

IBM CICS Transaction Affinities Utility MVS/ESA IBM

User’s Guide

 SC33-1159-01

IBM CICS Transaction Affinities Utility MVS/ESA IBM

User’s Guide

 SC33-1159-01

 Note!

Before using this information and the product it supports, be sure to read the general information under “Notices” on page vii.

First edition (January 1994)

This edition applies to the IBM Customer Information Control System (CICS) program offering, the CICS Transaction Affinities Utility
MVS/ESA, program number 5696-582, and to all subsequent versions, releases, and modifications until otherwise indicated in new
editions. Consult the latest edition of the applicable IBM system bibliography for current information on this product.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the
addresses given below.

At the back of this publication is a page entitled “Sending your comments to IBM”. If you want to make comments, but the methods
described are not available to you, please address them to:

IBM United Kingdom Laboratories Limited, Information Development,
Mail Point 095, Hursley Park, Winchester, Hampshire, England, SO21 2JN.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1994. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

 Contents

Notices . vii
Trademarks and service marks . vii

Preface . ix
Notes on Terminology . x

Summary of changes . xi

Chapter 1. Introduction to transaction affinities 1
CICS/ESA dynamic transaction routing . 1

Static versus dynamic transaction routing . 1
The benefits of dynamic transaction routing . 2
What does dynamic routing cost? . 2
Transaction affinities . 2
CICS programming techniques for transaction affinity 4

Avoiding the effects of transaction affinity . 5
CICS/ESA 4.1 transaction isolation . 5

Chapter 2. Overview of the CICS Transaction Affinities Utility 7
Commands detected by the CICS Transaction Affinities Utility 9
Scanner . 10
Detector . 10
Reporter . 17
Builder . 17

Chapter 3. Installing the affinity utility . 19
Check the program directory . 19
Requirements for the CICS Transaction Affinities Utility 19

Estimating the size of the MVS data space and files 20
Installing the CICS Transaction Affinities Utility 21
Installing exit XEIOUT on CICS/MVS 2.1.2 . 22
Loading the contents of the distribution tape . 22
Defining the CICS Transaction Affinities Utility transient data destination . . . 24
Creating the VSAM files . 24
Defining CICS resources needed . 24

Installing the resource group on your CICS 26
Tailoring your CICS startup job . 26
Restarting your CICS region . 27

Chapter 4. Running the Scanner . 29
Creating a summary report . 29
Creating a detailed report . 31

Chapter 5. Running the Detector . 35
Displaying the Detector control screen . 36
Starting the collection of affinity data . 38
Pausing the collection of affinity data . 39
Resuming the collection of affinity data . 39
Stopping the collection of affinity data . 40
Changing the Detector options . 40

 Copyright IBM Corp. 1994 iii

Detector errors . 43

Chapter 6. Running the Reporter . 45
Output from the Reporter . 46

Affinity report . 47
Affinity transaction group definitions . 51
Using the affinity report . 52
Temporary storage compression . 55

Using the IBM Cross System Product . 55
Affinity analysis for a CICS region containing CSP 3.3 applications 55

Chapter 7. Running the Builder . 59
Syntax for input to the Builder . 60

HEADER statements . 63
Output from the Builder . 63

Combined affinity transaction group definitions 63
Data sets processed report . 66
Empty transaction groups report . 66
Group merge report . 66
Error report . 68

Chapter 8. Service . 69
When to contact the Support Center . 69
Dealing with the Support Center . 69

What the Support Center needs to know . 70
What happens next . 72

Appendix A. Details of what is detected . 75
ENQ/DEQ . 75
TS commands . 75
LOAD HOLD/RELEASE . 76
RETRIEVE WAIT/START . 76
ADDRESS CWA . 77
GETMAIN SHARED/FREEMAIN . 77
LOAD/FREEMAIN . 77
CANCEL/DELAY/POST/START . 78
SPI commands . 79
WAIT commands . 80

Appendix B. Correlating Scanner and Reporter output to source 81
Reporter output . 81
Scanner output . 81

Examples . 81

Appendix C. Useful tips when analysing CICS Transaction Affinities
Utility reports . 85
COBOL Affinities . 85
LOGON or SYSTEM when PCONV expected 85
Unrecognised Transids . 85

Appendix D. Messages and Codes . 87
Detector table manager diagnostics . 118
Detector CAFB request queue manager diagnostics 120
Date formatter diagnostics . 120

iv CICS Transaction Affinities Utility User’s Guide

Index . 121

 Contents v

vi CICS Transaction Affinities Utility User’s Guide

 Notices

The following paragraph does not apply in any country where such
provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some
states do not allow disclaimer of express or implied warranties in certain
transactions, therefore this statement may not apply to you.

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.

Any reference to an IBM licensed program or other IBM product in this publication
is not intended to state or imply that only IBM’s program or other product may be
used. Any functionally equivalent program that does not infringe any of IBM’s
intellectual property rights may be used instead of the IBM product. Evaluation and
verification of operation in conjunction with other products, except those expressly
designated by IBM, is the user’s responsibility.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Commercial Relations, 208 Harbor Drive, Stamford, Connecticut 06904, U.S.A.

Trademarks and service marks
The following terms, used in this publication, are trademarks or service marks of
IBM Corporation in the United States or other countries:

CICS CICS/ESA CICS/MVS
CICSPlex SM# CSP DB2
IBM MVS/ESA RETAIN

 Copyright IBM Corp. 1994 vii

viii CICS Transaction Affinities Utility User’s Guide

 Preface

What this book is about
This book describes the IBM CICS Transaction Affinities Utility MVS/ESA. It
explains what the utility does, how to install it, and how to run the various
components of the utility.

Who this book is for
This book is for CICS system programmers who may be planning to use the CICS
dynamic transaction routing facility for workload balancing, and need to
determine whether any of the transactions in their CICS applications use
programming techniques that cause inter-transaction affinity. It can also be used
by application programmers to detect whether application programs they are
developing are likely to cause inter-transaction affinity.

In particular, this book is of interest to CICS system programmers who are planning
to use CICSPlex System Manager/ESA (CICSPlex SM) for workload balancing.
For more information about CICSPlex SM, see the CICSPlex System Manager
Concepts and Planning manual, GC33-0786.

It is also of use if you are planning to implement asynchronous processing using
CICS function shipping or are planning to use the transaction isolation facility of
CICS/ESA Version 4 Release 1 (CICS/ESA 4.1).

What you need to know to understand this book
You need to be familiar with the CICS application programing interface (API) and
the various programming techniques that are available to CICS application
programmers. In particular you should be familiar with those techniques that CICS
application programs can use to pass data one to another, such as sharing
common storage, and techniques to synchronize their execution.

Chapter 1, “Introduction to transaction affinities” on page 1 gives a brief
introduction to the inter-transaction affinity that can be caused by some of these
techniques; for a full discussion of transaction affinities, see the CICS Dynamic
Transaction Routing in a CICSplex, SC33-1012.

How to Use this Book
This book is intended to be read sequentially so that you understand (1) how to
install the affinity utility, and (2) how to run the separate components. Later, when
you are familiar with the utility, you need only reference the chapter that deals with
the particular component that you want to run.

 Copyright IBM Corp. 1994 ix

Notes on Terminology
MVS/ESA

The MVS/ESA operating system, generally referred to as MVS.

Customer Information Control System/Enterprise System Architecture
CICS/ESA, generally referred to as CICS.

Argument zero
When an EXEC CICS command is translated and compiled, it results in an
encoded parameter list to be used with a call statement. The first parameter in
this list is a constant known as the CICS argument zero. The first two bytes
of this constant identify the command; for example, X'0A04' identifies it as a
READQ TS command.

x CICS Transaction Affinities Utility User’s Guide

Summary of changes

The following changes have been made to this book since it was published. The
changes are indicated by a hash (#) symbol to the left of the changes.

� Changes affecting CICS/ESA 4.1, for PTF UN61942 and UN71013:

– For CICS/ESA 4.1, the Detector intercepts the signoff message
DFHSN1200 (and the DFHZC3462 and DFHZC5966 messages as for
CICS/ESA 3.3.) For more information, see page 11.

– For a CICS/ESA 4.1 region, you should specify the DSHIPINT=0 system
initialization parameter, to ensure that the CICS Transaction Affinities Utility
observes terminal logoffs correctly. For more information, see page 27.

� A new section has been added, “Using the IBM Cross System Product” on
page 55, describing the use of the Transaction Affinities Utility with programs
developed using the IBM Cross System Product.

 Copyright IBM Corp. 1994 xi

xii CICS Transaction Affinities Utility User’s Guide

Chapter 1. Introduction to transaction affinities

 This chapter

Provides a brief introduction to the concept of transaction affinities and the
associated CICS programming techniques, and highlights the significance of
transaction affinities in a dynamic transaction routing environment. For more
information about transaction affinities, see the CICS Dynamic Transaction
Routing in a CICSplex manual, SC33-1012.

CICS/ESA dynamic transaction routing
The IBM Customer Information Control System (CICS) has been handling
customers' online transaction processing requirements for over 25 years. In that
time, CICS has been extensively enhanced to meet the ever-growing needs of
business applications, and to exploit the capabilities of modern computer
processors and communication systems. One of the most significant
enhancements in recent times is the addition of the dynamic transaction routing
facility.

Originally, a full-function CICS ran in a single address space (region) within the
MVS environment. Currently, most CICS users use some form of
intercommunications to operate multiple, interconnected, CICS regions—a
CICSplex. Using the CICS multiregion operation (MRO) facility, a CICSplex
typically consists of one or more terminal-owning regions (TOR), and a number of
application-owning regions to which the TORs route the incoming transactions for
processing.

 ┌─────────────────┐ ┌──────────────────┐

 │CICS A │ │CICS B │

 │Terminal-Owning │ │Application-Owning│

 │Region (TOR) │ │Region (AOR) │

┌────────┐ │ │ │ │

│End-user│ │ ┌───────────┐ │ MRO │ ┌───────────┐ │

│terminal%──& │CICS Relay │ %─────────& │ User │ │

│ │ │ │Transaction│ │ links │ │Transaction│ │

└────────┘ │ └───────────┘ │ │ └───────────┘ │

 └─────────────────┘ └──────────────────┘

Figure 1. The CICS transaction routing facility

Static versus dynamic transaction routing
Prior to CICS/ESA Version 3, TORs routed transactions to the AORs predefined in
transaction resource definitions by the system programmer. This static form of
transaction routing adds to the system administration burden of the system
programmer, because when transaction workloads have to be rebalanced across
the AORs, transaction resource definitions have to be modified accordingly.

The dynamic transaction routing facility introduced in CICS/ESA removes the need
to specify the remote system name of a target AOR in the transaction definition.
Instead, you let the TOR determine dynamically to which AOR it should route

 Copyright IBM Corp. 1994 1

incoming transactions. Unlike static routing, where there can only ever be one
AOR to which the TOR can route a transaction, with dynamic routing you can
create several AORs with the capability of processing any given workload, and let
the TOR choose the best one from a candidate list.

The benefits of dynamic transaction routing
Being able to route transactions to AORs dynamically offers many benefits in an
online transaction processing (OLTP) system. The user can achieve:

 � Improved performance
 � Improved availability
� Simplified systems management.

What does dynamic routing cost?
Of course, the CICS-supplied code cannot determine where to send a transaction,
as this depends on your CICS environment and routing policies. It needs a facility
that you can use to specify your routing policies in a way that CICS can use them.
This can be a user-written dynamic transaction routing program used to supply the
name of a suitable AOR. You can define the name of a dynamic routing program
to CICS on the DTRPGM system initialization parameter.

At the basic level, a dynamic routing program simply contains tables of user
transaction identifiers, with the matching system identifiers (SYSIDs) of the AORs
that can process the transactions. At the highest and most sophisticated level, the
dynamic routing program would also be capable of detecting and managing any
special factors that might affect transaction routing.

One factor that can affect the otherwise free choice of AOR is the use of particular
CICS programming techniques that transactions use to pass data from one to
another.

 Transaction affinities
CICS transactions use many different techniques to pass data from one to another.
Some of these techniques require that the transactions exchanging data must
execute in the same CICS region, and therefore impose restrictions on the dynamic
routing of transactions. If transactions exchange data in ways that impose such
restrictions, there is said to be an affinity between them.

Basically, there are two categories of affinity:

 � Inter-transaction affinity
 � Transaction-system affinity.

The restrictions on dynamic transaction routing caused by transaction affinities
depend on the duration and scope of the affinities. Clearly, the ideal situation for a
dynamic transaction routing program is for there to be no transaction affinities at all,
which means there are no restrictions in the choice of available AORs for dynamic
transaction routing. However even when transaction affinities do exist, there are
limits to the scope of these affinities; the scope of the affinity being determined by:

Affinity relation
Determines how the dynamic transaction routing program is to select a target
AOR for a transaction instance associated with the affinity.

2 CICS Transaction Affinities Utility User’s Guide

Affinity lifetime
Determines when the affinity is ended.

 Inter-transaction affinity
Inter-transaction affinity is an affinity between two or more CICS transactions. It
is caused by the transactions using techniques to pass information between one
another, or to synchronize activity between one another, in a way that requires the
transactions to execute in the same CICS region. This type of affinity is
inter-transaction affinity, where a set of transactions share a common resource
and/or coordinate their processing. Inter-transaction affinity, which imposes
restrictions on the dynamic routing of transactions, can occur in the following
circumstances:

� One transaction terminates, leaving “state data” in a place that a second
transaction can access only by running in the same CICS region as the first
transaction.

� One transaction creates data that a second transaction accesses while the first
transaction is still running. For this to work safely, the first transaction usually
waits on some event, which the second transaction posts when it has read the
data created by the first transaction. This synchronization technique requires
that both transactions are routed to the same CICS region.

 Transaction-system affinity
Transaction-system affinity is an affinity between a transaction and a particular
CICS region (that is, it is not an affinity between transactions themselves). It is
caused by the transaction interrogating or changing the properties of that CICS
region.

Transactions with affinity to a particular system, rather than another transaction, are
not eligible for dynamic transaction routing. In general, they are transactions that
use INQUIRE and SET commands or have some dependency on global user exit
programs.

Affinity relations and lifetimes
An affinity relation can be classified as one of the following:

Global A group of transactions where all instances of all transactions in the
group that are initiated from any terminal must execute in the same
AOR for the lifetime of the affinity. The affinity lifetime for global
relations can be system or permanent.

LUname A group of transactions whose affinity relation is defined as LUname
is one where all instances of all transactions in the group that are
initiated from the same terminal must execute in the same AOR for
the lifetime of the affinity. The affinity lifetime for LUname relations
can be pseudo-conversation, logon, system, or permanent.

Userid A group of transactions whose affinity relation is defined as userid is
one where all instances of the transactions that are initiated from a
terminal and executed on behalf of the same userid, must execute
in the same AOR for the lifetime of the affinity. The affinity lifetime
for userid relations can be pseudo-conversation, signon, system, or
permanent.

 Chapter 1. Introduction to transaction affinities 3

An affinity lifetime can be classified as one of:

System The affinity lasts for as long as the target AOR exists, and ends
whenever the AOR terminates (at a normal, immediate, or abnormal
termination). (The resource shared by transactions that take part in
the affinity is not recoverable across CICS restarts.)

Permanent The affinity extends across all CICS restarts. (The resource shared
by transactions that take part in the affinity is recoverable across
CICS restarts.) This is the most restrictive of all the
inter-transaction affinities.

Pseudo-conversation
The (LUname or userid) affinity lasts for the whole
pseudo-conversation, and ends when the pseudo-conversation ends
at the terminal.

Logon The (LUname) affinity lasts for as long as the terminal remains
logged on to CICS, and ends when the terminal logs off.

Signon The (userid) affinity lasts for as long as the user is signed on, and
ends when the user signs off.

Notes:

1. For userid affinities, the pseudo-conversation and signon lifetimes are only
possible in those situations where only one user per userid is permitted. Such
lifetimes are meaningless if multiple users are permitted to be signed on with
the same userid at the same time (at different terminals).
APAR PN68267

Applied.

2. If an affinity is both userid and LUname (that is, all instances of all transactions
in the group were initiated from the same terminal and by the same userid),
then LUname takes precedence.

CICS programming techniques for transaction affinity
Associated with transaction affinity, there are three broad categories of CICS
programming techniques:

� Safe programming techniques
� Unsafe programming techniques
� Suspect programming techniques.

The following sections outline these programming techniques.

Safe programming techniques
The programming techniques in the generally safe category are the use of:

� The communication area (COMMAREA) on CICS RETURN commands

� A TCT user area (TCTUA) optionally available for each terminal defined to
CICS.

4 CICS Transaction Affinities Utility User’s Guide

Unsafe programming techniques
The programming techniques in the unsafe category are the use of:

� Long-life shared storage:

– The common work area (CWA)
– GETMAIN SHARED storage
– Storage obtained via a LOAD PROGRAM HOLD

� Task-lifetime local storage shared by synchronized tasks.

� Synchronization or serialization of tasks using CICS commands:

– WAIT EVENT / WAIT EXTERNAL / WAITCICS
– ENQ / DEQ

Suspect programming techniques
Some programming techniques may, or may not, create affinity depending on
exactly how they are implemented. A good example is the use of temporary
storage. Application programs using techniques in this category must be checked
to determine whether they will work without restrictions in a dynamic transaction
routing environment.

The programming techniques in the suspect category are the use of:

� Temporary storage queues with restrictive naming conventions

� Synchronization or serialization of tasks using CICS commands:

– RETRIEVE WAIT / START
– START / CANCEL REQID
– DELAY / CANCEL REQID
– POST / CANCEL REQID

Avoiding the effects of transaction affinity
In a dynamic transaction routing environment, your dynamic transaction routing
program must take account of transaction affinity in order to route transactions
effectively. Ideally, you should avoid creating application programs that cause
affinity, in which case the problem does not exist. However, where existing
applications are concerned it is important that you determine whether they are
affected by transaction affinity before using them in a dynamic transaction routing
environment. This is the task the CICS Transaction Affinities Utility is designed to
help you with.

CICS/ESA 4.1 transaction isolation
The transaction isolation function of CICS/ESA 4.1 offers storage protection
between application programs, ensuring that one application does not accidentally
overwrite the storage of another application.

Transaction isolation ensures that user-key1 programs execute in their own
subspace, with appropriate access to any shared storage, or to CICS storage.
Thus a user transaction is limited to its own ‘view’ of the address space. In

1 User key defines both the storage and execution key for user application programs.

 Chapter 1. Introduction to transaction affinities 5

general, transaction isolation ensures that each user-key program is allocated a
separate (unique) subspace, with appropriate access to any shared storage or to
CICS storage. They do not have any access to user-key task-lifetime storage of
other tasks.

Existing applications should run unmodified provided they conform to transaction
isolation requirements. However, a minority of applications may need special
definition if they:

� Issue MVS macros directly, or
� Modify CICS control blocks, or
� Have a legitimate need for one task to access, or share, another task’s storage.

Some existing transactions may share task-lifetime storage in various ways, and
this sharing may prevent them running isolated from each other. To allow such
transactions to continue to execute, without requiring that they run in the base
space (where they could corrupt CICS data or programs) a single common
subspace is provided in which all such transactions can execute. They are then
isolated from the other transactions in the system that are running in their own
subspaces, but able to share each other’s data within the common subspace.

You might have some transactions whose application programs access each
other’s storage in a valid way. One such case is when a task waits on one or more
event control blocks (ECBs) that are later posted, either by an MVS POST or ‘hand
posting’, by another task. For example, a task can pass the address of a piece of
its own storage to another task (via a temporary storage queue or some other
method) and then WAIT for the other task to post an ECB to say that it has
updated the storage. Clearly, if the original task is executing in a unique subspace,
the posting task will fail when attempting the update and to post the ECB, unless
the posting task is executing in CICS key. CICS therefore checks when a WAIT is
issued that the ECB is in shared storage, and raises an INVREQ condition if it is
not. Storage for the timer-event control area on WAIT EVENT, and storage for
event control blocks (ECBs) specified on WAIT EXTERNAL and WAITCICS
commands, must reside in shared storage2 .

You can use the CICS Transaction Affinities Utility to identify those transactions
whose programs issue WAIT EVENT, WAIT EXTERNAL, or WAITCICS commands,
or MVS POST macros.

 What next?

This chapter has briefly summarized the techniques and commands that can
cause transaction affinity. Chapter 2, “Overview of the CICS Transaction
Affinities Utility” on page 7 gives an overview of the CICS Transaction Affinities
Utility and details of all the commands and command sequences that the CICS
Transaction Affinities Utility looks for.

2 Shared storage is allocated from one of the user-key shared dynamic storage areas, below or above the 16MB boundary (SDSA
or ESDSA).

6 CICS Transaction Affinities Utility User’s Guide

Chapter 2. Overview of the CICS Transaction Affinities Utility

 This chapter

Gives an overview of the CICS Transaction Affinities Utility, and describes the
basic components that make up this program offering.

The CICS Transaction Affinities Utility is designed to detect potential causes of
inter-transaction affinity and transaction-system affinity for those users planning to
use the CICS dynamic transaction routing facility. It can be used to detect
programs that use EXEC CICS commands that may cause transaction affinity. It
can also be used to create a file containing combined affinity transaction group
definitions, suitable for input to the CICS system management product,
CICSPlex SM. The commands that can be detected are listed in “Commands
detected by the CICS Transaction Affinities Utility” on page 9. The CICS
Transaction Affinities Utility is also of value for those users planning to use either
asynchronous processing by CICS function shipping, or the transaction isolation
facility of CICS/ESA 4.1.

The CICS Transaction Affinities Utility runs on the following releases of CICS:

 � CICS/ESA Version 4 Release 1
 � CICS/ESA Version 3 Release 3
 � CICS/ESA Version 3 Release 2.1
 � CICS/MVS Version 2 Release 1.2.

The CICS Transaction Affinities Utility has four main components:

 1. Scanner (batch)
 2. Detector (real-time)
 3. Reporter (batch)
 4. Builder (batch).

The CICS Transaction Affinities Utility determines the affinities that apply to a single
CICS region; that is, a single pure AOR or single combined TOR/AOR. It can be
run against production CICS regions, and is also useful in a test environment, to
detect possible affinities introduced by new or changed application suites or
packages.

APAR PN68267

Apar applied.

 Copyright IBM Corp. 1994 7

Important note

The CICS Transaction Affinities Utility is only an aid to help you find any
affinities in your applications. You must relate the output from the CICS
Transaction Affinities Utility to the applications that contain affinities before
deciding whether or not the applications are suitable for CICS dynamic
transaction routing.

To ensure that you detect as many potential affinities as possible, you should
use the CICS Transaction Affinities Utility against all parts of your workload,
including rarely-used transactions and out-of-normal situations.

Figure 2 shows the CICS Transaction Affinities Utility. Each of the four
components are described in more detail in the following sections.

Report

Report

Scanner Detector

ReporterBuilder

User

AOR or TOR/AOR

Collected
Affinity
Data

Combined Affinity
Transaction Groups

Basic Affinity
Transaction Groups

Application
Load Library

To CICSPlex SM

1. 2.

3.4.

Figure 2. CICS Transaction Affinities Utility components

8 CICS Transaction Affinities Utility User’s Guide

Commands detected by the CICS Transaction Affinities Utility
The CICS Transaction Affinities Utility can be used to detect instances of the EXEC
CICS commands listed in Table 1.

Table 1. Commands detected by the CICS Transaction Affinities Utility

Inter-transaction affinity commands Transaction-system affinity commands

ENQ
DEQ
READQ TS
WRITEQ TS
DELETEQ TS
ADDRESS CWA
LOAD
RELEASE
GETMAIN SHARED
FREEMAIN
RETRIEVE WAIT
DELAY
POST
START
CANCEL

ADDRESS CSA (CICS/MVS 2.1.2 only)
COLLECT STATISTICS
ENABLE PROGRAM
DISABLE PROGRAM
EXTRACT EXIT
INQUIRE
SET
PERFORM
RESYNC
DISCARD (CICS/ESA only)
WAIT EXTERNAL
WAIT EVENT
WAITCICS

Notes:

1. The Scanner may detect some instances of these commands that do not cause an
affinity. For example, all FREEMAIN commands are detected but it is only those that are
used to free GETMAIN SHARED storage that may cause affinity.

2. The Scanner also detects MVS POST SVC calls and MVS POST LINKAGE=SYSTEM
non-SVC calls, because of their tie-up with the various EXEC CICS WAIT commands.

3. The CICS Transaction Affinities Utility does not search for transient data and file control
EXEC CICS commands, as they are assumed not to cause affinity, because you can
define transient data and file control resources as remote (in which case the request is
function-shipped, causing no affinity problem).

4. The Detector ignores commands that target remote resources and are function shipped,
because by function shipping the command there is no affinity problem.

5. The Scanner and Detector do not search for commands issued by any program named
CAUxxxxx or DFHxxxxx, because CICS Transaction Affinities Utility and CICS programs
are not considered part of the workload. Also, the Detector does not search for
commands issued from:

� DB2 and DBCTL task-related user exits
 � User-replaceable modules.

6. There are other ways that transactions can cause affinity with each other, but they are
not readily detectable by the CICS Transaction Affinities Utility, because they do not take
place via the EXEC CICS API.

7. The Detector lists WAIT commands as transaction-system affinities, because only half of
the affinity can be detected. (The Detector does not detect MVS POST calls or hand
posting of ECBs.)

 Chapter 2. Overview of the CICS Transaction Affinities Utility 9

 Scanner
The Scanner is a batch utility that you can use to scan a load module library to
detect those programs in the library that issue the EXEC CICS commands that may
cause transaction affinity. It does this by examining the individual object programs
looking for patterns that match the argument zero3 format for the commands in
question.

The Scanner detects the use of the EXEC CICS commands listed in Table 1 on
page 9, and MVS POST requests.

The report produced by the Scanner only indicates that potential affinity problems
may exist, as it only identifies the programs that issue the commands. It cannot
obtain dynamic information about the transactions that use the programs or the
names of the resources acted upon. You should use the report in conjunction with
with the main report produced by the Reporter (see “Reporter” on page 17).

Notes:

1. The Scanner operation is independent of the language that the scanned
program was written in and the release of CICS that the scanned program was
translated under.

2. The Scanner may indicate an affinity problem that does not really exist,
because the bit pattern found accidentally matches the argument 0 format for
an affinity command.

3. The Scanner does not detect CICS macro-level commands.

 Detector
The Detector can be used in real-time to detect transaction affinities in a running
CICS region, and save details of the affinities in an MVS/ESA data space. This
data is subsequently saved to DASD. The Detector consists of:

� A control transaction, CAFF
� An autosave transaction, CAFB
� Some global user exit programs
� A task-related user exit program.

This is shown in Figure 3 on page 11.

The data is collected by the global user exit programs at exit points XEIOUT,
XMEOUT (or XTDCOUT for CICS/MVS 2.1.2), and XICEXP, and a task-related
user exit at task start and task end. Between them, these exit programs intercept
all the EXEC CICS commands and other events (pseudo-conversation end,
terminal logoff, user signoff) that are needed to deduce the affinities and their
relations and lifetimes. These exit programs coexist with any other exit programs at
the same exit points. (They can be placed before or after other exit programs,
without any of the exit programs being affected.)

3 For an explanation of argument zero, see “Notes on Terminology” on page x.

10 CICS Transaction Affinities Utility User’s Guide

Exit
Programs

User

Collected
Affinity
Data

Collected
Affinity
Data

Data space

CICS AOR
or

TOR/AOR

CAFB CAFF

XEIOUT TRUE XMEOUT XICEXP

Figure 3. Detector components

You are recommended to run the Detector on stable CICS regions only; that is,
maintenance should not be applied to application programs while the Detector is
running. This is because maintenance of such programs may introduce or remove
affinities, thus rendering collected data inaccurate.

What is detected
The Detector detects the EXEC CICS commands listed in Table 1 on page 9 that
can cause transaction affinity. It also detects:

� The end of pseudo-conversations, by detecting when one of the transactions in
the pseudo-conversation terminates without issuing an EXEC CICS RETURN
TRANSID command with a non-zero transaction identifier. If a
pseudo-conversation ends, and the resource shared by transactions that take
part in the affinity still exists, then the lifetime of the affinity must be greater
than PCONV.

� Logoffs and signoffs, by intercepting the CICS messages listed in Table 2 on
page 12.

 Chapter 2. Overview of the CICS Transaction Affinities Utility 11

Table 2. Logoff and signoff messages intercepted

CICS release# Messages

CICS/ESA 4.1# DFHSN1222 Sign off at netname portname by userid userid is complete.
DFHZC3462 termid tranid Node netname session terminated.
DFHZC5966 DELETE started for terminal termid.

CICS/ESA V3# DFHSN2222 Signoff at terminal termid by userid userid is complete.
DFHZC3462 termid tranid Node netname session terminated.
DFHZC5966 DELETE started for terminal termid.

CICS/MVS 2.1.2# DFH3462 termid tranid Node netname session terminated.
DFH5966 Deletion for terminal termid successful.

For more details about what is detected, see Appendix A, “Details of what is
detected” on page 75.

Worsening of transaction affinities relations: In some cases, the Detector may
not detect enough occurences (at least 10) of an affinity command to be sure that
the affinity is definitely with a terminal (LUNAME) or userid (USERID). In such
cases, the Detector records the (worsened) affinity relation as GLOBAL instead of
LUNAME or USERID. Such relation worsening is flagged by the Detector, and
reported by the Reporter.

Worsening of transaction affinities lifetimes: If a pseudo-conversation ends,
and the resource still exists, the Detector deduces that the lifetime is longer than
PCONV; that is, one of: LOGON, SIGNON, SYSTEM, or PERMANENT.

If a logoff or signoff occurs, and the resource still exists, the Detector deduces that
the lifetime is longer than LOGON or SIGNON; that is, either SYSTEM or
PERMANENT.

In some cases, the Detector may not detect a logoff or signoff, so cannot be sure
that the affinity lifetime is LOGON or SIGNON. In such cases, the Detector records
the (worsened) lifetime as SYSTEM or PERMANENT instead of LOGON or
SIGNON. For example, this occurs when the CICS region on which the Detector is
running is an AOR, because it is impossible in some cases to detect a logoff or
signoff that occurs in a connected TOR. (The Detector cannot detect signoff events
on CICS/MVS 2.1.2.)

Such lifetime worsening is flagged by the Detector, and reported by the Reporter.

What is not detected
The Detector does not detect EXEC CICS commands in the following situations:

� The Detector is not running

� The issuing program was translated with the SYSEIB option

� The command is an EXEC CICS FEPI command

� The command is not one that can cause transaction affinity

� The program name starts with CAU or DFH

� The program is a DB2 or DBCTL task-related user exit

� The program is a CICS user-replaceable module

12 CICS Transaction Affinities Utility User’s Guide

� The transaction identifier does not match the prefix, if specified, for transactions
to be detected

� The command is not one of the affinity types specified to be detected

� The command is function shipped to a remote CICS region

� The inter-transaction affinity commands are used within the same task.

The Detector does not detect CICS macro-level commands.

The Detector does not detect MVS POST calls or hand posting of ECBs.

If you continue a pseudo-conversation by setting a transid in the TIOA (rather than
by using RETURN TRANSID), the Detector cannot detect PCONV lifetimes. In this
case, the shortest lifetime detected is LOGON or SIGNON, because it interprets
every transaction end as a pseudo-conversation end.

Ideally the CICS Transaction Affinities Utility should ignore commands issued by all
task-related user exits and global user exits, because they are not part of
applications. However, it cannot distinguish such commands from other
commands, and does detect them. If your user exits use commands that can
cause transaction affinities, the commands are detected, perhaps making any
affinity problem seem worse than it actually is.

In CICS/ESA 4.1, if an exit program at XICEREQ or XTSEREQ modifies the EXEC
CICS command then that modification is not visible to the Detector. (It detects the
original, unmodified, command.) However, if an XICEREQ, XICEREQC, XEIIN,
XTSEREQ, or XTSEREQC exit program (or an XEIOUT exit program invoked
earlier) modifies EIBRESP, then the Detector sees the modified value.

APAR PN87388

Applied by Clare Jackson on 2/10/96

CICS Global user exit considerations
Modifications to EXEC CICS commands from exit programs running in XICEREQ
and XTSEREQ are not visible to the Detector because different copies of the
command-level parameter list are involved. . CICS provides a copy of the
command parameter list to the exit programs, addressed via UEPCLPS. This
allows them to modify certain parameters of the EXEC CICS command.

CICS has to provide a copy of the parameter list for such modifications, and not the
original version, since if the original were modified then all subsequent invocations
of it would reference the changed parameters. Also, the parameters to be modified
might be stored as read-only literals within program storage, and be unchangeable.

A program in XTSEREQ could add the SYSID parameter to an EXEC CICS
WRITEQ request, for example, by modifying the copy of the parameter list given to
XTSEREQ. This would result in the request being function-shipped to the remote
CICS system specified by the SYSID option, and not generating an affinity on the
local CICS system.

When the Detector analyses the request (from the XEIOUT global user exit point), it
is referencing the original parameter list, and not the modified copy. This means

 Chapter 2. Overview of the CICS Transaction Affinities Utility 13

that certain affinities may be detected that do not actually exist. The previous
example of a temporary storage request being function-shipped due to a change
made via XTSEREQ would be invisible to the Detector, and could lead to that
request generating affinity information on the local CICS system.

You should take this into account when analyzing the data generated from running
the Detector. For further information about the use of CICS global user exit
programs, see the CICS/ESA Customization Guide.

Controlling the Detector
You can monitor and control the Detector through the CAFF transaction, which
enables you to start, pause, continue, and stop the collection of affinity data into the
tables in the data space. Using the CAFF transaction, you can also specify for
which affinity commands, and for which transactions, data is to be collected.

The options that you specify to control the Detector for a CICS region are
preserved in a recoverable VSAM control file. For more information about this file,
see “The control record VSAM file” on page 16.

How the affinity data is collected
The Detector uses a number of affinity tables in the data space to hold collected
affinity data. The affinity tables are in three categories:

1. There is an affinity table, or set of tables, for each of the following command
groups that cause inter-transaction affinity:

� ENQ and DEQ commands
� READQ TS, WRITEQ TS, and DELETEQ TS commands
� LOAD HOLD and RELEASE commands
� RETRIEVE WAIT and START commands
� ADDRESS CWA commands
� GETMAIN SHARED and FREEMAIN commands
� LOAD and FREEMAIN commands
� CANCEL, DELAY, POST, and START commands.

The tables for a particular group have a structure appropriate to that group.

2. There is an affinity table for each of the following command groups that cause
transaction-system affinity:

� INQUIRE, SET, ENABLE, DISABLE, EXTRACT, COLLECT STATS,
PERFORM, DISCARD, ADDRESS CSA, and RESYNC commands.

� WAITCICS, WAIT EVENT, and WAIT EXTERNAL commands.

3. There are two affinity tables that are used as aids to searching some of the
other tables.

The affinity tables reside in the data space and are saved to the CICS Transaction
Affinities Utility files when you stop the Detector, and optionally at predetermined
intervals. (See “Saving affinity data” on page 15.)

14 CICS Transaction Affinities Utility User’s Guide

Saving affinity data
The affinity data collected by the Detector is saved to the CICS Transaction
Affinities Utility VSAM files by the autosave transaction, CAFB. For more
information about these files, see “The affinity data VSAM files.”

The CAFB transaction saves affinity data automatically when you stop the Detector.
You can also specify that the CAFB transaction save affinity data as follows:

� On a predetermined time/activity basis. That is, data is saved if either more
than 300 seconds has passed, or more than 1000 table elements have
changed, since the last save.

� When you pause the Detector.

Once the CAFB transaction has saved any data collected, it either becomes
dormant until next activated (while the Detector is still running or paused) or
terminates (if the Detector has been stopped).

Not all the affinity tables in the data space need to be saved, because some are
temporary or are used only as an aid to searching. Further, some tables contain
temporary elements, used for recording a possible affinity. Such elements are not
saved to the files. They are either deleted when the CICS Transaction Affinities
Utility deduces that there is actually no affinity, or are made permanent when it
deduces that there really is affinity (in which case they get saved). Also, when data
is saved, only those table elements that have been added or changed since the last
save are written to the dataset. Timestamps in each table element indicate
whether the element has been written already and whether it has changed since
the last write. This minimizes the number of writes performed.

To improve performance, each affinity table is browsed and saved in its entirety,
before considering the next table.

The affinity table elements are written in such an order that the data on the file is
always consistent.

Note: If CICS or the Detector abends, the affinity data may be incomplete. Where
possible, the Reporter detects this and issues a message to warn about possible
incomplete data.

The affinity data VSAM files
The Detector uses three non-recoverable VSAM KSDS to hold saved affinity data.
The files should be big enough to hold the maximum amount of affinity data that
might be collected. Three are required because of the wide range of key lengths
that the different tables have.

KSDS files are used because the Detector and Reporter need keyed access to the
data.

The files are not recoverable because of the large amount of data that needs to be
written. The data is written to the files in such a way that it remains consistent.

When the data contained in the tables is saved, each element in each table is a
single file record. Records are therefore varying length. Each record has a prefix
that contains a one-byte table identifier that identifies the affinity table the record
belongs to. The table identifier acts as the first part of the record key. The second
part of the key is the key of the table element itself.

 Chapter 2. Overview of the CICS Transaction Affinities Utility 15

Each file contains a header record. This enables both the Detector and Reporter to
validate that the files they have been presented with are indeed CICS Transaction
Affinities Utility affinity data files. The header record has a key in the same format
as the rest of the keys on the file, so a table identifier of zero is used (no real table
will have a table identifier of zero). The header record contains the CICS specific
applid, thus allowing cross-validation of files.

The control record VSAM file
The CICS Transaction Affinities Utility control file is a recoverable VSAM KSDS file
that holds a single control record. This record is used to preserve the Detector
options and statistics, so that information is retained across Detector runs,
transaction failures, and system failures and restarts. The record is created when
the Detector transaction is first run on the CICS region, and is never deleted.

The control record holds the following information.

 � CAFF options
 � Detector statistics
 � History information

– Reason why STOPPED
– Userid if STOPPED by user
– Abend code if STOPPED by abend
– Userid for last Detector options update
– Date and time of last Detector options update
– Specific applid of CICS system.

The record is updated whenever any of the above information changes. Such
situations are when the Detector options change, the Detector statistics change,
and the Detector state changes to STOPPED.

Note: The supplied definitions of the control record VSAM file makes it
recoverable to CICS. If recovery is not required the definition may be changed
(see “Defining CICS resources needed” on page 24). This must be done if CICS is
being used with no system log, otherwise CAFF will abend AFCP.

 Detector performance
The Detector is intended to be run against production CICS regions. However,
over the period that the Detector is running, the CICS region suffers a performance
degradation (dependent on the workload and number of affinities) equivalent to the
performance impact of vendor monitor products that use the same user exits. The
Detector is intended to be used over limited periods. To further limit the impact of
running the Detector during periods of particularly heavy workloads, you can pause
or stop the collection of data, or select specific commands or transactions to search
for.

If your naming convention for TS queues uses a unique counter as part of the
name, the Detector performance is likely to be worse than described above. This is
because if every TS queue created has a unique name, the Detector creates a very
large number of affinity records, which adversely affects performance.

The main cause of observed performance degradation is likely to be caused by the
detection of TS commands. You may prefer to run the Detector twice; once for TS
commands, and once for all other affinity commands.

16 CICS Transaction Affinities Utility User’s Guide

CICS/MVS 2.1.2 limitations
The following limitations apply when running the Detector on a CICS/MVS 2.1.2
region.

� Signoff events are not detected; therefore, SIGNON lifetimes cannot be
deduced.

� Macro-level affinities are not detected (for any CICS release).

� All programs that are the target of LOAD HOLD commands are assumed to be
defined as RELOAD(NO); therefore, LOAD/FREEMAIN affinities for programs
defined with RELOAD(YES) are not detected.

� You should not modify the original message at exit XTDCOUT, because this
interferes with the detection of affinities.

 Reporter
The Reporter is a batch utility that you can use to convert the affinity data collected
by the Detector into two formats of output:

� A report presenting the affinity data in a readable form. This is intended for
use by system programmers and application designers, and indicates the
transactions and programs that issue the EXEC CICS commands that cause
inter-transaction and transaction-system affinities. This information should give
a better understanding of the transactions making up the workload, and should
make it obvious what changes need to be made to remove unwanted affinities.

� A file containing a set of basic affinity transaction group definitions in a syntax
approximating to the batch API of CICSPlex SM. This is intended as input to
the Builder, which can merge these basic groups into the combined groups
suitable for input to CICSPlex SM.

The input to the Reporter is the three files of affinity data from only one CICS
region. The output from the Reporter therefore describes the affinities detected in a
single CICS region.

Note: The output produced may not contain all the transaction affinities in the
CICS region concerned, as some affinities may not have been found by the
Detector. You may have to supplement the basic affinity transaction groups with
information from the Scanner report, or from your own knowledge of your
transactions, before using the file as input to the Builder.

 Builder
The Builder is a batch utility that you can run against a set of files containing the
basic affinity transaction group definitions as created by the Reporter. The Builder
outputs a file containing combined affinity transaction group definitions, suitable for
input to CICSPlex SM.

The basic groups are combined because of a CICSPlex SM rule that states that a
given tranid may only appear in a single transaction group. It is quite possible that
a tranid may appear in more than one basic group, and so these must be combined
to form larger groups that satisfy CICSPlex SM.

 Chapter 2. Overview of the CICS Transaction Affinities Utility 17

18 CICS Transaction Affinities Utility User’s Guide

Chapter 3. Installing the affinity utility

 This chapter

Describes the steps to follow to install the CICS Transaction Affinities Utility on
an MVS system.

The CICS Transaction Affinities Utility is distributed in SMP/E format on either one
9-track 6250bpi magnetic tape or one 3480 cartridge. The tape contains:

� The CICS Transaction Affinities Utility product code, for which the FMID is
HQS9110 and the VOLSER is QS9110

� Five jobs, CAUINST1 to CAUINST5, for loading the CICS Transaction Affinities
Utility from tape

� Two jobs to create the VSAM files used by the CICS Transaction Affinities
Utility

� Two sample DCT source members for the transient data destination used for
CICS Transaction Affinities Utility messages

� One sample FCT source member for the files used by the CICS Transaction
Affinities Utility

� Four DFHCSDUP jobs for updating a CICS system definition (CSD) file with the
resource definitions used by the Detector, and optionally to add those resource
definitions to a resource group list to be specified in your CICS startup JCL

� Two jobs to run the Scanner

� A job to run the Reporter

� A job to run the Builder.

Check the program directory
The Program Directory is supplied in the distribution package. Read it carefully and
use it with this book. If there are differences, follow the Program Directory, which
contains the latest information.

Requirements for the CICS Transaction Affinities Utility
This section describes those things that you need to be able to use the CICS
Transaction Affinities Utility.

 � SMP/E 1.5

To install or service the CICS Transaction Affinities Utility you need System
Modification Program Extended (SMP/E) Version 1 Release 5 (5668-949) or
later.

� CICS exit XEIOUT

For CICS/ESA 4.1, CICS/ESA 3.3, and CICS/ESA 3.2.1 this exit is provided as
part of the product.

For CICS/MVS 2.1.2, this exit is provided by PTF UN43826.

 Copyright IBM Corp. 1994 19

� MVS/ESA 3.1.1 or later for the data spaces facility.

A data space is used, for affinity data, by the Detector and Builder. The
amount of storage required depends on the number of affinities discovered, and
is a function of the number of different transaction identifiers, the number of
terminals, and the number of userids used by the CICS region concerned. For
information about calculating the likely data space storage requirement, see
“Estimating the size of the MVS data space and files.”

� To run the Detector against a CICS region running on MVS/ESA HBB3310
through HBB4430, you should have applied one of the following PTFs for
APAR OY61443:

Note: You can still run the CICS Transaction Affinities Utility if you have not
applied a PTF for APAR OY61443; see “Tailoring your CICS startup job” on
page 26.

� CICS/ESA 4.1, CICS/ESA 3.3, CICS/ESA 3.2.1, or CICS/MVS 2.1.2.

The CICS Transaction Affinities Utility runs only on CICS/ESA 4.1, CICS/ESA
3.3, CICS/ESA 3.2.1, or CICS/MVS 2.1.2 regions. To run the CICS
Transaction Affinities Utility against a CICS/ESA 4.1 region, you must apply
PTFs UN61942 and UN71013.

� About 29 cylinders of DASD storage on a 3390 device for the CICS
Transaction Affinities Utility members.

The amount of DASD storage needed for the affinity data files depends on: the
number of CICS regions; and for each CICS region, the number of affinities
discovered, the number of different transaction identifiers, the number of
terminals used. (See “Estimating the size of the MVS data space and files.”)

Table 3. PTFs to fix APAR OY61443

MVS level PTF

C10 UY91430
C11 UY91431
C13 UY91432
D10 UY91433
D20 UY91434
430 UY91435

Estimating the size of the MVS data space and files
An MVS data space is used to hold the affinity data collected by the Detector. The
amount of storage required depends on the number of affinities discovered, the
number of different transaction identifiers, and the number of terminals.

To estimate the amount of storage for the data space (and therefore the size of the
VSAM affinity files) that you are likely to need for the Detector, you can use the
following algorithm (with storage values in bytes):

Dataspace : (#transids > #termids > 252) + 5222 222

CAUAFF1 : (#transids > #termids > 42) + 1 222 222

CAUAFF2 : (#transids > #termids > 152) + 1 222 222

CAUAFF3 : 1 222 222

where,

#transids is the number of transaction identifiers in the CICS region.

20 CICS Transaction Affinities Utility User’s Guide

#termids is the number of terminal identifiers in the CICS region.

Note: The amount of storage needed in the data space for the Builder is about
25% of the storage needed for the Detector.

The algorithm assumes that all affinities are represented, and that all transactions
participate in all affinities, and that all transactions run at all terminals (the worst
possible scenario). This gives a worst case figure, in bytes.

For example, consider the worst case scenario of a CICS region with 500 different
transaction IDs and 1000 terminals. where all transactions issue all affinity
commands and all transactions run at all terminals. For this scenario, the storage
requirement for the Detector in the data space is:

Dataspace : 132 Megabytes

CAUAFF1 : 21 Megabytes

CAUAFF2 : 76 Megabytes

CAUAFF3 : 1 Megabyte

The space required for the dataspace is different to that required for the files
because:

� Each record has a storage overhead in the dataspace
� Certain tables are not saved to file
� Key length is fixed per file so short keys must be padded out.

Notes:

1. The critical affinity type is temporary storage. The space required for all other
affinity types together should be no more than 5 Megabytes.

2. The calculations in this section assume that you do not use unique counters
when naming temporary storage queues. If you do use unique counters, the
space needed for temporary storage affinity types is much greater. For your
calculations with unique counters, replace #transids > #termids by the
number of unique queues.

Installing the CICS Transaction Affinities Utility
To install the CICS Transaction Affinities Utility, complete the following steps, as
described in the following sections:

1. On CICS/MVS 2.1.2, apply PTF UN43826 to install the exits XEIOUT and
XEIIN

2. Load the SMP/E installation jobs from tape

3. Tailor the installation jobs

4. Load the CICS Transaction Affinities Utility members from tape

5. Create the CICS Transaction Affinities Utility VSAM files

6. Define the transient data destination for CICS Transaction Affinities Utility
messages in your CICS DCT

7. On CICS/ESA Version 3 and Version 4, define the CICS Transaction Affinities
Utility transactions, programs, and files in your CSD

 Chapter 3. Installing the affinity utility 21

8. On CICS/MVS 2.1.2, define the CICS Transaction Affinities Utility transactions
and programs in your CSD, and define the CICS Transaction Affinities Utility
files in your FCT

9. Tailor your CICS startup job

10. Re-ipl CICS.

Installing exit XEIOUT on CICS/MVS 2.1.2
The CICS Transaction Affinities Utility uses the exit XEIOUT from CICS/ESA
Version 3. To enable the CICS Transaction Affinities Utility to work with CICS/MVS
2.1.2, this exit is provided by PTF UN43826. You must apply PTF UN43826 to all
CICS/MVS 2.1.2 regions that you intend using the CICS Transaction Affinities Utility
on.

Loading the contents of the distribution tape
To load the contents of the distribution tape to DASD:

1. Edit and submit the job in Figure 4, to load file 3 (RELFILE (2)) from the tape
into the installation library CICSAFF.XCAUINST. File 3 contains the jobs listed
in Table 4 on page 23.

//READTAPE JOB etc

//COPYFILE EXEC PGM=IEBCOPY

//SYSPRINT DD SYSOUT=>

//IN DD UNIT=3482,VOL=SER=QS9112,LABEL=(3,SL),

// DSN=HQS9112.F2,DISP=OLD

//OUT DD DSN=CICSAFF.XCAUINST,DISP=(NEW,CATLG),

// UNIT=SYSDA,VOL=SER=vvvvvv,

// SPACE=(6162,(112,11,2)),

// DCB=(LRECL=82,BLKSIZE=6162,RECFM=FB)

//SYSIN DD >

 COPY INDD=IN,OUTDD=OUT

/>

Figure 4. Sample job to load CICS Transaction Affinities Utility file 3 from tape

HQS9110 is the feature number (FMID) of the Transaction Affinities Utility
tape.

QS9110 is the volume identifier of the Transaction Affinities Utility tape.

Change the following to suit your environment:

vvvvvv The volume identifier of the DASD unit on which you want to load
file 3 from the tape.

CICSAFF.XCAUINST
The name of the CICS Transaction Affinities Utility installation library
into which you will load file 3 from the tape.

Note: You can later edit the jobs in this library, and run them to
load the CICS Transaction Affinities Utility software from the tape,
and to tailor the CICS Transaction Affinities Utility environment. If
you later apply any service to the copies of these jobs loaded by

22 CICS Transaction Affinities Utility User’s Guide

SMP/E into the CICSAFF.ACAUINST and CICSAFF.SCAUINST
libraries, you should reflect the service in your tailored jobs in
CICSAFF.XCAUINST.

2. Tailor the installation jobs, CAUINST1 to CAUINST5, installed in
CICSAFF.XCAUINST file to suit your requirements. The following values are
assumed in those jobs; change them if required. (The jobs have notes within
them to help you tailor them.)

� The target volume is CICAFF.

� The high-level qualifier of all datasets is CICSAFF.

� The DASD unit type is 3380.

� In CAUINST4, the tape unit type is 3480, for unloading from a tape
cartridge. If you are unloading from a 6250 tape, change this to 6250.

3. Run the job in member CAUINST1 to create the target and distribution libraries.

4. Run the job in member CAUINST2 to create the SMP/E datasets.

5. Run the job in member CAUINST3 to initialize the SMP/E datasets.

6. Run the job in member CAUINST4 to invoke SMP/E RECEIVE.

7. Run the job in member CAUINST5 to invoke SMP/E APPLY and ACCEPT.

Table 4. Members loaded from file 3 of the CICS Transaction Affinities Utility tape

Member Description

CAUINST1 Installation job 1 – to create the target and distribution libraries,
ACAUINST, ACAUMOD, SCAUINST, and SCAULOAD

CAUINST2 Installation job 2 – to create the SMP/E datasets
CAUINST3 Installation job 3 – to initialize the SMP/E datasets
CAUINST4 Installation job 4 – to invoke SMP/E RECEIVE
CAUINST5 Installation job 5 – to invoke SMP/E APPLY and ACCEPT
CAUJCLCA Job to create VSAM affinity data files
CAUJCLCC Job to create VSAM control files
CAUJ41CR Job to define resources in CSD (CICS/ESA 4.1)
CAUJ33CR Job to define resources in CSD (CICS/ESA 3.3)
CAUJ32CR Job to define resources in CSD (CICS/ESA 3.2.1)
CAUJ21CR Job to define non-file resources in CSD (CICS/MVS 2.1.2)
CAUFCT21 Sample file entries for FCT (CICS/MVS 2.1.2)
CAUJCLLS Job to run the Scanner (Summary report.)
CAUJCLLD Job to run the Scanner (Detail report.)
CAUJCLRP Job to run the Reporter
CAUJCLBL Job to run the Builder
CAUDCTAF Sample source for CICS Transaction Affinities Utility DCT entry

(CICS/ESA V3 and V4)
CAUDCT21 Sample source for CICS Transaction Affinities Utility DCT entry

(CICS/MVS 2.1.2)

 Chapter 3. Installing the affinity utility 23

Defining the CICS Transaction Affinities Utility transient data
destination

To define the transient data destination to be used for messages that can be issued
by the CICS Transaction Affinities Utility, add the sample entry provided into your
CICS DCT. The sample DCT entry is installed in the following members of the
CICSAFF.XCAUINST library:

� CAUDCTAF (for CICS/ESA Version 3 and Version 4)
� CAUDCT21 (for CICS/MVS 2.1.2)

Creating the VSAM files
The CICS Transaction Affinities Utility uses one copy of each of the following
VSAM files for each CICS region it is run against:

To create a set of these files for one CICS region, edit and run a copy of the
associated jobs in the CICSAFF.XCAUINST library.

Note: You must edit and run a copy of the CAUJCLCC and CAUJCLCA jobs for
each CICS region against which you are going to use the CICS Transaction
Affinities Utility.

Before you run the CAUJCLCC and CAUJCLCA jobs, change the following
parameters in the jobs:

1. The JOB accounting parameters

2. The prefix of the files; default CICSAFF.xxxxxx, where xxxxxx is a CICS region
qualifier

3. The volume id of the DASD device where the files are to reside; default vvvvvv.

Table 5. CICS Transaction Affinities Utility VSAM files and associated jobs

File Description Job

CICSAFF.CAUCNTL A recoverable file used to hold control
information.

CAUJCLCC

CICSAFF.CAUAFF1
CICSAFF.CAUAFF2
CICSAFF.CAUAFF3

Non-recoverable files used to hold affinity
data with different key sizes (9, 25, and 225
respectively).

CAUJCLCA

Defining CICS resources needed
To define the CICS files, mapsets, programs, and transactions used by the CICS
Transaction Affinities Utility, edit and submit the appropriate sample job,
CAUJnnCR, for the release of CICS against which you are going to run the CICS
Transaction Affinities Utility. (To define the files for CICS/MVS 2.1.2 you must add
the entries from member CAUFCT21 to your FCT.)

The following sample DFHCSDUP jobs are installed in the CICSAFF.XCAUINST
library:

24 CICS Transaction Affinities Utility User’s Guide

Each CAUJnnCR job adds the resource definitions for the associated release of
CICS to the associated resource groups, AFnnGRP and AFnnFILE, in your CICS
system definition (CSD) file.

Notes:

1. If you intend running the CICS Transaction Affinities Utility against several
CICS regions, and they use separate CSDs, edit and run the appropriate
CAUJnnCR job for each CSD.

Before you run the CAUJnnCR job, change the following parameters in the job

1. The JOB accounting parameters.

2. The name of the CSD file; default CICSrel.xxxxxx.DFHCSD, where rel is 410,
330, 321, or 212, as appropriate.

3. The prefix of the CICS load library; default CICSrel.SDFHLOAD, where rel is
410, 330, 321, or 212, as appropriate.

4. For CICS/ESA Version 3 and Version 4:

a. The prefixes of the VSAM files, as defined by the CAUJCLCC and
CAUJCLCA jobs

b. The LSRPOOL options; ensure that the LSRPOOLID specified for each file
is capable of handling the keylength defined for the file (see Table 5 on
page 24).

c. For file CAUCNTL, if recovery is not required, ensure RECOVERY(NONE)
and FWDRECOVLOG(NO) is specified.

5. If you want to add the CICS Transaction Affinities Utility resource group to the
group list specified in your CICS startup JCL:

a. Activate the commands ADD GROUP(AFnnGRP) TO(yyyyyy) and ADD
GROUP(AFnnFILE) TO(yyyyyy) by removing the preceding asterisk (*)

b. Change yyyyyy to the name of the group list specified in your CICS startup
JCL.

Note: When you first run the CAUJnnCR jobs, they return a code RC=4, because
they attempt to delete CSD groups that do not yet exist. You should ignore this
return code when you first run the jobs.

To define the VSAM files to be used for CICS/MVS 2.1.2, add the sample entries
provided into your CICS FCT. The sample FCT entry is installed in member
CAUFCT21 of the CICSAFF.XCAUINST library. Before you add the sample file
entries to your FCT, change the following parameters in the CAUFCT21 member:

1. The prefixes of the VSAM files, as defined by the CAUJCLCC and CAUJCLCA
jobs

2. The LSRPOOL options; ensure that the LSRPOOLID specified for each file is
capable of handling the keylength defined for the file (see Table 5 on
page 24).

Job name Define resources in CSD groups

CAUJ41CR AF41GRP and AF41FILE (for CICS/ESA 4.1)
CAUJ33CR AF33GRP and AF33FILE (for CICS/ESA 3.3)
CAUJ32CR AF32GRP and AF32FILE (for CICS/ESA 3.2.1)
CAUJ21CR AF21GRP (for CICS/MVS 2.1.2)

 Chapter 3. Installing the affinity utility 25

3. For file CAUCNTL, if recovery is not required, ensure LOG=NO is specified.

Installing the resource group on your CICS
For each CICS region that you intend running the CICS Transaction Affinities Utility
against, you must make available the resource definitions needed. You can do this
by either of the following methods:

� Add the CICS Transaction Affinities Utility resource group to the group list
specified in the startup JCL for your CICS region (for example, when you ran
the CAUJnnCR job).

� Use the CEDA transaction to install the CICS Transaction Affinities Utility
resource group after you have restarted your CICS region with CICS
Transaction Affinities Utility support. This is described at an appropriate stage
later in this document.

Tailoring your CICS startup job
To enable the CICS Transaction Affinities Utility to be run against your CICS
region, you must specifying the following in the CICS startup job:

� The CICS Transaction Affinities Utility load library, CICSAFF.SCAULOAD in the
DFHRPL concatenation:

// DD DSN=CICSAFF.SCAULOAD,DISP=SHR

� The CICS Transaction Affinities Utility transient data destination on the DD
statement:

//CAFF DD SYSOUT=>

� The DCT=xx system initialization parameter, to specify the suffix of the DCT
that contains the entry for the CICS Transaction Affinities Utility transient data
destination. (See “Defining the CICS Transaction Affinities Utility transient data
destination” on page 24.)

� The FCT=xx system initialization parameter, to specify the suffix of the FCT
that contains the file entries for CICS/MVS 2.1.2.

� If the CICS region is running on either of the following types of MVS/ESA:

– MVS/ESA HBB3310 through HBB4430 and you have applied a PTF for
MVS APAR OY61443

– Another release of MVS/ESA

specify the ICVR system initialization parameter as at least 10 seconds; that is,
ICVR=10000 (or a larger value).

If the CICS region is running on MVS/ESA HBB3310 through HBB4430 and
you have not applied a PTF for MVS APAR OY61443 specify the ICVR=0
system initialization parameter, to disable the timeout of runaway transactions.

Notes:

1. Failure to do this may result in AICA abends of the Detector or your own
transactions.

2. For a list of the PTFs for APAR OY61443, see Table 3 on page 20.

� If the CICS region is running at CICS/MVS 2.1.2, you must specify the
EXEC=YES and EXITS=YES system initialization parameters.

26 CICS Transaction Affinities Utility User’s Guide

� If the CICS region is running at CICS/ESA 4.1, you should specify the
DSHIPINT=0 system initialization parameter. (If you specify a DSHIPINT value
other than 0, terminal logoffs may be incorrectly observed, and the affinity
lifetimes not be determined correctly.)

If the CICS region is an AOR, you must specify the AILDELAY=0 system
initialization parameter on all TORs that route to it. This enables the Detector to
see a terminal logoff immediately that it occurs. (If you specify an AILDELAY value
other than 0, logoffs may be missed and the affinity lifetimes not be determined
correctly.)

Restarting your CICS region
To enable the CICS Transaction Affinities Utility run-time programs, you must
restart the CICS region that you intend running the CICS Transaction Affinities
Utility against, using a CICS startup job modified for CICS Transaction Affinities
Utility support, as described in “Tailoring your CICS startup job” on page 26.

 Chapter 3. Installing the affinity utility 27

28 CICS Transaction Affinities Utility User’s Guide

Chapter 4. Running the Scanner

 This chapter

Describes how to run the Scanner, which scans load modules for instances of
API commands that could cause inter-transaction affinity and transaction-system
affinity.

You can run the Scanner to produce either a summary report or a detailed report of
modules that contain possible affinity-causing EXEC CICS commands or MVS
POST calls.

The recommended way to use the Scanner is to:

1. Produce a summary report and module list to identify suspect modules

2. Produce detailed reports to review modules that the summary report flagged as
suspect.

Creating a summary report
You can request a summary report from the Scanner by editing and running the
job, CAUJCLLS. This job can also output a list of modules with potential
transaction affinities, for input to the CAUJCLLD job for more detailed reporting.

Before running the CAUJCLLS job, change the following as appropriate:

� The JOB accounting parameters.

� The PARM statement:

PARM='$SUMMARY[,DETAILMODS]'

$SUMMARY
Specifies that a summary scan (and report) is required for the entire library,
except for CICS modules, CICS tables, and those modules that cannot be
loaded (due to some error).

DETAILMODS
Specifies that the names of those modules that contain at least one
possible affinity-causing EXEC CICS command or MVS POST are to be
written to the sequential file defined by the AFFMOD DD statement. This
file may be used to restrict a subsequent detailed report, by specifying it on
the DETAIL DD statement of a detailed report run of the Scanner.

� The STEPLIB DD statement

Specify the name of the CICS Transaction Affinities Utility load library in which
you have installed the Scanner program, CAULMS; default,
CICSAFF.SCAULOAD.

� The INPUT DD statement

Specify the name of the load library to be scanned.

� The SYSPRINT DD statement

Specify the destination for the summary report.

 Copyright IBM Corp. 1994 29

� The AFFMOD DD statement

Specify the name of the sequential data set to which the list of modules with
potential transaction affinities is to be sent. You can edit the data set to alter
the list of modules to be scanned before running the Scanner to produce a
detailed report.

� The DETAIL DD statement (dummy)

Not needed for a summary run.

Each summary report contains:

� A separate line giving the following information about each module in the
library:

 – Name
 – Size

– Language (if determined)
– Number of possible affinity-causing EXEC CICS commands
– Number of possible MVS POST commands.

If a module seems to contain affinity-causing EXEC CICS commands, it is
flagged with the message “Possible affinity commands.”. If a module seems to
contain MVS POST commands, it is flagged with the message “Possible MVS
POSTs.”.

Note: The language is determined only if at least one affinity-causing EXEC
CICS command is detected, and is derived from the EXEC argument zero4 of
the first such command. Therefore, if a load module is created from several
source languages, only one language is indicated.

 � Library-totals of:

– Modules in the library
 – Modules scanned

– CICS modules and tables (not scanned)
– Modules in error (not scanned)
– Modules that possibly contain MVS POST commands
– Modules that possibly contain affinity-causing EXEC CICS commands

 – Assembler modules
 – C/370 modules5

– OS/VS COBOL modules
– VS COBOL II modules5

 – PL/I modules5.

Figure 5 on page 31 is an example of a summary report produced by the Scanner.

4 For an explanation of argument zero, see “Notes on Terminology” on page x.

5 This includes programs compiled by a Language Environment/370-enabled compiler.

30 CICS Transaction Affinities Utility User’s Guide

CICS TRANSACTION AFFINITIES UTILITY 1993/12/21 Page 1

LOAD MODULE SCANNER - SUMMARY LISTING OF C332TEST.LOAD

Module Module Module Affinity MVS POSTs Comment

Name Length Language Statements

-------- -------- --------- ---------- --------- ---

ACSA1 22222198 ASSEMBLER 3 2 Possible affinity commands.

AFFYIC 22222328 2 2

AFFYTS 22222628 2 2

COBACSA 222228B8 COBOL II 4 2 Possible affinity commands.

CRMRPROG 222221A2 2 2

DFHSRT1$ CICS TABLE 2 2

DFHTCTSH CICS TABLE 2 2

DFHTSTEC CICS TABLE 2 2

PLIACSA 222223C8 PL/I 3 2 Possible affinity commands.

PLTCCC 22222D48 C/372 2 2 Possible affinity commands.

PLTCOB 222229D8 COBOL II 2 2 Possible affinity commands.

PLTPLI 22222572 PL/I 1 2 Possible affinity commands.

SCRATCH 222226D2 2 2

TRANOUT 222228B8 2 1 Possible MVS POSTs.

CICS TRANSACTION AFFINITIES UTILITY 1993/12/21 Page 2

LOAD MODULE SCANNER - SUMMARY LISTING OF C332TEST.LOAD

LOAD LIBRARY STATISTICS

==

Total modules in library = 14

Total modules scanned = 11

Total CICS modules/tables (not scanned) = 3

Total modules in error (not scanned) = 2

Total modules containing possible MVS POSTs = 1

Total modules containing possible Affinity commands = 6

Total ASSEMBLER modules = 1

Total C/372 modules = 1

Total COBOL modules = 2

Total COBOL II modules = 2

Total PL/I modules = 2

Figure 5. Example of a summary report produced by the Scanner

Creating a detailed report
You can request a detailed report from the Scanner by editing and running the job,
CAUJCLLD.

Change the following as appropriate:

� The PARM statement:

PARM='$DETAIL[,ALL]'

$DETAIL
Specifies that a detailed scan (and report) is required. The extent of the
scan is defined by the either the ALL parameter or the DETAIL DD
statement.

ALL
Specifies that all modules in the load library are to be scanned for possible
affinity-causing EXEC CICS commands and MVS POST commands.

 Chapter 4. Running the Scanner 31

If ALL is omitted, only those modules listed in the file specified on the
DETAIL DD statement are to be scanned. This file would normally be from
the AFFMOD DD output of an Scanner summary report run, which you can
edit before creating a detailed report.

� The STEPLIB DD statement

Specify the name of the CICS Transaction Affinities Utility load library in which
you have installed the Scanner program, CAULMS; default,
CICSAFF.SCAULOAD.

� The INPUT DD statement

Specify the name of the load library to be scanned.

� The SYSPRINT DD statement

Specify the destination for the detailed report.

� The AFFMOD DD dummy statement

Not needed for a detailed run.

� The DETAIL DD statement

Specify the name of the data set containing the list of modules to be scanned.
This list may be created initially as the output from a summary run of the
Scanner. If you specify ALL on the PARM statement, change the DETAIL DD
statement to specify //DETAIL DD DUMMY.

Each detailed report contains:

� A section for each module, that contains:

– A header line giving the name, size, and entry point of the module.

– A line for each possible affinity-causing command found, giving:

- The offset of the command argument zero declaration from the start of
the load module.

Note: This offset is not the same as the offset given by the Reporter;
the offset given by the Reporter is for the command itself. (See page
49 and page 81.)

- The contents of the command argument zero declaration (in
hexadecimal).

- The EDF DEBUG line number, if present. This can provide a useful
clue for identifying false affinities. If a section of a load module was
translated with the DEBUG option, then EDF DEBUG line numbers are
given. For such a module, if no DEBUG line number is given, this may
indicate that what was found was not an argument zero.

- What the command appears to be (for example, WRITEQ TS).

- Whether the affinity is inter-transaction (Trans), transaction-system
(System), or both6 (Both).

6 An affinity command can be both inter-transaction and transaction-system only if an ADDRESS command has both CWA and CSA
keywords.

32 CICS Transaction Affinities Utility User’s Guide

– A line for each possible MVS POST command found, giving:

- The offset of the MVS POST command from the start of the load
module

- The MVS POST instruction

- The 12 bytes of storage immediately before, and the 10 bytes after, the
MVS POST command

- Whether the MVS POST is SVC or otherwise.

– A summary report of the modules, giving:

- The total possible affinity commands

- The total possible MVS post commands.

– Library totals, as for the summary report, but for only those modules
selected for the detailed run.

Figure 6 is an example of a detailed report produced by the Scanner.

CICS TRANSACTION AFFINITIES UTILITY 1993/12/21 Page 1

LOAD MODULE SCANNER - DETAILED LISTING OF C332TEST.LOAD

Module Name - ACSA1 / Load Module Length - 22222198 / Module Entry Point - 22222228

Offset Storage Content (HEX) EDF DEBUG Possible Command Affinity

-------- --- --------- --------------------------------- --------

22222362 2A22E2224922224922 22222222 WRITEQ TS Trans

22222422 2A24E8224922228922 22222228 READQ TS Trans

22222482 2A26E8224922222122 22222236 DELETEQ TS Trans

Total possible Affinity commands = 3

Total possible MVS POSTs = 2

Module Name - TRANOUT / Load Module Length - 222228B8 / Module Entry Point - 22222228

Offset Storage Content (HEX) EDF DEBUG Possible Command Affinity

-------- --- --------- --------------------------------- --------

22222534 4122411231341B22411212222A221B2241124222A221B22 MVS POST (SVC) System

Total possible Affinity commands = 2

Total possible MVS POSTs = 1

CICS TRANSACTION AFFINITIES UTILITY 1993/12/21 Page 2

LOAD MODULE SCANNER - DETAILED LISTING OF C332TEST.LOAD

LOAD LIBRARY STATISTICS

==

Total modules in library = 2

Total modules scanned = 2

Total CICS modules/tables (not scanned) = 2

Total modules in error (not scanned) = 2

Total modules containing possible MVS POSTs = 1

Total modules containing possible Affinity commands = 1

Total ASSEMBLER modules = 1

Total C/372 modules = 2

Total COBOL modules = 2

Total COBOL II modules = 2

Total PL/I modules = 2

Figure 6. Example of a detailed report produced by the Scanner

 Chapter 4. Running the Scanner 33

34 CICS Transaction Affinities Utility User’s Guide

Chapter 5. Running the Detector

 This chapter

Describes how to run the Detector, which runs in a CICS region looking for
instances of API commands that could cause transaction affinity. The
commands looked for are those listed in “Commands detected by the CICS
Transaction Affinities Utility” on page 9.

You can run the Detector either at a CICS 3270-type terminal (through interactive
screens or single-line commands), from a console, or from an application program.
This chapter primarily describes how to use the Detector through the interactive
screens at a CICS terminal, but also gives equivalent commands to use at a
terminal, at a console, or in an application program.

For an overview of the Detector, see “Detector” on page 10.

You can control the Detector by:

� Changing the state

This is described in topics “Starting the collection of affinity data” on page 38
through “Stopping the collection of affinity data” on page 40.

� Changing the options

The options that you can select are shown in Figure 8 on page 41, and
described in “Changing the Detector options” on page 40.

You can optimize the performance of the Detector by the manner in which you use
it; that is, you should consider doing the following:

� Pausing the collection of data during peak workloads. You can continue the
collection of data when the workloads have decreased.

� Collect data for one affinity type at a time. (This can be of particular value for
the temporary storage affinity type.)

� Collect data for a restricted set of transaction identifiers, by specifying the prefix
of those transactions that you are interested in.

For information about how to specify the affinity types and transaction identifier
prefix for which data is to be collected, see “Changing the Detector options” on
page 40.

CICS/MVS 2.1.2 considerations
You should note the following considerations when running the Detector on a
CICS/MVS 2.1.2 region:

� If the user of the CAFF transaction is not signed on to the CICS/MVS 2.1.2
region, the userid on the CAFF01 and CAFF02 panels and in messages is
displayed as ????????.

� If an abend occurs, the program causing the abend is shown as ???????? in
messages.

 Copyright IBM Corp. 1994 35

� If CICS shuts down normally and the Detector is not stopped, CICS hangs.
You must purge the CAFB transaction to clear the hang.

Displaying the Detector control screen
To display the control screen that you can use to run the Detector at a CICS
terminal, first type the transaction identifier CAFF then press Enter. In response,
the Detector control screen, CAFF01 (shown in Figure 7) is displayed. You can
use this screen to review and change the state of the Detector, or to display the
Detector options screen, CAFF02 (shown in Figure 8 on page 41).

To refresh the values displayed on the screen at any time, press Enter.

To exit the Detector control screen, press the F3 (or F12) function key. This does
not affect the state of the Detector

T U
CAFF21 CICS Transaction Affinities Utility Applid CICS332

Press Start key (F5) to start detection. �1�
Press Options key (F4) to modify the CAFF operation options.

Press Enter to update statistics.

CAFF state : STOPPED by user <userid> �2�
Number of pauses : 2 �3�
Number of saves. : 6 �3�
Records written last save. : 257 �4�
Total records on file. . . : 834 �5�

Date/time of last start. . : 26/32/93 29:25:23 (MM/DD/YY HH:MM:SS) �6�
Date/time of last save . . : 26/32/93 11:13:12 (MM/DD/YY HH:MM:SS)

Date/time of last change . : 26/32/93 11:12:34 (MM/DD/YY HH:MM:SS)

Total time RUNNING : 2222:28:12 (HHHH:MM:SS) �7�
Total time PAUSED. : 2222:22:22 (HHHH:MM:SS)

Table dataspace name . . . : % full �8�

 �9�
F1=Help F3=Exit F4=Options F5=Start F6=Stop F7=Pause F8=Continue F12=Cancel �1��

Z [

Figure 7. Detector control screen, CAFF01

The Detector control screen, CAFF01, shows the following:

�1� The functions that you can select from this state of the Detector. For any state
of the Detector, only appropriate functions are displayed.

�2� The current state of the Detector. If the state is STOPPED, the reason why it
was stopped is displayed.

36 CICS Transaction Affinities Utility User’s Guide

Notes:

1. When you stop the Detector, the CAFF state changes to STOPPED only after
the Detector has saved the affinity data.

2. When you pause the Detector, the CAFF state changes to PAUSED before the
Detector saves the affinity data (to ensure that the Detector pauses
immediately). After the state has changed to PAUSED, you can refresh the
data displayed by pressing Enter.

�3� The number of times that the Detector has been paused, and the number of
times data has been saved, since the last time that it was started.

�4� The number of new records and updates to existing records written to the
affinity data VSAM files when data was last saved.

�5� The total number of affinity records in the affinity data VSAM files. If the
Detector was stopped by CICS crashing, and was in the middle of saving affinity
data, this figure may be inaccurate. However, the figure is corrected the next time
the Detector is started.

�6� The date and time of when the Detector was last started, data was saved, and
a change was made to an affinity table. The date is given in the format specified
by the DATFORM system initialization parameter.

�7� The total time that the Detector has been in the running and paused states
since it was last started.

�8� The name, and current percentage occupied, of the MVS dataspace being
used. (Not displayed while in STOPPED state.)

�9� The message line used to display diagnostic messages. When the CAFF
transaction is first entered, this line displays the copyright notice:

5696-582(C) Copyright IBM Corp. 1993.

�1�� The keys that you can use to select functions to affect the operation of the
Detector, or to get help information about it. This line displays all possible
functions; not all of which are appropriate (or selectable) for a given state of the
Detector.

 Chapter 5. Running the Detector 37

Starting the collection of affinity data
When you can start affinity data collection

You can start the collection of affinity data only when the Detector is currently
stopped.

To start the collection of affinity data, use one of the methods shown in Table 6.

This causes the Detector to record transaction affinities in the CICS region, until
you pause or stop the collection of data by the Detector. Data is collected for only
the affinity types that you have selected to be detected (by specifying Y for the
affinity type on the CAFF02 screen).

Each time the Detector is started, a new data space is created. For information
about calculating the likely data space storage requirement, see “Estimating the
size of the MVS data space and files” on page 20. You specify this size on the
Detector options screen, CAFF02. On the CAFF02 options screen you can also
specify that data from affinity data VSAM files (for example, from previous CICS
Transaction Affinities Utility runs) is to be loaded into the data space when it is
created. For more information about the CAFF02 options screen, see “Changing
the Detector options” on page 40.

Note: If there are a large number of data records to be loaded into the data space
when it is created (for example, from previous CICS Transaction Affinities Utility
runs), the CAFF screen may be frozen for some appreciable time, until the records
have been loaded.

Table 6. Methods for starting data collection by the Detector

Where used Command or function key

Control display, CAFF01 F5 function key �1�
3270 terminal CAFF START
Console F cicsjob, CAFF START �2�
Application program EXEC CICS START TRANSID('CAFF') FROM('START') �3�
Notes: :

�1� If you press the F5 function key of the CAFF01 screen, you are asked to confirm that
you want to start the recording of affinity data.

�2� cicsjob is the name of your CICS startup job.

�3� You can use this command from a program initiated during the third stage of CICS
initialization; that is, a program specified in the second part of the PLTPI list for the CICS
region. For more information about using PLTPI programs, see the CICS/ESA
Customization Guide.

38 CICS Transaction Affinities Utility User’s Guide

Pausing the collection of affinity data
When you can pause affinity data collection

You can pause the collection of affinity data only when the Detector is currently
running.

To pause the collection of affinity data, use one of the methods shown in Table 7.

This causes the Detector to temporarily stop recording any transaction affinities in
the CICS region, until you resume the collection of data by the Detector. The data
already collected remains in the data space, and can be saved to the affinity data
VSAM files when the Detector is paused. (You can specify to save data when the
Detector is paused on the CAFF02 options screen, as described in “Changing the
Detector options” on page 40.)

Table 7. Methods for pausing data collection by the Detector

Where used Command or function key

Control display, CAFF01 F7 function key
3270 terminal CAFF PAUSE
Console F cicsjob, CAFF PAUSE
Application program EXEC CICS START TRANSID('CAFF') FROM('PAUSE')
Note: cicsjob is the name of your CICS startup job.

Resuming the collection of affinity data
When you can resume the affinity data collection

You can resume the collection of affinity data only when the Detector is
currently paused.

To resume the collection of affinity data, use one of the methods shown in Table 8.

This causes the Detector to continue recording any transaction affinities in the
CICS region, until you pause or stop the collection of data by the Detector.

Table 8. Methods for resuming data collection by the Detector

Where used Command or function key

Control display, CAFF01 F8 function key
3270 terminal CAFF CONTINUE
Console F cicsjob, CAFF CONTINUE
Application program EXEC CICS START TRANSID('CAFF') FROM('CONTINUE')
Note: cicsjob is the name of your CICS startup job.

 Chapter 5. Running the Detector 39

Stopping the collection of affinity data
When you can stop affinity data collection

You can stop the collection of affinity data only when the Detector is currently
running or paused.

To stop the collection of affinity data, use one of the methods shown in Table 9.

This causes the Detector to stop recording any transaction affinities in the CICS
region, until you next start the collection of data by the Detector. This also destroys
the data space, and saves the data collected to the affinity data VSAM files.

Note: If there are a large number of data records to be saved, the CAFF screen
may be frozen for some appreciable time, until the records have been saved.

You may want to stop the Detector when it has detected all affinities. This is
indicated by the “Date/time of last change” field changing very infrequently and, if
the optional periodic saves are performed, the “Records written last save” field
being consistently near zero.

If CICS shuts down normally, but the Detector is not stopped, the Detector
eventually detects that CICS is not running and terminates cleanly with a save.

Table 9. Methods for stopping data collection by the Detector

Where used Command or function key

Control display, CAFF01 F6 function key �1�
3270 terminal CAFF STOP
Console F cicsjob, CAFF STOP �2�
Application program EXEC CICS START TRANSID('CAFF') FROM('STOP') �3�
Notes: :

�1� If you press the F6 function key of the CAFF01 screen, you are asked to confirm that
you want to stop the recording of affinity data.

�2� cicsjob is the name of your CICS startup job.

�3� You can use this command from a program initiated during the first quiesce stage of
CICS shutdown; that is, programs specified in the first half of the PLT for CICS shutdown.
This is recommended, to prevent the Detector delaying CICS shutdown if it the Detector is
not in the STOPPED state. For more information about using PLTSD programs, see the
CICS/ESA Customization Guide.

Changing the Detector options
You can control the operation of the Detector by changing the options that it uses.
Option values are preserved in the CICS Transaction Affinities Utility control file,
CAUCNTL, so that they can be used across separate runs of the Detector. For
more information about the control file, see “The control record VSAM file” on
page 16.

40 CICS Transaction Affinities Utility User’s Guide

Notes:

1. Generally, all options can be changed while the Detector is stopped. However,
some options can also be changed while the Detector is paused, or running.
(These options are identified in the descriptions on page 41.)

2. You can change the options even if the Detector is stopped and the Reporter is
running (that is, reading the CAUCNTL file).

To review and change the options that the Detector uses, press the F4 function key
of the Detector control screen, CAFF01. In response, the Detector options screen,
CAFF02 (shown in Figure 8) is displayed.

To update the options screen, press Enter.

To return to the Detector control screen, press the F12 function key.

T U
 CAFF22 CAFF Operation Options Applid CICS332

Modify the options and press Enter to update, or press Cancel (F12)

 Control options �1�
Perform periodic saves Y (Y=Yes or N=No)

Restore data on start. N (Y=Yes or N=No)

Multiple signon with same userid . N (Y=Yes or N=No)

Size of dataspace. 16 (12 to 2222 Mbytes)

Transid prefix (optional). ___ (1 to 3 characters)

Detect affinity types (Y=Yes or N=No) �2�
 Inter-transaction Transaction-system Transaction-system

ENQ, DEQ Y INQUIRE, SET . . . Y WAIT Y �3�
TS Queue Y ENABLE, DISABLE. . Y DISCARD. Y �5�
ADDRESS CWA. . . Y EXTRACT. Y

RETRIEVE WAIT. . Y COLLECT STATS. . . Y

LOAD Y PERFORM. Y

GETMAIN SHARED . Y RESYNC Y

CANCEL Y

 Last updated by <userid> on 23/26/93 29:24:35 �4�

 F1=Help �6� F12=Cancel

Z [

Figure 8. Detector options screen

The Detector options screen, CAFF02, shows the following options:

Note: Each option can be changed only while the Detector is stopped, unless
otherwise stated below.

�1� The control options:

� Whether or not the affinity data collected is to be saved to the affinity data
VSAM files if either:

– More than 300 seconds has passed, or more than 1000 table elements
have changed, since the last save.

– You paused the Detector.

(The autosave transaction, CAFB, writes the affinity data to the affinity data
VSAM files automatically when you stop the Detector.)

 Chapter 5. Running the Detector 41

Note: This option can be changed while the Detector is stopped, paused, or
running.

� Whether or not to restore the affinity data from the affinity data VSAM files
when the Detector is started. This enables the affinity data collected on a run
of the Detector to be added to the data collected from previous runs of the
Detector. This should be used if you are gathering data for either one set of
transaction identifiers at a time or for one set of commands at a time, or if the
Detector is being run at varying times. It is also of particular value if the
Detector terminates unexpectedly, because you do not have to start collecting
affinity data all over again; you can start from the last time data was saved.

Notes:

1. The data restored is only for those affinity types that you have selected to
be detected (by specifying Y for the affinity type on the CAFF02 screen).

Note: Data is kept on file for all commands, but only the data for the
commands that you have selected to be detected may change, and
therefore is restored.

2. This option can be changed while the Detector is stopped, paused, or
running.

� Whether or not your conventions allow for more than one user to be signed on
to CICS with the same userid at the same time. If so, set the multiple signon
with same userid to Y; otherwise, the Detector may incorrectly deduce some
affinity lifetimes and create erroneous affinity transaction groups (also known as
affinity groups). This includes conventions where more than one user is
simultaneously not signed on; that is they all take the default userid
CICSUSER (for CICS/ESA Version 3 and Version 4) or blanks (for CICS/MVS
2.1.2).

Also, if you are running the Detector in an AOR, then the userids examined
depend on whether the userid is propagated from the TOR, or derived from the
SESSION and CONNECTION resource definitions. In the last case, you
should set multiple signon option to Y if your conventions allow the same AOR
userids to be signed on to CICS at the same time.

Notes:

1. It is very important that this option is set correctly.

2. If you are about to start a new run of the Detector, and intend restoring
data from the affinity data VSAM files, you should ensure that this option is
the same as used in the previous run of the Detector (for which affinity data
is to be restored).

� The size that you want to use for the dataspace to store the affinity data
collected. The size of the data space is fixed for a run of the Detector. For
information about estimating the size of the dataspace, see “Estimating the size
of the MVS data space and files” on page 20.

If the dataspace becomes full when running, the Detector terminates with
abend code AUXB.

Note: If affinity data is being saved, there may be a delay from the time that
the dataspace became full until the Detector actually terminates.

42 CICS Transaction Affinities Utility User’s Guide

� The prefix, 0 through 3 characters, of the transactions that you want to gather
affinity data for. If you do not specify any characters, affinity data is collected
for all transactions. If you specify a valid prefix (for example, AB_), affinity data
is collected for only those transactions whose identifiers start with the prefix.

Note: Leading and trailing blanks are ignored, but embedded blanks are
treated as an error.

�2� The affinity types to be detected. Whether or not the Detector is to detect the
types of affinities listed.

For more information about restrictions affecting the detection of affinity commands,
see “Detector” on page 10 and Appendix A, “Details of what is detected” on
page 75.

�3� WAIT commands are listed as transaction-system affinities, because only half
of the affinity can be detected. (The other half, an MVS POST command or
hand-posting, cannot be detected.) You should investigate such affinities further,
and if needed change the output from the Reporter to create basic affinity
transaction groups for them.

�4� The date and time when the options were last updated, and the userid of the
user who made the updates.

Note: The date is displayed in the format defined by the DATFORM system
initialization parameter.

�5� DISCARD is shown for CICS/ESA Version 3 and Version 4 only. For
CICS/MVS 2.1.2, ADDRESS CSA is shown.

�6� Pressing PF1 for help does not save any changes made; you must press the
Enter key to save changes.

 Detector errors
If the CAFF transaction, CAFB transaction, or an exit program encounters a serious
error, the Detector is stopped by abending CAFF and CAFB. The abend code, in
the AUxx range, is accompanied by messages on the CAFF transient data queue
that indicate the cause of the error. (For details about the messages, see
Appendix D, “Messages and Codes” on page 87.)

If the abend code is not in the AUxx range, it is presumably a CICS transaction
abend code, and should be resolved using the appropriate CICS Messages and
Codes manual.

Note: If the CAFF transaction abends with code ATCH, ATNI, or AKCT, the
Detector continues to collect affinity data. For all other abends of either the CAFF
or CAFB transaction, the Detector is stopped. The Detector should stop cleanly, so
after performing the actions suggested by the message explanations, you should be
able to restart the Detector.

 Chapter 5. Running the Detector 43

If a program check or MVS abend occurs in an exit program, it results in an abend
of the transaction that caused the exit to be invoked. This probably indicates a
problem with the Detector. You should use the CAFF transaction to stop the
Detector, and contact IBM support if the evidence points to the Detector being at
fault. Unless running under CICS/ESA 4.1, it is not possible to rerun the Detector
until the CICS region has been restarted.

If the abend code is AICA, this may be caused by the Detector scanning the table
of affinity data when the amount of affinity data is very large. You can prevent
such AICA abends by increasing the value of the ICVR system initialization
parameter.

44 CICS Transaction Affinities Utility User’s Guide

Chapter 6. Running the Reporter

 This chapter

Describes how to run the Reporter, which runs as a batch job to produce a
report of the affinities found by the Detector. The commands reported on are
those listed in “Commands detected by the CICS Transaction Affinities Utility”
on page 9. For information about interpreting the report output by the Reporter,
see “Using the affinity report” on page 52.

You can run the Reporter to produce a report of the affinities found in your CICS
region and definitions for the basic affinity transaction groups that correspond to the
report. The definitions for the basic affinity transaction groups are suitable for input
to the Builder.

You can request a report from the Reporter by editing and running the job,
CAUJCLRP. Before running the CAUJCLRP job, change the following as
appropriate:

� The JOB accounting parameters

� The STEPLIB DD statement

Specify the name of the CICS Transaction Affinities Utility load library in which
you have installed the Reporter program, CAUREP.

� The CAUAFF1, CAUAFF2, and CAUAFF3 DD statements

Specify the names of your affinity data VSAM files for this CICS region.

Note: Each of the CAUAFF1, CAUAFF2, and CAUAFF3 files has a header
record that specifies the applid of the CICS region that created the record. The
Reporter checks these applids with the applid recorded in the CAUCNTL file,
and proceeds only if all four applids are the same.

� The CAUCNTL DD statements

Specify the name of your CICS Transaction Affinities Utility control VSAM file
for this CICS region.

� The CMDGRPS DD statement

Specify the affinity (command) types to be output in the report. Only those
affinity types listed on this DD statement are shown in the report. (The types
correspond exactly to the type options on the CAFF02 screen.) You can
specify any of the following affinity types, with each type on a separate line,
starting in column one:

If you do not specify any affinity types on the CMDGRPS DD statement, or
specify CMDGRPS DD DUMMY, all affinity types are selected for reporting.

The first part of the report lists the affinity types selected.

CANCEL
COLLECT
CSA
CWA
DISCARD

ENABLE
ENQ
EXTRACT
GETMAIN
INQUIRE

LOAD
PERFORM
RESYNC
RETRIEVE
TS

 Copyright IBM Corp. 1994 45

� The TRANGRPS DD statement

Specify the name of the sequential data set to which the basic affinity
transaction groups are to be sent.

� SYSPRINT DD statement

Specify the destination for the report output by the Reporter.

Note: The Reporter cannot read files from the CAUAFF1, CAUAFF2, and
CAUAFF3 VSAM files while the Detector has those files opened for update.
Therefore, you should not run the Reporter at the same time as you are running the
Detector.

Output from the Reporter
For each of the affinity types specified on the CMDGRPS DD statement, the
Reporter outputs each individual affinity in both report format and as definitions for
basic affinity transaction groups suitable for input to the Builder.

Notes:

1. The Reporter outputs basic affinity transaction group definitions for
inter-transaction affinity transaction groups only.

2. Transactions that were not initiated from a terminal do not appear in a basic
affinity transaction group. If none of the transactions in an inter-transaction
affinity group were initiated from a terminal, a special reporting affinity relation
of Background is used, no basic affinity transaction group is created, and you
should ignore the affinity lifetime. This is because dynamic transaction routing
programs (for example, that provided by CICSPlex SM) are only interested in
transactions initiated from a terminal, as they are the only transactions that can
be dynamically routed.

46 CICS Transaction Affinities Utility User’s Guide

 Affinity report
Figure 9 shows an example report for two affinities, a TS queue affinity and a CWA
affinity. These were the only affinity types selected, as shown.

CICS TRANSACTION AFFINITIES UTILITY 1993/26/28 Page 1

AFFINITY TYPE REPORTING OPTIONS Applid=CICS332

Affinity Type Reporting Message

---------_--- --------- --------------------------------------

�1�
 Inter-Transaction Affinities �2�

 ADDRESS Yes

 CANCEL No

 ENQ No

 GETMAIN No

 LOAD No

 RETRIEVE No

 TS Yes

 CSA No

 Transaction-System Affinities

 COLLECT No

 DISCARD No

 ENABLE No

 EXTRACT No

 INQUIRE No

 PERFORM No

 RESYNC No

 WAIT No

CICS TRANSACTION AFFINITIES UTILITY 1993/26/28 Page 2 �3�
INTER-TRANSACTION AFFINITIES REPORT FOR ADDRESS CWA Applid=CICS332

Trangroup : CW.22222221

Affinity : GLOBAL

Lifetime : SYSTEM

Tranid Program Offset Usage Terminal

------ -------- -------- ------ --------

AUXX AUXXTST 222222CC 1 Yes

 CWA1 AUCWA FFFFFFFF 2 Yes

 Total Transactions : 2

 Total Programs : 2

Figure 9 (Part 1 of 2). Example report output by the Reporter

 Chapter 6. Running the Reporter 47

CICS TRANSACTION AFFINITIES UTILITY 1993/26/28 Page 3 �3�
INTER-TRANSACTION AFFINITIES REPORT FOR TEMPORARY STORAGE COMMANDS Applid=CICS332

Trangroup : TS.22222221

Affinity : LUNAME

Lifetime : PCONV

Queue : LOCA1 (D3D6C3C1F1424242)

Recoverable : No (MAIN)

Terminal Id : V122 (E5F1F2F2)

Tranid Program Offset Command Usage Terminal

------ -------- -------- -------- ------ --------

AFTD AFFYTSD 2222212E DELETEQ 43 Yes

AFTR AFFYTSR 222222BE READQ 43 Yes

AFTW AFFYTSW 22222262 WRITEQ 43 Yes

 Total Transactions : 3

 Total Programs : 3

Trangroup : TS.22222222

Affinity : LUNAME

Lifetime : PCONV

Queue : LOCA2 (D3D6C3C1F2424242)

Recoverable : No (MAIN)

Terminal Id : V122 (E5F1F2F2)

Tranid Program Offset Command Usage Terminal

------ -------- -------- -------- ------ --------

AFTD AFFYTSD 2222212E DELETEQ 39 Yes

AFTR AFFYTSR 222222BE READQ 39 Yes

AFTW AFFYTSW 22222262 WRITEQ 39 Yes

 Total Transactions : 3

 Total Programs : 3

Figure 9 (Part 2 of 2). Example report output by the Reporter

Notes for Figure 9:

�1� Incorrect affinity types

This lists any affinity types that were specified incorrectly on the CMDGRPS DD
statement of the CAUJCLRP job.

�2� Affinity types reported

This lists any affinity types that were selected for reporting; that is, those affinity
types specified correctly on the CMDGRPS DD statement of the CAUJCLRP job.
The affinity types are listed under their associated affinity category; inter-transaction
affinity and transaction-system affinity.

�3� Affinities reports

For each affinity transaction group, this lists appropriate characteristics of the
affinities, as given in the following notes.

Trangroup
The name of the affinity transaction group, assigned by the Reporter.
This name is only used to cross-reference the group in the report to the
corresponding affinity transaction group in the data set specified on the
TRANGRPS DD statement for this run of the Reporter.

Note: The Trangroup value for a affinity transaction group may vary for
one run to another of the Detector or Reporter.

48 CICS Transaction Affinities Utility User’s Guide

Affinity The affinity relation. If appropriate, this also indicates if the relation was
worsened from a less restrictive relation. For more information about
worsened relations, see “Worsening of transaction affinities relations” on
page 12.

Lifetime The affinity lifetime. If appropriate, this also indicates if the lifetime was
worsened from a less restrictive lifetime. For more information about
worsened lifetimes, see “Worsening of transaction affinities lifetimes” on
page 12.

Queue (resource)
The resource causing the affinity. This may be the name of the
resource (for example, Queue : LOCA1 (D3D6C3C1F1424242) as shown)
or the address of the resource, depending on the type of affinity.

Note: Unprintable characters appear as a period (.).

Recoverable
Whether or not the resource is recoverable. For TS queues, this also
indicates whether the queue is in auxiliary or main temporary storage.

Terminal Id
The Id of the terminal that the transactions which took part in the affinity
were initiated from. This information is only available for TS queue
affinity and is only meaningful if the affinity is LUNAME or worsened
from LUNAME to GLOBAL. Therefore, the terminal Id is included in the
report only in these cases.

Tranid The identifier of each transaction that took part in the affinity. It is
possible for an affinity transaction group to contain only one tranid. An
example of such a situation is where each part of a pseudo-conversation
accesses a TS queue and each part runs under the same tranid.

Program The name of each program that took part in the affinity.

Offset The offset from the load point of the program of the BALR instruction of
the EXEC CICS command causing the affinity.

APAR PN68267

APAR applied

The Reporter outputs a negative offset (X'FFFFxxxx') if it could not
determine an offset; that is, either of the following is true:

� The program was defined with RELOAD(YES) before CICS/ESA 4.1

� The offset calculated is not within the program. This may indicate
that the program (or perhaps language run-time code) has passed
control to another program by using a non-CICS mechanism (for
example, VS COBOL II dynamic call).

Notes:

1. This offset is not the same as the offset given by the Scanner; the
offset given by the Scanner is the offset of the command argument
0 declaration from the start of the load module. (See page 81.)

APAR PN68267

APAR applied

 Chapter 6. Running the Reporter 49

2. If a negative offset (X'FFFFxxxx') is used, it is not possible to
directly locate individual affinity commands within a program. The
program must be scanned for all instances of the affinity command,
as there may be more than one instance of the command.

Command
The EXEC CICS command causing the affinity.

Usage The number of times that this particular EXEC CICS command (with the
transaction, program, and offset values reported) took part in the affinity,
up to a limit of 5000.

50 CICS Transaction Affinities Utility User’s Guide

Note: The usage count is used as an indication of the relative
importance of the affinity, not as a completely accurate usage count.
For performance reasons, when the usage count is incremented by the
Detector, the “save to file” flag is not necessarily set to indicate that the
record needs to be saved to the data file. The save flag is set as
follows:

2 =< usage count < 12, save flag set every increment

12 <= usage count < 122, save flag set every 12 increments

122 <= usage count < 5222, save flag set every 122 increments

5222 <= usage count, no increment nor save flag set

 PN 79260

Apar added

If the usage count is 1+, then at least one example of the affinity was
seen, but the total number is unknown.

Terminal Whether this particular EXEC CICS command (with the transaction,
program, and offset values reported) was ever issued by a transaction
initiated from a terminal; that is, started as a result of terminal input or
for an EXEC CICS RETURN TRANSID command. (This does not
include ATI-started transactions.)

APAR PQ12612

Documentation for Apar pq12612 added 07/04/98

The word Mix in this column is used to indicate that a particular EXEC
CICS command was both issued by a transaction that was initiated from
a terminal and also by the transaction when it was initiated with no
associated terminal.

Total Transactions
The total number of different transactions in the affinity transaction
group.

Total Programs
The total number of different programs in the affinity transaction group.

Affinity transaction group definitions
The Reporter outputs affinity transaction group definitions suitable for input to the
Builder (but not CICSPlex SM). Each definition consists of a unique transaction
group name, a relation, a lifetime and a set of tranids.

Not everything that appears in the report appears as an affinity transaction group.
In particular, transaction-system affinities do not appear because they are not of
interest to a dynamic routing program; nor do transactions that were not initiated
from a terminal (for the same reason).

Figure 10 on page 52 shows an example set of definitions to match the report in
Figure 9 on page 47.

 Chapter 6. Running the Reporter 51

Notes:

1. The transaction group name is not a valid CICSPlex SM transaction group
name, as the latter must be eight characters; it is used only as a
cross-reference to the report.

2. MATCH or STATE attributes are not generated on CREATE TRANGRP
commands, because those attributes are relevant only to the combined affinity
transaction groups. For more information about MATCH and STATE attributes,
see page 59.

3. The HEADER statement is generated so that the Builder can detect a new data
set in its input concatenation. It also gives the CICS applid, and the date and
time of the last Detector save, all obtained from the CAUCNTL control file. For
more information about HEADER statements, see “HEADER statements” on
page 63.

> HEADER APPLID(CICS332) SAVEDATE(93/26/27) SAVETIME(12:11:45);

>

> Generated by the CICS Transaction Affinities Utility (Reporter) on 1993/26/28

> Note: NOT suitable for input to CICSPlex SM

>

CREATE TRANGRP NAME(CW.22222221) AFFINITY(GLOBAL) AFFLIFE(SYSTEM)

 DESC(ADDRESS CWA);

CREATE DTRINGRP TRANGRP(CW.22222221) TRANID(AUXX);

CREATE DTRINGRP TRANGRP(CW.22222221) TRANID(CWA1);

>

CREATE TRANGRP NAME(TS.22222221) AFFINITY(LUNAME) AFFLIFE(PCONV)

 DESC(TS.LOCA1 D3D6C3C1F1424242);

CREATE DTRINGRP TRANGRP(TS.22222221) TRANID(AFTD);

CREATE DTRINGRP TRANGRP(TS.22222221) TRANID(AFTR);

CREATE DTRINGRP TRANGRP(TS.22222221) TRANID(AFTW);

>

CREATE TRANGRP NAME(TS.22222222) AFFINITY(LUNAME) AFFLIFE(PCONV)

 DESC(TS.LOCA2 D3D6C3C1F2424242);

CREATE DTRINGRP TRANGRP(TS.22222222) TRANID(AFTD);

CREATE DTRINGRP TRANGRP(TS.22222222) TRANID(AFTR);

CREATE DTRINGRP TRANGRP(TS.22222222) TRANID(AFTW);

Figure 10. Example basic affinity transaction group definitions

Once these definitions have been created, you can edit them to add extra
definitions for affinities that the Detector could not detect, or to modify definitions in
the light of further knowledge about the affinity (for example, correct a worsened
lifetime). The report output from the Scanner may be particularly useful at this
stage. (See “Using the affinity report.”)

Using the affinity report
The affinity report has the following two main purposes:

1. To help you to understand the affinities present in the CICS region concerned.

2. To help you modify the affinity transaction group definitions before they are
input to the Builder, if such modification is required.

You need to be able to:

52 CICS Transaction Affinities Utility User’s Guide

Notes:

1. Assume that the affinity information is complete.

2. Assume that any worsening of affinity relation or affinity lifetime by the Detector
does not create too pervasive an affinity (this inhibits the effectiveness of
dynamic transaction routing).

3. Investigate whether any application changes would be appropriate to reduce
the amount of affinity.

Understanding the affinities
The inter-transaction affinities listed in the report highlight those transactions that
have affinities with other transactions.

Understanding the affinities present in the CICS region enables you to determine
which of the affinities are most pervasive. If you decide that it is worth changing
your application programs, it is generally more cost-effective to remove the most
pervasive affinities, as those affinities most restrict dynamic transaction routing.
The most pervasive affinities are those with a relation of GLOBAL, or a lifetime of
SYSTEM or PERMANENT, and are heavily used.

The transaction-system affinities listed in the report highlight those transactions that
use system programmer type commands. It may not be appropriate to dynamically
route such transactions, as their action may be tied to a particular CICS region (as
opposed to a particular set of other transactions).

The affinity report also lists affinities that occur between transactions that were not
initiated from a terminal, the special background relation. This information is really
for completeness, as such transactions cannot be dynamically routed.

To establish complete affinity information, you should use as many code paths as
possible while running the Detector, because it can find affinities only if the
commands that cause the affinity have been executed. However, the Scanner
detects all instances of affinity commands in the corresponding load library. So a
comparison of the Reporter and Scanner output is very useful when establishing
complete affinity information.

APAR PN68267

APAR applied.

Important note

Both the Reporter and Scanner may identify commands that, on closer
examination, do not cause real affinities. You must relate the output from the
Reporter and Scanner to your knowledge of your applications, to distinguish
between such commands and those commands that cause real affinities that
impact CICS dynamic transaction routing.

For more information about interpreting information in the affinity report, see
Appendix C, “Useful tips when analysing CICS Transaction Affinities Utility reports”
on page 85.

 Chapter 6. Running the Reporter 53

Modification of affinity transaction groups
You may need to make the following modifications to the affinity transaction groups
before they are input to the Builder:

� Remove false affinities.

False affinities may arise because the sharing of a resource is done on a
read-only basis, so it is possible for the resource to be replicated across cloned
CICS regions. The prime example of this is a read-only CWA, where the CWA
is set up at CICS startup (for example, from a PLTPI program), and only ever
read thereafter. (An alternative way to remove this false affinity is to prohibit
detection of ADDRESS CWA by the Detector using the CAFF options.)

� Remove affinity relation worsening.

An affinity that has a relation of LUNAME or USERID may be worsened to
GLOBAL because the Detector has not seen enough examples of the affinity to
be convinced that the affinity is related to a terminal or userid. You should
change this to LUNAME or USERID (and correct the lifetime) if you know that
the affinity really is terminal- or userid-related.

� Remove affinity lifetime worsening.

An LUNAME affinity that has a lifetime of LOGON, or a USERID affinity that
has a lifetime of SIGNON, may be worsened to SYSTEM or PERMANENT
because there are limitations in the ability of the Detector to observe logoffs or
signoffs. You should change this to LOGON or SIGNON if you know that really
is the correct lifetime.

APAR PN68267

APAR applied

� Change LUNAME affinity relation to USERID

An LUNAME affinity group may be both LUNAME and USERID, because all
instances of all transactions in the group were initiated from the same terminal
by the same userid. This appears in the report as LUNAME, because
LUNAME takes precedence. If you know that the affinity is primarily
userid-related, you should change the affinity to USERID. (This may be
indicated by other, similar, affinity groups appearing in the report with USERID.)

� Add WAIT affinities

The Reporter reports the use of WAIT EVENT, WAITCICS and WAIT
EXTERNAL commands as transaction-system affinity, because the Detector is
unable to detect the corresponding posting of the ECBs being waited upon.
The posting transactions need to be identified and affinity transaction groups
created to describe the affinities. The output from the Scanner may be
particularly useful here, as it finds programs that issue MVS POST.

� Add other affinities

Scanner output or your knowledge of your applications may identify additional
affinities. You should create affinity transaction groups to describe any such
extra affinities.

� Add GETMAIN storage sharers

The Detector cannot detect transactions that share storage other than via
EXEC CICS commands. Although it detects GETMAIN SHARED/FREEMAIN

54 CICS Transaction Affinities Utility User’s Guide

affinities, the address of the storage may have been passed to a third
transaction. You should add such transactions to the affinity transaction group.

� Correct LOAD HOLD affinities on CICS/MVS 2.1.2

If you run the Detector with CICS/MVS 2.1.2, it assumes that all programs
loaded with the HOLD option are defined as RELOAD(NO). If a program was
defined as RELOAD(YES), there may be another transaction that freed the
program, which the Detector was unable to detect. You should add such
transactions to the appropriate affinity transaction group.

Temporary storage compression
If your temporary storage queue names contain a unique counter or a termid, a
very large number of basic affinity transaction groups may be created, for what may
seem to be a small number of logical queues. For example, consider the queues
ABCD0001 through ABCD1000, whose names comprise a fixed part (ABCD) and a
counter (0001 through 1000). This might cause 1000 basic affinity transaction
groups, each with relation, LUNAME, lifetime PCONV, and transactions ABCD and
ABCE. This is one logical queue, ABCD*, which causes an affinity that may be
described by one affinity transaction group. However, the result is 1000 basic
affinity transaction groups.

The affinity data may be more readable if compressed to its logical form. You can
use the Builder to do this, because it combines all affinity transaction groups that
contain the same transaction IDs. The Builder output for the previous example is
one affinity transaction group with relation LUNAME, lifetime PCONV, and
transactions ABCD and ABCE.

Using the IBM Cross System Product
The following information about the IBM Cross System Product (CSP) concentrates
on tests carried out running CSP 3.3, but in general the information also applies to
later releases of CSP.

If you use the IBM Cross System Product to develop your applications and, in
particular, use CSP/AE (Application Environment) as the run-time environment for
the applications, the Reporter report will contain a large number of transaction
groups. These groups are created because of the way that CSP/AE uses EXEC
CICS commands, and in many cases do not cause real affinities.

Affinity analysis for a CICS region containing CSP 3.3 applications
This section concentrates on version 3.3 of IBM's CSP 4GL application generator.
There are two components to CSP:

� CSP/AD (Application Development) is used to develop the applications

� CSP/AE (Application Environment) is the run-time environment for application
execution.

When CSP 3.3 is used to develop and execute CICS pseudo-conversational
applications, the main CSP affinity is LUNAME/PCONV TS queue affinity, which
can be dealt with either by CICSPlex SM or by a queue-owning region (QOR). The
only other real affinity likely to be encountered is the use of non-read-only CSP
shared tables, and the scope of this affinity depends on the tables and applications
involved.

 Chapter 6. Running the Reporter 55

CSP internally uses these CICS resources and commands in the following ways.
They can cause transaction affinities, and these appear in the Transaction Affinities
Utility report.

ENQUEUEs/DEQUEUEs
are used to serialize the loading of CSP tables and applications from VSAM
files called ALFs (application load files). They are also used to serialize writing
messages to TD destination CSMT.

Shared storage
When a CSP application or table or map from an ALF has completed loading, it
is copied to shared storage. Note that some of these tables may be defined by
the application developer as SHARED and made resident by the CSP utility
program ALFUTIL. Such tables may be shared between applications, and may
be updated.

Temporary storage queues
CSP allows division of applications into 'segments'. This is just another name
for a pseudo-conversational application. CSP uses TS to save state data
between transactions in the pseudo-conversation, building the TS queue name
from the termid to ensure uniqueness.

SPI commands
are used to inquire on system attributes such as the version and release of
CICS in use, to set up and share a user exit global work area (GWA), and to
obtain file characteristics of the ALFs.

Detailed affinity analysis
Each of the above command scenarios is dealt with below. A description of how
the use of the command appears in the Transaction Affinities Utility Reporter report
is given, followed by an assessment of the affinity problem it causes, if any.
However, it is helpful first to expand on the structure of a CSP segmented
application.

The default CICS transaction identifier that CSP provides for applications is XSPS,
although this is normally replaced by a unique transid for the application concerned.
CSP transactions are defined so that the initial program is DCBINIT or DCBRINIT,
the former for the first segment (that is, the first transaction in a
pseudo-conversation), the latter for subsequent segments. These two CSP
programs ensure that the correct environment is built for the application, including
loading of programs and tables and saving and restoring of state data. DCBINIT
and DCBRINIT branch to other CSP programs, but these other programs are not
known to CICS. This means the Transaction Affinities Utility Reporter report shows
DCBINIT or DCBRINIT as the program containing the affinity command, but the
command offset is the generic x'FFFFFFFF'. In fact, the CSP program that issues
most EXEC CICS commands is DCBMODS.

It is very important to note that a single report transaction/program/offset entry can
conceal several affinity commands. Although the Transaction Affinities Utility
Detector has correctly logged, and deduced information from, all the commands, it
is only the first one encountered that is described in full in the report. So the
Transaction Affinities Utility may report DCBINIT issuing only ENQUEUEs, but in
reality DCBMODS is issuing both ENQUEUEs and DEQUEUEs. Similarly, the
Transaction Affinities Utility may report that DCBINIT is issuing only WRITEQ TS
commands, but in reality DCBMODS is issuing READQ TS and DELETEQ TS as

56 CICS Transaction Affinities Utility User’s Guide

well. (The Transaction Affinities Utility Scanner shows that this is indeed the case
when it is run against the CSP/AE load library.)

Note that there is a unique generic offset for each different command type within an
affinity group. The generic offset is zero minus the group/function code for the
command. So, for example, ENQUEUEs appear with x'FFFFEDFC', and
DEQUEUEs appear with x'FFFFEDFA'. This is also the case for other command
types.

ENQUEUE/DEQUEUE
There is an EQ affinity group in the report for each table or application or map that
is loaded. The resource used in each case starts with 'FZE' and contains the name
of the load module concerned. Other resources that may appear are 'FZELOAD'
and 'FZETUTRI'. The programs involved are DCBINIT and DCBRINIT.

Upon analysis, this use of ENQUEUE/DEQUEUE does not cause affinity. Here, the
ENQUEUE/DEQUEUE is being used to serialize a browse on an ALF, so that
another CSP application in the same CICS region does not interfere with the
loading process. If multiple CICS regions were cloned, each cloned CICS region
must perform this same loading process, but this has no effect on any of the other
CICS regions. So the ENQUEUE/DEQUEUE is not CICSplex wide and does not
cause affinity. All that is required is to ensure that each CICS has access to the
ALFs. Because these are used read-only by CSP/AE, the ALFs may be shared
without resorting to the overhead of function shipping.

There may also be an EQ affinity group in the report with a resource name of
'CSMT when CSP serializes writing of information to TD destination CSMT. This
does not cause affinity because each cloned CICS has its own CSMT.

GETMAIN SHARED
There is a GM affinity group in the report for each pair of transactions that were
observed performing GETMAINs and FREEMAINs on shared storage. The
programs involved are DCBINIT and DCBRINIT.

Upon analysis, this use of GETMAIN SHARED may cause affinity. It depends on
the application. If the storage obtained is for a CSP shared table that is
updated by applications, there will be affinity. Otherwise, there should not be
affinity, because the program or table concerned is read-only and therefore
duplicate copies are loaded by each cloned CICS region in the CICSplex.

The scope of any affinity depends on the use of the shared table by the
application(s) concerned. The application developer decides this use. But it is
extremely important to note that the Transaction Affinities Utility can detect only the
transaction issuing the GETMAIN and the transaction issuing the FREEMAIN, and
not intermediate transactions sharing the storage.

Note that unmatched GETMAIN SHARED commands may also appear in the
report. This means that the Transaction Affinities Utility has seen a GETMAIN
SHARED but as yet no matching FREEMAIN. The discussion in the rest of this
section applies in this case also.

 Chapter 6. Running the Reporter 57

Temporary storage queues
There are temporary storage (TS) affinity groups in the report for each terminal that
participated in a pseudo-conversation where the transactions involved are
developed using CSP. The TS queue names are all of the form 'EZExtttt' where x
is either A, C, R or T, and tttt is the termid of the terminal concerned. The
programs involved are DCBINIT and DCBRINIT. The affinity group should be
LUNAME/PCONV.

Upon analysis, this use of TS does cause affinity. Here, CSP is saving state data
between transactions in the pseudo-conversation. But, because the TS queue
contains the termid of the terminal, the affinity must be LUNAME; that is, terminal
oriented. And because this technique is applicable only to pseudo-conversational
applications, and the TS queue is deleted by CSP at the end of the
pseudo-conversation, the lifetime must be PCONV. Therefore, there is
LUNAME/PCONV affinity.

This affinity may be dealt with by either defining the affinity as LUNAME/PCONV to
CICSPlex SM (which still permits good workload balancing if the
pseudo-conversations are not excessively long) or, alternatively, by creating a
queue-owning region (QOR) to which all TS queue requests from all cloned CICS
regions are function shipped.

There is an interesting point to note here. Unrelated transactions may appear in
the same affinity group; that is, it looks as though different applications have shared
the same TS queue. In fact they have not; they have simply reused the TS queue
name. This occurs because the TS queue name 'EZExtttt' is not flexible enough to
incorporate a unique application identifier. The probable result of this is that the
Transaction Affinities Utility Builder combines all transactions in all
pseudo-conversational applications into a single affinity group for CICSPlex SM
with an affinity of LUNAME and a lifetime of PCONV. The presence of one group
rather than a group for each application is actually not important. When dynamic
routing, the affinity still ends when the current pseudo-conversation ends, so the
effect is exactly the same.

It is useful to have applied the PTF for CSP APAR PN45100, because this adds
deletion of 'EZExtttt' TS queues after a transaction abend.

SPI commands
There are transaction-system affinities in the report indicating that commands such
as EXTRACT EXIT and INQUIRE SYSTEM have been used. These are concerned
with establishing the correct environment for a transaction. The programs involved
are DCBINIT and DCBRINIT.

Transaction-system affinity can mean that a transaction is tied to a particular CICS,
or more likely, as in this case, that the transaction should be run on all cloned CICS
regions. Because it happens automatically there is no affinity problem. If multiple
CICS regions are cloned, each cloned CICS region must perform this processing
and will do so, but this will have no effect on any of the other CICS regions.

58 CICS Transaction Affinities Utility User’s Guide

Chapter 7. Running the Builder

 This chapter

Describes how to run the Builder, which runs as a batch job to build affinity
transaction groups suitable for input to the CICS system management product,
CICSPlex SM.

You can run the Builder to build affinity transaction groups suitable for input to the
CICS system management product, CICSPlex SM. The Builder takes as input a
set of files containing basic affinity transaction groups, combines those groups, and
outputs a file containing combined affinity transaction groups.

Note: You can use the Reporter to produce files of basic transaction affinity
groups for input to the Builder. The files can be from several runs of the Detector
(for example, against a production CICS region and a test CICS region), but must
be for the same workload.

You need to create combined affinity transaction groups for CICSPlex SM, because
CICSPlex SM requires that a transaction identifier be in one transaction group only.
(The Builder satisfies this by combining groups that contain the same transaction
identifier.)

You can run the Builder by editing and running the job, CAUJCLBL. Before running
the CAUJCLBL job, change the following as appropriate:

� The JOB accounting parameters

� The PARM parameter of the EXEC statement; for example:

//BUILD EXEC PGM=CAUBLD,

// PARM=('STATE=ACTIVE,MATCH=LUNAME,DSPSIZE=16',

// 'CONTEXT=CICPLEX1')

[DSPSIZE={16|number}]
Specify the size, in the range 2 through 2000 (MB), of the dataspace
created internally by the Builder to store the group tables. The default
value is 16 (MB).

[MATCH={LUNAME|USERID}]
Specify the filter that CICSPlex SM is to use for workload separation, and
which applies to all combined affinity groups produced by the Builder.

[STATE={ACTIVE|DORMANT}]
Specify whether the combined affinity groups are to be defined as active or
dormant to CICSPlex SM.

[CONTEXT=plexname]
Specify the name, one through eight characters, of a CICSplex. If you
specify this parameter, the Builder generates a CICSPlex SM CONTEXT
statement, which enables CICSPlex SM to associate the combined affinity
transaction groups with a particular CICSplex that it is managing. The
default is to not generate a CONTEXT statement; in which case,
CICSPlex SM assumes the local CMAS.

 Copyright IBM Corp. 1994 59

For more information about defining transaction groups to CICSPlex SM, see
the CICSPlex System Manager Setup and Administration manual, SC33-0784.

� The STEPLIB DD statement

Specify the name of the CICS Transaction Affinities Utility load library in which
you have installed the Builder program, CAUBLD.

� The REPGRPS DD statement

Specify the (concatenation of) names of the sequential data sets containing the
basic affinity transaction groups to be input to the Builder. The Builder reads
each line of the input data sets, and checks them for syntax and logic errors.
For information about the valid syntax, see “Syntax for input to the Builder.”

� The AFFGRPS DD statement

Specify the name of the sequential data set to which the combined affinity
transaction groups are to be sent. This data set is suitable for input to
CICSPlex SM.

� SYSPRINT DD statement

Specify the destination for the report output by the Builder.

Syntax for input to the Builder
The syntax in the sequential data sets input to the Builder is similar (but not
identical) to that allowed by CICSPlex SM. (For more information, see the
CICSPlex System Manager Setup and Administration manual.) The differences
are given in the following list:

1. Only CREATE statements for TRANGRPs and DTRINGRPs, REMOVE
statements for TRANGRPs, CONTEXT statements, and line comments are
allowed. (A line comment is a line that starts with an asterisk (*) in column 1).
Additionally, the HEADER statement is allowed for the Builder, but is not a
CICSPlex SM statement.

2. Block comments delimited by '/*' and '*/' are not recognized.

3. Transaction group names of up to 11 characters are allowed. (CICSPlex SM
only allows 8 characters.)

4. A CREATE TRANGRP statement must have exactly one NAME, one AFFINITY
and one AFFLIFE value. MATCH and STATE values are optional and ignored
(they are overridden by the values on the PARM statement or the default). A
DESC value is optional and ignored. Any other keywords are reported as
errors.

5. A CREATE DTRINGRP statement must have exactly one TRANGRP and one
TRANID value. Any other keywords are reported as errors.

6. REMOVE TRANGRP statements are optional and are ignored by the Builder.
However, if a REMOVE TRANGRP statement appears in an input data set, it
must have exactly one NAME value. Any other keywords are treated as errors.

7. CONTEXT statements in the input data set are optional and are ignored by the
Builder. They are overriden by the CONTEXT operand of the PARM statement
(if specified) or the default.

8. A HEADER statement requires no other keywords. APPLID, SAVEDATE and
SAVETIME are all optional, and if specified their values are not validated. The

60 CICS Transaction Affinities Utility User’s Guide

HEADER statement must end in a semi-colon and should not span lines. Each
input data set must start with a HEADER statement. (See “HEADER
statements” on page 63.)

9. If a line comment contains the characters HEADER anywhere in it, it is not
treated as a comment, and is parsed like any non-comment line, in case it is a
HEADER statement. Otherwise comment lines are thrown away.

10. The only valid values for AFFINITY are GLOBAL, LUNAME, USERID. NONE
is not allowed.

11. Keywords and values (including surrounding brackets) must not be split across
input lines.

12. Nested brackets are not allowed within values.

13. The Builder is case sensitive. This applies to both keywords and their values.
(Keywords must be in upper case.)

Any syntax error causes an error message to be issued. Logic errors are also
possible; for example, CREATE DTRINGRP before CREATE TRANGRP, and also
cause error messages to be issued.

Any such errors do not cause the Builder to terminate immediately, but normally
cause a skip to either the next keyword or the next statement, depending on the
error. The Builder terminates with return code of 8 when EOF is finally reached.
An error report lists all errors encountered. For each error, the line containing the
error is output, plus up to 4 preceding lines for the same statement to put the error
in context, plus the error message.

 Chapter 7. Running the Builder 61

input_statement = {create_statement |

 remove_statement |

 header_statement |

 context_statement |

 comment}

create_statement = CREATE

 {create_trangrp |

 create_dtringrp}

 ;

create_trangrp = TRANGRP

 NAME (trangroup)

 AFFINITY ({GLOBAL|LUNAME|USERID})

 AFFLIFE ({PERMANENT|SYSTEM|LOGON|SIGNON|PCONV})

 [DESC (string)]

 [MATCH ({LUNAME|USERID})]

 [STATE ({ACTIVE|DORMANT})]

create_dtringrp = DTRINGRP

 TRANGRP (trangroup)

 TRANID (tranid)

remove_statement = REMOVE

 TRANGRP

 NAME (trangroup)

 ;

context_statement = CONTEXT

 [plexname]

 ;

header_statement = HEADER

 [APPLID (applid)]

 [SAVEDATE (date)]

 [SAVETIME (time)]

 ;

comment = '>'

 [string |

 header_statement]

Figure 11. Builder input syntax

62 CICS Transaction Affinities Utility User’s Guide

 HEADER statements
The HEADER statement is specific to the Builder, and is not a CICSPlex SM
statement. It is produced by the Reporter, and is needed by the Builder to create
unique transaction group names.

The Reporter generates temporary transaction group names (for example,
CW.00000001 and TS.00000001) while it is running, and stores these names in the
output data set for that run. However, the Builder can take several Reporter data
sets as input, and may therefore get the same transaction group name from
different input data sets (describing different affinity transaction groups).

To ensure that the transaction group names are unique, the input transaction group
names are qualified by the input data set name. To do this, when the Builder reads
a HEADER statement (the first line of an input data set), it obtains the data set
name from MVS/ESA. The HEADER statement is vital, because without it the
Builder cannot detect the change from one input data set to another.

Warning: If you omit a HEADER statement, the Builder may generate error
messages or add transactions to the wrong group, and gives incorrect line numbers
in the error report and an incomplete report of data sets processed.

Output from the Builder
The Builder outputs a file containing a set of definitions for combined affinity
transaction groups, and a report listing the combinations that occurred.

Combined affinity transaction group definitions
Before each definition of a combined group in the output file, the Builder adds a
commented out REMOVE command for that group. If you already have combined
groups of the same name, you should check that it is appropriate to delete them,
before uncommenting the REMOVE command.

The name of each combined affinity transaction group is derived from the first
(alphanumerically) transaction identifier in the combined group. For example, if
ABCD was first, the transaction group name would be ABCDGRP.

Note: For CICSPlex SM, the name of each combined affinity transaction group
must be unique.

For example, Figure 12 on page 64 shows the set of combined definitions that
correspond to the basic definitions in Figure 10 on page 52, assuming that a
MATCH filter of LUNAME, a STATE of ACTIVE, and a CONTEXT of CICPLEX1
was specified on the PARM statement.

 Chapter 7. Running the Builder 63

> HEADER APPLID(BUILDER) SAVEDATE(93/26/27) SAVETIME(12:22:51); �1�
>

> Generated by CICS Transaction Affinities Utility (Builder) on 1993/26/28

> Note: Suitable for input to CICSPlex SM

>

CONTEXT CICPLEX1;

>

> REMOVE TRANGRP NAME(AFF1GRP);

CREATE TRANGRP NAME(AFF1GRP) AFFINITY(LUNAME) AFFLIFE(SYSTEM)

 MATCH(LUNAME) STATE(DORMANT);

CREATE DTRINGRP TRANGRP(AFF1GRP) TRANID(AFF1);

CREATE DTRINGRP TRANGRP(AFF1GRP) TRANID(AFF2);

CREATE DTRINGRP TRANGRP(AFF1GRP) TRANID(AFF3);

CREATE DTRINGRP TRANGRP(AFF1GRP) TRANID(AFF4);

CREATE DTRINGRP TRANGRP(AFF1GRP) TRANID(AFF5);

CREATE DTRINGRP TRANGRP(AFF1GRP) TRANID(AFF6);

CREATE DTRINGRP TRANGRP(AFF1GRP) TRANID(AFF7);

CREATE DTRINGRP TRANGRP(AFF1GRP) TRANID(AFF8);

>

> REMOVE TRANGRP NAME(AFTDGRP);

CREATE TRANGRP NAME(AFTDGRP) AFFINITY(LUNAME) AFFLIFE(PCONV)

 MATCH(LUNAME) STATE(DORMANT);

CREATE DTRINGRP TRANGRP(AFTDGRP) TRANID(AFTD);

CREATE DTRINGRP TRANGRP(AFTDGRP) TRANID(AFTR);

CREATE DTRINGRP TRANGRP(AFTDGRP) TRANID(AFTW);

>

> REMOVE TRANGRP NAME(AUXXGRP);

CREATE TRANGRP NAME(AUXXGRP) AFFINITY(GLOBAL) AFFLIFE(SYSTEM)

 MATCH(LUNAME) STATE(DORMANT);

CREATE DTRINGRP TRANGRP(AUXXGRP) TRANID(AUXX);

CREATE DTRINGRP TRANGRP(AUXXGRP) TRANID(CWA1);

Figure 12. Example definitions for combined affinity transaction groups

Notes:

1. The values of the SAVEDATE and SAVETIME fields in the HEADER statement
give the latest save date and save time from all the input data sets. (See
Figure 12 (�1�) and Figure 13 on page 66.)

2. The combined transaction groups can be input again to the Builder. For
example, you may decide to:

a. Use the Reporter then the Builder to produce combined groups for
temporary storage affinities

b. Use the Reporter then the Builder to produce combined groups for all other
affinity command types

c. Merge the two files output by the Builder in steps 2a and 2b, by inputting
those files to the Builder together

d. Input to CICSPlex SM the file output by the Builder in step 2c.

This facility is particularly useful when dealing with the temporary storage
compression problem, described in “Temporary storage compression” on
page 55.

Combining basic affinity transaction groups
When the Builder combines two basic affinity transaction groups, it assigns
relations and lifetimes to the combined group based on the relations and lifetimes
derived from the basic groups. This may cause some worsening of the relations
and lifetimes. For example, LUNAME combined with USERID gives GLOBAL.
Table 10 through Table 13 on page 65 show the relations and lifetimes that result
from the combination of basic affinity transaction groups.

64 CICS Transaction Affinities Utility User’s Guide

To help you analyse the effect of combining basic transaction affinity groups, the
Builder produces a report that lists the combinations that occurred.

Table 10. Resultant affinity relations

Relation A Relation B Resultant relation C

GLOBAL Any relation GLOBAL

LUNAME LUNAME LUNAME

LUNAME USERID GLOBAL

USERID USERID USERID

Table 11. Resultant affinity lifetimes (LUNAME relation)

Lifetime X Lifetime Y Resultant lifetime Z

PERMANENT Any lifetime PERMANENT

SYSTEM SYSTEM SYSTEM

SYSTEM LOGON SYSTEM

SYSTEM PCONV SYSTEM

LOGON LOGON LOGON

LOGON PCONV LOGON

PCONV PCONV PCONV

Table 12. Resultant affinity lifetimes (USERID relation)

Lifetime X Lifetime Y Resultant lifetime Z

PERMANENT Any lifetime PERMANENT

SYSTEM SYSTEM SYSTEM

SYSTEM SIGNON SYSTEM

SYSTEM PCONV SYSTEM

SIGNON SIGNON SIGNON

SIGNON PCONV SIGNON

PCONV PCONV PCONV

Table 13. Resultant affinity lifetimes (GLOBAL relation)

Lifetime X Lifetime Y Resultant lifetime Z

PERMANENT Any lifetime PERMANENT

Any other lifetime combination SYSTEM

 Chapter 7. Running the Builder 65

Data sets processed report
This report gives the names of all the input data sets (specified on the REPGRPS
DD statement) that were read. This is produced even if errors occur in the input
data sets.

Note: Only the data sets that contain a HEADER statement appear in the report.

CICS TRANSACTION AFFINITIES UTILITY 1993/26/28 Page 1

BUILDER REPGRPS DATASETS PROCESSED REPORT

 Dataset Name CICS Detector Last Detector Last

 APPLID Save Date Save Time

-- -------- -------------- --------------

CICS332.TRANGRPS.MERGE1 CICS332 93/26/25 29:25:29

CICS332.TRANGRPS.MERGE2 CICS332 93/26/26 15:22:34

CICS332.TRANGRPS.ONE CICS332 93/26/27 12:22:51

Figure 13. Example data sets processed report

Empty transaction groups report
This report (for example, see Figure 14) gives all basic transaction groups
(trangroups) that were defined, but contained no transactions. It is produced only if
no errors occur in the input data sets. An empty trangroup probably indicates that
you have made a mistake. (The Reporter cannot produce empty trangroups, so
you must have created the input by hand, and probably omitted some
corresponding CREATE DTRINGRP statements.)

CICS TRANSACTION AFFINITIES UTILITY 1993/26/28 Page 2

BUILDER EMPTY TRANGROUP DEFINITIONS

 CICS332.TRANGRPS.EMPTY1

 G1 (GLOBAL SYSTEM) G2 (GLOBAL PERMANENT) G3 (GLOBAL SYSTEM)

 CICS332.TRANGRPS.EMPTY2

 L2 (LUNAME PERMANENT) L3 (LUNAME LOGON) L4 (LUNAME PCONV)

Figure 14. Example empty trangroups report

Group merge report
For each combined group, this report (for example, see Figure 15 on page 67)
gives the constituent transactions and basic groups that went to comprise it. (This
is a kind of audit trail.) It is produced only if there are no errors in the input data
sets. It is very useful when establishing which basic group has caused the severe
worsening of a lifetime. For example, in Figure 15 on page 67, four groups were
merged, three were LUNAME and PCONV, one was LUNAME and SYSTEM; the
latter caused the lifetime worsening.

66 CICS Transaction Affinities Utility User’s Guide

CICS TRANSACTION AFFINITIES UTILITY 1993/26/28 Page 3

BUILDER GROUP MERGE REPORT

Trangroup : AFF1GRP

Affinity : LUNAME

Lifetime : SYSTEM

Match : LUNAME

State : DORMANT

Consists of Transactions

AFF1 AFF2 AFF3 AFF4 AFF5 AFF6 AFF7 AFF8

Consists of groups merged from

 CICS332.TRANGRPS.MERGE1

TS.22222221 (LUNAME PCONV) TS.22222222 (LUNAME PCONV)

 CICS332.TRANGRPS.MERGE2

 TS.22222221 (LUNAME SYSTEM) TS.22222222 (LUNAME PCONV)

Trangroup : AFTDGRP

Affinity : LUNAME

Lifetime : PCONV

Match : LUNAME

State : DORMANT

Consists of Transactions

AFTD AFTR AFTW

Consists of groups merged from

 CICS332.TRANGRPS.ONE

TS.22222221 (LUNAME PCONV) TS.22222222 (LUNAME PCONV)

Trangroup : AUXXGRP

Affinity : GLOBAL

Lifetime : SYSTEM

Match : LUNAME

State : DORMANT

Consists of Transactions

 AUXX CWA1

Consists of groups merged from

 CICS332.TRANGRPS.ONE

 CW.22222221 (GLOBAL SYSTEM)

Figure 15. Example group merge report

 Chapter 7. Running the Builder 67

 Error report
This report (for example, see Figure 16) gives any errors that were detected in the
processing of the input files. These may be syntax errors or logic errors. Each
error is accompanied by a message. (See Appendix D, “Messages and Codes” on
page 87 for details of the messages.)

CICS TRANSACTION AFFINITIES UTILITY 1993/29/28 Page 1

BUILDER REPGRPS ERROR REPORT

Dataset = CICS332.TRANGRPS.ERR1

Line Number Statement in error

 ----------- --

5 CREATE TRANGRP NAME(G3) AFFINITY(GLOBAL) AFFLIFE(LOGON);

CAU5238E Invalid AFFLIFE for AFFINITY

6 CREATE TRANGRP NAME(G4) AFFINITY(GLOBAL) AFFLIFE(SIGNON);

CAU5238E Invalid AFFLIFE for AFFINITY

7 CREATE TRANGRP NAME(G5) AFFINITY(GLOBAL) AFFLIFE(PCONV);

CAU5238E Invalid AFFLIFE for AFFINITY

Dataset = CICS332.TRANGRPS.ERR2

Line Number Statement in error

 ----------- --

11 CREATE TRANGRP NAME(L4) AFFINITY(LUNAME) AFFLIFE(SIGNON);

CAU5238E Invalid AFFLIFE for AFFINITY

15 CREATE TRANGRP NAME(U3)

 16 AFFINITY(USERID) AFFLIFE(LOGON);

CAU5238E Invalid AFFLIFE for AFFINITY

Figure 16. Example error report

68 CICS Transaction Affinities Utility User’s Guide

 Chapter 8. Service

 This chapter

Describes how you can get help from IBM for any problems that you encounter
with the CICS Transaction Affinities Utility. You can get assistance by
telephoning your local Support Center.

This chapter helps you decide when to contact the Support Center, and what
information you need to collect before contacting the Center. It also gives you
an understanding of the way in which IBM Program Support works.

When to contact the Support Center
Before contacting the Support Center, try to ensure that the problem belongs with
the Center. Don’t worry if you can’t be sure that the problem is due to the CICS
Transaction Affinities Utility itself. How sure you are depends on the complexity of
your installation, the experience and skill levels of your systems staff, and the
symptoms that you have been getting.

In practice, many errors reported to Program Support turn out to be user errors, or
they cannot be reproduced, or they need to be dealt with by other parts of IBM
such as Hardware CE or Systems Engineering. This indicates just how difficult it
can be to determine the precise cause of a problem.

Dealing with the Support Center
Your first contact with the Support Center is the call receipt operator, who takes
initial details and puts your problem on a queue. You are subsequently contacted
by a Support Center representative, and your problem is taken from there.

The Support Center needs to know as much as possible about your problem, and
you should have the information ready before making your first call. It is a good
idea to put the information down on a problem reporting sheet, such as the one
shown in Table 14 on page 70.

 Copyright IBM Corp. 1994 69

Table 14. Sample problem reporting sheet

PROBLEM REPORTING SHEET

Date Severity Problem No. Incident No.

Problem/Enquiry (See note.)

MVS Rel MVS Lvl CAU Rel CAU Lvl

CICS/ESA 4.1 CICS/ESA 3.3 CICS/ESA 3.2.1 CICS/MVS 2.1.2

Scanner Detector Reporter Builder

Module Abend/Prog CK Incorrout Wait

Loop Message Performance Other

Documentation available

Message Abend Transaction dump System dump

Trace Program output Translator output Compiler output

Symptom string Other

Actions

Date Name Activity

Resolution

APAR PTF Other

Note: Information given should be specific to the environment in which you were running the CICS Transaction
Affinities Utility when you encountered a problem. For example the CICS version is for the CICS region against
which you were using the CICS Transaction Affinities Utility, and the MVS release and level are those that the
CICS region were running under.

There are two advantages of using a problem reporting sheet:

1. You will be communicating with the IBM Support Center by telephone. So, with
all your findings before you on a sheet of paper, you are prepared to respond
to the questions that you may be asked.

2. You should maintain your own in-house tracking system to record all problems.
This information can then be used for planning, organizing, communicating, and
establishing priorities for controlling and solving these problems.

What the Support Center needs to know
When you contact the Support Center, you need to give the operator the name of
your organization and your access code. Your access code is a unique code
authorizing you to use IBM Software Services, and you provide it every time you
contact the Center. Using this information, the operator accesses your customer
profile, which contains details of your address, relevant contact names, telephone
numbers, and details of the IBM products at your installation.

The Support Center operator asks you if this is a new problem, or a further call on
an existing one. If it is new, you are assigned a unique incident number. A
problem management record (PMR) is opened on the RETAIN system, where all

70 CICS Transaction Affinities Utility User’s Guide

activity associated with your problem is recorded. The problem remains “open”
until it is solved.

Make a note of the incident number on your own problem reporting sheet. The
Center expects you to quote the incident number in all future calls connected with
this problem.

If the problem is new to you, the operator asks you for the source of the problem
within your system software—that is, the program that seems to be the cause of
the problem. As you are reading this book, it is likely that you have already
identified the CICS Transaction Affinities Utility as the problem source.

You need to give a severity level for the problem. Severity levels can be 1, 2, or 3.
They have the following meanings:

� Severity level 1 indicates that you are unable to use a program, resulting in a
critical condition that needs immediate attention.

� Severity level 2 indicates that you are able to use the program, but that
operation is severely restricted.

� Severity level 3 indicates that you are able to use the program, with limited
functions, but the problem is not critical to your overall operation.

When deciding the severity of the problem, take care neither to understate it nor to
overstate it. The Support Center procedures depend on the severity level so that
the most appropriate use can be made of the Center’s skills and resources.

Finally, the call receipt operator asks you for a brief description of the problem, and
may prompt you to quote the CICS symptom string, or to give any keywords
associated with the problem. The primary keywords are ABEND, WAIT, LOOP,
PERFORMANCE, and INCORROUT, corresponding exactly with the problem
classification types used in the earlier parts of this book. Strings containing other
keywords are also useful. These are not predefined, and might include such items
as a message or message number, an abend code, and any parameters known to
be associated with the problem.

The keywords are subsequently used as search arguments on the RETAIN
database, to see if your problem is a known one that has already been the subject
of an authorized program analysis report (APAR).

The following information is needed when problems with the CICS Transaction
Affinities Utility are diagnosed by IBM. You should provide as much of this
information as you can, so that it can be documented in the PMR for future
reference.

� The CICS release for the CICS region against which you were running the
CICS Transaction Affinities Utility: CICS/ESA 4.1, CICS/ESA 3.3, CICS/ESA
3.2.1, or CICS/MVS 2.1.2

� Which component of the CICS Transaction Affinities Utility is the PMR related
to: Scanner, Detector, Reporter, or Builder

� The exact symptoms of the problem, or the nature of the query

� Any message numbers involved

� How the problem began

 Chapter 8. Service 71

� If the problem began suddenly, any changes made before the onset of the
problem

� Whether the problem is solid or intermittent

� Whether the problem can be recreated

� The name of any specific transaction, CICS region, or load library related to the
problem

� A list of documentation available: auxiliary trace, internal trace, dumps, and so
on

� Any other relevant information that you think may be valid.

You should keep all the information relevant to the problem, and any available
documentation such as dumps, traces, and translator, compiler, and program
output.

How your problem is subsequently progressed depends on its nature. The
representative who handles the problem gives you guidance about what is required
from you. The possibilities are described in the next section.

What happens next
Details of your call are passed using the RETAIN problem management system to
the appropriate support group. Your problem, assuming it is associated with the
CICS Transaction Affinities Utility, is put on the CICS queue. The problems are
dealt with in order of severity level.

At first, a Level-1 representative uses the keywords that you have provided to
search the RETAIN database. If your problem is found to be one already known to
IBM, and a fix has been devised for it, a Program Temporary Fix (PTF) can quickly
be dispatched to you.

If the RETAIN search is unsuccessful, the problem is passed to the CICS change
team for further investigation. They try to respond in the PMR with their answer to
the problem.

CICS Transaction Affinities Utility queries, and problems that turn out to be user
errors, set up difficulties, or other non-code defects should be resolved in this way.

If any reported problems need further investigation, the CICS change team will
contact you by telephone to discuss the problems in greater detail.

You might be asked to give values from a formatted dump or trace table. You
might also be asked to carry out some special activity, for example to set a trap, or
to use trace with a certain type of selectivity, and then to report on the results.

It might be necessary to have several follow-up telephone calls, depending on the
complexity of the symptoms and your system environment. In every case, the
actions taken by you and the Support Center are entered in the PMR. The
representative can then be acquainted with the full history of the problem before
any follow-up call.

72 CICS Transaction Affinities Utility User’s Guide

The result of the investigations determines whether your problem is a new one, or
one that is already known. If it is already known, and a fix has been developed,
the fix is sent to you.

If the problem is new, an APAR may be submitted. This is dealt with by the CICS
change team.

 Chapter 8. Service 73

74 CICS Transaction Affinities Utility User’s Guide

Appendix A. Details of what is detected

 This appendix

Describes what is detected by the Detector and Reporter for each affinity type.
Additionally, it highlights the differences, if any, with what the Scanner detects.
(In general, the Scanner always detects more, because it covers paths that may
not get exercised by the Detector, and because it can not see beyond the
command argument 0 to eliminate commands that do not actually cause
affinity.)

This information adds details to the general description in “What is detected” on
page 11.

 ENQ/DEQ
� The affinity here is between all transactions that ENQ or DEQ on a given

resource. The match is made on the resource.

� It is possible for the ENQ/DEQ resource to be either a character string of length
1 to 255 bytes, or an address (which has an implied length of 4 bytes).

� It is possible for the affinity relation to be GLOBAL or USERID.

� The only possible lifetime is SYSTEM.

� Commands that result in a LENGERR condition are grouped together and
treated as a resource of 'LENGERR'. All other conditions result in a valid
resource and so are treated the same as a NORMAL command.

� Because of affinity record size limitations, character string resources of greater
than 207 bytes in length are compressed to 207 bytes. The compression is
achieved by removing bytes from the middle of the string (these are probably
less significant). This means that such resources may be flagged as being the
same when they are not, if the only variation was in the removed bytes.
Please check all such compressed resources to see if that is the case. The
Reporter flags such compression, and pads the resource back out to the
correct length for the report, by inserting '?' characters.

 Scanner differences: None.

 TS commands
� The affinity here is between all transactions that use the same TS queue. It

applies to both MAIN and AUXILIARY TS. The match is made on the name of
the TS queue.

� It is possible for the affinity relation to be GLOBAL, LUNAME or USERID.

� The possible lifetimes are PCONV, LOGON, SIGNON, SYSTEM and
PERMANENT. Note that a MAIN queue is always non-recoverable regardless
of definition, so cannot cause PERMANENT.

� If a TS queue is defined as remote or a remote SYSID was specified on the TS
command so that the command is function shipped to a remote CICS region,
then no data is collected.

 Copyright IBM Corp. 1994 75

� Commands in error are treated the same as commands that give a NORMAL
response, so data is collected.

� If a TS queue is created and deleted within the same task then no data is
collected.

Scanner differences: Scanner detects all instances of TS commands.

 LOAD HOLD/RELEASE
� The affinity here is between all transactions that LOAD HOLD and RELEASE

the same program (or more probably table). The match is made on the
program name.

� The LOAD and RELEASE protocol only applies to programs that are defined
with RELOAD(NO). If the Detector can not establish the RELOAD attribute for
some reason, then RELOAD(NO) is assumed.

� Once a LOAD HOLD has occurred for a program, any subsequent LOAD (with
or without HOLD) or RELEASE is part of the affinity.

� It is only possible for the affinity relation to be GLOBAL.

� The only possible lifetime is SYSTEM.

� Commands in error are treated the same as commands that give a NORMAL
response, so data is collected.

� LOAD with no HOLD for programs defined as RESIDENT are not treated as an
affinity, because relying on residency for sharing is inherently unsafe (the
program can be replaced by SET PROG() NEWCOPY).

� The incorrect use of RELEASE for a program defined with RELOAD(YES) is
not detected.

Scanner differences: Scanner detects all instances of LOAD, not just LOAD
HOLD, and all instances of RELEASE.

 RETRIEVE WAIT/START
� The affinity here is between all the transactions that issue START commands

for a particular transaction at a terminal, where that transaction issues
RETRIEVE WAIT. The transaction that issues the RETRIEVE WAIT is also
part of the affinity. The match is made on the transid.

� It is possible for the affinity relation to be GLOBAL or USERID.

� The possible lifetimes are SYSTEM or PERMANENT. PERMANENT is
assumed if PROTECT is specified on any START.

� If the transaction to be STARTed is defined as remote or a remote SYSID was
specified on the START command so that the command is function shipped to
a remote CICS region, then no data is collected.

� Commands in error are treated the same as commands that give a NORMAL
response, so data is collected.

Scanner differences: Scanner finds all instances of RETRIEVE WAIT, and all
instances of START that either specify TERMID or omit NOCHECK or specify
REQID (because of CANCEL affinity).

76 CICS Transaction Affinities Utility User’s Guide

 ADDRESS CWA
� The affinity here is between all transactions that issue ADDRESS CWA.
� The only affinity relation is GLOBAL.
� Lifetime is always SYSTEM.

 Scanner differences: None.

 GETMAIN SHARED/FREEMAIN
� The affinity here is between the transaction that obtains storage via GETMAIN

SHARED and the transaction that frees the same piece of storage via
FREEMAIN. Both transactions must be seen for there to be affinity. The
match is made on storage address.

� However, the situation is complicated by the fact that the storage address may
be passed to other transactions; and if they access the storage, they cannot
be detected, because the storage access does not take place through the
CICS API.

� The affinity relation may be GLOBAL, LUNAME or USERID.

� The possible lifetimes are PCONV, LOGON, SIGNON and SYSTEM. However,
the Detector always worsens LOGON and SIGNON to SYSTEM, because of
limitations in the way that this affinity is detected.

� Commands in error are ignored, as there is no address on which to match
GETMAIN with FREEMAIN, so no data is collected.

� A GETMAIN/FREEMAIN affinity is considered to be initiated from a terminal if
the GETMAIN is initiated from a terminal. Whether the FREEMAIN was or not
is irrelevant.

� Any unmatched GETMAIN SHAREDs are also reported if they have never
matched by the time a Detector stop occurs. They are output in a separate
report section. Note that on a start with restore data, they are not restored and
are deleted from the affinity file.

Scanner differences: Scanner finds all instances of GETMAIN SHARED and all
instances of FREEMAIN.

 LOAD/FREEMAIN
� The affinity here is between the transaction that loads the program via LOAD

and the transaction that releases the same program via FREEMAIN. The match
is made on load point address.

� However, the situation is complicated by the fact that the load point address
may be passed to other transactions (for example, the program is actually a
table); and if they access the program, they cannot be detected. This is
analogous to storage address passing with GETMAIN SHARED/FREEMAIN.

� The LOAD and FREEMAIN protocol only applies to programs defined as
RELOAD(YES). Note that HOLD is irrelevant, as CICS Program Control never
sees the FREEMAIN nor knows the storage location of the individual task’s
copy, and so can not release the program at task end. This implies that all
LOADs must be examined as they are all effectively LOAD HOLDs.

� The affinity relation may be GLOBAL, LUNAME or USERID.

 Appendix A. Details of what is detected 77

� The possible lifetimes are PCONV, LOGON, SIGNON and SYSTEM. However,
the Detector always worsens LOGON and SIGNON to SYSTEM, because of
limitations in the way that this affinity is detected.

� Commands in error are ignored, because there is no load address on which to
match LOAD with FREEMAIN, so no data is collected.

LOADs with no SET option are ignored as no load address is returned, so no
data is collected.

� A LOAD/FREEMAIN affinity is considered to be initiated from a terminal if the
LOAD is initiated from a terminal. Whether the FREEMAIN was or not is
irrelevant.

� Any unmatched LOADs are also reported if they have never matched by the
time a Detector stop occurs. They are output in a separate report section. Note
that on a start with restore data, they are not restored and are deleted from the
affinity file.

� If you are using the CICS Transaction Affinities Utility on CICS/MVS 2.1.2,
LOAD HOLD for programs defined with RELOAD(YES) appears under
LOAD/RELEASE, because the Detector cannot determine the attributes of a
program loaded with the HOLD option and assumes RELOAD(NO).

Scanner differences: Scanner finds all instances of LOAD and all instances of
FREEMAIN.

 CANCEL/DELAY/POST/START
� The affinity here is between the transaction that issues the DELAY, POST or

START command and the transaction that issues the CANCEL command via
REQID. The match is on REQID.

� In order for another task to CANCEL a DELAY, REQID must be explicitly
specified on the DELAY command. If no REQID is specified on a DELAY
command, it can not be cancelled. So only those DELAY commands that
specify REQID can be detected.

In order for another task to CANCEL a START or POST, it is not necessary to
specify REQID on the command as CICS supplies a unique REQID that may
be used (unless START specifies NOCHECK). So only START commands that
do not both specify NOCHECK and omit REQID, and all POST commands, are
detected.

� Further, data is not collected for commands that expire on entry to Interval
Control, because they cannot be cancelled (because an ICE is not created).
DELAY and POST commands get an EXPIRED response. For START
commands there is no such response; so expired on entry is deduced if
INTERVAL(0) was specified. This detects most expired on entry STARTs, but
not all.

� START, DELAY and POST commands in error are ignored, so no data is
collected.

� CANCEL commands that omit REQID are ignored, because they can not
cancel another task, or that return a NOTFND response, as the ICE must have
expired so the CANCEL failed. No data is collected for these.

78 CICS Transaction Affinities Utility User’s Guide

� REQIDs are assumed to be unique; that is, there are not simultaneous pairs of
START/CANCEL using the same REQID. Doing this violates CICS
programming guidelines, and the results from CICS are unpredictable.

� The affinity relation for START may be GLOBAL, LUNAME or USERID. The
possible lifetimes are PCONV, LOGON, SIGNON, SYSTEM and PERMANENT.
The PROTECT option determines whether SYSTEM or PERMANENT would be
used. However, the Detector always worsens LOGON and SIGNON to
SYSTEM or PERMANENT, because of limitations in the way that this affinity is
detected.

The affinity relation for DELAY and POST may be GLOBAL, LUNAME or
USERID. The possible lifetimes are only SYSTEM or PCONV. If LUNAME or
USERID, it must be PCONV because neither DELAY nor POST exist beyond
task termination.

� If the transaction specified on a START or CANCEL command is defined as
remote or a remote SYSID was specified on the command so that the
command is function shipped to a remote CICS region, then no data is
collected. (It is not possible to function ship POST or DELAY commands.)

� A CANCEL affinity is considered to be initiated from a terminal if the START,
DELAY or POST is initiated from a terminal. Whether the CANCEL was or not
is irrelevant.

Scanner differences: Scanner detects all instances of POST, all instances of
DELAY REQID, all instances of CANCEL REQID, and all instances of START that
either omit NOCHECK or specify REQID or specify TERMID (because of
RETRIEVE WAIT affinity).

 SPI commands
� The commands included here are INQUIRE, SET, DISCARD, ENABLE,

DISABLE, EXTRACT EXIT, COLLECT STATISTICS, PERFORM, RESYNC and
ADDRESS CSA.

� The affinity here is not an affinity between transactions, but rather an affinity
with the system that the command was issued on; that is, a transaction-system
affinity. Such affinities do not generate transaction affinity groups, because it
does not generally make sense to dynamically route such transactions.

� The use of these commands does require reporting however, because the
system programmer should be aware of the transactions and programs that
issue such commands.

� Use of ADDRESS CSA is only detected when running under CICS/MVS 2.1.2.

 Scanner differences: None.

 Appendix A. Details of what is detected 79

 WAIT commands
� The affinity here is really an inter-transaction affinity between the issuer of the

WAIT EVENT, WAIT EXTERNAL or WAITCICS command, and one or more
posters. However, the poster of the ECB(s) associated with the WAIT
command cannot be detected, because this is not performed via the CICS API.
Only half of the affinity can be detected.

� This means affinity transaction groups cannot be created, because the affinity
degenerates to an affinity with the system that the WAIT command was issued
on; that is, a transaction-system affinity.

� The use of WAIT commands does require reporting however, because the
system programmer should be aware of the transactions and programs that
issue such commands, and should attempt to locate the posters and so create
the correct inter-transaction affinity groups.

 Scanner differences: None.

80 CICS Transaction Affinities Utility User’s Guide

Appendix B. Correlating Scanner and Reporter output to
source

 This appendix

Describes how to match the EXEC CICS command in the Reporter report
and/or the Scanner detail report with the actual program source code. It also
gives some examples of the procedures described.

 Reporter output
The reported offset of a command is the offset from the start of the load module of
the BALR to the CICS stub. To get the offset from the start of the program, you
should subtract the length of the CICS stub from the offset reported. (You may
also need to subtract the lengths of any additional preceding CSECTs.) You can
then use the compiler listing to find the command.

 Scanner output
The reported offset of a command is the offset from the start of the load module of
the command CICS argument zero7 . This is a constant and therefore is located in
the literal pool for the program. As with the Reporter, you should subtract the
length of the CICS stub and preceding CSECTS to get the offset from the start of
the program. You should then be able to locate the argument zero in the compiler
listing. Next, you should match the argument zero to the command, which involves
finding the instruction which referenced the argument zero, using the compiler
listing.

 Examples
This section gives some examples of the procedures for the Scanner.

 Example 1–Assembler-language
Before the BALR to the CICS stub, the CICS translator generates an LA instruction
with the argument zero as source, for example:

LA 14,=X'22228222282722222222222222222222222222222222'

To locate the EXEC CICS command, you can match the argument zero in the
literal pool with the same argument zero in the LA instruction.

7 For an explanation of argument zero, see “Notes on Terminology” on page x.

 Copyright IBM Corp. 1994 81

Example 2–VS COBOL II
The literal pool in VS COBOL II is part of the CGT. Having calculated the offset
from the start of the program, you should subtract the start of the CGT from your
calculated offset to get the offset within the CGT. In the listing, there is an MVC
instruction with the argument zero as the source, of the form:

MVC D1(L,R1),D2(R2) DFHEIV2 PGMLIT AT ...

where:

DFHEIV0 is the slot in working storage into which the argument zero is copied
before the BALR to the CICS stub

D2 is the decimal offset of the argument zero within the CGT (which you
have just calculated)

R2 is the CGT base register.

Once you know the offset of the argument zero within the CGT, you can find the
MVC and hence the EXEC CICS command.

An example of finding an EXEC CICS command is given in Figure 17 on page 83.

For this, the calculations are:

 Scanner offset = X'7A6'

CICS stub length = X'28'

Offset of CGT = X'B8'

CGT base register = GPR 12

Offset within CGT = X'7A6' - X'28' - X'B8' = X'6C6' = 1734 (decimal)

MVC instruction looks like:

MVC d(l,r),1734(12) DFHEIV2 PGMLIT AT ...

To determine the EXEC CICS command:

1. Look at the Assembler-language for

MVC d(l,r),1734(12) DFHEIV2 PGMLIT AT ...

which occurs for the first MOVE

221126 MOVE

2. Look at the COBOL source for the MOVE at line 001126. This is for the EXEC
CICS WRITEQ TS command starting on line 001124.

82 CICS Transaction Affinities Utility User’s Guide

For the Scanner output:

CICS TRANSACTION AFFINITIES UTILITY 1993/12/19 Page 1

LOAD MODULE SCANNER - DETAILED LISTING OF CICS.DEVR332.LOCLLOAD

Module Name - ACCT24 / Load Module Length - 222159D2 / Module Entry Point - 22222228

Offset Storage Content (HEX) EDF DEBUG Possible Command Affinity

-------- -- --------- ------------------------------------- --------

222227A6 2A22E2222722224122 22669 WRITEQ TS Trans

Total possible Affinity commands = 1

Total possible MVS POSTs = 2

The COBOL source after translation was:

221123

221124 >EXEC CICS WRITEQ TS QUEUE('ACERLOG') FROM(ACCTERRO)

221125 > LENGTH(ERR-LNG) END-EXEC.

221126 MOVE ' \ 22669 ' TO DFHEIV2 97822222 1257

221127 MOVE 'ACERLOG' TO DFHC2282 1234

221128 CALL 'DFHEI1' USING DFHEIV2 DFHC2282 ACCTERRO ERR-LNG. EXT 1257 1234 382 861

The equivalent Assembler-language is:

 221126 MOVE

222764 D212 8558 A6C6 MVC 1368(17,8),1734(12) DFHEIV2 PGMLIT AT +1718

 22276A 9242 8569 MVI 1385(8),X'42' DFHEIV2+17

22276E D232 856A 8569 MVC 1386(51,8),1385(8) DFHEIV2+18 DFHEIV2+17

 221127 MOVE

222774 D227 8342 ACEA MVC 832(8,8),3326(12) DFHC2282 PGMLIT AT +3292

 221128 CALL

 22277A 4132 8558 LA 3,1368(2,8) DFHEIV2

 22277E 5232 D1B2 ST 3,432(2,13) TS2=2

 222782 4132 8342 LA 3,832(2,8) DFHC2282

 222786 5232 D1B4 ST 3,436(2,13) TS2=4

 22278A 4132 75A8 LA 3,1448(2,7) ACCTERRO

 22278E 5232 D1B8 ST 3,442(2,13) TS2=8

 222792 4132 9A2E LA 3,2574(2,9) ERR-LNG

 222796 5232 D1BC ST 3,444(2,13) TS2=12

 22279A 9682 D1BC OI 444(13),X'82' TS2=12

 22279E 4112 D1B2 LA 1,432(2,13) TS2=2

 2227A2 4122 D152 LA 2,336(2,13) CLLE@=2

 2227A6 2532 BALR 3,2

2227A8 5232 D158 ST 3,344(2,13) TGT FDMP/TEST-INFO. AREA +2

 2227AC 58F2 A222 L 15,2(2,12) V(DFHEI1)

 2227B2 25EF BALR 14,15

 2227B2 52F2 D278 ST 15,122(2,13) TGTFIXD+122

 2227B6 BF38 D289 ICM 3,8,137(13) TGTFIXD+137

 2227BA 2432 SPM 3,2

Figure 17. Example for finding an EXEC CICS command from the argument zero

 Appendix B. Correlating Scanner and Reporter output to source 83

84 CICS Transaction Affinities Utility User’s Guide

Appendix C. Useful tips when analysing CICS Transaction
Affinities Utility reports

APAR PN 68267

APAR applied

Sometimes the report produced by the Reporter from data gathered from the
Detector can contain some results that appear odd at first glance. This appendix
gives tips on how to resolve such results.

COBOL Affinities
If an application program is invoked using the native CALL statement, CICS
COBOL run-time code issues an EXEC CICS LOAD HOLD for the program and
branches to it directly. This only causes affinity if the program is not reentrant; that
is, it modifies itself. Otherwise, there is no affinity.

CICS COBOL run-time code writes data to a TS queue if an abend occurs. The TS
queue name used is “CEBR” plus the termid of the terminal, or blanks if no
terminal. This does not cause affinity.

LOGON or SYSTEM when PCONV expected
When dealing with an application that is known to use TS queues within a
pseudo-conversation, but never beyond, there may be occurrences in the report of
affinity groups that appear as LUNAME/SYSTEM or LUNAME/LOGON, instead of
the expected LUNAME/PCONV.

� A SYSTEM lifetime can be explained if the installation uses a session manager
that logs users off after a pre-determined quiet time. When the log off occurs
in the middle of a pseudo-conversation, the CICS Transaction Affinities Utility
notices that the TS queue still exists and increases the lifetime to SYSTEM.

� A LOGON lifetime can be explained by the user switching off the terminal in the
middle of a pseudo-conversation and causing a VTAM line error. This causes
an error transaction to be attached internally at the terminal, and the
Transaction Affinities Utility notices that the TS queue exists at the end of that
transaction and increases the lifetime to LOGON.

In both these circumstances the real lifetime is PCONV, because although the TS
queue exists at the end of the pseudo-conversation the data in it is never be used
again. Normally the first action of a new pseudo-conversation is to delete the
contents of all such TS queues for that terminal to ensure that everything is tidy.

Unrecognised Transids
Transids that consist of garbage data are reported in the CICS Transaction
Affinities Utility report. Such transids are not known to CICS, and most contain the
same hexadecimal data. This is probably caused by a bug in an application that
causes the EIB to be overwritten.

 Copyright IBM Corp. 1994 85

86 CICS Transaction Affinities Utility User’s Guide

 CAU2101W � CAU2103W

Appendix D. Messages and Codes

 This appendix

Describes the messages that the Builder, Detector, Reporter and Scanner can
issue, and the transaction abend codes that the Detector can produce.

The messages are described in alphanumeric order, starting on this page. The
abend codes are described in alphabetic order, starting on page 112.

As an aid to problem determination, this chapter also lists the meaning for each
possible value of the call parameters that are included in the error messages
issued if an error occurs on a call to the:

� Detector and Builder table manager, CAUTABM. (See page 118.)

� Detector CAFB request queue manager, CAUCAFP. (See page 120.)

� CICS Transaction Affinities Utility date formatter, CAUCAFDT. (See page
120.)

CAU2101W CAFF is already in use elsewhere

Explanation: The CAFF transaction is already being used when an attempt is made to start
another CAFF transaction.

System Action: The second CAFF transaction is terminated, as only one instance of CAFF
is permitted.

User Response: Check where CAFF is currently in use. Only one user should be
attempting to run the Detector at a given time.

Destination: Terminal end user or CAFF TD queue.

Modules: CAUCAFF1

CAU2102W Detector is not state

Explanation: An attempt was made to Start, Stop, Pause, or Continue the Detector from
CAFF. However, the Detector was not currently in an appropriate state to make the change.

System Action: The Detector state is not changed.

User Response: Check why the Detector is currently in that state.

Destination: Terminal end user or CAFF TD queue.

Modules: CAUCAFF1

CAU2103W Detector is already STOPPED

Explanation: An attempt was made to Stop the Detector from CAFF when the Detector
was already STOPPED.

System Action: The Detector state is not changed.

User Response: Check why the Detector is currently in that state.

Destination: Terminal end user or CAFF TD queue.

Modules: CAUCAFF1

 Copyright IBM Corp. 1994 87

 CAU2104W � CAU2110I

CAU2104W Invalid key pressed

Explanation: The terminal operator has pressed a function key in response to a screen
displayed by the CAFF transaction, but the function key was not valid for that screen.

System Action: The function key is ignored.

User Response: Use the correct function key.

Destination: Terminal end user.

Modules: CAUCAFF1, CAUCAFF2, CAUCAFF7

CAU2105I CAFF session ended

Explanation: The transaction CAFF has ended.

System Action: The state of the Detector is unchanged.

User Response: None.

Destination: Terminal end user and CAFF TD queue.

Modules: CAUCAFF1

CAU2106W Options must be Y(Yes) or N(No)

Explanation: The only valid values for this CAFF operation option are 'Y' and 'N'.

System Action: The CAFF operation options will not be changed unless all of the input is
correct.

User Response: Correct the invalid input.

Destination: Terminal end user.

Modules: CAUCAFF2

CAU2107W Size must be integer (10 to 2000 Mb)

Explanation: The only valid value for the Detector dataspace size is an integer in the range
10 to 2000. This gives the size in megabytes.

System Action: The CAFF operation options will not be changed unless all of the input is
correct.

User Response: Correct the invalid input.

Destination: Terminal end user.

Modules: CAUCAFF2

CAU2110I No amendments were entered

Explanation: The Enter key was pressed on the CAFF operation options screen (CAFF02).
However, no changes had been input.

System Action: No options are changed.

User Response: Enter any changes and then press Enter again.

Destination: Terminal end user.

Modules: CAUCAFF2

88 CICS Transaction Affinities Utility User’s Guide

 CAU2111I � CAU2117W

CAU2111I CAFF options updated

Explanation: The CAFF transaction has successfully amended the operation options.

System Action: The operation options held on VSAM control file CAUCNTL are updated.

User Response: None.

Destination: Terminal end user and CAFF TD queue.

Modules: CAUCAFF2

CAU2114I Records restored

Explanation: The Detector is being started with the restore data option set to Y. Records
from the previous Detector run are retained on the affinity data files (CAUAFF1, CAUAFF2,
CAUAFF3).

Records for those affinity command types that are being detected on this Detector run were
found on the files and were read into the dataspace.

System Action: The Detector is started with any records from a previous run retained on
the affinity data files and read into the dataspace.

User Response: None.

Destination: Terminal end user.

Modules: CAUCAFF3

CAU2115I Affinity files emptied

Explanation: The Detector is being started with the restore data option set to N. All existing
affinity records were deleted from the affinity data files (CAUAFF1, CAUAFF2, CAUAFF3).

System Action: The Detector is started with empty affinity data files.

User Response: None.

Destination: Terminal end user and CAFF TD queue.

Modules: CAUCAFF3

CAU2116W Dataspace too large - no storage available

Explanation: The Detector is being started and it received a response from the table
manager (CAUTABM) that it was unable to obtain the amount of storage requested for the
MVS/ESA dataspace, because the MVS Real Storage Manager does not have enough
resources.

System Action: The Detector start is aborted and the Detector is stopped.

User Response: Decrease the dataspace size via the CAFF operation options.

Destination: Terminal end user.

Modules: CAUCAFF3

CAU2117W Dataspace too large - IEFUSI limit reached

Explanation: The Detector is being started and it received a response from the table
manager (CAUTABM) that it was unable to obtain the amount of storage requested for the
MVS/ESA dataspace, because MVS exit IEFUSI has imposed a limit on address space size.

System Action: The Detector start is aborted and the Detector is stopped.

User Response: Decrease the dataspace size via the CAFF operation options or else ask
the MVS system programmer to increase the IEFUSI limit.

Destination: Terminal end user.

Modules: CAUCAFF3

 Appendix D. Messages and Codes 89

 CAU2118I � CAU2121I

CAU2118I No records restored

Explanation: The Detector is being started with the restore data option set to Y. Records
from the previous Detector run are retained on the affinity data files (CAUAFF1, CAUAFF2,
CAUAFF3).

No records for those affinity command types that are being detected on this Detector run
were found on the files, so none were read into the dataspace.

System Action: The Detector is started with any records from a previous run retained on
the affinity data files.

User Response: None.

Destination: Terminal end user.

Modules: CAUCAFF3

CAU2119I CICS is terminating

Explanation: The CAFF transaction has ended because it has found that the CICS region
has entered quiesce state before shutdown.

System Action: The CAFF transaction is terminated. If the Detector state was other than
STOPPED then the CAFB transaction will stop the Detector.

User Response: None.

Destination: Terminal end user and CAFF TD queue.

Modules: CAUCAFF1

CAU2120I F5 to confirm Start with data restore

Explanation: Confirmation is required that the Detector is to be started with the restore
data option set to Y.

System Action: If F5 is pressed then the Detector will be started with affinity data retained
on the affinity data files and read into the dataspace. Otherwise, if any other key is pressed
the Detector will not be started.

User Response: Press F5 to start the Detector.

Destination: Terminal end user.

Modules: CAUCAFF1

CAU2121I F5 to confirm Start without restore

Explanation: Confirmation is required that the Detector is to be started with the restore
data option set to N.

System Action: If F5 is pressed then the Detector will be started with all of the data on the
affinity data files deleted. Otherwise, if any other key is pressed the Detector will not be
started.

User Response: Press F5 to start the Detector.

Destination: Terminal end user.

Modules: CAUCAFF1

90 CICS Transaction Affinities Utility User’s Guide

 CAU2122I � CAU2201S

CAU2122I F6 to confirm Stop

Explanation: Confirmation is required that the Detector is to be stopped. The affinity data
in the dataspace will be saved to the affinity data files.

System Action: If F6 is pressed then the Detector will be stopped and any changes made
to the affinity data in the dataspace since the last save will be saved to the affinity data files.
If any other key is pressed, the Detector will not be stopped.

User Response: Press F6 to stop the Detector.

Destination: Terminal end user.

Modules: CAUCAFF1

CAU2125E Must supply CAFF action

Explanation: The transid CAFF is being entered at a console device. It is mandatory to
supply a Detector action with CAFF at a console device.

System Action: The CAFF transaction is not initiated.

User Response: Ensure that an action (one of START, STOP, PAUSE, CONTINUE) is
entered after the transid CAFF.

Destination: Console.

Modules: CAUCAFF1

CAU2127W Transid prefix is invalid

Explanation: The transid prefix input on screen CAFF02 is invalid. The input was rejected
because it contained an embedded blank space character.

System Action: The CAFF options will not be changed unless all of the input is correct.

User Response: Correct the invalid input.

Destination: Terminal end user.

Modules: CAUCAFF2

CAU2201S CICS command data failed RESP=eibresp RESP2=eibresp2 RCODE=eibrcode

Explanation: Transaction CAFF or CAFB received an invalid response when issuing EXEC
CICS command. The response is in eibresp, eibresp2 and eibrcode. Other data, if present,
may give the object operated on by the command.

System Action: The transaction is terminated by abending AUZA and the Detector is
stopped.

User Response: For further details of the exception eibresp refer to the command in the
CICS/ESA Application Programming Reference manual or the CICS/ESA System
Programming Reference manual.

For further information on how to determine system problems refer to the CICS/ESA Problem
Determination Guide. If you are still unable to resolve the problem, contact IBM support.

Destination: CAFF TD queue.

Modules: CAUCAFF1, CAUCAFF2, CAUCAFF3, CAUCAFF4, CAUCAFF5, CAUCAFF6,
CAUCAFF7, CAUCAFB1, CAUCAFB2, CAUCAF41

 Appendix D. Messages and Codes 91

 CAU2202S � CAU2205S

CAU2202S VSAM filetype file filename command failed RESP=eibresp RESP2=eibresp2

Explanation: Transaction CAFF or CAFB received an invalid response when issuing EXEC
CICS command on VSAM filetype file filename. The response is in eibresp and eibresp2.

System Action: The transaction is terminated by abending AUZB and the Detector is
stopped.

User Response: For further details of the exception eibresp refer to the command in the
CICS/ESA Application Programming Reference manual or the CICS/ESA System
Programming Reference manual.

For further information on how to determine system problems refer to the CICS/ESA Problem
Determination Guide. If you are still unable to resolve the problem, contact IBM support.

Destination: CAFF TD queue.

Modules: CAUCAFF1, CAUCAFF2, CAUCAFF3, CAUCAFF4, CAUCAFF5, CAUCAFF6,
CAUCAFB2

CAU2203S Internal error determining state in transaction program

Explanation: Detector program program in transaction transaction was unable to determine
the Detector state from either the VSAM control file record or from the Detector exit GWA.

System Action: The transaction is terminated by abending AUZC and the Detector is
stopped.

User Response: Attempt to re-enter transaction CAFF. If you are still unable to use CAFF,
run the VSAM job to delete and define the VSAM control file CAUCNTL. If you are still
unable to use CAFF, contact IBM support.

Destination: CAFF TD queue.

Modules: CAUCAFF1, CAUCAFF2

CAU2204I CAFF being used by userid

Explanation: User userid is using the CAFF transaction.

System Action: This user has exclusive use of the CAFF transaction.

User Response: None.

Destination: CAFF TD queue.

Modules: CAUCAFF1

CAU2205S File filename not for CICS system applid

Explanation: File filename was first used by a CICS system with a different CICS specific
APPLID, and is therefore not useable by a CICS system with specific APPLID applid.

System Action: The transaction is terminated by abending AUZD and the Detector is
stopped.

User Response: Ensure that the file filename is the correct file for the CICS system in
question. If the correct file can not be located, run the VSAM job to delete and define file
filename. If filename was the control file (CAUCNTL), then the CAFF operation options may
need to be amended via CAFF, as the file is recreated with default option values. If filename
was an affinity data file (one of CAUAFF1, CAUAFF2, CAUAFF3), then when the Detector is
next started via CAFF, the restore data option must be set to N.

Destination: CAFF TD queue.

Modules: CAUCAFF1, CAUCAFF3

92 CICS Transaction Affinities Utility User’s Guide

 CAU2206S � CAU2212S

CAU2206S CICS command PROGRAM program failed RESP=eibresp RCODE=eibrcode

Explanation: Transaction CAFF or CAFB received an invalid response when issuing
command EXEC CICS command for Detector user exit program program.

System Action: The transaction is terminated by abending AUZF and the Detector is
stopped.

User Response: For further details of the exception eibresp refer to the command in the
CICS/ESA System Programming Reference manual.

For further information on how to determine system problems refer to the CICS/ESA Problem
Determination Guide. If you are still unable to resolve the problem, contact IBM support.

Destination: CAFF TD queue.

Modules: CAUCAFF1, CAUCAFF3, CAUCAFF4, CAUCAFF5, CAUCAFF6, CAUCAFB1

CAU2210S CAUTABM create dataspace failed REASON=reason code ERROR=error code

Explanation: The CAFF transaction received an invalid response when issuing a call to the
table manager (CAUTABM) to create the MVS/ESA dataspace when starting the Detector.

System Action: The transaction is terminated by abending AUZH and the Detector is
stopped.

User Response: The reason code value may be looked up in “Detector table manager
diagnostics” on page 118. If it is AUTM_DSPSERV_CREATE_ERROR then error code is
the value of GPR 0 after the MVS DSPSERV CREATE call. If it is
AUTM_ALESERV_ADD_ERROR then error code is the value of GPR 15 after the MVS
ALESERV ADD call. Use the appropriate MVS manual to find out the meaning of the error
code.

If you are still unable to resolve the problem, contact IBM support.

Destination: CAFF TD queue.

Modules: CAUCAFF3

CAU2211S CAUTABM create table failed REASON=reason code TABLE=table number

Explanation: The CAFF transaction received an invalid response when issuing a create
table call to the table manager (CAUTABM) for table table number.

System Action: The transaction is terminated by abending AUZI and the Detector is
stopped.

User Response: The reason code and table number values may be looked up in “Detector
table manager diagnostics” on page 118. If you are unable to resolve the problem, contact
IBM support.

Destination: CAFF TD queue.

Modules: CAUCAFF3, CAUCAFF6

CAU2212S CAUTABM add element error REASON=reason code TABLE=table number

Explanation: The transaction CAFF received an invalid response when issuing an add
element call to the table manager (CAUTABM) for table table number.

System Action: The transaction is terminated by abending AUZJ and the Detector is
stopped.

User Response: The reason code and table number values may be looked up in “Detector
table manager diagnostics” on page 118. If you are unable to resolve the problem, contact
IBM support.

Destination: CAFF TD queue.

Modules: CAUCAFF3

 Appendix D. Messages and Codes 93

 CAU2214I � CAU2218S

CAU2214I Detector is now state

Explanation: The CAFF transaction has changed the Detector state to state.

System Action: The state of the Detector is now state.

User Response: None.

Destination: CAFF TD queue.

Modules: CAUCAFF1, CAUCAFF3, CAUCAFF4, CAUCAFF5, CAUCAFF6

CAU2216S CAUTABM destroy pool failed REASON=reason code ERROR=error code

Explanation: The transaction CAFF received an invalid response when issuing a call to the
table manager (CAUTABM) to destroy the MVS/ESA dataspace when stopping the Detector.

System Action: The transaction is terminated by abending AUZN and the Detector is
stopped.

User Response: The reason code value may be looked up in “Detector table manager
diagnostics” on page 118. If it is AUTM_DSPSERV_DELETE_ERROR then error code is
the value of GPR 0 after the MVS DSPSERV DELETE call. If it is
AUTM_ALESERV_DELETE_ERROR then error code is the value of GPR 15 after the MVS
ALESERV DELETE call. Use the appropriate MVS manual to find out the meaning of the
error code.

If you are still unable to resolve the problem, contact IBM support.

Destination: CAFF TD queue.

Modules: CAUCAFF4

CAU2217S CAUTABM destroy table failed REASON=reason code TABLE=table number

Explanation: The transaction CAFF received an invalid response when issuing a destroy
table call to the table manager (CAUTABM) for table table number.

System Action: The transaction is terminated by abending AUZO and the Detector is
stopped.

User Response: The reason code and table number values may be looked up in “Detector
table manager diagnostics” on page 118. If you are unable to resolve the problem, contact
IBM support.

Destination: CAFF TD queue.

Modules: CAUCAFF6

CAU2218S CAFF has abended abend code in program program

Explanation: This message is issued when the CAFF HANDLE ABEND exit program is
driven to handle a transaction abend that occurred within the CAFF transaction. The abend
code is given by abend code, and the failing program is given by program. Note that abends
are issued by CAFF (codes AUxx) as well as by CICS.

System Action: The transaction is terminated with a transaction dump, with a dumpcode of
abend code, and the Detector is stopped.

User Response: If the original abend was issued by CAFF, then there will be a preceding
message on the CAFF TD queue describing the abend. If so, refer to the description for that
message. Otherwise, the abend was issued by CICS (eg, ASRA), so refer to the CICS/ESA
Messages and Codes.

Destination: CAFF TD queue and console.

Modules: CAUCAFFE

94 CICS Transaction Affinities Utility User’s Guide

 CAU2220S � CAU2224S

CAU2220S CAUCAFP create CPOOL failed REASON=reason code

Explanation: The CAFF transaction received an invalid response when issuing a call to the
CAFB request queue manager (CAUCAFP) to create its storage in the MVS CPOOL.

System Action: The transaction is terminated by abending AUZQ and the Detector is
stopped.

User Response: The reason code value may be looked up in “Detector CAFB request
queue manager diagnostics” on page 120. Check that there was sufficient storage in your
system for at least 4K bytes of MVS CPOOL. If you are unable to resolve the problem,
contact IBM support.

Destination: CAFF TD queue.

Modules: CAUCAFF3

CAU2221S CAUCAFP call failed FUNC=function code REASON=reason code

Explanation: Transaction CAFF or CAFB received an invalid response when issuing a call
to the CAFB request queue manager (CAUCAFP) to perform function function code.

System Action: The transaction is terminated by abending AUZR and the Detector is
stopped.

User Response: The reason code and function code values may be looked up in “Detector
CAFB request queue manager diagnostics” on page 120. If you are unable to resolve the
problem, contact IBM support.

Destination: CAFF TD queue.

Modules: CAUCAFF4, CAUCAFF5, CAUCAFB1

CAU2222S CAUCAFP destroy CPOOL call failed REASON=reason code

Explanation: The CAFF transaction received an invalid response when issuing a call to the
CAFB request queue manager (CAUCAFP) to destroy its MVS CPOOL storage.

System Action: The transaction is terminated by abending AUZS and the Detector is
stopped.

User Response: The reason code value may be looked up in “Detector CAFB request
queue manager diagnostics” on page 120. If you are unable to resolve the problem, contact
IBM support.

Destination: CAFF TD queue.

Modules: CAUCAFF4

CAU2224S Error calculating space utilisation

Explanation: An error occurred during the calculation of the percentage of the dataspace
currently occupied by affinity data.

System Action: The transaction is terminated by abending AUZU and the Detector is
stopped.

User Response: Contact IBM support.

Destination: CAFF TD queue.

Modules: CAUCAFF1

 Appendix D. Messages and Codes 95

 CAU2225E � CAU2228S

CAU2225E Unsupported type of CAFF task initiation

Explanation: The CAFF transaction has been initiated in a way which is not allowed. The
only valid ways to initiate a CAFF transaction are:

� From a terminal
� From a console
� By issuing EXEC CICS START TRANSID('CAFF') from another task.

System Action: The transaction is terminated by abending AUZV and the Detector is
stopped.

User Response: Use one of the methods above to initiate CAFF.

Destination: CAFF TD queue.

Modules: CAUCAFF1

CAU2226E Incorrect CAFF action

Explanation: The CAFF transaction received an incorrect value for <action> when it was
started by another task using EXEC CICS START TRANSID('CAFF') FROM(<action>), or
started from a terminal by entering CAFF <action>. The only acceptable <action> values
are:

 � START
 � STOP
 � PAUSE
 � CONTINUE

System Action: The CAFF transaction is terminated.

User Response: Correct the <action> passed to CAFF to be one of those above.

Destination: CAFF TD queue and terminal end user, if started from a terminal.

Modules: CAUCAFF1

CAU2227I Non-terminal CAFF task initiating

Explanation: Transaction CAFF has been initiated as a background non-terminal task.

System Action: CAFF runs in the background.

User Response: None.

Destination: CAFF TD queue.

Modules: CAUCAFF1

CAU2228S CAUTABM replace element failed REASON=reason code TABLE=table
number

Explanation: Transaction CAFF or CAFB received an invalid response when issuing a call
to the table manager (CAUTABM) to replace a table element for table table number.

System Action: The transaction is terminated by abending AUZY and the Detector is
stopped.

User Response: The reason code and table number values may be looked up in “Detector
table manager diagnostics” on page 118. If you are unable to resolve the problem, contact
IBM support.

Destination: CAFF TD queue.

Modules: CAUCAFF3, CAUCAFB2

96 CICS Transaction Affinities Utility User’s Guide

 CAU2229S � CAU2231I

CAU2229S UT/TT table update failed FUNC=function code REASON=reason code
TABLE=table number

Explanation: Transaction CAFF received an invalid response when issuing a call to the
table manager (CAUTABM) to update either the userid table (UT) or the termid table (TT).

System Action: The transaction is terminated by abending AUZZ and the Detector is
stopped.

User Response: The reason code, table number and function code values may be looked
up in “Detector table manager diagnostics” on page 118. If you are unable to resolve the
problem, contact IBM support.

Destination: CAFF TD queue.

Modules: CAUCAFF3, CAUCAFF6

CAU2230S VSAM affinity file filename header READ failed RESP=eibresp
RESP2=eibresp2

Explanation: Transaction CAFF received an invalid response when issuing an EXEC CICS
READ command for the header record on VSAM affinity data file filename, when the
Detector was starting with the restore data option set to Y. Either an incorrect file has been
allocated for the affinity data file filename or the file is empty.

System Action: The transaction is terminated by abending AUZ1 and the Detector is
stopped.

User Response: Check that the correct file is allocated, and that the Detector has
previously been started with the same files.

The first time the Detector is started, the CAFF restore data option must be N. If the restore
data option is initially set to Y, then CAFF will abend with this message, because initially the
VSAM affinity data files will be completely empty. The affinity file header records are added
by CAFF after the Detector has been started for the first time.

For further details of the exceptions eibresp and eibresp2 refer to the READ command in the
CICS/ESA Application Programming Reference manual.

For further information on how to determine system problems refer to the CICS/ESA Problem
Determination Guide. If you are still unable to resolve the problem, contact IBM support.

Destination: CAFF TD queue.

Modules: CAUCAFF3

CAU2231I Number of records restored = count

Explanation: The Detector has been started with the restore option set to Y. The message
gives the number of affinity records that were restored from the VSAM affinity data files to
the MVS/ESA dataspace.

System Action: The Detector is now RUNNING.

User Response: None.

Destination: CAFF TD queue.

Modules: CAUCAFF3

 Appendix D. Messages and Codes 97

 CAU2232E � CAU3303S

CAU2232E CICS release release is not supported by the Detector

Explanation: Transaction CAFF or CAFB has been initiated on a
version/release/modification of CICS which the Detector does not support.

System Action: The transaction is terminated by abending AUZ3 and the Detector is
stopped.

User Response: The Detector cannot be run on this CICS release.

Destination: CAFF TD queue.

Modules: CAUCAFF1, CAUCAFB1

CAU2233W CAUCAFDT call failed REASON=reason code

Explanation: The CAU date formatter program (CAUCAFDT) was unable to format the
packed Julian date passed to it by its caller.

System Action: Question marks are used for the date instead.

User Response: The reason code value may be looked up in “Date formatter diagnostics”
on page 120. If the problem persists, contact IBM support.

Destination: CAFF TD queue.

Modules: CAUCAFF1, CAULMS, CAUREPPM

CAU3301I CAFB task initiating

Explanation: The CAFB transaction has been initiated by CAFF. CAFB saves affinity data
from the dataspace to the affinity data files.

System Action: The Detector continues RUNNING.

User Response: None.

Destination: CAFF TD queue.

Modules: CAUCAFB1

CAU3302S CAFB received an unrecognizable request

Explanation: Transaction CAFB received an invalid request to perform one of its functions
from another component of the Detector (CAFF or a Detector exit program).

System Action: The transaction is terminated by abending AUYA and the Detector is
stopped.

User Response: Contact IBM support.

Destination: CAFF TD queue.

Modules: CAUCAFB1

CAU3303S CAFB has abended abend code in program program

Explanation: This message is issued when the CAFB HANDLE ABEND exit program is
driven to handle a transaction abend that occurred within the CAFB transaction. The abend
code is given by abend code, and the failing program is given by program. Note that abends
are issued by CAFB (codes AUxx) as well as by CICS.

System Action: The transaction is terminated with a transaction dump, with a dumpcode of
abend code, and the Detector is stopped.

User Response: If the original abend was issued by CAFB, then there will be a preceding
message on the CAFF TD queue describing the abend. If so, refer to the description for that
message. Otherwise, the abend was issued by CICS (eg, ASRA), so refer to the CICS/ESA
Messages and Codes.

Destination: CAFF TD queue and console.

98 CICS Transaction Affinities Utility User’s Guide

 CAU3304S � CAU3307I

Modules: CAUCAFBE

CAU3304S CAFB abending - system error elsewhere in Detector

Explanation: The transaction CAFB received a request to abend from another component
of the Detector. The request was sent because of an error encountered elsewhere, either in
CAFF or a Detector exit program.

System Action: The transaction is terminated by abending AUYC and the Detector is
stopped.

User Response: Refer to any earlier messages on the CAFF TD queue for the cause of
the error.

Destination: CAFF TD queue.

Modules: CAUCAFB1

CAU3305I CAFB save started - because of reason

Explanation: Transaction CAFB is commencing a scan of the affinity tables in the
dataspace to write any data changed since the previous save to the affinity data files. The
save may have been started for one of four possible reasons:

� Detector stopped (STOP)
� Save interval reached (TIME)
� Activity count reached (TRIGGER)
� Detector paused (PAUSE)

Note that the latter three reasons can only occur when the CAFF perform periodic saves
option is set to Y.

System Action: CAFB saves changed data elements from the dataspace to the affinity
data files.

User Response: None.

Destination: CAFF TD queue.

Modules: CAUCAFB2

CAU3306I CAFB save ended - count records saved

Explanation: Transaction CAFB has finished the scan of the affinity tables in the dataspace
and wrote count records to the affinity data files.

System Action: The number of records given by count were saved to the affinity data files.

User Response: If the CAFF perform periodic saves option is set to Y, and count has been
consistently near zero for the past few saves, this may indicate that the Detector has
detected all the affinities it can and the Detector may be stopped.

Destination: CAFF TD queue.

Modules: CAUCAFB2

CAU3307I CAFB terminated - Detector stopping

Explanation: Transaction CAFB received a request to terminate, from CAFF, because the
Detector is stopping.

System Action: The transaction is terminated and the Detector is stopped.

User Response: None.

Destination: CAFF TD queue.

Modules: CAUCAFB1

 Appendix D. Messages and Codes 99

 CAU3308I � CAU3312S

CAU3308I Message received from program program

Explanation: Transaction CAFB received a message from program program to write to
CAFF TD queue.

System Action: The associated message is written to CAFF. This is the only mechanism
available to the Detector exit programs when they wish to issue a message.

User Response: Examine the following message on the CAFF TD queue.

Destination: CAFF TD queue.

Modules: CAUCAFB1

CAU3310S Invalid file number for table in GWA

Explanation: Transaction CAFB found an incorrect value (the affinity file number) in an
internal array in the Detector GWA. This suggests that the GWA has been corrupted.

System Action: The transaction is terminated by abending AUYE and the Detector is
stopped.

User Response: Attempt to find out the cause of the corruption. It could be due to an
application accidentally overwriting the GWA. If you are unable to resolve the problem,
contact IBM support.

Destination: CAFF TD queue.

Modules: CAUCAFB2, CAUCAFF3

CAU3311E Transaction CAFB must be initiated by transaction CAFF

Explanation: Transaction CAFB could not have been initiated by CAFF, as its CICS
startcode indicates something other than EXEC CICS START with no data.

System Action: The transaction is terminated by abending AUYF and the Detector is
stopped.

User Response: The CAFB transaction can only be started by the Detector control
transaction CAFF.

Destination: CAFF TD queue.

Modules: CAUCAFB1

CAU3312S CAFB abending - CICS is terminating

Explanation: Transaction CAFB found that CICS had entered quiesce state before
shutdown and the Detector was still RUNNING.

System Action: The transaction is terminated by abending AUYG and the Detector is
stopped.

User Response: None. To avoid this, always stop the Detector before shutting down CICS.
The CAFF STOP action could be submitted from a CICS Shutdown PLT program, via EXEC
CICS START.

Destination: CAFF TD queue.

Modules: CAUCAFB1

100 CICS Transaction Affinities Utility User’s Guide

 CAU3313S � CAU4100S

CAU3313S Invalid address for program in the GWA

Explanation: Transaction CAFF or CAFB found that the address of Detector program
program in the GWA was a null value. This suggests that the GWA has been corrupted.

System Action: The transaction is terminated by abending AUYH and the Detector is
stopped.

User Response: Attempt to find out the cause of the corruption. It could be due to an
application accidentally overwriting the GWA. If you are unable to resolve the problem,
contact IBM support.

Destination: CAFF TD queue.

Modules: CAUCAFF4, CAUCAFF5, CAUCAFB1

CAU3314S CAUTABM call failed FUNC=function code REASON=reason code
TABLE=table number

Explanation: Transaction CAFF or CAFB received an invalid response when issuing a call
to the table manager (CAUTABM) to access a table element for table table number.

System Action: The transaction is terminated by abending AUYI and the Detector is
stopped.

User Response: The reason code, table number and function code values may be looked
up in “Detector table manager diagnostics” on page 118. If you are unable to resolve the
problem, contact IBM support.

Destination: CAFF TD queue.

Modules: CAUCAFB2, CAUCAFF6

CAU3315S File filename full

Explanation: Transaction CAFB received a NOSPACE response when issuing EXEC CICS
WRITE for VSAM affinity file filename. The file has filled up.

System Action: The transaction is terminated by abending AUYJ and the Detector is
stopped.

User Response: Allocate more space to the file and rerun the Detector. For guidance on
how much space to allocate refer to “Estimating the size of the MVS data space and files” on
page 20.

Destination: CAFF TD queue.

Modules: CAUCAFB2

CAU4100S CAUTABM call failed FUNC=function code REASON=reason code
TABLE=table number

Explanation: One of the Detector exit programs received an unexpected response when
issuing a call to the table manager (CAUTABM).

Note that the message is issued by transaction CAFB on behalf of the exit program.

System Action: The CAFB transaction is terminated with abend code AUXA and the
Detector is stopped.

User Response: The reason code, table number and function code values may be looked
up in “Detector table manager diagnostics” on page 118. If you are unable to resolve the
problem, contact IBM support.

Destination: CAFF TD queue.

Modules: CAUCAFB1

 Appendix D. Messages and Codes 101

 CAU4200S � CAU5002E

CAU4200S Dataspace full

Explanation: Transaction CAFF or a Detector exit program received a reason code of
AUTM_NO_STORAGE when issuing a call to the table manager (CAUTABM) to either
create a new table or add an element to a table. The dataspace has filled up.

Note that if this situation was encountered by a Detector exit program, the message is
issued by transaction CAFB on its behalf.

System Action: The CAFF or CAFB transaction is terminated by abending AUXB and the
Detector is stopped.

User Response: Increase the dataspace size via the CAFF options and rerun the Detector.
For guidance on how much space to allocate refer to section “Estimating the size of the MVS
data space and files” on page 20.

Destination: CAFF TD queue.

Modules: CAUCAFF3, CAUCAFF6, CAUCAFB1

CAU5000S Function call num invalid for module

Explanation: A module of the Reporter or Builder has been called with an invalid function
number. This indicates an internal logic error in the Reporter or Builder.

System Action: The Reporter or Builder is terminated.

User Response: Contact IBM support.

Destination: Console.

Modules: CAUREPFM, CAUREPPM, CAUBLD

CAU5001E filename does not contain a control record. Run aborted

Explanation: If filename is CAUCNTL, then it does not contain the expected control record.
If filename is one of CAUAFF1, CAUAFF2 or CAUAFF3, then it has not been initialized with
a header record or one or more of the files are not affinity data files.

System Action: The Reporter is terminated.

User Response: Check that the correct files are being input into the Reporter. If the files
are correct check that the Detector has been run at least once. These files are initialized by
the Detector the first time it is run.

Destination: Console.

Modules: CAUREP

CAU5002E Affinity files not for same CICS APPLID. Run aborted

Explanation: Either one or more of CAUCNTL, CAUAFF1, CAUAFF2 or CAUAFF3 were
not initialized by the same CICS system.

System Action: The Reporter is terminated.

User Response: The most likely cause of this error is one or more incorrect filenames in
the JCL to run the Reporter. Correct the problem and rerun the job.

Destination: Console.

Modules: CAUREP

102 CICS Transaction Affinities Utility User’s Guide

 CAU5003E � CAU5007S

CAU5003E Unable to open filename RC=return code, REASON=reason code

Explanation: The Reporter, Builder or Scanner has been unable to open filename.

System Action: The Reporter, Builder, or Scanner is terminated.

User Response: If the codes are zero then it was a non-VSAM file that failed to open.

Otherwise the return code is as returned by VSAM in GPR 15, and the reason code is the
result of a subsequent SHOWCB ACB FIELDS=(ERROR) macro call. Check these in the
VSAM messages and codes manual to determine the cause of the error.

The most likely cause of this message will be missing or incorrect filenames in the JCL to
run the job. Correct the problem and rerun the job.

Destination: Console.

Modules: CAUREPFM, CAULMS

CAU5004E GENCB failed for filename CB=control block RC=return code REASON=reason
code

Explanation: The generation of a VSAM control block failed for Reporter file filename.

System Action: The Reporter is terminated.

User Response: The return code and reason code are as returned by VSAM in GPR 15
and GPR 0 respectively. Check the VSAM messages and codes manual to determine the
cause of the error. Correct the problem and rerun the job. If the problem persists, contact
IBM support.

Destination: Console.

Modules: CAUREPFM

CAU5005S File number filenum invalid

Explanation: The file manager module (CAUREPFM) used by the Reporter and the Builder
has been called with an invalid file number filenum.

System Action: The Reporter or Builder is terminated.

User Response: Rerun the job. If the problem persists, contact IBM support.

Destination: Console.

Modules: CAUREPFM

CAU5006S Attempting to action filename. File is type

Explanation: The Reporter or Builder attempted to read from the output file or write to the
input file specified by filename.

System Action: The Reporter or Builder is terminated.

User Response: Rerun the job. If the problem persists, contact IBM support.

Destination: Console.

Modules: CAUREPFM

CAU5007S RPL number rplnum invalid for filename

Explanation: The RPL number rplnum is invalid for Reporter file filename.

System Action: The Reporter is terminated.

User Response: Rerun the job. If the problem persists, contact IBM support.

Destination: Console.

Modules: CAUREPFM

 Appendix D. Messages and Codes 103

 CAU5008S � CAU5011W

CAU5008S Table number table number invalid

Explanation: A request by the Reporter to read a table from the affinity data files was
being processed but table number was not valid.

System Action: The Reporter is terminated.

User Response: Rerun the job. If the problem persists, contact IBM support.

Destination: Console.

Modules: CAUREPFM

CAU5009E command failed for filename RPL=rplnum RC=return code REASON=reason
code

Explanation: The VSAM command has failed to execute for Reporter file filename.

System Action: The Reporter is terminated.

User Response: The return code is as returned by VSAM in GPR 15, and the reason code
is the result of a subsequent SHOWCB RPL FIELDS=(FDBK) macro call. Check these in
the VSAM messages and codes manual, correct the problem and rerun the job. If the
problem persists, contact IBM support.

Destination: Console.

Modules: CAUREPFM

CAU5010S Attempting to position a non-VSAM file

Explanation: The Reporter has attempted file positioning on a non-VSAM file. This
indicates a potential internal logic error in the Reporter.

System Action: The Reporter is terminated.

User Response: Rerun the job. If the problem persists, contact IBM support.

Destination: Console.

Modules: CAUREPFM

CAU5011W No transaction entries for trangroup trangroup. Report incomplete

Explanation: The Reporter could find no transaction entries in the affinity data files for
transaction group trangroup. This means, for example, that a record was found for a named
temporary storage queue, but no records were found detailing the transactions that used that
queue. This will probably be caused by a Detector abend or a CICS crash occurring in the
middle of a Detector save, so the data saved to the affinity files is only partly complete. It
could also be caused by incorrect files.

System Action: The Reporter continues.

User Response: Check the validity of the affinity files as far as is possible. For instance
check that the correct set of files is being input and that one is not from a different run of the
Detector. Ascertain if the Detector did indeed abend or if CICS crashed; this will be indicated
by message CAU5035W appearing at the start of the Reporter output. If CAU5011W occurs
frequently, the Detector should be rerun to produce a more complete set of data.

Destination: Console and report.

Modules: CAUREPRM

104 CICS Transaction Affinities Utility User’s Guide

 CAU5012I � CAU5015E

CAU5012I Invalid PARM specified. $SUMMARY assumed

Explanation: When invoking the Scanner, a PARM field has been specified on the EXEC
that does not contain valid information.

System Action: The Scanner uses the default PARM of $SUMMARY.

User Response: Correct the PARM information and rerun if required.

Destination: Console.

Modules: CAULMS

CAU5013S macro failed. Return code=return code

Explanation: A Scanner or Builder MVS GETMAIN or MVS FREEMAIN macro has failed to
execute successfully.

System Action: The Scanner or Builder is terminated.

User Response: Check the appropriate MVS manual for the meaning of return code, which
is the value of GPR 15 after the macro call. Correct the problem and rerun the job. If the
problem persists, contact IBM support.

Destination: Console.

Modules: CAULMS, CAUBLD, CAUBLDMR

CAU5014E Invalid PARM keyword specified. Correct and rerun

Explanation: When invoking the Builder, a PARM field has been specified on the EXEC
that contains an invalid keyword. The allowable keywords are MATCH, STATE, CONTEXT,
and DSPSIZE.

System Action: The Builder is terminated.

User Response: Correct the PARM information and rerun the job.

Destination: Console.

Modules: CAUBLD

CAU5015E Invalid keyword value specified. Correct and rerun

Explanation: When invoking the Builder, a PARM field has been specified on the EXEC
that contains an invalid value for keyword.

System Action: The Builder is terminated.

User Response: Correct the PARM information and rerun the job.

Destination: Console.

Modules: CAUBLD

Keyword Allowed values
MATCH LUNAME and USERID
STATE ACTIVE and DORMANT
CONTEXT plexname, one through eight characters

 Appendix D. Messages and Codes 105

 CAU5016E � CAU5019E

CAU5016E DSPSIZE value is not numeric. Correct and rerun

Explanation: When invoking the Builder, a PARM field has been specified on the EXEC
that contains an invalid value for keyword DSPSIZE. A character other than a digit in the
range 0..9 was encountered. The value must be an integer in the range 2 to 2000 Mb.

System Action: The Builder is terminated.

User Response: Correct the PARM information and rerun the job.

Destination: Console.

Modules: CAUBLD

CAU5017E DSPSIZE is invalid. Must be between 2 and 2000

Explanation: When invoking the Builder, a PARM field has been specified on the EXEC
that contains an invalid value for keyword DSPSIZE. The value must be an integer in the
range 2 to 2000 Mb.

System Action: The Builder is terminated.

User Response: Correct the PARM information and rerun the job.

Destination: Console.

Modules: CAUBLD

CAU5018E Load of CAUTABM has failed AC=abend code RC=reason code

Explanation: The Builder attempted to load the table manager module (CAUTABM) but the
MVS LOAD macro failed. The abend code is that returned in GPR 1 and is the abend code
that would have resulted had the task abended. The reason code is that returned in GPR 15
and is the reason code associated with the abend.

System Action: The Builder is terminated.

User Response: The MVS abend code and reason code should indicate the cause of the
error. Correct the problem and rerun the job. If the problem persists, contact IBM support.

Destination: Console.

Modules: CAUBLD

CAU5019E Dataspace too large - no storage available

Explanation: The Builder received a response from the table manager (CAUTABM) that it
was unable to obtain the amount of storage requested for the MVS/ESA dataspace, because
the MVS Real Storage Manager does not have enough resources.

System Action: The Builder is terminated.

User Response: Decrease the dataspace size specified on the PARM field of the EXEC
statement in the job, and rerun the job.

Destination: Console.

Modules: CAUBLD

106 CICS Transaction Affinities Utility User’s Guide

 CAU5020E � CAU5023E

CAU5020E Dataspace too large - IEFUSI limit reached

Explanation: The Builder received a response from the table manager (CAUTABM) that it
was unable to obtain the amount of storage requested for the MVS/ESA dataspace, because
MVS exit IEFUSI has imposed a limit on address space size.

System Action: The Builder is terminated.

User Response: Decrease the dataspace size specified on the PARM field of the EXEC
statement in the job, or else ask the MVS system programmer to increase the IEFUSI limit.
Rerun the job.

Destination: Console.

Modules: CAUBLD

CAU5021E CAUTABM create dataspace failed REASON=reason code ERROR=error code

Explanation: The Builder received an invalid response when issuing a call to the table
manager (CAUTABM) to create the MVS/ESA dataspace.

System Action: The Builder is terminated.

User Response: The reason code value may be looked up in “Detector table manager
diagnostics” on page 118. If it is AUTM_DSPSERV_CREATE_ERROR then error code is
the value of GPR 0 after the MVS DSPSERV CREATE call. If it is
AUTM_ALESERV_ADD_ERROR then error code is the value of GPR 15 after the MVS
ALESERV ADD call. Use the appropriate MVS manual to find out the meaning of the error
code.

If you are still unable to resolve the problem, contact IBM support.

Destination: Console.

Modules: CAUBLD

CAU5022E CAUTABM create table failed REASON=reason code TABLE=table number

Explanation: The Builder received an invalid response when issuing a create table call to
the table manager (CAUTABM) for table table number.

System Action: The Builder is terminated.

User Response: The reason code and table number values may be looked up in “Detector
table manager diagnostics” on page 118. If you are unable to resolve the problem, contact
IBM support.

Destination: Console.

Modules: CAUBLD

CAU5023E Keyword keyword is invalid or unexpected

Explanation: When reading statements from its REPGRPS input stream the Builder
encountered a keyword it did not recognise, or a keyword that occurred in an unexpected
place.

System Action: The Builder skips to the next input statement and continues, but will
terminate when the end of the input is encountered.

User Response: Refer to “Syntax for input to the Builder” on page 60 to correct the
statement, and rerun the job. A likely cause of this message is the omission of the
terminating semicolon from the preceding statement.

Destination: Error report.

Modules: CAUBLDIN

 Appendix D. Messages and Codes 107

 CAU5024E � CAU5027E

CAU5024E Keyword keyword is missing

Explanation: When reading statements from its REPGRPS input stream the Builder
encountered a statement where required keyword keyword was missing.

System Action: The Builder skips to the next input statement and continues, but will
terminate when the end of the input is encountered.

User Response: Refer to “Syntax for input to the Builder” on page 60 to correct the
statement, and rerun the job.

Destination: Error report.

Modules: CAUBLDIN

CAU5025E A value of value is invalid for keyword keyword

Explanation: When reading statements from its REPGRPS input stream the Builder
encountered an invalid value for keyword keyword.

System Action: The Builder skips to the next keyword and continues, but will terminate
when the end of the input is encountered.

User Response: Refer to “Syntax for input to the Builder” on page 60 to correct the
statement, and rerun the job.

Destination: Error report.

Modules: CAUBLDIN

CAU5026E Invalid CREATE type

Explanation: When reading statements from its REPGRPS input stream the Builder
encountered a CREATE statement. The only allowable keywords that may immediately
follow the keyword CREATE are TRANGRP and DTRINGRP.

System Action: The Builder skips to the next input statement and continues, but will
terminate when the end of the input is encountered.

User Response: Refer to “Syntax for input to the Builder” on page 60 to correct the
statement, and rerun the job.

Destination: Error report.

Modules: CAUBLDIN

CAU5027E Incorrect number of brackets

Explanation: When reading statements from its REPGRPS input stream the Builder
encountered a keyword for which a corresponding value was expected. Either the value did
not start with a bracket, or did not end with a bracket, or contained a bracket in the middle,
or spanned input lines.

System Action: The Builder skips to the next input statement and continues, but will
terminate when the end of the input is encountered.

User Response: Refer to “Syntax for input to the Builder” on page 60 to correct the
statement, and rerun the job. Values must start and end with a bracket, must not contain
other brackets, and must not span lines.

Destination: Error report.

Modules: CAUBLDIN

108 CICS Transaction Affinities Utility User’s Guide

 CAU5028E � CAU5031E

CAU5028E Missing semicolon

Explanation: When reading statements from its REPGRPS input stream the Builder
encountered the end of the input in the middle of a statement, implying that a terminating
semicolon is missing from the last statement.

System Action: The Builder is terminated.

User Response: Refer to “Syntax for input to the Builder” on page 60 to correct the
statement, and rerun the job.

Destination: Error report.

Modules: CAUBLDIN

CAU5029E Keyword keyword is duplicated

Explanation: When reading statements from its REPGRPS input stream the Builder
encountered a keyword that occurred more than once in the same statement. Duplicate
keywords are not allowed.

System Action: The Builder continues, but will terminate when the end of the input is
encountered.

User Response: Refer to “Syntax for input to the Builder” on page 60 to correct the
statement, and rerun the job.

Destination: Error report.

Modules: CAUBLDIN

CAU5030E No valid statements in REPGRPS - processing terminated

Explanation: When reading statements from its REPGRPS input stream the Builder did not
find a single complete statement.

System Action: The Builder is terminated.

User Response: The most likely cause of this message is an empty input file. Correct the
problem and rerun the job.

Destination: Console.

Modules: CAUBLDMR

CAU5031E CAUTABM error function element TABLE=table number REASON=reason
code MODULE=progname

Explanation: Builder module progname received an unexpected response when issuing a
call to the table manager (CAUTABM).

System Action: The Builder is terminated.

User Response: The function gives the operation being performed. The reason code and
table number may be looked up in “Detector table manager diagnostics” on page 118. If
you are unable to resolve the problem, contact IBM support.

Destination: Console.

Modules: CAUBLDMR, CAUBLDOT

 Appendix D. Messages and Codes 109

 CAU5032E � CAU5035W

CAU5032E No HEADER record found - statement ignored

Explanation: When reading statements from its REPGRPS input stream the Builder
encountered a CREATE statement. However, no HEADER statement had been encountered
first. The HEADER statement is compulsory, and must be the first statement in each dataset
in the REPGRPS concatenation.

System Action: The Builder skips to the next input statement and continues, but will
terminate when the end of the input is encountered.

User Response: Ensure that each dataset in the REPGRPS concatenation has a HEADER
statement as the first statement in the dataset. Correct the problem and rerun the job.

Destination: Error report.

Modules: CAUBLDMR

CAU5033E Duplicate TRANGRP name

Explanation: When reading statements from its REPGRPS input stream the Builder
encountered a CREATE TRANGRP statement. However, the trangroup name supplied in
the statement is not unique within the current input dataset. Duplicate trangroup names are
not allowed.

System Action: The Builder skips to the next input statement and continues, but will
terminate when the end of the input is encountered.

User Response: Ensure that each CREATE TRANGRP statement within the dataset
specifies a unique trangroup name. If this is already the case, then the probable cause of
this message is that the HEADER statement is missing from the dataset. Correct the
problem and rerun the job.

Destination: Error report.

Modules: CAUBLDMR

CAU5034E Trangroup has not been previously created

Explanation: When reading statements from its REPGRPS input stream the Builder
encountered a CREATE DTRINGRP statement. However, no corresponding valid CREATE
TRANGRP statement for the trangroup in question had been encountered.

System Action: The Builder skips to the next input statement and continues, but will
terminate when the end of the input is encountered.

User Response: Either the CREATE TRANGRP statement was missing or was in error in
some way. Correct the problem and rerun the job.

Destination: Error report.

Modules: CAUBLDMR

CAU5035W Affinity data may be incomplete because of abend type abend

Explanation: The control record on affinity control file CAUCNTL indicates that the Detector
did not stop cleanly. Either CICS crashed or the Detector abended, as indicated by abend
type. If the termination occurred during a Detector save, it is possible that the data on the
affinity files may be incomplete.

System Action: The Reporter continues.

User Response: Incomplete data may be indicated by frequent appearance of message
CAU5011W. If so, the Detector should be rerun to produce a more complete set of data.

Destination: Console.

Modules: CAUREP

110 CICS Transaction Affinities Utility User’s Guide

 CAU5036E � CAU5039E

CAU5036E Dataspace full

Explanation: A Builder module received a reason code of AUTM_NO_STORAGE when
issuing a call to the table manager (CAUTABM) to add an element to a table. The dataspace
has filled up.

System Action: The Builder is terminated.

User Response: Increase the dataspace size specified on the PARM field of the EXEC
statement in the job, and rerun the job.

Destination: Console.

Modules: CAUBLDMR

CAU5037E No valid transids in REPGRPS - processing terminated

Explanation: When reading statements from its REPGRPS input stream the Builder did not
find a single valid CREATE DTRINGRP statement.

System Action: The Builder is terminated.

User Response: The most likely cause of this message is an input stream that contains
valid CREATE TRANGRP statements, but no CREATE DTRINGRP statements. Correct the
problem and rerun the job.

Destination: Console.

Modules: CAUBLDMR

CAU5038E Invalid AFFLIFE for AFFINITY

Explanation: When reading statements from its REPGRPS input stream the Builder
encountered a CREATE TRANGRP statement. However, the value specified for AFFLIFE is
not one of those permitted given the value specified for AFFINITY.

System Action: The Builder skips to the next input statement and continues, but will
terminate when the end of the input is encountered.

User Response: Refer to “Syntax for input to the Builder” on page 60 to correct the
statement, and rerun the job.

Destination: Error report.

Modules: CAUBLDMR

CAU5039E PARM keyword is duplicated. Correct and rerun

Explanation: When invoking the Builder, a PARM field has been specified on the EXEC
that contains a duplicate keyword. Duplicate keywords are not allowed.

System Action: The Builder is terminated.

User Response: Correct the PARM information and rerun the job.

Destination: Console.

Modules: CAUBLD

 Appendix D. Messages and Codes 111

 CAU5040E � CAU5040E

CAU5040E Invalid REMOVE type

Explanation: When reading statements from its REPGRPS input stream the Builder
encountered a REMOVE statement. The only allowable keyword that may immediately follow
the keyword REMOVE is TRANGRP.

System Action: The Builder skips to the next input statement and continues, but will
terminate when the end of the input is encountered.

User Response: Refer to “Syntax for input to the Builder” on page 60 to correct the
statement, and rerun the job. Alternatively comment out the statement.

Destination: Error report.

Modules: CAUBLDIN

AUXA

Explanation: An unexpected error occurred when calling Detector program CAUTABM,
from one of the Detector exit programs. Transaction CAFB issues this abend on behalf of the
exit program.

System Action: The Detector is stopped.

User Response: Refer to message CAU4100S.

Modules: CAUCAFB1

AUXB

Explanation: The dataspace has filled up. If the situation was detected by a Detector exit
program, transaction CAFB issues this abend on its behalf.

System Action: The Detector is stopped.

User Response: Refer to message CAU4200S.

Modules: CAUCAFF3, CAUCAFF6, CAUCAFB1

AUYA

Explanation: Transaction CAFB received an unrecognisable request from another Detector
component (CAFF or a Detector exit program).

System Action: The Detector is stopped.

User Response: Refer to message CAU3302S.

Modules: CAUCAFB1

AUYC

Explanation: Transaction CAFB received a request from another Detector component
(CAFF or an exit program) to abend because of an unexpected error.

System Action: The Detector is stopped.

User Response: Refer to message CAU3304S.

Modules: CAUCAFB1

112 CICS Transaction Affinities Utility User’s Guide

 AUYE � AUYJ

AUYE

Explanation: A Detector program found an invalid affinity file number in an internal array in
the Detector GWA.

System Action: The Detector is stopped.

User Response: Refer to message CAU3310S.

Modules: CAUCAFB2, CAUCAFF3

AUYF

Explanation: Transaction CAFB was not started by transaction CAFF.

System Action: The Detector is stopped.

User Response: Refer to message CAU3311S.

Modules: CAUCAFB1

AUYG

Explanation: Transaction CAFB was still running at CICS termination.

System Action: The Detector is stopped.

User Response: Refer to message CAU3312S.

Modules: CAUCAFB1

AUYH

Explanation: A Detector program found that the address held in the Detector GWA for one
of the Detector internal modules was invalid.

System Action: The Detector is stopped.

User Response: Refer to message CAU3313S.

Modules: CAUCAFF4, CAUCAFF5, CAUCAFB1

AUYI

Explanation: An unexpected error occurred when calling Detector program CAUTABM to
access affinity table data in the dataspace, from transaction CAFF or CAFB.

System Action: The Detector is stopped.

User Response: Refer to message CAU3314S.

Modules: CAUCAFB2, CAUCAFF6

AUYJ

Explanation: One of the affinity data files has filled up.

System Action: The Detector is stopped.

User Response: Refer to message CAU3315S.

Modules: CAUCAFB2

 Appendix D. Messages and Codes 113

 AUZA � AUZH

AUZA

Explanation: An unexpected error occurred when issuing an EXEC CICS command, by a
program from transaction CAFF or CAFB.

System Action: The Detector is stopped.

User Response: Refer to message CAU2201S.

Modules: CAUCAFF1, CAUCAFF2, CAUCAFF3, CAUCAFF4, CAUCAFF5, CAUCAFF6,
CAUCAFF7, CAUCAFB1, CAUCAFB2, CAUCAF41

AUZB

Explanation: An unexpected error error occurred when issuing a VSAM file control EXEC
CICS command, by a program from transaction CAFF or CAFB.

System Action: The Detector is stopped.

User Response: Refer to message CAU2202S.

Modules: CAUCAFF1, CAUCAFF2, CAUCAFF3, CAUCAFF4, CAUCAFF5, CAUCAFF6,
CAUCAFB1, CAUCAFB2

AUZC

Explanation: The internal field holding the Detector state has an invalid value.

System Action: The Detector is stopped.

User Response: Refer to message CAU2203S.

Modules: CAUCAFF1, CAUCAFF2

AUZD

Explanation: One of the files contains a CICS APPLID that does not match the APPLID of
the CICS system.

System Action: The Detector is stopped.

User Response: Refer to message CAU2205S.

Modules: CAUCAFF1, CAUCAFF2

AUZF

Explanation: An unexpected error error occurred when issuing a Detector user exit related
EXEC CICS command, by a program from transaction CAFF or CAFB. The command is one
of ENABLE, DISABLE or EXTRACT EXIT.

System Action: The Detector is stopped.

User Response: Refer to message CAU2206S.

Modules: CAUCAFF1, CAUCAFF2, CAUCAFF3, CAUCAFF4, CAUCAFF5, CAUCAFF6,
CAUCAFB1

AUZH

Explanation: An unexpected error occurred when calling Detector program CAUTABM to
create the MVS/ESA dataspace to hold the affinity data, from transaction CAFF.

System Action: The Detector is stopped.

User Response: Refer to message CAU2210S.

Modules: CAUCAFF3

114 CICS Transaction Affinities Utility User’s Guide

 AUZI � AUZR

AUZI

Explanation: An unexpected error occurred when calling Detector program CAUTABM to
create an affinity table in the dataspace, from transaction CAFF.

System Action: The Detector is stopped.

User Response: Refer to message CAU2211S.

Modules: CAUCAFF3, CAUCAFF6

AUZJ

Explanation: An unexpected error occurred when calling Detector program CAUTABM to
add an element to an affinity table in the dataspace, from transaction CAFF.

System Action: The Detector is stopped.

User Response: Refer to message CAU2212S.

Modules: CAUCAFF3

AUZN

Explanation: An unexpected error occurred when calling Detector program CAUTABM to
destroy the dataspace, from transaction CAFF.

System Action: The Detector is stopped.

User Response: Refer to message CAU2216S.

Modules: CAUCAFF4

AUZO

Explanation: An unexpected error occurred when calling Detector program CAUTABM to
destroy a table in the dataspace, from transaction CAFF.

System Action: The Detector is stopped.

User Response: Refer to message CAU2217S.

Modules: CAUCAFF6

AUZQ

Explanation: An unexpected error occurred when calling Detector program CAUCAFP to
create its MVS CPOOL storage, from transaction CAFF.

System Action: The Detector is stopped.

User Response: Refer to message CAU2220S.

Modules: CAUCAFF3

AUZR

Explanation: An unexpected error occurred when calling Detector program CAUCAFP to
access its MVS CPOOL storage, from transaction CAFF or CAFB.

System Action: The Detector is stopped.

User Response: Refer to message CAU2221S.

Modules: CAUCAFF4, CAUCAFF5, CAUCAFB1

 Appendix D. Messages and Codes 115

 AUZS � AUZ1

AUZS

Explanation: An unexpected error occurred when calling Detector program CAUCAFP to
destroy its MVS CPOOL storage, from transaction CAFF.

System Action: The Detector is stopped.

User Response: Refer to message CAU2222S.

Modules: CAUCAFF4

AUZU

Explanation: An unexpected error occurred when calculating what percentage of the
dataspace is occupied by affinity data, from transaction CAFF.

System Action: The Detector is stopped.

User Response: Refer to message CAU2224S.

Modules: CAUCAFF1

AUZV

Explanation: The method of initiating transaction CAFF is incorrect.

System Action: The Detector is stopped.

User Response: Refer to message CAU2225E.

Modules: CAUCAFF1

AUZY

Explanation: An unexpected error occurred when calling Detector program CAUTABM to
replace a table element in the dataspace, from transaction CAFF or CAFB.

System Action: The Detector is stopped.

User Response: Refer to message CAU2228S.

Modules: CAUCAFF3, CAUCAFB2

AUZZ

Explanation: An unexpected error occurred when calling a Detector subroutine to update
the termid table (TT) or userid table (UT), from transaction CAFF.

System Action: The Detector is stopped.

User Response: Refer to message CAU2229S.

Modules: CAUCAFF3, CAUCAFF6

AUZ1

Explanation: When the Detector was being started by transaction CAFF, the header record
could not be found on one of the VSAM affinity data files.

System Action: The Detector is stopped.

User Response: Refer to message CAU2230S.

Modules: CAUCAFF3

116 CICS Transaction Affinities Utility User’s Guide

 AUZ3 � AUZ3

AUZ3

Explanation: Transaction CAFF or CAFB is running on a release of CICS which does not
support the Detector.

System Action: The Detector is stopped.

User Response: Refer to message CAU2232E.

Modules: CAUCAFF1, CAUCAFB1

 Appendix D. Messages and Codes 117

Detector table manager diagnostics
 This section

Lists the meaning for each possible value of the call parameters that are
included in the error messages issued if an an error occurs on a call to the
Detector and Builder table manager, CAUTABM.

Function code values
 AUTM_CREATE_POOL 1

 AUTM_DESTROY_POOL 2

 AUTM_CREATE_TABLE 3

 AUTM_DESTROY_TABLE 4

 AUTM_ADD_ELEMENT 5

 AUTM_DELETE_ELEMENT 6

 AUTM_REPLACE_ELEMENT 7

 AUTM_GET_KEY_ELEMENT 8

 AUTM_GET_FIRST_ELEMENT 9

 AUTM_GET_NEXT_ELEMENT 12

 AUTM_GET_ELEMENT 11

 AUTM_GET_KEY_GE_ELEMENT 12

Table identifier values
 AUTM_EDSR 1

 AUTM_EDST 2

 AUTM_EDR 3

 AUTM_EDT 4

 AUTM_TSQ 5

 AUTM_TST 6

 AUTM_LRP 7

 AUTM_LRT 8

 AUTM_SRS 9

 AUTM_SRT 12

 AUTM_CWA 11

 AUTM_CWT 12

 AUTM_GFA 13

 AUTM_GFM 14

 AUTM_LFA 15

 AUTM_LFM 16

 AUTM_ICR 17

 AUTM_ICM 18

 AUTM_SPI 19

 AUTM_WAIT 22

 AUTM_TT 24

 AUTM_UT 25

 AUTM_BLD_DNT 28

 AUTM_BLD_GNT 29

 AUTM_BLD_TT 32

 AUTM_BLD_MERGED 31

118 CICS Transaction Affinities Utility User’s Guide

Reason code values
 AUTM_INVALID_FUNCTION 2

 AUTM_NO_STORAGE 1

 AUTM_ELEMENT_NOT_FOUND 2

 AUTM_ELEMENT_EXISTS 3

 AUTM_INVALID_TABLE 4

 AUTM_IEFUSI_HIT 5

 AUTM_TABLE_EXISTS 6

 AUTM_TABLE_DOES_NOT_EXIST 7

 AUTM_POOL_EXISTS 8

 AUTM_POOL_DOES_NOT_EXIST 9

 AUTM_INVALID_CURSOR 12

 AUTM_DEFAULT_SIFD_ERROR 192

 AUTM_DEFAULT_SIFA_ERROR 193

 AUTM_DEFAULT_DSP_ERROR 194

 AUTM_DEFAULT_AVL_ERROR 195

 AUTM_SIFD_CREATE_POOL_ERROR 196

 AUTM_SIFA_CREATE_POOL_ERROR 197

 AUTM_DSP_CREATE_POOL_ERROR 198

 AUTM_SIFD_DESTROY_POOL_ERROR 199

 AUTM_SIFA_DESTROY_POOL_ERROR 222

 AUTM_DSP_DESTROY_POOL_ERROR 221

 AUTM_AVL_CREATE_TABLE_ERROR 222

 AUTM_SIFA_CREATE_TABLE_ERROR 223

 AUTM_AVL_DESTROY_TABLE_ERROR 224

 AUTM_SIFA_DESTROY_TABLE_ERROR 225

 AUTM_AVL_ADD_ERROR 226

 AUTM_SIFA_ADD_ERROR 227

 AUTM_AVL_GET_KEY_ERROR 228

 AUTM_AVL_GET_FIRST_ERROR 229

 AUTM_AVL_GET_NEXT_ERROR 212

 AUTM_AVL_DELETE_ERROR 211

 AUTM_SIFA_DELETE_ERROR 212

 AUTM_AVL_REPLACE_ERROR 213

 AUTM_DSP_RESERVE_ERROR 214

 AUTM_DSP_RELEASE_ERROR 215

 AUTM_DSPSERV_CREATE_ERROR 216

 AUTM_DSPSERV_DELETE_ERROR 217

 AUTM_ALESERV_ADD_ERROR 218

 AUTM_ALESERV_DELETE_ERROR 219

 AUTM_AVL_GET_ERROR 222

 Appendix D. Messages and Codes 119

Detector CAFB request queue manager diagnostics
 This section

Lists the meaning for each possible value of the call parameters that are
included in the error messages issued if an an error occurs on a call to the
Detector CAFB request queue manager, CAUCAFP.

Function code values
 AUCP_ADD_CELL_FIRST 1

 AUCP_ADD_CELL_LAST 2

 AUCP_CREATE_CPOOL 3

 AUCP_DESTROY_CPOOL 4

 AUCP_GET_CELL 5

Reason code values
 AUCP_NO_STORAGE 1

 AUCP_CPOOL_FAILED 2

 AUCP_INVALID_FUNCTION 3

 AUCP_NOT_FOUND 4

Date formatter diagnostics
 This section

Lists the meaning for each possible value of the call parameters that are
included in the error messages issued if an an error occurs on a call to the
CICS Transaction Affinities Utility date formatter, CAUCAFDT.

Reason code values
 CAUD_NO_DATE 1

 CAUD_FORMAT 2

120 CICS Transaction Affinities Utility User’s Guide

 Index

A
affinity

avoiding 5
combining basic affinity transaction groups 64
control record VSAM file 16
data VSAM files 15
inter-transaction 3
lifetimes 3
overview 2
programming techniques 4

safe 4
suspect 5
unsafe 5

relations 3
transaction group definitions 51
transaction-system 3

affinity data VSAM files 15
affinity transaction group definitions 51
affinity transaction groups, combining 64
argument zero, explanation of x

B
basic affinity transaction groups, combining 64
Builder 59

combining basic affinity transaction groups 64
input parameters 59
output 63
overview 17
running 59

C
CAFB request queue manager diagnostics 120
CAFB transaction 15
CAFF transaction 35
CAFF01 screen, to control the Detector 35

displaying 36
example 36
pausing data collection 39
resuming data collection 39
starting data collection 38
stopping data collection 40

CAFF02, Detector options screen
example 41
options screen, CAFF02

example 41
CICS Transaction Affinities Utility

abend codes 87
Builder overview 17
CICS releases 7
commands detected 9

CICS Transaction Affinities Utility (continued)
control record VSAM file 16
creating the VSAM files 24
data space size 20
data VSAM files 15
date formatter diagnostics 120
defining CICS resources needed 24
Detector overview 10
install exit XEIOUT on CICS/MVS 2.1.2 22
installing 19
installing resources in CICS 26
loading software to DASD 22
messages and codes 87
overview 7
process 21
Reporter overview 17
requirements 19
restarting your CICS region 27
sample jobs 23
Scanner overview 10
tailoring your CICS startup job 26
what is detected 11
what is not detected 12

collecting data 14
combining basic affinity transaction groups 64
control record VSAM file 16
Cross System Product and affinities 55
CSP and affinities 55

D
data space size 20
date formatter diagnostics 120
detailed report (Scanner)

creating 31
output contents 32
output example 33

Detector
affinity data VSAM files 15
CAFB request queue manager diagnostics 120
CAFB transaction 15
changing options 40
collecting data 14
control record VSAM file 16
controlling 14
displaying the control screen 36
how data is collected 14
how data is saved 15
options screen, CAFF02 40
overview 10
pausing data collection 39
resuming data collection 39

 Copyright IBM Corp. 1994 121

Detector (continued)
saving data 15
starting data collection 38
stopping data collection 40
table manager diagnostics 118
what is detected 11
what is not detected 12
worsening of affinities lifetimes 12
worsening of affinities relations 12

diagnostics
CAFB request queue manager 120
data formatter 120
table manager 118

dynamic transaction routing
benefits 2
compared to static routing 1
cost 2
overview 1

G
global affinity relation 3

I
input parameters
installing the Transaction Affinities Utility

creating the VSAM files 24
data space size 20
defining CICS resources needed 24
install exit XEIOUT on CICS/MVS 2.1.2 22
installing resources in CICS 26
loading software to DASD 22
overview 19
process 21
requirements 19
restarting your CICS region 27
sample jobs 23
tailoring your CICS startup job 26

L
lifetime of affinities

logon 4
overview 3
permanent 4
pseudo-conversation 4
signon 4
system 4
worsening 12

logoff, detection of 11
logon affinity lifetime 4
LUname affinity relation 3

P
permanent affinity lifetime 4
programming techniques for transaction affinity

safe 4
suspect 5
unsafe 5

pseudo-conversation affinity lifetime 4
pseudo-conversation end, detection of 11

R
relation of affinities

global 3
LUname 3
overview 3
userid 3
worsening 12

Reporter 45
affinity transaction group definitions 51
output 46
output report 47
output report (example) 47
overview 17
running 35, 45
using the report 52

requirements of the Transaction Affinities Utility 19

S
safe programming techniques 4
saving data 15
Scanner

creating a detailed report 31
input parameters 31
output contents 32

creating a summary report 29
input parameters 29
output contents 30

overview 10
running 29

service for the Transaction Affinities Utility 69
signoff, detection of 11
signon affinity lifetime 4
static transaction routing

compared to dynamic routing 1
summary report (Scanner)

creating 29
output contents 30
output example 31

suspect programming techniques 5
system affinity lifetime 4

T
terminology x

122 CICS Transaction Affinities Utility User’s Guide

transaction affinity
avoiding 5
combining basic affinity transaction groups 64
control record VSAM file 16
data VSAM files 15
inter-transaction 3
lifetimes 3
overview 2
programming techniques 4

safe 4
suspect 5
unsafe 5

relations 3
transaction group definitions 51
transaction-system 3

transaction group definitions 51
transaction routing

dynamic (overview) 1
dynamic versus static 1

U
unsafe programming techniques 5
userid affinity relation 3

V
VSAM files 15, 16

 Index 123

Sending your comments to IBM
IBM CICS Transaction Affinities Utility MVS/ESA

User’s Guide

SC33-1159-01

If you especially like or dislike anything about this book, please use one of the methods listed below to
send your comments to IBM.

Feel free to comment on what you regard as specific errors or omissions, and on the accuracy,
organization, subject matter, or completeness of this book. Please limit your comments to the information
in this book and the way in which the information is presented.

To request additional publications, or to ask questions or make comments about the functions of IBM
products or systems, you should talk to your IBM representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments
in any way it believes appropriate, without incurring any obligation to you.

You can send your comments to IBM in any of the following ways:

� By mail, use the Readers’ Comment Form.

 � By fax:

– From outside the U.K., use your international access code + 44 962 870229
– From within the U.K., use 0962 870229

� Electronically, use the appropriate network ID:

– IBM Mail Exchange: GBIBM2Q9 at IBMMAIL
 – IBMLink: WINVMJ(IDRCF)
 – Internet: idrcf@winvmj.vnet.ibm.com

Whichever you use, ensure that you include:

� The publication number and title
� The page number or topic to which your comment applies
� Your name and address/telephone number/fax number/network ID.

Readers’ Comments
IBM CICS Transaction Affinities Utility MVS/ESA

User’s Guide

SC33-1159-01
Use this form to tell us what you think about this manual. If you have found errors in it, or if you want
to express your opinion about it (such as organization, subject matter, appearance) or make
suggestions for improvement, this is the form to use.

To request additional publications, or to ask questions or make comments about the functions of IBM
products or systems, you should talk to your IBM representative or to your IBM authorized remarketer.
This form is provided for comments about the information in this manual and the way it is presented.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your
comments in any way it believes appropriate without incurring any obligation to you.

Be sure to print your name and address below if you would like a reply.

Name Address

Company or Organization

Telephone Email

IBM CICS Transaction Affinities Utility MVS/ESA

SC33-1159-01

IBM

REPONSE PAYEE
GRANDE-BRETAGNE

NE PAS AFFRANCHIR

NO STAMP REQUIRED

IBM United Kingdom Laboratories Limited
Information Development Department (MP 095)
Hursley Park
WINCHESTER, Hants
SO21 2ZZ United Kingdom

IBRS/CCRI NUMBER: PHQ - D/1348/SO

Fold along this line

Fold along this line

C
u

t
a

lo
n

g
th

is
lin

e
C

u
t

a
lo

n
g

th
is

lin
e

You can send your comments POST FREE on this form from any one of these countries:

Australia

Belgium

Bermuda

Cyprus

Denmark

Finland

France

Germany

Greece

Hong Kong

Iceland

Israel

Italy

Luxembourg

Monaco

Netherlands

New Zealand

Norway

Portugal

Republic of Ireland

Singapore

Spain

Sweden

Switzerland

United Arab Emirates

United States

of America

If your country is not listed here, your local IBM representative will be pleased to forward your comments
to us. Or you can pay the postage and send the form direct to IBM (this includes mailing in the U.K.).

By air mail
Par avion

Name

Company or Organization

Address

EMAIL

Telephone

Fasten here with adhesive tape

From:

IBM

Program Number: 5696-582

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC33-1159-21

Spine information:

IBM IBM CICS Transaction Affinities Utility MVS/ESA User’s Guide

	Notices
	Trademarks and service marks

	Preface
	Notes on Terminology

	Summary of changes
	Chapter 1. Introduction to transaction affinities
	CICS/ESA dynamic transaction routing
	Static versus dynamic transaction routing
	The benefits of dynamic transaction routing
	What does dynamic routing cost?
	Transaction affinities
	CICS programming techniques for transaction affinity

	Avoiding the effects of transaction affinity
	CICS/ESA 4.1 transaction isolation

	Chapter 2. Overview of the CICS Transaction Affinities Utility
	Commands detected by the CICS Transaction Affinities Utility
	Scanner
	Detector
	Reporter
	Builder

	Chapter 3. Installing the affinity utility
	Check the program directory
	Requirements for the CICS Transaction Affinities Utility
	Estimating the size of the MVS data space and files

	Installing the CICS Transaction Affinities Utility
	Installing exit XEIOUT on CICS/MVS 2.1.2
	Loading the contents of the distribution tape
	Defining the CICS Transaction Affinities Utility transient data destination
	Creating the VSAM files
	Defining CICS resources needed
	Installing the resource group on your CICS

	Tailoring your CICS startup job
	Restarting your CICS region

	Chapter 4. Running the Scanner
	Creating a summary report
	Creating a detailed report

	Chapter 5. Running the Detector
	Displaying the Detector control screen
	Starting the collection of affinity data
	Pausing the collection of affinity data
	Resuming the collection of affinity data
	Stopping the collection of affinity data
	Changing the Detector options
	Detector errors

	Chapter 6. Running the Reporter
	Output from the Reporter
	Affinity report
	Affinity transaction group definitions
	Using the affinity report
	Temporary storage compression

	Using the IBM Cross System Product
	Affinity analysis for a CICS region containing CSP 3.3 applications

	Chapter 7. Running the Builder
	Syntax for input to the Builder
	HEADER statements

	Output from the Builder
	Combined affinity transaction group definitions
	Data sets processed report
	Empty transaction groups report
	Group merge report
	Error report

	Chapter 8. Service
	When to contact the Support Center
	Dealing with the Support Center
	What the Support Center needs to know
	What happens next

	Appendix A. Details of what is detected
	ENQ/DEQ
	TS commands
	LOAD HOLD/RELEASE
	RETRIEVE WAIT/START
	ADDRESS CWA
	GETMAIN SHARED/FREEMAIN
	LOAD/FREEMAIN
	CANCEL/DELAY/POST/START
	SPI commands
	WAIT commands

	Appendix B. Correlating Scanner and Reporter output to source
	Reporter output
	Scanner output
	Examples

	Appendix C. Useful tips when analysing CICS Transaction Affinities Utility reports
	COBOL Affinities
	LOGON or SYSTEM when PCONV expected
	Unrecognised Transids

	Appendix D. Messages and Codes
	Detector table manager diagnostics
	Detector CAFB request queue manager diagnostics
	Date formatter diagnostics

	Index

