
Are we there yet? IBM Software Groups agile
journey
Jon Tilt / Tony Grout
Role: Solution Delivery Transformation Engineer / World Wide Rational Tiger

2 Agile Software Development

Problem

We need to get more effective

• Deliver what our customers will buy – not more or less

• Protect scarce development resources – stop doing things that don’t add
value to our customers

• Reduce rework and waste in the development process.

Big Bang Just Doesn’t Work

Software Group Acquisition Milestones

A Global Team of IBM Software Group Developers

Canada

Toronto,Ottawa

Montreal, Victoria

Haifa
Rehovot

China

Beijing

Shanghai

Yamato

Taiwan

Paris
Pornichet

Beaverton

Kirkland

Seattle

Foster City

San Francisco

SVL/San Jose

Almaden

Agoura Hills

El Segundo

Costa Mesa

Las Vegas

Andover
Bedford, MA
Bedford, NH
Lexington

Westborough
Westford

Cambridge

Cork

Dublin

Galway

India

Bangalore

Pune

Hyderabad

Gurgaon

Cairo

Rome

Gold Coast

Sydney

Canberra

Fairfax

Raleigh

Charlotte

Lexington, KY

Atlanta

Boca Raton

Tampa Perth

Krakow

Warsaw

Sao Paulo

Malaysia

Delft

Pittsburgh

Poughkeepsie

Somers

Southbury

New York City

Princeton

Rochester, MN

Boulder

Denver

Lenexa, KA

Tucson

Phoenix

Austin

Dallas

Boeblingen

Edinburgh

London / Staines

Milton Keynes

Hursley

Warwick

Oxford/York

US

Canada

Latin America

EMEA

AP

Japan

Total

10,854

3,622

152

3,467

6,891

307

26,065

Singapore

Guadalajara

Helsinki
Stockholm

Concept
DCP

Plan
DCP

Availability
DCP

EOL
DCP

Strategy

Concept Plan Develop Qualify Launch Lifecycle

IPMT and

PDT

Contract

Offering

Investment
Execution

IPD Process: Formal Decision Check Points

…. and yes we can exploit agile practices within this framework

Event Driven Formal Decision Check Points (DCPs)

Some keys to today’s transformation efforts….

Collaboration through communities

• Employ collaboration across communities for everything from the SWG
Architecture Board to Development Best Practices to Test Automation
(“None of us are as smart as all of us”)

Encouraging a culture of reuse

• Continue to expand the reuse program to drive development efficiencies,
consistent component behavior and improved portfolio quality.

Agile/Lean enablement

• Provide all SWG development teams with the tools they need to efficiently
deploy appropriate agile/lean practices to improve their business
performance

Iterative, Agile and Lean Software
Development

AGILE

ITERATIVE

WATERFALL

 Waterfall development

• Rigid, late feedback, slow
reaction to market changes

 Iterative development

• Customized RUP, community
source and component reuse,
emphasis on consumability

1980’s

1990’s

Present

Rigid

Continuous
Learning

and
Adaptive
Planning

 Agile / Lean development

• Global reach, agile practices,
outside-in development, tools
and not rules

IBM Software Development Transformation

9 Agile Software Development

Agile and Lean on One Slide

Agile

• Individuals and interactions
over processes and tools

• Working software
over comprehensive docs

• Customer collaboration
over contract negotiation

• Responding to change
over following a plan

Key Practices
• Use Cases now Epics and Stories
• Iterative Development
• Continuous Customer Validation
• Test Driven Development
• Daily Scrum
• Maximum Automation
• Trust the Team

Lean Themes

• Eliminate All Waste (All Rework)
• Build In Quality (Discipline & Defect Prevention)
• Create Knowledge (Tune Product and Process)
• Defer Commitment (Keep your options open)
• Deliver Fast (Iterate and share)
• Respect People (Trusted to make decisions)
• See the Whole (Avoid Sub-optimisation)

Tactics
• Focus on Customer Value
• Reqts = Use Cases = No additional Functions
• Validate often with the customers = Use Iterations
• Just in time artefacts to prevent need for rework

• Use Cases Design Develop Test = Iterations
• Fast Cycles limit Rework
• Architect for rapid change – be willing to refactor
• Remove every defect at the earliest opportunity
• Don’t rely on communicating through Dev Docs
• Institutionalise learning & rapid reflection

Agile Software Engineering

“Uses continuous stakeholder feedback to deliver high-quality, consumable code
through use cases (user stories) and a series of short, stable, time-boxed
iterations.”

 Focused on identifying and reducing risk throughout the cycle

 Adaptive; expects change and reprioritization

 Communication intensive (e.g. daily Scrums)

 Aimed at making incremental progress; working software is the measure

 Disciplined, scaleable, collaborative and effective across sites

 Potentially ready to ship every iteration

A good agile project will deliver the most Business Value possible,
within the project constraints, … improving on the original plan

Five Levels of Agile Planning
Product vision (2-5 years)

• Desired future “state”

• Elevator statements

Product roadmap (1-2 years)

• Plan to implement product vision through multiple releases

• Prioritized product backlog of epic user stories that describe release themes

Release plan (3-12 months)

• “Next step” in delivering the roadmap

• Pull top Epics from the product backlog to create the release backlog.

• Break Epics down into Stories that fit into iterations

Sprint plan (2-4 weeks)

• Next "Step" in delivering highest priority stories from the release backlog

• User stories broken down into tasks

Daily work (hours)

• Daily 15-minute Scrum Meetings to plan work and make impediments visible

• Daily work to complete the user stories

U
s

e
r

S
to

ri
e
s

Think before diving in…..one size does not fit all….

SWG composed of diversity of project profiles

• From:New small (20 HC) teams across a couple of sites looking for 6 month product releases

• To: Mature large 600+ teams with WW sites looking for 2 year product releases and incremental
feature packs in between

Practice adoption and pace should fit team goals and risk management
strategy

• Learn from others

• Make incremental, achievable changes focused on goals

• Go for early wins

• Failures will occur…..learn and move on without disillusionment

The way we were

Reporting

S
e
rv

ic
e

T
e

s
t

R
e

s
u

lts

Project
Management

Customer
Support
Systems

Source

Control

T
e
s
t

E
x
e
c

u
tio

n

B
u

ild

S
y
s

te
m

s

New
Requirements

Machine
Management

Reality?

Service

Reporting

T
e
s
t

R
e
s
u

lts

Project
Management

Customer
Support
Systems

Source

Control

T
e
s
t

E
x
e
c

u
tio

n

B
u

ild

S
y
s
te

m
s

New
Requirements

Machine
Management

Our Vision

Jazz Team Server

Rational
Requirements

Composer

Rational
Quality

Manager

Rational
Team

Concert

'Dashboards'

Process Choreography

(Rational Build Forge, RFT & Adapters)

Build Systems Test Execution

Project Management

New
Requirements

Customer
Support
Systems

Rational Insight

IBM SWG “Tools, not rules”
Rational Vision and Transition

WEBSPHERE MQ EXAMPLE

Introduction – A brief history of WMQ

History:

• 16 years old this year

• Over 10,000 known customers

• Supports just about any platform you can think of

• Several million lines of code written in a combination of Assembler, C/C++, Java, PL/x

Why change to agile?

• 3 year delivery cycle too long

• Significant competition appearing over the last 4-5 years

• Market moving more rapidly than in the past

• Evolution too slow, needed revolution

What the observer saw

Retrospective Findings

• General observations

• Calmness and control

• Continuous integration test up and running

• Willingness of management to accept change

• End of iteration reviews

• Demonstration lead – even for middleware products

• Dashboard driven

• Uncomfortable celebrating success

• Tools helped drive the change to agile

Where are we?
Teams wanted more

information on where the

release was overall

They could help balance

the work and have

ownership

Real-time information

radiators have already

been installed - monitors

showing dashboards to

you and me

We know who’s best to help and when
Keep people in their

teams

They’re then able to

complete work for a

week in to the next

iteration (for removing

defects and better

forward planning)

I like being part of a team

Teams wanted to remain in

teams

Resource pools had been

tried but weren’t working

even for specialist skills

This was already being

changed by new

management

How big is it?

Teams needed help in

estimation

We’re already planning in

facilitated calibration and

estimation workshops

Which ball do we drop?

Teams needed support with

triaging when there was too

much to do and not enough

time

The team were used to

being told not asked

Workshops planned for

techniques and tooling for

prioritising

Some people just don’t like agile

They’d rather be told what

to do and work in a silo

The continuing pace is

something they’re not

comfortable with

The level of interaction is

too much

Management Retrospective

More Less

More definition around what we mean by done

More sharing of vision and gaining buy-in

More meaningful and early communication
with customers

More checking rather than waiting (go see)

More devolution of control (with coaching
support)

More standardisation of process

More flexibility around iteration lengths
between teams

More contingency

More planning and definition of requirements

Less delivery teams starting in parallel

Less specialists

Summary of achievements

Zero tolerance of regressions and general technical debt reduction:

• 90% reduction in deferred defects

Calendar monthly iterations:

• Much clearer focus on short term objectives

Collocation of delivery teams:

• Improved communications and flexibility within teams.

• Off-site teams gain greater autonomy and more interesting work

• Greater understanding of the perspectives of the different disciplines.

Summary of achievements (Contd.)
Test infrastructure and measurement:

• Regressions typically spotted within 24 hours, compared with 2-3 weeks.

• Average defect turnaround cut from 5-6 weeks, down to approx. 1 week

LID process & user stories

• Improving communications between our Strategists and Architects

• Creating a wider team understanding of expected use of features and their business value.

Customer program

• Helped to instil culture of maintaining build stability.

• Time to stabilise and ship down from approx. 3 weeks to 2-3 days.

Rational Team Concert

• Helped establish user stories as our currency for change.

Websphere MQ Conclusions

WebSphere MQ has made big steps forward in becoming more agile

• A range of actions have already been taken

• Positive impact has already been seen in productivity, focus on customer and market
needs, and shipped product quality

• WebSphere MQ v7.1 is the first major delivery in which these benefits will reach the
market

This move to increased agility is still a work in progress, with evolution of
processes through the coming releases based on lessons learned

We are keen to share our experience with other teams and with customers

Summary

 Architecture
Blueprint

 Outside-in
Development

 Agile / Lean
approaches

 Modeling and
Componentization

 Fostering
Communities and
sharing Best
Practices

 Discipline, adaptive
development
approaches

 Continuous
stakeholder feedback
to understand
changing needs

 Time-boxed iterations

 Eliminate waste,
increase visibility

 Tools, not Rules

 Community source

 Shared asset
repository

 Best practices

 Common
components

 Clearing House for
dependency
management

 Training

 Center of
Compentence

 Lightweight central
governance
mechanisms

 Development Steering
Committee

 Architectural Board

 Culture of sharing and
reuse

 Developer Web site

 Centralized
development services

Sound

Development

Governance

Principles

Enable for

Success

Execute

Agile / Lean

for Productivity

Guiding

Principles for

Software

Development + + =

Best Practices for Distributed Development

In Summary

These are naturally effective software development approaches

Agile and Lean are Very disciplined

• This isn’t an excuse for code and fix

Use a Learning Approach in your teams

• Big Bang Doesn’t Work

Transformational capabilities are within the organization

Educate, enable and empower the teams

Tools and not rules

