
Agile Development using
Visual Requirement
Definition and
Management

In Rational Requirements Composer 4.0

Jared Pulham

Senior Product Manager, Requirements Management
jared.pulham@uk.ibm.com

Introduction

 The advantages of applying lean and agile techniques to software
design and development activities of are now well established and
understood in IT focused organisations.

 Often many IT organisations who have implemented agile techniques
continue to struggle because they either do business analysis activities
through a waterfall process or skip upfront requirements analysis completely
as proposed by agile purists. How do we use requirements definition and
management in an agile process?

 This session provides a framework for evaluating best use of various
type of requirements definition and management in agile development. It
also explains some of the iterative analysis approach being used by a some
customers today, their lessons learnt and plans for further deployment
including using the latest version of IBM Rational Requirements Composer
4.0.

The need for requirements management

I distinctly
 said monorails!

Did not!

B.C. by Johnny Hart

Why people ignore requirements

No perceived value
Requirements shouldn’t be just a box to check in at the front of the

development process

Nothing in place to USE the requirements
In the past requirements took a lot of time and just sat on the shelf

They always change anyway, so why gather them in the first
place?
Unmanaged change is very frustrating

A systematic approach to eliciting,

documenting, organizing, and

tracking changing requirements.

What is requirements management?
Ensuring that your team identifies, builds, tests and documents the right system for
your customer

Requirements

Developers
and Designers

Tech Writers
and Docs

Executives Project Managers

QA
and Test

Analysts

Who needs requirements?

All project team members need

access to requirements

Analyzing how much Analysis to do

How much Requirements Analysis?
Agile purists who argue ‘do none or at the most don’t do much because the

requirements will change’
“Rather than coming up with a bunch of features and planning a multi-month release, come

up with new ideas continually and try them out individually on users.” 1

Traditionalists who want to do as much as possible, because we need to know we
are doing the right thing before investing

“For the second consecutive year, IAG found poor requirements definition and management
consume over one-third of IT's application development budget.” 2

Context Determines the Approach
Both the agile approach and the verifiable approaches to requirements

engineering are appropriate in their own context. Projects with a lot of
change that need to get out to the market quickly might be best done with
high-level, low-ceremony requirements practices.

Stable projects with safety-critical implications could best be done with a plan-
driven, well-documented specification.

1 http://www.informit.com/articles/article.aspx?p=1829417

2 http://esj.com/articles/2009/09/29/wasted-it-development-spending.aspx

Requirements Management Key Activities

 Analyze the Problem

Understand Stakeholder Needs

Define the System

Manage the Scope of the System

Refine the System Definition

Manage Changing Requirements

Iterative development process

Project Management

Environment

Business Modeling

Implementation

Test

Analysis & Design

Preliminary
Iteration(s)

 Iter.
#1

Phases

Iterations

 Iter.
#2

 Iter.
#n

 Iter.
#n+1

 Iter.
#n+2

 Iter.
#m

 Iter.
#m+1

Deployment
Configuration &

 Change Management

Requirements

Elaboration Transition Inception Construction

Analyze the problem

Users and customers don’t want systems – they

want their problems solved

Solving the wrong problem well or fast doesn’t help

The problem as first stated is rarely the true problem

Understand the problem

Determine the purpose

Look for root causes

Gain agreement and document the problem as
appropriate

Understand the problem your solution

will solve

Eliciting requirements

Getting requirements requires people skills

Often times user don’t know what they want

Some time user’s know what they want but can’t express it

You need skills and techniques for getting good requirements

“The closest distance between two points in

human affairs is usually not a straight line!”

Understand stakeholders needs

Elicitation options
Requirement workshop

Interviews

Role playing

Prototypes/Working Software

User Stories/Storyboards

Use-case workshop

Ensure requirements meet user’s needs

Define the system

Identify product features

Create a ‘big picture’ of the solution

Create a supplementary specification

Non-functional requirements

Review the vision document

With the team and with the customer

Consider an Agile Approach

Prioritized

Requirement List

Tests Code

Requirements

 specs

Tests

Code

Requirements

One whole team

Silos

Agile Team Collaborates with
Customer

Done

Done

Done

17

The Agile way of defining requirements

Most agile teams are

concerned only with the

three innermost levels of

the planning onion

Mike Cohn (2008)

 Initial requirements are initially envisioned

 at a very high level .

 The goal of the requirements envisioning

 is to identify the high-level requirements

 as well as the scope of the release

 (what you think the system should do).

Agile requirements gathering techniques

Story telling

Story cards

Story boards and sketches

User stories and Story Points

Requirements stacks

Writing just enough requirements

Talking rather than writing

Not designing screens too early

Story cards

Backlog stack

Storyboards

Better requirements… Less rework…

Better results!

IBM Rational Requirements Composer
Project driven requirements management for your global team

Search, filter

on attributes

Business

Objectives

Business

Processes

Use Cases

Storyboards &

Sketches

Reporting

Industry &

Domain Models

Impact &

Coverage

analysis

Rich text

Requirements

Traceability

between related

artifacts

Rational
Requirements

Composer

Combined Definition and Management

Lifecycle Solutions and Collaboration

Improved Planning and Visibility

Empower teams of all sizes/complexity to capture,
define, analyze, manage, report

Clear, centralized requirements eliminate
redundancy and aid real-time development

Develop using agile-at-scale and iterative processes
in volatile markets

Align business, development and test effort using
light-weight process

Move beyond file based management with easy
Word/Excel migration

Engage project stakeholders early and regularly
collaborate to improve quality

Realise visibility using traceability across
requirements, test, and development

Provides up-to-date reporting based on your
requirements

Manage scope of development project

IBM Rational Requirements Composer 4.0
Requirements Management for the Development Lifecycle

Definition
Rich-text documents

Diagrams: Process, Use Case

Storyboards, UI sketching & flow

Project glossaries

Templates (formal/agile)

Collaboration
Review & Approval

Discussions

Email Notification

Visibility
Customizable dashboards

Project dashboards

Analysis views

Collections

Milestone tracking & status

Management
Structure, Attributes/Types

Traceability, Suspect Link

Filtering, Change History

Tags, Reuse, Baselines,

Reporting Metrics & Doc.

Planning
Integrated planning

Effort estimation

Task management

Lifecycle
Central requirements, test,
& development repository

WAS Clustered Server

Common admin and role-
based user licensing

Warehouse reporting

Rational Requirements Composer

Agile Iterative

Waterfall

Supports RequisitePro Data Migration

User Stories and Story Cards

less formal

more formal

A conversation with the end user

Used to capture the customer’s
requirements as simple statements
or ‘features’

Written on cards

Used by development team to flesh out
the user tasks

Can be estimated with Story Points

Can be fast tracked or delayed by
varying the priority

Good for small work items

Not good for communicating between projects or over time

Sketching

Actively involve the customer in design decisions.

Less threatening, more interactive.

Can be applied to many situations, not just programming.

Easy to change.

Suits common office equipment like whiteboards and whiteboard markers.

Take snapshots at regular intervals.

Cross-index to user stories.

Storyboards

• A series of sketches that tell the user task.

• Can be simple, sketched on a whiteboard and
photographed.

• Good to gain agreement of steps.

• If informal, capture the customer’s thoughts at a
point in time.

• Can be a mixture of Clip Art and text.

• Visually rich.

• If more formal, takes time to create and maintain.

• Can’t be changed once captured as
a photograph.

Completeness and exhaustiveness are not the
same thing

Gather the requirements at the right time

Know your target audience

Do not follow templates slavishly

Use the right device

Write just enough - and then stop

Managing requirements in an agile environment

The progress board

Shows the status of all cards at a point
in time – but don’t forget to capture
it as it changes!

Moving to more rigorous techniques –
traceability, flexibility and
maintainability

Maybe even a software tool or two

Avoiding introducing too many new
requirements late in the lifecycle

Task 2

Fe
at

u
re

 2

Fe
at

u
re

 4

Fe
at

u
re

 6

Fe
at

u
re

 9

Fe
at

u
re

 1
4

Fe
at

u
re

 2
6

Fe
at

u
re

 2
8

Task 17

Task 22

Task 35

X

X
X

X
X

X

X

What about the Use Case?

The Use Case can be agile too…

“Call me Function”

It’s a combination of sketch and story card

Use cases are graphical…but mostly textual

Described textually

Identified graphically

Use Visual Scenarios to Uncover Customer Needs

 Defining
requirement flows
using scenarios to
uncover missing
critical details

 Text requirements
link to diagrams to
complete the
development
picture

 Visualise your
development results
through a variety of
requirements forms

 Traceable elements
helps ensure
complete coverage
thinking

Rich-text Documents

Informal Uploads

Use Cases

Storyboards
Process Diagrams

UI Design

Glossaries

Benefits of use cases

Facilitate efficient communication between end users and customers, and the
development team

Provide context around requirements by expressing sequences of events

Use case diagrams act as a ‘big picture’ of the system

Defines what the system does to satisfy its stakeholders

Help reduce design constraints

Focus on the “what” not the “how”

Are reusable by the rest of the team

For design, usability design and testing

Use a Product Backlog with Context
Epics and Stories

Shows how stories fit together

Shows which are completed

Shows how we have ranked them

High Level Requirements

Other Rankable ‘Requirements’

Shows what isn’t done

Shows Architecture concerns

Shows were other things rank

Showing Context in the Backlog

Elaborate Requirements Progressively

Growing details over time

value

value

32

Product

Backlog

User

Stories,

Scenarios

Defects,

Change

Requests

User Documentation

Specifications
Design Specifications

Vision Document

Supplementary

Specification Use-Case Model

Stakeholder

Requests

Glossary

Putting it All Together

User Requirements (RRC)

33

Manage the scope of the system

Most projects try to do too much

Scope

Functionality to be delivered

Resources to do the work

Time available for completion

When you can’t do it all – how do you
 decide what to leave out?

Prioritize requirements based
on Customer priority first

Access the effort

Mange scope throughout the project

Apply Agile principles and take them to heart

No more kicking requirements over the wall

No more big requirements documents

Become embedded in the team and the process

Become part of the full project lifecycle

Realise requirements is an ongoing process throughout project

Prepare to be a part of the team for longer time frame, through
many iterations/sprints

Become embedded in the Quality aspect of the lifecycle

Embrace change!

Embrace the organisational change that comes with agile

Embrace constant change to the project
scope/requirements/needs/priorities

Conclusion/Summary

