
IBM Research –
In search of smarter systems
Cindy Eisner

The sun never sets on IBM Research

Almaden (CA)
Established in 1952

Austin (TX)
Established in 1995

Watson (NY)
Founded in New York in 1945

Zurich
Established in 1956

Haifa
Established in 1972

Delhi
Established in 1998

Beijing
Established in 1995

Tokyo
Established in 1982 Brazil

Established in 2010

Awards and Honors

14 National Medals 5 Nobel Prizes 6 Turing Awards 11 Inventors Hall of Fame

17 years of IBM Patent Leadership

Microsoft Intel HP
0

N
u

m
b

er
 o

f
2

0
0

9
 U

S
Pa

te
n

ts

IBM

2906

1537
1273

Apple EMC Oracle Google

289 250 203 141

4914

Haifa

IBM Research

Short term

• Apply our technology to new domains

• Add capabilities to existing tools

Medium term

• Extend and develop mature technologies

• Develop methodologies and custom
 solutions for customers

• Collaborative projects

Long term

• New concepts and technologies

• Tackle open problems

• Innovative and risky research

What we do

Develop new technologies

• Innovative ideas turn into
 Research assets turn into
 Innovative IBM products

Solve problems

• Identify and answer IBM’s needs in different domains

• Solve problems for IBM’s customers

IBM Research – Haifa core competencies

Largest IBM Research facility outside the US

Spanning all IBM Research strategy areas

Cloud Computing

Optimization
Technologies

Collaboration &
Social Networking

Analytics &
Machine Learning

Healthcare

Verification

Storage Software Development

Formal Verification for UML/SysML

Developing a Research Asset

• A Rhapsody plug-in that performs formal verification

• On behavioral models, with an appropriate subset of UML

• Environment interaction is safely abstracted

• Counterexamples displayed as sequence diagrams

Interacting with potential users

• Understanding needs and use cases
Karen Yorav
yorav@il.ibm.com

Formal Verification

Exhaustive (but efficient!)

Analysis

Desired System Properties Model of system

Does the system obey its requirements ?

Demonstrate the cases where the system fails

The concept

The user creates
behavioral models

always (door_unlocked -> speed=0)

never (P1.critical & P2.critical)

Mutual exclusion Object:
proc1

State: crit_st

Object:
proc2

State: updating

The user defines properties
–For engineers: templates

–For verification experts: temporal logic

Pass Fail
+ sequence diagram

What can we check?

Example template properties:

• Dead states / dead transitions

• Non-determinism

• Attribute bounds

• Deadlock freedom

• Mutual exclusion

• Invariants

Temporal logic

• Highly expressive

• Enables describing complicated sequences of events

This is customizable –

 What do you need?

System Optimization Workbench

“First Of A Kind” project (FOAK) with EADS

• Mission: Find optimal design solution for aerospace systems

• Problem: No automated and integrated solution currently available

• Approach:

• Model-based multi-criteria optimization

• Component model library, Variability Modeling

• Back-annotation into engineering environment

• Use Case for Validation:

• Simplified Aircraft Doors and Slides Control System

• Minimize cost, weight, power consumption, etc.

• Fulfil safety and real-time constraints

Henry Broodney
henryb@il.ibm.com

The technology

IBM Design Space Exploration Process

ibd [Visual Constraint Block] AC busses should always be powered [visual constraint]

technical paths:Allow ed technical paths
1 «ConstraintVariable»

{fai led = false}

junction:Junction
* «ConstraintVariable»

I4

I3

I2

I1

relay:Relay
* «ConstraintVariable»

On_Off

T2T1

{Is_Closed = true}

LeftAC_Bus:AC_Bus
1 «expand»

PowerOut[1..*]

PowerIn[1..*]

Left_Gen:Generator
1 «expand,BehaviorModeBased»

Sense_Out

AC_Out:AC

RightAC_Bus:AC_Bus
1 «expand»

PowerOut[1..*]

PowerIn[1..*]

RightGen:Generator
1 «expand,BehaviorModeBased» Sense_Out

AC_Out:AC

functional links:Generator to bus functional links
1 «ConstraintVariable»

LeftAC_Power

RightAC_Power
Left_Gen

«VariantOf»

Right_Gen
«VariantOf»

Right_Gen

«VariantOf»

Left_Gen

«VariantOf»
Left_Gen1

«allocate»

Lef t_AC_BUS1

Gen_AC_Bus

«allocate»

Right_Gen1

«allocate»

Right_AC_Bus1

«allocate»

«VariantOf»

«VariantOf»

«VariantOf»
«VariantOf»

«allocate»

Gen_AC_Bus

«allocate» «allocate» «allocate»

Model

• Concise modeling

• Constraints and Algebras

• Contracts

• Contains the entire model

information

• Serves as a base for the rest

of the processes

• Utilizes LinguaFranca

language
External

library of

components

Database

Optimize

• Generate architectures

that satisfy constraints

• Optimize for multiple

objectives

Verify

•Checks static or dynamic behaviors that

the optimizer cannot solve

•Enables block-box in the loop

•Constraints modified based on the tool

feedback

Constrain

Monitors

Expand

EPS_Technical

«block»

LeftGen:Generator

1 «inventory,expand»
Sense_Out

AC_Out

RightGen:Generator

1 «inventory,expand»
Sense_Out

AC_Out

APU:Generator

1 «inventory,expand»
Sense_Out

AC_Out

aRelay:Relay

1 «expand»

On_Of f

T2T1

aJunction:Junction

1 «expand» I4

I3

I2

I1

LeftACBus:AC_Bus

1 «inventory,expand»

PowerOut[1..*]

PowerIn[1..*]

RightACBus:AC_Bus

1 «inventory,expand»

PowerOut[1..*]

PowerIn[1..*]

itsInverter:Inverter

1 «inventory,expand»

OK

On_Of fAC_Out

OptimizedSolut ion

LeftGen_1:Generator1 Sense_Out

AC_Out

aRelay_1:Relay1
On_Of f

T2

T1

aJunction_3:Junction1

I4
I3

I2

I1

aRelay_2:Relay1

On_Of f

T2

T1

aJunction_4:Junction1

I4I3

I2

I1

aRelay_4:Relay1

On_Of f

T2

T1

aJunction_5:Junction1

I4
I3

I2

I1

aRelay_6:Relay1
On_Of f

T2

T1

aJunction_6:Junction1

I4
I3

I2

I1

aRelay_8:Relay1

On_Of f T2

T1

itsInverter_1:Inverter1
OK

On_Of f

DC_In AC_Out

aJunction_1:Junction1

I4I3

I2

I1

LeftACBus_1:AC_Bus1

PowerOut[1..*]

PowerIn[1..*]

aRelay_7:Relay1

On_Of f T2

T1

APU_1:Generator1 Sense_Out

AC_Out

aJunction_2:Junction1

I4I3

I2

I1

aRelay_5:Relay1

On_Of f

T2

T1

RightGen_1:Generator1 Sense_Out

AC_Out

RightACBus_1:AC_Bus1

PowerOut[1..*]

PowerIn[1..*]

aRelay_3:Relay1

On_Of f T2

T1

ODME

Expanded model – full architecture

DM RTC

Collaboration

Visualization

Repository

Source

Control

RTC DM

Model

Optimize

Verify Constrain

Expand

Product line engineering

Companies are developing product lines – families of products

• …but not using a systematic engineering approach

PLE core idea: A single set of artifacts for a family of products

• Capturing the commonalities and variabilities

• Automatically deriving artifacts of individual products

Claimed benefit*: an order of magnitude improvement in:

• Cost

• Time to market

• Productivity

• Quality

Payoff Point:

• Product-line architecture design is naturally more costly and time-consuming than for a single product

• Literature suggests ROI after deriving 3-5 products

Nokia 2008 models

Ford 2009 Models

Asaf Adi
adi@il.ibm.com

Research activity

PLE

Research

Development

Practices
Legacy

Mining
Test

Optimization

Enactment

Maturity model

Assessment

Incremental and

measurable transition

Technical and

organizational challenges

Best practices Semantic diff and

 merge of cloned

 models and code

Identification of

product line

features

Transition from

 ad-hoc to

 well-managed

 approach

 Efficient and

 effective testing of

a product line

Save test

 development and

 test execution time

Ensure effectiveness

 by coverage analysis

Testing an evolving

 product line

Roles and team

organization

Process rules and

automation

Metrics and

dashboards

Planning and

Tracking

Templates

Evolution

Method

Direct customer engagement

• Help customers move from one-off project approach to Product Line
engineering approach

• First phase – assessment

• Identify products that would benefit from the transition

• Identify gaps in methodology and tools

• Second phase - guide and support the transition

Summary

• IBM Research does short and long-term deep research

• Into areas directly relevant to customers

• Complex and embedded systems

• We work for IBM but also directly with

• Customers

• Universities

• Business partners

• Let us know how we can help you!

© Copyright IBM Corporation 2011. All rights reserved. The information contained in these materials is provided for informational purposes only, and is provided AS IS without warranty of
any kind, express or implied. IBM shall not be responsible for any damages arising out of the use of, or otherwise related to, these materials. Nothing contained in these materials is intended to,
nor shall have the effect of, creating any warranties or representations from IBM or its suppliers or licensors, or altering the terms and conditions of the applicable license agreement governing
the use of IBM software. References in these materials to IBM products, programs, or services do not imply that they will be available in all countries in which IBM operates. Product release
dates and/or capabilities referenced in these materials may change at any time at IBM’s sole discretion based on market opportunities or other factors, and are not intended to be a commitment
to future product or feature availability in any way. IBM, the IBM logo, Rational, the Rational logo, Telelogic, the Telelogic logo, and other IBM products and services are trademarks of the
International Business Machines Corporation, in the United States, other countries or both. Other company, product, or service names may be trademarks or service marks of others.

www.ibm/software/rational

