
Pushing the envelope: How to Optimize Quality and Performance in the software
delivery lifecycle
Page 1

Welcome to this IBM podcast, Pushing the envelope: How to Optimize Quality and
Performance in the software delivery lifecycle, by Michael T Lundblad.

Michael Lundblad is a Program Manager within IBM software group responsible
for driving strategic initiatives around IT lifecycle management, particularly

software quality management.

During his 22 years in the IT field, Michael has been the IT Director for two US Marine
Corps organizations, and consulted with healthcare, manufacturing, public and
commercial organizations on IT application infrastructure, development, testing and
operations issues.

Hello.

Today, I’m going to discuss with you the quality and performance aspects of
governing software delivery and operations. We’ll identify 4 recommended best
practices for ensuring quality and performance, and some of the IBM advances
that help make these possible.

But first, let’s examine the situation today.

There is a lot of talk these days about IT governance and risk management. CIOs have
for years sought to align IT priorities with business objectives. But what’s different now?

According to a 2006 IBM survey, 65 percent of the world’s top corporate CEOs plan to
radically transform their businesses through innovation in order to compete and
respond to what their markets need.

Enter project and portfolio management systems that help set up business cases to
justify and manage IT projects. PPM solutions provide IT executives with business and
technical insight or views into the progress of key projects. This helps them make easier
resource decisions to influence the most important projects to their business.

The next piece of the problem is what I like to call actionable governance at the project
level. Project managers need to know; in addition to how well their IT projects are going,
what are the business and technical risks to their success. On a moment-to-moment
basis they need to see cost, time, quality and resource metrics to determine if their
projects are at risk.

So what’s new about that? The answer is quality, and performance.

Any project manager you talk to will tell you that project delivery is about cost, time
and resources. Managing scope has historically been solely about these three metrics,
but what we’re adding is the quality dimension. Can you see the roots of the issues we’re
addressing?

The future of business applications in software is incredibly complex. Infrastructure
issues are huge, with new middleware advances & the internet, composite applications
based on Service Oriented Architecture (SOA), and packaged application integration with

Pushing the envelope: How to Optimize Quality and Performance in the software
delivery lifecycle
Page 2

legacy systems. These all lead to quality and performance issues that spell
disaster if the new system is released prematurely.

An analyst reported a couple of years ago that only 14 percent of new web-based
applications meet end-user response time expectations on day one, while 35 percent said
it worked fine in testing. What does that tell you about typical software performance
discipline? Most don’t do load testing, and those that do, do it poorly.

Additionally, the cost to fix poorly performing applications once they get into
production can be in the millions of dollars once you estimate revenue losses. For
example, in 1999 eBay rebuilt its entire infrastructure because of a major performance
problem in production. That was years ago, but look how well they perform today.

So, what can we learn from mistakes made in the past?

Firstly, we have to understand that traditional software development, testing and
management in siloed teams will not work with the same time pressures we just
talked about. To remain competitive, businesses need to find ways to improve quality
while shortening time to market for business-critical software. That’s the challenge
your software delivery team is facing.

So, software quality management must be continuous, governed and automated
throughout the delivery lifecycle. Traditional testing simply validates that the software in
development meets end-user expectations for functionality, availability and performance
prior to deployment. You can’t test in quality! Quality is a lifecycle concern for designers,
developers, build-engineers and final testing. If testing remains the quality management
function, IT will fail to meet business expectations.

What do we mean by continuous, governed and automated?

We used to think testing was the answer, so testing groups were formed often called
quality assurance teams. Instead software quality has to undergo a cultural shift. It must
be three things:

A) Continuous Integration is a new concept.

In 2006, the Software Engineering Institute (SEI) report, Performance Results of CMMI-
Based Process Improvement stated that, of the organizations surveyed, those that
implemented Capability Maturity Model Integration (CMMI) processes improved quality by
48 percent, while reducing costs by 34 percent and shortening schedules by 50 percent.
Not that surprisingly, the process improvements SEI recommended include early,
iterative and continuous quality activities, referred to as “continuous integration”.
This also requires a comprehensive, collaborative software fitness process model, upon
which IBM has built its team-oriented Rational® software delivery platform.

B) Software delivery requires actionable governance.

Project managers must have a moment-by-moment grasp of quality metrics, so corrective
actions can be initiated immediately. Furthermore, compliance issues and geographically
distributed development and testing teams make this even more challenging. Project
governance should make software delivery run smoothly and quickly, and it should
enable collaboration among teams, regardless of their locations.

C) Anything that can be automated should be.

Individual practitioner activities, such as functional and performance testing, have been
automated, and build engineers use timesaving build scripts. But more needs to be done
to automate the process and steps between roles to improve organizational efficiencies,

Pushing the envelope: How to Optimize Quality and Performance in the software
delivery lifecycle
Page 3

save money and speed time to market. For example, checking code into a
repository should trigger a build/smoke test, possibly including a functional
regression and performance test. Even test lab management should be
automated so machines are reserved, provisioned and queued up for running the test
cases in an automated workflow process.

Can you picture how this new perspective would affect your own organization? To
help you imagine how it might work for you, let’s explore the four recommended
best practices for ensuring high performing business-critical applications?

Firstly, focus on performance early in the lifecycle

Forrester has a great report called Performance-Driven Development that recommends
focusing on performance from requirements to design, development, testing and
production. Every step has to consider the performance requirements from the
beginning, and build to those requirements. Compare that to how your organization
currently approaches performance engineering?

Secondly, architect, design & build for performance

The application infrastructure should include all those things that middleware and
database experts know about. Middleware architects look at thread pooling and load
balancing, while software designers think about design patterns that perform well, and
developers need the right tools to spot things like memory leaks, and to test components
for performance before going any further. They can also instrument the applications to
capture performance information when they are finally load tested.

Thirdly, develop a performance testing center-of-excellence

This is a key concept. How can you achieve it? Here are my thoughts:

• Centralise all load testing efforts for economies of scale on equipment, software,
and skill usage.

• Use a production-like testing environment – this is hard, but one customer I know
is using their disaster recovery site. An alternative is to use what I call a “wind tunnel”
approach. This is a scaled down version of what’s in production, capture the results and
extrapolate what’s needed in production using modeling tools.

• You’ll also want to have a separate, dedicated network to isolate other traffic from
the test.

• Use tools for automated test lab provisioning. 30 percent of all testing time is
spent just setting up the lab for the test.

• Use load generation and monitoring tools that can view all application
infrastructure components which could impact performance, and integrate the results into
discernable problem diagnostics.

• I mentioned modeling tools for capacity, scaling and configuration planning, e.g.
Hyperformix. These tools take load testing information like workload volumes with
response time results, infrastructure usage (like the numbers of servers, sizing, network
bandwidth), resource consumption (like memory and CPU utilization) to model the test,
then extrapolate what a full production system should look like to achieve a given
response time requirement.

Pushing the envelope: How to Optimize Quality and Performance in the software
delivery lifecycle
Page 4

• Also you’ll need access to expertise like developers, designers,
infrastructure tuners, business analysts, networks specialists, and so on.

Finally, the fourth best practice measure is to enable collaboration among
development, testing & operations

The idea here is to provide integrated tooling and processes that link together these
various groups so that during and after testing, problem diagnosis and repair is as fast as
humanly possible. Things like importing log and trace data from the monitoring tools into
the developer/tester workspace so they can isolate, diagnose and find source code
issues in minutes instead of hours. The right tooling can stop finger pointing and get
these groups working together as a cohesive team.

Feeling inspired? Let’s look at a real life example of a customer following these
best practices to give us an idea of what they can achieve.

One of our financial services customers in the UK jointly presented with me at the recent
IBM Rational Software Developer Conference in Orlando Florida. They formed a center-
of-excellence for performance testing that’s part of their production support organization.
They have a pre-production performance testing lab that mirrors their production
environment and also is their disaster recovery site.

This team has a program where they consult with the business unit development teams
on early performance testing. These development teams are responsible for running
base-line transactional performance testing so that the key problematic transactions
are already tuned in isolation before they get to pre-production performance load
testing in a production-like environment with everything else running.

So this saves them a lot of time, and allows this latter stage of load testing to focus on
finding things caused by peak operational loads, cross application conflicts, and other
tuning concerns. This customer is also using the Tivoli Composite Application
Management solutions for isolating their bottlenecks and providing diagnostic trace
information to developers using Rational Application Developer and Rational
Performance Tester which can resolve and repair any latent performance issues that
come up. They also use the results for estimating usage growth over time so they
know when they will have to upgrade or add servers for load balancing.

This has meant that the organization has (1) met their go-live dates, (2) spotted the
impact of a new application under test upon other applications in the production-like
environment, and (3) noticed the impact on resources (like servers or databases) shared
by all other applications in the environment.

The IBM Rational Software Developer Conference gave me some other key insights
that you might find interesting. For example, there were some exciting
announcements that support the collaboration and automation themes.

First, IBM has always been very forward thinking in terms of leveraging open platform
technologies to support collaboration that connects the various roles in software delivery
and management via process and data integration. The future of our enterprise quality
management platform will be based upon the “Jazz” platform, which will appear in
something we call “Team Concert”.

We will plug all of our quality management offerings into this to make the integration
more seamless and provide an easier to navigate user interface for all the various
contributors.

In addition we will have a new test lab manager platform based on something called
“Styx”.

Pushing the envelope: How to Optimize Quality and Performance in the software
delivery lifecycle
Page 5

Imagine a workflow engine that walks the testing group through identifying test
assets in the lab, scheduling their use, provisioning the machines with the right
software to run the tests, running the test cases, reporting the results for
analysis, and releasing the test lab assets when complete. This means that we can run
more tests, and get new applications to market on time at less cost, and more
importantly, higher quality means less repair work after it goes live!

Second, IBM announced the acquisition of Watchfire, a testing solution for examining
new software for potential security breaches; and Telelogic, which will accelerate our
client’s ability to define, build, test, deliver and govern the delivery of complex
systems.

Finally, I noticed a marked increase in the numbers of attendees in our quality
management track. Many of the sessions I attended filled the room. I see this as
validation that our customers are vitally interested in IBM’s leadership in the area of
software quality. We also had record numbers of business partners and global system
integrators in attendance. I heard Accenture had 76 people present.

So, we have come to the end of this podcast.

As we have seen, companies who truly want to transform their businesses have to apply
a fresh look at how they approach quality and in particular best practices for performance
engineering.

IBM is providing leading solutions for continuous integration, actionable governance, and
process automation.

The four best practices we talked about today are those adopted by our customers who
are pushing the envelope on their business applications to meet the expectations of their
own customers in production on day one.

I hope you’ve found this interesting. If you’d like to find out more, you can visit

www.ibm.com/itsolutions/uk/developer/

where you can download whitepapers, view our webinars or contact us directly.

If you want to discuss any of the topics from this podcast with me in person, feel
free to email me at Lundblad@us.ibm.com

Thanks for listening!

