
1 1	

2 2	

Systems Engineering – The Edge of Complexity?

3 3	

For 50 years, Cambridge Consultants has led the way in innovative
product development. We are the development partner of choice for
many of the world’s leading blue chips, as well as the virtual
development team for ambitious start up companies.

4 4	

Our work is mainly focussed on innovation, rather than
evolutionary products.
•  We have assigned over 3000 patents to our clients over our history.

5 5	

We employ 350 scientists, engineers and technologists in the UK
and a further 40 in the US.
•  Typically, in a year, we undertake around 300 projects for our clients.
•  We work in a number of fields, including defence, transport, wireless, and my

own area of healthcare.
•  So by the scale of many of the projects discussed here today some projects

are small.
–  15,000 man hours per year would be a large project for us, and many

projects are much smaller.

6 6	

At Cambridge Consultants we are enthusiastic systems engineers,
and we have adopted systems engineering approaches for a
number of projects:
•  I am currently leading a project to identify and embed company wide systems

engineering practices, tools and processes.
•  We have recently made an investment in DOORS and Rational Quality

Manager to support and simplify elements of our systems engineering
approach.

7 7	

But of interest to us, developers in a smaller project environment, at
what point does formal systems engineering ease to be cost
effective?
•  When does architecting prove more trouble than it’s worth?
•  When do ICDs or interface specifications take longer to write than to just do

the design?

8 8	

For example, here is an inhaler to treat asthma, which we developed
for Sun Pharmaceuticals Ltd, one of the largest pharmaceutical
companies in India:
•  It only has 16 components.
•  Only around 100 top-level

performance requirements.
•  But despite the apparent simplicity,

we adopted System Engineering
principles in the development of
this inhaler.

•  Interfaces.

9 9	

We had geographically dispersed interfaces.

•  Drug development team in India.
•  Device engineering team in Cambridge UK.
•  Drug filling development team in Germany.
•  Mould tool design (and manufacture) in Germany.
•  Device manufactured and assembled in India.
•  Drug manufacture, filling and final assembly in India.

In addition, we had a plethora of regulatory requirements.

10 10	

Traceability was managed using an Excel spread sheet.

•  Manageable, but inflexible and
cumbersome.

•  Even at this level, a requirements
managements tool would have been
helpful.

•  Product lunched in 5 years.
–  Half the industry average.

11 11	

Another project was to develop a syringe driver for patients to self
inject.
•  This was a device that used electric

motors for needle and fluid insertion,
and software for control.

–  Not atypical.
•  Around 120 top level performance

requirements.
–  Excluding standards/regulatory.

12 12	

The system breakdown was conventional.

•  A system architecture definition
document was written.

•  Discipline-based specifications then
followed.

–  Electronics Requirements
Spec.

–  Mechanical Functional Spec.
–  Software Requirements Spec.

13 13	

Writing next-level discipline based specifications, rather than
module based specifications, was an attempt to reduce the amount
of design documentation by not needing to define any inter-module
interfaces.
•  This was a misconception:

–  Interfaces needed to be specified
in the Architecture document
(nowhere else for them to go).

•  90 iterations of the architecture
document.

•  Use of Microsoft Word very inefficient.
•  A requirements management tool may

have helped us get out of this difficulty.

14 14	

Once again, traceability was managed in Excel.

•  We had a similar number of top
level requirements to the previous
example.

•  Has become difficult to manage,
with multiple many to many
relationships, mainly because of the
multidisciplinary nature of the
project.

15 15	

We were approached by a US diagnostics company to help with the
stalled development of a diagnostics instrument.

•  Chemistry in California.
•  Manufacturing in France.
•  Software in Israel.
•  800 lines of requirements.

And no progress!

16 16	

We took on the role of systems integrator and partitioned the
system
•  Took the 800 lines of requirements and allocated them the User

Requirements, Product Requirements, System Architecture and
Implementation Specifications as appropriate.

•  Took 3 months of work in Excel.
•  Once again, the driver was our fear of traceability.

17 17	

For this project and product we adopted a full architecture
approach, with module, sub-module and discipline level
specifications.
•  System engineering team.
•  ICDs.
•  Detailed modelling of interface.
•  Simulator for software interfaces.
•  System models for budget allocations.
•  System integration team.
•  Traceability was a real issue.

–  Modelling in UML, and controlled in EA.
–  Generated a requirements traceability model.

• Took a considerable amount of effort.

18 18	

We have recently adopted DOORS and RQM, and are in the process
of rolling it out across the company.

•  In use on a trial project that has
multiple components.

•  First impressions are that it
simplifies many of the requirement
capture processes.

19 19	

Cambridge Consultants has concluded that systems engineering is
an appropriate approach for a product development of even
moderate size or complexity.
•  Architecture and subsequent level of documentation should be driven by the

optimum engineering approach, not by attempts to minimise documents.
•  Effective collaboration is only possible through a systems engineering

approach.
•  A requirements management tool will not only make the project more efficient

when used on optimum architectures, it will probably also allow the better
development of sub-optimal architecting.

20 20	

Thank You.

