Enterprise beans -- table of contents

Development

4.3: Developing enterprise beans
4.3.1: Late-breaking enterprise beans programming tips
4.3.2: INDI caching

4.3.3: Using Java Message Service (M S) resources

Writing Enterprise Beans

About this book

An introduction to enterprise beans

WebSphere Programming Model Extensions

Developing enterprise beans

Developing EJB clients

An architectural overview of the EJB programming environment

More-advanced programming concepts for enterprise beans

Enabling transactions and security in enterprise beans

Developing servlets that use enterprise beans

Tools for developing and deploying enterprise beansin the EJB server (CB) environment
Tools for developing and deploying enterprise beans in the EJB server (AE) environment
Appendix A. Changes for version 1.1 of the EJB specification

Appendix B. Example code provided with WebSphere Application Server

Appendix C. Using XML in enterprise beans (CB Only)

Appendix D. Extensions to the EJB Specification

Administration

6.6.4: Administering EJB containers (overview)

6.6.4.0: EJB container properties

6.6.4.1: Administering enterprise bean containers with the Java administrative console
6.6.4.1.1: Configuring new EJB containers with the Java administrative console
6.6.4.1.4: Tuning containers with the Java administrative console

6.6.4.4: Property files pertaining to containers

6.6.5: Administering enterprise beans (overview)
6.6.5.0: Enterprise bean properties
6.6.5.1: Administering enterprise beans with the Java administrative console
6.6.5.1.1: Installing enterprise beans with the Java administrative console
6.6.5.4: Property files pertaining to enterprise beans

4.3. Developing enterprise beans

Enterprise applications are applications that typically use enterprise beans. To develop enterprise applications,
you must:

1. Develop any session or entity beans your application will use
2. Create the deployment descriptor and the EJB JAR file.
3. Deploy the enterprise beans.

Enterprise applications support both transactions and security.
Wkiting Enterprise Beansis a programming guide for devel oping, packaging, anddepl oying enterprise beans in

IBM WebSphere Application Server. It discussesboth the Advanced Edition and Enterprise Edition of the
product.

Format

PDF

HTML

See section 4.3.1 for additional information that could not be added to the book in time for this product release.

http://localhost/v355makePDF/advanced/nav_ejbnav/atswpg00.pdf

4.3.1: Late-breaking enterprise beans programming
tips

This article provides programming tips and considerations to supplementthe Writing Enterprise Beans book.
Also see the product Release Notes.

EJB jar files that contain both source and class files result in compile
errors or exceptions

Ensure your jar files only contain class files, images, and sounds. Source (. j ava) filesin your jar file will
cause exceptions when you run the application, or compile errorswhen you compile the source.

Disregard README.rmi-iiop / README.RMI-IIOP

The product installs an unnecessary file:
product _installation_root/java/ README.RM - 11 OP

If you encounter thisfile, disregard it. It instructs you to rename an rmictools.jar file that does not exist.
Because the wstools.jar is already installed,containing the necessary IBM implementations for 110OP, you do not
need torename the file in order to use the IBM rmic (Remote Method Invocation) compiler.

Avoid creating or accessing protected enterprise beans in the servlet
init() method

The Writing Enterprise Beans book contains a discussion of servletinit() methods in the context of developing
servlets that use enterprise beans. Hereis some additional information about the security aspect.

Although the init method is a good place to get references to EJB home objects, it is not a good place to create
enterprise beans or access other enterprise beans that might be protected with WebSphere security. Depending
on the authorization policy on the protected objects, creating or accessing these objects from withinthe servlet
init() method could fail for authentication or authorization reasons because they were not accessed with the
proper security credentials.

Creating or accessing protected objects should be doneafter the init() method, in one of the doXXX methods of
the servlet.

Deployment tool limitations

The enterprise bean deployment tool provided by WebSphere Application Servermaps all non-primitive Java
types to serialized BLOB objects when the beans are using a DB2database. For example, when a CMP bean
with field java.math.BigDecimal is deployedon DBZ2, its field becomes a BLOB data type.

If you need to map non-primitive types to other, more complex datatypes, consider using IBM VisualAge for
Javafor deployment.

Inheritance by remote objects

An enterprise bean or other remote object cannot inheritfrom two interfaces that have methods with the same
name, even if those methodshave different signatures, due to the Java-1DL mapping specification.

4

http://localhost/v355makePDF/advanced/nav_ejbnav/relnotesindx.html
http://localhost/v355makePDF/advanced/nav_ejbnav/root.html

Java programmers accustomed to the usual Javainheritance model shouldtake care to note this limitation of the
specification. By the Enterprise JavaBeans (EJB) specification, enterprise beans should not be written to inherit
from two interfaces as described above. If they do, they will encounter errors when deployed.

Option A caching incompatible with clusters and shared data

When Option A caching isin use, the application server hosting the enterprise bean container must be the only
updater of the datain the persistent store. As such, Option A caching is incompatible with:

« Workload managed servers (such as a cluster of clones)
« Database with data being shared among multiple applications

Shared database access corresponds to Option C caching. See theEJB specification for futher details.

Option A and Option C caching are also known as commit option Aand commit option C, respectively.

Best practice for data source ID and password

Although it is not necessary, it is good practice to specify the user IDand password for a data source either in
the enterprise bean to be using the data source, or the container of the bean.

Developer's Client Files for setting up Java application clients

In"Developing EJB clients," the Writing Enterprise Beans book states:

The Java client object request broker (ORB), which is automaticaly initialized in EJB clients,
does not support dynamic download of implementation bytecode from the server to the client. As
aresult, all classes required by the EJB client at runtime must be available from the files and
directoriesidentified in the client's CLASSPATH environment variable. For information on the
JAR filesrequired by EJB clients, see Setting the CLASSPATH environment variable in the EJB
server (AE) environment or Setting the CLASSPATH environment variable in the EJB server
(CB) environment.

Article 1.4 about installable components describes how to install the needed files on your machine. See the
tableentry for "full Java application client.”

Note a possible book correction: The English version of the Writing Enterprise Beans book refers only to one of
two installation options presented in article 1.4.1 -- you mightneed the option that it does not mention. The
trandated versions of thebook do not mention either option for installing a full Java applicationclient.

Commiting transactions based on EJB 1.1 specification

According to the EJB specifications, if an enterprisebean container catches an exception from the business
method of anenterprise bean, and the method is running within a container managed transaction, the container
should rollback the transaction before passing the exception on to the client.

However, if the business method is throwing an Application exception as defined in Chapter 12 of EJB 1.1
specification, then the normal behavior for the container in this caseisto COMMIT the transaction. Even
thoughlBM WebSphere Application Server Version 3.5 does not officially supportthe EJB 1.1. specification
level, in such acase it behaves as determinedby the 1.1. specification. If a business method throws an exception,
the container will commit the transaction before re-throwing the exception.

EJB clients need ioser library to run

http://localhost/v355makePDF/advanced/nav_ejbnav/0104.html

If using Windows NT, ensure that EJB clients can locate the following library file at their run time: ioser.dll

References to jar file, iioptools.jar, should be ignored.

The Writing Enterprise Beans book contains many referencesto file, iioptools.jar.These references should be
ignored. Thiswas arequired jar file for JDK levels priorto JDK 1.2.2, and had to be defined in the
CLASSPATH for WebSphere Application Server to executesuccessfully. With JDK 1.2.2, file, iioptools,jar,
was incorporated into theruntime environment, and no longer needs to be included in the CLASSPATH. In fact,

withdDK 1.2.2, file, iioptools.jar, no longer exists.

FF

3.5.2

4.3.2: INDI caching

In IBM WebSphere Application Server Advanced Edition,JNDI context objects employ caching in order to increase the performanceof JNDI
lookup operations. Objects bound and looked up are cached in orderto speed up subsequent lookups of those objects. Objects are cached asthey are
bound or initially looked up. Normally, JNDI clients should beable to simply use the default cache behavior. The following sectionsdescribe in
detail cache behavior, and how JNDI clients can override defaultcache behavior if necessary.

« Cache behavior
« Cache properties
« Coding examples

Cache behavior

A cacheisassociated withan initial context when ajavax.naming.Initial Context object is instantiatedwith the java.naming.factory.initial property
set to:

comibmejs.ns.jndi.CN nitial ContextFactory

CNiInitial ContextFactory searches the environment properties for a cachename, defaulting to the provider URL. If no provider URL is defined,
acache name of "iiop:///" is used. All instances of Initial Context whichuse a cache of a given name share the same cache instance.

After an associationbetween an Initial Context instance and cache is established, the associationdoes not change. A javax.naming.Context object
returned from alookup operationwill inherit the cache association of the Context object on which the lookupwas performed. Changing cache
property values with the Context.addToEnvironment()or Context.removeFromEnvironment() method does not affect cache behavior.Properties
affecting a given cache instance, however, may be changed witheach Initial Context instantiation.

A cacheisrestricted toa process and does not persist past the life of the process. A cached objectis returned from lookup operations until either the
max cache life forthe cache is reached, or themax entry life for the object's cache entryis reached.

After thistime, alookup on the object will cause the cacheentry for the object to be refreshed. If abind or rebind operation isexecuted on an object,
the change will not be reflected in any caches otherthan the one associated with the context from which the bind or rebindwas issued. This"stale
data’ scenario is most likely to happen when multipleprocesses are involved, since different processes do not share the samecache, and Context
objectsin all threadsin a process will typically sharethe same cache instance for a given name service provider.

Usually, cached objects are relatively static entities, and objects becoming staleshould not be a problem. However, timeout values can be set on
cache entriesor on a cache itself so that cache contents are periodically refreshed.

Cache properties

JNDI clients can use several propertiesto control cache behavior. These properties can be set in the VM system environment or in theenvironment
Hashtable passed to the I nitial Context constructor.

Cache properties are evaluated when an Initial Context instance iscreated. The resulting cache association, including"none", cannot bechanged. The

"max life" cache properties affectthe individual cache's behavior. If the cache already exists, cache behavior will beupdated according to the new
"max life" property settings. If no"max life" properties exist in the environment, the cachewill assume default "max life"settings, irrespective of the
previous settings.The various cache properties are describedbelow. All property values must be string values.

« com.ibm.webspher e.naming.j ndicache.cacheobject

Caching isturned on or off with this property. Additionally, an existingcache can be cleared.Listed below are the valid values for this
property and the resulting cachebehavior:
o "populated” (default): Use a cache with the specified name. If the cache already exists, leave existing cache entriesin cache;
otherwise, create a new cache.

o "cleared": Use acache with the specified name. If the cache aready exists, clear all cache entries from cache; otherwise, create a
new cache.

o "none": Do not cache. If this option is specified, the cache nameisirrelevant. Therefore, this option will not disable a cache that is
already associated with other Initial Context instances. The InitialContext being instantiated will not be associated with any cache.

« com.ibm.websphere.naming.jndicache.cachename

It is possible to createmultiple Initial Context instances, each operating on the namespace of adifferent name service provider. By default,
objects from each serviceprovider are cached separately, since they each involve independent namespacesand name collisions could occur if
they used the same cache. The providerURL specified when the initial context is created serves as the defaultcache name. With this
property, a INDI client can specify a cache nameother than the provider URL. Listed below are the valid options forcache names:

o "providerURL" (default): Use the value for java.naming.provider.url property as the cache name. The default provider URL is
"iiop://I". URLs are normalized by stripping off everything after the port. For example, "iiop://server1:900" and
"iiop://server1:900/com/ibm/initCtx" are normalized to the same cache name.

o Any string: Use the specified string as the cache name. Any arbitrary string with a value other than "providerURL" can be used asa
cache name.

« com.ibm.webspher e.naming.jndicache.maxcachelife

By default, cached objects remain in the cache for the life of the process oruntil cleared with the
com.ibm.websphere.naming.jndi cache.cacheobject propertyset to "cleared”. This property enables a INDI client to set the maximum lifeof a
cache asfollows:

o "0" (default): Make the cache lifetime unlimited.

o Positive integer: Set the maximum lifetime of the cache, in minutes, to the specified value. When the maximum cache lifetimeis
reached, the cache is cleared before another cache operation is performed. The cache is repopulated as bind, rebind, and lookup
operations are executed.

« com.ibm.websphere.naming.jndicache.maxentrylife

By default, cached objects remain in the cache for the life of the processor until cleared with the
com.ibm.websphere.naming.jndicache.cacheobjectproperty set to "cleared". This property enables a INDI client to set themaximum lifetime
of individual cache entries asfollows:

o "0" (default): Lifetime of cache entriesis unlimited.

o Positive integer: Set the maximum lifetime of individual cache entries, in minutes, to the specified value. When the maximum
lifetime for an entry is reached, the next attempt to read the entry from the cache will cause the entry to be refreshed.

Coding examples

import java.util.Hashtable;inport javax.nam ng.lnitial Context;inport javax.nam ng.Context;/*****
Caching discussed in this section pertains only to the WebSphere Advanced Edition initial context
factory. Assune the property, java.nanmi ng.factory.initial, is set to

"comibmejs.ns.CNnitial ContextFactory" as a java.l ang. System property. *****/ Hasht abl e env; Cont ext
ctx;// To clear a cache:env = new

Hasht abl e() ; env. put ("com i bm webspher e. nam ng. j ndi cache. cacheobject", "cleared");ctx = new

Initial Context(env);// To set a cache's maxi mum cache lifetine to 60 nmi nutes:env = new

Hasht abl e() ; env. put ("com i bm webspher e. nam ng. j ndi cache. naxcachelife", "60");ctx = new

Initial Context(env);// To turn caching off:env = new

Hasht abl e() ; env. put ("com i bm webspher e. nam ng. j ndi cache. cacheobj ect”, "none");ctx = new

Initial Context(env);// To use caching and no caching:env = new

Hasht abl e() ; env. put ("com i bm webspher e. nam ng. j ndi cache. cacheobj ect", "popul ated");ctx = new

I nitial Context(env);env.put("comibm websphere. nanmi ng.jndi cache. cacheobject”, "none"); Context
noCacheCtx = new Initial Context(env); Object o0;// Use caching to | ook up hone, since the home shoul d
rarely change.o = ctx. | ookup("com nycom MyEJBHone");// Narrow, etc. ...// Do not use cache if data

is volatile.o = noCacheCt x. | ookup("conm nyconm Vol atil eCoject");//

FF

3.5.3

4.3.3: Using Java Message Service (JMS) resources

WebSphere Application Server Enterprise JavaBeans now support the transactional use of MQSeries Java
Message Service (IMS) resources.

To use thisfeature, install MQSeries version 5.2 and the MQSeries classes for Java and IMS.Only MQSeries
V5.2 provides this support; earlier versions will not work.
To configure IM S resources for use with WebSphere Application Server:

1. Download the MQSeries Java and JM S classesfrom URL,
http://www.ibm.com/software/ts/mgseries/api/mgjava.html

2. Review the MQSeries Using Java book which describes how to configure IM S resourcesfor use with
WebSphere Application Server.

3. Usethe MQSeries administration tool, JM SAdmin, to bind the Java and IM S classes to the JNDI
namespace.

4. Configure the following three parameters of the MQSeries administration tool, JM SAdminto support
WebSphere Application Server:

o INITIAL_CONTEXT_FACTORY
o PROVIDER_URL
o SECURITY_AUTHENTICATION
5. Review the WebSphere Application Server specific configuration instructions.
6. Review the WebSphere Application Server IMS connection factories in IM SAdmin,specifically:

o WSQCF - queue connection factory
o WSTCF - topic connection factory

WebSphere Application Server connection factory objects

All QueueSession and TopicSession objects created from the WebSphereApplication Server connection
factories are transacted, and require an active transaction for the following calls:

« QueueSender.send

« MessageConsumer.receive

o MessageConsumer.receiveNoWait
« TopicPublisher.publish

A

1. Using these callsin an unspecified transaction context, that iswhen thereis no active
transaction, is not supported.

2. Messages sent via QueueSender.send or published using TopicPublisher.publish do not
become visibleuntil the transaction is committed.

3. Messages received by MessageConsumer.receive or MessageConsumer.receiveNoWait
are requeued if the transaction is rolled back.

4. Both bean-managed transaction demarcation and container-managed demarcation are

http://www.ibm.com/software/ts/mqseries/api/mqjava.html
http://www-4.ibm.com/software/ts/mqseries/library/manualsa/csqzaw04/csqzaw.htm
http://www.ibm.com/software/ts/mqseries/library/manualsa/csqzaw04/csqzaw11.htm
http://www.ibm.com/software/ts/mqseries/library/manualsa/csqzaw04/csqzaw11.htm
http://www.ibm.com/software/ts/mqseries/library/manualsa/csqzaw04/csqzaw12.htm#IDX213
http://www.ibm.com/software/ts/mqseries/library/manualsa/csqzaw04/csqzaw12.htm#IDX215
http://www.ibm.com/software/ts/mqseries/library/manualsa/csqzaw04/csqzaw12.htm#IDX215
http://www.ibm.com/software/ts/mqseries/library/manualsa/csqzaw04/csqzaw12.htm#IDX219
http://www.ibm.com/software/ts/mqseries/library/manualsa/csqzaw04/csqzaw11.htm

supported.

5. Callsto QueueConnection.createQueueSession and
TopicConnection.createTopicSessionare given the parameters:

o true (transacted)
o 0 (zero, since acknowledgeMode is not relevant).
The actual values of the parameters are ignored.

6. You cannot obtain a non-transacted session from the WebSphere Application Server
JMSS connection factories. To create a non-transacted session, you mustuse a
conventional queue connection factory or topic connection factory such as QCF or TCF
in the IMSAdmin tool.

7. Requestors are only used with non-transacted sessions. Therefore, QueueRequestorand
TopicRequestor cannot be used with sessions created by WebSphere ApplicationServer
JMSS connection factories.

8. With the Enterprise JavaBeans programming model, you must ensure all JIM S resources
are closed correctly.Since JM S resources never time-out, JM S resources that are not
closed correctly will continue to consume M QSeries resources.The M QSeries resources
also persist until the application server or MQSeries Queue manager is restarted.

Unsupported interfaces and methods

The following IMS interfaces are not designed for application use and, therefore,cannot be invoked:

Unsupported interfaces
javax.jms.Server Session
javax.jms.Server SessionPool
javax.jms.ConnectionConsumer
all the javax.jms. XA interfaces

The following JIM S methods are inappropriatein this environment and interfere with connection management by
the container. Therefore, these methods cannot be used:

Unsupported methods
javax.jms.Connection.setExceptionListener
javax.jms.Connection.stop
javax.jms.Connection.setClientI D
javax.jms.Connection.setMessagel i stener
javax.jms.Session.getMesssageL i stener
javax.jms.Session.run
javax.jms.QueueConnection.createConnectionConsumer
javax.jms.TopicConnection.createConnectionConsumer
javax.jms. TopicConnection.createDur ableConnectionConsumer
javax.jms.MessageConsumer .setMessagel.istener
javax.jms.Session.commit
javax.jms.Session.rollback
javax.jms.Session.recover
javax.jms.Message.acknowl edge

il You cannot register a MessageListenerwith a QueueReceiver or TopicSubscriber.These
restrictions match the onesdocumented in the Enterprise JavaBeans 2.0 specification.

10

http://www.ibm.com/software/ts/mqseries/library/manualsa/csqzaw04/csqzaw11.htm

o 4.3: Developing enterprise beans

InfoCenter (productdocumentation)

11

http://localhost/v355makePDF/advanced/index.html

About this book

This document focuses on the development of enterprise beans written to theSun Microsystems Enterprise
JavaBeans(TM) specification in the WebSphere(TM)A pplication Server programming environment. It also
discussesdevelopment of EJB clients that can access enterprise beans.

Who should read this book

This document is written for devel opers and system architects who want anintroduction to programming
enterprise beans and EJB clientsin WebSphereApplication Server. It is assumed that programmers are familiar
withthe concepts of object-oriented programming, distributed programming, andWeb-based programming.
Knowledge of the Sun Microsystems JavalTM)programming language is al so assumed.

Document organization

This document is organized as follows:

12

An architectural overview of the EJB programming environment provides a high-level introduction to
the EJB serverenvironment in WebSphere Application Server.

An introduction to enterprise beans explains the main concepts associated with enterprisebeans.

Tools for developing and deploying enterprise beans in the EJB server (AE) environment explains how
to set up and use the tools contained in theEJB server (AE) environment. It also discusses the major
steps indeveloping and deploying enterprise beansin that environment. The EJBserver (AE) isthe EJB
server implementation available with the WebSphereA pplication Server Advanced Edition.

Tools for developing and deploying enterprise beans in the EJB server (CB) environment explains how
to set up and use the tools contained in theEJB server (CB) environment. It also discusses the major
steps indevel oping and deploying enterprise beans in that environment. The EJBserver (CB) isthe EJB
server implementation available with Component Brokeras part of the WebSphere Application Server
Enterprise Edition.

Developing enterprise beans explains how to develop entity beans with contai ner-managedpersistence
(CMP) and session beans. It aso provides information onhow to package enterprise beans for later
deployment.

Enabling transactions and security in enterprise beans explains how to enable transactions in enterprise
beans byusing the appropriate deployment descriptor attributes.

Developing EJB clients explains the basic code required by an EJB client to use anenterprise bean. This
chapter covers generic issues relevant toenterprise beans, Java applications, and Java servlets that use
enterprisebeans.

Developing servlets that use enterprise beans discusses the basic code required in a servlet that
accessesan enterprise bean.

More-advanced programming concepts for enterprise beans explains how to develop a simple entity
bean withbean-managed persistence and discusses the basic code required of anenterprise bean that
manages its own transactions.

Appendix A, Changes for version 1.1 of the EJB specification describes features that are new or have
changed in versionl.1 of the EJB specification and discusses migration issues forenterprise beans
written to version 1.0 of the EJBspecification.

Appendix B, Example code provided with WebSphere Application Server describes the major example

used throughout this book andthe additional examples that are delivered with the various editions
of WebSphere Application Server.

« Appendix C, Using XML in enterprise beans (CB Only) describes the extensible markup language

(XML) that can beused to create deployment descriptors for use with enterprise beansin the EJBserver
(CB) environment.
Appendix D, Extensions to the EJB Specification describes the extensions to the EJB Specification that

arespecific to WebSphere Application Server. Use of these extensions issupported in VisualAge for Java
only.

Related information

For further information on the topics discussed in this manual, see thefollowing documents:

Getting Started with WebSphere Application Server
Building Business Solutions with WebSphere
Component Broker Problem Determination Guide
Component Broker System Administration Guide
Component Broker Release Notes

How to send your comments

Y our feedback isimportant in helping to provide the most accurate andhighest quality information. If you have
any comments about this book,send your comments by e-mail to wasdoc@us.ibm.com. Besure to include the
name of the book, the document number of the book, theedition and version of WebSphere Application Server,
and, if applicable, thespecific location of the information you are commenting on (for example, apage number
or table number).

13

An introduction to enterprise beans

This chapter looks at the characteristics and purpose of enterprisebeans. It describes the two basic types of
enterprise beans and theirlife cycles, and it provides an example of how enterprise beans can becombined to
create distributed, three-tiered applications.

Bean basics

An enterprise bean is a Java component that can be combined with otherenterprise beans and other Java
components to create a distributed,three-tiered application. There are two types of enterprisebeans:

« An entity bean encapsulates permanent data, which is stored ina data source such as a database or afile

system, and associated methods tomanipulate that data. In most cases, an entity bean must be accessed
insome transactional manner. Instances of an entity bean are unique andthey can be accessed by multiple
USErs.

For example, the information about a bank account can be encapsulated in anentity bean. An account
entity bean might contain an account ID, anaccount type (checking or savings), and a balance variable and
methods tomani pul ate these variabl es.

« A session bean encapsulates ephemeral (nonpermanent) dataassociated with a particular EJB client.

Unlike the datain an entitybean, the datain a session bean is not stored in a permanent data source, andno
harm is caused if this datais lost. However, a session bean canupdate data in an underlying database,
usually by accessing an entitybean. A session bean can also participate in a transaction.

When created, instances of a session bean are identical, though somesession beans can store
semipermanent data that makes them unique at certainpointsin their life cycle. A session bean is always
associated with asingle client; attempts to make concurrent calls result in an exceptionbeing thrown.

For example, the task associated with transferring funds between two bankaccounts can be encapsul ated
in a session bean. Such atransfer sessionbean can find two instances of an account entity bean (by using
the accountl Ds), and then subtract a specified amount from one account and add the sameamount to the
other account.

Entity beans

This section discusses the basics of entity beans.

Basic components of an entity bean

Every entity bean must have the following components, which are illustrated inFigure 3:

14

« Bean class--This class encapsul ates the data for theentity bean and contains the devel oper-implemented

business methods thataccess the data. It also contains the methods used by the container tomanage the life
cycle of an entity bean instance. EJB clients (whetherthey are other enterprise beans or user components
such as servlets)never access objects of this class directly; instead, they usethe container-generated classes
associated with the home and remote interfacesto manipul ate the entity bean instance.

Home interface--This interface defines the methods used bythe client to create, find, and remove instances
of the entity bean.This interface isimplemented by the container during deployment in a classknown
generically as the EJB home class; instances arereferred to as EJB home objects.

Remote interface--Once the client has used the homeinterface to gain access to an entity bean, it usesthis
interface to invokeindirectly the business methods implemented in the bean class. Thisinterfaceis
implemented by the container during deployment in a class knowngenerically as the EJB object class,
instances are referred toas EJB objects.

« Primary key -- One or more variables that uniquelyidentify a specific entity bean instance. A primary key
that consistsof a single variable of a primitive Java data type can be specified atdeployment. A primary
key classis used to encapsul ateprimary keys that consist of multiple variables or more complex Java
datatypes. The primary key class also contains methods to create primarykey objects and manipulate those
objects.

Figure 3. The components of an entity bean

Data persistence

Entity beans encapsulate and manipulate persistent (or permanent)business data. For example, at a bank, entity
beans can be used tomodel customer profiles, checking and savings accounts, car loans, mortgages,and customer
transaction histories.

To ensure that thisimportant datais not lost, the entity bean stores itsdata in a data source such as a database.
When the data in anenterprise bean instance is changed, the data in the data source issynchronized with the bean
data. Of course, this synchronization takesplace within the context of the appropriate type of transaction, so that if
arouter goes down or a server fails, permanent changes are not lost.When you design an entity bean, you must
decide whether you want theenterprise bean to handle this data synchronization or whether you want thecontai ner
to handleit. An enterprise bean that handles its own datasynchronization is said to implement bean-managed
persistence(BMP), while an enterprise bean whose data synchronization is handled by thecontainer is said to
implement container-managed persistence(CMP).

Unless you have a good reason for implementing BMP, it is recommended thatyou design your entity beansto

use CMP. You must use entity beans withBMP if you want to use a data source that is not supported by the
15

EJBserver. The code for an enterprise bean with CMP is easier to write anddoes not depend on any particular data
storage product, making it moreportable between EJB servers.

Session beans

This section discusses the basics of session beans.

Basic components of a session bean

Every session bean must have the following components, which areillustratedin Figure 4:

« Bean class--This class encapsul ates the data associatedwith the session bean and contains the

devel oper-implemented business methodsthat access this data. It also contains the methods used by
thecontainer to manage the life cycle of an session bean instance. EJBclients (whether they are other
enterprise beans or user applications)never access objects of this class directly; instead, they usethe
container-generated classes associated with the home and remote interfacesto manipul ate the session bean.

Home interface--This interface defines the methods used bythe client to create and remove instances of
the session bean. Thisinterface isimplemented by the container during deployment in aclass
knowngenerically as the EJB home class; instances are referred toas EJB home object.

Remote interface--After the client has used the homeinterface to gain access to an session bean, it usesthis
interface to invokeindirectly the business methods implemented in the bean class. Thisinterfaceis
implemented by the container during deployment in a class knowngenerically as the EJB object class,
instances are referred toas EJB objects.

Unlike an entity bean, a session bean does not have a primary keyclass. A session bean does not require a primary
key class because youdo not need to search for specific instances of session beans.

Figure 4. The components of a session bean

16

Stateless versus stateful session beans

Session beans encapsul ate data and methods associated with a user session,task, or ephemeral object. By
definition, the datain a session beaninstance is ephemeradl; if it islost, no real harm is done. Forexample, at a
bank, a session bean represents a funds transfer, the creationof a customer profile or new account, and a
withdrawal or deposit. Ifinformation about afund transfer is already typed (but not yet committed),and a server
fails, the balances of the bank accounts remains the same.Only the transfer datais lost, which can always be
retyped.

The manner in which a session bean is designed determines whether its datais shorter lived or longer lived:

« If asession bean needs to maintain specific data across methods, it isreferred to as a stateful session bean.
When a session beanmaintains data across methods, it is said to have a conver sational state. A Web-based
shopping cart isaclassic use of a stateful session bean. As the shopping cart user adds items to and
subtractsitems from the shopping cart, the underlying session bean instance mustmaintain arecord of the
contents of the cart. After a particular EJBclient begins using an instance of a stateful session bean, the
client mustcontinue to use that instance as long as the specific state of that instanceis required. If the
session bean instance is lost before the contentsof the shopping cart are committed to an order, the
shopper must load a newshopping cart.

« |If asession bean does not need to maintain specific data across methods,it is referred to as a statel ess
session bean. The exampleTransfer session bean developed in Devel oping session beans provides an

example of a statel ess session bean. Forstatel ess session beans, a client can use any instance to invoke any
of thesession bean's methods because all instances are the same.

Creating an EJB module
17

The last step in the development of an enterprise bean is the creation of anEJB module. An EJB module consists
of the following:

« One or more deployable enterprise beans.

« A deployment descriptor, stored in an Extensible Markup Language (XML)file. Thisfile contains
information about the structure and externaldependencies of the beans in the module, and application
assembly informationdescribing how the beans are to be used in an application.

The EJB module can be created by using the tools within an integrateddevel opment environment (IDE) like
IBM's VisualAge for Java EnterpriseEdition or by using the tools contained in WebSphere. For moreinformation,
see Tools for developing and deploying enterprise beans in the EJB server (AE) environment.

For information about packaging enterprise beans for the EJB server (CB)environment, see Creating an EJB JAR
filefor an enterprise bean .

The EJB module

The EJB module is used to assemble enterprise beans into a singledepl oyable unit; this file uses the standard Java
archive fileformat. The EJB module can contain individual enterprise beans ormultiple enterprise beans. For more
information, see Creating an EJB module and deployment descriptor.

The deployment descriptor

The EJB module contains one or more deployable enterprise beans and onedepl oyment descriptor. The
deployment descriptor containsattribute and environment settings for each bean in the module, and it defineshow
the container invokes functionality for all beansin the module.The deployment descriptor attributes can be set for
the entire enterprise beanor for the individual methods in the bean. The container uses thedefinition of the
bean-level attribute unless a method-level attribute isdefined, in which case the latter is used.The deployment
descriptor contains the following information about entity andsession beans. These attributes can be set on the
bean only; theycannot be set on a specific method of the bean.

« Thebean's name, class, home interfaces, remote interfaces, and beantype (entity or session).

« Primary key class attribute--1dentifies the primary keyclass for the bean. For more information, see
Writing the primary key class (entity with CMP) or Writing or selecting the primary key class (entity with
BMP).

« Persistence management. Specifies whether persistencemanagement is performed by the enterprise bean
or by the container.

« Container-managed fields attribute--Lists those persistentvariables in the bean class that the container
must synchronize with fields ina corresponding data source to ensure that this datais persistent
andconsistent. For more information, see Defining variables.

« Reentrant attribute--Specifies whether an enterprise beancan invoke methods on itself or call another bean
that invokes a method on thecalling bean. Only entity beans can be reentrant. For moreinformation, see
Using threads and reentrancy in enterprise beans.

« State management attribute--Defines the conversational state of the session bean. This attribute must be set
to eitherSTATEFUL or STATELESS. For more information on the meaning of theseconversational states,
see Stateless versus stateful session beans.

« Timeout attribute--Defines the idle timeout value inseconds associated with this session bean. (This
attribute is anextension to the standard deployment descriptor.)

« Settings for environment variables.
« Referencesto external resources, such as resource factories, to the homesof other enterprise beans, and to

18

security roles.

The deployment descriptor contains the following application assemblyinformation:
« An application name and icons for identifying the module.
« Thelocation of classfiles needed for aclient program to access thebeans in the module.

« Security roles—- Define agroup of permissions that agiven type of user must have in order to successfully
use anapplication. Roles represent atype of user that has the same accessrights to an application.

« Method permissions--Define a permission to invoke aspecified group of methods of an enterprise bean's
home and remoteinterfaces. Thisvalueis set per method.

« Transaction attributes--Define the transactional manner inwhich the container invokes a method for
enterprise beans that requirecontai ner-managed transaction demarcation. This value is set permethod. The
values for this attribute are described in Enabling transactions and security in enterprise beans.

« Transaction isolation level attribute--Defines the degreeto which transactions are isolated from each other
by the container.This value is set per method. The values for this attribute aredescribed in Enabling

transactions and security in enterprise beans. (This attribute is an extension to the standarddeployment
descriptor.)
« RunAsMode and RunAsldentity attributes--TheRunAsMode attribute defines the identity used to invoke

themethod. If a specific identity is required, theRunAsldentity attribute is used to specify that identity.This
value is set per bean. The values for the RunAsModeattribute are described in Enabling transactions and

security in enterprise beans. (This attribute is an extension to the standarddeployment descriptor.)

The following binding attribute is stored in the repository (it is not partof the deployment descriptor):

« JNDI home name attribute--Defines the Java Naming andDirectory Interface (JNDI) home name that is
used to locate instances of anEJB home object. Thisvalue is set per bean. The values for thisrepository
attribute are described in Creating and getting a reference to a bean's EJB object.

Deploying an EJB module

When you deploy an EJB module, the deployment tool creates or incorporates thefollowing elements:

« The container-implemented EJBObject and EJBHomecl asses (hereafter referred to as the EJB object and
EJB home classes) fromthe enterprise bean's home and remote interfaces (and the persistor andfinder
classes for entity beans with CMP).

« The stub and skeleton files required for remote method invocation(RMI).

Figure 5 shows asimplified version of a deployed entity bean.

Figure 5. The major components of a deployed entity bean

19

Y ou can deploy an EJB module with avariety of different tools. Formore information, see Tools for developing
and deploying enterprise beans in the EJB server (AE) environment or Tools for devel oping and deploying
enterprise beansin the EJB server (CB) environment.

Developing EJB applications

To create EJB applications, create the enterprise beans and EJB clients thatencapsulate your business data and
functionality and then combine themappropriately. Figure 6 provides a conceptual illustration of how EJB
applicationsare created by combining one or more session beans, one or more entity beans,or both. Although
individual entity beans and session beans can be useddirectly in an EJB client, session beans are designed to be
associated withclients and entity beans are designed to store persistent data, so most EJBapplications contain
session beans that, in turn, access entity beans.

Figure 6. Conceptual view of EJB applications

20

Container

f Entity bean

5 Session hean

\V4

This section provides an example of the ways in which enterprise beans canbe combined to create EJB
applications.

An example: enterprise beans for a bank

If you develop EJB applications for the banking industry, you can develop thefollowing entity beans to
encapsulate your business data and associatedmethods:

Account bean--An entity bean that contains information about customerchecking and savings accounts.
CarL oan bean--An entity bean that contains information about anautomobile [oan.

Customer bean--An entity bean that contains information about acustomer, including information on
accounts held and loans taken out by thecustomer.

CustomerHistory bean--An entity bean that contains a record of customer transactions for specified
accounts.

Mortgage bean--An entity bean that contains information about a homeor commercial mortgage.

An EJB client can directly access entity beans or session beans;however, the EJB Specification suggests that EJB
clients use session beans toin turn access entity beans, especially in more complex applications. Therefore, as an
EJB developer for the banking industry, you can create thefollowing session beans to represent client tasks:

LoanApprover bean--A session bean that allows aloan to be approvedby using instances of the CarLoan
bean, the Mortgage bean, or both.

CarLoanCreator bean--A session bean that creates a new instance of aCarL oan bean.
MortgageCreator bean--A session bean that creates a new instance of aMortgage bean.
Deposit bean--A session bean that credits a specified amount to anexisting instance of an Account bean.

StatementGenerator bean--A session bean that generates a statementsummarizing the activities associated
with a customer's accounts by usingthe appropriate instances of the Customer and CustomerHistory
entitybeans.

Payment bean--A session bean that credits a payment to acustomer's loan by using instances of the

21

CarL oan bean, the Mortgagebean, or both.
o NewAccount bean--A session bean that creates a new instance of anAccount bean.
o NewCustomer bean--A session bean that creates a new instance of aCustomer bean.

» LoanReviewer bean--A session bean that accesses information about acustomer's outstanding loans
(instances of the CarLoan bean, the Mortgagebean, or both).

« Transfer bean--A session bean that transfers a specified amountbetween two existing instances of an
Account bean.

« Withdraw bean--A session bean that debits a specified amount from anexisting instance of an Account
bean.

This example is simplified by necessity. Nevertheless, by using thisset of enterprise beans, you can create a
variety of EJB applications fordifferent types of users by combining the appropriate beans within thatapplication.
One or more EJB clients can then be built to access theapplication.

Using the banking beans to develop EJB banking applications

When using beans built to the Sun Microsystems JavaBeans(T™) Specification(as opposed to the EJB
Specification), you combine predefined components suchas buttons and text fields to create GUI applications.
When usingenterprise beans, you combine predefined components such as the banking beansto create three-tiered
applications.

For example, you can use the banking enterprise beans to create thefollowing EJB applications:

« Home Banking application--An Internet application that allows acustomer to transfer funds between
accounts (with the Transfer bean), to makepayments on aloan by using funds in an existing account (with
the Paymentbean), to apply for a car loan or home mortgage (with the CarL oanCreator beanor the
MortgageCreator bean).

« Teller application--An intranet application that allows ateller tocreate new customer accounts (with the
NewCustomer bean and the NewA ccountbean), transfer funds between accounts (with the Transfer bean),
and recordcustomer deposits and withdrawals (with the Withdraw bean and the Depositbean).

« Loan Officer application--An intranet application that allows aloanofficer to create and approve car loans
and home mortgages (with theCarL oanCreator, MortgageCreator, LoanReviewer, and LoanA pprover
beans).

« Statement Generator application--A batch application that printsmonthly customer statements related to
account activity (with theStatementGenerator bean).

These exampl es represent only a subset of the possible EJB applicationsthat can be created with the banking
beans.

Life cycles of enterprise bean instances

After an enterprise bean is deployed into a container, clients can create anduse instances of that bean as required.
Within the container, instancesof an enterprise bean go through a defined life cycle. The eventsin anenterprise
bean'slife cycle are derived from actions initiated by eitherthe EJB client or the container in the EJB server. You
must understandthis life cycle because for some enterprise beans, you must write some of thecode to handle the
different events in the enterprise bean's lifecycle.

The methods mentioned in this section are discussed in greater detail in Devel oping enterprise beans.

Session bean life cycle

22

This section describes the life cycle of a session bean instance.Differences between stateful and stateless session
beans are noted.

Creation state

A session bean's life cycle begins when a client invokes a create methoddefined in the bean's home interface. In
response to this methodinvocation, the container does the following:

1. Creates a new memory object for the session bean instance.

2. Invokes the session bean's setSessionContext method. (Thismethod passes the session bean instance a
reference to a session contextinterface that can be used by the instance to obtain container services andget
information about the caller of a client-invoked method.)

3. Invokes the session bean's g bCreate method corresponding to thecreate method called by the EJB client.

Ready state

After a session bean instance is created, it movesto the ready state of itslife cycle. In this state, EJB clients can
invoke the bean'sbusiness methods defined in the remote interface. The actions of thecontainer at this state are
determined by whether a method is invokedtransactionally or nontransactionally:

« Transactional method invocations--When a client invokes atransactional business method, the session
bean instance is associated with atransaction. After a bean instance is associated with atransaction,
itremains associated until that transaction compl etes. (Furthermore, anerror resultsif an EJB client
attempts to invoke another method on the samebean instance if invoking that method causes the container
to associate thebean instance with another transaction or with no transaction.)

The container then invokes the following methods:
1. The afterBegin method, if that method isimplemented by the beanclass.

2. The business method in the bean class that corresponds to the businessmethod defined in the
bean's remote interface and called by the EJBclient.

3. The bean instance's beforeCompletion method, if that method isimplemented by the bean class and
if acommit isrequested prior to thecontainer's attempt to commit the transaction.

The transaction service then attempts to commit the transaction, resultingeither in a commit or aroll back.
When the transaction compl etes, thecontainer invokes the bean's afterCompletion method, passing
thecompletion status of the transaction (either commit or rollback).

If arollback occurs, a stateful session bean can roll back itsconversational state to the values contained in
the bean instance prior tobeginning the transaction. Statel ess session beans do not maintain
aconversational state, so they do not need to be concerned aboutrollbacks.

« Nontransactional method invocations--When a client invokesa nontransactional business method, the
container smply invokes thecorresponding method in the bean class.

Pooled state

The container has a sophisticated algorithm for managing which enterprise beaninstances are retained in memory.
When a container determines that astateful session bean instance is no longer required in memory, it invokes
thebean instance's gjbPassivate method and moves the bean instance into areserve pool. A stateful session bean
instance cannot be passivatedwhen it is associated with a transaction.

If aclient invokes amethod on a passivated instance of a stateful sessionbean, the container activates the instance
by restoring the instance'sstate and then invoking the bean instance's gjbA ctivate method.When this method
returns, the bean instance is again in the readystate.

Because every stateless session bean instance of a particular type is thesame as every other instance of that type,
23

statel ess session bean instancesare not passivated or activated. These instances exist in aready stateat all times
until their removal.

Removal state

A session bean's life cycle ends when an EJB client or the containerinvokes a remove method defined in the
bean's home interface and remoteinterface. In response to this method invocation, the container callsthe bean
instance's ejbRemove method.

If you attempt to remove a bean instance while it is associated with atransaction, the javax.ejb.RemoveException
isthrown.After a bean instance is removed, any attempt to invoke a method on thatinstance causes the
java.rmi.NoSuchObjectException to bethrown.

A container can implicitly call aremove method on an instance after thelifetime of the EJB object has expired.
The lifetime of a session EJBobject is set in the deployment descriptor with the timeoutattribute.

For more information on the remove methods, see Removing a bean's EJB object.

Entity bean life cycle

This section describes the life cycle of entity bean instances.Differences between entity beans with CMP and
BMP are noted.

Creation State

An entity bean instance's life cycle begins when the container createsthat instance. After creating a new entity
bean instance, the contai nerinvokes the instance's setEntityContext method. This method passesthe bean instance
areference to an entity context interface that can be usedby the instance to obtain container services and get
information about thecaller of a client-invoked method.

Pooled State

After an entity bean instance is created, it is placed in a pool of availableinstances of the specified entity bean
class. While theinstance is inthis pool, it is not associated with a specific EJB object. Everyinstance of the same
enterprise bean classin this pool isidentical. While an instance is in this pooled state, the container can useit to
invokeany of the bean's finder methods.

Ready State

When a client needs to work with a specific entity bean instance, thecontainer picks an instance from the pool and
associates it with the EJBobject initialized by the client. An entity bean instance is moved fromthe pooled to the
ready state if there are no available instances in the readystate.

There are two events that cause an entity bean instance to be moved fromthe pooled state to the ready state:

« When aclient invokes the create method in the bean's home interfaceto create a new and unique entity of
the entity bean class (and a new recordin the data source). As aresult of this method invocation,
thecontainer calls the bean instance's /bCreate and ejbPostCreate methods,and the new EJB object is
associated with the bean instance.

« When aclient invokes a finder method to manipulate an existing instanceof the entity bean class
(associated with an existing record in the datasource). In this case, the container calls the bean
instance'sgjbA ctivate method to associate the bean instance with the existing EJBobject.

When an entity bean instance isin the ready state, the container caninvoke the instance's gjbL oad and gbStore
methods to synchronize thedata in the instance with the corresponding data in the data source. Inaddition, the

client can invoke the bean instance's business methods whenthe instance isin this state. All interactions required
24

to handle anentity bean instance's business methods in the appropriate transactional (or nontransactional) manner
are handled by the container.

When a container determines that an entity bean instance in the ready stateis no longer required, it moves the
instance to the pooled state. Thistransition to the pooled state results from either of the followingevents:
« When the container invokes the gbPassivate method.

« When the EJB client invokes aremove method on the EJB object or on theEJB home object. When one of
these methods is called, the underlyingentity is removed permanently from the data source.

Removal State

An entity bean instance's life cycle ends when the container invokes theunsetEntityContext method on an entity
bean instance in the pooledstate. Do not confuse the removal of an entity bean instance with theremoval of the
underlying entity whose datais stored in the datasource. The former simply removes an uninitialized object;
thelatter removes data from the data source.

For more information on the remove methods, see Removing a bean's EJB object.

25

WebSphere Programming Model Extensions

This section discusses facilities that are provided as part of theProgramming Model Extensions in WebSphere Application Server:

« The exception-chaining package, which can be used by distributedapplications to capture a sequence of exceptions. For more information,see
The distributed-exception package.

« The command package, which can be used by distributed applications toreduce the number of remote invocations they must make. For
moreinformation, see The command package.

« Thelocalizable-text package, which can be used by distributedapplications spanning locales to deliver output in a user-specifiedlanguage. For
more information, see The localizable-text package.

The exception-chaining and command packages are available as part of WebSphere Application Server Advanced Edition and Enterprise Edition;
thelocalizable-text package is available as part of WebSphere Application ServerAdvanced Edition. All three packages are general-purpose
utilities,designed to provide common functionsin areusable way. Although thesefacilities are described in the context of enterprise beans, they
areavailable to any WebSphere Application Server Java application. Theyare not restricted to use with enterprise beans.

The distributed-exception package

Distributed applications require a strategy for exception handling.As applications become more complex and are used by more participants,handling
exceptions becomes problematic. To capture the informationcontained in every exception, methods have to rethrow every exception theycatch. If every
method adopts this approach, the number of exceptionscan become unmanageable, and the code itself becomes |ess maintainable.Furthermore, if a new
method introduces a new exception, all existing methodsthat call the new method have to be modified to handle the newexception. Trying to explicitly
manage every possible exception in acomplex application quickly becomesintractable.

In order to keep the number of exceptions manageable, some programmersadopt a strategy in which methods catch all exceptionsin asingle clause
andthrow one exception in response. This reduces the number of exceptionseach method must recognize, but it also means that the information about
theoriginating exception is lost. Thisloss of information can bedesirable, for example, when you wish to hide implementation details from endusers.
However, this strategy can make applications much more difficultto debug.

The distributed-exception package provides afacility that allows you tobuild chains of exceptions. An exception chain encapsul atesthe stack of
previous exceptions. With an exception chain, you canthrow one exception in response to another without discarding the previousexceptions, so you
can manage the number of exceptions without losing theinformation they carry. Exceptions that support chaining are calleddistributed exceptions.

Overview

Support for chaining distributed exceptionsis provided by thecom.ibm.websphere.exception Java package. Thefollowing classes and interfaces make
up this package:
« DistributedException--This class provides access to the methods onthe DistributedExceptioninfo object. It acts as the root class forexceptions
in a distributed application. For more information, see The DistributedException class.

« DistributedExceptionEnabled--This interface allows exceptions thatcannot inherit from the DistributedException class to be used in
exceptionchains, so that exceptions based on predefined exceptions can becaptured. For more information, see The
DistributedExceptionEnabled interface.

« DistributedExceptionlnfo--This class encapsul ates the work necessaryfor distributed exceptions. An exception class that extends
theDistributedException class automatically gets access to this class. Aclass that implements the DistributedExceptionEnabled interface
mustexplicitly declare a DistributedExceptioninfo attribute. For moreinformation, see The DistributedExceptioninfo class.

« ExceptionlnstantiationException--This class defines the exceptionthat is thrown if an exception chain cannot be created. This exceptionis
instantiated internally, but you can catch and re-throw it.

This section provides ageneral description of the interfaces and classesin the exception-chaining package.

The DistributedException class

The DistributedException class provides the root exception for exceptionhierarchies defined by applications. With this class, you build chainsof
exceptions by saving a caught exception and bundling it into the newexception to be thrown. This way, the information about the oldexception is
forwarded along with the new exception. The class declaressix constructors; Figure 71 shows the signatures for these constructors. Whenyour

exception is a subclass of the DistributedException class, you mustprovide corresponding constructors in your exception class.

Figure 71. Code example: Constructorsfor the DistributedException class

.public class DistributedException extends Exceptioninpl enents DistributedExcepti onEnabl ed{ /1
Constructors public DistributedException() {...} public DistributedException(String nessage)
{...} publ i c DistributedExcepti on(Throwabl e except ion) {...} public
Di st ri butedException(String nessage, Throwabl e exception) {. } public DistributedException(String
r esour ceBundl eNane, String resourceKey,
oj ect[] format Argunents, String default Text) {...} public
Di stri but edExcepti on(String resourceBundl eNane, String resourcekKey,
Cbj ect[] format Argunents, String defaultText,

Thr ogabl e excepti on) {...} /1 Ot her methods .

The class also provides methods for extracting exceptions from the chain andquerying the chain. These methods include:
« getMessage--This method returns the message string associated withthe current exception.

« getPreviousException--This method returns the preceding exception ina chain as a Throwable object. If there are no previous exceptions,
itreturns null.

« getOrigina Exception--This method returns the original exception in achain as a Throwable object. If thereisno prior exception, it returnsnull.

« getException--This method returns the most recent instance of thenamed exception from the chain as a Throwable object. If there are
noinstances present, it returns null.

« getExceptioninfo--This method returns the DistributedExceptionlnfoobject for the exception.

« printStackTrace--These methods print the stack trace for the currentexception, which includes the stack traces of all previous exceptionsin
thechain.

L ocalization supportSupport for localized messages is provided by two of the constructors fordistributed exceptions. These constructors take
arguments representinga resource bundle, a resource key, a default message, and the set ofreplacement strings for variables in the message. A resource
bundle isa collection of resources or resource names representing informati onassociated with a specific locale. Resource bundles are provided aseither
a subclass of the ResourceBundle class or in a properties file. The resource key indicates which resource in the bundle to retrieve.The default message
isreturned if either the name of the resource bundle orthe key is null or invalid.

The DistributedExceptionEnabled interface

Use the DistributedExceptionEnabled interface to create distributed exceptionswhen your exception cannot extend the DistributedException
class.Because Java does not permit multiple inheritance, you cannot extend multipleexception classes. If you are extending an existing exception
class,for example, javax.ejb.CreateException, you cannot also extendthe DistributedException class. To alow your new exception class tochain other
exceptions, you must implement the DistributedExceptionEnabl edinterface instead. The DistributedExceptionEnabled interface declares eight methods
you mustimplement in your exception class:

« getMessage--This method returns the message string associated withthe current exception.

« getPreviousException--This method returns the preceding exception ina chain as a Throwable object. If there are no previous exceptions,
itreturns null.

« getOrigina Exception--This method returns the original exception in achain as a Throwable object. If there is no prior exception, it returnsnull.

« getException--This method returns the most recent instance of thenamed exception from the chain as a Throwable object. If there are
noinstances present, it returns null.

« getExceptionlnfo--This method returns the DistributedExceptionl nfoobject for the exception.

« printStackTrace--These methods print the stack trace for the currentexception, which includes the stack traces of al previous exceptionsin
thechain.

« printSuperStackTrace--This method is used by aDistributedExceptioninfo object to retrieve and save the current stacktrace.

When implementing the DistributedExceptionEnabled interface, you mustdeclare a DistributedExceptionlnfo attribute. This attribute
providesimplementations for most of these methods, so implementing them in yourexception class consists of calling the corresponding methods on
theDistributedExceptioninfo object. For more information, see Implementing the methods from the DistributedExceptionEnabled interface.

The DistributedExceptioninfo class

The DistributedExceptionl nfo class provides the functionality required fordistributed exceptions. It must be used by any exception thatimplements the
DistributedExceptionEnabled interface (which includes theDistributedException class). A DistributedExceptionlnfo object containsthe exception itself,
and it provides constructors for creating exceptionchains and methods for retrieving the information within those chains.It aso provides the underlying
methods for managing chainedexceptions.

Extending the DistributedException class

The DistributedException class provides the root exception for exceptionhierarchies defined by applications. The class also provides methodsfor
extracting exceptions from the chain and querying the chain. Y oumust provide constructors corresponding to the constructorsin
theDistributedException class (see Figure 71). The constructors can simply pass arguments to theconstructor in the DistributedException class by using

super methods, asillustrated in Figure 72.

Figure 72. Code example: Constructorsin an exception classthat extends the DistributedException class

...inmport comibm websphere. exception.*;public class MyDi stribut edExcepti on extends

Di stri but edExcepti on{ /1l Constructors public MyDi stributedException() { super () ; }

public MyDi stributedException(String nessage) ({ super (nessage) ; } public

MyDi st ri but edExcepti on(Thr owabl e exception) { super (exception); } public

MyDi stri but edException(String nessage, Throwabl e exception) { super (nmessage, exception); }

public MyDi stributedException(String resourceBundl eNane, String resourcekKey,

oj ect[] format Argunments, String defaul t Text)

super (resour ceBundl eNane, resourceKey, formatArgunents, defaultText); } public

MyDi st ri but edException(String resourceBundl eNane, String resourceKey, Object[]

f or mat Ar gunent s, String defaul t Text, Throwabl e excepti on) {

super (resour ceBundl eNane, resourceKey, formatArgunents, defaultText, exception); o 1}
ZT

Implementing the DistributedExceptionEnabled interface

Use the DistributedExceptionEnabled interface to create distributed exceptionswhen your exception cannot extend the DistributedException class.
Toallow your new exception class to be chained, you must implement theDistributedExceptionEnabled interface instead. Figure 73 shows the structure

of an exception class that extends theexisting javax.ejb.CreateException class and implements theDi stributedExceptionEnabled interface. The class
also declares therequired DistributedExceptionlnfo object.

Figure 73. Code example: The structure of an exception class that implementsthe DistributedExceptionEnabled interface

...import javax.ejb.*;inmport comibm websphere.exception.*;public class Account Creat eException

ext ends Creat eExceptioni npl enents DistributedExcepti onEnabl ed{ Di stribut edExcepti onl nfo
exceptionlnfo = null; /'l Constructors C. /1 Methods fromthe DistributedExcepti onEnabl ed
interface)

Implementing the constructors for the exception class

The exception-chaining package supports six different ways of creatinginstances of exception classes (see Figure 71). When you write an exception

class by implementingthe DistributedExceptionEnabled interface, you must implement theseconstructors. In each one, you must use the
DistributedExceptionl nfoobject to capture the information for chaining the exception. Figure 74 shows standard implementations for the

sixconstructors.

Figure 74. Code example: Constructorsfor an exception class that implementsthe DistributedExceptionEnabled interface

...public class Account Creat eException extends CreateExceptioni npl enments

Di stri but edExcepti onEnabl ed{ Di stri but edExceptionl nfo exceptionlinfo = null; /'l Constructors
Account Cr eat eException() { super (); exceptionlnfo = new

Di stri but edExcepti onl nfo(this); } Account Creat eException(String nsg) { super (nsgQ);
exceptionlnfo = new DistributedExceptionlnfo(this); } Account Cr eat eExcepti on(Throwabl e e) {
super (); exceptionlnfo = new DistributedExceptionlnfo(this, e); }
Account Cr eat eException(String nsg, Throwable e) { super (msQ); exceptionlnfo = new
Di stri but edExceptionlnfo(this, e); } Account Cr eat eException(String resourceBundl eName, String
r esour ceKey, oj ect[] format Argunments, String defaultText) {
super (); exceptionlnfo = new DistributedExcepti onl nfo(resourceBundl eNane,

resour ceKey, formatArgunents, defaultText, this); } Account Cr eat eException(String

resour ceBundl eName, String resourcekKey, oj ect[] formatArgunents,
String defaul t Text, Thr owabl e excepti on) { super ();
exceptionlnfo = new Di stributedExcepti onl nfo(resourceBundl eNane, resour cekKey,
for mat Argunment s, defaultText, this, exception); } /1 Methods fromthe

Di stri but edExcepti onEnabl ed interface .

Implementing the methods from the DistributedExceptionEnabled interface

The DistributedExceptionl nfo object provides implementations for most of themethods in the DistributedExceptionEnabled interface, so you can
implement therequired methods in your exception class by calling the corresponding methodson the DistributedExceptionlnfo object. Figure 75

illustrates this technique. The only two methods thatdo not involve calling a corresponding method on the DistributedExceptionlnfoobject are the
getExceptionlnfo method, which returns the object, and theprintSuperStack Trace method, which calls the super.printStack Tracemethod.

Figure 75. Code example: Implementations of the methodsin the DistributedExceptionEnabled interface

...public class Account Creat eException extends CreateExceptioni npl ements

Di stri but edExcepti onEnabl ed{ Di stri but edExceptionl nfo exceptionlnfo = null; /] Constructors

c /1 Methods fromthe DistributedExcepti onEnabl ed interface String get Message() { i f
(exceptionlinfo !'= null) return exceptionlnfo.get Message(); else return null; }
Thr owabl e get Previ ousException() { if (exceptionlnfo !'= null) return

exceptionl nfo. get Previ ousException(); el se return null; } Thr owabl e

get Ori gi nal Exception() { if (exceptioninfo !'= null) return

exceptionl nfo.getOrigi nal Exception(); el se return null; } Thr owabl e get Exception(String
exceptionCl assNane) { if (exceptionlnfo !'= null) return

exceptionl nfo. get Excepti on(excepti ond assNane) ; el se return null; }

Di stri but edExceptionl nfo get Exceptionlnfo() { if (exceptionlnfo !'= null) return
exceptionl nf o; el se return null; } voi d printStackTrace() { if (exceptionlnfo I=
nul) return exceptionlnfo.printStackTrace(); else return null; } voi d
printStackTrace(PrintWiter pw) { if (exceptionlnfo !'= null) return
exceptionlnfo.printStackTrace(pw); else return null; } voi d

pri nt Super St ackTrace(PrintWiter pw) if (exceptionlnfo I'= null) return

super. print StackTrace(pw); el se return null; 1}

Using distributed exceptions

Defining a distributed exception gives you the ability to chain exceptionstogether. The DistributedExceptionlnfo class provides methods foradding
information to an exception chain and for extracting information fromthe chain. This section illustrates the use of distributedexceptions.

Catching distributed exceptions

Y ou can catch exceptions that extend the DistributedException class orimplement the DistributedExceptionEnabled interface separately. Y ou canalso
test a caught exception to see if it has implemented theDistributedExceptionEnabled interface. If it has, you can treat it asany other distributed
exception. Figure 76 shows the use of the instanceof method to test for exceptionchaining.

Figure 76. Code example: Testing for an exception that implements the DistributedExceptionEnabled interface

cooatry soneMet hod(); }ca
I

}catch (Exception e) { if (e instanceof
Di stri but edExcepti onEnabl ed) c. ..

t
{

Adding an exception to a chain

To add an exception to achain, you must call one of the constructors foryour distributed-exception class. This captures the previous
exceptioninformation and packages it with the new exception. Figure 77 shows the use of the MyDistributedException(Throwable)constructor.

Figure 77. Code example: Adding an exception to a chain

voi d sonmeMet hod() throws MyDistributedException { try { someCt her Met hod() ; } catch
(Di stribut edExcepti onEnabl ed e) { throw new MyDi stri but edException(e); } S

Retrieving information from a chain

Chained exceptions allow you to retrieve information about prior exceptionsin the chain. For example, the getPreviousException,getOriginal Exception,
and getException(String) methods allow you to retrievespecific exceptions from the chain. Y ou can retrieve the messageassociated with the current
exception by calling the getM essage method.Y ou can a so get information about the entire chain by calling one of theprintStack Trace methods. Figure

78 illustrates calling the getPreviousException andgetOrigina Exception methods.

Figure 78. Code example: Extracting exceptions from a chain

Loatry { someMet hod(); }catch (DistributedExcepti onEnabled e) { try { Throwabl e prev =
e. get Previ ousException(); } catch (Exceptionlnstantiati onException eie) {

Di stri but edExceptionl nfo prevExlnfo = e. getPrevi ousExceptionlnfo(); if (prevExinfo !'= null) {
String prevExName = prevExl nfo. get G assNane(); String prevExMsg =

pr evExl nf 0. get O assMessage() ; - } try { Throwabl e orig =

e.get Ori gi nal Exception(); } catch (Exceptionlnstantiati onException eie) {

Di stri but edExceptionlnfo origExInfo = null; Di stribut edExceptionlnfo prevExlinfo =

e. get Previ ousExcepti onl nfo(); while (prevExinfo !'= null) { origxinfo =

pr evExI nf o; prevExl nfo = prevExl nfo. get Previ ousExcepti onl nfo(); } if
(origexInfo !'=null) { String ori gExNane = ori gExl nfo.getC assNane(); String
ori gexMsg = ori gExl nfo. get Gl assMessage() ; } 1}

The command package

Distributed applications are defined by the ability to utilize remoteresources asif they were local, but this remote work affects the performanceof
distributed applications. Distributed applications can improveperformance by using remote calls sparingly. For example, if a serverdoes several tasks
for aclient, the application can run more quickly if theclient bundles requests together, reducing the number of individual remotecalls. The command
package provides a mechanism for collecting sets ofrequests to be submitted as a unit.

In addition to giving you away to reduce the number of remote invocationsa client makes, the command package provides a generic way of
makingrequests. A client instantiates the command, setsitsinput data, andtells it to run. The command infrastructure determines the targetserver and
passes a copy of the command to it. The server runs thecommand, sets any output data, and copiesit back to the client. Thepackage provides a
common way to issue acommand, locally or remotely, andindependently of the server'simplementation. Any server (anenterprise bean, a JJava
Database Connectivity (JDBC) server, aservlet, and soon) can be atarget of acommand if the server supports Java access to itsresources and provides
away to copy the command between the client'sJava Virtual Machine (JVM) and its own JVM.

Overview

The command facility isimplemented in thecom.ibm.websphere.command Java package. Theclasses and interfaces in the command package fall into
four generalcategories:

« Interfacesfor creating commands. For more information, see Facilities for creating commands.
« Classes and interfaces for implementing commands. For moreinformation, see Facilities for implementing commands. 29

« Classes and interfaces for determining where the command is run.For more information, see Facilities for setting and determining targets.
« Classes defining package-specific exceptions. For more information,see Exceptions in the command package.

This section provides ageneral description of the interfaces and classesin the command package.
Facilities for creating commands

The Command interface specifies the most basic aspects of acommand.This interface is extended by both the TargetableCommand interface and
theCompensableCommand interface, which offer additional features. Tocreate commands for applications, you must:

« Define an interface that extends one or more of interfaces in the commandpackage.
« Provide an implementation class for your interface.

In practice, most commands implement the TargetableCommand interface, whichallows the command to be executed remotely. Figure 79 shows the
structure of acommand interface for a targetablecommand.

Figure 79. Code example: The structure of an interface for a targetable command

...inmport comibm websphere. command. *; public interface MySi npl eCommand extends Tar get abl eConmand {
/| Declare application methods here}

The CompensableCommand interface allows the association of one command withanother that can undo the work of the first. Compensable commands
asotypically implement the TargetableCommand interface. Figure 80 shows the structure of acommand interface for a targetable,compensable
command.

Figure 80. Code example: Thestructure of an interface for atargetable, compensable command

...inmport comibm websphere.command. *; public interface MyConmand ext ends Tar get abl eConmand,
Conpensabl eCommand { /'l Declare application nethods here}

Facilities for implementing commands

Commands are implemented by extending the class TargetableCommandimpl, whichimplements the TargetableCommand interface. The
TargetableCommandImplclassis an abstract class that provides some implementations for some of themethods in the TargetableCommand interface
(for example, setting returnvalues) and declares additional methods that the application itself mustimplement (for example, how to execute the
command).

Y ou implement your command interface by writing a class that extends theTargetableCommandimpl class and implements your command interface.
Thisclass contains the code for the methods in your interface, the methodsinherited from extended interfaces (the TargetableCommand
andCompensableCommand interfaces), and the required (abstract) methods in theTargetableCommandlmpl class. Y ou can aso override the
defaultimplementations of other methods provided in the TargetableCommandl mpl class. Figure 81 shows the structure of an implementation class for

theinterface in Figure 80.

Figure 81. Code example: The structure of an implementation class for a command interface

...inport java.lang.reflect.*;inport comibm websphere.comand. *; public class MyConmandl npl extends

Tar get abl eConmandl npl i npl enrent s MyConmand { /1 Set instance variables here c. /1

I mpl ement et hods in the MyCommand interface /1 1 nplenent methods in the

Conmpensabl eCommand i nterface C /1 1nplement abstract methods in the Targetabl eComrandl npl
cl ass .

Facilities for setting and determining targets

The object that is the target of a TargetableCommand must implement theCommandTarget interface. This object can be an actual server-sideobject,
like an entity bean, or it can be a client-side adapter for aserver. The implementor of the CommandTarget interface is responsiblefor ensuring the
proper execution of a command in the desired target serverenvironment. This typically requires the following steps:

1. Copying the command to the target server by using a server-specificprotocol.
2. Running the command in the server.
3. Copying the executed command from the target server to the client by usinga server-specific protocol.

Common ways to implement the CommandTarget interface include:
« Alocd target, which runsin the client's VM.
« A client-side adapter for a server. For an example that implementsthe target as a client-side adapter, see Writing a command target (client-side
adapter).

« An enterprise bean (either a session bean or an entity bean). Figure 82 shows the structure of the remote interface and enterprisebean class for
6:\n entity bean that implements the CommandTargetinterface.

Figure 82. Code example: The structure of a command-target entity bean

...inport java.rm .RenoteException;inport java.util.Properties;inport javax.ejb.*;inport

com i bm websphere. command. *;// Renote interface for the MyBean enterprise bean (al so a conmand
target)public interface MyBean extends EJBObj ect, ConmandTarget { /1 Declare methods for the
renmote interface ...}/l Entity bean class for the MyBean enterprise bean (also a conmand
target)public class MyBeanC ass i npl enents EntityBean, ConmandTarget { /1 Set instance

vari abl es here /1 Inplenent methods in the renote interface /1 | npl ement
net hods in the EntityBean interface c /1 1mplement the nethod in the ComandTar get
interface)

Since targetable commands can be run remotely in another VM, the commandpackage provides mechanisms for determining where to run the
command. Atarget policy associates a command with atarget and is specifiedthrough the TargetPolicy interface. Y ou can design customized
targetpolicies by implementing this interface, or you can use the providedTargetPolicyDefault class. For more information, see Targets and target
policies.

Exceptions in the command package

The command package defines a set of exception classes. TheCommandException class extends the DistributedException class and acts as thebase
class for the additional command-related exceptions: UnauthorizedA ccessException, UnsetlnputPropertiesException,
andUnavail ableCompensableCommandException. Applications can extend theCommandException class to define additional exceptions, as well.

Although the CommandException class extends the DistributedException class,you do not have to import the distributed-exception
package,com.ibm.websphere.exception, unless you need to use thefeatures of the DistributedException classin your application. Formore information
on distributed exceptions, see The distributed-exception package.

Writing command interfaces

To write acommand interface, you extend one or more of the three interfacesincluded in the command package. The base interface for all commands
isthe Command interface. This interface provides only the client-sideinterface for generic commands and declares three basic methods:

« isReadyToCallExecute--This method is called on the client side beforethe command is passed to the server for execution.
« execute--This method passes the command to the target and returns anydata.
« reset--This method reverts any output properties to the values theyhad before the execute method was called so that the object can bereused.

The implementation class for your interface must contain implementationsfor the isReady ToCallExecute and reset methods. The execute method
isimplemented for you elsewhere; for more information, see Implementing command interfaces. Most commands do not extend the Command

interfacedirectly but use one of the provided extensions: the TargetableCommandinterface and the CompensableCommand interface.
The TargetableCommand interface

The TargetableCommand interface extends the Command interface and provides forremote execution of commands. Most commands will be
targetablecommands. The TargetableCommand interface declares several additionalmethods:

« setCommandTarget--This method allows you to specify the target objectto a command.

o setCommandTargetName--This method allows you to specify the target byname to a command.
« getCommandTarget--This method returns the target object of thecommand.

« getCommandTargetName--This method returns the name of the targetobject of the command.

« hasOutputProperties--This method indicates whether or not the commandhas output that must be copied back to the client. (The
implementationclass also provides a method, setHasOutputProperties, for setting the outputof this method. By default, hasOutputProperties
returnstrue.)

« setOutputProperties--This method saves output values from the commandfor return to the client.
« performExecute--This method encapsul ates the application-specificwork. It is called for you by the execute method declared in theCommand
interface.

With the exception of the performExecute method, which you must implement,all of these methods are implemented in the
TargetableCommandlmplclass. This class also implements the execute method declared in theCommand interface.

The CompensableCommand interface

The CompensableCommand interface also extends the Command interface. Acompensable command is one that has another command (a
compensator) associatedwith it, so that the work of the first can be undone by thecompensator. For example, a command that attempts to make an
airlinereservation followed by a hotel reservation can offer a compensating commandthat allows the user to cancel the airline reservation if the
hotelreservation cannot be made.

The CompensableCommand interface declares one method:
« getCompensatingCommand--This methods returns the command that can beused to undo the effects of the original command.

To create a compensable command, you write an interface that extends theCompensableCommand interface. Such interfaces typically extend
theTargetableCommand interface as well. Y ou must implement thegetCompensatingCommand method in the implementation class for youg fterface.

Y ou must aso implement the compensating command.

The example application

The example used throughout the remainder of this discussion uses an entitybean with container-managed persistence (CMP) called
CheckingAccountBean,which allows a client to deposit money, withdraw money, set a balance, get abalance, and retrieve the name on the account.
This entity bean alsoaccepts commands from the client. The code examplesillustrate thecommand-related programming. For a servlet-based example,
see Writing a command target (client-side adapter).

Figure 83 shows the interface for the M odifyCheckingA ccountCmdcommand. This command is both targetable and compensable, so theinterface
extends both TargetableCommand and CompensableCommandinterfaces.

Figure 83. Code example: The ModifyCheckingAccountCmd interface

...import comibm websphere. exception.*;inport comibm websphere. command. *; public interface

Modi f yChecki ngAccount Crrdext ends Tar get abl eComrand, Conpensabl eCommand { fl oat get Amount ();
fl oat getBal ance(); fl oat getd dBal ance(); /1 Used for conpensating fl oat

set Bal ance(fl oat anount); float setBal ance(int anount); Checki ngAccount

get Checki ngAccount () ; voi d set Checki ngAccount (Checki ngAccount newChecki ngAccount) ;

Tar get Pol i cy get CndTar get Pol i cy(); -

Implementing command interfaces

The command package provides a class, TargetableCommandimpl, that implementsall of the methods in the TargetableCommand interface except
theperformExecute method. It also implements the execute method from theCommand interface. To implement an application's commandinterface,
you must write a class that extends the TargetableCommandimpl classand implements your command interface. Figure 84 shows the structure of the

M odifyCheckingA ccountCmdimplclass.
Figure 84. Code example: The structure of the M odifyCheckingAccountCmdl mpl class

...public class MdifyChecki ngAccount Cndl npl ext ends Tar get abl eConmandl npl i npl enent s
Mbdi f yChecki ngAccount Crrd{ /'l Vari abl es C. /1 Met hods .

The class must declare any variables and implement these methods:
« Any methods you defined in your command interface.
« TheisReadyToCallExecute and reset methods from the Commandinterface.
« The performExecute method from the TargetableCommand interface.

« The getCompensatingCommand method from the CompensableCommand interface,if your command is compensable. Y ou must also
implement thecompensating command.

Y ou can aso override the nonfinal implementations provided in theTargetableCommandimpl class. The most likely candidate forreimplementation is
the setOutputProperties method, since the defaultimplementation does not save final, transient, or static fields.

Defining instance and class variables

The ModifyCheckingAccountCmdlmpl class declares the variables used by themethods in the class, including the remote interface of the
CheckingAccountentity bean; the variables used to capture operations on the checkingaccount (balances and amounts); and a compensating command.
Figure 85 shows the variables used by the M odifyCheckingA ccountCmdcommand.

Figure 85. Code example: Thevariablesin the M odifyCheckingAccountCmdImpl class

...public class MdifyChecki ngAccount Crdl npl extends Tar get abl eComrandl npl i npl enent s

Modi f yChecki ngAccount Crrd{ /'l Vari abl es public float bal ance; public float anount; public
fl oat ol dBal ance; publ i ¢ Checki ngAccount checki ngAccount; public

Modi f yChecki ngAccount Conpensat or Crd nmodi f yChecki ngAccount Conpensat or Cnd;

Implementing command-specific methods

The ModifyCheckingAccountCmd interface defines several command-specificmethods in addition to extending other interfacesin the
commandpackage. These command-specific methods are implemented in theM odifyCheckingAccountCmdimpl class.

Y ou must provide away to instantiate the command. The commandpackage does not specify the mechanism, so you can choose the technique
mostappropriate for your application. The fastest and most efficienttechnique is to use constructors. The most flexible techniqueis to usea factory.
Also, since commands are implemented internally as JavaBeanscomponents, you can use the standard Beans.instantiate method.The

M odifyCheckingAccountCmd command uses constructors.

Figurg 5236 shows the two constructors for the command. Thedifference between them is that the first uses the default target policy fordetermining the

target of the command and the second allows you to specify acustom policy. (For more information on targets and target policies,see Targets and target
policies.)

Both constructors take a CommandTarget object as an argument and cast it tothe CheckingAccount type. The CheckingAccount interface extends
boththe CommandTarget interface and the EJBObject (see Figure 95). The resulting checkingAccount object routes thecommand to the desired server

by using the bean's remoteinterface. (For more information on CommandTarget objects, see Writing a command target (server).)

Figure 86. Code example: Constructorsin the M odifyCheckingAccountCmdl mpl class

...public class MdifyChecki ngAccount Cndl npl ext ends Tar get abl eConmandl npl i npl enent s

Modi f yChecki ngAccount Crrd{ /'l Vari abl es C. /1 Constructors /1 First constructor: relies
on the default target policy publ i c Mdi f yChecki ngAccount Crdl npl (CommandTar get target,

fl oat newAnmount) { amount = newAnount ; checki ngAccount = (Checki ngAccount)target;
set CommandTar get (target); } /'l Second constructor: allows you to specify a customtarget
policy publ i ¢ Modi f yChecki ngAccount Cndl npl (CommandTar get tar get, fl oat
newAnount , Target Pol i cy targetPolicy) { set Target Pol i cy(targetPolicy);
anpunt = newAnmount ; checki ngAccount = (Checki ngAccount)target;

set CommandTar get (target); })

Figure 87 shows the implementation of the command-specificmethods:
« setBalance--This method sets the balance of the account.
« getAmount--This method returns the amount of a deposit orwithdrawal.
« getOldBalance, getBalance--These methods capture the balance beforeand after an operation.
« getCmdTargetPolicy--This method retrieves the current targetpolicy.
« setCheckingAccount, getCheckingA ccount--These methods set andretrieve the current checking account.

Figure 87. Code example: Command-specific methods in the M odifyCheckingAccountCmdI mpl class

...public class MdifyChecki ngAccount Cndl npl ext ends Tar get abl eConmandl npl i npl enent s

Modi f yChecki ngAccount Crrd{ /'l Vari abl es C. /1 Constructors . /1 Methods in

Mbdi f yChecki ngAccount Crd i nterface public float getAmount() { return anmount; }
public float getBal ance() { return bal ance; } public float getd dBal ance() {

return ol dBal ance; } public float setBal ance(float anpunt) { bal ance = bal ance +
anount ; return bal ance; } public float setBal ance(int anmount) { bal ance +=
amount ; return bal ance; } public TargetPolicy getCnrdTargetPolicy() { return
get Target Pol i cy(); } public void set Checki ngAccount (Checki ngAccount newChecki ngAccount) {

i f (checki ngAccount == null) { checki ngAccount = newChecki ngAccount; } el se
Systemout. println("Incorrect Checking Account (" + newChecki ngAccount + ")

speci fied"); } publ i ¢ Checki ngAccount get Checki ngAccount () { return checki ngAccount;

}

The ModifyCheckingAccountCmd command operates on a checking account.Because commands are implemented as JavaBeans components, you
manage input andoutput properties of commands using the standard JavaBeans techniques.For example, initialize input properties with set methods
(likesetCheckingAccount) and retrieve output properties with get methods (likegetCheckingAccount). The get methods do not work until after
thecommand's execute method has been called.

Implementing methods from the Command interface

The Command interface declares two methods, isReady ToCall Execute and reset,that must be implemented by the application programmer. Figure 838
shows the implementations for the ModifyCheckingA ccountCmdcommand. The implementation of the isReadyToCall Execute method ensuresthat the
checkingAccount variable is set. The reset method sets all ofthe variables back to starting values.

Figure 88. Code example: M ethods from the Command interfacein the M odifyCheckingAccountCmdl mpl class

...public class MdifyChecki ngAccount Cndl npl ext ends Tar get abl eConmandl npl i npl enent s

Modi f yChecki ngAccount Cna{ s /1 Methods fromthe Comrand interface public bool ean

i sReadyToCal | Execute() { i f (checkingAccount != null) return true; el se
return fal se; } public void reset() { amount = O; bal ance = 0; ol dBal ance
= 0; checki ngAccount = nul | ; target Policy = new TargetPolicyDefault(); } .

Implementing methods from the TargetableCommand interface

The TargetableCommand interface declares one method, performExecute, that mustbe implemented by the application programmer. Figure 89 shows
the implementation for the M odifyCheckingA ccountCmdcommand. The implementation of the performExecute method does thefollowing:

« Savesthe current balance (so the command can be undone by a compensatorcommand)

« Cadlculates the new balance
33

« Setsthe current balance to the new balance
« Ensures that the hasOutputProperties method returns true so that thevalues are returned to the client

In addition, the ModifyCheckingAccountCmdImpl class overrides the defaultimplementation of the setOutputProperties method.

Figure 89. Code example: M ethods from the Tar getableCommand interface in the M odifyCheckingAccountCmdImpl class

...public class MdifyChecki ngAccount Cndl npl ext ends Tar get abl eConmandl npl i npl enent s

Modi f yChecki ngAccount Crrd{ .. /1 Method fromthe Targetabl eConmand interface public void
per f or mExecut e() throws Exception { Checki ngAccount checki ngAccount = get Checki ngAccount () ;
ol dBal ance = checki ngAccount. get Bal ance(); bal ance = ol dBal ance+anobunt ;

checki ngAccount . set Bal ance(bal ance) ; set HasQut put Properti es(true); } public void

set Qut put Properti es(Tar get abl eCormand fronCommand) { try { if (fronComand !=
nul 1) { Modi f yChecki ngAccount Cnd nodi f yChecki ngAccount Cd =

(Modi f yChecki ngAccount Cnd) fr onCommand,; t hi s. ol dBal ance =

nodi f yChecki ngAccount Cnd. get A dBal ance() ; thi s. bal ance =

nmodi f yChecki ngAccount Cnd. get Bal ance(); thi s. checki ngAccount =

nodi f yChecki ngAccount Cd. get Checki ngAccount () ; this.amunt =

nodi f yChecki ngAccount Cnd. get Amount () ; } } catch (Exception ex) {
Systemout.println("Error in setCQutputProperties."); } } .

Implementing the CompensableCommand interface

The CompensableCommand interface declares one method, getCompensatingCommand,that must be implemented by the application programmer.
Figure 90 shows the implementation for the ModifyCheckingA ccountCmdcommand. The implementation simply returns an instance of
theM odifyCheckingA ccountCompensatorCmd command associated with the currentcommand.

Figure 90. Code example: Method from the CompensableCommand interface in the M odifyCheckingAccountCmdImpl class

...public class MdifyChecki ngAccount Cndl npl ext ends Tar get abl eConmandl npl i npl enent s

Modi f yChecki ngAccount Crrd{ .. /1 Met hod from Conpensabl eConmand interface public Comrand
get Conpensat i ngCommand() throws ConmmandException { nodi f yChecki ngAccount Conpensat or Cmd =
new Modi f yChecki ngAccount Conpensat or Cnd(t hi s) ; return

(Command) nodi f yChecki ngAccount Conpensat or Cnd; } }

Writing the compensating command

An application that uses a compensable command requires two separatecommands: the primary command (declared as a CompensableCommand) and
thecompensating command. In the example application, the primary commandis declared in the M odifyCheckingA ccountCmd interface and
implemented in theM odifyCheckingA ccountCmdImpl class. Because this command is also acompensable command, there is a second command
associated with it that isdesigned to undo its work. When you create a compensable command, youalso have to write the compensating command.

Writing a compensating command can require exactly the same steps aswriting the original command: writing the interface and providing
animplementation class. In some cases, it may be simpler. Forexample, the command to compensate for the M odifyCheckingA ccountCmd does
notrequire any methods beyond those defined for the original command, so it doesnot need an interface. The compensating command,

calledM odifyCheckingA ccountCompensatorCmd, simply needs to be implemented in a classthat extends the TargetableCommandimpl class. This
class must:

« Provide away to instantiate the command; the example uses aconstructor

« Implement the three required methods:
o isReadyToCallExecute and reset--both from the Command interface
o performExecute--from the TargetableCommand interface

Figure 91 shows the structure of the implementation class, itsvariables (references to the original command and to the relevant checkingaccount), and
the constructor. The constructor simply instantiates thereferences to the primary command and account.

Figure 91. Code example: Variablesand constructor in the M odifyCheckingAccountCompensator Cmd class

...public class MdifyChecki ngAccount Conpensat or Cnd ext ends Tar get abl eComrandl! npl { public
Modi f yChecki ngAccount Cdl nmpl nodi f yChecki ngAccount Cdl npl ; publ i ¢ Checki ngAccount

checki ngAccount ; publ i ¢ Mdi f yChecki ngAccount Conpensat or Crrd(

Modi f yChecki ngAccount Crdl npl ori gi nal Crd) { /1l Get an instance of the original comrand
nmodi f yChecki ngAccount Cndl npl = ori gi nal Cnd; /1 Get the rel evant account

checki ngAccount = ori gi nal Cnd. get Checki ngAccount () ; } /1 Methods from the Conmmand and
Tar getabl e Conmand i nterfaces o0}

Figure 92 shows the implementation of the inherited methods.The implementation of the isReady ToCallExecute method ensures that
thecheckingAccount variable has been instantiated.

The pggformExecute method verifies that the actual checking-account balanceis consistent with what the original command returns. If so, itreplaces the

current balance with the previously stored balance by using theM odifyCheckingAccountCmd command. Finally, it saves the most-recentbalancesin
case the compensating command needs to be undone. The resetmethod has no work to do.

Figure 92. Code example: Methodsin M odifyCheckingAccountCompensator Cmd class

.public class MdifyChecki ngAccount Conpensat or Cnd ext ends Tar get abl eConmandl npl { /'l Variabl es
and constructor C /1 Methods from the Command and Tar get abl eConmand i nterfaces public
bool ean |sReadyToCaIIExecute() { i f (checkingAccount !'= null) return true
el se return fal se; } public void perfornExecute() throws ConmandException {
try { Modi f yChecki ngAccount Cdl mpl ori gi nal Cnd =
nmodi f yChecki ngAccount Cndl npl ; /'l Retrieve the checking account nodified by the origina
command ChecklngAccount checki ngAccount = ori gi nal Cd. get Checki ngAccount () ; i f
(rmodi f yChecki ngAccount Cdl npl . bal ance == checki ngAccount . get Bal ance()) {
/| Reset the values on the original conmand
checki ngAccount . set Bal ance(ori gi nal Cnd. ol dBal ance) ; float tenp =
nmodi f yChecki ngAccount Cndl npl . bal ance; ori gi nal Cnd. bal ance =
ori gi nal Crd. ol dBal ance; ori gi nal Cnd. ol dBal ance = tenp; }
el se { /'l Bal ances are inconsistent, so we cannot conpensate t hr ow new
CommandExcept i on("Obj ect nodified since this command ran."); }
} catch (Exception e) { System out. println(e.get Message()); } }
public void reset() {}}

Using a command

To use acommand, the client creates an instance of the command and callsthe command's execute method. Depending on the command, callingother
methods can be necessary. The specifics will vary with theapplication.

In the exampl e application, the server is the CheckingAccountBean, anentity enterprise bean. In order to use this enterprise bean, theclient gets a
reference to the bean's home interface. The clientthen uses the reference to the home interface and one of the bean'sfinder methods to obtain a reference
to the bean's remoteinterface. If there is no appropriate bean, the client can create oneusing a create method on the home interface. All of thiswork
isstandard enterprise bean programming covered el sewhere in thisdocument.

Figure 93 illustrates the use of the ModifyCheckingA ccountCmdcommand. Thiswork takes place after an appropriate CheckingAccountbean has been
found or created. The code instantiates a command,setting the input values by using one of the constructors defined for thecommand. The null
argument indicates that the command should look upthe server using the default target policy, and 1000 is the amount the commandattempts to add to
the balance of the checking account. (For moreinformation on how the command package uses defaults to determine the targetof a command, see The

default target policy.) After the command is instantiated, the code callsthe setCheckingAccount method to identify the account to be modified.Finally,
the execute method on the command is called.

Figure 93. Code example: Using the M odifyCheckingAccountCmd command

{ Checki ngAccount checki ngAccount c. try { Mbdi f yChecki ngAccount Cnd cnd =
new Nbdl f yChecki ngAccount Cndl npl (nul |, 1000); cnd. set Checki ngAccount (checki ngAccount) ;
cmd. execute(); } catch (Exception e) { System out. println(e.get Message()); })

Using a compensating command

To use a compensating command, you must retrieve the compensator associatedwith the primary command and call its execute method. Figure 94
shows the code used to run the original command and to givethe user the option of undoing the work by running the compensatingcommand.

Figure 94. Code example: Using the M adifyCheckingAccountCompensator command

{ Checki ngAccount checki ngAccount ce try { Modi f yChecki ngAccount Cnd cnd =
new I\/bd| f yChecki ngAccount Crd! npl (nul' I, 1000); cnd. set Checki ngAccount (checki ngAccount) ;
cnd. execut e(); System out.println("Wuld you like to undo this work? Enter Y or
N'); try { /'l Retrieve and validate user's response }

i f (answer.equal sl gnoreCase(Y)) { Command conpensat i ngCom"rand
crrd get Conpensat i ngComand() ; conpensat i ngConmand. execut e() ; } } catch
(Exception e) { System out. println(e.get Message()); } N

Writing a command target (server)

In order to accept commands, a server must implement the CommandTargetinterface and its single method, executeCommand.

The example application implements the CommandTarget interface in anenterprise bean. (For a servlet-based example, see Writing a command target
(client-side adapter).) The target enterprise bean can be a session bean oran entity bean. Y ou can write atarget enterprise bean that forwardscommands

to a specific server, such as another entity bean. In thiscase, all commands directed at a specific target go through the targetenterprise bean. Y ou can
also write atarget enterprise bean that doesthe work of the command locally.
35

Make an enterprise bean the target of acommand by:
« Extending the CommandTarget interface when you define the bean'sremote interface, which must also extend the EJBObject interface

« Implementing the CommandTarget interface when you implement the beanclass, which must also implement either the SessionBean or
EntityBeaninterface

The target of the example application is an enterprise bean calledCheckingAccountBean. This bean's remote interface,CheckingAccount, extends the
CommandTarget interface in addition to theEJBObject interface. The methods declared in the remote interface areindependent of those used by the
command. The executeCommand isdeclared in neither the bean's home nor remote interfaces. Figure 95 shows the CheckingAccount interface.

Figure 95. Code example: Theremote interface for the CheckingAccount entity bean, also a command tar get

...inmport comibm websphere.command. *;inport javax.ejb. EJBObject;inport

j ava. rm . Renot eExcepti on; public interface Checki ngAccount extends ComuandTarget, EJBObject {
float deposit (float anmount) throws RenpteException; float deposit (int anpbunt) throws

Renot eExcept i on; String get Account Name() throws RenoteException; fl oat getBal ance() throws
Renot eExcept i on; float setBal ance(fl oat anpunt) throws RenoteException; float wi thdrawal
(float ampbunt) throws RenpteException, Exception; float withdrawal (int amount) throws

Renot eException, Exception;}

The enterprise bean class, CheckingAccountBean, implements the EntityBeaninterface as well as the CommandTarget interface. The class containsthe
business logic for the methods in the remote interface, the necessarylife-cycle methods (gjbActivate, ejbStore, and so on), and the
executeCommanddeclared by the CommandTarget interface. The executeCommand method isthe only command-specific code in the enterprise bean
class. Itattempts to run the performExecute method on the command and throws aCommandException if an error occurs. If the performExecute method
runssuccessfully, the executeCommand method uses the hasOutputProperties method todetermine if there are output properties that must be returned.

If thecommand has output properties, the method returns the command object to theclient. Figure 96 shows the relevant parts of the

CheckingA ccountBeanclass.

Figure 96. Code example: The bean classfor the CheckingAccount entity bean, also a command tar get

...public class Checki ngAccount Bean i nplenents EntityBean, CommandTarget { /1l Bean vari abl es

/1 Business nethods fromrenote interface - /'l Life-cycle methods for CWP entity
beans .. /1 Method fromthe CommandTarget interface publ i c Target abl eConmand
execut eCommand(Tar get abl eComrand comrand) t hrows Renot eException, ComandException {
try { conmand. per f or nExecut e() ; } catch (Exception ex) { if (ex
i nst anceof Renot eException) { RermoveExcepti on renot eExcepti on = (Renot eExcepti on) ex;
if (renoteException.detail !'= null) { t hrow new
CommandExcept i on(renot eException. detail); } t hrow new
CommandExcepti on(ex); } } if (comrmand. hasQut put Properties()) {
return conmand; } return nul | ; 1}

Targets and target policies

A targetable command extends the TargetableCommand interface, which allows theclient to direct acommand to a particular server.
TheTargetableCommand interface (and the TargetableCommandimpl class) provide twoways for a client to specify atarget: the sssCommandTarget
andsetCommandTargetName methods. (These methods were introduced in The TargetableCommand interface.) The setCommandTarget methods
alows the client toset the target object directly on the command. The setCommandTargetNamemethod allows the client to refer to the server by name;

this approach isuseful when the client is not directly aware of server objects. Atargetable command also has corresponding getCommandTarget
andgetCommandT argetName methods.

The command package needs to be able to identify the target of acommand. Because there is more than one way to specify the target andbecause
different applications can have different requirements, the commandpackage does not specify a selection algorithm. Instead, it provides aTargetPolicy
interface with one method, getCommandTarget, and a defaultimplementation. This allows applications to devise custom algorithmsfor determining the
target of a command when appropriate.

The default target policy

The command package provides a default implementation of the TargetPolicyinterface in the TargetPolicyDefault class. If you use this
defaultimplementation, the command determines the target by looking through anordered sequence of four options:

1. The CommandTarget value

2. The CommandTargetName value

3. A registered mapping of atarget for a specific command
4. A defined default target

If it finds no target, it returns null. The TargetPolicyDefault class provides methods for managing the assignment of commands with targets
(registerCommand, unregisterCommand, and listMappings),and a method for setting a default name for the target(setDefault TargetName). The default
target name iscom.ibm.websphere.command.Local Target, wherel ocal Target is a class that runs the command's performExecute methodlocally. Figure
97 shows the relevant variables and the methods in theTargetPolicyDefault class.

Figur?(’e697. Code example: The TargetPolicyDefault class

.public class TargetPoli cyDef ault inplenents TargetPolicy, Seri aI i zabl e{ - protected
String defaultTarget Name = "com i bm websphere. conmand. Local Tar get " publ i ¢ CommandTar get
get CommandTar get (Tar get abl eConmand command) { } publ | c Dictionary listMppings() {
} public void registerCommand(String commndNane String targetNane) { } public
v0| d unregi ster Conmand(String conmandNane) { } public void seDef aul tTarget Name(String
def aul t Tar get Nane) { . 1}

Setting the command targetThe ModifyCheckingAccountlmpl class provides two command constructors (see Figure 86). One of them takes a
command target as an argumentand implicitly uses the default target policy to locate the target. Theconstructor used in Figure 93 passes a null target,
so that the default target policytraverses its choices and eventually finds the default target name,Local Target.

The example in Figure 98 uses the same constructor to set the targetexplicitly. This example differs from Figure 93 as follows:

« The command target is set to the checking account rather than null. The default target policy startsto traverse its choices and finds the targetin
thefirst placeit looks.

« It does not have to call the setCheckingAccount method to indicate theaccount on which the command should operate; the constructor uses
thetarget variable as both the target and the account.

Figure 98. Code example: I dentifying a target with CommandT ar get

{ Checki ngAccount checki ngAccount ce try { Modi f yChecki ngAccount Cnd cnd =
new I\/bd| f yChecki ngAccount Cndl npl (checki ngAccount, 1000) ; cmd. execute(); } catch
(Exception e) { Systemout. println(e. get Message()); } -

Setting the command target namelf a client needs to set the target of the command by name, it can use thecommand's setCommandTargetName
method. Figure 99 illustrates this technique. This example compareswith Figure 93 as follows:

« Both explicitly set the command target in the constructor to null.

« Both use the setCheckingA ccount method to indicate the account on whichthe command should operate.

« This example sets the target name explicitly by using thesetCommandTargetName method. When the default target policy traversesits choices,
it findsanull for the first choice and a name for thesecond.

Figure 99. Code example: Identifying a target with CommandTar getName

{ Checki ngAccount checki ngAccount ce try { Mbdi f yChecki ngAccount Cnd cnd =
new Nbdl f yChecki ngAccount Cndl rrpl (null, 1000); cnd. set Checki ngAccount (checki ngAccount) ;

cmd. set CommandTar get Name("com i bm sfc. cnd. t est. Checki ngAccount Bean") ; cnd. execute(); }
catch (Exception e) { System out. println(e.get Message()); } -

Mapping the command to atarget nameThe default target policy also permits commands to be registered withtargets. Mapping a command to atarget
is an administrative task thatmost appropriately done through a configuration tool. The WebSphereApplication Server administrative console does not
yet support theconfiguration of mappings between commands and targets. Applicationsthat require support for the registration of commands with
targets must supplythe tools to manage the mappings. These tools can be visual interfacesor command-line tools.

Figure 100 shows the registration of acommand with a target. The names of the command class and the target are explicit in the code, but inpractice,
these values would come from fieldsin a user interface or argumentsto a command-line tool. If a program creates a command as shown in Figure 93,
with anull for the target, when the default target policytraverses its choices, it finds a null for the first and second choices and amapping for the third.

Figure 100. Code example: Mapping a command to a target in an external application

{ .. target Policy.registerComand("comibm sfc.cnd. test. Mddi f yChecki ngAccount | npl ",
‘com i bm sfc. cnd. t est. Checki ngAccount Bean"); .

Customizing target policies

Y ou can define custom target policies by implementing the TargetPolicyinterface and providing a getCommandTarget method appropriate for
yourapplication. The TargetableCommandimpl class provides setTargetPolicyand getTargetPolicy methods for managing custom target policies.

So far, the target of all the commands has been a checking-account entitybean. Suppose that someone introduces a session enterprise
bean(MySessionBean) that can also act as acommand target. Figure 101 shows a simple custom policy that sets the target of everycommand to
My SessionBean.

Figure 101. Code example: Creating a custom tar get policy

37

..import java.io.*;inport java.util.*;inport java.beans.*;inport comibm websphere.command. *; public
cl ass Custonirarget Policy inplenents TargetPolicy, Serializable { publ i c CustoniargetPolicy {
super () ; } publi ¢ CommandTar get get ConmandTar get (Tar get abl eConmmand conmand) {
CommandTarget = null; try { target = (CommandTar get) Beans.instantiate(null,
"comibm sfc.cnd. test. MySessi onBean") ; } catch (Exception e) {
e.printStackTrace(); }

Since commands are implemented as JavaBeans components, using custom targetpolicies requires importing the java.beans package and writing
someelementary JavaBeans code. Also, your custom target-policy class mustalso implement the java.io.Serializable interface.

Using a custom target policy The ModifyCheckingAccountlmpl class provides two command constructors (see Figure 86). One of them implicitly uses
the default targetpolicy; the other takes a target policy object as an argument, whichallows you to use a custom target policy. The examplein Figure
102 uses the second constructor, passing a null target and acustom target policy, so that the custom policy is used to determine thetarget. After the
command is executed, the code uses the reset methodto return the target policy to the default.

Figure 102. Code example: Using a custom tar get policy

{ Checki ngAccount checki ngAccount . try { Cust onrar get Pol i cy custonPolicy
= new Cust omrar get Pol i cy(); Modi f yChecki ngAccount Crd cmd = new

Modi f yChecki ngAccount Cdl npl (nul I, 1000, custonPolicy);

cnd. set Checki ngAccount (checki ngAccount) ; cmd. execute(); cmd. reset () ; } catch
(Exception e) { Systemout. println(e. get Message()); 1}

Writing a command target (client-side adapter)

Commands can be used with any Java application, but the means of sending thecommand from the client to the server varies. The application
describedin The example application used enterprise beans. The example in this sectionshows how you can send a command to a servlet over the
HTTP protocol.

In this example, the client implements the CommandTarget interfacelocally. Figure 103 shows the structure of the client-side class;it implements the
CommandTarget interface by implementing the executeCommandmethod.

Figure 103. Code example: The structure of a client-side adapter for atarget

.import java.io.*;inport java.rm.*;inport comibm websphere.comrand. *; public cl ass
Ser vl et CommandTar get i npl ements CommandTar get, Serializabl ef protected String hostNane =
"l ocal host"; public static void main(String args[]) throws Exception {
publi ¢ Tar get abl eConmand execut eConmand(Tar get abl eCormand conmmand) t hrows ConmandExcepti on
{ } public static final byte[] serialize(Serializable serializable)
throws | (]Except ion { } publ ic String getHost Name() { } public void
set Host Nanme(Stri ng hostNarTe) { ..} private static void showHeIp() { co. 1}

The main method in the client-side adapter constructs and intializes theCommandTarget object, as shown in Figure 104.

Figure 104. Code example: I nstantiating the client-side adapter

public static void main(String args[]) throws Exception{ String hostNane =

I net Addr ess. get Local Host (). get Host Nanme() ; String fileName = "M/Servl et CoomandTar get . ser”; /1
Parse the conmand |ine C. /!l Create and initialize the client-side ConmandTarget adapter
Ser vl et CormandTar get servl et CoommandTar get = new Ser vl et ConmandTar get () ;

servl et CoomandTar get . set Host Nanme(host Nane) ; c. /'l Flush and cl ose output streans .

Implementing a client-side adapter

The CommandTarget interface declares one method, executeCommand, which theclient implements. The executeCommand method takes a
TargetableCommandobject as input; it also returns a TargetableCommand. Figure 105 shows the implementation of the method used in theclient-side

adapter. Thisimplementation does the following:
« Serializes the command it receives
« Creates an HTTP connection to the servlet
« Createsinput and output streams, to handle the command asiit is sent tothe server and returned
« Places the command on the output stream
« Sends the command to the server
« Retrieves the returned command from the input stream
« Returnsthe returned command to the caller of the executeCommand method

Figure 105. Code example: A client-side implementation of the executeCommand method

publ i ¢ Tar get abl eConmand execut eConmand(Tar get abl eCormand command) t hrows ConmandExcepti on{

try { /1 Serialize the comand byte[] array = serialize(command); /] Create a
connection to the servlet URL url = new URL ("http://" + hostNane +

"/servl et/ comibm websphere. command. servl et. CormandServlet"); Ht t pURLConnecti on

ht t pURLConnection = (Ht t pURLConnection) url.openConnection(); /1 Set the
properties of the connection /1 Put the serialized command on the output stream
Qut put St r eam out put Stream = ht't pURLOonnect| on. get Qut put Strean() ; out put Stream wite(array);

/]l Create a return stream I nput Stream i nput Stream = htt pURLConnecti on. get | nput Stream() ;

/1 Send the comrand to the servlet ht t pURLConnecti on. connect () ; Obj ect | nput St ream

obj ect I nput Stream = new Qbj ect | nput St rean(i nput Stream ; /'l Retrieve the comrand
returned fromthe servlet bj ect obj ect = objectlnputStreamreadOject(); i f (object

i nst anceof CommandException) { t hrow ((ComrandExcepti on) object); } /'l Pass
the returned command back to the calling method return (Targetabl eConmand) obj ect; } /1
Handl e excepti ons R

Running the command in the servlet

The servlet that runs the command is shown in Figure 106. The service method retrieves the command from theinput stream and runs the
performExecute method on the command. Theresulting object, with any output properties that must be returned to theclient, is placed on the output
stream and sent back to the client.

Figure 106. Code example: Running the command in the servlet

.inmport java.io.*;inport javax.servlet.*;inport javax.servlet.http.*;inport
com i bm websphere. command. *; publi c cl ass CommandServl et extends HttpServlet { c public void
service(HttpServl et Request request, Ht t pSer vl et Response response)
t hrows Servl et Exception, | OException { try { /1 Create input
and out put streans I nput Stream i nput Stream = request. get I nput Stream();
Qut put St r eam out put Stream = response. get Qut put Stream() ; /!l Retrieve the command fromthe
i nput stream Obj ect | nput St ream obj ect | nput Stream = new
oj ect | nput St rean(i nput Stream ; Tar get abl eConmand conmand = (Tar get abl eComrand)
obj ect I nput Stream readObj ect () ; /'l Create the command for the return stream
oj ect returnCbj ect = conmand, /1 Try to run the command' s perfornExecute nethod
try { comrand. per f or nExecut e() ; } /1 Handl e exceptions
fromthe perfornmExecute nethod /1 Return the conmand with any out put
properties oj ect Qut put Stream Obj ect Qut put St ream = new
Obj ect Qut put St r eam(out put St ream ; Obj ect Qut put Stream wri t eCbj ect (returnoj ect);
/1 Flush and cl ose output streans } catch (Exception ex) {
ex. print StackTrace(); } 1}

In this example, the target invokes the performExecute method on thecommand, but thisis not always necessary. In some applications, it canbe
preferable to implement the work of the command locally. Forexample, the command can be used only to send input data, so that the targetretrieves the
data from the command and runs alocal database procedure basedon the input. Y ou must decide the appropriate way to use commands inyour
application.

The localizable-text package

Overview

Users of distributed applications can come from widely varying areas;they can speak different languages, represent dates and timesin
regionallyspecific ways, and use different currencies. An application intended tobe used by such an audience must either force them all to use the
sameinterface (for example, an English-based interface), or it can be written insuch away that it can be configured to the linguistic conventions of
theusers, so English-speaking users can use the English interface butFrench-speaking users can interact with the application through a Frenchinterface.

An application that can present information to usersin formats that abideby the users' linguistic conventionsis said to belocalizable: the application
can be configured to interactwith users from different localitiesin linguistically appropriateways. In alocalized application, a user in one region sees
errormessages, output, and interface elements (like menu options) in the requestedlanguage. Additionally, other elements that are not strictlylinguistic,
like date and time formats and currencies, are presented in theappropriate style for usersin the specified region. A user in anotherregion sees output in
the conventional language or format for thatregion.

Historically, the creation of localizable applications has been restrictedto large corporations writing complex systems. The strategies forwriting
localizable code, collectively called internationalizationtechniques, have traditionally been expensive and difficult toimplement, so they have been
applied only to major development efforts.However, given therise in distributed computing and in use of the World WideWeb, application developers
have been pressured to make a much wider varietyof applications localizable. This requires makinginternationalization--the techniques for writing
localizableprograms--much more accessible to application devel opers. TheWebSphere localizable-text package is a set of Java classes and
interfacesthat can be used by WebhSphere application developers to localize distributedWebSphere applications easily. Language catalogs for
distributedWebSphere applications can be stored centrally, so the catalogs can bemaintained and administered efficiently.

39

Writing localizable programs

In anonlocalizable application, parts of the application that a user seesare unalterably coded into the application. For example, aroutine thatprints an
error message simply prints a string, probably in English, to afileor the console. A localizable program adds a layer of abstraction intothe design.
Instead of going simply from error condition to outputstring, a localizable program represents error messages with somelanguage-neutral information;
in the simplest case, each error conditioncorrespondsto akey. In order to print a usable error string for theuser, the application looks up the key in the
configured messagecatalog. A message catalog is alist of keyswith correspondingstrings. Different message catal ogs provide the stringsin
differentlanguages. The application looks up the key in the appropriate catal og,retrieves the corresponding error message in the desired language, and
printsthis string for the user.

The technique of localization can be used for far more than trand atingerror messages. For example, by using keys to represent eachelement--button,
label, menu item, and so forth--in a graphical userinterface and by providing a message catal og containing translations of thebutton names, labels, and
menu items, the graphical interface can beautomatically trandglated into multiple languages. In addition,extending support to additional languages
requires providing message catalogsfor those languages; the application itself requires nomodification.

Localization of an application is driven by two variables, the time zoneand the locale. The time zone variable indicates how to compute thelocal time
as an offset from a standard time like Greenwich Mean Time.The locale is a collection of information that indicates a geographic,political, or cultural
region. It provides information on language,currency, and the conventions for presenting information like dates, and in alocalizable program, the locale
also indicates the message catal og from whichan application retrieves messages. A time zone can cover many locales,and a single locale can span time
zones. With both time zone andlocale, the date, time, currency, and language for users in a specific regioncan be determined.

Identifying localizable text

To write alocalizable application, an application developer must determinewhich aspects of the application need to be translatable. These aretypically
the parts of an application a user must read and understand.Application developers must consider the parts of an application with whichall users
directly interact, like the application's interface, and theparts serving more specialized purposes, like messagesin log files.Good candidates for
localization include:

« Elementsin graphical user interfaces
o Title bars for windows
0o Menu names, and the items on the menus (for example, "select File >Open™)
o Labels on buttons (for example, "click the OK button")
o Instructions directing usersto fill in fields (for example, "enter theaccount number")
o Any other elements that users must read
« Promptsin command-line interfaces
« Output from the program
0 Responses to user input
o Error messages
0 Text returned when exceptions are thrown
0 Other status messages (warnings, audit messages, and others)
After identifying each element of the application to be localized,application devel opers must assign a unique key to each element and provide
amessage catalog for each language to be supported. Each message catalogconsists of keys and the corresponding language-specific strings. Thekey,
therefore, isthe link between the program and the message catal og;the program internally refersto localizable elements by key and uses themessage
catalog to generate the output seen by the user. Translatedstrings are generated by calling the format method on alocalizableTextFormatter object,

which represents a key and a resource bundle(a set of message catalogs). The local e setting of the programdetermines the message catalog in which to
search for the key.

Creating message catal ogs

After identifying each element to be localized, message catalogs must becreated for each language to be supported. These catalogs, which
areimplemented as Java resource bundles, can be created in two ways, either assubclasses of the ResourceBundle class or as Java properties
files.Resource bundles have a variety of usesin Java; for message catal ogs,the properties-file approach is more common. If properties files areused,
support for languages to be added or removed without modifying theapplication code, and catalogs can be prepared by people without
programmingexpertise.

A message catal og implemented in a properties file consists of aline foreach key, where akey identifies alocalizable element. Each line inthe file has
the following structure:

key = String corresponding to the key

For example, agrapical user interface for a banking system can have apull-down menu to be used for selecting a type of account, like savings
orchecking. The label for the pull-down menu and the account types on themenu are good choices for localization. There are three elements thatrequire

keys: the label for the account menu and the two items on themenu. If the keys are accountString, savingsString, and checkingString,the English
properties file associates each with an English string.

Figure 107. Three elementsin an English message catalog

account String = Accountssavi ngsString = Savi ngscheckingString = Checking...

In theggerman properties files, each key is given a corresponding Germanvalue.

Figure 108. Three elementsin a German message catalog

account String = KontensavingsString = Sparkont ocheckingString = G rokonto ...

Properties files can be added for any other needed languages, aswell.
Naming the properties files

To enable resolution to a specific properties file, Java specifies namingconventions for the properties filesin aresource
bundlerr esour ceBundl eNane_| ocal el D. properties

Each file takes afixed extension, . pr operti es.The set of files making up the resource bundle is given a collectivename; for a simple banking
application, an obvious name, likeBankingResources, suffices for the resource bundle. Each file is giventhe name of the resource bundle with alocale
identifier; the specificvalue of the locale ID varies with the locale. These are usedinternally by the Java.util.ResourceBundle class to match filesin a
resource bundle to combinations of locale and time-zone settings. The details of the algorithm vary with the release of the JDK; see yourJava
documentation for information specific to your installation.

In the banking application, typical filesin the BankingResources resourcebundle include BankingResources_en.properties for the English
messagecatalog and BankingResources de.properties for the Germancatal og. Additionally, a default catal og,BankingResources.properties, is provided
for use when the requestedcatal og cannot be found. The default catalog is often theEnglish-language catal og.

Resource bundles containing message catalogs for use with localizable textneed to be installed only on the systems where the formatting of strings
isactually performed. The resource bundles are typically placed in anapplication's JAR file. See WebSphere support for more information.

Localization support in WebSphere and Java

The Java packagecom.ibm.websphere.i18n.localizabletext containsthe classes and interfaces constituting the localizable-text package. This package
makes extensive use of the internationalization and localizationfeatures of the Java language; programmers using the WebSpherel ocalizable-text
package must understand the underlying Java support, whichare not documented in any detail here.

Java support

The WebSphere localizable-text package relies primarily on the followingJava components:
« javautil.Locale
« javautil.TimeZone
« javautil.ResourceBundle
« javatext.MessageFormat

Thislist is not exhaustive. WebSphere and these Java classes canal so use related Java classes, but the related classes--for
example,java.util.Calendar--are typically special-purposesclasses. This section briefly describes only the primaryclasses.

Locale

A Locale object in Java encapsul ates a language and a geographic region,for example, the java.util.Locale.US object containg ocale information for the
United States. An application that specifiesalocale can then take advantage of the locale-sensitive formatters built intothe Java language. These
formatters, in the java.text package,handle the presentation of numbers, currency values, dates, and times.

TimeZone

A TimeZone object in Java encapsul ates a representation of the time andprovides methods for tasks like reporting the time and accommaodating
seasonaltime shifts. Applications use the time zone to determine the local dateand time.

ResourceBundle

A resource bundleis a named collection of resources--information usedby the application, for example, strings, fonts, and images--used by aspecific
locale. The ResourceBundle class allows an application toretrieve the named resource bundle appropriate to the locale. Resourcebundles are used to
hold the messages catal ogs, as described in Writing localizable programs. Resource bundles can be implemented in two ways,either as subclasses of

the ResourceBundle class or as Java propertiesfiles.
MessageFormat

The MessageFormat class can be used to construct strings based onparameters. As asimple example, suppose alocalized applicationrepresents a
particular error condition with a numeric key. When theapplication reports the error condition, it uses a message formatter toconvert the numeric key
into a meaningful string. The message formatterconstructs the output string by looking up the code (the parameter) in anappropriate resource bundle
and retrieving the corresponding string from themessage catal og. Additional parameters--for example, another keyrepresenting the program
module--can also be used in assembling theoutput message.

WebSphere support

The WebSphere localizable-text package wraps the Java support and extendsit for efficient and simple use in a distributed environment. Thzeﬁri mary

class used by application programmers is the L ocalizableTextFormatterclass. Objects of this class are created, typically in server programs,but clients
can also create them. LocalizableTextFormatter objects arecreated for specific resource-bundle names and keys. Client programsthat receive
LocalizableTextFormatter objects call the object's formatmethod. This method uses the locale of the client application toretrieve the appropriate
resource bundle and assembl e the local e-specificmessage based on the key.

For example, suppose that a WebSphere client-server application supportsboth French and English locales; the server is using an English localeand the
client, aFrench locale. The server creates two resourcebundles, one for English and one for French. When the client makes arequest that triggers a
message, the server creates a L ocalizableTextFormatterobject containing the name of the resource bundle and the key for the message,and passes the
object back to the client.

When the client receives the LocalizableTextFormatter object, it calls theobject's format method, which returns the message corresponding to thekey
from the French resource bundle. The format method retrieves theclient's locale and, using the locale and name of the resource bundle,determines the
resource bundle corresponding to the locale. (If theclient has set an English locale, calling the format method resultsin theretrieval of an English
message.) The formatting of the message istransparent to the client.In this simple client-server example, the resource bundles reside central lywith the
server. The client machine does not have to installthem. Part of what the WebSphere localizable-text package provides isthe infrastructure to support
centralized catal ogs. WebSphere uses anenterprise bean, a stateless session bean provided with the localizable-textpackage, to access the message
catalogs. When the client calls theformat method on the LocalizableTextFormatter object, the following eventsoccur internally:

1. Theclient application sets the time zone and locale values in thel ocalizableTextFormatter object, either by passing them explicitly or
throughdefaults.

2. A cdl, LocalizableTextFormatterEJBFinder, is made to retrieve areferenceto the formatting enterprise bean.

3. Information from the L ocalizableTextFormatter object, including theclient's time zone and locale, is sent to the formatting bean.

4. The formatting bean uses the name of the resource bundle, the message key,the time zone, and the locale to assemble the
language-specificmessage.

5. The enterprise bean returns the formatted message to the client.

6. The formatted message isinserted into the L ocalizabl €T extFormatter objectand returned by the format method.

A call to aLocalizableTextFormatter.format method requires at most oneremote invocation, to contact the formatting enterprise bean. However the
LocalizableTextFormatter object can optionally cache formatted messages,eliminating the formatting call for subsequent uses. It also allows
theapplication to set afallback string; this means the application canstill return areadable string even if it cannot access a message catal og toretrieve
the language-specific string. Additionally, the resourcebundles can be stored locally. The localizable-text package provides astatic variable that
indicates whether the bundles are stored locally(L ocalizableConfiguration.LOCAL) or remotely(L ocalizableConfiguration.REMOTE), but the setting
of this variableappliesto al applications running within a Java Virtual Machine(JVM).

The LocalizableTextFormatter class

The LocalizableTextFormatter class, found in the packagecom.ibm.websphere.i18n.localizabletext, is theprimary programming interface for using the
localizable-text package.Objects of this class contain the information needed to createl anguage-specific strings from keys and resource bundles.

Location of message catalogs and the ApplicationName value

Applications written with the WebSphere localizable-text package can storemessage catalogs locally or remotely. In a distributed environment, theuse
of remote, centrally stored catalogs is appropriate. Allapplications can use the same catal ogs, and administration and maintenance ofthe catalogs are
simplified; each component does not need to store andmaintain copies of the message catalogs. Local formatting is useful intest situations and
appropriate under some circumstances. In order tosupport both local and remote formatting, a LocalizableTextFormatter objectmust indicate the name
of the formatting application. For example, whenan application formats a message by using remote, centrally stored catal ogs,the message is actually
formatted by a simple enterprise bean (see WebSphere support for more information). Although the localizable-textpackage contains the code to
automate looking up the enterprise bean andissuing a call to it, the application needs to know the name of the formattingenterprise bean. Severa
methods in the L ocalizableTextFormatter classuse a value described as application name; this refers to thename of the formatting application, which is
not necessarily the name of theapplication in which the value is set.

Caching messages

The L ocalizableTextFomatter object can optionally cache formatted messagesso that they do not have to be reformatted when needed again. Bydefault,
caching is not used, but thelocalizableTextFormatter.setCacheSetting method can be used to enablecaching. When caching is enabled and

theL ocalizableTextFormatter.format method is called, the method determineswhether the message has already been formatted. If so, the
cachedmessage is returned. If the message is not found in the cache, themessage is formatted and returned to the caller, and a copy of the message
iscached for future use.

If caching is disabled after messages have been cached, those messagesremain in the cache until the cacheis cleared by acal to
thel ocalizabl eT extFormatter.clearCache method. The cache can becleared at any time. The cache within a L ocalizabl €T extFormatter objectis
automatically cleared when any of the following methods are called on theobject:

« setResourceBundleName(String resourceBundleName)
« setPatternKey(String patternKey)

« setArguments(Object[] args)

« setApplicationName(String appName)

Fallback information
Under some circumstances, it can be impossible to format a message. The |ocalizable-text package implements a fallback strategy, making itpossible to

get some information even if a message cannot be correctlyformatted into the desired language. The LocalizableTextFomatter objectcan optionally
store gallback value for a message string, the time zone, andthe locale. These can be ignored unless the L ocalizableTextFormatterobject throws an

exception.
Application-specific variables

The localizable-text package provides native support for localization basedon time zone and locale, but application developers can construct messages
onthe basis of other values as well. The localizable-text packageprovides an illustrative class, LocalizableTextDateTimeArgument, which reportsthe
date and time. The date and time information is localized by usingthe locale and time-zone values, but the class also uses additional variablesto
determine how the output is presented. The date and time informationcan be requested in avariety of styles, from the fully detailed to theterse. In this
example, the construction of message strings is drivenby three variables: the locale, the time zone, and the style.Applications can use any number of
variables in addition to locale and timezone for constructing messages. See Using optional arguments for more information.

Writing a localizable application

To develop a WebSphere application that uses localizable text, applicationdevel opers must do the following:
« Determine the parts of the application to be localized.
o Identify the application elements to be localized and assign each akey.
o Create message catalogs for each language by associating a string witheach key.

These tasks were described previously. See Identifying localizable text and Creating message catalogs for more information.

« Assemble language-specific strings from keys, resource bundles, and otherarguments.
o Create a L ocalizableTextFormatter object.

o Set the values within the object for the key, the name of the resourcebundle, the name of the remote formatting application, and any
optionalarguments.

o Call the format method on the LocalizableTextObject, which returns theassembled string.

This section describes these tasks.
Creating a LocalizableTextFormatter object

Server programs typically create LocalizableTextFormatter objects, whichare sent to clients as the result of some operation; clients format theobjects at
the appropriate time. Less typically, clients can createl ocalizableTextFormatter objects locally. To create alocalizableTextFormatter object,
applications use one of the constructors inthe L ocalizableTextFormatter class:

« LocalizableTextFormatter()

« LocalizableTextFormatter(String resourceBundleName, String patternKey,String appName)

« LocalizableTextFormatter(String resourceBundleName, String patternKey,String appName, Object|[] args)
The LocalizableTextFormatter object must have values set for the name ofthe resource bundle, the key, the name of the formatting application, and
forany optional values so the object can be formatted. Thel ocalizableTextFormatter object can be created and the values set in one stepby using the

constructor that takes the necessary arguments, or the object canbe created and the values set in separate steps. Values are set byusing methods on the
LocalizableTextFormatter object; for setting thevalues manually, rather than by using a constructor, use these methods:

« setResourceBundleName(String resourceBundleName)
« setPatternKey(String patternK ey)
o setApplicationName(String appName)
« setArguments(Object[] args)
Note:
When values in the array of optional arguments are set within al ocalizableTextFormatter object, they are copied into the object, notreferenced.
If an array variable holding avalue is changed after thevalue has been copied into the LocalizableTextFormatter object, the value inthe
LocalizableTextFormatter object will not reflect the change unlessiit isalso reset.
A LocalizableTextFormatter object also has methods that can be used to setvalues that cannot be set when the object is created, for example:

« Totoggle the cache setting for the LocalizableTextFormatter object, usethe setCacheSetting(boolean setting) method (See Caching messages
for more information.)

« To clear the cache, use the clearL ocalizableTextFormatter method
« To set fallback vaues, use these methods:

0 setFallBackString

0 setFalBackLocae

o setFallBackTimeZone

(See Fallback information for more information.)

Each of these set methods also has a corresponding get method forretrieving the value. The clearL ocalizableTextFormatter method unsetsall values,
returning the L ocalizableTextFormatter object to a blankstate. After clearing the object, reuse the object by setting newvalues and calling the format
method again.

Figure 109 creates a L ocali zableTextFormatter object by using thedefault constructor and uses methods on the new object to set values for t)pgkey,

name of the resource bundle, name of the formatting application, andfallback string on the object.

Figure 109. Code example: Creating a L ocalizableT extFor matter object and setting values on it

i mport com i bm websphere.i 18n.local i zabl et ext. Local i zabl eExcepti on; i nport
com i bm websphere.i18n.1 ocal i zabl et ext. Local i zabl eText Formatter;inmport java.util.Locale;public void

dr awAccount Nunber GUI (String account Type) { ... LocalizableTextFormatter Itf = new

Local i zabl eText Formatter(); |tf.setPatternKey("accountNunber");

I tf.set Resour ceBundl eNane(" Banki ngSanpl e. Banki ngResour ces") ;

Itf.set ApplicationNanme("Banki ngSanple"); |tf.setFallBackString("Enter account number: "); ...}

Setting localization values

The application requesting alocalized message can specify the locale andtime zone for which the message is to be formatted, or the application can
usethe default values set for the VM. For example, a graphical userinterface can allow users to select the language in which to display themenus. A
default value must be set, either in the environment orprogrammatically, so the menus can be generated when the application firststarts, but users can
then change the menu language to suit theirneeds. Figure 110 illustrates how to change the locale used by theapplication based on the selection of a
menu item.

Figure 110. Code example: Setting the locale programmatically

i mport java.awt.event.ActionListener;inmport java.awt.event.ActionEvent;...inport

java. util.Local e; public void actionPerformed(Acti onEvent event) { String action =

event. get Acti onConmand(); ... if (action.equals("en_us")) { applicationLocal e = new
Local e("en", "US"); ... } elseif (action.equals("de_de")) { applicationLocal e = new
Local e("de", "DE"); ... } elseif (action.equals("fr_fr")) { appl i cati onLocal e = new
Locale("fr", "FR"); A

When an application calls aformat method, it can specify no arguments,which causes the message to be formatted using the VM's default valuesfor
locale and time zone, or a combination of locale and time zone can bespecified to override the VM 's defaults. (See Generating the localized text for
more information on the arguments to the formatmethods.)

Generating the localized text

After the LocalizableTextFormatter object has been created and theappropriate values set, the object can be formatted to generate the stringappropriate
to the locale and time zone. The format methods in thel ocalizableTextFormatter class perform the work necessary to generate a stringfrom a set of
message keys and resource bundles, based on locale and timezone. The LocalizableTextFormatter class provides four formatmethods. Each format
method returns the formatted messagestring. The methods take a combination ofjava.util.Locale and java.util. TimeZone objectsand throw

L ocalizableException objects:

o String format();

« String format(locale);

« String format(timeZone);

« String format(locale, timeZone);

The format method with no arguments uses the locale and time-zone valuesset as defaults for the VM. The other format methods can be used
tooverride either or both of these values.

Figure 111 shows the creation of alocalized string for thel ocalizableTextFormatter object created in Figure 109; formatting is based on the locale set
in Figure 110. If the formatting fails, theapplication retrieves and uses the fallback string instead of the localizedstring.

Figure 111. Code example: Formatting a L ocalizableT extFormatter object

i mport com i bm websphere.i 18n.local i zabl etext. Local i zabl eExcepti on; i nport

com i bm websphere.i 18n. 1 ocal i zabl et ext. Local i zabl eText Formatter;inport java.util.Local e;public void
dr awAccount Nunber GUI (String account Type) { ... LocalizableTextFormatter Itf = new

Local i zabl eText Formatter(); |tf.setPatternKey("accountNunber");

I tf.set Resour ceBundl eNane(" Banki ngSanpl e. Banki ngResour ces") ;

Itf.setApplicationName("Banki ngSanpl e"); [Itf.setFallBackString("Enter account nunber: "); try {
nmeg = new Label (Itf.format(this.applicationLocale) , Label.CENTER); } <catch (Localizabl eException
le) { nsg = new Label (Itf.getFallBackString(), Label .CENTER); } ...}

Using optional arguments

The localizable-text package allows users to specify an array of optionalargumentsin a L ocalizableTextFormatter object. These optionalarguments can
greatly enhance the kinds of localization done in WebSphereapplications. This section describes two ways in which applications canuse the optional
arguments:

.42’0 assemble and format complex strings with variable substrings

« To customize the formatting of strings, taking variables other than localeand time zone into account
Assembling complex strings

All of the keys discussed so far have represented flat strings; duringlocalization, a string in the appropriate language is substituted for thekey. The
localizable-text package also supports substitution into thestrings, which can include variables as placeholders. For example, anapplication that needs
to report that an operation on a specified account wassuccessful must provide a string like " The operation on accountnumber was successful"; the
variable number isto bereplaced by the actual account number. Without support for creatingstrings with variable pieces, each possible string would
need its own key, orthe strings would have to be built phrase by phrase.

Both of these approaches quickly become intractable if avariable can takemany values or if astring has several variable components. Instead,the
localizable text package supports substitution of variablesin stringswith optional arguments. A string in a message catalog uses integers inbraces--for
example, {0} or {1} --to represent variablecomponents. Figure 112 shows an example from an English message catalogfor a string with asingle
variable substitution. (The same key inmessage catal ogs for other languages has a translation of this string with thevariable in the appropriate |ocation
for the language.)

Figure 112. A message-catalog entry with a variable substring

successful Transaction = The operation on account {0} was successful.

The values that are substituted into the string come from an array ofoptional arguments. One of the constructors forL ocalizableTextFormatter objects
takes an array of objects as an argument, andsuch an array of objects can be set within any L ocalizableT extFormatterobject. The array is used to hold
values for variable parts of astring. When aformat method is called on the object, the array ispassed to the format method, which takes an element of
the array andsubstitutes it into a placeholder with the matching index in thestring. The value a index 0 in the array replacesthe {0} variable inthe
string, the value at index 1 replaces {1}, and so forth.

Figure 113 shows the creation of a single-element argument array andthe creation and use of a L ocalizableTextFormatter. The element in theargument
array isthe account number entered by the user. Thel ocalizableTextFormatter is created by using a constructor that takes thearray of optional
arguments;, this can also be set directly by using thesetArguments method on the LocalizableTextFormatter object. Later inthe code, the application
calls the format method. The format methodautomatically substitutes values from the array of arguments into the stringreturned from the appropriate
message catalog.

Figure 113. Code example: Formatting a message with a variable substring

public void updateAccount (String transactionType) { ... Object[] arg = { new
String(this.accountNunber)}; ... LocalizableTextFormatter successLTF = new
Local i zabl eText For mat t er (" Banki ngResour ces",

"successful Transacti on", " Banki ngSanpl e",

arg),; ... successLTF.format (this.applicationLocale); ..}

Nesting LocalizableTextFormatter objectsThe ability to substitute variables into the strings in message catal ogs addsa level of flexibility to the
localizable-text package, but the additionalflexibility islimited, at least in an international environment, unless thesubstituted arguments themselves
can be localized. For example, if anapplication needs to report that an operation on a specific account wassuccessful, a string like "The operation on
account number wassuccessful"--where the only variable is an account number--can betranslated and used in message catal ogs for multiple languages.
Astring in which avariable is also astring, for example, "The typeoperation on account number was successful"--where the newtype variable takes
values like "deposit” and"withdrawal"--cannot be as easily translated. The values assumedby the type variable also need to be localized.

Figure 114 shows a message string in an English catalog with twovariables, one of which will be localized, and the keys for two possiblevalues. (The
second variable in the string, the account number, issimply a number that must be substituted into the string; it does notneed to be localized.)

Figure 114. A message-catalog entry with two variable substrings

sucessful Transaction = The {0} operation on account {1} was successful.depositQpString =
deposi tw t hdrawpStri ng = wi t hdr awal

To support localization of substrings, the localizable-text package allowsthe nesting of LocalizableTextFormatter objects. Thisis done simply
byinserting a L ocalizableTextFormatter object into the array of arguments foranother L ocalizableTextFormatter. When the format method does
thevariable substitution, it formats any L ocalizableTextFormatter objects as itsubstitutes array elements for variables. This allows substrings to
beformatted independently of the string in which they are embedded.

Figure 115 modifies the example in Figure 113 to format a message with alocalizablesubstring. First, a L ocalizableTextFormatter object for the

localizablesubstring (referring to a deposit operation) is created. This object isinserted, along with the account-number information, into the array
ofarguments. The array of argumentsis then used in constructing thel ocalizableTextFormatter object for the complete string; when the formatmethod
is called, the embedded L ocalizableTextFormatter object is formatted toreplace the first variable, and the account number is substituted for thesecond
variable.

Figure 115. Code example: Formatting a message with alocalizable variable substring

45

public void updateAccount (String transacti onType) { .. /'l Successful Deposit.

Local i zabl eText Formatter opLTF = new Local i zabl eText For mat t er (" Banki ngResour ces,
"depositOpString", "Banki ngSanple"); oject[] args = {opLTF, new String(this.accountNunber)};
Local i zabl eText Formatter successLTF = new Local i zabl eText For mat t er (" Banki ngResour ces",
"successful Transacti on", " Banki ngSanpl e",

args); - successLTF. format (t his. applicationLocal e); N

Customizing the behavior of a format method

The array of optional arguments can contain simple values, like an accountnumber to be substituted into a formatted string, and
otherL ocalizableTextFormatter objects, representing localizable substrings to besubstituted into a larger formatted string. These techniques
aredescribed in Assembling complex strings. In addition, the optional-argument array can containobjects of user-defined classes.

User-defined classes used as optional arguments provideapplication-specific format methods, which programmers can use to performlocalization on
the basis of any number of values, not just locale and timezone. These user-defined classes need to be available only on thesystems where they are
constructed and inserted into L ocalizableTextFormatterobjects and where the actual formatting is done; client applications donot need to install these
classes.

The localizable-text package provides an example of such a user-definedclass in the LocalizableTextDateTimeArgument class. This class allowsdate
and time information to be selectively formatted according to the stylevalues defined in the java.text.DateFormat class and accordingto the constants
defined by the L ocalizableTextDateTimeArgument class.

The DateFormat styles determine how information is reported about adate. For example, when the DateFormat. FULL styleis chosen,
thetwenty-second day of February in 2000 is represented in English asTuesday, February 22, 2000. When the DateFormat.SHORTSstyle is used, the
same date is represented as 2/22/00. Thevalid values are:

« DateFormat.FULL

« DateFormat.LONG

« DateFormat. MEDIUM

« DateFormat. SHORT

« DateFormat. DEFAULT
The LocalizableTextDateTimeArgument class defines constants that can beused to request only date or time information, or both, either in
date-timeorder or in time-date order. The defined values are:

o LocalizableTextDateTimeArgument. TIME

« LocalizableTextDateTimeArgument.DATE

« LocalizableTextDateTimeArgument. TIMEANDDATE

« LocalizableTextDateTimeArgument. DATEANDTIME
An object of auser-defined class like the L ocalizableTextDateTimeArgumentclass can be set in the optional-argument array of a
LocalizableTextFormatterobject, and when the Locali zableTextFormatter object attempts to format theuser-defined object, it calls the format method
on that object. Thatformat method, written by the application devel oper, can do whatever isappropriate with the application-specific values. In the case
of thel ocalizableTextDateTimeArgument class, the format method determines if date,time, or both are required, formats them according to the

DateFormat value,and assembles them in the order requested in thel ocalizableTextDateTimeArgument style. The date and time informationare also
affected by the locale and time-zone values, but the refinements inthe formatting are accomplished by the DateFormat class and the user-definedval ues.

The string assembled from a user-defined class like thel ocalizableTextDateTimeArgument class can then be substituted into alargerstring, just as the
return values of nested L ocalizabl eT extFormatter objectscan be. When writing such user-defined classes, it is helpful to thinkof them as specialized
versions of the generic LocalizableTextFormatter class,and the way in which the LocalizableTextFormatter class is written provides amodel for writing
user-defined classes.

Structure of the LocalizableTextFormatter classThe L ocalizableTextFormatter classis a general-purpose class for localizabletext. It extends the
javalang.Object class andimplements the java.io.Serializable interface and fourlocalizable-text interfaces:

o LocalizableTextLTZ

« LocalizableTextL

o LocalizableTextTZ

« LocalizableText

Each of the localizable-text interfaces implemented by thel ocalizableTextFormatter class implements the Localizable interface (whichsimply extends
the Serializable interface) and defines a single formatmethod:

« TheLocalizableTextL TZ interface defines format(locale, timezone).

« The LocalizableTextL definesformat(locale).

« TheLocalizableTextTZ defines format(timezone).

« TheLocalizableText defines format().
Because the LocalizableTextFormatter classimplements all four of theseinterfaces, it must provide an implementation for each of these
formatmethods.

46

Writing a user-defined classA user-defined class must implement at least one of the localizable-textinterfaces and its corresponding format method, as
well as the Serializableinterface. If the class implements more than one of thelocalizable-text interfaces and format methods, the order of evaluation of
theinterfacesis:

1. LocalizableTextLTZ
2. LocalizableTextL
3. LocalizableTextTZ
4. LocalizableText

For example, the LocalizableTextDateTimeArgument class implements only thel ocalizableTextL TZ interface, as shown in Figure 116.

Figure 116. Code example: The structure of the L ocalizableTextDateTimeArgument class

package com i bm websphere.i 18n.1ocal i zabl etext;inmport java.util.Locale;inport java.util.Date;inport
j ava.text. DateFormat;inmport java.util.TimeZone;inport java.io.Serializable;public class

Local i zabl eText Dat eTi meArgunent i npl ements Local i zabl eText LTZ,

Seri al i zabl e{ .

A user-defined class must contain a constructor and an implementation ofthe format methods as defined in the localizable-text interfaces that theclass
implements. It can also contain other methods as needed. The L ocalizableTextDateTimeArgument class contains a constructor, a singleformat method,
an equality method, a hash-code generator, and astring-conversion method.

Figure 117. Code example: The methodsin the L ocalizableT extDateTimeArgument class

...public class Localizabl eTextDateTi meArgunent inplenents Localizabl eTextLTZ,

Seri al i zabl e{ public final static int DATE = 1, public final static int TIME = 2; public final
static int DATEANDTI ME = 3; public final static int TI MEANDDATE = 4; private Date date = null;
private dateTineStyle = Localizabl eText Dat eTi neAr gunent . DATE; private int dateFormatStyle =

Dat eFor mat . FULL; . public Localizabl eText Dat eTi meArgunent (Dat e date, int dateTi meStyle,

i nt dateFormat Styl e) { ...} publi ¢ bool ean equal s(Obj ect param { ...} public fornat
(Local e | ocal e, TinmeZone tinmeZone) throws 1|11 egal Argurment Exception { ... } public int
hashCode() { ...} public String toString() { ... }}

Each format method in the user-defined class can do whatever is appropriatefor the application. In the LocalizableTextDateTimeArgument class,
theformat method (see Figure 118 for the implementation) examines the setting of thedate-time style set within the object, for example,
DATEANDTIME. Itthen assembles the requested information in the requested order, according tothe date-format value.

Figure 118. Code example: The format method in the L ocalizableT extDateTimeArgument class

public format (Local e |ocale, TineZone tineZone) throws Il egal Argunent Excepti on{ String

returnString = null; swi tch(dateTi neStyle) { case Local i zabl eText Dat eTi meAr gunent . DATE :
returnString = DateFormat. get Dat el nst ance(dat eFor nat Styl e,

| ocal e). format (date); br eak; } case Local i zabl eText Dat eTi neAr gunent . TI ME : {

df = DateFormat. get Ti nel nst ance(dat eFormat Styl e, |ocal e); df . set Ti meZone(ti meZone);

returnString = df.format(date); br eak; } case

Local i zabl eText Dat eTi meAr gunent . DATEANDTI ME : { dateString =

Dat eFor nat . get Dat el nst ance(dat eFor mat Styl e,

| ocal e).format (date); df = DateFormat. get Ti nel nst ance(dat eFormat Styl e, |ocale);

df . set Ti mreZone(ti nmeZone); tinmeString = df.fornat(date); returnString = dateString +

"+ timeString; br eak; } case Local i zabl eText Dat eTi meAr gurent . TI MEANDDATE :
dateStri ng = Dat eFor mat . get Dat el nst ance(dat eFor nmat St yl e,

| ocal e). format (date); df = Dat eFormat. get Ti nel nst ance(dat eFormat Styl e, |ocal e);

df . set Ti meZone(ti neZone) ; returnString = tinmeString + " " + dateString; br eak;

} defaul t : { throw new ||| egal Argunment Exception(); } } return

returnString;}

An application can create a LocalizableTextDateTimeArgument object (or anobject of any other user-defined class) and placeit in the
optional-argumentarray of a LocalizableTextFormatter object. When thel ocalizabl eTextFormatter object reaches the user-defined object, it willattempt
to format it by calling the object's format method. Thereturned string is then substituted for a variable as thelocalizableTextFormatter processes each
element in the array of optionalarguments.

Deploying the formatter enterprise bean

The localizable-text package provides a statel ess session enterprise bean, thel ocalizabl eTextResourceA ccessorBean, for formatting messagesin a
distributedenvironment. The format methods on a L ocalizableTextFormatter objecttransparently look up and contact the session bean. However,
thesession bean must be deployed into a WebSphere Application Server before itcan be used. When an application calls a format method on

al ocalizableTextFormatter object, the format method uses the name of theformatting application to find a server where a formatting bean has
beendeployed. This localizable-text bean assembles a string frominformation in the L ocalizabl €T extFormatter object and returns the assembl edstring.

47

The localizable-text package provides a command-line Javatool,LocalizableTextEIBDeploy, for deploying the localizable-text session bean, andthe
package provides al the code necessary to run the session bean. Anadministrator uses the tool to deploy and name the formatting bean. Thename given
to the bean must match the name specified inL ocalizableTextFormatter objects as the name of the formattingapplication. The tool can also be used to
remove deployed beans whenthey are no longer needed.

Setting up the tool

Before the L ocalizableTextEIBDeploy tool can be used to deploy a formattingsession bean for localizable applications, the following conditions must
bemet:

« A directory called temp must exist under the WebSphere installationdirectory. Thisistypically created during the installation of WebSphere
Application Server, and if it does not exist, it must becreated.

« Thefileujc.jar must be present on the CLASSPATH variable.This file contains the compiled Java code for the deployment tool.
Deploying a formatting session bean

After the prerequisites for the tool have been met, the tool can be used todepl oy formatting session beans. The tool requires values for fourarguments
and has two optional arguments:

Local i zabl eText EJBDepl oy -a <appNanme> -h <host Nane> -i <installationDir> -x
<action> [-s <serverNane>] [-c <container Name>]
The required arguments, which can be specified in any order, follow:

« appName: The name of the formatting session bean. This nameis used in LocalizableTextFormatter objects to specify where the
actualformatting takes place. If a LocalizableTextFormatter object specifiesa name that cannot be resolved, an exception is thrown by the
formatmethod.

« hostName: The name of the machine on which the formatting sessionbean is deployed. This value specified here is case sensitive on
alplatforms.

« instalationDir: The location at which WebSphere Application Serverisinstalled on the machine.

« action: The task that the tool is being used to perform. Thetool is used to create the deployment information for formatting session beansand to
remove the deployment information when the beans are no longerneeded. There are two possible values for this argument:

0 create: Thetool creates the following JAR and XML files for theformatter session bean and deletes them when deployment is complete:
= <installRoot>/temp/L ocalizableText-Jetace-<appName>.xml
= <installRoot>/temp/L ocalizableText-X ML Config-<appName>.xml
= <installRoot>/deployableEJBS/L ocalizableText-<appName>.jar
= <installRoot>/deployedEIBs/DeployedL ocalizableText-<appName>.jar
0 delete: Thetool creates the following XML file for the formattersession bean:
= <installRoot>/temp/LocalizableText-X ML Config-<appName>.xml

The optional arguments, which can aso be specified in any order,follow:
« serverName: The name of the WebSphere Application Server. Ifthis argument is not specified, the value "Default Server" is used.

« containerName: The name of the container within WebSphereA pplication Server. If this argument is not specified, the value" Default
Container" is used.
The formatting bean can be deployed on multiple systems, aslong as eachsystem has a copy of the necessary resource bundles. Figure 119 illustrates

the commands for deploying aformatting beancalled CheckingApplication on two machines, a UNIX machine calledResourcesHost1 and a PC called
ResourcesHost2.

Figure 119. Deploying a for matting enter prise bean

% j ava Local i zabl eText EJBDepl oy -a Checki ngApplication -x create-h ResourcesHost1 -i
[usr/ WebSpher e/ AppServer C:\j ava Local i zabl eText EJBDepl oy -a Checki ngApplication -x create-h
Resour cesHost 2-i C:.\ WebSpher e\ AppSer ver

When the formatting bean is no longer needed, it can be deleted with thelocalizableTextEIBDeploy tool. Figure 120 shows the command for
removing the formatting bean deployedin Figure 119 from one of the machines.

Figure 120. Deleting a deployed for matting enter prise bean

java Local i zabl eText EJBDepl oy -a Checki ngApplication -x del ete-h ResourcesHost 2-i

C\
C: \ WebSpher e\ AppSer ver

48

Developing enterprise beans

This chapter explains the basic tasks required to develop and package the mostcommon types of enterprise beans. Specificaly, this chapter focuses
oncreating stateless session beans and entity beans that use container-managedpersistence (CMP); in the discussion of statel ess session beans,important
information about stateful beansis also provided. Forinformation on developing entity beans that use bean-managed persistence(BMP), see
Developing entity beans with BMP.

The information in this chapter is not exhaustive; however, itincludes the information you need to develop basic enterprise beans.For information on
developing more complicated enterprise beans, consult acommercially available book on enterprise bean development. The exampleenterprise beans
discussed in this chapter and the example Java applicationsand servlets that use them are described in Information about the examples described in the

documentation.

This chapter describes the requirements for building each of the majorcomponents of an enterprise bean. If you do not intend touse one of the
commercially available integrated development environments(IDE), such as IBM's VisualAge for Java, you must build each of thesecomponents
manually (by using toolsin the Java Development Kit andWebSphere). Manually developing enterprise beans is much more difficultand error-prone
than developing them in an IDE. Therefore, it isstrongly recommended that you choose an I DE with which you arecomfortable.

Note:

In the EJB server (CB) environment, do not duplicate unqualified interfaceand exception names in enterprise beans. For example,
thecom.ibm.gjs.doc.account.Account interfacemust not be reused in a package namedcom.ibm.egjs.doc.bank.Account. Thisrestriction is
necessary because the EJB server (CB) tools generate enterprisebean support files that use the unqualified name only.

Developing entity beans with CMP

In an entity bean with CMP, the container handles the interacti ons between theentity bean and the data source. In an entity bean with BMP, the
entitybean must contain all of the code required for the interactions between theentity bean and the data source. For this reason, developing an
entitybean with CMP is simpler than developing an entity bean with BMP.

This section examines the development of entity beans with CMP.While much of the information in this section also appliesto entity beanswith BMP,
there are some magjor differences between the two types. Forinformation on the tasks required to develop an entity bean with BMP, see Developing

entity beans with BMP.

Every entity bean must contain the following basic parts:
« Theenterprise bean class. For more information, see Writing the enterprise bean class (entity with CMP).
« The enterprise bean's home interface. For more information,see Writing the home interface (entity with CMP).
« The enterprise bean's remote interface. For more information,see Writing the remote interface (entity with CMP).
« The enterprise bean's primary key class. For more information,see Writing the primary key class (entity with CMP).

Writing the enterprise bean class (entity with CMP)

In a CMP entity bean, the bean class defines and implements the businessmethods of the enterprise bean, defines and implements the methods used
tocreate instances of the enterprise bean, and implements the methods used bythe container to inform the instances of the enterprise bean of
significanteventsin the instance's life cycle. Enterprise bean clients neveraccess the bean class directly; instead, the classes that implement thehome
and remote interfaces are used to indirectly invoke the methods definedin the bean class.

By convention, the enterprise bean class is named NameBean,where Name is the name you assign to the enterprise bean.The enterprise bean class for
the example Account enterprise bean is namedA ccountBean.Every entity bean class with CMP must meet the following requirements:
« |t must be public, it must not be abstract, and it mustimplement the javax.ejb.EntityBean interface. For moreinformation, see Implementing the
EntityBean interface.
« It must define instance variables that correspond to persistent dataassociated with the enterprise bean. For more information, see Defining
variables.

« It must implement the business methods used to access and manipul ate thedata associated with the enterprise bean. For more information, see
Implementing the business methods.

« It must define and implement an gjbCreate method for each way in which theenterprise bean can be instantiated. A corresponding
€jbPostCreatemethod must be defined for each €/bCreate method. For more information,see Implementing the gjbCreate and ejbPostCreate

methods.
Note:

The enterprise bean class can implement the enterprise bean's remoteinterface, but thisis not recommended. If the enterprise bean
classimplements the remote interface, it is possible to inadvertently pass thethis variable as a method argument.

An enterprise bean class cannot implement two different interfaces if themethods in the interfaces have the same name, even if the methods
havedifferent signatures, due to the Java-I DL mapping specification. Errorscan occur when the enterprise bean is deployed.

Figure 18 shows the main parts of the enterprise bean class for theexample Account enterprise bean. (Emphasized code isin boldtype.) The sections
that follow discuss these partsin greaterdetail. 49

Figure 18. Code example: The AccountBean class

...import java.util.Properties;inport javax.ejb.*;inport java.lang.*;public class AccountBean
i mpl ements EntityBean { /1 Set instance variables here c. /1 | npl enent methods here

-}

Defining variables

An entity bean class can contain both persistent and nonpersistent instancevariables; however, static variables are not supported in enterprisebeans
unlessthey are also final (that is, they are constants). Staticvariables are not supported because there is no way to guarantee that theyremain consistent
across enterprise bean instances.

Container-managed fields (which are persistent variables) are stored in adatabase. Container-managed fields must be public.

Nonpersistent variables are not stored in a database and aretemporary. Nonpersistent variables must be used with caution and mustnot be used to
maintain the state of an EJB client between methodinvocations. This restriction is necessary because nonpersistentvariables cannot be relied on to
remain the same between method invocationsoutside of a transaction because other EJB clients can change these variables,or they can be lost when the
entity bean is passivated.

Note:

In the EJB server (CB) environment, container-managed fields in entity beansmust be valid for use in CORBA IDL files. Specificaly, the
variablenames must use | SO Latin-1 characters, they must not begin with anunderscore character (L), they must not contain the dollarcharacter
(%), and they must not be CORBA keywords.Variables that have the same name but different cases are not allowed.(For example, you cannot
use the following variables in the same class:accountld and Accountld. For more information onCORBA DL, consult a CORBA programming
guide.

Also, container-managed fields in entity beans must be valid Java types,but they cannot be of type javax.ejb.Handle or anarray of type
EJBObject or EIlBHome.

The AccountBean class contains three container-managed fields (shown in Figure 19):
« accountld, which identifies the account |D associated with anaccount
« type, which identifies the account type as either savings (1)or checking (2)
« balance, which identifies the current balance of the account

Figure 19. Code example: The variables of the AccountBean class

...public class AccountBean inplenments EntityBean { private EntityContext entityContext = null;
private ListResourceBundl e bundle = Resour ceBundl e. get Bundl e(

"comibm ejs. doc. account . Account Resour ceBundl e") ; public long accountld = 0; public int type
= 1; public float balance = 0.0f;

The deployment descriptor is used to identify container-managed fields inentity beans with CMP. In an entity bean with CMP, eachcontainer-managed
field must beinitialized by each ejbCreate method (see Implementing the ejbCreate and ejbPostCreate methods).

A subset of the container-managed fields is used to define the primary keyclass associated with each instance of an enterprise bean. Asis shownin
Writing the primary key class (entity with CMP), the accountld variable defines the primary keyfor the Account enterprise bean.The AccountBean

class contains two nonpersistent variables:

« entityContext, which identifies the entity context of eachinstance of an Account enterprise bean. The entity context can be usedto get a
reference to the EJB object currently associated with the beaninstance and to get the primary key object associated with that EJBobject.

« bundle, which encapsulates a resource bundle class(com.ibm.gjs.doc.account.A ccountResourceBundle)that contains |local e-specific objects used
by the Account bean.

Implementing the business methods

The business methods of an entity bean class define the ways in which the dataencapsulated in the class can be manipulated. The business
methodsimplemented in the enterprise bean class cannot be directly invoked by an EJBclient. Instead, the EJB client invokes the corresponding
methodsdefined in the enterprise bean's remote interface, by using an EJB objectassociated with an instance of the enterprise bean, and the container
invokesthe corresponding methods in the instance of the enterprise bean.

Therefore, for every business method implemented in the enterprise beanclass, a corresponding method must be defined in the enterprise bean'sremote
interface. The enterprise bean's remote interface isimplemented by the container in the EJB object class when the enterprise beanis deployed.

Figure 20 shows the business methods for the AccountBean class. These methods are used to add a specified amount to an account balance andreturn
the new balance (add), to return the current balance of an account(getBalance), to set the balance of an account (setBalance), and to subtract aspecified
amount from an account balance and return the new balance(subtract).The subtract method throws the user-defined
exceptioncom.ibm.gjs.doc.account.| nsufficientFundsExceptionif a client attempts to subtract more money from an account than is containedin the
account balance. The subtract method in the Account bean'sremote interface must also throw this exception as shown in Figure 25. User-defined
exception classes for enterprise beansare created as are any other user-defined exception class. The messagecontent for the InsufficientFundsException
excepéi 8n is obtained from theA ccountResourceBundle class file by invoking the getM essage method on thebundl e object.

Note:

If an enterprise bean container catches a system exception from the businessmethod of an enterprise bean, and the method is running within
acontai ner-managed transaction, the container rolls back the transaction beforepassing the exception on to the client. However, if the business
methodis throwing an application exception, then the transaction is not rolled back(it is committed), unless the application has called
setRollbackOnlyfunction. In this case, the transaction is rolled back before theexception is re-thrown.

Note:
In the EJB server (CB) environment, use of underscores (_) in the names ofuser-defined interfaces and exception classes is discouraged.

Figure 20. Code example: The business methods of the AccountBean class

. public class AccountBean inplenents EntityBean { . public I ong accountld = O;
public int type = 1; public float balance = 0.0f; c. public float add(float amount) {
bal ance += anpunt; return bal ance; } . public float getBal ance() {
return bal ance; } public void setBaIance(roat amount) { bal ance =
anmount ; } . publlc float subtract(float amount) throws InsufficientFundsException {
|f(balance < anDunt) { throw new | nsuffici ent FundsExcepti on(
bundl e. get Message("i nsuffi ci ent Funds")); } bal ance -= anpunt; return
bal ance; } R

Standard application exceptions for entity beans

Version 1.1 of the EJB specification defines several standardapplication exceptions for use by enterprise beans. All of theseexceptions are subclasses
of the javax.ejb.EJBExceptionclass. For entity beans with both container- and bean-managedpersistence, the EJB specification defines the following
applicationexceptions:

« javax.gjb.CreateException

« javax.gjb.DuplicateK eyException

« javax.ejb.RemoveException

« javax.egjb.FinderException

« javax.gjb.ObjectNotFoundException
Application programmers can use the generic EJBException class or one ofthe provided subclassed exceptions, or programmers can define their
ownexceptions by subclassing any of this family of exceptions. All ofthese exceptions inherit from the javax.ejb.RuntimeExceptionclass and do not
have to be explicitly declared in throws clauses.
Each exception is discussed in more detail within the relevantsection; for more information on:

« CreateException and DuplicateK eyException (a subclass of theCreateException class), see Implementing the ejbCreate and ejbPostCreate

methods.

« javax.ejb.RemoveException, see Implementing the EntityBean interface.

« FinderException and ObjectNotFoundException (a subclass of theFinderException class), see Defining finder methods.
Note:

Version 1.0 of the EJB specification used thejava.rmi.RemoteException class to capture application-specificexceptions; the EJBException class
and its subclasses are new in thel.1 version of the specification. Therefore, using theRemoteException class is now deprecated in favor of the
more precise exceptionclasses. Older applications that use the RemoteException class canstill run, but enterprise beans compliant with version
1.1 of thespecification must use the new exception classes.

Implementing the ejbCreate and ejbPostCreate methods

Y ou must define and implement an gjbCreate method for each way in which youwant a new instance of an enterprise bean to be created. For
eachejbCreate method, you must also define a corresponding gjbPostCreatemethod. Each ejbCreate and € bPostCreate method must correspond to
acreate method in the home interface.

Like the business methods of the bean class, the gjbCreate andejbPostCreate methods cannot be invoked directly by the client.Instead, the client
invokes the create method of the enterprise bean'shome interface by using the EJB home object, and the container invokes thegjbCreate method
followed by the gjbPostCreate method. If the gjbCreateand ejbPostCreate methods are executed successfully, an EJB object is createdand the persistent
data associated with that object is inserted into the datasource.

For an entity bean with CMP, the container handles the required interactionbetween the entity bean instance and the data source between calls to
theejbCreate and ejbPostCreate methods. For an entity bean with BMP, thegjbCreate method must contain the code to directly handle thisinteraction.
For more information on entity beans with BM P, see Developing entity beans with BMP.

Each ejbCreate method in an entity bean with CM P must meet the followingreguirements:
« It must be public and return the same type as the primary key. Theactual return value must be null.
« Itsarguments must be valid for Java remote method invocation(RMI). For more information, see The java.io.Serializable and java.rmi.Remote
interfaces.

« It must initialize the container-managed fields of the enterprise beaninstance. The container extracts the values of these variables andwrites
them to the data source after the gjbCreate method returns. 51

Each ejbPostCreate method must be public, return void, and have the samearguments as the matching ejbCreate method.If necessary, both the
€jbCreate method and the g/bPostCreate method can throwthe javax.ejb.EJBException exception or one of thecreation-related subclasses, the
CreateException or the DuplicateK eyExceptionexceptions. The DuplicateKeyException classis a subclass of theCreateException class. Throwing
thejava.rmi.RemoteException exception is deprecated; see Standard application exceptions for entity beans for more information.

Figure 21 shows two sets of ejbCreate and jbPostCreate methodsrequired for the example AccountBean class. Thefirst set of ejbCreateand

€jbPostCreate methods are wrappers that call the second set of methods andset the type variable to 1 (corresponding to a savings account) andthe
balance variable to O (zero dollars).

Figure 21. Code example: The fbCreate and ejbPostCreate methods of the AccountBean class

...public class AccountBean inplenents EntityBean { . public | ong accountld = O;
public int type = 1; public float balance = 0.0f; public Integer

ej bCreat e(Account Key key) { ej bCreat e(key, 1, 0.0f); . public Integer

ej bCreat e(Account Key key, int type, float initialBal ance) t hrows EJBException {

accountld = key.accountld; type = type; bal ance = initial Bal ance; .
public voi d ej bPost Creat e(Account Key key) t hrows EJBException { ej bPost Cr eat e(key, 1,

0); } .. public void ej bPost Creat e(Account Key key, int type, float initialBalance) { }

Implementing the EntityBean interface

Each entity bean class must implement the methods inherited from thejavax.ejb.EntityBean interface. The container invokesthese methods to inform
the bean instance of significant eventsin theinstance's life cycle. (For more information, see Entity bean life cycle.) All of these methods must be
public and returnvoid; they can throw the javax.ejb.EJBException exceptionor, in the case of the gjbRemove method, thejavax.ejb.RemoveException
exception. Throwing thejava.rmi.RemoteException exception is deprecated; see Standard application exceptions for entity beans for more information.

« gbActivate--This method isinvoked by the container when thecontainer selects an entity bean instance from the instance pool and assignsthat
instance to a specific existing EJB object. This method mustcontain any code that you want to execute when the enterprise bean instance
isactivated.

« gbLoad--Thismethod isinvoked by the container to synchronize anentity bean's container-managed fields with the corresponding datain
thedata source. (That is, the values of the fields in the data source arel oaded into the container-managed fieldsin the corresponding enterprise
beaninstance.) This method must contain any code that you want to executewhen the enterprise bean instance is synchronized with associated
datain thedata source.

« gbPassivate--This method isinvoked by the container when thecontainer disassociates an entity bean instance from its EJB object and
placesthe enterprise bean instance in the instance pool. This method mustcontain any code that you want to execute when the enterprise bean
instance is'passivated” or deactivated.

« g bRemove--This method isinvoked by the container when a clientinvokes the remove method inherited by the enterprise bean's homeinterface
from the javax.ejb.EJBHome interface. Thismethod must contain any code that you want to execute before an enterprisebean instanceis
removed from the container (and the associated data isremoved from the data source). This method can throw thejavax.ejb.RemoveException
exception if removal of an enterprisebean instance is not permitted.

« setEntityContext--This method isinvoked by the container to pass areference to the javax.gjb.EntityContext interface to anenterprise bean
instance. If an enterprise bean instance needs to usethis context at any time during its life cycle, the enterprise bean class mustcontain an
instance variable to store this value. This method mustcontain any code required to store areference to a context.

« ¢gbStore--This method is invoked by the container when the containerneeds to synchronize the data in the data source with the values of
thecontai ner-managed fields in an enterprise bean instance. (That is, thevalues of the variablesin the enterprise bean instance are copied to the
datasource, overwriting the previous values.) This method must contain anycode that you want to execute when the data in the data source is
overwrittenwith the corresponding val ues in the enterprise bean instance.

« unsetEntityContext--This method is invoked by the container, beforean enterprise bean instance is removed, to free up any resources
associatedwith the enterprise bean instance. Thisisthe last method called priorto removing an enterprise bean instance.

In entity beans with CMP, the container handles the required data sourceinteraction for these methods. In entity beans with BMP, these methodsmust
directly handle the required data source interaction. For moreinformation on entity beans with BMP, see More-advanced programming concepts for

enterprise beans.

These methods have several possible uses, including the following:
« They can contain audit or debugging code.

« They can contain code for allocating and deallocating additional resourcesused by the bean instance (for example, an SNA connection to
amainframe).

As shown in Figure 22, except for the setEntityContext and unsetEntityContextmethods, al of these methods are empty in the AccountBean class

because noadditional action is required by the bean for the particular life cycle statesassociated with the these methods. The setEntityContext
andunsetEntityContext methods are used in a conventional way to set the value ofthe entityContext variable.

Figure 22. Code example: Implementing the EntityBean interface in the AccountBean class

52

.public class AccountBean inplenents EntityBean { private EntityContext entityContext = null;

. publ ic void ejbActivate() throws EJBExceptl on { } publ ic void ejbLoad () throws
EJBExcept ion { } . public void ejbPassivate() throvvs EJBExcept ion { } . public
voi d ej bRempove() throws EJBException { } . public void ejbStore () throws EJBExceptlon {1}
.. public void setEntityContext(Enti tyCont ext ctx) throws EJBException { entityCont ext
= ctx; } . public void unsetEntityContext() throws EJBException {
entityContext = nuII; 1}

Writing the home interface (entity with CMP)

An entity bean's home interface defines the methods used by clients tocreate new instances of the bean, find and remove existing instances, andobtain
metadata about an instance. The home interface is defined by theenterprise bean devel oper and implemented in the EJB home class created by
thecontainer during enterprise bean deployment.

The container makes the home interface accessible to enterprise beanclients through the Java Naming and Directory Interface (JNDI). INDI
isindependent of any specific naming and directory service and allows Java-basedapplications to access any haming and directory servicein a
standardway.

By convention, the home interface is named NameHome, whereName is the name you assign to the enterprise bean. Forexample, the Account
enterprise bean's home interface is namedA ccountHome.Every home interface must meet the following requirements:
« It must extend the javax.ejb.EJBHome interface. Thehome interface inherits several methods from thejavax.ejb.EJBHome interface. See The
javax.ejb.EJBHome interface for information on thesemethods.
« Each method in the interface must be either a create method thatcorresponds to a set of gjbCreate and € bPostCreate methods in the EJB
objectclass, or afinder method. For more information, see Defining create methods and Defining finder methods.
« The parameters and return value of each method defined in the homeinterface must be valid for Java RMI. For more information, see The
javaio.Serializable and java.rmi.Remote interfaces. In addition, each method's throws clause mustinclude the java.rmi.RemoteException
exception class.

Figure 23 shows the relevant parts of the definition of the homeinterface (AccountHome) for the example Account bean. This interfacedefines two

abstract create methods: the first creates an Account objectby using an associated AccountKey object, the second creates an Account objectby using an
associated AccountKey object and specifying an account type and aninitial balance. The interface defines the required findByPrimaryK eymethod and a
findLargeA ccounts method, which returns a collection of accountscontaining balances greater than a specified amount.

Figure 23. Code example: The AccountHome home interface

. i nmport java.rm’.*'irrport java.util.*;inmport javax.ejb.*;public interface AccountHone extends

EJBHorre { Account create (Account Key id) throws CreateException, RenoteException;
. Account cr eate(AccountKey id, int type, float initialBalance) t hr ows

Creat eExcepti on, RenoteException; C Account findByPrinmaryKey (AccountKey id)

Renot eExcepti on, Fi nder Excepti on; Enuneration findLargeAccounts(float amount)

t hrows Renot eException, Fi nderExceptlon }

Defining create methods

A create method is used by aclient to create an enterprise bean instance andinsert the data associated with that instance into the data source.Each create
method must be named create and it must have the same number andtypes of arguments as a corresponding ejbCreate method in the enterprise
beanclass. (The gjbCreate method must itself have a correspondingejbPostCreate method.)
Each create method must meet the following requirements:

« It must be named create.

« It must return the type of the enterprise bean's remoteinterface. For example, the return type for the create methods in theAccountHome
interface is Account (as shown in Figure 23).

« It must have athrows clause that includes thejava.rmi.RemoteException exception, thejavax.gjb.CreateException exception, and all of the
applicationexceptions defined in the throws clause of the corresponding ejbCreate andejbPostCreate methods.

Defining finder methods

A finder method is used to find one or more existing entity EJBobjects. Each finder method must be named findName, whereName further describes
the finder method's purpose.

At minimum, each home interface must define the findByPrimaryK ey methodthat enables a client to locate an EJB object by using the primary
keyonly. The findByPrimaryKey method has one argument, an object of thebean's primary key class, and returns the type of the bean's remoteinterface.
Every other finder method must meet the following requirements:

« It must return the type of the enterprise bean's remote interface,the java.util.Enumeration interface, or thejava.util.Collection interface (when a
finder method can returnmore than one EJB object or an EJB collection).

« It must have athrows clause that includes thejava.rmi.RemoteException andjavax.ejb.FinderException exception classes. 53

While every entity bean must contain the default finder method, you canwrite additional finder methods if needed. For example, the Accountbean's
home interface defines the findL argeA ccounts method to findobjects that encapsulate accounts with balances of more than a specifiedamount, as
shown in Figure 24. Because this finder method can be expected to returna reference to more than one EJB object, its return type isEnumeration.

Figure 24. Code example: The findL ar geAccounts method

Enumer ati on findLargeAccounts(float anount) t hrows Renot eException, FinderException;

Every EJB server can implement the findByPrimaryK ey method. Duringenterprise bean deployment, the container generates the code required
tosearch the database for the appropriate enterprise bean instance.

However, for each additional finder method that you define in the homeinterface, the enterprise bean deployer must associate finder logic with
thatfinder method. Thislogic is used by the EJB server during deploymentto generate the code required to implement the finder method.

The EJB Specification does not define the format of the finder logic, sothe format can vary according to the EJB server you are using. For
moreinformation on creating finder logic, see Creating finder logic in the EJB server (AE) or Creating finder logic in the EJB server (CB).

Writing the remote interface (entity with CMP)

An entity bean's remote interface provides access to the business methodsavailable in the bean class. It aso provides methods to remove an EJBobject
associated with a bean instance and to obtain the bean instance'shome interface, object handle, and primary key. The remote interface isdefined by the
enterprise bean developer and implemented in the EJB objectclass created by the container during enterprise bean deployment.

By convention, the remote interface is named Name, whereName is the name you assign to the enterprise bean. Forexample, the Account enterprise
bean's remote interface is namedA ccount.Every remote interface must meet the following requirements:

« It must extend the javax.ejb.EJBObject interface. Theenterprise bean's remote interface inherits several methods from thejavax.ejb.EJBObject
interface. See Methods inherited from javax.ejb.EJBObject for information on these methods.

« You must define a corresponding business method for every business methodimplemented in the enterprise bean class.

« The parameters and return value of each method defined in the interfacemust be valid for Java RMI. For more information, see The
javaio.Serializable and java.rmi.Remote interfaces.

« Each method's throws clause must include thejava.rmi.RemoteException exception class.
Note:

In the EJB server (CB) environment, do not use method names in the remoteinterface that match method names in the Component Broker
Managed ObjectFramework (that is, methods in thel ManagedServer::| M anagedObj ectWithCachedDataObject,CosStream:: Streamabl e,
CosLifeCycle::LifeCycleObject,and CosObject!dentity::1dentifiableObject interfaces). Formore information on the Managed Object
Framework, see the Component BrokerProgramming Guide. In addition, do not use underscores () atthe end of property or method names; this
restriction prevents namecollision with queryable attributes in business object interfaces thatcorrespond to container-managed fields.

Figure 25 shows the relevant parts of the definition of the remoteinterface (Account) for the example Account enterprise bean. Thisinterface defines
four methods for displaying and manipulating the accountbalance that exactly match the business methods implemented in the AccountBeanclass.All
of the business methods in the remote interface throw thejava.rmi.RemoteException exception class. In addition,the subtract method must throw the
user-defined exceptioncom.ibm.egjs.doc.account.| nsufficientFundsExcepti onbecause the corresponding method in the bean class throws thisexception.
Furthermore, any client that calls this method must eitherhandle the exception or passit on by throwing it.

Figure 25. Code example: The Account remote interface

.inmport java.rm .*;inport javax.ejb.*;public interface Account extends EJBObject {

float add(fl oat armunt) t hr ows Renbt eExcepti on; . float getBal ance() throws
Renot eExcepti on; . voi d set Bal ance(f ! oat armunt) t hr ows Renot eExcepti on; C. f | oat
subtract (fl oat am)unt) throws | nsufficientFundsException, Renot eExcepti on;}

Writing the primary key class (entity with CMP)

Within a container, every entity EJB object has a unique identity that isdefined by using a combination of the object's home interface name andits
primary key, the latter of which is assigned to the object atcreation. If two EJB objects have the same identity, they areconsidered identical.

Primary keys are specified in two ways:

« Simple primary keys, which map to asingle field in the entity bean classand are comprised of primitive Java data types (such as integer or
long), arespecified in the deployment descriptor.

« Composite primary keys, which map to multiple fields in the entity beanclass (or to data structures built from the primitive Java data types),
mustbe encapsulated in a primary key class. More complicatedenterprise beans are likely to have composite primary keys, with
multipleinstance variables representing the primary key.

The primary key classis used to manage an EJB object's primarykey. By convention, the primary key class is named NameK ey,where Name is the
name of the enterprise bean. For example,the Account enterprise bean's primary key class is namedAccountKey.The primary key class must meet the
following requirements:

54

« It must be public and it must be serializable. For moreinformation, see The java.io.Serializable and java.rmi.Remote interfaces.

« Itsinstance variables must be public, and the variable names must match asubset of the container-managed field names defined in the enterprise
beanclass.

« It must have a public default constructor, at a minimum.
Note:

For the EJB server (AE) environment, the primary key class of a CMP entitybean must override the equals method and the hashCode method
inherited fromthe java.lang.Object class.

Figure 26 shows a composite primary key class for an exampleenterprise bean, Item. In effect, this class acts as awrapper aroundthe string variables
productld and vendor | d. ThehashCode method for the ItemKey class invokes the corresponding hashCodemethod in the javalang.String class after

creating a temporarystring object by using the value of the productld variable.In addition to the default constructor, the ItemKey class also defines
aconstructor that sets the value of the primary key variables to the specifiedstrings.

Figure 26. Code example: The ltemKey primary key class

.inmport java.io.*;// Conposite primary key classpublic class ItenKey inplenments
java.io. Serializable { public String productld; public String
vendor | d; /'l Constructors public ItenKey() { }; public ItenKey(String productld,
String vendorid) { this.productld = productld; this.vendorld = vendorld;
public String getProductl d() { return productld; } public String getVendorld() {
return vendorld; } . /1 EJB server (AE)-specific nethod public bool ean
equal s(Ohj ect other) { if (other instanceof ItenKey) ({ return
(product | d. equal s(((!tenKey) ot her) . product 1d)
&& vendor | d. equal s(((1tenKey) ot her).vendorld));
el se return fal se; } . /1l EJB server (AE)-specific nethod
public int hashCode() { return (new pr oduct I d. hashCode()) ; o}

A primary key class can also be used to encapsulate a primary key that isnot known ahead of time -- for instance, if the entity bean is intendedto work
with several persistent data stores, each of which requires adifferent primary key structure. The entity bean's primary keytype is derived from the
primary key type used by the underlying database thatstores the entity objects; it does not necessarily have to be known tothe enterprise bean
developer.
To specify an unknown primary key, do the following:

« Declare the argument of the findByPrimaryKey class agava.lang.Object.

« Declarethereturn value of the gjbCreate method asjava.lang.Object

« In the deployment descriptor, specify the primary key class as being ofthe type java.lang.Object.
When the primary key selection is deferred to deployment, clientapplications cannot use methods that rely on knowledge of the primary keytype. In

addition, applications cannot always depend on methods thatreturn the type of the primary key (such as theEntityContext.getPrimaryKey method)
because the return type isdetermined at deployment.

Interacting with databases

Note:
This section applies only to the Advanced Edition EJB environment.Component Broker has its own means of controlling caching; see
theComponent Broker Advanced Programming Guide for details.

This section contains general information and tips on enterprise beans anddatabase access.

« Althoughit is not necessary, it is good practice to specify the user IDand password for a data source either in the enterprise bean to be using
thedata source, or in the container of the bean.

« The container supports Option A and Option C caching. When Option Acaching isin use, the application server hosting the enterprise
beancontainer must be the only updater of the datain the persistent store.As such, Option A caching is incompatible with the following:

o Workload managed servers (such as a cluster of clones)
o Databases with data being shared among multiple applications

The default caching option is C (multiple entity bean instances, possiblyin different servers, can update bean state in the database). Thedefault
caching option can be changed from Option C to Option A by selecting"exclusive persistent store" in the administrative console when creating
theentity bean.

Shared database access corresponds to Option C caching. Option A andOption C caching are also known as commit option A and commit option
C,respectively.

Developing session beans

In their basic makeup, session beans are similar to entity beans.However, their purposes are very different.

From a component perspective, one of the biggest differences between thetwo types of enterprise beansis that session beans do not have a primary
55

keyclass and the session bean's home interface does not define findermethods. Session enterprise beans do not require primary keys andfinder methods
because session EJB objects are created, associated with aspecific client, and then removed as needed, whereas entity EJB objectsrepresent permanent
datain a data source and can be uniquely identified witha primary key. Because the data for session beans is never permanentlystored, the session bean
class does not have methods for storing data to andloading data from a data source.

Every session bean must contain the following basic parts:
« The enterprise bean class. For more information, see Writing the enterprise bean class (session).

« The enterprise bean's home interface. For more information,see Writing the home interface (session).
« The enterprise bean's remote interface. For more information,see Writing the remote interface (session).

Writing the enterprise bean class (session)

A session bean class defines and implements the business methods of theenterprise bean, implements the methods used by the container during
thecreation of enterprise bean instances, and implements the methods used by thecontainer to inform the enterprise bean instance of significant events
in theinstance's life cycle. By convention, the enterprise bean class isnamed NameBean, where Name is the name you assign to theenterprise bean. The
enterprise bean class for the example Transferenterprise bean is named TransferBean.Every session bean class must meet the following requirements:

« |t must define and implement the business methods that execute the tasksassociated with the enterprise bean. For more information, see
Implementing the business methods.

« It must define and implement an ejbCreate method for each way in which youwant it to be able to instantiate the enterprise bean class. For
moreinformation, see |mplementing the ejbCreate methods.

« It must be public, it must not be abstract, and it mustimplement the javax.ejb.SessionBean interface. For moreinformation, see Implementing
the SessionBean interface.

Note:

Version 1.0 of the EJB specification alowed the methods in the sessionbean class to throw the java.rmi.RemoteException exception toindicate
anon-application exception. This practice is deprecated inversion 1.1 of the specification. A session bean compliant withversion 1.1 of the
specification should throw thejavax.ejb.EJBException exception (a subclass of thejava.lang.RuntimeException class) or another
RuntimeExceptionexception instead. Because the javax.ejb.EJBEXceptionclassis a subclass of the java.lang.RuntimeException,EJBException
exceptions do not need to be explicitly listed in the throwsclause of methods.

A session bean can be either stateful or stateless. In a statel esssession bean, none of the methods depend on the values of variables set by anyother
method, except for the gjbCreate method, which sets the initial (identical) state of each bean instance. In a stateful enterprise bean,one or more methods
depend on the values of variables set by some othermethod. Asin entity beans, static variables are not supported insession beans unless they are also
final .Stateful session beans possibly need to synchronize their conversational statewith the transactional context in which they operate. For example,
astateful session bean possibly needs to reset the value of some of itsvariablesif atransaction is rolled back or it possibly needsto change
thesevariables if atransaction successfully completes.

If a bean needs to synchronize its conversational state with thetransactional context, the bean class must implement
thejavax.gjb.SessionSynchronization interface. Thisinterface contains methods to notify the session bean when a transactionbegins, when it is about to
complete, and when it has completed. Theenterprise bean developer can use these methods to synchronize the state ofthe session enterprise bean
instance with ongoing transactions.

Note:
The SessionSynchronization interface is not supported in the EJBserver (CB) environment.

The enterprise bean class can implement the enterprise bean's remoteinterface, but thisis not recommended. If the enterprise bean classimplements the
remote interface, it is possible to inadvertently pass thethis variable as a method argument.

Figure 27 shows the main parts of the enterprise bean class for theexample Transfer bean. The sections that follow discuss these parts ingreater detail.

The Transfer bean is stateless. If the Transfer bean'stransferFunds method were dependent on the value of the balancevariable returned by the
getBalance method, the TransferBean would bestateful.

Figure 27. Code example: The Transfer Bean class

.inmport java.rn .RenoteException;inport java.util.Properties;i rrport java. util.ResurceBundl e;i nport
java.util.ListResourceBundle;inport javax.ejb.*;inport java.lang.*;inport javax.nani ng. *: i nport
comibmejs.doc.account.*;...public class Tr ansf er Bean i npl enent s SeSS| onBean { . private
Sessi onCont ext nySessi onCtx = null; private Initial Context initial Context = null; private
Account Homre account Hone = nul | ; private Account fromAccount = null; prlvate Account
t oAccount = null; pubI ic void ejbActivate() throws EJBExcept ion { } public
void ejbCreate() thr ows EJBExcept ion { } public void ej bPassi vat e()

t hrows EJBException { } public void eJ bRermve() throws EJBException { }
public float getBalance(l ong acct I'd) throws FinderException, EJBException {

} public void set Sessi onCont ext (j avax. e] b. Sessi onCont ext ct x) t hr ows
EJBExcept ion { c. } . public void transferFunds(long fromAcctld, |ong
toAcctld, float anount) thr ovvs EJBException { C. 1}

Implementing the business methods

56

The business methods of a session bean class define the ways in which an EJBclient can manipulate the enterprise bean. The business
methodsimplemented in the enterprise bean class cannot be directly invoked by an EJBclient. Instead, the EJB client invokes the corresponding
methodsdefined in the enterprise bean's remote interface, by using an EJB objectassociated with an instance of the enterprise bean, and the container
invokesthe corresponding methods in the enterprise bean instance.

Therefore, for every business method defined in the enterprise bean'sremote interface, a corresponding method must be implemented in the
enterprisebean class. The enterprise bean's remote interface is implementedby the container in the EJBObject class when the enterprise bean
isdeployed.

Figure 28 shows the business methods for the TransferBeanclass. The getBalance method is used to get the balance for anaccount. It first locates the
appropriate Account EJB object and thencalls that object's getBal ance method.

The transferFunds method is used to transfer a specified amount between twoaccounts (encapsulated in two Account entity EJB objects). Afterlocating
the appropriate Account EJB objects by using the findByPrimaryK eymethod, the transferFunds method calls the add method on one account and
thesubtract method on the other.Like al finder methods, findByPrimaryKey can throw both the FinderExceptionand RemoteException exceptions. The
try/catch blocks are set up aroundinvocations of the findByPrimaryKey method to handle the entry of invalidaccount 1Ds by users. If the session bean
user enters an invalidaccount 1D, the findByPrimaryKey method cannot locate an EJB object, and thefinder method throws the FinderException
exception. This exception iscaught and converted into a new FinderException exception containinginformation on the invalid account ID.

To call the findByPrimaryKey method, both business methods need to be ableto access the EJB home object that implements the AccountHome
interfacediscussed in Writing the home interface (entity with CMP). Obtaining the EJB home object is discussed in Implementing the ejbCreate

methods.

Figure 28. Code example: The business methods of the Transfer Bean class

public class TransferBean inplenents SessionBean { c private Account fromAccount = null;
private Account toAccount = null; - public float getBal ance(long acctld) throws

Fi nder Exception, EJBException { Account Key key = new Account Key(acctld); try {
fromAccount = account Horne. fi ndByPri mar yKey(key) ; } catch(Fi nder Exception ex) ({

t hr ow new Fi nder Excepti on("Account " + acctld + " does not exist.");

} catch(Renot eException ex) { t hrow new Fi nder Excepti on("Account " + acctld

+ " could not be found."); } return fromAccount. get Bal ance(); } C public void
transferFunds(l ong fromAcctld, |ong toAcctld, float anount) t hrows EJBExcepti on,

I nsuf fici ent FundsExcepti on, FinderException { Account Key fronKey = new

Account Key(fromAcct | d); Account Key toKey = new Account Key(toAcctld); try {
fromAccount = account Hone. fi ndByPri mar yKey(fronKey) ; } catch(Fi nder Exception ex) ({

t hr ow new Fi nder Excepti on("Account " + fromAcctld + " does not exist.");
} catch(Renot eException ex) { t hrow new Fi nder Excepti on("Account " + acctld

+ " could not be found."); } try { t oAccount =

account Hone. fi ndByPri mar yKey(t oKey) ; } catch(FinderException ex) { t hr ow new
Fi nder Excepti on("Account " + toAcctld + " does not exist."); }

cat ch(Renot eException ex) { t hr ow new Fi nder Excepti on("Account " + acctld

+ " could not be found."); } try { t oAccount . add(anount) ;

f romAccount . subt ract (anmount) ; } catch(InsufficientFundsException ex) {

mySessi onCt x. set Rol | backOnl y(); t hr ow new | nsuffi ci ent FundsException("Il nsufficient
funds in " + fromAcct 1 d); } 1}

Implementing the ejbCreate methods

Y ou must define and implement an gjbCreate method for each way in which youwant an enterprise bean to be instantiated.

Each ejbCreate method must correspond to a create method in the enterprisebean's home interface. (Note that there is no ejbPostCreate methodin a
session bean asthereisin an entity bean.) Unlike the businessmethods of the enterprise bean class, the g/bCreate methods cannot be invokeddirectly by
the client. Instead, the client invokes the create methodin the bean instance's home interface, and the container invokes thegjbCreate method. If an
ejbCreate method is executed successfully, anEJB object is created.
An g/bCreate method for a session bean must meet the followingrequirements:

« The method must be declared as public and cannot be declared asfinal orstatic.

o It must return void.

« A stateless session bean must have only one gjbCreate method, which mustreturn void and contain no arguments. A stateful session bean can

havemultiple ejbCreate methods.

The throws clause can define arbitrary application exceptions. Thejavax.ejb.EJBException or another runtime exception can be usedto indicate
non-application exceptions.
An g/bCreate method for an entity bean must meet the foll owingrequirements:

« The method must be declared as public and cannot be declared asfinal orstatic.

« |t must return the entity bean's primary key type.

« It must contain code to set the values of any variables needed by the EJBobject.

The throws clause can define arbitrary application exceptions. Thejavax.ejb.EJBException or another runtime exception can be usedto indi?}e

non-application exceptions.Figure 29 shows the gjbCreate method required by the exampleTransferBean class. The Transfer bean's ejbCreate method

obtains areference to the Account bean's home object. This reference isrequired by the Transfer bean's business methods. Getting areference to an
enterprise bean's home interface is a two-stepprocess:

1. Construct an Initial Context object by setting the required propertyvalues. For the example Transfer bean, these property values aredefined in
the environment variables of the Transfer bean's deploymentdescriptor.

2. Usethe InitialContext object to create and get a reference to the homeobject. For the example Transfer bean, the INDI name of the
Accountbean is stored in an environment variable in the Transfer bean'sdeployment descriptor.

Creating the Initial Context object

When a container invokes the Transfer bean's ejbCreate method, theenterprise bean's initial Context object is constructed bycreating a Properties
variable (env) that requires the followingval ues:

« Thelocation of the name service(javax.naming.Context. PROVIDER_URL).
« Thename of theinitial context factory(javax.naming.Context.INITIAL_CONTEXT_FACTORY).

The values of these properties are discussed in more detail in Creating and getting a reference to a bean's EJB object.

Figure 29. Code example: Creating the InitialContext object in the g bCreate method of the Transfer Bean class

...public class TransferBean inplenents Sessi onBean { private static final String

I NI TI AL_NAM NG_FACTORY_SYSPROP = j avax. nam ng. Cont ext. | NI TI AL_CONTEXT_FACTORY;

private static final String PROVI DER_URL_SYSPROP = j avax. nam ng. Cont ext . PROVI DER_URL;
private String naneService = null; private String providerURL = null;

pr|vateln|t|aIOontext initial Context = null; public void ejbCreate() throws

EJBException { /] Get the initial context try { Properties env =

Syst em get Properties(); . env. put (PROVI DER_URL_SYSPROCP,

getProviderUrl ()); env. put (I NI TI AL_CONTEXT_FACTORY_SYSPROP, get Nani ngFact ory());

initial Context = new Initial Context(env); } catch(Exception ex) {

} /1 Look up the home interface using the JND name .

Although the example Transfer bean stores some locale specific variablesin aresource bundle class, like the example Account bean, it also relieson
thevalues of environment variables stored in its deployment descriptor.Each of these Initial Context Properties values is obtained from an
environmentvariable contained in the Transfer bean's deployment descriptor. Aprivate get method that corresponds to the property variableis used to
geteach of the values (getNamingFactory and getProviderURL); these methodsmust be written by the enterprise bean developer. The
followingenvironment variables must be set to the appropriate values in the deploymentdescriptor of the Transfer bean.

« javax.naming.Context.INITIAL_CONTEXT_FACTORY
« javax.naming.Context.PROVIDER_URL

(Setting environment variables for an enterprise bean shows an example of the jetace page required toset these variables.)

Figure 30 illustrates the relevant parts of the getProviderURL methodthat is used to get the PROVIDER_URL property value.

Thejavax.gjb.SessionContext variable (mySessionCtx) isused to get the Transfer bean's environment in the deployment descriptorby invoking the
getEnvironment method. The object returned by thegetEnvironment method can then be used to get the value of a specificenvironment variable by
invoking the getProperty method.

Figure 30. Code example: The getProvider URL method

.public class TransferBean inplenents SessionBean { private Sessi onContext nySessionCtx =
nul | ; private String getProviderURL() throws RenoteException { /1 get the
provi der URL property either from //the EJB properties or, if it isn't there /luse
"iiop:///", which causes a default to the | ocal host String pr =
nmySessi onCt x. get Envi ronnment () . get Propert y(PRO\/I DER_URL_SYSPROP) ; if (pr
== null) pr = "iiop:///1"; return pr; })

Getting the reference to the home object

An enterprise bean is accessed by looking up the class implementing itshome interface by name through JNDI. Methods on the home interfaceprovide
access to an instance of the class implementing the remoteinterface.

After constructing the Initial Context object, the ejbCreate method performsa JNDI lookup using the JINDI name of the Account enterprise bean.
Likethe PROVIDER_URL and INITIAL_CONTEXT_FACTORY properties, this name is a soretrieved from an environment variable contained in the
Transfer bean'sdeployment descriptor (by invoking a private method named getHomeName).The lookup method returns an object of
typejava.lang.Object.

The returned object is narrowed by using the static methodjavax.rmi.PortableRemoteObject.narrow to obtain areference to the EJB home object for the
specified enterprise bean. Theparameters of the narrow method are the object to be narrowed and the class ofthe object to be created as aresult of the
narrowing. For a morethorough discussion of the code required to locate an enterprise bean in INDIland then narrow it to get an EJB home object, see
Creating and getting areference to abean's EJB object.

Figure831. Code example: Creating the AccountHome abject in the gfbCreate method of the Transfer Bean class
5

...public class TransferBean inplenents Sessi onBean { c. private String accountName = null;
private Initial Context initial Context = null; public void ejbCreate() throws
EJBException { /1l Get the initial context /1 Look up the home
interface using the JNDI nane try { java. |l ang. Obj ect ej bHonme =

i nitial Context.|ookup(account Namne); account Home =

(Account Hone) j avax. rmi . Port abl eRenpt eCbj ect . nar r ow((org. ong. CORBA. (bj ect)
ej bHone, Account Hore. cl ass); } catch (Nami ngException e) { // Error getting the hone
interface } .

Looking up an enterprise bean's environment naming context

The enterprise bean's environment is implemented by thecontainer. It enables the bean's business logic to be customizedwithout the need to access or
change the bean's source code. Thecontainer provides an implementation of the JINDI naming context that storesthe enterprise bean environment.
Business methods access theenvironment by using the INDI interfaces. The deployment descriptorprovides the environment entries that the enterprise
bean expects atruntime.

Each enterprise bean defines its own environment entries, which are sharedbetween all of itsinstances (that is, all instances with the samehome).
Environment entries are not shared between enterprisebeans.

An enterprise bean's environment entries are stored directly in theenvironment naming context (or one of its subcontexts). To retrieve itsenvironment
naming context, an enterprise bean instance creates anlnitial Context object by using the constructor with no arguments. Itthen looks up the
environment naming via the Initial Context object under thename java:comp/env.

The enterprise bean in Figure 32 changes an account number by looking up an environment entryto find the new account number.

Figure 32. Code example: Looking up an enterprise bean's environment naming context

public class Account Service inplenments SessionBean {... public voi d changeAccount Nunber (i nt
account Nunber, ...) t hrows | nval i dAccount Nunber Excepti on{ c

/] Obtain the bean's environnent nani ng context Context initial Context = new
Initial Context(); Cont ext nyEnvironnment =

(Context)initial Context.l ookup("java: conp/env); - /1 Qbtain new account
nunber from environnent I nteger newNunber =

(I nt eger) nyEnvi ronnent . | ookup(" newAccount Nunber") ; ... 1}

Implementing the SessionBean interface

Every session bean class must implement the methods inherited from thejavax.ejb.SessionBean interface. The container invokesthese methods to
inform the enterprise bean instance of significant eventsinthe instance's life cycle. All of these methods must be public,must return void, and can
throw thejavax.ejb.EJBException. (Throwing thejava.rmi.RemoteException exception is deprecated; see *** for more information.)

« gbActivate--This method is invoked by the container when thecontainer selects an enterprise bean instance from the instance pool andassignsit
aspecific existing EJB object. This method must contain anycode that you want to execute when the enterprise bean instance isactivated.

« gbPassivate--This method isinvoked by the container when thecontainer disassociates an enterprise bean instance from its EJB object
andplaces the enterprise bean instance in the instance pool. This methodmust contain any code that you want to execute when the enterprise
beaninstance is passivated (deactivated).

« ejbRemove--This method isinvoked by the container when a clientinvokes the remove method inherited by the enterprise bean's homeinterface
(from the javax.gjb.EJBHome interface). Thismethod must contain any code that you want to execute when an enterprise beaninstance is
removed from the container.

« setSessionContext--This method is invoked by the container to pass areference to the javax.ejb.SessionContext interface to a sessionbean
instance. If an enterprise bean instance needs to use this contextat any time during its life cycle, the enterprise bean class must contain
aninstance variable to store this value. This method must contain anycode required to store a reference to the context.

A session context can be used to get a handle to a particular instance of astateful session bean. It can also be used to get areference to
atransaction context object, as described in Using bean-managed transactions.

Note:

In the EJB server (CB) environment, the isCallerlnRole and getCallerl dentitymethods inherited from the javax.ejb.EJBContext interface
arenot supported.

As shown in Figure 33, except for the setSessionContext method, all of thesemethods in the TransferBean class are empty because no additional action
isrequired by the bean for the particular life cycle states associated with thethese methods. The setSessionContext method is used in a conventionalway
to set the value of the mySessionCtx variable.

Figure 33. Code example: Implementing the SessionBean interface in the Transfer Bean class

59

.public class TransferBean inplenments SessionBean { private SessionContext nySessionCix =

nuI I public void ejbActivate() throws EJBExceptl on { } . public void

€j bPaSSI vat e() throws EJBException { } public void ej bReerve() throws EJBException { }
- public voi d set Sessi onCont ext (Sessi onCont ext ctx) throwEJBException { nySessi onCt x
= ctx; } ..}

Writing the home interface (session)

A session bean's home interface defines the methods used by clients tocreate and remove instances of the enterprise bean and obtain metadata aboutan
instance. The home interface is defined by the enterprise beandeveloper and implemented in the EJB home class created by the containerduring
enterprise bean deployment. The container makes the homeinterface accessible to clients through JNDI.

By convention, the home interface is named NameHome, whereName is the name you assign to the enterprise bean. Forexample, the Transfer
enterprise bean's home interface is namedTransferHome.Every session bean's home interface must meet the followingreguirements:

« It must extend the javax.ejb.EJBHome interface. Thehome interface inherits several methods from thejavax.ejb.EJBHome interface. See The
javax.ejb.EJBHome interface for information on thesemethods.

« Each method in the interface must be a create method that corresponds to agjbCreate method in the enterprise bean class. For more
information,see Implementing the g/bCreate methods. Unlike entity beans, the home interface of a sessionbean contains no finder methods.

« The parameters and return value of each method defined in the interfacemust be valid for Java RMI. For more information, see The
javaio.Serializable and java.rmi.Remote interfaces. In addition, each method's throws clause mustinclude the java.rmi.RemoteException
exception class.

Figure 34 shows the relevant parts of the definition of the homeinterface (TransferHome) for the example Transfer bean.

Figure 34. Code example: The TransferHome home inter face

.import javax.ejb.*;inmport java.rmi.*;public interface TransferHone extends EJBHone { Transf er
create() throws CreateException, RenoteException; }

A create method is used by aclient to create an enterprise beaninstance. A stateful session bean can contain multiple createmethods; however, a

statel ess session bean can contain only one createmethod with no arguments. This restriction on statel ess session beansensures that every instance of a
statel ess session bean is the same as everyother instance of the same type. (For example, every Transfer beaninstance is the same as every other
Transfer bean instance.)

Each create method must be named create and have the same number and typesof arguments as a corresponding ejbCreate method in the EJB
objectclass. The return types of the create method and its correspondingejbCreate method are always different.Each create method must meet the
following requirements:

« It must return the type of the enterprise bean's remoteinterface. For example, the return type for the create method in theTransferHome interface
is Transfer.

« It must have athrows clause that includes thejava.rmi.RemoteException exception, thejavax.ejb.CreateException exception class, and all of
theexceptions defined in the throws clause of the corresponding ejbCreatemethod.

Writing the remote interface (session)

A session bean's remote interface provides access to the business methodsavailable in the enterprise bean class. It aso provides methods toremove an
enterprise bean instance and to obtain the enterprise bean'shome interface and handle. The remote interface is defined by theenterprise bean devel oper
and implemented in the EJB object class created bythe container during enterprise bean deployment.

By convention, the remote interface is named Name, whereName is the name you assign to the enterprise bean. Forexample, the Transfer enterprise
bean's remote interface is namedTransfer.Every remote interface must meet the following reguirements:

« It must extend the javax.ejb.EJBObject interface. Theremote interface inherits several methods from the EJBObject interface.See Methods
inherited from javax.ejb.EJBObject for information on these methods.

« You must define a corresponding business method for every business methodimplemented in the enterprise bean class.

« The parameters and return value of each method defined in the interfacemust be valid for Java RMI. For more information, see The
javaio.Serializable and java.rmi.Remote interfaces.

« Each method's throws clause must include thejava.rmi.RemoteException exception class.

Figure 35 shows the relevant parts of the definition of the remoteinterface (Transfer) for the example Transfer bean. This interfacedefines the methods
for transferring funds between two Account bean instancesand for getting the balance of an Account bean instance.

Figure 35. Code example: The Transfer remoteinterface

60

...inport javax.ejb.*;inport java.rm .*;inport comibmejs.doc.account.*;public interface Transfer
ext ends EJBObj ect { C fl oat getBal ance(long acctld) throws Finder Exception,

Renot eExcepti on; .. voi d transferFunds(long fromAcctld, |ong toAcctld, float anount)
throws | nsufficientFundsException, RenpteException;}

Implementing interfaces common to multiple types of enterprise beans
Enterprise beans must implement the interfaces described here in theappropriate enterprise bean component.

Methods inherited from javax.ejb.EJBObject

The remote interface inherits the following methods from thejavax.ejb.EJIBObject interface, which are implemented by thecontainer during
deployment:
« getEJIBHome--Returns the enterprise bean's home interface.
« getHandle--Returns the handle for the EJB object.
« getPrimaryKey--Returns the EJB object's primary key. (Forsession beans, this cannot be used because session beans do not have a primarykey.)
« isldentical--Compares this EJB object with the EJB object argument todetermine if they are the same.
« remove--Removes this EJB object.

These methods have the following syntax:

public abstract EJBHome get EJBHome(); public abstract Handl e getHandl e(); public abstract Object
get Pri maryKey(); public abstract bool ean isldentical (EJBObj ect obj);public abstract void renove();

These methods are implemented by the container in the EJB objectclass.

The javax.ejb.EJBHome interface

The home interface inherits two remove methods and the getEJBM etaData methodfrom the javax.ejb.EJBHome interface. Just like themethods defined
directly in the home interface, these inherited methods areal so implemented in the EJB home class created by the container duringdeployment.

The remove methods are used to remove an existing EJB object (and itsassociated datain the database) either by specifying the EJB object'shandle or
its primary key. (The remove method that takes aprimaryKey variable can be used only in entity beans.) ThegetEJBM etaData method is used to obtain
metadata about the enterprise bean andis mainly intended for use by development tools.

These methods have the following syntax:

public abstract EJBMetaData get EJBMet aData(); public abstract void renove(Handl e handl e); public
abstract void renmove(Qbject primaryKey);

The javax.ejb.EJBHome interface also contains a method to geta handle to the home interface. It has the following syntax:
public abstract HonmeHandl e get HomeHandl e() ;

The java.io.Serializable and java.rmi.Remote interfaces

To bevalid for use in aremote method invocation (RMI), a method'sarguments and return value must be one of the following types:

« A primitive type; for example, anint or along.

« Anobject of aclassthat directly or indirectly implementsava.io.Serializable; for examplejava.lang.Long.

« Anobject of aclassthat directly or indirectly implementsjava.rmi.Remote.

« Anarray of valid types or objects.
If you attempt to use a parameter that is not valid, thejava.rmi.RemoteException exception is thrown. Note thatthe following atypical types are not
valid:

« Anobject of aclassthat directly or indirectly implements bothSerializable and Remote.

« Anobject of aclassthat directly or indirectly implements Remote, butcontains a method that does not throw the RemoteException or an
exception thatinherits from RemoteException.

61

Using threads and reentrancy in enterprise beans

An enterprise bean must not contain code to start new threads (nor can methodsbe defined with the keyword synchronized). Session beans cannever be
reentrant; that is, they cannot call another beanthat invokes a method on the calling bean. Entity beans can bereentrant, but building reentrant entity
beansis not recommended and is notdocumented here.

The EJB server (AE) enforces single-threaded access to all enterprisebeans. Illegal callbacks result in gava.rmi.RemoteException exception being
thrown to the EJBclient.

The EJB server (CB) enforces single-threaded access to enterprise beansonly if their transaction attribute is set to either TX_NOT_SUPPORTED
orTX_BEAN_MANAGED. For other enterprise beans, access from differenttransactionsis serialized, but serialized access from different
threadsrunning under the same transaction is not enforced. For enterprisebeans deployed with the transaction attribute value of
TX_NOT_SUPPORTED orTX_BEAN_MANAGED, illegal callbacks result in a RemoteException exception beingthrown to the EJB client.

Creating an EJB module for enterprise beans

There are two tasks involved in preparing an enterprise bean fordeployment:
« Making the components of the bean part of the same Java package.For more information, see Making bean components part of a Java package.

« Creating an EJB module and associated deployment descriptor (AEonly). For more information, see Creating an EJB module and deployment
descriptor.

If you develop enterprise beans in an IDE, these tasks are handled fromwithin the tool that you use. If you do not devel op enterprise beansinan IDE,
you must handle each of these tasks by using tools contained in theJava Software Development Kit (SDK) and WebSphere Application Server.

« For moreinformation on the tools used to create an EJB module in the EJBserver (AE) programming environment, see Tools for developing
and deploying enterprise beans in the EJB server (AE) environment.

« For moreinformation on the tools used to package beans in the EJB server(CB) programming environment, see Tools for devel oping and
deploying enterprise beansin the EJB server (CB) environment.

Making bean components part of a Java package

Y ou determine the best way to allocate your enterprise beans to Javapackages. A Java package can contain one or more enterprisebeans. The example
Account and Transfer beans are stored in separatepackages. All of the Java source files that make up the Account beancontain the following package
statement:

package comibm ejs. doc. account;

All of the Java source files that make up the Transfer bean contain thefollowing package statement:
package comibm ejs.doc.transfer;

Creating an EJB module and deployment descriptor

An EJB module contains one or more deployable enterprise beans. Ital so contains a deployment descriptor that provides information about
eachenterprise bean and instructions for the container on how to handle allenterprise beans in the module. The deployment descriptor is stored inan
XML file.
During creation of the EJB module, you specify the files for eachenterprise bean to be included in the module. These filesinclude:
« Theclassfiles associated with each component of the enterprisebean.
« Any additional classes and files associated with the enterprise bean;for example: user-defined exception classes, properties files, andresource
bundle classes.

Y ou also specify other information about the bean, such as references toother enterprise beans, resource factories, and security roles. Afterdefining the
enterprise beans to be included in the module, you specifyapplication assembly instructions that apply to the module as a whole.Both bean and module
information are used to create a deploymentdescriptor. See The deployment descriptor for alist of deployment descriptor settings andattributes.

62

Developing EJB clients

An enterprise bean can be accessed by al of the following types of EJBclientsin both EJB server environments:
« Javaservlets. For more information about writing Java servletsthat use enterprise beans, see Developing servlets that use enterprise beans.
« Java Server Pages (JSP). For more information about writing JSP,consult acommercially available book.

« Javaapplications that use remote method invocation (RMI). For moreinformation on writing Java applications, consult acommercially
availablebook.

« Other enterprise beans. For example, the Transfer session bean actsas a client to the Account bean, as described in Developing enterprise beans.

It is recommended that you avoid accessing EJB entity beans from client orservlet code. Instead, wrap and access EJB entity beans from EJBsession
beans. Thisimproves performance in two ways:

« It reduces the number of remote method calls. When the clientapplication accesses the entity bean directly, each getter method is aremotecall. A
wrapping session bean can access the entity bean locally, andcollect the data in a structure, which it returns by value.

« It provides an outer transaction context for the EJB entity bean.An entity bean synchronizesits state with its underlying data store at thecompletion
of each transaction. When the client application accessesthe entity bean directly, each getter method becomes a compl etetransaction. A storeand a
load action follow each method. Whenthe session bean wraps the entity bean to provide an outer transactioncontext, the entity bean synchronizes
its state when the outer session beanreaches a transaction boundary.

Except for the basic programming tasks described in this chapter, creatinga Java servlet, JSP, or Java application that is a client to an enterprisebean is not
very different from designing standard versions of these types of Java programs. This chapter assumes that you understand the basics ofwriting a Java
servlet, a Java application, or aJSPfile.

Except where noted, all of the code described in this chapter is taken fromthe example Java application named TransferApplication. This Javaapplication
and the other EJB clients available with the documentation examplecode are explained in Information about the examples described in the documentation.

To access and manipulate an enterprise bean in any of the Java-based EJBclient types listed previoudly, the EJB client must do the following:
« Import the Java packages required for naming, remote method invocation(RMI), and enterprise bean interaction.
« Get areferenceto an instance of the bean's EJB object by using theJava Naming and Directory Interface (JNDI). For more information, see
Creating and getting a reference to a bean's EJB object.
« Handleinvalid EJB objects when using session beans. For moreinformation, see Handling an invalid EJB object for a session bean.

« Remove session EJB objects when they are no longer required or removeentity EJB objects when the associated data in the data source must
beremoved. For more information, see Removing a bean's EJB object.

In addition, an EJB client can participate in the transactions associatedwith enterprise beans used by the client. For more information, see Managing
transactionsin an EJB client.

Note:

In the EJB server (CB) environment, an enterprise bean can also be accessedby a Java applet, an ActiveX client, a CORBA-based Java client, and
to alimited degree, by a C++ CORBA client. The Travel example brieflydescribed in Information about the examples described in the
documentation illustrates some of these types of clients. More information on EJB clients specific to the EJB server (CB) provides additional
information about EJBclients that use ActiveX and CORBA-based Java and C++.

Importing required Java packages

Although the Java packages required for any particular EJB client vary, thefollowing packages are required by all EJB clients:
« javarmi -- This package contains most of the classes requiredfor remote method invocation (RMI).
« javax.rmi -- This package contains the PortableRemoteObjectclass required to get areference to an EJB object.

« javautil -- This package contains various Java utilityclasses, such as Properties, Hashtable, and Enumeration used in a variety ofways throughout
all enterprise beans and EJB clients.

« javax.gjb -- This package contains the classes and interfacesdefined in the EJB specification.

« javax.naming -- The package contains the classes andinterfaces defined in the Java Naming and Directory Interface (JNDI)specification and is used
by clientsto get references to EJB objects.

« The package or packages containing the enterprise beans with which theclient interacts.

The Java client object request broker (ORB), which is automaticallyinitialized in EJB clients, does not support dynamic download ofimplementation
bytecode from the server to the client. As aresult, allclasses required by the EJB client at runtime must be available from the filesand directories identified
in the client's CLASSPATH environmentvariable. For information on the JAR files required by EJB clients, seeSetting the CLASSPATH environment
variable in the EJB server (AE) environment or Setting the CLASSPATH environment variable in the EJB server (CB) environment. Y ou can install
needed files onyour client machine by doing a WebSphere Application Server installation onthe machine. If you are using the Advanced Application
Server, selectthe Developer's Client Files option; if you are usingComponent Broker, select the Java client option. Y ou alsoneed to make sure that the
ioser and ioserx executable files are accessible onyour client machine; these files are normally part of the Javainstall. If you are using Windows NT, make
sure that EJB clients canlocate the ioser.dll library file at run time.Figure 36 shows the import statements for the example Java
applicationcom.ibm.gjs.doc.client. TransferApplication.In addition to the required Java packages mentioned previously, the exampleapplication imports the
com.ibm.egjs.doc.transferpackage because the application communicates with a Transfer bean. Theexample application a so imports the

I nsufficientFundsException classcontained in the same package as the Account bean.

63

Figure 36. Code example: Theimport statementsfor the Java application Transfer Application

...inport java.awt.*;inport java.awt.event.*;inport java.util.*;inport java.rm.*...inport

j avax. nam ng. *;inport javax.ejb.*;inmport javax.rm.Portabl eRenoteCbject;...inport

comibm ejs. doc. account. | nsufficient FundsException;inmport comibmejs.doc.transfer.*;...public class
Transfer Application extends Frane inplenents ActionLi stener, W ndowLi stener { ...}

Creating and getting a reference to a bean's EJB object

To invoke a bean's business methods, a client must create or find an EJBobject for that bean. After the client has created or found thisobject, it can invoke
methods on it in the standard way.

To create or find an instance of a bean's EJB object, the client mustdo the following:
1. Locate and create an EJB home object for that bean. For moreinformation, see Locating and creating an EJB home object.

2. Use the EJB home object to create or (for entity beans only) find aninstance of the bean's EJB object. For more information, see Creating an EJB
object.

The TransferApplication client contains one reference to a Transfer EJBobject, which the application uses to invoke all of the methods on theTransfer
bean. When using session beans in Java applications, it is agood idea to make the reference to the EJB object a class-level variablerather than avariable
that islocal to amethod. This allows your EJBclient to repeatedly invoke methods on the same EJB object rather than havingto create a new object each
time the client invokes a session beanmethod. As discussed in Threading issues, this approach is not recommended for servlets, whichmust be designed to

handle multiple threads.
Locating and creating an EJB home object

JNDI is used to find the name of an EJB home object. The propertiesthat an EJB client usesto initialize INDI and find an EJB home object varyacross EJB
server implementations. To make an enterprise bean moreportable between EJB server implementations, it is recommended that youexternalize these
properties in environment variables, properties files, orresource bundles rather than hard code them into your enterprise bean or EJBclient code.

The example Transfer bean uses environment variables as discussed in Implementing the ejbCreate methods. The TransferA pplication uses aresource
bundlecontained in thecom.ibm.gjs.doc.client.ClientResourceBundle.classfile. To initialize a INDI hame service, an EJB client must set the
appropriatevalues for the following JNDI properties:

javax.naming.Context.PROVIDER_URL

This property specifies the host name and port of the name server used bythe EJB client. The property value must have the followingformat:
iiop://hostname:port, wherehostname is the I P address or hostname of the machine on which thename server runs and port is the port number on
which the nameserver listens.

For example, the property valuel i op: / / bankser ver . mybank. com 9019 directsan EJB client to look for a name server on the host
namedbankserver.mybank.com listening on port 9019. Theproperty valuei i op: / / bankser ver . nybank. contirects an EJB client to look
for a name server on the host namedbankserver.mybank.com at port number 900. The propertyvaluei i op: / // directsan EJB client to look for a
nameserver on the local host listening on port 900. If not specified, thisproperty defaults to the local host and port number 900, which is the same
asspecifyingi i op: /// . Inthe EJB server (AE), the portnumber used by the name service can be changed by using the administrativeinterface.

javax.naming.Context.INITIAL_CONTEXT_FACTORY
This property identifies the actual name service that the EJB client mustuse.
o Inthe EJB server (AE) environment, this property must be settocom i bm ej s. ns. j ndi . CNI ni ti al Cont ext Fact ory.

o Inthe EJB server (CB) environment, this property must be set tocom i bm ej b. cb. runt i me. CBCt xFact or y,to one of its
subclasses (suchascom i bm ej b. cb. runti nme. CBCt xFact or yHost Def aul t ,or to aninitial context factory created by using the
appbindtool. When using this context factory, thejavax.naming.Context.list andjavax.naming.Context.listBindings methods can return
nomore than 1000 elements in the javax.naming.NamingEnumerationobject. For more information on using the appbind tool, see
Application-specific contexts and the appbind tool.

Locating an EJB home object is atwo-step process:
1. Create ajavax.naming.lnitialContext object. For moreinformation, see Creating an Initial Context object.

2. Usethe Initial Context object to create the EJB home object. Formore information, see Creating EJB home object.
Creating an InitialContext object

Figure 37 shows the code required to create the Initial Contextobject. To create this object, construct ajava.util.Properties object, add values to the
Propertiesobject, and then pass the object as the argument to the I nitial Contextconstructor. In the TransferApplication, the value of each property
isobtained from the resource bundle class namedcom.ibm.gjs.doc.client.ClientResourceBundle,which stores all of the locale-specific variables required by
theTransferApplication. (This class also stores the variables used by theother EJB clients contained in the documentation example, described in
Information about the examples described in the documentation).The resource bundle class isinstantiated by calling theResourceBundle.getBundle
method. The values of variables withinthe resource bundle class are extracted by calling the getString method on thebundle object.

The createTransfer method of the TransferApplication can be called multipletimes as explained in Handling an invalid EJB object for a session bean.
However, after the Initial Context object is createdonce, it remains good for the life of the client session. Therefore,the code required to create the
Initial Context object is placed within an ifstatement that determines if the reference to the Initial Context object isnull. If the reference is null, the
Initial§pntext object iscreated; otherwise, the reference can be reused on subsequent creationsof the EJB object.

Figure 37. Code example: Creating the I nitialContext object

.public class Tr ansferAppI i cati on extends Frame inplements ActionListener, W ndowLi st ener {
private Initial Context ivjlnitContext = null; private Transfer ivjTransfer = null;
pr| vat e ResourceBundl e bundl e = Resour ceBundl e. get Bundl e(
"comibmejs.doc.client.dientResourceBundle"); private String naneService = null;
private String accountName = nul|; private Strlng prowderUrI = null; .. private
Transfer createTransfer() { TransferHone transferHone = null; Transfer transfer =
nul | ; Il Get the initial context if (ivjlnitContext == null) { try {
Properties properties = new Properties(); /1l Cet |ocation of name service
properties. put (j avax. nam ng. Cont ext. PROVI DER_URL,
bundl e. get String("providerUrl™")); /1 CGet name of initial context factory
properties. put (j avax. nam ng. Cont ext. | NI TI AL_CONTEXT_FACTORY,
bundl e. get St ri ng(" nameServi ce")); ivjlnitContext = new
Initial Context(properties); } catch (Exceptl one) { // Error getting the initial context
} } . /1 Look up the home interface using the JND nane /1

Create a new Transfer object to return return transfer;}

Creating EJB home object

After the Initial Context object (ivjlnitContext) is created, theapplication uses it to create the EJB home object, as shown in Figure 38. This creation is
accomplished by invoking the lookupmethod, which takes the INDI name of the enterprise bean in String form andreturns a java.lang.Object object:

« When performing a INDI lookup on an enterprise bean deployed in an EJBserver (AE; CB on AlX, Windows NT, or Solaris platforms), only the
JINDIname specified in the deployment descriptor is used.

o When performing a INDI lookup on an enterprise bean deployed in an EJBserver (CB on platforms other than AlX, Windows NT, and Solaris), the
JINDIhome name passed to the lookup method is the INDI name specified in theenterprise bean's deployment descriptor with a CB-specific
prefixattached. The content of this prefix depends on where in the ComponentBroker namespace the system administrator bound the EJB home (by
using thegj bbind tool).

If the system administrator binds the EJB home in the host name tree of aspecific bootstrap host, then the INDI name prefix will

behost / resour ces/ f act ori es/ EJBHones. If the systemadministrator binds the EJB home in a workgroup name tree, then the INDI
nameprefix will bewor kgr oup/ r esour ces/ f act ori es/ EJBHones, and the EJBclient must belong to the same preferred workgroup. If
the systemadministrator binds the EJB home in the cell name tree, then the INDI nameprefix iscel | / r esour ces/ f act ori es/ EJBHones.

The example TransferApplication gets the INDI name of the Transfer beanfrom the ClientResourceBundle class.After an object is returned by the lookup
method, the static methodjavax.rmi.PortableRemoteObject.narrow is used to obtainan EJB home object for the specified enterprise bean. The narrow
methodtakes two parameters: the object to be narrowed and the class of the EJBhome object to be returned by the narrow method. The object returned
bythe javax.rmi.PortableRemoteObject.narrow method is castto the class associated with the home interface.

Figure 38. Code example: Creating the EJBHome object

private Transfer createTransfer() { TransferHome transferHone = nul | ; Transfer transfer =
nul | ; /1l Get the initial context /1 Look up the hone interface using the JNDI name
try { java.l ang. Cbj ect honeCbject = ivjlnitContext.|ookup(

bundl e. get String("transferNane")); transferHone =

(TransferHone) j avax. rm . Port abl eRenot ehj ect . narr ow((org. ong. CORBA. Obj ect)
honebj ect, TransferHone. cl ass); } catch (Exception e) { // Error getting the hone interface
. /!l Create a new Transfer object to return return transfer;}

Creating an EJB object

After the EJB home object is created, it is used to create the EJBobject. Figure 39 shows the code required to create the EJB object byusing the EJB home
object. A create method isinvoked to create an EJBobject or (for entity beans only) afinder method is invoked to find anexisting EJB object. Because the
Transfer bean is a statel ess sessionbean, the only choice is the default create method.

Figure 39. Code example: Creating the EJB object

private Transfer createTransfer() { TransferHome transferHone = null; Transfer transfer =

nul | ; /1l Get the initial context /1 Look up the home interface using the JNDI name
/!l Create a new Transfer object to return try { transfer =

transferl—lorre create(); } catch (Exception e) { // Error creating Transfer object

} return transfer;}

Handling an invalid EJB object for a session bean

Because session beans are ephemeral, the client cannot depend on a sessionbean's EJB object to remain valid. A reference to an EJB objectfor a session
bean can becomeinvalid if the EJB server fails or is restartedor if the session bean times out due to inactivity. (The reference toan entity bean's EJB object
isawaysvalid until that object isremoved.) Therefore, the client of a session bean must contain code tohandle a situation in which the EJB objggt becomes

invalid.

An EJB client can determine if an EJB object isvalid by placing all methodinvocations that use the reference inside of atry/catch block thatspecifically
catches the java.rmi.NoSuchObjectException, inaddition to any other exceptions that the method needs to handle. TheEJB client can then invoke the code
to handle this exception.

Y ou determine how to handle an invalid EJB object. The exampleTransferApplication creates anew Transfer EJB object if the one it iscurrently using
becomes invalid.The code to create a new EJB object when the old one becomes invalid is thesame code used to create the original EJB object and is
described in Creating and getting a reference to a bean's EJB object. For the example TransferApplication client, thiscode is contained in the

createTransfer method.

Figure 40 shows the code used to create the new EJB object in thegetBalance method of the example TransferApplication. The getBalancemethod contains
the local boolean variable sessionGood, which isused to specify the validity of the EJB object referenced by the variableivj Transfer. The sessionGood
variable is a soused to determine when to break out of the do-while loop.The sessionGood variable isinitialized to false because theivj Transfer can
reference an invalid EJB object when the getBalancemethod is called. If the ivjTransfer referenceis valid, theTransferApplication invokes the Transfer
bean's getBalance method andreturns the balance. If the ivjTransfer reference isinvalid, the NoSuchObjectException is caught, the
TransferApplication'screateTransfer method is called to create a new Transfer EJB object reference,and the sessionGood variableis set to false so that the
do-whileloop is repeated with the new valid EJB object. To prevent an infiniteloop, the sessionGood variable is set to true when any otherexception is
thrown.

Figure 40. Code example: Refreshing the EJB object reference for a session bean

private float getBal ance(long acctld) throws Nunber Format Excepti on, RenoteException,

Fi nder Exception {

/1l Assume that the reference to the Transfer session bean is no good

} whil e(!sessi onGood);

return bal ance;}

bool ean sessi onGood = fal se; fl oat bal ance = 0. 0f; do { try { /1
Attenpt to get a bal ance for the specified account bal ance =

i vj Transf er. get Bal ance(acctl d); sessi onGood = true; -

cat ch(NoSuchQObj ect Exception ex) { createTransfer(); sessi onGood = fal se;
} cat ch(Renot eException ex) { /1 Server or connection problem

} cat ch(Nunber For mat Excepti on ex) ({ /1 lnvalid account nunber

} catch(Fi nder Exception ex) { /1 Invalid account nunber }

Removing a bean's EJB object

When an EJB client no longer needs a stateful session EJB object, the EJBclient should remove that object. Instances of stateful session beanshave affinity
to specific clients. They will remain in the containeruntil they are explicitly removed by the client, or removed by the containerwhen they time out.
Meanwhile, the container might need to passivateinactive stateful session beans to disk. This requires overhead for thecontainer and impacts performance
of the application. If the passivatedsession bean is subsequently required by the application, the containeractivatesit by restoring it from disk. By explicitly
removing statef ul session beans when finished with them, applications can decrease the need forpassivation and minimize container overhead.

Y ou remove entity EJB objects only when you want to remove theinformation in the data source with which the entity EJB object isassociated.

To remove an EJB object, invoke the remove method on the object. Asdiscussed in Creating and getting a reference to a bean's EJB object, the
TransferApplication contains only one reference to aTransfer EJB object that is created when the application isinitialized.

Figure 41 shows how the example Transfer EJB object is removed in theTransferApplication in the killApp method. To parallel the creation ofthe Transfer
EJB object when the TransferApplication isinitialized, theapplication removes the final EJB object associated withivjTransfer reference right before
closing the application'sGUI window. The kill App method closes the window by invoking thedispose method on itself.

Figure 41. Code example: Removing a session EJB object

...private void killApp() { try { i vj Transfer.renove(); t hi s. di spose();

System exit(0); } catch (Throwabl e ivjExc) { 1}

Managing transactions in an EJB client

In general, it is practical to design your enterprise beans so that alltransaction management is handled at the enterprise bean level. In astrict three-tier,
distributed application, thisis not always possible oreven desirable. However, because the middle tier of an EJB applicationcan include two
subcomponents--session beans and entity beans--it ismuch easier to design the transactional management completely within theapplication server tier. Of
course, the resource manager tier must alsobe designed to support transactions.

Note:

EJB clients that access entity beans with CMP that use Host On-Demand (HOD)or the External Call Interface (ECI) for CICS or IMS applications
must begin atransaction before invoking a method on these entity beans. Thisrestriction is required because these types of entity beans must use
theTX_MANDATORY transaction attribute.

Nevertheless, it is still possible to program an EJB client (that is not anenterprise bean) to participate in transactions for those specializedsituations that
requireit. To participate in atransaction, the EJBclient must do the following:

16 é)btai n areference to the javax.transaction.UserTransactioninterface by using INDI as defined in the Java Transaction ApplicationProgramming

Interface (JTA).
2. Usethe object reference to invoke any of the following methods:
o begin--Begins atransaction. This method takes no argumentsand returns void.

o commit--Attempts to commit atransaction; assuming that nothingcauses the transaction to be rolled back, successful completion of this
methodcommits the transaction. This method takes no arguments and returnsvoid.

0 getStatus--Returns the status of the referenced transaction.This method takes no arguments and returnsint; if no transaction isassociated
with the reference, STATUS_NO_TRANSACTION isreturned. Thefollowing are the valid return values for this method:

= STATUS_ACTIVE--Indicates that transaction processing is still inprogress.

= STATUS COMMITTED--Indicates that a transaction has been committed andthe effects of the transaction have been made
permanent.

= STATUS COMMITTING--Indicates that a transaction is in the process of committing (that is, the transaction has started
committing but has notcompleted the process).

= STATUS MARKED_ROLLBACK--Indicates that atransaction is marked to berolled back.
= STATUS NO_TRANSACTION--Indicates that a transaction does not exist inthe current transaction context.
= STATUS_PREPARED--Indicates that a transaction has been prepared butnot completed.

= STATUS PREPARING--Indicates that atransaction isin the process of preparing (that is, the transaction has started preparing but
has notcompleted the process).

= STATUS_ROLLEDBACK--Indicates that a transaction has been rolledback.

= STATUS_ROLLING_BACK--Indicates that atransaction isin the processof rolling back (that is, the transaction has started rolling
back but has notcompleted the process).

= STATUS UNKNOWN--Indicates that the status of a transaction isunknown.
o rollback--Rolls back the referenced transaction. This methodtakes no arguments and returns void.

o setRollbackOnly--Specifies that the only possible outcome of thetransaction is for it to be rolled back. This method takes no argumentsand
returns void.
o setTransactionTimeout--Sets the timeout (in seconds) associated withthe transaction. If some transaction participant has not specificallyset
this value, adefault timeout is used. This method takes a numberof seconds (as type int) and returns void.
Figure 42 provides an example of an EJB client creating a reference toa UserTransaction object and then using that object to set the transacti ontimeout,

begin atransaction, and attempt to commit the transaction.(The source code for this example is not available with the examplecode provided with this
document.) Notice that the client does a simpletype cast of the lookup result, rather than invoking a narrow method asrequired with other INDI lookups. In
both EJB server environments, theJNDI name of the UserTransaction interfaceisj ava: conp/ User Tr ansact i on.

Figure 42. Code example: Managing transactionsin an EJB client

...inmport javax.transaction.*;...// Use JNDI to |ocate the UserTransacti on object Cont ext

initial Context = new Initial Context();UserTransaction tranContext = (

User Transaction)initial Context.| ookup("java: conp/ User Transaction");// Set the transaction tinmeout to
30 secondstranCont ext. set Transacti onTi meout (30);...// Begin a transactiontranContext.begin();//
Performtransacti on work invoking nethods on enterprise bean references...// Call for the
transaction to committranContext.conmit();

More information on EJB clients specific to the EJB server (CB)

When developing EJB clients for the EJB server (CB) environment, you candevel op the following types of clients:
« Microsoft ActiveX clients. For some general information, see EJB clients that use ActiveX.
« Clients using the Component Broker Session Service. For somegeneral information, see Clients using the Component Broker Session Service.

For more information on devel oping these types of clients, see the IBMRedbook entitled IBM Component Broker Connector Overview, formnumber
SG24-2022-02.

EJB clients that use ActiveX

If you write your EJB client as a component that adheres to the JavaBeans(TM)Specification, you can use the JavaBeans bridge to run the EJB client as
anActiveX control. An EJB client of this type must provide a no-argumentconstructor, it must implement the java.io.Serializableinterface, and it must have
areadObject and awriteObject method, ifapplicable.

If your EJB client is also an applet, you must not perform your JNDlinitialization as part of object construction. Rather, perform JNDlinitialization in the
applet's start method. The JavaBeans bridgemust create an instance of your EJB client so that it can introspect it andmake the necessary stubs to create the
ActiveX proxy for it. Y ou mustdelay the INDI connections until the user can specify the necessary propertiesby way of the ActiveX property sheet.

Clients using the Component Broker Session Service

In addition to the Transaction Service, Component Broker also provides aSession Service for the Procedural Application Adaptor (PAA) that enables
theuse of backend systems such as CICS and IMS. Since the JTA does nothave a Session Service, it is not possible to use JINDI to look up a handle tothe
servicein an EJB client. In this case, the EJB client must act asan ordinary CB Javaclient. 67

The normal lookup procedure for a CB Java client isto use the CORBAresolve _initial_references method. In this case, the CORBA object tolook up is
named SessionCurrent.

Before you can call the resolve_initial_references method, the ORB needs tobe properly initialized for the CB runtime environment. Theinitialization
method depends on whether or not you are using Visual Age forJava access beans in the CB environment. If you are using access beans,then the ORB must
be manually initialized. ORB initialization in accessbeansisdonein a"lazy" fashion. That is, initialization is not doneuntil the first remote method is
invoked. However, because a sessionmust be started before that method is called, the ORB initialization must bedone manually. The example codein
Figure 43 shows this initialization.

Figure 43. Code example: Initializing the ORB (if using access beans)

String[] CBargs = null;CBargs = new String[6]; CBargs[0] = "-ORBBootstrapHost"; // substitute your
boot strap host naneCBargs[1l] = "cbs3.rchland.i bmcont; CBargs[2] = "-CORBBootstrapPort"; CBargs[3] =
"900"; CBargs[4] = "-ORBd ass"; CBargs[5] =

"com i bm CORBA.iiop. ORB";comibmCBCUtil.CBSeriesdobal.lnitialize(CBargs);

If you are not using access beans, initialization code is notnecessary. The ORB is properly initialized during the creation of thelnitial Context object with
the appropriate properties. For example,your client code should already contain lines similar to those in Figure 44. This codeis used to find the service,

look up thehome object, narrow the home object, and create the proxy object (tasksautomatically done if an access bean is being used).

Figure 44. Code example: Creating the I nitial Context object (if not using access beans)

Properties properties = new Properties();properties.put(javax. nan ng. Cont ext. PROVI DER_URL,
"iiop:///");/l CB Factory

Narmepr operti es. put (j avax. nami ng. Cont ext . | NI TI AL_CONTEXT_FACTORY, "com i bm ej b. cb. runti me. CBCt xFactory");
Context ctx = new Initial Context(properties);

After the ORB isinitialized (either automatically or manually), you mustuse CB-specific APIs for creating and using the sessionCurrent object.Y ou must
include code similar to the example code in Figure 45.

Figure 45. Code example: Creating and using the sessionCurrent object

org. ong. CORBA. Obj ect orbCurrent = null;comibm]| Sessions.Current sessionCurrent = null;...orbCurrent
= comibm CBCUtil.CBSeriesd obal.orb().resolve_initial_references(

"| Sessions::Current");sessionCurrent =

com i bm | Sessi ons. Current Hel per. narrow or bCurrent); sessi onCurrent. begi nSessi on("nyApp");...//

comi t sessi onCurrent. endSessi on(com i bm | Sessi ons. EndMbde. EndMbdeCheckPoi nt, true);

For more information on using the resolve _initial_references method, seethe Component Broker Programming Guide.

68

An architectural overview of the EJB programming

environment

In the past few years, the World Wide Web (the Web) has transformed the wayin which businesses work with
their customers. At first, it was goodenough just to have a Web home page. Then, businesses began to
deployactive Web sites that allowed customers to order products and services.Today, businesses not only need to
use the Web in all of these ways, they needto integrate their Web-based systems with their other business
systems.The IBM(R) WebSphere Application Server, and specifically the support forenterprise beans, provides
the model and the tools to accomplish thisintegration.

Components of the EJB environment

IBM's implementation of the Sun Microsystems Enterprise JavaBeans (EJB)Specification enables users of the
WebSphere Application Server AdvancedEdition and WebSphere Application Server Enterprise Edition to

integrate theirWeb-based systems with their other business systems. A magjor part ofthis implementation is the
WebSphere EJB server and its associated components,which areillustrated in Figure 1.

Figure 1. The components of the EJB environment

Admnistration

Irnterface
]
1
Servlet
HTT P-hased ar J5F
cliert EmioP
il HTTF WiED
: SErver _
” Java p
application
Fire —
Enlil P
il !|_E;-" EJB server B
Data source

Other
products

The WebSphere EJB server environment contains the following components,which are discussed in more detall

in the specified sections:

« EJB server--A WebSphere EJB server contains and runs oneor more enter prise beans, which encapsul ate
the business logic anddata used and shared by EJB clients. The enterprise beans installed inan EJB server
do not communicate directly with the server; instead, anEJB container provides an interface between the

69

enterprise beansand the EJB server, providing many low-level services such as threading,support for
transactions, and management of data storage and retrieval.For more information, see The EJB server.

« Data source--There are two types of enterprisebeans. session beans, which encapsul ate short-lived,
client-specifictasks and objects, and entity beans, which encapsulate permanent orpersistent data. The EJB
server stores and retrieves thispersistent data in a data source, which can be a database,
anotherapplication, or even afile. For more information, see The data source.

« EJB clients--There are two genera types of EJBclients:

o HTTP-based clients that interact with the EJB server by usingeither Java servlets or JavaServer
Pages(TM) (JSP) by way of the HypertextTransfer Protocol (HTTP).

o Java applications that interact directly with the EJB server byusing Java remote method
invocation over the Internet Inter-ORB Protocol (RMI/I10P).

For more information, see The EJB clients.

« The administration interface--The administrative interfaceallows you to manage the EJB server
environment. For more information,see The administration interface.

The EJB server

The EJB server isthe application server tier of WebSphere ApplicationServer's three-tier architecture, connecting
the client tier (Javaservlets, applets, applications, and JSP) with the resource management tier(the data source).
The WebSphere Application Server contains two typesof EJB servers. If you have the Advanced Application
Server, you getonly one of these EJB servers; if you have the Enterprise ApplicationServer, you get both. When
referring generically to EJB servers, thisdocumentation uses the phrase EJB server; when thedocumentation
needs to refer specifically to one or the other, it uses thefollowing terms:

« EJB server (AE)--The EJB server that comes with theAdvanced Application Server. (Because Advanced
Application Server isavailable as a part of Enterprise Application Server, this EJB server is adsoavailable
with Enterprise Application Server.)

« EJB server (CB)--The EJB server that comes only with theEnterprise Application Server and is part of
Component Broker (CB).

The EJB server has three components. the EJB server runtime, the EJBcontainers, and the enterprise beans. EJB
containers insul ate theenterprise beans from the underlying EJB server and provide a standardapplication
programming interface (API) between the beans and thecontainer. The EJB Specification defines this API.

The EJB server (CB) includes two standard types of containers: entitycontainers and session containers. As their
names imply, thesecontainers are specifically optimized to handle entity beans and sessionbeans, respectively.
The EJB server (AE) has one standard containerthat supports both entity and session beans.Together, the EJB
server and container components provide or give access tothe following services for the enterprise beans that are
deployed intoit:

« A tool that deploys enterprise beans. When a bean is deployed, thedeployment tool creates severa classes
that implement the interfaces thatmake up the predeployed bean. In addition, the deployment
toolgenerates Java ORB, stub, and skeleton classes that enable remote methodinvocation. For entity
beans, the tool also generates persistor andfinder classes to handle interaction between the bean and the
data source thatstores the bean's persistent data. Before an enterprise bean canbe deployed, the devel oper
must create an EJB modul e and associateddepl oyment descriptor. The deployment descriptor
providesinformation about each enterprise bean in the module and instructions for thecontainer on how to
handle the beans. For more information ondeployment, see Deploying an EJB module.

« A security service that handles authentication and authorization forprincipals that need to access resources
in an EJB server environment.For more information, see The security service.

« A workload management service that ensures that resources are usedefficiently. For more information, see
70

The workload management service.

« A persistence service that handles interaction between an entity bean andits data source to ensure that
persistent datais properly managed. Formore information, see The persistence service.

« A naming service that exports a bean's name, as defined in thedeployment descriptor, into the name space.
The EJB server uses theJava Naming and Directory Interface(TM) (JNDI) to implement a namingservice.
For more information, see The naming service.

« A transaction service that implements the transactional attributes in abean's deployment descriptor. For
more information, see The transaction service.

The security service

When enterprise computing was handled solely by afew powerful mainframeslocated at a centralized site,
ensuring that only authorized users obtainedaccess to computing services and information was afairly
straightforwardtask. In distributed computing systems where users, applicationservers, and resource managers can
be spread out across the world, securingcomputing resources has become a much more complicated
task.Nevertheless, the underlying issues are basically the same.

Authentication and authorization

A good security service provides two main functions: authentication andauthorization.

Authentication takes place when a principal (a useror acomputer process) initially attempts to gain accessto a
computingresource. At that point, the security service challenges the principalto prove that the principal iswho it
claims to be. Human userstypically prove who they are by entering a user ID and password; aprocess normally
presents an encrypted key. If the password or key isvalid, the security service gives the user atoken orticket that
identifies the principal and indicates that theprincipal has been authenticated.After a principal is authenticated, it
can then attempt to use any of theresources within the boundaries of the computing system protected by
thesecurity service; however, aprincipal can use a particular computingresource only if it has been authorized to
do so.Authorization takes place when an authenticated principal requeststhe use of a resource and the security
service determines if the user has beengranted permission to use that resource. Typically, authorization ishandled
by associating access control lists (ACLS) with resources that definewhich principal (or groups of principals) are
authorized to use theresource. If the principal is authorized, it gains access to theresource.

In adistributed computing environment, principals and resources must bemutually suspicious of each other's
identity until both have proven thatthey are who they say they are. Thisis necessary because principal scan
attempt to falsify an identity to get access to aresource, and a resourcecan be atrojan horse, attempting to get
valuable information from theprincipal. To solve this problem, the security service contains asecurity server that
acts as atrusted third party, authenticatingprincipals and resources so that these entities can prove their identities
toeach other. This security protocol is known as mutual authentication.

Using the security server in the EJB server environment

There are some similarities between the security service in the two EJBserver environments. In both EJB server
environments, the securityservice does not use the access control and run-asidentity security attributes defined in
the deploymentdescriptor. However, it does use the run-as mode attributeas the basis for mapping a user identity
to auser security context.For more information on this attribute, see The deployment descriptor.

The mgjor differences between the two security services are discussed inthe following sections.
Security in the EJB server (AE) environment

In the EJB server (AE) environment, the main component of the securityservice is an EJB server that contains
security enterprise beans. Whensystem administrators administer the security service, they manipulate thesecurity
beansin the security EJB server.

71

Once an EJB client is authenticated, it can attempt to invoke methods onthe enterprise beans that it manipulates.
A method is successfullyinvoked if the principal associated with the method invocation has therequired
permissions to invoke the method. These permissions can be setat the application level (an administrator-defined
set of Web and objectresources) and at the method group level (an administrator-defined set of
Javainterface/method pairs). An application can contain multiple methodgroups.

In general, the principal under which a method isinvoked is associatedwith that invocation across multiple Web
servers and EJB servers (thisassociation is known as delegation). Delegating the methodinvocationsin this way
ensures that the user of an EJB client needs toauthenticate only once. HT TP cookies are used to propagate auser's
authentication information across multiple Web servers. These cookies have alifetime equal to the life of the
browser session, and alogout method is provided to destroy these cookies when the user isfinished.

For information on administering security in the EJB server (AE)environment, see the WebSphere InfoCenter and
the online help available withthe WebSphere Administrative Console.

Security in the EJB server (CB) environmentin the EJB server (CB) environment, you must secure al the
Component Brokername servers and applications serversin the network. Securing the nameserver on each server
host prevents unauthorized access to the system objects(including name contexts used in the Component Broker
namespace) in thatserver. Securing an application server prevents unauthorized access tothe business objects for
applicationsin that server.

To secure your name servers and application servers, you must do thefollowing:

« Install and configure the Distributed Computing Environment (DCE) toprovide authentication services to
the servers. This allows secureaccess between servers.

« Configure key ringsfor clients and servers to provide authenticationservices to Java-based SSL clients.
« Configure authorization for access to business objects in the applicationservice.

« Create adelegation policy to allow the application server to pass therequesting client principal to other
servers.

« Configure credential mapping to provide access to any third tiersystem.

« Configure the qualities of protection to be used to protect messages thatflow between clients and the
application server.

The Component Broker System Administration Guideprovides more detail about each of these tasks.

The workload management service

The workload management service improves the scalability of the EJB serverenvironment by grouping multiple
EJB serversinto servergroups. Clients then access these server groups asif they are asingle EJB server, and the
workload management service ensures that theworkload is evenly distributed across the EJB serversin the
servergroups. An EJB server can belong to only one server group.The creation of server groupsis an
administrative task that is handled fromwithin the WebSphere Administrative Console for the EJB server
(AE)environment and from within the Systems Management End User Interface for theEJB server (CB)
environment. For more information on workloadmanagement, consult the WebSphere InfoCenter and the online
help for theappropriate administrative interface.

The persistence service

There are two types of enterprise beans: session beans and entitybeans. Session beans encapsulate temporary data
associated with aparticular client. Entity beans encapsul ate permanent data that isstored in a data source. For
more information, see An introduction to enterprise beans.

The persistence service ensures that the data associated with entity beansis properly synchronized with their
corresponding data in the datasource. To accomplish this task, the persistence service works with thetransaction
72

serviceto insert, update, extract, and remove data from the datasource at the appropriate times.

There are two types of entity beans: those with contai ner-managedpersistence (CMP) and those with
bean-managed persistence (BMP). Inentity beans with CMP, the persistence service handles nearly all of the
tasksrequired to manage persistent data. In entity beans with BMP, the beanitself handles most of the tasks
required to manage persistent data.

In the EJB server (AE) environment, the persistence service uses thefollowing components to accomplish its task:

« The Java Database Connectivity (JDBC(TM)) API, which gives entity beans acommon interface to
relational databases.

« Javatransaction support, which is discussed in Using transactions in the EJB server environment. The
EJB server ensures that persistent data isalways handled within the appropriate transactional context.

In the EJB server (CB) environment, the persistence service uses thefollowing components to accomplish its task:
« The X/Open XA interface, which gives entity beans a standard interface torelational databases.

« The Object Management Group's (OMG) Object Transaction Service (OTS),whichisaso discussed in
Using transactionsin the EJB server environment.

The naming service

In an object-oriented distributed computing environment, clients must have amechanism to locate and identify
objects so that the clients, objects, andresources appear to be on the same machine. A naming service providesthis
mechanism. In the EJB server environment, JNDI is used to mask theactual naming service and provide a
common interface to the namingservice.

JNDI provides naming and directory functionality to Java applications, butthe API isindependent of any specific
implementation of a naming anddirectory service. Thisimplementation independence ensures thatdifferent
naming and directory services can be used by accessing them by wayof the INDI API. Therefore, Java
applications can use many existingnaming and directory services such as the Lightweight Directory
AccessProtocol (LDAP), the Domain Name Service (DNS), or the DCE Cell DirectoryService (CDS).

JNDI was designed for Java applications by using Java's objectmodel. Using JNDI, Java applications can store
and retrieve namedobjects of any Java object type. INDI also provides methods forexecuting standard directory
operations, such as associating attributes withobjects and searching for objects by using their attributes.

In the EJB server environment, the deployment descriptor is used to specifythe JNDI name for an enterprise bean.
When an EJB server is started, itregisters these names with INDI.

The transaction service

A transaction is a set of operations that transforms data from oneconsistent state to another. This set of operations
isan indivisibleunit of work, and in some contexts, atransaction isreferred to as alogical unit of work (LUW). A
transaction is atool fordistributed systems programming that simplifies failure scenarios. Transactions provide
the ACID properties:

« Atomicity: A transaction's changes are atomic:either all operations that are part of the transaction happen
or nonehappen.

« Consistency: A transaction moves data between consistentstates.

« Isolation: Even though transactions can run (or beexecuted) concurrently, no transaction sees another's
work inprogress. The transactions appear to run serially.

« Durability: After atransaction completes successfully,its changes survive subsequent failures.

As an example, consider a transaction that transfers money from one accountto another. Such atransfer involves

73

money being deducted from oneaccount and deposited in the other. Withdrawing the money from oneaccount and
depositing it in the other account are two parts of anatomic transaction: if both cannot be completed, neither
musthappen. If multiple requests are processed against an account at thesame time, they must be isolated so that
only a single transactioncan affect the account at one time. If the bank’s central computerfails just after the
transfer, the correct balance must still be shown whenthe system becomes available again: the change must
bedurable. Note that consistency is afunction ofthe application; if money is to be transferred from one account
toanother, the application must subtract the same amount of money from oneaccount that it adds to the other
account. Transactions can be completed in one of two ways: they can commit orroll back. A successful
transaction is said tocommit. An unsuccessful transaction is said to rollback. Any data modifications made by a
rolled back transactionmust be completely undone. In the money-transfer example, if money iswithdrawn from
one account but a failure prevents the money from beingdeposited in the other account, any changes made to the
first account must becompletely undone. The next time any source queries the accountbal ance, the correct
balance must be shown.

Distributed transactions and the two-phase commit process

A distributed transaction is one that runs in multiple processes,often on several machines. Each process
participates in thetransaction. Thisisillustrated in Figure 2, where each oval indicates work being done on

adifferent machine, and each arrow indicates a remote method invocation(RMI).

Figure 2. Example of a distributed transaction

Wiarking an
the receved

tansacton

Starts a

F equestswaoarlk
transadion =

far the transaction

Requestsfurther

warking on wiotk for the transa dion
the reced ed

transa Etij'y

Distributed transactions, like local transactions, must adhere to the ACIDproperties. However, maintaining these
propertiesis greatlycomplicated for distributed transactions because a failure can occur in anyprocess, and in the
event of such afailure, each process must undo any workalready done on behalf of the transaction.

Waarking Dﬂ\ll
the recewed
trarnsaction

A distributed transaction processing system maintains the ACID propertiesin distributed transactions by using
two features:

« Recoverable processes. Recoverable processes are thosethat can restore earlier statesif afailure occurs.

« A commit protocol: A commit protocol enables multipleprocesses to coordinate the committing or rolling
back (aborting) of atransaction. The most common commit protocol, and the one used by theEJB server, is
the two-phase commit protocol.

Transaction state information must be stored by all recoverabl eprocesses. However, only processes that manage
application data (suchas resource managers) must store descriptions of changes to data. Notall processes involved
in adistributed transaction need to berecoverable. In general, clients are not recoverable because they donot
interact directly with aresource manager. Processes that are notrecoverable are referred to as ephemeral
processes.The two-phase commit protocol, as the name implies, involves twophases: a prepare phase and a

resolution phase. In eachtransaction, one process acts as the coordinator. Thecoordinator oversees the activities
74

of the other participants inthe transaction to ensure a consistent outcome. In the prepare phase, the coordinator
sends a message to eachprocess in the transaction, asking each process to prepare to commit.When a process
prepares, it guarantees that it can commit the transaction andmakes a permanent record of its work. After
guaranteeing that it cancommit, it can no longer unilaterally decide to roll back thetransaction. If a process cannot
prepare (that is, if it cannotguarantee that it can commit the transaction), it must roll back thetransaction.In the
resolution phase, the coordinator tallies theresponses. If all participants are prepared to commit, the
transactioncommits; otherwise, the transaction is rolled back. In eithercase, the coordinator informs all
participants of the result. In thecase of a commit, the participants acknowledge that they havecommitted.

Using transactions in the EJB server environment

The enterprise bean transaction model corresponds in most respects to theOMG OTS version 1.1. An enterprise
bean instance that istransaction enabled corresponds to an object of the OTS Transactional Objectinterface.
However, the enterprise bean transaction model does notsupport transaction nesting.

In the EJB server environment, transactions are handled by three maincomponents of the transaction service:

« A transaction manager interface that enables the EJB server to controltransaction boundaries within its
enterprise beans based on the transactional attributes specified for the beans.

« Aninterface (UserTransaction) that allows an enterprise bean or an EJBclient to manage transactions. The
container makes this interfaceavailable to enterprise beans and EJB clients by way of the nameservice.

« Coordination by way of the X/Open XA interface that enables atransactional resource manager (such asa
database) to participate in atransaction controlled by an external transaction manager.

For most purposes, the enterprise bean devel opers can delegate the tasksinvolved in managing a transaction to the
container. The developerperforms this delegation by setting the deployment descriptor attributes fortransactions.
These attributes and their values are described in Setting transactional attributes in the deployment descriptor.

In other cases, the enterprise bean devel oper will want or need to managethe transactions at the bean level or
involve the EJB client in the managementof transactions. For more information on this approach, see Using

bean-managed transactions.

The data source

Entity beans contain persistent data that must be permanently stored in arecoverable data source. Although the
EJB Specification often refers todatabases as the place to store persistent data associated with an entitybean, it
leaves open the possibility of using other data sources, includingoperating system files and other applications.If
you want to let the container handle the interaction between an entity beanand a data source, you must use the
data sources supported by thatcontainer:

« The EJB server (AE) supports DB2(R), Oracle, Sybase, andInstantDB.
« The EJB server (CB) supports DB2, Oracle, CICS(R), IMS(TM), andM QSeries(R).
If you write the additional code required to handle the interaction betweena BMP entity bean and the data source,

you can use any data source that meetsyour needs and is compatible with the persistence service. For
moreinformation, see Developing entity beans with BMP.

The EJB clients

An EJB client can take one of the following forms: it can be a Javaapplication, a Java servlet, a Java
applet-servliet combination, or a JSPfile. For the EJB server (CB), a Java applet can be used to directlyinteract
with enterprise beans. For the EJB server (AE), a Java appletcan be used only in combination with a servlet.

75

The EJB client code required to access and manipulate enterprise beansisvery similar across the different Java
EJB clients. EJB clientdevel opers must consider the following issues:

« Naming and communications--A Java EJB client must useeither HTTP or RMI to communicate with
enterprise beans. Fortunately,thereis very little difference in the coding required to
enablecommuni cations between the EJB client and the enterprise bean, because INDImasks the
interaction between the EJB client and the name service.

o Java applications communicate with enterprise beans by usingRMI/110P.

o Javaservlets and JSP files communicate with enterprise beans by usingHTTP. To use servlets with
an EJB server, aWeb server must beinstalled and configured on a machine in the EJB server
environment.For more information, see The Web server.

« Threading--Java clients can be either single-threaded ormultithreaded depending on the tasks that the
client needsto perform.Each client thread that uses a service provided by a session bean must createor
find a separate instance of that bean and maintain areference to that beanuntil the thread compl etes;
multiple client threads can access the sameentity bean.

o Security

o EJB clientsthat access an EJB server (AE) over HTTP (for example,servlets and JSP files)
encounter the following two layers of security:

1. Universal Resource Locator (URL) security enforced by the WebSphereA pplication Server
Security Plug-in attached to the Web server incollaboration with the security service.

2. Enterprise bean security enforced at the server working with the securityservice.

When the user of an HTTP-based EJB client attempts to access an enterprisebean, the Web server
(using the WebSphere Server plug-in) authenticates theuser. This authentication can take the form
of arequest for auser IDand password or it can happen transparently in the form of a
certificateexchange followed by the establishment of a Secure Sockets Layer (SSL)session.

The authentication policy is governed by an additional option: securechannel constraint. If the
secure channel constraint is required, anSSL session must be established as the final phase of
authentication;otherwise, SSL is optional.

o All EJB clients that access an EJB server (CB) and EJB clients that accessan EJB server (AE) by
using RMI (for example, Java applications) encounter thesecond security layer only. Like
HTTP-based EJB clients, these EJBclients must authenticate with the security service.

For more information, see The security service.

« Transactions--Both types of Java clients can use thetransaction service by way of the JTA interfacesto
managetransactions. The code required for transaction management is identicalin the two types of clients.
For general information on transactionsand the Java transaction service, see The transaction service. For

information on managing transactions in a JavaEJB client, see Managing transactionsin an EJB client.

In the EJB server (CB) environment, an enterprise bean can aso be accessedby EJB clients that use Microsoft(R)
ActiveX(R), CORBA-based Java, andto alimited degree, CORBA-based C++. More information on EJB clients
specific to the EJB server (CB) provides additional information.

Note:

In the EJB server (AE) environment, ActiveX and CORBA -based access toenterprise beans is not
supported.

The Web server

To access the functionality in the EJB server, Java servlets and JSP filesmust have access to a Web server. The
76

Web server enables communicationbetween aWeb client and the EIB server. The EIB server, Web server,and
Java servlet can each reside on different machines.

For information on the Web servers supported by the EJB servers, see theAdvanced Application Server Getting
Sarted document.

The administration interface

The EJB server (CB) and EJB server (AE) each have their own administrationtools:

« The EJB server (AE) uses the WebSphere Administrative Console. Formore information on this interface,
consult the WebSphere InfoCenter and theonline help available with the WebSphere Administrative
Console.

« TheEJB server (CB) uses the System Management End User Interface (SMEUI). For more information
on thisinterface, see the Component BrokerSystem Administration Guide.

Y ou can also administer the EJB server (AE) using the wscpcommand-line tool. For more information, see the
Advanced EditionInformation Center.

77

More-advanced programming concepts for enterprise beans

This chapter discusses some of the more advanced programming conceptsassociated with developing and using enterprise beans. It
includesinformation on developing entity beans with bean-managed persistence (BMP),writing the code required by a BMP bean to interact with a
database, anddeveloping session beans that directly participate in transactions.

Developing entity beans with BMP

In an entity bean with container-managed persistence (CMP), the containerhandles the interactions between the enterprise bean and the datasource. In
an entity bean with bean-managed persistence (BMP), theenterprise bean must contain all of the code required for the interactionsbetween the
enterprise bean and the data source. For this reason,devel oping an entity bean with CMP is simpler than developing an entity beanwith BMP. However,
you must use BMP if any of the following is trueabout an entity bean:

« Thebean's persistent datais stored in more than one datasource.
« Thebean's persistent datais stored in a data source that is notsupported by the EJB server that you are using.

This section examines the development of entity beans with BMP. Forinformation on the tasks required to develop an entity bean with CMP, see
Developing entity beans with CMP.

Every entity bean must contain the following basic parts:
« The enterprise bean class. For more information, see Writing the enterprise bean class (entity with BMP).
« The enterprise bean's home interface. For more information,see Writing the home interface (entity with BMP).
« The enterprise bean's remote interface. For more information,see Writing the remote interface (entity with BMP).

In an entity bean with BMP, you can create your own primary key class oruse an existing class for the primary key. For more information, see Writing
or selecting the primary key class (entity with BMP).

Writing the enterprise bean class (entity with BMP)

In an entity bean with BMP, the bean class defines and implements the businessmethods of the enterprise bean, defines and implements the methods
used tocreate instances of the enterprise bean, and implements the methods invoked bythe container to move the bean through different stagesin the
bean'dife cycle.

By convention, the enterprise bean class is named NameBean,where Name is the name you assign to the enterprise bean.The enterprise bean class for
the example AccountBM enterprise bean is namedA ccountBM Bean.Every entity bean class with BMP must meet the following requirements:

« It must be public, it must not be abstract, and it mustimplement the javax.ejb.EntityBean interface. For moreinformation, see Implementing the
EntityBean interface.

« It must define instance variables that correspond to persistent dataassociated with the enterprise bean. For more information, see Defining
instance variables.

« It must implement the business methods used to access and manipulate thedata associated with the enterprise bean. For more information, see
Implementing the business methods.

« It must contain code for getting connections to, interacting with, andreleasing connections to the data source (or sources) used to store
thepersistent data. For more information, see Using a database with aBMP entity bean.

« It must define and implement an gjbCreate method for each way in which theenterprise bean can be instantiated. It can, but is not required
to,define and implement a corresponding ejbPostCreate method for each ejbCreatemethod. For more information, see Implementing the
€jbCreate and gjbPostCreate methods.

« |t must implement the gjbFindByPrimaryK ey method that takes a primary keyand determinesif it isvalid and unique. It can also define
andimplement additional finder methods as required. For more information,see Implementing the ejbFindByPrimaryKey and other gjbFind
methods.

Note:

The enterprise bean class can implement the enterprise bean's remoteinterface, but this is not recommended. If the enterprise bean
classimplements the remote interface, it is possible to inadvertently pass thethis variable as a method argument.

Figure 55 shows the import statements and class declaration for theexample AccountBM enterprise bean.

Figure 55. Code example: The AccountBM Bean class

...inport java.rn.RenoteException;inport java.util.*;inport javax.ejb.*;inport java.lang.*;inport
java.sqgl.*;inport comibmejs.doc.account.|nsufficientFundsException;public class Account BMBean
i mpl ements EntityBean { .

Defining instance variables

An en};%y bean class can contain both persistent and nonpersistent instancevariables; however, static variables are not supported in enterprisebeans

unlessthey are also final (that is, they are constants).Persistent variables are stored in a database. Unlike the persistentvariables in a CMP entity bean
class, the persistent variables in a BMP entitybean class can be private.

Nonpersistent variables are not stored in a database and aretemporary. Nonpersistent variables must be used with caution and mustnot be used to
maintain the state of an EJB client between methodinvocations. This restriction is necessary because nonpersistentvariables cannot be relied on to
remain the same between method invocationsoutside of a transaction because other EJB clients can change these variablesor they can be lost when the
entity bean is passivated.
The AccountBM Bean class contains three instance variables that representpersistent data associated with the AccountBM enterprise bean:

« accountld, which identifies the account |D associated with anaccount

« type, which identifies the account type as either savings (1)or checking (2)

« balance, which identifies the current balance of the account

The AccountBMBean class contains several nonpersistent instance variablesincluding the following:

« entityContext, which identifies the entity context of eachinstance of an AccountBM enterprise bean. The entity context can beused to get a
reference to the EJB object currently associated with the beaninstance and to get the primary key object associated with that EJBobject.

« jdbcUrl, which encapsulates the database universal resourcelocator (URL) used to connect to the data source. This variable musthave the
following format:dbAPI:databaseType:databaseName.For example, to specify a database named sample in an IBM DB2 database withthe Java
Database Connectivity (JDBC) API, the argument i5 dbc: db2: sanpl e.

« driverName, which encapsul ates the database driver classrequired to connect to the database.

« DBLogin, which identifies the database user 1D required toconnect to the database.

« DBPassword, which identifies password for the specified user ID(DBLogin) required to connect to the database.

« tableName, which identifies the database table name in whichthe bean's persistent data is stored.

« jdbcConn, which encapsulates a Java Database Connectivity(JDBC) connection to a data source within ajava.sgl.Connectionobject.

Figure 56. Code example: Theinstance variables of the AccountBM Bean class

...public class Account BMBean i npl enents EntityBean { private EntityContext entityContext =
nul | ; private static final String DBRULProp = "DBURL"; private static final String
Driver NaneProp = "Driver Name"; private static final String DBLogi nProp = "DBLogi n"; private
static final String DBPasswordProp = "DBPassword"; private static final String Tabl eNameProp =
"Tabl eNane"; private String jdbcUrl, driverNane, DBLogin, DBPassword, tableNaneg; private

I ong accountld = 0O; private int type = 1, private float balance = 0.0f; private
Connection jdbcConn = nul|;

To make the AccountBM bean more portable between databases and databasedrivers, the database-specific variables (jdbcUrl,driverName, DBLogin,
DBPassword, andtableName) are set by retrieving corresponding environmentvariabl es contained in the enterprise bean. The values of thesevariables
areretrieved by the getEnvProps method, which isimplemented in theAccountBMBean class and invoked when the setEntityContext method iscalled.
For more information, see Managing connectionsin the EJB server (CB) environment or Managing database connections in the EJB server (AE)
environment.

For more information on how to set an enterprise bean's environmentvariables, refer to Setting environment variables for an enterprise bean.

Although Figure 56 shows database access compatible with version 1.0 ofthe JDBC specification, you can also perform database accesses that

arecompatible with version 2.0 of the JDBC specification. Anadministrator binds a javax.sgl.DataSource reference (whichencapsul ates the information
that was formerly stored in the jdbcURL anddriverName variables) into the INDI namespace. The entity bean with BM Pdoes the following to get a
java.sgl.Connection:

Dat aSource ds = (dataSource)initial Context.|ookup("java: conp/ env/jdbc/ MyDat aSour ce"); Connecti on con
= ds. get Connection();

where MyDataSour ce i s the name the administrator assigned to thedatasource.
Implementing the business methods

The business methods of an entity bean class define the ways in which the dataencapsulated in the class can be manipulated. The business
methodsimplemented in the enterprise bean class cannot be directly invoked by an EJBclient. Instead, the EJB client invokes the corresponding
methodsdefined in the enterprise bean's remote interface by using an EJB objectassociated with an instance of the enterprise bean, and the container
invokesthe corresponding methods in the instance of the enterprise bean.

Therefore, for every business method implemented in the enterprise beanclass, a corresponding method must be defined in the enterprise bean'sremote
interface. The enterprise bean's remote interface isimplemented by the container in the EJB object class when the enterprise beanis deployed.

Thereis no difference between the business methods defined in theA ccountBM Bean bean class and those defined in the CMP bean class
AccountBeanshown in Figure 20.

Implementing the ejbCreate and ejbPostCreate methods

Y ou must define and implement an ejbCreate method for each way in which youwant a new instance of an enterprise bean to be created. For
eachejbCreate method, you can also define a corresponding jbPostCreatemethod. Each gjbCreate method must correspond to a create methﬂsl in

theEJB home interface.

Like the business methods of the bean class, the gjbCreate andejbPostCreate methods cannot be invoked directly by the client.Instead, the client
invokes the create method of the enterprise bean'shome interface by using the EJB home object, and the container invokes thegjbCreate method
followed by the ejbPostCreate method.

Unlike the method in an entity bean with CMP, the ejbCreate method in anentity bean with BMP must contain all of the code required to insert
thebean's persistent data into the data source. This requirementmeans that the ejbCreate method must get a connection to the data source (ifoneis not
already available to the bean instance) and insert the values ofthe bean's variables into the appropriate fields in the datasource.
Each gjbCreate method in an entity bean with BMP must meet the followingreguirements:

« It must be public and return the bean's primary key class.

« Itsarguments and return type must be valid for Java remote methodinvocation (RMI).

« It must contain the code required to insert the values of the persistentvariables into the data source. For more information, see Using a database
with a BMP entity bean.

Each ejbPostCreate method must be public, return void, and have the samearguments as the matching ejbCreate method.If necessary, both the
gjbCreate method and the g/bPostCreate method can throwthe java.rmi.RemoteException exception, thejavax.ejb.CreateException exception,
thejavax.ejb.DuplicateK eyException exception, and any user-definedexceptions.

Figure 57 shows the two gjbCreate methods required by the exampleA ccountBM Bean bean class. No g/ bPostCreate methods are required.

Asin the AccountBean class, the first gfbCreate method calls the secondejbCreate method; the | atter handles all of the interaction with the datasource.
The second method initializes the bean's instancevariables and then ensures that it has a valid connection to the data sourceby invoking the
checkConnection method. The method then creates,prepares, and executes an SQL INSERT call on the data source. If thelNSERT call is executed
correctly, and only one row isinserted into the datasource, the method returns an object of the bean's primary keyclass.

Figure 57. Code example: The g bCreate methods of the AccountBM Bean class

publ i c Account BMKey ej bCreat e(Account BMKey key) throws CreateException, Renot eException {
return ej bCreate(key, 1, 0.0f); }...public Account BMKey ej bCreat e(Account BMKey key, int type, float
bal ance) throws CreateException, RenoteException{ accountld = key. accountld; this.type =
type; t hi s. bal ance = bal ance; checkConnection(); /1 I NSERT into database try {
String sql String = "INSERT I NTO " + tabl eNane + " (bal ance, type, accountid) VALUES
(?2,2,?7"; Prepar edSt at ement sql Statement = j dbcConn. prepar eSt at enent (sqgl String);

sql St at enent . set Fl oat (1, bal ance); sql Statenent.setlnt (2, type);

sql St at ement . set Long(3, accountld); /'l Execute query int updateResults =

sqgl St at ement . execut eUpdat e() ; - } catch (Exception e) { // Error occurred during

i nsert } return key;}

Implementing the ejbFindByPrimaryKey and other ejbFind methods

At aminimum, each entity bean with BMP must define and implement theegjbFindByPrimaryK ey method that takes a primary key and determinesif it
isvalid and unique for an instance of an enterprise bean; if the primarykey isvalid and unique, it returns the primary key. An entity bean canalso define
and implement other finder methods to find enterprise beaninstances. All finder methods can throw thejavax.ejb.FinderException exception to indicate
anapplication-level error. Finder methods designed to find a single beancan also throw the javax.ejb.ObjectNotFoundException exception,a subclass of
the FinderException class. Finder methods designed toreturn multiple beans should not use the ObjectNotFoundException to indicatethat no suitable
beans were found; instead, such methods should returnempty return values. Throwing thejava.rmi.RemoteException exception is deprecated; see
Standard application exceptions for entity beans for more information.

Like the business methods of the bean class, the ejbFind methods cannot beinvoked directly by the client. Instead, the client invokes a findermethod on
the enterprise bean's home interface by using the EJB homeobject, and the container invokes the corresponding €/ bFind method. Thecontainer invokes
an gbFind method by using a generic instance of that entitybean in the pooled state.
Because the container uses an instance of an entity bean in the pooledstate to invoke an ejbFind method, the method must do the following:

1. Get aconnection to the data source (or sources).

2. Query the data source for records that match specifications of the findermethod.

3. Drop the connection to the data source (or sources).

For more information on these data source tasks, see Using a database with a BMP entity bean.Figure 58 shows the ejbFindByPrimaryKey method of

the exampleAccountBMBean class. The ejbFindByPrimaryKey method gets a connectionto its data source by calling the makeConnection method
shown in Figure 58. It then creates and invokes an SQL SELECT statementon the data source by using the specified primary key.

If one and only one record is found, the method returns the primary keypassed to it in the argument. If no records are found or multiplerecords are
found, the method throws the FinderException. Beforedetermining whether to return the primary key or throw the FinderException,the method drops
its connection to the data source by calling thedropConnection method described in Using a database with a BMP entity bean.

Figure 58. Code example: The fbFindByPrimaryKey method of the AccountBM Bean class

80

publ i ¢ Account BMKey ej bFi ndByPri mar yKey (Account BMKey key) t hrows Fi nder Exception { bool ean

wasFound = fal se; bool ean foundMul tiples = fal se; makeConnection(); try {

/1 SELECT from dat abase String sqgl String = "SELECT bal ance, type, accountid FROM " +

t abl eNane + " WHERE accountid = ?"; Pr epar edSt at enent sql Stat enent =

j dbcConn. prepareSt at enent (sql String); | ong keyVal ue = key. accountld;

sqgl St at ement . set Long(1, keyVal ue); /| Execute query Resul t Set

sql Resul ts = sql Statenent. executeQuery(); /'l Advance cursor (there should be
only one item /1l wasFound will be true if there is one wasFound =

sql Resul ts. next (); /1 foundMultiples will be true if nore than one is found.
foundMul tiples = sqgl Results. next(); } catch (Exception e) { // DB error ..

} dr opConnecti on(); if (wasFound && !foundMilti pl es) { return key;
} el se { /1l Report finding no key or nmultiple keys C.
t hr ow(new Fi nder Excepti on(foundSt atus));

Figure 59 shows the gjbFindL argeA ccounts method of the exampleA ccountBMBean class. The gbFindLargeA ccounts method also gets aconnection
to its data source by calling the makeConnection method and dropsthe connection by using the dropConnection method. The SQL SEL ECTstatement
isalso very similar to that used by the ejbFindByPrimaryKeymethod. (For more information on these data source tasks and methods,see Using a

database with a BMP entity bean.)

While the gjbFindByPrimaryK ey method needs to return only one primary key,the elbFindL argeA ccounts method can be expected to return zero or
more primarykeys in an Enumeration object. To return an enumeration of primarykeys, the ejbFindL argeAccounts method does the following:

1. It uses awhileloop to examine the result set (sglResults)returned by the executeQuery method.

2. Itinserts each primary key in the result set into a hash table namedresultTable by wrapping the returned account ID in aLong objectand thenin
an AccountBMKey object. (The Long object,member|d, is used as the hash table's index.)

3. Itinvokes the elements method on the hash table to obtain the enumerationof primary keys, which it then returns.

Figure 59. Code example: The gjbFindL ar geAccounts method of the AccountBM Bean class

public Enumeration ej bFi ndLargeAccount s(float ampunt) throws Fi nder Exception { makeConnection();
Enurmer ation result; try { /1 SELECT from dat abase String sqgl String = "SELECT
accountid FROM" + tabl eNane + " WHERE bal ance >= ?"; Pr epar edSt at enent

sql Stat ement = j dbcConn. prepareSt at enent (sqgl String); sql St at ement . set Fl oat (1, anount);

/| Execute query Resul t Set sql Results = sql Statenment. execut eQuery(); /1 Set up
Hashtable to contain list of primary keys Hasht abl e resul t Tabl e = new Hasht abl e();

/1 Loop through result set until there are no nore entries /'l Insert each primary key into
the resultTabl e whil e(sql Results. next() == true) { long acctld =

sql Resul ts. get Long(1); Long menberld = new Long(acctld); Account BWKey
key = new Account BMKey(acctld); resul t Tabl e. put (menber 1 d, key); } /1
Return the resultTabl e as an Enuneration result = resultTable.elenments(); return
resul t; } catch (Exception e) { } finally { dr opConnection(); 1}

Implementing the EntityBean interface

Each entity bean class must implement the methods inherited from thejavax.ejb.EntityBean interface. The container invokesthese methods to move the
bean through different stages in the bean'dife cycle. Unlike an entity bean with CMP, in an entity bean with BMP,these methods must contain all of
the code for the required interaction withthe data source (or sources) used by the bean to store its persistentdata.

« gbActivate--This method isinvoked by the container when thecontainer selects an entity bean instance from the instance pool and assignsthat
instance to a specific existing EJB object. This method mustcontain the code required to activate the enterprise bean instance by gettinga
connection to the data source and using the bean'sjavax.ejb.EntityContext class to obtain the primary key in thecorresponding EJB object.

In the example AccountBM Bean class, the gjbActivate method obtains the beaninstance's account ID, sets the value of the accountldvariable,
and invokes the checkConnection method to ensure that it has a validconnection to the data source.

« gbLoad--Thismethod isinvoked by the container to synchronize anentity bean's persistent variables with the corresponding data in thedata
source. (That is, the values of the fields in the data source areloaded into the persistent variables in the corresponding enterprise beaninstance.)
This method must contain the code required to load theval ues from the data source and assign those val ues to the bean'sinstance variables.

In the example AccountBMBean class, the g/bLoad method obtains the beaninstance's account 1D, sets the value of the accountldvariable,
invokes the checkConnection method to ensure that it has a validconnection to the data source, constructs and executes an SQL
SEL ECTstatement, and sets the values of the type and balancevariables to match the values retrieved from the data source.

« gbPassivate--This method isinvoked by the container to disassociatean entity bean instance from its EJB object and place the enterprise
beaninstance in the instance pool. This method must contain the coderequired to "passivate” or deactivate an enterprise bean instance.Usually,
this passivation simply means dropping the connection to the datasource.

In the example AccountBMBean class, the gjbPassivate method invokes thedropConnection method to drop the connection to the data source.

« egbRemove--This method isinvoked by the container when a clientinvokes the remove method inherited by the enterprise bean's homeinterface
(from the javax.ejb.EJBHome interface) or remoteinterface (from the javax.ejb.EJBObject interface). Thismethod must contain the code
required to remove an enterprise bean'spersistent data from the data source. This method can throw thejavax.ejb.RemoveException exception if
removal of an enterprisebean instance is not permitted. Usually, removal involves deleting thebean instance's data from the data sougfz and

then dropping the beaninstance's connection to the data source.

In the example AccountBMBean class, the ejbRemove method invokes thecheckConnection method to ensure that it has a valid connection to
the datasource, constructs and executes an SQL DELETE statement, and invokes thedropConnection method to drop the connection to the data
source.

« setEntityContext--This method is invoked by the container to pass areference to the javax.ejb.EntityContext interface to anenterprise bean
instance. This method must contain any code required tostore a reference to a context.

In the example AccountBM Bean class, the setEntityContext method sets theval ue of the entityContext variable to the value passed to it bythe
container.

« gbStore--This method isinvoked by the container when the containerneeds to synchronize the data in the data source with the values of
thepersistent variables in an enterprise bean instance. (That is, thevalues of the variables in the enterprise bean instance are copied to the
datasource, overwriting the previous values.) This method must contain thecode required to overwrite the datain the data source with the
correspondingval ues in the enterprise bean instance.

In the example AccountBMBean class, the gjbStore method invokes thecheckConnection method to ensure that it has avalid connection to the
datasource and constructs and executes an SQL UPDATE statement.

« unsetEntityContext--This method isinvoked by the container, beforean enterprise bean instance is removed, to free up any resources
associatedwith the enterprise bean instance. Thisisthe last method called priorto removing an enterprise bean instance.

In the example AccountBMBean class, the unsetEntityContext method sets thevalue of the entityContext variable to null.
Writing the home interface (entity with BMP)

An entity bean's home interface defines the methods used by EJB clientsto create new instances of the bean, find and remove existing instances,
andobtain metadata about an instance. The home interface is defined by theenterprise bean devel oper and implemented in the EJB home class created
by thecontainer during enterprise bean deployment. The container makes thehome interface accessible to clients through the Java Naming and
Directorylnterface (JNDI).

By convention, the home interface is named NameHome, whereName is the name you assign to the enterprise bean. Forexample, the AccountBM
enterprise bean's home interface is namedA ccountBM Home.Every home interface for an entity bean with BMP must meet the foll owingrequirements:
« It must extend the javax.ejb.EJBHome interface. Thehome interface inherits several methods from thejavax.ejb.EJBHome interface. See The
javax.ejb.EJBHome interface for information on thesemethods.

« Each method in the interface must be either a create method, whichcorresponds to an ejbCreate method (and possibly an ejbPostCreate method)
inthe enterprise bean class, or afinder method, which corresponds to an ejbFindmethod in the enterprise bean class. For more information, see
Defining create methods and Defining finder methods.

« The parameters and return value of each method defined in the homeinterface must be valid for Java RMI. For more information, see The
javaio.Serializable and java.rmi.Remote interfaces. In addition, each method's throws clause mustinclude the java.rmi.RemoteException
exception class.

Figure 60 shows the relevant parts of the definition of the homeinterface (AccountBMHome) for the example AccountBM bean. Thisinterface defines

two abstract create methods: the first creates anAccountBM object by using an associated AccountBMKey object, the secondcreates an AccountBM
object by using an associated AccountBMKey object andspecifying an account type and an initial balance. The interfacedefines the required
findByPrimaryKey method and the findL argeAccountsmethod.

Figure 60. Code example: The AccountBMHome homeinterface

...inport java.rm .*;inmport javax.ejb.*;inport java.util.*;public interface AccountBVHorme extends

EJBHonme { - Account BM cr eat e(Account BMKey key) throws CreateException,

Renot eExcepti on; . Account BM cr eat e(Account BMKey key, int type, float anount)

throws CreateException, RenoteException; C. Account BM fi ndByPri mar yKey(Account BMKey key)
t hrows Fi nder Excepti on, Renot eExcepti on; c. Enuner ati on findLargeAccounts(float arount)

t hrows Fi nder Excepti on, RenoteException;}

Defining create methods

A create method is used by aclient to create an enterprise bean instance andinsert the data associated with that instance into the data source.Each create
method must be named create and it must have the same number andtypes of arguments as a corresponding jbCreate method in the enterprise
beanclass. (The gjbCreate method can itself have a correspondingejbPostCreate method.) The return types of the create method and itscorresponding
ejbCreate method are always different.
Each create method must meet the following requirements:

o It must be named create.

« |t must return the type of the enterprise bean's remoteinterface. For example, the return type for the create methods in theAccountBMHome
interface is AccountBM (as shown in Figure 23).

« It must have athrows clause that includes thejava.rmi.RemoteException exception, thejavax.ejb.CreateException exception, and all of the
exceptionsdefined in the throws clause of the corresponding ejbCreate and ejbPostCreatemethods.

82

Defining finder methods

A finder method is used to find one or more existing entity EJBobjects. Each finder method must be named findName, whereName further describes
the finder method's purpose.

At aminimum, each home interface must define the findByPrimaryK ey methodthat enables a client to locate an EJB object by using the primary
keyonly. The findByPrimaryKey method has one argument, an object of thebean's primary key class, and returns the type of the bean's remoteinterface.

Every other finder method must meet the following requirements:

« |t must return the type of the enterprise bean's remote interface the java.util. Enumeration interface, or thejava.util.Collection interface (when a
finder method can returnmore than one EJB object or an EJB collection).

« It must have athrows clause that includes thejava.rmi.RemoteException andjavax.ejb.FinderException exception classes.

Although every entity bean must contain only the default finder method, youcan write additiona onesif needed. For example, the AccountBMbean's
home interface defines the findL argeA ccounts method to findobjects that encapsulate accounts with balances of more than a specifieddollar amount, as
shown in Figure 60. Because this finder method can be expected to returna reference to more than one EJB object, its return type

igava.util.Enumeration.

Unlike the implementation in an entity bean with CMP, in an entity beanwith BMP, the bean developer must fully implement the

€jbFindByPrimaryK eymethod that corresponds to the findByPrimaryKey method. In addition,the bean developer must write each additional ejbFind
method corresponding tothe finder methods defined in the home interface. The implementation ofthe gjbFind methods in the AccountBMBean classis
discussed in Implementing the ejbFindByPrimaryKey and other ejbFind methods.

Writing the remote interface (entity with BMP)

An entity bean's remote interface provides access to the business methodsavailable in the bean class. It also provides methods to remove an EJBobject
associated with a bean instance and to obtain the bean instance'shome interface, object handle, and primary key. The remote interface isdefined by the
EJB devel oper and implemented in the EJB object class createdby the container during enterprise bean deployment.

By convention, the remote interface is named Name, whereName is the name you assign to the enterprise bean. Forexample, the AccountBM enterprise
bean's remote interface is namedAccountBM .Every remote interface must meet the following requirements:
« It must extend the javax.ejb.EJBObject interface. Theremote interface inherits several methods from thejavax.ejb.EJBObject interface. See
Methods inherited from javax.ejb.EJBObject for information on thesemethods.
« It must define a corresponding business method for every business methodimplemented in the enterprise bean class.
« The parameters and return value of each method defined in the interfacemust be valid for Java RMI. For more information, see The
java.io.Serializable and java.rmi.Remote interfaces.

« Each method's throws clause must include thejava.rmi.RemoteException exception class.

Figure 61 shows the relevant parts of the definition of the remoteinterface (AccountBM) for the example AccountBM enterprise bean. Thisinterface
defines four methods for displaying and manipulating the accountbalance that exactly match the business methods implemented in
theAccountBMBean class.All of the business methods throw the java.rmi.RemoteExceptionexception class. In addition, the subtract method must
throw theuser-defined exceptioncom.ibm.ejs.doc.account. | nsufficientFundsExceptionbecause the corresponding method in the bean class throws
thisexception. Furthermore, any client that calls this method must eitherhandle the exception or passit on by throwing it.

Figure 61. Code example: The AccountBM remote interface

.inmport java.rm.*;inmport javax.ejb.*;inport
comibmejs. doc. account. I nsuf fici ent FundsException; public interface Account BM extends EJBbject {

float add(fl oat anount) throws RenbteException; fl oat getBal ance() throws
Renot eExcepti on; voi d set Bal ance(fl oat am)unt) thr ows Renot eExcept i on; C f 1 oat
subtract (fl oat armunt) throws I nsuf fici ent FundsExcepti on, Renot eExcepti on; }

Writing or selecting the primary key class (entity with BMP)

Every entity EJB object has a unique identity within a container that isdefined by a combination of the object's home interface name and itsprimary
key, the latter of which is assigned to the object at creation.If two EJB objects have the same identity, they are consideredidentical.

The primary key classis used to encapsulate an EJB object's primarykey. In an entity bean (with BMP or CMP), you can write a distinctprimary key
class or you can use an existing class as the primary key class,as long as that classis serializable. For more information, see The java.io.Seriaizable

and java.rmi.Remote interfaces.

The example AccountBM bean uses a primary key class that isidentical tothe AccountKey class contained in the Account bean shown in Figure 26,
with the exception that the key class is namedAccountBMKey.
Note:
For the EJB server (AE) environment, the primary key class of an entity beanwith BMP must implement the hashCode and equals method. In
addition,the variables that make up the primary key must be public.

The javalang.Long classis aso a good candidate for aprimary key class for the AccountBM bean.

oo

Using a database with a BMP entity bean

In an entity bean with BMP, each jbFind method and all of the life cyclemethods (gjbActivate, gjbCreate, gjbL oad, g/bPassivate, and gjbStore)
mustinteract with the data source (or sources) used by the bean to maintain itspersistent data. To interact with a supported database, the BMP
entitybean must contain the code to manage database connections and to manipulatethe data in the database. The code required to manage database
connections varies across the EJB serverimplementations:
« The EJB server (CB) uses JDBC 1.0 to manage database connectionsdirectly. For more information on the EJB server (CB), see Managing
connectionsin the EJB server (CB) environment.

« TheEJB server (AE) uses a set of specialized beans to encapsulateinformation about databases and an IBM-specific interface to JDBC to
allowentity bean interaction with a connection manager. For more informationon the EJB server (AE), see Managing database connectionsin

the EJB server (AE) environment.

In general, there are three approaches to getting and releasing connectionsto databases:

« The bean can get a database connection in the setEntityContext method andrelease it in the unsetEntityContext method. This approach is
theeasiest for the enterprise bean developer to implement. However,without a connection manager, this approach is not viable because under
itbean instances hold onto database connections even when they are not in use(that is, when the bean instance is passivated). Even with a
connectionmanager, this approach does not scale well.

« The bean can get a database connection in the gjbActivate and ejbCreatemethods, get and release a database connection in each gjbFind
method, andrel ease the database connection in the gjbPassivate and efbRemovemethods. This approach is somewhat more difficult to
implement, but itensures that only those bean instances that are activated have connections tothe database. If you are using the EJB server (CB),
which does notallow BMP entity beans to use the connection manager, this approach isprobably the best one.

« The bean can get and rel ease a database connection in each method thatrequires a connection: gjbActivate, ejbCreate, ejbFind, ejbLoad,
andejbStore. This approach is more difficult to implement than the firstapproach, but is no more difficult than the second approach. If you
areusing the EJB server (AE), which contains a connection manager, this approachis the most efficient in terms of connection use and also the
mostscalable.

The example AccountBM bean, uses the second approach described in thepreceding text. The AccountBM Bean class contains two methods for
makinga connection to the DB2 database, checkConnection and makeConnection, and onemethod to drop connections: dropConnection. These
methods must becoded differently based on which EJB server environment you use:
« The code required to make the AccountBM bean work with the connectionmanager in the EJB server (CB) is shown in Managing connections
in the EJB server (CB) environment.

« The code required to make the AccountBM bean work with the connectionmanager in the EJB server (AE) is shown in Managing database
connectionsin the EJB server (AE) environment.

The code required to manipulate datain a database isidentical for bothEJB server environments. For more information, see Manipulating datain a
database.

Managing connections in the EJB server (CB) environment

In the EJB server (CB) environment, both JDBC 1.0 connectivity (usingthe java.sgl.DriverManager interface) and JDBC 2.0connectivity (using the
javax.sgl.DataSource interface) aresupported, although full JDBC 2.0 support requires DB2 version?.1, FixPack 2.

Under JDBC 2.0, database connections are made as described in Managing database connections in the EJB server (AE) environment. Y ou must

replace the Advanced Edition-specificcom.ibm.db2.jdbc.app.stdext.javax.sql.DataSourcei nterface with the standard JDBC 2.0
interfacejavax.sqgl.DataSource interface. (When you are using DB27.1, FixPack 2, thisisimplemented by theCOM.ibm.db2.jdbc.DB2DataSource class,
which anadministrator must bind into the INDI namespace.)

Under JDBC 1.0, the java.sgl.DriverManager interfaceis used to load and register a database driver and to get and rel easeconnections to the database.
This process is described in the rest ofthis section.

Loading and registering a data source

The example AccountBM bean uses an IBM DB2 relational database to store itspersistent data. To interact with DB2, the example bean must load
oneof the available JDBC drivers. Figure 62 shows the code required to load the driver class. Thevalue of the driverName variable is obtained by the

getEnvPropsmethod, which accesses a corresponding environment variable in the depl oyedenterprise bean.

The Class.forName method |oads and registers the driverclass. The AccountBM bean loads the driver in its setEntityContextmethod, ensuring that
every instance of the bean has immediate access to thedriver after creating the bean instance and establishing the bean'scontext.
Note:
In the EJB server (CB) environment, entity beans with BMP that use JDBC toaccess a database cannot participate in distributed transactions
because theenvironment does not support XA-enabled JDBC.

Figure 62. Code example: L oading and registering a JDBC driver in the setEntityContext method

public void setEntityContext(EntityContext ctx) throws EJBException { entityContext = ctx;
try { get EnvProps(); /1 Load the applet driver for DB2
Cl agg. f or Name(dri ver Nane) ; } catch (Exception e) { C. 1}

Creating and closing a connection to a database

After loading and registering a database driver, the BMP entity bean must geta connection to the database. When it no longer needs that connection,the
BMP entity bean must close the connection.

In the AccountBM Bean class, the checkConnection method is called withinother bean class methods that require a database connection, but for which
itcan be assumed that a connection aready exists. This method checks tomake sure that the connection is still available by checking if thejdbcConn
variable is set to null. If the variable is null ,the makeConnection method is invoked to get the connection.

The makeConnection method is invoked when a new database connection isrequired. It invokes the static
methodjava.sgl.DriverM anager.getConnection and passes the DB2URL value defined in the jdbcUr| variable (and described in Defining instance

variables). The getConnection method is overloaded; themethod shown here only uses the database URL, other versions require the URLand the
database user 1D or the URL, database user 1D, and the userpassword.

Figure 63. Code example: The checkConnection and makeConnection methods of the AccountBM Bean class

inport java.sql.*;...private void checkConnection() throws EJBException { if (jdbcConn ==
nul I') { makeConnecti on(); } return;}...private void makeConnection() throws
EJBException { try { /1 Open dat abase connection j dbcConn =

Dri ver Manager . get Oonnectl on(jdbcUrl); } catch(Exception e) { // Could not get database
connecti on .. 1}

Entity beans with BMP must also drop database connections when a particularbean instance no longer requires it. The AccountBMBean class contains
adropConnection method to handle this task. To drop the databaseconnection, the dropConnection method does the following:

1. Invokes the commit method on the connection object (jdbcConn),to drop any locks held on the database.
2. Invokes the close method on the connection object to close theconnection.
3. Setsthe connection object reference to null.

Figure 64. Code example: The dropConnection method of the AccountBM Bean class

private void dropConnection() { try { /1 dose and del ete jdbcConn
j dbcConn. comi t () ; } catch (Exception e) { /1 Could not conmt transactions to
dat abase c. } finally { j dbcConn. cl ose(); jdbcConn = nul | ; 1}

Managing database connections in the EJB server (AE) environment

In the EJB server (AE) environment, the administrator creates a specializedset of entity beans that encapsulate information about the database and
thedatabase driver. These specialized entity beans are created by usingthe WebSphere Administrative Console.

An entity bean that requires access to a database must use JNDI to create areference to an EJB object associated with the right database beaninstance.
The entity bean can then use the |BM-specific interface(namedcom.ibm.db2.jdbc.app.stdext.javax.sgl.DataSource)to get and release connections to the
database.

The DataSource interface enables the entity bean to transparently interactwith the connection manager of the EJB server (AE). The connectionmanager
creates a pool of database connections, which are allocated anddeallocated to individual entity beans as needed.

Note:
The example code contained in this section cannot be found in theA ccountBM Bean, which manages database connections by using the
DriverManagerinterface described in Managing connections in the EJB server (CB) environment. This section shows the code that is required if
theAccountBM bean were rewritten to use the DataSource interface.

Getting an EJB object reference to a data source bean instance

Before a BMP entity bean can get a connection to a database, the entity beanmust perform a JINDI lookup on the data source entity bean associated
with thedatabase used to store the BMP entity bean's persistent data. Figure 65 shows the code required to create an Initial Context objectand then get
an EJB object reference to a database bean instance. TheJNDI name of the database bean is defined by the administrator; it isrecommended that the
JNDI naming convention be followed when defining thisname. The value of the required database-specific variables areobtained by the getEnvProps
method, which accesses the correspondingenvironment variables from the deployed enterprise bean.

Because the connection manager creates and drops the actual databaseconnections and simply allocates and deall ocates these connections asrequired,

there is no need for the BMP entity bean to load and register thedatabase driver. Therefore, there is no need to define thedriver Name and jdbcUrl|
variables discussed in Defining instance variables.

Figure 65. Code example: Getting an EJB object reference to a data sour ce bean instance in the setEntityContext method (rewritten to use
DataSour ce)

85

... # inport comibmdb2.jdbc. app. stdext.javax.sql.DataSource;# inport

javax.namng.*;...lnitial Context initContext = null;DataSource ds = null;... public void

set EntityCont ext (EntityContext ctx) throws EJBException { entityContext = ctx; try
{ get EnvProps(); ds = initContext.|ookup("jdbc/sanple"); }
catch (Nami ngException e) { } oo

Allocating and deallocating a connection to a database

After creating an EJB object reference for the appropriate database beaninstance, that object reference is used to get and release connections to
thecorresponding database. Unlike when using the DriverManager interface,when using the DataSource interface, the BMP entity bean does not
reallycreate and close data connections; instead, the connection managerallocates and deall ocates connections as required by the entity
bean.Nevertheless, a BMP entity bean must still contain code to send allocation anddeall ocation requests to the connection manager.

In the AccountBM Bean class, the checkConnection method is called withinother bean class methods that require a database connection, but for which
itcan be assumed that a connection aready exists. This method checks tomake sure that the connection is still available by checking if thejdbcConn
variable is set to null. If the variable is null ,the makeConnection method is invoked to get the connection (that is aconnection allocation request is sent
to the connection manager).

The makeConnection method is invoked when a database connection isrequired. It invokes the getConnection method on the data sourceobject. The
getConnection method is overloaded: it can takeeither auser ID and password or no arguments, in which case the user 1D andpassword are implicitly
set to null (thisversionis used in Figure 66).

Figure 66. Code example: The checkConnection and makeConnection methods of the AccountBM Bean class (rewritten to use DataSour ce)

private void checkConnection() throws EJBeException { if (jdbcConn == null) {
makeConnection(); } return;}...private void makeConnection() throws EJBeException {
try { /] Open dat abase connection j dbcConn = ds. get Connection(); }
catch(Exception e) { // Could not get database connection 1}

Entity beans with BMP must also rel ease database connections when a particularbean instance no longer requiresit (that is, they must send a
deallocationrequest to the connection manager). The AccountBM Bean class contains adropConnection method to handle this task. To release the
databaseconnection, the dropConnection method does the following (as shown in Figure 67):

1. Invokes the close method on the connection object to tell the connectionmanager that the connection is no longer needed.

2. Setsthe connection object reference to null.
Putting the close method inside a try/catch/finally block ensures that theconnection object reference is always set to null even if the close methodfails
for some reason. Nothing is done in the catch block because theconnection manager must clean up idle connections; thisis not the job ofthe enterprise
bean code.

Figure 67. Code example: The dropConnection method of the AccountBM Bean class (rewritten to use DataSour ce)

private void dropConnection() { try { /1 C ose the connection
j dbcConn. cl ose(); catch (SQLException ex) { /1 Do nothing } finally {
j dbcConn = nul | ; 1}

Manipulating data in a database

After an instance of a BMP entity bean obtains a connection to its database,it can read and write data. The AccountBMBean class communicates
withthe DB2 database by constructing and executing Java Structured Query Language(JSQL) calls by using the java.sgl.PreparedStatementinterface.

Asshown in Figure 68, the SQL call is created as a String(sglString). The String variable is passed to thejava.sgl.Connection.prepareStatement
method; and thevalues of each variable in the SQL call are set by using the various settermethods of the PreparedStatement class. (The variables are
substitutedfor the question marksin the sglString variable.) Invokingthe PreparedStatement.executeUpdate method executes the SQL call.

Figure 68. Code example: Constructing and executing an SQL update call in an /bCreate method

private void ej bCreat e(Account BMKey key, int type, float initialBalance) t hr ows

Cr eat eException, EJBException { /1 Initialize persistent variables and check for good DB
connecti on /1 I NSERT into database try { String sqgl String = "I NSERT | NTO "
+ tabl eNane + " (bal ance, type, accountid) VALUES (?,?,?2)"; Pr epar edSt at enent
sql Stat ement = j dbcConn. prepareSt at enent (sqgl String); sql St at ement . set Fl oat (1, bal ance);

sqgl Statenent. setlnt(2, type); sqgl St at ement . set Long(3, accountld); /| Execute query
int updateResults = sql Statenment. execut eUpdat e(); c } catch (Exception e) { //
Error occurred during insert } .}

The executeUpdate method is called to insert or update data in adatabase; the executeQuery method is called to get data from adatabase. When dataiis
retrieved from a database, the executeQuerymethod returns a java.sgl.ResultSet object, which must beexamined and manipul ated using the methods of

that cigss.

Note:

To improve scalability and performance, you do not need to call PreparedStatement for each database update. Instead, you can cache theresults
of the first PreparedStatement call.

Figure 69 provides an example of how the data in a ResultSet ismanipulated in the gjbL oad method of the AccountBMBean class.

Figure 69. Code example: Manipulating a ResultSet object in the g/ bL oad method

public void ejbLoad () throws EJBeExcept| on { /] Cet data from database try { /1
SELECT from dat abase /| Execute query Resul t Set sql Results =

sql St at enent . execut eQuery(); /1 Advance cursor (there should be only one iten

sql Resul ts. next (); /1 Pull out results bal ance = sqgl Results. getFloat(1);

type = sql Resul ts. getlnt(2) } catch (Exception e) { /1 Somet hi ng happened while

| oadi ng dat a. 1}

Using bean-managed transactions

In most situations, an enterprise bean can depend on the container to managetransactions within the bean. In these situations, all you need to dois set
the appropriate transactional properties in the deployment descriptoras described in Enabling transactions and security in enterprise beans.

Under certain circumstances, however, it can be necessary to have anenterprise bean participate directly in transactions. By setting thetransaction
attribute in an enterprise bean's deploymentdescriptor to TX_BEAN_MANAGED, you indicate to the container that the bean isan active participant in
transactions.

Note:

The value TX_BEAN_MANAGED is not avalid value for the transactiondeployment descriptor attribute in entity beans. In other words,
entitybeans cannot manage transactions.

When writing the code required by an enterprise bean to manage its owntransactions, remember the following basic rules:

« Aninstance of a stateless session bean cannot reuse the sametransaction context across multiple methods called by an EJB client.Therefore, it
is recommended that the transaction context be alocal variableto each method that requires a transaction context.

« Aninstance of astateful session bean can reuse the same transactioncontext across multiple methods called by an EJB client. Therefore,make
the transaction context an instance variable or alocal method variableat your discretion. (When a transaction spans multiple methods, you
canuse the javax.gjb.SessionSynchronization interface tosynchronize the conversational state with the transaction.)

Note:

In the EJB server (CB) environment, a stateful session bean that implementsthe TX_BEAN_MANAGED attribute must begin and complete a
transaction within thescope of a single method.

Figure 70 shows the standard code required to obtain an objectencapsulating the transaction context. There are three basics stepsinvolved:
1. The enterprise bean class must set the value of thejavax.gjb.SessionContext object reference in thesetSessionContext method.
2. A javax.transaction.UserTransaction object is created bycalling the getUserTransaction method on the SessionContext objectreference.

3. The UserTransaction object is used to participate in the transaction bycalling transaction methods such as begin and commit as needed. If
aenterprise bean begins atransaction, it must also complete that transactioneither by invoking the commit method or the rollback method.
Note:

In both EJB servers, the getUserTransaction method of thejavax.ejb.EJBContext interface (which is inherited by theSessionContext
interface) returns an object of typejavax.transaction.UserTransaction rather than typejavax.jts.UserTransaction. While thisisadeviation
fromthe 1.0 version of the EJB Specification, the 1.1 version of theEJB Specification requires that the getUserTransaction method
return an objectof type javax.transaction.UserTransaction and drops therequirement to return objects of typejavax.jts.UserTransaction.

Figure 70. Code example: Getting an object that encapsulates a transaction context

.import javax.transaction.*;...public class M/Statel essSessi onBean inpl ements Sessi onBean {
prl vat e Sessi onCont ext rTySeSS| onCt x = null; . public void
set Sessi onCont ext (. Sessi onCont ext ct x) throvvs EJBExceptlon { mySessi onGt x = ctx; }
public float doSomet hi ng(1 ong argl) throws FinderException, EJBExcept ion {
UserTr ansaction userTran = nySessi onCt x. get User Transacti on(); /1 User userTran
object to call transaction nethods user Tr an. begi n() ; // Do transactional work
user Tran. commi t () ; } —

The following methods are avail able with the UserTransactioninterface:
« begin--Begins atransaction. This method takes no argumentsand returns void.

« commit--Attempts to commit a transaction; assuming that nothingcauses the transaction to be rolled back, successful completion of this
methodcommits the transaction. This method takes no arguments and returnsvoid.

« getStatus--Returns the status of the referenced transaction. This method takes no arguments and returnsint; if no transaction isassociated with
the reference, STATUS_NO_TRANSACTION isreturned. Thefollowing are the valid return values for this method:

0 STATUS _ACTIVE--Indicates that transaction processing is still inprogress. 87

0

STATUS_COMMITTED--Indicates that a transaction has been committed andthe effects of the transaction have been made permanent.

STATUS_COMMITTING--Indicates that a transaction is in the process ofcommitting (that is, the transaction has started committing
but has notcompl eted the process).

STATUS_ MARKED_ROLLBACK--Indicates that atransaction is marked to berolled back.
STATUS_NO_TRANSACTION--Indicates that a transaction does not exist inthe current transaction context.
STATUS_PREPARED--Indicates that a transaction has been prepared butnot compl eted.

STATUS_PREPARING--Indicates that a transaction isin the process of preparing (that is, the transaction has started preparing but has
notcompl eted the process).

STATUS ROLLEDBACK--Indicates that a transaction has been rolledback.

STATUS_ROLLING_BACK--Indicates that atransaction isin the processof rolling back (that is, the transaction has started rolling
back but has notcompleted the process).

STATUS_UNKNOWN--Indicates that the status of a transaction isunknown.

« rollback--Rolls back the referenced transaction. This methodtakes no arguments and returns void.
« setRollbackOnly--Specifies that the only possible outcome of thetransaction is rollback. This method takes no arguments and returnsvoid.

« setTransactionTimeout--Sets the timeout (in seconds) associated withthe transaction. If some transaction participant has not specificallyset this
value, adefault timeout is used. This method takes a numberof seconds (as type int) and returns void.

88

Enabling transactions and security in enterprise
beans

This chapter examines how to enable transactions and security in enterprisebeans by setting the appropriate
deployment descriptor attributes:

« For transactions, a session bean can either use contai ner-managedtransactions or implement
bean-managed transactions; entity beans mustuse container-managed transactions. To enable
contai ner-managedtransactions, you must set the transaction attribute to any valueexcept
TX_BEAN_MANAGED and set the transaction isolation levelattribute. To enable bean-managed
transactions, you must set thetransaction attribute to TX_BEAN_MANAGED and set the transaction
isolationlevel attribute. For more information, see Setting transactional attributes in the deployment

descriptor.

If you want a session bean to manage its own transactions, you must writethe code that explicitly
demarcates the boundaries of atransaction asdescribed in Using bean-managed transactions.

If you want an EJB client to manage its own transactions, you mustexplicitly code that client to do so as
described in Managing transactions in an EJB client.

« For security, the run-as mode attribute is used by the EJBserver environments. For information on the
valid values of thisattribute, see Setting the security attribute in the deployment descriptor.

These attributes, like the other deployment descriptor attributes, are setby using one of the tools available with
either the EJB server (AE) or the EJBserver (CB). For more information, see Tools for devel oping and

deploying enterprise beans in the EJB server (AE) environment or Tools for developing and deploying
enterprise beans in the EJB server (CB) environment.

Setting transactional attributes in the deployment descriptor

The EJB Specification describes the creation of applications that enforcetransactional consistency on the data
manipulated by the enterprisebeans. However, unlike other specifications that support distributedtransactions,
the EJB specification does not require enterprise bean and EJBclient developers to write any specia code to use
transactions.Instead, the container manages transactions based on two deployment descriptorattributes
associated with the EJB module, and the enterprise bean and EJBapplication devel opers are freed to deal with
the business logic of theirapplications.

Enterprise bean developers can specifically design enterprise beans and EJBapplications that explicitly manage
transactions. For more information,see Using bean-managed transactions.

Under most conditions, transaction management can be handled within theenterprise beans, freeing the EJB
client developer of thistask.However, EJB clients can participate in transactions if required ordesired. For more
information, see Managing transactionsin an EJB client.

Two attributes determine the way in which an enterprise bean is managedfrom a transactional perspective:

« Thetransaction attribute defines the transactional manner inwhich the container invokes a method. This
attribute is part of thestandard deployment descriptor. Setting the transaction attribute defines the valid
values of this attribute and explainstheir meanings.

o Thetransaction isolation level attribute defines the manner inwhich transactions are isolated from each
other by the container. Thisattribute is an extension to the standard deployment descriptor. Setting the
transaction isolation level attribute defines the valid values of this attribute and explainstheir meanings.

89

Setting the transaction attribute

The transaction attribute defines the transactional manner in which thecontainer invokes enterprise bean
methods. This attribute is set forindividual methods in a bean.

Note:

The EJB server (CB) does not support the setting of the transaction attributefor individual enterprise
bean methods; the transaction attribute can beset only for the entire bean.

The following are valid values for this attribute in decreasing order oftransactional strictness:
TX_BEAN_MANAGED

Notifies the container that the bean class directly handles transactiondemarcation. This attribute value
can be specified only for sessionbeans and it cannot be specified for individual bean methods. For
moreinformation on designing session beans to implement this attribute value, see Using bean-managed

transactions.

In the EJB server (CB) environment, if a stateful session bean has thisattribute value, a method that
begins a transaction must also complete thattransaction (commit or roll back the transaction). In other
words, atransaction cannot span multiple methods in a stateful session bean when usedin the EJB server
(CB) environment.

TX_MANDATORY

Directs the container to always invoke the bean method within thetransaction context associated with the
client. If the client attemptsto invoke the bean method without a transaction context, the container
throwsthe javax.jts. TransactionRequiredException exception to theclient. The transaction context is
passed to any EJB object or resourceaccessed by an enterprise bean method.

EJB clients that access these entity beans must do so within an existingtransaction. For other enterprise
beans, the enterprise bean or beanmethod must implement the TX_BEAN_MANAGED value or use the
TX_REQUIRED orTX_REQUIRES NEW value. For non-enterprise bean EJB clients, the clientmust
invoke a transaction by using thejavax.transaction.User Transaction interface, as described in Managing

transactionsin an EJB client.

In the EJB server (CB) environment, this attribute value must be used inentity beans with
contai ner-managed persistence (CMP) that use Host On-Demand(HOD) or the External Call Interface
(ECI) to access CICS or IM Sapplications.

TX_REQUIRED

Directs the container to invoke the bean method within a transactioncontext. If aclient invokes a bean
method from within atransactioncontext, the container invokes the bean method within the client
transactioncontext. If aclient invokes a bean method outside of a transactioncontext, the container
creates a new transaction context and invokes the beanmethod from within that context. The transaction
context is passed toany enterprise bean objects or resources that are used by this beanmethod.

TX_REQUIRES NEW

Directs the container to always invoke the bean method within a newtransaction context, regardless of
whether the client invokes the methodwithin or outside of a transaction context. The transaction context
ispassed to any enterprise bean objects or resources that are used by this beanmethod.

The EJB server (CB) does not support this attribute val ue forenterprise beans written to version 1.0 of
the EJBspecification. It interpretsthe TX _REQUIRES NEW attribute asTX_REQUIRED for Enterprise
beans written to version 1.1 of the EJBspecification.

TX_SUPPORTS
Directs the container to invoke the bean method within a transactioncontext if the client invokes the

90

bean method within a transaction. Ifthe client invokes the bean method without a transaction context,
thecontainer invokes the bean method without a transaction context. Thetransaction context is passed to
any enterprise bean objects or resources thatare used by this bean method.

In the EJB server (CB) environment, entity beans with CMP must be accessedwithin atransaction. If an
entity bean with CMP uses this transactionattribute, the EJB client must initiate a transaction before
invoking a methodon the entity bean.

TX_NOT_SUPPORTED

Directs the container to invoke bean methods without a transactioncontext. If a client invokes a bean
method from within a transactioncontext, the container suspends the association between the transaction
andthe current thread before invoking the method on the enterprise beaninstance. The container then
resumes the suspended association when themethod invocation returns. The suspended transaction
context isnot passed to any enterprise bean objects or resources that areused by this bean method.

In the EJB server (CB) environment, entity beans with CMP must be accessedwithin a transaction.
Therefore, this attribute value is not supportedin entity beans with CMP in the EJB server (CB)
environment.

TX_NEVER
Directs the container to invoke bean methods without a transacti oncontext.

o If the client invokes a bean method from within a transaction context, thecontainer throws the
java.rmi.RemoteException exception.

o If the client invokes a bean method from outside a transaction context,the container behavesin
the same way asif the TX_NOT_SUPPORTED transactionattribute was set. The client must call
the method without atransaction context.

In the EJB server (CB) environment, the TX_NEVER attribute is interpretedas
TX_NOT_SUPPORTED. Therefore, no exception isthrown if the clientinvokes a bean method from
within a transaction context.

Table 3. Effect of the enter prise bean's transaction attribute on the transaction context

|Transaction attribute Client transaction context |Bean transaction context
TX_MANDATORY INo transaction INot allowed
|Client transaction |Client transaction
TX_REQUIRES NEW INo transaction INew transaction
|Client transaction INew transaction
TX_REQUIRED INo transaction INew transaction
|Client transaction |Client transaction
TX_SUPPORTS INo transaction INo transaction
|Client transaction |Client transaction
TX_NOT_SUPPORTED INo transaction INo transaction
|Client transaction INo transaction
TX_NEVER INo transaction INo transaction
INo transaction INo transaction

When setting the deployment descriptor for an entity bean, you can markgetter methods as " Read-Only"
methods to improve performance. If atransaction unit of work includes no methods other than "Read-Only"
designatedmethods, then the entity bean state synchronization does not invokestore.

91

Setting the transaction isolation level attribute

Note:
The EJB server (CB) does not support the transaction isolation levelattribute.

The transaction isolation level determines how strongly one transaction isisolated from another. This attribute is
set for individual methods ina bean. However, within atransactional context, the isolation levelassociated with
the first method invocation becomes the required isolationlevel for all other methods invoked within that
transaction. If amethod isinvoked with a different isolation level from that of the firstmethod, the
java.rmi.RemoteException exception is thrown.
Thefollowing are valid values for this attribute, in decreasing order ofisolation:
TRANSACTION_SERIALIZABLE

Thislevel prohibitsall of the following types of reads:

o Dirty reads, where a transaction reads a database rowcontaining uncommitted changes from a
second transaction.

o Nonrepeatable reads, where one transaction reads a row, asecond transaction changes the same
row, and the first transaction rereads therow and gets a different value.

o Phantom reads, where one transaction reads all rows thatsatisfy an SQL WHERE condition, a
second transaction inserts arow that al sosatisfies the WHERE condition, and the first transaction
applies the ssmeWHERE condition and gets the row inserted by the second transaction.

TRANSACTION_REPEATABLE_READ

Thislevel prohibits dirty reads and nonrepeatable reads, but it allowsphantom reads.
TRANSACTION_READ_COMMITTED

Thislevel prohibits dirty reads, but allows nonrepeatabl e reads andphantom reads.
TRANSACTION_READ_UNCOMMITTED

Thislevel allows dirty reads, nonrepeatable reads, and phantomreads.
These isolation levels correspond to the isolation levels defined in theJava Database Connectivity (JDBC)
java.sgl.Connectioninterface.
The container uses the transaction isolation level attribute asfollows:

« Session beans and entity beans with bean-managed persistence(BMP)--For each database connection
used by the bean, the container setsthe transaction isolation level at the start of each transaction.

« Entity beans with container-managed persistence (CMP)--The containergenerates database access code
that implements the specified isolationlevel.

None of these values permits two transactions to update the same dataconcurrently; one transaction must end
before another can update the samedata. These values determine only how locks are managed for readingdata.
However, risks to consistency can arise from read operations whena transaction does further work based on the
values read. For example,if one transaction is updating a piece of data and a second transaction ispermitted to
read that data after it has been changed but before the updatingtransaction ends, the reading transaction can
make a decision based on achange that is eventually rolled back. The second transaction risksmaking a decision
on transient data.

Deciding which isolation level to use depends on several factors:
« The acceptable level of risk to data consistency
« The acceptable levels of concurrency and performance

« Theisolation levels supported by the underlying database
92

The first two factors, risk to consistency and level of concurrency, arerelated. Decreasing the risk to consistency
requires you to decreaseconcurrency because reducing the risk to consistency requires holding lockslonger. The
longer alock is held on a piece of data, the longerconcurrently running transactions must wait to access that
data. TheTRANSACTION_SERIALIZABLE value protects data by eliminating concurrent accessto it.
Conversely, the TRANSACTION_READ_UNCOMMITTED value alows thehighest degree of concurrency
but entails the greatest risk toconsistency. Y ou need to balance these two factors appropriately foryour
application.

By default, most devel opers deploy enterprise beans with the transactionisolation level set to
TRANSACTION_SERIALIZABLE. Thisisthe defaultvaluein IBM VisualAge for Java Enterprise Edition and
other deploymenttools. It is also the most restrictive and protected transactionisolation level incurring the most
overhead. Some workloads do notrequire the isolation level and protection afforded
byTRANSACTION_SERIALIZABLE. A given application might never update theunderlying data or be run
with other applications that also make concurrentupdates. In that case, the application would not have to be
concernedwith dirty, non-repeatable, or phantom reads. TheTRANSACTION_READ_UNCOMMITTED
isolation level would probably besufficient.

Because the transaction isolation level is set in the EJB modul € sdepl oyment descriptor, the same enterprise
bean could be reused in differentapplications with different transaction isolation levels. The isolationlevel
requirements should be reviewed and adjusted appropriately to increaseperformance.

The third factor, isolation levels supported in the database, means thatalthough the EJB specification allows you
to request one of the four levels oftransaction isolation, it is possible that the database being used in
theapplication does not support all of the levels. Also, vendors ofdatabase products implement isolation levels
differently, so the precisebehavior of an application can vary from database to database. Y ou needto consider
the database and the isolation levels it supports when deciding onthe value for the transaction isolation attribute
in deploymentdescriptors. Consult your database documentation for more informationon supported isolation
levels.

Setting the security attribute in the deployment descriptor

When an EJB client invokes a method on an enterprise bean, the user context ofthe client principal is
encapsulated in a CORBA Current object, which containscredential properties for the principal. The Current
object is passedamong the participants in the method invocation as required to complete themethod.

The security service uses the credential information to determine thepermissions that a principal has on various
resources. At appropriatepoints, the security service determinesif the principal is authorized to usea particular
resource based on the principal's permissions.

If the method invocation is authorized, the security service does thefollowing with the principal’s credential
properties based on the valueof the run-as mode attribute of the enterprise bean. If aspecific identity is required,
the RunAsl dentity attribute is usedto specify that identity.

CLIENT_IDENTITY
The security service makes no changes to the principal's credential properties.
SYSTEM_IDENTITY

The security service alters the principal's credential properties tomatch the credential properties
associated with the EJB server.

SPECIFIED_IDENTITY

The security service attempts to match the principal's credential properties with the identity of any
application with which the enterprise beanis associated. |f successful, the security service alters
theprincipal's credential properties to match the credentia properties ofthe application.

93

Developing servlets that use enterprise beans

A servlet isa Java application that enables users to access Web serverfunctionality. To use servlets, aWeb server isrequired. TheWebSphere
Application Server plugsinto a number of commonly used Webservers. In addition, the IBM HTTP Web server is available with boththe Advanced
Application Server and the Enterprise Application Server.For more information, consult the Advanced Edition InfoCenter.

Java servlets can be combined with enterprise beans to create powerful EJBapplications. This chapter describes how to use enterprise beans withina
servlet. The example CreateAccount servlet, which uses the exampleAccount bean, is used to illustrate the concepts discussed in thischapter. The
example servlet and enterprise bean discussed in thischapter are explained in Information about the examples described in the documentation.

An overview of standard servlet methods

Usually, aservlet isinvoked from an HTML form on the user'sbrowser. The first time the servlet isinvoked, the servlet'sinitmethod is run to perform
any initializations required at startup. Forthe first and all subsequent invocations of the servlet, the doGet method (or,alternatively, the doPost method)
is run. Within the doGet method (orthe doPost method), the servlet gets the information provided by the user onthe HTML form and uses that
information to perform work on the server andaccess server resources.

The servlet then prepares a response and sends the response back to theuser. After aservlet isloaded, it can handle multiple simultaneoususer requests.
Multiple request threads can invoke the doGet (ordoPost) method at the same time, so the servlet needs to be made threadsefe.

When a servlet shuts down, the destroy method of the servlet is run inorder to perform any needed shutdown processing.

Writing an HTML page that embeds a servlet

Figure 46 showsthe HTML file (named create.html) used toinvoke the CreateAccount servliet. The HTML form is used to specify theaccount number

for the new account, its type (checking or savings), and itsinitial balance. The request is passed to the doGet method of theservlet, where the servlet is
identified with its full Java package name, asshown in the example.

Figure 46. Code example: Content of the create.html file used to accessthe CreateAccount servlet

<ht M ><head><titl e>Create a new Account</titl e></head><body><hl align="center">Create a new
Account </ h1><f orm nmet hod="get "acti on="/servl et/comibmejs. doc.client.Creat eAccount"><tabl e border

align="center"><!-- specify a new account number --><tr bgcol or="#cccccc"><td align="right">Account
Number: </td><td col span="2"><i nput type="text" name="account" size="20"maxl ength="10"></tr><!--

speci fy savings or checking account -->...<!-- specify account starting balance -->...<l-- submt
information to servlet --> ..<input type="subnmt" name ="submit" value="Create">...<!-- nessage area

-->. . .</fornmk</body></htn >

The HTML response from the servlet is designed to produce a displayidentical to create.html, enabling the user to continue creating newaccounts.
Figure 47 shows what create.html looks like on abrowser.

Figure 47. Theinitial form and output of the CreateAccount servlet

94

7 Create a new Account - Microzoft Internet Explorer

J File Edit “iew Go Favoites Help

]@.Eb,eﬁ‘@junm

Back Eariand Stop Refrezh Homne Search

Create a new Account

Acoount Mumber: I

| Type: | * savings |t"‘ checking

Starting Balance: |

Create |

Enter mformation, press "Create”

l_ I_ l_ | by Cornputer

| B

Developing the servlet

This section discusses the basic code required by a servlet that interactswith an enterprise bean. Figure 48 shows the basic outline of the code that

makes up theCreateAccount servlet. As shown in the example, the CreateA ccountservlet extends the javax.servlet.http.HttpServiet classand
implements an init method and a doGet method.

Figure 48. Code example: The CreateAccount class

package comibmejs.doc.client;// General enterprise bean code.inport

j ava. rm . Renot eExcepti on; i nport javax.ejb. DuplicateKeyException;// Enterprise bean code specific to
this servlet.inmport comibmejs.doc.account.Account Hong; i nport

comibm ejs. doc. account . Account Key; i nport comibm ejs.doc.account. Account;// Servlet related.inport

j avax.servlet.*;inmport javax.servlet.http.*;// JND (nam ng).inport javax.naming.*; [/ for Context,

Initial Context, Nam ngException// M scellaneous:inport java.util.*;inmport java.io.*;...public class

Creat eAccount extends HttpServlet { /'l Vari abl es - public void init(ServletConfig config)

t hrows Servl et Exception { .. } public void doGet (HttpServl et Request req,

Ht t pSer vl et Response res) throws Servl et Exception, |OException { /'l --- Read and validate user

input, initialize. --- /[l --- If input paraneters are good, try to create account. ---
/'l --- Prepare nessage to acconpany response. --- /'l --- Prepare and send

HTML response. ---

The servlet's instance variables

Figure 49 shows the instance variables used in the CreateA ccountservlet. The nameService, accountName, andproviderUrl variables are used to

specify the property valuesrequired during INDI lookup. These values are obtained from theClientResourceBundle class as described in Creating and
getting areference to abean's EJB object.

The CreateAccount class also initializes the string constants that are usedto create the HTML response sent back to the user. (Only three of
thesevariables are shown, but there are many of them). The init method inthe CreateAccount servlet provides away to read strings from a
resourcebundle to override these US English defaultsin order to provide a response ina different national language.The instance variable accountHome
isused by all client requests tocreate a new Account bean instance. The accountHome variableis initialized in the init method as shown in Figure 49.

Figure 49. Code example: Theinstance variables of the CreateAccount class

95

...public class CreateAccount extends HttpServlet { /'l Variables for finding the hone

private String nameService = null; private String accountNane = null; private String

provi derURL = nul | ; private ResourceBundl e bundl e = ResourceBundl e. get Bundl e(
"comibmejs.doc.client.dientResourceBundl e"); /1 Strings for HTM. output - US English defaults
shown. static String title = "Create a new Account”; static String number = "Account
Nunber:"; static String type = "Type:"; /1 Variable for accessing the enterprise
bean. private Account Home account Hone = nul | ; c }

The servlet's init method

The init method of the CreateAccount servlet is shown in Figure 50. The init method is run once, the first time arequest is processed by the servlet,
after the servlet is started. Typically, the init method is used to do any one-time initializations for aservlet. For example, the default US English strings
used in preparingthe HTML response can be replaced with another national language.The init method is a so the best place to initialize the value of
referencesto the home interface of any enterprise beans used by the servlet. Inthe CreateAccount's init method, the accountHome variable isinitialized
to reference the EJB home object of the Account bean.

Asin other types of EJB clients, the properties required to do a INDIlookup are specific to the EJB implementation. Therefore, theseproperties are
externalized in a propertiesfile or aresource bundleclass. For more information on these properties, see Creating and getting areference to abean's
EJB object.

Note that in the CreateAccount servlet, a HashTable object is used to storethe properties required to do a INDI [ookup whereas a Properties object
isused in the TransferApplication. Both of these classes are valid forstoring these properties.

Figure 50. Code example: Theinit method of the CreateAccount servlet

/1 Variables for finding the EJB hone objectprivate String nameService = null;private String
account Nane = null;private String providerURL = null;private ResourceBundl e bundle =

Resour ceBundl e. get Bundl g("comibmejs.doc.client. TransferResourceBundle");...public void
init(ServletConfig config) throws ServletException { super.init(config); try {

/] Get NLS strings froman external resource bundle c createTitle =

bundl e.getString("createTitle"); nurmber = bundl e. get String(" nunber"); type =
bundl e. get String("type"); - /1 Get values for the nami ng factory and hone nane.
naneServi ce = bundl e. get Stri ng("naneService"); account Name =

bundl e. get Stri ng("account Nane") ; provi der URL = bundl e. get Stri ng(" provi der URL"); }
catch (Exception e) { } /'l Get hone object for access to Account enterprise
bean. Hasht abl e env = new Hashtabl e(); env. put (Cont ext. | NI TI AL_CONTEXT_FACTCRY,

naneServi ce) ; try { /]l Create the initial context. Context ctx = new
Initial Context(env); /1 CGet the hone object. oj ect honebj ect =

ct x. | ookup(account Nane) ; /1 Get the Account Hone object. account Hone =

(Account Honme) j avax.rm . Port abl eRenpt eCbj ect. narrow(

(org. ong. CORBA. Obj ect) honeObj ect, Account Hone. cl ass); } /1 Determ ne cause of failure.
catch (Nami ngException e) { - } catch (Exception e) { C. 1}

The servlet's doGet method

The doGet method isinvoked for every servlet request. In theCreateAccount servlet, the method does the following tasks to manage userinput. These
tasks are fairly standard for this method:

« Read the user input from the HTML form and decide if the input isvalid--for example, whether the user entered a valid number for aninitial
balance.

« Perform theinitializations required for each request.

Figure 51 shows the parts of the doGet method that handle userinput. Note that the req variable is used to read the userinput from the HTML form. The
req variableis gjavax.servlet.http.HttpServietRequest object passed asone of the arguments to the doGet method.

Figure51. Code example: The doGet method of the CreateAccount servlet

96

public void doGet (HttpServletRequest req, H tpServl et Response res) throws Servl et Excepti on,

| OException { /1l --- Read and validate user input, initialize. --- /1 Error flags.

bool ean accountFlag = true; bool ean bal anceFl ag true; bool ean i nputFl ag = fal se;

bool ean createFlag = true; bool ean dupl i cat eFl ag fal se; /| Datatypes used to create new
account bean. Account Key key; int typeAcct = String typeString = "0"; f | oat
initial Bal ance = 0; // Read input paranmeters from HTM. form String[] accountArray =

req. get Par anet er Val ues("account"); String[] typeArray = req. get ParaneterVal ues("type");

String[] bal anceArray = req. get Paranet er Val ues("bal ance"); /1 Convert input paraneters to needed
dat at ypes for new account. /'l (account) | ong accountLong = O; key = new
Account Key(account Long) ; Il (type) if (typeArray[0].equal s("1")) { t ypeAcct = 1;
/] Savings account. typeString = "savings"; } else if (typeArray[O0].equal s(2")) {
t ypeAcct = 2; /1 Checki ng account typeString = "checki ng";

(bal ance) try { initial Balance = (Fl oat. val ue (bal anceArray[0])).fl oat Val ue() }
catch (Exception e) { bal anceFl ag = fal se; } /1l --- If input paraneters
are good, try to create account bean. --- I --- Prepare nessage to acconpany response.
/1l --- Prepare and send HTIVLresponse

e

Creating an enterprise bean

If the user input is valid, the doGet method attempts to create a new accountbased on the user input as shown in Figure 52. Besides the initialization of
the home objectreference in the init method, thisis the only other piece of code that isspecific to the use of enterprise beansin a servlet.

Figure 52. Code example: Creating an enterprise bean in the doGet method

public void doGet(HttpServl et Request req, HttpServl et Response res) throws Servl et Excepti on,
| OException { /'l --- Read and validate user input, initialize ---. Il --- 1f input
parameters are good, try to create account bean. --- i f (accountFl ag && bal anceFl ag) {
i nput Fl ag = true; try { /1l Create the bean. Account account =
account Hone. creat e(key, typeAcct, initial Bal ance); } /1 Determ ne cause of
failure. catch (RenoteException e) { c } catch
(Dupl i cat eKeyException e) { } catch (Exceptlon e) {

} } /'l --- Prepare message to acconpany response. --- I ---
Prepare and send HTM. response. --- ..

Determining the content of the user response

Next, the doGet method prepares a response message to be sent to theuser. There are three possible responses:
« Theuser input was not valid.
« The user input was valid, but the account was not created for somereason.
« The account was created successfully. If the previous two errors donot occur, this response is prepared.

Figure 53 shows the code used by the servlet to determine whichresponse to send to the user. If no errors are encountered, then theresponse indicates
success.

Figure 53. Code example: Determining a user response in the doGet method

public void doGet(HttpServl et Request req, HtpServl et Response res) t hr ows ServletException
| OException { /!l --- Read and validate user input, initialize. --- . I o--- If
i nput parameters are good, try to create account bean. --- I --- Prepare nessage to
acconpany response. --- .. String nessageLine =""; |f (i nputFlag) { /1 |If you
are here, the client input is good. if (createFlag) { /1 New account enterprise
bean was creat ed. nmessageLi ne = createdaccount + " " + accountArray[0] + ", " +
createdtype + " " + typeString + ", " + createdbal ance + " " + bal anceArray[0];
else if (duplicateFlag) { /1l Account with same key already exists.
messagelLine = failureexists + " " + accountArray[0]; } el se { /1l O her
reason for failure. messagelLine = failureinternal + " " + accountArray[0];
} el se { /1 1f you are here, sonmething was wong with the client input. String
separator = ""; if (!'accountFlag) { messagelLi ne = failureaccount + " " +
account Array[0] ; separator =", "; } if (!bal anceFl ag) { nmessagelLi ne
= nessagelLi ne + separator + fallurebalance + " " + bal anceArray[0]; } /1
--- Prepare and send HTM. response. --- .}

Sending the user response

With the type of response determined, the doGet method then prepares the fullHTML response and sends it to the user's browser, incorporating
theappropriate message. Relevant parts of the full HTML response are shownin Figure 54.Theres variable is used to pass the response back to theuser.

97

Thisvariable is an HttpServletResponse object passed as anargument to the doGet method. The response code shown here mixes bothdisplay (HTML)
and content in one servlet. Y ou can separate the displayand the content by using JavaServer Pages (JSP). A JSP allows thedisplay and content to be
developed and maintained separately.

Figure 54. Code example: Responding to the user in the doGet method

public void doGet(HttpServl et Request req, HttpServl et Response res) throws Servl et Exception,

| OException { /!l --- Read and validate user input, initialize. --- I o--- If

i nput paraneters are good, try to create account bean. --- /1l --- Prepare nessage to
acconpany response. --- /'l --- Prepare and send HTM. response. --- /1 HTM. returned
|l ooks like initial HTM. that invoked this servlet. /'l Message |ine says whether servlet was
successful or not. res. set Content Type(“"text/htm"); res. set Header ("Pragma", "no-cache");
res. set Header (" Cache-control ", "no-cache"); PrintWiter out = res.getWiter();
out.println("<htm>"); out.println("<title>" + createTitle + "</title>");
out.println(" </htm >"); }

Threading issues

Except for the instance variable required to get a reference to the Accountbean's home interface and to support multiple languages (which
remainunchanged for al user requests), all other variables used in theCreateAccount servlet are local to the doGet method. Each requestthread hasiits
own set of local variables, so the servlet can handlesimultaneous user requests.

As aresult, the CreateAccount servlet isthread safe. By taking asimilar approach to servlet design, you can also make your servlets threadsafe.

98

Tools for developing and deploying enterprise beans in the EJB server
(CB) environment

The following are the basic approaches to devel oping and deploying enterprisebeans in the EJB server (CB) environment:

« You can use the tools available in the Java Software Development Kit (SDK)and WebSphere Application Server, Enterprise Edition. For
moreinformation, see Devel oping and deploying enterprise beans with EJB server (CB) tools.

« You can use one of the available integrated development environments(IDES) such as IBM Visual Age for Java. IDE tools automatically
generatesignificant parts of the enterprise bean code and contain integrated tools forpackaging and testing enterprise beans. For more information,
see Using VisualAge for Java.

« You can create an enterprise bean from an existing CICS or InformationM anagement System (IMS) application by using the PAOToEJBtool. The
application must be mapped into a procedural adapter object(PAQ) before thistool is used. For more information, see Creating an enterprise bean
from an existing CICS or IMS application.

« You can create an enterprise bean that communicates with IBM M QSeries byusing the mgaaej b tool. For more information, see Creating an
enterprise bean that communicates with MQSeries.

Before beginning devel opment of enterprise beansin the EJB server (CB)environment, review the list of development restrictions contained in Restrictions
in the EJB server (CB) environment.

Note:
Deployment and use of enterprise beans for the EJB server (CB) environmentmust take place on the Microsoft Windows NT or Windows 2000
operating system,the IBM AlIX operating systems, or the Sun Solaris operating system.

For information on developing and deploying enterprise beans in the EJBserver (AE) environment, see Tools for developing and deploying enterprise
beansin the EJB server (AE) environment.

Developing and deploying enterprise beans with EJB server (CB) tools

Y ou need the following tools to devel op and deploy enterprise beans for theEJB server (CB):
« AnASCII text editor. (You can use aso use a Java devel opment toolthat does not support enterprise bean development.)
« The SDK Java compiler (javac) and Java Archiving tool(jar).
« Thefollowing tools available in the WebSphere Application Server,Enterprise Edition:

o jetace, which enables you to create or update an EJB JAR filefor one or more enterprise beans; this includes the creation of theenterprise
bean's deployment descriptor, which instructs the EJB serveron how to properly manage the enterprise bean.

jetace can only be used to create JAR files that are compatiblewith version 1.0 of the EJB specification. If you need to workwith JAR files
compatible with version 1.1, see Using the Application Assembly Tool.

o Object Builder, which is the recommended tool for deploying enterprisebeans. Use of thistool is not documented in this book. For
moreinformation on using Object Builder to deploy enterprise beans, see theComponent Broker Application Development ToolsGuide.

o cbeb, which works with Object Builder to create and compilethe necessary files needed by the EJB server (CB) to manage an
enterprisebean. The cbejb tool looks inside the EJB JAR file toexamine the EJB home and EJB object classes and the
deploymentdescriptors. The cbejb tool generates amodel that ObjectBuilder uses to create the necessary deployment library files.
Theoutput of this processis a set of server-side and client-side JAR and libraryfiles.

o CBDeployJar, which automates the deployment of enterprisebeans. The CBDeployJar tool can be used to deploy JAR filesthat are
compatible with either version 1.0 or version 1.1 ofthe EJB specification. It runsthe cbejb tool to deploy thefiles, generates database table
mappings for enterprise beans with CM P,compiles the deployed files, and configures and starts the EJB server.It also registers references to
enterprise beans that are compatible withversion 1.1 in the INDI namespace.

o CBDeployEar, which is used to deploy enterprise beans from aJAR file stored in a Java(TM) 2 Enterprise Edition (J2EE(TM))
EnterpriseArchive (EAR) file. The CBDeployEar tool extracts a JAR filefrom an EAR file, then runs the CBDeployJar tool on the
extractedJAR file.

o € bbind, which binds an enterprise bean's Java Naming andDirectory Interface (JNDI) home name (found in its deployment descriptor) to
afactory in an EJB server (CB). Thistool is deprecated for serversrunning on the AIX, Windows NT, Windows 2000, and Solaris platforms.

o appbind, which alows enterprise bean deployers to create anapplication-specific naming context and associate it with a selected
factoryfinder so that the EJB home lookup operations are resolved with that factoryfinder. Thistool is available only on the AIX, Windows
NT, Windows2000, and Solaris platforms and can only be applied to serversinstalled onany of those platforms.

This section describes the steps you must follow to develop and deployenterprise beans by using the EJB server (CB) tools. The followingtasks are
involved:

1. Ensure that you have the prerequisite software to develop and deployenterprise beansin the EJB server (CB). For more information, see
Prerequisite software for the EJB server (CB).

2. Set the CLASSPATH environment variable required by different components ofthe EJB server (CB) environment. For more information, see
Setting the CLASSPATH environment variable in the EJB server (CB) environment.

3. Write and compile the components of the enterprise bean. For moreinformation, see Creating the components of an enterprise bean.

4. Create afinder helper class for each entity bean with CMP that containsspecialized finder methods (other than the findByPrimaryK ey method).For
more information, see Creating finder logic in the EJB server (CB).
99

5. Usethejetace tool to create an EJB JAR file to contain theenterprise bean. For more information, see Creating an EJB JAR file for an enterprise
bean.
6. Deploy the enterprise bean by doing one of the following:
o Toautomatically deploy the enterprise bean from a JAR file, use theCBDeployJar tool. For more information, see Deploying an enterprise
bean with the CBDeployJar tool.

o To automatically deploy the enterprise bean from a J2EE EAR file, use theCBDeployEar tool. For more information, see Deploying an
enterprise bean with the CBDeployEar tool.
o To manually deploy the enterprise bean from a JAR file, do thefollowing:
a Usethe cbelb command to deploy the enterprise bean. Formore information, see Using the cbejb tool to deploy enterprise beans.
b. Build adata object (DO) implementation for use by the enterprise bean byusing Object Builder. For more information, see Building
adata object during CMP entity bean deployment.
c¢. Ingtal the deployed enterprise bean and configure its EJB server(CB). For more information, see Installing an enterprise bean and
configuring its EJB server (CB).
d. Start the EJB server (CB). For more information see the ComponentBroker System Administration Guide.

e. Bind the INDI name of the enterprise bean into the INDI namespace by usingthe g bbind tool. (This step is not necessary on the
AlX,Windows NT, Windows 2000, or Solaris platforms.) For more information,see Binding the INDI name of an enterprise bean
into the INDI namespace.

For more information on manual deployment, see Manually deploying an enterprise bean.

Prerequisite software for the EJB server (CB)

Note:
Any items marked PAO only are needed only if you intend to use thePAOToEJB tool and need the CICS- or IMS-related support.

Y ou must configure the tools provided with the EJB server (CB)environment; however, before you can configure the tools, you must ensurethat you have
installed and configured the following prerequisite softwareproducts contained in the Enterprise Application Server:

« CB Server

« CB Tooals (including the Object Builder, Visua Age Component Developmenttool kit, samples, the Server SDK, and (PAO only) CICS and
IMSApplication Adapter SDK

« (PAO only) CICS/IMS Application run time
« (PAO only) CICS/IMS Application client

Setting the CLASSPATH environment variable in the EJB server (CB) environment

To do any of the tasks listed below, make sure that the classes.zipfile contained in the Java Development Kit isincluded in the CLASSPATHenvironment
variable. In addition, make sure that the following filesare identified by the CLASSPATH environment variable to perform the associ atedtask:

« Developing an enterprise bean or an EJB client: no additionalfiles.
« Deploying an EJB JARfile:
O somojor.zip
o The EJB JAR file being deployed and any JAR or ZIP files on which itdepends

« Running an EJB server (CB) managing an enterprise bean namedbeanName. These JAR files are automatically added to theCLASSPATH
environment variable.

o beanNameS,jar

o The EJB JAR file used to create beanNameS.jar and anyJAR or ZIP files on which it depends
« Running a pure Java EJB client using an enterprise bean namedbeanName:

o beanNameC.jar

0 somojor.zip

« Running an EJB server (CB) that contains an enterprise bean namedclientBeanName that accesses another enterprise bean namedbeanName as a
client. These JAR files are automaticallyadded to the CLASSPATH environment variable.

o clientBeanNameS.jar
o The EJB JAR file used to create clientBeanNameS.jar andany JAR or ZIP files on which it depends
o beanNameC.jar

Creating the components of an enterprise bean

If you use an ASCI| text editor or a Java development tool that does notsupport enterprise bean development, you must create each of the componentsthat
compose the enterprise bean you are creating. Y ou must ensure thatthese components match the requirements of the EJB specification. Thesecomponents
are described in Developing enterprise beans.

To manually develop a session bean, you must write the bean class, thebean's home interface, and the bean's remote interface. Tomanually develop an
entity bean, you must write the bean class, thebean's primary key class, the bean's home interface, and thebean's remote interface. After you have properly
codedtthese components, use the Java compiler tocreate the corresponding Java class files. For example, since thecomponents of the example Account bean

are stored in a specific directory, youcan compile the bean components by issuing the following command:
C. \ MYBEANS\ COM | BM EJS\ DOC\ ACCOUNT> j avac *.j ava

This command assumes that the CLASSPATH environment variable contains allof the packages used by the Account bean.
Creating finder logic in the EJB server (CB)

In the EJB server (CB), finder logic is contained in afinder helperclass. The enterprise bean deployer must implement the finder helperclass before
deploying the enterprise bean and then specify the name of theclass with the -finderhel per option of the cbejb tool.

For each specialized finder method in the home interface (other than thefindByPrimaryKey method), the finder helper class must have a
correspondingmethod with the same name and parameter types. When an EJB clientinvokes a specialized finder method, the generated CB home that
implements theenterprise bean's home interface invokes the corresponding finder helpermethod to determine what to return to the EJB client.

The finder helper class must also have a constructor that takes a singleargument of type com.ibm.IManagedClient.|Home.When the CB home instantiates
the finder helper class, the CB home passes areference to itself to the finder helper constructor. This allows thefinder helper to invoke methods on the CB
home within the implementation ofthe finder hel per methods, which is particularly useful when the CB home is anl Queryabl el terableHome because the
finder helper can narrow the IHome objectpassed to the constructor and invoke query service methods on the CBhome.

The names of the entity bean's container-managed fields are mapped tointerface definition language (IDL) attributes of the same name, except thatan
underscore (_) is appended, in the business object (BO) interface, the CBkey class, and the CB copy helper class. These names are mapped exactlyto IDL
attributes in the DO interface. For example, in the AccountBeanclass, the accountld variable is mapped to accountld_inthe BO interface, the CB key class,
and the CB copy helper class, but ismapped to accountld in the DO interface.

This renaming is necessary, and relevant to finder helper classesimplemented by using the Component Broker Query Service, because the entitybean's
remote interface can also have a property namedaccountld (of potentialy a different type) that must also beexposed through the BO interface. If that isthe
case, then a queryover the BO attribute accountld is done in object space, whereas aquery over the BO attribute accountld_ is done directly against
theunderlying data source, which istypically more efficient.

If ahome interface's specialized finder method returns a singleentity bean, then the corresponding method in the finder helper class mustreturn the
javalang.Object type. When invoked, thefinder helper method can return the EJB object, the CB key object, the entitybean's primary key object, or aCB
managed object framework (M OFW)object. If the finder hel per method returns a CB object or a primarykey object, the CB home determines the
corresponding EJB object to return tothe EJB client.

If ahome interface's specialized finder method returns ajava.util.Enumeration type, the corresponding finder hel permethod must also return
java.util.Enumeration. Wheninvoked, the finder helper method can return an Enumeration of EJB objects, CBkey objects, CB MOFW objects, enterprise
bean primary key objects, or aheterogeneous mix of one or more of the four. The CB home thenconstructs a serializable Enumeration object containing the
corresponding EJBobjects, which is returned to the EJB client.

If ahome interface's specialized finder method returns gjava.util.Collection type, the corresponding finder hel permethod must also return
java.util.Collection. Wheninvoked, the finder helper method can return a Collection of EJB objects, CBkey objects, CB MOFW objects, enterprise bean
primary key objects, or aheterogeneous mix of one or more of the four. The CB home thenconstructs a serializable Collection object containing the
corresponding EJBobjects, which is returned to the EJB client.

An optional base class, namedcom.ibm.gjb.cb.runtime.FinderHel perBase, isprovided with the EJB server (CB) environment to assist in the development
ofafinder helper class. This class encapsul ates the Component BrokerQuery Service, so that the deployer does not need to write any CB-specificcode. The
FinderHel perBase base class contains the methods listed in Table 1. These methods generally take an Object-OrientedStructured Query Language
(O0SQL) predicate as a parameter and return anobject or an Enumeration or Collection of objects that meet the conditions ofthe query.

Table 1. Finder Helper Base class methods

Method Parameter Return type Notes

evaluate 0O0SQL where Enumeration Desired objects instantiated
clause immediately

extendedEvaluate Full OOSQL Enumeration Desired objects instantiated
statement immediately

lazyEvaluate OOSQL where Enumeration Desired objects instantiated
clause as needed

extendedL azyEvaluate Full OOSQL Enumeration Desired objects instantiated
statement as needed

singleEvaluate O0SQL where Object Throws
clause ObjectNotFoundException if

not found

extendedSingleEvaluate Full OOSQL Object Throws

statement ObjectNotFoundException if
not found

evaluateCollection O0SQL where Collection Desired objects instantiated
clause immediately

extendedEval uateCollection Full OOSQL Collection Desired objects instantiated
statement immediately

lazyEvaluateCollection OOSQL where Collection Desired objects instantiated
clause as needed

extendedL azyEval uateCollection Full OOSQL Collection Desired objects instantiated
statement as needed 101

All of these methods throw ajavax.ejb.FinderException if anyerrors occur. The finder helper class does not need to catch thisexception; instead, the class
can passit on to the EJB client.A utility class, namedcom.ibm.gjb.ch.emit.cb.Finder Helper Gener ator (contained in the devel opEJB jar file), isalso
provided to furtherassist the deployer in the development of afinder helper class. Thisutility takes the name of an entity bean's home interface and
generates aJava source file containing a class that extendscom.ibm.gjb.ch.runtime.FinderHel perBase andthat contains skeleton methods for each specialized
finder method in the homeinterface. In addition, each finder helper method contains a call toinvoke the appropriate FinderHel perBase method listed in
Table 1.

By using g bfhgen, the Finder Helper Gener ator utility,the deployer can easily implement the finder helper class. Y ou can usea batch file to run the utility.
For example, to generate a finderhelper class for the example AccountHome interface, enter the followingcommand:

ej bf hgen com i bm ej s. doc. account . Account Hone

This command generates the finder helper class shown in Figure 8.

Figure 8. Code example: Generated AccountFinderHelper classfor the EJB server (CB)

... public class Account Fi nder Hel per extends Fi nderHel per Base { -
Account Fi nder Hel per (1 ManagedC i ent. | Hone i Home) { - } public Enuneration
findLar geAccount s(fl oat amount) { return evaluate("replace with appropriate code"); } o}

To enable the helper class for use in a deployed enterprise bean, thedeployer makes afew simple edits to the parameters of the evaluateinvocations. For
example, for the AccountFinderHelper class, the' r epl ace with appropri ate code" Stringisreplaced with" bal ance_>" + anpunt as
shown in Figure 9. The generated finder helper class can be usedonly with an enterprise bean that is deployed to have a queryable home byusing the

-queryable option of the cbejb tool.
Figure 9. Code example: Completed AccountFinder Helper classfor the EJB server (CB)

...public class Account Fi nder Hel per extends Fi nderHel per Base { -
Account Fi nder Hel per (1 Managedd i ent. | Hone i Home) { L } public Enuneration
fi ndLar geAccount s(fl oat anount) { return eval uat e("bal ance_>" + anount); 1}

Using VisualAge for Java-style finder-helper interfaces

The VisualAge for Java finder-helper interfaces (described in Creating finder logic in the EJB server (AE)) support suffixes that map to the
FinderHel perBase methodsas shown in Table 2.

Table 2. Finder Helper Base method suffixes

Suffix Return type Method

CBWhereClause Enumeration evaluate

CBQueryString Enumeration extendedEvaluate
CBWhereClause |Collection eva uateCollection
CBQueryString Collection |extendedEvaI uateCollection
CBWhereClause Object singleEvaluate
CBQueryString Object extendedSingleEvaluate
CBLazyWhereClause Enumeration lazyEvaluate
CBLazyQueryString |Enumeration extendedL azyEvaluate
CBLazyWhereClause |COI lection lazyEval uateCollection
|CBLazyQueryString [Collection |extendedL azy Eval uateCollection

VisualAge for Javawill automatically create a CB finder-helper class whenyou export an EJB JAR file to CB with the
CBWhereClause,CBQueryString,CBLazyWhereClause, or CBLazyQueryString specified in thefinder-hel per interface.

Alternatively, you can manually create a CB finder-helper class by passingthe Visual Age for Java-style finder-hel per interface as the second parameterto
the g bfhgen utility. For example, you could issue thefollowing command:

ej bf hgen comi bm ej s. doc. account . Account Hone comibm ejs.doc. account. Account BeanFi nder Hel per

When this command is invoked with aVisualAge for Java-style finder-helperinterface as input, it fillsin the OOSQL statements instead of emitting
the"repl ace with appropriate code" string and compilesthecode. There is no need to manually edit the code when passing aVisual Age for
Java-style finder-hel per interface that contains al of theOOSQL strings. The deployer needs to add the compiled CB finder-hel perclass to an EJB JAR file;
aternatively, it can be packaged in a separateJAR file by using the cbejb tool with the -serverdepparameter.

Using lazy enumeration

The Enumeration returned by the evaluate method is called eager,because all the enterprise bean references that match the query are broughtinto memory
and stored in the enumeration before being passed from the serverto the client. If the number of references returned by the query islarge, the deployer can
use lazy enumeration; that is, itincrementally fetches more enterprise bean references only when the clientcalls the nextElement method on the
Enumeration.

102

To use lazy enumeration, change the call to the evaluate method in theFinderHelper to a call to the lazyEvaluate method. A transaction mustalready be
started before the home's finder method is called. Thecaller must not call the nextElement method on the Enumeration after thecompletion of the
transaction.

At configuration time, the System Management End User Interface must beused to enable the settings for lazy Enumerations. Refer to Configuring systems
management to enable lazy enumeration

Creating an EJB JAR file for an enterprise bean

Once the bean components are built, the next step is package them into an EJBJAR file. The WebSphere Application Server jetace tool canbe used to
create an EJB JAR file for one or more enterprise beans andgenerate a deployment descriptor file for each enterprise bean. Theresulting EJB JAR file
contains each enterprise bean's class files anddepl oyment descriptor and an EJB-compliant manifest file.

Note:

The jetace tool can only be used to create JAR files that arecompatible with version 1.0 of the EJB specification. If youneed to create JAR files
compatible with version 1.1, use theApplication Assembly tool. See Using the Application Assembly Tool.

Before you create an EJB JAR file for one or more enterprise beans, you mustdo one of the following:
« Placeall of the components of each enterprise bean into a singledirectory.

« Create astandard JAR file that contains the class and interface fil es of each enterprise bean by using the Java Archiving tool (jar).The following
command, when run from the root directory of the Accountbean’s full package name, can be used to create the fileAccountin.jar with a default
manifest file:

C.\ MYBEANS> jar cfv Accountln.jar comibm ejs\doc\account*.cl ass
« Create astandard ZIP file that contains the class and interface files ofeach enterprise bean by using atool like WinZip(R).

Running the jetace tool
To run the jetace tool, type jetace on the commandline. The window shown in Figure 10 is displayed.

Figure 10. Theinitial window of jetace tool

E’iietace -- AccountEJB _jar M=l E
File View Pt :

- Current Enterprise Beans:

comfibmiejsidocfaccount@occount ser

R [=3

Delete

- Status:

o

To generate an EJB JAR file with the jetace tool, do thefollowing:

1. Click the File->L oad item, and select the JAR or ZIP file orthe directory containing one or more enterprise beans. Use theBr owse button to obtain
thefile or directory.

Note:

Finished saving the output file beans jariDABeanWorklAccountEJB jar.

To specify the current directory as the input source, type an = (equalscharacter) in the File Name field of the browser window and
clickOpen.

103

If you are creating a new EJB JAR file, click New and a defaultname for the deployment descriptor (for example, UNAMED_BEAN_1.ser)appears
in the Current Enterprise Beans list box. (Y ou canedit this name on any of the remaining tabbed pages of the jetaceGUI by editing the Deployed
Namefield at the top of each tabbedpage. Thisfield is described in Specifying the enterprise bean components and INDI home name.)

If you are editing an existing EJB JAR file, the name of the deploymentdescriptor for each enterprise bean in the EJB JAR fileisdisplayed in
theCurrent Enterprise Beanslist box, as shown in Figure 10.

o If you do not want to include a listed enterprise bean in the resultingEJB JAR file, highlight that enterprise bean's deployment descriptor
andclick Delete. This action removes the deployment descriptorfrom the list box.

o If you want to create a duplicate of an enterprise bean, highlight itsdeployment descriptor and click Copy. This action adds a newdefault
deployment descriptor to the list box. Copying can be useful ifyou want to create a deployment descriptor for one enterprise bean that
issimilar to the deployment descriptor of the copied bean. Y ou must thenedit the new deployment descriptor.

. To create anew deployment descriptor or edit an existing one, highlightthe deployment descriptor and press the Edit button. Thisaction causes the

Basic page to display. On this page, setor confirm the names of the deployment descriptor file, the enterprise beanclass, the home interface, and the
remote interface and specify the INDI nameof the enterprise bean. For information, see Specifying the enterprise bean components and INDI home

name.

. Set the entity bean or session bean attributes for the enterprisebean's deployment descriptor on the Entity orSession page, respectively. For

information on settingdeployment descriptor attributes for entity beans, see Setting the entity bean-specific attributes. For information on setting
deployment descriptorattributes for session beans, see Setting the session bean-specific attributes.

. Set the transaction attributes for the enterprise bean's deploymentdescriptor on the Transactions page. For information, see Setting transaction

attributes.

5. Set the security attributes for the enterprise bean's deploymentdescriptor on the Security page. For information, see Setting security attributes.

6. Set any environment variables to be associated with the enterprise bean onthe Environment page. For information, see Setting environment

8.

variables for an enterprise bean.

. Set any class dependencies to be associated with the enterprise bean onthe Dependencies page. For information, see Setting class dependencies for

an enterprise bean.

After you have set the appropriate deployment descriptor attributes foreach enterprise bean, click File->Save Asto create an EJB JARfile. (If
desired, aZIP file can be created instead of a JARfile.)

The jetace tool can also be used to read and generate an XMLversion of an enterprise bean's deployment descriptor. To read anXML file, click the
File->Read XML item. To generate an XML file from an existing enterprise bean (after saving the output EJB JAR file)click the File->Write XML item.

The jetace tool can also be run from the command line to createan EJB JAR file. The syntax of this command follows, wherexmiFile is the name of an

XML

file containing the enterprisebean's deployment descriptor:

% jetace -f xmFile

For more information on the syntax of the XML file required for thiscommand, see Appendix C, Using XML in enterprise beans (CB Only).

Specifying the enterprise bean components and JNDI home name

The Basic pageis used to set the full pathname of the deploymentdescriptor file and the Java package name of the enterprise bean class, homeinterface, and
remote interface and to set the enterprise bean's INDIhome name. To access this page, which is shown in Figure 11, click the Basic tab.

Figur

e 1l. The Basic page of thejetace tool

104

Eéf’iietace -- com/ibm/ejzfdocf account/Account_ser

Deployed Mame: |cnmIitJmIejSrdncfaccnuntfﬁccuunt.ser (Entity Bean)
Basic | Entityl HEEEO | Tranaactinnal Securih_.rl Erwironment Dependenciesl

-Class Mames:

Enterprise Bean Class:

||:|:|m.ibm.ej5.d|:u:.a|:cuunt.AchuntEean ;l

Haome Interface:

|cn:|m.ihm.ejs.dnc.accnunt.ﬁcmuntHnme LI

Remaote Interface:

||:|:|m.ibm.eja.dnc.accnuntﬁccuunt ;l

~dMDI:

JHDI Home Mame:
fsccount Set

In the Basic page, you must select or confirm values for the followingfields:

Deployed Name--The pathname of the deployment descriptorfile to be created. It is recommended that this directory name matchthe full package
name of the enterprise bean class. For the Accountbean, the full nameiscom i bm ej s/ doc/ account / Account . ser.

Enter prise Bean Class--Specify the full package name ofthe bean class. For the Account bean, the full name
iscom i bm ej s. doc. account . Account Bean.

Home I nter face--Specify the full package name of thebean's home interface. For the Account bean, the full name
iscom i bm ej s. doc. account . Account Horre.

Remote | nterface--Specify the full package name of thebean's remote interface. For the Account bean, the full name
iscom i bm ej s. doc. account . Account.

JNDI Home Name--Specify the INDI home name of thebean's home interface. This the name under which the enterprisebean's home interface is
registered and therefore is the name that mustbe specified when an EJB client does alookup of the home interface.For the Account bean, the INDI
home nameisAccount .

Setting the entity bean-specific attributes

To set the deployment descriptor attributes associated specifically with anentity bean, click the Entity tab in the jetace tool todisplay the Entity page
shown in Figure 12. Thistab isdisabled if the highlighted enterprisebean in the initial jetace window is a session bean.

Figure 12. The Entity page of the jetace tool

105

Eéf’,aietace -- com{fibm/ejzfdocfaccountfAccount_ ser

Deployed Mame: |cnmIitJmIejsIdncIaccnunﬂAccuunt.ser (Entity Bean)

Basic Entity |Eessinn | Transactinnsl Securiwl Enviranrment Dependenciesl

- Settings:

Primary kKey Class:

||:|:|m.ibm.Ejs.dnc.accnunt.ﬁccnuntKey Set I

Cantainer-Managed Fields:

v type
¥ balance Select All
[+ accountld

Deselect All

[Be-entrant?

In the Entity page, you must select or confirm values for thefollowing fields:

« Primary Key Class--Specify the full package name of thebean's primary key class. For the example Account bean, the fullname
iscom.ibm.gjs.doc.account.AccountKey.

« Container-Managed Fields--Check the check boxes of thevariables in the bean class for which the container needs to handlepersistence
management. Thisis required for entity beans with CM Ponly, and must not be done for entity beans with BMP. Forthe Account bean, the type,
balance, and accountld variables are containermanaged, so each box is checked.

« Re-entrant?--Check this check box if the bean isreentrant. By default, an entity bean is not reentrant. If aninstance of a non-reentrant entity beanis
executing a client request in atransaction context and it receives another request using the same transactioncontext, the EJB container throws the
java.rmi.RemoteExceptionexception to the second request. Since a container cannot distinguishbetween alegal loopback call from another bean and
anillegal concurrent callfrom another client or client thread, a client must take care to preventconcurrent calls to a reentrant bean. The example
Account bean isnot reentrant.

Setting the session bean-specific attributes

To set the deployment descriptor attributes associated specifically with asession bean, click the Session tab in the jetace toolto display the Session page
shown in Figure 13. Thistab is disabled if the highlighted enterprisebean in theinitial jetace window is an entity bean.

Figure 13. The Session page of thejetace tool

106

Eéf’,i jetace -- comfibm/{ejs/doc/transfer/Transfer ser

Deployed Mame: ||:|:|mIitJmIejsIdncItransferﬂ'ransfer.ser (Session Bean)

Elasicl Entity Session |Transa|:ti|:|n5| Securiwl Environment Dependenciesl

- Settings:

Session Timeout (secaonds):

fo Set

State Managerment Attribiute:
|STATELESS_SESSION =

On the Session page, you must select or confirm values for thefollowing fields:

« Session Timeout (seconds)--Specify the idle timeout valuefor this bean in seconds; a0 (zero) indicates that idle beaninstances timeout after the
maximum allowable timeout period haselapsed. For the Transfer bean, the valueisleft at O toindicate that the default timeout is used.

Note:
In the EJB server (CB) environment, this attribute is not used.

« State Management Attribute--Specify whether the bean isstateless or stateful. The example Transfer bean isSSTATELESS _SESSI ON. For more
information, see Stateless versus stateful session beans.

Setting transaction attributes

The Transactions page is used to set the transaction andtransaction isolation level attributes for al of the methods in an enterprisebean and for individual
methods in an enterprise bean. If an attributeis set for an individual method, that attribute overrides the defaultattribute value set for the enterprise bean asa
whole.

Note:

In the EJB server (CB), the transactional attribute can be set only for thebean as awhole; the transaction attribute cannot be set on
individualmethods in a bean.

To access the Transaction page, click theTransactions tab in the j etace tool. Figure 14 shows an example of this page.

Figure 14. The Transactions page of the jetace tool

107

Eéf’,i jetace -- Account.ser M=l

Deployed Mame: IPU:EDUM.SEf (Entity Beamn)

Elasicl Entitg.fl Session Transactions |SEI3LIHT§."| Envirnnmentl Dependenciesl

- Defaults:
Transaction Attribiute:

T*_REQUIRED =]

[solation Level:

REPEATABLE_READ

- Specified Methods:
Method:

Transaction Attribiute:
add

ejbActivate | =]
ejibhCreate

ejbhCreate |solation Level:

ejbLoad

ejhPassivate I ;I
gjihPostCreate

eibPostCreate =

On the Transactions page, you must select or confirm values forthe following fields in the Defaults group box:

« Transaction Attribute--Set avalue for the transactionattribute. The values for this attribute are described in Enabling transactions and security in
enterprise beans. For the Account bean, the valueTX_MANDATORY is used because the methods in this bean must beassociated with an existing
transaction when invoked; as aresult, theTransfer bean must use the value that begins a new transaction or passes on anexisting one.

« Isolation L evel--Set avalue for the transaction isolationlevel attribute. The values for this attribute are described in Enabling transactions and
security in enterprise beans. For the Account bean, the valueREPEATABLE_READ s used.

If necessary, you can also set these attributes on individual methods byhighlighting the appropriate method and setting one or both of the attributesin the
Specified M ethods group box.

Setting security attributes

The Security pageis used to set the security attributes for all ofthe methods in an enterprise bean and for individual methods in an enterprisebean. If an
attribute is set for an individual method, that attributeoverrides the default attribute value set for the enterprise bean as awhole.

To access the Security page, click the Security tabin the jetace tool. Figure 15 shows an example of this page.

Figure 15. The Security page of the jetace tool

108

Eéf’,aietace -- com{fibm/ejzfdocfaccountfAccount_ ser

Deployed Mame: |cnmIitJmIejsIdncIaccnunﬂAccuunt.ser (Entity Bean)

Elasicl Entitg.fl SEs s | Transactions Secutity | Enviranment Dependenciesl

- Defaults:
Fun-As Maode:

|SYSTEM_IDENTITY =l

Run-As ldentity:

- Specified Methods:
Method:

unsetEntityC ontest A5 TS

sefBalance b
subtract I _I
getBalance Run-As |dentity:

ejhCreate

ejbCreate |

add

ejbLoad

ejbStore LI

On the Security page, you must select or confirm values for theRun-As Mode field in the Defaults group box. Thisfield must be set to one of the values
described in Setting the security attribute in the deployment descriptor. The run-as identity attribute is not usedby the EJB server (CB environment), so you

cannot set the value for thecorresponding field in the jetace tool.

If necessary, you can also set the run-as mode attribute onindividual methods by highlighting the appropriate method and setting theattribute in the
Specified M ethods group box.

Setting environment variables for an enterprise bean

The Environment page is used to associate environment variables(and their corresponding values) with an enterprise bean. To access theEnvironment
page, click the Environment tab in thejetace tool. Figure 16 shows an example of this page.

Figure 16. The Environment page of the jetace tool

109

Eﬁf’i jetace -- comhibmAejsidocitransfer\Transfer ser

Deployed Mame: ||:|:|m1ibmlejSldncltranafenTransfer.ser [unknown typed

Elaaicl Entit‘:.fl SEsainn | Transactions | Security Environrment Dependenciesl

- Environment Settings:

Marme: Yalue:
JEDIMame Arcount
javax.naming. Context IMITIAL_COMNT... |com.ibm.ejs.ns.jndi. CHInitialContext. ..
javax.naming. Context. PROVIDER_U... |iiopdibankserver.mybank.com:90149

Marme: IIEE

Walue: fccount

The JHDI name of the Account bean. =]
Comments: v
] | 5

5al Delets |

To set an environment variable to its value, specify the environmentvariable name in the Name field and specify the environmentvariables value in the
Valuefield. If desired, use theComment field to further identify the environment variable.Press the Set button to set the value. To delete anenvironment
variable, highlight the variable in the EnvironmentSettings window and press the Delete button.

For the example Transfer bean, the following environment variables arerequired:
« JNDIName--The INDI name of the Account bean, which is accessed by theTransfer bean. For more information, see Figure 11.

« javax.naming.Context.INITIAL_CONTEXT_FACTORY --Thename of theinitial context factory used by the Transfer bean to look up theIJNDI
name of the Account bean

« javax.naming.Context.PROVIDER_URL--The locationof the naming service used by the Transfer bean to ook up the INDI name ofthe Account
bean.

For more information on how these environment variables are used by theTransfer bean, see Implementing the ejbCreate methods.

Setting class dependencies for an enterprise bean

The Dependencies pageis used to specify classes on which theenterprise bean depends. To access the Dependencies page,click the Dependenciestab in
the jetace tool. Figure 17 shows an example of this page.

Figure 17. The Dependencies page of the jetace tool

110

Eéf’,aietace -- com{fibm/ejzfdocfaccountfAccount_ ser

BN E Y E =N comfibmiejsfidocfaccountBoccount ser (Entity Bean)

Elasicl Entitg.fl SEs s | Transactinnsl Securiwl Emviranment Dependencies

-Class Dependencies:

comfibmiejsfdocfaccounttbccountHome. class
comfibmiejsidociaccountiAccountkey.class
comfibmiejsidocfaccountinsufiicientFundsException.class

Class Mame:

Comments:

Add Delete

Generally, the jetace tool discovers class dependenciesautomatically and sets them here. If there are other class dependenciesrequired by an enterprise
bean, you must set them here by entering thefully-qualified Java class name in the Classname field. Ifdesired, use the Comment field to further identify
thedependency. Press the Add button to set the value. Toremove a dependency, highlight it in the Class Dependencies windowand press the Delete button.

For the example Account bean, the j etace tool set thedependencies shown in Figure 17.

Deploying an enterprise bean with the CBDeployJar tool

The CBDeployJar tool automates the tasks associated withdeploying an enterprise bean. It can be used to do the following:

« Deploy enterprise beans from JAR files

« Verify whether enterprise beans have been deployed from a JAR file

« Undeploy enterprise beans associated with a JAR file
The CBDeployJar tool can be run on JAR files that are compatiblewith both version 1.0 and version 1.1 of the EJBspecification. It can be used to deploy
the following types of enterprise beans:

« Session beans

« Entity beanswith BMP

« Entity beanswith CMP that use top-down mapping or have mappinginformation from VisualAge for Java

It cannot be used to deploy entity beans with CM P that usemeet-in-the-middle mapping and were not created using Visual Age forJava. These enterprise
beans must be manually deployed as described in Manually deploying an enterprise bean.

When it deploys an enterprise bean from a JAR file, theCBDeployJar tool performs the following tasks:

1. If the JAR fileis compatible with version 1.1 of the EJBspecification, it parses the XML of the version 1.1 deploymentdescriptor and generates a
new JAR file with version 1.0-styleserialized deployment descriptors. (Thisis necessary because otherComponent Broker EJB tools only work with
version 1.0 JAR(iles.) It also registers al EJB 1.1 deployment descriptorenvironment variables in the INDI namespace
underjava:comp/env/environVarName, where environVar Nameis the name of the environment variable.

2. It runsthe cbejb tool on the JAR file, using any optionsspecified by the user.

3. It runs the make command for the platform, using any optionsspecified by the user. 111

4. 1t mapsthe persistent fieldsin entity beans with CMP to databasetables.

5. It configures and starts a Component Broker EJB server by running a seriesof wscmd commands that load the application family into
ComponentBroker systems management; create a new management zone, configuration,and EJB server; configure the deployed enterprise beans
onto the EJBserver; and start the EJB server.

6. For enterprise beans written to version 1.1 of the EJBspecification, it registers references to these beans in the appropriate placein the INDI
namespace under java:comp/env/ejb. (This is necessaryto prevent naming collisions between enterprise beans.)
The syntax of the CBDeployJar command is as follows:
CBDepl oyJar ejb-jarFile hostname [-cbejb options] [-nake options] [-noTabl es] [-prepJar Only]
[-cbej bOnly] [-nakeOnly] CBDepl oyJar ejb-jarFile hostname -isDepl oyedCBDepl oyJar ejb-jarFile
host name - undepl oy
where:
« gb-jarFile -- The name of the JAR file (required).This must be the first parameter.

« hostname -- The fully-qualified host name of the machinewhere the enterprise beans are being deployed (required). This must bethe second
parameter.

« -cbejb options -- Specifies the desired options for thecbejb command, which is run by the CBDeployJar tool aspart of the deployment process. If
thisflag is not set, thecommand's default options are used. For a complete list ofcbejb command-line options, see Using the cbejb tool to deploy
enterprise beans.

Note:
Use double quotes (") for options passed to the -cbejb and -make flags thatcontain spaces.

« -make options -- Specifies the desired options for themake command for the platform, which is run by theCBDeployJar tool as part of the
deployment process. If thisflag is not set, the command's default options are used. For acomplete list of make options, see the documentation for
yourcompiler.

« -noTables-- Prevents the CBDeployJar tool from creatingtables for persistent fields in entity beans with CMP. Y ou must specifythisflag if you are
using entity beans with CMP that are backed by a databaseother than DB2. (The CBDeployJar tool only creates DB2database tables.)

« -prepJarOnly -- Stops the process after converting a versionl.1-compatible JAR file to the version 1.0 format (stepl).
« -cbeglbOnly -- Stops the process after running the cbejbtool (step 2).
« -makeOnly -- Stops the process after running the makecommand (step 3).

« -isDeployed -- Verifies whether a specific JAR file has beendeployed. This option can be specified only with theejb-jarFile and hostname
parameters.

« -undeploy -- Undeploys a JAR file that had previously been deployedwith the CBDeployJar tool. This option can be specified onlywith the
gjb-jarFile and hostname parameters. The-undeploy option removes all of the files generated by the cbej band make commands, deletes the Data
Object implementations forentity beans with CM P, del etes the server configuration and associatedinformation, stops the EJB server, and deletes any
references to EJB1.1-compatible enterprise beans from the INDI namespace.

The following are examples of using the CBDeployJar command:

CBDepl oyJar EJBsavi ngsAccount.jar test.netbank.ibm conCBDepl oyJar EJBcal cul ator.jar trident.ibmcom
-make 1VB_COVBI NE_SOURCE=0CBDepl oyJar EJBportfolio.jar bringup.ibmcom-cbejb "-dbnane

I nvest or s" CBDepl oyJar EJBhel |l 0.jar tasmani a.i bm com - noTabl esCBDepl oyJar EJBtest.jar trip.ibmcom
- i sDepl oyedCBDepl oyJar EJBtest.jar trip.ibmcom -undepl oy

Deploying an enterprise bean with the CBDeployEar tool

The CBDeployEar tool automatically deploys enterprise beans fromJAR files encapsulated in J2EE EAR files. Thistool extracts a JAR filefrom the
specified EAR file, then runs the CBDeployJar tool on theextracted file to deploy the enterprise bean.
The syntax of the CBDeployEar command is as follows:
CBDepl oyEar earFile hostname [-cbejb options] [-nake options] [-noTables] [-prepJarOnly]
[-cbej bOnly] [-makeOnly] [-bi ndEJBRefs] CBDepl oyEar earFil e hostnane -isDepl oyedCBDepl oyEar earFile
host name - undepl oy
where:
« earFile -- The name of the J2EE EAR file (required). This must be the first parameter.

« hostname -- The fully-qualified host name of the machinewhere the enterprise beans are being deployed (required). This must bethe second
parameter.

« -cbejb options -- Specifies options for the cbejbcommand, which is run when the CBDeployEar tool calls theCBDeployJar tool. See Deploying an
enterprise bean with the CBDeployJar tool for more information.

« -make options -- Specifies options for the makecommand, which is run when the CBDeployEar tool calls theCBDeployJar tool. See Deploying an
enterprise bean with the CBDeployJar tool for more information.

« -noTables-- Stops the tool from creating tables for persistentfields in entity beans with CMP. Y ou must specify thisflag if you areusing entity
beans with CMP that are backed by a database other thanDB2.

o -prepJarOnly -- Stops the process after converting a versionl.1-compatible JAR file to the version 1.0 format.
« -cbeglbOnly -- Stops the process after running the cbej btool.

« -makeOnly -- Stops the process after running the makecommand.
112

« -bindEJBREefs -- Binds references to EJB 1.1-compatibl eenterprise beans into the INDI namespace. This option is specified bydefault. However,
there are situations when it is convenient to skipthe cbejb and make steps and perform the JINDI bindingstep when running the CBDeployEar
tool-- for example, if theEJB server was not started when you first ran the CBDeployEar tooland you want to save time when running the tool

again.
« -isDeployed -- Verifies whether a JAR file has been deployed from aspecific EAR file. This option can be specified only with theearFile and
hostname parameters.

« -undeploy -- Undeploys a JAR file that had previously been deployedfrom an EAR file with the CBDeployEar tool. This option canbe specified
only with the earFile and hostnameparameters.
The following are examples of using the CBDeployEar command:

CBDepl oyEar EJB11Bi g3. ear greenl and.i bm conCBDepl oyEar EJB11Bi g3. ear greenl and.i bm com
- bi ndEJBRef sCBDepl oyEar EJB11Bi g3. ear greenl and.i bm com -i sDepl oyedCBDepl oyEar EJB11Bi g3. ear
greenl and. i bm com - undepl oy

Manually deploying an enterprise bean

Y ou can manually deploy JAR filesthat contain any type of enterprise bean,regardless of which tool was used to create the files. The followingsteps
summarize the tasks that you must complete to manually deploy enterprisebeans onto a Component Broker EJB server:

1. Usethe chbelb command to deploy the enterprise bean.

Build a data object (DO) implementation for use by the enterprise bean byusing Object Builder (This step is part of the deployment process).
Install the deployed enterprise bean and configure its EJB server(CB).

Start the EJB server (CB) as described in the Component Broker System Administration Guide.

Bind the INDI name of the enterprise bean into the INDI namespace by usingthe g bbind tool. (This step is not necessary on the AlX,Windows
NT, Windows 2000 or Solaris platforms.)

g s~ w DN

This section describes how to perform steps 1, 2, 3 and 5.
Using the cbejb tool to deploy enterprise beans

During deployment, a deployed JAR fileis generated from an EJB JARfile. Use the cbejb tool to deploy enterprise beans in theEJB server (CB)
environment. The deployed JAR file contains classesrequired by the EJB server. The cbejb tool also generatesthe data definition language (DDL) file used
during installation of theenterprise bean into the EJB server (CB).

If you want to use an enterprise bean on a different machine from the oneon which it was developed (and on which you ran cbejb), follow theguidelines for
installing applications in the Component Broker documententitled System Administration Guide. If anenterprise bean uses additional files (such as other
JAR files) that need tobe copied with the enterprise bean, specify these filesin the propertiesnotebook of the application (not the family).

Note:

The cbejb tool can only be used to deploy JAR files that arecompatible with version 1.0 of the EJB specification. Tomanually deploy aversion
1.1-compatible JAR file, you must firstrun the CBDeployJar tool with the -prepJarOnly option to convertthe JAR file to the version 1.0 format. See
Deploying an enterprise bean with the CBDeployJar tool for more information.

The cbejb tool has the following syntax:

chejb ejb-jarFile [-rsp responseFile][-ob projDir] [-nm [-ng] [-nc] [-cc] [-bean beanNanes]
[-platform [NT | AIX | OS390 | Solaris | HP]][-guisg] [-usecurdopo] [-nousraction] [-dllname DLLName
beanNane] [- pol ynor phi chone [beanNanes]] [-queryabl e [beanNanes]][-dbnane DBNane

[beanNane]] [- cacheddb2v52 | -cacheddb2v6l | -db2v61l |-oracle | -inform x |-jdbcaa [beanNanes]]|[-hod

| -eci | -appc | -exci | -otma | -ccf [beanNanes]] [-fam |y fam | yNane [beanNanes]] [-fi nderhel per

fi nder Hel per C assName [beanNanmes]] [-usewstringi ndo [beanNanes]] [-workl oadmanaged

[beanNanes]] [-clientdep depl oyed-jarFile [beanNanes]] [-serverdep deployed-jarFile

[beanNanes]] [-sentinel [JavaPrimitiveQObjectType=]sentinel Val ue

[beanNanes[+CMFi el dNames]] [-strbehavior [strip | corba] [beanNanmes[+CMVri el dNanes]]

The gjb-jarFile parameter is required; it must be the firstargument and it must specify avalid EJB JAR file. If the -ob option isused, it must come second
on the command line. The other options can bespecified in any order. The beanNames argument is alist ofone or more fully qualified enterprise bean
names delimited by colons(:) (for example,com.ibm.gjs.doc.transfer. Transfer:com.ibm.ejs.doc.account.Account).For the enterprise bean name, specify
either the bean's remote interfacename or the name of its deployment descriptor. If thebeanNames argument is not specified for a particular option, thenthe
effect of that option is applied to all enterprise beans in the EJB JARfile for which the option isvalid.

Note:
Therelative file name of the JAR files specified by thegjb-jarFile variable and by the two deployed-jar Filevariables must be different from each
other. JAR file names that havethe same relative file names but different paths are not valid.
The rest of the command parameters are optional and can be specified in anyorder. For explanation purposes, the options can be grouped by functioninto
three general categories:
« Deployment options, which govern the generation and compilation ofcode.
« Storage options, which govern persistent storage.
« Execution options, which govern the run time environment.
The -rsp option does not fit into these categories. This optionallows you to create a file containing some or al of the other options andtheir values (except
the gjb-jarFile parameter). Y ou canthen submit the file to the cbejb command. This alows thecommon setting to be saved and makes commands easier to
issue.
113

« Deployment options

o

-ob projDir -- Specifiestherelative or full path of theproject directory in which the generated files are stored. If thisoption is not specified,
the current working directory is used as the projectdirectory.

Compilation modifiers -- By default, the cbejb tool doesthe following for each enterprise bean contained in the EJB JAR file:
1. Generate and import XML.

2. Generate code--Creates a DDL file, makefile, and other source filesfor each enterprise bean contained in the EJB JAR file. These
files areplaced in the specified project directory.

3. Compile and link--Invokes the generated makefile to compile anapplication. Each application file is placed in the specified
projectdirectory. While the Dynamic Link Libraries (DLLSs) are being linked,numerous duplicate symbol warnings appear; these
warnings are harmlessand can be ignored.

The following command options modify the default compilationbehavior:
= -NM -- Suppresses the XML-processing step.
= -Ng -- Suppresses the code-generation step.
= -NC -- Suppresses the compilation-and-linking step.

= -CC-- Removes previously compiled and linked code by invoking thegenerated makefile to remove non-source files. This option
must be usedif you specify either of these combinations:

= -ng-nc
= -NM-ng-nc

-bean beanNames -- | dentifies the enterprise beans in theEJB JAR file to be deployed. By default, all enterprise beansin theEJB JAR file are
deployed. To deploy multiple enterprise beans, delimitthe bean nameswith a: (colon). For example, Account : Tr ansf er.

-platform -- Specifies the platform for which to generatecode. This also sets the deployment platform in the Object Buildertool, but it does
not set the platform for viewing, generating, or applyingdevelopment constraints. Y ou must set these manually by using thechoices on the
Platform menu.

-guisg -- Directs the tool to present the Object Builder graphicaluser interface (GUI), which enables the tool to collect options from the
userrather than from the command line.

-usecurdopo -- Directs the tool to use the current mapping betweenthe data object and the persistent object in the existing model rather
thanbringing up the Object Builder interface to build a mapping. Use thisoption when redeploying beans for which a satisfactory mapping
areadyexists. The deployment will proceed automatically.

When you first deploy CMP entity beans, you must not use thisoption. The tool will then build the default mapping between the dataand
persistent objects and, if you specify the -guisg option, launch theObject Builder interface.

-nousraction -- Directs the tool to use only the information on thecommand line after building the mapping between data objects and
persistentobjects. Otherwise, if you have also specified the -guisg option, thetool prompts you for the next action.

-polymorphichome -- Specifies the beans that use polymorphic homeinterfaces.

-queryable -- Directs the tool to generate a queryable CB homeobject. This option can be used only for entity beans with CMP thatstore their
persistent datain arelational database. This option mustbe used if the finder helper class, which is used to implement the findermethodsin a
CMP entity bean, uses the CB query service. This optionmust not be used if an entity bean uses CICS or IMS to store itspersistent data.

By default, the interface definition language (IDL) interface of anenterprise bean's CB home extends the IManagedClient::|Homeclass, and
the home implementation extends thel ManagedA dvancedServer::| SpecializedHome class. An IDLinterface of a queryable home extends
thel M anagedAdvancedClient::1Queryabl el terableHome class, and the homeimplementation extends

thel ManagedA dvancedServer::| SpecializedQueryabl el terableHomecl ass.

In addition, the generated BO interface is marked as queryable. Forqueryable homes, the EJB client programming model remains
unchanged; however, a Common Object Request Broker Architecture (CORBA) EJB client cantreat the EJB home as
anlManagedAdvancedClient::1 Queryabl el terableHome object.

For more information on queryable homes, see the Advanced Programming Guide.

« Storage options

114

O

O

O

-dbname DBName -- Specifies the name of the database forbeans with CMP.

Database choices--The default database for persistent storage of contai ner-managed beansis DB2 version 5.2 with embedded SQL.Y ou can
override this default by using:

= -cacheddb2v52 -- Identifies entity beans with CMP that require DB2version 5.2 used with the Cache Service to store persistentdata.
= -cacheddb2v6l -- Identifies entity beans with CMP that require DB2version 6.1 used with the Cache Service to store persistentdata.
= -db2v61 -- Identifies entity beans with CMP that require DB2 version6.1 used with embedded SQL to store persistent data.

= -oracle -- |dentifies entity beans with CMP that require Oracle tostore persistent data. If you specify this option, you must also usethe
-queryable option.

= -informix -- Identifies entity beans with CMP that require Informixto store persistent data. A given transaction cannot access more
thanone Informix database from a CB server. To access two I nformixdatabases in one transaction, you must access each from a
different CBserver. If you specify this option, you must also use the -queryableoption.

= -jdbcaa-- Identifies entity beans with BMP that require JDBC tostore persistent data. This option enables the beans to joindistributed
transactions by allowing the bean implementation to connect to theTransaction Service. Beans with BMP that do not use this option
willhandle transactions in an implementati on-dependent manner.

-hod -- Identifies entity beans with CMP that use Host-on Demand(HOD) to store persistent data. These beans will use the SessionService.
This option must not be used for enterprise beansgenerated from the PAOToEJB tool.

o -eci -- |dentifies entity beans with CMP that use the external callinterface (ECI) to store persistent data. These beans will use theSession
Service. This option must not be used for enterprisebeans generated from the PAOToEJB tool.

0 -appc -- ldentifies entity beans with CMP that use advancedprogram-to-program communications (APPC) to store persistent data.These
beans will use the Transaction Service. This option mustnot be used for enterprise beans generated from thePAOToEJB tool.

0 -exci -- Identifies entity beans with CMP that use the EXCI to storepersistent data. These beans will use the Transaction Service.This option
must not be used for enterprise beans generated fromthe PAOToEJB tool.

o -otma-- ldentifies entity beans with CMP that use the OTMA to storepersistent data. These beans will use the Transaction Service. This
option must not be used for enterprise beans generated fromthe PAOT 0EJB tool.

o -ccf -- Identifies entity beans with CMP that use the SAP interface,which is a common connector framework (CCF) back end. These beans
willuse the Transaction Service.

« Execution options

o -family familyName -- Specifies the application familyname to be generated. By default, this name is set to the name of theEJB JAR file
with the word Family appended. This option can bespecified more than once, as long as the values are unique.

o -finderHelper finder Hel per ClassNameremotel nterface-- Specifies the finder hel per class name(finder Hel per ClassName) and remote
interface name(remotel nterface) for entity beans with CMP. If unspecified,it is assumed that no finder helper classis provided by the
deployer.This option can be specified more than once, as long as the values areunique. For more information on finder helper classes, see
Defining finder methods.

0 -usewstringindo -- Directs the tool to map the contai ner-managedfields of an entity bean to the wstring IDL type (rather than the string
type)on the DO. It is preferable to map to the string IDL type if the datasource contains single-byte character data; it is preferable to map
tothe wstring IDL type if the data source contains double-byte or Unicodecharacter data.

o -workloadmanaged -- Directs the tool to configure a CMP entity beanor a statel ess session bean into a workload managing container and
with aworkload managed home interface. For a BMP entity bean or a stateful session bean it directs the tool to configure the bean only with
aworkloadmanaged home interface.

o -clientdep deployed-jarFile -- Specifies the name of adependent JAR required by an EJB client that uses the enterprise bean beingdepl oyed.
Y ou must specify the full path of the file. To createmultiple client JAR files, you must specify this option for each JARfile. This option can
be specified more than once, as long as thevalues are unique.

o -serverdep deployed-jarFile -- Specifies the name of adependent JAR required by the EJB server (CB) that runs the deployedenterprise
bean. Y ou must specify the full path of the file. Tocreate multiple dependent JAR files, you must specify this option for each JARfile. This
option can also be used to identify existing JAR files thatcontain classes required by the enterprise bean being deployed; when thisis done,
the EJB server's CLASSPATH environment variable is automaticallyupdated to include this specified JAR file. This option can bespecified
more than once, as long as the values are unique.

o -sentinel sentinelVValue -- Specifies an value for a Javatype or container-managed field for the deployed beans. If you set avalue for a Java
type, do not put spaces around the = (equals) sign.

o -strbehavior -- Specifies how the tool should determine the behaviorof the strings for a container-managed string fields in deployed
beans.The corba value indicates that strings should be handled as CORBAstrings; the strip value directs the tool to remove trailing spaces
fromstrings.

For session beans or entity beans with BMP, the code generation processruns without additional user intervention. For entity beans with CMP,the Object
Builder GUI is displayed during execution of the command, and youmust create a DO implementation to manage the entity bean's persistentdata. For more
information, see Building a data object during CMP entity bean deployment.

The cbejb tool deploys enterprise beans by generating extensiblemarkup language (XML) files and importing those files into ObjectBuilder. If the XML
import fails, you can view any error messagesgenerated by Object Builder in the import_model.log file located in theproject directory.

If your CLASSPATH environment variable is too long, the chejbcommand file fails. If this happens, shorten your CLASSPATH by removingany
unnecessary files. The cbejb tool generates the following files for an EJB JAR filecontaining an enterprise bean named Account:

« AccountS.jar and (Windows NT and Windows 2000)AccountS.dll or (AlX or Solaris)libAccountS.so--The files required by the EJB server (CB)
thatcontains this enterprise bean. The AccountS.jar file containsthe code generated from the Account EJB JAR file. TheAccountS.dll and
libAccountS.so files contain the required C++classes.

(Windows NT and Windows 2000) To run the Account enterprise beanin an EJB server (CB), the AccountS,jar file must be defined in theserver's
CLASSPATH environment variable, and the AccountS.dll filemust be defined in the server's PATH environment variable. Typically, the System
Management End User Interface (SM EUI) sets theseenvironment variables during installation of the deployed enterprise bean intoan EJB server
(CB).

(AIX or Solaris) To run the Account enterprise beanin an EJB server (CB), the AccountS.jar file must be defined in theserver's CLASSPATH
environment variable, and the libAccountS.sofile must be defined in the server's LD_LIBRARY _PATH environmentvariable. Typically, the SM
EUI sets these environment variables duringinstallation of the deployed enterprise bean into an EJB server (CB).

« AccountC.jar--The file required by an EJB client, includingenterprise beans that access other enterprise beans. This JAR filecontains everything in
the original EJB JAR file except the enterprise beanimplementation class. To use the Account enterprise bean, a Java EJBclient must have the
AccountC.jar and the IBM Java ORB defined in itsCLASSPATH environment variable.

« (PAO only) paotoejbName.jar--Thisfileis created by the PAOT0EJB tool and is used to wrap an existingprocedural adapter object (PAO) in an
enterprise bean.

« EJIBAccountFamily.DDL--Thisfileis used during installation ofthe Account family into an EJB server (CB) to update the database used by theSM
EUI. Its name is composed of the EJB JAR file name with the stringFamily.DDL appended.

Building a data object during CMP entity bean deployment

When deploying an entity bean with CMP in the EJB server (CB), you mustcreate a DO implementation by using Component Broker's ObjectBuilder. This
DO implementation manages the entity bean'spersistent data.To build a DO implementation, you must map the entity bean'scontai ner-managetifftel ds to the

appropriate data source as described in Guidelines for mapping the container-managed fields to a data source. Then, you must do one of the following:

« Usean existing DB2, Informix, or Oracle database to store the bean'spersistent data; for more information, see Using an existing DB2 or Oracle
data source to store persistent data.

« Useanexisting CICS or IMS application to store the bean'spersistent data; for more information, see Using an existing CICS or IMS application to
store persistent data.

« Defineanew DB2, Informix, or Oracle database to store the bean'spersistent data; for more information, see Defining anew DB2 or Oracle
database to store persistent data.

Guidelines for mapping the container-managed fields to a data sourceWhen you deploy enterprise beans with the cbejb tool, a ComponentBroker DO IDL
interface is created. The IDL attributes of thisinterface correspond to the entity bean's container-managedfields. Y ou must then define the DO
implementation by using ObjectBuilder to map the DO attributes to the attributes of a Persistent Object (PO)or Procedural Adapter Object (PAO), which
correspond to the data types foundin the data source.

This section contains information on how the chejb tool maps thecontainer-managed fields of entity beansto DO IDL attributes, and how theenterprise
bean deployer maps DO IDL attributes to the entity bean's datasource. These guidelines apply whether you are using an existing datasource (also known as
meet-in-the-middle deployment) or defining a new one(also known as top-down deployment).

« EJBObject or EJBHome variables--Objects of classes that implement theEJBObject or EJBHome interface map to the Object IDL type. At run
time,this DO attribute contains the CORBA proxy for the EJBObject or EJBHomeobject. The CB EJB run time automatically converts between
theEJBObject or EJBHome object (stored in the bean's container-managedfield) and the CORBA ::Object attribute (stored in the C++DO). It is
possible to deploy container-managed beans that havecontai ner-managed fields of the same type, for example, alinked listimplementation where
each node of thelist is a container-managed bean thathas a reference to the next node. It is also possible to have circularreferencesin a
container-managed field, for example, a container-managed BeanA can have a container-managed field of type Bean B, which in turn has
acontainer-managed field of type Bean A. When defining the DO-to-POmapping in Object Builder, you can use either a predefined Component
Brokermapping of CORBA::Object to the data source, or implement a C++DO-to-PO mapping helper (in the standard Component Broker way) to
invokemethods on the C++ proxy to obtain the persistent data. For moreinformation on creating a C++ DO-to-PO mapping, see the Component
Broker Programming Guide.

Note:

Although Component Broker allows an entity bean's contai ner-managedfields to be EJBObject or EJBHome objects, the Enterprise
JavaBeans 1.0specification does not.

« Primary key variables--Do not map an enterprise bean's primarykey variables to the SQL type long varchar in aDB2, Informix or Oracledatabase.
Instead, use either avarchar or a char type and set thelength appropriately.

« javalang.String variables--Objects of this class aremapped to aDO IDL attribute of type string or wstring, depending on thecommand-line options
used when the entity bean was deployed by using thechejb tool (see Manually deploying an enterprise bean). By default, a variable of
typejava.lang.String is mapped to a DO IDL attribute of typestring; however, the -usewstringindo option of the cbejb toolcan be used to map
javalang.String variables to DO IDL attributes of type wstring. (Mapping some of a bean's Stringfields to the IDL string type and othersto the IDL
wstring type is notsupported.) It is preferable to map to the string IDL type if the datasource contains single-byte character datg; it is preferable to
map tothe wstring IDL type if the data source contains double-byte or Unicodecharacter data.

« javaio.Serializable variables--Objects of classes thatimplement this interface are mapped to a DO IDL attribute of type ByteString(which isa
typedef for sequence of octet defined in thelManagedClient.idl file). The EJB server (CB) automaticallyconverts serializable objects (stored in the
entity bean'scontainer-managed fields) to the C++ sequence of octets containing theserialized form of the object (stored in the DO). Use the
ComponentBroker default DO-to-PO mapping for ByteString to store the serialized objectdirectly in the data source.

Unless you implement a C++ DO-to-PO mapping helper that passes the C++ByteString to a Javaimplementation by way of the interlanguage
object model (I0M), it is not possible to manipulate the serialized Java object containedin a ByteString from within a C++ DO implementation.
Therefore, if youare doing top-down enterprise bean development and you don't want tostore a serialized Java object in the data source, it is
recommended that youavoid defining container-managed fields of type Serializable. Instead,make the Serializable variable a nonpersistent variable,
define primitive typecontainer-managed fields to capture the state of the Serializable variable,and convert between the Serializable variable and the
primitive variable inthe ejbL oad and ejbStore methods of the enterprise bean.

« Array variables-These variables are mapped to a DO IDL sequence ofthe corresponding type in the same way that the individual types are mapped
toDO IDL attributes. For example, an array of thejavalang.String classis mapped to aDO IDL attribute that is asequence of type string (or a
sequence of type wstring, if the -usewstringindooption of the cbejb tool is used). The EJB server (CB)automatically converts between the array
(stored in the entity bean'scontai ner-managed fields) and the C++ sequence (stored in the DO). Y oucan store the entire sequence in the data source
asawhole, or you can writea C++ DO-to-PO mapping helper (in the standard Component Broker way) toiterate through the sequence and store
individual elements in the data sourceseparately. For more information on creating a C++ DO-to-PO mapping,see the Component Broker
Programming Guide.

« Date/Timefields--The cbejb tool maps container-managedfields of type java.util.Date and its subclasses(java.sgl.Date,
java.sgl.Time,java.sgl.Timestamp only) differently from otherSerializable fields. The following mapping rules are used:

o javautil.Date: | SO-formatted timestamp string(yyyy-mm-dd-hh.mm.ss.mmmmmm)

o javasgl.Date: 1SO-formatted date string(yyyy-mm-dd)

o javasql.Time: 1SO-formatted time string(hh.mm.ss)

o javasgl.Timestamp: | SO-formatted timestamp string(yyyy-mm-dd-hh.mm.ss.mmmmmm)
Therefore a container-managed field of one of the above types should bemapped to either a string or a database-specific date/time field that can
takean | SO-formatted string as input. (For example, both DB2 and OracleDate/Time/Timestamp column types can take | SO strings as input
values.)If adeployer chooses to map a Date/Time container-managed field to somethingother than the types mentioned above, then a special data

mapping code shouldbe written in the DO implementation. The mapping code must be able toconvert an | SO-formatted string to a backend-specific
type and viceversa.

The java.sgl. Timestamp class has a precision of nanoseconds,whereas | SO timestamp format has a precision of microseconds.Therefore, precision
116

is compromised (by rounding nanoseconds to nearestmicroseconds) when a Timestamp CMP field is mapped. Users should beparticularly aware of
this when they use the java.sql. Timestampclass as one of the attributes of bean's primary key.

While mapping java.sql.Date to SO Date format, the timefield values are ignored. Similarly while mappingjava.sgl.Timeto SO Time, the date
field values areignored.

Note:

For DB2 only: If an existing database outputs date/time in a non-1SOformat, then the deployer must rebind DB2 packages using the

"DATETIME 1SO"option.

Using an existing DB2 or Oracle data source to store persistent dataTo use an existing DB2 or Oracle database to store a CMP entity bean'spersistent data,
follow these steps. The end result is a PO withattributes that correspond to the itemsin the database schema.

1. When Object Builder starts, it presents the Open Project dialog.Choose the location of the project directory for your enterprise bean andclick

Finish.

2. Toimport an existing relational database schema, click DBA-DefinedSchemas and right-click the appropriate database type.
a. On the pop-up menu, click Import and SQL.
b. Onthelmport SQL dialog box, click Find and browsefor your SQL file.

C.
d.
e

Double-click your SQL file.
Change the name in the Database Name text field fromDat abase to the actual name of the database.
Select the appropriate database type and click Finish.

3. To create a persistent object (PO) from the database schema, expandDBA-Defined Schemas and expand your group.

a
b.

Highlight your schema and then right-click it to display a pop-upmenu. Click Add->Per sistent Object.
On the Names and Attributes dialog box, accept the defaults andclick Finish.

4. Create a DO implementation as follows:

a

Expand the User-Defined DOs, expand the DO File (forexample CBAccountDO), expand the DO Interface (for
example,com_ibm_ejs_doc_account_AccountDO), and select the DOl mplementation.

b. Onthe DO Implementation pop-up menu, selectProperties.
¢. Onthe Name and Platform page, select the DeploymentPlatform (for example, NT, AlX, or Solaris) and clickNext.
d. Onthe Behavior page, make the appropriate selections and clickNext:

= For DB2, sdect BO M wi t h any Key forEnvironment, select Enbedded SQL for Form of Persistent Behavior and
Implementation, select Del egat i ng forData Access Pattern, and select Home nane andkey for Handle for Storing Pointers.

= For Oracle, select BO M wi t h any Key forEnvironment, select Or acl e Cachi ng servi ces forForm of Persistent
Behavior and I mplementation, selectDel egat i ng for Data Access Pattern, and select Homenane and key for Handle for
StoringPointers.

. On the Implementation I nheritance page, make the appropriatesel ections for the parent class and click Next:

= For DB2, selectl RDBI MExt Local ToSer ver: : | Dat aCbj ect
= For Oracle, selectl RDBI MExt Local ToSer ver: : | Cachi ngSer vi ceDat aCbj ect

. Accept the defaults for the Attributes, M ethods, andK ey and Copy Helper pages by clicking Next on eachpage.
. Onthe Associated Persistent Objects page, click AddAnother. Accept the default for the instance name (iPO) andsel ect the correct type.

Click Next.

. Onthe Attribute M apping page, map the container-managed fieldsof the entity bean to the corresponding items in the database

schema.Object Builder creates default mappings for the data object attributes forwhich it can identify corresponding persistent object
attributes. Thedefault mapping is generally suitable for everything except for the primarykey variable, which you must map to avarchar or
char type rather than alongvarchar type. For more information, see Guidelines for mapping the container-managed fields to a data source.

After you finish mapping the attributes, clickFinish.

. Oracle only. When mapping an entity bean with CMP to anOracle database, expand the Container Definition folder andright-click the EJB

container. From the pop-up menu, clickProperties. In the wizard, click Next until youreach the Data Access Patter ns; on that page, check
theCache Service checkbox and click Finish.

. Exit from Object Builder by clicking File->Exit; save anychangesif prompted.
. Create the database specified by the Database text field anduse the SQL file specified by the Schema File text field to createa database

table. For more information on creating a database anddatabase table with an SQL file, consult your DB2 or Oracledocumentation. The SQL
file can be found in the following directory,where projDir is the project directory created by thecbejb tool:

= On Windows NT and Windows 2000, projDir\Working\NT
= On AlX, projDir/Working/AlX
= On Solaris, projDir/Working/Solaris

Using an existing CICS or IMS application to store persistent dataTo use CICS or IMS for Persistent Adaptor Object (PAO) storage, followingthese
instructions. Note that if the persistent store uses a CICS orlM S application (by way of a PAO), only application data is used; themethods on the CICS or
IM S application are pushdown methods, which runapplication-specific logic rather than storing and loading data.

The following prerequisites must be met to map an entity bean with CMP toan existing CICS or IMS application:

« The entity bean's transaction attribute must be set to TX_MANDATORY if you want to map the bean to aHOD- or ECI-based application.
Thetransaction attribute must be set to either the TX_MANDATORY or TX_REQUIRED ifyou want to map it to an APPC-based application.

« Theexisting CICS or IMS application must be represented as a procedural adapter object (PAO). See the Procedural Application Adaptor

117

Development Guide for more informationon creating PAOs.
The PAO class files must be specified in the CLASSPATH environmentvariable.

The entity bean must implement all enterprise bean logic; the onlyremaining requirement is to map the entity bean's container-managedfields to the
PAO. Pushdown methods on the PAO cannot be utilized fromthe enterprise bean. (PAO pushdown methods can be used from an entitybean with
CMP generated by using the PAOTO0EJB tool as described in Creating an enterprise bean from an existing CICS or IMS application.)

The cbejb tool must be run as follows, where thegjb-jarFile is the EJB JAR file containing the entity bean:
chbejb ejb-jarFile [-hod | -eci | -appc[beanNames]]

For adescription of the cbejb tool's syntax, see Manually deploying an enterprise bean.

If you have met the prerequisites, use Object Builder to create the mappingbetween the entity bean and the CICS or IMS application:

1

0N O WD

When Object Builder starts, it presents the Open Project dialog.Choose the location of the project directory for your enterprise bean andclick
Finish.

. From the main menu, click Platform and thenTar get. Uncheck the 390 platform.

. Click User-Defined PA Schemas and right-click theselection.

. From the pop-up menu, click | mport and thenBean. On the Import Bean dialog box, type theclass name of the PAO bean and click Next.
. Select the appropriate connector type and click Next.

. Select the primary key attribute name from the Propertieslist.

. Click >>to move the primary key to the KeyAttributeslist and click Finish.

. For HOD and ECI only, do the following for both the MO and theHomeMO:

a. Inthe Tasksand Object panel, expand the User-DefinedBusiness Obj ects, expand the object, and expand the object'sBO. From the MO
file's pop-up menu, clickProperties.

b. Change the Serviceto use property from Tr ansact i onSer vi ce to Sessi on Servi ce.

. Create a DO implementation as follows:

a Onthe Tasksand Object panel, expand the User -DefinedDOs, expand the DO File from the menu, and click the DOI nterface.
b. Onthe DO Interface pop-up menu, select Addl mplementation.

c. Onthe Behavior page, select BO M wi t h any Key forEnvironment, select Pr ocedur al Adapt er s for Form of Persistent
Behavior and I mplementation, select Del egat i ng forData Access Patterns, and select Def aul t for Handlefor Storing Pointers.
Click Next.

d. Click Next onthe Implementation Inheritance page,the Attributes page, the M ethods page, and the K eyand Copy Helper page.
e. Onthe Associated Persistent Object page, click AddAnother, verify that the PO that you previously created is selected, andclick Next.

f. On the Attribute M apping page, designate how thecontainer-managed fields of the entity bean correspond to the itemsin theexisting PAO.
This designation is done by defining a mapping betweenthe attributes of the DO (which match the entity bean's container-managedfiel ds) to
the attributes of the PO (which match the existing PAO). Inthe Attributeslist, thereisa DO attribute corresponding to eachof the bean's
container-managed fields.

For each DO attribute in the Attributeslist, right-click theattribute and click Primitive from the menu. From thePer sistent Object
Attribute drop-down menu, select the PO attribute(the item from the existing database schema) that corresponds to the DOattribute. For
more information, see Guidelines for mapping the container-managed fields to a data source. After you have processed all

container-managedfields, click Next.

g. Onthe Methods M apping page, for each method in the list of Special Framework M ethods, right-click a method and click AddM apping.
From the Persistent Object M ethod drop-downmenu, select the PO method with the same name as the selected DOmethod. If there are
more methods than available mappings, map methodsto similarly named methods. For example, map update to update().After you have
processed al of the methods, click Finish.

h. Expand the Container Definition folder and right-click the EJBcontainer. From the pop-up menu, click Properties. Inthe wizard, click
Next until you reach the Data AccessPatter ns page.

i. Onthe Data Access Patterns page, select one of the followingitems and then click Next:
» For HOD or ECI, select Use PAA Sessi onser vi ces.
= For APPC, select Use PAA Transacti onservi ces.

j. On the Service Details page, do the following and then clickNext:

= For HOD or ECI, select Thr ow an excepti on and abandon t hecal | for Behavior for Methods Called Outside
aTransaction; define a connection name, for example,MY_PAA Connect i on; select Host on Denmand orECI connecti on,
respectively, for the Type of connection.

= For APPC, select Thr ow an excepti on and abandon thecal | for enterprise beans with the TX_MANDATORY
transaction attribute,or select St art a new transacti on and conpl ete the cal | forenterprise beanswith the
TX_REQUIRED transaction attribute.

k. Select Cachi ng for Business Object.
I. Select Del egat i ng for Data Object.
m. Click Finish.

10. Exit from Object Builder by clicking File->EXxit; save anychangesif prompted.

Defining a new DB2 or Oracle database to store persistent dataWhen you use a top-down development approach to enterprise bean development,enterprise
bean depfpyment must occur in three phases:

1. Define the database schema, map the container-managedfiel ds of the entity bean with CMP to the database schema, and generate thecode to
encapsulate this mapping. For more information, see Mapping the database schema.

2. Create the database and database tables. For more information, see Creating the database and database table.
3. Compile the code generated in phase 1; compilation fails if the database and database tablesdo not exist.

Mapping the database schema

After you have defined the manner in which the entity bean maps to adatabase, create the mapping by running the cbejb tool with the -ncoption to prevent
automatic compilation after code generation. Forexample, to create a mapping for an Account bean stored in an EJB JAR filenamed EJBAccount.jar, enter
the following command:

cbej b EJBAccount.jar -nc -queryable [-oracle |-cacheddb2]

Note:

If the database being used to store the persistent dataiis either Oracle orDB2, those options must also be specified.

Creating the database and database table

Follow these instructions to create a database and database table by usingthe Object Builder GUI:
1. When Object Builder starts, it presents the Open Project dia og.Choose the location of the project directory for your enterprise bean andclick

Finish.

2. Create aDO implementation as follows:

a
b.

Expand the User-Defined DOs, expand the DO File fromthe menu, and click the DO I nterface.

On the DO Interface pop-up menu, select Addl mplementation. If the implementation is already present, you canmodify it by selecting the
implementation, invoking the pop-up menu, andselecting Properties.

. On the Name and Platform page, select the platform and clickNext.

d. Onthe Behavior page, make the appropriate selections and clickNext:

= For DB2: select BO M wi t h any Key forEnvironment, select Enbedded SQL for Form of Persistent Behavior and
Implementation, select Del egat i ng forData Access Pattern, and select Home nane andkey for Handle for Storing Pointers.

= For Oracle: select BO M wi t h any Key forEnvironment, select Or acl e Cachi ng servi ces forForm of Persistent
Behavior and I mplementation, selectDel egat i ng for Data Access Pattern, and select Homrenane and key for Handle for
StoringPoainters.

. On the Implementation I nheritance page, make the appropriatesel ections for the parent class and click Next:

= For DB2, selectl RDBI MExt Local ToSer ver: : | Dat aChj ect
= For Oracle, selectRDBI MEXxt Local ToSer ver: : | Cachi ngSer vi ceDat aChj ect
= For CICSor IMSPAO, selectl RDBI MExt Local ToSer ver: : | Dat aCbj ect

f. Accept the defaults for the Attributes, M ethods, andK ey and Copy Helper pages by clicking Next on eachpage.

. Onthe Associated Persistent Objects page, click AddAnother. Accept the default for the instance name (iPO) andsel ect the correct type.

Click Next.

. Onthe Attribute M apping page, map the container-managed fieldsof the entity bean to the corresponding items in the database

schema. The default mapping is generally suitable for everything except for theprimary key variable, which you must map to avarchar or
char type rather thana long varchar type. Object Builder creates default mappings for thedata object attributes for which it can identify
corresponding persistentobject attributes. For more information, see Guidelines for mapping the container-managed fields to a data source.

After you finish mapping the attributes, clickFinish.

. Oracle only. When mapping an entity bean with CMP to anOracle database, expand the Container Definition folder andright-click the EJB

container. From the pop-up menu, clickProperties. In the wizard, click Next until youreach the Data Access Patterns; on that page, check
theCache Service checkbox and click Finish.

. Exit from Object Builder by clicking File->Exit; save anychanges if prompted.
. Create the database specified by the Database text field anduse the SQL file specified by the Schema File text field to createa database

table. For more information on creating a database anddatabase table with an SQL file, consult your DB2 or Oracledocumentation. The SQL
file can be found in the following directory,where projDir is the project directory created by thecbejb tool:

= On Windows NT, projDir\Working\NT
= On AlX, projDir/Working/AlX
= On Solaris, projDir/Working/Solaris

Compiling the generated code

After both the database and database table are created, compile theenterprise bean code by using the following commands:
« On WindowsNT.

cd

proj Di r\ Wor ki ng\ NT

nmake -f all.mk
« OnAIX.

cd

proj Di r/ Wér ki ng/ Al X 119

make -f all.mk
« On Solaris.

cd projDir/Wrking/ Solaris

make -f all.nak
Installing an enterprise bean and configuring its EJB server (CB)

Follow these steps to install an enterprise bean and configure the resultingEJB server (CB):

1. (Entity bean with CMP using DB2 only) Use the bind file, whichObject Builder generates as a side effect of using the cbejb tool,to bind the
enterprise bean to the database (for example, db2 bi ndAccount Tbl PO. bnd).

2. Using the SM EUI, install the application generated bycbejb. In general, thisinstallation is the same asinstalling a Component Broker application
generated by Object Builder:

a. Load the application into a host image.
b. Add the application to a configuration.
c. Associate the EJB application with a server group or server. (Ifthe server group or server does not already exist, you must createiit.)
d. (Entity bean with CMP only) Associate the entity bean'sdata source (DB2, Oracle, CICS, or IMS PAA) with the EJB application:
= DB2: associate the DB2 services (iDB2IM Services) with the EJBserver.
= Oracle: associate the Oracle services (iOAA Services) with the EJBserver.
= CICSor IMSPAA: associate the PAA services (iPAAServices) with theEJB server.
e. Configure the EJB server (CB) with a host.
f. Set the ORB request timeout for both clients and servers to 300seconds.

g. If the EJB server requires Java Virtual Machine (JVM) properties to beset, edit the VM properties. Do thisin the server model instead ofthe
server image. For instance, if the enterprise bean performs a INDIlookup to access other enterprise beans, the server hosting the
enterprisebean must have its VM properties set to include values for INDIproperties.

h. Activate the EJB server configuration.
i. Start the EJB server.

Binding the JNDI name of an enterprise bean into the JNDI namespace

Note:
This section does not apply to servers running on the AlX, Windows NT,Windows 2000, or Solaris platforms.

An enterprise bean's INDI home name is defined within its deploymentdescriptor as described in The deployment descriptor. This nameis used by EJB
clients (including otherenterprise beans) to find the home interface of an enterprise bean.

The g bbind tool |ocates the CB home that implements theenterprise bean's EJBHome interface in the Component Brokernamespace. It also rebinds the
home name into the namespace, using theJNDI home name specified in the enterprise bean's depl oymentdescriptor. This binding enables an EJB client to
look up the EJB homeby using the INDI name specified in the bean's deploymentdescriptor. An enterprise bean can be bound on a different machine
fromthe one on which the bean was deployed.

The subtree of the Component Broker namespace in which the JINDI name isbound can be controlled by the command-line options used with thegj bbind
tool. The manner in which the name is bound (thesubtree chosen) affects the INDI name that EJB clients must use to look up theenterprise bean's EJB
home and al so affects the visibility of theenterprise bean's EJB home. Specifically, the INDI name can bebound in one of the following ways:

« The JNDI name can be bound into the local root. Under this bindingapproach, EJB clients use the INDI name in the enterprise bean'sdeployment
descriptor. The approach restricts the visibility of the EJBhome to EJB clients using the same name server (the same bootstrap host) andcan cause
collisions with other namesin the tree.

« The INDI name can be bound into the host name tree (athost/resources/factories EIJBHomes). Under this binding approach, EJBclients must prefix
thestring host / r esour ces/ f act or i es/ EJBHores tothe INDI name given in the bean's deployment descriptor. Thisapproach minimizes
collisions with other names in the tree, but restrictsvisibility of the enterprise bean home to clients using the same nameserver.

« The JNDI name can be bound into the workgroup name tree (atworkgroup/resources/factories EJBHomes). Under this binding approach,EJB clients
must prefix the stringwor kgr oup/ r esour ces/ f act ori es/ EJBHones to the INDI name given inthe enterprise bean's deployment
descriptor, and the EJB homeis visibleto all EJB clients using a name server that belongs to the same preferredworkgroup.

« The INDI name can be bound into the cell name tree (atcell/resources/factories EJBHomes). Under this binding approach, EJBclients must prefix
cel |l /resources/factories/ EJBHones to the INDIname in the bean's deployment descriptor, and the EJB home is visiblethroughout the
cell.

Before running the g bbind tool, do the following:
« Deploy your enterprise bean for Component Broker by using thecbejb tool. For more information, see Manually deploying an enterprise bean.

« Install the Component Broker application that cbej b toolgenerates, and configure it on a specific EJB server (CB) by using the SMEUI. For more
information, see Installing an enterprise bean and configuring its EJB server (CB).

« Start the CBConnector Service and a name server, if they are not alreadyrunning. For more information, see the Component Broker System
Administration Guide.

« Activate the configuration containing the EJB server (CB) that runs theapplication.
.]Qﬁtermi ne the IP address (the bootstrap host name) and port number (thebootstrap port) of the machine running the name server.

Invoke the g/ bbind command with the following syntax:

ej bbind ejb-jarFile [beanParn] [-f] [-BindLocal Root] [-BindHost] [-Bi ndWrkgroup] [-BindCell]
[-BindAll Trees] [-ORBInitial Host host Nane] [-ORBInitial Port portNunber] [-u] [-UnbindLocal Root]
[- Unbi ndHost] [- Unbi ndWor kgroup] [-UnbindCel] [-UnbindAll Trees]

The gib-jarFileisthe fully-qualified path name of the EJB JARfile containing the enterprise bean to be bound or unbound. Theoptional beanParm
argument is used to bind a single enterprise beanin the EJB JAR file; you can identify this bean by supplying afullyqualified name (for
example,com.ibm.gjs.doc.account.Account, whereAccount is the bean name) or the name of the enterprise bean's deploymentdescriptor file without the .ser
extension. If an enterprisebean has multiple deployment descriptorsin the same EJB JAR file, you mustsupply the deployment descriptor file name rather
than the enterprise beanname.

When)no options are specified, the INDI name is bound into the localroot's name tree, using the local host and port 900 for the bootstraphost (the name
server).
The other options do the following:
« -f-- Forcethe bind, even if the INDI nameis already bound in thenamespace; this option is not valid with the unbind commandoptions.
« -BindLoca Root -- Bind the INDI name into the local root's nametree.
« -BindHost -- Bind the INDI name into the host name tree.
« -BindWorkgroup -- Bind the INDI name into the workgroup nametree.
« -BindCell -- Bind the INDI name into the cell name tree.
« -BindAllTrees -- Bind the INDI name into the host, the workgroup, andthe cell name trees.
« -ORBInitialHost hostName -- Identify the bootstrap host (thedefault is the local host).
« -ORBInitiallPort portNumber -- Identify the bootstrap port(the default is port 900).
« -U-- Unbind the INDI name; this option is not valid with bindcommand options.
« -UnbindLoca Root -- Unbind the INDI name from the local root'sname tree.
« -UnbindHost -- Unbind the INDI name from the host name tree.
« -UnbindWorkgroup -- Unbind the JINDI name from the workgroup nametree.
« -UnbindCell -- Unbind the INDI name from the cell nhame tree.
« -UnbindAllTrees -- Unbind the INDI name from the host, the workgroup,and the cell name trees.

If the command is successful, it issues a message similar to thefollowing:
Nane Account Home was bound to CB Hone

Y ou must run the g bbind tool again if any of the followingoccurs:
« You modify the INDI name of an enterprise bean. Y ou can modify theJNDI name by using the j etace tool. For more information,see Creating an
EJB module.
« You reconfigure Component Broker. In this case, you must rebindevery enterprise bean served by this configuration.
« You move the enterprise bean to a different EJB server (CB) or adifferentmachine.

Configuring systems management to enable lazy enumeration

To enable lazy enumeration (see Creating finder logic in the EJB server (CB)), follow these steps:
1. From the System Management End User Interface (SM EUI), go to the Viewmenu, and set the View Level to Control.
Expand Host I mages
Expand the name of your host.
Expand Server Images.
Expand the name of your server.
Expand Container Images.
Right-click ilterator SysObjsNoPRef. From the pop-upmenu, select Properties. Change the followingproperties:
o Change the Default transaction policy tot hr owExcept i on.
o Change the Memory management policy to passi vate at end oftransacti on.

No g ~cwDd

The transaction policy ensures that the caller starts a transaction. The memory management policy ensures that the lazy enumerations are passivatedwhen
the transaction compl etes.

Resolving to EJB homes using lifecycle services in CBConnector

Note:
This section applies only to servers running on the AIX, Windows NT, Windows2000, or Solaris platforms.

When an EJB client performs asimple INDI lookup, a 1-to-1 mapping is madebetween the name and the particular EJB home instance. In a

distributedenvironment, this model can be limiting. In such an environment, forexample, there may be many EJB homes supporting the same type of

enterprisebean. It is better to have an approach that does not require anapplication to request a specific instance of that home. In addition,as chaggas are
121

made to the system, it isimportant that applications not haveto be changed or redeployed to specify a different instance of an EJBhome. The CBConnector
LifeCycle Service provides alevel of indirectionand abstraction that allows the application to request a home that is within aparticular scope of location
within the distributed environment, yet beisolated from the specifics of the exact configuration of theenvironment. For more info on lifecycle factory
finders, see theLifeCycle section in the Advanced Programming Guide.

Using CBConnector, a INDI context can be associated with a LifeCycleService factory finder so that the associated factory finder is used toresolve EJB
home lookup operations from the context. Contexts such asthese enable deployers of EJB applications to take advantage of the power offactory findersin a
manner that is transparent to clients of theseapplications.

To resolve EJB home lookups with factory finders, the application deployercan use pre-defined default application contexts associated with the
variousCBConnector-supplied default factory finders or use the appbindtool to create application-specific contexts and associate them with any
givenfactory finder. For more information on each approach, see Default context-to-finder associations and Application-specific contexts and the appbind

tool.
Note:

Default application contexts and application-specific contexts eliminate theneed for the g bbind tool, which creates a simple 1-to-1 mapping ofa
JINDI name and an EJB home instance. Clients must use one of thedefault initial context factories or an application-specific context
factorygenerated by the appbind tool.

Default context-to-finder associations

There are several default factory finders built into CBConnector, each ofwhich searches particular scopes of location when finding a factory.When an EJB
application is deployed on a CBConnector server, the EJB homes forthe application are bound in the LifeCycle repository using the names for theEJB
homes as specified by the deployment descriptors contained in theapplication's EJB jar file. A factory finder can find any EJB homewithin the scope of its
particular search rules.

An EJB client can use a particular built-in CBConnector default factoryfinder simply by using theinitial context factory that corresponds to thatfactory
finder. Theinitial context returned by the context factorywill use its corresponding factory finder to resolve EJB home lookupreguests.
Contexts returned by the following initial context factories:

. com.ibm.gjb.cb.runtime.CBCtxFactoryHostDefault

. com.ibm.gjb.cb.runtime.CBCtxFactoryHostWidenedDefault

. com.ibm.gjb.cb.runtime.CBCtxFactoryHostServerDefault

. com.ibm.gjb.cb.runtime.CB CtxFactoryHostServerWidenedDefault

. com.ibm.gjb.cb.runtime.CB CtxFactoryWorkGroupDefault

. com.ibm.gjb.cb.runtime.CB CtxFactoryWorkGroupWidenedDefault

. com.ibm.gjb.cb.runtime.CB CtxFactoryWorkGroupServerDefault

. com.ibm.gjb.cb.runtime.CB CtxFactoryWorkGroupServerWidenedDefaul t

. com.ibm.gjb.ch.runtime.CBCtxFactoryCelIDefault

. com.ibm.gjb.ch.runtime.CBCtxFactoryCell ServerDefault

11. com.ibm.gjb.cb.runtime.CBCtxFactoryCellServerWidenedDefault

©O© 00 N O 0o~ WDN P

=
o

resolve EJB home lookup operations with the corresponding factoryfinders:
1. host/resources/factory-finders/host-scope

. host/resources/factory-finders/host-scope-widened

. host/resources/factory-finders/server-server-scope

. host/resources/factory-finders/server-server-scope-widened

. workgroup/resources/factory-findersiworkgroup-scope

. workgroup/resources/factory-finders/workgroup-scope-widened

. workgroup/resources/factory-finders/ser ver-server-scope

. workgroup/resources/factory-finders/ser ver-server-scope-widened

. cell/resources/factory-finders/host-scope

. cell/resources/factory-finders/server-server-scope

11. cell/resources/factory-finders/server-server-scope-widened

©O© 00 N O O b WDN

=
o

Server-based context factories can only be used by a client that is runningas a CBConnector server, in which case, server is the name of theCBConnector
server.

Default context factories can only be used by client applications thatissue fully qualified EJB home lookups. If aclient traverses to asubcontext and then
performs a partially qualified EJB home lookup, you mustrun the appbind tool to create an application-specific context withhome subcontexts and to
generate an application-specific initia contextfactory. For more information, see Application-specific contexts and the appbind tool.

Application-specific contexts and the appbind tool

If a CBConnector-supplied default factory finder is being used to |ocate anEJB home, CBConnector supplies a default mapping between application
contextsand default factory finders (for more information, see Default context-to-finder associations). For added flexibility, an enterprise bean deployercan
createlagf\pplication-specific context with optional EJB home subcontextsand associate it with any factory finder. The factory finderassociation can be

changed at alater timeif desired. To isolateclients from the actual context name, the enterprise bean deployer generatesan initial context factory for the
application-specific context by using theappbind tool.

The appbind tool allows deployers to create anapplication-specific naming context and associate it with a selected factoryfinder so that |ookup operations
are resolved with that factory finder. These application-specific contexts are designed to beinitial INDI contextsfor EJB clients so that INDI lookup calls
on EJB homes are transparentlyresol ved with the associated factory finder. The appbindtool enables usersto create, modify, and delete such
application-specificcontexts. Note that the application's EJB home instances are notactually bound under the application-specific context. Instead, theyare
bound to the LifeCycle repository. The associated factory finderwill resolve the EJB home lookups using the lifecycle rules defined forit.

Using the appbind tool also helpsto avoid naming collisions forenterprise beans that are written to version 1.1 of the EJBspecification. It can be used to
create separate INDI namespaces forenterprise beans that have the same JNDI name but are deployed with initial context factories located at different
places in the namespace. Thisprevents naming conflicts between these beans.

All application-specific contexts must have one of the following contextname stems:
« host/applicationg/initial-contexts
« workgroup/applicationg/initial -contexts
« cell/applicationg/initial-contexts

depending on whether a scope of host, workgroup, or cell is specified whenthe context is created.

By default, the factory finderhost/resources/factory-finders/host-scope-widened is associated with anapplication-specific context created with the appbind
tool.However, the user can specify another factory finder. The factoryfinder can be one of the other default factory finders, one created by anadministrator
using System Management, or one created by an applicationprogram you write. For more information, see the LifeCycle section inthe Advanced
Programming Guide.

Under an application-specific context, subcontexts for EJB home namesoptionally can be created. For example, if the name for a home
iscom/mycom/myapp/MyHome, the subcontext com/mycom/myapp can be created. These subcontexts provide additional transparency to the client.
Theyallow aclient to traverse the INDI name space from the application-specificcontext down to any subcontext that corresponds to a non-leaf component
of anEJB home name. The factory finder associated with theapplication-specific context is also used to resolve EJB home lookupoperations from these
subcontexts. The appbind tool createsa subcontext for each home name in the deployment descriptors within aspecified EJB JAR file.

The appbind tool can optionally create a Java source file for aninitial context factory for the application-specific context beingcreated. Thisinitial context
factory can be used as the initialcontext factory by clients. The appbind tool also allows theuser to override the default bootstrap host to use for
ORBinitialization.Invoke the appbind tool with the following syntax:

appbind [-u] -name contextName [-sc jarFileNane] [-host | -workgroup | -cell][-factoryfinder
factoryFi nderPath][-genctxfactory factoryC assName [-o targetDir]][-boothost bootstrapHostUrl]

The context being bound or unbound is specified with the required -nameoption, where contextName is the name of the INDIapplication-specific context to
bind or unbind. All application contextnames are relative to one of the following context name stems

« host/applicationg/initial-contexts
« workgroup/applicationg/initial -contexts
« cell/applicationg/initial-contexts

depending on whether a scope of host, workgroup, or cell wasspecified. (See the -host, -workgroup, and -cell options below.)

A bind operation is performed unless the -u option is specified, in whichcase, an unbind operation is performed. If a bind operation isperformed on an
existing context, the current factory finder association isadded or replaced. The context cannot be a child or parent of a contextwhich already has a factory
finder association.

The other options do the following:

« -U--Thisflag isused to perform an unbind operation. Anunbind operation unbinds the context specified with the -name option and the-sc option, if
specified. If the -sc option is specified, only thesubcontexts corresponding to the INDI home names in the JAR's deploymentdescriptors are
removed. If the -sc option is not used, the contextspecified by the -name option and all of its subcontexts are unbound.To help keep the name tree
manageable, once a context or subcontext isunbound, parent contexts are recursively unbound up to the context name stem(see the -name option
above) or until a non-empty parent isencountered.

« -sc--Thisoption is used to specify subcontexts, where filgjarFileName is the name of an EJB JAR file that contains deploymentdescriptors with EJB
home names. Each of the EJB home names, notincluding the leaf-name component, is treated as a subcontext name. Forexample, if the name for a
home is com/mycom/myapp/MyHome, the subcontext nameis com/mycom/myapp.

When binding, the subcontext names are created under theapplication-specific context specified by the -name flag. Whenunbinding, the contexts
which are unbound are restricted to the subcontextnames identified by the JAR file. Whether binding or unbinding, othersubcontexts are not
affected.

« -host, -workgroup, -cell--These flags control the scope of theapplication context being bound or unbound. Each scope has acorresponding context
name stem, as described in the -name flag sectionabove. The -host, -workgroup, and -cell flags specify a scope of host,workgroup, or cell,
respectively, for the context. The default scope ishost scope. Only one scope can be specified per bind or unbindoperation.

« -factoryfinder--This option is used to specify which factory finderto associate with the application-specific context being bound,
wherefactoryFinderPath is the name of the factory finder. Thedefault factory finder ishost/resources/factory-finders/host-scope-widened.

This option does not apply to unbind operations.

« -genctxfactory--Typically, when an application-specific context isbound, it is desirable to have an initial context factory for theapplication-specific
context. This option directs theappbind tool to create a Java source file for aninitial contextfactory, where factoryClassName is the fully-qualified
class name ofthe context factory. All package prefix subdirectories are created, ifnecessary. If the sourcefile aready exists, it isreplaced.Thefile
and its containing subdirectories are created relative to thedirectory specified with the -o option or, by default, relative to the currentdi ii&ory.

This option does not apply to unbind operations.

« -0--Thisoption isused to specify the target directory for theinitial context factory file (see the -genctxfactory option), wheretargetDir is the
directory path (not including package prefixdirectories). The default target directory isthe currentdirectory.
This option does not apply to unbind operations.

If the -0 option is used, use of the -genctxfactory flag isrequired.

« -boothost--This option is used to override the default host and portused for ORB initialization, where bootstrapHostUrl is the URL ofthe bootstrap
host. The bootstrap host URL has the form

iiop:// hostName [: portNunber]

Creating an enterprise bean from an existing CICS or IMS application

Y ou can create an enterprise bean from an existing CICS or IM S application byusing the PAOT0oEJB tool. The application must be mapped intoa PAO
prior to creating the enterprise bean. For more information oncreating PAOs, see the Component Broker document entitled Procedural Application Adaptor
Development Guide and the Visual Age forJava, Enterprise Edition documentation.
The PAOTO0EJB tool runs independently of the other toolsdescribed in this chapter. To create an enterprise bean from a PAOclass, do the following:
1. Change to the directory where your PAO classfile exists.
2. Add the PAO classfile's directory, or the JAR file containing theclass, to your CLASSPATH environment variable.
3. Invoke the PAOToEJB command with the following syntax:
PACTOEJB -nane [ej bNane] paoClass -hod | -eci | -appc
The ejbName argument is optional and specifies the enterprisebean's name (for example, Account). If this name is not supplied,the enterprise bean
is named by using the short name of the PAO class. The paoClass argument is required and specifies the fully qualifiedJava name of the PAO class

without the .class extension; the PAOclass is always a subclass of com.ibm.ivj.eab.paa.EntityProcedural AdapterObject.Y ou must a so specify one of
the following options:

o -hod --Thisindicates that the PAO classis for Host On-Demand(HOD). HOD is a browser-based 3270 telnet connection.

o -eci --Thisindicates that the PAO classis for External Callinterface (ECI). ECI isaproprietary protocol that provides a remoteprocedure
cal (RPC)-like interface into CICS.

o -appc --Thisindicates that the PAO classis for advancedprogram-to-program communications (APPC), which is the System
NetworkArchitecture (SNA) for LU 6.2 communications.

Note:

EJB clients that access entity beans with CMP that use HOD or ECI for CICS orlM S applications must begin a transaction before invoking a
method on theseentity beans. Thisis necessary because these types of entity beansmust use the TX_MANDATORY transaction attribute.

4. If the paoClassis part of a Java package, then you must createthe corresponding directory structure and move the generated Java files intothis
directory.

5. Compile the Java source files of the newly created enterprise bean:
javac ej bNane*.j ava

6. Place the compiled class components of the enterprise bean into a JAR orZIP file and use the jetace tool to create an EJB JAR file for thebean, as
described in Creating an EJB module.

7. Deploy the EJB JAR file by using the cbejb tool as described inManually deploying an enterprise bean.

Creating an enterprise bean that communicates with MQSeries

Component Broker contains tools for developing BOs that send or receiveM QSeries messages. It also allows access to M QSeries queues withindistributed
transactions. The EJB server (CB) builds on this MQSeriessupport and allows you to create an enterprise bean that wraps anM QSeries-based BO.

The MQSeries EJB support enables an EJB client application to indirectlyinteract with MQSeries through an EJB client interface. Both theComponent
Broker support for MQSeries BOs and the EJB support described hererequire you to modify the DO implementation generated by ObjectBuilder. The main
difference between these two supported approaches isthat when Component Broker MQSeries-based BOs are built, the MQSeries messagecontent is
specified through Object Builder, whereas the EJB support requiresthe M QSeries message content to be specified in a Java propertiesfile.

For more information on the MQSeries support in Component Broker, see theM QSeries Application Adaptor Development Guide document.

The mqaagj b tool generates a session bean that wraps a ComponentBroker BO based on the MQSeries Application Adaptor. The resultingsession bean
implementation is specific to the EJB server (CB) and is notportable to other EJB servers. To deploy the generated session bean,use the cbejb tool. The
mqaaei b tool runsindependently of other EJB server (CB) tools.
To create a session bean for a particular MQSeries queue, do thefollowing:

1. Create aJava propertiesfile that contains theseitems:

o The message type specification--The property hame must bemessageType, and its value must be either Inbound, Outbound, or InOut.If
InOut is chosen, apair of enterprise beans, instead of a single one, arecreated to accommodate paired inbound and outbound message
gueues. Hereis an example of this specification:

124 nmessageType=I nbound

o A list of message field specifications--For each message field, theproperty name is the field name, and the property valueis the fiel dtype.
Hereis an example of this specification:

bankName=j ava. | ang. Stri ng

account Nurrber =i nt
Note:
Java class names in the type specifications must be the fully qualifiedpackage name.
2. Run the mgaaejb command with the following syntax:
nmgaaej b -f propertiesFile -n baseBeanNane [-p packageNane] [-i existinglnboundBA nt erfaceNane]
[-o0 existingQutboundBO nterfaceNanme] [-c existingQutboundCopyNane

The -f and -n options are required. The propertiesFilespecifies the name of the properties file created in Step 1, and the baseBeanName argument
specifies the basename of the enterprise bean or beans to be generated. For example, ifthe base nameis Account and the properties file specifies that
it isfor bothan inbound and an outbound message, then the mgaaejb commandgenerates session beans, related interfaces, and artifacts with the
followingnames:

AccountinboundBean
AccountEJBObject
AccountinboundEJBHome
AccountOutboundBean
AccountOutboundEJBObj ect
AccountOutboundEJBHome
AccountMsgTemplate
The -p option specifies the package name of the enterprise bean; ifnot specified, the package name defaultstomyt est . ej b. ngaa.

Unlessthe -i option or the -0 and -c options are specified, themgaaejb command makes a mark for the cbejb command;later, when the cbejb
command is run over the beans, it generatesthe required backing message BOs for the session beans. If you havealready created and tested
MQSeries Application Adaptor-based BOs (followingthe procedure described in the MQSeries Application Adaptor Development Guide), you now
need onlywrap them in session beans. Y ou can specify the names of these BOs andthe Copy object to the mgaaejb command. Themqaaejb
command then creates session beans that use the specifiedBOs. The names of these objects must be fully qualified. Forexample:

ngaaej b -f nynsg. properties -n Account -i TextMessage:: TM nbound \ -0 Text Message: : TMQut bound -c
Text MessageCopy: : TMOut boundCopy

You still must specify the base bean name with the -n option independentlyof the existing BOs. Y ou aso must provide a properties file; themessage
format specified in this file must be consistent with the existingBOs. The correct mapping between the C++ field types in the BOs and theJava types
in the properties file can be established by referring to the IDL C++/Java binding documentation.

The following items are generated in the working directory on successfulcompletion of the mgaaejb command:

o The Java source files (and the corresponding compiled class files) thatcompose the enterprise bean in the subdirectory corresponding to the
packagename.

o A JAR file containing the Java source files and compiled files thatcompose the enterprise bean.
o An XML file containing the enterprise bean's depl oymentdescriptor.
3. Runthejetacetool asfollowsto generate an EJB JAR file forthe enterprise bean:

jetace -f beanNane. xnl

4. Run the cbejb tool to deploy the enterprise bean contained inthe EJB JAR file. For more information, see Manually deploying an enterprise bean.
When the cbejb command is compl ete,unless you are using existing BOs, you possibly need to follow the steps inthe MQSeries Application
Adaptor Development Guide to modify the DOimplantation.

Restrictions in the EJB server (CB) environment

The following restrictions apply when devel oping enterprise beans for the EJBserver (CB) environment:

« If you try to deploy an EJB JAR file that contains Java source files aswell as classfiles, or if you have JAR dependencies that include Java
sourcecode in the JAR file, the deployment can fail with an 1/0O exception "Could notcompile.” Thisis due to the javac compiler attempting to
update anout-of-date.class file, with respect to the .javafile included in the JARfile. To avoid this, ensure that the "export .java files'checkbox is not
checked when you export your files to a JAR file from withinVisual Age for Java, or do not add the .javafilesto your JAR file whencreating it.

« Unqualified interface and exception names cannot be duplicated inenterprise beans. For example, thecom.ibm.ejs.doc.account.Account
interfacemust not be reused in a package namedcom.ibm.gjs.doc.bank.Account. Thisrestriction is necessary because the EJB server (CB) tools
generate enterprisebean support files that use the unqualified name only.

« Container-managed fields in entity beans must be valid for usein CORBAIDL files. Specificaly, the variable names must use SO
Latin-1characters; they must not begin with an underscore character(_), they must not contain the dollar character ($), and they mustnot be CORBA
keywords. Variables that have the same name butdifferent cases are not allowed. (For example, you cannot use thefollowing variablesin the same
class: accountld andAccountld. For more information on CORBA IDL, consult aCORBA programming guide. 125

Also, container-managed fieldsin entity beans must be valid Java types,but they cannot be of type gjb.javax.Handle or anarray of type EJBObject
or EJBHome.

The use of underscores (_) in the names of user-defined interfaces andexception classes is discouraged.

Method names in the remote interface must not match methodnames in the Component Broker Managed Object Framework (that is, methods inthe
IManagedServer::1ManagedObjectWithCachedDataObject, CosStream:: Streamabl e, CosL ifeCycle::LifeCycleObject,and
CosObjectldentity::1dentifiableObject interfaces). Formore information on the Managed Object Framework, see the Component
BrokerProgramming Guide. In addition, do not use underscores (_) atthe end of property or method names; this restriction prevents namecollision
with queryable attributesin BO interfaces that correspond tocontai ner-managed fields.

The getUserTransaction method of the javax.ejb.EJBContextinterface (which isinherited by the SessionContext interface) returns anobject of type
javax.transaction.UserTransaction rather thantype javax.jts.UserTransaction. While this is a deviationfrom the 1.0 version of the EJB Specification,
the 1.1 versionof the EJB Specification requires that the getUserTransaction method return anobject of type javax.transaction.UserTransaction and

drops therequirement to return objects of typejavax.jts.UserTransaction.

The javax.ejb.SessionSynchroni zation interface isnot supported.

Entity beans with BMP that use Java Database Connectivity (JDBC) to accessa database cannot participate in distributed transactions because
theenvironment does not support X A-enabled JDBC.

The variables of the primary key class of aBMP entity bean must bepublic.

The run-as identity and access control deploymentdescriptor attributes are not used.

The remove method inherited by an enterprise bean's remote interface(from the javax.ejb.EJBObject interface) does not throw
thejavax.ejb.RemoveException exception, even if the enterprisebean's corresponding ejbRemove() method throws this exception.This restriction is

necessary because of the name conflict between the removemethod and the CORBA CosLifeCycle::LifeCycleObject::remove method, which
isinherited by all Component Broker managed objects.

Single-threaded access to enterprise beansis enforced only if abean's transaction attribute is set to either TX_NOT_SUPPORTED
orTX_BEAN_MANAGED. For other enterprise beans, access from differenttransactions is serialized, but serialized access from different
threadsrunning under the same transaction is not enforced. Illegal callbacksfor enterprise beans deployed with the TX_NOT_SUPPORTED or
TX_BEAN_MANAGEDtransaction attribute result in ajava.rmi.RemoteExceptionexception being thrown to the EJB client.

The session bean timeout attribute is not supported.
The transaction attribute can be set only for the bean as a whol e;the transaction attribute cannot be set on individual methods in abean.

If a stateful session bean hasthe TX_BEAN_MANAGED transaction attributevalue, a method that begins a transaction must also complete that
transaction(commit or roll back the transaction). In other words, a transactioncannot span multiple methods in a stateful session bean when used in
the EJBserver (CB) environment.

The TX_MANDATORY transaction attribute value must be used in entity beanswith container-managed persistence (CMP) that use HOD or ECI
to access CICS orlM S applications. As aresult, EJB clients that access these entitybeans must do so within a client-initiated one-phase commit
transaction (CBsession service).

The TX_NOT_SUPPORTED transaction attribute value is not supported forentity beans with CMP, because these beans must be accessed within
atransaction.

The TX_REQUIRES_NEW transaction attribute is not supported forJAR files that are in the EJB version 1.0 format. For JAR filesthat are in the
EJB 1.1 format, the TX_REQUIRES_NEW transactionattribute is interpreted as TX_REQUIRED.

For JAR filesthat arein the EJB 1.1 format, the TX_NEVERtransaction attribute isinterpreted as TX_NOT_SUPPORTED.
The TX_SUPPORTS transaction attribute isinterpreted asTX_MANDATORY.
The transaction isolation level attribute is notsupported.

When using thecom.ibm.ejb.cb.runtime.CBCtxFactory contextfactory, any of the default initial context factories (see Default context-to-finder
associations), or an application-specific initial context factorygenerated by the appbind tool (see Application-specific contexts and the appbind
tool), the javax.naming.Context.list andjavax.naming.Context.listBindings methods can return nomore than 1000 elementsin the
javax.naming.NamingEnumerationobject.

C++ CORBA-based EJB clients are not supported.

126

Tools for developing and deploying enterprise beans in the EJB server
(AE) environment

There are two basic approaches to devel oping and deploying enterprise beans inthe EJB server (AE) environment:

« You can use one of the available integrated devel opment environments(IDES) such as IBM VisualAge(TM) for Java Enterprise Edition. IDE
toolsautomatically generate significant parts of the enterprise bean code andcontain integrated tools for packaging and testing enterprise
beans.VisualAge for Javais the recommended development tool for the EJB server (AE)environment. For more information on using
VisualAge for Java, see Using VisualAge for Java.

« You can usethe tools available in the Java Software Development Kit (SDK)and the Advanced Application Server. For more information,
see Developing and deploying enterprise beans with EJB server (AE) tools.

Note:
Deployment and use of enterprise beans for the EJB server (AE) environmentmust take place on the Microsoft Windows NT(R) operating
system, the IBMAIX(R) operating systems, or the Sun Microsystems Solaris operatingsystem.

For information on developing enterprise beans in the EJB server (CB)environment, see Tools for developing and deploying enterprise beansin
the EJB server (CB) environment.

Using VisualAge for Java

Before you can develop enterprise beansin VisualAge for Java, you must set upthe EJB development environment. Y ou need to perform this setup
taskonly once. This setup procedure directs VisualAge for Javato importall of the classes and interfaces required to devel op enterprise beans.
After generating an enterprise bean, you complete its devel opment byfollowing these general steps:

1. Implement the enterprise bean class.

2. Create the required abstract methods in the bean's home and remoteinterfaces by promoting the corresponding methods in the bean classto
theappropriate interface.

3. For entity beans, do the following:
a. Create any additional finder methodsin the home interface by using theappropriate menu items.
b. Create afinder helper interface, if required.
4. Create the EJB module and corresponding deployment descriptor.
5. Generate the deployment code for the bean.
VisualAge for Java contains a complete WebSphere Application Server runtime environment and a mechanism to generate a test client to test

yourenterprise beans. For much more detailed information on devel opingenterprise beansin VisualAge for Java, refer to the Visual Age for
Javadocumentation.

Developing and deploying enterprise beans with EJB server (AE) tools

If you have decided to develop enterprise beans without an IDE, youneed a minimum the following tools:
o An ASCII text editor. (You can use a'so use a Java development toolthat does not support enterprise bean development.)
« The SDK Java compiler (javac) and Java Archiving tool(jar).
» TheWebSphere Application Assembly Tool and the WebSphere AdministrativeConsole.

This section describes steps you can follow to develop enterprise beans byusing these tools. The following tasks are involved in the devel opmentof
enterprise beans:

1. Ensurethat you have installed and configured the prerequisite software todevel op, deploy, and run enterprise beans in the EJB server
(AE)environment. For more information, see Installing and configuring the software for the EJB server (AE).

2. Set the CLASSPATH environment variable required by different components ofthe EJB server (AE) environment. For more information,
see Setting the CLASSPATH environment variable in the EJB server (AE) environment.

3. Write and compile the components of the enterprise bean. For moreinformation, see Creating the components of an enterprise bean.

4. (Entity beans with CMP only) Create a finder helper interfacefor each entity bean with CMP that contains specialized finder methods
(otherthan the findByPrimaryKey method). For more information, see Creating finder logic in the EJB server (AE).

5. Create an EJB module and corresponding deployment descriptor by using theApplication Assembly Tool. For more information, see
Creating an EJB module.

6. (Entity beans only) Create a database schema to enable storageof the entity bean's persistent datain a database. For moreinformation, see
Creating a database for use by entity beans.

7. Deploy the EJB module by using the Application Assembly Tool or theWebSphere Administrative Console. For more information, see
theWebSphere InfoCenter and the online help avail able with the WebSphereAdministrative Console.

127

8. Install the EJB module into an EJB server (AE) and start the server byusing the WebSphere Administrative Console.
Installing and configuring the software for the EJB server (AE)

Y ou must ensure that you have installed and configured the followingprerequisite software products before you can begin devel oping
enterprisebeans and EJB clients with the EJB server (AE):

« WebSphere Application Server Advanced Edition
« One or more of the following databases for use by entity beans withcontai ner-managed persistence (CMP):
o DB2
o Oracle
o Sybase
o Informix
o Microsoft SQL Server
o InstantDB
« The Java Software Development Kit (SDK)

For information on the appropriate version numbers of these products andinstructions for setting up the environment, see the
WebSpherelnfoCenter.

Setting the CLASSPATH environment variable in the EJB server (AE) environment

In addition to the classes.zip file contained in the SDK, the followingWebSphere JAR files must be appended to the CLASSPATH environment
variable fordevel oping enterprise beans:

o gsjar
o Ucjar
« otherDeployedBean.jar (if the enterprise bean usesanother enterprise bean). Thisis the deployed JAR file containing theenterprise bean
being used by this enterprise bean.
For developing and running an EJB client, the following WebSphere JAR filesmust be appended to the CLASSPATH environment variable:
o gsjar
e Ujcjar
« servletjar (required by EJB clientsthat are servlets)
« otherDeployedBean.jar. Thisisthe deployed JARfile containing the enterprise bean being used by this EJB client.

Creating the components of an enterprise bean

If you use an ASCI| text editor or a Java development tool that does notsupport enterprise bean devel opment, you must create each of the
componentsthat compose the enterprise bean you are creating. Y ou must ensure thatthese components match the requirements described in
Developing enterprise beans.

To manually develop a session bean, you must write the bean class, thebean's home interface, and the bean's remote interface. Tomanually develop
an entity bean, you must write the bean class, thebean's primary key class, the bean's home interface, the bean'sremote interface, and if necessary,
the bean's finderHel perinterface.After you have properly coded these components, use the Java compiler tocreate the corresponding Java class
files. For example, because thecomponents of the example Account bean are stored in a specific directory, thebean components can be compiled
by issuing the following command:

C. \ MYBEANS\ COM | BM EJS\ DOC\ ACCOUNT> j avac *.java

This command assumes that the CLASSPATH environment variable contains allof the packages used by the Account bean.

Creating finder logic in the EJB server (AE)

For the EJB server (AE) environment, the following finder logic is requiredfor each finder method (other than the findByPrimaryKey method)
contained inthe home interface of an entity bean with CMP:

« Thelogic must be defined in a public interface namedNameBeanFinderHel per, where Name is the name of theenterprise bean (for
example, AccountBeanFinderHel per).

« Thelogic must be contained in a String constant namedfindMethodNameWhereClause, where findMethodName is thename of the finder
method. The String constant can contain zero or morequestion marks (?) that are replaced from left to right with the value of thefinder
method's arguments when that method is invoked.

Note:
Encapsulating the logic in a String constant namedfindMethodNameQuery String has been deprecated.

If you define the findL argeA ccounts method shown in Figure 24, you must also create the AccountBeanFinderHel per interfaceshown in Figure 7.
128

Figure 7. Code example: AccountBeanFinder Helper interface for the EJB server (AE)

...public interface Account BeanFi nder Hel per{ String findLargeAccount sWhereC ause = "bal ance >
?";}

Creating an EJB module

The WebSphere Application Server Application Assembly Tool can be used tocreate an EJB module. One or more enterprise beans can be placed
in anEJB module. The tool automatically creates the required deploymentdescriptor for the module based on information specified by the user.

Note:

Before using the Application Assembly Tool, the WebSphere CommonConfiguration Model (WCCM) MetaObject Facility (MOF) JAR
files must be addedto your CLASSPATH environment variable.

Using the Application Assembly Tool

To create an EJB module and corresponding deployment descriptor, use theCreate an EJB JAR wizard in the Application Assembly Tool. This
wizardprompts you to specify the following information for each enterprise bean tobe included in the module;

» Theenterprise bean class, home interface class, and remote interfacecl ass.

« The bean type (entity or session), and associated attributes (such aspersistence management type and primary key class for entity beans).
« Any environment variables to be associated with the enterprisebean.

« Referencesto another enterprise bean's home interface and toresource factories.

» References to security roles for the enterprise bean.

The wizard a so prompts you to specify the following application assemblyinformation for the module itself:

« Genera properties of the EJB module, such as the location of class filesneeded for a client program to access the enterprise beans in the
modul e andthe icons to be associated with the module.

« The deployable enterprise beans that the module will contain.
« Security roles used to access resources in the module.
« Transaction attributes for the enterprise bean methods.

Both bean and module information are used to create the deploymentdescriptor. See the WebSphere InfoCenter and the online help fordetails on
how to use the Application Assembly Tool.

Creating a database for use by entity beans

For entity beans with container-managed persistence (CMP), you muststore the bean's persistent datain one of the supporteddatabases. The
Application Assembly Tool automatically generates SQL code for creating database tables for CMP entity beans. The tool namesthe database
schema and table ejb.beanNamebeantbl, wherebeanName is the name of the enterprise bean (for example,gjb.accountbeantbl). If your CMP entity
beans require complexdatabase mappings, it is recommended that you use VisualAge for Java togenerate code for the database tables. At run time,
the WebSphereAdministrative Console displays a prompt asking whether you want to executethe generated SQL code that creates the database
table.

For entity beans with bean-managed persistence (BMP), you cancreate the database and database table by using the database tools or use
anexisting database and database table. Because entity beans with BM Phandle the database interaction, any database or database table name
isacceptable.

For more information on creating databases and database tables, consultyour database documentation and the online help for the
WebSphereAdministrative Console.

129

Appendix A. Changes for version 1.1 of the EJB
specification
WebSphere Application Server supports version 1.1 of the EJBspecification. This appendix describes features

that are new or havechanged in version 1.1 and discusses migration issues for enterprisebeans written to version
1.0 of the EJB specification.

New and updated features

The following enterprise bean features are new or have changed for versionl.1.

« Environmental dependencies for enterprise beans are now specified usingentriesin a INDI naming
context. An instance of an enterprise beancreates a javax.naming.lnitial Context object by invoking
theconstructor with no arguments specified. It looks up the environmentnaming context by using the
Initial Context object under the namejava:comp/env.

« Primary keys are handled differently in version 1.1 of the EJBspecification. Entity bean providers are
not required to specify theprimary key class for entity beans with container-managed persistence
(CMP),enabling the deployer to select the primary key fields when the bean isdeployed into a container.

« The deployment descriptor has enhanced support for applicationassembly.

Migrating from version 1.0 to version 1.1

From the client's perspective, enterprise beans written to versionl.1 of the EJB specification appear nearly
identical to enterprisebeans written to version 1.0 of the specification. However, thefollowing EJB 1.1 changes
do affect clients:

« Enterprise beans written to version 1.1 of the EJB specificationare registered in a different part of the
JNDI namespace. For example,a client can look up theinitial context of aversion 1.0 enterprisebeanin
JNDI by using theinitial Context.lookup method asfollows:

initial Context.|ookup("conilibm Hello")
The JINDI lookup for the equivalent version 1.1 enterprise beanis:
initial Context. | ookup("java: conp/env/ejb/Hello")

« The UserTransaction object is obtained differently for enterprise beanswritten to version 1.1 of the EJB
specification. Under versionl.0, it was obtained as:

initial Context.|ookup("jtal/UserTransaction")
Under version 1.1, it is obtained as:
i nitial Context.|ookup("java: conp/ User Transacti on")

« Because entity beans written to version 1.1 of the EIJBspecification now support primitive primary keys
(instead of having toencapsulate them in a primary key class), the client needs to look up theseprimitive
keys directly. For example, aclient can look up a primitivekey of the type java.lang.Integer as follows:

account Horme. fi ndByPri mar yKey(new I nt eger (5))

Primary key classes are still supported, although their use forprimitive data types is deprecated.
From the application developer's perspective, the following changesneed to be made to make enterprise beans
written to version 1.0 of theEJB specification compatible with version 1.1 of thespecification.

o All deployment descriptors must be converted to the XML format specifiedin version 1.1 of the EJB
specification.
130

« Ingenera, enterprise beans written to version 1.0 of the EJBspecification are compatible with version
1.1. However, you needto modify or recompile enterprise bean code in the following cases:

O

The return value of the gjbCreate method must be modified for al entitybeans with CMP. The
€jbCreate method is now required to return the sametype as the primary key; the actual value
returned must be null.These beans also must be recompiled. For more information, see
Implementing the ejbCreate and ejbPostCreate methods

If the javax.jts.UserTransaction interface is used. This interface has been renamed
tojavax.transaction.User Transaction. Enterprise beans thatuse this interface must be modified to
use the new interface name.There have also been minor changes to the exceptions thrown by
thisinterface.

If the getCallerldentity or isCallerlnRole methods of thejavax.ejb.EJBContext interface are used.
These methodswere deprecated because the javax.security.ldentity class isdeprecated under the
Java 2 platform.

If an entity bean uses the UserTransaction interface, which is notpermitted under version 1.1 of
the EJB specification.

If an entity bean whose finder methods do not define the FinderExceptionin the methods' throws
classes. Under version 1.1, thefinder methods of entity beans must define this exception.

If an entity bean uses the UserTransaction interface and implements theSessionSynchroni zation
interface. Entity beans can neither use theUser Transaction interface nor implement the
SessionSynchronization interfaceunder version 1.1.

If astateful session beans implements the SessionSynchronizationinterface. Thisis not permitted
under version 1.1.

If an enterprise bean violates any of the new semantic restrictionsdefined in version 1.1 of the
EJB specification.

Throwing the javax.e/b.RemoteException exception from thebean implementations is deprecated
inversion 1.1. Thisexception should be replaced by the javax.ejb.EJBEXxception or amore
specific exception such as thejavax.gjb.CreateException. Thejavax.ejb.EJBEXception inherits
from thgjavax.gjb.RuntimeException and does not need to be explicitlydeclared in throws
clauses.

Declare the javax.gjb.RemoteException exception in the remoteand home interfaces, as required
by RMI. Throwing this exceptiondirectly by the bean implementation is deprecated. However, it
can bethrown by the container due to a system exception or by mapping an exceptionthrown by
the bean implementation.

131

Appendix B. Example code provided with WebSphere
Application Server

This appendix contains information on the example code provided with theWebSphere Application Server for
both Advanced Edition and EnterpriseEdition.

Information about the examples described in the documentation

The example code discussed throughout this document is taken from a set ofexamples provided with the
product. This set of examples is composed ofthe following main components:

« The Account entity bean, which models either a checking or savings bankaccount and maintains the
balance in each account. An account 1D isused to uniquely identify each instance of the bean class and
to act as theprimary key. The persistent data in this bean is container managed andconsists of the
following variables:

o accountld--The account ID that uniquely identifies theaccount. This variableis of type long.

o type--Aninteger that identifies the account as either asavings account (1) or a checking account
(2). Thisvariableis of typeint.

o balance--The current balance of the account. Thisvariable is of type float.

The major components of this bean are discussed in Developing entity beans with CMP.

« The AccountBM entity bean, which is nearly identical to the Account entitybean; however, the
AccountBM bean implements bean-managedpersistence. This bean is not used by any other enterprise
bean,application, or servlet contained in the documentation example set. Themajor components of this
bean are discussed in Developing entity beans with BMP.

« The Transfer session bean, which models a funds transfer session thatinvolves moving a specified
amount between two instances of an Accountbean. The bean contains two methods: the transferFunds
methodtransfers funds between two accounts, the getBalance method retrieves thebal ance for a specified
account. The bean is stateless. Themajor components of this bean are discussed in Developing session

beans.

« The CreateAccount servlet, which can be used to easily create new bankaccounts (and corresponding
Account bean instances) with the specified accountl D, account type, and initial balance. Although this
servlet isdesigned to make it easy for you to create accounts and demonstrate the othercomponentsin the
example set, it also illustrates servlet interaction with anentity bean. This servlet is discussed in
Developing servlets that use enterprise beans.

« The TransferApplication Java application, which provides a graphical userinterface that was built with
the abstract windowing toolkit (AWT). Theapplication creates an instance of the Transfer session bean,
which is thenmanipulated to transfer funds between two selected accounts or to get thebalance for a
specified account. The TransferApplication codeimplements many of the requirements for using
enterprise beans in an EJBclient. The parts of this application that are relevant to interactingwith an
enterprise bean are discussed in Developing EJB clients.

« The TransferFunds servlet, which isaservlet version of theTransferApplication Java application. This
servlet is provided so thatyou can compare the use of enterprise beans between a Java application and
aJava servlet that basically are doing the same tasks. This documentdoes not discuss this servlet in any
detail.

Note:

The example code in the documentation was written to be as simple aspossible. The goal of these
examplesisto provide code that teachesthe fundamental concepts of enterprise bean and EJB client

132

development.lt is not meant to provide an example of how abank (or any similar company)possibly
approaches the creation of a banking application. For example,the Account bean contains a balance
variable that has atype offloat. In areal banking application, you must not use afloat type tokeep
records of money; however, using a class likgjavamath.BigDecimal or a currency-handling class within
theexamples would complicate them unnecessarily. Remember this as youexamine these examples.

Information about other examples in the EJB server (AE) environment

Table 4 provides a summary of the enterprise bean-specific examplesprovided with the EJB server (AE).

Table 4. Examples available with the EJB server (AE)

IName |Bean types |EJB client types [Additional information
IHello | Statel ess session |Java servlet |Very smple example of a session bean.
|Increment |CMP entity |Java servlet |Very simple example of an entity bean.

Information about other examples in the EJB server (CB) environment

Table 5 provides a summary of the enterprise bean-specific examplesprovided with the EJB server (CB). or
more information about theseexamples, see the README file that accompanies each example.

Table 5. Examples available with the EJB server (CB)

IName |Bean types |EJB client types |Additional information
IHello | Statel ess session |Java application |Very simple example of a session bean.
Calculator Stateful session Applet, ActiveX Demonstrates maintaining state
control information in a session bean.
Account Stateful session, Servlet, Active X An Advanced Edition sample with a
CMP entity, BMP [control servlet client. One enterprisebean
entity references another bean.
Card Game Stateful session, Applet, ActiveX Demonstrates a session bean selecting
CMP entity control entity beans with custom findermethods
that use various types of queries. One
enterprise beanreferences another bean.
Travel Stateful session, Applet, ActiveX Demonstrates client-side transactions. An

BMP entity, CMP
entity

control

enterprise bean uses aPAA as adata
source. One enterprise bean references
anotherbean.

VisualAgefor Java |CMP entity Demonstrates client-initiated transactions,

demo inheritance, association andpolymorphic
gueries. One enterprise bean references
anotherbean.

Big 3 Statel ess session, Multithreaded Demonstrates enterprise beans written to

CMP entity version 1.1 of the EJBspecification. One

enterprise bean references another bean.

Postcard Statel ess session Demonstrates enterprise beans that use

Java Messaging Service

(IM S)point-to-point messaging.

133

CORBA BMP entity Demonstrates enterprise beans that

interoperability communicate with C++ business

(policy wrapper) objects(BO) and Java BOs (with a C++
client) that communicate with
enterprisebeans.

JDBC AA BMP entity Demonstrates how to use the CB Session

service. An enterprise beanuses PAA asa
data source.

134

Appendix C. Using XML in enterprise beans (CB Only)

Note:

This appendix applies to the EJB server (CB) environment only.Additionally, it applies only to creating XML deployment descriptors forenterprise beans that are written to version 1.0 of the EJBspecification. (The standard XML deployment
descriptors are used forversion 1.1 enterprise beans.)

This appendix contains instructions for manually creating deploymentdescriptors for enterprise beans by using the extensible markup language(XML).
Note:
As an aternative to following these instructions, you can use VisualAge forJavato create XML deployment descriptors. See the Visual Age for Javaproduct documentation for details.

This appendix does not contain general information on creating or usingXML ; for more information on XML, consult acommercially availablebook.

An XML file, which isastandard ASCII file, can be created manually or byusing the graphical user interface (GUI) of the jetace tool.Once created, the XML file can be used to create an EJB JAR file from thecommand line by using the j etace tool. For
more information,see Creating an EJB JAR file for an enterprise bean.

An XM L-based deployment descriptor must contain the following majorcomponents:
« Standard header and EJB JAR tags. For more information, see Creating the standard header and EJB JAR tags.
« Theinput file and output file tags. For more information, see Creating the input file and output file tags.

« Session bean or entity bean tag, depending on the type of bean for whichthe deployment descriptor is being generated. An XML file can containinstructions for generating an EJB JAR file with multiple enterprise beans ofall types. For more
information, see Creating the entity bean tags and Creating the session bean tags.

« Thetagsused by all enterprise beans. For more information, see Creating tags used by al enterprise beans.

Creating the standard header and EJB JAR tags

Every XM L-based deployment descriptor must have the standard header tag,which defines the XML version and the standal one status of the XMLfile. For enterprise beans, these properties must be set to the valuesshown in Figure 121. Except for the
header tag, which must be the firsttag in the file, the remaining content of the XML file must be enclosed inopening and closing EJB JAR tags.

Figure 121. Code example: The standard header and EJB JAR tags

<?xm version='1.0" standal one='yes' ?><ejb-JAR><!-- Content of the XM. file -->...</ejb-JAR>

Creating the input file and output file tags

The input file tag identifies the JAR or ZIP file or the directorycontaining the required components of one or more enterprise beans. Theoutput file tag identifies the EJB JAR file to be created; by default aJAR fileis created, but you can force the
creation of aZIP file by adding a.zip extension to the output file name. The input and outputfiles for the example Account bean are shown in Figure 122.

Figure 122. Code example: Theinput file and output file tags

<?xm version='1.0" standal one='yes'
?><ej b- JAR><i nput - fil e>AccountIn.jar</input-file><output-file>Account.jar</output-file>. ..</ejb-JAR>

Creating the entity bean tags

If you are creating a deployment descriptor for an entity bean, you mustuse an entity bean tag. The entity bean open tag must contain a dnameattribute, which must be set to the fully qualified name of the deploymentdescriptor associated with the entity
bean.

Between the open and close entity bean tags, you must create the followingentity bean-specific attribute tags:
« <primary-key> -- Identifies the fully qualified name of theprimary key class for this entity bean.
« <re-entrant> -- Specifies whether the entity bean isre-entrant. This tag must contain a value attribute, which must be setto either t r ue (re-entrant) or f al se (notre-entrant).
« <container-managed> -- |dentifies the persistent variablesin aCMP entity bean that are container managed. Y ou must use a separate tagfor each persistent variable.

In addition to the entity bean-specific tags, you must create the tagsrequired by all enterprise beans described in Creating tags used by all enterprise beans.
Figure 123 shows the entity bean-specific tags for the example Accountbean.

Figure 123. Code example: The entity bean-specific tags

<?xm version='"1.0" standal one='yes'

?><ej b- JAR><i nput -fil e>AccountIn.jar</input-file><output-file>Account.jar</output-file> ..<entity-bean

dnane="coni i bni ej s/ doc/ account/ Account . ser"><pri mary-key>com i bm ej s. doc. account . Account Key</ pri mar y- key><r e- entr ant

val ue=f al se/ ><cont ai ner - managed>account | d</ cont ai ner - managed><cont ai ner - ranaged>t ype</ cont ai ner - managed><cont ai ner - managed>bal ance</ cont ai ner - managed><! - - & her
tags used by all enterprise beans--!>...</entity-bean>...</ejb-JAR>

Creating the session bean tags

If you are creating a deployment descriptor for an session bean, you mustuse a session bean tag. The session bean open tag must contain a dnameattribute, which must be set to the fully qualified name of the deploymentdescriptor associated with the
session bean. Between the open and closesession bean tags, you must also create the following session bean attributetags:

« <session-timeout> -- Defines the idle timeout in secondsassociated with the session bean.
« <state-management> -- |dentifies the type of session bean:STATELESS_SESS| ON or STATEFUL_SESSI ON.

In addition to the session bean-specific tags, you must create the tagsrequired by all enterprise beans described in Creating tags used by all enterprise beans.
Figure 124 shows the session bean tags for the example Transferbean.

Figure 124. Code example: The session bean-specific tags

<?xm version='"1.0" standal one='yes'

?><ej b-JAR><i nput-file>Transferln.jar</input-file><output-file>Transfer.jar</output-file>...<session-bean
dnane="conl i bm ej s/ doc/transfer/ Transfer. ser"><sessi on-ti meout >0<\ sessi on-ti neout >

<st at e- managenent >STATELESS_SESS| O\<\ st at e- managenent ><! -- Gt her tags used by all enterprise
beans--!>...</session-bean>...</ejb-JAR>

Creating tags used by all enterprise beans

The following tags are used by all types of enterprise beans. Thesetags must be placed between the appropriate set of opening and closing sessionor entity bean tags in addition to the tags that are specific to those typesof beans.
« <remote-interface> -- Identifies the fully qualified name of theenterprise bean's remote interface.
« <enterprise-bean> -- Identifies the fully qualified name of theenterprise bean's bean class.
« <JNDI-name> -- |dentifies the INDI home name of the enterprisebean.

« <transaction-attr> -- Defines the transaction attribute for theentire enterprise bean. This attribute can also be set for anindividua bean method. The valid values are TX_MANDATORY,TX_NOT_SUPPORTED,
TX_REQUI RES_NEWTX_REQUI RED, TX_SUPPORTS, andTX_BEAN_MANAGED. For more information on the meaning of andrestrictions on these values, see Setting the transaction attribute.

<isolation-level> -- Defines the transactional isolation levelattribute for the entire enterprise bean. This attribute can also beset for an individua bean method. The valid values, which must be setby using a value attribute within the open tag, are
SERI ALI ZABLE,REPEATABLE_READ, READ_COWM TTED, andREAD_UNCOWM TTED. For more information on the meaning of andrestrictions on these values, see Setting the transaction isolation level attribute.

« <run-as-mode> -- Defines the run-as mode attribute for the entireenterprise bean. This attribute can also be set for an individual beanmethod. The valid values, which must be set by using a value attributewithin the open tag, are
CLI ENT_I DENTI TY,SYSTEM | DENTI TY, and SPECI FI ED_| DENTI TY. For moreinformation on the meaning of these values, see Setting the security attribute in the deployment descriptor.

« <run-as-id> -- Defines the run-as identity attribute for theentire enterprise bean. This attribute can also be set for anindividual bean method. This attribute is not used with the EJB serverenvironments contained in WebSphere Application Server.
« <method-control> -- Identifies individual bean methods withtransaction or security attributes that are different from the attributevalues for the entire bean.

« <dependency> -- Identifies the fully qualified names of classes onwhich this enterprise bean is dependent.

« <env-setting> -- |dentifies environment variables (and theirvalues) required by the enterprise bean. The environment variable nameis specified with a name attribute, while the environment variable value isplaced between the open and close tags.

Figure 125 shows the enterprise bean tags for the example Transferbean. A similar set is required by the Account bean.

Figure 125. Code example: Thetags used for all enterprise beans

<?xm version='1.0" standal one='yes'

?><ej b-JAR><i nput-file>Transferln.jar</input-file><output-file>Transfer.jar</output-file>. ..<session-bean

dnanme="coni i bn ej s/ doc/transfer/ Transfer.ser"> <!--Session bean-specific tags

--1> . .<renote-interface>comibmejs.doc.transfer. Transfer</renpte-interface><enterprise-bean>comibm ejs. doc.transfer.TransferBean</enterprise-bean><JND - name>Tr ansf er
</ JNDI - name><t ransaction-attr val ue="TX REQUI RED'/ ><i sol ati on-| evel val ue="SERI ALl ZABLE"/> <run-as- node

val ue="CLI| ENT_I DENTI TY"/ ><dependency>coni i bn ej s/ doc/ account/ I nsuf fi ci ent FundsExcepti on. cl ass</ dependency>. .. <env-setting

nane=" ACCOUNT_NAME" >Account <env-setting>. .. </ sessi on-bean>...</ejb-JAR>

If you want to override the enterprise bean-wide transaction or securityattribute for particular method in that bean, you must use the<method-control> tag. Between the open and close tags, you mustidentify the method with the <method-name> tag and
the method'sparameter types by using the <parameter> tag. In addition, thefollowing tags can used to identify those attribute values that are differentin the method from the enterprise bean as a whole:<transaction-attr>, <isolation-level>,
<run-as-mode>, and<run-as-id>.

For example, the XML shown in Figure 126 is required to override the transaction attribute of theTransfer bean (TX_REQUIRED) in the getBalance method to TX_SUPPORTED.Because only the transaction attribute is overridden, the method
automaticallyinherits the values of the <isolation-level> and <run-as-mode> tags fromthe Transfer bean.

Figure 126. Code example: M ethod-specific tags

<?xm version='"1.0" standal one='yes'

?><ej b-JAR><i nput-file>Transferln.jar</input-file><output-file>Transfer.jar</output-file>...<session-bean
dnanme="coni i bn ej s/ doc/transfer/ Transfer.ser"> <!--Session bean-specific tags --!>...<transaction-attr

val ue="TX_REQUI RED'/ ><i sol ati on-| evel val ue="SERI ALI ZABLE"/ > <run- as- node

val ue="CLI ENT_I| DENTI TY"/>. .. <net hod- cont r ol ><net hod- nanme>get Bal ance</ nmet hod- nane><par anet er > ong</ par anet er ><transacti on-attr
val ue="TX_SUPPORTED"/ ></ et hod- cont r ol ></ sessi on- bean>. .. </ ej b- JAR>

Appendix D. Extensions to the EJB Specification

This appendix briefly discusses functional extensions to the EJBSpecification that are available in the EJB
server environments contained inWebSphere Application Server. These extensions are specific toWebSphere
Application Server and use of these features is supported only withVisual Age for Java, Enterprise Edition. For
information on implementingthese features, consult your Visual Age for Java documentation.

Access beans

Access beans are Java components that adhere to the SunMicrosystems JavaBeans(™) Specification and are
meant to simplify developmentof EJB clients. An access bean adapts an enterprise bean to theJavaBeans
programming model by hiding the home and remote interfaces from theaccess bean user (that is, an EJB client
developer). Access beans aresupported in both the Advanced Edition and Component Broker EJBenvironments.

There are three types of access beans, which are listed in ascending orderof complexity:

« Java bean wrapper--Of the three types of access beans, a Java beanwrapper isthe simplest to create. It is
designed to alow either asession or entity enterprise bean to be used like a standard Java bean and
ithides the enterprise bean home and remote interfaces from you. EachJava bean wrapper that you create
extends thecom.ibm.ivj.egjb.access.A ccessBeanclass.

« Copy helper--A copy helper access bean has all of the characteristicsof a Java bean wrapper, but it also
incorporates a single copy helper objectthat contains alocal copy of attributes from a remote entity bean.
Auser program can retrieve the entity bean attributes from the local copyhelper object that residesin the
access bean, which eliminates the need toaccess the attributes from the remote entity bean.

« Rowset--A rowset access bean has all of characteristics of both theJava bean wrapper and copy hel per
access beans. However, instead of asingle copy helper object, it contains multiple copy helper
objects.Each copy helper object corresponds to a single enterprise beaninstance.

VisualAge for Java provides a SmartGuide to assist you in creating orediting access beans.

Associations between enterprise beans

In the EJB server environment, an association is arelationship that existsbetween two CMP entity beans. There
are three types ofassociations: one-to-one and one-to-many. In a one-to-oneassociation, a CMP entity bean is
associated with a single instance of anotherCMP entity bean. For example, an Employee bean could be
associated withonly a single instance of a Department bean, because an employee generallybelongs only to a
single department.

In a one-to-many association, a CMP entity bean is associated with multipleinstances of another CMP entity
bean. For example, a Department beancould be associated with multiple instances of an Employee bean,
because mostdepartments are made up of multiple employees.

The Association Editor is used to create or edit associations between CM Pentity beansin VisualAge for Java.

Inheritance in enterprise beans

In Java, inheritance is the creation of a new class from anexisting class or a new interface from an existing
interface. The EJBserver environment permits two forms of inheritance: standard classinheritance and EJB
inheritance. In standard class inheritance, thehome interface, remote interface, or enterprise bean class inherits
propertiesand methods from base classes that are not themsel ves enterprise bean classesor interfaces.

138

In enterprise bean inheritance, by comparison, an enterprise bean inheritsproperties (such as CMP fields and
association ends), methods, andmethod-level control descriptor attributes from another enterprise bean

thatresides in the same group.
VisualAge for Java provides a SmartGuide to assist you in implementinginheritance in enterprise beans.

139

6.6.4: Administering EJB containers (overview)

A container configuration provides information about an enterprisebean container. The administrator can
specify several properties toaddress basic questions about the container location and behavior.

Specifying the server in which the container will reside

Each enterprise bean container resides in a particular application server.

When the administrator adds a new container to the WebSphere administrativedomain, he or she must associate
the container with a particular server (alsoknown as the container's parent).

An application server can host multiple containers.

Specifying how beans in the container will get database connections

Every container can support the two main bean types, session beans and entitybeans:
« Entity beans require database connections because they store permanent data.
« Session beans do not require database access, though they can obtain it indirectly (as needed) by
accessing entity beans.

A data source is an administrative resource that defines a pool of database connections. Servlets and enterprise
beans use data sources to obtain database connections.

When configuring a container, the administrator can specify a default data source for the container. This data
source will be the default data source used by any entity beans installed in the container that use container
managed persistence (CMP).

When configuring a CMP entity bean, the administrator can specify which data source the container must use
for managing the persistent state of the entity bean. If the administrator specifies a data source for an individual
CMP entity bean then this data source will override any data source specified on the container.

Specifying a default data sourceis optional if each CMP entity bean in the container has a data source specified
in it configuration. If a default data source is not specified and a CMP entity bean isinstalled in that container
without specifying a data source for that bean then it will not be possible to start that CMP entity bean.

The default data source for a container is secure. When specifying it, the administrator must provide the user 1D
and password for accessing the data source.

Specifying how the container will manage cached bean instances

Each container keeps a cache of bean instances for ready access. The WebSphere administrator specifies
settings governing the cache size and a policy for removing unused items from the cache.

Specifying where the container will passivate beans to make room in its cache

A container can passivate session beans to make room in its cache. The container saves a serialized session
bean to afile. It restores the bean tothe cache when more room is available.

The WebSphere administrator specifies a passivation directory inwhich to keep the files.

140

6.6.4.0: EJB container properties

Cache absolute limit

Specifies the maximum number of bean instances permitted in the cache by the container cache
manager. The container will fail to allocate new bean instances when the total number of active beans
reaches this limit.
This value must be a positive integer.

Cache clean-up interval
Specifies the interval at which the container attempts to remove unused items from the cache to reduce
the total number of itemsin the cache to the value of the Cache preferred limit property.

The cache manager tries to maintain some unallocated entries that can be quickly allocated as needed. A
background thread attempts to free some entries while ensuring that some unallocated entries are

maintained. If the thread runs while the application server isidle, then when the application server needs
to allocate new cache entries, it does not pay the performance cost of removing entries from the cache.

In general, increase this parameter as the cache size increases.

This value must be a positive integer specified in milliseconds.
Cache preferred limit

Specifies a soft limit for the number of bean instances the container attempts to retain in the cache. The
cache manager will use this value as atrigger to start discarding unused entries from the cache. See the
cache clean-up interval description for details about the cleanup mechanism.

If necessary, the number of enterprise bean instances in the cache can increase to the value specified by
the Cache absolute limit property. The difference between the Cache preferred limit and the Cache
absolute limit can be thought of as the "surge capacity” for the container -- that is, the ability of the
container to handle a spike in requests without having to passivate beans.
This value must be an integer less than or equal to the value of the Cache absolute limit.

Cachesize
Specifies the number of buckets in the cache hash table.
If you change this value, change the Cache absolute limit property to correspond. For example, if you
change the cache size to 3000, change the cache absolute limit to 3000, unless for some reason you do
not want all of the available cache to be used.
This value must be a positive integer.

Current State

Indicates the state the container is currently in. The next time itis started, it will try to changeto its
desired state setting.

Data Source
Specifies the data source the container should use for the purpose of enterprise bean persistence.
Data Sourcein use
Specifies the data source currently in use.
Desired state
Indicates the state the container should have the next timeit is started.
EJB Container name

141

Specifies aname for the container. The name must be unigue within the application server that contains
it.

Name
Indicates the name of the container

Passivation directory
Specifies the name of a directory where the container saves the persistent state of passivated session
beans.

Session beans are passivated when the container needs to reclaim space in the bean cache. At
passivation time, the container serializes the bean instance to afile in the passivation directory and
discards the instance from the bean cache.

If, at alater time, arequest arrives for the passivated bean instance, the container retrieves it from the
passivation directory, deserializesit, returnsit to the cache, and dispatches the request to it.

If any of these steps fail (for example, if the bean instance is no longer in the passivation directory), then
the method invocation fails.
Passwor d
Specifies the password for accessing the container's data source.
Start time
Indicates the time at which the container was most recently started.
State

Indicates the state the container is currently in. The next timeitis started, it will try to change to its
desired state setting.

User ID

Specifies the user ID for accessing the container's data source.
User ID in use

Specifies the user ID currently in use.

142

6.6.4.1. Administering enterprise bean containers
with the Java administrative console

This article extends article 6.6.4 (the overview of administering enterprise bean containers) with information

specific to the Java console.

The table answers the most basic questions. See the Related informationfor links to detailed instructions and

resource properties.

Does the console provide full functionality for
administering this resource?

Yes

How is this resource representedin the consol e tree views?

The Type tree contains a Containers folderobject.

The Topology tree can contain zero or
moreexisting containers. Their names vary;they
are supplied by the administrator.

Use the View menu on the console menu bar to
toggle between tree views.

Any task wizards for manipulatingthis resource?

Not directly, though a container can be
configuredas part of the tasks (on the console
menu bar):

Console -> Task -> Create application server

143

6.6.4.1.1: Configuring new EJB containers with the
Java administrative console

Use menus on resources in the Topology and Type treesto configure new containers (see Related information
forinstructions).

144

6.6.4.1.4: Tuning containers with the Java
administrative console

The IBM Redbook SG24-5657-00 is arecommended source of container tuning guidelines. Sometips are
excerpted and included in the container propertyhelp (section 6.4.1.4.1.4).

Although it provides figures for Version 3.0x, the performance tuning Redbook discusses many tuning
principles that can be anticipated to apply to Version 3.5. Specific performance numbers and suggested setting
values, which have not been verified with Version 3.5, might differ.

The book provides guidelines such as the cache size estimation metric that follows.

Estimating the cache size

Sizing the cache involves estimating the working set size for the concurrent load to which you expect the
application server to be subjected.

To determine arough approximation of the required value for this property, multiply the number of beans active
in any given transaction by the total number of concurrent transactions expected. Then add the number of active
entity bean instances.
For example, an EJB model:

« Wwith 1 stateful session bean

« and 5 entity beans

« accessed by 200 concurrent clients
would have 1200 active beans:

200 x 1 stateful session beans, plus 200 x 5 entity beans

In this case, set your cache to be equal to or greater than 1200.
Given the high cost of passivating a bean when the container cache absolutelimit is reached, set the container

cache and the container cache absolute limit to be larger than the expected load, ratherthan setting these values
too low.

145

6.6.4.4. Property files pertaining to containers

The container propertiesarein file:
« nNameservice.config
Thisfileislocated in directory:
<WebSpher e/ Appserver >/ properties

The following entries in the nameservice.config file are used to administer containers:

|Container.implClass lidentifies the name of the container

Container.dbUr] spec_lfl es the data source the container should use for the purpose of enterprisebean
persistence

Container jarFileDirectory lsgs; (];I es the name of the directory where containers and persistent states are

The container properties arein file:
« hameservice.config
Thisfileislocated in directory:
<WebSpher e/ Appserver >/ properties

The following entries in the nameservice.config file are used to administer containers:

|Contai ner.implClass |identifi es the name of the container

Container.dbUr] spec_|f| es the data source the container should use for the purpose of enterprisebean
persistence

Container jarFileDirectory lsgsg (fald es the name of the directory where containers and persistent states are

146

6.6.5: Administering enterprise beans (overview)

Because enterprise beans are packaging into JAR files and code is generatedfor deployment, long before they
areinstalled into the application server runtime,most of the enterprise bean and EJB module administration

applies to the EJB container level.

147

6.6.5.0: Enterprise bean properties

Createtable

Specifies whether to create atable in the data source for persistent data.
Createtablein use

Indicates whether atable was created in the data source for persistent data.
Current state

Indicates the state the enterprise bean is currently in. The next time it is started, it will try to change to
its desired state setting.

Database access
Specifies whether the persistent data of entity beans is cached in memory across transactions.
By default, a container loads persistent data for entity beans at the start of each transaction. If you use

cached entity beans, you are not guaranteed the correctness of bean data due to updates made by other
processes.

Use cached entity beans only if you know that the container has exclusive access to the database used by
the entity bean (and therefore has the only copy of a bean's persistent state), or that the bean's datais
accessed read-only at all times.

Database accessin use

Indicates whether the persistent data of entity beansis being cached in memory across transactions.
Data source

Specifies the data source in which to keep persistent data.
Data sourcein use

Indicates the data source now in use.
Deployment descriptor

Specifies the full path name of the deployment descriptor file to use the next time the server is started.
Desired state

Indicates the state the enterprise bean should have the next timeit is started.
Find for update

Specifies whether the container should get an exclusive lock on the enterprise bean when the "find by
primary key" method isinvolved. The setting will take effect the next time the application sever hosting
the enterprise bean is started.

This setting is useful for avoiding deadlock in the database. Deadlock can occur when two transactions
execute find methods, and then update methods, on the same enterprise bean. The find method grants a
shared lock on the enterprise bean, but the update method attempts to get an exclusive lock on the
enterprise bean, resulting in deadlock.

Find for updatein use
Indicates the current value of the Find for update property.
JAR file
Specifies the full path name of the JAR file to use the next time the server is started.
JAR filein use
Indicates the full path name of the JAR file now being used by the server for the enterprise bean.

Maximum pool size
148

Specifies the maximum number of pooled instances the container of the enterprise bean can have on
behalf of the bean.

Maximum pool sizein use
Indicates the current value of the Maximum pool size property.
Minimum pool size

Specifies the minimum number of pooled instances the container of the enterprise bean can have on
behalf of the bean.

Minimum pool sizein use
Indicates the current value of the Minimum pool size property.
Name
Specifies aname for the enterprise bean. The name must be unique within the administrative domain.
Passwor d
Specifies the password for accessing the data source.
Start time
Indicates the time that the enterprise bean was started or restarted.
o Class: Runtime
o DataType:
State

Indicates the state the enterprise bean is currently in. The next time itis started, it will try to changeto its
desired state setting.

User ID
Specifies the user ID for accessing the data source.
User ID inuse
Specifiesthe user ID currently being used to access the data source.

149

6.6.5.1: Administering enterprise beans with the Java

administrative console

This article extends article 6.6.5 (the overview of administering enterprise beans) with information specific to

the Java console.

The table answers the most basic questions. See the Related informationfor links to detailed instructions and

resource properties.

Does the console provide full functionality for
administering this resource?

Yes

How isthis resource represented in the console tree
views?

The Type tree contains a Enterprise Beans folder
object.

The Topology tree can contain zero or more existing
enterprise beans. Their names vary;they are supplied
by the administrator.

Use the View menu on the console menu bar to toggle
between tree views.

Any task wizards for manipulating this resource?

On the console menu bar:

Console -> Task -> Deploy enterprise beans

150

6.6.5.1.1: Configuring new enterprise beans

For any application server product, a procedure is required to put adevel oped enterprise bean onto an
application server where it can be madeavailable to users.

This section outlines the procedure for the WebSphere Application Serverproduct, from the administrator's
point of view.

1.

The enterprise bean devel oper writes and compiles the enterprise bean components. The devel oper
packages the components and a deployment descriptor into an EJB JAR file containing a manifest.

For entity beans (BMP or CMP), the developer generates the database tables the beans will use to store
their data.

The developer transfers the JAR file to the WebSphere administrator, or informs the administrator of its
location on a machine in the WebSphere administrative domain.

The developer tells the administrator whether the JAR file has been deployed.

A developer using VisualAge for Java can deploy the JAR file before giving the file to the administrator.
A deployed JAR file consists of the EIBHome and EJBODbject classes, persistor and finder classes, and
stub and skeleton files.

Otherwise, the administrator makes a note to deploy the JAR file whileinstalling it in the WebSphere
administrative domain.

There are special considerations for deploying entity beans with container-managed persistence (CMP)
and any enterprise beans with EJB inheritance.

The administrator installs the JAR file in the administrative domain, deploying the JAR file if necessary.

Installing an enterprise bean refersto the process of placing the bean in a runtime environment
comprised of an application server and enterprise bean container.

During this step, the administrator can optionally edit the bean deployment descriptor.

If the beansin the JAR file reference classes outside of the JAR file, the administrator adds the
referenced classes to the CLASSPATH environment variable of the machine on which the beans are
installed.

The bean JAR file itself is automatically added to the CLASSPATH when the administrator installs the
bean JAR file in the WebSphere domain. If the referenced classes are contained in the JAR file, no
action isrequired.

The administrator or developer prepares the enterprise bean for workload management (recommended).

This step is not required for JAR files deployed in VisualAge for Java.
The administrator starts the enterprise bean, perhaps after adding it to an enterprise application.

After changing the enterprise bean, the devel oper provides a replacement JAR file to the administrator.
The administrator adds the file to the WebSphere administrative domain.

o If the administrator treats the JAR file as a new one, the administrator can install the deployed
file into arunning application server without having to stop the server and start it again.
The administrator should delete the old JAR file from the WebSphere directories so that thereis
no chanceit will be used.

o If the administrator treats the JAR file as areplacement for an existing one, the administrator
must stop the application server on which the bean is running and start it again after installing the

151

replacement JAR file.

Special deployment considerations

« Deploying entity beans with CMP
« Deploying enterprise beans with EJB inheritance

Considerations for deploying entity beans with CMP

If you are using CMP entity beans that do not rely on a particular databaseconfiguration (that is, the beans are
not storing datain legacy applications or inexisting database tables) you can use the WebSphere Administrative
Console toautomatically create the deployed JAR file and the corresponding database table.

If you are using CMP entity beans for alegacy application (or the beans are from athird party vendor), you must
use VisualAge for Javato create the deployed JAR file. Y oucan then create (install) the bean by using the
WebSphere Administrative Console.

It is strongly recommended that you use VisualAge for Javafor deploying beans used inlegacy applications or
beans that require complex mappings to a database table. If you usethe automatic deployment processin the
console, the order and names of the columns in thegenerated table are not guaranteed to match the table
configuration needed by the legacyapplication. (The console deployment process makes certain assumptions
about the order ofcontainer-managed fields.)

If you decide to use automatic deployment within the console, but want to manuallycreate the database table,
note the following:

« The name of the database table must follow the convention EJB.beannameBeanThl. Thereisa
14-character limit on the length of table namesin DB2.

« Theprimary key fields must appear first, and the column headings in the database must match the name
and order of the fields as they appear in the deployment descriptor.

An entity bean with CMP must be associated with the name of a data source. Adata source specifies a database
name, Uniform Resource Locator (URL), networkprotocol, and location in the Java Naming and Directory
Interface (JINDI) namespace.

A data source also references a JDBC driver, used to locate thedriver's JAR file on the node. When you create
the bean, you are prompted tosupply the name of this data source.

Considerations for deploying JAR files with EJB inheritance

Consider the following when deploying JAR files with EJB inheritance:

« Enterprise beansthat participate in an inheritance hierarchy must be deployed in asingle JAR file, and
you must install and uninstall the inheritance hierarchy as a unit.

« You must modify the INDI name of the home for each enterprise bean within the hierarchy. The JNDI
name of each bean in the hierarchy must be unique within its container.

152

6.6.5.4: Property files pertaining to enterprise beans

The enterprise bean properties are in file:
« admin.config

The admin.config fileis located in directory,
<WebSpher e/ Appser ver >/ bi n

The following entries in the admin.config file apply to enterprise beans:

|com.ibm.ejs.sm.admi nServer.nameServiceJar |name of service bean jar file
|com.ibm.ejs.sm.adminServer.dbUrl |URL for JDBC access
|com.ibm.egjs.sm.adminServer.dbDriver |classname of JDBC driver
|com.i bm.gjs.sm.adminServer.connectionPool Size |si ze of database connection pool
|com.ibm.ejs.sm.adminServer.dbPassword |password for database access
|com.ibm.ejs.sm.adminServer.dbUser |user ID for database access

The enterprise bean propertiesareinfile:
« admin.config

The admin.config fileislocated in directory,
<WebSpher e/ Appserver >/ bin

The following entries in the admin.config file apply to enterprise beans:

|com.ibm.ejs.sm.admi nServer.nameServicelar |name of service bean jar file
|com.ibm.egjs.sm.adminServer.dbUrl |URL for JDBC access
|com.ibm.ejs.sm.adminServer.dbDriver |classname of JDBC driver
|com.i bm.gjs.sm.adminServer.connectionPool Size |si ze of database connection pool
|com.i bm.gjs.sm.adminServer.dbPassword |password for database access
|com.ibm.ejs.sm.adminServer.dbUser |user ID for database access

153

http://localhost/v355makePDF/advanced/nav_ejbnav/06064600.html
http://localhost/v355makePDF/advanced/nav_ejbnav/06064600.html

	Numbx:
	L:
	C:
	R:

	P1:
	Numbers:
	Numbx:
	L:
	C:
	R: 1

	P2:
	Numbers:
	Numbx:
	L: 2
	C:
	R:

	P3:
	Numbers:
	Numbx:
	L:
	C:
	R: 3

	P4:
	Numbers:
	Numbx:
	L: 4
	C:
	R:

	P5:
	Numbers:
	Numbx:
	L:
	C:
	R: 5

	P6:
	Numbers:
	Numbx:
	L: 6
	C:
	R:

	P7:
	Numbers:
	Numbx:
	L:
	C:
	R: 7

	P8:
	Numbers:
	Numbx:
	L: 8
	C:
	R:

	P9:
	Numbers:
	Numbx:
	L:
	C:
	R: 9

	P10:
	Numbers:
	Numbx:
	L: 10
	C:
	R:

	P11:
	Numbers:
	Numbx:
	L:
	C:
	R: 11

	P12:
	Numbers:
	Numbx:
	L: 12
	C:
	R:

	P13:
	Numbers:
	Numbx:
	L:
	C:
	R: 13

	P14:
	Numbers:
	Numbx:
	L: 14
	C:
	R:

	P15:
	Numbers:
	Numbx:
	L:
	C:
	R: 15

	P16:
	Numbers:
	Numbx:
	L: 16
	C:
	R:

	P17:
	Numbers:
	Numbx:
	L:
	C:
	R: 17

	P18:
	Numbers:
	Numbx:
	L: 18
	C:
	R:

	P19:
	Numbers:
	Numbx:
	L:
	C:
	R: 19

	P20:
	Numbers:
	Numbx:
	L: 20
	C:
	R:

	P21:
	Numbers:
	Numbx:
	L:
	C:
	R: 21

	P22:
	Numbers:
	Numbx:
	L: 22
	C:
	R:

	P23:
	Numbers:
	Numbx:
	L:
	C:
	R: 23

	P24:
	Numbers:
	Numbx:
	L: 24
	C:
	R:

	P25:
	Numbers:
	Numbx:
	L:
	C:
	R: 25

	P26:
	Numbers:
	Numbx:
	L: 26
	C:
	R:

	P27:
	Numbers:
	Numbx:
	L:
	C:
	R: 27

	P28:
	Numbers:
	Numbx:
	L: 28
	C:
	R:

	P29:
	Numbers:
	Numbx:
	L:
	C:
	R: 29

	P30:
	Numbers:
	Numbx:
	L: 30
	C:
	R:

	P31:
	Numbers:
	Numbx:
	L:
	C:
	R: 31

	P32:
	Numbers:
	Numbx:
	L: 32
	C:
	R:

	P33:
	Numbers:
	Numbx:
	L:
	C:
	R: 33

	P34:
	Numbers:
	Numbx:
	L: 34
	C:
	R:

	P35:
	Numbers:
	Numbx:
	L:
	C:
	R: 35

	P36:
	Numbers:
	Numbx:
	L: 36
	C:
	R:

	P37:
	Numbers:
	Numbx:
	L:
	C:
	R: 37

	P38:
	Numbers:
	Numbx:
	L: 38
	C:
	R:

	P39:
	Numbers:
	Numbx:
	L:
	C:
	R: 39

	P40:
	Numbers:
	Numbx:
	L: 40
	C:
	R:

	P41:
	Numbers:
	Numbx:
	L:
	C:
	R: 41

	P42:
	Numbers:
	Numbx:
	L: 42
	C:
	R:

	P43:
	Numbers:
	Numbx:
	L:
	C:
	R: 43

	P44:
	Numbers:
	Numbx:
	L: 44
	C:
	R:

	P45:
	Numbers:
	Numbx:
	L:
	C:
	R: 45

	P46:
	Numbers:
	Numbx:
	L: 46
	C:
	R:

	P47:
	Numbers:
	Numbx:
	L:
	C:
	R: 47

	P48:
	Numbers:
	Numbx:
	L: 48
	C:
	R:

	P49:
	Numbers:
	Numbx:
	L:
	C:
	R: 49

	P50:
	Numbers:
	Numbx:
	L: 50
	C:
	R:

	P51:
	Numbers:
	Numbx:
	L:
	C:
	R: 51

	P52:
	Numbers:
	Numbx:
	L: 52
	C:
	R:

	P53:
	Numbers:
	Numbx:
	L:
	C:
	R: 53

	P54:
	Numbers:
	Numbx:
	L: 54
	C:
	R:

	P55:
	Numbers:
	Numbx:
	L:
	C:
	R: 55

	P56:
	Numbers:
	Numbx:
	L: 56
	C:
	R:

	P57:
	Numbers:
	Numbx:
	L:
	C:
	R: 57

	P58:
	Numbers:
	Numbx:
	L: 58
	C:
	R:

	P59:
	Numbers:
	Numbx:
	L:
	C:
	R: 59

	P60:
	Numbers:
	Numbx:
	L: 60
	C:
	R:

	P61:
	Numbers:
	Numbx:
	L:
	C:
	R: 61

	P62:
	Numbers:
	Numbx:
	L: 62
	C:
	R:

	P63:
	Numbers:
	Numbx:
	L:
	C:
	R: 63

	P64:
	Numbers:
	Numbx:
	L: 64
	C:
	R:

	P65:
	Numbers:
	Numbx:
	L:
	C:
	R: 65

	P66:
	Numbers:
	Numbx:
	L: 66
	C:
	R:

	P67:
	Numbers:
	Numbx:
	L:
	C:
	R: 67

	P68:
	Numbers:
	Numbx:
	L: 68
	C:
	R:

	P69:
	Numbers:
	Numbx:
	L:
	C:
	R: 69

	P70:
	Numbers:
	Numbx:
	L: 70
	C:
	R:

	P71:
	Numbers:
	Numbx:
	L:
	C:
	R: 71

	P72:
	Numbers:
	Numbx:
	L: 72
	C:
	R:

	P73:
	Numbers:
	Numbx:
	L:
	C:
	R: 73

	P74:
	Numbers:
	Numbx:
	L: 74
	C:
	R:

	P75:
	Numbers:
	Numbx:
	L:
	C:
	R: 75

	P76:
	Numbers:
	Numbx:
	L: 76
	C:
	R:

	P77:
	Numbers:
	Numbx:
	L:
	C:
	R: 77

	P78:
	Numbers:
	Numbx:
	L: 78
	C:
	R:

	P79:
	Numbers:
	Numbx:
	L:
	C:
	R: 79

	P80:
	Numbers:
	Numbx:
	L: 80
	C:
	R:

	P81:
	Numbers:
	Numbx:
	L:
	C:
	R: 81

	P82:
	Numbers:
	Numbx:
	L: 82
	C:
	R:

	P83:
	Numbers:
	Numbx:
	L:
	C:
	R: 83

	P84:
	Numbers:
	Numbx:
	L: 84
	C:
	R:

	P85:
	Numbers:
	Numbx:
	L:
	C:
	R: 85

	P86:
	Numbers:
	Numbx:
	L: 86
	C:
	R:

	P87:
	Numbers:
	Numbx:
	L:
	C:
	R: 87

	P88:
	Numbers:
	Numbx:
	L: 88
	C:
	R:

	P89:
	Numbers:
	Numbx:
	L:
	C:
	R: 89

	P90:
	Numbers:
	Numbx:
	L: 90
	C:
	R:

	P91:
	Numbers:
	Numbx:
	L:
	C:
	R: 91

	P92:
	Numbers:
	Numbx:
	L: 92
	C:
	R:

	P93:
	Numbers:
	Numbx:
	L:
	C:
	R: 93

	P94:
	Numbers:
	Numbx:
	L: 94
	C:
	R:

	P95:
	Numbers:
	Numbx:
	L:
	C:
	R: 95

	P96:
	Numbers:
	Numbx:
	L: 96
	C:
	R:

	P97:
	Numbers:
	Numbx:
	L:
	C:
	R: 97

	P98:
	Numbers:
	Numbx:
	L: 98
	C:
	R:

	P99:
	Numbers:
	Numbx:
	L:
	C:
	R: 99

	P100:
	Numbers:
	Numbx:
	L: 100
	C:
	R:

	P101:
	Numbers:
	Numbx:
	L:
	C:
	R: 101

	P102:
	Numbers:
	Numbx:
	L: 102
	C:
	R:

	P103:
	Numbers:
	Numbx:
	L:
	C:
	R: 103

	P104:
	Numbers:
	Numbx:
	L: 104
	C:
	R:

	P105:
	Numbers:
	Numbx:
	L:
	C:
	R: 105

	P106:
	Numbers:
	Numbx:
	L: 106
	C:
	R:

	P107:
	Numbers:
	Numbx:
	L:
	C:
	R: 107

	P108:
	Numbers:
	Numbx:
	L: 108
	C:
	R:

	P109:
	Numbers:
	Numbx:
	L:
	C:
	R: 109

	P110:
	Numbers:
	Numbx:
	L: 110
	C:
	R:

	P111:
	Numbers:
	Numbx:
	L:
	C:
	R: 111

	P112:
	Numbers:
	Numbx:
	L: 112
	C:
	R:

	P113:
	Numbers:
	Numbx:
	L:
	C:
	R: 113

	P114:
	Numbers:
	Numbx:
	L: 114
	C:
	R:

	P115:
	Numbers:
	Numbx:
	L:
	C:
	R: 115

	P116:
	Numbers:
	Numbx:
	L: 116
	C:
	R:

	P117:
	Numbers:
	Numbx:
	L:
	C:
	R: 117

	P118:
	Numbers:
	Numbx:
	L: 118
	C:
	R:

	P119:
	Numbers:
	Numbx:
	L:
	C:
	R: 119

	P120:
	Numbers:
	Numbx:
	L: 120
	C:
	R:

	P121:
	Numbers:
	Numbx:
	L:
	C:
	R: 121

	P122:
	Numbers:
	Numbx:
	L: 122
	C:
	R:

	P123:
	Numbers:
	Numbx:
	L:
	C:
	R: 123

	P124:
	Numbers:
	Numbx:
	L: 124
	C:
	R:

	P125:
	Numbers:
	Numbx:
	L:
	C:
	R: 125

	P126:
	Numbers:
	Numbx:
	L: 126
	C:
	R:

	P127:
	Numbers:
	Numbx:
	L:
	C:
	R: 127

	P128:
	Numbers:
	Numbx:
	L: 128
	C:
	R:

	P129:
	Numbers:
	Numbx:
	L:
	C:
	R: 129

	P130:
	Numbers:
	Numbx:
	L: 130
	C:
	R:

	P131:
	Numbers:
	Numbx:
	L:
	C:
	R: 131

	P132:
	Numbers:
	Numbx:
	L: 132
	C:
	R:

	P133:
	Numbers:
	Numbx:
	L:
	C:
	R: 133

	P134:
	Numbers:
	Numbx:
	L: 134
	C:
	R:

	P135:
	Numbers:
	Numbx:
	L:
	C:
	R: 135

	P136:
	Numbers:
	Numbx:
	L: 136
	C:
	R:

	P137:
	Numbers:
	Numbx:
	L:
	C:
	R: 137

	P138:
	Numbers:
	Numbx:
	L: 138
	C:
	R:

	P139:
	Numbers:
	Numbx:
	L:
	C:
	R: 139

	P140:
	Numbers:
	Numbx:
	L: 140
	C:
	R:

	P141:
	Numbers:
	Numbx:
	L:
	C:
	R: 141

	P142:
	Numbers:
	Numbx:
	L: 142
	C:
	R:

	P143:
	Numbers:
	Numbx:
	L:
	C:
	R: 143

	P144:
	Numbers:
	Numbx:
	L: 144
	C:
	R:

	P145:
	Numbers:
	Numbx:
	L:
	C:
	R: 145

	P146:
	Numbers:
	Numbx:
	L: 146
	C:
	R:

	P147:
	Numbers:
	Numbx:
	L:
	C:
	R: 147

	P148:
	Numbers:
	Numbx:
	L: 148
	C:
	R:

	P149:
	Numbers:
	Numbx:
	L:
	C:
	R: 149

	P150:
	Numbers:
	Numbx:
	L: 150
	C:
	R:

	P151:
	Numbers:
	Numbx:
	L:
	C:
	R: 151

	P152:
	Numbers:
	Numbx:
	L: 152
	C:
	R:

	P153:
	Numbers:
	Numbx:
	L:
	C:
	R: 153

