
Agile Test Management Practices with IBM Rational
Quality Manager
Simon Norrington
IBM Rational Quality Management

Agenda
• What is agile software development?

• How it differs from a traditional approach

• Common terms and definitions

• Testing in agile

• Test Driven Development

• Concurrent testing

• Rational

• Rational Quality Manager

• Rational Team Concert

• Questions

What is agile software development?

Agile software development is -

 A group of software development methodologies based on

iterative and incremental development.

Where requirements and solutions evolve through

collaboration between self-organizing cross-functional

teams.

It promotes adaptive planning, evolutionary development and

delivery; time boxed iterative approach and encourages

rapid and flexible response to change.

It is a conceptual framework that promotes foreseen

interactions throughout the development cycle.

The Agile Manifesto introduced the term in 2001.

agilemanifesto.org

How is Agile development different from traditional
methods?

Agile Traditional

Iterative cycles One long waterfall

Fewer people Lots of people

Whole team Many fixed teams

User stories Use cases

Varying scope and requirements Rigid scope and requirements

Time boxing, fixed iteration end
dates

Delayed milestones, missed
deadlines

Lots of customer/user involvement Minimal user involvement

Test continuously Test at the end

Terms and definitions used in this session

Scrum:

• One specific way to do agile development, it is a concept and practice functioning as project management utilizing
whole teams, sprints and other agile concepts.

Whole team:

• A cross functional group which fulfills the roles for development, but with flexibility where a given person may fill
different roles at different times.

Iteration:

• The fundamental time period used in agile, it is a fixed duration period in which most development activities are
based on, and an iteration always produces working code.

Sprint:

• A particular type of iteration that is used in scrum. Typically a few weeks, a set of requirements are chosen to be
implemented during the sprint.

Done:

• Better known as “DONE done”, this refers to the completeness of code produced by every single iteration/sprint.
Done done means it has been fully implemented, tested, and accepted by the customer.

Terms and definitions used in this session

Backlog:

• The requirements for what is being produced (product backlog). A set of requirements are selected from
the backlog for each iteration or sprint (sprint backlog).

Burndown:

• The work completed and remaining for either an iteration or a release.

Release:

• Either a final, or in some cases incremental, build which is the “finish line” for an agile project. A release
also refers to the time period spanning multiple iterations.

Build:

• An executable piece of software. An iteration/sprint will always result in a build.

Story:

• Also called a user story, a description from a user’s point of view of what they want to do, which is used to
come up with requirements.

An example

Challenges with agile and agile testing

 Agile does not mean reckless or “wild” efforts

•Extensive and efficient collaboration is required

• Email communication is error prone and not enough

•Planning is agile and continuous

• Document-based plans alone are ineffective

•Many tests have to be created and executed quickly

• Some, if not a lot, of test automation is required

•Tracking and communicating test results is critical

• Spreadsheets are possible but not efficient

An over-simplified example of agile development

customer
requirements

So where does the testing fit in?

Iteration

1

2 weeks

build

Iteration

2

build

Iteration

3

build

Iteration

…

build

Iteration

n

release

D
O

N
E

d

o
n

e

Traditional Testing

Only the Test team is responsibility
for delivering a quality application.

Traditional test team is comprised of

• Quality Manager

• Test Lead

• Tester

Most of the testing activities start
towards the end of development

Agile Testing
The entire team is responsible for delivering a quality application

• Not a separate activity that only “testers” do

• Test activities are part of work plan for team

Testing is an integrated activity on an agile team

Testing activities are shared by entire team including

• creating, executing and building automated acceptance test

• Clarify stories, flush out hidden assumptions

• Help the team automate tests

• Make sure the acceptance tests verify the quality specified by
the customer

Form an integral part of the continuous feedback loop that keeps
the team on track

Traditional vs. Agile Testing

Testing in agile
Testing is not a phase

• It is done closely in conjunction with development

Testers use lightweight documentation

• Not traditional comprehensive test documentation

• Test plans are just enough to get the job done

Testers reuse existing artifacts to create test cases quickly

• User stories, use cases, story boards

Testers use tools to automate testing as much as possible

Testing is always focused on essential requirements

• Acceptance based testing

Everybody is involved in testing

• The Whole Team approach means anyone can test

All of this is supported on Jazz

Quality Manager Team Concert
Requirements

Composer

Test Cases Test Cases

Test Scripts Test Scripts

Test Results Test Results

 Testing is not a phase - it is integrated throughout the lifecycle

Collection

Requirements Requirements

Plan

Story xyz Work Items

Defects Defects

Test Plan

customer

Story

Agile application lifecycle

Story

Tools increase the efficiency of identifying and tracking tasks

Type of work items used for an agile project include:

• Requirement – can be created in Quality Manager, Requirements Composer, or

linked from another requirements tool

• Quality - work associated with a test artifact such as a test plan, test case, or

test script

• Defect – used to track software defect found during testing

• Review - assigned to a user to review or approve a test artifact, such as a test

plan or test case

Team Concert and Quality Manager access the same work items

• This can be used to link other items such as test cases and test scripts to help

automate testing

Using tools in agile testing

The focus in agile testing
What to test, where to focus

• Like traditional testing, agile teams must test at multiple levels to
ensure quality

• Agile teams often use acceptance based testing approaches

• Focus on customers requests

Tests often based on existing User Stories or Use Cases

• Provides end-to-end approach

Unit and Integration tests are also done

• Tools such as JUNIT and other developer test tools to automate unit /
smoke / integration testing

Test driven development addresses unit level quality

• Write the test first, then code to “fix” it

customer

 Test driven development is a practice for

developing code

 It is a developer practice that involves

testing

 How it works:

Tests are developed from the work items

list

Code is written to cause the test to pass,

then it is refactored

Code is only written in response to a

failing test

What is test driven development?

 Concurrent testing is:

Testing at the same time as

development

Testing as the code is

delivered

Involving developers, testers,

and other roles into testing

Testers trying to make the

product better by working

with the developers

 Concurrent testing is not:

Testing in “mini waterfall” cycle

Building up a bunch of tests

for a series of big test runs

Defining a group of testers

who are separated from

development

Testers trying to break the

product and find mistakes

made by the developers

What is concurrent testing?

17

How is concurrent testing unique?

Tests are created and run at the end of every iteration

• For example, this could be every two weeks

• "Traditional" testing is done at the end of a development effort, just before the final release

Quality is measured very early

• Quality measurements are made visible to stakeholders throughout the project

Issues and risks are raised much earlier

• This saves time in development, as well as testing

• This leads to higher quality software

The tester’s attitude is different, not as oppositional

• Testers and developers must collaborate

• Roles are not as absolute – developers may do some testing and a tester might be

somewhat involved in the development

Rational Quality Manager provides:

• Test asset organization

• Test plan, test cases, test scripts and
test suites

• Control and reporting for other test automation
tools

Rational Team Concert provides:

• Tracking and reporting for different types
of work items

• Traceability through work item assignments

• Ownership of work items

• Identifying parent-child and related work items

18

Tool support for agile concurrent testing

Test Cases Test Cases

Test Results Test Results

Test Cases Work Items

Test Results Defects

Test management in agile

Agile teams need test management

• Making sure that there is not chaos when it comes to testing in agile

Agile teams use test management practices that support incremental and

iterative development activities

• Multiple, smaller test plans are used

• Agile test management uses lightweight documentation

Agile allows teams to use evolutionary approach to organizing, planning,

authoring, executing and reporting

• Agile teams embrace the need for concurrent testing

Agile test management involves the whole team – not just testers

Documentation in agile testing
Release Test Plan (the master test plan)

• Communicate test strategy

• Quality objectives

• Entry and exit criteria

• Resource estimates

 Iteration/Sprint Test Plan

 Requirements validated during each Sprint

 Test Schedule and Burndown status

 Test Environments and Test Case

 Reporting Overall Status

 Defects, issues and tasks

Collaborative and adaptive test plan management
Test plans that are easy to create and evolve with the project

Structured test plan with multiple
user defined sections

Track test plan history with
version snapshots

Individual ownership for
every section

Rational Quality Manager support for agile testing

Testing in agile shows where you are at and where you are heading

• Rational Quality Manager reports and dashboards provide real-time information during
each iteration or sprint

• Evaluating test results help the team identity additional areas to focus testing

More Rational Quality Manager support for agile testing
Acceptance testing often requires a set of test scripts to be run in order to validate the

user scenarios or business requirements

• Test Suites provide teams with an easy way to execute several test scripts

(either in parallel or one after another)

• Test environments are used to capture the hardware and software configuration for a

specific test case

• Test Execution Records are used to capture every test run results

 Testing follows agile's "Done done" principle

 Rational Quality Manager allows you to specify

a set of Quality Objectives for each test plan

 Entry and Exit Criteria are defined to for each

test plan

Test planning in agile using Rational Quality Manager

 The agile test planning approach:

 Allows an agile team to define "Done" for each sprint/iteration

 Links testing activities to rest of team

 Allows the whole teams to reuse test assets

 Reduces amount of rework

 Jazz tools can provide dashboards for better collaboration

Challenge: Assigning and coordinating test plan ownership
 and events across distributed teams

Solution: Visualize commitments, reduce rework,
 track tasks and monitor events Requirements,

application security

Testing

Individual Task List Team event log

Know what others are doing, know what others expect from you

Test objectives, test case
assignment and sign-off

Test iterations

Getting up to date work progress information
Task management for individuals and the team

26

What to watch out for with agile testing

Agile team may continue to use waterfall testing practices where Quality
Assurance (QA) activities lags behind development activities

Common waterfall testing practices still sometimes used in agile:

• Testing not considered part of the agile team’s responsibilities

• Iteration planning does not include the time required to execute
testing activities in tests within the short time period

• Iteration backlog does not include testing planning, execution and reporting
activities

Situations where waterfall testing practices are common:

• Teams are distributed, not co-located

• Test automation strategies are too hard to maintain

• Teams do not have enough time to create and maintain automated test
assets each iteration

27

Another thing to consider with agile testing
Whole team, everybody tests - That’s a good thing, right?

• Yes, because it maintains responsibility for quality in the product

• Yes, because it increases the resource constraints of traditional testing

• The risks is: Not everyone is a natural tester!

Example of a good tester versus a not-so-good tester

• A good tester will take the pessimistic view of whether the quality is good enough

or not

• A not-so-good tester will always assume that everything works, until proven

otherwise

• Unless they experience a bug themselves, and it affects them, they may

resist the recognition that something must be done to fix it

 Problem: How to avoid overbooking team members

 Solution: Team Concert uses work load bars to show how much work is assigned to a

contributor, and whether he is overbooked or not.

 A work load bar shows:

 Horizontally: The ratio of remaining work time (for an iteration) and upcoming work

 Vertically: The percentage of estimated open work items

 The less work items are estimated the less accurate the information is

 This encourages estimation

Upcoming work: 2 hours / Remaining work time: 96 hours not overbooked

100% of open work is estimated

Upcoming work: 136 hours / Remaining work time: 104 hours overbooked

75% of open work is estimated

Upcoming work: 35 hours / Remaining work time: 72 hours not overbooked

67% of open work is estimated, but since 33% of the work items aren’t

estimated there will be very likely not much work time left

Managing resources with Rational Team Concert

Resolved work: 9 hours / Total work: 11 hours

Spent work time: 17 / Total work time: 96

Resolved work: 4 hours / Total work: 140 hours

Spent work time: 53 / Total work time: 168 hours

Resolved work: 13 Hours / Total work: 186 Hours

No projection available

4 - 140/168 * 53 == 40 hours behind

9 - 11/96 * 17 == 2 hours ahead

Managing schedules with Rational Team Concert

 Problem: Team lead needs to know how the team is doing in terms of progress

 Solution: Team Concert uses progress bars to reflect the progress of a team, a contributor, or other

grouping elements (tags, category, etc.).

 A progress bar shows:

 Horizontally: The ratio of resolved and total work. If an iteration information and

 work assignment is available a projection of this ratio onto the ratio

 of spent work time versus total work time is shown as well.

 Vertically: The percentage of estimated open work items

 The less work items are estimated the less accurate the information is

30

A few proven techniques to manage scope
Some lessons learned from past agile projects:

• Have the customer focus on requirements and scenarios

• This prevents rework and ensures development is always on the right track

• Create detailed storyboards, completed before each iteration

• This increases the success of code produced by the iteration

• Estimate short iterations based on time to complete work

• This will result in working consumable code

• Knowing what is new in each iteration build is crucial

• It takes both developers and testers to efficiently know this

• There is no time to waste on repeat or irrelevant tests

Agile collaboration essentials for quality management

Establish good relationships

• Teams are built from people using many products and projects:

• Learn who your product’s team members are

• Establish accessible repositories for all team members to use

• Learn what other products your product will integrate with and who to contact on each team

Participation is key to staying informed

• Project level meetings (managers and team leads)

• Iteration meetings

• Scrum meetings

• Work product reviews

• Customer meetings and Beta programs

• Cross-functional team meetings

• Lessons learned session

Review of agile testing

Whole Team is responsible

for quality

 Agile Testing

 Focuses on meeting quality from the customer’s

perspective

 Centers on application capabilities that are really

being used

 Focuses on quickness, lightness, and helping the

team deliver demonstrable quality code

 Starts as early as possible, tests often as code

becomes stable

 Requires combination of manual and automated

testing approaches to be effective

 Is performed at multiple levels where unit,

integration and acceptance tests are executed

