
Development and project delivery metrics
White paper
September 2008

When am I done testing?
A new barometer for measuring the risk of releasing new
software versus the cost of continued testing

Murray Cantor, distinguished engineer, Rational software,
IBM Software Group

Michael Lundblad, program manager, quality management,
Rational software, IBM Software Group

Avik Sinha, research scientist, test automation, software
measurement and estimation, IBM Research

Clay Williams, manager, governance science research,
IBM Research

Contents

When am I done testing?
Page 2

2	 Introduction

3	 Framing the right question—

technical versus economic risk

7	 The equation applied to

reliability testing

10	 Instrumenting the equation

for reliability

17	 Quality governance: organiza-

tional and decision concerns

19	 Conclusion

Introduction

A rough estimate puts the costs of software-related downtime at about US$300
billion annually.1 Consider these examples:

In September 2007, a computer system in Atlanta that processes pilots’ flight •	

plans and sends them to air traffic controllers fails. The agency reroutes the

system’s functions to another computer in Salt Lake City, which overloads

because of the increased volume of data, magnifying the problem.2

A telecommunications provider spends US$3 million on software application •	

support over six months instead of on new application development.3

A health insurance company loses US$20 billion annually in lost business •	

and repair work related to production performance problems.4

Research and experience have shown that the cost of finding and removing
defects grows exponentially with the quality of the code. That is, as each
defect is removed, the cost of finding and removing the next defect increases.
Hence, it is a practical impossibility to deliver zero-defect software. C-level exec-
utives understandably want products whose defects have a minimal impact on
users—either functionally or financially. But such certainty—and the enhanced
ability to avoid disasters like those described above—costs money. Hundreds
of millions of dollars are spent yearly on software testing. Indeed, IBM’s direct
experience with organizations worldwide and data gathered by researchers work-
ing with hundreds of companies show that most firms invest 25 percent or more of
their development lifecycle time and cost in quality assurance.5

When am I done testing?
Page 3

Highlights

Project managers need a way

to measure the business risk

of release versus the cost of

continued testing.

A key point in any development process, therefore, is the point at which testing
ends and the organization moves ahead with deployment. This is the time in
the life of every development project when the program manager has to ask
the very practical questions:

“Is it wise to continue spending money on quality assurance?” •	

“Will further testing cost more than it is worth?” •	

“Is the software ready for release?” •	

“How do we know when we’re done testing?”•	

This white paper provides an innovative framework for answering those
questions—a new barometer for measuring the business risk of release versus
the cost of continued testing.

Framing the right question—technical versus economic risk

Upon initial examination, the question of when to stop testing appears to be solely
technical. Organizations commonly apply exit criteria for the testing process based
on factors such as the percentage of successful tests for completeness of function-
ality and the number of defects remaining at various severity levels. Some quality
assurance teams have also measured quality using metrics in areas such as:

Defect density and glide path.•	

Requirements volatility.•	

Code churn.•	

Mean time to failure (•	 MTTF) and repair in regression and load/stress testing.

Test coverage.•	

Usability, reliability, performance/scalability and supportability.•	

When am I done testing?
Page 4

Highlights

Technical measures alone can

miss key economic implications

of testing versus release.

A basic formula begins by calcu-

lating expected cost avoidance

and expected value lost.

These technical testing measures are critical, but they are often blindly applied.
Applied without a larger context, they can miss key economic implications inher-
ent in the decision to continue testing or to release the software.

Instead of applying only technical criteria, the decision to release must also
consider the timing of the window of opportunity that surrounds the software’s
release date. Late release can mean lost revenue or lost efficiencies. However,
early release can mean risk to the business in damaged reputation, organiza-
tional disruption and high service costs. To find this balance, companies should
consider a number of factors, including:

The amount of improvement that can be expected with more investment •	

in testing.

Economic risk reduction versus the lost economic benefit of release over time.•	

Getting started with a basic formula

Suppose that for a given software build it is possible to approximate the com-
pany’s loss in revenue and maintenance to fix a software failure. Call that the
expected cost avoidance (ECA). With more testing, one would expect the ECA
to decrease. If not, why spend money on testing?

However, with more testing, the release date moves out, resulting in lost ben-
efit to the business. So we also need to measure this monetary lost benefit. Call
that the expected value lost (EVL). EVL can increase with new functionality
but decrease with time to release.

When am I done testing?
Page 5

Highlights

Any investment in further testing

must consider both technical and

economic issues.

Early in the development cycle, the ECA presumably is much higher than the
EVL. The product does not do much, but it would generate lots of defects to fix. As
a result, the expected business risk (EBR), calculated as EBR = ECA – EVL, is a
large positive number. Eventually, with good execution, the EBR should go to zero
or even turn negative.

Even so, the question remains: “Does the reduction in EBR justify further
testing?” Call the cost of testing, CT . As the ratio of EBR/CT approaches 1 or
less, it becomes apparent that the investment in further testing is not yielding
any more value and might even be counterproductive.

Analyzing usage for a more precise answer

The above reasoning presupposes that we can actually determine EBR. As we will
show, there are practical, if not simple, methods to compute business risk in terms
of ECA and EVL. To apply the reasoning, it is necessary to thoroughly analyze
the system usage to establish the right test cases that not only provide sufficient
usage and code coverage, but also test those other considerations such as security,
performance and reliability that have economic impact after deployment. Test
planning, as a result, should include both technical and economic concerns.

When am I done testing?
Page 6

Highlights

Each FURPS concern has technical

and economic implications; to

establish patterns, this paper

examines reliability.

Determining economic risks from quality concerns

When considering the economic risks and value of deployment, a useful start-
ing point is the common set of quality concerns known as FURPS—features,

usability, reliability, performance and supportability:

Features•	 —Did we provide the most value? Most testing organizations do a

fairly decent job of functional and regression testing.

Usability•	 —Can users accomplish the defined work efficiently? Normally,

this area is examined through end-user acceptance testing.

Reliability•	 —Are the frequency of and recovery from software crashes in test

or production adding unreasonable operational or liability costs?

Performance•	 —Are the software response times, throughput or both suffi-

cient to meet business productivity needs?

Supportability•	 —Can the defects be isolated and removed economically?

Each of these concerns has both technical specification and economic implica-
tions. It is beyond the scope of the paper to fully address them all. Rather, we
can apply the reasoning to reliability to establish the pattern that, with adjust-
ment, can be equally applied to other concerns. Therefore, we start with the
questions: “What does reliability look like to the business?” and “What is the
cost of a system failure?”

When am I done testing?
Page 7

Highlights

The failure density function can be

used to extrapolate the failure rate

beyond practical testing time.

The equation applied to reliability testing

The equation for reliability testing has two aspects—determining of ECA and
determining EVL. In the sections that follow, we evaluate both issues.

Using the failure density function (fdf) to determine ECA

To measure the statistical impact to business risk in terms of ECA, some theory
is needed to extrapolate the failure rate beyond practical testing time. This
theory is available using the failure density function (fdf), which is described by
a statistical distribution. Unlike the bell curve that describes normal distribu-
tion, the fdf distribution for likelihood of failures over time6 is:

	 = λe-λt 	 for t ≥ 0
	 = 0	 for t < 0

The graph of fdf ’s for different build λ’s is given by figure 1 below, where the
x axis shows time and the y axis shows the density of failures at a given time.
Note that the probability of a failure before a given time (t) is given by the
area under the curve from 0 to t. Applying some first-year calculus results in
the following:

	 P[0,t] = 1–e-λt

where P[0,t] is the likelihood of failure before time t.

When am I done testing?
Page 8

Highlights

The program is more reliable when

failures are more likely to arise

further in the future.

1.5

1.4

1.3

1.2

1.1

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 1 2 3 4 5

Figure 1. Some failure density functions (IBM illustrative example)

Testing and repair should decrease the λ—in effect flattening and pushing to
the right the failure density function distribution. Decreasing λ then means
the failures are more likely to arise further in the future, making the program
more reliable.

To get an approximate λ for a given build:

Run multiple system tests under a variety of conditions and loads. The •	

required number of tests can be time consuming and costly, so the team must

develop means for efficiently creating enough runs with different loads and

orders of functional invocations to create the distribution. There are two

common approaches: automated testing and volume beta testing. In both

cases, it is necessary to capture the time to failure for each run and the

debugging data at the failure.

When am I done testing?
Page 9

Highlights

The value of a program at release

generally is time dependent—the

later the release, the less the

program is worth.

Create a histogram of the times to failure. Normalize the histogram by divid-•	

ing each of its values by the number of tests. This results in a table showing

percentage of failure rates over time.

Curve-fit the table to get an •	 fdf distribution.

Once λ is known, it is possible to estimate the likelihood of failure between
time 0 and any time t by computing the area under the curve from 0 to t. Note
this is true even if the time is far in the future.

From each of the build fdf distributions, we can apply the business loss prob-
ability and maintenance impact measures to get the ECA.

Finding the value of software at release—determining EVL

To measure the EVL, the organization must have some idea of the value of the
program at release. This value generally is time dependent—that is, the later
the release, the less the program is worth. Some examples include:

Contracted delivery with penalty clauses, awards fees based on acceptance •	

or both.

Delivery of a system to the marketplace when the profit depends on the •	

timing of introduction.

In the latter case, data must be provided by the marketing department, as
there are other ways in addition to timing that the system might deliver
value.7 In any case, a monetized value at delivery is necessary to making the
“go/no-go” decision regarding testing.

When am I done testing?
Page 10

Highlights

It is necessary to ask, at the begin-

ning, how a business or industry

defines product reliability.

Instrumenting the equation for reliability

The monetized business losses that result from reliability failures are directly
related to the sort of software or system under development and the industry
for which it is being developed. The starting point, therefore, is to ask the
question, “What does reliability look like to the business?”

A simple example is one that many individuals and businesses encounter daily:
a laptop operating system (OS) is often restarted after several days of using
many software programs simultaneously to avoid abnormal behaviors such as
slow performance, screen errors or even locked screens that may occur later
as a result of continuous use. The developer of the OS knows that the cost of
failure is low enough and that the OS meets standards of acceptable reliability
if the MTTF is greater than the acceptable time between restarts.

Another example occurs less frequently and can be more costly: If the system
is an office telephone switch, each failure may cost tens of thousands of dol-
lars. In this case, the likelihood of a single failure in a year needs to be less
than 10-3 or 10-4.

Using the failure density function analysis described earlier, we now examine
an example from the IBM Research Lab to substantiate the premise.

Measuring reliability as time to failure

Reliability is measured as the time between failures during testing and field
operations. To test reliability, a large number of simultaneous test runs for a
series of software builds is necessary under a variety of loads and random func-
tions. The time to failure can vary with each build. Thus for each build we can
create a histogram of time to failure. Each build has a different histogram.

When am I done testing?
Page 11

Highlights

It is possible to extrapolate and

compute the probability of failure

for any interval of future time.

For example, a given build may use automated testing to run 10,000 reliability
tests. Each test case launches the build into a parallel process. The number of
processes that crashed during a day’s run are counted and recorded. The whole
experiment is observed for a period of four days as illustrated in this table:

Build 1 Build 2 Build 3 Build 4 Build 5

Day 1 31 10 5 3 2

Day 2 125 49 24 13 10

Day 3 453 233 112 63 42

Day 4 5,896 1,333 650 330 210

Table 1. Frequency of failures for each build (IBM illustrative example)

Although reliability experiments ran for only four days (and some runs did not
fail in the time allotted), it is possible to extrapolate and compute the prob-
ability of failure for the system for any interval of future time.

Applying the extrapolation process to the data in table 1 results in the follow-
ing graph:

0.25

0.20

0.15

0.10

0.50

0.00
1.00 6.00 11.00 16.00 21.00 26.00 31.00 36.00 41.00 46.00 51.00 56.00 61.00 66.00

Time (t) in days

F(
t)

—
fa

ilu
re

 p
ro

ba
bi

lit
y

Build 1
Build 2
Build 3
Build 4
Build 5

Figure 2. Extrapolated probability of failure (IBM illustrative example)

When am I done testing?
Page 12

Highlights

Once the likelihood of failure is

known, it is possible to estimate

the costs of addressing that failure.

For build 1, λ = 2.63 × 10-3, and the chance of system failure for a continu-
ous period of up to one month is determined by computing the area under the
extrapolated curve according to the formula F(t) = 1 - e-λt = 99.96%. Note that
it is possible to estimate this chance of failure even though the test may not
last for the full one-month period.

Note also that additional measures of the reliability improvements from test-
ing and repair activity can be measured by various statistical measures, e.g.,
the mean of the build fdf distributions. For example, the MTTF is the mean of
the fdf distribution for a given build. A computation of MTTF for builds 1–5 is
shown in table 2.

	

Build 1 Build 2 Build 3 Build 4 Build 5

MTTF (days) 3.80 22.56 48.54 95.79 149.51

Table 2. Extrapolated mean time to failure (IBM illustrative example)

Measuring business risk

Now let’s consider the economic risks of testing. Once we know the likelihood
of failure in any time period, we can also estimate the costs of addressing
those failures. These costs depend on a variety of business variables such as
the cost of labor and the purpose of the system. For each build, we need to
estimate the following:

Expected maintenance expenses if shipped now (•	 m)—calculated from cost of

repair multiplied by frequency

Expected business loss due to system failure if shipped now (•	 bl)

When am I done testing?
Page 13

Highlights

When the economic benefits and

risk reduction of testing are leveling

off but not flat, it is necessary to

consider how much benefit is lost

by postponing release.

The business losses bl0, bl1 and maintenance expenses m0, m1 at times t0
and t1 are random variables, because they can only be estimated. With an
assumed business loss basis of US$20 million, multiplying US$20 million by
the probability of failure at the interval of time provides the bl variable. The
maintenance stream is also provided as an estimated assumed set of variables.

To continue the example, by adding the expected (i.e., mean) maintenance and
business loss expenses, we can expand table 2 to table 3.

Build 1 Build 2 Build 3 Build 4 Build 5

MTTF (days) 3.80 22.56 48.54 95.79 149.51

Maintenance
cost

US$1,300,000 US$650,000 US$1,000,000 US$300,000 US$200,000

Business
loss

US$19,992,46 US$14,710,482 US$9,219,881 US$5,377,919 US$3,636,197

Table 3. Business risk of deployment (IBM illustrative example)

From these random variables, it is possible to determine the expected losses
due to failures in reliability. For increased testing, the ECA is determined by:

	 ECA = mean(bl1 + m1) - mean(bl0 + m0)

This data suggests that we may have finished testing, but we cannot be sure.
The economic benefits and risk reduction of testing are leveling off, but they
are not flat. We also need to consider how much benefit in terms of new rev-
enue is lost by postponing release. To do that we need to consider the value of
the system itself for each build.

When am I done testing?
Page 14

Highlights

Considering net present revenue

allows balancing the cost avoidance

achieved by increasing testing with

the loss of value from delays.

Because the system or software may deliver value over some future interval of
time, the net present value (NPV)—which we will refer to as net present rev-

enue (NPR) of the system or software at delivery—must be computed. A useful
form of the equation for this purpose is:

NPV = �
n

i=1

Ri
(1 + rR)i

Where Ri is the expected stream of revenues or benefits (say, quarter by quar-
ter) and rR is the interest rate associated with the time value of money (say,
the treasury bill rate). Generally for development efforts, each of the Ri is a
random variable, like the fdf.

The important consideration for the NPR of the system is that it tends to
decrease with the delay in delivery but might increase with more functionality.
Considering NPR allows us to balance cost avoidance achieved by increasing
testing with the loss of value from delays due to testing.

Returning to our example, if we are told by the marketing department that the
Ri for quarterly estimates is US$5 million, and rR = 6%, NPR for the system at
different delivery dates is shown in table 4.

2008—2Q 2008—3Q 2008—4Q 2009—1Q 2009—2Q

∑ (NPR) US$21,061,818 US$17,325,528 US$13,365,060 US$9,166,963 US$4,716,981

Table 4. NPR (IBM illustrative example)

When am I done testing?
Page 15

Highlights
Similarly, the EVL due to missed opportunities during the testing period is
determined by:

EVL= mean(NPR0) – mean(NPR1)

The overall EBR of increased testing is:

EBR = ECA – EVL

For builds 2–5 of the example system, the ECA, EVL and EBR computation,
therefore, is as follows:

Build 2 Build 3 Build 4 Build 5

ECA US$5,931,987 US$5,140,601 US$4,541,962 US$1,841,722

EVL US$3,736,291 US$3,960,468 US$4,198,096 US$4,449,982

EBR US$2,195,696 US$1,180,132 US$343,866 -US$2,608,260

Table 5. ECA, EVL and EBR calculations (IBM illustrative example)

Note that the EBR turns negative at build 5. This certainly suggests it is time
to stop testing. In the next section, we explore the question further.

Criteria for stopping tests—business risk versus cost of testing

With this framework in place, the stage is set to answer the question, “When
am I done testing?” Depending on the depth of understanding of the risks
and values, one might apply a statistical approach to the random variables to
get the answer. To keep the answer as simple as possible, we continue to look
solely at the means.

When the expected business risk

turns negative, it may be time to

stop testing.

When am I done testing?
Page 16

Highlights

By calculating the expected value of

testing, it is possible to determine

when the organization is spending

more than it is saving—and also

when an increase in testing can

increase savings.

Here are two ways to answer the question:
1.	 At a certain point in the process, the EBR may turn negative. At this point

the lost opportunity revenue exceeds the costs being avoided, so it is rea-
sonable to go ahead and ship.

2.	 Given the CT , it is possible to determine the expected value of testing (EVT)
as a savings-to-cost ratio:

EVT = EBR/CT

A value less than 1 indicates that the organization is spending more than it is
saving—whereas a value greater than 1 indicates a savings due to increased
testing. Therefore, in table 6 it would appear that testing might stop at build 5,
where EVT < 0.

Build 2 Build 3 Build 4 Build 5

EVT 5.63 1.97 1.91 -21.74

Table 6. When to stop testing (IBM illustrative example)

With the EVT calculation, we have completed the economic analysis. We now
find that in this example we are losing more money in the cost of testing and
missed potential revenue than we are potentially saving by avoiding the risk of
failure. So now we need to ask ourselves, “Are there other reasons for creat-
ing another build?” This is not a mechanistic decision, but the data does help
guide our thinking. Other factors such as the corporate culture determine the
next step. Decision makers may want to elevate their confidence levels with
one more build.

When am I done testing?
Page 17

Highlights

A governance model helps decide

the “who, what, when, why and

how” of decision making.

Quality governance: organizational and decision concerns

Finally, it also is important to consider the quality governance aspects of the
decision to declare testing “done.” Governance is about deciding the “who,
what, when, why and how” of decision making.8 Table 7 summarizes the fac-
tors to consider for each aspect of the testing governance model.

Question Meaning Factors to consider

Who?
(roles)

Who decides we are done?
Who is consulted? Who is
informed of the decision?

Chief quality officer•	

Quality assurance statistician•	

What?
(decisions)

What artifacts from the testing
process feed the decision-
making process?

Test plans and results•	

Graphs•	

When?
(timing and
scheduling)

By when must the decision
be made?

fdf•	 reviews during system test phase

Why?
(policies)

What policies and procedures
have been established to
guide how the decision should
be made?

EV•	 T = EB/CT, where EVT < 1,
indicates more is being spent on
testing than the amount expected to
be gained in reducing business risk

How?
(artifacts)

What test plans, measures
and results enable informed
decision making for the
business risk analysis?	

fdf•	 graphs

Expected cost avoidance •	
ECA = (bl1 + m1) − (bl0 + m0)

Expected value lost •	
EVL = mean(NPR0) − mean(NPR1)

Expected business risk •	
EBR = ECA – EVL

Expected value ratio •	
EVT = EBR/CT

Table 7. Factors in the testing governance model

When am I done testing?
Page 18

Highlights

A quality “czar” can drive over-

arching quality strategy and

decision making.

A quality assurance statistician

can provide the analysis required

for “go/no-go” decisions.

Because the quality of software can affect the entire business, the issue of
quality governance often involves C-level and director-level executives. It may
be time, however, to consider two new roles that do not exist in most organiza-
tions—a chief quality officer and a quality assurance statistician.

Today quality assurance teams focus on testing and provide resulting FURPS
validation for use in decision making. But someone, a quality “czar” with spe-
cific responsibilities for full lifecycle quality management of business-critical
software, needs to drive the overarching quality strategy and decision-making
criteria for the business.

In addition, traditional quality assurance teams do not have anyone on staff
with the mathematical background to perform the analysis discussed in this
paper. A dedicated quality assurance statistician, however, can provide the
detailed analysis required for informed “go/no-go” decisions.

Finally, these calculations would provide a basis for governance decisions that
follow software deployment. For example, MTTF and probability data from
reliability testing for failure can be extremely useful in planning software and
system maintenance cycles. Aircraft, for example, have cyclical maintenance
periods based on such data. Failure testing may also reveal useful information to
include in end-user documentation for troubleshooting. Failures related to scal-
ability performance can become the basis for production monitoring decisions.

When am I done testing?
Page 19

Highlights

Determining the business impact

of shipping now versus the cost of

further testing can provide a firm

basis for knowing when testing

should end.

Conclusion

Deciding when testing is complete is both an economic and a technical issue.
Common FURPS-based testing provides significant insight into the needs, the
process and the status of technical results. But for a true understanding of new
software’s readiness, the business impact of shipping now versus further test-
ing and repair must be considered.

We have shown that the techniques that provide the required insights are avail-
able. Not surprisingly, they do require some analytical capability and a new
consideration in the governance of the release process. However, by adopting
these methods and release governance, the company’s management team can
achieve a firm, economic basis for answering a fundamental development
question, “When am I done testing?”

For more information

To learn more about IBM Rational® quality management products and solutions,
please contact your IBM representative or IBM Business Partner, or visit:

ibm.com/software/rational/offerings/quality

http://www.ibm.com/software/rational/offerings/quality

1 The Standish Group, Comparative Economic Normalization Technology Study, CHAOS
 Chronicles v12.3.9, June 30, 2008.
2 “FAA Computer Glitch Causes Flight Delays,” Tescom, http://www.tescom-intl.com/site/
 en/tescom.asp?pi=465&doc_id=2923

3, 4 Forrester Research, “Performance-Driven Software Development,” Carey Schwaber,
 February 2006.
5 Walker Royce, Software Project Management: A Unified Framework, (Addison-Wesley
 Professional, Indianapolis, 1998)
6 M. Modarres, M. Kaminskiy and V. Krivtsov, Reliability Engineering and Risk Analysis:
 A Practical Guide (Marcel Dekker, Inc., New York, 1998).
7 M. Cantor, “The Value of Development,” article in preparation.
8 M. Cantor and J. Sanders, “Operational IT Governance,” IBM developerWorks®, May

2007 (http://www-128.ibm.com/developerworks/rational/library/may07/cantor_sanders/
index.html).

Acknowledgments

The authors thank David Lubanko, Patrick Mancini and Harold
Moss of IBM for useful conversation and review in the prepara-
tion of this paper.

© Copyright IBM Corporation 2008

IBM Corporation
Software Group
Route 100
Somers, NY 10589
U.S.A.

Produced in the United States of America
September 2008
All Rights Reserved

IBM, the IBM logo, ibm.com, and Rational are
trademarks or registered trademarks of Inter-
national Business Machines Corporation in the
United States, other countries, or both. If these
and other IBM trademarked terms are marked
on their first occurrence in this information with
a trademark symbol (® or ™), these symbols
indicate U.S. registered or common law trade-
marks owned by IBM at the time this information
was published. Such trademarks may also be
registered or common law trademarks in other
countries. A current list of IBM trademarks is avail-
able on the Web at “Copyright and trademark
information” at ibm.com/legal/copytrade.shtml

Other company, product, or service names may
be trademarks or service marks of others.

References in this publication to IBM products or
services do not imply that IBM intends to make them
available in all countries in which IBM operates.

The information contained in this documentation
is provided for informational purposes only. While
efforts were made to verify the completeness
and accuracy of the information contained in this
documentation, it is provided “as is” without war-
ranty of any kind, express or implied. In addition,
this information is based on IBM’s current product
plans and strategy, which are subject to change by
IBM without notice. IBM shall not be responsible
for any damages arising out of the use of, or oth-
erwise related to, this documentation or any other
documentation. Nothing contained in this docu-
mentation is intended to, nor shall have the effect
of, creating any warranties or representations from
IBM (or its suppliers or licensors), or altering the
terms and conditions of the applicable license
agreement governing the use of IBM software.

RAW14026-USEN-00

http://www.tescom-intl.com/site/en/tescom.asp?pi=465&doc_id=2923
http://www.tescom-intl.com/site/en/tescom.asp?pi=465&doc_id=2923
http://www-128.ibm.com/developerworks/rational/library/may07/cantor_sanders/index.html
http://www-128.ibm.com/developerworks/rational/library/may07/cantor_sanders/index.html
http://www.ibm.com/legal/copytrade.shtml

	Introduction

