
Leveraging DB2 9 for z/OS pureXML technology
March 2007

Leveraging DB2 9 for z/OS
pureXML technology

By Guogen (Gene) Zhang, PhD
DB2 z/OS XML Development

Leveraging DB2 9 for z/OS pureXML technology
Page 2

Executive summary

Keeping pace with rapidly changing requirements is a constant challenge for

organizations today. One way to meet this challenge is by storing and processing

XML natively. Doing so can help enterprises improve application development

productivity and quality by eliminating the time-consuming mappings and

schema evolution necessary for rapidly changing requirements, thus improving

time to market and significantly lowering IT costs.

The breakthrough hybrid database server DB2® 9 for z/OS® integrates XML

database technology into relational databases, providing unprecedented scal-

ability and performance for both relational and XML data. The hybrid database

server also helps improve performance and scalability by avoiding complex joins

commonly seen in an object persistence solution with relational databases. This

paper offers an overview of pureXML™ technology in DB2 9 for z/OS, its business

values and technical feature details. In addition, it lists the commonalities and

differences of the XML functionality between DB2 for Linux®, UNIX®, and

Microsoft® Windows® and DB2 for z/OS.

Leveraging DB2 9 for z/OS pureXML technology
Page �

DB2 9 for z/OS: An overview

DB2 9 for z/OS support for XML lets your client applications manage XML data

in DB2 tables. You can store well-formed XML documents in their hierarchical

form, and retrieve all or portions of those documents. Because the stored XML

data is fully integrated into the DB2 database system, you can access and

manage the XML data by leveraging DB2 functionality.

To efficiently manage traditional SQL data types and XML data, DB2 uses two

distinct storage mechanisms. However, the underlying storage mechanism that

is used for a given data type is transparent to the application. The application

does not need to explicitly specify which storage mechanism to use, or to

manage the physical storage for XML and non-XML objects.

XML document storage and retrieval

The XML column data type is provided for storage of XML data in DB2 tables

and most SQL statements support the XML data type. This enables you to

perform many common database operations with XML data, such as:

•	 Creating	tables	with	XML	columns.

•	 Adding	XML	columns	to	existing	tables.	

•	 Creating	indexes	over	XML	columns.

•	 Creating	triggers	on	tables	with	XML	columns.	

•	 Inserting,	updating	or	deleting	XML	documents.

Alternatively, a decomposition stored procedure lets you extract data items from

an XML document and store those data items in columns of relational tables

using an XML schema that has been annotated with instructions on how to store

the data items.

In addition, you can use SQL to retrieve entire documents from XML columns,

just as you retrieve data from any other type of column. When you need to

retrieve portions of documents, you can specify XPath expressions, through

SQL with XML extensions (SQL/XML).

Leveraging DB2 9 for z/OS pureXML technology
Page �

Application development

Application development support of XML enables applications to combine XML

and relational data access and storage. The following programming languages

support the new XML data type:

•	 Assembler	

•	 C	and	C++	(embedded	SQL	or	DB2	ODBC)

•	 COBOL

•	 Java™	(JDBC	and	SQLJ)

•	 PL/I

Database administration

DB2 for z/OS database administration support for XML includes the

following items:

XML	schema	repository	(XSR).
The XSR is a repository for all XML schemas that are required to validate

and process XML documents stored in XML columns or decomposed into

relational tables.

Utility	support.		
You can use DB2 for z/OS utilities on XML objects. The utilities handle XML

objects similar to the way they handle LOB objects. For some utilities, you need

to specify certain XML keywords.

Performance.
Indexing support is available for data stored in XML columns. The use of

indexes over XML data can improve the efficiency of queries that you issue

against XML documents. An XML index differs from a relational index in that a

relational index indexes an entire column, while an XML index indexes part of

the data in a column. You can indicate which parts of an XML column are

indexed by specifying an XML pattern, which is a limited XPath expression.

Leveraging DB2 9 for z/OS pureXML technology
Page �

The business value of DB2 9

As the first hybrid data server for the industry, DB2 9 lets you store XML data in

its pure, native form. Before IBM introduced pureXML technology, there were

only a few options to store XML data, including:

As	files	in	file	systems.
Storing XML data as files has the advantage of preserving original documents.

But it provides no database ACID properties and other database processing

capabilities, such as indexing.

Decomposing,	or	shredding,	the	XML	into	relational	or	object	relational	form.
The decomposition approach is commonly used for regularly structured data.

It has the advantage of not requiring XML functionality in databases. However,

there are many disadvantages:

•	 Mapping	can	be	complex	and	fragile,	and	mapping	must	be	predefined.

•	 It	may	need	artificial	keys	to	keep	the	parent-child	relationship.

•	 It	can	be	difficult	to	reconstruct,	often	requiring	many	joins,	and	potential		

poor	performance.

•	 Decomposition	typically	applies	to	a	single	schema,	and	changes	are	usually	

limited.	If	the	schema	changes,	the	changes	of	the	mapping	could	be	tedious,		

and	schema	evolution	may	require	outages.

•	 Queries	are	in	SQL	or	through	XPath	or	XQuery	to	SQL	transformation.		

It	is	usually	less	productive	in	coding,	and	queries	can	be	difficult	to	understand,	

diagnose	and	explain.

Leveraging DB2 9 for z/OS pureXML technology
Page �

Storing	the	XML	intact	in	character	form	in	a	character	large	object	(CLOB)		
or	varchar	column,	and	optionally	extract	commonly	searched	portions	into	
relational	tables	for	quick	search.
The CLOB storage is the simplest to support. It has the advantage of preserving

the original documents. However, it has many shortcomings:

•	 Without	additional	indexing,	the	XML	document	must	be	parsed	for	searching		

either	in	the	database	server	or	the	client,	which	is	prohibitively	expensive.

•	 When	portions	are	extracted	in	relational	tables	with	indexes	for	fast	search,		

it	is	tedious	and	inefficient	to	keep	the	two	in	sync	when	there	are	updates.

•	 It	is	expensive	to	retrieve	portions	of	a	document.

Other vendors also provide BLOB-based native XML storage, which stores

post-parse binary representation in a BLOB. This approach suffers some

disadvantages of being hard to retrieve, and inefficient to update. Furthermore,

if the binary format needs to be converted to a relational representation for

query processing either on the fly or persistently, it could be costly either in

processing time or storage. And it becomes prohibitively expensive.

DB2 9 pureXML technology features native hierarchical storage, and native

XML operators for query processing. Compared with decomposition or

CLOB approach, and other vendors’ relational-based technology, it has the

following advantages:

Data model and storage:

•	 Offers	a	compact	value-based	hierarchical	storage.

•	 Can	directly	represent	flexible	hierarchical	structures	with	explicit		

parent-child	relationship.

•	 Avoids	normalization	and	joins	that	are	necessary	to	re-assemble	the		

normalized	tables.

•	 Provides	node-level	XML	indexing	for	query	performance.

•	 Delivers	schema	flexibility	with	no	schema	restrictions	on	XML	columns,		

and	therefore,	schema	can	evolve	freely.	

•	 Providers	a	smoother	transition	and	opportunity	for	best	mix	by	managing		

both	relational	data	and	XML	data	together.

•	 Leverages	mature	existing	infrastructure	for	reliability,	availability	and	scalability.

Leveraging DB2 9 for z/OS pureXML technology
Page 7

Query languages and processing:

•	 Supports	the	standard	declarative	XML	query	languages	SQL/XML	and	XPath.	

It	provides	high	productivity	in	developing	applications	to	process	XML	data	that	

mapping	approaches	cannot	achieve.

•	 Delivers	native	optimized	operators	and	access	methods	that	provide	unprecedented	

performance	and	scalability.

•	 Eliminates	impedance	mismatch	between	applications	and	databases	when	

applications	are	processing	XML	data	to	help	drastically	improve	productivity.

Overall, DB2 9 can help significantly improve productivity by eliminating

tedious mapping and database schema evolution, and improve efficiency in

storage and query processing, and all the properties a database server provides.

The result is shorter time to market, easier maintenance for rapid changing

business needs, high performance and scalability. The next few chapters offer

more detailed information on the specific technical features of DB2 9.

XML type and native XML storage

DB2 9 introduced XML as a first-class SQL type and enables you to create a

table with one or more XML columns. For example, the following creates a table

with an XML column:

You can also alter an existing table to add one or more XML columns:

CREATE TABLE BASICS.PURCHASEORDERS (

 PONUMBER VARCHAR(10) NOT NULL,

 PODATE DATE,

 POSTATUS CHAR(1),

POXML XML)

IN DATABASE SALESDB;

ALTER TABLE BASICS.PURCHASEORDERS ADD INVOICEXML XML;

Leveraging DB2 9 for z/OS pureXML technology
Page �

For a table containing one or more XML columns, DB2 adds a hidden column

named DB2_GENERATED_DOCID_FOR_XML in the base table, and creates

a separate XML table space and an internal XML table for each XML column.

The internal XML table consists of three columns (DOCID, MIN _ NODEID,

XMLDATA). The XML table space always uses 16 KB page size, and it is a

partition-by-growth table space for a simple, segmented, or partition-by-growth

base table space, and a partitioned table space for a partitioned base table

space. The XMLDATA column, with a var binary type, contains the hierarchical

storage for XML data model. There are one or more rows in the internal XML

table for an XML documents depending on the document size.

You can store well-formed XML documents into an XML column, and there is

no XML schema constraint and no length limit associated with an XML column

in DB2 9. You can insert an XML document using the INSERT statement with

a string literal, a host variable, another column, or a file for an XML value.

In addition, you can use the LOAD utility to load XML data.

For example, the following INSERT statement inserts a string literal XML

document into an XML column. Notice that XML documents are case-sensitive.

 INSERT INTO BASICS.PURCHASEORDERS VALUES
(‘2006040001’, CURRENT DATE, ‘A’,

 ‘<?xml version=”1.0” encoding=”UTF-8”?>

<purchaseOrder orderDate=”1999-10-20”>

 <shipTo country=”US”>

 <name>Alice Smith</name>

 </shipTo>

 <billTo country=”US”>

 <name>Robert Smith</name>

 </billTo>

 . . .

</purchaseOrder>’

, NULL);

Leveraging DB2 9 for z/OS pureXML technology
Page �

During the INSERT or LOAD process, XML values in string format are parsed

and converted into the internal representation for storage. By default, insignifi-

cant whitespaces are stripped during this process. If you need to preserve

whitespaces in a document, you need to invoke XMLPARSE() function

explicitly and specify the PRESERVE WHITESPACE option as follows:

In case you need to preserve some of the whitespaces but not all, you can use an

attribute called xml:space with a value “preserve” on the element in your

document you want whitespaces to be preserved, which is a W3C standard

mechanism, while using STRIP WHITESPACE option for the parsing.

You can also update an XML column with a new document. For example, the

following update replaces an existing purchase order with a new one and stores

an invoice at the same time.

You can also delete a row with XML just as a regular column. In the following

example, the DELETE statement deletes a row with the given PONUMBER.

For searched UPDATE and DELETE, you can specify both relational predicates

and XML predicates.

DB2 9 invokes z/OS XML System Services (XMLSS) for high-performance

parsing. You need to use z/OS R1.8 or later, or z/OS R1.7 with the PTF for

XMLSS installed.

You can also validate a document against an XML schema before insertion.

INSERT INTO BASICS.PURCHASEORDERS VALUES

(‘2006040001’, CURRENT DATE, ‘A’,

 XMLPARSE(DOCUMENT CAST(? AS CLOB(100K)) PRESERVE WHITESPACE),

 NULL);

UPDATE BASICS.PURCHASEORDERS SET

 POXML = :new_poxml, INVOICEXML = :invoicexml

WHERE PONUMBER = ‘2006040001’;

DELETE FROM BASICS.PURCHASEORDERS

WHERE PONUMBER = ‘2006040001’;

Leveraging DB2 9 for z/OS pureXML technology
Page 10

Host language interfaces

DB2 9 provides XML host language interfaces for Assembler, C or C++

(embedded SQL or DB2 ODBC), COBOL, Java (JDBC or SQLJ), PL/I, and .

NET. All the interfaces use string as the XML format. In host languages,

XML host variables use a syntax that looks like a distinct type on a LOB.

For example, in C or C++, you can use the following host variable declaration:

You can use it in INSERT or SELECT as follows:

For INSERT, implicit XMLPARSE is invoked, while for SELECT, implicit

XMLSERIALIZE applies. You can also use explicit XMLPARSE and

XMLSERIALIZE to convert between string format and internal data model

format. The following is an example of XMLSERIALIZE:

Since XML data does not have a length limit, it is difficult to determine

how much memory to allocate for a host variable to receive an XML value

from DB2. In DB2 9, a new way of fetch XML and LOB data is introduced

to allow for piece-by-piece fetch. The facility is the new option for

FETCH: FETCH WITH CONTINUE and FETCH CURRENT CONTINUE.

Check SQL reference for details.

In JDBC, the standard interface methods setString(),

setCharacterString() and getString() etc. are expanded to support

the XML type also. A new class ibm.com.db2.jcc.DB2Xml also provides

some XML-specific methods.

EXEC SQL BEGIN DECLARE SECTION;

 SQL TYPE IS XML AS CLOB(1M) xmlPo;

EXEC SQL END DECLARE SECTION;

EXEC SQL INSERT INTO BASICS.PURCHASEORDERS VALUES (‘200600001’,

 CURRENT DATE, ‘A’, :xmlPo);

EXEC SQL SELECT POXML INTO :xmlPo

 FROM BASICS.PURCHASEORDERS

 WHERE PONUMBER = ‘20060001’;

EXEC SQL SELECT XMLSERIALIZE(POXML AS CLOB(100K)) INTO :clobPo

 FROM BASICS.PURCHASEORDERS

 WHERE PONUMBER = ‘20060001’;

Leveraging DB2 9 for z/OS pureXML technology
Page 11

XML data encoding

DB2 9 for z/OS supports XML columns in a table of any DB2-supported

encoding. XML data is converted into UTF-8 at bind-in time before parsing if

it is not already in UTF-8. Likewise, XML data is serialized into UTF-8 first

internally at bind-out time and then converted into the encoding of the host

variable or application encoding if necessary.

If an XML value is stored in a character host variable, the encoding of the host

variable takes precedence over the encoding declaration inside the XML data.

It is important to keep consistency between the real encoding and host variable

encoding. Otherwise, the data may get corrupted or parsing may fail.

On the other hand, if an XML value is stored in a binary host var, the encoding

determination process as specified by W3C for XML will apply, which includes

Byte Order Mark (BOM) or internal encoding declaration.

Since XML character data are stored in UTF-8 internally in DB2 9, using

UTF-8 database and application encoding, or UTF-8 encoding in binary host

variables for XML data, can avoid the encoding conversion overhead and

potential data loss problem during the bind-in and bind-out processes.

XML indexing

In addition to XML-related index objects (DOCID index on a base table and

NODEID on an internal XML table), you can create specific XML indexes on

XML columns using XPath expressions. The XML indexes supported in

DB2 9 are value indexes. That is to map node values to nodes, identified by

NodeIDs and RIDs of records in which the nodes reside. For example,

the following example creates an XML index on the XMLPO column of table

BASICS.PURCHASEORDERS using XML pattern ‘/purchaseOrder/

items/item/desc’, which identifies all the descriptions of items within

purchaseOrder. Notice that XPath expressions are case-sensitive.

CREATE INDEX ON BASICS.PURCHASEORDERS(POXML) GENERATE KEYS USING

XMLPATTERN ‘/purchaseOrder/items/item/desc’ AS SQL VARCHAR(100);

Leveraging DB2 9 for z/OS pureXML technology
Page 12

Only string and numerical data types are supported for XML indexes in DB2 9 for

z/OS, which uses SQL VARCHAR(n) or DECFLOAT correspondingly. An XML

index is logically created on an XML column of a base table, but physically it is on

the implicitly created XML table, which is reflected on catalog information and

database object description.

The XML pattern is a limited subset of XPath expressions that do not have

any predicate. Only element, attribute, or text nodes are allowed for indexing

in DB2 9. An indexed element node can have sub-elements, but there is no

composite key supported.

An XML index is different from indexes on columns of other types in that it may

have zero or more index entries for each document, depending on the XML pattern

specified. For example, for the index created above, there are two entries for this

document illustrated below, they are Lawnmower and Baby Monitor.

XML indexes are used in accelerating the query processing for the

XMLEXISTS() predicate, but not XMLQUERY().

<?xml version=”1.0” encoding=”UTF-8”?>

<purchaseOrder orderDate=”1999-10-20”>

 <shipTo country=”US”>

 <name>Alice Smith</name>

 . . .

 </shipTo>

 <billTo country=”US”>

 <name>Robert Smith</name>

 . . .

 </billTo>

 <comment>Hurry, my lawn is going wild!</comment>

 <items>

 <item partNum=”872-AA”>

 <desc>Lawnmower</desc>

 <quantity>1</quantity>

 <USPrice>148.95</USPrice>

 <comment>Confirm this is electric</comment>

 </item>

 <item partNum=”926-AA”>

 <desc>Baby Monitor</desc>

 <quantity>1</quantity>

 <USPrice>39.98</USPrice>

 <shipDate>2003-05-21</shipDate>

 </item>

 </items>

</purchaseOrder>

Leveraging DB2 9 for z/OS pureXML technology
Page 1�

Searching and retrieving XML Data

In addition to simple SELECT of columns and expressions of XML type,

you can search on XML data using the XMLEXISTS() predicate. Except for

NULL testing, XMLEXISTS() is the only predicate applicable to the XML type,

and no direct comparison operators are available for XML at the SQL level.

In XMLEXISTS(), you specify an XPath expression for a document to match.

If the result of the XPath expression is an empty sequence, then XMLEXISTS()

returns false. Otherwise, it returns true. For example, the following query

selects POXML that has an item with “Shoe” as the description.

The second example is to illustrate that you can pass a SQL expression into

an XPath expression.

You can use XMLEXISTS predicate anywhere a predicate can be used except in

the ON clause of an outer join.

SELECT POXML

FROM BASICS.PURCHASEORDERS

WHERE XMLEXISTS(‘//items/item[desc = “Shoe”]’ PASSING POXML);

SELECT POXML

FROM BASICS.PURCHASEORDERS

WHERE XMLEXISTS(‘//items/item[desc = $x]’

 PASSING POXML, ‘Shoe’ AS “x”);

Leveraging DB2 9 for z/OS pureXML technology
Page 1�

You can also extract portions of an XML document using the XMLQUERY()

function with XPath as the first argument, and other optional arguments just as

in XMLEXISTS(). The following example extracts the quantity elements of

“Shoe” item from the purchase order.

Functions fn:data() and fn:string() can be used to get the value of

an element or attribute instead of the element or attribute itself. For example,

if you want to get a list of quantities you can use the following query.

SELECT XMLQUERY(‘//items/item[desc=”Shoe”]/quantity’

 PASSING POXML)
FROM BASICS.PURCHASEORDERS

WHERE XMLEXISTS(‘//items/item[desc = “Shoe”]’ PASSING POXML);

SELECT XMLQUERY(‘fn:data(//items/item[desc=”Shoe”]/quantity)’

 PASSING POXML)
FROM BASICS.PURCHASEORDERS

WHERE XMLEXISTS(‘//items/item[desc = “Shoe”]’ PASSING POXML);

Leveraging DB2 9 for z/OS pureXML technology
Page 1�

XPath support

DB2 9 for z/OS uses an XPath expression to identify portions of an XML

document and is used in XMLQUERY(), XMLEXISTS() and XMLPATTERN of

CREATE INDEX. Our strategy is to provide some core XML query language

features that are critical to the application development in DB2 9, and expand

them into the full XQuery language in the follow-on releases. We adopt the

equivalent of the core XPath 1.0 language constructs and data types. However,

we follow XPath 2.0 semantics and make them compatible with XQuery,

including the XQuery prolog for namespace declaration that is not part of XPath

but is necessary for the langauge.

The following data types are supported:

•	 xs:boolean,

•	 xs:integer,

•	 xs:decimal,

•	 xs:double	and

•	 xs:string.

The support axes are the XQuery-required axes:

•	 the	forward	axes: child, attribute, descendant,

descendant-or-self, self, ., //, @	and

•	 parent axis	and	its	abbreviated	form	(..).

The supported functions includes: fn:abs, fn:boolean, fn:compare,

fn:concat, fn:contains, fn:count, fn:data, fn:length,

fn:normalize-space, fn:not, fn:round, fn:string,

fn:substring, fn:sum.

Please note that positional predicate is not supported.

Leveraging DB2 9 for z/OS pureXML technology
Page 1�

Because DB2 9 for z/OS all XML documents are stored as untyped, you may

need to use type casting (constructors for primitive types) for the correct

semantics. For example,no cast is needed for the following query: “Find	all		
the	products	in	the	Catalog	with	RegPrice	>	100”, assuming we have an XML

column named XCatalog.

Similarly, there is no need for cast in the following query: “Find	all	the	products	
with	more	than	10%	discount	in	the	Catalog”.

However, the following query requires a cast: “Find	all	the	products	on	sale	in	
the	Catalog”, as comparison RegPrice < SalePrice will become an

untypedAtomic comparison if the cast is not specified:

In the above latter two examples, there is a potential cardinality problem that

may cause an error. For expression RegPrice * 0.9 to work, there can

only be one RegPrice element under a Product element. Likewise,

xs:double() only takes one item, and it will cause an error if there are

multiple SalePrice’s for a Product element. It is important in XPath

programming to avoid cardinality errors. To avoid these potential errors,

we can code the two XPath expressions as follows, respectively:

These two XPath expressions use a feature that is not available in XPath 1.0, i.e.

to return a sequence of atomic values from the last step of a path expression.

XMLQUERY(‘/Catalog/Categories/Product[RegPrice > 100]’ PASSING

XCatalog)

XMLQUERY(‘/Catalog/Categories/Product[RegPrice * 0.9 > SalePrice]’

PASSING XCatalog)

XMLQUERY(‘/Catalog/Categories/Product[RegPrice > xs:double(SalePrice)

]’ PASSING XCatalog)

XMLQUERY(‘/Catalog/Categories/Product[RegPrice/(. * 0.9) > SalePrice]’

PASSING XCatalog)

XMLQUERY(‘/Catalog/Categories/Product[RegPrice > SalePrice/ xs:

double(.)]’ PASSING XCatalog)

Leveraging DB2 9 for z/OS pureXML technology
Page 17

Constructing XML

In DB2 V8, the following XML publishing functions, including XML

constructors and other functions, were introduced to construct XML data from

relational data: XMLELEMENT, XMLATTRIBUTES, XMLNAMESPACES,

XMLFOREST, XMLCONCAT, and and XMLAGG. Since there was no external XML

data type, the XML2CLOB function must be used to get the data out of the DB2

server. These functions provide convenient and high performance alternative

to XML construction in applications.

In DB2 9, these functions are extended to handle binary data types using

HEX or BASE64 encoding, and take null handling options. New constructors

are added to make the constructor set complete; these include: XMLTEXT,

XMLPI, XMLCOMMENT, and XMLDOCUMENT. Since the functions return the

XML data type that is now a first-class SQL type, there is no need to use the

XML2CLOB function any more.

These functions also take the XML data type as input. You can use these to

construct new documents from portions of existing documents extracted

by the XMLQUERY function. Here is an example of constructing XML from

relational data:

Notice that you can specify ordering inside the XMLAGG function. A sample result

may look like the following with formatting spaces inserted for easy reading:

SELECT XMLDOCUMENT(

 XMLELEMENT(NAME “hr:Department”,

 XMLNAMESPACES(‘http://example.com/hr’ as “hr”),

 XMLATTRIBUTES (e.dept AS “name”),

 XMLCOMMENT(‘names in alphabetical order’),

 XMLAGG(XMLELEMENT(NAME “hr:emp”, e.lname)

 ORDER BY e.lname)

)) AS “dept_list”

FROM employees e

GROUP BY dept;

<?xml version=“1.0” encoding=“UTF-8”>

<hr:Department xmlns:hr=“http://example.com/hr” name=”Shipping”>

 <!-- names in alphabetical order -->

 <hr:emp>Lee</hr:emp>

 <hr:emp>Martin</hr:emp>

 <hr:emp>Oppenheimer</hr:emp>

</hr:Department>

Leveraging DB2 9 for z/OS pureXML technology
Page 1�

The following is another example to construct a new document, an invoice,

from existing data, a purchase order, illustrating how SQL/XML constructors

with XMLQUERY can be used to achieve some of the XQuery functionality.

The result may look like this (formatted for ease of reading):

SELECT XMLDocument(

 XMLElement(NAME “invoice”,

 XMLAttributes(‘12345’ as “invoiceNo’),

 XMLQuery (‘/purchaseOrder/billTo’ PASSING xmlpo),

 XMLElement(NAME “purchaseOrderNo”,

 PO.ponumber)

 XMLElement(NAME “amount”,

 XMLQuery

 (‘fn:sum(/purchaseOrder/items/item/xs:decimal(USPrice))’

 PASSING xmlpo))

))

FROM BASICS.PURCHASEORDERS PO,

WHERE PO.ponumber = ‘200600001’;

<?xml version=“1.0” encoding=“UTF-8”>

<invoice invoiceNo=“12345”>

 <billTo country=”US”>

 <name>Robert Smith</name>

 . . .

 </billTo>

 <purchaseOrderNo>200600001</purchaseOrderNo>

 <amount>188.93</amount>

</invoice>

Leveraging DB2 9 for z/OS pureXML technology
Page 1�

Access methods

DB2 9 introduces several new access methods for XML data. The basic access

method is the so-called DocScan. It traverses XML data and evaluate XPath

expressions using our patent-pending streaming XPath evaluation algorithm,

called QuickXScan. However, there is no new access type indicator for DocScan

in the PLAN_TABLE as it is part of R-Scan if there is an XML column involved.

Three new access type indicators are introduced for XML index-based access.

Similar to RID list access, ANDing, and ORing, they include:

•	 DocID	list	access	(DX).

•	 DocID	list	ANDing	(DI	for	DocID	list	Intersection).

•	 DocID	list	ORing	(DU	for	DocID	list	Union).

As mentioned earlier, XML indexes are only used for the XMLEXISTS

predicate evaluation. For example, to evaluate predicate

If you have an XML index on the XCatalog column created with the XML

Pattern and type as follows:

XMLEXISTS(‘/Catalog/Categories/Product[RegPrice > 100]’ PASSING

XCatalog)

CREATE INDEX IX1 ON MYTABLE(XCATALOG) GENERATE KEYS USING XMLPATTERN ‘/

Catalog/Categories/Product/RegPrice’ as SQL DECFLOAT

Leveraging DB2 9 for z/OS pureXML technology
Page 20

DB2 9 will use this index for DocID list access (DX) for the predicate and

get unique DocID list from the XML index, then access the base table using

the DOCID index and XML table. It will then re-evaluate the document

using QuickXScan. Because DB2 9 always re-evaluates XMLEXISTS

predicate, the XML pattern of an XML index does not have to exactly match

with an XPath expression to apply the index.

Here is another example of using DocID list ANDing (DI) to evaluate

a predicate:

Two indexes on the XCatalog column with XMLPattern and data types,

one is the same as above IX1, and the other is the following IX2:

Indexes IX1 and IX2 will be used to get two DocID lists and then DocID list

ANDing (DI) will be applied to get a unique DocID list. DB2 9 will then

access the base table via the DOCID index and evaluate the predicate through

QuickXScan.

XMLEXISTS(‘/Catalog/Categories/Product[RegPrice > 100 and Desc = “Shoe”

]’ PASSING XCatalog)

CREATE INDEX IX2 ON MYTABLE(XCATALOG) GENERATE KEYS USING XMLPATTERN ‘/

Catalog//Desc’ as SQL VARCHAR(50);

Leveraging DB2 9 for z/OS pureXML technology
Page 21

XML schema repository

W3C uses a target namespace and optional schema location, both URIs,

to identify an XML schema. For example, a target namespace could be

“http://www.ibm.com/software/catalog” and the schema location

could be “http://www.ibm.com/schemas/software/catalog.xsd”.

However, it is not required to have online schema exist in the specified URIs. In

addition, it is not recommended to get a schema online automatically by DB2.

Therefore you need to register XML schemas into DB2 XML Schema

Repository (XSR) before you can use them in XML schema validation or anno-

tated schema-based decomposition. There is a set of stored procedures for

managing an XML schema, and when you register an XML schema, you specify

a SQL ID for it. The stored procedures are the following:

•	 XSR_REGISTER	(rschema,	name,	schemalocation,	xsd,	docproperty)

•	 XSR_ADDSCHEMADOC	(rschema,	name,	schemalocation,	xsd,	docproperty)

•	 XSR_COMPLETE	(rschema,	name,	schemaproperties,	isUsedForDecomp)

•	 XSR_REMOVE(rschema,	name)

Assuming you have a schema with schema location ‘http://www.n1.com/

order.xsd’ and it also uses two other schema documents

‘http://www.n1.com/lineitem.xsd’ and ‘http://www.n1.com/

parts.xsd’ by include or import, and you want to identify this schema

using SQL ID ORDERSCHEMA, you can use the following stored procedure

call sequence, with the root schema document first:

At the XSR _ COMPLETE call, DB2 9 will compile the schema into a binary

format. When the schema is used, its binary format is loaded to achieve high

performance. Any errors will be reported during the compile time also. It

invokes Java XML parser so you need Java JDK 1.5 or above installed with

DB2 9 server.

XSR_REGISTER(‘SYSXSR’, ‘ORDERSCHEMA’,

 ‘http://www.n1.com/order.xsd’, :xsd, :docproperty)
XSR_ADDSCHEMADOC(‘SYSXSR’, ‘ORDERSCHEMA’,

 ‘http://www.n1.com/lineitem.xsd’, :xsd, :docproperty)
XSR_ADDSCHEMADOC(‘SYSXSR’, ‘ORDERSCHEMA’,

 ‘http://www.n1.com/parts.xsd’, :xsd, :docproperty)
XSR_COMPLETE(‘SYSXSR’, ‘ORDERSCHEMA’, :schemaproperty, 0)

Leveraging DB2 9 for z/OS pureXML technology
Page 22

Schema validation

To validate an XML document against a registered schema, you invoke the

DSN _ XMLVALIDATE() UDF. The DSN _ XMLVALIDATE() UDF works as

the standard XMLVALIDATE() SQL function except that it does not retain type

annotations. For example, you can validate XML data during INSERT:

DB2 9 invokes a new high performing schema validation parser (XLXP) for

validation. However, schema validation is still more costly than parsing only.

Annotated schema-based decomposition

If you want to decompose (shred) an XML document and store the data in

regular SQL columns and XML columns of relational tables, you can use a new

stored procedure XDBDECOMPXML to achieve this. If you decompose XML

data into pure relational data without XML, you are no longer taking the

advantages of pureXML technology. You will need to edit schema documents

and add annotations to specify how you want the document to be decomposed.

The Development Work Bench (DWB) provides a tool to assist the annotation.

For details of annotation and the XDBDECOMPXML stored procedure,

refer to DB2 9 XML Guide [Need URL].

INSERT INTO BASICS.PURCHASEORDERS VALUES

(‘2006040001’, CURRENT DATE, ‘A’,

 XMLPARSE(DOCUMENT

 SYSFUN.DSN_XMLVALIDATE(:xmlPo, SYSXSR.ORDERSCHEMA)),

 NULL);

Leveraging DB2 9 for z/OS pureXML technology
Page 2�

Utilities

All DB2 utilities have been enhanced to handle XML data type and XML

related database objects properly or at least recognize the objects. The

following is a list of utility features and restrictions:

•	 CHECK	DATA:	checking	of	base	table	spaces	which	contain	XML	columns.

•	 CHECK	INDEX:	checking	of	the	DocID,	NodeID	and	XML	value	indexes.

•	 CHECK	LOB:	adds	error	checking	to	disallow	processing	of	XML	table	spaces.

•	 COPY	INDEX:	support	taking	full	image	copies	and	concurrent	copies	of	the		

DocID,	NodeID	and	XML	value	indexes.

•	 COPY	TABLESPACE:	support	taking	full,	incremental	image	copies	and	concurrent	

copies	of	the	XML	table	spaces.

•	 COPYTOCOPY:	support	the	replication	of	image	copies	of	XML	table	spaces,		

DocID,	NodeID	and	XML	value	indexes.

•	 EXEC	SQL:	adds	error	checking	to	disallow	cross	loading	of	tables	with		

XML	columns.

•	 LISTDEF:	implements	a	new	XML	keyword	for	constructing	lists	with	and	without	

XML	objects.

•	 LOAD:	support	loading	of	tables	with	XML	columns.

•	 MERGECOPY:	supports	merging	of	image	copies	of	XML	table	spaces	with		

existing	function.

•	 QUIESCE	TABLESPACESET:	includes	XML	table	spaces	and	index	spaces	in	the	

set	of	quiesced	objects.

•	 REAL	TIME	STATISTICS:	gathers	existing	statistics	on	the	new	XML	objects.

•	 REBUILD	INDEX:	supports	the	rebuilding	of	the	DocID,	NodeID	and		

XML	value	indexes.

•	 RECOVER	INDEX:	supports	the	recovery	of	the	DocID,	NodeID	and	XML		

value	indexes	and	will	include	XML	objects	during	consistency	checking	of		

point-in-time	recoveries.

•	 RECOVER	TABLESPACE:	supports	the	recovery	of	the	XML	table	space	and	will	

include	XML	objects	during	consistency	checking	of	point-in-time	recoveries.

•	 REORG	INDEX:	supports	the	reorganization	of	the	DocID,	NodeID	and		

XML	value	indexes.

•	 REORG	TABLESPACE:	supports	the	reorganization	of	the	XML	table	space		

and	of	base	table	spaces	with	XML	columns	with	some	restrictions.

Leveraging DB2 9 for z/OS pureXML technology
Page 2�

•	 REPORT	TABLESPACESET:	includes	XML	table	spaces,	DocID,	NodeID	and		

XML	value	indexes	in	the	set	of	reported	objects.

•	 RUNSTATS	INDEX:	processes	the	base	table	space	DocID	index	normally,		

collect	some	statistics	for	the	NodeID	index	and	XML	value	indexes.

•	 RUNSTATS	TABLESPACE:	processes	the	base	table	space	DocID	column		

normally	and	collect	some	statistics	for	all	XML	table	space	columns.

•	 UNLOAD:	supports	the	unloading	of	tables	containing	XML	columns.		

UNLOAD	of	XML	data	FROMCOPY	is	not	supported.

The database operation and recovery are similar to that of a database with

LOB data. The following provides guidelines.

•	 To	recover	base	table	space,	take	image	copies	of	all	related	objects

	 –	Use	REPORT	TABLESPACESET	to	obtain	a	list	of	related	objects

	 –	Use	QUIESCE	TABLESPACESET	to	quiesce	all	objects	in	the	related	set

•	 Use	SQL	SELECT	to	query	the	SYSIBM.SYSXMLRELS	table	for	relationships	

between	base	table	spaces	and	XML	table	spaces

•	 COPYTOCOPY	may	be	used	to	replicate	image	copies	of	XML	objects.

•	 MERGECOPY	may	be	used	to	merge	incremental	copies	of	XML	table	spaces.

•	 Point	in	Time	recovery	(RECOVER	TOCOPY,	TORBA,	TOLOGPOINT)

	 –		All	related	objects,	including	XML	objects	must	be	recovered	to	a		

consistent	point	in	time

•	 CHECK	utilities	to	validate	base	table	spaces	with	XML	columns,	XML	indexes		

and	related	XML	table	spaces.

•	 If	there	is	an	availability	issue	with	one	object	in	the	related	set,	availability	of		

the	others	may	be	impacted.

Leveraging DB2 9 for z/OS pureXML technology
Page 2�

Performance monitoring

Since native XML support in DB2 9 is built on top of regular table space

structure, there are no special changes in DB2 Performance Expert other than

minor things such as new XML locks. XML performance problems can be

analyzed through accounting traces and performance traces as usual.

Some configuration information may help you. DB2 9 introduces a new load

module DSNNXML in the DBM1 address space for most of native XML processing.

Implicit or explicit XMLPARSE invokes z/OS XML System Services within the

same address space. XML schema validation invokes a UDF.

Commonalities and differences from DB2 9 for Linux, UNIX and Windows (LUW)

DB2 9 for z/OS XML features are a compatible subset of that of DB2 9 for LUW.

The commonalities include:

•	 SQL	XML	data	type	and	DDL,	although	there	are	well-known	platform-specific	

options	for	databases	in	DDL.

•	 Standard-conforming	SQL/XML	language	with	XML	query	languages	(XPath	on	

z/OS,	XQuery	on	LUW).

•	 Indexing:	z/OS	supports	DECFLOAT	and	VARCHAR(n).	LUW	also	supports	

VARCHAR(HASHED),	DATE	and	TIMESTAMP.

•	 XML	Schema	Repository,	and	schema	validation	(UDF	v.s.	BIF).

•	 INSERT/UPDATE/DELETE:	versioning	in	LUW,	no	versioning	in	z/OS.

•	 Host	language	interfaces:	PL/I	and	assembler	in	z/OS	in	addition	to	C/C++,	

COBOL,	Java,	and	.NET	etc.

•	 Annotated	schema	decomposition

•	 Text	search

Leveraging DB2 9 for z/OS pureXML technology
Page 2�

The following are z/OS-specific:

•	 XPath	in	SQL/XML	only	while	XQuery	is	supported	in	both	embedded	and		

top-level	in	LUW.

•	 XMLTABLE	and	XMLCAST	are	not	available	yet.

•	 XML	columns	are	supported	in	tables	of	any	encoding	DB2	z/OS	supports		

(UTF-8	databases	only	for	LUW).

•	 XML	columns	are	supported	in	partitioned	table	spaces	and	data	sharing	

environment.

•	 Compression	is	supported	for	XML	table	space.

•	 LOAD/UNLOAD,	REORG	and	many	utilities	are	supported	for	XML	objects.

•	 Next-generation	parsers	are	used	to	provide	unprecedented	performance.

Leveraging DB2 9 for z/OS pureXML technology
Page 27

Summary

In this whitepaper, we have discussed the business values DB2 9 pureXML

brings and some details of the XML features. The flexibility of XML schema

and declarative and efficient XML query languages helps eliminate the

bottleneck of mapping and schema evolution, improves productivity and

quality of application development, and significantly accelerates time-to-

market. It can also improve the system performance in processing XML,

together with the unparalleled System z reliability, availability and scalability.

DB2 9 pureXML marks a new era of database application development, and

leads the trend in enterprise XML data management.

For more information

To learn more about IBM DB2 for z/OS visit ibm.com/xxxxx/.

Additional resources

[Provide a list of FAQs, etc.?]

©	 Copyright	IBM	Corporation	2007

IBM	Corporation
New	Orchard	Rd.
Armonk,	NY	10504
U.S.A.

Produced in the United State�� o�� America	in	the	United	State��	o��	America	
03-07	
All	Right��	Re��erved

	 DB2,	IBM,	the	IBM	logo,	pureXML	and	z/OS	are	
trademark��	o��	International	Bu��ine����	Machine��	
Corporation	in	the	United	State��,	other	countrie��,	or	both.

	 Java	i��	a	trademark	o��	Sun	Micro��y��tem��,	Inc.	in	the	
United	State��,	other	countrie��,	or	both.

	 Linux	i��	a	regi��tered	trademark	o��	Linu��	Torvald��	in	the	
United	State��,	other	countrie��,	or	both.

	 Micro��o��t	and	Window��	are	trademark��	o��	Micro��o��t	
Corporation	in	the	United	State��,	other	countrie��,	or	both.	

	 UNIX	i��	a	regi��tered	trademark	o��	The	Open	Group		
in	the	United	State��	and	other	countrie��.

	 Other	company,	product,	and	��ervice	name��	may	be		
trademark��	or	��ervice	mark��	o��	other��.

IMW11860-USEN-00

