
Redbooks Paper

The Role of IBM System z in the
Design of a Service-Oriented
Architecture

Introduction
This IBM® Redpaper explores how an existing mainframe IT infrastructure and
assets can work in the new on demand, service-oriented architecture (SOA)
paradigm. IBM clients have many years worth of applications, some performing
critical business functions, in their portfolios, and huge investments in mainframe
computing. This paper explains how to exploit the features of IBM System z™ to
transform existing applications to work in the SOA universe.

This paper does not attempt to define SOA in great detail. An overview of that
and other related questions can be found at:

http://www-128.ibm.com/developerworks/webservices/library/ws-soa-whitepaper

There are a number of other good resources from which to obtain more detailed
information about SOA and IBM’s SOA strategy, as well. An especially interesting
source is the IBM developerWorks® Web site at:

http://www.ibm.com/developer

Bill Seubert
Daniel Raisch
© Copyright IBM Corp. 2006. All rights reserved. ibm.com/redbooks 1

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www-128.ibm.com/developerworks/webservices/library/ws-soa-whitepaper
http://www.ibm.com/developer

There are links to SOA-specific resources and to IBM System z resources on the
developerWorks home page. The developerWorks site also contains many
whitepapers, tutorials, and software downloads that provide additional
information related to SOA and the mainframe.

IBM SOA strategy and the SOA lifecycle
In late 2005, IBM announced a refined approach to implementing SOA, centering
on what IBM calls the SOA lifecycle. The SOA lifecycle is the framework of IBM’s
SOA strategy. As Figure 1 on page 3 shows, the SOA lifecycle consists of four
stages:

� Model - Use modeling tools to define the business process, at a business
function level, and model the actual services that will be part of an
assembled, composite application.

� Assemble - Assemble the individual services and write the code that is
needed to implement the business rules for the application. Pre-existing
services can be re-used, new services can be developed, or both.

� Deploy - Deploy the services to run-time environments, such as transaction
management engines like WebSphere® Application Server, CICS®, IMS™,
and so forth. Use integration components, primarily an enterprise service bus
(ESB), to link together the various services needed for the composite
application.

� Manage - Implement the management infrastructure for monitoring and
managing the services and the service infrastructure. This includes not only
IT management tools, but also business management and monitoring tools to
measure actual business activities.
2 The Role of IBM System z in the Design of a Service-Oriented Architecture

Figure 1 IBM’s SOA Lifecycle

Since this is a lifecycle, it implies a closed loop, meaning that at the end of the
cycle, the Manage stage feeds information back to the Model stage. Results from
the run-time management tools can be fed into the modeling tools to provide
feedback for refinement of the business processes that are being instantiated
into services and composite applications.

Underlying the four phases of the lifecycle is the function of governance.
Governance of the SOA implementation is critical to the integrity of the
architecture. Governance can ensure the consistency of the service
development strategy and adherence to the policies and procedures of the SOA
implementation. This is often the area where enterprises stumble in their
implementation. A “build it and they will come” approach to an SOA and the
accompanying infrastructure is often a ticket to failure, unless there is constant
monitoring, management, and enforcement of how the architecture is rolled out
and used.

The SOA lifecycle is not an entirely new concept. Many application development
models, including those for developing mainframe applications, have involved
the same concepts. However, there are several aspects of SOA that make this
particular lifecycle unique:

� SOA involves modeling of business processes, not just the modeling of the
applications themselves. Developers are very familiar with the idea of
object-oriented (OO) design and modeling. This involves the use of OO
 The Role of IBM System z in the Design of a Service-Oriented Architecture 3

design tools, creation of UML models, and generation of application code
from the models. In SOA, this technique is replicated at a higher level of
abstraction. With SOA, the business process is modeled first, and the results
of the model are fed to additional development tools in a fashion similar to
that of UML models, only in this case the tools produce Business Process
Execution Language (BPEL). The BPEL artifacts are then passed to other
tooling that is designed to enable the construction of composite applications
that consist of multiple, orchestrated services.

In the past, mainframe applications have been built using traditional
processes such as the “waterfall” design method. Design techniques that
include modeling at the business process level are closer to design methods
such as the Rational® Unified Process®, which use design feedback loops
with the end user. Business process modeling assists with that feedback
process.

� SOA applications are assembled from multiple services that can be “wired”
together using orchestration and process management tools. This is similar to
how visual design tools such as VisualAge® Smalltalk were used several
years ago for building object-oriented applications. However, with SOA, the
assembly process is done using service components that are based on many
different technologies, not just objects.

Mainframe applications can be employed as services in the SOA lifecycle.
This is discussed in more detail in “Integrating existing mainframe
applications in an SOA” on page 27. Many mainframe customers use this
application integration and service enablement process as their key “entry
point” into SOA.

� In a full SOA implementation, the individual services are deployed to a run
time, just like a “traditional” transactional system. However, the composite
applications are represented in and “executed” from a flow engine, and that
run-time engine takes care of calling the services in the proper sequence,
based upon what is specified in the BPEL – the input to the flow engine. The
advantage behind this construct is that the “rules” for the service flow can be
modified more easily than in an application where the rules and workflow are
coded into the application source. This is an important feature that helps
enable the flexibility, reuse, and speed that are key attributes of the on
demand model.

In the past, many mainframe applications included process management
within the application. Moving this flow management out of the application
and into middleware components can make it easier to adapt to changes in
business processes. Changes are made in the choreography tool rather than
modifying existing COBOL source or other application program logic.

� While the logical linkage between the services is represented by the flows
that execute under the control of a flow engine, the physical linkage between
4 The Role of IBM System z in the Design of a Service-Oriented Architecture

deployed services is typically implemented in an Enterprise Service Bus
(ESB). The ESB is the abstraction layer that is designed to eliminate the
point-to-point connectivity between specific services. The traditional
message-oriented middleware implementation requires defined connections
between endpoints, but, in an ESB, the endpoints are not explicitly
hard-coded into the tools; they can be resolved at run time.

Enterprise application integration (EAI) has been a significant focus area over
the last 5 to 10 years, and integration of existing mainframe applications has
been the primary target. Many EAI principles and best practices still apply in
an ESB-centered SOA, but the presence of standards such as messaging
(WebSphere MQ, JMS) and SOAP have helped to make this job easier and
faster than before.

� In previous application architectures (mainframe and other), monitoring is
traditionally only done at the I/T level. Organizations are often concerned
about the number of transactions per second being executed, what the
end-user response time is, application server utilization, and so forth. In the
SOA lifecycle, there is a keen interest in the business performance. For
example, Bank A might be interested in how many new accounts were
opened last week, or how many ATM withdrawals occurred, rather than what
the average response time was for the ATM transactions. This kind of
business information is fed into the business modeling tool to refine the
business process. In fact, the business process modeling tools can often
simulate a process model that will help to determine where improvements
might be found. The input to the simulation tools can come from the actual
run-time monitors.

� IBM’s sharp focus on governance is unique in this model. While architectural
governance (including security) has always been an important facet of I/T and
architectural management, it is particularly critical in SOA due to the
loosely-coupled nature of services. In a world where applications are
composed from services that are scattered throughout the enterprise and
beyond, it is critical to have a firm grasp on the architecture and the
implementation of services within it.1

The mainframe environment has a long history of strong IT architecture and
infrastructure governance and stringent application development practices.
The focus on SOA governance is an extension of the same type of rigid
policies that have succeeded in the traditional host-based world.

1 More on SOA governance can be found at
http://www-128.ibm.com/developerworks/webservices/library/ws-soa-govern/
 The Role of IBM System z in the Design of a Service-Oriented Architecture 5

More on reuse and governance
In the SOA lifecycle model, there are two elements that are crucial to SOA
deployment success: reuse and governance. The construction of SOA-based
applications through the assembly and choreography of existing services
depends upon the reuse of assets, both those that are newly created and those
harvested from existing mainframe (and other) environments. Reuse is one of the
most important sources of SOA business value because it reduces development
and testing time. It is closely tied to flexibility and agility since any new application
to be deployed will primarily be the result of a new assembly of existing parts – a
set of proven existing services choreographed to match a new business process.
The key focus of reuse is to avoid building new services and incurring the
associated cost of maintaining them.

Reuse must be supported by a governance infrastructure. There must be policies
and best practices that define the development architecture that allows a service
to be used by many applications, or to make it reusable. There should be a
central repository where services are stored or cataloged, and mechanisms to
make them accessible, similar to the topical listing in a phone book. Beyond this
central repository, additional management requirements emerge, including
versioning, tracking, and migration of services and their various releases.
Mainframe shops generally have a good understanding of these concepts and
requirements because a mainframe application development lifecycle has similar
requirements, but with different scope and different technologies. Mainframe
shops typically have a set of source code repositories and respective load
module libraries, as well as other libraries for shared application code (such as
error handling routines) and procedures and programs used by the IT
department. Access to these repositories is controlled, and there are rules for
code checkin and checkout, versioning, and other change management
procedures. For mainframe shops, reuse and the controls that surround it are not
new concepts.

As described here, there are many policies that must be defined in order to make
an SOA infrastructure more robust. This set of rules, practices, and procedures is
known as governance. Because SOA requires a corporate view of IT, it is
essential that corporations define these rules and procedures. Governance is
required along with technical SOA design considerations, and companies that
are adopting SOA must develop a governance model that matches company
business processes and their SOA deployment model.2

2 For more details, see SOA Compass, IBM Press, ISBN 0131870025, Published October 25, 2005,
Copyright 2006.
6 The Role of IBM System z in the Design of a Service-Oriented Architecture

Choosing a development and design approach
One of the more interesting philosophical discussions in SOA is “Where do we
start?” This is a particularly lively discussion when mainframe assets are
involved, since few companies are willing to simply discard working applications
that contain valuable intellectual capital. The general approaches to SOA
analysis and design tend to center on three philosophies:

� Top-down - This is usually considered the “purist” approach to SOA. The
top-down approach begins with analysis and understanding of the business
environment and the services that make up the functions of the business. The
business model is decomposed into the elementary components that
represent business services. Those business services are eventually
represented by IT services. This analysis is accompanied by documentation
of the processes that link together the various business services.

IBM’s Component Business Modeling (CBM) can be followed to discover the
business architecture. Once a model is developed, the strategically important
parts of the business architecture can be identified and fed into the process of
service modeling so IT services can be created from them.

One drawback to the top-down method is that it may result in service
decompositions that do not closely match the existing business applications.
This can imply several things. For example, if the ideal model does not match
existing assets, there may be a greater need for newly developed services.
There is a fair chance that the match will be close—that existing assets can
be used—but there may need to be more IT development work done to more
invasively extract and reuse code.

� Bottom-up - The bottom-up approach involves exposing existing applications
as services which are then used to create new, composite applications
developed using techniques such as business modeling and development
with process orchestration tools.

When a bottom-up approach is used, concerns often emerge regarding the
granularity of the services. With existing mainframe systems, an interesting
situation often arises: older mainframe systems are frequently well-suited for
SOA because the applications themselves already represent discrete
business functions. A recent article in Enterprise Systems magazine stated:

The irony is that host applications are probably better suited for exposure
as part of an SOA than many applications based on more modern 4GL
object-oriented languages, said Phil Murphy, a principal analyst with
consultancy Forrester Research, in an interview last year. “When folks
wrote screen-based transactions many months ago, they wrote it at a
business function viewpoint: I add a customer, I add an order for that
customer, I check backlogs for that customer, etc. So in many respects,
those CICS screens of 15 years ago are better suited to service
 The Role of IBM System z in the Design of a Service-Oriented Architecture 7

orientation than a lot of the newer, distributed code that’s been written
over the last several years, because of their affinity with a business
function,” he argued, adding: “What did the object-oriented guys do? They
took those screens and they broke them down into a thousand different
objects.3

So, at least at the user interface, the reuse of existing host applications is
sometimes simpler than it would appear on the surface. Unfortunately, the
underlying programming structure is not always as friendly to reuse as the
application may appear at the surface. These applications may not match
perfectly with the services that would be identified in an analysis exercise
such as CBM. In this case, a compromise may be appropriate.

� Meet-in-the-middle - The “meet-in-the-middle” approach is a compromise
that employs techniques from both top-down and bottom-up methodologies. It
affirms that there is considerable value in existing assets that should be
reused when appropriate, and also utilizes top-down service identification and
decomposition techniques. A recent article on the IBM developerWorks Web
site states:

There are no green field projects in the real-world as legacy applications
… always have to be taken into account. Therefore, a meet-in-the-middle
approach is required, rather than pure, top-down or bottom-up process.

The bottom-up approach tends to lead to poor business-service
abstractions in case the design is dictated by the existing IT environment,
rather than existing and future business needs. On the other hand,
top-down processing might cause insufficient, non-functional requirement
characteristics, and compromise other architecture quality factors (for
example, performance problems due to lack of normalization in the
domain model) as well as provide impedance mismatches on the service
and component layer.4

This summary shows the need to address SOA analysis and design from both
the top and the bottom. In a mainframe environment, where there is a
pre-existing inventory of mature, high-performance business applications, it
only makes sense to try to reuse as much as possible.

Figure 2 illustrates how top-down and bottom-up approaches relate. Business
knowledge, issues, and architectures press from the top, and are represented
using an analysis like CBM. The IT infrastructure, based on an on demand
operating environment and SOA as an application architecture, provides the
computing base for the modeling, development, deployment, and
management of composite services that instantiate the processes from the
business model.

3 Source: http://esj.com/enterprise/article.aspx?EditorialsID=1457. Reprinted by permission of
Enterprise Strategies (www.esj.com), a publication of 1105 Media LLC, Copyright 2006.

4 Source: http://www-128.ibm.com/developerworks/webservices/library/ws-soad1/
8 The Role of IBM System z in the Design of a Service-Oriented Architecture

http://www-128.ibm.com/developerworks/webservices/library/ws-soad1/

Figure 2 Top-down/bottom-up relationship between business and IT

A further illustration of this is found in Figure 3, which shows how traditional
architectures do not necessarily have the same degree of cooperation
between the top and bottom.

Figure 3 Traditional versus SOA - top-down/bottom-up
 The Role of IBM System z in the Design of a Service-Oriented Architecture 9

Service-oriented architecture on IBM System z
The main focus of this paper is not to define service-oriented architecture or
other terms related to it, but to clarify the role of the mainframe in a world
centered on SOA. The natural inclination for many is to assume that SOA only
involves distributed systems and technology that is less than five years old!
However, this is far from the truth.

The 21st century mainframe can still trace its origins to the System/360™ of the
mid-1960s. One of the key design points of the System/360 was to implement a
computer architecture that would scale within the family and throughout a long
upgrade lifecycle, without losing backwards compatibility. IBM’s commitment to
this level of compatibility has been maintained ever since. Because of this
backward compatibility, many programs that were written decades ago will still
run on current IBM mainframes. This has provided significant business value to
our customers by allowing them to protect the investment in their applications.
However, as the world has adopted new technologies and architectures, this has
posed a problem: how do we unleash the power of these business assets in the
new computing architectures that have emerged in recent years? This challenge
began in the client/server days of the 1990s, and has continued into this decade.
SOA is simply an extension of that challenge.

Standards in SOA
Fortunately, SOA possesses a key attribute that positions the mainframe as a full
participant. The IBM developerWorks Web site refers to the following attribute of
SOA:

The interface is defined in a neutral manner that should be independent of the
hardware platform, the operating system, and the programming language in
which the service is implemented.

Standards are critical to SOA, and specifically to the mainframe’s participation in
it. Through the standardization of interfaces between services, it is now possible
for vendors (like IBM) to incorporate those standards into the transaction
10 The Role of IBM System z in the Design of a Service-Oriented Architecture

processing systems and database managers so existing applications can be
integrated more easily into the SOA environment. There are a number of
standards that enable this interaction, but several stand out:

� Web services - One of the most important standards to emerge in the last ten
years is SOAP. SOAP defines a common XML format to describe service
calls and return messages for invoked services. SOAP is a simple
XML-based protocol to let applications exchange information over HTTP or
messaging middleware.

The emergence of SOAP as a standard transport has helped enable vendors
to SOAP-enable their subsystems to make it easier for services to interact.
The HTTP transport protocol is relatively ubiquitous, and as a result, SOAP
messages can be passed between most computing platforms, providing the
hardware and OS neutrality described in our SOA definition. Later in this
paper, we present details about how the System z software has implemented
SOAP and other standard interfaces to facilitate Web services calls to
mainframe transactions and data.

� XML - XML is not a new technology; it has been in fairly wide use for more
than five years now. It is central to the required interoperability between
services in SOA. The self-describing nature of XML, along with the large
number of utilities that process it, make it an ideal data representation format
for information that flows in a service invocation. This pervasiveness extends
to System z, where XML processing is possible in new technology server
software such as WebSphere Application Server, and support for XML is also
built into the traditional software systems, including CICS, IMS, and the
COBOL and PL/I compilers.

� Message-oriented middleware - Messaging and queuing has been in
existence for over ten years, providing a reliable, fast transport mechanism
for passing data between applications. Many IBM customers have employed
WebSphere MQ (formerly known as MQSeries®) as a transport to call remote
functions on separate systems, just as SOAP does. In fact, WebSphere MQ
can be used as the underlying transport for SOAP. IBM’s WebSphere MQ
(WMQ) is present in the business of many IBM customers world-wide, and
this penetration has helped to make WMQ a de facto standard for
implementing program-to-program communications. Some IBM customers
have designed their entire SOA implementation around a WMQ transport.
There is a key message here: SOA is not just Web services! A
service-oriented architecture can be implemented without employing Web
services, although this is uncommon. SOA simply must have a hardware-
OS- and language-neutral transport to facilitate communication between
services. In the case of IBM System z, WebSphere MQ is a key component of
many customers’ infrastructure on z/OS®, and there are bridges that permit
the invocation of host transactions using its transport.
 The Role of IBM System z in the Design of a Service-Oriented Architecture 11

� Java™ Database Connectivity (JDBC™) and Service Data Objects (SDO)
An emerging concept in SOA is Information As A Service (IAAS). Besides
accessing applications as services, composite applications may need to
access data in a similar fashion. JDBC, along with the Structured Query
Language (SQL), are key standard technologies for providing IAAS. Now any
database management system can provide a JDBC driver interface to enable
a Java-based SQL application to access information in a seamless,
hardware- and platform-neutral fashion. Obviously, JDBC is inherently
language-dependent – it requires Java! However, most database
management systems now provide SOAP-based interfaces to the data
resources. For example, technology now exists in DB2® Universal
Database™ to access data in DB2 via Web services protocols.

Service Data Object (SDO) is a newer technology than JDBC and is a key
component of IBM’s SOA programming model. An SDO “define(s) a uniform
paradigm of data graphs to access and manipulate data from heterogeneous
sources, including relational databases, XML data sources, Web services,
and enterprise information systems”.5 When using SDOs, a service developer
connects to a data access service to access data, rather than using a
language-specific construct such as JDBC. This provides abstraction
between the data request and the data source.

The following sections focus on the specifics of the IBM strategy for SOA on the
mainframe, and how the mainframe and z/OS can participate in and host the
infrastructure for a service-oriented architecture implementation.

Design considerations for an SOA with IBM System z
There are many architectural principles involved in the design of an SOA
infrastructure and applications that use that infrastructure. Some of these
principles are not unique to environments with mainframes, but the presence of
the mainframe can introduce certain special considerations. Some design
principles that are of particular interest:

� Existing IT standards - This is the design principle that generally comes up
first in architecture design sessions. These common statements: “We already
use a particular product” “We are pursuing an open systems design for our
systems” “We are trying to get off the mainframe” are the kinds of
quasi-standards that are often encountered, in addition to more formalized
standards documents. Existing IT standards may be dictated by the presence
of zSeries® in the customer’s environment. For example, if CICS is being
used to host existing applications, then an infrastructure that permits easy
integration of existing CICS business logic is usually desirable. “Placement of

5 Source: IBM Systems Journal, http://www.research.ibm.com/journal/sj/444/ferguson.html
12 The Role of IBM System z in the Design of a Service-Oriented Architecture

http://www.research.ibm.com/journal/sj/444/ferguson.html

critical business data on an existing DB2 for z/OS system” is an IT standard
that is often followed by mainframe customers.

� Scalability - Scalability is the ability to adjust the capacity of a system to
absorb varying transaction rates, usually dynamically. Questions posed
include “How can a particular system be scaled to take on additional work?
Can this scalability occur dynamically, or does it require additional fixed
resources (servers, storage, network, and so forth) to be added manually?”
Often, scalability is referred to as horizontal (adding more capacity by adding
additional systems or servers), or vertical (increasing capacity by growing the
size of the existing platform).

The IBM mainframe has a long heritage of scalability, both vertical and
horizontal. The current generation of IBM System z9™, the System z9 EC,
can scale from several hundred millions of instructions per second, or MIPS,
to well over 17,000 MIPS, on one to fifty-four processor units, or engines in
common terminology.

If a System z customer requires more capacity than is available in a single
mainframe, horizontal scaling may be accomplished by implementing a
Parallel Sysplex®6, which permits multiple z/OS systems to be clustered
using a set of unique hardware and software technologies that provide
horizontal scaling, full data-sharing between systems, and improved system
availability by virtually eliminating planned and unplanned outages.

� Availability - No one wants their system to fail. Availability is a rather
subjective concept, particularly in an SOA. What defines available? Is it
availability to the end user? Availability of a particular infrastructure
component? Does poor performance equate to unavailable? How good is
good enough, with respect to availability?

IBM mainframes have gained a stellar reputation over time by achieving very
high levels of system and application availability, and by avoiding both
planned and unplanned outages. The IBM System z9 is often referred to as
having “five nines” availability (available 99.999% of the time, which
translates to around 5 minutes of down time per year). This high availability is
achieved through a variety of hardware and software features, including
hardware component sparing, clustering via Parallel Sysplex, and

Note: MIPS is only a very rough indicator of processor capacity. IBM has
always stated that MIPS is a poor indicator of performance because
different workloads consume processor resource at different rates. See
http://zjournalarchives.com/PDF/deitchoct.pdf for an interesting
article on the topic.

6 Details on Parallel Sysplex can be found at
http://www-03.ibm.com/servers/eserver/zseries/pso/sysover.html
 The Role of IBM System z in the Design of a Service-Oriented Architecture 13

http://zjournalarchives.com/PDF/deitchoct.pdf
http://www-03.ibm.com/servers/eserver/zseries/pso/sysover.html
http://www-03.ibm.com/servers/eserver/zseries/pso/sysover.html

long-distance clustering with Geographically Dispersed Parallel Sysplex™.7
Many distributed computing platforms claim to have mainframe-like features.
However, the features of single system, intra-datacenter and inter-datacenter
failover for System z are unique and unparalleled.

An SOA can deliver high availability by selection of high-availability run-time
platforms, but the reduction of potential points-of-failure can deliver the same
results. IBM System z helps facilitate the reduction of points-of-failure by
enabling the architect to place more components on the mainframe platform,
thereby helping to reduce the potential for failures on the network or on the
system itself. Failover on a Parallel Sysplex is usually painless and seamless
to the application.

� Performance - No one wants their transactions to be slow! Performance is
one of the key considerations that drives design decisions: What components
and software can deliver optimal performance? This is a much more
interesting question in an SOA than in a traditional, single-tier mainframe
application architecture since a multi-tier application has many more
components that may pose performance issues.

Several design principles may affect performance: proximity to data,
reduction of network hops, fast computing platforms, reduction or optimization
of I/O, and many others. The IBM System z delivers many of these
high-performance features. By collocating components on the same
mainframe or OS instance, or both, network activity can be reduced or
eliminated. Marshalling/de-marshalling of objects in an RMI-style
environment can be eliminated, thus removing the associated CPU and I/O
overhead. The mainframe I/O subsystem is generally much more scalable
and efficient than other platforms, helping to remove another potential
overhead bottleneck for transactions. Middleware components such as CICS,
IMS, and DB2 for z/OS have matured over decades and have been tuned to
sustain very high transaction rates. Even if Linux® on IBM System z is a part
of the architecture, proximity can be employed to improve performance by
using a Hipersocket8 connection between Linux and z/OS.

� Workload management - z/OS has long been known for its superior
operating system functionality in the management of multiple, heterogeneous
workloads. z/OS is designed to run—on a single OS instance—transaction
processing (IMS, CICS, WebSphere), database management (DB2, IMS,
ISV), batch, interactive work (TSO), systems management tools, portals,
e-mail (Domino®), and many other types of work, simultaneously! The
sophistication of the z/OS dispatching algorithms and the Workload Manager
(WLM) make it possible for all of this work to run at the same time, without

7 More details on Geographically Dispersed Parallel Sysplex (GDPS®) can be found at
http://www-03.ibm.com/servers/eserver/zseries/gdps/

8 For more information on Hipersockets:
http://www-03.ibm.com/servers/eserver/zseries/networking/hipersockets.html
14 The Role of IBM System z in the Design of a Service-Oriented Architecture

impacting other work running alongside it. Furthermore, when a Parallel
Sysplex is implemented, work can be dispatched in the same manner across
multiple z/OS instances in the sysplex. Hardware partitioning takes care of
virtualizing CPU, memory, and peripheral channels so they can be shared
across Logical Partitions (LPARs) on a single System z machine.

What does this mean? A z/OS system can be fully utilized to extract the full
value of the machine. A zSeries/System z system is designed to run at 100%
utilization, 24 hours a day with the workloads balanced in a way that
preserves adequate performance based upon business objectives specified
by the customer at the operating system level. This is true not only of z/OS,
but also across z/VM® and Linux on System z as well, since virtualization
happens at the hardware and the OS level.

The implications of mixed workloads and virtualization in SOA are interesting.
As we asserted in the Performance topic, collocation of data and transactions
is important for maintaining good levels of performance. Since z/OS can
support multiple heterogeneous workloads, this collocation works well and
should not pose performance problems. The various SOA infrastructure
components can be run alongside the services themselves and the data
being accessed by the services, helping to optimize performance and
minimize points of failure. Leveraging the underlying qualities of service of the
operating system by using the z/OS infrastructure components can help
optimize these interrelationships.

� Security - There are several areas of security that are of concern in an SOA:
authentication, authorization, and privacy. The mainframe security
infrastructure already exists to support all of these through a synergy of the
hardware and software. System z hardware contains a number of security
features that help make the platform inherently secure. For example, the
Storage Protect Key feature of the hardware and operating system makes it
virtually impossible for one user or address space to overwrite another. All
System z machines come with built-in, on-board encryption engines to
accelerate functions like SSL. z/OS ships with built-in Public Key
Infrastructure software so customers can build their own Certificate Authority.
The Resource Access Control Facility (RACF®) is the standard security
facility for z/OS; it supports authentication and authorization for all system
components.

� Ease of use - The mainframe has a “green screen” reputation. For years the
3270 terminal interface has been the standard way to gain interactive access
to mainframe applications. But, this is no longer the only way to access the
mainframe. New development tool options, such as WebSphere Developer
for zSeries, allow traditional application developers to build COBOL and PL/I
applications using a workstation interactive development environment (IDE).
Monitoring utilities such as the Tivoli® Omegamon suite provide an attractive
GUI for performance and availability monitoring. And if existing 3270 user
 The Role of IBM System z in the Design of a Service-Oriented Architecture 15

interfaces to applications are inadequate, the Host Access Transformation
Services (HATS) tool provides a very fast, simple way to wrap transactions
with an attractive Web face. (See “Improve” on page 30 for more information
about HATS).

The “New Face of z/OS”9 initiative is intended to provide friendlier ways to
access and administer the mainframe, and has already provided innovative
ways to present documentation and training materials to new z/OS users and
administrators.

� Flexibility - The mainframe will probably not be the only platform in an SOA
implementation. Placing components on the IBM System z does not restrict a
customer to that platform. There is a great deal of flexibility in placing
components where they best fit, based upon the aforementioned
characteristics. Use of standards in service creation and SOA infrastructure
help to provide flexibility in placement of the services themselves, and of the
components, such as a portal or an enterprise service bus.

Most major middleware from IBM is supported on the Windows/Linux/UNIX®
environment and on z/OS and Linux on IBM System z. And while there is
somewhat limited support for the IMS and CICS transaction management
APIs outside z/OS, there is the option to create transactions for both using
Java, and to access those transactions using Web services. These features
help to make the code more portable than it would be otherwise, and make it
possible to swap out native CICS or IMS Web services with other alternatives,
should that need arise.

� Politics - No one wants to admit that politics or ideology plays a role in
technical decisions, but it does. Everyone harbors some natural preferences–
customers, vendors, and consultants. And those preferences drive decisions.

Mainframes are associated with many myths and urban legends, such as “the
mainframe is too expensive,” “the mainframe is just an old box for running
batch jobs,” “we can’t find anyone to write COBOL,” and more. The key to
making an architectural decision for SOA with respect to the mainframe is: Go
beyond the myths and make decisions based upon business issues. Among the
questions you should be asking are: Where is the best platform to provide
optimal performance/security/reliability, based upon the SLA for this
application? What is the most cost-effective solution (looking beyond the cost
of acquisition to the true total cost of ownership)?

When decisions are backed with facts and good business cases, political
influences are reduced, although not eliminated.

9 Further information on the z/OS Ease of Use project may be found at:
http://www-03.ibm.com/servers/eserver/zseries/zos/eou/
16 The Role of IBM System z in the Design of a Service-Oriented Architecture

http://www-03.ibm.com/servers/eserver/zseries/zos/eou/
http://www-03.ibm.com/servers/eserver/zseries/zos/eou/

The three facets of IBM’s SOA on System z strategy
When examining the various parts of the IBM software portfolio and strategy,
three facets of the IBM software offerings stand out with respect to SOA:

� Deployment of new Web services to IBM transaction managers on System z

� Placement of SOA infrastructure components on System z

� Integration of existing z/OS transactions into the SOA as services

We now look at each of these in detail.

Deploying services to an IBM System z runtime server
One of the key strengths of the mainframe and z/OS is transaction processing.
The ability of the mainframe to process large amounts of data simultaneously,
with mixed workloads (thousands of transactions per second, as well as
database managers, security managers, Web serving, and so forth, all on the
same OS image), is well known in the IT industry. For more than 30 years, CICS
and IMS have been hosting mission-critical applications for virtually all of the
Fortune 500 companies and most major non-commercial enterprises. The
mainframe is designed to deliver the best quality of service (QoS) in the industry
for commercial transaction processing. Beginning in the late 1990s, Web
application serving also took off on the z/OS platform, with the emergence of the
WebSphere Application Server for z/OS. Now the mainframe is also a premier
platform for serving Java 2 Platform, Enterprise Edition (J2EE™) compliant
transactions.

Many services in an SOA are today’s business transactions. A service may be
akin to a subroutine, or it may be a consolidation of many different transactions
(as in a composite SOA transaction) into a single orchestrated business process.
The nature of services in SOA is the same as transactions – they are a key part
of a business transaction and should be hosted in a transaction manager that
provides a high level of QoS. Services that update critical business data have the
same requirements to run that transactions have, with the same atomicity,
consistency, isolation, and durability (ACID) attributes that any traditional
transaction must possess.

Java transaction management
Since a service often must be transactional, it makes sense for transaction
management middleware to host the service. In fact, most SOA implementations
outside the mainframe realm do use transaction managers for this purpose. The
WebSphere Application Server is IBM’s primary transaction management
 The Role of IBM System z in the Design of a Service-Oriented Architecture 17

container on distributed platforms for services written in the Java programming
language. WebSphere is the market leader for J2EE-compliant application
servers. On the mainframe, the WebSphere Application Server for z/OS provides
that function. If a company wishes to build J2EE-compliant services with a Web
services (SOAP) interface, WebSphere Application Server for z/OS fulfills that
role. WebSphere Application Server for z/OS provides the same J2EE functions
and APIs as distributed versions of WebSphere Application Server. All
WebSphere Application Server products are now written to a common code
base, and WebSphere Application Server for z/OS benefits from that. Over 90%
of the WebSphere Application Server code is common across platforms, and the
portion that is not common on z/OS actually provides the superior QoS for the
WebSphere Application Server for z/OS product. It allows WebSphere
Application Server for z/OS to exploit the underlying z/OS features, including:
System Access Facility (SAF), the security interface to z/OS; Resource Recovery
Services (RRS), the z/OS component that implements a two-phase syncpoint
coordinator; and Workload Manager for z/OS (WLM), the operating system
component that manages workloads on z/OS in a business-goal oriented
manner.

Traditional transaction management
The WebSphere Application Server is not the only transaction manager on z/OS
that can host services in an SOA. The two long-established transaction
managers, Information Management System (IMS) and Customer Information
Control System (CICS), are also able to serve transactions that cooperate
directly in a service-oriented environment. IMS and CICS both have over thirty
years of heritage in supporting high volume, high reliability transactional
applications, and that environment is perfect for services today that require those
same high qualities of service.

The traditional transaction managers support development in their native APIs,
using traditional compiled programming languages, including COBOL, PL/I, C,
and Assembler. However, both IMS and CICS also support the Java
programming language for development of transaction programs and services. In
IMS, this feature is known as the IMS JDBC Connector, although it can be used
for more than just Java Database Connectivity (JDBC) connections. More details
regarding this can be found at:

http://www-306.ibm.com/software/data/ims/imsjava/javapi.html

Applications can be written in the Java language that access IMS databases,
using the JDBC protocol. Also, those Java applications can perform other IMS
functions such as calling transaction commit and rollback services,
communicating with IMS message queues, and calling IMS XML DB services.

An analogous API exists in CICS; it is known as the CICS Java API, or JCICS.
18 The Role of IBM System z in the Design of a Service-Oriented Architecture

http://www-306.ibm.com/software/data/ims/imsjava/javapi.html

Like the IMS API, this feature allows a Java programmer to create an application
which accesses CICS functions using the Java language and the JCICS
interface. JCICS functionality encapsulates most CICS functions, such as the
traditional commit/rollback functions, CICS terminal control, file control, and other
key areas of CICS. For more information on JCICS, see:

http://www.redbooks.ibm.com/abstracts/sg245275.html?Open

There are features within IMS and CICS to enable SOAP and other Web
services protocols, independent of Java. In “Integrating existing mainframe
applications in an SOA” on page 27 we examine how IMS, CICS, and DB2
transactions can be enabled to support SOA and Web services. The Java
functions provide the ability for native transaction development inside these
traditional systems. This is important in expanding the potential skill pool for
developing transactions and services. Since many current college and university
graduates have skills in Java development, support for Java in the subsystems
helps to enlarge the potential CICS and IMS developer community. Skills in
heritage programming languages are no longer necessary for building
applications in these environments, enabling wider use of IMS and CICS in SOA.

Hosting the SOA infrastructure on System z
Service-oriented architecture, in its purest form, requires very little heavyweight
infrastructure because the nature of service orientation simply dictates a logical
structuring of application code that encapsulates business functions as services.
The definition provided in the Appendix makes no reference to any kind of
middleware or other supporting software. It simply refers to the standardization of
the service interface and neutrality of platform. However, in large SOA
implementations, it is not really practical to implement without tools to assist in
the connectivity and the orchestration of the interaction between services. Also,
other ancillary tools are necessary in most SOA implementations, including
development and test tools, user interface tools such as portals, and monitoring
and management utilities. This section describes why IBM System z is an ideal
platform for running these tools and middleware products that are commonly
used in the implementation of an SOA.

As organizations adopt SOA as the guiding architectural framework for
development of enterprise applications, the newly deployed services quickly
become business-critical components of the application infrastructure. This
implies that services must be treated as such, and should be deployed on a
robust, scalable, secure, high performance platform. Along with the services,
the SOA infrastructure middleware and tools should also reside on such a
platform. The mainframe, z/OS in particular, is the premier IBM computing
 The Role of IBM System z in the Design of a Service-Oriented Architecture 19

http://www.redbooks.ibm.com/abstracts/sg245275.html?Open

environment for providing ultra-high qualities of service for enterprise
applications.

What are the key SOA infrastructure components? The IBM SOA reference
architecture, shown in Figure 4, defines the necessary building blocks to support
an SOA environment.

Figure 4 The IBM SOA reference architecture

At the center of this reference architecture is the Enterprise Service Bus, or ESB.
Surrounding the ESB are the key services needed to support the SOA runtime
environment: interaction services, process services, information services,
partner services, business application services, and access services. In the
following sections we touch briefly on each of these to expand upon what they do
to support the SOA. Along with those core services, the surrounding boxes
describe the other functions that are necessary to support the services before,
during, and after their deployment.

Infrastructure services
At the base of the SOA is the platform for deployment. This includes the
deployment of hardware and software for the actual business services and
service infrastructure. A production environment usually requires the highest
degree of quality of service (QoS), and the infrastructure services component
provides the QoS. Services at this layer can include operating system functions,
security, and hardware functions. This requirement for a high level of service is
where System z plays such an important role. Considering the mission critical

A
pp

s
&

In

fo
 A

ss
et

s

Business Innovation & Optimization Services

D
ev

el
op

m
en

t
Se

rv
ic

es
Interaction Services Process Services Information Services

Partner Services Business App Services Access Services

Integrated
environment
for design

and creation
of solution

assets

Manage
and secure
services,

applications
&

resources

Facilitates better decision-making
with real-time business information

Enables collaboration
between people,

processes & information

Orchestrate and
automate business

processes

Manages diverse
data and content in a

unified manner

Connect with trading
partners

Build on a robust,
scaleable, and secure
services environment

Facilitates interactions
with existing information
and application assets

ESBFacilitates communication between services

IT
 S

er
vi

ce
M

an
ag

em
en

t

Infrastructure Services

Optimizes throughput,
availability and performance

A
pp

s
&

In

fo
 A

ss
et

s
A

pp
s

&

In
fo

 A
ss

et
s

A
pp

s
&

In

fo
 A

ss
et

s

Business Innovation & Optimization Services

D
ev

el
op

m
en

t
Se

rv
ic

es
Interaction Services Process Services Information Services

Partner Services Business App Services Access Services

Integrated
environment
for design

and creation
of solution

assets

Integrated
environment
for design

and creation
of solution

assets

Manage
and secure
services,

applications
&

resources

Manage
and secure
services,

applications
&

resources

Facilitates better decision-making
with real-time business information
Facilitates better decision-making
with real-time business information

Enables collaboration
between people,

processes & information

Enables collaboration
between people,

processes & information

Orchestrate and
automate business

processes

Orchestrate and
automate business

processes

Manages diverse
data and content in a

unified manner

Manages diverse
data and content in a

unified manner

Connect with trading
partners

Connect with trading
partners

Build on a robust,
scaleable, and secure
services environment

Build on a robust,
scaleable, and secure
services environment

Facilitates interactions
with existing information
and application assets

Facilitates interactions
with existing information
and application assets

ESBFacilitates communication between servicesESBESBFacilitates communication between servicesFacilitates communication between services

IT
 S

er
vi

ce
M

an
ag

em
en

t

Infrastructure Services

Optimizes throughput,
availability and performance

Optimizes throughput,
availability and performance
20 The Role of IBM System z in the Design of a Service-Oriented Architecture

nature of most production SOA and infrastructure implementations, the high
degree of scalability, reliability, and security of the mainframe is key to providing
robust infrastructure for the applications deployed in the SOA. For example, the
z/OS Security Server, including RACF, is considered the premier security
implementation on any platform10. Resource Recovery Services (RRS) provides
a native z/OS-based transaction syncpoint manager for support of two-phase
commit transactions that access multiple z/OS back-end systems.

Linux on System z also participates in this component. For customers that wish
to use Linux as their primary run-time operating system, most other components
of the SOA infrastructure can be hosted on a Linux on System z base and
provide some of the same QoS advantages that are gained from running on
z/OS.

Development services
The Model and Assemble phases of the SOA lifecycle make extensive use of the
development services portion of the architecture. Development services include
the tools that are used for the modeling and assembly of the business services.
Modeling consists of the modeling of the business process and the modeling of
the actual services and the business logic within them. The tools may be higher
level tools suitable for business analysts and architects, or lower level tools such
as those used for object-oriented development. The output from these tools
consists of artifacts such as UML models, actual application source code in a
variety of languages from Java to COBOL, and also markup languages including
XML and Business Process Execution Language (BPEL).11

From the System z perspective, most code development and modeling tools
don’t run on the mainframe, unless you count ISPF and TSO. However, if the
client wishes to build new services or reuse existing services already on the
mainframe, tooling such as the WebSphere Integration Developer or the
WebSphere Developer for zSeries are used to build and integrate services that
will be deployed to the mainframe. For modeling, the development services tools
available include WebSphere Business Modeler for modeling high-level business
processes, and the Rational Software Architect for creating UML models of
services and other components. The artifacts produced by these tools are
deployed to the run-time servers that host and orchestrate the execution of the
business services.

10 See http://www-03.ibm.com/servers/eserver/zseries/zos/racf/ychooseracf.html for details.
11 This is not intended to be a detailed description of technologies such as BPEL. For more

information, see http://www-128.ibm.com/developerworks/library/ specification/ws-bpel/
 The Role of IBM System z in the Design of a Service-Oriented Architecture 21

http://www-03.ibm.com/servers/eserver/zseries/zos/racf/ychooseracf.html

IT service management
The SOA infrastructure components consist primarily of middleware software.
Like traditional application architectures, an SOA implementation requires
adequate levels of monitoring and management of the middleware and
applications to ensure proper levels of system performance and security. The IT
service management component in the SOA reference architecture includes
those monitoring, management, and security tools. This is particularly important
in an SOA-based system because the infrastructure required to support an SOA
is significantly more complex than traditional mainframe transaction systems like
CICS, which are relatively self-contained. The SOA has more “moving parts,”
making the monitoring and management tasks more complex. For example, a
composite application in an SOA may span several computing platforms and
networks, and may require security and transactional contexts to be carried from
one server or operating system to another. Debugging errors and correcting
performance problems in such an environment requires good monitoring and
management tools.

Many tools in the Tivoli portfolio provide IT service management functionality. A
few examples: for end-to-end performance monitoring, IBM Tivoli Composite
Application Manager for SOA and the Tivoli Omegamon monitoring tools provide
comprehensive monitoring of all the components in a multi-tier application that
spans distributed and mainframe systems. For security across SOA components,
Tivoli Access Manager and Tivoli Identity Manager provide functionality to give
access control and authentication for SOA applications. IT service management
encompasses far more than is listed here. More information on IT service
management, including its relationship to the IT Infrastructure Library, can be
found at:

http://www-306.ibm.com/software/tivoli/features/it-serv-mgmt/index.html

Business innovation and optimization services
While the IT infrastructure is monitored and managed through the IT service
management components, what about the business services? An organization
can ensure proper levels of system and application performance, but what about
business performance? The business innovation and optimization services
component provides the functionality to effectively monitor and record what is
going on in the enterprise from a purely business perspective. How many
<widgets> were sold in the last hour/day/month/year? How long is it taking to
execute the process to service a customer? How many customers did a
particular team serve yesterday? This component provides the tools necessary
to monitor these kinds of business functions, report the results, and feed results
to the modeling tools (used in the development services component) so
processes can be modeled more accurately, simulations can be run, and
22 The Role of IBM System z in the Design of a Service-Oriented Architecture

http://www-306.ibm.com/software/tivoli/features/it-serv-mgmt/index.html
http://www-306.ibm.com/software/tivoli/features/it-serv-mgmt/index.html

modifications can be made to business processes to further improve the
execution of the business.

The WebSphere Business Monitor provides a monitor that watches business
services and accumulates and reports statistics about how the business
functions themselves are performing. Again, this is not a question such as “How
fast is this transaction executing?” Instead, it asks and answers “How many of
these business functions are we performing and how efficiently are we doing
them?”

Interaction services
The interaction services component provides the user interface to the SOA
application. A key principle of SOA is the abstraction of application layers. In this
case, the application’s user interface (UI) is exposed in a separate layer from the
business logic. Interaction services are commonly thought of as the portal layer,
since the UI for many SOA applications is provided by a portal, although this
component is not mandatory. The portal not only provides abstraction for the UI,
but it also provides a standard set of services to give the end-user a customized,
personalized user experience. With new standards such as Web Services for
Remote Portlets (WSRP)12, portal applications (portlets) can be more easily
bound to services to ease the integration between the UI and the business logic
service.

WebSphere Portal Server is the primary component for providing interaction
services. WebSphere Portal Server is available on either z/OS or Linux on
System z (as well as on distributed platforms). As mentioned previously, in an
SOA design, proximity to services, transactions, and data is a primary
architectural design principle. Placing a portal on-platform, close to the services
being invoked, reduces communication overhead and points of failure. However,
over the last few years it has become commonplace to put user interface
components, including fixed content HTTP servers and portal servers, on
distributed platforms. WebSphere Portal Server provides both options, as it is
platform agnostic.

Process services
A key attribute of an application in an SOA is that it is often a “composite
application,” meaning one that is constructed from several discrete services, all
connected via some sort of orchestration engine. The process services
components provide the orchestration and workflow services that are required to
meld multiple services into a single, composite business application. This

12 See the WSRP Oasis standard for further information: http://www.oasis-open.org/committees/
download.php/3343/oasis-200304-wsrp-specification-1.0.pdf
 The Role of IBM System z in the Design of a Service-Oriented Architecture 23

http://www.oasis-open.org/committees/download.php/3343/oasis-200304-wsrp-specification-1.0.pdf
http://www.oasis-open.org/committees/download.php/3343/oasis-200304-wsrp-specification-1.0.pdf

application may be a single transaction, or it may be a series of transactions
joined together into a business process.

The WebSphere Process Server (WPS), and to a lesser extent, the WebSphere
Message Broker (WMB), act as process choreography servers. WPS provides
orchestration of multiple services, driven by a “script” expressed in Business
Process Execution Language (BPEL). WPS is the “BPEL run time.” WMB
executes “message flows” triggered by inbound messages, and can invoke
multiple functions and services. WMB would be used to aggregate services into a
single, short running transaction, whereas WPS can be used to run short or long
running, workflow-oriented transactions.

z/OS and Linux on System z can be used to host the process services
components on the mainframe. Placement of these components on z/OS or
Linux on System z satisfies the architectural principle of proximity to data and
transactions.

Information services
Data is everywhere. Over decades, enterprises have collected vast amounts of
data in various repositories around the business. The information services
component provides SOA-based access to the data repositories through
techniques such as accessing stored procedures as Web services, providing
standardized interfaces to non-relational data repositories, and other access
mechanisms that return Information As A Service (IAAS). Since data or
information itself isn’t “executable,” infrastructure is required to expose that data
to applications that use SOA standards like SOAP.

Much of the critical heritage data in the enterprise lives on the mainframe. IBM
provides a number of System z-based tools to expose IAAS, including the DB2
UDB for z/OS engine itself, and WebSphere Information Integrator, Classic
Federation for z/OS (IICF). IICF provides an SQL interface to a number of
heritage data formats, such as VSAM, IMS DB, and third-party databases
including CA-Datacom, CA-IDMS, and Software AG’s Adabas.

Partner services
The partner services component is the interface to outside business partners.
Exposing enterprise services to the outside world and invoking external services
poses challenges to the integrity and security of the SOA. Services must be
exposed in a manner that maintains the security and scalability of the service,
since this makes the usage patterns for the service much less predictable and
controllable than if they were being accessed exclusively in house. Historically,
much of the partner interaction has been done through mechanisms such as
EDI.
24 The Role of IBM System z in the Design of a Service-Oriented Architecture

Partner services are provided on the mainframe via traditional channels such as
the WebSphere Data Interchange, for EDI translation. External interfaces, such
as those provided in partner services, are usually exposed via distributed
systems that are dedicated to these kinds of functions. The WebSphere Partner
Gateway products serve as the face to the outside world for services and can be
hosted on a variety of distributed servers, including Windows®, UNIX, and Linux.

Business application services
Newly developed services reside in business application services components.
These new services are generally deployed on servers such as IBM’s
WebSphere Application Server, which is a transaction manager for Java 2
Enterprise Edition (J2EE) applications. The WebSphere Application Server can
be used for full-function applications (presentation, business logic, and data
logic), or it can host business services that have the other functions abstracted to
other portions of the reference architecture (see Interaction services and
Information services).

WebSphere Application Server is available on both z/OS and Linux for System z
on the mainframe. The Linux on System z version is identical to the WebSphere
Application Server product that executes on distributed Windows and Linux
platforms. However, the WebSphere Application Server for z/OS is slightly
different. As mentioned in “Java transaction management” on page 17,
WebSphere Application Server on z/OS exploits the underlying z/OS operating
system functions, without sacrificing application portability, since there is a very
high level (well over 90%) of cross-platform product compatibility.

Access services
Of particular interest to most mainframe customers is the access services
component, which is the linkage to existing applications, both on and off the
mainframe. The functionality here provides the connectivity to applications on
IMS, CICS, SAP, PeopleSoft, and so forth, using various connector and adapter
technologies.

The third facet of IBM’s System z SOA strategy is integrating existing mainframe
applications, and the access services component is directly related to this topic;
detailed discussion is in the next section, “Enterprise service bus”.

Enterprise service bus
While the enterprise service bus (ESB) is the last topic being presented, it is
actually the critical item across all of the reference architecture. In Figure 4 on
page 20, it is apparent that the ESB is literally at the center of the SOA reference
 The Role of IBM System z in the Design of a Service-Oriented Architecture 25

architecture, and that it is important to any SOA implementation. The ESB
provides the abstraction layer between the service requester and service
provider. In older, non-SOA applications, linkages between applications are
frequently hard-coded and may be difficult to manage and maintain. To change
relationships between programs, application changes may be necessary as
business or technology evolves.

IBM’s definition of an enterprise service bus is that of an architectural construct
rather than a specific product. The ESB should support four primary functions:

� Routing of messages between services, removing the direct one to one
relationship between endpoints.

� Conversion of transport protocols between requester and service, for
example, SOAP to MQ, FTP to EXCI, and so forth.

� Transformation of message formats, for instance, transformation of XML to
binary.

� Handling of events from disparate sources. Events are received from the ESB
endpoints and correlated to trigger new events based upon decisions in the
ESB.

Any product or products that perform those requisite functions can be classified
as an ESB implementation.

The WebSphere Enterprise Service Bus and WebSphere Message Broker
products are the core ESB products in IBM’s portfolio. They provide the four
primary ESB functions, and when combined with the WebSphere Process Server
for orchestration and WebSphere MQ for connectivity, IBM clients have a very
robust infrastructure for an SOA. WebSphere Message Broker is available on
z/OS and Linux on System z, and as of March, 2006, WebSphere ESB became
available on Windows, Linux, and UNIX, and is planned on z/OS in June, 2006.

The System z platform is the ideal location to place an ESB. Most IBM clients
have many existing assets and applications on the mainframe and, considering
the principle of proximity to transactions and data, locating the ESB close to the
assets makes sense. In addition, the high reliability, availability, and security of
System z are key attributes for an ESB. The ESB is a critical component of the
architecture, routing service calls for all SOA transactions. It does not make
sense to put the most critical part of the architecture on a platform that does not
possess the highest quality of service characteristics.

A more comprehensive discussion of the components of the IBM SOA reference
architecture (also known as the Integration Reference Architecture) is found at:

http://www-128.ibm.com/developerworks/websphere/techjournal/0508_simmon
s/0508_simmons.html
26 The Role of IBM System z in the Design of a Service-Oriented Architecture

http://www-128.ibm.com/developerworks/websphere/techjournal/0508_simmons/0508_simmons.html
http://www-128.ibm.com/developerworks/websphere/techjournal/0508_simmons/0508_simmons.html
http://www-128.ibm.com/developerworks/websphere/techjournal/0508_simmons/0508_simmons.html
http://www-128.ibm.com/developerworks/websphere/techjournal/0508_simmons/0508_simmons.html

Integrating existing mainframe applications in an SOA
Most mainframe users have a keen interest in the method used to integrate
existing applications into an SOA. This generally means that they intend to
expose existing transactions or data via a service interface. Some IBM
customers have been following SOA design principles for a long time but have
not used current standards such as SOAP in their implementations.

Exposing applications as services is the primary goal of the bottom-up SOA
design model. As mentioned previously, this approach has one inherent
drawback: the existing applications may not have the granularity that matches
the business service model developed through processes such as CBM. This
can sometimes be corrected by means such as service aggregation, wrapping
existing applications with a J2EE veneer, or other similar methods.

But if there are drawbacks to the bottom-up style, why pursue that rather than
simply rewriting existing applications? A common concern is that existing
applications are often written in supposedly “dead” languages like COBOL or
PL/I, and clients should be eliminating them. However, many studies have shown
that significant savings may be realized by reusing existing code rather than
rewriting. An often-quoted statistic states that it is up to five times more
expensive to rewrite an application than to reuse existing code to achieve the
same functionality. Furthermore, with an estimated 200-250 billion lines of
COBOL code in existence today (and no sign of that number declining) and
potentially several billion new lines of COBOL being developed every year,
programmers will be maintaining and developing new code far into the future.
Reuse becomes a very attractive strategy to harvest existing code assets and
save money during an SOA implementation.

IBM’s enterprise transformation strategy is a path to follow that will assist in
integrating mainframe applications in SOA.

Enterprise transformation strategy: improve, adapt, innovate
As discussed previously, SOA focuses on the concept of reusability, which
means that application components should be built in a way that facilitates reuse
and avoids re-creation of components from scratch when existing assets could
satisfy the requirements. The combination of existing data and applications on
the mainframe and the concept of reuse through transformation leads to a fast
start-up into the SOA model. This is the concept of enterprise transformation.

Enterprise transformation and application modernization are critical to an
enterprise’s application development strategy since the high cost and risk of
rewriting existing applications is often an inhibitor. If a company could reuse
existing well-tuned and proven code that has been implementing business
 The Role of IBM System z in the Design of a Service-Oriented Architecture 27

function satisfactorily for years, savings can be significant. Aside from the high
cost and risk of migration of these applications, performance, reliability and
scalability requirements often make the current environment the best choice.
When considering reuse of existing assets, developers experienced in traditional
languages must be considered an important part of the overall e-business
development team. As availability of these development skills continues to
tighten in the marketplace, it becomes more critical to create a development
environment where existing assets can be maintained and extended using
current development approaches and available skills.

SOA has particular importance in the enterprise transformation practice because
it has the power to unlock existing applications and data and expose them as
services, which provides extended value to the business. Considering the
investments that companies have made in developing applications and the
importance those applications have to the core business, service enablement
using standards-based interfaces helps to extend the life cycle of those
applications and leverages existing investments.

The move towards SOA is not going to happen overnight. It is not an appliance to
be installed on top of an existing infrastructure, thus making it SOA ready. The
implementation process is a set of granular changes applied to the existing
architecture and the exploitation of new technologies that will gradually make the
environment SOA-ready.

IBM’s enterprise transformation strategy supports this gradual, granular process
that will help to enable existing assets as services. It defines three solution
frameworks, sometimes referred to as styles of transformation, to help
customers convert IT assets from siloed applications to shared resources, and
then to interdependent software components and services.

The strategic goal is to innovate by enabling the creation of new software
components that have strategic business value and support an on-demand
environment. But that takes time, effort, and money. So, more immediate
(tactical) solutions are required as well. For example, the ability to transform
siloed applications to shared resources can enable better ways of interacting
with customers, partners, and suppliers. Some changes to applications will
require immediate solutions that can drive business value, but may not be as
flexible in adapting to changes in the business process. The three transformation
styles - Improve, Adapt, and Innovate - address both tactical and strategic
service enablement solutions.

While IBM identifies these three approaches for modernizing a client’s
enterprise, an IT organization will likely not use just one style. Businesses often
choose multiple styles of modernization for different types of solutions, so the
deployment scenario is determined case by case.
28 The Role of IBM System z in the Design of a Service-Oriented Architecture

The discovery phase
A key question, therefore, is: “Where do we start?” A good place to start is in
what is known as the discovery phase. Many existing applications lack
documentation, or the documentation is out of date, or it is in someone’s head
and they have left the company. In such situations, before modernization
activities begin, it is necessary to find out the location of the application code,
what it does, which applications and components it interacts with, and so forth.
This is the discovery phase of the modernization process, and IBM has specific
tools that support the activities in this phase. These discovery tools are designed
to assist in documenting relationships among applications and sub-routines and
creating visual representations that show asset relationships effectively and
efficiently. These tools are intended to extract components and associated data
items from existing code, simplifying the difficult and time-consuming task of
building components manually. They can also perform impact analysis to
understand data movement and application interaction during run time and
record the results for use in future application development and test. Both static
(code-based) and dynamic (run time-based) analyses are supported. The IBM
discovery tools are:

� WebSphere Studio Asset Analyzer (WSAA) is a static analysis tool designed
to assist in maintaining and extending existing assets through impact
analysis, connector builder assistance, and graphical application
understanding. WSAA is designed to help enterprise customers on their
journey to e-business by providing knowledge about their static environment
(finding and reusing application code and the components that connect that
code). It also helps them to understand their dynamic environment
(understanding what code is executing in run-time environments).

� CICS Interdependency Analyzer is a dynamic run time analysis tool that gives
developers and operations staff information about CICS applications and their
components. It is used by developers when trying to deconstruct and
decompose an application into services and by operations teams in the
analysis and movement of workloads across a distributed CICS environment.

� Asset Transformation Workbench is a workstation-based tool that is suitable
for application re engineering, code extraction, and Web service generation. It
supports traditional programming languages, such as COBOL, as well as
some 4GL languages, like Natural.

Once a client understands existing business assets and the impact of changes to
those assets, IBM’s development tools can be used to more effectively develop
new e-business applications. These tools support extending existing applications
to e-business without modifying existing code. This rapid development and
deployment capability enables quick return on investment while more substantial
development projects are under way that might involve creation of a more
complete SOA. WebSphere development tools provide support for J2EE
 The Role of IBM System z in the Design of a Service-Oriented Architecture 29

development and traditional language development, and they also support a
mixed workload environment. Mixed workloads include the J2EE and Java
support provided by WebSphere, and the back-end business applications written
with COBOL and PL/I and running in CICS and IMS.

Transformation styles examined
As stated earlier, the three transformation styles of improve, adapt, and innovate
cover both tactical and strategic service-enablement solutions.This section
presents a more detailed look at these styles.

Improve
The improve style is characterized by the use of new technologies to Web- or
service-enable applications at the user interface level, without changing those
applications and with minor changes or additions to the middleware
infrastructure. Improve is often the first step towards SOA, where clients simply
enable existing applications with SOAP or MQ protocols to facilitate integration.
This style concentrates on transforming the user experience by providing a more
sophisticated and productive user interface for applications.

With Improve, companies can quickly enter the SOA model and achieve a rapid
return on investment by extending existing applications using SOA standards
(such as SOAP and XML), but without delving into all facets of SOA. This is a
tactical approach intended to help clients achieve fast results with low
investment, which leverages existing skills while preparing the infrastructure and
honing the users’ skills for more complex scenarios. Referring back to the three
SOA development and design approaches, this follows a bottom-up approach to
service enablement.

Product solutions that support the improve style
� IBM’s Host Access Transformation Services (HATS) product is a common

implementation tool for this phase. HATS has the ability to service-enable a
3270 or 5250 application by exposing it via the SOAP protocol, in addition to
its traditional function of Web-enablement of host applications. HATS
intercepts the application’s data stream and converts it into either HTML or
Web services formats. It is a WebSphere application and can be deployed on
multiple server platforms, including z/OS and Linux on System z. To create
HATS applications, the HATS Studio, an Eclipse-based application that runs
30 The Role of IBM System z in the Design of a Service-Oriented Architecture

within the Rational Application Developer family, is used to walk through the
existing host applications and develop the Web or service interface. The
HATS architecture is shown in Figure 5.

Figure 5 The HATS architecture

� The CICS Service Flow Runtime (CICS SFR), a new feature of CICS
Transaction Server Version 3.1, provides a similar function to HATS, but it is
self-contained within the CICS server. While CICS SFR does not provide the
Web-enablement that HATS does, it does provide the choreography of CICS
terminal transactions and can expose a single transaction or multiple
orchestrated transactions as a service or services. The CICS Service Flow
Modeler, a feature of the WebSphere Developer for zSeries, is the tool used
to define the flows and service interfaces exposed via the CICS SFR.

� The WebSphere Portal Server. Another approach that provides an
improve-type solution at the user interface is a portal. Portals can provide a
new face to applications that were previously difficult to use or not integrated
with others. In addition, new standards for SOA integration in portals, such as
Web Services for Remote Portlets (WSRP), make it easier to include a portal
in an SOA implementation. The WebSphere Portal Server is IBM’s solution
for providing a unified user interface for integration of SOA applications “at the
glass.”

Adapt
Adapt is a further step in sophistication beyond improve. It goes a bit farther in
terms of application transformation and enhancement of the existing
infrastructure. Adapt comes closer to full SOA architecture, but requires more
investment in business componentization and in IT services. The result is more
flexibility to the business and the value this represents.

Adapting existing connectivity enables broader application integration and
provides the ability to incorporate core applications into more modern application

CICS TS

3270
Flow

Transaction
Web
client

WebSphere App Server

Web HATS HOD
Connector

TN3270

HATS
Studio

DBP

IMS TM

B DIMS
TransactionP

3270
Flow

CICS TS

3270
Flow

Transaction
Web
client

WebSphere App Server

Web HATS HOD
Connector

TN3270

HATS
Studio

DBBPP

IMS TM

B DIMS
TransactionP

3270
Flow
 The Role of IBM System z in the Design of a Service-Oriented Architecture 31

flows. This allows customers to leverage existing applications to develop better
customer, partner, and supplier relationships. But the connection of many
different existing applications to new applications and new architectures poses a
compatibility problem: data formats, communication protocols, and existing
programs frequently cannot communicate without some sort of intermediary. So,
the requirement emerges for an intermediate broker to be used for data
mediation, protocol transformation, messages routing, and so forth. This
functionality is where the requirement for an enterprise service bus (ESB) usually
emerges. The ESB is not a direct component of the adapt transformation style,
but it does serve as the hub to connect the applications, transactions, and
services that are transformed using the adapt techniques.

Other elements of the SOA reference architecture are also involved in this
phase, including information and access services. The service management
infrastructure is often planned and designed during this phase.

Some examples are: a CICS application consumes services provided by a
Microsoft® .NET application, where applications are to be SOAP-enabled and
connected via the ESB for data transformation; an IMS transaction exposed as a
service to be invoked by a WebSphere application through use of the Java 2
Connectivity (J2C) protocol; a DB2 table to be accessed via a Web service
request as part of a composite business application.

There are many technical ways to implement the adapt style. Some of the
common technologies used are:

� Native SOAP access to transactions or data - CICS provides a native SOAP
interface in CICS Transaction Server V2 and V3 via the SOAP for CICS (V2)
or CICS Web Services (V3) features. With these features, CICS can be a
Web services provider or consumer. IMS Version 9 now includes the IMS
SOAP Gateway,13 which exposes IMS transactions to SOAP-based Web
services consumers, but IMS cannot itself act as a Web service consumer - it
is only a provider. Also, DB2 can expose its data to external SOAP requesters
using the DB2 WORF14 feature.

� Java 2 Connectivity (J2C) - As of IMS Version 9, the IMS Connect feature is
now included with IMS Transaction Manager for providing direct invocation of
IMS transactions from Java 2 applications. CICS transactions are accessed
with J2C using the CICS Transaction Gateway, which serves as the
intermediary between J2C and the CICS transaction.

� Messaging - WebSphere MQ and Java Messaging Services (JMS) can also
be used to invoke transactions and access data from existing sources. Both
IMS and CICS have bridge programs that permit a messaging-enabled caller
to place a message on a queue that triggers the invocation of an existing IMS

13 See http://www-306.ibm.com/software/data/ims/soap/ for more information on this topic.
14 http://www-128.ibm.com/developerworks/db2/zones/webservices/worf/
32 The Role of IBM System z in the Design of a Service-Oriented Architecture

http://www-306.ibm.com/software/data/ims/soap/
http://www-128.ibm.com/developerworks/db2/zones/webservices/worf/

or CICS transaction. And DB2 can interact with the WebSphere MQ system
via user-defined functions invoked through SQL.15 Figure 6 illustrates how
MQ or JMS can be used to access existing transactions.

Figure 6 Messaging access to CICS transactions

� Information integration - A common requirement is to adapt connectivity to
existing information sources. There are a number of federated data tools on
the market. IBM provides the WebSphere Information Integrator Classic
Federation for z/OS (IICF) product to build a consolidated view of disparate
data sources. IICF provides a consolidated SQL interface to many different
relational and non-relational data stores on z/OS, including DB2, VSAM, IMS
DB, and several non-IBM database systems, including CA Datacom, CA
IDMS, and Software AG’s Adabas.

Product solutions that support the adapt style
– CICS Transaction Gateway

– IMS Connect (and equivalent functionality included in IMS Version 9)

– WebSphere Adapters

– WebSphere MQ

– WebSphere Information Integrator Classic Federation for z/OS

– SOAP for CICS / CICS Web Services feature

– WebSphere ESB

– WebSphere Message Broker

Innovate
The innovate style of modernization is characterized by the creation of new
applications that are fully compliant with the SOA model. Accordingly, with
reference to SOA strategic approaches, this style would be mostly top-down,
where business processes are modeled using a modeling tool such as the

15 See http://www-128.ibm.com/developerworks/db2/library/techarticle/wolfson/0108wolfson.html for
more details.
 The Role of IBM System z in the Design of a Service-Oriented Architecture 33

http://www-128.ibm.com/developerworks/db2/library/techarticle/wolfson/0108wolfson.html
http://www-128.ibm.com/developerworks/db2/library/techarticle/wolfson/0108wolfson.html

WebSphere Business Modeler. Deployed applications would invoke a service or
services (applications) that make up the composite business applications or
processes. This may require that a totally new service or application be
developed or it may involve the transformation and reuse of an existing
application to meet the business requirements.

Transforming the application structure and architecture requires the highest
degree of investment, but pays off with the greatest business value and process
flexibility. In this Innovate style of transformation, core applications are
restructured to provide the greatest amount of business benefit. This allows
customers to more rapidly innovate and change their business processes using
existing IT applications to create new and differentiated market solutions.

In order to innovate, tools are required to design and deploy new applications,
and a server is needed to orchestrate and direct the newly created business
processes. The WebSphere Process Server orchestrates the invocation of
multiple services in the SOA by taking a process model that is represented in
Business Process Execution Language (BPEL) and executing that model by
directing the invocation of the various services in the composite application
(flow). The flows are built using the WebSphere Business Modeler for high-level
process modeling, and WebSphere Integration Developer for lower-level IT
implementation of the process.

Another significant value that SOA brings to companies is an architecture that is
programming language neutral, thereby allowing companies to continue to
develop new applications using traditional languages, which leverages existing
skills, tools, and investments. This is important to mainframe shops since senior
application developers can continue to use preferred languages and tools, which
provides improvements in productivity and economics.

However, there is room for improvement in productivity beyond the traditional
tools and techniques. New development tools can be used to further improve the
productivity of traditional language developers. The WebSphere Developer for
zSeries (WDz) gives COBOL, PL/I and System z assembler developers an
integrated development environment (IDE) for building host applications and
improves productivity through more efficient editing, interactive debug tools, and
helpers for developers who are not completely familiar with traditional language
constructs. WDz can also be used for building newer Java applications, using the
same familiar (Eclipse-based) IDE. WDz also provides the ability to build
applications using the Enterprise Generation Language (EGL), which is a
4GL-style language that simplifies the coding task and can generate application
artifacts in either Java or COBOL.

The discovery and code harvest tools described previously are also pertinent to
the innovate style. These tools are used to identify existing code that can be
reused when constructing new services and composite applications. The
34 The Role of IBM System z in the Design of a Service-Oriented Architecture

WebSphere Studio Asset Analyzer and CICS Interdependency Analyzer can
provide much assistance in identifying existing assets that can be extracted and
reused in new SOA-compliant applications and services.

Product solutions that support the innovate style
– WebSphere Developer for zSeries

– WebSphere Business Modeler

– WebSphere Integration Developer

– WebSphere Studio Asset Analyzer

– CICS Interdependency Analyzer

The SOA maturity model and System z
After examining the principles of SOA and the technologies that are involved in
its implementation, one might be tempted to believe that SOA is too complicated,
and decide to stick with existing architecture and infrastructure. However, it
would be a mistake to assume that an organization must leap directly to a
full-scale SOA implementation all at once. IT organizations are at many different
levels of maturity, and each will take a different path to a fully realized
service-oriented architecture.

IBM has identified various “entry points” for building an SOA. Figure 7 on
page 36 shows these entry points and how they involve increasing complexity of
implementation, as well as increasing business value, from bottom to top. A
client can choose to jump in at any of the entry points.
 The Role of IBM System z in the Design of a Service-Oriented Architecture 35

Figure 7 SOA entry points

IBM is not the only company or organization to identify differing levels of maturity
in SOA implementation. CBDi, a consulting firm in the UK that specializes in SOA
and Web services, has also identified a four-step path to SOA maturity16:

� Phase 1: Early Learning - Exploratory activities center primarily on application
integration. Service deployments are low-risk and primarily internal to the
organization.

� Phase 2: Integration - Begin to consider business drivers in the SOA
implementation. Still internally-focused, but concentrated more on business
processes than in the Early Learning phase.

� Phase 3: Re engineering - Move to the enterprise level in scope. Focus on
management, measurement, and monitoring of services. Centered on
“business product” thinking, where the service becomes the business
product.

� Phase 4: Maturity - Ubiquitous, federated services. Many providers of the
services, both within and outside the enterprise.

System z customers who are working on a bottom-up approach to SOA are often
very interested in the technical aspects of SOA. Their maturity can be accurately
defined by other more IT-focused maturity characterizations. David Linthicum, an
IT consultant and author of many books on Enterprise Application Integration
and SOA, wrote an article that was published in the SOA WebServices Journal in

16 Source: http://roadmap.cbdiforum.com/reports/maturity/maturity2.php
36 The Role of IBM System z in the Design of a Service-Oriented Architecture

late 200417 that does an excellent job of describing the various levels of maturity
that we often see in our zSeries SOA engagements. Linthicum categorizes the
levels of maturity as follows:

� Level 0 SOA: Sends SOAP messages from system to system

– Leverages Web services technology for integration

– No real notion of services

� Level 1 SOA: Level 0 + messaging/queuing system

– A rudimentary ESB that moves information via queues

– Still no real notion of services, although the messaging interface
resembles a service interface

� Level 2 SOA: Level 1 + transformation and routing

– A more complete ESB that enables a higher degree of abstraction
between services

� Level 3 SOA: Level 2 + a common directory service

– An ESB-centric architecture that enables dynamic binding of service
interactions through a business service directory

– Often includes directory standards such as LDAP or UDDI

� Level 4 SOA: Level 3 + brokering and managing true services

– More dynamic connectivity between services, enabled by the directory
service

– Also includes more robust management of the service
architecture/infrastructure - service discovery, access, and management

� Level 5 SOA: Level 4 + process orchestration

– Enables the creation of composite applications (meta-applications) to
solve business problems

– Addresses problems of persistence and user interaction; should provide a
mechanism for services to interact with users via portals

This progression represents many of the System z customers that are involved
with building an SOA. For mainframe customers, we often simplify Linthicum’s
model with the following maturity model:

1. Service enablement: Use integration technologies to expose mainframe
transactions as services.

17 Source: Reprinted by permission of the publisher, from
http://webservices.sys-con.com/read/47277.htm , Published Dec. 2, 2004

Copyright © 2006 SYS-CON Media. All Rights Reserved.
 The Role of IBM System z in the Design of a Service-Oriented Architecture 37

http://webservices.sys-con.com/read/47277.htm

2. Service integration: Use ESB technologies to provide the integration
abstraction layer that links the services. Tools most often used at this stage
include WebSphere Message Broker, WebSphere ESB, and the underlying
transports. This step often includes information (data) integration and would
bring in tools such as the WebSphere Information Integrator Classic
Federation for z/OS.

3. Process integration: Use process choreography/orchestration tools and
technologies to link services into composite applications and business
processes. Tools often used here are WebSphere Process Server and
WebSphere Portal Server for user interaction.

The notion of a maturity model for SOA provides a useful framework for
assessing the sophistication of an SOA implementation. Clients should realize
that it is not necessary to start at any particular point in the progression. IBM’s
SOA Entry Points approach does a good job of demonstrating this - an enterprise
can enter at any points in the hierarchy and expand their SOA implementation
over time. The simplification of the Linthicum Levels model provides a very basic
way to explain the major inflection points in an SOA infrastructure
implementation.

Conclusion
We have examined the basics of SOA and how a customer might approach
placing services on System z, hosting SOA infrastructure on System z, and
integrating existing mainframe applications through Enterprise Transformation.
System z and z/OS bring the following key strengths to an SOA implementation:

� Security

� Reliability

� Scalability

� Reduced cost of ownership

� Reuse of assets

The vast majority of IBM’s software portfolio is fully supported on System z, and
takes advantage of the key strengths identified here. Figure 8 shows how the
products on System z fit into the SOA reference architecture.
38 The Role of IBM System z in the Design of a Service-Oriented Architecture

Figure 8 SOA reference architecture with System z products

What is the next step? Some clients are already well along the SOA maturity
path, while others are just getting started. Some clients have mainframe
organizations that are being asked to expose existing applications as services as
part of a larger IT effort. IBM provides many different service offerings to help our
clients in their path towards SOA. A System z Infrastructure Architecture
Workshop (zIAW) is an easy way for our clients to gain a better understanding of
IBM’s offerings for SOA on the mainframe, and in particular how these offerings
would benefit a specific application of their choosing. Contact your local System
z Software Sales Representative for further information on holding a zIAW.
 The Role of IBM System z in the Design of a Service-Oriented Architecture 39

Appendix: An overview of service-oriented architecture
In 2002, IBM CEO Sam Palmisano began to articulate a new vision of how
business and IT could be more dynamic and responsive. This model, now
referred to as “On Demand Business,” has been discussed in many contexts,
including “utility computing,” “autonomic computing,” and others. The IBM On
demand glossary defines “on demand business” as:

A company whose business processes—integrated end-to-end across the
company and with key partners, suppliers and customers—can respond with
flexibility and speed to any customer demand, market opportunity or external
threat. An on demand business has four key attributes: it is responsive, variable,
focused and resilient. 18

The key words in that definition are “integrated,” “flexibility,” and “speed.” These
words describe what makes service-oriented architecture (SOA) relevant to the
IBM On Demand strategy. On demand is about a tighter affinity between the
interests of the business and how IT supports those interests. In Figure 9 that
linkage is represented as “Business and IT processes.” It is important for IT to
adopt an architectural approach that facilitates that synergy between business
and IT. For many enterprises, SOA is that approach.

Figure 9 The on demand relationship between business and IT

Service-oriented architecture is a term that has many definitions, and fortunately,
all are relatively similar. There is general acceptance in the IT industry about the

18 Source: IBM On demand glossary
http://www-306.ibm.com/e-business/ondemand/us/toolkit/glossary_o.shtml
40 The Role of IBM System z in the Design of a Service-Oriented Architecture

nature of SOA, but there is not a consensus about some of the underlying
technologies within SOA.

For the purposes of this paper, SOA is defined by the IBM developerWorks Web
site (http://www-128.ibm.com/developerworks/webservices/newto/) as follows:

Service-Oriented Architecture (SOA) is a component model that inter-relates an
application’s different functional units, called services, through well-defined
interfaces and contracts between these services. The interface is defined in a
neutral manner that should be independent of the hardware platform, the
operating system, and the programming language in which the service is
implemented. This allows services, built on a variety of such systems, to interact
with each other in a uniform and universal manner.

This is a good technical definition, but the same article makes a more relevant
statement about SOA with respect to on demand business:

The need for loosely-coupled systems rose from the need for business
applications to become more agile based upon the needs of the business to
adapt to its changing environment such as changing policies, business strengths,
business focus, partnerships, industry standing, and other business-related
factors that influence the very nature of the business. You can refer to a business
that can act flexibly in relation to its environment an on demand business, where
change occurs in how things are done or work as necessary on demand.

This quote illustrates the critical nature of the relationship between SOA and on
demand – SOA provides an architectural foundation for IT applications that
provides the “flexibility” and “speed” that are referred to in the definition of on
demand business. For businesses that are seeking to become on demand
businesses, the SOA approach for application development and deployment
makes sense. An application design/development model that allows architects
and developers to design and build composite applications from assembled and
orchestrated services makes faster and more flexible development possible.
Changes to application business rules can be accelerated, and the reuse of
application resources is improved dramatically.
 The Role of IBM System z in the Design of a Service-Oriented Architecture 41

http://www-128.ibm.com/developerworks/webservices/newto/
http://www-128.ibm.com/developerworks/webservices/newto/

The team that wrote this Redpaper
This Redpaper was produced by a team of specialists from around the world
working with the International Technical Support Organization, Poughkeepsie
Center.

Bill Seubert is a Certified zSeries Software Architect in the United States. He
has over 20 years of experience in mainframe and distributed computing. He
holds a Bachelor of Science degree in Computer Science from the University of
Missouri, Columbia. His areas of expertise include z/OS, WebSphere integration
software, and software architecture. Bill speaks frequently to IBM clients on the
topics of zSeries basics, integration architecture and SOA, and enterprise
modernization. He also works with IBM’s Academic Initiative in building university
curricula for students new to the mainframe, and he has presented on how IBM is
helping revitalize the mainframe workforce. Bill is based in St. Louis, Missouri but
works with clients across the Americas.

Daniel Raisch is a Senior Certified IT Architect. He has 25 years of experience
in IT, mostly related to the mainframe. He holds a degree in Mathematics and
Computer Science from Universidade Federal do Rio de Janeiro, Brazil. Daniel
has worked extensively with customers extending core applications to new
technologies and has written several redbooks. He can be reached by e-mail at
raisch@br.ibm.com.

Thanks to the following people for their contributions to this project:

Lydia Parziale
International Technical Support Organization, Poughkeepsie Center

Patti Schatz, Timothy Sipples, Mike Benson, Bob Liburdi
IBM Sales and Distribution, Software Sales
42 The Role of IBM System z in the Design of a Service-Oriented Architecture

© Copyright International Business Machines Corporation 2006. All rights reserved.

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user’s
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by
GSA ADP Schedule Contract with IBM Corp. 43

This document created or updated on July 20, 2006.

Send us your comments in one of the following ways:
� Use the online Contact us review redbook form found at:

ibm.com/redbooks
� Send your comments in an email to:

redbook@us.ibm.com
� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099, 2455 South Road
Poughkeepsie, NY 12601-5400 U.S.A.

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

Eserver®
Eserver®
Redbooks (logo) ™
developerWorks®
z/OS®
z/VM®
zSeries®
z9™
CICS®
Domino®

DB2 Universal Database™
DB2®
Geographically Dispersed

Parallel Sysplex™
GDPS®
IBM®
IMS™
MQSeries®
Parallel Sysplex®
Rational Unified Process®

Rational®
Redbooks™
RACF®
System z™
System z9™
System/360™
Tivoli®
VisualAge®
WebSphere®

The following terms are trademarks of other companies:

Java, JDBC, J2EE, and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United
States, other countries, or both.

Microsoft, Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States,
other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

®

44 Service Oriented Architecture and the IBM System z

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.redbooks.ibm.com/contacts.html

	The Role of IBM System z in the Design of a Service-Oriented Architecture
	Introduction
	IBM SOA strategy and the SOA lifecycle
	More on reuse and governance
	Choosing a development and design approach
	Service-oriented architecture on IBM System z
	Standards in SOA
	Design considerations for an SOA with IBM System z
	The three facets of IBM’s SOA on System z strategy
	Deploying services to an IBM System z runtime server
	Java transaction management
	Traditional transaction management

	Hosting the SOA infrastructure on System z
	Infrastructure services
	Development services
	IT service management
	Business innovation and optimization services
	Interaction services
	Process services
	Information services
	Partner services
	Business application services
	Access services
	Enterprise service bus

	Integrating existing mainframe applications in an SOA
	Enterprise transformation strategy: improve, adapt, innovate
	The discovery phase

	Transformation styles examined
	Improve
	Adapt
	Innovate

	The SOA maturity model and System z
	Conclusion
	Appendix: An overview of service-oriented architecture
	The team that wrote this Redpaper

	Notices
	Trademarks

