
Migration -- table of contents

   3: Migration overview

Product migration

       3.1: Migrating product prerequisites

       3.2: Migrating from previous product versions

           3.2.1: Migration from Version 2.0x
               3.2.1.1: Migration from Version 2.0x to Version 3.0
               3.2.1.2: Migrating Web application files from Version 2.0x directories
                   3.2.1.2.1: Optimally migrating Version 2.0x Web application files
                   3.2.1.2.2: Quickly migrating Version 2.0x Web applications

           3.2.2: Migrating from Version 3.x

API migration

       3.3: Migrating APIs and specifications

           3.3.1: Migrating to supported EJB specification

           3.3.2: Migrating to supported Servlet specification and extensions
               3.3.2.1: Example: Migrating HttpServiceResponse.callPage()

           3.3.2a: New Servlet Engine option for migrating applications to Servlet 2.2

           3.3.3: Migrating to supported JSP specification
               3.3.3.1: Updating JSP .91 files for use with Version 3.5
               3.3.3.2: Tips for migrating JSP .91 files to JSP 1.0

           3.3.4: Migrating to supported XML API

           3.3.5: Migrating to supported user profile APIs

           3.3.6: Migrating session management
               3.3.6.1: Migrating from Version 2.0 session support

           3.3.7: Migrating to supported security APIs

           3.3.8: Migrating to supported database connection APIs (and JDBC)
               3.3.8.1: Migrating from the Version 3.0x connection pooling model
               3.3.8.2: Migrating servlets from the connection manager model



               3.3.8.3: Deprecated connection manager APIs

           3.3.9: Migrating to supported transaction support

           3.3.10: Migrating to supported XML configuration

Administrative configuration and database migration

       3.4: Migrating administrative configurations

           3.4.1: Using automated migration support

           3.4.2: Migrating configurations manually

       3.5: Switching administrative databases

           3.5.1: Using the database conversion assistant to switch administrative databases

           3.5.2: Settings to change when switching administrative databases

           3.5.3: Switching server databases to DB2/390: Switching administrative databases



3: Migration overview
Migration focuses on leveraging the existing environment and applications, changing them to be compatible
with the current product version, instead of starting from the beginning.

Migration for IBM WebSphere Application Server Version 3.5 includes the following activities:

Activity Where to find
instructions

1. Migrate or upgrade product prerequisites to supported versions

As the product version changes, its prerequisites or corequisitesalso change. It is
probably necessary to update your database, Webserver, JDK version, and other
software.

Article 3.1

2. Upgrade to IBM WebSphere Application Server Version 3.5

In most cases, migration programs are available to ease the transition.However, some
manual preparation may be necessary.For example, Version 3.5 offers optionsfor
backing up product customizations (such as Version 3.0x modifications to the Web
server configuration file) before installing the Version 3.5 code, allowing preserved
changes to be migrated to Version 3.5.

To determine the version and release of your current installation,click Help >
Aboutfrom the menu bar of the Java administrative console.

Programmatic support for migrationfrom Version 2.0x is not provided. To migrate your
installation from Version 2.0x,follow the documentation, starting at article 3.2.1.

Article 3.2.See
alsoInstalling the
product

3. Update application code to supported specification and API levels

Note:Article 3.3.2a describes the migration issueswith using the Java Servlet API 2.2
specification.

Section 4 of the InfoCenter focuses on developing new applications, though it also
outlines new APIs whose functions you might add to existing applications in a
piecemeal fashion.

Article 3.3

4. Redeploy applications on Version 3.5 Article 6.4.2

5. Migrate administrative configurations

If your company has been using a previous product version, the system administrator
has probably fine-tuned various applicationand server settings for the environment. It is
important to havea strategy for migrating these settings withmaximum efficiency and
minimal loss.

Article 3.4

http://localhost/v355makePDF/advanced/nav_Migrguidenav/02.html
http://localhost/v355makePDF/advanced/nav_Migrguidenav/02.html
http://localhost/v355makePDF/advanced/nav_Migrguidenav/060402.html


3.1: Migrating product prerequisites
The prerequisites Web page described in article 1.3 contains up-to-date information about the supported
prerequisites and corequisites.

Be sure to check whether your JDBC driver is at the rightlevel for the new installation. This driver will be
required bythe product administrative server in order to connect to its administrativedatabase.

Migrating DB2, IBM HTTP Server, and other complimentary
prerequisites

IBM WebSphere Application Server simplifies the migration of product prerequisites byproviding the option to
install a complimentary Web server, database, and JDK on yoursupported operating system. TheJDK is the
exact level and type needed by IBM WebSphere Application Server. Seethe installation guides for further
details.

The compact disc version of the productincludes the complimentary prerequisites; Web download versions can
vary (offered with and without database, and so on), to provide a choice of download file sizes. If not installing
from CD, consult the product Web site for details. Make sureyou download the installation package with the
features you want.

You can uninstall the back-level prerequisites and install brand-newversions when you install the product.

Migrating non-IBM prerequisites

Some prerequisite or corequisite products, such as an Oracle or Sybase database, are not providedas part of the
IBM WebSphere Application Server installation. To upgrade these,the best source of information is the
documentation for the products.

First, consult the previously cited prerequisites pageto determine which software requires migration or upgrade.
Second, consult the documentation for the particular products to learn how to migrate to theversion supported
by this product.

For prerequisites not offered during the Application Server installation, the safest approach is to migrate or
upgrade prerequisites before installingIBM WebSphere Application Server.

http://localhost/v355makePDF/advanced/nav_Migrguidenav/0103.html


3.2: Migrating from previous product versions
Programmatic support for migrationfrom Version 2.0x is not provided. To migrate your installation from
Version 2.0x,follow the documentation, starting at article 3.2.1.

To migrate from Version 3.0x, you canuse the Migration Assistant or prepare the environment by hand.See
article 3.2.2.



3.2.1: Migrating from Version 2.0x
Two main paths are available for migrating from Version 2.0x.

Version 2.0x > Version 3.0x > Version 3.5 or higher

IBM WebSphere Application Server provides automaticmigration from versions 3.02 or later. Migrating to
Version 3.02 from versions 3.0 or 3.01 is fairly trivial based on upgrade options added to the Application Server
installation program. For documentationabout migrating from Version 2.0x to Version 3.0x, see the Related
information.

Install product as new and migrate files and settings by hand

Uninstall Version 2.0x and start new withthis version, transferring application files and configuration settingsby
hand.

Earlier versions of this product differ dramatically in terms of supported programming specifications, file
placement, and administrative settings. In the absence of a comprehensive automatedmigration tool from
Version 2.0x to Version 3.0x, the effort required to migrate to this versionby way of Version 3.0x varies little
from the effort required to install the product from scratch.



3.2.1.1: Migration from Version 2.0x to Version 3.0
This article is for Version 2.0x users who have chosen to migrate to Version 3.5 or laterby way of Version 3.0.After you have upgraded your Version
2.0x installationto Version 3.0 as specified in these instructions, install PTF 2 from the product Web site.At that point, you can use automated
migration supportto upgrade the product to Version 3.5 or later.

For complete Version 3.0x installation and configuration information, consult the productWeb site Library page cited in the Related information.

Preparation before installing Version 3.0x

Before uninstalling any previous version of the product, be sure the files that you want to migrate will be saved. The graphical user interface
displayed when you install Version 3.0x backs up the files in the following directories:

classes1.  

realms2.  

servlets3.  

properties, including the files--

servlet.properties❍   

admin_port.properties❍   

rules.properties❍   

jvm.properties❍   

aliases.properties❍   

conmgr.properties❍   

userprofile.properties❍   

4.  

If you have files that reside outside of those four directories (for example, if you created your own directory in the product installation), back up the
files in a location outside of the current installation before installing Version 3.0x.

Before uninstalling Version 2.0x, back up files and directories so that you canperform the following procedure after installing Version 3.0x:

Copy the Version 2.0x servlets directory to the Version 3.0x directory ...\WebSphere\AppServer\hosts\default_host\default_app\servlets.1.  

Copy all files in the Version 2.0x \classes directory to the Version 3.0x \classes directory.2.  

Copy all files in the Version 2.0x \web\classes directory to the Version 3.0x \web\classes directory.3.  

Additional work after installing Version 3.0x

Before uninstalling Version 2.0x, you backed up some files in preparation for the previous steps. Finish those steps now.

Migrating administrative data

To assist you in moving administrative data from Version 2.0x to Version 3.0x, you can use a migration tool developed to move the data.

To start the data migration tool, use the following command:

java com.ibm.ejs.sm.ejscp.scripts.Migrate -file properties_file                                          
-node node_name                                          -jarFile DB2_driver_jarfile                                         
[-trace]

properties_file is the name of the configuration file. node_name is the name of the node. DB2_driver_jarfile is the name of the jar/zip file containing
the JDBC driver. -trace enables tracing.

Running the tool gives you an ejscp script as the output. The output file name isUpgradenode_name.tcl. To complete the migration, run the script
using ejscp with the following command:

java tcl.lang.Script Upgradenode_name.tcl



3.2.1.2: Migrating Web application files from Version 2.0x
directories
In addition to migrating Web applications to use supported APIs and specifications(see Related information), you need to move the
actual application files fromthe directories in the previous version to the Version 3.5 directory structure.

The figure illustrates the Version 2 and Version 3 (including Version 3.5) directory structures for the default Web application
(default_app).

For Version 2.0x:

Servlet and other application components were placed in the following paths:

<AS_install_root>\servlets❍   

<AS_install_root>\classes❍   

A user-defined reloadable classpath❍   

●   

The static HTML and JSP files were placed in the Web server HTML document root●   

Optimal migration or quick migration

The above placement is not the optimal placement forVersion 3.5. However, a default_app is provided with Version 3.5in case you
want to quickly migrate using a placement similarto that of Version 2.0x.

For instructions, select one of two Version-2.0x-to-Version-3.5 file migration paths in the Related information below. Again, the
optimal path is the recommended one because withdrawal of support for the suboptimal path is imminent.



3.2.1.2.1: Optimally migrating Version 2.0x Web
application files
To reorganize your Version 2 applications to take full advantage of the Version 3 Web application
programming model, you should ultimately use the following migration method.

Task Instructions
Use an administrative client to configure a Web application to
include the servlets and Java components from the Version 2.0x
Web application.

Article 6.6.8

Move the servlets and Java components to the class path of the
newWeb application that you configured.

Article 6.4

Keep any servlets and Java components that were in the JVM class
path (application server class path) in that location. These are
servlets that you did not want to have reloaded on your Version 2
installation. The same restriction applies to Version 3.

Article 6.4

Move the static HTML and related resources to the new application
document root directory.

Article 6.4.2

To enable serving of the HTML files, use one of the following
methods:

Add the SimpleFileServlet to the application.●   

To enable serving of the JSP files, add the JSP compiler to
the application.

●   

If needed, add other, optional internal servlets to the
application.

●   

Add a pass rule for the document root to the Web server's
configuration.

●   

Article 4.2.1.2.3
Article 6.6.8.1.1

For the last method, consult the Web
server documentation.

http://localhost/v355makePDF/advanced/nav_Migrguidenav/060608.html
http://localhost/v355makePDF/advanced/nav_Migrguidenav/0604.html
http://localhost/v355makePDF/advanced/nav_Migrguidenav/0604.html
http://localhost/v355makePDF/advanced/nav_Migrguidenav/060402.html
http://localhost/v355makePDF/advanced/nav_Migrguidenav/0402010203.html
http://localhost/v355makePDF/advanced/nav_Migrguidenav/0606080101.html


3.2.1.2.2: Quickly migrating Version 2.0x Web
applications
For the fastest deployment, maintain the Version 2 file organization on your Version 3.5 installation:

Move the servlets and other Java components that were in the Version 2 \servlets directory to the
Version 3 AS_install_root\servlets directory. If your servlets use package names, create subfolders under
the \servlets directory to mirror the package name.

1.  

Move the servlets and Java components that were in another Version 2 reloadable class path to the
Version 3 AS_install_root\servlets directory, or add the Version 2 reloadable class path to the Version 3
default_app application class path.

2.  

Keep any servlets and Java components that were in the system class path in that location. These are
servlets that you do not want to have reloaded on your Version 2 installation. The same restriction
applies to Version 3.

3.  

If your servlets or applications use .servlet configuration files, move those files to the same directory as
the servlet.

4.  

Move the static HTML and related resources to the Web server document root.5.  

Invoke the servlets and applications in the same manner you used with Version 2.6.  



3.2.2: Migrating from Version 3.x
A summary of the product migration process follows.Much of this is done for you by the Migration Assistant.

Back up the current administrative configuration and user data files in the current installation root
directory.See 3.2.2.2.1 for more information.

1.  

Stop and uninstall the current version of IBM WebSphere Application Server.2.  

Install the new version of IBM WebSphere Application Server.3.  

Restore the configuration in the new installation.4.  

http://localhost/v355makePDF/advanced/nav_Migrguidenav/02.html


3.3: Migrating APIs and specifications
IBM WebSphere Application Server supports a wide variety oftechnologies for building powerful enterprise
applications. Astechnology advances, particularly in the area of Java components, new Application Server
product versions advance to support and extend the most contemporary open specification levels.

If your existing applications currently support different specification levels than are supported by this version of
the product, it is likely you will need to update at least a few aspects of the applications to comply with the new
specifications.

In many cases, IBM extends the specification levels that are currentlysupported by the product to provide
additionalfeatures and customization options. If your existing applications use extensions from earlier product
versions, mandatory or optional migration could be necessary to utilize the same kinds of extensions in the
current version.

From Version 3.0x to Version 3.5, the main migration areas concern the IBM extensions and the JDK. In
contrast, migrating from Version 2.0x requires updating applications with respect to the open specifications,
such as the Java Servlet API.

The table summarizes potential migration areas. See theRelated information below for instructions pertaining to
each area.

Functional area Support in current
version

Need to
migrate

from V3.x?

Need to migrate
from V2.0x? Details

Enterprise beans EJB 1.0 Specification No* Yes**

* Although there are no EJB
API changes for Version 3.x,
changes in theunderlying JDK
1.2 prerequisite require
enterprise beans to be
deployed again.

** Version 2.0x offered only
limited EJB 1.0 Specification
support

Servlets
Servlet 2.1
Specification and
IBM extensions

Yes Yes

Article 4.2.1.2.1a describes
the Servlet 2.2 APIs.

Version 2.0x supported the
Servlet 2.0 Specification
andIBM extensions that were
updated in Version 3.0x

Servlets Servlet 2.2
Specification No not applicable

Article 4.2.1.2.1a describes
the new Servlet 2.2 APIs.

Version 2.0x supported the
Servlet 2.0 Specification.

JSP files JSP .91 Specification Yes Yes

Version 2.0x only supported
the JSP .91 Specification.

It is recommended you
migrate to JSP 1.1.

http://localhost/v355makePDF/advanced/nav_Migrguidenav/0402010201a.html
http://localhost/v355makePDF/advanced/nav_Migrguidenav/0402010201a.html


JSP files JSP 1.0 Specification No** Yes

Version 2.0x only supported
the JSP .91 Specification.

** If you did not already
migrate JSP .91 files for use
with Version 3.x, it is
recommended you migrate to
JSP 1.1.

JSP files JSP 1.1 Specification No not applicable Version 2.0x only supported
the JSP .91 Specification.

XML

XML 2.0.x supported

XML 1.1.x supported
with restrictions

No No

Migration from 1.1.x to 2.0.x
is notrequired, but you might
decide to migrate basedon
criteria and 1.1.x restrictions
described in article 3.3.4.

JDBC and IBM
database connection
support APIs

JDBC 2.0;
connection pooling
model

No Yes

V2.0x supported JDBC 1.0
and a connection manager
model.

If still using Connection
Manager, it is recommended
that you switch to connection
pooling.

Do not forget to switch to
supported JDBC 2.0 drivers.

User profiles IBM user profile
APIs No Yes

Need to migrate from V2.0x
deprecatedclasses for use with
V3.0x or V3.5

Sessions IBM session support
APIs No Yes

Need to migrate from V2.0x
deprecatedclasses, changes to
clustering, URL encodingfor
use with V3.0x or V3.5

Security IBM security support No No No action required.

Transactions Java 1.2 transactions
support Yes Yes

Version 3.0x provided
proprietary IBM packages to
simulateJava 1.2 functionality.
Version 2.0x did not provide
anysupport. Migrate to
Version 3.5 if your
applications require thiskind
of support.

XML configuration XMLConfig tool Yes Yes

The XML Configuration
Management Tool
(XMLConfig) wasintroduced
in Version 3.02. Some of the
interfaces havechanged in
Version 3.5.



3.3.1: Migrating to supported EJB specification

Migrating from Version 3.0x

The EJB specification level for Version 3.5 has not changed from that of Version 3.0x,however changes due to
the prerequisite of JDK 1.2 are required:

In Version 3.02x, the JavaSoft standard packages:

javax.sql.*javax.transaction.*

were present under non-standard names. In Version 3.5, they are present undertheir standard names.

Any code using WebSphere Application Server data sources,including BMP entity beans and session
beans that access databases, will needto be modified.

See articles 3.3.8 and 3.3.9 for instructions.

●   

Some of the stub classes for deployed enterprise beans have changed in JDK 1.2.Repdeploy all EJB
server JAR files to generate the correct stub file references.

●   

Be aware that, in general, JAR files generated prior to JDK 1.2 are source and binarycode compatible on a JDK
1.2 base. However, there are some incompatible cases. Forfurther details, see:

http://java.sun.com/products/jdk/1.2/compatibility.html

http://localhost/v355makePDF/advanced/nav_Migrguidenav/060605.html
http://localhost/v355makePDF/advanced/nav_Migrguidenav/060605.html
http://java.sun.com/products/jdk/1.2/compatibility.html


3.3.2: Migrating to supported Servlet specification
and extensions
Servlets will require migration if they are not of the supported specificationlevel (2.1) or they rely on deprecated
or removed IBM servlet extensions.

See article 3.3.2a for migration considerations for WebSphereApplication Server Version 3.5.2.

Migrating to the supported Servlet specification

Refer to the Java Servlet API 2.1 specification for complete information concerning new and deprecated APIs.
This table highlights a few of the new and deprecated classes and methods.

Recall, IBM WebSphere Application Server supported the Servlet2.1 Specification; if you already migrated
servlets to 2.1 for use with thatrelease, no further action is required.

Article 4.2.1.2.1a describes the new Servlet 2.2 APIs.

Method or Class Status and recommendation

RequestDispatcher New. Use the forward method to forward a
servlet response from one servlet to a second
servlet for further processing. Use the include
method to include part of the one servlet's
response in the body of another servlet's
response.

Refer to the code example.

HttpSessionContext Deprecated.

HttpSession.getSessionContext Deprecated. For security reasons, no equivalent.

HttpSession.getMaxInactiveInterval New. Sets the maximum time a session will be
maintained by the servlet engine without a client
request.

ServletRequest.getRealPath Deprecated. Use ServletContext.getRealPath.

ServletContext.getServlet Deprecated. Use
ServletContext.getRequestDispatcher.

ServletContext.getResource New. Use this method to obtain a servlet resource
by requesting its URL.

ServletContext.getResourceAsStream New. Use this method to obtain a servlet resource
(as an InputStream) from its servlet context.

encodeUrl and encodeRedirectUrl methods of
HttpServletResponse

Deprecated. But the fix is easy. Change Url to
URL in the method names.

HttpSession.isRequestedSessionIdFromUrl Deprecated. Another easy fix. Change Url to
URL in the method name.

http://java.sun.com/products/servlet/index.html
http://localhost/v355makePDF/advanced/nav_Migrguidenav/0402010201a.html


HttpServiceRequest.setAttribute() Deprecated. See Migrating to supported JSP
specification for details.

HttpServiceResponse.callPage() Deprecated. Refer to the code example.

Migrating IBM extensions to the Servlet API

The following packages were are part of the Application Server Version 2.0x, but were removed or deprecated
as of Version 3.

Method or Class Status and recommendation

com.ibm.servlet.personalization.sam() Removed -- no recommended replacement

com.ibm.servlet.servlets.personalization.util Removed -- no recommended replacement

com.ibm.servlet.connmgr Deprecated. Starting with Version 3.0x, IBM WebSphere
Application Server has provided a built-in connection pooling
function that eliminates the need for servlet programmers to
use the connection manager APIs directly. Instead, servlets
can be written to use the JDBC APIs to access the connection
pool.

You are encouraged to migrate servlets that use the
deprecated connection manager APIs. See the Related
information for details.



3.3.2.1: Example: Migrating HttpServiceResponse.callPage()
Calls to HttpServiceResponse.callPage() need to be replaced bycalls to RequestDispatcher, as shown.

Before -- Using HttpServiceResponse.callPage()

import java.io.*;import javax.servlet.*;import javax.servlet.http.*;public class UpdateJSPTest
extends HttpServlet{public void doGet (HttpServletRequest req, HttpServletResponse res)throws
ServletException, IOException{String message = "This is a
test";((com.sun.server.http.HttpServiceRequest)req).setAttribute("message",
message);((com.sun.server.http.HttpServiceResponse)res).callPage("/Update.jsp", req);}}

After -- Using RequestDispatcher

import java.io.*;import javax.servlet.*;import javax.servlet.http.*;public class UpdateJSPTest
extends HttpServlet{public void doGet (HttpServletRequest req, HttpServletResponse res)throws
ServletException, IOException{String message = "This is a test";req.setAttribute("message",
message);RequestDispatcher rd =
getServletContext().getRequestDispatcher("/Update.jsp");rd.forward(req,
res);//((com.sun.server.http.HttpServiceRequest)req).setAttribute("message",
message);//((com.sun.server.http.HttpServiceResponse)res).callPage("/Update.jsp", req);}}



3.3.2a: New Servlet Engine option for migrating
applications to Servlet 2.2
WebSphere Application Server version 3.5.2 maintains compatibility withexisting applications while
simultaneously supporting the Java Servlet API 2.2 specification.To ensure compatibility, a new option was
added to Servlet Engine properties in the Administrative console.

This new option, the Select Servlet Engine Mode, islocated on the Servlet Engine properties view. The Select
Servlet Engine Mode option toggles between the following two different "runtime" modes:

WebSphere Application Server 3.5 Compatibility Mode which maintainsbehavior with existing
WebSphere Application Server V3.5 and V3.5.1 applications at the expense of full compliance with the
Java Servlet API 2.2 specification.

Note:   In compatibility mode, the Servlet Engine is Servlet 2.2 specification level
compliant except for the method andbehavior changes noted below. This capability is
provided to allow existing WebSphere Application ServerV3.5 and V3.5.1 applications to
successfully execute until they are migrated to fullycompliant Servlet 2.2 level
applications.

●   

Full Servlet 2.2 Compliance Mode which maintains compliance with the Java Servlet API 2.2
specification at the expense of compatibility with existingWebSphere Application Server V3.5 and
V3.5.1 applications.

●   

The default mode is the Compatibility Mode.You select your desired mode using the Administrative Console,
Servlet Engine "General" tab.

Mode differences

The following table describes how the Select Servlet Engine Mode setting affects Servlet API methods and
various behaviors.

Warning:   Specifying compliance mode for existingWebSphere Application Server V3.5 and
V3.5.1 applications may generate incorrect results.

Type Methods/ Behaviors Compatibility
mode Compliance mode

API
Methods

getCharacterEncoding()
method

If the client request
did not send any
character encoding
data, the default
encoding of the
server JVM is
returned.

If the client request did not
send any character encoding
data, null is returned.

getMimeType() method If the file extension
does not map to a
valid mime type, the
mime type
www/unknown is
returned.

If the file extension does not
map to a valid mime type,
null is returned.



Behaviors

Default content type on
response buffer reset

On response buffer
reset, the content
type of the request is
reset to text/html.

On response buffer reset, the
content type is cleared and
and not set to a default
value.

HTTP Session scoping Values placed in the
HTTP Session
object have a global
scope, across all
Web applications.

Values placed in the HTTP
Session object have a scope
limited to the Web
application that created the
value.

Request mapping behavior Exact
mapping is
not
supported.

●   

Wildcard
mapping is
an implied
wildcard.
That is,
/Servlet
really means
/Servlet*.

●   

Any URL
pattern
specified
without /* on
the end is
assumed to
be a
wildcard
rule, and /*
is added in
the Servlet
runtime.

●   

Any URL
pattern
provided
with /* on
the end is
accepted and
used as is.

●   

The servlet
specification pattern
mapping logic is
followed, including
support for exact
matches.

●   

To specify the URL,
the Servlet 2.2
specification allows
the following syntax:

A string
beginning
with / and
ending with
/* specifies a
wildcard
match.

1.  

A string
beginning
with *.
specifies an
extension
mapping.

2.  

All other
strings are
used as exact
matches.

3.  

●   

The Servlet 2.2
specification
indicates how
requests for
resources are
mapped to the
appropriate
resources. Mapping
occurs in the
following order:

exact match1.  

longest
wildcard
match

2.  

●   



matching
extension

3.  

default
servlet
(defined by /
URL).

4.  

Auto-Invoker The default
invoker's URL is:

/servlet/

The default invoker's URL
is:

/servlet/*



3.3.3: Migrating to supported JSP specification
If using JSP 1.0 already, no action is required, with one exception, Version 3.5 does not have Bean Scripting
Framework (BSF) support for using LotusXSL and other scripting languages in JSP 1.0 files. Version 3.0x
applications depending on this support will require modification.

Version 3.5.2 supports the Bean Scripting Framework (BSF) for Netscape'sRhino JavaScript language. See
article 4.2.5 for moreinformation.

Version 3.5.2 also supports JSP 1.1 and continues to support JSP 1.0 and JSP .91 files.See article 3.3.2a for
migration details.

IBM WebSphere Application Server Version 3.5 continues to support the JSP .91 Specification, but it is
recommended that you migrate applications containing JSP .91 files to JSP 1.0, if you have not already done so.

See the Related information for the migration steps required to useJSP .91 files with Version 3.5, and tips for
migrating themto JSP 1.0 instead.

http://localhost/v355makePDF/advanced/nav_Migrguidenav/040205.html


3.3.3.1: Updating JSP .91 files for use with Version 3.5
If using JSP .91 files or servlets that you have not already been using with Version 3.0x, and the JSP .91 files or
servlets cast to either of these methods:

com.sun.server.http.HttpServiceRequest●   

com.sun.server.http.HttpServiceResponse●   

either replace the deprecated calls or recompile the files.

Additionally, if migrating JSP .91 files last used with IBM WebSphere Application Server Version 1.x, you
need to eliminate <REPEATGROUP> tags. See below for details.

Option 1: Modify deprecated calls

The tables summarize calls to the deprecated HttpServiceRequest and HttpServiceResponse classes,and provide
replacement code.

Before: com.sun.server.http.HttpServiceRequest.setAttribute()

After: javax.servlet.http.HttpServletRequest.setAttribute()

A code example is provided to showhow to migrate to RequestDispatcher:

Before: com.sun.server.http.HttpServiceResponse.callPage()

After: javax.servlet.RequestDispatcher

Option 2: Recompile files

As an alternative to replacing the deprecated calls to HttpServiceRequest andHttpServiceResponse, recompile
your JSP .91 files or servlets developed for Application Server Version 2.0x before using them with Application
Server Version 3.5.

Recompiling is necessary because starting with Version 3.0x, HttpServiceRequest and HttpServiceResponse are
provided as interfaces (instead of classes) that are implemented by the WebSphere servlet engine.

If you do not recompile the servlets or JSP files, the Java Virtual Machine (JVM) will crash on Windows NT
systems due to a suspected bug in the JDK.

It ispossible that you already recompiled the files for use with Version 3.0x. Insuch a case, it is not necessary to
compile them again for Version 3.5.

Migrating JSP .91 files from IBM WebSphere Application Server
Version 1.x

The Application Server Version 1.x supported an additional tag, <REPEATGROUP> for repeating a block of
HTML tagging for data that is already logically grouped in the database. Because this release does not support
the <REPEATGROUP> tag, remove that tag from any JSP files that you want to use on the Application Server
Version 3.5.



3.3.3.2: Tips for migrating JSP .91 files to JSP 1.0
Referring to WebSphere example code for the purposes of illustration,the tips below cover some main steps in migrating JSP .91 to JSP 1.0.

Replacing <SERVLET> with <jsp:include>

Use the JSP 1.0 equivalent of <SERVLET> to include data in a JSP page from another file.

Example CounterServletOutputPage.jsp

JSP .91 <SERVLET CODE="WebSphereSamples.Counter.CounterServlet"></SERVLET>

JSP 1.0 <jsp:include page="/servlet/WebSphereSamples.Counter.CounterServlet" />

Discussion

The CounterServletOutputPage.jsp file and the servlet it invokes are part ofthe Version 3.5 Web application named WSsamples_app, with the
Web Application Web Path setting "/WebSphereSamples."

Using a WebSphere administrative client to view the WSsamples_app Web application, you will find that it contains the Auto-Invoker servlet,
which enables you to call servlets by classname.

Specified within the Auto-Invoker servlet is the Servlet Web Path List,which has the single entry "default_host/WebSphereSamples/servlet."
Now, the JSP and CounterServlet servlet are both under the Web Application Web Path of /WebSphereSamples. Relative to
/WebSphereSamples, the servlet needs the additional qualifier of /servlet to properly locate it (as specified in the Auto-Invoker). This results in
the "/servlet/WebSphereSamples.Counter.CounterServlet" in the <jsp:include>tag.

Replacing <BEAN> with <jsp:useBean>

Use the JSP 1.0 equivalent of <BEAN> to make an existing or newly created bean available from within the JSP file.Four variations are possible.

Variation 1: JSP is to create the bean

Example PollServletInputPage.jsp

JSP .91 <BEAN NAME="getQuestionDBBean" TYPE="WebSphereSamples.Poll.GetQuestionDBBean" CREATE="YES"
INTROSPECT="YES" SCOPE="request"></BEAN>

JSP 1.0 <jsp:useBean id="getQuestionDBBean"type="WebSphereSamples.Poll.GetQuestionDBBean"
class="WebSphereSamples.Poll.GetQuestionDBBean"scope="request"/>

Discussion

You no longer have the explicit attribute of CREATE="YES". Instead, if the bean with the name specified by the id attribute is not found
within the specified scope, then an instance of bean will be created according to the class attribute.

JSP NAME attribute corresponds to the JSP 1.0 id attribute. It is no longer an INTROSPECT attribute. (The JSP .91 scope of requests and
sessions carry over to JSP 1.0, plus some new ones for JSP 1.0.) Compare with variation 1 with variation 2.

Variation 2: JSP is to use existing bean

Example PollServletResultPage.jsp

JSP .91 <BEAN NAME="pollQueryDBBean" TYPE="WebSphereSamples.Poll.PollQueryDBBean" CREATE="NO"
INTROSPECT="NO" SCOPE="request"></BEAN>

JSP 1.0 <jsp:useBean id="pollQueryDBBean" type="WebSphereSamples.Poll.PollQueryDBBean" scope="request"/>

Discussion
Compare variation 2 with variation 1, which creates a bean if one does not exist. JSP 1.0 version no longer has the class attribute from JSP .91.
If a bean instance corresponding to the id attribute not found in the specified scope, there will be an error. As a result, the bean will not be
created.

Variation 3: Properties are to be set for bean

Example CenterGeneric.jsp

JSP .91 <BEANNAME="getQuestionDBBean"TYPE="WebSphereSamples.YourCo.Poll.GetQuestionDBBean" CREATE="YES"
INTROSPECT="NO" SCOPE="request"> <PARAM NAME="userID" VALUE="wsdemo"></BEAN>

JSP 1.0
<jsp:useBeanid="getQuestionDBBean" type="WebSphereSamples.YourCo.Poll.GetQuestionDBBean"
class="WebSphereSamples.YourCo.Poll.GetQuestionDBBean" scope="request" /><jsp:setProperty    
name="getQuestionDBBean"     property="userID"     value="wsdemo" />

Discussion

The example above has been shortened somewhat to set only one parameter.

Note that with JSP .91, the <PARAM> tag used within the <BEAN> tag. In JSP 1.0, you must instead use the <jsp:setProperty> tag outside
of<jsp:useBean> tag.

You must properly link setting the property of an existing bean by the name attribute within <jsp:setProperty> pointing to the bean identified
by the id attribute within <jsp:useBean>. Similar considerations for <jsp:getProperty>.

Variation 4: Invoke methods on a bean

Example FeedbackServletResultPage.jsp



JSP .91  <% try { java.lang.String _p0_1 = feedbackQuery.getWSDEMO_FEEDBACK_NAME(0); %>

JSP 1.0 No change from JSP .91 to JSP 1.0

Discussion The NAME attribute in <BEAN> tag and id attribute in <jsp:useBean> tag are equivalent. Both identify a bean named feedbackQuery. For
either JSP specification, invoking a method on a bean is identical.

Incorporating IBM extensions to JSP 1.0

See the Related information for references of IBM tags that extend JSP 1.0. The tags might give you additional ideas for replacing JSP .91 tagging
functionality. In some cases, IBM extensions provide functionality thatwas removed in the switch from JSP .91 to JSP 1.0. The remainder of this article
focuses on one such tag, <tsx:repeat>.

Replacing <REPEAT> with <tsx:repeat>

<tsx:repeat> provides for repeating information, which is useful in creating HTML tables. <REPEAT> from JSP .91 is usually used with <INSERT> to
actually insert data fromspecified bean. <REPEAT> from JSP .91 does not have an equivalent in the JSP 1.0 specification. However, the IBM extension
<tsx:repeat> provides much the same function.

Example timeout.jsp (available in Advanced Ediiton only)

JSP .91 <REPEAT INDEX="i">  <%timeoutBean.getBalance(i);%>    <TD><INSERT BEAN="timeoutBean"
PROPERTY="balance"></INSERT></TD></REPEAT>

JSP 1.0 <txt:repeat index="i">  <TD> <%= timeoutBean.getBalance(i) %> </TD></txt:repeat>

Discussion
Note that there is an actual call, using Java syntax, of getBalancemethod of timeoutBean, within loop of <tsx:repeat>, rather than use of IBM
JSP 1.0 extension <tsx:getProperty>. This is because getBalance method requires an explicit argument to specify which row of data
fromunderlying array in timeoutBean is to be returned. Thus, <tsx:getProperty>not suitable.



3.3.4: Migrating to supported XML API
If your XML applications use XML for Java API Version 1.1.x, you must migrate them to API Version 2.0.x.

Although there are inherent performance improvements in later versions ofthe XML for Java API, you can gain
additional performanceby explicitly using nonvalidating parsers in application environments where the data can
be trusted.

Issues for migrating from XML for Java API Version 1.1.x

The following table summarizes the methods of the API Version 1.1.x class com.ibm.xml.parser.Parser that are
not supported or implemented in the API Version 2.0.x:

Method Status
addNoRequiredAttributeHandler Not supported. Throws java.lang.IllegalArgumentException.

getReaderBufferSize Not supported. Throws java.lang.IllegalArgumentException.

setErrorNoByteMark Not supported. Throws java.lang.IllegalArgumentException.

setProcessExternalDTD Not implemented.

setReaderBufferSize Not supported. Throws java.lang.IllegalArgumentException.

setWarningNoDoctypeDecl Not implemented.

setWarningNoXMLDecl Not implemented.

stop Not implemented.

The following table summarizes Version 1.1.x methods that are deprecatedin Version 2.0.x of the
com.ibm.xml.parser package:

Deprecated method Recommendation
EntityDecl.getName() Use getNodeName().

EntityDecl.getNDATAType() Use getNotationName().

EntityDecl.isNDATA() Do not use.

Namespace.getUniversalName() See createExpandedName().

Parent.addElement(Child) Use appendChild().

TXAttribute.getUniversalName() Use createExpandedName().

TXAttribute.setAttribute(TXAttribute) Use setAttributeNode().

TXElement.getName() Use getNodeName() or getTagName().

TXElement.getUniversalName() Use createExpandedName().

TXElement.isEmpty() See hasChildNodes().

TXNotation.getName() Use getNodeName().

TXNotation.setName(String) Do not use.

TXText.splice(Element, int, int) Do not use.



3.3.5: Migrating to supported user profile APIs

Migrating from Version 3.x

Changes to code are not required.

Migrating from Version 2.0x

The user profile implementation in versions 3.x and laterdiffers significantly from that in Version 2.0,as
follows:

Profile management functions

The user profile management functions are separated from the data elements (the elements mapped to
the columns in the database schema).

The management functions in the com.ibm.websphere.userprofile.UserProfile class are deprecated and
disabled. The class is to be used solely for getting and setting data for individual instances of users.

Extending the base implementation

You can now extend the base user profile implementation to include custom database columns and
import legacy databases.See the Related information for instructions.



3.3.6: Migrating session management

Migration from Version 3.0x

If your existing applications already use Version 3.0x session support, no code changes are required.

Migration from Version 2.0x

Relative to Version 2.0x, Version 3.0x introduced some changesto session support. See the Related information.



3.3.6.1: Migrating from Version 2.0 session support
Note these changes to the implementation of sessions in IBM WebSphereApplication Server Version 2.x.

The public classes in the com.ibm.servlet.personalization.sessiontracking package have been deprecated.

Application developers can still compile servlets using the old classes. (Specifically, the
IBMSessionData class typecast still works). However, the functions will return null or constant values,
and no processing or setting of values will occur.

●   

Clustering is now handled using a database or session affinity, and the Version 2.0 concept of session
cluster client and server is no longer valid because all nodes within a cluster are now considered equal.

●   

Extensions for sessions to the Java Servlet API are now encapsulated in the
com.ibm.websphere.servlet.session.IBMSession interface.

●   

If URL encoding is configured and response.encodeURL() or encodeRedirectURL() is called, the URL
is encoded, even if thebrowser making the HTTP request processes cookies. This differs from
thebehavior in previous releases, which checked for the condition and haltedURL encoding in such a
case.

●   



3.3.7: Migrating to supported security APIs
No action is required.



3.3.8: Migrating to supported database connection
APIs (and JDBC)
Connection pooling (provided through DataSource objects) was introducedin IBM WebSphere Application
Server Version 3.0x. Applications that use Version 3.0x connectionpooling need to be changed slightly and
recompiled.

If existing applicationsare still using the connection manager model from Version 2.0x, it is recommended that
you update the application code to use the currentconnection pooling model (see the Related information). The
shift in models corresponds to a change in supported JDBCspecification levels.



3.3.8.1: Migrating from the Version 3.0x connection
pooling model
Connection pooling (provided through DataSource objects) was introduced in IBM WebSphere Application
Server Version 3.0x. Application componentsthat use Version 3.0x connection pooling need to be changed
slightly andrecompiled.First, replace the following import statement:

import com.ibm.db2.jdbc.app.stdext.javax.sql.*;

with this:

import javax.sql.*;

Connection pooling behavior in versions 3.5 and later changedrelative to that in Version 3.0x.If your application
typically requirestwo or more connections to the same database manager,consider the multiple-connection
scenarios inArticle 0.14.2.

http://localhost/v355makePDF/advanced/nav_Migrguidenav/001402.html


3.3.8.2: Migrating servlets from the connection manager model
Servlets written to use the connection managershould continue to work in the Application Server Version3.5 environment, provided that the servlets use a subset of the connection manager APIs thatare deprecated but still supported. See the Related information for the API subset, which is anticipated to cover most
existing servlets.

For most servlets, the migration consists of simple code changes. Because you should not write new servlets using the connection manager, the details of connection manager coding are not discussed, except as needed in the migration.

Migration involves the following activities.For more details, see the related information.

Action
needed From something like ... To something like ...

Update
import
statements

import java.sql.*;     import com.ibm.servlet.connmgr.*; import javax.sql.*;                               import javax.naming.*;                          

Modify
servlet
init()
methods

IBMConnSpec spec =    new IBMJdbcConnSpec("poolname", true,       "COM.ibm.db2.jdbc.app.DB2Driver",      
"jdbc:subprotocol:database",       "userid", "password");IBMConnMgr connMgr =    IBMConnMgrUtil.getIBMConnMgr();

Hashtable parms = new Hashtable();parms.put(Context.INITIAL_CONTEXT_FACTORY,   
"com.ibm.ejs.ns.jndi.CNInitialContextFactory");Context ctx = new InitialContext(parms);DataSource ds =   
(DataSource)ctx.lookup("jdbc/sample");

The WebSphere administrator provides informationon the arguments for the put() and lookup() methods.

Modifying
how
servlets
obtain and
close
connections

IBMJdbcConn cmConn =    (IBMJdbcConn)connMgr.getIBMConnection(spec);Connection conn =
cmConn.getJdbcConnection();...cmConn.releaseIBMConnection();

Connection conn =    ds.getConnection("userid", "password");...conn.close();

Modify
preemption
handling

Call verifyIBMConnection() Catch com.ibm.websphere.ce.cm.StaleConnectionException

Considerations for new servlets

The connection manager APIs are deprecated in the Application Server Version 3.5 environment and might not work with releases beyond this one. You should not write new servlets using the connection manager. Instead, write new servlets using the connection pooling model from Version 3.5.



3.3.8.3: Deprecatedconnection manager APIs
Some connection manager APIs are intended only for monitoring purposes or internal connection manager use;
they do not have any practical use in production servlets. Therefore, such APIs were not migrated to the
Application Server Version 3.x environment and are not likely to be found in existing production servlets.

The following table lists the connection manager classes and associated methods that continue to be supported.
The classes are now deprecated, so the details of connection manager coding are not discussed.

Deprecatedconnection manager class Methods

com.ibm.servlet.connmgr.IBMConnMgrUtil

The last three of the four methods are intended for
IBM WebSphere Studio use only.

public static IBMConnMgr getIBMConnMgr()●   

public static IBMConnPoolSpec
getPoolProperties(String poolName)

●   

public static void
addPoolProperties(IBMConnPoolSpec spec)

●   

public static String urlToPoolName(String url)●   

com.ibm.servlet.connmgr.IBMConnMgr

public IBMConnection
getIBMConnection(IBMConnSpec connSpec)

●   

public IBMConnection
getIBMConnection(IBMConnSpec connSpec,
String ownerClass)

●   

com.ibm.servlet.connmgr.IBMConnection

public boolean verifyIBMConnection()●   

public void removeIBMConnection()●   

public void releaseIBMConnection()●   

com.ibm.servlet.connmgr.IBMJdbcConn

This class is derived from the IBMConnection class
above and it implements one additional method, as
shown.

public Connection getJdbcConnection()●   

com.ibm.servlet.connmgr.IBMConnPoolSpec

This class and the associated methods are intended for
WebSphere Studio use only. Both methods are
constructors.

public IBMConnPoolSpec(String poolName,
String poolType, int maxConnections, int
minConnections, int connectionTimeOut, int
maxAge, int maxIdleTime, int reapTime)

●   

public IBMConnPoolSpec(String poolName,
String poolType)

●   

com.ibm.servlet.connmgr.IBMJdbcConnSpec

The first three methods are constructors.

public IBMJdbcConnSpec(String poolName,
boolean waitRetry, String dbDriver, String url,
String loginUser, String loginPasswd)

●   

public IBMJdbcConnSpec(String poolName)●   

public IBMJdbcConnSpec()●   

public void verify()●   



3.3.9: Migrating to supported transaction support
Version 3.0x of the product ran with a 1.1 level of JDK. Version 3.0x included packages written by IBM to
provide transaction support features usually provided by JDK 1.2. Now that Version 3.5 runs with JDK 1.2,
applications should no longer import the proprietary IBM packages, but instead import the open Java 1.2
packages that provide the required functionality.

In Java source files, find the import statement:

import com.ibm.db2.jdbc.app.jta.javax.transaction.*

1.  

Change the import statement to:

import javax.transaction.*

2.  

Recompile the Java files using JDK 1.2.3.  

Other transaction considerations for Version 3.5:

One database connection cannot be used across multiple user transactions. If anapplication component
obtains a connection to a database, then begins a transaction,the connection is closed automatically when
the transaction ends. The connectionmust be obtained again before beginning another transaction.

●   

Transactions that began by using UserTransaction now use the isolation level specified when the
enterprise bean is deployed.

In Version 3.02, the transaction isolation level defaulted to:

REPEATABLE_READ for DB2❍   

SERIALIZABLE for Oracle❍   

●   

The timeout units for transaction inactivity are in milliseconds.●   

If multiple datasource connections are involved in the same transactions,then JTA must be enabled on
those datasources. JTA must be enabled fortwo-phase commit actions.

●   



3.3.10: Migrating to supported XML configuration
Some interfaces of the XMLConfig tool have changed.The changes in XML descriptions of the elements
aresummarized in the following table:

Element Changed syntax
container <container name=container name></container>

jdbc-driver Now supports <install-info/> and <uninstall-info/> elements (optional)

model Additional clone support information (optional)

servlet Additional clone support information (optional)

servlet-engine Additional clone support information (optional)

session-manager <session-manager name=session manager name></session-manager>

userprofile-manager <userprofile-manager name=user profile manager name></userprofile-manager>

web-application Additional clone support information (optional)

Changes from Version 3.0x

For programmatic access:

The XMLConfig constructor now throws NamingException and InvalidArgumentException.●   

The XMLConfig tools now supports variable substitution and variable Hashtable setter.●   

The XMLConfig command line now supports the -substitute option for variable replacement.



3.4: Migrating administrative configurations
There are two ways to migrate from Version 3.x:

Use the Migration Assistant.●   

Manually complete the same steps as the Migration Assistant would.This might be necessary for
nonstandard installations.

●   

For details, see the Related information.If you choose the automated method,consider reading the associated
article about manual migrationto learn more about the migration process.



3.4.1: Using the Migration Assistant
The Migration Assistant helps you migrate from IBM WebSphere Application Server Version 3.0.2x to Version
3.5x. To use the WebSphere Migration Assistant, you must have WebSphere Application Server installedat least at
the 3.0.2x level. If you do not, you must upgrade to that level before continuing. Also, if you installed WebSphere
Application Server V3.0.2 by using the native installation program, ensure that the JAVA_HOME variable is set
correctly in the setupCmdLine file before continuing.

Starting the Migration Assistant

To start the Migration Assistant on Windows NT/2000, run the migration executable (migration.exe). If you have a
CD, migration.exe is in the \nt directory.

To start the Migration Assistant on UNIX:

Log onto your machine with superuser (root) privileges.1.  

Run the migration script file (./migration.sh), which is in the /cdrom directory.2.  

Note: The Migration Assistant does not check for the bootstrap port on which the current installationis running. If
the bootstrap port is something other than the default (900),migration will fail. To prevent failure,start the Migration
Assistant with the-nameServerPort option, specifying the appropriate port.

What the Migration Assistant does

The Migration Assistant detects if you have Version 3.0.2.x installed. If a version earlier than Version 3.0.2.x is
installed, the Migration Assistant tells you to upgrade to Version 3.0.2.x before continuing and points you to this
InfoCenter for more information.

If the Migration Assistant detects that Version 3.0.2.x is installed, the wizard provides a series ofpanels that walk
you through migration to Version 3.5, including:

Exporting, saving and restoring your previous administrative configuration●   

Uninstalling Version 3.0.2.x●   

Testing your system for the right prerequisites●   

Installing the upgraded version of WebSphere Application Server●   

The Migration Assistant also leads you to information about the final steps of installing the WebSphereApplication
Server, such as migrating application components to APIs and specifications.

If you exit the Migration Assistant before completing all of the steps on the panels and later restart the Migration
Assistant, the wizard restarts where you left off.

Details on the migration.exe and its command-line arguments for
Windows

The migration.exe program, which runs on Windows NT/2000, determines if a migration should be performed in the
course of an installation of Version 3.5.

migration.exe can be run with no arguments, which is what happens you run theVersion 3.5 installation program.
When executed with no arguments, migration.exe makes a number of checks against values stored in the Windows
NT/2000 system registry:

If Version 3.0.2 or later is present in the registry, it performs a migration add_run command and then
launches the migration wizard with the migration uncond command.

●   

If a version previous to 3.0.2 but after 3.0 is present in the registry, it displays the Unsupported Version●   



panel and then launches the installation program setup.exe.

If Version 3.0 is present in the registry, it performs a migration add_run command and then launches
the migration wizard with the migration uncond command.

●   

If a version previous to 3.0 is present in the registry, it displays the Unsupported Version panel and then
launches the installation program setup.exe.

●   

If no version of IBM WebSphere Application Server is in the registry, it launches the installation program
setup.exe.

●   

migration.exe may also be run with either the uncond, add_run, or remove_run arguments:

migration uncond

Causes the migration wizard to be launched, without checking for an installed Application Server product
and without checking the version of the current Application Server product.

migration add_run

Verifies that the current directory is the migration directory, checking for either migration.exe or setup.exe.
If the current directory is verified as the migration directory, the program stores this directory under the
registry keys:

"SOFTWARE\\IBM\\WebSphere Application Server - Migration Assistant""Home"

migration add_run primarily adds an auto-run key to the registry. The auto-run key is WebSphere
migration Assistant and its run command is migration.exe uncond.

migration remove_run

Causes the auto-run key which was added to the system registry by the migration add_run command
to be removed, causes the migration directory to be removed from the system registry, and causes files in the
migration directory to be deleted.



3.4.2: Migrating configurations manually
Manual migration might be necessary if either your current installationor your Version 4.0 installation requirements vary too much from assumptions made by the product installation program.This article outlines the first
and last steps of theoverall product migration process, as follows:

Before upgrading the product, export the current XML configurationand back up necessary files.●   

After upgrading the product, restore the configuration.●   

Exporting the current administrative configuration

Before exporting the configuration to a file, be sure an administrative server is running.

A sample export command for Version 3.0x follows.You may have to update many of the values used in this sample to reflect your configuration requirements.

j:\jdk1.1.8.orig\bin\javaDserver.root=j:\websphere\appserver302Dcom.ibm.CORBA
.ConfigURL=file:/j:/WebSphere/AppServer302/properties/sas.client.propsclasspath XMLConfig302
.jar;j:\websphere\appserver302\lib\ibmwebas.jar; j:\websphere\appserver302\lib\servlet.jar;
j:\websphere\appserver302\lib\xml4j.jar;j:\websphere\appserver302\lib\ujc.jar;
j:\websphere\appserver302\lib\ejs.jar;j:\websphere\appserver302\lib\console.jar;
j:\websphere\appserver302\lib\admin.jar;j:\websphere\appserver302\lib\repository.jar;
j:\websphere\appserver302\lib\sslight.jar;j:\websphere\appserver302\lib\tasks.jar;
j:\jdk1.1.8.orig\lib\classes.zip;
j:\websphere\appserver302\propertiescom.ibm.websphere.xmlconfig.XMLConfig-adminNodeName
cally-nameServiceHost cally-nameServicePort 900export j:\websphere\backup \websphere_302_backup.xml

Backing up configuration files

First, make copies of key directories. Remember that you must update many of the names shown in the following samples to reflect your configuration requirements.

V3.02_install_root\hosts > backup_directory\userFiles\hosts
V3.02_install_root\servlets > backup_directory\userFiles\servlets
V3.02_install_root\classes > backup_directory\userFiles\classes
V3.02_install_root\deployableEJBs > backup_directory\userFiles\deployableEJBs
V3.02_install_root\deployedEJBs > backup_directory\userFiles\deployedEJBs
V3.02_install_root\properties > backup_directory\programFiles\properties

Also copy one of the following, depending on your operating system:

For Windows NT/2000:

V3.02_install_root\bin\admin.config > backup_directory\bin\admin.config

●   

For Netware:

V3.02_install_root\bin\setupCmdLine.ncf > backup_directory\bin\setupCmdLine.ncf

●   

For AIX and Solaris:

V3.02_install_root\bin\setupCmdLine.sh > backup_directory\bin\setupCmdLine.sh

●   

Restoring the configuration in the new installation

First, copy the backed-up configuration files into the new installation directory. Be sure to update any names shown in the following samples to reflect your configuration requirements.

backup_directory\userFiles\hosts > V3.5_install_root\hosts
backup_directory\userFiles\servlets > V3.5_install_root\servlets
backup_directory\userFiles\classes > V3.5_install_root\classes
backup_directory\userFiles\deployableEJBs > V3.5_install_root\deployableEJBs

Next, import the configuration.Before importing the configuration, however,be sure an administrative server is running.

A sample import command for Windows NT/2000 follows.Remember that you must update many of the values to reflect your configuration requirements.

V3.5_install_root\jdk\jre\bin\JavaDserver.root=V3.5_install_rootDcom.ibm.CORBA.ConfigURL=file:/V3.5_install_root/properties/sas.client.propsclasspath
V3.5_install_root\lib\ibmwebas.jar; V3.5_install_root\lib\servlet.jar;
V3.5_install_root\lib\xml4j.jar;V3.5_install_root\lib\ujc.jar;
V3.5_install_root\lib\ejs.jar;V3.5_install_root\lib\console.jar;
V3.5_install_root\lib\admin.jar;V3.5_install_root\lib\repository.jar;
V3.5_install_root\lib\sslight.jar;V3.5_install_root\lib\tasks.jar; V3.5_install_root\properties
com.ibm.websphere.xmlconfig.XMLConfig-adminNodeName cally-nameServiceHost cally-nameServicePort
900import backup_directory\websphere_302_backup.xml



3.5: Switching administrative databases
Suppose you want to switch from one supported database brand to another, foruse as the WebSphere
administrative database. Originally, the WebSphere Application Server installation program prompted you to
enter information about the database configuration. This article provides instructions for switching to a different
database brand without needing to run the WebSphere Application Server installation program again.

Basically, you need to preserve the administrative configurationsas stored in the current database, switch the
administrative server settingsto point to the new database, then import the administrative configurationsinto the
new database. Follow these instructions:

Stop the WebSphere administrative server (or servers).1.  

Use the -export option of the XMLConfig command line administrative client toexport the configuration
information from the current administrative database.

2.  

Assuming you have already installed the database brand to which you are switching, start the database
management system for the database. Use the administrative facilities to create an appropriately named
database to use as the WebSphere administrative database.

3.  

Use the database conversion assistant to guide youthrough the necessary setting changes.

The Related information describes the settingsaffected by the database conversion assistant.

4.  

To have the new database contain configurations for the default application server and other default
resources, follow the instructions in article 6.6.46 for an already installed product.

5.  

Use the -import option of the XMLConfig command line administrative client toimport the
configuration information that you exported earlier. This will effectivelyput the contents of the former
administrative database into the new administrativedatabase.

6.  

Start the administrative server.7.  

Besides checking that the tables and data were correctly imported to the new database, performing the last two
steps provides verification that the procedure was successful. If the administrativedatabase settings were not
modified successfully, the import would fail with SQL errorsrelated to creating tables and data that already
exist. (The import would be attemptingto write to the former database, from which it exported the data, instead
of to the newdatabase). Similarly, attempts to start the administrative server would fail with
SQL-relatedexceptions.

http://localhost/v355makePDF/advanced/nav_Migrguidenav/0606000201.html
http://localhost/v355makePDF/advanced/nav_Migrguidenav/060646.html
http://localhost/v355makePDF/advanced/nav_Migrguidenav/0606000201.html


3.5.1: Using the database conversion assistant to switch administrative
databases
The database conversion assistant helps you modify the WebSphere administrative serverconfiguration in order to switch from one administrative database
to another. This user-friendlyeditor leads you through the necessary changes to the database configuration informationstored in the administrative server
configuration and setupcmdlinefiles.

  The assistant helps you convert databasesettings.You must also move databasecontent from the old database to the new database.(You can use the
XMLConfig administrative client to do so automatically).Use the database migration assistant as part of the overall procedure described inarticle 3.5.

Obtaining and running the database conversion assistant

Create a directory named DBUpgrade. Make sure it is a subdirectory ofthe WebSphere directory in the product installation_root.1.  

Obtain the database conversion assistant file (a ZIP or JAR) from the among the toolsoffered on theSupport page of the product Web site.2.  

Extract the database conversion assistant file contents into the DBUpgrade directory.3.  

If using Windows NT, add the following to the PATH environment variable:

product_installation_root\jdk\bin

4.  

Run the assistant:

  dbupgrade.sh❍   

  dbupgrade.bat❍   

5.  

Follow the instructions in the assistant interface.6.  

Troubleshooting

The tool might fail sometimes due to some extra entries in the CLASSPATH or PATH environment variables. In this case, do the following:

Open a command prompt window and set CLASSPATH and PATH as follows(so there are no other entries in the CLASSPATH or PATH):

set CLASSPATH=product_installation_root\jdk\lib\tools.jarset PATH=product_installation_root\jdk\bin

1.  

Run the tool from the command prompt.Once the window is closed, the CLASSPATH and PATH settings willreset to the system settings.2.  

http://localhost/v355makePDF/advanced/nav_Migrguidenav/06064600.html
http://localhost/v355makePDF/advanced/nav_Migrguidenav/06064600.html
http://localhost/v355makePDF/advanced/nav_Migrguidenav/root.html
http://www.ibm.com/software/webservers/appserv/support.html


3.5.2: Settings to change when switching administrative databases
The following steps describe the settings modified by the database conversion assistant. It is highly recommended that you use the database conversion assistant to switch database settings,
rather than editing the settings by hand.

Note, the following example steps pertain specifically to switching from an Instant DB database to a DB2 database. Again, they are provided as a reference to what the assistant is doing.
Use the assistant to modify the settings.

Modify the administrative server configuration file, changing entries as follows:

From:

com.ibm.ejs.sm.adminServer.dbDriver=jdbc.idbDriver

To:

com.ibm.ejs.sm.adminServer.dbDriver=COM.ibm.db2.jdbc.app.DB2Driver

❍   

From:

com.ibm.ejs.sm.adminServer.dbUser=

To:

com.ibm.ejs.sm.adminServer.dbUser=db2admin

where db2admin is the appropriate database user name.

❍   

From:

com.ibm.ejs.sm.adminServer.dbPassword=

To:

com.ibm.ejs.sm.adminServer.dbPassword=db2admin

where db2admin is the appropriate database password.

❍   

From:

com.ibm.ejs.sm.adminServer.dbUrl=jdbc:idb:c:/WebSphere/AppServer/bin/was.prp

To:

com.ibm.ejs.sm.adminServer.dbUrl=jdbc:db2:was

❍   

Modify the entry that points to the database driver:

com.ibm.ejs.sm.adminserver.classpath

For example, change from:

c:/WebSphere/AppServer/lib/idb.jar

To:

c:/SQLLIB/java12/db2java.zip

  The remainder of this step is specific to migration from Instant DB to DB2. The migration assistant does not perform the following changes, even in the case of Instant
DB to DB2 migration.

❍   

Locate the entry:

com.ibm.ejs.sm.util.process.Nanny.path

and add an entry for the database installation root, such as c:\\SQLLIB\\bin for DB2 on Windows NT.

❍   

Remove the entries:

        com.ibm.ejs.sm.adminServer.connectionPoolSize=1 com.ibm.ejs.sm.adminServer.dbSchema=  

❍   

1.  

Modify product_installation_root/bin/setupCmdLine(setupCmdLine.sh on UNIX):

Change from:

SET DB2DRIVER=c:\WebSphere\AppServer\lib\idb.jar

To:

SET DB2DRIVER=c:\SQLLIB\java\db2java.zip

as appropriate for the location of the database driver.

❍   

Set the DB2_HOME entry:

DB2_HOME=/home/db2inst1

as appropriate for the installation root of the database product.

❍   

2.  

Modify the administrative server startup script:

Change from:

DB_TYPE=InstantDB

To:

DB_TYPE=DB2

❍   

Change from:

DBUSERID=

To:

DBUSERID=db2inst1

❍   

Change from:

DB_INSTANCE_HOME=

To:

DB_INSTANCE_HOME=/home/db2inst1

❍   

3.  

Modify product_installation_root/properties/initial_setup.config:

Change from:

<config-file>product_installation_root/hosts/default_host/WSsamplesIDB_app/WSsamplesIDB_app_create.xml</config-file>

To:

<config-file>product_installation_root/hosts/default_host/WSsamples_app/WSsamples_app_create.xml</config-file>

❍   

Change from:❍   

4.  

http://localhost/v355makePDF/advanced/nav_Migrguidenav/06064600.html
http://localhost/v355makePDF/advanced/nav_Migrguidenav/root.html
http://localhost/v355makePDF/advanced/nav_Migrguidenav/0606a.html
http://localhost/v355makePDF/advanced/nav_Migrguidenav/root.html


<value>jdbc:ibd</value>

To:

<value>jdbc:db2</value>

Change from:

<value>product_installation_root/lib/idb.jar</value>

To:

<value>home/db2inst1/sqllib/java/db2java.zip</value>

❍   

<value>product_installation_root/bin/myidb.prp</value>

To:

<value>WAS</value>

where WAS is the name of the DB2 database.

❍   



3.5.3: Switching server databases to DB2/390
You can use DB2/390 to store the HttpSession and administrative databases.You can also use DB2/390 with enterprise beans.

This article does not outline the entire process of switching.As applicable, this article focuses on two steps:database setup in DB2/390 and administrative
settings required in the application server.

If you are using DB2/390 in this capacity for the first time,additional configuration in the DB2 Connect product may be necessary.For more information, see
the DB2 Connect documentation.

Setting up the HttpSession database in DB2/390

Session Manager now supports DB2/390as a persistent datastore for failover support. Set up the database as follows:

In DB2/390, create the database table.1.  

Create indexes for ID and PROPID.2.  

Use an SQL script like the following:

        CREATE TABLE DATABASE.SESSIONS        (ID VARCHAR(64) NOT NULL,         PROPID VARCHAR(64)
NOT NULL,         APPNAME VARCHAR(64),         LISTENERCNT SMALLINT,         LASTACCESS DECIMAL(21),        
CREATIONTIME DECIMAL(21),         MAXINACTIVETIME INTEGER,         USERNAME VARCHAR(256),        
SMALL VARCHAR(3313) FOR BIT DATA,         MEDIUM LONG VARCHAR FOR BIT DATA,         LARGE BLOB(2M),        
TROW ROWID GENERATED ALWAYS )         IN WAS.CMPTB001;         CREATE TYPE 2 UNIQUE INDEX
CMP.CMPND001         ON DATABASE.SESSIONS (ID, PROPID) USING         VCAT DSN610; COMMIT;        
CREATE LOB TABLESPACE CMPLS001 IN WAS         BUFFERPOOL BP32K         LOCKSIZE LOB         USING
VCAT DSN610         CLOSE NO;         CREATE AUX TABLE CMP.CMPLT001         IN WAS.CMPLS001        
STORES DATABASE.SESSIONS         COLUMN LARGE;COMMIT;         CREATE INDEX CMP.CMPLI001 ON        
CMP.CMPLT001 USING VCAT DSN610;COMMIT;

This statement creates the SESSIONS table in the default database,which on DB2/390 is not recommended.Therefore, you should add an IN
DATABASE() clausefor your particular production requirements.

3.  

●   In DB2/390, set the RRULOCK parameter to YES.

This parameter setting ensures an update lock on the table,which is required for proper serialization of session data.You can set this parameterby using
option 19 on panel DSNTIPB.

●   In Session Manager, specify the database and version.

Under the Persistence tab of Session Manager, assign the datasource thatpoints to the DB2/390 location.a.  

Specify the user ID, database, and version in the userid field, as follows:

userid::database$VxWhere     :: and $V are separators          userid is the userid for connecting
to database          database is the database name          x is the version of the database (values
can be 6 or 7)

Example for DB2 Version 6: user91::u091db92$V6

b.  

Provide the password.c.  

Apply the changes.d.  

Setting up the administrative database in DB2/390

Before you start the setup in DB2/390, find the JCL file named db2390.sql, located in the bin directory. This sample is shipped with WebSphere Application
Server, Version 3.5.3 and later.

At a minimum, customize the JCL as follows:

For wasdb, substitute the name of the database in which thetables are to be defined.❍   

For hlq, substitute the high-level qualifier for the datasets.This is used in the DDL so that DB2 can associate the tablespaces with thelinear
datasets.

❍   

For tgtVolume, substitute the target volume for dataset allocation.❍   

1.  

Transfer the customized JCL file to the target OS/390 system.2.  

Run the customized JCL.

The JCL stream is broken up into three steps, as follows:

DROPDB - The expected return code is 0 or 8. Expect a return code of 8 on thefirst run of this stream, because the database will not yet exist.1.  

DEFTABLE - Expect a return code of 0. This step creates the linear VSAMdatasets for the tablespaces, indexes, and BLOB tablespaces used
by the repositorystructure.

2.  

CRTTABLE - Expect a return code of 0. DDL for the tablespaces,tables, and indexes is run in this step. In this step, several
GRANTstatements allow unlimited access to the tables by PUBLIC. The appropriatesecurity measures must be implemented as required in
your installation.

3.  

3.  

Before the administrative server is started,verify the following property setting in the admin.config file:

com.ibm.ejs.sm.adminServer.dbInitialized=nocreate

This directs the administrative server not to try to create tables when DB2/390 is being used.

4.  



Using DB2/390 with enterprise beans

For session or BMP beans, you can use DB2/390 just as you would useany other version of DB2. No additional database setup or admininstrative
configuration is required.

You can also use DB2/390 to store persistent data for CMP beans,but this support is limited to CMP beans developedin IBM VisualAge for Java, Version
3.5.3 or later. The appropriate DDL script for table creation isgenerated by VisualAge for Java into the persister classfor the CMP bean.For more
information about this script,see the VisualAge for Java release notes for theEJB Development Environment component.

In a process similar to that for setting up the administrative database, create the DB2/390 database, tablespace for the table, and tablespace for
anyBLOB fields in the schema for the CMP bean.(In DB2/390, BLOB fields are mapped to the LOB datatype, which is storedin a separate
tablespace.)

1.  

Customize the DDL script provided by VisualAge for Java.2.  

Using the customized DDL script, create the table forthe CMP bean.3.  

In the application server, deploy the CMP bean.4.  


	Numbx: 
	L: 
	C: 
	R: 

	P1: 
	Numbers: 
	Numbx: 
	L: 
	C: 
	R: 1



	P2: 
	Numbers: 
	Numbx: 
	L: 2
	C: 
	R: 



	P3: 
	Numbers: 
	Numbx: 
	L: 
	C: 
	R: 3



	P4: 
	Numbers: 
	Numbx: 
	L: 4
	C: 
	R: 



	P5: 
	Numbers: 
	Numbx: 
	L: 
	C: 
	R: 5



	P6: 
	Numbers: 
	Numbx: 
	L: 6
	C: 
	R: 



	P7: 
	Numbers: 
	Numbx: 
	L: 
	C: 
	R: 7



	P8: 
	Numbers: 
	Numbx: 
	L: 8
	C: 
	R: 



	P9: 
	Numbers: 
	Numbx: 
	L: 
	C: 
	R: 9



	P10: 
	Numbers: 
	Numbx: 
	L: 10
	C: 
	R: 



	P11: 
	Numbers: 
	Numbx: 
	L: 
	C: 
	R: 11



	P12: 
	Numbers: 
	Numbx: 
	L: 12
	C: 
	R: 



	P13: 
	Numbers: 
	Numbx: 
	L: 
	C: 
	R: 13



	P14: 
	Numbers: 
	Numbx: 
	L: 14
	C: 
	R: 



	P15: 
	Numbers: 
	Numbx: 
	L: 
	C: 
	R: 15



	P16: 
	Numbers: 
	Numbx: 
	L: 16
	C: 
	R: 



	P17: 
	Numbers: 
	Numbx: 
	L: 
	C: 
	R: 17



	P18: 
	Numbers: 
	Numbx: 
	L: 18
	C: 
	R: 



	P19: 
	Numbers: 
	Numbx: 
	L: 
	C: 
	R: 19



	P20: 
	Numbers: 
	Numbx: 
	L: 20
	C: 
	R: 



	P21: 
	Numbers: 
	Numbx: 
	L: 
	C: 
	R: 21



	P22: 
	Numbers: 
	Numbx: 
	L: 22
	C: 
	R: 



	P23: 
	Numbers: 
	Numbx: 
	L: 
	C: 
	R: 23



	P24: 
	Numbers: 
	Numbx: 
	L: 24
	C: 
	R: 



	P25: 
	Numbers: 
	Numbx: 
	L: 
	C: 
	R: 25



	P26: 
	Numbers: 
	Numbx: 
	L: 26
	C: 
	R: 



	P27: 
	Numbers: 
	Numbx: 
	L: 
	C: 
	R: 27



	P28: 
	Numbers: 
	Numbx: 
	L: 28
	C: 
	R: 



	P29: 
	Numbers: 
	Numbx: 
	L: 
	C: 
	R: 29



	P30: 
	Numbers: 
	Numbx: 
	L: 30
	C: 
	R: 



	P31: 
	Numbers: 
	Numbx: 
	L: 
	C: 
	R: 31



	P32: 
	Numbers: 
	Numbx: 
	L: 32
	C: 
	R: 



	P33: 
	Numbers: 
	Numbx: 
	L: 
	C: 
	R: 33



	P34: 
	Numbers: 
	Numbx: 
	L: 34
	C: 
	R: 



	P35: 
	Numbers: 
	Numbx: 
	L: 
	C: 
	R: 35



	P36: 
	Numbers: 
	Numbx: 
	L: 36
	C: 
	R: 



	P37: 
	Numbers: 
	Numbx: 
	L: 
	C: 
	R: 37



	P38: 
	Numbers: 
	Numbx: 
	L: 38
	C: 
	R: 



	P39: 
	Numbers: 
	Numbx: 
	L: 
	C: 
	R: 39



	P40: 
	Numbers: 
	Numbx: 
	L: 40
	C: 
	R: 



	P41: 
	Numbers: 
	Numbx: 
	L: 
	C: 
	R: 41



	P42: 
	Numbers: 
	Numbx: 
	L: 42
	C: 
	R: 



	P43: 
	Numbers: 
	Numbx: 
	L: 
	C: 
	R: 43



	P44: 
	Numbers: 
	Numbx: 
	L: 44
	C: 
	R: 



	P45: 
	Numbers: 
	Numbx: 
	L: 
	C: 
	R: 45





