
SOA antipatterns
When the SOA paradigm breaks

Skill Level: Introductory

Gary Farrow (gary.farrow@uk.ibm.com)
Technical Solution Architect
IBM

09 Jun 2009

Service-Oriented Architecture (SOA) is the de-facto architectural approach for many
IT initiatives. It is therefore important to understand the circumstances where this
paradigm breaks, as this can significantly impact the delivery of IT programs. This
article highlights two SOA antipatterns that define problems that can occur in the
execution of SOA deliveries. A simple frame of reference for SOA is first introduced
in the form of a layered reference architecture. The reference architecture is then
used to illustrate the underlying reasons for the occurrence of the antipatterns. For
each antipattern a description is provided that highlights the root causes of the
problem and the approaches to re-factoring the solution, hence facilitating successful
delivery.

Introduction

Traditional delivery approaches are based on phases of the system development life
cycle with different organizations fulfilling a different part of the life cycle.
Furthermore, in such approaches, an emphasis is placed on one supplier delivering
a complete system or sub-system. A simplified view of the delivery life cycle and a
typical allocation of organization responsibilities is shown in Figure 1 below.

Figure 1. Traditional delivery life cycle and allocation of organization
responsibilities

SOA antipatterns
© Copyright IBM Corporation 2009. All rights reserved. Page 1 of 10

mailto:gary.farrow@uk.ibm.com
http://www.ibm.com/legal/copytrade.shtml


The advent of SOA infers a layered architectural model . This provides the
opportunity for varied delivery approaches, whereby different parties deliver specific
elements of the services layers. Experiences within such collaborative SOA
engagements have identified problem scenarios that may arise. These are described
in this article in the form of antipatterns.

In the first antipattern—Interface Bloat—an over-emphasis is placed on generalizing
the data structures passing to and from a specific architectural layer. The result of
this is a "bloating" of the interface whereby more data than is necessary is passed
between layers.

In the second antipattern—Architecture Redundancy—the responsibilities of the
different architectural layers are ignored. The result of this is that some layers add
no architectural value and merely act as a pass-through for data.

developerWorks® ibm.com/developerWorks

SOA antipatterns
Page 2 of 10 © Copyright IBM Corporation 2009. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


Reference architecture definition

Figure 2. SOA reference architecture

An SOA reference architecture is shown in Figure 2. This represents a
conceptual-level architecture for enterprise, service-oriented solutions. It provides a
framework for architecture services within an organization. The basic premise of the
reference architecture is that it promotes the architecture itself as a set of underlying
services. Each of these services can be considered an Architectural Building Block
(ABB). The concept of Architectural Building Block aligns to the definition provided in
TOGAF 8.1 (The Open Group Architecture Framework; see Resources) for use
when constructing early solution definition and scoping.

The purpose of the SOA reference architecture is to:

• Provide a logical grouping of related architecture services

ibm.com/developerWorks developerWorks®

SOA antipatterns
© Copyright IBM Corporation 2009. All rights reserved. Page 3 of 10

http://www.ibm.com/legal/copytrade.shtml


• Achieve a clear separation of concerns between architectural building
block responsibilities

• Provide a comprehensive taxonomy of the set of architecture services

The reference architecture can be used in many different ways. Some examples are:

• To clarify architecture principles and illustrate the architectural impact of
the chosen principles

• To illustrate enterprise architecture solution patterns for given business
scenarios, defined using collaborating architectural building blocks

• As a tool for enterprise architecture roadmap planning by illustrating
which architectural services are required at a given point in time to
support a business program

• To illustrate mappings of architecture services or building blocks to
specific technology implementations

• To illustrate organizational boundaries of responsibilities in a
multi-supplier delivery environment where different suppliers are
responsible for different parts of the end-to-end delivery.

In this article, the reference architecture is used to illustrate how work was
apportioned between IT delivery partners and also to facilitate the explanation of the
underlying failings arising from the antipatterns.

Antipattern 1. Interface bloat

This antipattern (also known as Data Tsunami) relates to an over-specification of the
interface between the Presentation Services layer and the Process Services layer.

Specification
Name Interface Bloat

Also known as Data Tsunami

Most frequent scale System, Enterprise

Re-factored solution name Process

Root causes Mistrust, time pressure, inexperience

Unbalanced forces Management of functionality.
Management of performance

Anecdotal evidence Unclear requirements or specification

Description

developerWorks® ibm.com/developerWorks

SOA antipatterns
Page 4 of 10 © Copyright IBM Corporation 2009. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


The context for this antipattern was a collaborative IT delivery where both a client
organization and a system integrator delivery partner (in this case IBM) were
responsible for delivering components of a full solution. This is an increasingly
common situation, especially for SOA initiatives.

The IT partner was responsible for providing the Web portal, whereas the client
organization had responsibility for producing business components and supporting
data services. Thus, in terms of the reference architecture shown in Figure 2,
organization delivery responsibilities were split by layer as follows:

• The IT partner delivering services within the Channel Services
architecture layer

• The client delivering services within the Process, Business, and Data
Services Layer

This split in responsibilities across the reference architecture was the root cause of
the observed antipattern. Specifically, the client organization was not sufficiently
mature in its design process to effectively support an SOA delivery, as was apparent
by the following:

• The concept of a formal macro design process was relatively new and
hence unproven within the organization.

• The production of formal specification of interfaces between components
in advance of coding had not previously been done.

• Being unable to achieve a specific focused specification, a looser,
over-specified interface was adopted.

Furthermore, to fulfill one of the key perceived benefits of SOA, there was a desire to
build services that could be reused. There resulted an over-emphasis of the need to
build reusable services within the Process Services layer of the reference
architecture. The consequence of this is that interfaces between the Portal
application (in the Channel Services layer) and components in the Process Services
layer became too generalized.

Attempting to generalize connections between these layers is considered
sub-optimal. Specific Process Services supporting a user interface are unlikely to be
able to be generalized to a B2B channel where the dynamics of the interactions are
fundamentally different. A better approach is in fact to provide specialized Process
Services to support the specific needs of the channel, in this case a Web-based
portal. The preferred emphasis on reuse throughout the reference architecture
layers is shown in Figure 3.

Figure 3. Mapping of reuse and business logic

ibm.com/developerWorks developerWorks®

SOA antipatterns
© Copyright IBM Corporation 2009. All rights reserved. Page 5 of 10

http://www.ibm.com/legal/copytrade.shtml


A final factor in the emergence of the antipattern was time pressure on delivery. This
was such that proper analysis was not undertaken in advance of the detailed
technical design and coding.

.
The net consequence of these conditions was that too much data was passed
between the Presentation Service components and the Process Services
components. The effect of this was:

• Additional query and data transfer time was required.

• Intensive processing was required to parse data in the Presentation
Services layer and extract the sub-set of data needed for a specific
operation.

• Performance issues arose through slower response time due to
marshaling and passing the data.

developerWorks® ibm.com/developerWorks

SOA antipatterns
Page 6 of 10 © Copyright IBM Corporation 2009. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


Antipattern 2. Reference architecture redundancy

The second antipattern (also known as Pass the Parcel) relates to situations where
the same transfer objects and methods are specified in the designs of the
components in each architectural layer. The impact of this is that the bulk of the
processing logic is pushed into a single architectural layer, making some layers
almost entirely redundant and a vehicle only for the "pass through" of data.

Specification
Name Reference Architecture Redundancy

Also known as Pass the Parcel

Most frequent scale Enterprise

Re-factored solution name Role

Root causes Time pressure, paradigm misuse

Unbalanced forces Management of functionality
Management of performance

Anecdotal evidence Lack of a reference architecture
Lack of architecture usage principles
Service method name appears in all software
layers

Description

The context for the occurrence of this antipattern is a circumstance where the SOA
paradigm is relatively new for the client organization. This is a common occurrence
as many organizations are only now embarking on their first SOA initiative.

In such circumstances an SOA reference architecture may have been explicitly
defined or may be implied. However, the in-depth understanding of the reference
architecture and its practical application is not yet present within the client
organization.

The consequences of this are an incorrect understanding of the responsibilities of
each layer in the reference architecture. This in turn manifests itself in:

• The same method signatures appear on different services residing within
each of the reference architecture layers.

• An over-generalization of the transfer objects passing between layers

• Business logic being pushed into the Data Services components instead
of residing within components within the Business Services layer

The consequence of this is that:

ibm.com/developerWorks developerWorks®

SOA antipatterns
© Copyright IBM Corporation 2009. All rights reserved. Page 7 of 10

http://www.ibm.com/legal/copytrade.shtml


• Certain reference architecture layers are redundant in that they perform
no added value and merely "pass-through" data to the next immediate
layer in the architecture.

• Reuse of Business Services is not achieved.

• The advantages of the SOA paradigm are negated.

The re-factored solution is one which allows flexibility in the way the reference
architecture is applied. The extent of the flexibility can be captured in terms of a set
of architecture principles that should accompany any reference architecture. For
example, data service operations that merely retrieve or update data, without the
application of business logic should be permitted to be called directly from the
Channel Services layer. There is no need to go through the Business Services layer
in these circumstances. This principle should be embodied as part of the reference
architecture definition.

Commentary

A fundamental misconception resulting in both of these antipatterns is a desire to
apply a common data format within the Channel Services Layer. This is not typically
a sensible design goal. Connections between the Channel Services layer should
utilize a data format that is specific to the channel.

An optimal approach is therefore to focus on enforcing the use of a "canonical" data
form within the Process and Business Services only. For example, if the channel
comprises a Web application that provides views of business data for update, then
the transfer of data should be optimized to return and update only that data provided
in the view. Similarly, if a channel is a B2B gateway that uses a specific industry
data standard, then middleware should be used to transform the channel-specific
data format into the chosen canonical data form used within the Process and
Business Services layer. This preferred "canonical data zone" is also shown in
Figure 3.

A re-factored solution should permit a variety of different service calls from the
Channels Services layer, rather than attempting to generalize them. This in turn
promotes reuse of services at the Business Services layer rather than the Process
Services layer. This approach also better serves the principle of composability for
service-oriented architectures, whereby new, coarser grained services can readily
be composed from existing finer grained services.

Summary

This article has presented two antipatterns that may arise during the delivery of SOA

developerWorks® ibm.com/developerWorks

SOA antipatterns
Page 8 of 10 © Copyright IBM Corporation 2009. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


initiatives. The impact of these antipatterns can be significant, leading to delivery
delays, poor performance, and lack of reuse. In severe circumstances, loss of
confidence in the paradigm can ensue with subsequent cancellation of SOA
initiatives.

The circumstances leading to the occurrence of these antipatterns, namely
collaborative engagements between a client and an IT partner and a lack of practical
experience of the paradigm, are common in many SOA engagements. Delivery
organizations should therefore be aware of these antipatterns and plan for their
prevention. During the actual delivery, they should be cognisant of emerging
anecdotal evidence, as highlighted in this article, that will indicate the occurrence of
these antipatterns.

Re-factoring and ensuring a clearly articulated set of architecture principles is key to
the elimination of these antipatterns. Openness of design and a strong solution
governance, transcending commercial boundaries, are also required to prevent
these antipatterns from occurring.

ibm.com/developerWorks developerWorks®

SOA antipatterns
© Copyright IBM Corporation 2009. All rights reserved. Page 9 of 10

http://www.ibm.com/legal/copytrade.shtml


Resources

• For more on antipatterns, read the book, Anti-Patterns: Re-factoring Software,
Architectures and Projects in crisis, Brown et al, Wiley and sons, New York,
1998.

• Learn more about The Open Group Architecture Framework (TOGAF) .

• Personalize your developerWorks experience with My developerWorks.

About the author

Gary Farrow
Gary is a Technical Solution Architect in the Application Innovation Services UK
practice of IBM Global Business Services. His interests include large scale system
integration, enterprise service bus architectures and SOA. He has delivered many
solutions for the Financial, Government and Transport sectors has a specialist
interest in payment processing systems. You can reach Gary at
gary.farrow@uk.ibm.com.

developerWorks® ibm.com/developerWorks

SOA antipatterns
Page 10 of 10 © Copyright IBM Corporation 2009. All rights reserved.

http://www.amazon.com/AntiPatterns-Refactoring-Software-Architectures-Projects/dp/0471197130
http://www.amazon.com/AntiPatterns-Refactoring-Software-Architectures-Projects/dp/0471197130
http://www.opengroup.org/architecture/togaf8-doc/arch/
http://www.ibm.com/developerworks/mydeveloperworks
mailto:gary.farrow@uk.ibm.com
http://www.ibm.com/legal/copytrade.shtml

	Table of Contents
	Introduction
	Reference architecture definition
	Antipattern 1. Interface bloat
	Antipattern 2. Reference architecture redundancy
	Commentary
	Summary
	Resources
	About the author

