Rationa

L=}
lyull
-
(LT

IBM Rational Software Development Conference 2008 2 _' AL)

— WHERE TEAMS ARE [/ /24480

Back to Basics:

Getting Good Software Quickly
and at Low Cost

Ivar Jacobson
Chairman, Ivar Jacobson International
ivar@ivarjacobson.com

a IVAR JACOBSON

INTERMNATIOMNAL

The Goal: Good Software Quickly and at Low Cost
Practices have become First-Class Citizens

Practices should focus on the Essentials

Using practices to build a process

Practices for Good Software, Quickly and at Low Cost
Wrap up

o 0k W NE

Good Software, Quickly and at Low Cost!

What it takes

Quickly

Competent & Motivated People

Low Cost

Large Scale Reuse of Components

Good Software

Useful Extensible Reliable

What it takes

A YRIP- VALV,

- Itis as easy
as that!
L ©

What it takes

/. W A

You Just need
T a good T
Process
Usef @

Problem with Process (Methodology, Method...)

Every process tries to be complete

— As a consequence every successful process will grow until it
dies under its own weight

Every branded process is just a soup of ideas "borrowed” from other
processes

— With some new idea(s)
Every process usually becomes just shelf-ware

— Law of Nature: People don’t read process descriptions
The process is out of sync with what the team does...

— ...and the project — process gap get wider and wider
The project has to adopt an entire process

— NoO-0ne uses an entire process or limits themselves to practices
from one process

Problem with Process (Methodology, Method...)

It's no wonder

no-one likes
process ®

1rormn on

Problem with Process (Methodology, Method...)

There are practices

to help you
©

The Goal: Good Software Quickly and at Low Cost
Practices have become First-Class Citizens

Practices should focus on the Essentials

Using practices to build a process

Practices for Good Software, Quickly and at Low Cost
Wrap up

S A

Enough Process — Let's Do Practices

In the future, t but

INVIY

0 ever pig
Qrocg

Proge A hew
""" paradigm . N

Df process
N

From the successes i
modern software
development

The
Eng
e

PSS Agilesyethods
Ma Camp Camp

Examples: Unified\"/ocess CMMI, Spice XP, Scrum

Enough Process — Let's Do Practices

In the future, an ever present but
Invisible process

Process becomes The _team’s way-of_-_/vorking IS
d t just a composition of

Secon na. Ure Practices

\We need a Practice is a First Class Citizen
new paradigm the unit of adoption, planning and execution of process

From the successes in

modern software The Software Process Agile Methods
development Engclgcreneglng Maturity Camp Camp

Examples: Unified Process CMMI, Spice XP, Scrum

History of Practices

e 1950s -

« Late 1990s

« 2003 - Aug
e 2004 - June
« 2007

« 2008

Software developers have always talked about ‘best’ practices

Processes presented as collections of best practices, but practices
were not separable from one another

Practices as Aspects or First Class Citizens presented by Ivar at XP
conference in New Orleans

Practices formalized as ‘use cases for processes’

Practices popularized and made more practical through usage of
cards, game boards, etc.

Problem with how to produce loosely coupled practices frameworks
solved.

Practice composition and execution in EssWork

Practices adopted as first class citizens by IBM Rational.

The Paradigm Shift

 We have always had practices in a loose meaning

tangible elements Class Citizens

They were there but
not separable from
one another

§ Before | Now
Process Process is First Processis just a
! Class Citizen ! package of practices
s s —
| S~ Clas$-like
i elenments
Practice Practices were non- Practices are First

= After the paradigm shift you can do all kinds of operations on practices
= Separate them, compose them, teach them, execute them

The Goal: Good Software Quickly and at Low Cost
Practices have become First-Class Citizens

Practices should focus on the Essentials

Using practices to build a process

Practices for Good Software, Quickly and at Low Cost
Wrap up

S I A o

We need a shared definition of “practice”

Pragmatics
» A practice provides a way to systematically address a particular aspect of a
process.

- There are three kinds of practices (at the least):
— Peer practices
* A practice has a clear beginning and an end - :

allowing it to be separately applied, examples%;:‘g?m’m’

WARE DEVELOPMENT
WITH USE CASES

(TR

* [terative development
« Use case driven development
* Project management a la Scrum
— Extension practices
* Use cases for SOA
— Cross-cutting practices
« Team practice incl workshops, war room,

pair programming, etc.
More precisely
* A use-case module in our AOSD book

Asrscr-Omzmn
SOFTWARE DEVELOPMENT 4
witH USE CASES N

There are 100’s of so-called practices...

Business Test-Driven Scrum Product-Line Risk-Driven Systems
Modeling Development Engineering Iterative Engineering
Development

Aspect Robustness Retro- Business Process Use-Case Pair
Orientation Analysis spectives Re-Engineering Driven

Development Programming

PSP User Stories SOA Prince2 Use-Case Program
Modeling Management

...but are really all the same kind of thing?

There are 100’s of so-called practices...

X V4 v/ o v/ v/

Business Test-Driven Scrum Product-Line Risk-Driven Systems
Modeling Development Engineering Iterative Engineering
Development

X ? ? e V4 X

Aspect Robustness Retro- Business Process Use-Case Pair
Orientation Analysis spectives Re-Engineering Driven
Development

RNV T

PSP User Stories SOA Prince2 Use-Case Program
Modeling Management

Programming

...but are really all the same kind of thing?

Focus on the Essentials

What is Essential?

» Itis the key things to do and the key things to produce

It is about what is important about these things

It is less than a few percent of what experts know about these things

— Law of nature: People don’t read process books

It is the placeholders for conversations

— Law of nature: People figure out the rest themselves
— Training helps

It is the base for extensions

Starting with the essentials makes the practice
easy to learn and adopt.

ow much do you need in your

Specify the System

Find Actors and Use Cases
Tmzre Sg;gg;ff Backlag.

Find actors and use cases to:

- Agree on specified system behavior

- Establish the system boundary

- Scopethe system

- Agree onthe value the system provides
- ldentify ways of using & testing system

PER KROLL
BRUCE MACISAAC

CMMI

Find Actors and Use Cases

000 Anslyst The activity is completed when:
- The Use-Case Model: Value Established or . .
“UU cu The s = 1o by elape a1l ccop mazagor o ety Agile Project
Representative A fluction g queds] rommsams with s Beot T Ao J)

3 — ’
gssmggse Specifications: Briefly Described or Management

foals ac w1 a2l we cases 0 compsy Luslilenl e aveled. B
1 with Scrum

- Supplementary Requirements: Initiated 3620 n-
The activity contributes to achieving:
- Specified System : Shared
- Use-Case Module: Scoped

Find Actors and Use Cases

Supplementary Requirements

Reference

Recommended approaches:
+ Use-case modeling workshop

(S -
UseCaseModel

Mary Beth Chrissis

|+ Chasai seqmeaser as abiactme cass: Datazs

- Structure the use-case madel Appt iml I\'\‘;“rf“
e - Handle changes (to the Use-case model) FF O O S s fe
Specified System —
Essential Unified Process 3.1 @lIvar Jacobson International, 2005-21 Use Case Essentials H
Find Actors and Use Cases
T B (0T weded e pha azy cear Problen : Foctiom] dscomperiton jaswut e
mals s timed wox} with fle e cases . Chuium gall fhe e ileutifaton of meauingfol soemmtins a1l oTeoTss Phases
e woak Gases at ¥ i e iflt 1equie e ol m-fout e fyebans fujeThud g RS
toauk ot anl Leduy ofles aupertt weik o foow on Femedy: Freme @t ol e we caser deccails
wing s omllming o westiupehadnes cassr. sompht anl msarighnl seqmeases of st
anl e " pawnals zealuabe o e wor. Business Modeling
s Bom Common mistakes)
cam References / Requirements
ks 2 Noitg i
= Doitrg it by yourseif " "
+ The- . . Reconnnended g Analysis & Design
o A commen wirkle it flt o prren creaky o) :)
o] me-care wodslonld 01 o1 0w o Tis-Uase Mods, Tt Bitex anl Do Implementation
Prob o - Thic sorud & . tpece, Addver gk, clapkas 47
o g robben : This zssilk i peoz quality, 1 comsen i) Test
ol anl Fwitd mileas maling. + Crmaws Owapusl, T Pabubvit Te Cass ’ +
bawed Femedy: Inle s Gt e right poogls (e, Fatonw aul Blugains, Allien Werky, chag- eploymen
T me-c domaimexpert anl oo shlide et | aze anelued B 1i-b Confiaurats
sl anl agtiveks contibmting b e casaton of e e . onfiguration
T werd care wedel o Wk scHpits and & Change Mgmt
DIWET ag - Fortit wh, whinlpgai®Bon] camen:, - Project Management
Teth W X Thinking you know best laxt, a2l oo welllop facilinton wok. Environment
o o A conmuen el § Gt e uewbeas of G de Aillitowle wrlugaesemmces comingroen L T m—
wlpment suam i oy Iaw what ¥ st - ‘ Initial | :labcz” Canst || I
r‘:]“ Y M —— = Practices cFE e LR
WjOG‘:‘: Problen - Il ¥ ek o eemlt m lnnikd cowerr The-Case Ferontink J wikipedsa rosoft Internet Explorer
. ¢ anl medneed Ratntneak He €k Vew Fgwekes Tods e
Crvmsr 1 . ; < e -
; e Famady: Made rms ft il medly fedine e o0 R] Pt St O 3 s
swming iy ——] Ceation of G wecass welsluafler . dishitng O -O- K13 G|/ o] 2150 X0
ﬂ:hnln:{;sm poriemit i* cousar G otlsar anwbel. L O]
¢ "
2 Ovorstructuring the model
- : . WIKIPEDIA
ows sy il tamn ok cammid sy with e po-
Tl Freoutinl edllitios of ¢t g s ms-cass modsland over English Deutsch
e ngiace wor o we-cars T bl The Free Ercyciopedis Die freve Enaykiopidie
Frobln : Too wnch tmstming of e wods] o1 208000t 08 Gl
Loiug it o sarly, can wale o wedel difFcmlt b Frivgide Polski i
I s 3¢ el asel s Lencychpédie fbve Wolhs encykiopedia
= Femsdy: Doait mwe s mo-cass whibarliy 98 G0 s a0t Am
Fash1em ks Aokl woessazy. BFZ Italiano
s Comy U-BHE Lenciclopedia kbera
Tt 2 Functionai decomposition R e
p— Tis caser aze ot st A wo-sass molsli iands 4oty
” Tz onslo uif g e b offzed Ty e £y 2430000 stbeen 2040000 sngns
w
M IAg anl desoriing e s1l-w-s1l Dt Tactow Tequied
o aclins o vl I 0t e decomperifon of Espafiol Svenska
| e Toqmiemenk Tk & soxies of Temeatl Frowton Scklorde ® Don 2 smcilie
o fmitors 8 E
. . - - R .
Tl Fiveatia Tl Procas Ppdefl gkt vecior = Sl
inzinca P © Iwal ETH ¥ —
Eor =[]
Pl | ;J-‘

http://www.amazon.com/gp/product/images/0321321308/ref=dp_image_0/102-2047208-1154549?_encoding=UTF8&n=283155&s=books

Why Cards?

Specify the System

[Opponunily}[Sgyesc‘i;i:‘d] [Backlog]

000 77 mas

“UU Customer
Representative

Supplementary Requirements

Use-Case Model
Use-Case Module

Use-Case Specification
Specified System

Essential Unified Process 3.1

Find Actors and Use Cases

Find actors and use cases to:

« Agree on specified system behavior

« Establish the system boundary

« Scope the system

« Agree on the value the system provides
« |dentify ways of using & testing system

The activity is completed when:

+ The Use-Case Model: Value Established or
beyond

« Use Case Specifications: Briefly Described
or beyond

« Supplementary Requirements: Initiated
The activity contributes to achieving:

» Specified System : Shared
« Use-Case Module: Scoped

Recommended approaches:

» Use-case modeling workshop
« Structure the use-case model

« Handle changes (to the use-case model)

© Ivar Jacobson International, 2005-2007

Use Case Essentials 2.3/ rev. 40

» Cards are tactile
« Cards are simple and visual

» Cards use conversational and personalized
style

« Cards are not prescriptive so they get the
learner to think more deeply

» Cards get...and keep...the readers attention
« Cards promote agility

* They can be written on to make minor
adjustments to the practice on the fly

« Apractice is a set of cards

« Ateam works on a set of instance cards

A Good Practice Is good for the team

« Gives a result of observable value to the customer of the team
— Itis a building block for the team — not necessarily for the process engineers.
« Not too big — not too small
— Thus, it includes its own verification
— Solves a problem rather than presents a technique (for that we have patterns)
— Provides practical advice
« Starts from the essentials
— Can be easily adapted and extended to meet your needs
— Complements the industry body of knowledge

A Good Practice combines well with other practices
= Practices are separate but not independent — like use cases

= A Practices has a particular position in a practice architecture — The
Kernel is such an architecture baseline

The Goal: Good Software Quickly and at Low Cost
Practices have become First-Class Citizens

Practices should focus on the Essentials

Using practices to build a process

Practices for Good Software, Quickly and at Low Cost
Wrap up

o Ok LN E

You need a kernel

Practices “slot” into the
common kernel.

TN
w O

Kernel

The kernel defines
an “empty process”

[:] Way of
yAGID Working
L

Practice

Each practice contains practice-
specifics to add to the kernel.

Start Understand the Kernel

 The Kernel is very small, extracted from a large number of teams way-of
working

— It contains empty slots for things that every process have
— Slots for
« Competencies, such as analyst, developer, tester

« Things to work with , such as backlog, implementation,
executable system

« Things to do, such as implement the system, test the system
« The Kernel is practice agnostic

Kernel

Start with the Kernel

The Kernel contains empty slots for things that every process have

Things to Produce

~

N\

|||||||

AN

N

AN

)

[e e
I
T’

Ker

nel

Things to Do
P
i '\/ i '\’ i '\’

| P
Acceptthe System

| I,
Ensure Stakeholder

| I,
Understand the Need

o\

Satisfaction
\ J/
— — — —_—n = —)
i N i N I N i N i N
/ /
Specify the Shape the Implement Testthe Release the
System System Software System System
_ v,
()
_——t el el Y
Establish Project teer Project Support Team Conclude Project
_ J

Competencies To Perform
()

5%

Customer
Representative

o J
()
Analyst Developer Tester
_ _/
()

Use the Kernel to Harvest Your Own Best Practices

+

Kernel

Your Own

Best Practices

S

Add Your Practices on top of the Kernel

« Example for adding activities (from various practices) onto an activity space

| need
some way
to specify
the system

e <
S

N

Practitioner

/

Specify the
System

Specify the
System

| N
|

L

Specify the
System

| can tell
you how

_—

Find Actors and

D)

Specify Use-Case

From Use Case

Use Cases Module Practice
Practice
Experts
Write User Create User From User _
Stories Acceptance Tests Story Practice

\

/

D,

Capture High Level

Requirements

i,

Capture System
Requirements

From Traditional
Requirements
Practice

Practice overlays many cards on the kernel

nractices are aligned to the kernel (practice architecture

%% Architecture Essentials %
Architecture Essentials
Use this practice to actively address the
techrical risks facing the project and - - - - == - - =
/\ establsh an apprapriate architecture, A Y A Y LY
A This practice allows teams to: I * I * I LY
» Establish a firm foundation for the
incremental development of the I } I) I }
solution
o Effectively address the techrical 1 1 1
tisks facing the project F 7 Fd
« Share the major decisions about I I I
the structure and organization of 7 ra Fa
the implemented system -—— o - . -——— e = . -— e = .
« Verify that the system exhibits the
key characteristi ted by
the cuatomer Understand Ensure Stakehoider Accept the
« Objectively prove that the
) selected spproach s fit for purpose the Nead Satisfaction System
] B #& BB things opraduce
. « Things To Do
Tgete T To Comptces oo o 00
— radass o » Patterns
oo o oo == ooy = oo sy — oo
1 1 | | |
\ b A A b
1 1 | | |
b b b b b
| P | P | P | P | 7
<] Use Case Essentials =) 1 Vs 1 Vs 1 rs 1 Vs 1 Vs
—— Use Case Essentials I I I I I
Use this practice to capture reguirements L = - = L — - — L — — = L — = - L — = =
in an accessiole form and crive the B
— /\ euchpmers o sftuste Specify Shape the Implement Test Release
\ i prattice dlows tears
S— * Di ib ty what ity
- Descre ecxth whot » softucre the System System Software the System the System
» Group parts of the requirements
tooether
4 » Change the priority of what the
N ’ customer wants at any time:
4 = Produce simple visual model and
meaningful requirernents thatare | b e e e e o D e o —— i e e e -
derstandable to devel ol
Costomers ke 1 5 | A} 1 5 | N
® Take advantage of the benefits of \ \ \ \
iterative development I I I I
+ Thir To Prod
0 0 4 EE hneropo I h | A 1 A | A
o « Competencies i rs ré Fa
Things To Things To Competencies Patterns Patterns
odue | on 1 s 1 7 1 s 1 7
| R l — — — — 2 | A — l — — — — 2
Es:af_shsh Steer Project Support Team Conciude
Project Project

Improve Your Process by Adding Other Practices

® ©
+ ([0 + g a@+tt

Team Component PLA

Kernel Your Own Other Practices

Best Practices From Many Sources

Practices enable projects to run the way they need to

Project A Use Case Architecture Component lIterative

m Declarative Architecture Waterfall
Project B Requirements

f

T =) (38 (@
,..-::4‘5\ 2‘

T

Project C User Story Architecture Iterative

Way of Working = A subset of the practices in the
practice architecture

Practices enable projects to run the way they need to

g %% @A ©

Use Case Architecture Component lIterative

But how can we manage
these projects if they all

= 5% (©

User Story Architecture Iterative

Way of Working = A subset of the practices in the
practice architecture

Practice Architecture is Important

sjE BE| o
Project C

The kernel ensures common understanding across
teams in a minimal way

Project A

The Goal: Good Software Quickly and at Low Cost
Practices have become First-Class Citizens

Practices should focus on the Essentials

Using practices to build a process

Practices for Good Software, Quickly and at Low Cost
Wrap up

SIS i A o

You need some basic technical practices

a % 09

Component Architecture Iteration Use Case

... or Scrum, User Stories, Test-Driven Design...

Good Software

Useful Extensible Reliable

You need some more advanced technical practices

Practices for
Significant Reuse

Product Enterprise
Line Architecture Architecture

Basic Practices @ @
For Good Software

Architecture Iterative Use Case Component

Low Cost

Large Scale Reuse of Components

Nothing is more important than competent and motivated people

Social engineering patterns

000 .

W

Team Practice

“Creating the right working .
environment to enable the
team to excel.”

Self-Directing Team

Frequent Demonstration to
Stakeholders

Team Retrospective

Everyone Contributes What They Can
Common Ownership

Keep the Team Small

Self-Adapting Team

Everyone is a tester

Create alternative career paths
Managing cross-cutting teams

Competent & Motivated People

The Goal: Good Software Quickly and at Low Cost
Practices have become First-Class Citizens

Practices should focus on the Essentials

Using practices to build a process

Practices for Good Software, Quickly and at Low Cost
Wrap up

ok wNPE

Why practices are different than processes

You can learn practices individually
You can apply practices separately

You can adopt the practices you want, when you want, and at the
pace that suits you

You can mix-and-match practices from any source
You only have to change the practices that need changing
Different teams can adopt different practices according to their needs

== Q@ &

Component Architecture Iteration Use Case

How do you get started?

/Unified Process Practices \

3% @ S

Architecture Iteration Use Case

Select the most valuable

' ? practices and start using

them.

Component Product
000
Oo [§F] (B

k Process Team Modeliny

“The way to get started is to quit talking and begin doing.”
Walt Disney (Pioneer of animated cartoon films, 1901-1966)

Practices — Not Process help you to ...

 Good Software

* Quickly
« Low Cost

There are practices and Practices.
Good Practices should
= focus on the Essentials

= start from a Kernel — a practice architecture

)
= pe Smart 9 / ?)

. Y |
= be Executable }}Dﬂﬁé

Rationa

L=}
lyull
-
(LT

IBM Rational Software Development Conference 2008 2 _' AL)

— WHERE TEAMS ARE [/ /24480

