
DevOps: Extending Agile
Development Disciplines to
Deployment

Daniel Berg – IBM

Chief Architect for DevOps – Continuous Delivery

Please note

IBM’s statements regarding its plans, directions, and intent are subject to change or

withdrawal without notice at IBM’s sole discretion.

Information regarding potential future products is intended to outline our general product

direction and it should not be relied on in making a purchasing decision.

The information mentioned regarding potential future products is not a commitment, promise,

or legal obligation to deliver any material, code or functionality. Information about potential

future products may not be incorporated into any contract. The development, release, and

timing of any future features or functionality described for our products remains at our sole

discretion.

Performance is based on measurements and projections using standard IBM benchmarks

in a controlled environment. The actual throughput or performance that any user will experience will vary

depending upon many factors, including considerations such as the amount of multiprogramming in the

user’s job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore,

no assurance can be given that an individual user will achieve results similar to those stated here.

Customers

Desire for fast

and continuous

innovation

Line of Business

Requirements

Dev & Test

Teams

Code & Tests

Operations

Team

Business

Services

Gap Gap

Challenges meeting business time pressures with quality
software 34% of all new IT Projects deploy late**

experience delays
in integration, configuration and

testing of applications

41%
experience delays due to

troubleshooting and fine-tuning
issues in production

45%
applications rolled back due to

quality issues escaping
into production

51%

average time to deliver
a simple code change

4-6
Weeks

average time to isolate
a defect

3-4
Weeks

Addressing delivery challenges

Addressed by... Addressed by...

Agile

Dev

Customers

Desire for fast

and continuous

innovation

Line of Business

Requirements

Dev & Test

Teams

Code & Tests

Operations

Team

Business

Services

Gap Gap

Agile

Ops

Jazz provides open collaboration across the software
and systems lifecycle

ARCHITECTURE
Open Services for Lifecycle

Collaboration

COMMUNITY
Transparent collaboration and exchange of ideas

PRODUCTS
IBM, third-party, and homegrown application lifecycle tools

Specifications for

linked lifecycle data via

Open Services for

Lifecycle Collaboration

(OSLC)

Integration services &

protocols for

implementing common

lifecycle patterns (“the

Jazz platform”)

Lifecycle tools that

support the Jazz

architecture

Jazz.net – A place

where stakeholders

collaborate

Enables visibility &

influence into the

evolution of the Jazz

architecture and

products

Integration services and protocols

How does it work?

 Community Driven – @ open-services.net

 Specifications for numerous disciplines

• Such as, ALM, PLM and DevOps

• Defined by scenarios – solution oriented

 Inspired by Internet architecture

 A different approach to industry-wide proliferation

 Based on Linked Data

Open Services for Lifecycle Collaboration

Lifecycle integration inspired by the web

Inspired by the web Free to use and share Changing the industry

Open Services for Lifecycle Collaboration (OSLC)
Working to standardize the way software lifecycle tools share data

Automation

Monitoring

7

OSLC is expanding

Communities

Transparent development
Thought leadership
Collaboration and support

Application Lifecycle Management offerings

Rational

Requirements

Composer

Rational

Team Concert

Rational

Quality

Manager

IBM Rational ALM Solutions
Get Up and Running Quickly

 Reduce the costs of inefficient,
multiplatform software development
with integrated ALM solutions!

Optimize your team’s productivity through the

5 ALM Imperatives

• Maximize product value with In-Context
Collaboration

• Accelerate time to delivery with Real-Time Planning

• Improve quality with Lifecycle Traceability

• Achieve predictability with Development Intelligence

• Reduce costs with Continuous Improvement

Collaborate across teams and create deep

integrations across the lifecycle

Extend as your needs evolve with role-based

licensing

Unify your infrastructure and protect your

current investments with a single, open,

extensible platform

Rational

Rhapsody

Design Manager

Rational Software

Architect

Design Manager

Collaborative Lifecycle Management

Collaborative Design Management

Architect

Analyst

Developer

Quality

Professional

Deployment

Engineer

Engineer

Application Lifecycle Management adoption steps

• Silo-ed teams –

no collaboration

• lack of and/or

disjoint process

Chaotic

Individual Focus

• Tools per

discipline

• Best practices

per discipline

• No cross-

discipline

integration

Repeatable

Discipline Focus

• Continuous process

improvement

• Collaboration with

Business

Stakeholders and

Operations

• Connecting

Business Strategy

and Delivery

• DevOps lifecycle

traceability

• Continuous

Delivery

Optimized

Business Value Focus

• Development

Intelligence

• SW dev. Lifecycle

traceability

• Cross teams

collaboration

• Process

Enactment

• Governance &

Compliance

• Continuous

Integration

Measured

Dev Org. Focus

• Real time

planning

• Team

collaboration

• Process support

(Agile, Iterative,

Waterfall, Hybrid)

• Continuous Build

& Test

Defined

Project Focus

Agile Development highlights bottlenecks

Test and Ops teams have increased
pressures to keep up with increased loads
but continue to use waterfall approaches

and traditional tools.

Functional

Testing

Acceptance

Testing
Production

Gap

11

Development

Code &

Tests

Operations

Business

Services

DevOps: Development and Operations working together

• “Shift-Left” – shifting operational concerns

and processes earlier in the development

lifecycle

• Proactive engineering to ensure

applications are developed with operational

concerns upfront

• Collaborate on the creation of reusable test

environment patterns

• Common tools for planning, tracking, and

reporting application and infrastructure

changes

IMPACT

Predictable and accelerated software

delivery optimized around a production-like

delivery pipe

Takes minutes / hours to deliver changes

versus weeks/months

Continuous Feedback

Agile

Dev
Design

Prioritize

Build

Test

Agile

Ops Test

Monitor

Publish

Deploy

DevOps: The time is now
Four key drivers are making DevOps a 2012 imperative for all organizations.

DevOps

Business

Agility

Cloud

Computing

Operational

Discipline

Agile

Development

DevOps is…

A set of principles and values that
facilitate collaboration across disciplines
to…

1. Enable rapid evolution of deployed
business services

2. While reducing risk, decreasing costs,
and improving quality across the
portfolio

People

Process

Tools

DevOps Principles and Values

• Collaborate across disciplines

• Develop and test against a

production-like system

• Deploy frequently using repeatable

and reliable processes

• Continuously monitor and validate

operational quality characteristics

People

Process

Tools

Installation Instructions

RedHat Linux

Apache Web Server

Python

1. Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et

dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip

ex ea commodo consequat.

2. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur.

Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est

laborum.

1. Sed ut perspiciatis unde omnis iste natus error sit voluptatem accusantium

doloremque laudantium, totam rem aperiam, eaque ipsa quae ab illo inventore

veritatis et quasi architecto beatae vitae dicta sunt explicabo.

2. Nemo enim ipsam voluptatem quia voluptas sit aspernatur aut odit aut fugit, sed

quia consequuntur magni dolores eos qui ratione voluptatem sequi nesciunt. Neque

porro quisquam est, qui dolorem ipsum quia dolor sit amet, consectetur,

3. adipisci velit, sed quia non numquam eius modi tempora incidunt ut labore et dolore

magnam aliquam quaerat voluptatem.

1. Ut enim ad minima veniam, quis nostrum exercitationem ullam corporis suscipit

laboriosam, nisi ut aliquid ex ea commodi consequatur?

2. Quis autem vel eum iure reprehenderit qui in ea voluptate velit esse quam nihil

molestiae consequatur,

3. vel illum qui dolorem eum fugiat quo voluptas nulla pariatur?

Traditional Dev - Ops Hand-off

Infrastructure

as Code

Source Control

Management

Source Artifacts

.jsp

.java

.html

chef

recipes
.sh

#!/usr/bin/env ruby

class DevopsDeployer

 def initialize(build_url, build_id)

 @log = Logger.new(LOG_FILE)

 @log.level = LOG_LEVEL

 @iaas_gateway = IaasGateway.new(HsltProvider.new(),

LOG_FILE, LOG_LEVEL)

 @server_instance = nil

 rtc_build_system_provider = RtcBuildSystemProvider.new(

RTC_REPOSITORY_URL, RTC_USER_ID, RTC_PASSWORD_FILE)

 @build = rtc_build_system_provider.resolve_build(

build_url, ENV['buildResultUUID'], build_id)

 @build_system_gateway = BuildSystemGateway.new(

rtc_build_system_provider, LOG_FILE, LOG_LEVEL)

 end

 def add_build_stamp

 template_file = WEB_APP_ROOT +

"/app/templates/pages/page.html"

 @log.info "Adding build ID stamp #{@build.id} to \

#{template_file}"

 # Read in the file's contents as a string, replace

 # the build_id, then overwrite the original contents

 # of the file

 text = File.read(template_file)

 new_text = text.gsub(/\{\{ build_id \}\}/,

"#{@build.id}")

 File.open(template_file, "w") { |file|

 file.puts new_text

 }

 end

...

Provisioning using Cloud

Delivery Pipeline

Deploy

Environment

Running System

Source Control

Management

Source Artifacts

.jsp

.java

.html

chef

recipes
.sh

Deployable Artifacts

Build,

Package,

& Unit Test

Application

Binaries &

Platform

Configuration

Library

IBM SmartCloud Continuous Delivery

https://jazz.net/products/smartcloud-continuous-delivery/

19

IBM SmartCloud Continuous Delivery packaging

Build -> Publish -> Deploy -> Test

Extending Agile Development with Continuous Delivery

Rational Team Concert

Agile
Development

IBM SmartCloud Provisioning

Deployment to
Virtual Systems

20

SmartCloud Continuous Delivery core values

1 Dev and Ops collaborating

together to create

deployment pattern

2
Define the DevOps project

with tasks for build, deploy,

test

3
Changes automatically

deployed to production-

like environments in the

cloud

Collaborate

Define Execute

Report

Continuously report

quality feedback for the

delivery process

4

Team Tasks automated
 Build, package, and release
 Manage environment configurations
 Deployment of build deliverables
 Automated testing

Practioners’ task automated
 Personal Build
 Setting up of environment
 Deployment of build
deliverables
 Unit Test

Library Assets Published
 Manage packaged artifacts
 Manage configuration
automation
 Deploy the right bits to the
correct locations

15-35% Savings

21

3

Deployment to Cloud &
Virtual Systems

Build -> Publish -> Deploy -> Test

Dev

IBM SmartCloud
Provisioning

IBM SmartCloud Continuous Delivery installation

SCCD Artifact

Library

Virtual System

IBM SmartCloud Provisioning

Jazz Build Engine(s)

22

Deliver

changes

Request

delivery

Post

results

Publish

packages

Request

pattern
Provision

pattern

Retrieve

packages

22

Rational Team Concert

client

SCCD client extensions

Rational Team Concert

server

SCCD library pattern

SCCD Chef Automation SP

SCCD server extensions

Install Launchpad

Design

Management

IBM Rational

Software

Architect

Design Manager

Extending IBM SmartCloud Continuous Delivery

Performance

Management

IBM SmartCloud

Application.

Performance

Management

Incident

Management

IBM SmartCloud

Control Desk..

IBM SmartCloud Provisioning

IBM PureSystems

IBM Workload Deployer

Rational

Team Concert

Continuous

Delivery

Deployment

Automation

IBM Rational

Automation

Framework

Chef

Continuous

Integration

IBM Rational

Build Forge.

Hudson….

Jenkins….

Test Automation

IBM Rational...

Quality Manager

IBM Green Hat

 Extending CLM with
Continuous delivery

 Deployment to Cloud
& Virtual Systems

23

Optional and alternative Integrations

Self-hosting CLM using Continuous Delivery

24

Deliver

Collaborative Lifecycle Management

Rational
Requirements
Composer

Rational
Team Concert

Rational
Quality
Manager

 Monitoring

Security

Scaling

Failover

Load Balancing

Lifecycle Management

Increased

Frequency

Cloud

Summary

Increase the speed of delivering business
service with reduced risks, reduced costs,
and improved quality.

BY….

Extending agile development tools and
practices with Continuous Delivery

© Copyright IBM Corporation 2012. All rights reserved. The information contained in these materials is provided for informational purposes only, and is provided AS IS without warranty of any kind,
express or implied. IBM shall not be responsible for any damages arising out of the use of, or otherwise related to, these materials. Nothing contained in these materials is intended to, nor shall have
the effect of, creating any warranties or representations from IBM or its suppliers or licensors, or altering the terms and conditions of the applicable license agreement governing the use of IBM
software. References in these materials to IBM products, programs, or services do not imply that they will be available in all countries in which IBM operates. Product release dates and/or capabilities
referenced in these materials may change at any time at IBM’s sole discretion based on market opportunities or other factors, and are not intended to be a commitment to future product or feature
availability in any way. IBM, the IBM logo, Rational, the Rational logo, Telelogic, the Telelogic logo, and other IBM products and services are trademarks of the International Business Machines
Corporation, in the United States, other countries or both. Other company, product, or service names may be trademarks or service marks of others.

www.ibm.com/software/rational

http://www.ibm.com/software/rational

