

Back to Basics:
Getting Good Software Quickly

and at Low Cost

Ivar Jacobson

Chairman, Ivar Jacobson International

ivar@ivarjacobson.com

Agenda

1. The Goal: Good Software Quickly and at Low Cost

2. Practices have become First-Class Citizens

3. Practices should focus on the Essentials

4. Using practices to build a process

5. Practices for Good Software, Quickly and at Low Cost

6. Wrap up

Our goal

Good
Software

Good Software, Quickly and at Low Cost!

What it takes

Good Software
Useful Extensible Reliable

Low Cost

Quickly
Competent & Motivated People

Large Scale Reuse of Components

What it takes

Good Software
Useful Extensible Reliable

Low Cost

Quickly
Competent & Motivated People

Large Scale Reuse of Components

It is as easy

as that!



7

What it takes

Good Software
Useful Extensible Reliable

Low Cost

Quickly
Competent & Motivated People

Large Scale Reuse of Components

You just need
a good
process



Problem with Process (Methodology, Method…)

• Every process tries to be complete

– As a consequence every successful process will grow until it

dies under its own weight

• Every branded process is just a soup of ideas ”borrowed” from other

processes

– With some new idea(s)

• Every process usually becomes just shelf-ware

– Law of Nature: People don‟t read process descriptions

• The process is out of sync with what the team does…

– …and the project – process gap get wider and wider

• The project has to adopt an entire process

– No-one uses an entire process or limits themselves to practices

from one process

Problem with Process (Methodology, Method…)

• Every process tries to be complete

– As a consequence every successful process will grow until it

dies under its own weight

• Every branded process is just a soup of ideas ”borrowed” from other

processes

– With some new idea(s)

• The process is out of sync with what the team does…

– …and the project – process gap get wider and wider

• The project has to adopt an entire process

– No-one uses an entire process or limits themselves to practices

from one process

It‟s no wonder

no-one likes
process 

Problem with Process (Methodology, Method…)

• Every process tries to be complete

– As a consequence every successful process will grow until it

dies under its own weight

• Every branded process is just a soup of ideas ”borrowed” from other

processes

– With some new idea(s)

• The process is out of sync with what the team does…

– …and the project – process gap get wider and wider

• The project has to adopt an entire process

– No-one uses an entire process or limits themselves to practices

from one process

It‟s no wonder

no-one likes
process 

There are practices

to help you



Agenda

1. The Goal: Good Software Quickly and at Low Cost

2. Practices have become First-Class Citizens

3. Practices should focus on the Essentials

4. Using practices to build a process

5. Practices for Good Software, Quickly and at Low Cost

6. Wrap up

Enough Process – Let‟s Do Practices

From the successes in
modern software

development
Agile Methods

Camp

The Software
Engineering

Camp

Process
Maturity Camp

In the future, an ever present but
invisible process

We need a
new paradigm

Process becomes
second nature

The team‟s way-of-working is
just a composition of

Practices

Practice is a First Class Citizen

the unit of adoption, planning and execution of process

Unified ProcessExamples: CMMI, Spice XP, Scrum

A new
paradigm

Enough Process – Let‟s Do Practices

From the successes in
modern software

development
Agile Methods

Camp

The Software
Engineering

Camp

Process
Maturity Camp

In the future, an ever present but
invisible process

We need a
new paradigm

Process becomes
second nature

The team‟s way-of-working is
just a composition of

Practices

Practice is a First Class Citizen

the unit of adoption, planning and execution of process

Unified ProcessExamples: CMMI, Spice XP, Scrum

History of Practices

• 1950s -

• Late 1990s

• 2003 – Aug

• 2004 – June

• 2007

• 2008

• Software developers have always talked about „best‟ practices

• Processes presented as collections of best practices, but practices
were not separable from one another

• Practices as Aspects or First Class Citizens presented by Ivar at XP
conference in New Orleans

• Practices formalized as „use cases for processes‟
• Practices popularized and made more practical through usage of

cards, game boards, etc.
• Problem with how to produce loosely coupled practices frameworks

solved.

• Practice composition and execution in EssWork

• Practices adopted as first class citizens by IBM Rational.

This is

smart!

The Paradigm Shift

• We have always had practices in a loose meaning

 After the paradigm shift you can do all kinds of operations on practices

 Separate them, compose them, teach them, execute them

Class-like
elements

Before

Process

Practice

Process is First
Class Citizen

Practices were non-
tangible elements

They were there but
not separable from
one another

Now

Process is just a
package of practices

Practices are First
Class Citizens

Agenda

1. The Goal: Good Software Quickly and at Low Cost

2. Practices have become First-Class Citizens

3. Practices should focus on the Essentials

4. Using practices to build a process

5. Practices for Good Software, Quickly and at Low Cost

6. Wrap up

We need a shared definition of “practice”

Pragmatics

• A practice provides a way to systematically address a particular aspect of a

process.

• There are three kinds of practices (at the least):

– Peer practices

• A practice has a clear beginning and an end

allowing it to be separately applied, examples are:

• Iterative development

• Use case driven development

• Project management à la Scrum

– Extension practices

• Use cases for SOA

– Cross-cutting practices

• Team practice incl workshops, war room,

pair programming, etc.

More precisely

• A use-case module in our AOSD book

There are 100‟s of so-called practices…

…but are really all the same kind of thing?

Risk-Driven
Iterative

Development

Use-Case
Driven

Development

Use-Case
Modeling

Test-Driven
Development

Robustness
Analysis

User Stories

Business
Modeling

Aspect
Orientation

PSP

Scrum

SOA

Retro-
spectives

Product-Line
Engineering

Business Process
Re-Engineering

Prince2

Systems
Engineering

Pair

Programming

Program
Management

There are 100‟s of so-called practices…

…but are really all the same kind of thing?

Risk-Driven
Iterative

Development

Use-Case
Driven

Development

Use-Case
Modeling

Test-Driven
Development

Robustness
Analysis

User Stories

Business
Modeling

Aspect
Orientation

PSP

Scrum

SOA

Retro-
spectives

Product-Line
Engineering

Business Process
Re-Engineering

Prince2

Systems
Engineering

Pair

Programming

Program
Management

Focus on the Essentials

What is Essential?

• It is the key things to do and the key things to produce

• It is about what is important about these things

• It is less than a few percent of what experts know about these things

– Law of nature: People don‟t read process books

• It is the placeholders for conversations

– Law of nature: People figure out the rest themselves

– Training helps

• It is the base for extensions

Starting with the essentials makes the practice
easy to learn and adopt.

How much do you need in your hands?

Reference

books

http://www.amazon.com/gp/product/images/0321321308/ref=dp_image_0/102-2047208-1154549?_encoding=UTF8&n=283155&s=books

Why Cards?

• Cards are tactile

• Cards are simple and visual

• Cards use conversational and personalized
style

• Cards are not prescriptive so they get the
learner to think more deeply

• Cards get…and keep…the readers attention

• Cards promote agility

• They can be written on to make minor
adjustments to the practice on the fly

Essential Unified Process 3.1 © Ivar Jacobson International, 2005-2007 Use Case Essentials 2.3 / rev. 40

Find Actors and Use Cases

Opportunity Backlog Find actors and use cases to:

• Agree on specified system behavior

• Establish the system boundary

• Scope the system

• Agree on the value the system provides

• Identify ways of using & testing system

The activity is completed when:

• The Use-Case Model: Value Established or
beyond

• Use Case Specifications: Briefly Described
or beyond

• Supplementary Requirements: Initiated

The activity contributes to achieving:

• Specified System : Shared
• Use-Case Module: Scoped

Recommended approaches:

• Use-case modeling workshop

• Structure the use-case model

• Handle changes (to the use-case model)

Specified

System

Analyst

Customer

Representative

Specified System

Use-Case Module

Supplementary Requirements

Use-Case Specification

Use-Case Model

Specify the System

• A practice is a set of cards • A team works on a set of instance cards

A Good Practice is good for the team

• Gives a result of observable value to the customer of the team

– It is a building block for the team – not necessarily for the process engineers.

• Not too big – not too small

– Thus, it includes its own verification

– Solves a problem rather than presents a technique (for that we have patterns)

– Provides practical advice

• Starts from the essentials

– Can be easily adapted and extended to meet your needs

– Complements the industry body of knowledge

A Good Practice combines well with other practices
 Practices are separate but not independent – like use cases

 A Practices has a particular position in a practice architecture – The

Kernel is such an architecture baseline

Agenda

1. The Goal: Good Software Quickly and at Low Cost

2. Practices have become First-Class Citizens

3. Practices should focus on the Essentials

4. Using practices to build a process

5. Practices for Good Software, Quickly and at Low Cost

6. Wrap up

You need a kernel

Practice
Each practice contains practice-
specifics to add to the kernel.

The kernel defines
an “empty process”

Kernel

Practices “slot” into the

common kernel.

Way of

Working

Start Understand the Kernel

• The Kernel is very small, extracted from a large number of teams way-of

working

– It contains empty slots for things that every process have

– Slots for

• Competencies, such as analyst, developer, tester

• Things to work with , such as backlog, implementation,

executable system

• Things to do, such as implement the system, test the system

• The Kernel is practice agnostic

Kernel

Start with the Kernel

• The Kernel contains empty slots for things that every process have

Kernel

Opportunity

Backlog Project

Specified
System

Implemented
System

Executable
System

Way of
WorkingTeam

$$

Understand the Need Ensure Stakeholder
Satisfaction

Accept the System

Specify the
System

Shape the
System

Implement
Software

Test the
System

Release the
System

Establish Project Steer Project Support Team Conclude Project

Developer

Project Lead

Customer
Representative

Analyst Tester

Things to Produce Things to Do

Patterns To Apply Competencies To Perform

Use the Kernel to Harvest Your Own Best Practices

Kernel
Your Own

Best Practices

+

Add Your Practices on top of the Kernel

• Example for adding activities (from various practices) onto an activity space

Specify the
System

Find Actors and
Use Cases

Specify Use-Case
Module

From Use Case
Practice

Specify the
System

Write User
Stories

Create User
Acceptance Tests

From User
Story Practice

Specify the
System

Capture System
Requirements

Capture High Level
Requirements

From Traditional
Requirements
Practice

I need
some way
to specify

the system

I can tell
you how

Practitioner

Practice
Experts

Practice overlays many cards on the kernel
practices are aligned to the kernel (practice architecture)

My Process

Improve Your Process by Adding Other Practices

Your Own

Best Practices

Kernel

+ +
Other Practices

From Many Sources

Iterative

Component

Architecture

Use Case

Team

+++
PLA

Practices enable projects to run the way they need to

Use Case ComponentArchitecture IterativeProject A

Declarative
Requirements

WaterfallArchitecture
Project B

Architecture IterativeUser StoryProject C

Way of Working = A subset of the practices in the
practice architecture

Practices enable projects to run the way they need to

Use Case ComponentArchitecture IterativeProject A

Declarative
Requirements

WaterfallArchitecture
Project B

Architecture IterativeUser StoryProject C

But how can we manage
these projects if they all

have different processes?

Way of Working = A subset of the practices in the
practice architecture

Practice Architecture is Important

Project A

Project B

Project C

The kernel ensures common understanding across
teams in a minimal way

Agenda

1. The Goal: Good Software Quickly and at Low Cost

2. Practices have become First-Class Citizens

3. Practices should focus on the Essentials

4. Using practices to build a process

5. Practices for Good Software, Quickly and at Low Cost

6. Wrap up

You need some basic technical practices

Good Software

Use CaseArchitectureComponent Iteration

... or Scrum, User Stories, Test-Driven Design...

Useful Extensible Reliable

You need some more advanced technical practices

Basic Practices

For Good Software
Iterative ComponentArchitecture Use Case

Practices for
Significant Reuse

Product

Line Architecture

Enterprise

Architecture

SOA

Low Cost
Large Scale Reuse of Components

Nothing is more important than competent and motivated people

Quickly
Competent & Motivated People

Social engineering patterns

• Self-Directing Team

• Frequent Demonstration to
Stakeholders

• Team Retrospective

• Everyone Contributes What They Can

• Common Ownership

• Keep the Team Small

• Self-Adapting Team

• Everyone is a tester

• Create alternative career paths

• Managing cross-cutting teams

Team Practice

“Creating the right working
environment to enable the

team to excel.”

Agenda

1. The Goal: Good Software Quickly and at Low Cost

2. Practices have become First-Class Citizens

3. Practices should focus on the Essentials

4. Using practices to build a process

5. Practices for Good Software, Quickly and at Low Cost

6. Wrap up

• You can learn practices individually

• You can apply practices separately

• You can adopt the practices you want, when you want, and at the

pace that suits you

• You can mix-and-match practices from any source

• You only have to change the practices that need changing

• Different teams can adopt different practices according to their needs

Use CaseArchitectureComponent Iteration

Why practices are different than processes

How do you get started?

“The way to get started is to quit talking and begin doing.”

Walt Disney (Pioneer of animated cartoon films, 1901-1966)

Select the most valuable
practices and start using

them.

Unified Process Practices

Use Case

Process Modeling

Product

Architecture

$

Iteration

Team

Component

Practices – Not Process help you to …

• Good Software

• Quickly

• Low Cost

There are practices and Practices.

Good Practices should

 focus on the Essentials

 start from a Kernel – a practice architecture

 be Smart

 be Executable

