use. If you do not develop enterprise beans in
an IDE, you must handle each of these tasks by using tools contained in the
Java Software Development Kit (SDK) and WebSphere Application Server.
v For more information on the tools used to package beans in the EJB server

(AE) programming environment, see “Chapter 3. Tools for developing and
deploying enterprise beans in the EJB server (AE) environment” on page 29.

v For more information on the tools used to package beans in the EJB server
(CB) programming environment, see “Chapter 4. Tools for developing and
deploying enterprise beans in the EJB server (CB) environment” on page 49.

Making bean components part of a Java package
You determine the best way to allocate your enterprise beans to Java
packages. A Java package can contain one or more enterprise beans. The
example Account and Transfer beans are stored in separate packages. All of
the Java source files that make up the Account bean contain the following
package statement:
package com.ibm.ejs.doc.account;

All of the Java source files that make up the Transfer bean contain the
following package statement:
package com.ibm.ejs.doc.transfer;

Creating the deployment descriptor file
The deployment descriptor file provides instructions for the container on how
to handle a particular bean. A standard deployment descriptor must support
the attributes described in “The deployment descriptor” on page 19. The
deployment descriptor is stored in a special file that contains a serialized

118 WebSphere: Writing Enterprise Beans in WebSphere

instance of a javax.ejb.deployment.EntityDescriptor object for an entity bean
or a javax.ejb.deployment.SessionDescriptor object for a session bean.

To create a deployment descriptor, you can use either the jetace tool provided
with WebSphere Application Server or the mechanism built into an integrated
development environment (IDE) that supports enterprise bean development
(for example, VisualAge for Java). You can also create a deployment descriptor
programmatically, though this approach is not discussed in this
documentation.

Creating an EJB JAR file
A JAR file for an enterprise bean, known as an EJB JAR file, must contain the
following components:
v The class files associated with each component of the enterprise bean.
v Any additional classes and files associated with the enterprise bean; for

example: user-defined exception classes, properties files, and resource
bundle classes.

v The deployment descriptor file for the enterprise bean.
v The manifest file that describes the content of the EJB JAR file.

Manifest files are organized into sections that are separated by blank lines;
each section corresponds to a file stored in the JAR file. The manifest file must
be named META-INF/MANIFEST.MF. Each section contains one or more
tag-value pairs with the syntax tag:value. The section corresponding to the
deployment descriptor file for each enterprise bean in an EJB JAR file must
contain the following headers:
Name: deploymentDescriptorFile
Enterprise-Bean: True

Figure 35 on page 120 shows the first two sections of the manifest file for the
Account bean’s EJB JAR file. Although not shown in the example, the
manifest file contains a section for each of the class files—Account.class,
AccountBean.class, AccountKey.class, and
AccountBeanFinderHelper.class—and any other files in the EJB JAR file.
However, only the section associated with the deployment descriptor file
contains the enterprise bean-specific headers.

Chapter 5. Developing enterprise beans 119

To build an EJB JAR file, you can use either the jetace tool provided with
WebSphere Application Server or the mechanism built into an integrated
development environment (IDE) that supports enterprise bean development
(for example, VisualAge for Java). Both of these tools automatically can create
the deployment descriptor, appropriately format a manifest file, and create an
EJB JAR file to contain one or more enterprise beans.

Manifest-Version: 1.0
Name: com/ibm/ejs/doc/account/Account.ser
Enterprise-Bean: true
Digest-Algorithms: SHA MD5
SHA-Digest: xhCUGthNU+Kds5X3xol5q7Mz9JI=
MD5-Digest: t40IcinyAjss0hrM1dpY0A==
Name: com/ibm/ejs/doc/account/AccountHome.class
Digest-Algorithms: SHA MD5
SHA-Digest: 02pfJv1buUu0FqpFwwERUstsNIg=
MD5-Digest: a8auOXob9ryPgbcnpFvzpQ==
...

Figure 35. Code example: Fragment of the manifest file for the Account EJB JAR file

120 WebSphere: Writing Enterprise Beans in WebSphere

Chapter 6. Enabling transactions and security in enterprise
beans

This chapter examines how to enable transactions and security in enterprise
beans by setting the appropriate deployment descriptor attributes:
v For transactions, a session bean can either use container-managed

transactions or implement bean-managed transactions; entity beans must
use container-managed transactions. To enable container-managed
transactions, you must set the transaction attribute to any value except
TX_BEAN_MANAGED and set the transaction isolation level attribute. To
enable bean-managed transactions, you must set the transaction attribute to
TX_BEAN_MANAGED and set the transaction isolation level attribute. For
more information, see “Setting transactional attributes in the deployment
descriptor”.
If you want a session bean to manage its own transactions, you must write
the code that explicitly demarcates the boundaries of a transaction as
described in “Using bean-managed transactions” on page 181.
If you want an EJB client to manage its own transactions, you must
explicitly code that client to do so as described in “Managing transactions
in an EJB client” on page 139.

v For security, only the run-as mode attribute is used by the EJB server
environments. For information on the valid values of this attribute, see
“Setting the security attribute in the deployment descriptor” on page 126.

These attributes, like the other deployment descriptor attributes, are set by
using one of the tools available with either the EJB server (AE) or the EJB
server (CB). For more information, see “Chapter 3. Tools for developing and
deploying enterprise beans in the EJB server (AE) environment” on page 29 or
“Chapter 4. Tools for developing and deploying enterprise beans in the EJB
server (CB) environment” on page 49.

Setting transactional attributes in the deployment descriptor

The EJB Specification describes the creation of applications that enforce
transactional consistency on the data manipulated by the enterprise beans.
However, unlike other specifications that support distributed transactions, the
EJB specification does not require enterprise bean and EJB client developers to
write any special code to use transactions. Instead, the container manages
transactions based on two deployment descriptor attributes associated with
each enterprise bean, and the enterprise bean and EJB application developers
are freed to deal with the business logic of their applications.

© Copyright IBM Corp. 1999, 2000 121

Enterprise bean developers can specifically design enterprise beans and EJB
applications that explicitly manage transactions. For more information, see
“Using bean-managed transactions” on page 181.

Under most conditions, transaction management can be handled within the
enterprise beans, freeing the EJB client developer of this task. However, EJB
clients can participate in transactions if required or desired. For more
information, see “Managing transactions in an EJB client” on page 139.

The EJB specification defines two attributes in a standard deployment
descriptor that determine the way in which an enterprise bean is managed
from a transactional perspective:
v The transaction attribute defines the transactional manner in which the

container invokes a method. “Setting the transaction attribute” defines the
valid values of this attribute and explains their meanings.

v The transaction isolation level attribute defines the manner in which
transactions are isolated from each other by the container. “Setting the
transaction isolation level attribute” on page 124 defines the valid values of
this attribute and explains their meanings.

Setting the transaction attribute
The transaction attribute defines the transactional manner in which the
container invokes enterprise bean methods. This attribute can be set for the
bean as a whole and for individual methods in a bean.

Note: The EJB server (CB) does not support the setting of the transaction
attribute for individual enterprise bean methods; the transaction
attribute can be set only for the entire bean.

The following are valid values for this attribute in decreasing order of
transactional strictness:

TX_BEAN_MANAGED
Notifies the container that the bean class directly handles transaction
demarcation. This attribute value can be specified only for session
beans and it cannot be specified for individual bean methods. For
more information on designing session beans to implement this
attribute value, see “Using bean-managed transactions” on page 181.

In the EJB server (CB) environment, if a stateful session bean has this
attribute value, a method that begins a transaction must also complete
that transaction (commit or roll back the transaction). In other words,
a transaction cannot span multiple methods in a stateful session bean
when used in the EJB server (CB) environment.

TX_MANDATORY
Directs the container to always invoke the bean method within the

122 WebSphere: Writing Enterprise Beans in WebSphere

transaction context associated with the client. If the client attempts to
invoke the bean method without a transaction context, the container
throws the javax.jts.TransactionRequiredException exception to the
client. The transaction context is passed to any EJB object or resource
accessed by an enterprise bean method.

EJB clients that access these entity beans must do so within an
existing transaction. For other enterprise beans, the enterprise bean or
bean method must implement the TX_BEAN_MANAGED value or
use the TX_REQUIRED or TX_REQUIRES_NEW value. For
non-enterprise bean EJB clients, the client must invoke a transaction
by using the javax.transaction.UserTransaction interface, as described
in “Managing transactions in an EJB client” on page 139.

In the EJB server (CB) environment, this attribute value must be used
in entity beans with container-managed persistence (CMP) that use
Host On-Demand (HOD) or the External Call Interface (ECI) to access
CICS or IMS applications.

TX_REQUIRED
Directs the container to invoke the bean method within a transaction
context. If a client invokes a bean method from within a transaction
context, the container invokes the bean method within the client
transaction context. If a client invokes a bean method outside of a
transaction context, the container creates a new transaction context
and invokes the bean method from within that context. The
transaction context is passed to any enterprise bean objects or
resources that are used by this bean method.

TX_REQUIRES_NEW
Directs the container to always invoke the bean method within a new
transaction context, regardless of whether the client invokes the
method within or outside of a transaction context. The transaction
context is passed to any enterprise bean objects or resources that are
used by this bean method.

The EJB server (CB) does not support this attribute value.

TX_SUPPORTS
Directs the container to invoke the bean method within a transaction
context if the client invokes the bean method within a transaction. If
the client invokes the bean method without a transaction context, the
container invokes the bean method without a transaction context. The
transaction context is passed to any enterprise bean objects or
resources that are used by this bean method.

In the EJB server (CB) environment, entity beans with CMP must be
accessed within a transaction. If an entity bean with CMP uses this

Chapter 6. Enabling transactions and security in enterprise beans 123

transaction attribute, the EJB client must initiate a transaction before
invoking a method on the entity bean.

TX_NOT_SUPPORTED
Directs the container to invoke bean methods without a transaction
context. If a client invokes a bean method from within a transaction
context, the container suspends the association between the
transaction and the current thread before invoking the method on the
enterprise bean instance. The container then resumes the suspended
association when the method invocation returns. The suspended
transaction context is not passed to any enterprise bean objects or
resources that are used by this bean method.

In the EJB server (CB) environment, entity beans with CMP must be
accessed within a transaction. Therefore, this attribute value is not
supported in entity beans with CMP in the EJB server (CB)
environment.

Table 2. Effect of the enterprise bean’s transaction attribute on the transaction context

Transaction attribute Client transaction context Bean transaction context

TX_MANDATORY No transaction Not allowed

Client transaction Client transaction

TX_NOT_SUPPORTED No transaction No transaction

Client transaction No transaction

TX_REQUIRES_NEW No transaction New transaction

Client transaction New transaction

TX_REQUIRED No transaction New transaction

Client transaction Client transaction

TX_SUPPORTS No transaction No transaction

Client transaction Client transaction

Setting the transaction isolation level attribute

Note: The EJB server (CB) does not support the transaction isolation level
attribute.

The transaction isolation level determines how strongly one transaction is
isolated from another. This attribute can be set for the enterprise bean as a
whole and for individual methods in a bean. However, within a transactional
context, the isolation level associated with the first method invocation
becomes the required isolation level for all other methods invoked within that
transaction. If a method is invoked with a different isolation level from that of
the first method, the java.rmi.RemoteException exception is thrown.

124 WebSphere: Writing Enterprise Beans in WebSphere

The following are valid values for this attribute, in decreasing order of
isolation:

TRANSACTION_SERIALIZABLE
This level prohibits all of the following types of reads:
v Dirty reads, where a transaction reads a database row containing

uncommitted changes from a second transaction.
v Nonrepeatable reads, where one transaction reads a row, a second

transaction changes the same row, and the first transaction rereads
the row and gets a different value.

v Phantom reads, where one transaction reads all rows that satisfy an
SQL WHERE condition, a second transaction inserts a row that also
satisfies the WHERE condition, and the first transaction applies the
same WHERE condition and gets the row inserted by the second
transaction.

TRANSACTION_REPEATABLE_READ
This level prohibits dirty reads and nonrepeatable reads, but it allows
phantom reads.

TRANSACTION_READ_COMMITTED
This level prohibits dirty reads, but allows nonrepeatable reads and
phantom reads.

TRANSACTION_READ_UNCOMMITTED
This level allows dirty reads, nonrepeatable reads, and phantom
reads.

These isolation levels correspond to the isolation levels defined in the Java
Database Connectivity (JDBC) java.sql.Connection interface.

The container uses the transaction isolation level attribute as follows:
v Session beans and entity beans with bean-managed persistence (BMP)—For

each database connection used by the bean, the container sets the
transaction isolation level at the start of each transaction.

v Entity beans with container-managed persistence (CMP)—The container
generates database access code that implements the specified isolation level.

None of these values permits two transactions to update the same data
concurrently; one transaction must end before another can update the same
data. These values determine only how locks are managed for reading data.
However, risks to consistency can arise from read operations when a
transaction does further work based on the values read. For example, if one
transaction is updating a piece of data and a second transaction is permitted
to read that data after it has been changed but before the updating transaction

Chapter 6. Enabling transactions and security in enterprise beans 125

ends, the reading transaction can make a decision based on a change that is
eventually rolled back. The second transaction risks making a decision on
transient data.

Deciding which isolation level to use depends on several factors:
v The acceptable level of risk to data consistency
v The acceptable levels of concurrency and performance
v The isolation levels supported by the underlying database

The first two factors, risk to consistency and level of concurrency, are related.
Decreasing the risk to consistency requires you to decrease concurrency
because reducing the risk to consistency requires holding locks longer. The
longer a lock is held on a piece of data, the longer concurrently running
transactions must wait to access that data. The
TRANSACTION_SERIALIZABLE value protects data by eliminating
concurrent access to it. Conversely, the
TRANSACTION_READ_UNCOMMITTED value allows the highest degree of
concurrency but entails the greatest risk to consistency. You need to balance
these two factors appropriately for your application.

The third factor, isolation levels supported in the database, means that
although the EJB specification allows you to request one of the four levels of
transaction isolation, it is possible that the database being used in the
application does not support all of the levels. Also, vendors of database
products implement isolation levels differently, so the precise behavior of an
application can vary from database to database. You need to consider the
database and the isolation levels it supports when deciding on the value for
the transaction isolation attribute in deployment descriptors. Consult your
database documentation for more information on supported isolation levels.

Setting the security attribute in the deployment descriptor

When an EJB client invokes a method on an enterprise bean, the user context
of the client principal is encapsulated in a CORBA Current object, which
contains credential properties for the principal. The Current object is passed
among the participants in the method invocation as required to complete the
method.

The security service uses the credential information to determine the
permissions that a principal has on various resources. At appropriate points,
the security service determines if the principal is authorized to use a
particular resource based on the principal’s permissions.

126 WebSphere: Writing Enterprise Beans in WebSphere

If the method invocation is authorized, the security service does the following
with the principal’s credential properties based on the value of the run-as mode
attribute of the enterprise bean:

CLIENT_IDENTITY
The security service makes no changes to the principal’s credential
properties.

SYSTEM_IDENTITY
The security service alters the principal’s credential properties to
match the credential properties associated with the EJB server.

SPECIFIED_IDENTITY
The security service attempts to match the principal’s credential
properties with the identity of any application with which the
enterprise bean is associated. If successful, the security service alters
the principal’s credential properties to match the credential properties
of the application.

The run-as identity and access control attributes are not used in the EJB server
environments.

Chapter 6. Enabling transactions and security in enterprise beans 127

128 WebSphere: Writing Enterprise Beans in WebSphere

Chapter 7. Developing EJB clients

An enterprise bean can be accessed by all of the following types of EJB clients
in both EJB server environments:
v Java servlets. For more information about writing Java servlets that use

enterprise beans, see “Chapter 8. Developing servlets that use enterprise
beans” on page 145.

v Java Server Pages (JSP). For more information about writing JSP, consult a
commercially available book.

v Java applications that use remote method invocation (RMI). For more
information on writing Java applications, consult a commercially available
book.

v Other enterprise beans. For example, the Transfer session bean acts as a
client to the Account bean, as described in “Chapter 5. Developing
enterprise beans” on page 89.

Except for the basic programming tasks described in this chapter, creating a
Java servlet, JSP, or Java application that is a client to an enterprise bean is not
very different from designing standard versions of these types of Java
programs. This chapter assumes that you understand the basics of writing a
Java servlet, a Java application, or a JSP file.

Except where noted, all of the code described in this chapter is taken from the
example Java application named TransferApplication. This Java application
and the other EJB clients available with the documentation example code are
explained in “Information about the examples described in the
documentation” on page 225.

To access and manipulate an enterprise bean in any of the Java-based EJB
client types listed previously, the EJB client must do the following:
v Import the Java packages required for naming, remote method invocation

(RMI), and enterprise bean interaction.
v Get a reference to an instance of the bean’s EJB object by using the Java

Naming and Directory Interface (JNDI). For more information, see
“Creating and getting a reference to a bean’s EJB object” on page 131.

v Handle invalid EJB objects when using session beans. For more information,
see “Handling an invalid EJB object for a session bean” on page 137.

v Remove session EJB objects when they are no longer required or remove
entity EJB objects when the associated data in the data source must be
removed. For more information, see “Removing a bean’s EJB object” on
page 139.

© Copyright IBM Corp. 1999, 2000 129

In addition, an EJB client can participate in the transactions associated with
enterprise beans used by the client. For more information, see “Managing
transactions in an EJB client” on page 139.

Note: In the EJB server (CB) environment, an enterprise bean can also be
accessed by a Java applet, an ActiveX client, a CORBA-based Java
client, and to a limited degree, by a C++ CORBA client. The Travel
example briefly described in “Information about the examples
described in the documentation” on page 225 illustrates some of these
types of clients. “More information on EJB clients specific to the EJB
server (CB)” on page 141 provides additional information about EJB
clients that use ActiveX and CORBA-based Java and C++.

Importing required Java packages

Although the Java packages required for any particular EJB client vary, the
following packages are required by all EJB clients:
v java.rmi — This package contains most of the classes required for remote

method invocation (RMI).
v javax.rmi — This package contains the PortableRemoteObject class required

to get a reference to an EJB object.
v java.util — This package contains various Java utility classes, such as

Properties, Hashtable, and Enumeration used in a variety of ways
throughout all enterprise beans and EJB clients.

v javax.ejb — This package contains the classes and interfaces defined in the
EJB specification.

v javax.naming — The package contains the classes and interfaces defined in
the Java Naming and Directory Interface (JNDI) specification and is used by
clients to get references to EJB objects.

v The package or packages containing the enterprise beans with which the
client interacts.

The Java client object request broker (ORB), which is automatically initialized
in EJB clients, does not support dynamic download of implementation
bytecode from the server to the client. As a result, all classes required by the
EJB client at runtime must be available from the files and directories identified
in the client’s CLASSPATH environment variable. For information on the JAR
files required by EJB clients, see “Setting the CLASSPATH environment
variable in the EJB server (AE) environment” on page 32 or “Setting the
CLASSPATH environment variable in the EJB server (CB) environment” on
page 51. You can install needed files on your client machine by doing a
WebSphere Application Server installation on the machine, selecting the
Developer’s Client Files option. You also need to make sure that the ioser
and ioserx executable files are accessible on your client machine; these files
are normally part of the Java 1.2.x install.

130 WebSphere: Writing Enterprise Beans in WebSphere

Figure 36 shows the import statements for the example Java application
com.ibm.ejs.doc.client.TransferApplication. In addition to the required Java
packages mentioned previously, the example application imports the
com.ibm.ejs.doc.transfer package because the application communicates with a
Transfer bean. The example application also imports the
InsufficientFundsException class contained in the same package as the
Account bean.

Creating and getting a reference to a bean’s EJB object

To invoke a bean’s business methods, a client must create or find an EJB
object for that bean. After the client has created or found this object, it can
invoke methods on it in the standard way.

To create or find an instance of a bean’s EJB object, the client must do the
following:
1. Locate and create an EJB home object for that bean. For more information,

see “Locating and creating an EJB home object” on page 132.
2. Use the EJB home object to create or (for entity beans only) find an

instance of the bean’s EJB object. For more information, see “Creating an
EJB object” on page 136.

The TransferApplication client contains one reference to a Transfer EJB object,
which the application uses to invoke all of the methods on the Transfer bean.
When using session beans in Java applications, it is a good idea to make the
reference to the EJB object a class-level variable rather than a variable that is
local to a method. This allows your EJB client to repeatedly invoke methods
on the same EJB object rather than having to create a new object each time the

...
import java.awt.*;
import java.awt.event.*;
import java.util.*;
import java.rmi.*
...
import javax.naming.*;
import javax.ejb.*;
import javax.rmi.PortableRemoteObject;
...
import com.ibm.ejs.doc.account.InsufficientFundsException;
import com.ibm.ejs.doc.transfer.*;
...
public class TransferApplication extends Frame implements

ActionListener, WindowListener {
...

}

Figure 36. Code example: The import statements for the Java application TransferApplication

Chapter 7. Developing EJB clients 131

client invokes a session bean method. As discussed in “Threading issues” on
page 155 , this approach is not recommended for servlets, which must be
designed to handle multiple threads.

Locating and creating an EJB home object
JNDI is used to find the name of an EJB home object. The properties that an
EJB client uses to initialize JNDI and find an EJB home object vary across EJB
server implementations. To make an enterprise bean more portable between
EJB server implementations, it is recommended that you externalize these
properties in environment variables, properties files, or resource bundles
rather than hard code them into your enterprise bean or EJB client code.

The example Transfer bean uses environment variables as discussed in
“Implementing the ejbCreate methods” on page 108. The TransferApplication
uses a resource bundle contained in the
com.ibm.ejs.doc.client.ClientResourceBundle.class file.

To initialize a JNDI name service, an EJB client must set the appropriate
values for the following JNDI properties:

javax.naming.Context.PROVIDER_URL
This property specifies the host name and port of the name server
used by the EJB client. The property value must have the following
format: iiop://hostname:port, where hostname is the IP address or
hostname of the machine on which the name server runs and port is
the port number on which the name server listens.

For example, the property value iiop://bankserver.mybank.com:9019
directs an EJB client to look for a name server on the host named
bankserver.mybank.com listening on port 9019. The property value
iiop://bankserver.mybank.com directs an EJB client to look for a
name server on the host named bankserver.mybank.com at port
number 900. The property value iiop:/// directs an EJB client to look
for a name server on the local host listening on port 900. If not
specified, this property defaults to the local host and port number 900,
which is the same as specifying iiop:///. In the EJB server (AE), the
port number used by the name service can be changed by using the
administrative interface.

javax.naming.Context.INITIAL_CONTEXT_FACTORY
This property identifies the actual name service that the EJB client
must use.
v In the EJB server (AE) environment, this property must be set to

com.ibm.ejs.ns.jndi.CNInitialContextFactory.
v In the EJB server (CB) environment, this property must be set to

com.ibm.ejb.cb.runtime.CBCtxFactory. When using this context
factory, the javax.naming.Context.list and

132 WebSphere: Writing Enterprise Beans in WebSphere

javax.naming.Context.listBindings methods can return no more than
1000 elements in the javax.naming.NamingEnumeration object.

Locating an EJB home object is a two-step process:
1. Create a javax.naming.InitialContext object. For more information, see

“Creating an InitialContext object”.
2. Use the InitialContext object to create the EJB home object. For more

information, see “Creating EJB home object” on page 134.

Creating an InitialContext object
Figure 37 on page 134 shows the code required to create the InitialContext
object. To create this object, construct a java.util.Properties object, add values
to the Properties object, and then pass the object as the argument to the
InitialContext constructor. In the TransferApplication, the value of each
property is obtained from the resource bundle class named
com.ibm.ejs.doc.client.ClientResourceBundle, which stores all of the
locale-specific variables required by the TransferApplication. (This class also
stores the variables used by the other EJB clients contained in the
documentation example, described in “Information about the examples
described in the documentation” on page 225).

The resource bundle class is instantiated by calling the
ResourceBundle.getBundle method. The values of variables within the
resource bundle class are extracted by calling the getString method on the
bundle object.

The createTransfer method of the TransferApplication can be called multiple
times as explained in “Handling an invalid EJB object for a session bean” on
page 137. However, after the InitialContext object is created once, it remains
good for the life of the client session. Therefore, the code required to create
the InitialContext object is placed within an if statement that determines if the
reference to the InitialContext object is null. If the reference is null, the
InitialContext object is created; otherwise, the reference can be reused on
subsequent creations of the EJB object.

Chapter 7. Developing EJB clients 133

Creating EJB home object
After the InitialContext object (ivjInitContext) is created, the application uses it
to create the EJB home object, as shown in Figure 38 on page 135. This creation
is accomplished by invoking the lookup method, which takes the JNDI name
of the enterprise bean in String form and returns a java.lang.Object object:
v When performing a JNDI lookup on an enterprise bean deployed in an EJB

server (AE; CB on AIX, Windows NT, or Solaris platforms), only the JNDI
name specified in the deployment descriptor is used.

...
public class TransferApplication extends Frame implements ActionListener,

WindowListener {
...
private InitialContext ivjInitContext = null;
private Transfer ivjTransfer = null;
private ResourceBundle bundle = ResourceBundle.getBundle(

"com.ibm.ejs.doc.client.ClientResourceBundle");
...
private String nameService = null;
private String accountName = null;
private String providerUrl = null;
...
private Transfer createTransfer() {

TransferHome transferHome = null;
Transfer transfer = null;

// Get the initial context
if (ivjInitContext == null) {

try {
Properties properties = new Properties();
// Get location of name service
properties.put(javax.naming.Context.PROVIDER_URL,

bundle.getString("providerUrl"));
// Get name of initial context factory
properties.put(javax.naming.Context.INITIAL_CONTEXT_FACTORY,

bundle.getString("nameService"));
...
ivjInitContext = new InitialContext(properties);

} catch (Exception e) { // Error getting the initial context
...
}

}
...
// Look up the home interface using the JNDI name
...
// Create a new Transfer object to return
...
return transfer;

}

Figure 37. Code example: Creating the InitialContext object

134 WebSphere: Writing Enterprise Beans in WebSphere

v When performing a JNDI lookup on an enterprise bean deployed in an EJB
server (CB on platforms other than AIX, Windows NT, and Solaris), the
JNDI home name passed to the lookup method is the JNDI name specified
in the enterprise bean’s deployment descriptor with a CB-specific prefix
attached. The content of this prefix depends on where in the Component
Broker namespace the system administrator bound the EJB home (by using
the ejbbind tool).
If the system administrator binds the EJB home in the host name tree of a
specific bootstrap host, then the JNDI name prefix will be
host/resources/factories/EJBHomes. If the system administrator binds the
EJB home in a workgroup name tree, then the JNDI name prefix will be
workgroup/resources/factories/EJBHomes, and the EJB client must belong
to the same preferred workgroup. If the system administrator binds the EJB
home in the cell name tree, then the JNDI name prefix is
cell/resources/factories/EJBHomes.

The example TransferApplication gets the JNDI name of the Transfer bean
from the ClientResourceBundle class.

After an object is returned by the lookup method, the static method
javax.rmi.PortableRemoteObject.narrow is used to obtain an EJB home object
for the specified enterprise bean. The narrow method takes two parameters:
the object to be narrowed and the class of the EJB home object to be returned
by the narrow method. The object returned by the
javax.rmi.PortableRemoteObject.narrow method is cast to the class associated
with the home interface.

private Transfer createTransfer() {
TransferHome transferHome = null;
Transfer transfer = null;
// Get the initial context
...
// Look up the home interface using the JNDI name
try {

java.lang.Object homeObject = ivjInitContext.lookup(
bundle.getString("transferName"));

transferHome = (TransferHome)javax.rmi.PortableRemoteObject.narrow(
(org.omg.CORBA.Object) homeObject, TransferHome.class);

} catch (Exception e) { // Error getting the home interface
...

}
...
// Create a new Transfer object to return
...
return transfer;

}

Figure 38. Code example: Creating the EJBHome object

Chapter 7. Developing EJB clients 135

Migration considerations for creating an EJB home object
If you are migrating existing applications from WebSphere Application Server
2.x to 3.x, you will need to make a change in how home objects are narrowed.
In the 2.x environment, each class has its own Helper whose name follows the
ClassNameHelper format. In the 3.x environment, however, the
PortableRemoteObject class must be used for narrowing all classes, instead of
a specific Helper for each class.

For example, a 2.x version of the example TransferApplication would contain
lines similar to those in Figure 39, where the narrowing is done using the
TransferHomeHelper class that is specific for TransferHome.

In order to migrate to a 3.x version of the example TransferApplication,
change the second line to use the narrow method of the PortableRemoteObject
class, supplying as parameters the object to be narrowed and its class. This is
shown in the code sample in Figure 40. (The complete example code for
creating an EJB home object is discussed in “Creating EJB home object” on
page 134.)

Creating an EJB object
After the EJB home object is created, it is used to create the EJB object.
Figure 41 on page 137 shows the code required to create the EJB object by
using the EJB home object. A create method is invoked to create an EJB object
or (for entity beans only) a finder method is invoked to find an existing EJB
object. Because the Transfer bean is a stateless session bean, the only choice is
the default create method.

. . .
java.lang.Object homeObject = ivjInitContext.lookup(

bundle.getString("transferName"));
transferHome = TransferHomeHelper.narrow(

(org.omg.CORBA.Object)homeObject);
. . .

Figure 39. Code example: Narrowing the home object in WebSphere Application Server 2.x

. . .
java.lang.Object homeObject = ivjInitContext.lookup(

bundle.getString("transferName"));
transferHome = (TransferHome)javax.rmi.PortableRemoteObject.narrow(

(org.omg.CORBA.Object)homeObject, TransferHome.class);
. . .

Figure 40. Code example: Narrowing the home object in WebSphere Application Server 3.x

136 WebSphere: Writing Enterprise Beans in WebSphere

Handling an invalid EJB object for a session bean

Because session beans are ephemeral, the client cannot depend on a session
bean’s EJB object to remain valid. A reference to an EJB object for a session
bean can become invalid if the EJB server fails or is restarted or if the session
bean times out due to inactivity. (The reference to an entity bean’s EJB object
is always valid until that object is removed.) Therefore, the client of a session
bean must contain code to handle a situation in which the EJB object becomes
invalid.

An EJB client can determine if an EJB object is valid by placing all method
invocations that use the reference inside of a try/catch block that specifically
catches the java.rmi.NoSuchObjectException, in addition to any other
exceptions that the method needs to handle. The EJB client can then invoke
the code to handle this exception.

You determine how to handle an invalid EJB object. The example
TransferApplication creates a new Transfer EJB object if the one it is currently
using becomes invalid.

The code to create a new EJB object when the old one becomes invalid is the
same code used to create the original EJB object and is described in “Creating
and getting a reference to a bean’s EJB object” on page 131. For the example
TransferApplication client, this code is contained in the createTransfer method.

Figure 42 on page 138 shows the code used to create the new EJB object in the
getBalance method of the example TransferApplication. The getBalance

private Transfer createTransfer() {
TransferHome transferHome = null;
Transfer transfer = null;
// Get the initial context
...
// Look up the home interface using the JNDI name
...
// Create a new Transfer object to return
try {

transfer = transferHome.create();
} catch (Exception e) { // Error creating Transfer object

...
}
...
return transfer;

}

Figure 41. Code example: Creating the EJB object

Chapter 7. Developing EJB clients 137

method contains the local boolean variable sessionGood, which is used to
specify the validity of the EJB object referenced by the variable ivjTransfer. The
sessionGood variable is also used to determine when to break out of the
do-while loop.

The sessionGood variable is initialized to false because the ivjTransfer can
reference an invalid EJB object when the getBalance method is called. If the
ivjTransfer reference is valid, the TransferApplication invokes the Transfer
bean’s getBalance method and returns the balance. If the ivjTransfer reference
is invalid, the NoSuchObjectException is caught, the TransferApplication’s
createTransfer method is called to create a new Transfer EJB object reference,
and the sessionGood variable is set to false so that the do-while loop is
repeated with the new valid EJB object. To prevent an infinite loop, the
sessionGood variable is set to true when any other exception is thrown.

private float getBalance(long acctId) throws NumberFormatException, RemoteException,
FinderException {
// Assume that the reference to the Transfer session bean is no good
...
boolean sessionGood = false;
float balance = 0.0f;
do {

try {
// Attempt to get a balance for the specified account

balance = ivjTransfer.getBalance(acctId);
sessionGood = true;
...

} catch(NoSuchObjectException ex) {
createTransfer();
sessionGood = false;

} catch(RemoteException ex) {
// Server or connection problem
...

} catch(NumberFormatException ex) {
// Invalid account number
...

} catch(FinderException ex) {
// Invalid account number
...

}
} while(!sessionGood);
return balance;

}

Figure 42. Code example: Refreshing the EJB object reference for a session bean

138 WebSphere: Writing Enterprise Beans in WebSphere

Removing a bean’s EJB object

When an EJB client no longer needs a session EJB object, the EJB client must
remove that object. Removing unneeded session EJB objects can prevent
memory leaks in the EJB server. You remove entity EJB objects only when you
want to remove the information in the data source with which the entity EJB
object is associated.

To remove an EJB object, invoke the remove method on the object. As
discussed in “Creating and getting a reference to a bean’s EJB object” on
page 131, the TransferApplication contains only one reference to a Transfer EJB
object that is created when the application is initialized.

Figure 43 shows how the example Transfer EJB object is removed in the
TransferApplication in the killApp method. To parallel the creation of the
Transfer EJB object when the TransferApplication is initialized, the application
removes the final EJB object associated with ivjTransfer reference right before
closing the application’s GUI window. The killApp method closes the window
by invoking the dispose method on itself.

Managing transactions in an EJB client

In general, it is practical to design your enterprise beans so that all transaction
management is handled at the enterprise bean level. In a strict three-tier,
distributed application, this is not always possible or even desirable. However,
because the middle tier of an EJB application can include two
subcomponents—session beans and entity beans—it is much easier to design
the transactional management completely within the application server tier. Of
course, the resource manager tier must also be designed to support
transactions.

Note: EJB clients that access entity beans with CMP that use Host
On-Demand (HOD) or the External Call Interface (ECI) for CICS or IMS
applications must begin a transaction before invoking a method on
these entity beans. This restriction is required because these types of
entity beans must use the TX_MANDATORY transaction attribute.

...
private void killApp() {

try {
ivjTransfer.remove();
this.dispose();
System.exit(0); } catch (Throwable ivjExc) {
...

}
}

Figure 43. Code example: Removing a session EJB object

Chapter 7. Developing EJB clients 139

Nevertheless, it is still possible to program an EJB client (that is not an
enterprise bean) to participate in transactions for those specialized situations
that require it. To participate in a transaction, the EJB client must do the
following:
1. Obtain a reference to the javax.transaction.UserTransaction interface by

using JNDI as defined in the Java Transaction Application Programming
Interface (JTA).

2. Use the object reference to invoke any of the following methods:
v begin—Begins a transaction. This method takes no arguments and

returns void.
v commit—Attempts to commit a transaction; assuming that nothing

causes the transaction to be rolled back, successful completion of this
method commits the transaction. This method takes no arguments and
returns void.

v getStatus—Returns the status of the referenced transaction. This method
takes no arguments and returns int; if no transaction is associated with
the reference, STATUS_NO_TRANSACTION is returned. The following
are the valid return values for this method:
– STATUS_ACTIVE—Indicates that transaction processing is still in

progress.
– STATUS_COMMITTED—Indicates that a transaction has been

committed and the effects of the transaction have been made
permanent.

– STATUS_COMMITTING—Indicates that a transaction is in the
process of committing (that is, the transaction has started committing
but has not completed the process).

– STATUS_MARKED_ROLLBACK—Indicates that a transaction is
marked to be rolled back.

– STATUS_NO_TRANSACTION—Indicates that a transaction does not
exist in the current transaction context.

– STATUS_PREPARED—Indicates that a transaction has been prepared
but not completed.

– STATUS_PREPARING—Indicates that a transaction is in the process
of preparing (that is, the transaction has started preparing but has not
completed the process).

– STATUS_ROLLEDBACK—Indicates that a transaction has been rolled
back.

– STATUS_ROLLING_BACK—Indicates that a transaction is in the
process of rolling back (that is, the transaction has started rolling
back but has not completed the process).

– STATUS_UNKNOWN—Indicates that the status of a transaction is
unknown.

140 WebSphere: Writing Enterprise Beans in WebSphere

v rollback—Rolls back the referenced transaction. This method takes no
arguments and returns void.

v setRollbackOnly—Specifies that the only possible outcome of the
transaction is for it to be rolled back. This method takes no arguments
and returns void.

v setTransactionTimeout—Sets the timeout (in seconds) associated with
the transaction. If some transaction participant has not specifically set
this value, a default timeout is used. This method takes a number of
seconds (as type int) and returns void.

Figure 44 provides an example of an EJB client creating a reference to a
UserTransaction object and then using that object to set the transaction
timeout, begin a transaction, and attempt to commit the transaction. (The
source code for this example is not available with the example code provided
with this document.) Notice that the client does a simple type cast of the
lookup result, rather than invoking a narrow method as required with other
JNDI lookups. In both EJB server environments, the JNDI name of the
UserTransaction interface is jta/usertransaction.

More information on EJB clients specific to the EJB server (CB)

When developing EJB clients for the EJB server (CB) environment, you can
develop the following types of clients:
v Microsoft ActiveX clients. For some general information, see “EJB clients

that use ActiveX” on page 142.
v CORBA-based Java and C++ clients. For some general information, see

“C++ and Java EJB clients that use a CORBA interface” on page 142.

...
javax.transaction.*;
...
// Use JNDI to locate the UserTransaction object
Context initialContext = new InitialContext();
UserTransaction tranContext = (

UserTransaction)initialContext.lookup("jta/usertransaction");
// Set the transaction timeout to 30 seconds
tranContext.setTransactionTimeout(30);
...
// Begin a transaction
tranContext.begin();
// Perform transaction work invoking methods on enterprise bean references
...
// Call for the transaction to commit
tranContext.commit();

Figure 44. Code example: Managing transactions in an EJB client

Chapter 7. Developing EJB clients 141

v Clients using the Component Broker Session Service. For some general
information, see “Clients using the Component Broker Session Service” on
page 143.

For more information on developing these types of clients, see the IBM
Redbook entitled IBM Component Broker Connector Overview, form number
SG24-2022-02.

EJB clients that use ActiveX
If you write your EJB client as a component that adheres to the JavaBeans™

Specification, you can use the JavaBeans bridge to run the EJB client as an
ActiveX control. An EJB client of this type must provide a no-argument
constructor, it must implement the java.io.Serializable interface, and it must
have a readObject and a writeObject method, if applicable.

If your EJB client is also an applet, you must not perform your JNDI
initialization as part of object construction. Rather, perform JNDI initialization
in the applet’s start method. The JavaBeans bridge must create an instance of
your EJB client so that it can introspect it and make the necessary stubs to
create the ActiveX proxy for it. You must delay the JNDI connections until the
user can specify the necessary properties by way of the ActiveX property
sheet.

C++ and Java EJB clients that use a CORBA interface
Typically, Java EJB clients are written to use the enterprise bean’s RMI
interface. However, you can also write a Java-based EJB client that uses the
enterprise bean’s CORBA interface. To generate Java/CORBA bindings for an
enterprise bean deployed in a Component Broker server, use the -idl option of
the Java rmic command to generate an interface definition language (IDL) file
from the enterprise bean’s remote and home interfaces.

Then, use the IDL file as input to Component Broker’s IDL compiler
(com.ibm.idltoJava.Compile). You must not generate Java/CORBA bindings
from the IDL file generated by the cbejb deployment tool, because this IDL
file incorporates special interface-name and method-signature mangling that
allows the IDL file to be used to generate C++ bindings for enterprise beans
without requiring C++ implementations of the Java Serializable types used by
the bean.

You can develop EJB clients that use C++ CORBA; however, these clients are
restricted to invoking methods that do not use parameters that are arrays or
that are of the java.io.Serializable type or the java.lang.String type. This
restriction effectively prohibits C++ EJB clients from accessing entity beans
directly because primary key classes must be serializable. The String and
array types in the remote or home interface are mapped to IDL value types to
allow null values to be passed between a Java EJB client and an enterprise
bean. CORBA C++ EJB clients cannot invoke the javax.ejb.EJBHome.remove

142 WebSphere: Writing Enterprise Beans in WebSphere

and javax.ejb.EJBObject.getHandle methods because these methods contain
Serializable parameters. EJB clients of this type cannot be built with Microsoft
Visual C++.

To generate the CORBA C++ bindings for an enterprise bean, run the
Component Broker idlc tool on the IDL file generated from the enterprise
bean by the cbejb tool. Do not generate CORBA C++ bindings by using the
IDL file generated by the Java rmic command, because this IDL file contains
nested modules that can be re-opened, and these are not supported by the
Component Broker C++ bindings due to the lack of namespace support in the
C++ compiler.

Clients using the Component Broker Session Service
In addition to the Transaction Service, Component Broker also provides a
Session Service for the Procedural Application Adaptor (PAA) that enables the
use of backend systems such as CICS and IMS. Since the JTA does not have a
Session Service, it is not possible to use JNDI to look up a handle to the
service in an EJB client. In this case, the EJB client must act as an ordinary CB
Java client.

The normal lookup procedure for a CB Java client is to use the CORBA
resolve_initial_references method. In this case, the CORBA object to look up is
named SessionCurrent.

Before you can call the resolve_initial_references method, the ORB needs to be
properly initialized for the CB runtime environment. The initialization method
depends on whether or not you are using VisualAge for Java access beans in
the CB environment. If you are using access beans, then the ORB must be
manually initialized. ORB initialization in access beans is done in a ″lazy″
fashion. That is, initialization is not done until the first remote method is
invoked. However, because a session must be started before that method is
called, the ORB initialization must be done manually. The example code in
Figure 45 shows this initialization.

String[] CBargs = null;
CBargs = new String[6];
CBargs[0] = "-ORBBootstrapHost";
// substitute your bootstrap host name
CBargs[1] = "cbs3.rchland.ibm.com";
CBargs[2] = "-ORBBootstrapPort";
CBargs[3] = "900";
CBargs[4] = "-ORBClass";
CBargs[5] = "com.ibm.CORBA.iiop.ORB";
com.ibm.CBCUtil.CBSeriesGlobal.Initialize(CBargs);

Figure 45. Code example: Initializing the ORB (if using access beans)

Chapter 7. Developing EJB clients 143

If you are not using access beans, initialization code is not necessary. The ORB
is properly initialized during the creation of the InitialContext object with the
appropriate properties. For example, your client code should already contain
lines similar to those in Figure 46. This code is used to find the service, look
up the home object, narrow the home object, and create the proxy object
(tasks automatically done if an access bean is being used).

After the ORB is initialized (either automatically or manually), you must use
CB-specific APIs for creating and using the sessionCurrent object. You must
include code similar to the example code in Figure 47.

For more information on using the resolve_initial_references method, see the
Component Broker Programming Guide.

Properties properties = new Properties();
properties.put(javax.naming.Context.PROVIDER_URL, "iiop:///");
// CB Factory Name
properties.put(javax.naming.Context.INITIAL_CONTEXT_FACTORY,
"com.ibm.ejb.cb.runtime.CBCtxFactory");
Context ctx = new InitialContext(properties);

Figure 46. Code example: Creating the InitialContext object (if not using access beans)

org.omg.CORBA.Object orbCurrent = null;
com.ibm.ISessions.Current sessionCurrent = null;
...
orbCurrent = com.ibm.CBCUtil.CBSeriesGlobal.orb().resolve_initial_references(
"ISessions::Current");
sessionCurrent = com.ibm.ISessions.CurrentHelper.narrow(orbCurrent);
sessionCurrent.beginSession("myApp");
...
// commit
sessionCurrent.endSession(com.ibm.ISessions.EndMode.EndModeCheckPoint, true);

Figure 47. Code example: Creating and using the sessionCurrent object

144 WebSphere: Writing Enterprise Beans in WebSphere

Chapter 8. Developing servlets that use enterprise beans

A servlet is a Java application that enables users to access Web server
functionality. To use servlets, a Web server is required. The WebSphere
Application Server plugs into a number of commonly used Web servers. In
addition, the IBM HTTP Web server is available with both the Advanced
Application Server and the Enterprise Application Server. For more
information, consult the Getting Started with Advanced Edition document.

Java servlets can be combined with enterprise beans to create powerful EJB
applications. This chapter describes how to use enterprise beans within a
servlet. The example CreateAccount servlet, which uses the example Account
bean, is used to illustrate the concepts discussed in this chapter. The example
servlet and enterprise bean discussed in this chapter are explained in
“Information about the examples described in the documentation” on
page 225.

An overview of standard servlet methods

Usually, a servlet is invoked from an HTML form on the user’s browser. The
first time the servlet is invoked, the servlet’s init method is run to perform
any initializations required at startup. For the first and all subsequent
invocations of the servlet, the doGet method (or, alternatively, the doPost
method) is run. Within the doGet method (or the doPost method), the servlet
gets the information provided by the user on the HTML form and uses that
information to perform work on the server and access server resources.

The servlet then prepares a response and sends the response back to the user.
After a servlet is loaded, it can handle multiple simultaneous user requests.
Multiple request threads can invoke the doGet (or doPost) method at the
same time, so the servlet needs to be made thread safe.

When a servlet shuts down, the destroy method of the servlet is run in order
to perform any needed shutdown processing.

Writing an HTML page that embeds a servlet

Figure 48 on page 146 shows the HTML file (named create.html) used to
invoke the CreateAccount servlet. The HTML form is used to specify the
account number for the new account, its type (checking or savings), and its
initial balance. The request is passed to the doGet method of the servlet,

© Copyright IBM Corp. 1999, 2000 145

where the servlet is identified with its full Java package name, as shown in
the example.

The HTML response from the servlet is designed to produce a display
identical to create.html, enabling the user to continue creating new accounts.
Figure 49 on page 147 shows what create.html looks like on a browser.

<html>
<head>
<title>Create a new Account</title>
</head>
<body>
<h1 align="center">Create a new Account</h1>
<form method="get"
action="/servlet/com.ibm.ejs.doc.client.CreateAccount">
<table border align="center">
<!-- specify a new account number -->
<tr bgcolor="#cccccc">
<td align="right">Account Number:</td>
<td colspan="2"><input type="text" name="account" size="20"
maxlength="10">
</tr>
<!-- specify savings or checking account -->
...
<!-- specify account starting balance -->
...
<!-- submit information to servlet -->
...
<input type="submit" name ="submit" value="Create">
...
<!-- message area -->
...
</form>
</body>
</html>

Figure 48. Code example: Content of the create.html file used to access the CreateAccount servlet

146 WebSphere: Writing Enterprise Beans in WebSphere

Developing the servlet

This section discusses the basic code required by a servlet that interacts with
an enterprise bean. Figure 50 on page 148 shows the basic outline of the code
that makes up the CreateAccount servlet. As shown in the example, the
CreateAccount servlet extends the javax.servlet.http.HttpServlet class and
implements an init method and a doGet method.

Figure 49. The initial form and output of the CreateAccount servlet

Chapter 8. Developing servlets that use enterprise beans 147

The servlet’s instance variables
Figure 51 on page 149 shows the instance variables used in the CreateAccount
servlet. The nameService, accountName, and providerUrl variables are used to
specify the property values required during JNDI lookup. These values are
obtained from the ClientResourceBundle class as described in “Creating and
getting a reference to a bean’s EJB object” on page 131.

The CreateAccount class also initializes the string constants that are used to
create the HTML response sent back to the user. (Only three of these variables
are shown, but there are many of them). The init method in the
CreateAccount servlet provides a way to read strings from a resource bundle
to override these US English defaults in order to provide a response in a
different national language.

package com.ibm.ejs.doc.client;
// General enterprise bean code.
import java.rmi.RemoteException;
import javax.ejb.DuplicateKeyException;
// Enterprise bean code specific to this servlet.
import com.ibm.ejs.doc.account.AccountHome;
import com.ibm.ejs.doc.account.AccountKey;
import com.ibm.ejs.doc.account.Account;
// Servlet related.
import javax.servlet.*;
import javax.servlet.http.*;
// JNDI (naming).
import javax.naming.*; // for Context, InitialContext, NamingException
// Miscellaneous:
import java.util.*;
import java.io.*;
...
public class CreateAccount extends HttpServlet {

// Variables
...
public void init(ServletConfig config) throws ServletException {

...
}
public void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

// --- Read and validate user input, initialize. ---
...
// --- If input parameters are good, try to create account. ---
...
// --- Prepare message to accompany response. ---
...
// --- Prepare and send HTML response. ---
...

}

Figure 50. Code example: The CreateAccount class

148 WebSphere: Writing Enterprise Beans in WebSphere

The instance variable accountHome is used by all client requests to create a
new Account bean instance. The accountHome variable is initialized in the init
method as shown in Figure 51.

The servlet’s init method
The init method of the CreateAccount servlet is shown in Figure 52 on
page 150. The init method is run once, the first time a request is processed by
the servlet, after the servlet is started. Typically, the init method is used to do
any one-time initializations for a servlet. For example, the default US English
strings used in preparing the HTML response can be replaced with another
national language.

The init method is also the best place to initialize the value of references to
the home interface of any enterprise beans used by the servlet. In the
CreateAccount’s init method, the accountHome variable is initialized to
reference the EJB home object of the Account bean.

As in other types of EJB clients, the properties required to do a JNDI lookup
are specific to the EJB implementation. Therefore, these properties are
externalized in a properties file or a resource bundle class. For more
information on these properties, see “Creating and getting a reference to a
bean’s EJB object” on page 131.

Note that in the CreateAccount servlet, a HashTable object is used to store the
properties required to do a JNDI lookup whereas a Properties object is used in

...
public class CreateAccount extends HttpServlet {

// Variables for finding the home
private String nameService = null;
private String accountName = null;
private String providerURL = null;
private ResourceBundle bundle = ResourceBundle.getBundle(

"com.ibm.ejs.doc.client.ClientResourceBundle");
// Strings for HTML output - US English defaults shown.
static String title = "Create a new Account";
static String number = "Account Number:";
static String type = "Type:";
...
// Variable for accessing the enterprise bean.
private AccountHome accountHome = null;
...

}

Figure 51. Code example: The instance variables of the CreateAccount class

Chapter 8. Developing servlets that use enterprise beans 149

the TransferApplication. Both of these class are valid for storing these
properties.

// Variables for finding the EJB home object
private String nameService = null;
private String accountName = null;
private String providerURL = null;
private ResourceBundle bundle = ResourceBundle.getBundle(

"com.ibm.ejs.doc.client.TransferResourceBundle");
...
public void init(ServletConfig config) throws ServletException {

super.init(config);
...
try {

// Get NLS strings from an external resource bundle
...
createTitle = bundle.getString("createTitle");
number = bundle.getString("number");
type = bundle.getString("type");
...
//Get values for the naming factory and home name.
nameService = bundle.getString("nameService");
accountName = bundle.getString("accountName");
providerURL = bundle.getString("providerURL");

}
catch (Exception e) {

...
}
// Get home object for access to Account enterprise bean.
Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY, nameService);
try {

// Create the initial context.
Context ctx = new InitialContext(env);
// Get the home object.
Object homeObject = ctx.lookup(accountName);
// Get the AccountHome object.
accountHome = (AccountHome) javax.rmi.PortableRemoteObject.narrow(

(org.omg.CORBA.Object)homeObject, AccountHome.class);
}
// Determine cause of failure.
catch (NamingException e) {

...
}
catch (Exception e) {

...
}

}

Figure 52. Code example: The init method of the CreateAccount servlet

150 WebSphere: Writing Enterprise Beans in WebSphere

The servlet’s doGet method
The doGet method is invoked for every servlet request. In the CreateAccount
servlet, the method does the following tasks to manage user input. These
tasks are fairly standard for this method:
v Read the user input from the HTML form and decide if the input is

valid—for example, whether the user entered a valid number for an initial
balance.

v Perform the initializations required for each request.

Figure 53 on page 152 shows the parts of the doGet method that handle user
input. Note that the req variable is used to read the user input from the
HTML form. The req variable is a javax.servlet.http.HttpServletRequest object
passed as one of the arguments to the doGet method.

Chapter 8. Developing servlets that use enterprise beans 151

Creating an enterprise bean
If the user input is valid, the doGet method attempts to create a new account
based on the user input as shown in Figure 54 on page 153. Besides the

public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {
// --- Read and validate user input, initialize. ---
// Error flags.
boolean accountFlag = true;
boolean balanceFlag = true;
boolean inputFlag = false;
boolean createFlag = true;
boolean duplicateFlag = false;
// Datatypes used to create new account bean.
AccountKey key;
int typeAcct = 0;
String typeString = "0";
float initialBalance = 0;
// Read input parameters from HTML form.
String[] accountArray = req.getParameterValues("account");
String[] typeArray = req.getParameterValues("type");
String[] balanceArray = req.getParameterValues("balance");
// Convert input parameters to needed datatypes for new account.
// (account)
long accountLong = 0;
...
key = new AccountKey(accountLong);
// (type)
if (typeArray[0].equals("1")) {

typeAcct = 1; // Savings account.
typeString = "savings";

}
else if (typeArray[0].equals("2")) {

typeAcct = 2; // Checking account
typeString = "checking";

}
// (balance)
try {

initialBalance = (Float.valueOf(balanceArray[0])).floatValue();
} catch (Exception e) {

balanceFlag = false;
}
...
// --- If input parameters are good, try to create account bean. ---

...
// --- Prepare message to accompany response. ---
...
// --- Prepare and send HTML response. ---
...

}

Figure 53. Code example: The doGet method of the CreateAccount servlet

152 WebSphere: Writing Enterprise Beans in WebSphere

initialization of the home object reference in the init method, this is the only
other piece of code that is specific to the use of enterprise beans in a servlet.

Determining the content of the user response
Next, the doGet method prepares a response message to be sent to the user.
There are three possible responses:
v The user input was not valid.
v The user input was valid, but the account was not created for some reason.
v The account was created successfully. If the previous two errors do not

occur, this response is prepared.

Figure 55 on page 154 shows the code used by the servlet to determine which
response to send to the user. If no errors are encountered, then the response
indicates success.

public void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {
// --- Read and validate user input, initialize ---.
...
// --- If input parameters are good, try to create account bean. ---
if (accountFlag && balanceFlag) {

inputFlag = true;
try {

// Create the bean.
Account account = accountHome.create(key, typeAcct, initialBalance);

}
// Determine cause of failure.
catch (RemoteException e) {

...
}
catch (DuplicateKeyException e) {

...
}
catch (Exception e) {

...
}

}
// --- Prepare message to accompany response. ---
...
// --- Prepare and send HTML response. ---
...

}

Figure 54. Code example: Creating an enterprise bean in the doGet method

Chapter 8. Developing servlets that use enterprise beans 153

Sending the user response
With the type of response determined, the doGet method then prepares the
full HTML response and sends it to the user’s browser, incorporating the
appropriate message. Relevant parts of the full HTML response are shown in
Figure 56 on page 155.

The res variable is used to pass the response back to the user. This variable is
an HttpServletResponse object passed as an argument to the doGet method.

public void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {
// --- Read and validate user input, initialize. ---

...
// --- If input parameters are good, try to create account bean. ---
...
// --- Prepare message to accompany response. ---
...

String messageLine = "";
if (inputFlag) {

// If you are here, the client input is good.
if (createFlag) {
// New account enterprise bean was created.
messageLine = createdaccount + " " + accountArray[0] + ", " +

createdtype + " " + typeString + ", " +
createdbalance + " " + balanceArray[0];

}
else if (duplicateFlag) {

// Account with same key already exists.
messageLine = failureexists + " " + accountArray[0];

}
else {
// Other reason for failure.

messageLine = failureinternal + " " + accountArray[0];
}

}
else {

// If you are here, something was wrong with the client input.
String separator = "";
if (!accountFlag) {

messageLine = failureaccount + " " + accountArray[0];
separator = ", ";

}
if (!balanceFlag) {

messageLine = messageLine + separator +
failurebalance + " " + balanceArray[0];

}
// --- Prepare and send HTML response. ---
...

}

Figure 55. Code example: Determining a user response in the doGet method

154 WebSphere: Writing Enterprise Beans in WebSphere

The response code shown here mixes both display (HTML) and content in one
servlet. You can separate the display and the content by using JavaServer
Pages (JSP). A JSP allows the display and content to be developed and
maintained separately.

Threading issues

Except for the instance variable required to get a reference to the Account
bean’s home interface and to support multiple languages (which remain
unchanged for all user requests), all other variables used in the CreateAccount
servlet are local to the doGet method. Each request thread has its own set of
local variables, so the servlet can handle simultaneous user requests.

As a result, the CreateAccount servlet is thread safe. By taking a similar
approach to servlet design, you can also make your servlets thread safe.

public void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {
// --- Read and validate user input, initialize. ---
...
// --- If input parameters are good, try to create account bean. ---
...
// --- Prepare message to accompany response. ---
...

// --- Prepare and send HTML response. ---
// HTML returned looks like initial HTML that invoked this servlet.
// Message line says whether servlet was successful or not.
res.setContentType("text/html");
res.setHeader("Pragma", "no-cache");
res.setHeader("Cache-control", "no-cache");
PrintWriter out = res.getWriter();
out.println("<html>");
...
out.println("<title> " + createTitle + "</title>");
...
out.println(" </html>");

}

Figure 56. Code example: Responding to the user in the doGet method

Chapter 8. Developing servlets that use enterprise beans 155

156 WebSphere: Writing Enterprise Beans in WebSphere

Chapter 9. More-advanced programming concepts for
enterprise beans

This chapter discusses some of the more advanced programming concepts
associated with developing and using enterprise beans. It includes
information on developing entity beans with bean-managed persistence
(BMP), writing the code required by a BMP bean to interact with a database,
and developing session beans that directly participate in transactions.

Developing entity beans with BMP

In an entity bean with container-managed persistence (CMP), the container
handles the interactions between the enterprise bean and the data source. In
an entity bean with bean-managed persistence (BMP), the enterprise bean
must contain all of the code required for the interactions between the
enterprise bean and the data source. For this reason, developing an entity
bean with CMP is simpler than developing an entity bean with BMP.
However, you must use BMP if any of the following is true about an entity
bean:
v The bean’s persistent data is stored in more than one data source.
v The bean’s persistent data is stored in a data source that is not supported

by the EJB server that you are using.

This section examines the development of entity beans with BMP. For
information on the tasks required to develop an entity bean with CMP, see
“Developing entity beans with CMP” on page 89.

Every entity bean must contain the following basic parts:
v The enterprise bean class. For more information, see “Writing the enterprise

bean class (entity with BMP)”.
v The enterprise bean’s home interface. For more information, see “Writing

the home interface (entity with BMP)” on page 168.
v The enterprise bean’s remote interface. For more information, see “Writing

the remote interface (entity with BMP)” on page 170.

In an entity bean with BMP, you can create your own primary key class or
use an existing class for the primary key. For more information, see “Writing
or selecting the primary key class (entity with BMP)” on page 172.

Writing the enterprise bean class (entity with BMP)
In an entity bean with BMP, the bean class defines and implements the
business methods of the enterprise bean, defines and implements the methods

© Copyright IBM Corp. 1999, 2000 157

used to create instances of the enterprise bean, and implements the methods
invoked by the container to move the bean through different stages in the
bean’s life cycle.

By convention, the enterprise bean class is named NameBean, where Name is
the name you assign to the enterprise bean. The enterprise bean class for the
example AccountBM enterprise bean is named AccountBMBean.

Every entity bean class with BMP must meet the following requirements:
v It must be public, it must not be abstract, and it must implement the

javax.ejb.EntityBean interface. For more information, see “Implementing the
EntityBean interface” on page 166.

v It must define instance variables that correspond to persistent data
associated with the enterprise bean. For more information, see “Defining
instance variables” on page 159.

v It must implement the business methods used to access and manipulate the
data associated with the enterprise bean. For more information, see
“Implementing the business methods” on page 161.

v It must contain code for getting connections to, interacting with, and
releasing connections to the data source (or sources) used to store the
persistent data. For more information, see “Using a database with a BMP
entity bean” on page 173.

v It must define and implement an ejbCreate method for each way in which
the enterprise bean can be instantiated. It can, but is not required to, define
and implement a corresponding ejbPostCreate method for each ejbCreate
method. For more information, see “Implementing the ejbCreate and
ejbPostCreate methods” on page 161.

v It must implement the ejbFindByPrimaryKey method that takes a primary
key and determines if it is valid and unique. It can also define and
implement additional finder methods as required. For more information,
see “Implementing the ejbFindByPrimaryKey and other ejbFind methods”
on page 163.

Note: The enterprise bean class can implement the enterprise bean’s remote
interface, but this is not recommended. If the enterprise bean class
implements the remote interface, it is possible to inadvertently pass the
this variable as a method argument.

Figure 57 on page 159 shows the import statements and class declaration for
the example AccountBM enterprise bean.

158 WebSphere: Writing Enterprise Beans in WebSphere

Defining instance variables
An entity bean class can contain both persistent and nonpersistent instance
variables; however, static variables are not supported in enterprise beans
unless they are also final (that is, they are constants). Persistent variables are
stored in a database. Unlike the persistent variables in a CMP entity bean
class, the persistent variables in a BMP entity bean class can be private.

Nonpersistent variables are not stored in a database and are temporary.
Nonpersistent variables must be used with caution and must not be used to
maintain the state of an EJB client between method invocations. This
restriction is necessary because nonpersistent variables cannot be relied on to
remain the same between method invocations outside of a transaction because
other EJB clients can change these variables or they can be lost when the
entity bean is passivated.

The AccountBMBean class contains three instance variables that represent
persistent data associated with the AccountBM enterprise bean:
v accountId, which identifies the account ID associated with an account
v type, which identifies the account type as either savings (1) or checking (2)
v balance, which identifies the current balance of the account

The AccountBMBean class contains several nonpersistent instance variables
including the following:
v entityContext, which identifies the entity context of each instance of an

AccountBM enterprise bean. The entity context can be used to get a
reference to the EJB object currently associated with the bean instance and
to get the primary key object associated with that EJB object.

v jdbcUrl, which encapsulates the database universal resource locator (URL)
used to connect to the data source. This variable must have the following
format: dbAPI:databaseType:databaseName. For example, to specify a database

...
import java.rmi.RemoteException;
import java.util.*;
import javax.ejb.*;
import java.lang.*;
import java.sql.*;
import com.ibm.ejs.doc.account.InsufficientFundsException;
public class AccountBMBean implements EntityBean {

...
}

Figure 57. Code example: The AccountBMBean class

Chapter 9. More-advanced programming concepts for enterprise beans 159

named sample in an IBM DB2 database with the Java Database
Connectivity (JDBC) API, the argument is jdbc:db2:sample.

v driverName, which encapsulates the database driver class required to
connect to the database.

v DBLogin, which identifies the database user ID required to connect to the
database.

v DBPassword, which identifies password for the specified user ID (DBLogin)
required to connect to the database.

v tableName, which identifies the database table name in which the bean’s
persistent data is stored.

v jdbcConn, which encapsulates a Java Database Connectivity (JDBC)
connection to a data source within a java.sql.Connection object.

To make the AccountBM bean more portable between databases and database
drivers, the database-specific variables (jdbcUrl, driverName, DBLogin,
DBPassword, and tableName) are set by retrieving corresponding environment
variables contained in the enterprise bean. The values of these variables are
retrieved by the getEnvProps method, which is implemented in the
AccountBMBean class and invoked when the setEntityContext method is
called. For more information, see “Managing connections in the EJB server
(CB) environment” on page 174 or “Managing database connections in the EJB
server (AE) environment” on page 177.

For more information on how to set an enterprise bean’s environment
variables, refer to “Setting environment variables for an enterprise bean” on
page 44.

...
public class AccountBMBean implements EntityBean {

private EntityContext entityContext = null;
...
private static final String DBRULProp = "DBURL";
private static final String DriverNameProp = "DriverName";
private static final String DBLoginProp = "DBLogin";
private static final String DBPasswordProp = "DBPassword";
private static final String TableNameProp = "TableName";
private String jdbcUrl, driverName, DBLogin, DBPassword, tableName;
private long accountId = 0;
private int type = 1;
private float balance = 0.0f;

private Connection jdbcConn = null;
...

}

Figure 58. Code example: The instance variables of the AccountBMBean class

160 WebSphere: Writing Enterprise Beans in WebSphere

Implementing the business methods
The business methods of an entity bean class define the ways in which the
data encapsulated in the class can be manipulated. The business methods
implemented in the enterprise bean class cannot be directly invoked by an EJB
client. Instead, the EJB client invokes the corresponding methods defined in
the enterprise bean’s remote interface by using an EJB object associated with
an instance of the enterprise bean, and the container invokes the
corresponding methods in the instance of the enterprise bean.

Therefore, for every business method implemented in the enterprise bean
class, a corresponding method must be defined in the enterprise bean’s
remote interface. The enterprise bean’s remote interface is implemented by the
container in the EJB object class when the enterprise bean is deployed.

There is no difference between the business methods defined in the
AccountBMBean bean class and those defined in the CMP bean class
AccountBean shown in Figure 20 on page 94.

Implementing the ejbCreate and ejbPostCreate methods
You must define and implement an ejbCreate method for each way in which
you want a new instance of an enterprise bean to be created. For each
ejbCreate method, you can also define a corresponding ejbPostCreate method.
Each ejbCreate method must correspond to a create method in the EJB home
interface.

Like the business methods of the bean class, the ejbCreate and ejbPostCreate
methods cannot be invoked directly by the client. Instead, the client invokes
the create method of the enterprise bean’s home interface by using the EJB
home object, and the container invokes the ejbCreate method followed by the
ejbPostCreate method.

Unlike the method in an entity bean with CMP, the ejbCreate method in an
entity bean with BMP must contain all of the code required to insert the
bean’s persistent data into the data source. This requirement means that the
ejbCreate method must get a connection to the data source (if one is not
already available to the bean instance) and insert the values of the bean’s
variables into the appropriate fields in the data source.

Each ejbCreate method in an entity bean with BMP must meet the following
requirements:
v It must be public and return the bean’s primary key class.
v Its arguments and return type must be valid for Java remote method

invocation (RMI).
v It must contain the code required to insert the values of the persistent

variables into the data source. For more information, see “Using a database
with a BMP entity bean” on page 173.

Chapter 9. More-advanced programming concepts for enterprise beans 161

Each ejbPostCreate method must be public, return void, and have the same
arguments as the matching ejbCreate method.

If necessary, both the ejbCreate method and the ejbPostCreate method can
throw the java.rmi.RemoteException exception, the javax.ejb.CreateException
exception, the javax.ejb.DuplicateKeyException exception, and any
user-defined exceptions.

Figure 59 on page 163 shows the two ejbCreate methods required by the
example AccountBMBean bean class. No ejbPostCreate methods are required.

As in the AccountBean class, the first ejbCreate method calls the second
ejbCreate method; the latter handles all of the interaction with the data source.
The second method initializes the bean’s instance variables and then ensures
that it has a valid connection to the data source by invoking the
checkConnection method. The method then creates, prepares, and executes an
SQL INSERT call on the data source. If the INSERT call is executed correctly,
and only one row is inserted into the data source, the method returns an
object of the bean’s primary key class.

162 WebSphere: Writing Enterprise Beans in WebSphere

Implementing the ejbFindByPrimaryKey and other ejbFind methods
At a minimum, each entity bean with BMP must define and implement the
ejbFindByPrimaryKey method that takes a primary key and determines if it is
valid and unique for an instance of an enterprise bean; if the primary key is
valid and unique, it returns the primary key. An entity bean can also define
and implement other finder methods to find enterprise bean instances.

Like the business methods of the bean class, the ejbFind methods cannot be
invoked directly by the client. Instead, the client invokes a finder method on
the enterprise bean’s home interface by using the EJB home object, and the
container invokes the corresponding ejbFind method. The container invokes
an ejbFind method by using a generic instance of that entity bean in the
pooled state.

Because the container uses an instance of an entity bean in the pooled state to
invoke an ejbFind method, the method must do the following:

public AccountBMKey ejbCreate(AccountBMKey key) throws CreateException,
RemoteException {
return ejbCreate(key, 1, 0.0f);

}
...
public AccountBMKey ejbCreate(AccountBMKey key, int type, float balance)

throws CreateException, RemoteException
{

accountId = key.accountId;
this.type = type;
this.balance = balance;
checkConnection();
// INSERT into database
try {

String sqlString = "INSERT INTO " + tableName +
" (balance, type, accountid) VALUES (?,?,?)";

PreparedStatement sqlStatement = jdbcConn.prepareStatement(sqlString);
sqlStatement.setFloat(1, balance);
sqlStatement.setInt(2, type);
sqlStatement.setLong(3, accountId);
// Execute query
int updateResults = sqlStatement.executeUpdate();
...

}
catch (Exception e) { // Error occurred during insert

...
}
return key;

}

Figure 59. Code example: The ejbCreate methods of the AccountBMBean class

Chapter 9. More-advanced programming concepts for enterprise beans 163

1. Get a connection to the data source (or sources).
2. Query the data source for records that match specifications of the finder

method.
3. Drop the connection to the data source (or sources).

For more information on these data source tasks, see “Using a database with a
BMP entity bean” on page 173.

Figure 60 on page 165 shows the ejbFindByPrimaryKey method of the example
AccountBMBean class. The ejbFindByPrimaryKey method gets a connection to
its data source by calling the makeConnection method shown in Figure 60 on
page 165. It then creates and invokes an SQL SELECT statement on the data
source by using the specified primary key.

If one and only one record is found, the method returns the primary key
passed to it in the argument. If no records are found or multiple records are
found, the method throws the FinderException. Before determining whether
to return the primary key or throw the FinderException, the method drops its
connection to the data source by calling the dropConnection method
described in “Using a database with a BMP entity bean” on page 173.

164 WebSphere: Writing Enterprise Beans in WebSphere

Figure 61 on page 166 shows the ejbFindLargeAccounts method of the
example AccountBMBean class. The ejbFindLargeAccounts method also gets a
connection to its data source by calling the makeConnection method and
drops the connection by using the dropConnection method. The SQL SELECT
statement is also very similar to that used by the ejbFindByPrimaryKey
method. (For more information on these data source tasks and methods, see
“Using a database with a BMP entity bean” on page 173.)

While the ejbFindByPrimaryKey method needs to return only one primary
key, the ejbFindLargeAccounts method can be expected to return zero or more

public AccountBMKey ejbFindByPrimaryKey (AccountBMKey key) throws FinderException,
RemoteException {
boolean wasFound = false;
boolean foundMultiples = false;
makeConnection();
try {

// SELECT from database
String sqlString = "SELECT balance, type, accountid FROM " + tableName

+ " WHERE accountid = ?";
PreparedStatement sqlStatement = jdbcConn.prepareStatement(sqlString);
long keyValue = key.accountId;
sqlStatement.setLong(1, keyValue);

// Execute query
ResultSet sqlResults = sqlStatement.executeQuery();

// Advance cursor (there should be only one item)
// wasFound will be true if there is one
wasFound = sqlResults.next();

// foundMultiples will be true if more than one is found.
foundMultiples = sqlResults.next();

}
catch (Exception e) { // DB error

...
}
dropConnection();
if (wasFound && !foundMultiples)
{

return key;
}
else

{
// Report finding no key or multiple keys
...
throw(new FinderException(foundStatus));

}
}

Figure 60. Code example: The ejbFindByPrimaryKey method of the AccountBMBean class

Chapter 9. More-advanced programming concepts for enterprise beans 165

primary keys in an Enumeration object. To return an enumeration of primary
keys, the ejbFindLargeAccounts method does the following:
1. It uses a while loop to examine the result set (sqlResults) returned by the

executeQuery method.
2. It inserts each primary key in the result set into a hash table named

resultTable by wrapping the returned account ID in a Long object and then
in an AccountBMKey object. (The Long object, memberId, is used as the
hash table’s index.)

3. It invokes the elements method on the hash table to obtain the
enumeration of primary keys, which it then returns.

Implementing the EntityBean interface
Each entity bean class must implement the methods inherited from the
javax.ejb.EntityBean interface. The container invokes these methods to move
the bean through different stages in the bean’s life cycle. Unlike an entity bean

public Enumeration ejbFindLargeAccounts(float amount) throws RemoteException {
makeConnection();
Enumeration result;
try {

// SELECT from database
String sqlString = "SELECT accountid FROM " + tableName

+ " WHERE balance >= ?";
PreparedStatement sqlStatement = jdbcConn.prepareStatement(sqlString);
sqlStatement.setFloat(1, amount);
// Execute query
ResultSet sqlResults = sqlStatement.executeQuery();
// Set up Hashtable to contain list of primary keys
Hashtable resultTable = new Hashtable();
// Loop through result set until there are no more entries
// Insert each primary key into the resultTable
while(sqlResults.next() == true) {

long acctId = sqlResults.getLong(1);
Long memberId = new Long(acctId);
AccountBMKey key = new AccountBMKey(acctId);
resultTable.put(memberId, key);

}
// Return the resultTable as an Enumeration
result = resultTable.elements();
return result;

} catch (Exception e) {
...

} finally {
dropConnection();

}
}

Figure 61. Code example: The ejbFindLargeAccounts method of the AccountBMBean class

166 WebSphere: Writing Enterprise Beans in WebSphere

with CMP, in an entity bean with BMP, these methods must contain all of the
code for the required interaction with the data source (or sources) used by the
bean to store its persistent data.
v ejbActivate—This method is invoked by the container when the container

selects an entity bean instance from the instance pool and assigns that
instance to a specific existing EJB object. This method must contain the code
required to activate the enterprise bean instance by getting a connection to
the data source and using the bean’s javax.ejb.EntityContext class to obtain
the primary key in the corresponding EJB object.
In the example AccountBMBean class, the ejbActivate method obtains the
bean instance’s account ID, sets the value of the accountId variable, and
invokes the checkConnection method to ensure that it has a valid
connection to the data source.

v ejbLoad—This method is invoked by the container to synchronize an entity
bean’s persistent variables with the corresponding data in the data source.
(That is, the values of the fields in the data source are loaded into the
persistent variables in the corresponding enterprise bean instance.) This
method must contain the code required to load the values from the data
source and assign those values to the bean’s instance variables.
In the example AccountBMBean class, the ejbLoad method obtains the bean
instance’s account ID, sets the value of the accountId variable, invokes the
checkConnection method to ensure that it has a valid connection to the data
source, constructs and executes an SQL SELECT statement, and sets the
values of the type and balance variables to match the values retrieved from
the data source.

v ejbPassivate—This method is invoked by the container to disassociate an
entity bean instance from its EJB object and place the enterprise bean
instance in the instance pool. This method must contain the code required
to ″passivate″ or deactivate an enterprise bean instance. Usually, this
passivation simply means dropping the connection to the data source.
In the example AccountBMBean class, the ejbPassivate method invokes the
dropConnection method to drop the connection to the data source.

v ejbRemove—This method is invoked by the container when a client invokes
the remove method inherited by the enterprise bean’s home interface (from
the javax.ejb.EJBHome interface) or remote interface (from the
javax.ejb.EJBObject interface). This method must contain the code required
to remove an enterprise bean’s persistent data from the data source. This
method can throw the javax.ejb.RemoveException exception if removal of
an enterprise bean instance is not permitted. Usually, removal involves
deleting the bean instance’s data from the data source and then dropping
the bean instance’s connection to the data source.
In the example AccountBMBean class, the ejbRemove method invokes the
checkConnection method to ensure that it has a valid connection to the data

Chapter 9. More-advanced programming concepts for enterprise beans 167

source, constructs and executes an SQL DELETE statement, and invokes the
dropConnection method to drop the connection to the data source.

v setEntityContext—This method is invoked by the container to pass a
reference to the javax.ejb.EntityContext interface to an enterprise bean
instance. This method must contain any code required to store a reference
to a context.
In the example AccountBMBean class, the setEntityContext method sets the
value of the entityContext variable to the value passed to it by the container.

v ejbStore—This method is invoked by the container when the container
needs to synchronize the data in the data source with the values of the
persistent variables in an enterprise bean instance. (That is, the values of
the variables in the enterprise bean instance are copied to the data source,
overwriting the previous values.) This method must contain the code
required to overwrite the data in the data source with the corresponding
values in the enterprise bean instance.
In the example AccountBMBean class, the ejbStore method invokes the
checkConnection method to ensure that it has a valid connection to the data
source and constructs and executes an SQL UPDATE statement.

v unsetEntityContext—This method is invoked by the container, before an
enterprise bean instance is removed, to free up any resources associated
with the enterprise bean instance. This is the last method called prior to
removing an enterprise bean instance.
In the example AccountBMBean class, the unsetEntityContext method sets
the value of the entityContext variable to null.

Writing the home interface (entity with BMP)
An entity bean’s home interface defines the methods used by EJB clients to
create new instances of the bean, find and remove existing instances, and
obtain metadata about an instance. The home interface is defined by the
enterprise bean developer and implemented in the EJB home class created by
the container during enterprise bean deployment. The container makes the
home interface accessible to clients through the Java Naming and Directory
Interface (JNDI).

By convention, the home interface is named NameHome, where Name is the
name you assign to the enterprise bean. For example, the AccountBM
enterprise bean’s home interface is named AccountBMHome.

Every home interface for an entity bean with BMP must meet the following
requirements:
v It must extend the javax.ejb.EJBHome interface. The home interface inherits

several methods from the javax.ejb.EJBHome interface. See “The
javax.ejb.EJBHome interface” on page 116 for information on these methods.

168 WebSphere: Writing Enterprise Beans in WebSphere

v Each method in the interface must be either a create method, which
corresponds to an ejbCreate method (and possibly an ejbPostCreate
method) in the enterprise bean class, or a finder method, which
corresponds to an ejbFind method in the enterprise bean class. For more
information, see “Defining create methods” and “Defining finder methods”
on page 170.

v The parameters and return value of each method defined in the home
interface must be valid for Java RMI. For more information, see “The
java.io.Serializable and java.rmi.Remote interfaces” on page 117. In addition,
each method’s throws clause must include the java.rmi.RemoteException
exception class.

Figure 62 shows the relevant parts of the definition of the home interface
(AccountBMHome) for the example AccountBM bean. This interface defines
two abstract create methods: the first creates an AccountBM object by using
an associated AccountBMKey object, the second creates an AccountBM object
by using an associated AccountBMKey object and specifying an account type
and an initial balance. The interface defines the required findByPrimaryKey
method and the findLargeAccounts method.

Defining create methods
A create method is used by a client to create an enterprise bean instance and
insert the data associated with that instance into the data source. Each create
method must be named create and it must have the same number and types
of arguments as a corresponding ejbCreate method in the enterprise bean
class. (The ejbCreate method can itself have a corresponding ejbPostCreate
method.) The return types of the create method and its corresponding
ejbCreate method are always different.

...
import java.rmi.*;
import javax.ejb.*;
import java.util.*;
public interface AccountBMHome extends EJBHome {

...
AccountBM create(AccountBMKey key) throws CreateException,

RemoteException;
...
AccountBM create(AccountBMKey key, int type, float amount)

throws CreateException, RemoteException;
...
AccountBM findByPrimaryKey(AccountBMKey key)

throws FinderException, RemoteException;
...
Enumeration findLargeAccounts(float amount)

throws FinderException, RemoteException;
}

Figure 62. Code example: The AccountBMHome home interface

Chapter 9. More-advanced programming concepts for enterprise beans 169

Each create method must meet the following requirements:
v It must be named create.
v It must return the type of the enterprise bean’s remote interface. For

example, the return type for the create methods in the AccountBMHome
interface is AccountBM (as shown in Figure 23 on page 99).

v It must have a throws clause that includes the java.rmi.RemoteException
exception, the javax.ejb.CreateException exception, and all of the exceptions
defined in the throws clause of the corresponding ejbCreate and
ejbPostCreate methods.

Defining finder methods
A finder method is used to find one or more existing entity EJB objects. Each
finder method must be named findName, where Name further describes the
finder method’s purpose.

At a minimum, each home interface must define the findByPrimaryKey
method that enables a client to locate an EJB object by using the primary key
only. The findByPrimaryKey method has one argument, an object of the
bean’s primary key class, and returns the type of the bean’s remote interface.

Every other finder method must meet the following requirements:
v It must return the type of the enterprise bean’s remote interface or the

java.util.Enumeration interface (when a finder method can return more than
one EJB object).

v It must have a throws clause that includes the java.rmi.RemoteException
and javax.ejb.FinderException exception classes.

Although every entity bean must contain only the default finder method, you
can write additional ones if needed. For example, the AccountBM bean’s
home interface defines the findLargeAccounts method to find objects that
encapsulate accounts with balances of more than a specified dollar amount, as
shown in Figure 62 on page 169. Because this finder method can be expected
to return a reference to more than one EJB object, its return type is
java.util.Enumeration.

Unlike the implementation in an entity bean with CMP, in an entity bean with
BMP, the bean developer must fully implement the ejbFindByPrimaryKey
method that corresponds to the findByPrimaryKey method. In addition, the
bean developer must write each additional ejbFind method corresponding to
the finder methods defined in the home interface. The implementation of the
ejbFind methods in the AccountBMBean class is discussed in “Implementing
the ejbFindByPrimaryKey and other ejbFind methods” on page 163.

Writing the remote interface (entity with BMP)
An entity bean’s remote interface provides access to the business methods
available in the bean class. It also provides methods to remove an EJB object

170 WebSphere: Writing Enterprise Beans in WebSphere

associated with a bean instance and to obtain the bean instance’s home
interface, object handle, and primary key. The remote interface is defined by
the EJB developer and implemented in the EJB object class created by the
container during enterprise bean deployment.

By convention, the remote interface is named Name, where Name is the name
you assign to the enterprise bean. For example, the AccountBM enterprise
bean’s remote interface is named AccountBM.

Every remote interface must meet the following requirements:
v It must extend the javax.ejb.EJBObject interface. The remote interface

inherits several methods from the javax.ejb.EJBObject interface. See
“Methods inherited from javax.ejb.EJBObject” on page 116 for information
on these methods.

v It must define a corresponding business method for every business method
implemented in the enterprise bean class.

v The parameters and return value of each method defined in the interface
must be valid for Java RMI. For more information, see “The
java.io.Serializable and java.rmi.Remote interfaces” on page 117.

v Each method’s throws clause must include the java.rmi.RemoteException
exception class.

Figure 63 on page 172 shows the relevant parts of the definition of the remote
interface (AccountBM) for the example AccountBM enterprise bean. This
interface defines four methods for displaying and manipulating the account
balance that exactly match the business methods implemented in the
AccountBMBean class.

All of the business methods throw the java.rmi.RemoteException exception
class. In addition, the subtract method must throw the user-defined exception
com.ibm.ejs.doc.account.InsufficientFundsException because the corresponding
method in the bean class throws this exception. Furthermore, any client that
calls this method must either handle the exception or pass it on by throwing
it.

Chapter 9. More-advanced programming concepts for enterprise beans 171

Writing or selecting the primary key class (entity with BMP)
Every entity EJB object has a unique identity within a container that is defined
by a combination of the object’s home interface name and its primary key, the
latter of which is assigned to the object at creation. If two EJB objects have the
same identity, they are considered identical.

The primary key class is used to encapsulate an EJB object’s primary key. In
an entity bean with CMP, you must write a distinct primary key class. In an
entity bean with BMP, you can write a distinct primary key class or you can
use an existing class as the primary key class, as long as that class is
serializable. For more information, see “The java.io.Serializable and
java.rmi.Remote interfaces” on page 117.

The example AccountBM bean uses a primary key class that is identical to the
AccountKey class contained in the Account bean shown in Figure 26 on
page 103, with the exception that the key class is named AccountBMKey.

Note: For the EJB server (AE) environment, the primary key class of an entity
bean with BMP does not need to implement the hashCode and equals
method. However, the primary key class can contain these methods if
you require their functionality. In addition, the variables that make up
the primary key must be public.

The java.lang.Long class is also a good candidate for a primary key class for
the AccountBM bean.

...
import java.rmi.*;
import javax.ejb.*;
import com.ibm.ejs.doc.account.InsufficientFundsException;
public interface AccountBM extends EJBObject {

...
float add(float amount) throws RemoteException;
...
float getBalance() throws RemoteException;
...
void setBalance(float amount) throws RemoteException;
...
float subtract(float amount) throws InsufficientFundsException,

RemoteException;
}

Figure 63. Code example: The AccountBM remote interface

172 WebSphere: Writing Enterprise Beans in WebSphere

Using a database with a BMP entity bean

In an entity bean with BMP, each ejbFind method and all of the life cycle
methods (ejbActivate, ejbCreate, ejbLoad, ejbPassivate, and ejbStore) must
interact with the data source (or sources) used by the bean to maintain its
persistent data. To interact with a supported database, the BMP entity bean
must contain the code to manage database connections and to manipulate the
data in the database.

The code required to manage database connections varies across the EJB
server implementations:
v The EJB server (CB) uses JDBC 1.0 to manage database connections directly.

For more information on the EJB server (CB), see “Managing connections in
the EJB server (CB) environment” on page 174.

v The EJB server (AE) uses a set of specialized beans to encapsulate
information about databases and an IBM-specific interface to JDBC to allow
entity bean interaction with a connection manager. For more information on
the EJB server (AE), see “Managing database connections in the EJB server
(AE) environment” on page 177.

In general, there are three approaches to getting and releasing connections to
databases:
v The bean can get a database connection in the setEntityContext method and

release it in the unsetEntityContext method. This approach is the easiest for
the enterprise bean developer to implement. However, without a connection
manager, this approach is not viable because under it bean instances hold
onto database connections even when they are not in use (that is, when the
bean instance is passivated). Even with a connection manager, this
approach does not scale well.

v The bean can get a database connection in the ejbActivate and ejbCreate
methods, get and release a database connection in each ejbFind method,
and release the database connection in the ejbPassivate and ejbRemove
methods. This approach is somewhat more difficult to implement, but it
ensures that only those bean instances that are activated have connections
to the database. If you are using the EJB server (CB), which does not
contain a connection manager, this approach is probably the best one.

v The bean can get and release a database connection in each method that
requires a connection: ejbActivate, ejbCreate, ejbFind, ejbLoad, and ejbStore.
This approach is more difficult to implement than the first approach, but is
no more difficult than the second approach. If you are using the EJB server
(AE), which contains a connection manager, this approach is the most
efficient in terms of connection use and also the most scalable.

The example AccountBM bean, uses the second approach described in the
preceding text. The AccountBMBean class contains two methods for making a
connection to the DB2 database, checkConnection and makeConnection, and

Chapter 9. More-advanced programming concepts for enterprise beans 173

one method to drop connections: dropConnection. These methods must be
coded differently based on which EJB server environment you use:
v The code required to make the AccountBM bean work with the connection

manager in the EJB server (CB) is shown in “Managing connections in the
EJB server (CB) environment”.

v The code required to make the AccountBM bean work with the connection
manager in the EJB server (AE) is shown in “Managing database
connections in the EJB server (AE) environment” on page 177.

The code required to manipulate data in a database is identical for both EJB
server environments. For more information, see “Manipulating data in a
database” on page 180.

Managing connections in the EJB server (CB) environment
In the EJB server (CB) environment, the standard java.sql.DriverManager
interface is used to load and register a database driver and to get and release
connections to the database.

Loading and registering a data source
The example AccountBM bean uses an IBM DB2 relational database to store
its persistent data. To interact with DB2, the example bean must load one of
the available JDBC drivers. Figure 64 on page 175 shows the code required to
load the driver class. The value of the driverName variable is obtained by the
getEnvProps method, which accesses a corresponding environment variable in
the deployed enterprise bean.

The Class.forName method loads and registers the driver class. The
AccountBM bean loads the driver in its setEntityContext method, ensuring
that every instance of the bean has immediate access to the driver after
creating the bean instance and establishing the bean’s context.

Note: In the EJB server (CB) environment, entity beans with BMP that use
JDBC to access a database cannot participate in distributed transactions
because the environment does not support XA-enabled JDBC. In
addition, a BMP entity bean that uses JDBC to access a DB2 database
must not be run in the same server process as a CMP entity bean that
uses DB2 or in the same server process as an ordinary CB business
object that uses DB2. Similarly, a BMP entity bean that uses JDBC to
access an Oracle database must not be run in the same server process
as a CMP entity bean (or other CB business object) that uses Oracle.

174 WebSphere: Writing Enterprise Beans in WebSphere

Creating and closing a connection to a database
After loading and registering a database driver, the BMP entity bean must get
a connection to the database. When it no longer needs that connection, the
BMP entity bean must close the connection.

In the AccountBMBean class, the checkConnection method is called within
other bean class methods that require a database connection, but for which it
can be assumed that a connection already exists. This method checks to make
sure that the connection is still available by checking if the jdbcConn variable
is set to null. If the variable is null, the makeConnection method is invoked to
get the connection.

The makeConnection method is invoked when a new database connection is
required. It invokes the static method java.sql.DriverManager.getConnection
and passes the DB2 URL value defined in the jdbcUrl variable (and described
in “Defining instance variables” on page 159). The getConnection method is
overloaded; the method shown here only uses the database URL, other
versions require the URL and the database user ID or the URL, database user
ID, and the user password.

public void setEntityContext(EntityContext ctx)
throws RemoteException {
entityContext = ctx;
try {

getEnvProps();
// Load the applet driver for DB2
Class.forName(driverName);

} catch (Exception e) {
...

}
}

Figure 64. Code example: Loading and registering a JDBC driver in the setEntityContext method

Chapter 9. More-advanced programming concepts for enterprise beans 175

Entity beans with BMP must also drop database connections when a
particular bean instance no longer requires it. The AccountBMBean class
contains a dropConnection method to handle this task. To drop the database
connection, the dropConnection method does the following:
1. Invokes the commit method on the connection object (jdbcConn), to drop

any locks held on the database.
2. Invokes the close method on the connection object to close the connection.
3. Sets the connection object reference to null.

import java.sql.*;
...
private void checkConnection() throws RemoteException {

if (jdbcConn == null) {
makeConnection();

}
return;

}
...
private void makeConnection() throws RemoteException {

...
try {

// Open database connection
jdbcConn = DriverManager.getConnection(jdbcUrl);

} catch(Exception e) { // Could not get database connection
...

}
}

Figure 65. Code example: The checkConnection and makeConnection methods of the
AccountBMBean class

private void dropConnection() {
try {

// Close and delete jdbcConn
jdbcConn.commit();

} catch (Exception e) {
// Could not commit transactions to database
...

} finally {
jdbcConn.close();
jdbcConn = null;

}
}

Figure 66. Code example: The dropConnection method of the AccountBMBean class

176 WebSphere: Writing Enterprise Beans in WebSphere

Managing database connections in the EJB server (AE) environment
In the EJB server (AE) environment, the administrator creates a specialized set
of entity beans that encapsulate information about the database and the
database driver. These specialized entity beans are created by using the
WebSphere Administrative Console.

An entity bean that requires access to a database must use JNDI to create a
reference to an EJB object associated with the right database bean instance.
The entity bean can then use the IBM-specific interface (named
com.ibm.db2.jdbc.app.stdext.javax.sql.DataSource) to get and release
connections to the database.

The DataSource interface enables the entity bean to transparently interact with
the connection manager of the EJB server (AE). The connection manager
creates a pool of database connections, which are allocated and deallocated to
individual entity beans as needed.

Note: The example code contained in this section cannot be found in the
AccountBMBean, which manages database connections by using the
DriverManager interface described in “Managing connections in the EJB
server (CB) environment” on page 174. This section shows the code that
is required if the AccountBM bean were rewritten to use the DataSource
interface.

Getting an EJB object reference to a data source bean instance
Before a BMP entity bean can get a connection to a database, the entity bean
must perform a JNDI lookup on the data source entity bean associated with
the database used to store the BMP entity bean’s persistent data. Figure 67 on
page 178 shows the code required to create an InitialContext object and then
get an EJB object reference to a database bean instance. The JNDI name of the
database bean is defined by the administrator; it is recommended that the
JNDI naming convention be followed when defining this name. The value of
the required database-specific variables are obtained by the getEnvProps
method, which accesses the corresponding environment variables from the
deployed enterprise bean.

Because the connection manager creates and drops the actual database
connections and simply allocates and deallocates these connections as
required, there is no need for the BMP entity bean to load and register the
database driver. Therefore, there is no need to define the driverName and
jdbcUrl variables discussed in “Defining instance variables” on page 159.

Chapter 9. More-advanced programming concepts for enterprise beans 177

Allocating and deallocating a connection to a database
After creating an EJB object reference for the appropriate database bean
instance, that object reference is used to get and release connections to the
corresponding database. Unlike when using the DriverManager interface,
when using the DataSource interface, the BMP entity bean does not really
create and close data connections; instead, the connection manager allocates
and deallocates connections as required by the entity bean. Nevertheless, a
BMP entity bean must still contain code to send allocation and deallocation
requests to the connection manager.

In the AccountBMBean class, the checkConnection method is called within
other bean class methods that require a database connection, but for which it
can be assumed that a connection already exists. This method checks to make
sure that the connection is still available by checking if the jdbcConn variable
is set to null. If the variable is null, the makeConnection method is invoked to
get the connection (that is a connection allocation request is sent to the
connection manager).

The makeConnection method is invoked when a database connection is
required. It invokes the getConnection method on the data source object. The
getConnection method is overloaded: it can take either a user ID and
password or no arguments, in which case the user ID and password are
implicitly set to null (this version is used in Figure 68 on page 179).

...
import com.ibm.db2.jdbc.app.stdext.javax.sql.DataSource;
import javax.naming.*;
...
InitialContext initContext = null;
DataSource ds = null;
...

public void setEntityContext(EntityContext ctx)
throws RemoteException {
entityContext = ctx;

try {
getEnvProps();
ds = initContext.lookup("jdbc/sample");

} catch (NamingException e) {
...

}
}

...

Figure 67. Code example: Getting an EJB object reference to a data source bean instance in the
setEntityContext method (rewritten to use DataSource)

178 WebSphere: Writing Enterprise Beans in WebSphere

Entity beans with BMP must also release database connections when a
particular bean instance no longer requires it (that is, they must send a
deallocation request to the connection manager). The AccountBMBean class
contains a dropConnection method to handle this task. To release the database
connection, the dropConnection method does the following (as shown in
Figure 69):
1. Invokes the close method on the connection object to tell the connection

manager that the connection is no longer needed.
2. Sets the connection object reference to null.

Putting the close method inside a try/catch/finally block ensures that the
connection object reference is always set to null even if the close method fails
for some reason. Nothing is done in the catch block because the connection
manager must clean up idle connections; this is not the job of the enterprise
bean code.

private void checkConnection() throws RemoteException {
if (jdbcConn == null) {

makeConnection();
}
return;

}
...
private void makeConnection() throws RemoteException {

...
try {

// Open database connection
jdbcConn = ds.getConnection();

} catch(Exception e) { // Could not get database connection
...

}
}

Figure 68. Code example: The checkConnection and makeConnection methods of the
AccountBMBean class (rewritten to use DataSource)

private void dropConnection() {
try {

// Close the connection
jdbcConn.close();

catch (SQLException ex) {
// Do nothing

} finally {
jdbcConn = null;

}
}

Figure 69. Code example: The dropConnection method of the AccountBMBean class (rewritten to
use DataSource)

Chapter 9. More-advanced programming concepts for enterprise beans 179

Manipulating data in a database
After an instance of a BMP entity bean obtains a connection to its database, it
can read and write data. The AccountBMBean class communicates with the
DB2 database by constructing and executing Java Structured Query Language
(JSQL) calls by using the java.sql.PreparedStatement interface.

As shown in Figure 70, the SQL call is created as a String (sqlString). The
String variable is passed to the java.sql.Connection.prepareStatement method;
and the values of each variable in the SQL call are set by using the various
setter methods of the PreparedStatement class. (The variables are substituted
for the question marks in the sqlString variable.) Invoking the
PreparedStatement.executeUpdate method executes the SQL call.

The executeUpdate method is called to insert or update data in a database;
the executeQuery method is called to get data from a database. When data is
retrieved from a database, the executeQuery method returns a
java.sql.ResultSet object, which must be examined and manipulated using the
methods of that class. Figure 71 on page 181 provides an example of how the
data in a ResultSet is manipulated in the ejbLoad method of the
AccountBMBean class.

private void ejbCreate(AccountBMKey key, int type, float initialBalance)
throws CreateException, RemoteException {
// Initialize persistent variables and check for good DB connection
...
// INSERT into database
try {

String sqlString = "INSERT INTO " + tableName +
" (balance, type, accountid) VALUES (?,?,?)";

PreparedStatement sqlStatement = jdbcConn.prepareStatement(sqlString);
sqlStatement.setFloat(1, balance);
sqlStatement.setInt(2, type);
sqlStatement.setLong(3, accountId);
// Execute query
int updateResults = sqlStatement.executeUpdate();
...

}
catch (Exception e) { // Error occurred during insert

...
}
...

}

Figure 70. Code example: Constructing and executing an SQL update call in an ejbCreate method

180 WebSphere: Writing Enterprise Beans in WebSphere

Using bean-managed transactions

In most situations, an enterprise bean can depend on the container to manage
transactions within the bean. In these situations, all you need to do is set the
appropriate transactional properties in the deployment descriptor as described
in “Chapter 6. Enabling transactions and security in enterprise beans” on
page 121.

Under certain circumstances, however, it can be necessary to have an
enterprise bean participate directly in transactions. By setting the transaction
attribute in an enterprise bean’s deployment descriptor to
TX_BEAN_MANAGED, you indicate to the container that the bean is an
active participant in transactions.

Note: In the EJB server (AE) environment, the value TX_BEAN_MANAGED
is not a valid value for the transaction deployment descriptor attribute
in entity beans. In other words, entity beans cannot manage
transactions.

When writing the code required by an enterprise bean to manage its own
transactions, remember the following basic rules:
v An instance of a stateless session bean cannot reuse the same transaction

context across multiple methods called by an EJB client. Therefore, it is
recommended that the transaction context be a local variable to each
method that requires a transaction context.

public void ejbLoad () throws RemoteException {
// Get data from database
try {

// SELECT from database
...
// Execute query
ResultSet sqlResults = sqlStatement.executeQuery();
// Advance cursor (there should be only one item)
sqlResults.next();
// Pull out results
balance = sqlResults.getFloat(1);
type = sqlResults.getInt(2);

} catch (Exception e) {
// Something happened while loading data.
...

}
}

Figure 71. Code example: Manipulating a ResultSet object in the ejbLoad method

Chapter 9. More-advanced programming concepts for enterprise beans 181

v An instance of a stateful session bean can reuse the same transaction
context across multiple methods called by an EJB client. Therefore, make
the transaction context an instance variable or a local method variable at
your discretion. (When a transaction spans multiple methods, you can use
the javax.ejb.SessionSynchronization interface to synchronize the
conversational state with the transaction.)

Note: In the EJB server (CB) environment, a stateful session bean that
implements the TX_BEAN_MANAGED attribute must begin and
complete a transaction within the scope of a single method.

Figure 72 on page 183 shows the standard code required to obtain an object
encapsulating the transaction context. There are three basics steps involved:
1. The enterprise bean class must set the value of the

javax.ejb.SessionContext object reference in the setSessionContext method.
2. A javax.transaction.UserTransaction object is created by calling the

getUserTransaction method on the SessionContext object reference.
3. The UserTransaction object is used to participate in the transaction by

calling transaction methods such as begin and commit as needed. If a
enterprise bean begins a transaction, it must also complete that transaction
either by invoking the commit method or the rollback method.

Note: In both EJB servers, the getUserTransaction method of the
javax.ejb.EJBContext interface (which is inherited by the
SessionContext interface) returns an object of type
javax.transaction.UserTransaction rather than type
javax.jts.UserTransaction. While this is a deviation from the 1.0
version of the EJB Specification, the 1.1 version of the EJB
Specification requires that the getUserTransaction method return an
object of type javax.transaction.UserTransaction and drops the
requirement to return objects of type javax.jts.UserTransaction.

182 WebSphere: Writing Enterprise Beans in WebSphere

The following methods are available with the UserTransaction interface:
v begin—Begins a transaction. This method takes no arguments and returns

void.
v commit—Attempts to commit a transaction; assuming that nothing causes

the transaction to be rolled back, successful completion of this method
commits the transaction. This method takes no arguments and returns void.

v getStatus—Returns the status of the referenced transaction. This method
takes no arguments and returns int; if no transaction is associated with the
reference, STATUS_NO_TRANSACTION is returned. The following are the
valid return values for this method:
– STATUS_ACTIVE—Indicates that transaction processing is still in

progress.
– STATUS_COMMITTED—Indicates that a transaction has been committed

and the effects of the transaction have been made permanent.
– STATUS_COMMITTING—Indicates that a transaction is in the process of

committing (that is, the transaction has started committing but has not
completed the process).

– STATUS_MARKED_ROLLBACK—Indicates that a transaction is marked
to be rolled back.

– STATUS_NO_TRANSACTION—Indicates that a transaction does not
exist in the current transaction context.

...
import javax.transaction.*;
...
public class MyStatelessSessionBean implements SessionBean {

private SessionContext mySessionCtx = null;
...
public void setSessionContext(.SessionContext ctx) throws RemoteException {

mySessionCtx = ctx;
}
...
public float doSomething(long arg1) throws FinderException, RemoteException {

UserTransaction userTran = mySessionCtx.getUserTransaction();
...
// User userTran object to call transaction methods
userTran.begin();

// Do transactional work
...
userTran.commit();
...

}
...

}

Figure 72. Code example: Getting an object that encapsulates a transaction context

Chapter 9. More-advanced programming concepts for enterprise beans 183

– STATUS_PREPARED—Indicates that a transaction has been prepared but
not completed.

– STATUS_PREPARING—Indicates that a transaction is in the process of
preparing (that is, the transaction has started preparing but has not
completed the process).

– STATUS_ROLLEDBACK—Indicates that a transaction has been rolled
back.

– STATUS_ROLLING_BACK—Indicates that a transaction is in the process
of rolling back (that is, the transaction has started rolling back but has
not completed the process).

– STATUS_UNKNOWN—Indicates that the status of a transaction is
unknown.

v rollback—Rolls back the referenced transaction. This method takes no
arguments and returns void.

v setRollbackOnly—Specifies that the only possible outcome of the
transaction is rollback. This method takes no arguments and returns void.

v setTransactionTimeout—Sets the timeout (in seconds) associated with the
transaction. If some transaction participant has not specifically set this
value, a default timeout is used. This method takes a number of seconds (as
type int) and returns void.

184 WebSphere: Writing Enterprise Beans in WebSphere

Chapter 10. WebSphere Programming Model Extensions

This section discusses the two facilities that are provided as part of the
Programming Model Extensions in WebSphere Application Server:
v The exception-chaining package, which can be used by distributed

applications to capture a sequence of exceptions. For more information, see
“The distributed-exception package”.

v The command package, which can be used by distributed applications to
reduce the number of remote invocations they must make. For more
information, see “The command package” on page 196.

These packages are available as part of WebSphere Application Server
Advanced Edition and Enterprise Edition. They are general-purpose utilities,
designed to provide common functions in a reusable way. Although these two
facilities are described in the context of enterprise beans, they are available to
any WebSphere Application Server Java application. They are not restricted to
use with enterprise beans.

The distributed-exception package

Distributed applications require a strategy for exception handling. As
applications become more complex and are used by more participants,
handling exceptions becomes problematic. To capture the information
contained in every exception, methods have to rethrow every exception they
catch. If every method adopts this approach, the number of exceptions can
become unmanageable, and the code itself becomes less maintainable.
Furthermore, if a new method introduces a new exception, all existing
methods that call the new method have to be modified to handle the new
exception. Trying to explicitly manage every possible exception in a complex
application quickly becomes intractable.

In order to keep the number of exceptions manageable, some programmers
adopt a strategy in which methods catch all exceptions in a single clause and
throw one exception in response. This reduces the number of exceptions each
method must recognize, but it also means that the information about the
originating exception is lost. This loss of information can be desirable, for
example, when you wish to hide implementation details from end users.
However, this strategy can make applications much more difficult to debug.

The distributed-exception package provides a facility that allows you to build
chains of exceptions. An exception chain encapsulates the stack of previous
exceptions. With an exception chain, you can throw one exception in response

© Copyright IBM Corp. 1999, 2000 185

to another without discarding the previous exceptions, so you can manage the
number of exceptions without losing the information they carry. Exceptions
that support chaining are called distributed exceptions.

Overview
Support for chaining distributed exceptions is provided by the
com.ibm.websphere.exception Java package. The following classes and
interfaces make up this package:
v DistributedException—This class provides access to the methods on the

DistributedExceptionInfo object. It acts as the root class for exceptions in a
distributed application. For more information, see “The
DistributedException class”.

v DistributedExceptionEnabled—This interface allows exceptions that cannot
inherit from the DistributedException class to be used in exception chains,
so that exceptions based on predefined exceptions can be captured. For
more information, see “The DistributedExceptionEnabled interface” on
page 188.

v DistributedExceptionInfo—This class encapsulates the work necessary for
distributed exceptions. An exception class that extends the
DistributedException class automatically gets access to this class. A class
that implements the DistributedExceptionEnabled interface must explicitly
declare a DistributedExceptionInfo attribute. For more information, see “The
DistributedExceptionInfo class” on page 189.

v ExceptionInstantiationException—This class defines the exception that is
thrown if an exception chain cannot be created. This exception is
instantiated internally, but you can catch and re-throw it.

This section provides a general description of the interfaces and classes in the
exception-chaining package.

The DistributedException class
The DistributedException class provides the root exception for exception
hierarchies defined by applications. With this class, you build chains of
exceptions by saving a caught exception and bundling it into the new
exception to be thrown. This way, the information about the old exception is
forwarded along with the new exception. The class declares six constructors;
Figure 73 on page 187 shows the signatures for these constructors. When your
exception is a subclass of the DistributedException class, you must provide
corresponding constructors in your exception class.

186 WebSphere: Writing Enterprise Beans in WebSphere

The class also provides methods for extracting exceptions from the chain and
querying the chain. These methods include:
v getMessage—This method returns the message string associated with the

current exception.
v getPreviousException—This method returns the preceding exception in a

chain as a Throwable object. If there are no previous exceptions, it returns
null.

v getOriginalException—This method returns the original exception in a chain
as a Throwable object. If there is no prior exception, it returns null.

v getException—This method returns the most recent instance of the named
exception from the chain as a Throwable object. If there are no instances
present, it returns null.

v getExceptionInfo—This method returns the DistributedExceptionInfo object
for the exception.

v printStackTrace—These methods print the stack trace for the current
exception, which includes the stack traces of all previous exceptions in the
chain.

Localization support: Support for localized messages is provided by two of
the constructors for distributed exceptions. These constructors take arguments
representing a resource bundle, a resource key, a default message, and the set
of replacement strings for variables in the message. A resource bundle is a

...
public class DistributedException extends Exception
implements DistributedExceptionEnabled
{

// Constructors
public DistributedException() {...}
public DistributedException(String message) {...}
public DistributedException(Throwable exception) {...}
public DistributedException(String message,Throwable exception) {...}
public DistributedException(String resourceBundleName,

String resourceKey,
Object[] formatArguments,
String defaultText)

{...}
public DistributedException(String resourceBundleName,

String resourceKey,
Object[] formatArguments,
String defaultText,
Throwable exception)

{...}
// Other methods
...

}

Figure 73. Code example: Constructors for the DistributedException class

Chapter 10. WebSphere Programming Model Extensions 187

collection of resources or resource names representing information associated
with a specific locale. Resource bundles are provided as either a subclass of
the ResourceBundle class or in a properties file. The resource key indicates
which resource in the bundle to retrieve. The default message is returned if
either the name of the resource bundle or the key is null or invalid.

The DistributedExceptionEnabled interface
Use the DistributedExceptionEnabled interface to create distributed exceptions
when your exception cannot extend the DistributedException class. Because
Java does not permit multiple inheritance, you cannot extend multiple
exception classes. If you are extending an existing exception class, for
example, javax.ejb.CreateException, you cannot also extend the
DistributedException class. To allow your new exception class to chain other
exceptions, you must implement the DistributedExceptionEnabled interface
instead.

The DistributedExceptionEnabled interface declares eight methods you must
implement in your exception class:
v getMessage—This method returns the message string associated with the

current exception.
v getPreviousException—This method returns the preceding exception in a

chain as a Throwable object. If there are no previous exceptions, it returns
null.

v getOriginalException—This method returns the original exception in a chain
as a Throwable object. If there is no prior exception, it returns null.

v getException—This method returns the most recent instance of the named
exception from the chain as a Throwable object. If there are no instances
present, it returns null.

v getExceptionInfo—This method returns the DistributedExceptionInfo object
for the exception.

v printStackTrace—These methods print the stack trace for the current
exception, which includes the stack traces of all previous exceptions in the
chain.

v printSuperStackTrace—This method is used by a DistributedExceptionInfo
object to retrieve and save the current stack trace.

When implementing the DistributedExceptionEnabled interface, you must
declare a DistributedExceptionInfo attribute. This attribute provides
implementations for most of these methods, so implementing them in your
exception class consists of calling the corresponding methods on the
DistributedExceptionInfo object. For more information, see “Implementing the
methods from the DistributedExceptionEnabled interface” on page 192.

188 WebSphere: Writing Enterprise Beans in WebSphere

The DistributedExceptionInfo class
The DistributedExceptionInfo class provides the functionality required for
distributed exceptions. It must be used by any exception that implements the
DistributedExceptionEnabled interface (which includes the
DistributedException class). A DistributedExceptionInfo object contains the
exception itself, and it provides constructors for creating exception chains and
methods for retrieving the information within those chains. It also provides
the underlying methods for managing chained exceptions.

Extending the DistributedException class
The DistributedException class provides the root exception for exception
hierarchies defined by applications. The class also provides methods for
extracting exceptions from the chain and querying the chain. You must
provide constructors corresponding to the constructors in the
DistributedException class (see Figure 73 on page 187). The constructors can
simply pass arguments to the constructor in the DistributedException class by
using super methods, as illustrated in Figure 74 on page 190.

Chapter 10. WebSphere Programming Model Extensions 189

Implementing the DistributedExceptionEnabled interface
Use the DistributedExceptionEnabled interface to create distributed exceptions
when your exception cannot extend the DistributedException class. To allow
your new exception class to be chained, you must implement the
DistributedExceptionEnabled interface instead. Figure 75 on page 191 shows
the structure of an exception class that extends the existing
javax.ejb.CreateException class and implements the
DistributedExceptionEnabled interface. The class also declares the required
DistributedExceptionInfo object.

...
import com.ibm.websphere.exception.*;
public class MyDistributedException extends DistributedException
{

// Constructors
public MyDistributedException() {

super();
}
public MyDistributedException(String message) {

super(message);
}
public MyDistributedException(Throwable exception) {

super(exception);
}
public MyDistributedException(String message, Throwable exception) {

super(message, exception);
}
public MyDistributedException(String resourceBundleName,

String resourceKey, Object[] formatArguments,
String defaultText)

{
super(resourceBundleName, resourceKey, formatArguments, defaultText);

}
public MyDistributedException(String resourceBundleName,

String resourceKey, Object[] formatArguments,
String defaultText, Throwable exception)

{
super(resourceBundleName, resourceKey, formatArguments, defaultText,

exception);
}

}

Figure 74. Code example: Constructors in an exception class that extends the DistributedException
class

190 WebSphere: Writing Enterprise Beans in WebSphere

Implementing the constructors for the exception class
The exception-chaining package supports six different ways of creating
instances of exception classes (see Figure 73 on page 187). When you write an
exception class by implementing the DistributedExceptionEnabled interface,
you must implement these constructors. In each one, you must use the
DistributedExceptionInfo object to capture the information for chaining the
exception. Figure 76 on page 192 shows standard implementations for the six
constructors.

...
import javax.ejb.*;
import com.ibm.websphere.exception.*;
public class AccountCreateException extends CreateException
implements DistributedExceptionEnabled
{

DistributedExceptionInfo exceptionInfo = null;
// Constructors
...
// Methods from the DistributedExceptionEnabled interface
...

}

Figure 75. Code example: The structure of an exception class that implements the
DistributedExceptionEnabled interface

Chapter 10. WebSphere Programming Model Extensions 191

Implementing the methods from the DistributedExceptionEnabled
interface
The DistributedExceptionInfo object provides implementations for most of the
methods in the DistributedExceptionEnabled interface, so you can implement
the required methods in your exception class by calling the corresponding
methods on the DistributedExceptionInfo object. Figure 77 on page 194
illustrates this technique. The only two methods that do not involve calling a

...
public class AccountCreateException extends CreateException
implements DistributedExceptionEnabled
{

DistributedExceptionInfo exceptionInfo = null;
// Constructors
AccountCreateException() {

super ();
exceptionInfo = new DistributedExceptionInfo(this);

}
AccountCreateException(String msg) {

super (msg);
exceptionInfo = new DistributedExceptionInfo(this);

}
AccountCreateException(Throwable e) {

super ();
exceptionInfo = new DistributedExceptionInfo(this, e);

}
AccountCreateException(String msg, Throwable e) {

super (msg);
exceptionInfo = new DistributedExceptionInfo(this, e);

}
AccountCreateException(String resourceBundleName, String resourceKey,

Object[] formatArguments, String defaultText)
{

super ();
exceptionInfo = new DistributedExceptionInfo(resourceBundleName,

resourceKey, formatArguments, defaultText, this);
}
AccountCreateException(String resourceBundleName, String resourceKey,

Object[] formatArguments, String defaultText,
Throwable exception)

{
super ();
exceptionInfo = new DistributedExceptionInfo(resourceBundleName,

resourceKey, formatArguments, defaultText, this, exception);
}
// Methods from the DistributedExceptionEnabled interface
...

}

Figure 76. Code example: Constructors for an exception class that implements the
DistributedExceptionEnabled interface

192 WebSphere: Writing Enterprise Beans in WebSphere

corresponding method on the DistributedExceptionInfo object are the
getExceptionInfo method, which returns the object, and the
printSuperStackTrace method, which calls the super.printStackTrace method.

Chapter 10. WebSphere Programming Model Extensions 193

...
public class AccountCreateException extends CreateException
implements DistributedExceptionEnabled
{

DistributedExceptionInfo exceptionInfo = null;
// Constructors
...
// Methods from the DistributedExceptionEnabled interface
String getMessage() {

if (exceptionInfo != null)
return exceptionInfo.getMessage();

else return null;
}
Throwable getPreviousException() {

if (exceptionInfo != null)
return exceptionInfo.getPreviousException();

else return null;
}
Throwable getOriginalException() {

if (exceptionInfo != null)
return exceptionInfo.getOriginalException();

else return null;
}
Throwable getException(String exceptionClassName) {

if (exceptionInfo != null)
return exceptionInfo.getException(exceptionClassName);

else return null;
}
DistributedExceptionInfo getExceptionInfo() {

if (exceptionInfo != null)
return exceptionInfo;

else return null;
}
void printStackTrace() {

if (exceptionInfo != null)
return exceptionInfo.printStackTrace();

else return null;
}
void printStackTrace(PrintWriter pw) {

if (exceptionInfo != null)
return exceptionInfo.printStackTrace(pw);

else return null;
}
void printSuperStackTrace(PrintWriter pw)

if (exceptionInfo != null)
return super.printStackTrace(pw);

else return null;
}

}

Figure 77. Code example: Implementations of the methods in the DistributedExceptionEnabled
interface

194 WebSphere: Writing Enterprise Beans in WebSphere

Using distributed exceptions
Defining a distributed exception gives you the ability to chain exceptions
together. The DistributedExceptionInfo class provides methods for adding
information to an exception chain and for extracting information from the
chain. This section illustrates the use of distributed exceptions.

Catching distributed exceptions
You can catch exceptions that extend the DistributedException class or
implement the DistributedExceptionEnabled interface separately. You can also
test a caught exception to see if it has implemented the
DistributedExceptionEnabled interface. If it has, you can treat it as any other
distributed exception. Figure 78 shows the use of the instanceof method to test
for exception chaining.

Adding an exception to a chain
To add an exception to a chain, you must call one of the constructors for your
distributed-exception class. This captures the previous exception information
and packages it with the new exception. Figure 79 shows the use of the
MyDistributedException(Throwable) constructor.

Retrieving information from a chain
Chained exceptions allow you to retrieve information about prior exceptions
in the chain. For example, the getPreviousException, getOriginalException,

....
try {

someMethod();
}
catch (Exception e) {

...
if (e instanceof DistributedExceptionEnabled) {

...
}

...

Figure 78. Code example: Testing for an exception that implements the
DistributedExceptionEnabled interface

void someMethod() throws MyDistributedException {
try {

someOtherMethod();
}
catch (DistributedExceptionEnabled e) {

throw new MyDistributedException(e);
}
...

}...

Figure 79. Code example: Adding an exception to a chain

Chapter 10. WebSphere Programming Model Extensions 195

and getException(String) methods allow you to retrieve specific exceptions
from the chain. You can retrieve the message associated with the current
exception by calling the getMessage method. You can also get information
about the entire chain by calling one of the printStackTrace methods. Figure 80
illustrates calling the getPreviousException and getOriginalException methods.

The command package

Distributed applications are defined by the ability to utilize remote resources
as if they were local, but this remote work affects the performance of
distributed applications. Distributed applications can improve performance by
using remote calls sparingly. For example, if a server does several tasks for a
client, the application can run more quickly if the client bundles requests

...
try {

someMethod();
}
catch (DistributedExceptionEnabled e) {

try {
Throwable prev = e.getPreviousException();

}
catch (ExceptionInstantiationException eie) {

DistributedExceptionInfo prevExInfo = e.getPreviousExceptionInfo();
if (prevExInfo != null) {

String prevExName = prevExInfo.getClassName();
String prevExMsg = prevExInfo.getClassMessage();
...

}
}
try {

Throwable orig = e.getOriginalException();
}
catch (ExceptionInstantiationException eie) {

DistributedExceptionInfo origExInfo = null;
DistributedExceptionInfo prevExInfo = e.getPreviousExceptionInfo();
while (prevExInfo != null) {

origExInfo = prevExInfo;
prevExInfo = prevExInfo.getPreviousExceptionInfo();

}
if (origExInfo != null) {

String origExName = origExInfo.getClassName();
String origExMsg = origExInfo.getClassMessage();

...
}

}
}
...

Figure 80. Code example: Extracting exceptions from a chain

196 WebSphere: Writing Enterprise Beans in WebSphere

together, reducing the number of individual remote calls. The command
package provides a mechanism for collecting sets of requests to be submitted
as a unit.

In addition to giving you a way to reduce the number of remote invocations a
client makes, the command package provides a generic way of making
requests. A client instantiates the command, sets its input data, and tells it to
run. The command infrastructure determines the target server and passes a
copy of the command to it. The server runs the command, sets any output
data, and copies it back to the client. The package provides a common way to
issue a command, locally or remotely, and independently of the server’s
implementation. Any server (an enterprise bean, a Java Database Connectivity
(JDBC) server, a servlet, and so on) can be a target of a command if the server
supports Java access to its resources and provides a way to copy the
command between the client’s Java Virtual Machine (JVM) and its own JVM.

Overview
The command facility is implemented in the com.ibm.websphere.command
Java package. The classes and interfaces in the command package fall into
four general categories:
v Interfaces for creating commands. For more information, see “Facilities for

creating commands”.
v Classes and interfaces for implementing commands. For more information,

see “Facilities for implementing commands” on page 198.
v Classes and interfaces for determining where the command is run. For more

information, see “Facilities for setting and determining targets” on page 199.
v Classes defining package-specific exceptions. For more information, see

“Exceptions in the command package” on page 200.

This section provides a general description of the interfaces and classes in the
command package.

Facilities for creating commands
The Command interface specifies the most basic aspects of a command. This
interface is extended by both the TargetableCommand interface and the
CompensableCommand interface, which offer additional features. To create
commands for applications, you must:
v Define an interface that extends one or more of interfaces in the command

package.
v Provide an implementation class for your interface.

In practice, most commands implement the TargetableCommand interface,
which allows the command to be executed remotely. Figure 81 on page 198
shows the structure of a command interface for a targetable command.

Chapter 10. WebSphere Programming Model Extensions 197

The CompensableCommand interface allows the association of one command
with another that can undo the work of the first. Compensable commands
also typically implement the TargetableCommand interface. Figure 82 shows
the structure of a command interface for a targetable, compensable command.

Facilities for implementing commands
Commands are implemented by extending the class TargetableCommandImpl,
which implements the TargetableCommand interface. The
TargetableCommandImpl class is an abstract class that provides some
implementations for some of the methods in the TargetableCommand interface
(for example, setting return values) and declares additional methods that the
application itself must implement (for example, how to execute the
command).

You implement your command interface by writing a class that extends the
TargetableCommandImpl class and implements your command interface. This
class contains the code for the methods in your interface, the methods
inherited from extended interfaces (the TargetableCommand and
CompensableCommand interfaces), and the required (abstract) methods in the
TargetableCommandImpl class. You can also override the default
implementations of other methods provided in the TargetableCommandImpl
class. Figure 83 on page 199 shows the structure of an implementation class for
the interface in Figure 82.

...
import com.ibm.websphere.command.*;
public interface MySimpleCommand extends TargetableCommand {

// Declare application methods here
}

Figure 81. Code example: The structure of an interface for a targetable command

...
import com.ibm.websphere.command.*;
public interface MyCommand extends TargetableCommand, CompensableCommand {

// Declare application methods here
}

Figure 82. Code example: The structure of an interface for a targetable, compensable command

198 WebSphere: Writing Enterprise Beans in WebSphere

Facilities for setting and determining targets
The object that is the target of a TargetableCommand must implement the
CommandTarget interface. This object can be an actual server-side object, like
an entity bean, or it can be a client-side adapter for a server. The implementor
of the CommandTarget interface is responsible for ensuring the proper
execution of a command in the desired target server environment. This
typically requires the following steps:
1. Copying the command to the target server by using a server-specific

protocol.
2. Running the command in the server.
3. Copying the executed command from the target server to the client by

using a server-specific protocol.

Common ways to implement the CommandTarget interface include:
v A local target, which runs in the client’s JVM.
v A client-side adapter for a server. For an example that implements the

target as a client-side adapter, see “Writing a command target (client-side
adapter)” on page 220.

v An enterprise bean (either a session bean or an entity bean). Figure 84 on
page 200 shows the structure of the remote interface and enterprise bean
class for an entity bean that implements the CommandTarget interface.

...
import java.lang.reflect.*;
import com.ibm.websphere.command.*;
public class MyCommandImpl extends TargetableCommandImpl
implements MyCommand {

// Set instance variables here
...
// Implement methods in the MyCommand interface
...
// Implement methods in the CompensableCommand interface
...
// Implement abstract methods in the TargetableCommandImpl class
...

}

Figure 83. Code example: The structure of an implementation class for a command interface

Chapter 10. WebSphere Programming Model Extensions 199

Since targetable commands can be run remotely in another JVM, the
command package provides mechanisms for determining where to run the
command. A target policy associates a command with a target and is specified
through the TargetPolicy interface. You can design customized target policies
by implementing this interface, or you can use the provided
TargetPolicyDefault class. For more information, see “Targets and target
policies” on page 215.

Exceptions in the command package
The command package defines a set of exception classes. The
CommandException class extends the DistributedException class and acts as
the base class for the additional command-related exceptions:
UnauthorizedAccessException, UnsetInputPropertiesException, and
UnavailableCompensableCommandException. Applications can extend the
CommandException class to define additional exceptions, as well.

Although the CommandException class extends the DistributedException
class, you do not have to import the distributed-exception package,
com.ibm.websphere.exception, unless you need to use the features of the
DistributedException class in your application. For more information on
distributed exceptions, see “The distributed-exception package” on page 185.

Writing command interfaces
To write a command interface, you extend one or more of the three interfaces
included in the command package. The base interface for all commands is the

...
import java.rmi.RemoteException;
import java.util.Properties;
import javax.ejb.*;
import com.ibm.websphere.command.*;
// Remote interface for the MyBean enterprise bean (also a command target)
public interface MyBean extends EJBObject, CommandTarget {

// Declare methods for the remote interface
...

}
// Entity bean class for the MyBean enterprise bean (also a command target)
public class MyBeanClass implements EntityBean, CommandTarget {

// Set instance variables here
...
// Implement methods in the remote interface
...
// Implement methods in the EntityBean interface
...
// Implement the method in the CommandTarget interface
...

}

Figure 84. Code example: The structure of a command-target entity bean

200 WebSphere: Writing Enterprise Beans in WebSphere

Command interface. This interface provides only the client-side interface for
generic commands and declares three basic methods:
v isReadyToCallExecute—This method is called on the client side before the

command is passed to the server for execution.
v execute—This method passes the command to the target and returns any

data.
v reset—This method reverts any output properties to the values they had

before the execute method was called so that the object can be reused.

The implementation class for your interface must contain implementations for
the isReadyToCallExecute and reset methods. The execute method is
implemented for you elsewhere; for more information, see “Implementing
command interfaces” on page 203. Most commands do not extend the
Command interface directly but use one of the provided extensions: the
TargetableCommand interface and the CompensableCommand interface.

The TargetableCommand interface
The TargetableCommand interface extends the Command interface and
provides for remote execution of commands. Most commands will be
targetable commands. The TargetableCommand interface declares several
additional methods:
v setCommandTarget—This method allows you to specify the target object to

a command.
v setCommandTargetName—This method allows you to specify the target by

name to a command.
v getCommandTarget—This method returns the target object of the command.
v getCommandTargetName—This method returns the name of the target

object of the command.
v hasOutputProperties—This method indicates whether or not the command

has output that must be copied back to the client. (The implementation
class also provides a method, setHasOutputProperties, for setting the
output of this method. By default, hasOutputProperties returns true.)

v setOutputProperties—This method saves output values from the command
for return to the client.

v performExecute—This method encapsulates the application-specific work. It
is called for you by the execute method declared in the Command interface.

With the exception of the performExecute method, which you must
implement, all of these methods are implemented in the
TargetableCommandImpl class. This class also implements the execute method
declared in the Command interface.

The CompensableCommand interface
The CompensableCommand interface also extends the Command interface. A
compensable command is one that has another command (a compensator)

Chapter 10. WebSphere Programming Model Extensions 201

associated with it, so that the work of the first can be undone by the
compensator. For example, a command that attempts to make an airline
reservation followed by a hotel reservation can offer a compensating
command that allows the user to cancel the airline reservation if the hotel
reservation cannot be made.

The CompensableCommand interface declares one method:
v getCompensatingCommand—This methods returns the command that can

be used to undo the effects of the original command.

To create a compensable command, you write an interface that extends the
CompensableCommand interface. Such interfaces typically extend the
TargetableCommand interface as well. You must implement the
getCompensatingCommand method in the implementation class for your
interface. You must also implement the compensating command.

The example application
The example used throughout the remainder of this discussion uses an entity
bean with container-managed persistence (CMP) called CheckingAccountBean,
which allows a client to deposit money, withdraw money, set a balance, get a
balance, and retrieve the name on the account. This entity bean also accepts
commands from the client. The code examples illustrate the command-related
programming. For a servlet-based example, see “Writing a command target
(client-side adapter)” on page 220.

Figure 85 shows the interface for the ModifyCheckingAccountCmd command.
This command is both targetable and compensable, so the interface extends
both TargetableCommand and CompensableCommand interfaces.

...
import com.ibm.websphere.exception.*;
import com.ibm.websphere.command.*;
public interface ModifyCheckingAccountCmd
extends TargetableCommand, CompensableCommand {

float getAmount();
float getBalance();
float getOldBalance(); // Used for compensating
float setBalance(float amount);
float setBalance(int amount);
CheckingAccount getCheckingAccount();
void setCheckingAccount(CheckingAccount newCheckingAccount);
TargetPolicy getCmdTargetPolicy();
...

}

Figure 85. Code example: The ModifyCheckingAccountCmd interface

202 WebSphere: Writing Enterprise Beans in WebSphere

Implementing command interfaces
The command package provides a class, TargetableCommandImpl, that
implements all of the methods in the TargetableCommand interface except the
performExecute method. It also implements the execute method from the
Command interface. To implement an application’s command interface, you
must write a class that extends the TargetableCommandImpl class and
implements your command interface. Figure 86 shows the structure of the
ModifyCheckingAccountCmdImpl class.

The class must declare any variables and implement these methods:
v Any methods you defined in your command interface.
v The isReadyToCallExecute and reset methods from the Command interface.
v The performExecute method from the TargetableCommand interface.
v The getCompensatingCommand method from the CompensableCommand

interface, if your command is compensable. You must also implement the
compensating command.

You can also override the nonfinal implementations provided in the
TargetableCommandImpl class. The most likely candidate for
reimplementation is the setOutputProperties method, since the default
implementation does not save final, transient, or static fields.

Defining instance and class variables
The ModifyCheckingAccountCmdImpl class declares the variables used by the
methods in the class, including the remote interface of the CheckingAccount
entity bean; the variables used to capture operations on the checking account
(balances and amounts); and a compensating command. Figure 87 on page 204
shows the variables used by the ModifyCheckingAccountCmd command.

...
public class ModifyCheckingAccountCmdImpl extends TargetableCommandImpl
implements ModifyCheckingAccountCmd
{

// Variables
...
// Methods
...

}

Figure 86. Code example: The structure of the ModifyCheckingAccountCmdImpl class

Chapter 10. WebSphere Programming Model Extensions 203

Implementing command-specific methods
The ModifyCheckingAccountCmd interface defines several command-specific
methods in addition to extending other interfaces in the command package.
These command-specific methods are implemented in the
ModifyCheckingAccountCmdImpl class.

You must provide a way to instantiate the command. The command package
does not specify the mechanism, so you can choose the technique most
appropriate for your application. The fastest and most efficient technique is to
use constructors. The most flexible technique is to use a factory. Also, since
commands are implemented internally as JavaBeans components, you can use
the standard Beans.instantiate method. The ModifyCheckingAccountCmd
command uses constructors.

Figure 88 on page 205 shows the two constructors for the command. The
difference between them is that the first uses the default target policy for
determining the target of the command and the second allows you to specify
a custom policy. (For more information on targets and target policies, see
“Targets and target policies” on page 215.)

Both constructors take a CommandTarget object as an argument and cast it to
the CheckingAccount type. The CheckingAccount interface extends both the
CommandTarget interface and the EJBObject (see Figure 97 on page 214). The
resulting checkingAccount object routes the command to the desired server by
using the bean’s remote interface. (For more information on CommandTarget
objects, see “Writing a command target (server)” on page 213.)

...
public class ModifyCheckingAccountCmdImpl extends TargetableCommandImpl
implements ModifyCheckingAccountCmd
{

// Variables
public float balance;
public float amount;
public float oldBalance;
public CheckingAccount checkingAccount;
public ModifyCheckingAccountCompensatorCmd

modifyCheckingAccountCompensatorCmd;
...

}

Figure 87. Code example: The variables in the ModifyCheckingAccountCmdImpl class

204 WebSphere: Writing Enterprise Beans in WebSphere

Figure 89 on page 206 shows the implementation of the command-specific
methods:
v setBalance—This method sets the balance of the account.
v getAmount—This method returns the amount of a deposit or withdrawal.
v getOldBalance, getBalance—These methods capture the balance before and

after an operation.
v getCmdTargetPolicy—This method retrieves the current target policy.
v setCheckingAccount, getCheckingAccount—These methods set and retrieve

the current checking account.

...
public class ModifyCheckingAccountCmdImpl extends TargetableCommandImpl
implements ModifyCheckingAccountCmd
{

// Variables
...
// Constructors
// First constructor: relies on the default target policy
public ModifyCheckingAccountCmdImpl(CommandTarget target,

float newAmount)
{

amount = newAmount;
checkingAccount = (CheckingAccount)target;
setCommandTarget(target);

}
// Second constructor: allows you to specify a custom target policy
public ModifyCheckingAccountCmdImpl(CommandTarget target,

float newAmount,
TargetPolicy targetPolicy)

{
setTargetPolicy(targetPolicy);
amount = newAmount;
checkingAccount = (CheckingAccount)target;
setCommandTarget(target);

}
...

}

Figure 88. Code example: Constructors in the ModifyCheckingAccountCmdImpl class

Chapter 10. WebSphere Programming Model Extensions 205

The ModifyCheckingAccountCmd command operates on a checking account.
Because commands are implemented as JavaBeans components, you manage
input and output properties of commands using the standard JavaBeans
techniques. For example, initialize input properties with set methods (like
setCheckingAccount) and retrieve output properties with get methods (like
getCheckingAccount). The get methods do not work until after the
command’s execute method has been called.

...
public class ModifyCheckingAccountCmdImpl extends TargetableCommandImpl
implements ModifyCheckingAccountCmd
{

// Variables
...
// Constructors
...
// Methods in ModifyCheckingAccountCmd interface
public float getAmount() {

return amount;
}
public float getBalance() {

return balance;
}
public float getOldBalance() {

return oldBalance;
}
public float setBalance(float amount) {

balance = balance + amount;
return balance;

}
public float setBalance(int amount) {

balance += amount ;
return balance;

}
public TargetPolicy getCmdTargetPolicy() {

return getTargetPolicy();
}
public void setCheckingAccount(CheckingAccount newCheckingAccount) {

if (checkingAccount == null) {
checkingAccount = newCheckingAccount;

}
else

System.out.println("Incorrect Checking Account (" +
newCheckingAccount + ") specified");

}
public CheckingAccount getCheckingAccount() {

return checkingAccount;
}
...

}

Figure 89. Code example: Command-specific methods in the ModifyCheckingAccountCmdImpl
class

206 WebSphere: Writing Enterprise Beans in WebSphere

Implementing methods from the Command interface
The Command interface declares two methods, isReadyToCallExecute and
reset, that must be implemented by the application programmer. Figure 90
shows the implementations for the ModifyCheckingAccountCmd command.
The implementation of the isReadyToCallExecute method ensures that the
checkingAccount variable is set. The reset method sets all of the variables
back to starting values.

Implementing methods from the TargetableCommand interface
The TargetableCommand interface declares one method, performExecute, that
must be implemented by the application programmer. Figure 91 on page 208
shows the implementation for the ModifyCheckingAccountCmd command.
The implementation of the performExecute method does the following:
v Saves the current balance (so the command can be undone by a

compensator command)
v Calculates the new balance
v Sets the current balance to the new balance
v Ensures that the hasOutputProperties method returns true so that the

values are returned to the client

In addition, the ModifyCheckingAccountCmdImpl class overrides the default
implementation of the setOutputProperties method.

...
public class ModifyCheckingAccountCmdImpl extends TargetableCommandImpl
implements ModifyCheckingAccountCmd
{

...
// Methods from the Command interface
public boolean isReadyToCallExecute() {

if (checkingAccount != null)
return true;

else
return false;

}
public void reset() {

amount = 0;
balance = 0;
oldBalance = 0;
checkingAccount = null;
targetPolicy = new TargetPolicyDefault();

}
...

}

Figure 90. Code example: Methods from the Command interface in the
ModifyCheckingAccountCmdImpl class

Chapter 10. WebSphere Programming Model Extensions 207

Implementing the CompensableCommand interface
The CompensableCommand interface declares one method,
getCompensatingCommand, that must be implemented by the application
programmer. Figure 92 on page 209 shows the implementation for the
ModifyCheckingAccountCmd command. The implementation simply returns
an instance of the ModifyCheckingAccountCompensatorCmd command
associated with the current command.

...
public class ModifyCheckingAccountCmdImpl extends TargetableCommandImpl
implements ModifyCheckingAccountCmd
{

...
// Method from the TargetableCommand interface
public void performExecute() throws Exception {

CheckingAccount checkingAccount = getCheckingAccount();
oldBalance = checkingAccount.getBalance();
balance = oldBalance+amount;
checkingAccount.setBalance(balance);
setHasOutputProperties(true);

}
public void setOutputProperties(TargetableCommand fromCommand) {

try {
if (fromCommand != null) {

ModifyCheckingAccountCmd modifyCheckingAccountCmd =
(ModifyCheckingAccountCmd) fromCommand;

this.oldBalance = modifyCheckingAccountCmd.getOldBalance();
this.balance = modifyCheckingAccountCmd.getBalance();
this.checkingAccount =

modifyCheckingAccountCmd.getCheckingAccount();
this.amount = modifyCheckingAccountCmd.getAmount();

}
}
catch (Exception ex) {

System.out.println("Error in setOutputProperties.");
}

}
...

}

Figure 91. Code example: Methods from the TargetableCommand interface in the
ModifyCheckingAccountCmdImpl class

208 WebSphere: Writing Enterprise Beans in WebSphere

Writing the compensating command: An application that uses a
compensable command requires two separate commands: the primary
command (declared as a CompensableCommand) and the compensating
command. In the example application, the primary command is declared in
the ModifyCheckingAccountCmd interface and implemented in the
ModifyCheckingAccountCmdImpl class. Because this command is also a
compensable command, there is a second command associated with it that is
designed to undo its work. When you create a compensable command, you
also have to write the compensating command.

Writing a compensating command can require exactly the same steps as
writing the original command: writing the interface and providing an
implementation class. In some cases, it may be simpler. For example, the
command to compensate for the ModifyCheckingAccountCmd does not
require any methods beyond those defined for the original command, so it
does not need an interface. The compensating command, called
ModifyCheckingAccountCompensatorCmd, simply needs to be implemented
in a class that extends the TargetableCommandImpl class. This class must:
v Provide a way to instantiate the command; the example uses a constructor
v Implement the three required methods:

– isReadyToCallExecute and reset—both from the Command interface
– performExecute—from the TargetableCommand interface

Figure 93 on page 210 shows the structure of the implementation class, its
variables (references to the original command and to the relevant checking
account), and the constructor. The constructor simply instantiates the
references to the primary command and account.

...
public class ModifyCheckingAccountCmdImpl extends TargetableCommandImpl
implements ModifyCheckingAccountCmd
{

...
// Method from CompensableCommand interface
public Command getCompensatingCommand() throws CommandException {

modifyCheckingAccountCompensatorCmd =
new ModifyCheckingAccountCompensatorCmd(this);

return (Command)modifyCheckingAccountCompensatorCmd;
}

}

Figure 92. Code example: Method from the CompensableCommand interface in the
ModifyCheckingAccountCmdImpl class

Chapter 10. WebSphere Programming Model Extensions 209

Figure 94 on page 211 shows the implementation of the inherited methods.
The implementation of the isReadyToCallExecute method ensures that the
checkingAccount variable has been instantiated.

The performExecute method verifies that the actual checking-account balance
is consistent with what the original command returns. If so, it replaces the
current balance with the previously stored balance by using the
ModifyCheckingAccountCmd command. Finally, it saves the most-recent
balances in case the compensating command needs to be undone. The reset
method has no work to do.

...
public class ModifyCheckingAccountCompensatorCmd extends TargetableCommandImpl
{

public ModifyCheckingAccountCmdImpl modifyCheckingAccountCmdImpl;
public CheckingAccount checkingAccount;

public ModifyCheckingAccountCompensatorCmd(
ModifyCheckingAccountCmdImpl originalCmd)

{
// Get an instance of the original command
modifyCheckingAccountCmdImpl = originalCmd;
// Get the relevant account
checkingAccount = originalCmd.getCheckingAccount();

}
// Methods from the Command and Targetable Command interfaces
....

}

Figure 93. Code example: Variables and constructor in the
ModifyCheckingAccountCompensatorCmd class

210 WebSphere: Writing Enterprise Beans in WebSphere

Using a command
To use a command, the client creates an instance of the command and calls
the command’s execute method. Depending on the command, calling other
methods can be necessary. The specifics will vary with the application.

...
public class ModifyCheckingAccountCompensatorCmd extends TargetableCommandImpl
{

// Variables and constructor
....
// Methods from the Command and TargetableCommand interfaces
public boolean isReadyToCallExecute() {

if (checkingAccount != null)
return true;

else
return false;

}
public void performExecute() throws CommandException
{

try {
ModifyCheckingAccountCmdImpl originalCmd =

modifyCheckingAccountCmdImpl;
// Retrieve the checking account modified by the original command
CheckingAccount checkingAccount = originalCmd.getCheckingAccount();

if (modifyCheckingAccountCmdImpl.balance ==
checkingAccount.getBalance()) {

// Reset the values on the original command
checkingAccount.setBalance(originalCmd.oldBalance);
float temp = modifyCheckingAccountCmdImpl.balance;
originalCmd.balance = originalCmd.oldBalance;
originalCmd.oldBalance = temp;

}
else {

// Balances are inconsistent, so we cannot compensate
throw new CommandException(

"Object modified since this command ran.");
}

}
catch (Exception e) {

System.out.println(e.getMessage());
}

}

public void reset() {}

}

Figure 94. Code example: Methods in ModifyCheckingAccountCompensatorCmd class

Chapter 10. WebSphere Programming Model Extensions 211

In the example application, the server is the CheckingAccountBean, an entity
enterprise bean. In order to use this enterprise bean, the client gets a reference
to the bean’s home interface. The client then uses the reference to the home
interface and one of the bean’s finder methods to obtain a reference to the
bean’s remote interface. If there is no appropriate bean, the client can create
one using a create method on the home interface. All of this work is standard
enterprise bean programming covered elsewhere in this document.

Figure 95 illustrates the use of the ModifyCheckingAccountCmd command.
This work takes place after an appropriate CheckingAccount bean has been
found or created. The code instantiates a command, setting the input values
by using one of the constructors defined for the command. The null argument
indicates that the command should look up the server using the default target
policy, and 1000 is the amount the command attempts to add to the balance of
the checking account. (For more information on how the command package
uses defaults to determine the target of a command, see “The default target
policy” on page 216.) After the command is instantiated, the code calls the
setCheckingAccount method to identify the account to be modified. Finally,
the execute method on the command is called.

Using a compensating command
To use a compensating command, you must retrieve the compensator
associated with the primary command and call its execute method. Figure 96
on page 213 shows the code used to run the original command and to give
the user the option of undoing the work by running the compensating
command.

{
...
CheckingAccount checkingAccount
...
try {

ModifyCheckingAccountCmd cmd =
new ModifyCheckingAccountCmdImpl(null, 1000);

cmd.setCheckingAccount(checkingAccount);
cmd.execute();

}
catch (Exception e) {

System.out.println(e.getMessage());
}
...

}

Figure 95. Code example: Using the ModifyCheckingAccountCmd command

212 WebSphere: Writing Enterprise Beans in WebSphere

Writing a command target (server)
In order to accept commands, a server must implement the CommandTarget
interface and its single method, executeCommand.

The example application implements the CommandTarget interface in an
enterprise bean. (For a servlet-based example, see “Writing a command target
(client-side adapter)” on page 220.) The target enterprise bean can be a session
bean or an entity bean. You can write a target enterprise bean that forwards
commands to a specific server, such as another entity bean. In this case, all
commands directed at a specific target go through the target enterprise bean.
You can also write a target enterprise bean that does the work of the
command locally.

Make an enterprise bean the target of a command by:
v Extending the CommandTarget interface when you define the bean’s remote

interface, which must also extend the EJBObject interface
v Implementing the CommandTarget interface when you implement the bean

class, which must also implement either the SessionBean or EntityBean
interface

{
...
CheckingAccount checkingAccount
....
try {

ModifyCheckingAccountCmd cmd =
new ModifyCheckingAccountCmdImpl(null, 1000);

cmd.setCheckingAccount(checkingAccount);
cmd.execute();
...
System.out.println("Would you like to undo this work? Enter Y or N");
try {

// Retrieve and validate user's response
...

}
...
if (answer.equalsIgnoreCase(Y)) {

Command compensatingCommand = cmd.getCompensatingCommand();
compensatingCommand.execute();

}
}
catch (Exception e) {

System.out.println(e.getMessage());
}
...

}

Figure 96. Code example: Using the ModifyCheckingAccountCompensator command

Chapter 10. WebSphere Programming Model Extensions 213

The target of the example application is an enterprise bean called
CheckingAccountBean. This bean’s remote interface, CheckingAccount,
extends the CommandTarget interface in addition to the EJBObject interface.
The methods declared in the remote interface are independent of those used
by the command. The executeCommand is declared in neither the bean’s
home nor remote interfaces. Figure 97 shows the CheckingAccount interface.

The enterprise bean class, CheckingAccountBean, implements the EntityBean
interface as well as the CommandTarget interface. The class contains the
business logic for the methods in the remote interface, the necessary life-cycle
methods (ejbActivate, ejbStore, and so on), and the executeCommand declared
by the CommandTarget interface. The executeCommand method is the only
command-specific code in the enterprise bean class. It attempts to run the
performExecute method on the command and throws a CommandException if
an error occurs. If the performExecute method runs successfully, the
executeCommand method uses the hasOutputProperties method to determine
if there are output properties that must be returned. If the command has
output properties, the method returns the command object to the client.
Figure 98 on page 215 shows the relevant parts of the CheckingAccountBean
class.

...
import com.ibm.websphere.command.*;
import javax.ejb.EJBObject;
import java.rmi.RemoteException;
public interface CheckingAccount extends CommandTarget, EJBObject {

float deposit (float amout) throws RemoteException;
float deposit (int amout) throws RemoteException;
String getAccountName() throws RemoteException;

float getBalance() throws RemoteException;
float setBalance(float amount) throws RemoteException;

float withdrawal (float amout) throws RemoteException, Exception;
float withdrawal (int amout) throws RemoteException, Exception;

}

Figure 97. Code example: The remote interface for the CheckingAccount entity bean, also a
command target

214 WebSphere: Writing Enterprise Beans in WebSphere

Targets and target policies
A targetable command extends the TargetableCommand interface, which
allows the client to direct a command to a particular server. The
TargetableCommand interface (and the TargetableCommandImpl class)
provide two ways for a client to specify a target: the setCommandTarget and
setCommandTargetName methods. (These methods were introduced in “The
TargetableCommand interface” on page 201.) The setCommandTarget methods
allows the client to set the target object directly on the command. The
setCommandTargetName method allows the client to refer to the server by
name; this approach is useful when the client is not directly aware of server
objects. A targetable command also has corresponding getCommandTarget
and getCommandTargetName methods.

The command package needs to be able to identify the target of a command.
Because there is more than one way to specify the target and because different

...
public class CheckingAccountBean implements EntityBean, CommandTarget {

// Bean variables
...
// Business methods from remote interface
...
// Life-cycle methods for CMP entity beans
...
// Method from the CommandTarget interface
public TargetableCommand executeCommand(TargetableCommand command)
throws RemoteException, CommandException
{

try {
command.performExecute();

}
catch (Exception ex) {

if (ex instanceof RemoteException) {
RemoveException remoteException = (RemoteException)ex;
if (remoteException.detail != null) {

throw new CommandException(remoteException.detail);
}
throw new CommandException(ex);

}
}
if (command.hasOutputProperties()) {

return command;
}
return null;

}
}

Figure 98. Code example: The bean class for the CheckingAccount entity bean, also a command
target

Chapter 10. WebSphere Programming Model Extensions 215

applications can have different requirements, the command package does not
specify a selection algorithm. Instead, it provides a TargetPolicy interface with
one method, getCommandTarget, and a default implementation. This allows
applications to devise custom algorithms for determining the target of a
command when appropriate.

The default target policy
The command package provides a default implementation of the TargetPolicy
interface in the TargetPolicyDefault class. If you use this default
implementation, the command determines the target by looking through an
ordered sequence of four options:
1. The CommandTarget value
2. The CommandTargetName value
3. A registered mapping of a target for a specific command
4. A defined default target

If it finds no target, it returns null.

The TargetPolicyDefault class provides methods for managing the assignment
of commands with targets (registerCommand, unregisterCommand, and
listMappings), and a method for setting a default name for the target
(setDefaultTargetName). The default target name is
com.ibm.websphere.command.LocalTarget, where LocalTarget is a class that
runs the command’s performExecute method locally. Figure 99 shows the
relevant variables and the methods in the TargetPolicyDefault class.

Setting the command target: The ModifyCheckingAccountImpl class
provides two command constructors (see Figure 88 on page 205). One of them
takes a command target as an argument and implicitly uses the default target

...
public class TargetPolicyDefault implements TargetPolicy, Serializable
{

...
protected String defaultTargetName = "com.ibm.websphere.command.LocalTarget";
public CommandTarget getCommandTarget(TargetableCommand command) {

... }
public Dictionary listMappings() {

... }
public void registerCommand(String commandName, String targetName) {

... }
public void unregisterCommand(String commandName) {

... }
public void seDefaultTargetName(String defaultTargetName) {

... }
}

Figure 99. Code example: The TargetPolicyDefault class

216 WebSphere: Writing Enterprise Beans in WebSphere

policy to locate the target. The constructor used in Figure 95 on page 212
passes a null target, so that the default target policy traverses its choices and
eventually finds the default target name, LocalTarget.

The example in Figure 100 uses the same constructor to set the target
explicitly. This example differs from Figure 95 on page 212 as follows:
v The command target is set to the checking account rather than null. The

default target policy starts to traverse its choices and finds the target in the
first place it looks.

v It does not have to call the setCheckingAccount method to indicate the
account on which the command should operate; the constructor uses the
target variable as both the target and the account.

Setting the command target name: If a client needs to set the target of the
command by name, it can use the command’s setCommandTargetName
method. Figure 101 on page 218 illustrates this technique. This example
compares with Figure 95 on page 212 as follows:
v Both explicitly set the command target in the constructor to null.
v Both use the setCheckingAccount method to indicate the account on which

the command should operate.
v This example sets the target name explicitly by using the

setCommandTargetName method. When the default target policy traverses
its choices, it finds a null for the first choice and a name for the second.

{
...
CheckingAccount checkingAccount
....
try {

ModifyCheckingAccountCmd cmd =
new ModifyCheckingAccountCmdImpl(checkingAccount, 1000);

cmd.execute();
}
catch (Exception e) {

System.out.println(e.getMessage());
}
...

}

Figure 100. Code example: Identifying a target with CommandTarget

Chapter 10. WebSphere Programming Model Extensions 217

Mapping the command to a target name: The default target policy also
permits commands to be registered with targets. Mapping a command to a
target is an administrative task that most appropriately done through a
configuration tool. The WebSphere Application Server administrative console
does not yet support the configuration of mappings between commands and
targets. Applications that require support for the registration of commands
with targets must supply the tools to manage the mappings. These tools can
be visual interfaces or command-line tools.

Figure 102 shows the registration of a command with a target. The names of
the command class and the target are explicit in the code, but in practice,
these values would come from fields in a user interface or arguments to a
command-line tool. If a program creates a command as shown in Figure 95 on
page 212, with a null for the target, when the default target policy traverses its
choices, it finds a null for the first and second choices and a mapping for the
third.

Customizing target policies
You can define custom target policies by implementing the TargetPolicy
interface and providing a getCommandTarget method appropriate for your

{
...
CheckingAccount checkingAccount
....
try {

ModifyCheckingAccountCmd cmd =
new ModifyCheckingAccountCmdImpl(null, 1000);

cmd.setCheckingAccount(checkingAccount);
cmd.setCommandTargetName("com.ibm.sfc.cmd.test.CheckingAccountBean");
cmd.execute();

}
catch (Exception e) {

System.out.println(e.getMessage());
}
...

}

Figure 101. Code example: Identifying a target with CommandTargetName

{
...
targetPolicy.registerCommand(

"com.ibm.sfc.cmd.test.ModifyCheckingAccountImpl",
"com.ibm.sfc.cmd.test.CheckingAccountBean");

...
}

Figure 102. Code example: Mapping a command to a target in an external application

218 WebSphere: Writing Enterprise Beans in WebSphere

application. The TargetableCommandImpl class provides setTargetPolicy and
getTargetPolicy methods for managing custom target policies.

So far, the target of all the commands has been a checking-account entity
bean. Suppose that someone introduces a session enterprise bean
(MySessionBean) that can also act as a command target. Figure 103 shows a
simple custom policy that sets the target of every command to
MySessionBean.

Since commands are implemented as JavaBeans components, using custom
target policies requires importing the java.beans package and writing some
elementary JavaBeans code. Also, your custom target-policy class must also
implement the java.io.Serializable interface.

Using a custom target policy: The ModifyCheckingAccountImpl class
provides two command constructors (see Figure 88 on page 205). One of them
implicitly uses the default target policy; the other takes a target policy object
as an argument, which allows you to use a custom target policy. The example
in Figure 104 on page 220 uses the second constructor, passing a null target
and a custom target policy, so that the custom policy is used to determine the
target. After the command is executed, the code uses the reset method to
return the target policy to the default.

...
import java.io.*;
import java.util.*;
import java.beans.*;
import com.ibm.websphere.command.*;
public class CustomTargetPolicy implements TargetPolicy, Serializable {

public CustomTargetPolicy {
super();

}
public CommandTarget getCommandTarget(TargetableCommand command) {

CommandTarget = null;
try {

target = (CommandTarget)Beans.instantiate(null,
"com.ibm.sfc.cmd.test.MySessionBean");

}
catch (Exception e) {

e.printStackTrace();
}

}
}

Figure 103. Code example: Creating a custom target policy

Chapter 10. WebSphere Programming Model Extensions 219

Writing a command target (client-side adapter)
Commands can be used with any Java application, but the means of sending
the command from the client to the server varies. The application described in
“The example application” on page 202 used enterprise beans. The example in
this section shows how you can send a command to a servlet over the HTTP
protocol.

In this example, the client implements the CommandTarget interface locally.
Figure 105 on page 221 shows the structure of the client-side class; it
implements the CommandTarget interface by implementing the
executeCommand method.

{
...
CheckingAccount checkingAccount
....
try {

CustomTargetPolicy customPolicy = new CustomTargetPolicy();
ModifyCheckingAccountCmd cmd =

new ModifyCheckingAccountCmdImpl(null, 1000, customPolicy);
cmd.setCheckingAccount(checkingAccount);
cmd.execute();
cmd.reset();

}
catch (Exception e) {

System.out.println(e.getMessage());
}

}

Figure 104. Code example: Using a custom target policy

220 WebSphere: Writing Enterprise Beans in WebSphere

The main method in the client-side adapter constructs and intializes the
CommandTarget object, as shown in Figure 106.

Implementing a client-side adapter
The CommandTarget interface declares one method, executeCommand, which
the client implements. The executeCommand method takes a
TargetableCommand object as input; it also returns a TargetableCommand.

...
import java.io.*;
import java.rmi.*;
import com.ibm.websphere.command.*;
public class ServletCommandTarget implements CommandTarget, Serializable
{

protected String hostName = "localhost";
public static void main(String args[]) throws Exception

{
....

}
public TargetableCommand executeCommand(TargetableCommand command)

throws CommandException
{

....
}
public static final byte[] serialize(Serializable serializable)

throws IOException {
... }

public String getHostName() {
... }

public void setHostName(String hostName) {
... }

private static void showHelp() {
... }

}

Figure 105. Code example: The structure of a client-side adapter for a target

public static void main(String args[]) throws Exception
{

String hostName = InetAddress.getLocalHost().getHostName();
String fileName = "MyServletCommandTarget.ser";
// Parse the command line
...
// Create and initialize the client-side CommandTarget adapter
ServletCommandTarget servletCommandTarget = new ServletCommandTarget();
servletCommandTarget.setHostName(hostName);
...
// Flush and close output streams
...

}

Figure 106. Code example: Instantiating the client-side adapter

Chapter 10. WebSphere Programming Model Extensions 221

Figure 107 on page 223 shows the implementation of the method used in the
client-side adapter. This implementation does the following:
v Serializes the command it receives
v Creates an HTTP connection to the servlet
v Creates input and output streams, to handle the command as it is sent to

the server and returned
v Places the command on the output stream
v Sends the command to the server
v Retrieves the returned command from the input stream
v Returns the returned command to the caller of the executeCommand

method

222 WebSphere: Writing Enterprise Beans in WebSphere

Running the command in the servlet
The servlet that runs the command is shown in Figure 108 on page 224. The
service method retrieves the command from the input stream and runs the
performExecute method on the command. The resulting object, with any
output properties that must be returned to the client, is placed on the output
stream and sent back to the client.

public TargetableCommand executeCommand(TargetableCommand command)
throws CommandException

{
try {

// Serialize the command
byte[] array = serialize(command);
// Create a connection to the servlet
URL url = new URL

("http://" + hostName +
"/servlet/com.ibm.websphere.command.servlet.CommandServlet");

HttpURLConnection httpURLConnection =
(HttpURLConnection) url.openConnection();

// Set the properties of the connection
...
// Put the serialized command on the output stream
OutputStream outputStream = httpURLConnection.getOutputStream();
outputStream.write(array);
// Create a return stream
InputStream inputStream = httpURLConnection.getInputStream();
// Send the command to the servlet
httpURLConnection.connect();
ObjectInputStream objectInputStream =

new ObjectInputStream(inputStream);
// Retrieve the command returned from the servlet
Object object = objectInputStream.readObject();

if (object instanceof CommandException) {
throw ((CommandException) object);

}

// Pass the returned command back to the calling method
return (TargetableCommand) object;

}
// Handle exceptions
....

}

Figure 107. Code example: A client-side implementation of the executeCommand method

Chapter 10. WebSphere Programming Model Extensions 223

In this example, the target invokes the performExecute method on the
command, but this is not always necessary. In some applications, it can be
preferable to use implement the work of the command locally. For example,
the command can be used only to send input data, so that the target retrieves
the data from the command and runs a local database procedure based on the
input. You must decide the appropriate way to use commands in your
application.

...
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import com.ibm.websphere.command.*;
public class CommandServlet extends HttpServlet {

...
public void service(HttpServletRequest request,

HttpServletResponse response)
throws ServletException, IOException

{
try {

...
// Create input and output streams
InputStream inputStream = request.getInputStream();
OutputStream outputStream = response.getOutputStream();
// Retrieve the command from the input stream
ObjectInputStream objectInputStream =

new ObjectInputStream(inputStream);
TargetableCommand command = (TargetableCommand)

objectInputStream.readObject();
// Create the command for the return stream
Object returnObject = command;

// Try to run the command's performExecute method
try {

command.performExecute();
}
// Handle exceptions from the performExecute method
...

// Return the command with any output properties
ObjectOutputStream objectOutputStream =

new ObjectOutputStream(outputStream);
objectOutputStream.writeObject(returnObject);
// Flush and close output streams
...

}
catch (Exception ex) {

ex.printStackTrace();
}

}
}

Figure 108. Code example: Running the command in the servlet

224 WebSphere: Writing Enterprise Beans in WebSphere

Appendix A. Example code provided with WebSphere
Application Server

This appendix contains information on the example code provided with the
WebSphere Application Server for both Advanced Edition and Enterprise
Edition.

Information about the examples described in the documentation

The example code discussed throughout this document is taken from a set of
examples provided with the product. This set of examples is composed of the
following main components:
v The Account entity bean, which models either a checking or savings bank

account and maintains the balance in each account. An account ID is used
to uniquely identify each instance of the bean class and to act as the
primary key. The persistent data in this bean is container managed and
consists of the following variables:
– accountId—The account ID that uniquely identifies the account. This

variable is of type long.
– type—An integer that identifies the account as either a savings account

(1) or a checking account (2). This variable is of type int.
– balance—The current balance of the account. This variable is of type float.

The major components of this bean are discussed in “Developing entity
beans with CMP” on page 89.

v The AccountBM entity bean, which is nearly identical to the Account entity
bean; however, the AccountBM bean implements bean-managed persistence.
This bean is not used by any other enterprise bean, application, or servlet
contained in the documentation example set. The major components of this
bean are discussed in “Developing entity beans with BMP” on page 157.

v The Transfer session bean, which models a funds transfer session that
involves moving a specified amount between two instances of an Account
bean. The bean contains two methods: the transferFunds method transfers
funds between two accounts, the getBalance method retrieves the balance
for a specified account. The bean is stateless. The major components of this
bean are discussed in “Developing session beans” on page 104.

v The CreateAccount servlet, which can be used to easily create new bank
accounts (and corresponding Account bean instances) with the specified
account ID, account type, and initial balance. Although this servlet is
designed to make it easy for you to create accounts and demonstrate the
other components in the example set, it also illustrates servlet interaction

© Copyright IBM Corp. 1999, 2000 225

with an entity bean. This servlet is discussed in “Chapter 8. Developing
servlets that use enterprise beans” on page 145.

v The TransferApplication Java application, which provides a graphical user
interface that was built with the abstract windowing toolkit (AWT). The
application creates an instance of the Transfer session bean, which is then
manipulated to transfer funds between two selected accounts or to get the
balance for a specified account. The TransferApplication code implements
many of the requirements for using enterprise beans in an EJB client. The
parts of this application that are relevant to interacting with an enterprise
bean are discussed in “Chapter 7. Developing EJB clients” on page 129.

v The TransferFunds servlet, which is a servlet version of the
TransferApplication Java application. This servlet is provided so that you
can compare the use of enterprise beans between a Java application and a
Java servlet that basically are doing the same tasks. This document does not
discuss this servlet in any detail.

Note: The example code in the documentation was written to be as simple as
possible. The goal of these examples is to provide code that teaches the
fundamental concepts of enterprise bean and EJB client development. It
is not meant to provide an example of how a bank (or any similar
company) possibly approaches the creation of a banking application.
For example, the Account bean contains a balance variable that has a
type of float. In a real banking application, you must not use a float
type to keep records of money; however, using a class like
java.math.BigDecimal or a currency-handling class within the examples
would complicate them unnecessarily. Remember this as you examine
these examples.

Information about other examples in the EJB server (AE) environment

Table 3 provides a summary of the enterprise bean-specific examples provided
with the EJB server (AE).

Table 3. Examples available with the EJB server (AE)

Name Bean types EJB client types Additional information

Hello Stateless session Java servlet Very simple example of a
session bean.

Increment CMP entity Java servlet Very simple example of an
entity bean.

226 WebSphere: Writing Enterprise Beans in WebSphere

Information about other examples in the EJB server (CB) environment

Table 4 provides a summary of the enterprise bean-specific examples provided
with the EJB server (CB). or more information about these examples, see the
README file that accompanies each example.

Table 4. Examples available with the EJB server (CB)

Name Bean types EJB client types Additional information

Hello Stateless session Java
application.

Very simple example of a
session bean.

Calculator Stateful session Java applet,
ActiveX control

Demonstrates maintaining state
information in a session bean.

Card Game Stateful session,
CMP entity

Java applet,
ActiveX control

Demonstrates a session bean
selecting entity beans using a
variety of finder methods on the
entity’s home.

Travel Stateful session,
BMP entity,
CMP entity

Java applet,
ActiveX control

Demonstrates client-side
transactions. Enterprise bean
uses a PAA as a data source.
One enterprise bean accesses
another bean.

Appendix A. Example code provided with WebSphere Application Server 227

228 WebSphere: Writing Enterprise Beans in WebSphere

Appendix B. Using XML in enterprise beans

Note: In the EJB server (AE) environment, use of the XML feature described
here is not recommended.

This appendix contains instructions for creating deployment descriptors for
enterprise beans by using the extensible markup language (XML). This
appendix does not contain general information on creating or using XML; for
more information on XML, consult a commercially available book.

An XML file, which is a standard ASCII file, can be created manually or by
using the graphical user interface (GUI) of the jetace tool. Once created, the
XML file can be used to create an EJB JAR file from the command line by
using the jetace tool. For more information, see “Creating a deployment
descriptor and an EJB JAR file” on page 33.

An XML-based deployment descriptor must contain the following major
components:
v Standard header and EJB JAR tags. For more information, see “Creating the

standard header and EJB JAR tags”.
v The input file and output file tags. For more information, see “Creating the

input file and output file tags” on page 230.
v Session bean or entity bean tag, depending on the type of bean for which

the deployment descriptor is being generated. An XML file can contain
instructions for generating an EJB JAR file with multiple enterprise beans of
all types. For more information, see “Creating the entity bean tags” on
page 230 and “Creating the session bean tags” on page 231.

v The tags used by all enterprise beans. For more information, see “Creating
tags used by all enterprise beans” on page 232.

Creating the standard header and EJB JAR tags

Every XML-based deployment descriptor must have the standard header tag,
which defines the XML version and the standalone status of the XML file. For
enterprise beans, these properties must be set to the values shown in
Figure 109 on page 230. Except for the header tag, which must be the first tag
in the file, the remaining content of the XML file must be enclosed in opening
and closing EJB JAR tags.

© Copyright IBM Corp. 1999, 2000 229

Creating the input file and output file tags

The input file tag identifies the JAR or ZIP file or the directory containing the
required components of one or more enterprise beans. The output file tag
identifies the EJB JAR file to be created; by default a JAR file is created, but
you can force the creation or a ZIP file by adding a .zip extension to the
output file name. These components are described in “Creating an EJB JAR
file” on page 119. The input and output files for the example Account bean are
shown in Figure 110.

Creating the entity bean tags

If you are creating a deployment descriptor for an entity bean, you must use
an entity bean tag. The entity bean open tag must contain a dname attribute,
which must be set to the fully qualified name of the deployment descriptor
associated with the entity bean.

Between the open and close entity bean tags, you must create the following
entity bean-specific attribute tags:
v <primary-key> — Identifies the fully qualified name of the primary key

class for this entity bean.
v <re-entrant> — Specifies whether the entity bean is re-entrant. This tag

must contain a value attribute, which must be set to either true (re-entrant)
or false (not re-entrant).

v <container-managed> — Identifies the persistent variables in a CMP entity
bean that are container managed. You must use a separate tag for each
persistent variable.

<?xml version='1.0' standalone='yes' ?>
<ejb-JAR>
<!-- Content of the XML file -->
...
</ejb-JAR>

Figure 109. Code example: The standard header and EJB JAR tags

<?xml version='1.0' standalone='yes' ?>
<ejb-JAR>
<input-file>AccountIn.jar</input-file>
<output-file>Account.jar</output-file>
...
</ejb-JAR>

Figure 110. Code example: The input file and output file tags

230 WebSphere: Writing Enterprise Beans in WebSphere

In addition to the entity bean-specific tags, you must create the tags required
by all enterprise beans described in “Creating tags used by all enterprise
beans” on page 232.

Figure 111 shows the entity bean-specific tags for the example Account bean.

Creating the session bean tags

If you are creating a deployment descriptor for an session bean, you must use
a session bean tag. The session bean open tag must contain a dname attribute,
which must be set to the fully qualified name of the deployment descriptor
associated with the session bean. Between the open and close session bean
tags, you must also create the following session bean attribute tags:
v <session-timeout> — Defines the idle timeout in seconds associated with

the session bean.
v <state-management> — Identifies the type of session bean:

STATELESS_SESSION or STATEFUL_SESSION.

In addition to the session bean-specific tags, you must create the tags required
by all enterprise beans described in “Creating tags used by all enterprise
beans” on page 232.

Figure 112 on page 232 shows the session bean tags for the example Transfer
bean.

<?xml version='1.0' standalone='yes' ?>
<ejb-JAR>
<input-file>AccountIn.jar</input-file>
<output-file>Account.jar</output-file>
...
<entity-bean dname="com/ibm/ejs/doc/account/Account.ser">
<primary-key>com.ibm.ejs.doc.account.AccountKey</primary-key>
<re-entrant value=false/>
<container-managed>accountId</container-managed>
<container-managed>type</container-managed>
<container-managed>balance</container-managed>
<!--Other tags used by all enterprise beans--!>
...
</entity-bean>
...
</ejb-JAR>

Figure 111. Code example: The entity bean-specific tags

Appendix B. Using XML in enterprise beans 231

Creating tags used by all enterprise beans

The following tags are used by all types of enterprise beans. These tags must
be placed between the appropriate set of opening and closing session or entity
bean tags in addition to the tags that are specific to those types of beans.
v <remote-interface> — Identifies the fully qualified name of the enterprise

bean’s remote interface.
v <enterprise-bean> — Identifies the fully qualified name of the enterprise

bean’s bean class.
v <JNDI-name> — Identifies the JNDI home name of the enterprise bean.
v <transaction-attr> — Defines the transaction attribute for the entire

enterprise bean. This attribute can also be set for an individual bean
method. The valid values are TX_MANDATORY, TX_NOT_SUPPORTED,
TX_REQUIRES_NEW, TX_REQUIRED, TX_SUPPORTS, and TX_BEAN_MANAGED. For more
information on the meaning of and restrictions on these values, see “Setting
the transaction attribute” on page 122.

v <isolation-level> — Defines the transactional isolation level attribute for the
entire enterprise bean. This attribute can also be set for an individual bean
method. The valid values, which must be set by using a value attribute
within the open tag, are SERIALIZABLE, REPEATABLE_READ, READ_COMMITTED,
and READ_UNCOMMITTED. For more information on the meaning of and
restrictions on these values, see “Setting the transaction isolation level
attribute” on page 124.

v <run-as-mode> — Defines the run-as mode attribute for the entire
enterprise bean. This attribute can also be set for an individual bean
method. The valid values, which must be set by using a value attribute
within the open tag, are CLIENT_IDENTITY, SYSTEM_IDENTITY, and

<?xml version='1.0' standalone='yes' ?>
<ejb-JAR>
<input-file>TransferIn.jar</input-file>
<output-file>Transfer.jar</output-file>
...
<session-bean dname="com/ibm/ejs/doc/transfer/Transfer.ser">
<session-timeout>0<\session-timeout>
<state-management>STATELESS_SESSION<\state-management>
<!--Other tags used by all enterprise beans--!>
...
</session-bean>
...
</ejb-JAR>

Figure 112. Code example: The session bean-specific tags

232 WebSphere: Writing Enterprise Beans in WebSphere

SPECIFIED_IDENTITY. For more information on the meaning of these values,
see “Setting the security attribute in the deployment descriptor” on
page 126.

v <run-as-id> — Defines the run-as identity attribute for the entire enterprise
bean. This attribute can also be set for an individual bean method. This
attribute is not used with the EJB server environments contained in
WebSphere Application Server.

v <method-control> — Identifies individual bean methods with transaction or
security attributes that are different from the attribute values for the entire
bean.

v <dependency> — Identifies the fully qualified names of classes on which
this enterprise bean is dependent.

v <env-setting> — Identifies environment variables (and their values)
required by the enterprise bean. The environment variable name is specified
with a name attribute, while the environment variable value is placed
between the open and close tags.

Figure 113 shows the enterprise bean tags for the example Transfer bean. A
similar set is required by the Account bean.

If you want to override the enterprise bean-wide transaction or security
attribute for particular method in that bean, you must use the
<method-control> tag. Between the open and close tags, you must identify the
method with the <method-name> tag and the method’s parameter types by
using the <parameter> tag. In addition, the following tags can used to

<?xml version='1.0' standalone='yes' ?>
<ejb-JAR>
<input-file>TransferIn.jar</input-file>
<output-file>Transfer.jar</output-file>
...
<session-bean dname="com/ibm/ejs/doc/transfer/Transfer.ser">
<!--Session bean-specific tags --!>
...
<remote-interface>com.ibm.ejs.doc.transfer.Transfer</remote-interface>
<enterprise-bean>com.ibm.ejs.doc.transfer.TransferBean</enterprise-bean>
<JNDI-name>Transfer </JNDI-name>
<transaction-attr value="TX_REQUIRED"/>
<isolation-level value="SERIALIZABLE"/>
<run-as-mode value="CLIENT_IDENTITY"/>
<dependency>com/ibm/ejs/doc/account/InsufficientFundsException.class</dependency>
...
<env-setting name="ACCOUNT_NAME">Account<env-setting>
...
</session-bean>
...
</ejb-JAR>

Figure 113. Code example: The tags used for all enterprise beans

Appendix B. Using XML in enterprise beans 233

identify those attribute values that are different in the method from the
enterprise bean as a whole: <transaction-attr>, <isolation-level>,
<run-as-mode>, and <run-as-id>.

For example, the XML shown in Figure 114 is required to override the
transaction attribute of the Transfer bean (TX_REQUIRED) in the getBalance
method to TX_SUPPORTED. Because only the transaction attribute is
overridden, the method automatically inherits the values of the
<isolation-level> and <run-as-mode> tags from the Transfer bean.

<?xml version='1.0' standalone='yes' ?>
<ejb-JAR>
<input-file>TransferIn.jar</input-file>
<output-file>Transfer.jar</output-file>
...
<session-bean dname="com/ibm/ejs/doc/transfer/Transfer.ser">
<!--Session bean-specific tags --!>
...
<transaction-attr value="TX_REQUIRED"/>
<isolation-level value="SERIALIZABLE"/>
<run-as-mode value="CLIENT_IDENTITY"/>
...
<method-control>
<method-name>getBalance</method-name>
<parameter>long</parameter>
<transaction-attr value="TX_SUPPORTED"/>
</method-control>
</session-bean>
...
</ejb-JAR>

Figure 114. Code example: Method-specific tags

234 WebSphere: Writing Enterprise Beans in WebSphere

Appendix C. Extensions to the EJB Specification

This appendix briefly discusses functional extensions to the EJB Specification
that are available in the EJB server environments contained in WebSphere
Application Server. These extensions are specific to WebSphere Application
Server and use of these features is supported only with VisualAge for Java,
Enterprise Edition. For information on implementing these features, consult
your VisualAge for Java documentation.

Access beans

Note: This extension is supported only in the EJB server (AE) environment.

Access beans are Java components that adhere to the Sun Microsystems
JavaBeans™ Specification and are meant to simplify development of EJB
clients. An access bean adapts an enterprise bean to the JavaBeans
programming model by hiding the home and remote interfaces from the
access bean user (that is, an EJB client developer).

There are three types of access beans, which are listed in ascending order of
complexity:
v Java bean wrapper—Of the three types of access beans, a Java bean

wrapper is the simplest to create. It is designed to allow either a session or
entity enterprise bean to be used like a standard Java bean and it hides the
enterprise bean home and remote interfaces from you. Each Java bean
wrapper that you create extends the com.ibm.ivj.ejb.access.AccessBean class.

v Copy helper—A copy helper access bean has all of the characteristics of a
Java bean wrapper, but it also incorporates a single copy helper object that
contains a local copy of attributes from a remote entity bean. A user
program can retrieve the entity bean attributes from the local copy helper
object that resides in the access bean, which eliminates the need to access
the attributes from the remote entity bean.

v Rowset—A rowset access bean has all of characteristics of both the Java
bean wrapper and copy helper access beans. However, instead of a single
copy helper object, it contains multiple copy helper objects. Each copy
helper object corresponds to a single enterprise bean instance.

VisualAge for Java provides a SmartGuide to assist you in creating or editing
access beans.

© Copyright IBM Corp. 1999, 2000 235

Associations between enterprise beans

In the EJB server environment, an association is a relationship that exists
between two CMP entity beans. There are three types of associations:
one-to-one and one-to-many. In a one-to-one association, a CMP entity bean is
associated with a single instance of another CMP entity bean. For example, an
Employee bean could be associated with only a single instance of a
Department bean, because an employee generally belongs only to a single
department.

In a one-to-many association, a CMP entity bean is associated with multiple
instances of another CMP entity bean. For example, a Department bean could
be associated with multiple instances of an Employee bean, because most
departments are made up of multiple employees.

The Association Editor is used to create or edit associations between CMP
entity beans in VisualAge for Java.

Inheritance in enterprise beans

In Java, inheritance is the creation of a new class from an existing class or a
new interface from an existing interface. The EJB server environment permits
two forms of inheritance: standard class inheritance and EJB inheritance. In
standard class inheritance, the home interface, remote interface, or enterprise
bean class inherits properties and methods from base classes that are not
themselves enterprise bean classes or interfaces.

In enterprise bean inheritance, by comparison, an enterprise bean inherits
properties (such as CMP fields and association ends), methods, and
method-level control descriptor attributes from another enterprise bean that
resides in the same group.

VisualAge for Java provides a SmartGuide to assist you in implementing
inheritance in enterprise beans.

236 WebSphere: Writing Enterprise Beans in WebSphere

Notices

This information was developed for products and services offered in the
U.S.A. IBM may not offer the products, services, or features discussed in this
document in other countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe
any IBM intellectual property right may be used instead. However, it is the
user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give
you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the
IBM Intellectual Property Department in your country or send inquiries, in
writing, to:

IBM World Trade Asia Corporation Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any
other country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
DOCUMENT “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OR CONDITIONS OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some
states do not allow disclaimer of express or implied warranties in certain
transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will

© Copyright IBM Corp. 1999, 2000 237

be incorporated in new editions of the document. IBM may make
improvements and/or changes in the product(s) and/or the program(s)
described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for
this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact:

For Component Broker:
IBM Corporation
Department LZKS
11400 Burnet Road
Austin, TX 78758
U.S.A.

For TXSeries:
IBM Corporation
ATTN: Software Licensing
11 Stanwix Street
Pittsburgh, PA 15222
U.S.A.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM International
Program License Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments
may vary significantly. Some measurements may have been made on
development-level systems and there is no guarantee that these measurements
will be the same on generally available systems. Furthermore, some
measurements may have been estimated through extrapolation. Actual results
may vary. Users of this document should verify the applicable data for their
specific environment.

238 WebSphere: Writing Enterprise Beans in WebSphere

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available
sources. IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change
or withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples may
include the names of individuals, companies, brands, and products. All of
these names are fictitious and any similarity to the names and addresses used
by an actual business enterprise is entirely coincidental.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Trademarks and service marks

The following terms are trademarks or registered trademarks of the IBM
Corporation in the United States, other countries, or both:

AFS
AIX
AS/400
CICS
CICS OS/2
CICS/400
CICS/6000
CICS/ESA
CICS/MVS
CICS/VSE
CICSPlex
DB2
DCE Encina Lightweight Client
DFS
Encina
IBM

IMS
MQSeries
MVS/ESA
OS/2
OS/390
OS/400
PowerPC
RISC System/6000
RS/6000
S/390
Transarc
TXSeries
VSE/ESA
VTAM
VisualAge
WebSphere

Microsoft, Windows, Windows NT, and the Windows 95 logo are trademarks
of Microsoft Corporation in the United States and/or other countries.

Oracle and Oracle8 are registered trademarks of the Oracle Corporation in the
United States and/or other countries.

Notices 239

UNIX is a registered trademark of The Open Group in the United States
and/or other countries licensed exclusively through X/Open Company
Limited.

OSF and Open Software Foundation are registered trademarks of the Open
Software Foundation, Inc.

* HP-UX is a Hewlett-Packard branded product. HP, Hewlett-Packard, and
HP-UX are registered trademarks of Hewlett-Packard Company.

Orbix is a registered trademark and OrbixWeb is a trademark of IONA
Technologies Ltd.

Sun, SunLink, Solaris, SunOS, Java, all Java-based trademarks and logos, NFS,
and Sun Microsystems are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States and/or other countries.

Some of this documentation is based on material from Object Management
Group bearing the following copyright notices:

Copyright 1995, 1996 AT&T/NCR
Copyright 1995, 1996 BNR Europe Ltd.
Copyright 1991, 1992, 1995, 1996 by Digital Equipment Corporation
Copyright 1996 Gradient Technologies, Inc.
Copyright 1995, 1996 Groupe Bull
Copyright 1995, 1996 Expersoft Corporation
Copyright 1996 FUJITSU LIMITED
Copyright 1996 Genesis Development Corporation
Copyright 1989, 1990, 1991, 1992, 1995, 1996 by Hewlett-Packard Company
Copyright 1991, 1992, 1995, 1996 by HyperDesk Corporation
Copyright 1995, 1996 IBM Corporation
Copyright 1995, 1996 ICL, plc
Copyright 1995, 1996 Ing. C. Olivetti &C.Sp
Copyright 1997 International Computers Limited
Copyright 1995, 1996 IONA Technologies, Ltd.
Copyright 1995, 1996 Itasca Systems, Inc.
Copyright 1991, 1992, 1995, 1996 by NCR Corporation
Copyright 1997 Netscape Communications Corporation
Copyright 1997 Northern Telecom Limited
Copyright 1995, 1996 Novell USG
Copyright 1995, 1996 02 Technolgies
Copyright 1991, 1992, 1995, 1996 by Object Design, Inc.
Copyright 1991, 1992, 1995, 1996 Object Management Group, Inc.
Copyright 1995, 1996 Objectivity, Inc.
Copyright 1995, 1996 Oracle Corporation
Copyright 1995, 1996 Persistence Software

240 WebSphere: Writing Enterprise Beans in WebSphere

Copyright 1995, 1996 Servio, Corp.
Copyright 1996 Siemens Nixdorf Informationssysteme AG
Copyright 1991, 1992, 1995, 1996 by Sun Microsystems, Inc.
Copyright 1995, 1996 SunSoft, Inc.
Copyright 1996 Sybase, Inc.
Copyright 1996 Taligent, Inc.
Copyright 1995, 1996 Tandem Computers, Inc.
Copyright 1995, 1996 Teknekron Software Systems, Inc.
Copyright 1995, 1996 Tivoli Systems, Inc.
Copyright 1995, 1996 Transarc Corporation
Copyright 1995, 1996 Versant Object Technology Corporation
Copyright 1997 Visigenic Software, Inc.
Copyright 1996 Visual Edge Software, Ltd.

Each of the copyright holders listed above has agreed that no person shall be
deemed to have infringed the copyright in the included material of any such
copyright holder by reason of having used the specification set forth herein or
having conformed any computer software to the specification.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE
ACCURATE, THE OBJECT MANAGEMENT GROUP, AND THE
COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND WITH
REGARDS TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. The Object Management Group and the companies
listed above shall not be liable for errors contained herein or for incidental or
consequential damages in connection with the furnishing, performance, or use
of this material.

This software contains RSA encryption code.

Other company, product, and service names may be trademarks or service
marks of others.

Notices 241

242 WebSphere: Writing Enterprise Beans in WebSphere

Index

A
ACID properties 8
ActiveX EJB clients 141, 142
administering

security service 5
WebSphere Application

Server 13
workload management service 6

afterBegin method 25
afterCompletion method 25
appbind tool 49, 76, 78, 79
atomicity 8
authentication 4
authorization 4

B
bean class

entity beans (BMP) 16, 157
entity beans (CMP) 16, 90
session beans 17
variables (entity with BMP) 159
variables (entity with CMP) 91

bean-managed persistence 6, 17,
157

beforeCompletion method 25
binding

enterprise beans to JNDI in EJB
server (CB) 73, 76

enterprise beans with factory
finders in EJB server (CB) 76

business methods
entity beans (BMP) 161
entity beans (CMP) 93
session beans 106

C
CB_EJB_JAVA_CP environment

variable 51
cbejb tool 49, 56, 61, 62
CDS (DCE) 7
CICS 11, 67, 81
Class.forName method 174
CLASSPATH environment variable

EJB server (AE) 32
EJB server (CB) 51

Command interface 197, 200, 207
CommandException class 200, 214
commands 196

Command interface 197, 200,
207

commands 196 (continued)
CommandException class 200,

214
CommandTarget interface 199,

213, 214, 220, 221
CompensableCommand

interface 197, 201, 208
DistributedException class 200
exception classes 200
execute method 200
executeCommand method 213,

214, 220, 221
getCommandTarget

method 201, 215, 218
getCommandTargetName

method 201, 215
getCompensatingCommand

method 201, 208
getTargetPolicy method 218
hasOutputProperties

method 201, 214
isReadyToCallExecute

method 200, 207
listMappings method 216
LocalTarget class 216
performExecute method 201,

207, 214, 223
registerCommand method 216,

218
reset method 200, 207
setCommandTarget method 201,

215
setCommandTargetName

method 201, 215
setDefaultTargetName

method 216, 217
setHasOutputProperties

method 201
setOutputProperties

method 201, 203, 207
setTargetPolicy method 218
target 199, 213, 215, 220, 221,

223
target (enterprise bean) 213
target (servlet) 220, 221, 223
target policy 199, 200, 215, 216,

217, 218, 219

commands 196 (continued)
TargetableCommand

interface 197, 198, 199, 201,
203, 207, 215, 221

TargetableCommandImpl
class 198, 203, 204, 218

TargetPolicy interface 200, 216,
218

TargetPolicyDefault class 200,
216

UnauthorizedAccessException
class 200

unregisterCommand
method 216, 218

UnsetInputPropertiesException
class 200

user-defined exception
classes 200

CommandTarget interface 199, 213,
214, 220, 221

committing
transactions 8, 141, 181

CompensableCommand
interface 197, 201, 208

Component Broker
LifeCycle Service 76, 77, 78
Session Service 143

components
EJB server 1
entity beans 16
entity beans (BMP) 157
entity beans (CMP) 89
session beans 17, 104

connection manager 177
connections (database)

allocating 178
closing 175
creating 175
deallocating 179
entity beans (BMP) 173
managing in EJB server

(AE) 177
managing in EJB server

(CB) 174
releasing 176

consistency 8
container-managed persistence 6,

17, 89
coordinators 9

© Copyright IBM Corp. 1999, 2000 243

CORBA EJB clients 141, 142
create method

entity beans 27
entity beans (BMP) 161, 168, 169
entity beans (CMP) 94, 98, 99
session beans 24, 108, 114

CreateException class 95, 99, 114,
162, 169

creating
deployment descriptors 33
deployment descriptors in

XML 229
EJB home objects in EJB

clients 134
EJB JAR files 33, 119
EJB objects in EJB clients 131
enterprise beans in servlets 149,

152
creation state

entity beans 26
session beans 24

Current interface (CORBA) 126

D
data sources 10
databases 10

allocating connections 178
closing connections 175
creating connections 175
deallocating connections 179
EJB object references 177
EJB server (AE) 47
EJB server (CB) 62, 65, 67, 69
getting connections 173
loading class drivers 174
manipulating data 180
registering class drivers 174
releasing connections 176

DataSource interface 177, 179
DB2 database 11, 65, 69
DCE CDS 7
deploying

enterprise beans 21, 29, 30, 49,
118

enterprise beans in EJB server
(CB) 56, 61

deployment descriptors 19
component name attributes 36
creating 33
creating in XML 229
entity bean attributes 19, 38
environment variable

attributes 44, 109, 110
file dependency attributes 46
JNDI name attribute 36

deployment descriptors 19
(continued)

security attributes 19, 43, 121,
126

session bean attributes 20, 40
transaction attributes 19, 41,

121, 122, 124
destroy method (servlets) 145
developing

EJB applications 21
EJB clients 129, 145
enterprise beans 29, 30, 49, 89
enterprise beans for

MQSeries 82
enterprise beans from CICS

applications 81
enterprise beans from IMS

applications 81
entity beans (BMP) 157
entity beans (CMP) 89
servlets with enterprise

beans 145
session beans 104

distributed exceptions 185
DistributedException class 186
DistributedExceptionEnabled

interface 186, 188
DistributedExceptionInfo

class 186, 189
ExceptionInstantiationException

class 186
getException method 187, 188
getExceptionInfo method 187,

188
getMessage method 187, 188
getOriginalException

method 187, 188
getPreviousException

method 187, 188
localization 187
printStackTrace method 187, 188
printSuperStackTrace

method 188
user-defined 189, 190, 191, 192,

195
distributed transactions 8
DistributedException class 186, 200
DistributedExceptionEnabled

interface 186, 188
DistributedExceptionInfo class 186,

189
DNS 7
doGet method (servlets) 145, 151,

152, 153, 154
doPost method (servlets) 145

DriverManager interface 173, 176
DuplicateKeyException class 162
durability 8

E
EJB applications

developing 21
examples 22

EJB clients 11
creating EJB object home

objects 134
creating EJB objects 131
developing 129, 145
managing transactions 139
naming and communications 11
removing EJB objects 139
required Java packages 130
security 11
supported in EJB server (CB)

only 141
threads 11
transactions 11

EJB home class 16, 17, 21, 98
EJB home objects 17, 21, 168

creating in EJB clients 134
migration considerations 136

EJB JAR files 19, 20
creating 33, 119

EJB object class 16, 17, 21, 115
EJB objects 17, 21

creating in EJB clients 131
invalid 137
references to databases 177
removing in EJB clients 139

EJB server 2
components 1
containers 3
services 3
tools 3

EJB server (AE)
CLASSPATH environment

variable 32
databases 47
example code 226
finder helper interface 33
managing database

connections 177
prerequisite software 31
restrictions 47
tools 29, 30

EJB server (CB)
additional EJB clients 141
binding enterprise beans in

JNDI 73, 76
binding enterprise beans with

factory finders 76

244 WebSphere: Writing Enterprise Beans in WebSphere

EJB server (CB) (continued)
CLASSPATH environment

variable 51
databases 62, 65, 67, 69
deploying enterprise beans 56,

61
example code 227
finder helper class 53
installing enterprise beans 72
managing database

connections 174
prerequisite software 51
restrictions 84
tools 49

ejbActivate method
entity beans 27
entity beans (BMP) 166
entity beans (CMP) 96
session beans 25, 112

ejbbind tool 49, 73
ejbCreate method

entity beans 27
entity beans (BMP) 158, 161,

168, 169
entity beans (CMP) 90, 94, 98,

99
session beans 24, 104, 105, 108,

114
ejbFindByPrimaryKey method

entity beans (BMP) 163
entity beans (CMP) 100

EJBHome interface 98, 114, 116, 168
ejbLoad method 27

entity beans (BMP) 166
entity beans (CMP) 96

EJBObject interface 101, 115, 116,
171

ejbPassivate method
entity beans 27
entity beans (BMP) 166
entity beans (CMP) 96
session beans 25, 112

ejbPostCreate method 27
entity beans (BMP) 158, 161,

168, 169
entity beans (CMP) 90, 94, 98,

99
ejbRemove method

entity beans (BMP) 166
entity beans (CMP) 96
session beans 26, 112

ejbStore method 27
entity beans (BMP) 166
entity beans (CMP) 96

enterprise beans 15

enterprise beans 15 (continued)
binding to JNDI in EJB server

(CB) 73, 76
binding with factory finders in

EJB server (CB) 76
creating in servlets 149, 152
deploying 21, 29, 30, 49, 118
deploying in EJB server (CB) 56,

61
deployment descriptors 19
developing 29, 30, 49, 89
developing for MQSeries 82
developing from CICS

applications 81
developing from IMS

applications 81
EJB JAR files 19
installing in EJB server (CB) 72
life cycle 24
managing transactions 181
obtaining variable values 160,

174, 177
packages (Java) 118
packaging 20, 34, 56, 118
reentrancy 117
threads 117
using in servlets 145, 147

entity beans 15
bean class (BMP) 157
bean class (CMP) 90
business methods (BMP) 161
business methods (CMP) 93
components 16
components (BMP) 157
components (CMP) 89
creation state 26
deployment descriptor

attributes 19, 38
developing (BMP) 157
developing (CMP) 89
home interface (BMP) 168
home interface (CMP) 98
instance variables (BMP) 159
instance variables (CMP) 91
life cycle 26
pooled state 26
primary key class (BMP) 172
primary key class (CMP) 102
ready state 27
remote interface (BMP) 170
remote interface (CMP) 101
removal state 27

EntityBean interface 90, 96, 158, 166
EntityDescriptor interface 118
Enumeration interface 100, 170

environment variables
deployment descriptor

attributes 44, 109, 110
ephemeral processes 9
equals method 102
examples

documentation code 225
EJB applications 22
provided with EJB server

(AE) 226
provided with EJB server

(CB) 227
exception classes

CommandException 200, 214
CreateException 95, 99, 114, 162,

169
DistributedException 200
DuplicateKeyException 162
ExceptionInstantiationException 186
FinderException 100, 107, 164,

170
NoSuchObjectException 26, 138
RemoteException 95, 96, 98, 99,

100, 101, 107, 114, 115, 162, 166,
168, 169, 170, 171

RemoveException 26, 96, 166
TransactionRequiredException 122
UnauthorizedAccessException 200
UnsetInputPropertiesException 200
user-defined 93, 102, 131, 171,

189, 190, 200
ExceptionInstantiationException

class 186
exceptions

chaining 185
distributed 185

execute method 200
executeCommand method 213, 214,

220, 221

F
file dependencies

deployment descriptor
attributes 46

findByPrimaryKey method 100,
107, 170

entity beans (BMP) 168
entity beans (CMP) 98

finder helper class 53
finder helper interface 33
finder methods

entity beans (BMP) 163, 170
entity beans (CMP) 100

FinderException class 100, 107, 164,
170

FinderHelperGenerator class 54

Index 245

G
getCommandTarget method 201,

215, 218
getCommandTargetName

method 201, 215
getCompensatingCommand

method 201, 208
getEJBHome method 116
getEJBMetaData method 116
getException method 187, 188
getExceptionInfo method 187, 188
getHandle method 116
getInitialContext method 109
getMessage method 187, 188
getOriginalException method 187,

188
getPreviousException method 187,

188
getPrimaryKey method 116
getTargetPolicy method 218

H
hashCode method 102
hasOutputProperties method 201,

214
home interface

entity beans (BMP) 16, 168
entity beans (CMP) 16, 98
finding with JNDI 133
session beans 17, 113, 114

HTML
embedding servlets 145, 154

HTTP 11
HttpServlet class 147

I
IIOP 11
IMS 11, 67, 81
init method (servlets) 145, 149
INITIAL_CONTEXT_FACTORY

property 109, 132
InitialContext interface 109, 133
initializing

servlets 149
installing

enterprise beans in EJB server
(CB) 72

instance variables
entity beans with BMP 159
entity beans with CMP 91
servlets 148
session beans 105

isIdentical method 116
isolation 8, 124
isReadyToCallExecute method 200,

207

J
jar command 30, 34, 49
java.io package 117
java.jts package 122
java.rmi package 26, 95, 96, 98, 99,

100, 101, 107, 114, 115, 117, 130,
138, 162, 166, 168, 169, 170, 171

java.sql package 173, 176, 180
java.util package 100, 130, 170
javac command 30, 33, 49, 52
javax.ejb package 26, 90, 95, 96, 98,

99, 100, 101, 104, 105, 107, 112, 114,
115, 116, 118, 130, 158, 162, 164,
166, 168, 169, 170, 171

javax.naming package 109, 130,
132, 133

javax.rmi.PortableRemoteObject.narrow
method 111, 135

javax.servlet.http package 147
javax.servlet package 147
javax.transaction package 10, 140,

182
JDBC 6, 173, 180
jetace tool 30, 33, 49, 56, 119, 120,

229
JNDI 7, 111, 132, 140

deployment descriptor
attribute 36

finding home interfaces 133
INITIAL_CONTEXT_FACTORY

property 132
PROVIDER_URL property 132

JSP 12, 154
JSQL 180
JTA 6, 140

L
lazy enumeration 55
LDAP 7
life cycle

creation state (entity) 26
creation state (session) 24
enterprise beans 24
entity beans 26
pooled state (entity) 26
pooled state (session) 25
ready state (entity) 27
ready state (session) 25
removal state (entity) 27
removal state (session) 26
session beans 24

LifeCycle Service 76
application-specific

associations 78
default associations 77

listMappings method 216
loading

class drivers for databases 174
LocalTarget class 216
lookup method 111

M
managing

database connections in EJB
server (AE) 177

database connections in EJB
server (CB) 174

transactions in EJB clients 139
transactions in enterprise

beans 181
manifest files 119
method-level attributes

deployment descriptors 41, 43
migrating

from WebSphere Application
Server 2.x to 3.x 136

MQSeries 11
developing enterprise beans 82

N
naming service 7
NoSuchObjectException class 26,

138

O
Oracle database 11, 65, 69

P
packages (Java)

enterprise beans 118
required for EJB clients 130

packaging
enterprise beans 20, 34, 56, 118

PAOToEJB tool 81
performExecute method 201, 207,

214, 223
persistence 16
persistence management service 6
pooled state

entity beans 26
session beans 25

prepare phase 9
PreparedStatement interface 180
primary key class 16

entity beans (BMP) 172
entity beans (CMP) 102

principal contexts 126
printStackTrace method 187, 188
printSuperStackTrace method 188
Programming Model

Extensions 185
command package 196

246 WebSphere: Writing Enterprise Beans in WebSphere

Programming Model
Extensions 185 (continued)

distributed-exception
package 185

PROVIDER_URL property 109, 132

R
ready state

entity beans 27
session beans 25

recoverable processes 9
reentrancy

in enterprise beans 117
refreshing

EJB objects for session
beans 137

registerCommand method 216, 218
registering

class drivers for databases 174
remote interface

entity beans (BMP) 16, 170
entity beans (CMP) 16, 101
session beans 17, 115

RemoteException class 95, 96, 98,
99, 100, 101, 107, 114, 115, 117, 162,
166, 168, 169, 170, 171

removal state
entity beans 27
session beans 26

remove method 116
entity beans 27
invoking in EJB clients 139
session beans 26, 112

RemoveException class 26, 96, 166
removing

EJB objects in EJB clients 139
reset method 200, 207
resolution phase 10
resource bundles

in EJB JAR files 119
obtaining variable values 92, 93,

132, 133, 148
restrictions

EJB server (AE) 47
EJB server (CB) 84

ResultSet interface 180
RMI 11

valid parameters 117
rolling back

transactions 8, 141, 181

S
security 11

deployment descriptor
attributes 19, 43, 121, 126

security service 4

security service 4 (continued)
administering 5

Serializable interface 117
services

naming 7
persistence 6
security 4
transaction 7
workload management 6

servlets
compared to JSP 154
creating enterprise beans 149,

152
embedding in HTML 145, 154
initializing 149
instance variables 148
making thread safe 155
processing user input 151, 153,

154
standard methods 145
using enterprise beans 145, 147
Web server requirements 12, 145

session beans 15
components 17, 104
creation state 24
deployment descriptor

attributes 20, 40
developing 104
home interface 113, 114
instance variables 105
life cycle 24
pooled state 25
ready state 25
remote interface 115
removal state 26
stateful 18, 105, 108, 113, 114,

181
stateless 18, 105, 108, 113, 114,

136, 181
Session Service 143
SessionBean interface 104, 112
SessionDescriptor interface 118
SessionSynchronization

interface 105
setCommandTarget method 201,

215
setCommandTargetName

method 201, 215
setDefaultTargetName method 216,

217
setEntityContext method 26

entity beans (BMP) 166
entity beans (CMP) 96, 97

setHasOutputProperties
method 201

setOutputProperties method 201,
203, 207

setSessionContext method 24, 112,
113

setTargetPolicy method 218
SQL Server 11
stateful session beans 18, 105, 108,

113, 114, 181
stateless session beans 18, 105, 108,

113, 114, 136, 181
static variables (restrictions) 91,

105, 159
System Management End User

Interface 13

T
target policy 199, 215, 216, 217, 218,

219
custom 218, 219
default 199, 215, 216, 217, 218

TargetableCommand interface 197,
198, 199, 201, 203, 207, 215, 221

TargetableCommandImpl class 198,
203, 204, 218

TargetPolicy interface 200, 216, 218
TargetPolicyDefault class 200, 216
threads 11

in enterprise beans 117
in servlets 155

tools
EJB server (AE) 29, 30
EJB server (CB) 49
jetace 30
VisualAge for Java 29

transaction service 7
TransactionRequiredException

class 122
transactions 7, 11

bean managed 181
committing 8, 141, 181
coordinators 9
deployment descriptor

attributes 19, 41, 121, 122, 124
distributed 8
managing in EJB clients 139
managing in enterprise

beans 181
prepare phase 9
resolution phase 10
rolling back 8, 141, 181
two-phase commit 9

two-phase commit 9

U
UnauthorizedAccessException

class 200

Index 247

unregisterCommand method 216,
218

unsetEntityContext method 27

entity beans (BMP) 166
entity beans (CMP) 96, 97

UnsetInputPropertiesException
class 200

user contexts 126

user-defined exception classes 93,
102, 131, 171, 200

distributed exceptions 189, 190,
191, 192, 195

user-defined exceptions

in EJB JAR files 119

UserTransaction interface 10, 140,
182

V
variables

bean class (entity with
BMP) 159

bean class (entity with CMP) 91
in servlets 148
obtaining values from enterprise

beans 160, 174, 177
obtaining values from resource

bundles 92, 93, 132, 133, 148
static (restrictions) 91, 105, 159

VisualAge for Java 29

W
Web servers

servlets and JSP 12, 145

WebSphere Administrative
Console 13, 30, 47

WebSphere Application Server

administering 13
example code 225

WebSphere Programming Model
Extensions 185

command package 196
distributed-exception

package 185

workload management service 6

administering 6

X
XML 36, 229

248 WebSphere: Writing Enterprise Beans in WebSphere

IBMR

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC09-4431-02

Spine information:

IBM WebSphere Writing Enterprise Beans in WebSphere Version 3.5 SC09-4431-02

