
JSP files -- table of contents

Development

 4.2.2: Developing JSP files
 4.2.2.1: JavaServer Pages (JSP) lifecycle
 4.2.2.1a: JSP access models
 4.2.2.2: JSP support and environment in WebSphere
 4.2.2.2.1: JSP support for separating logic from presentation
 4.2.2.2.2: JSP processors
 4.2.2.2.3: Java Server Page attributes
 4.2.2.2.4: Batch compiling JSP files
 Compiling JSP .91 files as a batch
 Compiling JSP 1.0 files as a batch
 4.2.2.3: Overview of JSP file content
 4.2.2.3.1: JSP syntax: JSP directives
 4.2.2.3.2: JSP syntax: Class-wide variables and methods
 4.2.2.3.3: JSP syntax: Inline Java code (scriptlets)
 4.2.2.3.4: JSP syntax: Java expressions
 4.2.2.3.5: JSP syntax: useBean tags
 JSP syntax: <useBean> tag syntax
 JSP .91 syntax: <BEAN> tag syntax
 JSP syntax: Accessing bean properties
 JSP .91 syntax: Accessing bean properties
 JSP syntax: Setting useBean properties
 JSP .91 syntax: Setting bean properties
 4.2.2.3.5a: JSP .91 syntax: BEAN tags
 4.2.2.3.6: Supported NCSA tag reference
 4.2.2.3.7: IBM extensions to JSP syntax
 JSP syntax: Tags for variable data
 JSP syntax: <tsx:getProperty> tag syntax and examples
 JSP syntax: <tsx:repeat> tag syntax
 JSP syntax: The repeat tag results set and the associated bean
 JSP syntax: Tags for database access
 JSP syntax: <tsx:dbconnect> tag syntax
 JSP syntax: <tsx:userid> and <tsx:passwd> tag syntax
 JSP syntax: <tsx:dbquery> tag syntax
 Example: JSP syntax: <tsx:dbquery> tag syntax
 JSP syntax: <tsx:dbmodify> tag syntax
 Example: JSP syntax: <tsx:dbmodify> tag syntax
 Example: JSP syntax: <tsx:repeat> and <tsx:getProperty> tags
 4.2.2.3.8: IBM extensions to JSP .91 syntax
 JSP .91 syntax: Tags for variable data
 JSP .91 <INSERT> tag syntax
 JSP .91 syntax: Alternate syntax for the <INSERT> tag

 Example: JSP .91 syntax: INSERT tag syntax
 JSP .91 <REPEAT> tag syntax
 JSP .91 syntax: <REPEAT> tag results set and the associated bean
 JSP .91 syntax: JSP tags for database access
 JSP .91 syntax: <DBCONNECT> tag syntax
 JSP .91 syntax: <USERID> and <PASSWD> tag syntax: JSP tags for database access
 JSP .91 syntax: <DBQUERY> tag
 Example: JSP .91 syntax: <DBQUERY> tag syntax
 JSP .91 syntax: <DBMODIFY> tag syntax
 Example: JSP .91 syntax: <DBMODIFY> tag syntax
 Example: JSP .91 syntax: <INSERT> and <REPEAT> tags
 4.2.2.3a: JSP examples
 4.2.2.3a01: JSP code example - login
 4.2.2.3a02: JSP code example - view employee records
 4.2.2.3a03: JSP code example - EmployeeRepeatResults
 4.2.2.3b: JSP .91 examples

Administration

 6.6.7: Administering servlet engines
 6.6.7.0: Servlet engine properties
 6.6.7.1: Administering servlet engines with the Java administrative console
 6.6.7.1.1: Configuring new servlet engines with the Java administrative console
 6.6.7.3: Administering servlet engines with the Web console
 6.6.7.4: Property files pertaining to servlet engines

 6.6.8: Administering Web applications (overview)
 6.6.8.0: Web application properties
 6.6.8.1: Administering Web applications with the Java administrative console
 6.6.8.1.1: Configuring new Web applications with the Java administrative console
 6.6.8.1.6: Converting WAR files with the Java administrative console
 6.6.8.3: Administering Web applications with the Web console
 6.6.8.3.1: Precompiling JSP files for Web modules of an application with the Web console

4.2.2: Developing JSP files
If JSP files are fairly new to you, consider reading about their lifecycle and access model. When you are ready
to begin writing JSP files, see the article featuring JSP file content. Review the support and environment article
for topics such as JSP processors and APIs, recommended development tools, and batch compiling.

4.2.2.1: JavaServer Pages (JSP) lifecycle
JSP files are compiled into servlets. After a JSP is compiled, its lifecycle is similar to the servlet lifecycle:

Java source generation and compilation

When a Web container receives a request for a JSP file, it passes the request to the JSP processor .

If this is the first time the JSP file has been requested or if the compiled copy of the JSP file is not found, the
JSP compiler generates and compiles a Java source file for the JSP file. The JSP processor puts the Java source
and class file in the JSP processor directory.

By default, the JSP syntax in a JSP file is converted to Java code that is added to the service() method of the
generated class file. If you need to specify initialization parameters for the servlet or other initialization
information, add the method directive set to the value init.

Request processing

After the JSP processor places the servlet class file in the JSP processor directory, the Web container creates an
instance of the servlet and calls the servlet service() method in response to the request. All subsequent requests
for the JSP are handled by that instance of the servlet.

When the Web container receives a request for a JSP file, the engine checks to determine whether the JSP file
(.jsp) has changed since it was loaded. If it has changed, the Web container reloads the updated JSP file (that is,
generates an updated Java source and class file for the JSP). The newly loaded servlet instance receives the
client request.

Termination

When the Web container no longer needs the servlet or a newinstance of the servlet is being reloaded, the Web
container invokes theservlet's destroy() method. The Web container can also call the destroy() method if the
engine needs to conserve resources or a pending call to a servlet service() method exceeds the timeout. The Java
Virtual Machine performs garbage collection after the destroy.

4.2.2.1a: JSP access models
JSP files can be accessed in two ways:

The browser sends a request for a JSP file.

The JSP file accesses beans or other components that generate dynamic content that is sent to the
browser,as shown:

Request for a JSP file

When the Web server receives a request for a JSP file, the server sends therequest to the application
server. The application server parses theJSP file and generates Java source, which is compiled and
executed as aservlet.

●

The request is sent to a servlet that generates dynamic content and calls a JSP file to send the content to
the browser, as shown:

Request for a servlet

This access model facilitates separating content generation from content display.

The application server supplies a set of methods in the HttpServiceRequest object and the
HttpServiceResponse object. These methods allow an invoked servlet to place an object (usually a bean)
into a request object and pass that request to another page (usually a JSP file) for display. The invoked
page retrieves the beanfrom the request object and generates the client-side HTML.

●

4.2.2.2: JSP support and environment in WebSphere
IBM WebSphere Application Server supports the JSP 1.1 Specification from Sun Microsystems. If you are
going to develop new JSP files for use with IBMWebSphere Application Server, it is recommended you use JSP
1.1.

All APIs described in this section are supported at the JSP 1.1 level.

It also supports the JSP .91 and JSP 1.0 Specification.Please consult the Related information for the necessary
migration of JSP .91 APIs that are deprecated in Version 3.5.

http://javasoft.com/products/jsp/index.html

4.2.2.2.1: JSP support for separating logic from
presentation
Two interfaces support the JSP technology. These APIs provide a way to separate content generation (business
logic) from thepresentation of the content (HTML formatting).

This separation enablesservlets to generate content and store the content (for example, in a bean) inthe request
object. The servlet that generated the context generates aresponse by passing the request object to a JSP file that
contains the HTMLformatting. The <BEAN> tag provides access to the businesslogic.

The <useBEAN> tag provides access to the businesslogic.

Goal Interface
Set attributes in the request object. javax.servlet.http.HttpServletRequest.setAttribute()

Forward a response object to another servlet or JSP file. javax.servlet.http.RequestDispatcher.forward()

In IBM WebSphere Application Server Version 2.0x, theseinterfaces had different names. You might need to
migrate codethat is calling the old interfaces. See the Related informationfor details.

4.2.2.2.2: JSP processors
IBM WebSphere Application Server provides a JSP processor for each supported levelof the JSP specification, .91
and 1.0. Each JSP processor is a servlet that you canadd to a Web application to handle all JSP requests pertaining
to the Web application.

When you install the Application Server product on a Web server, the Web server configuration is set to pass HTTP
requests for JSP files (files with the extension .jsp) to the Application Server product.

By specifying either a .91, 1.0 or 1.1 JSP Enabler for each Web application containingJSP files, you configure Web
applications to pass JSP files in the Web application folder to the JSP processor correspondingto the JSP
specification level of the JSP files.

The JSP processor creates and compiles a servlet from each JSP file. The processor produces these files for each
JSP file:

.java file, which contains the Java language code for the servlet●

.class file, which is the compiled servlet●

The JSP processor puts the .java, and the .class filein a path specific to theprocessor (see below). The .java and the
.class file have the same filename. The processor uses a naming convention that includes adding underscore
characters and a suffix to the JSP filename.

For example, if the JSP filename is simple.jsp, the generated files are _simple_xjsp.java and
_simple_xjsp.class.

Like all servlets, a servlet generated from a JSP file extends javax.servlet.http.HttpServlet. The servlet Java code
contains import statements for the necessary classes and a package statement, if the servlet class is part of a
package.

If the JSP file contains JSP syntax (such as directives and scriptlets), the JSP processor converts the JSP syntax to
the equivalent Java code. If the JSP file contains HTML tags, the processor adds Java code so that the servlet
outputs the HTML character by character.

JSP 1.0 processor

Processor servlet name JSP Servlet

Class name and location com.sun.jsp.runtime.JspServlet in jsp10.jar

Where processor puts output product_installation_root\temp\servlet_host_name\app_name\???????

For example, if the JSP file is in:

c:\WebSphere\AppServer\hosts\default_host\examples\web

the .java and .class files are put in:

c:\WebSphere\AppServer\temp\default_host\examples\???????

JSP .91 processor

Processor
servlet
name

PageCompileServlet

Class
name
and
location

com.ibm.servlet.jsp.http.pagecompile.PageCompileServlet inibmwebas.jar

Where
processor
puts
output

product_installation_root\temp\servlet_host_name\app_name\pagecompile

where product_installation_root is the path where the Application Server is installed and app_name is
the name of the application root folder.

For example, if the JSP file is in:

c:\WebSphere\AppServer\hosts\default_host\examples\web

the .java and .class files are put in:

c:\WebSphere\AppServer\temp\default_host\examples\pagecompile

4.2.2.2.3: Java Server Page attributes
Use the WebSphere Application Assembly Tool (AAT) to set the following Java Server Page attributes. The JSP
attributes are storedin the IBM extensions document for Web module, ibm-web-ext.xmi.

JSP file attribute names
JSP file attribute values

(Default values are in bold
text)

Purpose

keepgenerated true | false If true, the generated .javafile will be kept. If the
value is false, the .java file isnot saved.

dosetattribute true | false
By default, JSP files using the "usebean" tag
withScope="session" do not always work properly
when session persistence is enabled.

scratchdir product_installation_root\temp
Set scratchdir to a valid drive and directory
which the JSP enginewill use to store the generated
.class and .java files.

jsp.repeatTag.ignoreException true | false

In previous releases, the <tsx:repeat> tagwould
iterate until one of the following conditions was
met:

The end value was reached1.

An
ArrayIndexOutofBoundsException
was thrown

2.

Other types of exceptions were caught but not
thrown, which could result in numerous errors being
returned to the browser.

In version 4.0, the default behavior will now stop
therepeat tag iterations when any exception is
thrown.

To reinstate the old behavior, set this parameter's
valueto true.

defaultEncoding

Name of the desired character
set.
The value of the system
propertyfile.encoding is the
default.

Use this parameter to set the encoding for JSP
pages. If a JSP page contains a contentType
directive that defines an alternative character set,
that character set is used instead of the
defaultEncoding parameter's value.

The order of precedence is:

The JSP page's contentTypedirective's
charset.

1.

The defaultEncoding parameter's
value.

2.

The System property file.encoding
value

3.

ISO-8859-14.

http://localhost/v355makePDF/advanced/nav_jspnav/root.html

4.2.2.2.4: Batch Compiling JSP files
As an IBM enhancement to JSP support, IBM WebSphere Application Server provides a batch JSP compiler.
Use this function to batch compile your JSP files and thereby enable faster responses to the initial client
requests for the JSP files on your production Web server.

It is best to batch compile all of the JSP files associated with an application. Batch compiling saves system
resources and provides security on the application server by specifying if and/or when the server is to check for
a classfile or recompile a JSP file. The application server will monitor the compiled JSP file for changes, and
will automatically recompile and reload the JSP file whenever the application server detects that the JSP file has
changed. By modifying this process, you can eliminate time- and resource-consuming compilations and ensure
that you have control over the compilation of your JSP files. It is also useful as a fast way to resynchronize all
of the JSP files for an application.

The process of batch compiling JSP files is different for JSP 0.91 files and JSP 1.0 files. Consult the page
corresponding to the JSP level for your files.

4.2.2.2.4.1: Compiling JSP .91 files as a batch
To use the JSP batch compiler for JSP .91 files:

Add the following JAR files (found in the Application Server lib directory) to your system classpath:

ibmwebas.jar (contains the batch compiler classes)❍

servlet.jar (contains the Java Servlet 2.1 APIs)❍

1.

At an operating system command prompt, enter the following command on a single line:

java com.ibm.servlet.jsp.http.pagecompile.jsp.tsx.batch.JspBatch -s sourceRootDir -t targetRootDir
-c classPath -l libDirectory -v

where:

sourceRootDir

The root directory of the paths where the batch JSP compiler will search JSP source files to process. The compiler processes all files with
the extension .jsp that are in the source root and its subdirectories.

❍

targetRootDir

The root directory of the path where you want the compiler to place the resulting .java and .class files. The non-batch, JSP 0.91 processor
(PageCompileServlet) places the .java and .class files in the path:

product_installation_root\temp\servlet_host_name\app_name\pagecompile

where product_installation_root is the path where the Application Server is installed and app_name is the name of the application root
folder. It is recommended that you specify that path for the target root if you are batch compiling JSPs to run on your production
Application Server. However, if you are batch compiling on a different system and plan to move them to the Application Server later, you
can specify any valid target root directory.

If any of the .class files have package names, those names will become the names of subdirectories under the target root. For example, if the
.class name is security.login.login.class and the target root is
d:\WebSphere\AppServer\temp\default_host\examples\pagecompile, the batch compiler places the .java and .class
files in d:\WebSphere\AppServer\temp\default_host\examples\pagecompile\security\login directory.

❍

classPath

An optional parameter that is the fully-qualified path for the classes and Java archives that the compiled classes need. If those resources are
in multiple paths, use the semicolon character (;) to separate the path names. You do not need to specify the Application Server JAR files on
this parameter.

❍

libDirectory

The fully-qualified path to the Application Server ibmwebas.jar (contains the JSP batch compiler and related JSP classes) and servlet.jar
(contains the Java Servlet 2.1 APIs). The default path is product_installation_root\lib.

❍

-v

An optional parameter that causes more trace and progress messages to be displayed.

❍

2.

All of the command parameters, except -v, are required.

Example

Suppose you want to precompile the JSP files associated with the examples application, one of the two applications installedwith the application server.
If the JSP files are in the path:

d:\WebSphere\AppServer\hosts\default_host\examples\web

and you want the compiled files to be placed in:

d:\WebSphere\AppServer\temp\default_host\examples\pagecompile

the command would be (typed on a single line):

java com.ibm.servlet.jsp.http.pagecompile.jsp.tsx.batch.JspBatch -s
d:\WebSphere\AppServer\hosts\default_host\examples\web -t
d:\WebSphere\AppServer\temp\default_host\examples\pagecompile -c
d:\WebSphere\AppServer\hosts\default_host\examples\servlets;d:\devcntr\website -l
d:\WebSphere\AppServer\lib

4.2.2.2.4.2: Compiling JSP 1.0 files as a batch
To use the JSP batch compiler for JSP 1.0 files, enter the following command on a single line at an operating system command prompt:

JspBatchCompiler -adminNodeName <node name> [-serverName <server name>
 [-application <application name> [-filename <filename>]]]
 [-keepgenerated <true|false>]

where:

adminNodeName

This is the name of the node as shown on the Adminstrative Console.

❍

serverName

[Optional: may only be used if adminNodeName is set] This is the name of the Application Server in the WebSphere environment
on which you wish to perform this action. Unless you have set up other servers, this will be "Default Server" [Note that from the
command-line, you will need to include quote marks around the name of the server if that name comprises two or more words
separated by spaces. You do not have to do this if you use the batchcompiler.config file described below.]

❍

application

[Optional: may only be used if serverName is set] The name of a particular web application, should you wish to compile only those
JSP files under that application.

❍

filename

[Optional: may only be used if application is set] The name of a single file in the web application you selected above, should you
wish to compile only a single JSP file in an application.

❍

keepgenerated

[Optional] If set to "yes" this will keep the generated .java files used for compilation on your server. By default, this is set to "no"
and the .java files are all erased after the class files have been compiled.

❍

nameServiceHost

[Optional] If specified, this parameter and the nameServicePort parameter are used in a Model/Clone environment to designate the
hostname and port number of the Admin Server to be used in accessing the WebSphere Application Server configuration.

❍

nameServicePort

[Optional] If specified, this parameter and the nameServiceHost parameter are used in a Model/Clone environment to designate
the hostname and port number of the Admin Server to be used in accessing the WebSphere Application Server configuration.

❍

In lieu of specifying the parameters in a command line, you may specify them in the batchcompile.config file, located in the WebSphere
Application Server bin directory. No quotation marks are necessary for any of the variables if you use this file. Any values you enter on the
command-line will override the values specified inthe batchcompile.config file.

Example

Suppose you want to precompile the JSP files associated with the examples application, shipped with WebSphere Application Server. Issue the
following command in the appserver bin directory:

D:\WebSphere\AppServer\bin>JspBatchCompiler.bat -adminNodeName mynode -serverName "Default
Server" -application examples

You should receive the following response from the server

Server name: Default Server
Application Name: examples
 JSP version: 1.0
 docRoot: d:\WebSphere\AppServer\hosts\default_host\examples\web
 Application Classpath: d:\WebSphere\AppServer\hosts\default_host\examples\servlets;
 Application output dir: d:\WebSphere\AppServer/temp/default_host/examples
 URL: .jsp
 URL: .jsv
 URL: .jsw
Attempting to compile: d:\WebSphere\AppServer\hosts\default_host\examples\web\debug_error.jsp
Compilation successful
Attempting to compile: d:\WebSphere\AppServer\hosts\default_host\examples\web\HelloHTML.jsp
Compilation successful
 . . .Attempting to compile:
d:\WebSphere\AppServer\hosts\default_host\examples\web\StockQuoteWMLRequest.jspCompilation
successful
Attempting to compile:
d:\WebSphere\AppServer\hosts\default_host\examples\web\StockQuoteWMLResponse.jspCompilation

successful

If you look in the appserver temp directory, you should see a directory named examples. All of the compiled class files for the examples
application will be in this directory.

4.2.2.3: Overview of JSP file content
JSP files have the extension .jsp. A JSP filecontains any combination of the following items. Click an item to
learn about its syntax. To learn how to put it all together, see the Related information for examples, samples,
and additional syntax references.

JSP syntax

Syntax format Details

Directives

Use JSP directives (enclosed within <%@ and %>) to specify:

Scripting language being used●

Interfaces a servlet implements●

Classes a servlet extends●

Packages a servlet imports●

MIME type of the generated response●

 See Sun's JSP Syntax Referencefor JSP 1.1
syntax descriptions and examples.

Class-wide variable and method
declarations

Use the <%! declaration(s) %> syntax to declareclass-wide
variables and class-wide methods for the servlet class.

Inline Java code (scriptlets), enclosed
within <% and %>

You can embed any valid Java language code inline withina JSP file
between the <% and %> tags. Suchembedded code is called a
scriptlet. If you do not specify the method directive, the generated
code becomes the body of the service method.

An advantage of embedding Java coding inline in JSP files is that
the servlet does not have to be compiled in advance, and placed on
the server. Thismakes it easier to quickly test servlet coding.

Variable text, specified using IBM
extensions for variable data (JSP .91 or
JSP 1.0)or Java expressions enclosed
within <%= and %>

The IBM extensions are the more user-friendly approach to putting
variable fields on your HTML pages.

A second method for adding variable data is to specify a Java
language expression that is resolved when the JSP file is processed.
Use the JSP expression tags <%= and %>. The expression is
evaluated, converted into a string, and displayed. Primitive types,
such as int and float, areautomatically converted to string
representation.

<BEAN> tag
Use the <BEAN> tag to create an instance of a bean that will be
accessed elsewhere within the JSP file. Then use JSP tags to access
the bean.

JSP tags for database access(JSP .91) or
(JSP 1.1)

The IBM extensions make it easy for non-programmers to create
Web pages that access databases.

http://java.sun.com/products/jsp/tags/11/tags11.html

HTML tags
A JSP file can contain any valid HTML tags. View article 0.70: What is HTML? for more informationon
HTML. Refer to your favorite HTMLreference for a description of HTML tags.

<SERVLET> tags
Using the <SERVLET> tag is one method for embedding a servletwithin a JSP file.

NCSA tags
You might have legacy SHTML files that contain NCSA tags for server-side includes. If the IBM WebSphere
Application Server Version 3.5 supports the NCSAtags in your SHTML files, you can convert the SHTML files
to JSP files andretain the NCSA tags.

http://localhost/v355makePDF/advanced/nav_jspnav/0070.html

4.2.2.3.1: JSP syntax: JSP directives
Use JSP directives (enclosed within <%@ and %>) to specify:

Scripting language being used●

Interfaces a servlet implements●

Classes a servlet extends●

Packages a servlet imports●

MIME type of the generated response●

For more information on the JSP 1.1 technologies, view the Tomcatdocumentation at the SunTM site.

The general syntax of the JSP directive is:

<%@ directive_name ="value" %>

where the valid directive names are:

language

The scripting language used in the file. At this time, the onlyvalid value and the default value is java
(the Java programminglanguage). The scope of this directive is the JSP file.When used more than once,
only the first occurrence of the directive issignificant. An example:

<%@ language ="java" %>

●

method

The name of the method generated by the embedded Java code(scriptlet). The generated code becomes
the body of the specifiedmethod name. The default method is service. When usedmore than once,
only the first occurrence of the directive issignificant. An example:

<%@ method ="doPost" %>

●

import

A comma-separated list of Java language package names or class names thatthe servlet imports. This
directive can be specified multiple timeswithin a JSP file to import different packages. An example:

<%@ import ="java.io.*,java.util.Hashtable" %>

●

content_type

The MIME type of the generated response. The default value istext/html. This information is used
to generate the response header. When used more than once, only the first occurrence of thisdirective is
significant. This directive can be used to specify the character set in which the pageis to be encoded. An
example:

<%@ content_type ="text/html; charset=iso-8859-1" %>

●

implements

A comma-separated list of Java language interfaces that the generatedservlet implements. You can use
this directive more than once within aJSP file to implement different interfaces. An example:

<%@ implements ="javax.servlet.http.HttpSessionContext" %>

●

extends

The name of the Java language class that the servlet extends. Theclass must be a valid class and does not
have to be a servlet class.The scope of this directive is the JSP file. When used morethan once, only the
first occurrence of the directive is significant.An example:

●

http://java.sun.com/products/jsp/download.html

<%@ extends ="javax.servlet.http.HttpServlet" %>

4.2.2.3.2: JSP syntax: Class-wide variables and methods
Use the <SCRIPT> and </SCRIPT> tags to declareclass-wide variables and class-wide methods for the servlet class. Thegeneral syntax is:

<script runat=server>// code for class-wide variables and methods</script>

The attribute runat=server is required and indicates that thetag is for server-side processing. An example of specifying class-widevariables
and methods:

<script runat=server>// class-wide variables init i = 0; String foo = "Hello";// class-wide
methods private void foo() {// code for the method} </script>

4.2.2.3.3: JSP syntax: Inline Java code (scriptlets)
You can embed any valid Java language code inlinebetween the <% and %> tags. Suchembedded code is called a scriptlet. If you do not specify the
method directive, the generated code becomes the body of the service method.

The scriptlet can use a set of predefined variables thatcorrespond to essential servlet, output, and input classes:

request

The servlet request class defined byjavax.servlet.http.HttpServletRequest

●

response

The servlet response class defined byjavax.servlet.http.HttpServletResponse

●

out

The output writer class defined by java.io.PrintWriter. The content written to the writer is the client response.

●

in

The input reader class defined by java.io.BufferedReader

●

An example:

<%foo = request.getParameter("Name");out.println(foo);%>

Be sure to use the braces characters, { }, to enclose if, while, and for statements even if the scope contains a single statement. You can enclose the
entire statement with a single scriptlet tag. However, if you use multiple scriptlet tags with the statement, be sure to place the opening brace
character, {, in the same statement as the if, while, or for keyword. The following examples illustrate these points. The first example is the easiest.

<%for (int i = 0; i < 1; i++) { out.println("<P>This is written when " + i + " is < 1</P>");
}%>...<% for (int i = 0; i < 1; i++) { %><%
out.println("<P>This is written when " + i + " is < 1</P>"); %><% }
%>...<% for (int i = 0; i < 1; i++) {
%><% out.println("<P>This is written when " + i + " is < 1</P>"); %><% }
%>

4.2.2.3.4: JSP syntax: Java expressions
To specify a Java language expression that is resolvedwhen the JSP file is processed, use the JSP expression
tags <%= and%>. The expression is evaluated, converted into a string,and displayed. Primitive types, such as
int and float, areautomatically converted to string representation. In this example, foois the class-wide variable
declared in the class-wide variables and methods example:

<p>Translate the greeting <%= foo %>.</p>

When the JSP file is served, the text reads: Translate the greeting Hello.

4.2.2.3.5: JSP syntax: useBean tag
The <jsp:useBean> tag locates a Bean or creates an instance of a Bean if it does not exist.

JavaBeans can be class files, serializedbeans, or dynamically generated by a servlet.A JavaBean can even be a
servlet (that is, provide a service). If aservlet generates dynamic content and stores it in a bean, the bean can
thenbe passed to a JSP file for use within the Web page defined by thefile.

See Sun's JSP Syntax Referencefor JSP 1.1 syntax descriptions and examples.

http://java.sun.com/products/jsp/tags/11/tags11.html

4.2.2.3.5.1: JSP syntax: <jsp:useBean> tag
Use the <jsp:useBean> tag to locate or instantiate a JavaBeans component. The syntax for the <jsp:useBean> tag
is:

<jsp:useBean
 id="beanSomeName"
 scope="page|request|session|applicaton"
{ class="package_class" |
 type ="package_class" |
 class="package_class" type ="package_class" |
 beanName="{package.class| <%= expression%>}" type ="package_class"
}
{ />|
 > other elements
 </jsp:useBean>
}

See Sun's JSP syntax referencefor a description of the <jsp:useBean> attributes and examples.

http://java.sun.com/products/jsp/tags/11/syntaxref1115.html

4.2.2.3.5.1a: JSP .91 syntax: <BEAN> tag syntax
<bean name="bean_name" varname="local_bean_name" type ="class_or_interface_name"
introspect="yes|no" beanName="ser_filename" create="yes|no" scope="request|session|userprofile"
></bean>

where the attributes are:

name

The name used to look up the bean in the appropriate scope (specified bythe scope attribute). For example, this might be the session key
valuewith which the bean is stored. The value is case-sensitive.

●

varname

The name used elsewhere within the JSP file to refer to the bean.This attribute is optional. The default value is the value of the nameattribute.
The value is case-sensitive.

●

type

The name of the bean class file. This name is used todeclare the bean instance in the code. The default value is the typeObject. The value is
case-sensitive.

●

introspect

When the value is yes, the JSP processor examines all requestproperties and calls the set property methods (passed in the BeanInfo)
thatmatch the request properties. The default value of this attribute isyes.

●

beanName

The name of the bean class file, the bean package name, or theserialized file (.ser file) that contains the bean. (This nameis given to the bean
instantiator.) This attribute is used only whenthe bean is not present in the specified scope and the create attribute is setto yes. The value is
case-sensitive.

The path of the file must be specified in the Web application classpath.

●

create

When the value is yes, the JSP processor creates an instance ofthe bean if the processor does not find the bean within the specifiedscope. The
default value is yes.

●

scope

The lifetime of the bean. This attribute is optional and thedefault value is request. The valid values are:

request - The bean is added to the request object by a servlet thatinvokes the JSP file using the APIs described in JSP API.If the bean
is not part of the request context, the bean is created and stored in the request contextunless the create attribute is set to no.

❍

session - If the bean is present in the current session, the bean isreused. If the bean is not present, it is created and stored as part ofthe
session if the create attribute is set to yes.

❍

userprofile - This attribute value is an IBM extension to JSP 0.91 and causes the user profile to be retrieved from the servlet
requestobject, cast to the specified type, and introspected. If a type is notspecified, the default type is

com.ibm.websphere.UserProfile

.The create attribute is ignored.

❍

●

4.2.2.3.5.2: JSP syntax: Accessing bean properties
After specifying the <jsp:useBean> tag, you can access the bean at any pointwithin the JSP file using the
<jsp:getProperty> tag.

For a description of the <jsp:getProperty> tag attributesand for coding examples, see Sun's JSP Syntax
Reference

http://java.sun.com/products/jsp/tags/11/syntaxref11.fm10.html
http://java.sun.com/products/jsp/tags/11/syntaxref11.fm10.html

4.2.2.3.5.2a: JSP .91 syntax: Accessing bean properties
After specifying the <BEAN> tag, you can access the bean at any pointwithin the JSP file. There are three methods for accessing beanproperties:

Using a JSP scriptlet●

Using a JSP expression●

Using the <INSERT> tag (as described in the JSP .91 tags for variable data)●

An example:

<!-- The bean declaration --> <bean name="foobar" type="FooClass" scope="request" > <param
name="fooProperty" value="fooValue"></bean> <!-- Later in the file, some HTML content that includes
JSP syntax that calls a method of the bean --> <p>The name of the row is <%= foobar.getRowName()
%>.</p>

4.2.2.3.5.3: JSP syntax: Setting bean properties
You can set bean properties by using the <jsp:setProperty> tag. The <jsp:setProperty> tag
specifies a list of properties and the corresponding values. The properties areset after the the bean is instantiated
using the <jsp:useBean> tag.

You must declare the bean with <jsp:useBean> before you can set a property value.

See the Sun's JSP syntax referencefor <jsp:setProperty> syntax details and examples.

http://java.sun.com/products/jsp/tags/11/syntaxref11.fm13.html

4.2.2.3.5.3a: JSP .91 syntax: Setting bean properties
You can set the bean properties by using the <PARAM> tag within the <BEAN> tag. The <PARAM> tag specifies a list of properties and
the corresponding values. The properties areautomatically set in the bean using introspection. The properties areset once when the bean is
instantiated. The <PARAM> tag syntax is:

<PARAM name="property_name" value="property_value">

This syntax is an IBM extension to the JSP 0.91 <PARAM> tag. The IBM syntax is consistent with the syntax of the <PARAM> tag used
within the <SERVLET> and <APPLET> tags.

In addition to using the <param> tag to set bean properties,there are three other methods:

Specifying query parameters when requesting the URL of the JSPfile that contains the bean. The introspect attribute must be set
toyes. An example:

http://www.myserver.com/signon.jsp?name=jones&password=d13x

where the bean property name will be set to jones.

●

Specifying the properties as parameters submitted through an HTML<FORM> tag. The JSP method directive must be set topost.
The action attribute is set to the URL of the JSP filethat invokes the bean. The introspect attribute must be set toyes. An example:

<form action="http://www.myserver.com/SearchSite.jsp" method="post"> <input type="text"
name="Search for: "> <input type="submit"></form>

●

Using JSP syntax to set the bean property●

4.2.2.3.5a: JSP .91 syntax: BEAN tags
Use the <BEAN> tag to create an instance of a bean that will beaccessed elsewhere within the JSP file. Then
use JSP tags for variable data (such as the <INSERT> tag described later in this document) to access the bean.

The JavaBeans can be class files, serializedbeans, or dynamically generated by a servlet.A JavaBean can even
be a servlet (that is, provide a service). If aservlet generates dynamic content and stores it in a bean, the bean
can thenbe passed to a JSP file for use within the Web page defined by thefile.

4.2.2.3.6: Supported NCSA tag reference
The product supports the following NCSA tags through their use in JSP files:

config●

echo var=variable (see below)●

exec●

filesize●

include●

lastmodified●

Commands for formatting size and date outputs●

For the echo command, the product supports thestandard server-side include (SSI) environment variables and
Common GatewayInterface (CGI) environment variables.

The SSI environment variables

Variable Description
DATE_GMT The current date and local time zone in Greenwich mean time (GMT)

DATE_LOCAL The current date and local time zone

DOCUMENT_NAME The current filename

DOCUMENT_URI The path to the document (such as, /docs/tutorials/index.shtml)

QUERY_STRING_UNESCAPED The unescaped version of any search query the client sent, with all
shellspecial characters escaped with the \ character

LAST_MODIFIED The last date the current document was changed

CGI environment variables

Variable Description

AUTH_TYPE The protocol-specific authentication method used to validate the user, ifthe server
supports user authentication and the script is protected

CONTENT_LENGTH The length of the content, as specified by the remote host

CONTENT_TYPE The data content type for queries that have information attached(such as HTTP
POST and PUT)

GATEWAY_INTERFACE The revision level of the CGI specification to which the server complies

PATH_INFO The extra path information given by the client in this request. Theextra
information follows the virtual pathname of the CGI script.

PATH_TRANSLATED The server provides a translated version of PATH_INFO, which takes the
pathand performs any virtual-to-physical mapping.

QUERY_STRING The information that follows the ? symbol in the URL request for a script

REMOTE_HOST
The hostname of the remote host sending the request. If the serverdoes not have
this information, the server should set REMOTE_ADDR and
leaveREMOTE_HOST unset.

REMOTE_ADDR The IP address of the remote host sending the request

REMOTE_IDENT If the HTTP server supports RFC 931 identification, the remote
usernameretrieved from the server

REMOTE_USER The username used for authentication, if the server supports userauthentication
and the script is protected

REQUEST_METHOD The method with which this request was made. Methods include HTTP, GET,
HEAD,POST, and so on

SCRIPT_NAME The virtual path to the script being run. This variable is used forself-referencing
URLs

SERVER_NAME The IP address, hostname, or Domain Name Server (DNS) alias of the server

SERVER_PORT The port number to which the request was sent

SERVER_PROTOCOL The name and revision level of the protocol used to format this request

SERVER_SOFTWARE The name and version of the server answering the request

4.2.2.3.7: IBM extensions to JSP syntax
Refer to the Sun JSP Specification for the base JavaServer Pages (JSP) APIs. IBMWebSphere Application
Server Version 3.5 provided several extensions to the base APIs.The backward compatibility of the JSP 1.1
specification to JSP 1.0 allows users to invoke these APIs without modification.

The extensions belong to these categories:

Extension Use

Syntax for variable data
Put variable fields in JSP files and have servlets and JavaBeans
dynamicallyreplace the variables with values from a database when the JSP output
is returned tothe browser

Syntax for database access
Add a database connection to a Web page and then use that connection to query or
updatethe database. The user ID and password for the database connection can be
provided by theuser at request time, or can be hardcoded within the JSP file.

Scope of variables: Because the values specified by syntax apply onlyto the JSP file in which thesyntax is
embedded, identifiers and other tag data can be accessed only withinthe page.

See the Related information for syntax details.

4.2.2.3.7.1: JSP syntax: Tags for variable data
The variable data syntax enables you to put variable fields in your JSP file and have your servlets and
JavaBeansdynamically replace the variables with values from a database when the JSP output is returned to the
browser.

The table summarizes the tags. Click a tag to link to its syntax description.

Goal Tag Details

Get the value of a bean to display in a JSP. <tsx:getProperty>

This IBM extension of the Sun JSP
<jsp:getProperty> tag implements all of the
<jsp:getProperty> function and adds the
ability to introspect a database bean that was
created using the IBM extension
<tsx:dbquery> or <tsx:dbmodify>.

Note: You cannot assign the
value from this tag toa
variable. The value, generated
as output from this tag, is
displayed in the Browser
window.

Repeat a block of HTML tagging that
contains the <tsx:getProperty> syntax and
the HTML tags for formatting content.

<tsx:repeat>

Use the <tsx:repeat> syntax to iterate over a
database query results set. The <tsx:repeat>
syntax iterates from the start value to the end
value until one of the following conditions is
met:

The end value is reached.●

An exception is thrown.●

The output of a <tsx:repeat> block is buffered
until the block completes. If an exception is
thrown before a block completes, no output is
written for that block.

4.2.2.3.7.1.1: JSP syntax: <tsx:getProperty> tag syntax and
examples
<tsx:getProperty name="bean_name" property="property_name" />

where:

name

The name of the JavaBean declared by the id attribute of a <tsx:dbquery> syntax within the JSP file. See <tsx:dbquery> for an
explanation. The value of this attribute is case-sensitive.

●

property

The property of the bean to access for substitution. The value ofthe attribute is case-sensitive and is the locale-independent name
of theproperty.

●

Examples

<tsx:getProperty name="userProfile" property="username" /><tsx:getProperty name="request"
property=request.getParameter("corporation") />

In most cases, the value of the property attribute will be just theproperty name. However, to access the request bean or access a property
of a property(sub-property), you specify the full form of the property attribute.The full form also gives you the option to specify an
index for indexedproperties. The optional index can be a constant (such as 2) or anindex like the one described in <tsx:repeat>. Some
examples of using the full form of the property attribute:

<tsx:getProperty name="staffQuery" property=address(currentAddressIndex) /><tsx:getProperty
name="shoppingCart" property=items(4).price /><tsx:getProperty name="fooBean"
property=foo(2).bat(3).boo.far />

4.2.2.3.7.1.2: JSP syntax: <tsx:repeat> tag syntax
<tsx:repeat index=name start="starting_index" end="ending_index"></tsx:repeat>

where:

index

An optional name used to identify the index of this repeat block.The value is case-sensitive and its scope is
the JSP file.

●

start

An optional starting index value for this repeat block. The defaultis 0.

●

end

An optional ending index value for this repeat block. The maximumvalue is 2,147,483,647. If the value of
the end attribute is less thanthe value of the start attribute, the end attribute is ignored.

●

4.2.2.3.7.1.2a: JSP syntax: The repeat tag results set and the associated bean
The <tsx:repeat> iterates over a results set. The results set is contained within a JavaBean. The bean can be a static bean (for example, a bean created by using the IBM WebSphere Studio database wizard) or a dynamically generated bean (for example, a bean generated by the <tsx:dbquery> syntax). The
following table is a graphic representation of the contents of a bean, myBean:

 col1 col2 col3

row0 friends Romans countrymen

row1 bacon lettuce tomato

row2 May June July

Some observations about the bean:

The column names in the database table become the property names of the bean. The section <tsx:dbquery> describes a technique for mapping the column names to different property names.●

The bean properties are indexed. For example, myBean.get(Col1(row2)) returns May.●

The query results are in the rows. The <tsx:repeat> iterates over the rows (beginning at the start row).●

The following table compares using the <tsx:repeat> to iterate over static bean versus a dynamically generated bean:

Static Bean Example <tsx:repeat> Bean Example
myBean.class

// Code to get a connection// Code to get the data Select * from myTable;// Code to close the connection

JSP file

<tsx:repeat index=abc> <tsx:getPropery name="myBean" property="col1(abc)" /></tsx:repeat>

The bean (myBean.class) is a static bean.●

The method to access the bean properties is myBean.get(property(index)).●

You can omit the property index, in which case the index of the enclosing <tsx:repeat> is used. You can also omit the index on the
<tsx:repeat>.

●

The <tsx:repeat> iterates over the bean properties row by row, beginning with the start row.●

JSP file

<tsx:dbconnect id="conn"userid="alice"passwd="test"url="jdbc:db2:sample"driver="COM.ibm.db2.jdbc.app.DB2Driver"></tsx:dbconnect
><tsx:dbquery id="dynamic" connection="conn" > Select * from myTable;</tsx:dbquery><tsx:repeat index=abc> <tsx:getProperty
name="dynamic" property="col1(abc)" /></tsx:repeat>

The bean (dynamic) is generated by the <tsx:dbquery> and does not exist until the syntax is executed.●

The method to access the bean properties is
dynamic.getValue("property", index).

●

You can omit the property index, in which case the index of the enclosing <tsx:repeat> is used. You can also omit the index on the <tsx:repeat>.●

The <tsx:repeat> syntax iterates over the bean properties row by row, beginning with the start row.●

Implicit and explicit indexing

Examples 1, 2, and 3 show how to use the <tsx:repeat>. Theexamples produce the same output if all indexed properties have 300 or fewerelements. If there are more than 300 elements, Examples 1 and 2 willdisplay all elements, while Example 3 will show only the first 300elements.

Example 1 shows implicit indexing with the default start and default endindex. The bean with the smallest number of indexed properties restricts the number of times the loop will repeat.

<table><tsx:repeat> <tr><td><tsx:getProperty name="serviceLocationsQuery" property="city" /></tr></td> <tr><td><tsx:getProperty
name="serviceLocationsQuery" property="address" /></tr></td> <tr><td><tsx:getProperty name="serviceLocationsQuery"
property="telephone" /></tr></td></tsx:repeat></table>

Example 2 shows indexing, starting index, and ending index:

<table><tsx:repeat index=myIndex start=0 end=2147483647> <tr><td><tsx:getProperty name="serviceLocationsQuery"
property=city(myIndex) /></tr></td> <tr><td><tsx:getProperty name="serviceLocationsQuery" property=address(myIndex) /></tr></td>
<tr><td><tsx:getProperty name="serviceLocationsQuery" property=telephone(myIndex) /></tr></td></tsx:repeat></table>

Example 3 shows explicit indexing and ending index with implicit startingindex. Although the index attribute is specified, the indexed propertycity can still be implicitly indexed because the (myIndex) is not required.

<table><tsx:repeat index=myIndex end=299> <tr><td><tsx:getProperty name="serviceLocationsQuery" property="city" /t></tr></td>
<tr><td><tsx:getProperty name="serviceLocationsQuery" property="address(myIndex)" /></tr></td> <tr><td><tsx:getProperty
name="serviceLocationsQuery" property="telephone(myIndex)" /></tr></td></tsx:repeat></table>

Nesting <tsx:repeat> blocks

You can nest <tsx:repeat> blocks. Each block is separatelyindexed. This capability is useful for interleaving properties on twobeans, or properties that have sub-properties. In the example, two<tsx:repeat> blocks are nested to display the list of songs on each compactdisc in the user's shopping cart.

<tsx:repeat index=cdindex> <h1><tsx:getProperty name="shoppingCart" property=cds.title /></h1> <table> <tsx:repeat>
<tr><td><tsx:getProperty name="shoppingCart" property=cds(cdindex).playlist /> </td></tr> </table>
</tsx:repeat></tsx:repeat>

4.2.2.3.7.2: JSP syntax: Tags for database access
Beginning with IBM WebSphere Application Server Version 3.x, the JSP 1.0 supportwas extended to provide
syntaxfor database access. The syntax makes it simple to add a database connectionto a Web page and then use
that connection to query or update the database.The user ID and password for the database connection can be
provided by theuser at request-time or hard coded within the JSP file.

The table summarizes the tags. Click a tag to link to its syntax description.

Goal Tag Details and examples

Specify information needed to
make a connection to a JDBC or
an ODBC database.

<tsx:dbconnect>

The <tsx:dbconnect> syntax does not
establish the connection. Instead,the
<tsx:dbquery> and <tsx:dbmodify> syntax
are used to referencea <tsx:dbconnect> in
the same JSP file and establish the
connection.

When the JSP file is compiled into a
servlet, the Java processor addsthe Java
coding for the <tsx:dbconnect> syntax to
the servlet'sservice() method, which means
a new database connection is created for
eachrequest for the JSP file.

Avoid hard coding the user ID
and password in
the<tsx:dbconnect>.

<tsx:userid> and
<tsx:passwd>

Use the <tsx:userid> and <tsx:passwd> to
acceptuser input for the values and then
add that data to the request object. The
request objectcan be accessed by a JSP file
(such as the JSPEmployee.jsp example)
that requests the databaseconnection.

The <tsx:userid> and <tsx:passwd> must
be used within a<tsx:dbconnect> tag.

Establish a connection to a
database, submit database queries,
and return the results set.

<tsx:dbquery>

The <tsx:dbquery>:

References a <tsx:dbconnect> in
the same JSP file and uses the
information it provides to
determine the database URL and
driver. The user ID and password
are also obtained from the
<tsx:dbconnect> if those values are
provided in the <tsx:dbconnect>.

1.

Establishes a new connection2.

Retrieves and caches data in the
results object

3.

Closes the connection (releases the
connection resource)

4.

Establish a connection to a
database and then add records to a
database table.

<tsx:dbmodify>

The <tsx:dbmodify>:

References a <tsx:dbconnect> in
the same JSP file and uses the
information provided by that to
determine the database URL and
driver. The user ID and password
are also obtained from the
<tsx:dbconnect> if those values are
provided in the <tsx:dbconnect>.

1.

Establishes a new connection2.

Updates a table in the database3.

Closes the connection (releases the
connection resource)

4.

Examples:
Basic example

Display query results.
<tsx:repeat> and
<tsx:getProperty>

The <tsx:repeat> loops through each of the
rows in the query results.The
<tsx:getProperty> uses the query results
object (for the <tsx:dbquery>syntax whose
identifier is specified by the
<tsx:getProperty> bean attribute)and the
appropriate column name (specified by the
<tsx:getProperty> propertyattribute) to
retrieve the value.

Note: You cannot assign
the value from the
<tsx:getProperty> tag toa
variable. The value,
generated as output from
this tag, is displayed in the
Browser window.

Examples:
Basic example

4.2.2.3.7.2.1: JSP syntax: <tsx:dbconnect> tag syntax
<tsx:dbconnect id="connection_id" userid="db_user" passwd="user_password"
url="jdbc:subprotocol:database" driver="database_driver_name"
jndiname="JNDI_context/logical_name"></tsx:dbconnect>

where:

id

A required identifier. The scope is the JSP file. This identifier is referenced by the connection attribute of a
<tsx:dbquery> tag.

●

userid

An optional attribute that specifies a valid user ID for the database to be accessed. If specified, this attribute
and its value are added to the request object.

Although the userid attribute is optional, the userid must be provided. See <tsx:userid> and <tsx:passwd> for
an alternative to hard coding this information in the JSP file.

●

passwd

An optional attribute that specifies the user password for the userid attribute. (This attribute is not optional if
the userid attribute is specified.) If specified, this attribute and its value are added to the request object.

Although the passwd attribute is optional, the password must be provided. See <tsx:userid> and <tsx:passwd>
for an alternative to hard coding this attribute in the JSP file.

●

url and driver

To establish a database connection, the URL and driver must be provided.

The Application Server Version 3 supports connection to JDBC databases and ODBC databases.

JDBC database

For a JDBC database, the URL consists of the following colon-separated elements: jdbc, the sub-protocol
name, and the name of the database to be accessed. An example for a connection to the Sample database
included with IBM DB2 is:

url="jdbc:db2:sample"driver="COM.ibm.db2.jdbc.app.DB2Driver"

ODBC database

Use the Sun JDBC-to-ODBC bridge driver included in the Java Development Kit (JDK) oranother vendor's
ODBC driver.

The url attribute specifies the location of the database. The driver attribute specifies the name of the driver to
be used to establish the database connection.

If the database is an ODBC database, you can use an ODBC driver or the Sun JDBC-to-ODBC bridge
included with the JDK. If you want to use an ODBC driver, refer to the driver documentation for instructions
on specifying the database location (the url attribute) and the driver name.

In the case of the bridge, the url syntax is jdbc:odbc:database. An example is:

url="jdbc:odbc:autos"driver="sun.jdbc.odbc.JdbcOdbcDriver"

 To enable the Application Server to access the ODBC database, use the ODBC Data Source
Administrator to add the ODBC data source to the System DSN configuration. To access the

●

ODBC Administrator, click the ODBC icon on the Windows NT Control Panel.

jndiname

An optional attribute that identifies a valid context in the Application Server JNDI naming context and the
logical name of the data source in that context. The context is configured by the Web administrator using an
administrative client such as the WebSphere Administrative Console.

If the jndiname is specified, the JSP processor ignores the driver and url attributes on the <tsx:dbconnect> tag.

●

An empty element (such as <url></url>) is valid.

4.2.2.3.7.2.2: JSP syntax: <tsx:userid> and <tsx:passwd> tag syntax
<tsx:dbconnect id="connection_id" <userid><tsx:getProperty
name="request" property=request.getParameter("userid") /></userid> <passwd><tsx:getProperty name="request" property=request.getParameter("passwd")
/></passwd> url="protocol:database_name:database_table"
driver="JDBC_driver_name"> </tsx:dbconnect>

where:

<tsx:getProperty>

This syntax is a mechanism for embedding variable data. See JSP syntax for variable data.

●

userid

This is a reference to the request parameter that contains the userid. The parameter must have already been added to the request object that
was passed to this JSP file. The attribute and its value can be set in the request object using an HTML form or a URL query string to pass
the user-specified request parameters.

●

passwd

This is a reference to the request parameter that contains the password. The parameter must have already been added to the request object
that was passed to this JSP. The attribute and its value can be set in the request object using an HTML form or a URL query string to pass
user-specified values.

●

4.2.2.3.7.2.3: JSP syntax: <tsx:dbquery> tag syntax
<%-- SELECT commands and (optional) JSP syntax can be placed within the tsx:dbquery. --%><%-- Any
other syntax, including HTML comments, are not valid. --%><tsx:dbquery id="query_id"
connection="connection_id" limit="value" ></tsx:dbquery>

where:

id

The identifier of this query. The scope is the JSP file. This identifier is used to reference the query, for example, from the
<tsx:getProperty> to display query results.

The id becomes the name of a bean that contains the results set. The bean properties are dynamic and the property names are the names
of the columns in the results set. If you want different column names, use the SQL keyword for specifying an alias on the SELECT
command. In the following example, the database table contains columns named FNAME and LNAME, but the SELECT statement uses
the AS keyword to map those column names to FirstName and LastName in the results set:

Select FNAME, LNAME AS FirstName, LastName from Employee where FNAME='Jim'

●

connection

The identifier of a <tsx:dbconnect> in this JSP file. That <tsx:dbconnect> provides the database URL, driver name, and (optionally) the
user ID and password for the connection.

●

limit

An optional attribute that constrains the maximum number of records returned by a query. If the attribute is not specified, no limit is
used. In such a case, the effective limit is determined by the number of records and the system caching capability.

●

SELECT command and JSP syntax

The only valid SQL command is SELECT because the <tsx:dbquery> must return a results set. Refer to your database documentation for
information about the SELECT command. See other sections of this document for a description of JSP syntax for variable data and inline
Java code.

●

4.2.2.3.7.2.3a: Example: JSP syntax: <tsx:dbquery> tag syntax
In the following example, a database is queried for data about employees in a specified department. The department is specified using the
<tsx:getProperty> to embed a variable data field. The value of the field is based on user input.

<tsx:dbquery id="empqs" connection="conn" >select * from Employee where WORKDEPT='<tsx:getProperty
name="request" property=request.getParameter("WORKDEPT") />'</tsx:dbquery>

4.2.2.3.7.2.4: JSP syntax: <tsx:dbmodify> tag syntax
<%-- Any valid database update commands can be placed within the DBMODIFY tag. --><%-- Any other
syntax, including HTML comments, are not valid. --><tsx:dbmodify
connection="connection_id"></tsx:dbmodify>

where:

connection

The identifier of a <DBCONNECT> tag in this JSP file. The <DBCONNECT> tag provides the database URL, driver name, and
(optionally) the user ID and password for the connection.

●

Database commands

Valid database commands. Refer to your database documentation for details

●

4.2.2.3.7.2.4a: Example: JSP syntax: <tsx:dbmodify> tag syntax
In the following example, a new employee record is added to a database. The values of the fields are based on user input from this
JSP and referenced in the database commands using <tsx:getProperty>.

<tsx:dbmodify connection="conn" >insert into EMPLOYEE
(EMPNO,FIRSTNME,MIDINIT,LASTNAME,WORKDEPT,EDLEVEL)values('<tsx:getProperty name="request"
property=request.getParameter("EMPNO") />','<tsx:getProperty name="request"
property=request.getParameter("FIRSTNME") />','<tsx:getProperty name="request"
property=request.getParameter("MIDINIT") />','<tsx:getProperty name="request"
property=request.getParameter("LASTNAME") />','<tsx:getProperty name="request"
property=request.getParameter("WORKDEPT") />',<tsx:getProperty name="request"
property=request.getParameter("EDLEVEL") />)</tsx:dbmodify>

4.2.2.3.7.2.5a: Example: JSP syntax: <tsx:repeat> and
<tsx:getProperty> tags
<tsx:repeat><tr> <td><tsx:getProperty name="empqs" property="EMPNO" /> <tsx:getProperty
name="empqs" property="FIRSTNME" /> <tsx:getProperty name="empqs" property="WORKDEPT" />
<tsx:getProperty name="empqs" property="EDLEVEL" /> </td></tr></tsx:repeat>

4.2.2.3.8: IBM extensions to JSP .91 syntax
Refer to the Sun JSP .91 specification for the base JavaServer Pages (JSP)APIs. IBM WebSphere Application
Server provides several extensions to the baseAPIs.

For JSP .91, the extensions belong to these categories:

Extension Use

Syntax for variable data
Put variable fields in JSP files and have servlets and JavaBeans dynamically
replace the variables with values from a database when the JSP output is returned
to the browser.

Syntax for database access
Add a database connection to a Web page and then use that connection to query or
update the database. The user ID and password for the database connection can be
provided by the user at request time, or can be hardcoded within the JSP file.

Scope of variables: Because the values specified by syntax apply only to the JSP file in which the syntax is
embedded, identifiers and other tag data can be accessed only within the page.

See the Related information for syntax details.

4.2.2.3.8.1: JSP .91 syntax: Tags for variable data
The variable data syntax enables you to put variable fields on your HTML page and have your servlets and
JavaBeans dynamically replace the variables with values from a database when the JSP output is returned to the
browser.

The table summarizes the tags. Click a tag to link to its syntax description.

Goal Tag Details
Embed variables in
a JSP file

<INSERT> This is the base tag for specifyingvariable fields.

Repeating a block
of HTML tagging
that contains the
<INSERT> tags and
the HTML tags for
formatting content

<REPEAT>

Use the <REPEAT> tag to iterate over a database query results set. The
<REPEAT> tag iterates from the start value to the end value until one of
the following conditions is met:

The end value is reached.●

An ArrayIndexOutofBoundsException is thrown.●

The output of a <REPEAT> block is buffered until the block completes. If
an exception is thrown before a block completes, no output is written for
that block.

The above tags are designed to pass entact through HTML authoringtools. Each tag has a corresponding end
tag. Each tag iscase-insensitive, but some of the tag attributes are case-sensitive.

4.2.2.3.8.1.1: JSP .91 syntax: <INSERT> tag syntax
<insert requestparm=pvalue requestattr=avalue bean=name
property=property_name(optional_index).subproperty_name(optional_index)
default=value_when_null></insert>

where:

requestparm

The parameter to access within the request object. This attributeis case-sensitive and cannot be used with
the bean and propertyattributes.

●

requestattr

The attribute to access within the request object. The attributewould have been set using the setAttribute
method. This attribute iscase-sensitive and cannot be used with the bean and propertyattributes.

●

bean

The name of the JavaBean declared by a <BEAN> tag within the JSPfile. The value of this attribute is
case-sensitive.

When the bean attribute is specified but the property attribute is notspecified, the entire bean is used in
the substitution. For example, ifthe bean is type String and the property is not specified, the value of
thestring is substituted.

●

property

The property of the bean to access for substitution. The value ofthe attribute is case-sensitive and is the
locale-independent name of theproperty. This attribute cannot be used with the requestparm
andrequestattr attributes.

●

default

An optional string to display when the value of the bean property isnull. If the string contains more than
one word, the string must beenclosed within a pair of double quotes (such as "HelpDesk number").The
value of this attribute is case-sensitive. If a value is notspecified, an empty string is substituted when the
value of the property isnull.

●

Use the alternate syntax instead if you need to embed the INSERT tag withinanother HTML tag.

4.2.2.3.8.1.1a: JSP .91 syntax: Alternate syntax for the
<INSERT> tag
The HTML standard does not permit embedding HTML tags within HTML tags. Consequently, you cannot
embed the <INSERT> tag within another HTML tag, for example, the anchor tag (<A>). Instead, use the
alternate syntax.

To use the alternate syntax:

Use the <INSERT> and </INSERT> to enclose the HTML tag inwhich substitution is to take place.1.

Specify the bean and property attributes:

To specify the bean and property attributes, use the form:

$(bean=b property=p default=d)

where b, p, and d are values as described forthe <INSERT> tag.

❍

To specify the requestparm attribute, use the form

$(requestparm=r default=d)

where r and d are values as described for the <INSERT> tag.

❍

To specify the requestattr attribute, use the form

$(requestattr=r default=d)

where r and d are values as described for the <INSERT> tag.

❍

2.

4.2.2.3.8.1.1b: Example: JSP .91 syntax: INSERT tag syntax

Regular syntax

<insert bean=userProfile property=username></insert><insert requestparm=company default="IBM
Corporation"></insert><insert requestattr=ceo default="Company CEO"></insert><insert
bean=userProfile property=lastconnectiondate.month></insert>

In most cases, the value of the property attribute will be just theproperty name. However, you access a property of a property(sub-property) by
specifying the full form of the property attribute.The full form also gives you the option to specify an index for indexedproperties. The optional
index can be a constant (such as 2) or anindex like the one described in <REPEAT> tag. Some examples of using the full form of the property
attribute:

<insert bean=staffQuery property=address(currentAddressIndex)></insert><insert bean=shoppingCart
property=items(4).price></insert><insert bean=fooBean property=foo(2).bat(3).boo.far></insert>

Alternate syntax

<insert> </insert> <insert> <a
href="http://www.myserver.com/map/showmap.cgi?country=$(requestparm=country
default=usa)&city$(requestparm=city default="Research Triangle Park") &email=$(bean=userInfo
property=email)>Show map of city</insert>

4.2.2.3.8.1.2: JSP .91 syntax: <REPEAT> tag syntax
<repeat index=name start=starting_index end=ending_index></repeat>

where:

index

An optional name used to identify the index of this repeat block.The value is case-sensitive and its scope
is the JSP file.

●

start

An optional starting index value for this repeat block. The defaultis 0.

●

end

An optional ending index value for this repeat block. The maximumvalue is 2,147,483,647. If the value
of the end attribute is less thanthe value of the start attribute, the end attribute is ignored.

●

4.2.2.3.8.1.2a: JSP .91 syntax: <REPEAT> tag results set and the associated bean
The <REPEAT> tag iterates over a results set. The results set is contained within a JavaBean. The bean can be a static bean (for example, a bean created by using the IBM WebSphere Studio database wizard) or a dynamically generated bean (for example, a bean generated by the<DBQUERY> tag). The following
table is a graphic representation of the contents of a bean, myBean:

 col1 col2 col3

row0 friends Romans countrymen

row1 bacon lettuce tomato

row2 May June July

Some observations about the bean:

The column names in the database table become the property names of the bean. The section <DBQUERY> tag describes a technique for mapping the column names to different property names.●

The bean properties are indexed. For example, myBean.get(Col1(row2)) returns May.●

The query results are in the rows. The <REPEAT> tag iterates over the rows (beginning at the start row).●

The following table compares using the <REPEAT> tag to iterate over static bean versus a dynamically generated bean:

Static Bean Example <DBQUERY> Bean Example
myBean.class

// Code to get a connection// Code to get the data Select * from myTable;// Code to close the connection

JSP file

<repeat index=abc> <insert bean="myBean" property="col1(abc)"> </insert></repeat>

The bean (myBean.class) is a static bean.●

The method to access the bean properties is myBean.get(property(index)).●

You can omit the property index, in which case the index of the enclosing <REPEAT> tag is used. You can also omit the index on the
<REPEAT> tag.

●

The <REPEAT> tag iterates over the bean properties row by row, beginning with the start row.●

JSP file

<dbconnect id="conn"userid="alice"passwd="test"url="jdbc:db2:sample"driver="COM.ibm.db2.jdbc.app.DB2Driver"</dbconnect><dbquery
id="dynamic" connection="conn" > Select * from myTable;</dbquery><repeat index=abc> <insert bean="dynamic"
property="col1(abc)"> </insert></repeat>

The bean (dynamic) is generated by the <DBQUERY> tag and does not exist until the tag is executed.●

The method to access the bean properties is dynamic.getValue("property", index).●

You can omit the property index, in which case the index of the enclosing <REPEAT> tag is used. You can also omit the index on the <REPEAT> tag.●

The <REPEAT> tag iterates over the bean properties row by row, beginning with the start row.●

Implicit and explicit indexing

Examples 1, 2, and 3 show how to use the <REPEAT> tag. Theexamples produce the same output if all indexed properties have 300 or fewerelements. If there are more than 300 elements, Examples 1 and 2 willdisplay all elements, while Example 3 will show only the first 300elements.

Example 1 shows implicit indexing with the default start and default endindex. The bean with the smallest number of indexed properties restricts the number of times the loop will repeat.

<table><repeat> <tr><td><insert bean=serviceLocationsQuery property=city></insert></tr></td> <tr><td><insert
bean=serviceLocationsQuery property=address></insert></tr></td> <tr><td><insert bean=serviceLocationsQuery
property=telephone></insert></tr></td></repeat></table>

Example 2 shows indexing, starting index, and ending index:

<table><repeat index=myIndex start=0 end=2147483647> <tr><td><insert bean=serviceLocationsQuery
property=city(myIndex)></insert></tr></td> <tr><td><insert bean=serviceLocationsQuery
property=address(myIndex)></insert></tr></td> <tr><td><insert bean=serviceLocationsQuery
property=telephone(myIndex)></insert></tr></td></repeat></table>

The JSP compiler for the Application Server Version 3 is designed to prevent the ArrayIndexOutofBoundsException with explicit indexing. Consequently, you do not need to place JSP variable data syntax before the <INSERT> tag to check the validity of the index.

Example 3 shows explicit indexing and ending index with implicit startingindex. Although the index attribute is specified, the indexed propertycity can still be implicitly indexed because the (myIndex) is not required.

<table><repeat index=myIndex end=299> <tr><td><insert bean=serviceLocationsQuery property=city></insert></tr></td>
<tr><td><insert bean=serviceLocationsQuery property=address(myIndex)></insert></tr></td> <tr><td><insert
bean=serviceLocationsQuery property=telephone(myIndex)></insert></tr></td></repeat></table>

Nesting <REPEAT> tags

You can nest <REPEAT> blocks. Each block is separatelyindexed. This capability is useful for interleaving properties on twobeans, or properties that have sub-properties. In the example, two<REPEAT> blocks are nested to display the list of songs on each compactdisc in the user's shopping cart.

<repeat index=cdindex> <h1><insert bean=shoppingCart property=cds.title></insert></h1> <table> <repeat> <tr><td><insert
bean=shoppingCart property=cds(cdindex).playlist></insert> </td></tr> </table> </repeat></repeat>

4.2.2.3.8.2: JSP .91 syntax: JSP tags for database
access
The Application Server Version 3.5 extends JSP 0.91 support by providing a set of tags for database access.
These HTML-like tags make it simple to add a database connection to a Web page and then use that connection
to query or update the database. The user ID and password for the database connection can be provided by the
user at request time or hardcoded within the JSP file.

The table summarizes the tags. Click a tag to link to its syntax description.

Goal Tag Details and examples

Specify information needed to
make a connection to a JDBC
or an ODBC database

<DBCONNECT>

The <DBCONNECT> tag does not establish
the connection. Instead, the <DBQUERY> and
<DBMODIFY> tags are used to reference a
<DBCONNECT> tag in the same JSP file and
establish the connection.

When the JSP file is compiled into a servlet,
the Java processor adds the Java coding for the
<DBCONNECT> tag to the servlet's service()
method, which means a new database
connection is created for each request for the
JSP file.

Examples:
Employee.jsp example

Avoid hard coding the user ID
and password in the
<DBCONNECT> tag

<USERID> and <PASSWD>

Use the <USERID> and <PASSWD> tags to
accept user input for the values and then add
that data to the request object where it can be
accessed by a JSP file (such as the
Employee.jsp example) that requests the
database connection.

The <USERID> and <PASSWD> tags must be
used within a <DBCONNECT> tag.

Examples:
None

Establish a connection to a
database, submit database
queries, and return the results
set.

<DBQUERY>

The <DBQUERY> tag:

References a <DBCONNECT> tag in
the same JSP file and uses the
information provided by that tag to
determine the database URL and
driver. The user ID and password are
also obtained from the
<DBCONNECT> tag if those values
are provided in the <DBCONNECT>
tag.

1.

Establishes a new connection2.

Retrieves and caches data in the results
object

3.

Closes the connection (releases the4.

http://localhost/v355makePDF/advanced/nav_jspnav/Employee.jsp.html

connection resource)

Examples:
Basic example
Employee.jsp
EmployeeRepeatResults.jsp

Establish a connection to a
database and then add records
to a database table.

<DBMODIFY>

The <DBMODIFY> tag:

References a <DBCONNECT> tag in
the same JSP file and uses the
information provided by that tag to
determine the database URL and
driver. The user ID and password are
also obtained from the
<DBCONNECT> tag if those values
are provided in the <DBCONNECT>
tag.

1.

Establishes a new connection2.

Updates a table in the database3.

Closes the connection (releases the
connection resource)

4.

Examples:
Basic example
EmployeeRepeatResults.jsp

Display query results
<REPEAT> and <INSERT>
tags

The <REPEAT> tag loops through each of the
rows in the query results.

The <INSERT> tag uses the query results
object (for the <DBQUERY> tag whose
identifier is specified by the <INSERT> bean
attribute) and the appropriate column name
(specified by the <INSERT> property
attribute) to retrieve the value.

Examples:
Basic example

http://localhost/v355makePDF/advanced/nav_jspnav/Employee.jsp.html
http://localhost/v355makePDF/advanced/nav_jspnav/EmployeeRepeatResults.jsp.html
http://localhost/v355makePDF/advanced/nav_jspnav/EmployeeRepeatResults.jsp.html

4.2.2.3.8.2.1: JSP .91 syntax: <DBCONNECT> tag syntax
<dbconnect id="connection_id" userid="db_user" passwd="user_password"
url="jdbc:subprotocol:database" driver="database_driver_name" jndiname="JNDI_context/logical_name"
xmlref="configuration_file"></dbconnect>

where:

id

A required identifier for this tag. The scope is the JSP file. This identifier is referenced by the connection attribute of the <DBQUERY> tag.

●

userid

An optional attribute that specifies a valid user ID for the database to be accessed. If specified, this attribute and its value are added to the
request object.

Although the userid attribute is optional, the userid must be provided. See <USERID> and <PASSWD> for an alternative to hardcoding this
information in the JSP file.

●

passwd

An optional attribute that specifies the user password for the userid. (This attribute is not optional if the userid attribute is specified.) If
specified, this attribute and its value are added to the request object.

Although the passwd attribute is optional, the password must be provided. See <USERID> and <PASSWD> for an alternative to hardcoding
this attribute in the JSP file.

●

url and driver

To establish a database connection, the URL and driver must be provided. If these attributes are not specified in the <DBCONNECT> tag, the
xmlref attribute or the jndiname attribute must be specified.

The Application Server Version 3 supports connection to JDBC databases and ODBC databases. When connecting to an ODBC database, you
can use the Sun JDBC-to-ODBC bridge driver included in the Java Development Kit (JDK) or another vendor's ODBC driver.

The url attribute specifies the location of the database. The driver attribute specifies the name of the driver to be used to establish the database
connection.

For a connection to a JDBC database, the URL consists of the following colon-separated elements: jdbc, the sub-protocol name, and the name
of the database table to be accessed. An example for a connection to the Sample database included with IBM DB2 is:

url="jdbc:db2:sample"driver="COM.ibm.db2.jdbc.app.DB2Driver"

If the database is an ODBC database, you can use an ODBC driver or the the Sun JDBC-to-ODBC bridge included with the JDK. If you want
to use an ODBC driver, refer to the driver documentation for instructions on specifying the database location (the url attribute) and the driver
name.

In the case of the bridge, the url syntax is jdbc:odbc:database. An example is:

url="jdbc:odbc:autos"driver="sun.jdbc.odbc.JdbcOdbcDriver"

 To enable the Application Server to access the ODBC database, use the ODBC Data Source Administrator to add the
ODBC data source to the System DSN configuration. To access the ODBC Administrator, click the ODBC icon on the
Windows NT Control Panel.

 If your JSP accesses a different JDBC or ODBC database than the one the Application Server uses for its repository,
ensure that you add the JDBC or ODBC driver for the other database to the Application Server's classpath.

●

jndiname

An optional attribute that identifies a valid context in the Application Server JNDI naming context and the logical name of the data source in
that context. The context is configured by the Web administrator using an administrative client such as the WebSphere Administrative
Console.

If the jndiname is specified, the JSP processor ignores the driver and url attributes on the <DBCONNECT> tag or in the file specified by the
xmlref tag.

●

xmlref

A file (in XML format) that contains the URL, driver, user ID, password information needed for a connection. This mechanism provides Web
administrators an alternative method for specifying the user ID and password. It is an alternative to hardcoding the information in a
<DBCONNECT> tag or reading the information from the request object parameters. This is useful when third-party vendors develop your
JSP files and when you need to make quick changes or test an application with a different data source.

When the JSP compiler processes the <DBCONNECT> tag, it reads all of the specified tag attributes. If any of the required attributes are
missing, the compiler checks for an xmlref attribute. If the attribute is specified, the compiler reads the configuration file.

The xmlref takes precedence over the <DBCONNECT> tag. For example, if the <DBCONNECT> tag and the xmlref file include values for
the URL and the the driver, the values in the xmlref file are used.

●

The configuration file can have any filename and extension that is valid for the operating system. Place the file in the same directory as the
JSP that contains the referring <DBCONNECT> tag. An example of a configuration file is:

<?xml version="1.0" ?><db-info> <url>jdbc:odbc:autos</url> <user-id>smith</user-id>
<dbDriver>sun.jdbc.odbc.JdbcOdbcDriver</dbDriver> <password>v598m</password>
<jndiName>jdbc/demo/sample</jndiName></db-info>

All of the elements shown in the example XML file need to be specified. However, an empty element (such as <url></url>) is valid.

4.2.2.3.8.2.2: JSP .91 syntax: <USERID> and <PASSWD> tag syntax
<dbconnect id="connection_id" <userid><insert
requestparm="userid"></insert></userid> <passwd><insert requestparm="passwd"></insert></passwd>
url="protocol:database_name:database_table" driver="JDBC_driver_name"> </dbconnect>

where:

<INSERT>

This tag is a JSP tag for including variable data. See JSP tags for variable data.

●

userid tag

This is a reference to the request parameter that contains the userid. The parameter must have already been added to the request object that
was passed to this JSP file. The attribute and its value can be set in the request object using an HTML form or a URL query string to pass the
user-specified request parameters.

See the Login.jsp and the Employee.jsp examples for an illustration of how to set the USERID and PASSWD using parameters in the request
object. The request parameters are set using an HTML form (Login.jsp). In the Employee.jsp, the values of the parameters are passed as
hidden form values to the EmployeeRepeatResults.jsp.

●

passwd tag

This is a reference to the request parameter that contains the password. The parameter must have already been added to the request object that
was passed to this JSP. The attribute and its value can be set in the request object using an HTML form or a URL query string to pass
user-specified values.

●

http://localhost/v355makePDF/advanced/nav_jspnav/Login.jsp.html
http://localhost/v355makePDF/advanced/nav_jspnav/Employee.jsp.html

4.2.2.3.8.2.3: JSP .91 syntax: <DBQUERY> tag
<!-- SELECT commands and (optional) JSP syntax can be placed within the DBQUERY tag. --><!-- Any
other syntax, including HTML comments, are not valid. --><dbquery id="query_id"
connection="connection_id" limit="value" ></dbquery>

where:

id

The identifier of this query. The scope is the JSP file. This identifier is used to reference the query, for example, from the <INSERT>
tag to display query results.

The id becomes the name of a bean that contains the results set. The bean properties are dynamic and the property names are the names
of the columns in the results set. If you want different column names, use the SQL keyword for specifying an alias on the SELECT
command. In the following example, the database table contains columns named FNAME and LNAME, but the SELECT statement
uses the AS keyword to map those column names to FirstName and LastName in the results set:

Select FNAME, LNAME AS FirstName, LastName from Employee where FNAME='Jim'

●

connection

The identifier of a <DBCONNECT> tag in this JSP file. That <DBCONNECT> tag provides the database URL, driver name, and
(optionally) the user ID and password for the connection.

●

limit

An optional attribute that constrains the maximum number of records returned by a query. If the attribute is not specified, no limit is
used and the effective limit is determined by the number of records and the system caching capability.

●

SELECT command and JSP syntax

Because the <DBQUERY> tag must return a results set, the only valid SQL command is SELECT. Refer to your database
documentation for information about the SELECT command. See other sections of this document for a description of JSP syntax for
variable data and inline Java code.

●

4.2.2.3.8.2.3a: Example: JSP .91 syntax: <DBQUERY> tag
syntax
In the following example, a database is queried for data about employees in a specified department. The department is
specified using the <INSERT> tag to embed a variable data field. The value of that field is based on user input.

<dbquery id="empqs" connection="conn" >select * from Employee where WORKDEPT='<INSERT
requestparm="WORKDEPT"></INSERT>'</dbquery>

4.2.2.3.8.2.4: JSP .91 syntax: <DBMODIFY> tag syntax
<!-- Any valid database update commands can be placed within the DBMODIFY tag. --><!-- Any other
syntax, including HTML comments, are not valid. --><dbmodify connection="connection_id" ></dbmodify>

where:

connection

The identifier of a <DBCONNECT> tag in this JSP file. That <DBCONNECT> tag provides the database URL, driver name, and (optionally)
the user ID and password for the connection.

●

Database commands

Refer to your database documentation for valid database commands.

●

In the following example, a new employee record is added to a database. The values of the fields are based on user input from this JSP and
referenced in the database commands using <INSERT> tags.

<dbmodify connection="conn" >insert into EMPLOYEE
(EMPNO,FIRSTNME,MIDINIT,LASTNAME,WORKDEPT,EDLEVEL)values ('<INSERT
requestparm="EMPNO"></INSERT>', '<INSERT requestparm="FIRSTNME"></INSERT>', '<INSERT
requestparm="MIDINIT"></INSERT>', '<INSERT requestparm="LASTNAME"></INSERT>', '<INSERT
requestparm="WORKDEPT"></INSERT>', <INSERT requestparm="EDLEVEL"></INSERT>)</dbmodify>

The EmployeeRepeatResults.jsp example illustrates this tag.

Displaying query results
To display the query results, use the <REPEAT> and <INSERT> tags. The <REPEAT> tag loops through each of the rows in the query results. The
<INSERT> tag uses the query results object (for the <DBQUERY> tag whose identifier is specified by the <INSERT> bean attribute) and the
appropriate column name (specified by the <INSERT> property attribute) to retrieve the value. An example is:

<repeat><tr> <td><INSERT bean="empqs" property="EMPNO"></INSERT> <INSERT bean="empqs"
property="FIRSTNME"></INSERT> <INSERT bean="empqs" property="WORKDEPT"></INSERT> <INSERT
bean="empqs" property="EDLEVEL"></INSERT> </td></tr></repeat>

JSP 0.91 APIs and migration
Two interfaces support the JSP 0.91 technology. TheseAPIs provide a way to separate content generation (business logic) from thepresentation of the
content (HTML formatting). This separation enablesservlets to generate content and store the content (for example, in a bean) inthe request object.
The servlet that generated the context generates aresponse by passing the request object to a JSP file that contains the HTMLformatting. The
<BEAN> tag provides access to the businesslogic.

The interfaces that supported JSP 0.91 for the Application Server Version 3 are:

javax.servlet.http.HttpServletRequest.setAttribute()

Supports setting attributes in the request object. For the Application Server Version 2, this interface was
com.sun.server.http.HttpServiceRequest.setAttribute().

●

javax.servlet.http.RequestDispatcher.forward()

Supports forwarding a response object to another servlet or JSP. For the Application Server Version 2, this interface was
com.sun.server.http.HttpServiceResponse.callPage().

●

http://localhost/v355makePDF/advanced/nav_jspnav/EmployeeRepeatResults.jsp.html

4.2.2.3.8.2.4a: Example: JSP .91 syntax: <DBMODIFY> tag syntax
In the following example, a new employee record is added to a database. The values of the fields are based on user input from this JSP and
referenced in the database commands using <INSERT> tags.

<dbmodify connection="conn" >insert into EMPLOYEE
(EMPNO,FIRSTNME,MIDINIT,LASTNAME,WORKDEPT,EDLEVEL)values ('<INSERT
requestparm="EMPNO"></INSERT>', '<INSERT requestparm="FIRSTNME"></INSERT>', '<INSERT
requestparm="MIDINIT"></INSERT>', '<INSERT requestparm="LASTNAME"></INSERT>', '<INSERT
requestparm="WORKDEPT"></INSERT>', <INSERT requestparm="EDLEVEL"></INSERT>)</dbmodify>

4.2.2.3.8.2.5a: Example: JSP .91 syntax: <INSERT> and <REPEAT>
tags
<repeat><tr> <td><INSERT bean="empqs" property="EMPNO"></INSERT> <INSERT bean="empqs"
property="FIRSTNME"></INSERT> <INSERT bean="empqs" property="WORKDEPT"></INSERT> <INSERT
bean="empqs" property="EDLEVEL"></INSERT> </td></tr></repeat>

4.2.2.3a: JSP examples
The example JSP application accesses the Sample database that you can install with IBM DB2. The example
application includes:

JSPLogin.jsp An interface for logging in to the application

JSPEmployee.jsp A dialog for querying and updating database records

JSPEmployeeRepeatResults.jsp A dialog for displaying update confirmations and query results

JSP code example - a login

<HTML><HEAD><TITLE>JSP: Login into the Employee Records
Center</TITLE></HEAD><BODY><H1><CENTER>Login into the Employee Records Center</CENTER></H1><FORM
NAME="LoginForm" ACTION="employee.jsp" METHOD="post"
ENCODE="application/x-www-form-urlencoded"><P>To login to the Employee Records Center, submit a
validuserid and password to access the Sample database installed under IBM DB2.</P><TABLE><TR
VALIGN=TOP ALIGN=LEFT><TD><I>Userid:</I></TD><TD><INPUT TYPE="text" NAME="USERID"
VALUE="userid">
</TD></TR><TR VALIGN=TOP ALIGN=LEFT><TD><I>Password:</I></TD><TD><INPUT
TYPE="password" NAME="PASSWD" VALUE="password"></TD></TR></TABLE><INPUT TYPE="submit" NAME="Submit"
VALUE="LOGIN"></FORM><HR></BODY></HTML>

JSP code example - view employee records

<HTML><HEAD><TITLE>JSP: Add and View Employee Records</TITLE></HEAD><BODY><H1><CENTER>Add and View
Employee Records</CENTER></H1><% String userID = request.getParameter("USERID"); %><% String
passWord = request.getParameter("PASSWD"); %><%-- Get a connection to the Sample DB2 database using
parameters from Login.jsp --%><tsx:dbconnect id="conn" url="jdbc:db2:sample"
driver="COM.ibm.db2.jdbc.app.DB2Driver"><tsx:userid><%=userID%></tsx:userid><tsx:passwd><%=passWord%></tsx:passwd></tsx:dbconnect><FORM
NAME="EmployeeForm" ACTION="employeeRepeatResults.jsp" METHOD="post"
ENCODE="application/x-www-form-urlencoded"><h2>Add Employee Record</h2><P>To add a new employee
record to the database, submit the following data:</P><TABLE><TR VALIGN="TOP"
ALIGN="LEFT"><TD><I>Employee Number:
(1 to 6 characters)</I></TD><TD> <INPUT TYPE="text"
NAME="EMPNO"> </TD></TR><TR VALIGN="TOP" ALIGN="LEFT"><TD><I>First name:</I></TD><TD><INPUT
TYPE="text" NAME="FIRSTNME" VALUE="First Name">
</TD></TR><TR VALIGN="TOP"
ALIGN="LEFT"><TD><I>Middle Initial:</I></TD><TD><INPUT TYPE="text" NAME="MIDINIT"
VALUE="M">
</TD></TR><TR VALIGN="TOP" ALIGN="LEFT"><TD><I>Last Name: </I></TD><TD><INPUT
TYPE="text" NAME="LASTNAME" VALUE="Last Name">
</TD></TR><TR VALIGN="TOP" ALIGN="LEFT"><TD><%--
Query the database to get the list of departments --%><tsx:dbquery id="qs" connection="conn" >
select * from DEPARTMENT </tsx:dbquery><I>Department:</I></TD><TD><SELECT NAME="WORKDEPT"
><tsx:repeat> <OPTION VALUE= "<tsx:getProperty name="qs" property="DEPTNO" />" ><tsx:getProperty
name="qs" property="DEPTNAME" /></tsx:repeat></SELECT></TD></TR><TR VALIGN="TOP"
ALIGN="LEFT"><TD><I>Education:</I></TD><TD><SELECT NAME="EDLEVEL"><OPTION VALUE="1"
SELECTED>BS<OPTION VALUE="2">MS<OPTION VALUE="3">PhD</SELECT></TD></TR></TABLE><INPUT TYPE="submit"
NAME="Submit" VALUE="Update"><INPUT TYPE="hidden" NAME="USERID" VALUE="<%=userID%>"><INPUT
TYPE="hidden" NAME="PASSWD" VALUE="<%=passWord%>"></FORM><HR><FORM NAME="EmployeeForm"
ACTION="employeeRepeatResults.jsp" METHOD="post" ENCODE="application/x-www-form-urlencoded"><h2>View
Employees by Department</h2><P>To view records for employees by department, select the departmentand
submit the query:</P><TABLE><TR VALIGN="TOP" ALIGN="LEFT"><TD><I>Department:</I></TD><TD><%--
Use the bean generated by earlier QUERY tag --%><SELECT NAME="WORKDEPT" ><tsx:repeat> <OPTION VALUE=
"<tsx:getProperty name="qs" property="DEPTNO" />" ><tsx:getProperty name="qs" property="DEPTNAME"
/></tsx:repeat></SELECT></TD></TR></TABLE><INPUT TYPE="submit" NAME="Submit" VALUE="Query"><INPUT
TYPE="hidden" NAME="USERID" VALUE="<%=userID%>"><INPUT TYPE="hidden" NAME="PASSWD"
VALUE="<%=passWord%>"></FORM><HR></BODY></HTML>

JSP code example - EmployeeRepeatResults

<HTML><HEAD><TITLE>JSP Employee Results</TITLE></HEAD><H1><CENTER>EMPLOYEE RESULTS</CENTER></H1><BODY><% String userID =
request.getParameter("USERID"); %><% String passWord = request.getParameter("PASSWD"); %><% String empno =
request.getParameter("EMPNO"); %><% String firstnme = request.getParameter("FIRSTNME"); %><% String midinit =
request.getParameter("MIDINIT"); %><% String lastname = request.getParameter("LASTNAME"); %><% String workdept =
request.getParameter("WORKDEPT"); %><% String edlevel = request.getParameter("EDLEVEL"); %><!-- Get a connection to the local
DB2 database using parameters from login.jsp --><tsx:dbconnect id="conn" url="jdbc:db2:sample"
driver="COM.ibm.db2.jdbc.app.DB2Driver"><tsx:userid><%=userID%></tsx:userid><tsx:passwd><%=passWord%></tsx:passwd></tsx:dbconnect><%
if ((request.getParameter("Submit")).equals("Update")) { %><tsx:dbmodify connection="conn" > INSERT INTO EMPLOYEE
(EMPNO,FIRSTNME,MIDINIT,LASTNAME,WORKDEPT,EDLEVEL) VALUES ('<%=empno%>', '<%=firstnme%>', '<%=midinit%>',
'<%=lastname%>', '<%=workdept%>', <%=edlevel%>) </tsx:dbmodify> UPDATE SUCCESSFUL

<tsx:dbquery
id="qs" connection="conn" > select * from Employee where WORKDEPT= '<%=workdept%>'</tsx:dbquery><CENTER><U>EMPLOYEE
LIST</U></CENTER>

<HR><TABLE><TR
VALIGN=BOTTOM><TD>EMPLOYEE
<U>NUMBER</U></TD><TD><U>NAME</U></TD><TD><U>DEPARTMENT</U></TD>
<TD><U>EDUCATION</U></TD></TR><tsx:repeat><TR><TD><I><tsx:getProperty name="qs" property="EMPNO"
/></I></TD><TD><I><tsx:getProperty name="qs" property="FIRSTNME" /></I></TD><TD><I><tsx:getProperty name="qs"
property="WORKDEPT" /></I></TD><TD><I><tsx:getProperty name="qs" property="EDLEVEL" /></I></TD></TR></tsx:repeat>
</TABLE><HR>
<% } %><% if ((request.getParameter("Submit")).equals("Query")) { %><tsx:dbquery id="qs2" connection="conn" >
select * from Employee where WORKDEPT= '<%=workdept%>'</tsx:dbquery><CENTER><U>EMPLOYEE
LIST</U></CENTER>

<HR><TABLE><TR><TR
VALIGN=BOTTOM><TD>EMPLOYEE
<U>NUMBER</U></TD><TD><U>NAME</U></TD><TD><U>DEPARTMENT</U></TD><TD><U>EDUCATION</U></TD></TR><tsx:repeat><TR><TD><I><tsx:getProperty
name="qs2" property="EMPNO" /></I></TD><TD><I><tsx:getProperty name="qs2" property="FIRSTNME"
/></I></TD><TD><I><tsx:getProperty name="qs2" property="WORKDEPT" /></I></TD><TD><I><tsx:getProperty name="qs2"
property="EDLEVEL" /></I></TD></TR></tsx:repeat> </TABLE><HR>
<% } %></BODY></HTML>

4.2.2.3b: JSP .91 examples
The example JSP application accesses the Sample database that you can install with IBM DB2. The example
application includes:

(Login.jsp) An interface for logging in to the application

(Employee.jsp) A dialog for querying and updating database records

(EmployeeRepeatResults.jsp) A dialog for displaying update confirmations and query results

http://localhost/v355makePDF/advanced/nav_jspnav/Login.jsp.html
http://localhost/v355makePDF/advanced/nav_jspnav/Employee.jsp.html
http://localhost/v355makePDF/advanced/nav_jspnav/EmployeeRepeatResults.jsp.html

6.6.7: Administering servlet engines (overview)
A servlet engine configuration provides information about the applicationserver component that handles servlet
requests forwarded bythe Web server. The administratorspecifies servlet engine properties including:

Application server on which the servlet engine runs●

Number and type of connections between the Web server and servlet engine●

Port on which the servlet engine listens●

6.6.7.0: Servlet engine properties
Application Server

Specifies the application server with which to associate the servlet engine.

Current State

Indicates the state the servlet engine is currently in. The next time the servlet engine is started, it will try
to change to its desired state setting.

Desired state

Indicates the state the servlet engine should have the next time it is started.

Max Connections

Specifies the maximum number of concurrent resource requests to allow.

Max Connections in use

Specifies the Max Connections value currently in use.

Port

Specifies the port the servlet engine will listen on for servlet requests from the Web server.

Port in use

Specifies Port value currently in use.

Queue Type (Transport Type)

Specifies the connectivity type for communication between Web servers and application servers to
obtain servlet requests:

OSE
For routing requests locally.

It is also for using remote OSE for Advanced Edition.

HTTP Not recommended at this time

None For use with thin servlet redirector for Advanced Edition

If you specify OSE, specify these properties related to Queue Type.

Clone Index

Specifies a unique numerical identifier for this servlet engine instance.If there are multiple clones
of a servlet engine, each clone instance will havea unique clone index value.

Native Log File

Specifies the log file that will be considered "standard out" for tracingand debugging of the
native code of the product. Specify either:

A file name, with product_installation_root/logs assumed to be the directory■

A fully qualified path to a log file■

Queue Name

Specifies the name of the queue for holding requests tobe processed by the servlet engine.

Select Log File Mask

Specifies one or more levels of messages to log -- error, warning, informational, or trace.

Transport Type

Specifies the communication protocol type to use with the OSE transport:

Local pipes■

http://localhost/v355makePDF/advanced/nav_jspnav/root.html

INET sockets■

JAVA TCP/IP (not currently supported)■

See the servlet engine tuning section of the Tuning Guide for suggested values, typically based
on the operating system.

Queue Type in use

Indicates the queue type currently in use (see Queue Type description above).

Servlet Engine Mode

Specifies how servlets will be supported (in terms of how the specification levels are enforced).
Consider the implications carefully before changing this setting. See article 3.3.2a for a discussion and
details.

If you switch the servlet engine to full compliance mode, adjust the Servlet Web Path Lists of servlets
running in this servlet engine, to keep your Web applications from breaking. Add a /* to the end of each
Web path.

For example, if the path for a servlet is:

default_host/WebSphereSamples/servlet

then change it to:

default_host/WebSphereSamples/servlet/*

Servlet Engine Name

Specifies a servlet engine name. The name must be unique in the scope of theapplication server. In other
words, you can create two servlet engines with the samename as long as each servlet engine is
associated with a different applicationserver.

Start Time

Indicates the time at which the servlet engine was most recently started. A valueof "--" indicates the
servlet engine has not been started since the administrativeserver started.

http://localhost/v355makePDF/advanced/nav_jspnav/0901.html
http://localhost/v355makePDF/advanced/nav_jspnav/030302a.html
http://localhost/v355makePDF/advanced/nav_jspnav/06060900.html

6.6.7.1: Administering servlet engines with the Java
administrative console
This article extends article 6.6.7 (the overview of administering servlet engines) with information specific to the
Java console.

The table answers the most basic questions. See the Related informationfor links to detailed instructions and
resource properties.

Does the console provide full functionality for
administering this resource? Yes

How is this resource represented in the console tree
views?

The Type tree contains a Servlet Engines folder object.

The Topology tree can contain zero or more existing
servlet engines. Their names vary;they are supplied by
the administrator.

Use the View menu on the console menu bar to toggle
between tree views.

Any task wizards for manipulating this resource?
On the console menu bar:

Console -> Task -> Create a servlet engine

6.6.7.1.1: Configuring new servlet engines with the
Java administrative console
The product offers several ways to configure new servlet engines:

By clicking Console -> Tasks -> Create a servlet engine from theconsole menu bar.●

By clicking Create a servlet engine from the drop-down list on theWizards toolbar button.●

Using menus on resources in the Topology and Type trees(see Related information)●

The first two methods lead to the Create a servlet enginetask wizard, for which detailed help is provided here.

Follow the wizard instructions.

Specify a name by which to manage the servlet engine.❍

Specify the application server to contain the servlet engine.❍

Click Next to proceed.

1.

Specify servlet engine properties.2.

Click Finish.3.

6.6.7.3: Administering servlet engines with the Web
console
Use the Web console to edit the configurations of servlet engines, which are responsible for provided needed
servicesto running Web modules and their contained servlets and JSP files. Each application server runtime has
one logical servlet engine, which you can modify butnot create or remove.

Work with objects of this type by locating them in the tree on the left side of the console:

Click Tasks -> Create Objects -> Create Servlet Engine

When creating a servlet engine, you must specifyan existing application server to contain it. Existing servlet
engines and application servers in the administrative domain are displayed in the Resources section of the
navigation tree.

 Creations and changes made with this console are not appliedto the administrative domain until you
Commit them. Refer to section 6.6.0.3.5 for details.

6.6.7.4: Property files pertaining to servlet engines
The servlet engine properties are in file:

servlet_engine.properties●

This file is located in directory:

<WebSphere/Appserver>/properties

6.6.8: Administering Web applications (overview)
The servlets and JavaServer Pages (JSP) files in a Web application share a servletcontext, meaning they share
data and information about the execution environment,including a Web application classpath.

Approaches to configuring Web applications

There are two basic approaches to configuring Web applications. Theadministrator can configure a Web
application:

From the bottom up●

From the top down●

To configure a Web application from the bottom up, the administrator can first explicitlyconfigure the
individual servlets that will eventually comprise the Web applications.When configuring a servlet, the
administrator specifiesthe name and location of the servlet class file, and other information necessaryfor
enabling the administrator to manage the servlet.

The administrator can combine one or more explicitly-defined servlets and Web resources into an
Webapplication, allowing them to be managed as a logical unit (the Web application).

Because they are explicitly configured, the servlets can also be managedindividually. For example, the
administrator can unload a servlet from the Web application without causingthe rest of the application to
become unavailable to users.

The administrator can also configure a Web application from the top down. Thistechnique might be familiar to
an administrator who has used Web serverproducts or IBM WebSphere Application Server Version 2.

Instead ofexplicitly defining each component (servlet, Web page, and so on), the administratorspecifies the
directories in which he or she plans to place the components of each type.

In the simplest case, each Web application has one directory for servlets and anotherfor Web resources. Any
servlet placed in the designated servlet directory becomes partof the Web application, and similarly any Web
pages and JavaServer Pages (JSP) files arepicked up from the designated Web resource directory.

Because the servlets are not explicitly defined, they cannot be managed or monitoredindividually.

Web applications inside enterprise applications

A Web application can be part of an enterprise application (an "application" forshort). In the simplest case, an
enterprise application is simply a "wrapper" for aWeb application -- the files that comprise the application are
exactly the samefiles that comprise the Web application.

In such a case, why bother to add a Web application to an enterprise application?An enterprise application help
file discusses the benefits.

In a more complex case, an application might contain multiple Web applicationsand (in the case of IBM
WebSphere Application Server Advanced Edition) some enterprise beans as well.

Configuring Web applications directly in WebSphere systems
administration

The administrator should understand a few main settings as he or she configuresWeb applications:

http://localhost/v355makePDF/advanced/nav_jspnav/060601.html

Classpath

Specifies where to find the servlets that belong to the application.

The classpath can specify a directory containing servlets, or can specify each servlet explicitly.

It can also specify the location of other files supporting the Web application.

●

Document root

Specifies where to find the Web pages and JSP files belonging to the Web application.

●

Web path

Combined with the virtual host, specifies what users will type in a Web browser to access the Web
application.

●

The administrator can also specify properties such as:

Servlet filtering parameters●

Affiliation with a virtual host●

Whether to reload servlets whose class files have changed●

Whether to temporarily suspend the Web application from use●

Servlet context attributes●

Whether to share context changes with clustered Web applications●

Classpath considerations

An important classpath-related setting to note is the Module Visibility. This application server setting impacts
the portability of applications and standalone modules from other WebSphere Application Server versions and
editions. If your existing module does not run as-is when you transfer it to Version 4.0, you might need to
reassemble an existing module or change the module visibilitysetting.

See the information on setting classpaths for a full discussion of classpath considerations. See the
applicationserver property reference for information about the module visibility setting.

Identifying a welcome page for the Web application

The default welcome page for your Web application is assumed to be named index.html. For example, if you
have an application with a Web path of:

/webapp/myapp

then the default page named index.html can be implicitly accessed using the following URL:

http://hostname/webapp/myapp

 Version 3.5.2 introduces a Welcome Files setting, as described by the Servlet 2.2 specification. See
the Web application properties for details.

 Converting WAR files

Version 3.5.2 (Fix Pack 2 applied to Version 3.5 base) introduces a new wayto introduce Web applications into
the WebSphere environment. The productnow consumes and converts WAR files into WebSphere

http://localhost/v355makePDF/advanced/nav_jspnav/060401.html
http://localhost/v355makePDF/advanced/nav_jspnav/06060300.html
http://localhost/v355makePDF/advanced/nav_jspnav/000802.html

configurations.

Alternatively, you can continue to configure Web applications directly in WebSphere Application Server
systems administration. The latter allows you to add WebSphereservlets to your Web applications to extend
their functionality.

You can use either the Java console (WebSphere Administrative Console) or command line programs to convert
WAR files.

Utilizing servlets available from WebSphere

See section 4.2.1.2.3 for information about addingcomplimentary WebSphere servlets to Web applicationsto
provide functions such as JSP enablement, errorreporting, file serving, and the ability to invokeservlets by
classname.

http://localhost/v355makePDF/advanced/nav_jspnav/060600020104.html

6.6.8.0: Web application properties
Attributes

Specifies servlet context attributes for the entire Web application.

property Name - A servlet parameter of your choice❍

property Value - The value associated with the property name❍

Note, the servlet context established by this property differs from the Shared Context,which pertains to
clustering situations.

See the JSP administration overview for a descriptionof attributes related to JSP reloading, available
starting with Version 3.5.2.

Auto Reload

Specify whether to automatically reload servlets in the Web application when their classfiles change.

After specifying to Auto Reload, use the Reload Interval property to specify how oftento check for
updates.

Classpath

Specifies the classpath for the Web application.

Classpath in use

Specifies the classpath currently in use for the Web application.

Current State

Indicates the state the Web application is currently in. The next time itis started, it will try to change to
its desired state setting.

Desired State

Indicates the state the Web application is in, according to the administrative server.

Description

Specifies a description of the Web application.

Document Root

Specifies the document root of the Web application.

Enabled

Indicates whether the servlet group (Web application) is available to handle requests.

Error Page (changed)

Specifies mappings between error codes or exception types and the pathsof resources in the Web
application. Basically, defines what to display tothe user in the event of a specific error.

Consists of:

Status Code or Exception - An HTTP error code (such as 404) or fully qualified classname of a
Java exception type

❍

Location - Location (in the Web application) of the error page to display when that status code or
exception occurs

❍

Example values:

Status Code: 404❍

http://localhost/v355makePDF/advanced/nav_jspnav/060610.html

Exception: java.lang.NullPointerException❍

Location: /webapp/myapp/my404ErrorPage.jsp❍

The location is a "Web path," to use the terminology of the WebSphere Administrative Console.

Full Web Path in use

Specifies the URI by which the Web application can currently be located.

MIME Table

Specifies mappings between extensions and MIME types. Consists of:

Extension - Text string describing an extension, such as .txt❍

Type - The defined MIME type associated with the extension, such as text/plain❍

You can also specify MIME table parameters at the virtual host level,but the MIME table parameters
you specify for a Web application takeprecedence (local scope).

Reload Interval

Specifies the interval between reloads of the web application.

Specify the value in seconds

6.6.8.1: Administering Web applications with the Java
administrative console
This article extends article 6.6.8 (the overview of administering Web applications) with information specific to
the Java console.

The table answers the most basic questions. See the Related informationfor links to detailed instructions and
resource properties.

Does the console provide full functionality for
administering this resource? Yes

How is this resource representedin the console tree
views?

The Type tree contains a Web Applications
folderobject.

The Topology tree can contain zero or moreexisting
Web applications. Their names vary;they are
supplied by the administrator.

Use the View menu on the console menu bar to
toggle between tree views.

Any task wizards for manipulatingthis resource?

On the console menu bar:

Console -> Task -> Configure a Web application

There are also subtasks:

Add a servlet●

Add a JSP file or Web resource●

Add a JSP enabler●

6.6.8.1.1: Configuring new Web applications
The product offers several ways to configure new Web applications:

By clicking Console -> Tasks -> Configure a Web application from theconsole menu bar.●

By clicking Configure a Web application from the drop-down list on theWizards toolbar button.●

Using menus on resources in the Topology and Type trees(see Related information)●

The first two methods lead to the Configure a Web applicationtask wizard, for which detailed help is provided
here.

Follow the wizard instructions. On the first page, name the Webapplication and specify whetherto add
WebSphere "internal" servlets to the Web applicationto perform certain functions:

File servlet❍

Enable Serving Servlets by Classname (adds invoker servlet)❍

JSP enabler (adds the JSP processor servlets)❍

Chainer servlet❍

See article 4.2.1.2.3 for a detailed description ofeach internal servlet.

1.

Click Next to proceed. Specify the servlet engine on which theWeb application should reside.2.

Click Next to proceed. Now:

Specify a name by which to administer the Web application.❍

Optionally, describe the Web application.❍

Specify the virtual host part of the Web application's served path. That is, what host name (or its
aliases) will users specify when they access the Web application from a Web browser?

❍

Specify the Web Path for the Web application. That is, what should users type in after the host
name when requesting this Web application?

For example, if you would like users to type

http://default_host_alias/webapp/mywebapp

to access the application (where default_host_alias is any valid alias for the default virtual host),
specify:

Virtual Host = default_host_alias■

Web Application Web Path= /webapp/mywebapp■

❍

3.

Click Next to proceed:

Specify the document root for the Web application. This is the fully qualified path to where the
HTML and JSP files for the Web application will be found.

❍

Specify the classpath, adding either a directory for servlets or specifying servlets individually.
Also specify any other resources the Web application needs to know about in order to operate
correctly.

Note that both the document root and the classpath contain default values. You can accept the
default values and then move your files there after finishing the task. Alternatively, you can
change the default values to point to your files in their present locations, or a location to which
you plan to move them.

❍

Specify other Web application properties or accept the default values for them.❍

4.

Click Finish.5.

http://localhost/v355makePDF/advanced/nav_jspnav/0402010203.html

6.6.8.1.6: Converting WAR files with the Java
administrative console
To convert WAR files (see article 0.8.2 for a description) using the Javaconsole:

Select the Convert WAR File task from the console Tasks menu.1.

Follow the instructions in the task wizard.2.

You will need to specify the following information:

The servlet engine where the Web application will reside●

A name for the Web application●

A Web Path for the Web application●

The path to the WAR file●

6.6.8.3: Administering Web applications with the Web
console
Use the Web console to edit the configurations of Web applications.

Work with objects of this type by locating them in the tree on the left side of the console:

Click Tasks -> Create Objects -> Create Web Application

When creating a Web application, you must specifyan existing servlet engine to contain it. Existing Web
applications andapplication servers in the administrative domain are displayed in the Resources section of the
navigation tree.

 Creations and changes made with this console are not appliedto the administrative domain until you
Commit them. Refer to section 6.6.0.3.5 for details.

6.6.8.3.1: Precompiling JSP files for Web modules of
an application with the Web console
You can precompile the JSP files in a Web module either while youare installing the Web module (or the
application containing it), orafter installation.

To precompile the JSP files during application installation, follow the instructions for installing an application.

To precompile the JSP files of an already installed application,follow the instructions for mapping virtual hosts
to Web modules.

In either case, you will end up at the "Mapping virtual hosts to Web modules" panelof the application
installation wizard, from which you can specify to precompile JSPfiles.

http://localhost/v355makePDF/advanced/nav_jspnav/060601.html

	Numbx:
	L:
	C:
	R:

	P1:
	Numbers:
	Numbx:
	L:
	C:
	R: 1

	P2:
	Numbers:
	Numbx:
	L: 2
	C:
	R:

	P3:
	Numbers:
	Numbx:
	L:
	C:
	R: 3

	P4:
	Numbers:
	Numbx:
	L: 4
	C:
	R:

	P5:
	Numbers:
	Numbx:
	L:
	C:
	R: 5

	P6:
	Numbers:
	Numbx:
	L: 6
	C:
	R:

	P7:
	Numbers:
	Numbx:
	L:
	C:
	R: 7

	P8:
	Numbers:
	Numbx:
	L: 8
	C:
	R:

	P9:
	Numbers:
	Numbx:
	L:
	C:
	R: 9

	P10:
	Numbers:
	Numbx:
	L: 10
	C:
	R:

	P11:
	Numbers:
	Numbx:
	L:
	C:
	R: 11

	P12:
	Numbers:
	Numbx:
	L: 12
	C:
	R:

	P13:
	Numbers:
	Numbx:
	L:
	C:
	R: 13

	P14:
	Numbers:
	Numbx:
	L: 14
	C:
	R:

	P15:
	Numbers:
	Numbx:
	L:
	C:
	R: 15

	P16:
	Numbers:
	Numbx:
	L: 16
	C:
	R:

	P17:
	Numbers:
	Numbx:
	L:
	C:
	R: 17

	P18:
	Numbers:
	Numbx:
	L: 18
	C:
	R:

	P19:
	Numbers:
	Numbx:
	L:
	C:
	R: 19

	P20:
	Numbers:
	Numbx:
	L: 20
	C:
	R:

	P21:
	Numbers:
	Numbx:
	L:
	C:
	R: 21

	P22:
	Numbers:
	Numbx:
	L: 22
	C:
	R:

	P23:
	Numbers:
	Numbx:
	L:
	C:
	R: 23

	P24:
	Numbers:
	Numbx:
	L: 24
	C:
	R:

	P25:
	Numbers:
	Numbx:
	L:
	C:
	R: 25

	P26:
	Numbers:
	Numbx:
	L: 26
	C:
	R:

	P27:
	Numbers:
	Numbx:
	L:
	C:
	R: 27

	P28:
	Numbers:
	Numbx:
	L: 28
	C:
	R:

	P29:
	Numbers:
	Numbx:
	L:
	C:
	R: 29

	P30:
	Numbers:
	Numbx:
	L: 30
	C:
	R:

	P31:
	Numbers:
	Numbx:
	L:
	C:
	R: 31

	P32:
	Numbers:
	Numbx:
	L: 32
	C:
	R:

	P33:
	Numbers:
	Numbx:
	L:
	C:
	R: 33

	P34:
	Numbers:
	Numbx:
	L: 34
	C:
	R:

	P35:
	Numbers:
	Numbx:
	L:
	C:
	R: 35

	P36:
	Numbers:
	Numbx:
	L: 36
	C:
	R:

	P37:
	Numbers:
	Numbx:
	L:
	C:
	R: 37

	P38:
	Numbers:
	Numbx:
	L: 38
	C:
	R:

	P39:
	Numbers:
	Numbx:
	L:
	C:
	R: 39

	P40:
	Numbers:
	Numbx:
	L: 40
	C:
	R:

	P41:
	Numbers:
	Numbx:
	L:
	C:
	R: 41

	P42:
	Numbers:
	Numbx:
	L: 42
	C:
	R:

	P43:
	Numbers:
	Numbx:
	L:
	C:
	R: 43

	P44:
	Numbers:
	Numbx:
	L: 44
	C:
	R:

	P45:
	Numbers:
	Numbx:
	L:
	C:
	R: 45

	P46:
	Numbers:
	Numbx:
	L: 46
	C:
	R:

	P47:
	Numbers:
	Numbx:
	L:
	C:
	R: 47

	P48:
	Numbers:
	Numbx:
	L: 48
	C:
	R:

	P49:
	Numbers:
	Numbx:
	L:
	C:
	R: 49

	P50:
	Numbers:
	Numbx:
	L: 50
	C:
	R:

	P51:
	Numbers:
	Numbx:
	L:
	C:
	R: 51

	P52:
	Numbers:
	Numbx:
	L: 52
	C:
	R:

	P53:
	Numbers:
	Numbx:
	L:
	C:
	R: 53

	P54:
	Numbers:
	Numbx:
	L: 54
	C:
	R:

	P55:
	Numbers:
	Numbx:
	L:
	C:
	R: 55

	P56:
	Numbers:
	Numbx:
	L: 56
	C:
	R:

	P57:
	Numbers:
	Numbx:
	L:
	C:
	R: 57

	P58:
	Numbers:
	Numbx:
	L: 58
	C:
	R:

	P59:
	Numbers:
	Numbx:
	L:
	C:
	R: 59

	P60:
	Numbers:
	Numbx:
	L: 60
	C:
	R:

	P61:
	Numbers:
	Numbx:
	L:
	C:
	R: 61

	P62:
	Numbers:
	Numbx:
	L: 62
	C:
	R:

	P63:
	Numbers:
	Numbx:
	L:
	C:
	R: 63

	P64:
	Numbers:
	Numbx:
	L: 64
	C:
	R:

	P65:
	Numbers:
	Numbx:
	L:
	C:
	R: 65

	P66:
	Numbers:
	Numbx:
	L: 66
	C:
	R:

	P67:
	Numbers:
	Numbx:
	L:
	C:
	R: 67

	P68:
	Numbers:
	Numbx:
	L: 68
	C:
	R:

	P69:
	Numbers:
	Numbx:
	L:
	C:
	R: 69

	P70:
	Numbers:
	Numbx:
	L: 70
	C:
	R:

	P71:
	Numbers:
	Numbx:
	L:
	C:
	R: 71

	P72:
	Numbers:
	Numbx:
	L: 72
	C:
	R:

	P73:
	Numbers:
	Numbx:
	L:
	C:
	R: 73

	P74:
	Numbers:
	Numbx:
	L: 74
	C:
	R:

	P75:
	Numbers:
	Numbx:
	L:
	C:
	R: 75

	P76:
	Numbers:
	Numbx:
	L: 76
	C:
	R:

	P77:
	Numbers:
	Numbx:
	L:
	C:
	R: 77

	P78:
	Numbers:
	Numbx:
	L: 78
	C:
	R:

	P79:
	Numbers:
	Numbx:
	L:
	C:
	R: 79

	P80:
	Numbers:
	Numbx:
	L: 80
	C:
	R:

	P81:
	Numbers:
	Numbx:
	L:
	C:
	R: 81

	P82:
	Numbers:
	Numbx:
	L: 82
	C:
	R:

	P83:
	Numbers:
	Numbx:
	L:
	C:
	R: 83

	P84:
	Numbers:
	Numbx:
	L: 84
	C:
	R:

	P85:
	Numbers:
	Numbx:
	L:
	C:
	R: 85

	P86:
	Numbers:
	Numbx:
	L: 86
	C:
	R:

