Multiple Machines

7: Multimachine management

Multiple machine environments

7.1: Using multimachine environments
7.1.1: Scaling up WebSphere applications
7.1.2: Availability management

7.1.3: Multimachine topologies
7.1.3.1: Selecting atopology
7.1.3.2: Multi-tiered system sampl e topology
7.1.3.3: Vertical scaling sample topology
7.1.3.4: Horizontal scaling with clones sampl e topol ogy
7.1.3.5: Horizontal scaling with Network Dispatcher sample topologies (horizontal scaling and DMZ)
7.1.3.6: HTTP server separation sample topologies
7.1.3.6.1: Remote OSE sample topology
7.1.3.6.2: Semi-remote OSE sampl e topol ogy
7.1.3.6.3: Reverse proxy (IP forwarding) sample topology
7.1.3.6.4: Thick servlet redirector sample topology
7.1.3.6.5: Thick servlet redirector with administrative agent sample topology
7.1.3.6.6: Thin servlet redirector sample topology
7.1.3.7: Demilitarized Zone (DM Z) sample topology
7.1.3.8: Multiple WebSphere domains sampl e topol ogy
7.1.3.9: Multiple applications within a node sample topology
7.1.3.10: Putting it all together - a combined topology

7.1.4: Firewalls and demilitarized zone (DM Z) configurations
7.1.5: Remote database access with Universal Database Access (UDB)
7.1.6: Managing state

7.1.6.1: HTTP sessions, servlets, and the session manager

7.1.6.2: EJB sessions and transaction affinity
7.1.6.3: Server affinity

Managing workloads

7.2: Managing workloads

7.2.1: Workload management for enterprise beans and application servers

7.2.2: Workload management for servlets
7.2.3: Workload management for administrative servers

7.2.4: Using models and clones

7.2.4.1: Cloning for workload management, failover, and scaling

7.2.4.2: Modifying models and clones

7.2.4.3: Advicefor cloning

7.2.4.4: Containment relationships

7.2.4.5: Server selection policies and transaction affinity

7.2.4.6: Security for cloned resources

7.2.4.7: Creating clones on machines with different WebSphere installation directories or operating
systems

7.2.5: Using workload management - a sample procedure
7.2.6: Tuning aworkload management configuration
7.2.7: Run-time exceptions and failover strategies for workload management

7.2.8: Workload management for stand-alone Java clients

Redirecting servlet requests

7.3: Redirecting servlets
7.3.1: OSE and remote OSE

7.3.2: Servlet redirector

7. Multimachine management

WebSphere Application Server applications can be scaled up from the basicsingle-machine configuration to run
on systems comprised of multiple machines. Using amultimachine configuration enables applications to devote
more processing power to clientrequests, distribute and balance |oads among the machines in the system, and
have betteraccessibility and throughput than single machine systems.

This section discusses the following topics:

« Using WebSphere Application Server in a multimachine environment discusses scaling up WebSphere
systems, multimachine topologies, and related issues.

« Managing workloads discusses workload management using models and clones.

« Redirecting servlets discusses using remote Open Servlet Engine (OSE), thick servlet redirectors, and
thin servlet redirectors to redirect client requeststo servlet clones.

7.1: Using WebSphere Application Server in a
multimachine environment

The basic single machine WebSphere configuration can be extended by distributing theapplication over
multiple machines and by making more efficient use of the processingpower of each machine in the
configuration. Some of the reasons for creating WebSphereApplication Server applications that run on
multimachine systems include:

Scalability. Increasing processing power by adding more machines enables the system to handle a
higher client load than that provided by the basic, single-machine configuration. Ideally, it is possible to
handle any given load by adding more servers and machines. Each additional machine must processits
fair share of client requests. (That is, a share of the total system load that is proportional to its processing
power.)

Security. Multimachine configurations can use firewalls to protect sensitive resources from
unauthorized access.

Shar ed data access. Placing back-end resources such as databases on different machines can enable
these resources to be shared more easily.

Availability and failover support. In a single-machine configuration, any failure means that the entire
system is unavailable. However, in multimachine configurations, the system continues to operate if any
one machine or server in the system fails for any reason. Failover support distributes client requests to
the remaining servers, which ensures continued client access without significant interruptions. (In
practice, failover is not entirely transparent to clients.)

Fault isolation. Configurations that provide simple failover support are concerned only with individual
server failures that have no effect on the performance of other servers. However, in some situations a
malfunctioning server can create problems for other servers that are otherwise functioning normally. For
example, it can consume more than its share of system and database resources, preventing other servers
from gaining adequate access to these resources. A configuration that provides more robust failover
support includes a degree of fault isolation, reducing the potential for the failure of one server to affect
other servers. WebSphere Application Server can be configured to provide fault isolation between
different parts of a system.

Dynamic changes to configur ations. Administrators can modify the system's configuration without
interrupting its operation. For instance, they can add or remove clones of serversto handle variationsin
the client load, change server characteristics and propagate the changes to its clones, temporarily stop
servers for maintenance, and so forth. This enhances the manageability and flexibility of the system.

Mixed application server configurations. Some multimachine configurations allow multiple versions
of an application server to be deployed simultaneously. Applications can be deployed in stages and the
system's hardware and software can be easily upgraded. When combined with the ability to make
dynamic changes to the configuration, a mixed server configuration can be used to upgrade an
application without any interruption of service.

Note: The ability to run different versions of an application server in aconfiguration applies only if the
application servers are running under the same versionof the application code. Y ou cannot run application
servers under different versions of WebSphere Application Server in the same administrative domain.

This section describes how you can achieve these goals in multimachine configurations.It is an overview of the
various ways that you can use to scale up the basic,single-machine WebSphere system to meet the needs of your
organization, and is notintended to be an exhaustive discussion of WebSphere configurations.

7.1.1: Scaling up WebSphere applications

Multimachine applications can be configured in a variety of ways to scale up a systemto add more processing
power, improve security, maximize availability, and balanceworkloads. The WebSphere Application Server,
Advanced Edition provides severa ways to implementconfigurations that address these issues. These scaling
techniques are generally combinedto maximize the benefits and minimize the problems associated with
multimachine systems.

Cloning. Cloning allows the creation of multiple copies of an object such as a servlet, enterprise bean,
or entire application server. Thefirst step isto create a model of the object based upon the object's
current configuration. From the model, you can then create clones of that object. Clones can be created
on the same physical machineor on different machines. Using clones can improve the performance of a
server, ssimplify its administration, and enable the use of workload managment; however, there is a point
of diminishing returns when adding more clones slows down the system due to the extra network traffic
required for managing the clones.

Workload management (WLM). Incoming processing requests from clients are transparently
distributed among the clones of an application server. WLM enables both load balancing and failover,
improving the reliability and scalability of WebSphere applications. In addition, administrative servers
can participate in WLM for failover support.

Open Serviet Engine (OSE). A Web server is responsible for receiving client requests, filtering them,
and forwarding them to the servlet engine in an application server for processing. Thisforwarding is
accomplished through a transport mechanism called OSE. OSE is a proprietary internal protocol that
uses | PC mechanisms provided by the underlying operating system to transport data. OSE can be used to
perform two types of load distribution in WebSphere. It can be configured to forward different URLs to
different application servers, and it automatically distributes client requests among all available clones
of aservlet (whether local, remote, or both). OSE automatically handles failover and changesin the
available clones.

Servlet redirection. A servlet redirector is a special-purpose application server that forwards HTTP
requests from clients to a servlet engine in a cloned application server. It can participate in workload
management for load balancing and failover support.

| P sprayer. An |P sprayer transparently redirects incoming HT TP requests from Web clients to a set of
Web servers. Although the clients behave as if they are communicating directly with a given Web
server, the |P sprayer is actually intercepting al requests and distributing them among all the available
Web serversin the cluster. IP sprayers (such as IBM Network Dispatcher or Cisco Local Director) can
provide scalability, load balancing, and failover for Web servers.

7.1.2: Availability management

One of the benefits of scaling up to a multimachine configuration is that it improvesthe availability of the
system. Applications hosted on multiple machines generally haveless down time and are able to service client
reguests more consistently.

The following commonly used scaling techniques can be combined to take advantage of the best features of
each topology and create a highly available system. (Note that thisis not an exhaustive list of waysto improve
availability.)

« Eliminate single points of failure in the system by providing hardware and process redundancy:

o Use horizontal scaling to distribute application servers over multiple physical machines. If a
hardware or process failure occurs, clones are still available to handle client requests. Web
servers and | P sprayers can also benefit from horizontal scaling.

o Use backup servers for databases, Web servers, | P sprayers, and other important resources. This
ensures that they remain available if hardware or process failure occurs.

o Deploy an application in multiple administrative domains. If an entire domain goes offline, the
others are till available to handle client requests.

o Run administrative servers with workload management enabled. The failover support that
workload management provides eliminates a single administration server as a point of failure.

« Provide processisolation so that failing servers do not negatively impact the remaining healthy servers
in the configuration. The following configurations provide some degree of process isolation:

o Deploy the Web server onto a different machine from the application servers. This ensures that
problems with the application servers do not affect the Web server, and vice versa.

o Use horizontal scaling, which physically segregates application server processes onto different
machines.

o Deploy an application in multiple administrative domains. Problems are confined to one domain
while the other remains available.

« Use load-balancing techniques to make sure that individual servers are not overwhelmed with client
requests. These techniques include the following:

o Use workload management. It is automatically implemented for cloned application servers, but
must be explicitly enabled for administrative servers.

o Usean IP sprayer to distribute requests to the Web serversin the configuration.

o When using remote OSE, direct requests from high traffic URL s to more powerful servers. You
can also make use of OSE's simple load-balancing facility to distribute requests among servers.

« Provide failover support. The application must continue to process client requests when servers are
stopped or restarted. Ways to provide failover support include the following:

o Use horizontal scaling with workload management to take advantage of its failover support.
o Useremote OSE to distribute client requests among application servers.

o Usethe servlet redirector to distribute client requests among servlet engine clones.

O

Enable the Session Manager to store session information in a persistent database. This preserves
session state in case of server failure.

7.1.3: Multimachine topologies

WebSphere Application Server supports awide variety of ways to deploy applications inmultimachine
environments. The most commonly used topologies fall into one of thefollowing broad categories:

« Multi-tiered topologies. The components of an application (the Web server, application servers,
databases, and so forth) are physically separated onto different machines.

« Vertical scaling topologies. Additional application server processes are created on a single physical
machine by using models and clones.

« Horizontal scaling topologies. Additional application server processes are created on multiple physical
machines by using models and clones. HT TP redirector products such as Network Dispatcher can also
be used to implement horizontal scaling.

o« HTTP server separation topologies. The Web (HTTP) server islocated on a different physica
machine than the application server. Requests can be redirected to application servers through a variety
of methods.

« Demilitarized zone (DM Z) topologies. Firewalls can be used to create demilitarized zones -- machines
that are isolated from both the public Internet and other machines in the configuration. Thisimproves
security for the application, especially for sensitive back-end resources such as databases.

« Multidomain topologies. Applications are deployed onto multiple WebSphere Application Server
administrative domains.

« Multiapplication topologies. More than one version of an application is deployed onto the same
physical machines and administrative domain.

Keep in mind that these topologies are not mutually exclusive. Basic topol ogyel ements can be combined in
many different ways, as shown in the example topol ogiesfeatured in this section. These examples are not
intended to be an exhaustive listof topologies that you can create in WebSphere Application Server. Instead,
theyare intended to suggest various ways that you can set up applications in a multimachi neenvironment.

7.1.3.1: Selecting a topology

A variety of factorstypically are considered when you are deciding on the besttopology for deploying a
WebSphere application. The major factors for picking atopology include:

Security. Some security concerns can be addressed by physically separating the Web server from the
application server by using firewalls.

Performance. To maximize performance, the response time for transactions needs to be as short as
possible. Two topologies can be used to improve transaction performance:

o Vertical scaling, in which additional application server processes are created on a single physical
machine. See article 7.1.3.3, Vertical scaling sample topology, for more information.

o Horizontal scaling, in which additional application server processes are created on multiple
physical machines to take advantage of the additional processing power available on each
machine. See article 7.1.3.4, Horizontal scaling with clones sample topology, and article 7.1.3.5,

Horizontal scaling with Network Dispatcher sample topology, for more information.

Throughput. To process as many transactions as possible within a given time period, application server
clones can be created to increase the number of concurrent transactions that the application can perform.
These application server clones can be added through vertical or horizontal scaling.

Availability. To avoid asingle point of failure and maximize the system's availability, the topology
must have some degree of process redundancy. High-availability topologies typicaly involve horizontal
scaling across multiple machines. (Vertical scaling can improve availability by creating multiple
processes, but the machine itself becomes a point of failure.) A Network Dispatcher server can direct
client HTTP requests to the available Web servers, bypassing any that are offline; it can also be backed
up by another server to eliminate it as a single point of failure. Workload management of application
servers and administrative servers also improves availability and failover support.

Maintainability. The system's topology affects the ease with which its hardware and software can be
updated. For instance, using multiple WebSphere domains or horizontal scaling can make a system
easier to maintain because individual machines can be taken offline for hardware and software upgrades
without interrupting the application. However, sometimes maintainability conflicts with other topology
considerations. For example, limiting the number of application server instances makes the application
easier to maintain but can have a negative effect on its throughput, availability, and performance.

Maintaining session state between client HT TP requests. This does not apply if your application runs
on asingle application server instance or is completely stateless. However, session state is an important
consideration for stateful applications and applications that run on multiple machines or application
server instances. A session can be shared between multiple application server processes (clones) by
saving the session state to a database. In addition, the configuration of an HTTP redirector such as
Network Dispatcher affects how the session state is maintained.

[il Whichever topology you decide on, abest practice is to partition your testing andproduction acceptance
environments in exactly the same way as your production environment.This helps you recognize and address
problems with your application before it is actuallydeployed.

7.1.3.2: Multi-tiered system sample topology

o« Overview

o Typica use

Overview

Multi-tiered topologies locate the Web server and application server processes onseparate physical machines.An
additional tier can contain databases, enterpriseinformation systems, and other types of persistent storage.

The following illustration shows an example of thistype of topology.

Cloned application Cloned application

servers servers
Web server (servlet engine) {EJB server)
Machine A fMachine B Machine G
Client i = s ~
HTTP Servlel enginej EJB server
HTTP—® corver h}lones JF} clones
requesis Ly —

B Admin. | Admin.
Server Server

e

Administraiive Application
repository data

Database server
Machine D

In this example, the application server processes that run a servlet are closer innetwork termsto the HTTP server,
improving their response to client requests. Theapplication server processes that run enterprise beans (Machine C) are
closer in networkterms to the application data, which is represented in an application by entity beans andstored on the
database server (Machine D). An administrative server process is running onthe two application server nodes.

Application servers are cloned on Machine B and Machine C to help maximize the use ofeach machine's resources.
(Two clones of each are shown in the example, but depending onthe machine's hardware setup, more can potentially
be added.)

Typical use

The clones in a multi-tiered topology provide process redundancy and enable memory tobe used more efficiently than
9

in similar topologies that host only single instances of application servers. The additional resources that are available
on the machines in thistopology can improve the application's throughput and performance.

I firewalls are introduced between the three application tiers, the same level ofsecurity can be provided for the entity
beans in the application server as for theapplication data.

Implementing a multi-tiered toplogy eliminates the local Java Virtual Machine (JVM)optimizations that occur when
both the servlet engine and EJB server run in the sameapplication server. It also introduces network latency. Both of
these factors tend to slowdown system performance. Although they provide more redundancy for application
serverprocesses, multi-tiered topologies also introduce more possible points of failure. Thelevel of redundancy can
make mai ntenance more complicated.

10

7.1.3.3: Vertical scaling sample topology

« Overview
o Typical use
¢ Instructions

Overview

Vertical scaling refers to setting up multiple application servers, typically by usingclones, on a machine.

hachine A Machine B
WebSphere Application Server Database server
HTTP @pplicatinn Y
requesis | > Server i Application
_ Glnne 1 - data
Plug-in o
Clone 2

T

Clone 3 3

Administrative
Administrative server repository

“*-,____________r’"

In this simple example, vertical scaling is done by creating multiple clones of anapplication server on Machine A.
Although this example shows vertical scaling on asingle machine, you can implement vertical scaling on more than
one machine in aconfiguration. (The Advanced Edition application server run time must be installedon each
machine.) Combine vertical scaling with the other topologies described in thissection to boost performance and
throughput.

Typical use

Vertical scaling offers the following advantages:

« Moreefficient use of the machine's processing power. An instance of an application server runsin asingle
Java Virtual Machine (JVM) process. However, the inherent concurrency limitations of aJVM process
preventsit from fully utilizing the processing power of a machine. Creating additional VM processes
provides multiple thread pools, each corresponding to the JVM associated with each application server
process. This avoids concurrency limitations and enables the machine's processing power to be fully used.

Vertical scaling provides a straightforward mechanism for creating multiple instances of an application
server, and hence multiple VM processes. This enables the application server to make the best possible
use of the processing power of the host machine.
« Load balancing. Vertical scaling topologies can make use of the WebSphere Application Server workload
11

management facility.

« Processfailover. A vertical scaling topology also provides failover support among application server
clones. If one application server instance goes offline, the other instances on the machine continue to
process client requests.

Single machine vertical scaling topol ogies have the drawback of introducing the hostmachine as a single point of
failure in the system. However, this can be avoided byusing vertical scaling on multiple machines.

Instructions

To set up avertical scaling topology, use the administrative client to configure a setof application server clones that
reside on the same machine. See Article7.2, Managing workloads, for more information on cloning an application

server. To setup vertical scaling, you need only perform the tasks pertaining to local clones.

It is recommended that you plan vertical scaling configurations ahead of time. However,since they do not require
any specia installation steps, you can aways implement themlater on an as-needed basis.

When you are deciding how many clones to create on a machine, you need to take severalfactors into account:

« Theversion of the Java development software. Version 1.2 and above of the IBM Java 2 Software
Development Kit (SDK) handles parallel VM processes better than earlier versions.

« How the application is designed. Applications that make use of more components require more memory,
limiting the number of clones that can be run on a machine.

« The hardware environment. Vertical scaling is best done on machines with plenty of memory and
processing power. However, eventually the overhead of running more clones cancels out the benefits of
adding them.

The best way to ensure good performance in avertical scaling configuration is to tunea single instance of an
application server for throughput and performance, thenincrementally add clones. Test performance and
throughput as each clone is added.Always monitor memory use when you are configuring a vertical scaling
topology and do notexceed the available physical memory on a machine.

12

7.1.3.4: Horizontal scaling with clones sample topology

o Overview

o Typical use

Overview

The following figure shows an example of horizontal scaling using clones of anapplication server.

Application server Database server
fMachine B Machine D
Web server | Apphcation
fMachine A g Lserver clones
e
Client :
HTTP—# ;gl; Admin. Application
requests Server data
- | Application
server clones
km_
Admin. Administrative
Server repository

Application server
Machine C

In horizontal scaling, clones of an application server are createdon multiple physical machines. This enables asingle
WebSphereapplication to span several machines yet still present a single systemimage. In this example of a horizontal
scaling topology, the Webserver on Machine A distributes requests to the cloned applicationservers on Machines B and C.
The application server clones onMachines B and C are created from the samemodel. Machine Dacts as the database server
for the application.

Products such as Network Dispatcher that distribute client HT TP requests can becombined with cloning to reap the benefits
of both types of horizontal scaling. See section 7.1.3.5, Horizontal scaling with Network Dispatcher sasmpletopology, for
more information on this system configuration.

Typical use

Horizontal scaling can provide both increased throughput andfailover support when compared to vertical scaling topologies.
Bothapplication server process failure and hardware failure can be handledwithout significant interruption to client service.
Horizontal scaling topol ogies can a so be used to optimize the distribution ofclient requests through mechanisms such as
workload management or the remote Open Servlet Engine (OSE) transport.

13

7.1.3.5: Horizontal scaling with Network Dispatcher sample
topologies

o Overview « Network Dispatcher and session affinity
« A simple Network Dispatcher topology « Discussion

« A more complex Network Dispatcher topology « Instructions

« Using Network Dispatcher with firewalls

Overview

A load-balancing product such as Network Dispatcher can be used to distribute HTTPrequests among application server instances that are
running on multiple physicalmachines. Network Dispatcher is part of the IBM WebSphere Edge Server, which ispurchased separately from
WebSphere Application Server It performs intelligent loadbalancing by using server availability, capability, workload, and other
user-definabl ecriteria to determine which server the TCP/IP request is sent to.

A simple Network Dispatcher topology

The following figure illustrates a simple horizontal scaling configuration that usesNetwork Dispatcher to distribute requests among
application serversthat are located ondifferent machines.

IMachine C
-
IMachine A Web Application
server server -
- Network |) FMachine E
—»| Dispatcher 0
requests (primary) Administrative
Server p. Apphication
{ database
Network Web Application
Dispatcher server server Administrative
{(backup) I repository
Machine B Administrative
server
fMachine D

A Network Dispatcher machine is generally configured with a backup node to eliminate itas a single point of failure. In this example, the
backup Network Dispatcher node (MachineB) can be set up to take over if the primary Network Dispatcher node (Machine A) fails.

The application servers in this example can be cloned from the same model or configuredindependently.

A more complex Network Dispatcher topology

The next figure shows a more complex configuration where Network Dispatcher is used todistribute requests among several machines
containing clones of Web servers andapplication servers. For the sake of simplicity, the backup Network Dispatcher node andthe
administrative servers are not shown in this example.

14

Lier 1:Web servers and
application servers

Machine B jg; o- Application Tier 3: Database

[k SEervers SEenfer

Machine C Machine F Machine H

Machine A JL’| I .
Network kMachine D ™ Applicati
Dispatcher pPpicaton
P }. Jﬁ] data

Machine E /Machine (3

TRt

e
__web server |]Appl ication server

This example shows two tiers of application servers. Thefirst tier Web server machineshost servlet-based applications, while the second tier
application servers contain mostlyenterprise beans that access application data and execute business logic. This enables youto employ
numerous, less powerful machines on the first tier and fewer but more powerfulmachines on the second tier.

Using Network Dispatcher with firewalls

A load-balancing product such as Network Dispatcher can also be used with demilitarizedzone (DMZ) topologies. For example, it can
simplify the creation of a DMZ topology whereone firewall protects the Web server from the public Web site and a second firewallprotects
back-end systems from the Web server in the DMZ by using proxy services.

The Network Dispatcher machine is placed between the outside firewall and the clusterof Web serversthat it serves. The outside firewall
providesfiltering to allow only HTTPand HTTPS traffic. The firewall to the back-end systems (DBMS, CICS, SAP, etc.) handlenon-HTTP
protocols such as I10P and JDBC. Because the administrative server needs toaccess the database for its configuration information, it is
recommended that you placethe administrative server on the same side of the firewall as the database, rather than inthe DMZ. See section

7.1.3.7 and section 7.1.4 for more information on DMZconfigurations.

Network Dispatcher and session affinity

In atopology that uses Network Dispatcher or a product of similiar functionality, Webservers must be associated with separate application
servers, rather than with clonedapplication servers, in order to preserve affinity among Web servers and applicationservers.

15

_ | application
/ Web server i server 1

ND :

| application

\Web Server e
senver 2

Supports affinity

Cloned application servers use WebSphere workload management (WLM), which does notsupport session affinity. Requests originating at a
Web server can be routed to any of theclones of an application server, and sessions cannot be guaranteed to remain intact.

Discussion

Adding a mechanism for distributing HT TP requests (such as the Network Dispatchercomponent of WebSphere Edge Server) provides the
following advantages:

« Itimproves the performance of servers by distributing the incoming TCP/IP requests (in this case, HTTP requests) among a group of
servers.

« It increases the number of connected users.

« It eliminates the Web server as a single point of failure. It can aso be used in combination with WebSphere workload management
to eliminate the application server as a single point of failure.

« Itimproves throughput by enabling multiple servers and CPUs to handle the client workload.

Instructions

To set up the machines containing Web servers and application servers, see theinstructions for the topology you plan to implement.

To place Network Dispatcher or another 1oad-balancing product in front of the Webserver machines, see the documentation for the
load-balancing product. Instructions varyby product.

The load-balancing product communicates with the Web server, which in turn communicateswith application servers. The configuration
involves setting up communications between thel oad-balancing product and the Web server.

It does not matter to the load-balancing product whether the Web server is routingrequests along to an application server or processing them
itself. Therefore, it is notnecessary to perform any special configuration to make the load- balancing product andapplication servers aware of
one another. Thisistrue with Network Dispatcher, based ontesting with IBM WebSphere Application Server. Results can vary with other
|oad-bal ancingproducts.

16

7.1.

3.6: HTTP server separation sample topologies

These topol ogies physically separate the Web (HTTP) server from the applicationservers, placing the Web server on a
different machine in the configuration.Compared to a configuration where the Web server and the application servers
are locatedon the same physical server, separating the Web server can improve applicationperformance, provide better
fault isolation, and enhance security. These topol ogiesare often used with firewalls to create a secure demilitarized
zone (DM 2Z) surrounding theWeb server.

WebSphere Application Server provides alternatives for physically separating the HT TPserver from the application

Server:

HTTP transport configurations

Reverse proxy (IP forwarding) configurations

Open Servlet Engine (OSE) configurations, including remote and semi-remote OSE
Thick servlet redirector configurations

Thick servlet redirector with administrative-agent configurations

Thin servlet redirector configurations

These system topol ogies are described in more detail in the articlesin this section.

The following table summarizes the advantages and disadvantages of each of theseconfigurations. The criteriaare

explained after the table.

Topology ’SSL rD;tgﬁgs;passNord ’WLM ’NAT’Performance Administration
|Remote OSE INo |No Yes |Yes |High IManual
|Semi-remote OSE INo |No Yes |Yes |Medium IManual
|Reverse proxy IYes |No INo |Yes |High IManual

| Thick servlet redirector IYes |Yes Yes [No |Medium |Automated
ygﬁg\gsergénetctorwith ’Yes No ’Yes ’No ’Medium Automated

| Thin servlet redirector IYes |No Yes |No |Medium IManual

SSL.. Supports Secure Sockets Layer (SSL) security.

Database password required? Requires a database user ID and password to be stored on the machine for use
by the database processes.

WLM. Uses the WebSphere workload management service to balance client workloads.

NAT. Supports Network Address Translation (NAT) firewalls. NAT firewalls receive packets for one IP
address, trandlate the headers of the packets, and send the packets to a second | P address.

Performance. Compares the relative performance of each of these configurations.

Administration. Specifies whether the configuration must be administered manually or can be administered
through the Administrative Console. This gives you a basisto compare the relative difficulty of administering
each configuration.

17

7.1.3.6.1: Remote OSE sample topology

« Overview o Typical use

« Load-balancing support « Instructions

« Failover support « Updating the remote OSE configuration
Overview

Open Servlet Engine (OSE) is alightweight communication protocol developed by IBM forinterprocess communication. Remote OSE uses this
proprietary transport to route requestsfrom the Web server plug-in to application servers on remote machines.

Firewall Firewall

I 1

i Machine A i Machine B Machine C
HTTP | i)
requests | VWeb 1 Application .
from ——» server } server # Application
Web ! f’ data
browsers | L P -

I WebSphere (g Administrative

| plugrin } server ™ Administrative

| } ~ repository

|

| |

| a

In the diagram, Machine A hosts the Web server and receives HTTP requests from clients. The Web server forwards the requests to the
application server on Machine B by using theWebSphere plug-in for the Web server and some specia configuration. Machine C hosts
theapplication and administrative repository databases.

Variations on this configuration include vertical scaling of the application servers,which is discussed in Vertical scaling sample
topology.Additional application server machines (D, E, ... N), can be added to the configuration toimplement horizontal scaling.

Usually, a WebSphere administrative server on a Web server machine generates Web server plug-in configuration filesto tell the Web serverhow
to route requests. However, the Remote OSE configuration does not place anadministrative server on the Web server machine. Instead, a Remote
OSE script runs on theWeb server machine, communicating with an administrative server on the remote applicationserver machine. The script
gathers the necessary information about the application serverconfiguration and generates the plug-in configuration files.

The script uses RMI/11OP to communicate with the remote administrative server. RMI/I10Pdoes not work through afirewall that performs
Network Address Trangation (NAT). However,Remote OSE can be modified to support environments using NAT. The instructions in thissection
include the additional steps required to run Remote OSE in a NAT firewallenvironment. (See Instructions for details).

Remote OSE requires the following firewall ports to be opened:
« One port for each application server or clone process.
« A port if WebSphere security is used on the machine that hosts the Web server (Machine A).
« A port to run the remote OSE configuration script, OSERemoteConfig.

See Instructions for details.

For more information on firewall configurations in WebSphere Application Server, seearticles 7.1.3.7 and 7.1.4.

Load-balancing support

OSE isfully integrated with WebSphere Application Server's cloning facility. Itbalances |oads between individual application servers and their
clones, and among theclones of an application server. Thisload balancing is separate from the workloadmanagement facility.

« Load balancing between application servers. OSE can be configured to forward requests from each URL to a different application
server and its clones, enabling manual load balancing. For instance, URL s that generate a large number of requests can be forwarded to
application servers on more-powerful machines.

1 8L oad balancing among application server clones. OSE automatically distributes requests among the clones of an application server that

is defined to respond to a single URL . The method for selecting which clone handles a particul ar request combines a round-robin selection
policy with server affinity.

If session persistence is not enabled (the default), requests are distributed among all available clones of an application server using a strict
round-robin policy. Each clone gets the next request in turn. The only exception is when a clone is added or restarted; see Failover support

(later in this article) for details.

If session persistenceis enabled (that is, session clustering and server affinity are enabled), requests are distributed as follows:

o OSE distributes the first request of each session and all requests that are not associated with a session as if session persistenceis
not enabled. That is, they are distributed using a round-robin policy except when clones are added or restarted.

o OSE attempts to distribute all requests associated with a particular session to the same clone of an application server. Different
sessions are assigned to different clones of the application server.

Be aware that there is no guarantee that the same clone will be used for all requests within a session. Session affinity cannot
aways be maintained in situations where the number of available clones changes during the lifetime of a session. The Session
Manager's session clustering facility ensures that session stateis not lost if requests are switched to another clone during a
session.In any case, applications that require session information to be available across multiple client invocations must store
session information in a database.

m' Session persistence cannot be used with the workload management facility.

Failover support

OSE automatically handles failover and changes in the number of available clones.

« If acloneis stopped or unexpectedly fails, all subsequent requests are distributed among the remaining clones. The unavailable cloneis
skipped.

« If acloneisadded or restarted, the system automatically begins to distribute requests to it. The next several requests are dispatched to that
clone before OSE resumes its normal methods for distributing requests to the clones of an application server based on whether session
persistence is enabled. (See Load-balancing support, for details.)

Typical use

Remote OSE has the following advantages:
« |t supports load balancing and failover.

« |t does not require database access through the firewall. The administrative server runs on the machine that hosts the application server,
which istypically behind the firewall.

« |t supports WebSphere security.
o Itworkswith NAT firewalls.
« Performanceisrelatively fast.

Remote OSE a so has the following disadvantages:
« |t does not support Secure Sockets Layer (SSL) encryption for communications between the Web server and the application server.

« ltrequiresat least one firewall port, more if multiple application server clones are configured, the OSERemoteConfig script is used, or
WebSphere security is used on the machine hosting the Web server.

« ltsconfiguration isrelatively complicated.

Instructions

Theinstructions describe how to set up theillustrated configuration, allowing formultiple Web server machines (like Machine A) and application
server machines (likeMachine B). They are summarized as follows:

1. Install the appropriate WebSphere Application Server components.

Start the database server, administrative server and administrative console.

Configure the application server on Machine B.

Start the application server on Machine B.

Configure the Web server plug-in on Machine A for Remote OSE.

If afirewall isbeing used between Machine A and the other machines in the configuration, open the appropriate firewall ports.
If WebSphere security is being used to secure resources on the Web server, modify the appropriate configuration files.

© N o 0k~ w DN

Restart all Web servers, application servers, and administrative servers.

19

Therest of this section describes how to complete these steps.
Install WebSphere Application Server components

The product components required for Remote OSE are listed in the following table;

Web server Application server WS?UZ?XH Administrative server
Machine A (and possibly o o o W
others)
When doing the installation, The administrative server, Web server plug-in,
g plug
select Core server and the and IBM Java 2 SDK must be installed on
appropriate plug-in for your Machine A in order for the OSERemoteConfig
Web server. tool to run successfully.
Machine B o »
Perform a production
application server installation.
MachinesD, E, ...N v v
Perform a production
application server installation.

Machines D through N are additional, optional application server machines that hostclones of the application server on Machine B. They do not
contain the default resources.

Machine C contains the administrative database for all of the above administrativeservers, as well as the database for application data. However,
the arrangement shownunder Overview is not the only option for database placement. Forexample, Machine C could be omitted if the database

resides on B, D, E or another machineinstead. Note that a DB2 client is required for accessing a remote DB2 database.

Start the database server, administrative server, andadministrative console

Before you configure the plug-in for OSE remote, start the software that is needed forthe configuration:
1. Start aDB2 instance for the administrative repository (if it was not already started).
2. Start the administrative server on Machine B.
3. Start the administrative console on Machine B.
4. Make sure that Machine B is listed in the administrative console.

Configure the application server on Machine B

Configure the application server on Machine B by completing the following steps:
1. Add the diases of each Web server machine to the alias list of the virtual host for Machine B by following these steps:
a. Locate and click the virtual host in the Topology tree view to display its properties.

b. Inthevirtual host diaslist, specify the host names and | P addresses of the Web server machines. Add the port numbers, if not port
80.

c. Save your changes and close the properties dialog box.

For example, if the configuration contains two Web servers (a.bigcorp.com and b.bigcorp.com) talking to the application server against
the same virtual host, add aliases for a.bigcorp.com and b.bigcorp.com and their 1P addresses.

m' Application servers that have aready been started must be stopped and restarted before they can use the new host aliases.

2. Configure the transport type for the OSE queue. The servlet engine must be configured to use INET sockets instead of local pipes asthe
transport type. Thisisthe default for Solaris machines. However, you must explicitly select INET sockets as the transport type on other
supported operating systems. To do so, follow these steps:

a. Locate and click the servlet engine in the Topology tree view to display its properties.
In the advanced properties, access the plug-in configuration settings.

Change the transport type to INET Sockets.

. Click OK.

. Save your changes and close the properties dialog box. The new transport does not take effect until you restart the application
server.

® e o T

20

m On Windows-based systems, the default application server does not start when the servlet engine configuration is changed to OSE
INET sockets. Y ou must change the servlet engine Maximum Connections parameter to 25 (from the default value of 50).

3. If NAT isbeing used to resolve | P addresses, the interoperable object reference (IOR) must include the host's short name to enable clients
inside the firewall to locate the desired server using a DNS server or a HOST S file on the client machine. To include the short name
instead of the |P address or the fully qualified namein the IOR, add the following line to the Command line arguments field, which is
located in the general settings tab for the default server on the administrative console:

-Dcom i bm CORBA. Local Host =short _nane

If NAT isusing indirect IORs or IORs returned from naming services, this line must also be added to the following file:
product installation root/bin/admn.config

4. Make any other desired changes to the application server.

5. If you are planning to clone the application server, do so now. Asamodel, use the application server you just configured.

Start the application server

Start the application server (and its clones, if applicable).

Wait for the product to refresh the automatically generated plug-in configurationfiles. This usually takes afew minutes. Verify that arefresh
operation has occurred bychecking the time stamp in any of the three properties filesin the product installation root/temp directory.

Configure the Web server plug-in on Machine A for Remote OSE

Y ou can configure the Web server plug-in on Machine A either automatically or manually.
Automatic configuration

Y ou can automatically configure the Web server plug-in by running the remote OSEconfiguration script, OSERemoteConfig, on each Web
server machine. TheOSERemoteConfig script cannot be used if aNAT firewall is between the Web server maching(Machine A) and the
application server machines (Machine B and D through N).

1. If anon-NAT firewall isin use, you must open up a port to run the OSERemoteConfig script. Configure the CORBA listener port for the
administrative server that is running on Machine B as follows:

a. Add the -Dcom.ibm.CORBA .ListenerPort parameter to the line com.ibm.gjs.sm.util.process.Nanny.adminServerdvmArgsin the
product installation root/bin/admin.config file on Machine B. For example:

comibmejs.smutil.process. Nanny. adm nServerJvmArgs - Dcom i bm CORBA. Li st ener Port =33000
b. Stop and restart the administrative server on Machine B.
2. Open acommand window on Machine A.
3. Change directory to product installation root/bin.
4. |ssue the following command to start and configure remote OSE:
o On Windows systems:
OSERenpt eConfi g - adm nNodeNane admi ni stration_server_host nanme
o On UNIX-based systems:
OSERenot eConfi g. sh - adnmi nNodeNanme admi ni stration_server _host nanme

where administration_server_hostname is the host name of the WebSphere application server machine to which regquests should be
routed.

OSERemoteConfig has additional, optional parameters. For details, type OSERemoteConfig (add .sh on UNIX systems) without
any parameters.
5. Wait for OSERemoteConfig to complete.

Manual configuration

Manually configure the Web server plug-in for remote OSE if aNAT firewall is beingused between the Web server machine (Machine A) and
application server machines (MachinesB and D through N) or if you do not want to open up an additional port in anon-NATfirewall. Follow
these steps:

1. Copy the following Web server plug-in configuration files from the product_installation_root/temp directory of Machine B to the same
directory on Machine A:

o vhosts.properties
o rules.properties
0 gueues.properties
21

http://localhost/v355makePDF/advanced/nav_Multiguidenav/root.html
http://localhost/v355makePDF/advanced/nav_Multiguidenav/root.html
http://localhost/v355makePDF/advanced/nav_Multiguidenav/root.html
http://localhost/v355makePDF/advanced/nav_Multiguidenav/06064500.html
http://localhost/v355makePDF/advanced/nav_Multiguidenav/root.html

All users must have read and write access to thesefiles.
2. Add ahost entry for each application server or clone to the queues.properties file on the Web server machine (Machine A). The format of

theentry is:

ose. srvgrp. i brmosel i nk. cl one. host =cl one_host nane

where clone.is the name of the application server or clone and clone_hostname is the | P address or host name of the machine where the
application server or cloneisrunning. The original application server or server group is clonel. For example:

ose. srvgrp. i bnosel i nk. cl onel. host =bi gcor pl

3. If you are running WebSphere 3.5 Fix Pack 1 or earlier, you must modify the queues.properties file on Machine B. For each cloneon a
machine other than Machine B (in other words, for each clone on a machine other than the one specified in the -adminNodeName
argument to OSERemoteConfig), do the following:

a. Create atype entry, such as:
ose. srvgrp. i bnoselink. cl one2.type=renote
b. Create a port entry, such as:
ose. srvgrp. i bnoselink. cl one2. port=servl et _engi ne_port

To find the servlet engine port, use the administrative console to check the Advanced properties for the servlet engine contained in
the cloned application server.

c. Create ahost entry, such as:
ose. srvgrp. i bnosel i nk. cl one2. host =cl one_host narne

where clone_hostname is the host name of the machine where the cloned application server is running.
d. Update the clonescount property to match the number of clones configured, such as:
ose. srvgrp. i bnosel i nk. cl onescount =2

Open ports in the firewall

If afirewall isin use between Machine A and Machines B and D through N, open theports listed in the file:
product _installation_root/tenp/queues. properties

Using remote OSE with WebSphere security

To secure the resources on the Web server (Machine A) with WebSphere security, you needto do the following:
1. If afirewall isin use, open a port between Machine A and Machine B. See Open portsin the firewall for details.

2. Modify the product_installation_root/properties/bootstrap.properties files on both Machine A and Machine B (the administrative server
machine) as follows:

a. Modify the bootstrap.properties file on Machine A asfollows:

Set the clone type property to remote:
ose. srvgrp. i bmappserve. cl onel. type=renote

ii. If necessary, change the clone port number:

ose. srvgrp. i bmappserve. cl onel. port =port _nunber

where port_number is the number of an unused port that is assigned to the clone. The clone port numbers on Machines A
and B must be identical.

b. Modify the bootstrap.properties file on Machine B as follows:

Set the clone type property to remote:
ose. srvgrp. i bmappserve. cl onel. type=renote

ii. If necessary, change the clone port number:

ose. srvgrp. i bmappserve. cl onel. port =port _nunber

where port_number is the number of an unused port that is assigned to the clone. The clone port numbers on Machines A
and B must be identical.
Set the clone host name property:

ose. srvgrp. i bmappserve. cl onel. host =adm n_ser ver _host nane

where admin_server_hostname is the host name of Machine B, the machine where the administrative server is running.

Restart all Web servers, administrative servers, and applicationservers

For taﬁzremote OSE configuration to take effect, you must stop and restart all Webservers, administrative servers, and application servers on each

http://localhost/v355makePDF/advanced/nav_Multiguidenav/root.html
http://localhost/v355makePDF/advanced/nav_Multiguidenav/root.html

machine in the system.

Updating the remote OSE configuration

Y ou need to update the remote OSE configuration after doing any of the following:

Adding or removing a URL (Web resource) in the environment

Adding or removing avirtual host alias

Changing the queue properties of a servlet engine (such as the name or port)
Adding or removing a servlet engine

Adding or removing an application server clone

See Configure the WebSphere plug-in on Machine A for remote OSEfor details.

23

7.1.3.6.2: Semi-remote OSE sample topology

« Overview
« Typicd use
« Instructions
Overview
‘Semi-remote OSE is avariation on the remote OSE topology. The di thetwo aninstance of Server runs on A OSE has an instance of running on /eb server; aremote O doesnot.
Web server Application server Database server
Machine A Machine B Machine C
Client TR T
HTTP
HTTP—3 OSEy| Applcalion
requests
Application
- Admin) data
Application Server -
server A
I O
Admin "’
Server Administrative
repository
Like remote OSE, semi-remote OSE can be used to direct client requests to additionalapplication server clones on other machines. In it requeststo both server on Machine A and
Typical use
‘Semi-remote OSE requires more steps than remote OSE. Using a semi-remote in /oufrom hosting on adedicated machine.
Inmany oneset of to run HTTP serversand another set of to i If acustomer add capacity in or cannot fully inthepr test te OSE distribution between amachine hosting both the HTTP and application server andmachines hosting just the application server.

A semi-remote OSE configuration can also be used as a WebSphere proof of concept fordemonstrating OSE load distribution in situations where there are aimited number ofmachines.

Instructions

To creats OSE do g
1. Create aremote OSE configuration, following the stepsin article 7.1.3.6.1, Remote OSE sample topology.
2. Copy the product_installation_r i lication server to the product_installation_root/temp directory on).
3. Modif identify both machi T dified in bold:

1BM WebSphere Pl ugin Conmuni cation Queues

#Friday March 23 18:05:13 PDF
20010se. srvgr p. i bosel i nk. ¢l onescount =20se. srvgr p=i brosel i nkose. st vgr p. i brosel i nk. type=FASTLI NKose. srvgr p. i biosel i nk. ¢l onel. port =81100se. st vgr p. i biosel i nk. ¢l onel. type=r enot eose. rvgr p. i brosel i nk. cl oneL. host =was- nt 1#ose. srvgr p. i brosel i nk. cl one2. por t =81100se. Srvgr p. i biosel i nk. cl one2. t ype=r eot eose. s vgr p. i brosel i nk. ¢l one2. host =vas- nt 2

4. Copy and another directory, for example, product_installation_root/temp/http. Copying these filesto adifferent directory them.
5. Create anew directory under the product_installation_root/properties directory, for example, product installation_root/propertiesiitp.

6. Copy the product_installation_r directory you just created

7. Inthe copied bx e h dir parameter to the product_installation_roottempihttp directory. (Thet is, the directory where you placed the modified ad iesfile)

ose. tmp. di r=product _i nstal | ation_root/tenp/ http

“This parameter tells the HTTP server plug-in where o find the moiified properties files.

In the HTTP server configuration file product_installation_ i cont, inentry for ileto refer to fied of thefile:
Nef AppSer ver Conf i g Boot f Fi | epr oduct _i nstal | ati on_r oot/ properti es/ ht t p/ boot strap. properti es

Restart the administrative servers, application servers, and HTTP server.

©

©

http://localhost/v355makePDF/advanced/nav_Multiguidenav/root.html
http://localhost/v355makePDF/advanced/nav_Multiguidenav/root.html
http://localhost/v355makePDF/advanced/nav_Multiguidenav/root.html
http://localhost/v355makePDF/advanced/nav_Multiguidenav/root.html
http://localhost/v355makePDF/advanced/nav_Multiguidenav/root.html
http://localhost/v355makePDF/advanced/nav_Multiguidenav/root.html
http://localhost/v355makePDF/advanced/nav_Multiguidenav/root.html
http://localhost/v355makePDF/advanced/nav_Multiguidenav/root.html
http://localhost/v355makePDF/advanced/nav_Multiguidenav/root.html

7.1.3.6.3: Reverse proxy (IP forwarding) sample topology

« Overview
« Typica use
« Instructions

Overview

Reverse proxy (or |P-forwarding) topologies use areverse proxyserver to receive incoming HTTP requests and forward them to a Web server. The Web serverin turn
forwards the requests to the application servers that do the actual processing.The following figure shows a simple reverse proxy topology.

Firewall Firewall pachine B Machine C

AT T

Machine A

HTTP| | web
sernver

Appication
cata

-l el o w wl w—-—

HTTP
requests

Application
server — _
Administrative

repository

f

I
Admnistrative
server

—

o el el e ' wl wel e we' wel wel
R R R R R R T

In this example, areverse proxy residesin a demilitarized zone (DMZ) between theouter and inner firewalls. It listenson an HTTP port (typically port 80) for
HTTPrequests. The reverse proxy then forwards those requests to an HT TP server that resides onthe same machine as WebSphere Application Server. After the requests
arefulfilled, theyare returned through the reverse proxy to the client, hiding the originating Web server.

Typical use

Reverse proxy servers are typically used in DMZ configurations to allow additional security between the public Internet and the Web servers (and application
servers)servicing requests. A reverse proxy product used with WebSphere Application Server mustsupport Network Address Translation (NAT) and WebSphere
security.

Reverse proxy configurations support high-performance DMZ solutions that require as fewopen ports in the firewall as possible. The reverse proxy capabilities of the
Web serverinside the DMZ require as few as one open port in the second firewall (potentially two ifusing SSL - port 443).
The advantages of using areverse proxy server in aDMZ configuration include thefollowing:

« Thereverse proxy server does not need database access through the firewall.

« |t supports WebSphere security and NAT firewalls.

« Thebasic reverse proxy configuration iswell-known and tested in the industry, resulting in less customer confusion than other DMZ configurations.

« Itisreliable and its performanceisrelatively fast.

« It eliminates protocol switching by using the HTTP protocol for all forwarded requests.

« It does not affect the configuration and maintenance of a WebSphere application.

« Itusesonly onefirewall port (HTTP) for requests and responses.

[Thisisalso adisadvantage in some environments wheresecurity policies prohihit the same port or protocol being used for inbound and outboundtraffic across a
firewall.

The disadvantages of using areverse proxy server in aDMZ configuration include thefollowing:
« The presence of areverse proxy server in aDMZ might not be suitable for some environments.

« It requires more hardware and software than similar topologies that do not include a reverse proxy server, which makes it more complicated to configure and
maintain.
« Thereverse proxy server does not participate in WebSphere workload management.

Article 7.1.4, Firewall and demilitarized zone (DM Z)configurations, compares the reverse proxy topology to other topologies that support aDMZ configuration.

Instructions

The implementation specifics are determined by the reverse proxy server; refer to thedocumentation for the product you are using. No additional WebSphepe;

administration isrequired for the reverse proxy server, although it can be needed for other elements of thereverse proxy topology.

The following figure shows how areverse proxy server can be used with Remote OSE.

Yweb browvwser

vwveb server

viveb server vieb=Sphere
originating called http1: called hitp2: application
HTTF e reverse proxy |] remote OSE | ™ server
requests

In this case, the reverse proxy server (located on host httpl) passes requests to asecond Web server (located on host http2) that uses Remote OSE to forward the requests
toan application server. The application server requires virtual host configurations for thephysical hosts http1 and http2, but not for the reverse proxy host name.

26

7.1.3.6.4: Thick servlet redirector sample topology

« Overview
o Typical use

« Instructions

Overview

In athick serviet redirector configuration, the machine where the servletredirector runsis configured as a full WebSphere Application Server node with anadministrative server and its
associated processes. The following figure shows a thickservlet redirector topology used with two firewalls.

Firewall Firewall

I Machine A

|
Ir_le-I;Zsts I Web I Application

from p server f server
Web
browsers

Machine B Machine C

Application data

Web server
plug-in | IOF | Administrative
OSE l or server
SSU Administrative data
Serviet

/
redirector

HOP

server

l
l
Administrative I
l

The thick servlet redirector isinstalled on Machine A with the Web server. Requests are forwarded from the Webserver to the servlet redirector by using the Open Servlet Engine

(OSE)transport. The servlet redirector then forwards the requests to theapplication server on Machine B by using Remote Method Invocation (RMI) and Internetinter-ORB Protocol (110P).
Encrypted requests can be forwarded by using the SecureSockets Layer (SSL) protocol.

Typical use

The thick servlet redirector topology has the following advantages:
« It supports encrypted communication with SSL between the servlet redirector and the application server.

« Because the thick servlet redirector includes a full administrative server, it can be configured and managed from WebSphere administrative clients. It also automatically updates the
Web server plug-in files when administrative changes are made.

« A servlet redirector communicates with application servers through EJB client invocations and can participate in workload management. Thisallowsit to forward HTTP reguests to
cloned application servers and provides load balancing and failover support.
It also has the following disadvantages:

« The administrative server requires access to the repository database, which isinapproprate for some secure environments. This requires an open port in the firewall for database
communication.

« A database client must also be installed on Machine A. In addition to running another process on the machine, running a database client in an insecure environment is often
inappropriate. A database ID and password must be stored on the machine, which can pose a security risk.

« It requiresmultiple portsin afirewall.

« It requiresthe firewall to support 110P.

« It does not support Network Address Trandation (NAT) firewalls.

» Thethick servlet redirector performsrelatively slowly compared to other servlet redirector mechanisms such as Remote OSE. The administrative server and database client processes
use system resources that are needed by the Web server, which can negatively affect its performance.

The thick servlet redirector is often used in situations where an organization wants tomaintain a Web server in one department and secure applications in another. Theapplication server
provides dynamic content (such as servlets and JSP files) to clientswith minimal maintenance requirements for the Web server machines. The thick servletredirector can be configured from the
WebSphere administrative console, allowing users tomaintain it from any machine within a WebSphere Application Server installation.

Article 7.1.4, Firewall and demilitarized zone (DM Z)configurations, compares the thick servlet redirector topology to other topologiesthat support a DMZ configuration.

Instructions 27

The following instructions describe how to set up the configuration shown in theprevious figure, with the possibility of additional Web server machines (Machines D, E,... N) communicating
with the application server on Machine B.

1. Ingtall the product components:

Web server (Web server plug-in [administrative server |administrative console|application server
Machine A v 4 g
Machine B W 7 W
MachinesD, E, ... N (optiona) | W W

Machine C contains the administrative database for all of the above administrative servers, as well as the database for application data. The arrangement shown in the previous figureis
just one option for database placement. For example, Machine C can be omitted if the database on one of the machines already in the configuration (A or B).

2. Start the administrative servers on each machine.
3. Configure the virtual hosts:

a
b.
c.

d.
e
f.

Start the Java administrative client (WebSphere Administrative Console).

Display the Topology view.

Expand the WebSphere Administrative Domain, verifying that all machines sharing the administrative database (in this case, MachinesA, B, D, E ... N) are displayed as
administrative nodes.

In the tree, locate and click the default virtual host to display its properties on the right side of the console.

In the Advanced properties, add host names (and ports, if the port number is other than port 80) for the Web servers running on Machines A, D, E, ... N. Save the changes.
Locate the application server under Machine B in the Topology tree and start it. If Machine A does not contain an application server, configure a new one and start it.

4. Configure and test the thick servlet redirector on Machine A:

a

oDOQ - o O o0

Use the Java administrative client (WebSphere Administrative Consol€) to display the Topology view.

. Expand the WebSphere Administrative Domain, verifying that all machines sharing the administrative database (in this case, Machines A, B, D, E ... N) are displayed as

administrative nodes.

. Locate and right-click the node representing the machine on which the thick redirector runs. A menu is displayed.
. Onthemenu, click Create -> Servlet Redirector to display servlet redirector properties.

. Specify the properties, then save them.

. Locate and right-click the newly created thick servlet redirector in the Topology tree to display a menu.

. On the menu, click Enabled.

. From the same menu, click Start to start the thick servlet redirector process on this machine. Wait for it to start.

. Start the Web server on the same machine.

j. Verify that the thick servlet redirector is running.

. Verify that the thick servlet redirector is set up correctly.

Start aWeb browser. Enter a URL that isvalid for Machine B, but send it to the Web server machine (Machine A).

For example, if the Machine B configuration defines a path of /servlet/snoop for accessing the Snoop diagnostic servliet on Machine B, use this path as part of the URL to access
the Snoop servlet on the Web server machine. Type:

http://host name/ servl et/ snoop

where hostname is avalid host name for Machine A.

5. Repeat the previous step for each thick servlet redirector node (Machines D, E, ...N).

28

http://localhost/v355makePDF/advanced/nav_Multiguidenav/06060001a.html
http://localhost/v355makePDF/advanced/nav_Multiguidenav/0606030101.html
http://localhost/v355makePDF/advanced/nav_Multiguidenav/06060001a.html
http://localhost/v355makePDF/advanced/nav_Multiguidenav/06061300.html

7.1.3.6.5: Thick servlet redirector with administrative agent sample topology

« Overview
« Typical use
« Instructions

Overview

In a configuration for athick serviet redirector with administrativeagent, an administrative server agent providesadministrative support for the servlet redirector. An agent is controlled by afullinstance of an administrative server located on another machine. It provides al ofthe
services of an administrative server, but does not require a direct connection to theadministrative repository database. The agent can access the administrative server througha firewall.

Thefollowing figure shows a thick servlet redirector that is configured to run with anadministrative server agent.

Firewall Firewall

| |

! Machine A : Machine B Machine C
HTTP : Web :

e

;fc?rﬁes.ts_:_—b senver : Application

I 1 HOP or server N
Web " Web_Sphere | SSL ﬂ Application data
browsers| plug-in :

: OSE | :

i Master

i Serviet aff administrative — :

I redirector | A server Administrative

1 1 repository

: lop ||

I Administrative 4] 11OP

: server agent :

[[

I I

| | The thick servlet redirector isinstalled on Machine A with the Web server.

Requests are forwarded from the Webserver to the servlet redirector by using the Open Servlet Engine (OSE)transport. The servlet redirector then forwards the requests to the applicationserver on Machine B by using Remote Method Invocation (RMI) and Internet
Inter-ORBProtocol (110P). Encrypted requests can be forwarded by using the Secure SocketsLayer (SSL) protocol.

The administrative agent on Machine A communicates with the master administrativeserver on Machine B. The master administrative server handles all communication withthe administrative repository database on Machine C. This eliminates the need toinstall a database
client on Machine A. To retrieve configuration information, theadministrative agent communicates by using RMI/I10P through the firewall.

Typical use

The advantages of using athick servlet redirector with an administrative agent are asfollows:
« It does not require database access through a firewall, making it appropriate for use in many secure demilitarized zone (DMZ) configurations.
« Communications between the servlet redirector and the remote application server can be encrypted by using SSL.
« |t does not require a database client on the Web server machine.
« The administrative server agent can be easily configured though the administrative console, making maintenance easier.
« A servlet redirector communicates with application servers through EJB client invocations and can participate in workload management. This alowsit to forward HTTP requests to cloned application servers and provides load balancing and failover support.
« |t supports WebSphere Application Server product security.
« Because it has fewer associated processes (no database client and administration through an agent instead of a full administrative server), this topology generally has better Web server performance than the thick servlet redirector.

The disadvantages of this configuration are as follows:
« The remote administrative server can potentially be asingle point of failure. However, running administrative servers with workload management enabled eliminates this possibility.
« It does not support Network Address Trandation (NAT) firewalls.
« It requiresmultiple portsin afirewall.

http://localhost/v355makePDF/advanced/nav_Multiguidenav/06064606.html

« It requiresthe firewall to support 11OP.
« It performsrelatively slowly inaDMZ configuration compared to other servlet redirection mechanisms such as Remote OSE.

The thick servlet redirector with administrative agent is often used when anorganization wants to maintain a Web server in one department and secure applications inanother. The application server provides dynamic content (such as servlets and JSP files)to clients with minimal
maintenance requirements for the Web server machines. It a soisolates the back-end database from the Web server.

Article 7.1.4, Firewall and demilitarized zone (DMZ)configurations, compares the thick servlet redirector with administrative agenttopol ogy to other topologies that support aDMZ configuration.

Instructions

In order for an administrative agent to be set up, an administrative server must beinstalled and running. Record the host name of the administrative server. To set up anadministrative server as an administrative agent:
1. Install WebSphere Application Server. During the installation, do not create a default configuration.
2. After installation, change to the in the product_installation_root/bin directory and make a backup copy of the admin.config file.
3. Opentheoriginal admi n. confi g file and delete the following lines:
comibmejs.smadm nServer. naneServi ceJar=jar_fil ecomibm ejs.sm admi nServer. dbUser=user_namecom i bm ej s. sm adm nServer. dbUr| =l ocati oncom i bm ej s. sm adm nSer ver. dbPasswor d=passwor d
4. Add the following lines, where host_name is the host name of the administrative server.
o Theselines are required:
comibm ejs.sm adnm nServer. boot st rapHost =host _namecom i bm ej s. sm admi nServer. pri mar yNode=host _nane
0 Theselinesarerequired if the administrative server is using nondefault port numbers. Both nodes must use the same values.
comibm ejs.sm adnmi nServer. boot strapPort =port_nunbercom i bm ejs.sm adm nServer.|sdPort=port_nunber
0 Theselines are optional:
comibm ejs.sm adni nServer. | sdHost =host _nanecom i bm CORBA. Li st ener Port =port _nunber
. Save your changes and close the file.
. Start the WebSphere administrative server on Machine B.
. Start the administrative server agent on Machine A.
. Start the administrative console on Machine B and follow the directions for configuring virtual host aliases and the thick servlet redirector, as described in article 7.1.3.6.4, Thick servlet redirector sample topology.

0 N o O

http://localhost/v355makePDF/advanced/nav_Multiguidenav/root.html

7.1.3.6.6: Thin servlet redirector sample topology

« Typical use
« Instructions

Overview

In athin serviet redirector configuration, a stand-alone version of theservlet redirector runs on the Web server machine. The following figure shows anexample of athin servlet redirector being
used with firewalls.

Firewall Firewall

I |

: Machine A : Machine B Machine C

)]
HTTP : :
requests I Web 1 IOP Application .
from 1 1y Server - server Application data
Web : | SsL
browsers WebSphere || 1

I -. I"_

| plug-in | - - .

I OSE l i Administrative

: ' server Administrative

: Serviet) repository

: redirector :

I I

I 1

I i

| !

L]
The thin servlet redirector isinstalled on Machine A with the Web server. Requests are forwarded from the Webserver to the servlet redirector by using the Open Servlet Engine (OSE)
transport. The servlet redirector then forwards the requests to the application server on Machine Bby using Remote Method Invocation (RMI) and Internet Inter-ORB Protocol (110P).
Encrypted requests can be forwarded by using the Secure Sockets Layer (SSL)protocol.

No administrative server isinstalled on the Web server machine. Instead, scripts are used to configure the Web server plug-in, start the servlet redirector, and stop theservlet redirector. The
Web server plug-in files must be manually generated.

If WebSphere security is being used to secure the HTML files on your Web server, theWeb server plug-in also connects to an administrative server

Typical use

The advantages of the thin servlet redirector configuration are as follows:
« |t does not require database access through a firewall, making it appropriate for use in many secure demilitarized zone (DM Z) configurations.
« Communication between the servlet redirector and the remote application server can be encrypted by using SSL.
« |t does not require a database client on the Web server machine.

« A servlet redirector communicates with application servers through EJB client invocations and can participate in workload management. This allows it to forward HTTP requests to
cloned application servers and provides load balancing and failover support.

It supports WebSphere Application Server product security.

« Becauseit has fewer associated processes (no database client, administrative server or administrative server agent), this topology generally has better Web server performance than the
other thick servlet redirector configurationsin non-DMZ configurations.

The disadvantages of this configuration are as follows:
« It does not support Network Address Trandation (NAT) firewalls.
« ltrequiresthe firewall to support I1OP.
« It performsrelatively slowly inaDMZ configuration compared to other servlet redirection mechanisms such as Remote OSE.

Article 7.1.4, Firewall and demilitarized zone (DMZ)configurations, compares the thin servlet redirector topology to other topol ogies thatsupport a DMZ configuration.
Instructions

The instructions describe how to set up the configuration shown in the previous figure.
1. Install the appropriate product components:

Web server [Web server plug-in [administrative server [administrative console application server
Machine A ¥ ¥ ¥ ¥ (optional)
Machine B v v
MachinesD, E, ...N v v

Machine B must contain the default resources in order to obtain the Admin Web application referred to in the instructions for this sample topology.

Machines D through N are additional, optional application server machines onto which the application server on Machine B can be cloned. Install the default resources gf;ly on Machine

http://localhost/v355makePDF/advanced/nav_Multiguidenav/060201.html

B, cloning them to Machines D, E, ... N if applicable.

Machine C contains the administrative database for all of the above administrative servers, as well as the database for application data. The arrangement shown in the previous figureis
just one option for database placement. For example, Machine C can be omitted if the database resides on Machine B, D, E or another machine.

Although it is not required, having a Web server installed on the administrative server machine is useful for verification testing.
2. Test theinstallation on the application server machine:

a

b
c.
d

Start the administrative server.

. Start the administrative console.

Start the application server. If necessary, create a new application server.

. From the administrative console, add the host name of the Web server machine (Machine A) to the aliaslist of the virtual host containing the Admin Web application on

Machine B:
i. Locate and click the default host in the Topology tree view to display its properties in the right side of the console.
ii. Inthe advanced propertieslist, add the host name and IP address of the Web server machine to the alias list of the virtual host.
iii. Add the machine name and I P address as separate entries in the Host Aliases table. If the Web server port is not 80, append the port to these entries.
iv. Saveyour changes.

. Stop and restart the application servers running under the virtual host on Machine B. For each application server:

. Inthe Topology tree view, locate the application server.

ii. Right-click it, displaying its menu. Click Stop.

iii. Watch for the administrative console message that the application server was stopped successfully.
iv. Right-click the server to display its menu again.

v. Click Start.

vi. Ensure the application server on Machine B is running. Use a browser to view the following:
http:// machi ne_B_host _nane/ servl et/ snoop

where machine_B_host_nameis avalid host name for Machine B.

3. Test theinstallation on Machine A:
a. Start the thin servlet redirector.

i. Use atext editor to open the following file:
product _installation_root/properties/iiopredirector.xnl

Change all occurrences of localhost to the host name of Machine B.
ii. Open acommand window and change directory to:
product _installation_root/bin
iii. Run the thin servlet redirector configuration script:
= On Windows-based systems, type:
t hi nRedi rect or Confi g -adm nNodeNanme Machi ne_B_host nane
= On UNIX-based systems, type:
t hi nRedi rect or Confi g. sh - adm nNodeNane Machi ne_B_host nane

m’ Y ou must be logged in as root to run the thin servlet redirector configuration script on the AIX platform.

The program generates three properties files in the directory:
product _installation_root/tenp

There are optional arguments for the scripts, such as:
= -serverRoot product_installation_root
= -nameServiceNodeName application server machine host name
= -queueProps product_installation_root/properties/iiopredirector.xml

To view acomplete list of arguments for the configuration script, change the directory to the product_installation_root/bin directory and type the following at the
command prompt:
= On Windows-based systems, type:
t hi nRedi rect or Confi g
= On UNIX-based systems, type:
./thinRedirector.sh
iv. Run thethin redirector start script:
= On Windows-based systems, type:
thinRedirectorStart
= On UNIX-based systems, type:
thinRedirectorStart. sh

4. Make surethat al of the following conditions are true:
o ThethinRedirector Config script ran and stopped successfully.
o ThethinRedirector Start script is still running.
o The application server on Machine B is running.
5. Confirm that the Web server is running, and was started after running the scripts and starting the application server. Use a Web browser to open the following:
http:// Machi ne_B_host nane/ ser vl et/ snoop
6. Whenever the configuration on Machine B changes, you need to:
1. RunthethinRedirector Config and thinRedir ector Start scripts again to regenerate the Web server plug-in configuration files.
2. Stop the Web server and start it again.

Install®® additional Web servers with different ports

http://localhost/v355makePDF/advanced/nav_Multiguidenav/0606030101.html
http://localhost/v355makePDF/advanced/nav_Multiguidenav/root.html
http://localhost/v355makePDF/advanced/nav_Multiguidenav/root.html
http://localhost/v355makePDF/advanced/nav_Multiguidenav/root.html
http://localhost/v355makePDF/advanced/nav_Multiguidenav/root.html
http://localhost/v355makePDF/advanced/nav_Multiguidenav/root.html
http://localhost/v355makePDF/advanced/nav_Multiguidenav/root.html

These instructions describe how to add another Web server on Machine A or anothermachine and configure it to send requests to Machine B (the application server machine). The details of
each step were described previously under Thin servlet redirectorconfiguration procedure.

1. If you are adding a new machine, install the components that you installed on Machine A.
2. Install the Web server and plug-in.

3. Inthevirtual host settings on Machine B (application server machine), define the Web server host name and | P address and associated ports as virtual host aiases, as you did for
Machine A.

. Stop the administrative server and console on Machine B and start them again.

. Run the thinRedir ector Config and thinRedir ector Start scripts.

. Start the new Web server on the new machine.

. At aWeb browser, verify the configuration by accessing the following:
http:// new_nachi ne_host nane/ servl et/ snoop

~N o UgoA

Accessing clones

To use the servlet redirector to access Machines D, E, ... N, which contain clones ofthe application server on Machine B, when you set up the thin redirector machine (MachineA):
« Specify the machine's host name in the file iiopredirector.xml.
« Specify the machine's host name as an argument to the thinRedir ector Config command.

Using with firewalls (DMZ configuration)

Y ou need to open the following portsin the firewall:
« The RMI/IIOP port
« The Location Service Daemon (LSD) port
« The bootstrap port

33

7.1.3.7: Demilitarized zone (DMZ) sample topology

A demilitarized zone (DM Z) configuration involves multiple firewalls that addlayers of security between the Internet and a
company's critical data and business logic.The following figure shows an example of asimple DMZ topology.

Firewall Firewall
: Machine A : Machine B Machine C
i I
I i
Web . . . =
l | Web I Application
client] > server I server o
(br ow ser) | :
: i
|
4—|ntemet i i Intranet——»
I I

The main purpose of aDMZ configuration is to protect the business logic and data inthe environment from unauthorized
access. A typical DMZ configurationincludes:

« Anouter firewall between the public Internet and the Web server or servers processing the requests originating on
the company Web site.

« Aninner firewall between the Web server and the application serversto which it is forwarding requests. Company
data also resides behind the inner firewall.

The area between the two firewalls gives the DMZ configuration its name. Additionalfirewalls can further safeguard access
to databases holding administrative and applicationdata.

DMZ configurations can be implemented for awide variety of multi-tiered systems. Article 7.1.4, Firewall and
demilitarized zone configurations,compares some DM Z configuration options and can help you to select which oneisright
foryour organization.

Typical use

The advantage of using a DMZ topology is heightened security. Its drawbacks are morecomplex administration and
maintenance. In addition, an administration server often cannotbe run on the DMZ node. The firewall is intended to protect
the back-end database serverfrom unauthorized access, but it can prevent the administrative server from gaining accessto
the administrative repository.

34

7.1.3.8: Multiple WebSphere domains sample topology

o Overview

o Typica use

Overview

The following figure shows an example of how an application can be implemented overmultiple WebSphere Application Server administrative domains.

Database server

Clhient

HTTP—
requests

Primary Network
Dispatcher node
hMachine C

PO

Machine A, WebSphere domain A

Machine D

HTTP
Server

Plug-in

Application
server clones

e

J

| Admin.

Server

HTTP
server

Plug-in

Application
| server clones

| Admin.

Server

_—

Administrative

repository
Application =

data

w_B_
N

Administrative
repository

Backup Network Machine B, WebSphere domain B

Dispatcher node
Machine D

The example application runs simultaneously in two administrative domains, each hostedon a different physical machine (Machines A and B). Network Dispatcher is
used todistribute incoming HT TP requests among the two domains, presenting a single image of theapplication to clients. A backup Network Dispatcher node provides
failover support.

In this example, the application server clones in both domains are created from thesame model so that identical versions of the application run in each domain.
However, youcan run a different version of the application in each domain. Because the domains areisolated from one another, you can also run different versions of the
WebSphereApplication Server software in each domain.

In this example, both domains share a common application database. However, each domainis administered independently and maintains a separate administrative

repository.

Typical

use

Topologies that incorporate more than one administrative domain have the followingadvantages:
« Isolation of hardware failure. If one domain goes offline due to hardware problems, the others can still process client requests.

« Isolation of software failure. Running an application in two or more domains isolates any problems that occur within a domain, while the other domains continue
to handle client requests. This can be helpful in avariety of situations:

o When rolling out a new application or arevision of an existing application. The new application or revision can be brought online in one domain and
tested in alive situation while the other domains continue to handle client requests.

o When deploying a new version of the WebSphere Application Server software. The new version can be brought into production and tested in alive
situation without interrupting service.

o When applying fixes or patches to the WebSphere Application Server software. Each domain can be taken offline and upgraded without interrupting the

application.

If an unforeseen problem occurs with the new software, using multiple domains can prevent an outage to an entire site. A rollback to a previous software version
can also be accomplished more quickly. Hardware and software upgrades can be handled on a domain-by-domain basis during offpeak hours.

« Improved performance. Running an application using multiple smaller domains can provide better performance than a single large domain because there isless
interprocess communication in a smaller domain.

Using multiple domains has severa drawbacks:

« Deployment is more complicated than for a single administrative domain. Using a distributed file system that provides a common file mount point can make this

task

easier.

« Multiple domains require more administration effort because each domain is administered independently. This problem can be reduced by using wscp and
XML Config scripts to standardize and automate common administrative tasks.

« Using multiple administration repositories (databases) makes performing backups more complicated.

35

7.1.3.9: Multiple applications within a node sample topology

o Overview

o Typical use

Overview

The following figure shows a topology in which clones of more than one applicationserver are hosted on a physical node.

Application server
IMachine B

Application server 1
fLCIDne 1

Application server 2
Clone 1

Web server

Machine A — :
Client Administrative|
HTTP HTTP Server '
requests | P\ server

Database server
Machine D

e .] T
N Application server 1
Clone 2

Application server 2

Clone 2

Administrative
server

| Ad ministrative

=

Application
data

repository

Application server
fMachine C

The example topology is a variation of the basic horizontal scaling topology. Theclones of an application server are not hosted on asingle
machine but are distributedthroughout all of the machines in the system. (In this example, aclone of each ishosted on both Machine B and
Machine C.) Machine A serves as the Web server for theapplication and distributes client requests to the application server clones on

eachnode. Machine D serves as the database server for both nodes.

Typical use

Hosting clones of multiple application servers within a node provides the followingbenefits:

« Improved throughput. Cloning an application server enablesit to handle more client requests simultaneously.
« Improved performance. Hosting clones on multiple machines enables each clone to make use of the machine's processing

resources.
36

« Hardware failover. Hosting clones on multiple nodes isolates hardware failtures and provides failover support. Client requests can
be redirected to the application server clones on other nodes if one node goes offline.

« Application server failover. Hosting clones on multiple nodes a so isolates application software failures and provides failover
support if aclone stops running. Client requests can be redirected to clones of the application server on other nodes.

« Processisolation. If one application server process fails, its clones on the other nodes are unaffected.

Drawbacks of thistopology include the following:

« More complex deployment. Application executable files must be distributed across multiple machinesin acluster. Using a
distributed file system that provides a common file mount point for all nodes can make thistask easier.

« More complex maintenance. Clones of each application server must be maintained on multiple machines.

37

7.1.3.10: Putting it all together - a combined topology

« Overview
o Typica use

Overview

An example of atopology that combines the best elements of the other topol ogiesdiscussed in this section is shown in the following figure.

WebSphere domain 1 Application servers Database servers
: Web servers Machines D, E, Fand G Machines H and |
Machines BandC | /2 - rcation . —— |
Application ~ TAdmin. N
Network senver clones Server
Dispatcher node —
Machine A Plug-in Application [[Admin_ » Application
- senver clon es{j Server data
™ Application -, .
- HTTP /ﬁ server clones | ggmg —»
! server —
Plug-in “aooicaiion Tk Administrative
; pplication -, : repositor
| server clones sl > P Y
) Server |
Client
requests | WebSphere domain 2 Application servers Database servers
Web servers tMachines M, N, O and P Machines Q and R
Machines K andL | rasnlication . —
: Application [- |
. Network . server clones | gdmln | ™
. Dispaicher node = orver
: Machine J Application ' T Admin_ Application
§ _ server clones ™ data
: -) | | Server
a pplication . -
ol server clones | Admin. | -\,
2| | Server
E W—\\ Administrative
™ i repositor
server clones . > P Y
=) | | Server |

This topology combines elements of several different basic topologies:
« Two WebSphere Application Server administrative domains
« Two Network Dispatcher nodes (machine A in domain 1; machine Jin domain 2)
o Two HTTP serversfor each domain (machines B and C in domain 1; machinesK and L in domain 2)
« Four application server nodes for each domain (machines D, E, F, and G in domain 1; machinesM, N, O and P in domain 2)

« Theuse of clones for both vertical and horizontal scaling. In the example topology, each node hosts three clones; in practice, the number of clonesis limited by the computing
resources of each node.

« Two database servers for each domain (machinesH and | in domain 1; machines Q and R in domain 2). These servers host mirrored copies of the application database and
administrative database.

Typical use

This topology is designed to maximize thoughput, availability, and performance. It incorporates the best practices of the other topologies discussed in this section:
« Having more than one Network Dispatcher node, HTTP server, application sever, and database server in each domain eliminates single points of failure.

« Multiple administrative domains provide both hardware and software failure isolation, especially when upgrades of the application or the application server software are rolled out.
(Hardware and software upgrades can be handled on a domain-by-domain basis during off-peak hours.)

« M@ zontal scaling is done by using both cloning and Network Dispatcher to maximize availability and eliminate single points of process and hardware failure.

« Application performance isimproved by using several techniques:
o Hosting application servers on multiple physical machines to boost the available processing power.

o Creating multiple smaller domainsinstead of one large domain. Thereis less interprocess communication in asmaller domain, which allows more resources to be devoted to
processing client requests.

o Using clonesto vertically scale application servers on each node, which makes more efficient use of the resources of each machine.

« Applications with this topology can make use of several workload management techniques. In this example, workload management can be done through one or more of the
following:

o Using the Advanced Application Server workload management facility to distribute work among the application server clones.
o Using Network Dispatcher to distribute client HTTP requests to each Web server.

o Using the servlet redirector to distribute requests from the Web server to servlets running in the various application servers.

o Using Remote OSE, which provides a simple workload distribution facility.

For example, an application can manage workloads at the Web server level with Network Dispatcher and at the application server level with WebSphere workload managment.
Using multiple workload management techniques in an application provides finer control of load balancing.

Regardless of which workload management techniques are used in the application, administrative servers participate in workload management to provide failover support.

In this topology, only the loss of an entire domain can normally be noticed by users.If this occurs, the active HTTP sessions are lost for half of the clients. Thesystem can still processHTTP
requests although its perfomance is degraded.
The combined topology has several drawbacks:

« Deployment is more complicated. The WebSphere Application Server software and application files must be deployed in each domain, which would not be the case for applications
that run in asingle administrative domain. Using a distributed file system that provides a common file mount point can make this task easier.

« Multiple domains require more administration effort, since each domain is administered independently. This problem can be reduced by using wscp and XM L Config scripts to
standardize and automate common administrative tasks.

39

7.1.4: Firewalls and demilitarized zone (DMZ2)
configurations

Firewalls are often used in multimachine systems to protect back-end resources such asdatabases. They can also be
used to protect application servers and even Web servers fromunauthorized outside access.

A demilitarized zone (DM Z) configuration involves multiple firewalls that addlayers of security between the Internet
and a company's critical data and business logic.A wide variety of topologies are appropriate for aDMZ environment.
WebSphere ApplicationServer provides great flexiblity in configuring DMZ topologies, but the basic locations
ofelements are as follows:

Intemet DMZ Infranet
Web browsers --Weh servers --Application servers
--HTTP load with critical logic
haancing products --Databases with
--Application servers critical data

with honcritical

husiness logic
--Databaseswith

noncritica data

\ firewalls /

Comparison of DMZ configurations

Somehow, requests for applications being managed by WebSphere Application Server mustget from the Web server to
the application servers, passing through firewalls. WebSphereApplication Server offers many configuration choices for
accomplishing this goal. Thefollowing table summarizes the benefits of each DMZ configuration option supported by
theproduct. The criteria for each topology are described after the table.

A checkmark (v) represents anadvantage. Remote OSE and reverse proxy are the recommended configurations, but
you willstill need to evaluate whether one of them suits your particular environment better thanthe other options.

g W Thick servlet | Thin serviet Administrative Reverse

B(??itfgti(stic) Remote OSE redirector redirector agent proxy
Compatible with
product security v v v v
Avoids data
access from W W [W
DMZ
Supports NAT W W
Avoids DMZ
protocol switch ¥

40

Allows
encrypted link
between Web Depends on
server and v v v Web server
application
server
Avoidssingle
point of failure v 4
1 per application server,
plus 1 if WebSphere
security is used on the Web |3, 3 3
Minimum server machine, plus 1 if plus 1 per plus 1 per ; I
firewall holes |the OSERemoteConfig application application 2';5 elr per application |1
script is used to configure [server server
remote OSE on the Web
server machine

« Compatiblewith product security. IBM WebSphere Application Server security protects applications and
their components by enforcing authorization and authentication policies. Configuration options compatible with
product security are desirable because they do not necessitate alternative security solutions.

» Avoidsdataaccessfrom DMZ. A DMZ configuration protects application logic and data by creating a
demilitarized zone between the public Web site and the servers and databases where this valuable information is
stored. Desirable DMZ topologies do not have databases or servers that directly access databasesin the DMZ.
Because a WebSphere administrative server needs access to a database for its configuration information, it is

often not a viable solution to run an administrative server inthe DMZ.

« Supports Network Address Trandation (NAT). A firewall product that runs NAT receives packets for one |P
address, and trand ates the headers of the packet to send the packet to a second | P address. In environments with
firewalls employing NAT, avoid configurations involving complex protocolsin which |P addresses are
embedded in the body of the IP packet, such as Java Remote Method Invocation (RMI) or Internet Inter-Orb
Protocol (110OP). These IP addresses are not translated, making the packet useless.

« Avoids DMZ protocol switch. The Web server sends HT TP requests to application servers behind firewalls. It
issimplest to open an HTTP port in the firewall to let the requests through. Configurations that require
switching to another protocol (such as 110P), and opening firewall ports corresponding to the protocol, are less
desirable. They are often more complex to set up, and the protocol switching overhead can impact performance.

« Allowsencrypted link between Web server and application server. Configurations that support encryption
of communication between the Web server and application server reduce the risk that attackers will be able to
obtain secure information by "sniffing" packets sent between the Web server and application server. A
performance penalty usually accompanies such encryption.

« Avoidssingle point of failure. A point of failure exists when one process or machine depends on another
process or machine. A single point of failure is especially undesirable because if the point fails, the whole
system will become unavailable. When comparing DMZ solutions, a single point of failure refersto asingle
point of failure between the Web server and application server. Various failover configurations can minimize
downtime and possibly even prevent afailure. However, these configurations usually require additional

hardware and administrative resources.

o Minimum required number of firewall holes. Configurations that minimize the number of firewall ports are
desirable because each additional firewall port leaves the firewall more vulnerable to attackers.

» Relative performance. Some solutions are faster than others, in terms of the number of client requests they can
process per unit of time.

» Relative administrative maintenance. Some solutions require little or no maintenance after you establish
them, while others require periodic administrative steps, such as stopping a server and starting it again after
modifying resources that affect the configuration. To learn about the necessary maintenance for a topology,
review the instructions for setting up and maintaining that topology. Of course, if you can automate the
necessary administrative steps, this might not concern you. See article 6.6.0.2 for information about the

available command-line clients and scripting possibilities.

41

http://localhost/v355makePDF/advanced/nav_Multiguidenav/06060002.html

7.1.5: Remote database access with DB2 Universal
Database (UDB)

DB2 databases can be installed on the same machine as the WebSphere Application Serversoftware or on a
different machine. Installing the database on a different machinehas several advantages:

« Placing the database and application server software on different machines improves their performance
because they do not need to compete for system resources.

« You can independently tune the machines that host the database server and the application server to
achieve optimal performance.

« Many organizations have invested in high-availability solutions for their database servers, reducing the
possibility of it being asingle point of failure in a system.

All remote database clients use a communications product to support the protocol thatis used to access aremote
database server. The protocol stack must be installed andconfigured before a client can communicate with a
remote DB2 UDB server. ForWebSphere Application Server, the recommended protocol is TCP/IP.

See the WebSphereApplication Server installation documentation for your platform for instructions on how
toconfigure aremote DB2 database.

42

7.1.6: Managing state

Multimachine scaling techniques rely on using multiple copies of an application server;multiple consecutive
requests from various clients can be serviced by different servers.If each client request is completely
independent of every other client request, it doesnot matter whether consecutive requests are processed on the
same server. However, inpractice, client requests are not independent. A client often makes a request, waits
forthe result, then makes one or more subsequent requests that depend on the results receivedfrom the earlier
requests. This sequence of operations on behalf of aclient fallsintotwo categories:

» Stateless: A server processes requests based solely on information provided with each request and does
not reply on information from earlier requests. In other words, the server does not need to maintain state
information between requests.

« Stateful: A server processes requests based on both the information provided with each request and
information stored from earlier requests. In other words, the server needs to access and maintain state
information generated during the processing of an earlier request.

For stateless interactions, it does not matter whether different requests are processedby different servers.
However, for stateful interactions, the server that processes arequest needs access to the state information
necessary to service that request. Eitherthe same server can process all requests that are associated with the
same stateinformation, or the state information can be shared by all serversthat requireit. In thelatter case,
accessing the shared state information from the same server minimizes theprocessing overhead associated with
accessing the shared state information from multipleservers.

The load distribution facilities in WebSphere Application Server make use of severaldifferent techniques for
maintaining state information between client requests:

« Session affinity, where the load distribution facility recognizes the the existence of a client session and
attemptsto direct all requests within that session to the same server.

« Transaction affinity, where the load distribution facility recognizes the existence of atransaction and
attempts to direct all requests within the scope of that transaction to the same server.

« Server affinity, where the load distribution facility recognizes that although multiple servers might be
acceptable for agiven client requests, a particular server is best suited for processing that request.

The WebSphere Session Manager, which is part of each application server, stores clientsession information and
takes session affinity and server affinity into account whendirecting client requests to the clones of an
application server. The workload managementservice takes server affinity and transaction affinity into account
when directing clientrequests among the clones of an application server.

e 0.11: What are sessions and Session Managers?

e 4.4.1: Tracking sessions

43

http://localhost/v355makePDF/advanced/nav_Multiguidenav/0011.html
http://localhost/v355makePDF/advanced/nav_Multiguidenav/040401.html

7.1.6.1: HTTP sessions, servlets, and the session
manager

When an HTTP client interacts with a servlet, the state information associated with aseries of client requestsis
represented as an HT TP session and identified by a sessionlD. The Session Manager is responsible for
managing HT TP sessions, providing storage forsession data, allocating session IDs, and tracking the session ID
associated with eachclient request through the use of cookies or URL rewriting techniques. The Session
Managercan store session-related information in memory in two ways.

« Inapplication server memory (the default). Thisinformation cannot be shared with other application
Servers.

« Inadatabase shared by all application servers. Thisis also known as persistent sessions or session
clustering.

Persistent sessions are essential for using HTTP sessions with aload distributionfacility. When an application
server receives arequest associated with asession ID thatit currently does not have in memory, it can obtain the
required session state byaccessing the session database. If persistent sessions are not enabled, an
applicationserver cannot access session information for HT TP requests that are sent to servers otherthan the one
where the session was originally created. The Session Managerimplements caching optimizations to minimize
the overhead of accessing the sessiondatabase, especially when consecutive requests are routed to the same
application server.

Storing session states in a persistent database also provides a degree of faulttolerance. If an application server
goes offline, the state of its current sessionsisstill available in the session database. This enables other
application servers tocontinue processing subsequent client requests associated with that session.

Saving session state to a database does not completely guarantee that it is preservedin case of a server failure.
For example, if aserver failswhileit is modifying thestate of a session, some information is lost and subsequent
processing using that sessioncan be affected. However, this situation represents only a very small period of time
whenthereis arisk of losing session information.

The drawback to saving session state in a persistent database is that accessing thesession state database can use
valuable system resources. The Session Manager can improvesystem performance by caching the database data
at the server level. Multiple consecutiverequests that are directed to the same server can find the required state
data in thecache, reducing the number of times that the actual session state database must beaccessed (and thus
the overhead associated with database access).

44

7.1.6.2: EJB sessions and transaction affinity

When an EJB client interacts with one or more enterprise beans, the WebSphereA pplication Server container
manages the state information associated with a series ofclient requests. Whether session state is managed at all
depends on the types of enterprise beans that participate in fulfilling these requests. Each type of enterprisebean
is handled differently by the container.

Stateless session bean

By definition, a statel ess session bean maintains no state information. Each clientrequest directed to a stateless
session bean isindependent of the previous requests thatwere directed to the bean. The container maintains a
pool of instances of statel on beans, and provides an arbitrary instance of the appropriate stateless
sessionbean when a client request is received. Requests can be handled by any statel ess sessionbean instance in
any clone of the application server, regardless of whether the beaninstance handled the previous client requests.

Stateful session beans

A stateful session bean is used to capture state information that must be shared acrossmultiple consecutive client
requests that are part of alogical sequence of operations.The client must obtain an EJB object referenceto a
stateful session bean to ensure thatit is always accessing the same instance of the bean.

WebSphere Application Server supports the cloning of stateful session bean home objectsamong multiple
application servers. However, it does not support the cloning of a specificinstance of a stateful session bean.
Each instance of a particular stateful session beancan exist in just one application server and can be accessed
only by directing requests tothat particular application server. State information for a stateful session bean
cannotbe maintained across multiple application server clones.

Entity beans

An entity bean represents persistent data. Most external clients access entity beans byusing session beans, but it
ispossible for an external client to access an entity beandirectly. The information contained in an entity bean is
not usually associated with asession or with the handling of one client request or series of client requests.
However,it is common for a client to make a succession of requests targeted at the same entitybean instance. It
is also possible for more than one client to independently access thesame entity bean instance within a short
time interval. The state of an entity bean musttherefore be kept consistent across multiple client requests.

For entity beans, the concept of a session is replaced by the concept of atransaction.An entity beanis
instantiated in a container for the duration of the client transactionin which it participates. All subsequent
accesses to that entity bean within thattransaction are performed against that instance of the bean in that
particular container.The container needs to maintain state information only within the context of thattransaction.
The workload management service uses the concept of transaction affinity todirect client requests, After a
server is selected, client requests are directed towardsit for the duration of the transaction.

Between transactions, the state of the entity bean can be cached. The EJB containersupports both option A and
option C caching.
« With option A caching, WebSphere Application Server assumes that the entity bean is used within a
single container. Clients of that bean must direct their requests to the bean instance within that container.

The entity bean has exclusive access to the underlying database, which means that the bean cannot be
cloned or participate in workload management if option A caching is used.

« With option C caching (the default), the entity bean is always reloaded from the database at the
beginning of each transaction. A client can attempt to access the bean and start a new transaction on any
container that has been configured to host that bean. Thisis similar to the session clustering facility

45

46

described for HTTP sessions, since the entity bean's state is maintained in a shared database that can be
accessed from any server when required.

7.1.6.3: Server affinity

A load distribution facility (such as the workload management service) is not alwaysfree to pick any available
server when it redirects client requests.

« For stateful session beans or entity beans within the context of a transaction, there isonly one valid
server. An entity bean isinstantiated on a single server in asingle container during the context of a
transaction. Subsequent client requests must be directed to that server. The workload management
service aways directs client requests to a stateful session bean to the single server instance containing
the bean. In either case, directing the request to the wrong server either causes the request to fail or
forces the server to forward it to the correct server at a high performance cost.

« For clustered HTTP sessions or entity beans between transactions, the underlying shared database
ensures that any available server can be used to process client requests.

« For stateless session beans, any available server can be used because each bean instance is identical.

Server affinity refersto the characteristics of each load distribution facility thattake these constraints into
account. The load distribution facility recognizes thatmultiple servers can be acceptable targets for a request.
However, it alsorecognizes that each request can be directed to a particular server where it is handledbetter or
faster.

Server affinity can be weak or strong.

« Inweak server affinity, the system attempts to enforce the desired affinity for the magjority of requests,
but does not always guarantee that this affinity will be respected.

« Instrong server affinity, the system guarantees that affinity is always respected and generates an error
when it cannot direct arequest to the appropriate server.

47

7.2 Managing workloads

Workload management optimizes the distribution of work-processing tasks in theWebSphere Application
Server environment. Incoming work requests are distributed to theapplication servers and other objects that can
most effectively process the requests.Workload management also provides failover when servers are not
available.

Workload management is most effective when used in systems that contain servers onmultiple machines. It also
can be used in systems that contain multiple servers on asingle, high-capacity machine. In either case, it enables
the system to make the mosteffective use of the available computing resources.

Implementing workload management

WebSphere Application Server, Advanced Edition implements workload management asfollows:

1. By using clones and models. Multiple copies, or clones, of an object can be created from atemplate
known as amodel. Clones and models are most commonly used to create copies of entire application
servers, but can be made for any component of a \WebSphere application.

2. Enterprise beans and servlets have additional steps for implementing workload management.

o For enterprise beans, by using workload management-enabled Java Archive (JAR) files. These
JAR files can be created by using either the Administrative console or the wimjar utility.

o For servlets, by using servlet redirection to route client requests to remote servlet clones.

Benefits of workload management

Workload management provides the following benefits to WebSphere applications:

« It balances client workloads, allowing processing tasks to be distributed according to the capacities of
the different machinesin the system.

« It providesfailover capability by redirecting client requestsif one or more serversis unable to process
them. Thisimproves the availability of applications and administrative services.

« It enables systemsto be scaled up to serve a higher client load than provided by the basic configuration.
With cloning and modeling, additional instances of servers, servlets, and other objects can easily be
added to the configuration.

« It enables serversto be transparently maintained and upgraded while applications remain available for
users.

« It centralizes the administration of servers and other objects.

Interoperability between WebSphere Application Server versions

All resources that participate in workload management must be running under the sameversion of WebSphere
Application Server. For instance, application servers running underversion 3.5.x of WebSphere Application
cannot participate in workload management withapplication servers running under version 3.0.x.

48

7.2.1 Workload management for enterprise beans and
application servers

Workload management for enterprise beansis enabled as follows:
1. Create models and clones of enterprise beans, containers, and application servers.

2. Create aworkload management-enabled Java Archive (JAR) file.

Creating models and clones

Models and clones can be created for objects at any level of the containment hierarchy.A model contains the
objects that are deployed into the object from which it is created.For example, individual enterprise beans can
be modeled and cloned without cloning thecontainer in which they are deployed. Clones of containersinclude
the enterprise beansthat are deployed into the modeled container. Clones of application serversinclude
thecontainers and enterprise beans that are deployed onto their model, and so forth.

Creating amodel and clones of an application server and enterprise beansis the firststep in enabling workload
management of enterprise beans. Models must be created at theapplication server level for workload
management to function.

WebSphere Application Server uses the concept of an application server group, or cluster,to identify which
application servers participate in workload management. The clones ofone model of an application server
constitute an application server cluster. Clientprocessing requests are distributed among the application server
instances in the cluster.

Creating workload management-enabled JAR files

A workload management-enabled JAR file enables EJB clients to access the enterprisebeans through the
workload management service. These JAR files can be created in two ways:

« By using the wimjar command-line utility. Run this utility on a JAR file into which you have deployed
one or more enterprise beans.

« By enabling workload management through the WebSphere Administrative Console. When you are
deploying a JAR file (or specifying a deployed JAR file when creating an enterprise bean using the
administrative consol€e), you can enable workload management of the JAR file. This option is easier to
use than the wimjar utility.

Regardless of which method you use to enable workload management, the resulting JARfile contains stub code
that allows EJB clients to access enterprise beans through theworkload management service. Simply set the
value of the client's CLASSPATH environmentvariable to the location of the workload management-enabled
JAR file.

In general, deploy JAR files with workload management enabled. It does not affect theirnormal behavior unless
models and clones are created, at which point workload managementis activated.

How enterprise beans participate in workload management

The workload management service provides load balancing for the following types of enterprise beans:
« All clones of the home object of an entity or session bean
« All clones of an instance of a specific entity bean or statel ess session bean

The reason why stateful session bean instances are treated differently than statel esssession bean instances has to
49

do with how their state is managed. As their name implies,statel ess session beans do not maintain state
information. All instances of a statel esssession bean are considered to be identical, and each client request that it
handles istreated as being made independently of any other requests.

In contrast, stateful session beans are used to store state information that must beshared among multiple and
consecutive client requests that are part of alogical sequenceof operations. Each instance of a particular stateful
session bean is unique. It existsonly in one application server and can be accessed only by directing requests to
thatparticular application server.

Specific instances of stateful session beans cannot be shared between applicationservers. However, their homes
can be cloned in the context of cloning the applicationserver in which they are contained. Cloning the home
object of a stateful session beanenables an application to create new instances of that bean in an application
server.Multiple instances of a specific stateless session bean can exist in clones of anapplication server, but each
instance is unique and cannot be shared.

Entity beans exist in a container only within the context of a transaction, regardlessof whether the beans
themselves are transactional. The workload management service usesthe concept of transaction affinity to direct
client requests for entity beans. After anapplication server is selected, client requests for that entity bean are
forwarded to itfor the duration of the transaction. Workload management can be used only if option Ccaching is
enabled in the container.

50

7.2.2 Workload management for servlets

Workload management for servlets can be enabled as follows:
« Clone application servers that host servlet engines.

o Usean HTTP redirector or atransport mechanism to distribute processing requests across multiple
machines.

Clone application servers

Cloning an application server in which a servlet engine is running automatical lyenables workload management
for the application server and the servlets it hosts.Configure the servlet engine to maximize its performance and
throughput, then create aserver group and clones by using the WebSphere Administrative Console.

Redirect processing requests

A second way to manage workloadsis to distribute HT TP requests to clones that resideon a machine other than
the machine containing the Web server. Y ou can enableworkload mangement through an HTTP redirector or
the underlying transport mechanism usedin WebSphere Application Server.

A servlet redirector is a special-purpose application server that uses RemoteM ethod Invocation (RMI) over the
Internet Inter-ORB Protocol (I10P) to distribute HT TPrequests to application servers on machines remote to the
Web server. It is used todistribute requests to clones of a servlet engine.

Servlet redirectors act as EJB clients to the cloned application servers in which theservlet engines run. Because
they use EJB client invocations to communicate with theapplication servers, they can participate in workload
management. This enables them toperform load balancing and provides failover support.

Redirecting processing requests to application server clones by using remote OSEprovides a simplified form of
load balancing and supports failover. Load balancingis done manually by redirecting requests from URLSsto
specific application servers andtheir clones and by a round-robin selection policy between clones. Remote OSE
itselfis not part of the workload management service.

51

7.2.3 Workload management for administrative
servers

Administrative servers can participate in workload management. Workload managementprovides failover
capability, improving the availability of administrative and namingservices. It aso eliminates the possibility of
an administrative server being a singlepoint of failurein a system.

[il Workloadmanagement must be enabled or disabled for all administrative serversin adomain.

When an administrative server participates in workload management, an exception isthrown if the
administrative server fails during an administrative task. Subsequentrequests are redirected to the other
administrative serversin the domain, minimizing thedisruption to administrative operations.

For example, acommand issued through the WebSphere Administrative Console can fail ifan administrative
server goes offline while the command is being executed. If workloadmanagement is enabled, any subsequent
attempts to execute the command are redirected toanother administrative server. This allows the command to be
successfully reissued,possibly with adelay for the initial redirection. Subsequent requests are noticeably slower.
The original administrative server will picks up its share ofadministrative requests when it comes back online.

Enabling workload management

To begin workload management, start all administrative servers in the domain withworkload management
enabled. WebSphere Application Server provides two ways to enableworkload management:

« By setting the following property in the admin.config file:
comibmejs.sm Adm nServer.w met rue
This enables workload management for al administrative serversthat are started by using this
configuration file.

« By specifying the -wlm argument when starting an administrative server from the command line. For
instance:

java comibmejs.smserver. Adm nServer -wim. ..
where . . . represents any other arguments that are specified when starting the server.

Enabling workload management through the admin.config file is recommended because it iseasier to administer
than enabling it through the command line.

Disabling workload management

To discontinue workload management, stop all administrative serversin the domain andrestart them with
workload management disabled.
Disable workload management in one of the following ways:

« By placing comment markers around the com.ibm.gs.sm.AdminServer.wlm property in the
admin.config file.

« By restarting the server from the command line without specifying the -wlm argument.

52

7.2.4 Using models and clones

A model is atemplate for creating copies of a server or process instance,such as an application server or servlet
engine. The copies are called clones.The act of creating the clonesis called cloning.

Cloning and modeling allows identical copies of objects (such as application servers,servlets, and so forth) to be
created. A system administrator first creates amodel thatabstractly represents an object. From this model, one
or more clones can be created. Theclones represent real application server processes; when first created, they
are identicalto the model in every way.

Changes to amodel are propagated to its clones when the clones are restarted. Y ou canefficiently administer
severa copies of aserver or other resource by administering itsmodel.

Models and clones can be created for objects at any level of the containment hierarchy.However, it is
recommended that you create them for application servers. A model contains the objects that are deployed into
the object from which it is created. Forexample, individual enterprise beans can be modeled and cloned without
cloning thecontainer in which they are deployed. Clones of containers include the enterprise beansthat are
deployed into the modeled container. Clones of application servers include thecontainers and enterprise beans
that are deployed onto their model, and so forth.

Modeling and cloning objects at different levels of the application server containmenthierarchy (from individual
servlets and enterprise beans to entire application servers)gives administrators agreat deal of flexibility for
implementing and administeringapplications. For example, a system administrator can create models of an
applicationserver, servlets, containers, and enterprise beans; adjust the properties of the models tooptimize the
performance of these objects; then deploy them by creating and startingclones from these models.

Working with models and clones

The basic procedure for using models and clonesis as follows:

1. Create the original instance of the object that you want to clone (such as an application server, servlet, or
enterprise bean). Configure it exactly as you would like it. For example, you can configure an
application server to meet specific performance goals.

2. Create amodel of the object by using the administrative console. Making the original instance acloneis
recommended but not required. The original instance can remain freestanding.

3. Create clones from the model.

4. When changes are necessary, apply them to the model, which in turn modifies the original instance
(which isnow aclone) and the other clones.

Determining which resources can be cloned

To determine whether a resource can be cloned, right-click the resource in the Topologytree to display a pop-up
menu. If the menu contains a Create -> M odel option, the resource can be cloned.
Resources that can be cloned include the following:

« Application servers

« EJB containers

« Enterprise beans

« Servlet engines

o Servlets

« Web applications
53

Although WebSphere Application Server supports cloning at all levels of the containmenthierarchy, it is
recommended that you create models and clones at the application serverlevel. The cloned application server
contains clones of the enterprise beans, servlets,and other resources that are deployed onto it. Creating models
and clones at theapplication server level ssmplifiestheir administration. It is easier to manage theclones of an
application server than to individually manage clones of al of the resourcescontained in it.

54

7.2.4.1 Cloning for workload management, failover,
and scaling

Cloning supports workload management, failover, and scaling.

Workload management

Models and clones provide necessary support for workload management. Whenyou modify a model, the change
is propagated to its clones when they arerestarted. Besides making it easy to administer severa servers asone
logical server,this keeps the clonesidentical so that requests can be routed to any one of them with thesame
results.

This ability to route arequest to any server in agroup of identical servers allowsthe servers to share work,
improving throughput of client remote method invocations.Requests can be evenly distributed to serversto
prevent workload imbal ances in which oneor more servers have idle or low activity while others are
overburdened. This load-balancing activity is a benefit of workload management.

Failover

With several clones available to handle requests, it is more likely that failures willnot damage throughput and
reliability. With clones distributed to various nodes, an entiremachine can fail without producing devastating
consequences (unless, of course, the failedmachine is a single point of failure). Requests can be routed to other
nodes if one nodefails.

Scaling

Cloning is an effective way to perform vertical and horizontal scaling of applicationservers.

« Invertical scaling, clones are defined on a single machine to allow the machine's processing power to be
more efficiently allocated. It is particularly useful if your environment contains large, underutilized
machines. A single application server isimplemented by a single Java Virtual Machine (JVM) process
and cannot fully utilize the power of alarge machine. (Thisis especially true on large multiprocessor
computers because of concurrency limitations within asingle VM process.) Vertical scaling allows
multiple application server clones (and therefore JVM processes) to be created, which makes use of the
machine's processing power more effectively. Vertical scaling is described in more detail in article

7.1.3.3.

« Inhorizontal scaling, clones are defined on multiple machinesin asystem. Thisallowsasingle
WebSphere application to run on several machines while presenting a single system image, making the
most effective use of the resources of a distributed computing environment. Horizontal scaling is
especialy effective in environments that contain many smaller, less powerful machines. Client requests
that overwhelm a single machine can be distributed over severa machines in the system. Failover is
another benefit of horizontal scaling. If a machine becomes unavailable, its work can be routed to other
machines containing server clones. Horizontal scaling is described in more detail in article 7.1.3.4 and

article 7.1.3.5.

WebSphere applications can combine horizontal and vertical scaling to reap the benefitsof both scaling
techniques.

55

7.2.4.2 Modifying models and clones

To perform an administrative action on a clone (such as modifying the clone'sproperties), perform the action on
the associated model. For example, to add an enterprisebean to an application server clone, you must add the
bean to the server group. With oneaction, you can add an enterprise bean to all clones of the application server.

Changes related to workload management (such as selection policy changes, startingclones, and stopping
clones) are propagated to workload management clients. Other model changes (such as adding or removing
enterprise beans from an application server) arepicked up by the clones when they are restarted. System
administrators can perform aripplerestart to propagate changes by stopping and restarting clones one after
anotherwithout stopping the model.

If you modify aclone directly (instead of through its model), the clone no longer isidentical to its model.
However, it continues to be part of its model unlessit isdissociated from the model.

Freestanding (disassociated) clones

A clone must be explicitly disassociated from its model. It then becomes a freestandingobject and can be
administered independently. Any changes you make to the former model ofthe clone are not propagated to the
clone.

Freestanding clones can be created by using the wscp command-lineutility.

56

7.2.4.3 Advice for cloning

Create clones based on your knowledge of the application and on the expected workload.Some considerations:

Clones do not need to reside on the same machine.

Clients can have inconsistent views of configuration information in the model. This can occur when an
application server instance is stopped, started, added, or deleted. The period of inconsistency is
short-lived, however. Clients eventually refresh their caches of server information. Application server
instances that are unchanged during the period of inconsistency remain available.

If you make changes to a model, clients do not need to be restarted. The changes are eventually
propagated to them.

Y ou can make changes to amodel while application servers are running. However, incremental changes
(such as adding or removing one or two clones) have lessimpact on client performance than wholesale
changes.

It is always best to make changes when few clients and application servers are running.

Y ou can add or remove server clones later in response to the load on the application. Alternattively, you
can clone the initial number of application server instances based on expected load.

If a machine becomes unavailable, you do not need to reconfigure the clones of other application servers
to compensate for any unavailable application servers on that machine. However, if the machine is going
to be unavailable for an extended period, you can reconfigure the other servers to optimize performance.

57

7.2.4.4 Containment relationships

While cloning aresource, you can specify the relationship of the clone to its modeland other models.

Freestanding or contained?

Specify a containment relationship for each model, which determines whether the modelis freestanding or
contained.

A model isfreestanding if it is not contained by another resources's model.If amodel is part of another
resource's model, it is contained.

For example, amodel of an enterprise bean can be contained by the model of anapplication server on which the
bean isinstalled. Clones of the application server willcontain clones of the enterprise bean.

Model recursively?

When you create a servlet engine model that contains a Web application, you canoptionally specify to include
the Web application, and any servletsit contains, in themodel.

Containment relationships are preserved when you model and clone an instance that iscontained by another
instance. For example, if you create a model of a Web applicationthat is contained by a particular servlet
engine, the clones of the Web application modelwill aso be associated with that servlet engine.

58

7.2.4.5 Server selection policies and transaction
affinity

When you are cloning an application server, you need to take the following things intoaccount:
« Application server models and clones

« Server selection policies
« Transaction affinity for application servers

Application server models and clones

A serviet engineis a server process that works with your Web server to handlerequests for serviets and Web
resources such as HTML, JavaServer Pages (JSP) files, andsuch. A server object, such as an application server
or servlet engine, can be used as amodel for creating multiple clones of that server. The clones are defined by a
model.Changes to the model are propagated to the clones when the server clones are restarted.

The clones remain basically identical to the model, allowing work to be distributed toany one of them. Server
selection policies determine how clientschoose server instances within the group.

Server selection policies

The workload management server selection policy defines how clients choose amongapplication server clones
(instances). Select among these policies:

« Random

« Round-robin

« Random prefer local

« Round-robin prefer local

See article 6.6.22.0, for a detailed description of theserver selection policies.

Transaction affinity for application servers

Regardless of the selection policy used, the workload management service attempts tochoose an application
server clone based on transaction affinity. Within atransaction, the first time a server is picked, the prevailing
selection policy for theserver group is applied. After a server is selected, it remains bound for the duration ofthe
transaction.

For example, suppose the round-robin policy is specified for server group A with twoapplication server clones,
S1 and S2. A client has two concurrent threads, t1 and t2, withtransaction contexts T1 and T2, respectively.
Assume that thread t1 is first and needs toselect a server from server group A; clone S2 is randomly chosen.
When t2 tries to selecta server from server group A, Sl is chosen based on the round-robin policy in effect
forthe server group. Subsequent requests to server group A are serviced by S2 for t1 and Slfor t2, based on
transaction affinity.

59

http://localhost/v355makePDF/advanced/nav_Multiguidenav/06062200.html

7.2.4.6 Security for cloned resources

The workload management service has its own built-in security, which works with theWwebSphere application
server security service to protect cloned resources. When youare creating clones of application servers, enable
security before you create amodel ofthe application server. This enables security for all of the application
serverclones created from that model.

Protecting cloned enterprise beans

Enterprise beans that are cloned in the context of cloning an application server areprotected under the
application server's security. Enterprise bean instances and theirclones have separate identities, although
workload management treats them as beingidentical. Therefore, you must protect every cloned enterprise bean
by configuringresource security for the enterprise bean and including it in a secured enterpriseapplication.

Protecting cloned servlets

Servletsthat are cloned in the context of cloning an application server are nottreated as separate resources by
WebSphere security. If the original servlet isprotected, its clones are too, with no additional steps required by
the administrator. Tosecure a servlet, add its Web resource configuration (URI) to a secured
enterpriseapplication.

60

7.2.4.7. Creating clones on machines with different
WebSphere installation directories or operating
systems

Different hardware and operating system platforms do not usually have the sasmeWebSphere Application server
product installation rootdirectories. The following steps are required to create clones on multiple

machineswhen WebSphere Application Server isinstalled in different directories on differentmachines or when
different directory structures exist across multiple platforms:

1. On one node, create amodel of the application server to be cloned. The platform does not matter if all
machines share the same administrative repository database.

2. Make the original application server instance a clone and recursively model all instances under the
application server. If you are creating a model of the default application server, make sure that it is not
already installed on the machines that it will be cloned to.

3. For all other nodes in the configuration:
a. Create aclone on the machine.

b. If desired, copy the application files (the files containing servlet, enterprise bean, JavaServer
Pages, and HTML code) to the machine.

c. Modify the following properties of the clone. The directory structures of these fields must be
changed to match the directory structure of the product_ installation_root directory and the Web

application file locations on the machine where the clone is running.
= The Standard Output field of cloned application servers
= The Standard Error field of cloned application servers
= TheJAR Filefield of cloned enterprise beans
= The Document Root field of cloned web applications
The Classpath table of cloned web applications

These changes do not make the clones freestanding.
d. Start the cloned application server.

Repeat these steps for each machine in the configuration. Changes made to individual clones are not
propagated to the other clonesin the system.

il Modifying the model can overwrite these changes, requiring you to redo them.

61

http://localhost/v355makePDF/advanced/nav_Multiguidenav/root.html
http://localhost/v355makePDF/advanced/nav_Multiguidenav/root.html

7.2.5 Using workload management - a sample
procedure

The following procedure shows how to implement basic workload management by cloningapplication servers
and enterprise beans. In this scenario, client requests aredistributed among the clones of an application server on
asingle machine. (A clientrefersto any servlet, Java application, or other program or component that connects
theend user and the enterprise beans being accessed.) In more complex workload managementscenarios, you
can distribute clones to remote machines, clone servlets, or configure aservlet redirector.

1. Decide which application server you are going to clone.

2. Deploy the enterprise beans that you plan to clone. Optionally, chose the deployment option to enable
workload management for the JAR file.

3. After configuring the server and enterprise beans exactly as you want them to be, create amodel of the
server. Thisisthefirst step in cloning the server. Make sure that the model includes the enterprise beans
that are deployed on the server. It is recommended that you make the original server instance a clone
that is administered through the model.

4. Create one or more clones of the server model.
5. Start all of the application servers by starting the model.

6. If you did not enable workload management when you were deploying the enterprise beans, use the
wlmjar command against the deployed JAR file of the enterprise bean to produce a WLM-enabled JAR
file.

7. Add the WLM-enabled JAR file to the class path of the client you want to enable to exercise workload
management.

8. If theclient isaservlet, aso specify the WLM-enabled JAR filein the class path of the application
server on which the servlet resides.

Workload management automatically begins when you start the clones of the applicationserver.

[il You need to define a bootstrap host forstand-alone Java clients -- that is, clients that are located on a
different machine fromthe application server and have no administrative server for the client. Add the
followingline to the Java Virtual Machine (JVM) arguments for the client:

-Dcom i bm CORBA. Boot st r apHost =machi ne_nane

where machine_name is the name of the machine on which the administrativeserver is running.

62

7.2.6 Tuning a workload management configuration

The workload management service uses several parameters to control the behavior of theworkload management
run time. In the majority of cases, you do not need to explicitly setthe values of these parameters. However, if
you are experiencing problems with yourworkload management configuration, you can adjust these properties
to tune the behavior ofthe workload management run time.

{™ Set the values of these properties only inresponse to problems that you encounter in your environment. If
workload management isfunctioning correctly, changing these properties can produce undesirable results.

Workload management client properties

A workload management client can be a cloned resource or an application server thatacts as an EJB client to a
cloned resource. The following properties can be used tocontrol the behavior of the workload management
client run time. They are set ascommand-line arguments for the Java Virtual Machine (JVM) process in which
the workloadmanagement client is running. In many cases, such as where aservlet is a client to anenterprise
bean, this means that these parameters are specified as part of the command-line arguments for the application
server where the servlet is running.

« com.ibm.CORBA . .requestTimeout. This property specifies the timeout period for responding to
workload management requests. Set this value in the Command Line Arguments field by using the -D
option as follows:

-Dcom i bm CORBA. r equest Ti neout =t i meout _i nt erval

where timeout_interval is the timeout period in seconds. If your network is subject to extreme latency,
specify alarge value to prevent timeouts. If you specify avalue that istoo small, an application server
that particpates in workload management can ttime out before it receives a response.

[il Bevery careful whenyou specify this property: it has no recommended value. Set it only if your application
isexperiencing problems with timeouts.

« com.ibm.g swlim.MaxCommpFailures. This property specifies the number of attempts that a workload
management client makes to contact the administrative server that manages workloads for the client.
The workload management client run time does not identify an administrative server as unavailable until
acertain number of attempts to access it have failed. This allows workload management to continue if
the server suffers from transient errors that can briefly prevent it from communicating with a client.
However, it can also propagate nontransient administrative server failuresto the client. Set thisvaluein
the Command Line Argumentsfield in the administrative console by using the -D option as follows:

-Dcomibmejs. W m MaxConmFai | ures=nmax_fail ures

where max_failures specifies how many times the client attempts to contact the administrative server
after the first failure. The default value is zero, which means that the workload management run time
does not attempt to use the administrative server after the first failure until atimeout interval (specified
by the com.ibm.g swim.Unusablel nterval parameter) expires. This reduces the possibility of further
server failures being propagated to the client.

« com.ibm.g swim.Unusablel nterval. This property specifies the time interval that the workload
management client run time waits after it marks an administrative server as unavailable before it
attempts to contact the server again. Set this value in the Command Line Argumentsfield in the
administrative console by using the -D option as follows:

-Dcom i bmejs. W m Unusabl el nt erval =i nterval

where interval is the time in seconds between attempts. The default value is 900 seconds. If this
parameter is set to alarge value, the server is marked as unavailable for along period of time. This

63

prevents the workload management refresh protocol from refreshing the workload management state of
the client until after this time period has ended.

Administrative server properties

The administrative server for the cloned resources that participate in a workloadmanagment group (such as an
application server cluster) acts as the workload managementserver.

« com.ibm.g swim.Refreshinterval. This property specifies the interval at which the administrative
server updates the server group information to the cloned application servers that participate in workload
management. It is appended to the arguments for the
com.ibm.gjs.sm.util.process.Nanny.adminSer ver JymArgs entry in the administrative server
configuration file. The value of this property is specified as follows:

comibmejs.w m Refreshl nterval =i nterval

where interval isthe number of seconds that el apse between the administrative server updates. The
default value is 300 seconds.

64

7.2.7 Run-time exceptions and failover strategies for
workload management

Workload management run-time exceptions

The workload management service can throw the following exceptionsif it encountersproblems:

or g. ong. CORBA. NO_| MPLEMENT. This exception isthrown if the workload management service
cannot contact any of the EJB application servers that participate in workload management.

or g. ong. CORBA. | NTERNAL. This exception is thrown when an internal software failure occurs. The
error islisted in the WebSphere client trace log. (Be aware that if WebSphere is not installed on the
client machine, no logging is performed.)

or g. ong. CORBA. COVWM _FAI LURE. This exception isthrown by the ORB when a communications
failure occurs. Any current transactions are rolled back, and nontransactional requests are redone.

or g. ong. CORBA. NO_RESPONSE. This exception is thrown by the ORB when a communications
failure occurs.

The WebSphere Application Server client can catch these exceptions and then implementits own strategies to
handle the situation; for example, it can display an error messageif no servers are available.

Workload management failover strategies

The workload management service uses the following failover strategies, some of whichare based on the return
values of these exceptions:

If the workload management service cannot contact an application server clone, it automatically
redirects the request to another clone, providing automatic failover.

If the application throws an exception, automatic failover does not occur. The workload management
service does not retry the request because it cannot know whether the request was compl eted.

If anor g. ong. CORBA. NO_| MPLEMENT exception is thrown, the workload management service has
attempted repeatedly to contact the application servers without success. Workload management resumes
when application servers become available again.

If an or g. ong. CORBA. | NTERNAL exception is thrown, the workload management serviceis no
longer operating properly and no failover occurs.

If theor g. ong. CORBA. COVM _FAI LURE or or g. ong. CORBA. NO_RESPONSE exceptions are
thrown, their return value determines whether automatic failover occurs:

o If one of these exceptionsis thrown with a COVPLETI ON_STATUS of COVPLETED NGO,
automatic failover occurs because the request was not completed.

o If one of these exceptionsis thrown with a COVPLETI ON_STATUS of COVPLETED_YES,
failover does not occur because the request was successfully completed.

o If one of these exceptionsis thrown with a COVPLETI ON_STATUS of MAYBE (which mapsto a
j ava. rm . Renpt eExcept i on), automatic failover does not occur. The workload
management service cannot verify whether the request was completed. In this situation, the client
application must anticipate a failure and retry the request. The workload management service
then attempts to direct the request to a surviving application server clone.

65

7.2.8 Workload management for stand-alone Java clients

« Enabling workload management for a stand-alone Java client

« Enabling workload management and security for a stand-alone Java client
Stand-al one Java applications (Java applications that do not run under WebSphereA pplication Server), J2EE clients, administrative agents, and other
types of Javaapplications can participate in WebSphere workload management. This extends thebenefits of workload management (such as load

balancing and failover support) to Javaapplications that run on machines where WebSphere Application Server is not installed. TheJava client can
optionally participate in WebSphere security.

[il These procedures have been tested only onthe Windows NT platform.

Enabling workload management for a stand-alone Java client

To enable stand-alone Java applications to participate in workload management, do thefollowing:
1. Copy WebSphere Application Server Java Archive (JAR) files to the machine where the Java application runs.
2. Add the names of the JAR files to the CLASSPATH environment variable on the machine where the Java application runs.

3. Add the executable files of the supported version of the Java 2 SDK to the PATH environment variable on the machine where the Java
application runs.

4. Start the Java application, setting the appropriate Java system properties to enable workload management.

Therest of this section describes this setup procedure in more detail.

Copy the JAR files to client machine

The following JAR files must be copied from a machine where WebSphere ApplicationServer isinstalled to the machine where the client application
runs:

« Copy the product_installation_root/lib/ujc.jar file to the WebSphere/jars directory.
« Copy the_wim_deployedBean.jar file to the WebSphere/jars directory, where_wim_deployedBean is the name of the workload
management-enabled JAR file that contains the enterprise beans being used by the Java client.
Install the SDK on the client machine

Workload management for stand-alone clients is supported for the Java 2 SDK, versionIBM 1.2.2. If the machine where the client application runsis
not currently usingthis version of the SDK, you must install it. See the SDK installation instructionsfor details.

Add the JAR files to the CLASSPATH variable on the client machine

Add the names of the JAR filesto the CLASSPATH variable on the machine where theclient application runs. For example:
CLASSPATH=D: \ WebSpher e\ j ar s\ _w m depl oyedBean. j ar; D: \ WebSpher e\ j ar s\ uj c. j ar ; UCLASSPATH%

Add the directories containing the SDK executable files to the PATH variable on theclient machine

Add the directories containing the executable files of the SDK to the PATH variable onthe machine where the client application runs. For example:
PATH=C: \ WebSpher e\ SDK\ bi n; C: \ WebSpher e\ j dk\j r e\ bi n; %°ATH%

Run the client application

To enable the client application to participate in workload management, start it withthe following system parameters:

« com.ibm.gjs.wlim.BootstrapNode=admin_server_node

« com.ibm.CORBA .BootstrapHost=admin_server_node

« com.ibm.CORBA .BootstrapPort=900
where admin_server_node is the name of the machine where the WebSphereadministrative server islocated. Y ou can specify either the short name,
the IPaddress, or the fully qualified name of the machine. For example:

java -Dcomibm ejs.w m Boot st rapNode=gr eenl and
-Dcom i bm CORBA. Boot st r apHost =gr eenl and. rh1.i bm com -Dcom i bm CORBA. Boot st rapPort =900 W mApp

Enabling workload management and security for astand-alone Java client

Enabling workload management with security requires additional steps to be performed:
1. Copy the JAR files and the sas.client.props file to the machine where the Java application runs.
66

http://localhost/v355makePDF/advanced/nav_Multiguidenav/root.html

2. Add the names of the JAR files to the CLASSPATH environment variable on the machine where the Java application runs.

3. Add the executable files of the supported version of the Java 2 SDK to the PATH environment variable on the machine where the Java
application runs.

4. Enable the Java client application to access the EJB application on the machine where WebSphere Application Server isinstalled.
5. Start the Java application, setting the appropriate Java system properties to enable workload management.

The rest of this section describes this setup procedure in more detail.
Copy the files to the client machine

The following files must be copied from a machine where WebSphere Application Server isinstalled to the machine where the client application runs:

« Copy the product_installation_root/properties/sas.client.props file to the WebSphere/properties directory. This file contains security
configuration properties.

« Copy the product_installation_root/lib/sslight.jar file to the WebSphere/jars directory.
« Copy the product_installation_root/lib/ujc.jar file to the WebSphere/jars directory.

« Copy the_wim_deployedBean.jar file to the WebSphere/jars directory, where_wim_deployedBean is the name of the workload
management-enabled JAR file that contains the enterprise beans being used by the Java client.

Install the SDK on the client machine

Workload management with security supports the same version of the SDK as workloadmanagement alone: Java 2 SDK, version IBM 1.2.2. To
install it, follow the SDKinstallation instructions.

Add the JAR files to the CLASSPATH variable on the client machine

Add the names of the JAR files to the CLASSPATH environment variable on the machinewhere the client application runs. For example:

CLASSPATH=D: \ WebSpher e\ j ars\ _w m depl oyedBean. j ar; D: \ WebSphere\jars\ujc.jar;
D: \ WebSpher e\ j ars\ sslight.jar; YCLASSPATHY%

Add the directories containing the SDK executable files to the PATH variable on theclient machine

Add the directories containing the executable files of the SDK to the PATH variable onthe machine where the client application runs. For example:
PATH=C. \ WebSpher e\ SDK\ bi n; C: \ WebSpher e\ j dk\j r e\ bi n; %°ATH%

Set up the server to enable Java client access

A WebSphere administrator must create an application that specifies which enterprisebeans require authorization and security checking by using the
appropriate administrationconsole wizards. The administrator must set the security permissions for all clients ofthe application to allow access to the
read, write, remove, create, execute, and findermethods of the enterprise beans. See article 6.6.18.1,Securing applications, for details on setting up

security.
Run the client application

To enable the client application to participate in workload management, start it withthe following system parameters:

« com.ibm.CORBA.ConfigURL =file:/C:/Websphere/properties/sas.client.props

« com.ibm.gjs.wlim.BootstrapNode=admin_server_node

« com.ibm.CORBA .BootstrapHost=admin_server_node

« com.ibm.CORBA .BootstrapPort=900
where admin_server_node is the name of the machine where the WebSphereadministrative server islocated. Y ou can specify either the short name,
the IPaddress, or the fully qualified name of the machine. For example:

java -Dcom i bm CORBA. Confi gURL=file:/C./Wbsphere/ properties/sas.client.props
-Dcom i bm ej s. w m Boot st rapNode=gr eenl and -Dcom i bm CORBA. Boot st rapHost =gr eenl and. rhl.i bm com
-Dcom i bm CORBA. Boot st rapPort =900 W mApp

67

http://localhost/v355makePDF/advanced/nav_Multiguidenav/root.html
http://localhost/v355makePDF/advanced/nav_Multiguidenav/root.html
http://localhost/v355makePDF/advanced/nav_Multiguidenav/root.html
http://localhost/v355makePDF/advanced/nav_Multiguidenav/06061801.html

7.3. Redirecting servlets

Servlet redirectors are used to direct requests from a Web server to one or more clonesof a servlet enginein an
application server. WebSphere Application Server supportstwo mechanisms for redirecting HT TP requests to
serviets:

« Open Servlet Engine (OSE). OSE is a proprietary mechanism for transporting data. It can be used to
direct client requests from the Web server to servlets on the same machine (local OSE) or on aremote
machine (remote OSE). OSE isfully integrated with WebSphere's modeling and cloning facility.

« Serviet redirector. A servlet redirector is adedicated application server that is specifically designed to
forward client requests to remote servlet engines. The servlet redirector receives requests locally
through OSE. However, instead of processing them itself, it redirects them to other application servers.
The servlet redirector can be run in three different configurations:

o Thethick servlet redirector is configured on amachine that is afull WebSphere Application
Server node with an administrative server. It can be administered like any other application
server.

o Thethick servlet redirector can also run with asimplified version of the administrative server
known as an administrative agent. The administrative agent manages the servlet redirector, but it
is controlled by a master administrative server on another node.

o Thethin serviet redirector runs without the administrative server. Special scripts are provided to
manually start it and generate its configuration files.

Servlet redirection is generally used to scale up configurationsthat use a single servlet engine on asingle
machine to configurationsthat use multiple servlet engines on multiple machines. Bothservlet redirection
mechanisms provide load balancing, failoversupport, and availability management for servlet engines.

68

7.3.1: OSE and remote OSE

« OSE
« Remote OSE

OSE

Open Servlet Engine (OSE) is alightweight, proprietary protocol for transporting data.lt is used by WebSphere to
forward requests from the Web server to an application serverfor processing.

OSE is configured though the Web server plug-in. It associates a uniform resourcelocator (URL) with one or more
data queues. Each data queue is associated with anapplication server (and its clones) that is designated to service
requests from thatURL. Data can be sent through a variety of protocols, including pipes, Unix domainsockets, and
TCP/IP sockets. OSE does not support data encryption between the Webserver and the application server, athough
HTTPS requests can be used between a browserand the Web server.

OSE (or local OSE) was originally designed to be used for transporting data ona single machine. It is the default
mechanism for transporting data between between aWeb server and an application server running on the same
machine.

Remote OSE

An extension to OSE enablesit to be used to transport data remotely. RemoteOSE can be used to enable
communication between a Web server on one machine andapplication server clones that are running on one or more
other machines in the system. Remote OSE uses only the TCP/IP protocol for transporting data between machines.
All other OSE characteristics remain the same as in the local case, including theability to route URL s to different
application servers. Remote OSE supportsWebSphere security.

In a Remote OSE configuration, the Web server is physically separated from theapplication servers. The Web server
sends requests that require intensive processing toother machines, enabling it to process more requests. There are no
applicationserver instances running on the machine that hosts the Web server, although Remote OSEcurrently requires
the WebSphere Application Server software to be installed on the Webserver machine. The OSERemoteConfig script
is used to configure theWeb server plug-in to enable Remote OSE.

Remote OSE is the preferred method for redirecting client requests to servlet engineclones. It provides better
performance than the servlet redirector. Remote OSEsupports firewalls with Network Address Transation (NAT) and
can be used in demilitarizedzone (DM Z) configurations where the Web server runs on a secure server. It does
notrequire database access through a firewall.

Because the OSE transport does not support data encryption, Remote OSE is not suitablefor configurations where data
encryption is required between the Web server and theapplication server. Unlike other WebSphere Application Server
internal 110P traffic,Remote OSE does not implicitly use Secure Sockets Layer (SSL) when security is enabled.

Article 7.1.3.6.1, Remote OSE sample topology, describesthe Remote OSE configuration in more detail.

Semi-remote OSE is a variant on the Remote OSE configuration. Anapplication server instance runs on the same
machine as the Web server; other applicationserver instances run on remote machines. It is generally used when
hardwarelimitations prevent the full Remote OSE configuration from being used. Article 7.1.3.6.2, Semi-remote OSE
sampl e topology, describesthe semi-remote OSE configuration in more detail.

69

7.3.2: Servlet redirector

« How the servlet redirector works

o Thick servlet redirector

« Thick servlet redirector with administrative agent
o Thin servlet redirector

How the servlet redirector works

The servlet redirector is a dedicated, special-purpose application server that runs onthe same machine as the
Web server. It forwards HTTP requests received by a Webserver to one or more application servers. The
servlet redirector receives HT TPrequests through alocal OSE channel just like any other application server.

However, instead of processing the requests itself, it sends them to servlet enginesrunning in remote application
servers for processing.

The WebSphere Application Server EJB facility is used to forward requests from theservlet redirector to a
remote application server. Each application server thataccepts requests from the servlet redirector contains a
special stateless session beancalled the RemoteSRP bean. The RemoteSRP bean exports a method that
forwards theincoming HT TP request to the servlet engine for execution.

The servlet redirector acts as an EJB client to the application server. When itreceives an HTTP request, it looks
up the RemoteSRP bean in the target application server. It then remotely invokes the forwarding method
through Remote Method Invocation(RM1) over the Internet Inter-ORB Protocol (I11OP). The HTTP request is
thenforwarded from the servlet redirector to the servlet engine in the target applicationserver for processing.

Because the servlet redirector communicates with application servers through EJB clientinvocations, it can
participate in workload management. Thisallowsit to distributerequests to cloned application servers and
provides support for load balancing andfailover. See article 7.2, Managing workloads, for moreinformation on

the workload management service.

The servlet redirector supports WebSphere security for servlets and enterprise beans. It also supports encrypted
communications between the servlet redirector and theapplication server. However, it does not support
Network Address Trandation (NAT)firewalls.

The servlet redirector can be configured in three different ways, depending on howadministration is set up on
the Web server machine:

o Thick servlet redirector

« Thick servlet redirector with administrative agent

e Thin servlet redirector

These configurations are described in the rest of this article.

Thick servlet redirector

In this configuration, the machine where the servlet redirector runsis configured as afull WebSphere
Application Server node with an administrative server and its associatedprocesses. The thick servlet redirector
isadministered like any other applicationserver process. It requires a database client to access the WebSphere
administrativerepository; a database user ID and password must be stored on the machine for use by thedatabase
processes. The administrative server also requires at TCP connection to theremote database. If the thick serviet
redirector is being used with afirewall, aport must be opened for database traffic and the firewall must support

70

[l OPcommunications.

Article 7.1.3.6.4, Thick servlet redirector sample topology,gives a more detailed description of this
configuration of the servlet redirector.

Thick servlet redirectorwith administrative agent

In this configuration, the administrative server on the machine where the servletredirector runsis configured as
an agent of an administrative server running on anothermachine. The servlet redirector is administered through
the remote administrativeserver. The agent receives configuration and administration information from
theremote administrative server. Access to the WebSphere administrative repository isthrough the remote
administrative server, not the agent. This reduces the number of processes that run on the Web server machine.
It also eliminates the need to installa database client on the machine. If afirewall isin use, running the
servletredirector with an administrative agent instead of afull administrative server eliminatesthe need to open
up aport for database communications.

Article 7.1.3.6.5, Thick servlet redirector withadministrative agent sample topology, gives a more detailed
description of thisconfiguration of the servlet redirector.

Thin servlet redirector

In this configuration, there is no administrative server or agent on machine where theservlet redirector runs.
Instead, scripts are used to configure the Web server plugin to communicate with the servlet redirector, start the
servlet redirector, and stop theservlet redirector. The thin servlet redirector is harder to administer than
otherservlet redirector configurations. However, because no administrative server oragent processes are
running on the Web server machine, more processing power is availableto handle HTTP requests.

Article 7.1.3.6.6, Thin servlet redirector sample topology,gives a more detailed description of this configuration
of the servlet redirector.

71

	Numbx:
	L:
	C:
	R:

	P1:
	Numbers:
	Numbx:
	L:
	C:
	R: 1

	P2:
	Numbers:
	Numbx:
	L: 2
	C:
	R:

	P3:
	Numbers:
	Numbx:
	L:
	C:
	R: 3

	P4:
	Numbers:
	Numbx:
	L: 4
	C:
	R:

	P5:
	Numbers:
	Numbx:
	L:
	C:
	R: 5

	P6:
	Numbers:
	Numbx:
	L: 6
	C:
	R:

	P7:
	Numbers:
	Numbx:
	L:
	C:
	R: 7

	P8:
	Numbers:
	Numbx:
	L: 8
	C:
	R:

	P9:
	Numbers:
	Numbx:
	L:
	C:
	R: 9

	P10:
	Numbers:
	Numbx:
	L: 10
	C:
	R:

	P11:
	Numbers:
	Numbx:
	L:
	C:
	R: 11

	P12:
	Numbers:
	Numbx:
	L: 12
	C:
	R:

	P13:
	Numbers:
	Numbx:
	L:
	C:
	R: 13

	P14:
	Numbers:
	Numbx:
	L: 14
	C:
	R:

	P15:
	Numbers:
	Numbx:
	L:
	C:
	R: 15

	P16:
	Numbers:
	Numbx:
	L: 16
	C:
	R:

	P17:
	Numbers:
	Numbx:
	L:
	C:
	R: 17

	P18:
	Numbers:
	Numbx:
	L: 18
	C:
	R:

	P19:
	Numbers:
	Numbx:
	L:
	C:
	R: 19

	P20:
	Numbers:
	Numbx:
	L: 20
	C:
	R:

	P21:
	Numbers:
	Numbx:
	L:
	C:
	R: 21

	P22:
	Numbers:
	Numbx:
	L: 22
	C:
	R:

	P23:
	Numbers:
	Numbx:
	L:
	C:
	R: 23

	P24:
	Numbers:
	Numbx:
	L: 24
	C:
	R:

	P25:
	Numbers:
	Numbx:
	L:
	C:
	R: 25

	P26:
	Numbers:
	Numbx:
	L: 26
	C:
	R:

	P27:
	Numbers:
	Numbx:
	L:
	C:
	R: 27

	P28:
	Numbers:
	Numbx:
	L: 28
	C:
	R:

	P29:
	Numbers:
	Numbx:
	L:
	C:
	R: 29

	P30:
	Numbers:
	Numbx:
	L: 30
	C:
	R:

	P31:
	Numbers:
	Numbx:
	L:
	C:
	R: 31

	P32:
	Numbers:
	Numbx:
	L: 32
	C:
	R:

	P33:
	Numbers:
	Numbx:
	L:
	C:
	R: 33

	P34:
	Numbers:
	Numbx:
	L: 34
	C:
	R:

	P35:
	Numbers:
	Numbx:
	L:
	C:
	R: 35

	P36:
	Numbers:
	Numbx:
	L: 36
	C:
	R:

	P37:
	Numbers:
	Numbx:
	L:
	C:
	R: 37

	P38:
	Numbers:
	Numbx:
	L: 38
	C:
	R:

	P39:
	Numbers:
	Numbx:
	L:
	C:
	R: 39

	P40:
	Numbers:
	Numbx:
	L: 40
	C:
	R:

	P41:
	Numbers:
	Numbx:
	L:
	C:
	R: 41

	P42:
	Numbers:
	Numbx:
	L: 42
	C:
	R:

	P43:
	Numbers:
	Numbx:
	L:
	C:
	R: 43

	P44:
	Numbers:
	Numbx:
	L: 44
	C:
	R:

	P45:
	Numbers:
	Numbx:
	L:
	C:
	R: 45

	P46:
	Numbers:
	Numbx:
	L: 46
	C:
	R:

	P47:
	Numbers:
	Numbx:
	L:
	C:
	R: 47

	P48:
	Numbers:
	Numbx:
	L: 48
	C:
	R:

	P49:
	Numbers:
	Numbx:
	L:
	C:
	R: 49

	P50:
	Numbers:
	Numbx:
	L: 50
	C:
	R:

	P51:
	Numbers:
	Numbx:
	L:
	C:
	R: 51

	P52:
	Numbers:
	Numbx:
	L: 52
	C:
	R:

	P53:
	Numbers:
	Numbx:
	L:
	C:
	R: 53

	P54:
	Numbers:
	Numbx:
	L: 54
	C:
	R:

	P55:
	Numbers:
	Numbx:
	L:
	C:
	R: 55

	P56:
	Numbers:
	Numbx:
	L: 56
	C:
	R:

	P57:
	Numbers:
	Numbx:
	L:
	C:
	R: 57

	P58:
	Numbers:
	Numbx:
	L: 58
	C:
	R:

	P59:
	Numbers:
	Numbx:
	L:
	C:
	R: 59

	P60:
	Numbers:
	Numbx:
	L: 60
	C:
	R:

	P61:
	Numbers:
	Numbx:
	L:
	C:
	R: 61

	P62:
	Numbers:
	Numbx:
	L: 62
	C:
	R:

	P63:
	Numbers:
	Numbx:
	L:
	C:
	R: 63

	P64:
	Numbers:
	Numbx:
	L: 64
	C:
	R:

	P65:
	Numbers:
	Numbx:
	L:
	C:
	R: 65

	P66:
	Numbers:
	Numbx:
	L: 66
	C:
	R:

	P67:
	Numbers:
	Numbx:
	L:
	C:
	R: 67

	P68:
	Numbers:
	Numbx:
	L: 68
	C:
	R:

	P69:
	Numbers:
	Numbx:
	L:
	C:
	R: 69

	P70:
	Numbers:
	Numbx:
	L: 70
	C:
	R:

	P71:
	Numbers:
	Numbx:
	L:
	C:
	R: 71

