Ti\"ﬂli. Netcool® Performance Manager for Wireless Gateways - Perl

Version 3.5.1

Gateway Framework User Guide

TivoLI® NETCOOL® PERFORMANCE MANAGER FOR WIRELESS
GATEWAY FRAMEWORK USER GUIDE

Note: Before using this information and the product it supports, read the
information in
on page 77.

This edition applies to Version 3.5 of IBM® Tivoli® Netcool® Gateway Framework and to all
subsequent releases and modifications until otherwise indicated in new editions.

© Copyright International Business Machines Corporation, 2010. All rights reserved.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

About this Documentation

Table of Contents

1

2

3

4

About this DOCUMENTAtIONcoiveei i s s 5
1.1 LY Lo 1T o - PRSPPI 5
1.2 Required SKills and KNOWIEAGEoiiiiiiiiiiiie ettt 5

Overview and ArChite@CIUNeccuviiiircemire s s e e s an e 6
2.1 OVEBIVIBW ..ttt ettt en et st e et eem et e e ne e e sa e e et et e an e e e s ne e e nnn e e nar e e eanneenaneeennneas 6
2.2 LYo a1 (=T (0= PR P SRR 6

P2 B VT To (o] g €= Lo = PR SR 8
2.3 LG (=AYl o [=To1 (o] 1= PSP 9

Gateway INStallation ... s 10
3.1 INSTAIIING PEIL ... e s e e e e e e e e 10
3.2 INSTAIING GAIEWAY'S .. eneteeitieetee ettt ettt ettt e bt e sate e e bt e e raee e sabeeeraeeesateesneeesaneeaas 10

Gateway Configuration and Managementcccccciieemiiiininssmnssssss s s s ssmssssmssss 11
4.1 Gateway CONfIGUIALION i e e st e e s sbe e e e e snneeeeeanneeeens 11

411 gateway STart.Sh .. 11

o I 0] 01T (= R SR 12

4.1.3 Launching the GalEWaYcoocuiiiiiiiiie e s e e s ee e e e e 14
4.2 Transfer CONfIQUIALION.ooo e e et e e e ee e e e snnee e e e ennes 14

421 The timestamp fileo e e 18
4.3 ENgine ConfigUration..........oi ittt et e ne e nane e 19
4.4 Post Parser CoONfIQUIAtIONooiuiiiiee ettt e e sare e s aee e saneeaas 20
4.5 Statistics CONfIGUIATION......co ittt et et e e ae e e e e eaees 21

457 File StatiStiCS . .eeiieiee ittt ettt ae e naeeas 22

4.5.2 BlOCK SEalISTICS .o euveeeiutieiiiieitee ettt ettt ettt ae e e be e st e e et e e e aae e e eaeeenaeeas 24

TR B 070 10 [01 (=] S - L[] 1ot PRSP 26
4.6 Notification CoNfIQUIAtiONc.eiiii i s ee e 28

G I ©o T i o 0 = (o] o PR RR 29
4.7 Parallel PrOCESSING....cc ittt ettt e et e e e bt e e e e bt e e e e s b te e e e enee e e e eneeeeennnes 31

A T (0] 01T (= PSR 31

A N ©7o 0o 0 =Y (o] o PR SR 31

4.7.3 LOg and AUit OUEPUL ..ot e e e e e e e e e 32

4.7.4 Post Parser rules supporting parallel proCeSSINGceveiririiiiiieieeiiiee e 32

Standard POSt Parser FUIES..........oc i sss s s s sssas s s s ssm s s s an s s s smnnssmn s 34
5.1 ACCUMULATE . .ttt ettt h et e st e e et e e e aa e e e e be e e bt e e aabeeebeeesabeesabeeeneeesnbeeennes 34

5.1.1 Sample rule appliCatiON.........oo it sane e 34

T 2 O o 1o [0 =V o o PR P USSR 35
5.2 AGGREGATE_LINE. ...t e e e 37

ESTP2 IS - 10] o] L= Y 2 Y o]][> i o o I SRS 37

T2 B O o170 U] - o] o ST 37
5.3 BATCHFILES ...ttt e s n et e s e e s r e e e ann e e nneeennneas 38

TG T IS - 10 o] o] [=Y0 2 Y o] o] 1=V o o IS SR 38

TG T2 B O o170 U] - 1] o ST 38
5.4 CVAL_MANIP ettt ettt et e e s bt e e be e e eaee e sabe e e bt e e sabe e e beeeamteeeneeesaneeennes 39

5.41 Sample APPIICALION . ..ottt sttt e ae e nne e 39

ST 32 O o 1o [0 =V o o O PRSPPSO 40
5.5 DATALINE_WHERE ...ttt ettt st e s ea e e s be e e ae e e smte e sneeesaneaaas 41

5.5.1 Sample APPIICALIONoo ittt ab e ae e snea e 41

T2 O o 1o U =V o] o OO PURTOUSRR 41

About this Documentation

5.6 1 S Y 0 I PSPPI 42
TSI IS =10 o] o L= Y 2 Y o]][> Vi o o I SRS 43
TG T2 B O o T U] = 1] o TSR 43

5.7 FILE_SPLIT_BY_COUNTERS..... .ottt sttt sate e s nee e saneeans 44
5.7.1 Sample APPIICALIONoi ettt ettt et eae e sanea e 44
B.7.2 CONTIQUIATION ...ttt ettt ettt et e bt e e sab e e st e e e abee e sabeeeseeesabeesneeesaneaans 45

5.8 INFOINSERT ...ttt h e et e bt e e s st e e e be e e s abe e e abe e e nte e sabeeebeeasabeeeneeesaneaans 46
5.8.1 Sample APPIICALIONoi ittt et ae et e ae e nane e 46
B5.8.2 CONTIGUIATION ...ttt ettt ettt et e et e e bt e e s st e e st e e e abee e sabeeeaeeesabeesneeesaneaans 47

5.9 1]| PP R PSPPI 48
T T IS = 10 o] o L= Y 2 Y o] o] 1= o o I SRR 48
oI T2 0 o170 U] = 1] o SR ST 49

510 MERGE_RECORDSooo ittt st e s ne e e e s e e nne e e nneeennneas 50
T O IS =0 g o L= Y o]][= Vi o o I S ST 50
LT 02 O o 1o [0 =Y o o O PP R TP OUSRR 51

T I R =1 o {7 PRSI 52
5.11.1 Sample APPIICALION ..ottt e e ae e e st e e ene e e saneaeas 52
T I B2 0T o [0 =V o PRSP 53

T - o | = © 1 U N = U N USRI 54
5.12.1 Sample APPIICALIONoi ittt ae e et esne e saneaea 54
T 2 0o o7 U] = 1] o T SRS 55

ST 1 T o | = O PRV SROPPI 56
T e T IS = 0 o] o] L=N 2 Y o]][>V o o I SR 56
T e T2 0T o7 U] = 1] o ST 57

5,14 PIF_REMOVE ...t bbb h ettt et e b e h e sttt e b e e nn e nneenaeas 58
T 7 3 IS =0 o] o L=Y Y o]][> Vi o o I ST 58
oI 2 O o 1o [0 = Vo o PRSPPSO 58

5.15 SPLIT_RECORDS ...ttt ettt ettt e he e s b e bt e s st e e e bt e e s abeesabe e e anbeesbeeenneeas 58
5.15.1 Sample APPIICALIONoo ittt be e et eae e saneaea 58
T B2 O o 1o U = Vi o] o O PO RUP USRI 59

5168 UNPEGGERottt ettt ettt e e e st 60

T ST IS =0 o] o L=N Y o]][>V o o I SRS 60
T T2 O o7 U = 1] o I SRS 62
6 = g o 1P T Lo T o N 67
3o 1= 68
= 1] o -T2 75
N\ [0 1 LT =T T T I = o (=3 = 1 € 77

Page 2

About this Documentation

Glossary

PM

raw
performance
data

PIF

RE

LIF

ftp

ssh

scp
rcp

loadmap

OMC

Performance Management. The term used to describe the NPR and NGN
suite of products for network performance measurement and
monitoring.

Vendor performance/hierarchy data in the format in its exported format.
The data is not in any standard form that can be loaded directly by the
PM systems.

Parser Intermediate Format. Internal temporary format for the
performance data, used internally by the Gateway to transfer data
between different stages and rules

Regular Expression. A pattern of characters and symbols describing the
structure of a sequence of strings. Used extensively in the Gateway
configuration to match input files, counter names and values. For
example:

\d{2}\w{3}\d{4} would match a date string such as 20Mar2004
Loader Input Format. The standard form for performance data for

loading into the PM system. The loader process interprets this data and
loads it into the appropriate tables/columns in the database.

File Transfer Protocol. Used for the transfer to/from remote servers and
management of files on remote servers.

Secure SHell. Remote shell protocol using encryption to provide a secure
link between the local and remote host.

Secure Copy. Part of ssh, secure copy of files to/from remote servers.
Remote Copy. Non secure equivalent of scp

A loadmap is a description of the mapping of counter data in LIF blocks
to database tables and columns in the performance management
system. It also supports conditional statements and simple data
transformation requests.

Operations and Maintenance Centre. A management system used to
configure, monitor and manage physical and logically disparate network
elements within an operator’s network.

UG-3

About this Documentation

Conventions

The following conventions are used in this guide:

fixed width Highlights a block of example code, a configuration entry, or a
command line instruction.

Page 4

About this Documentation

1 About this Documentation

1.1 Audience

The target audience of this document is IBM Performance Manager for Wireless customers.
They should be familiar with telecommunication and IT principles and should also have a
good understanding of Solaris.

IMPORTANT: Before attempting an installation of Performance Manager for Wireless you are
strongly advised to read the release notes and any readme files distributed with your Performance
Manager for Wireless software. Readme files and release notes may contain information specific to your
installation not contained in this guide. Failure to consult readme files and release notes may result in a
corrupt, incomplete or failed installation.

Note: Performance Manager for Wireless Administrators should not, without prior consultation and
agreement from IBM, make any changes to the Index Organized tables or database schema. Changes to
the Index Organized tables or database schema may result in corruption of data and failure of the
Performance Manager for Wireless System. This applies to all releases of Performance Manager for
Wireless using all versions of interfaces.

1.2 Required Skills and Knowledge
This guide assumes you are familiar with the following:

= General IT Principles
*= Sun Solaris Operating System
»= Oracle Database
= Windows operating systems
= Graphical User Interfaces
= Network Operator's OSS and BSS systems architecture

This guide also assumes that you are familiar with your company’s network and with
procedures for configuring, monitoring, and solving problems on your network.

UG-5

Overview and Architecture

2 Overview and Architecture

2.1 Overview

The purpose of the Gateway Framework is to provide a standard framework for the transfer,
parsing, manipulation and presentation of performance data from remote network elements
to the Tivoli service assurance applications.

The raw performance data is typically transferred from the operators OMC. This data is
exported at fixed periods, for example 15 minutes. The format of this data is typically bulky
and in a non-standard format.

The Framework consists of a set of processing stages that perform different functions to
output the required performance data. It includes standard tools for logging and recovery, as
well as configurable rules for the transformation of data.

The final output is then loaded to the service assurance application to provide end user
reporting and monitoring services.

This document details the configuration and usage of version 3.1 of the Gateway Framework.

2.2 Architecture

This section gives a brief overview of the Gateway Framework architecture showing the main
components and the files/directories used.

The Gateway Framework consists of 3 main components. These components interact mainly
with various directories for reading, writing and storing of files. The Transfer component is
split into a separate IN and OUT phase, run before and after parsing of the data respectively.
Figure 2-1 gives an overview of the Gateway components.

STORAGE
DIRECTORIES

£ GATEMAY A
i FRAMEWORK 4
e - — ST
I] I !
I ! I '
I I Post I '
raw | Transter | : o | Transter |
b P11 oy T ——— > Engine —_—_— PAFSEr | o > Rl ST RS
|] |
I [|
1] |
x ! y

9

raw
files - files

Figure 2-1: Gateway Framework architecture

Page 6

Overview and Architecture

The components and stages within the parsing process are:

Transfer (IN): This optional stage allows the configuration of the transfer in of raw
performance data from remote server(s), typically the OMC. It supports the scp, ftp, rcp and
local cp file transfer mechanisms. Multiple instances can be configured, so files can be
transferred from multiple destinations.

Engine: The Engine stage parses the raw performance data files, which is either a vendor or
3" party standard format, producing the data in PIF format. This processing is performed by

a vendor specific Engine rule, which allows the Gateway Framework to be reused for multiple
vendors, using different engine rules to match the vendor data. The Engine stage writes out

the PIF data to an intermediate directory, or to a common memory store.

For example, to parse Nokia ASCII format data, the NOKIA_ASCII engine rule is used, which
produces PIF files.

Post Parser: The Post Parser stage processes this data through multiple standard and
vendor specific post parser rules, to transform data for efficient loading in accordance with
the PM systems loadmap. Examples of common functions performed within the Post Parser
stage are:

e Joining of PIF files.

e Insertion of hierarchy data from a secondary data source e.g. insertion of GSM
hierarchy data into performance data based on BTS and CELL keys.

e Accumulation of counter values across rows for example, accumulation of cell
counters across a BSC.

The Post Parser rules can produce 2 types of output:
e PIF files, which are used as input to the next Post Parser rule on the processing chain.

e Output files, which are output to a separate directory. These are the final
performance files for loading into the PM system. These can be one of the following:

o LIF files.
e (CSV files
o XML files

A vendor Gateway is usually released with a Post Parser configuration that meets the
standard requirements for mapping of data to the PM system. Ownership of the complete
customer configuration and solution, which usually consists of further data manipulation
rules, is the responsibility of PS.

Transfer (OUT): Once the output files have been produced, if required they can be
transferred to a remote server for loading. The Transfer engine once again handles this data
transfer. It is configured for the transfer of files off the local server onto a remote server.
The configuration of this stage is optional also, as this stage may be unnecessary or handled
by other external tools.

Other general features contained in the Gateway Framework, which can be reused by Vendor
Gateway releases are listed below:

uG-7

Overview and Architecture

Logging and Auditing: The Gateway Framework provides standard audit and logging tools
for Vendor Gateways.

Crash Recovery: The Gateway Framework manages the recovery from a crash due to
invalid input file, so the Gateway will not continually fail on a restart.

Backlog processing: The Gateway Framework can drip feed files in the oldest first order
through the Gateway, allowing controlled recovery from a backlog situation.

Parallel Processing: Engine and Post Parser rules can be configured to process groups of
files in parallel.

Memory Caching of Intermediate data: To further improve performance, intermediate
data being passed through various stages of transformation may be cached in memory,
rather than on disk.

Note that this now only applies to the post parsing rules. The engine portion of the Gateway
will always generate PIF files into the intermediate directory. This facilitates multiple
processes being applied to the engine stage, while retaining the benefits of PIF caching at
the post parser stage.

Saving of parsed, intermediate and load data: Files from various stages of processing
can be configured to be saved to directories for tracability.

Compression of input and stored data: Compression input data can be handled
automatically, and stored data files can also be compressed to reduce storage requirements.

Automated Data Transfer: The Framework contains support for the transfer of data both
to and from the local server using a number of standard transfer protocols.

Notification: The Gateway Framework provides a notification module for dispatching alarm
and statistical event activity messages to the service assurance application notification
system.

Statistics: Gathers File, Block and Counter statistics on the data processed by the vendor
Gateway.

2.2.1 Vendor Gateways

The Gateway Framework provides a standardized architecture for the collection, parsing and
presentation of vendor specific data formats. The Vendor Gateway consists of a number of
Engine and Post Parser modules to perform the manipulation of the vendor specific data. It
is integrated into the Framework via the configuration files.

Page 8

Overview and Architecture

2.3 Gateway directories

These configuration and use of these directories will be further described in the configuration and

management section below but the principal Gateway directories are:

e vstart: This directory contains the startup script, gateway_start.sh, as well as the
configuration files for the Gateway and vendor parsing functions. This may be a specific
version number for example, r9.1, if a particular configuration applies to a vendor data
version.

e parsersrc: This directory contains the vendor specific engine and post parser rules.

e IN_DIR (raw directory): This directory contains the raw performance data files to be
parsed by the Gateway. It can contain a directory hierarchy if required and the Gateway
will navigate down the directory hierarchy. These files may be transferred using either
the Transfer stage in the Gateway Framework or an external script.

e INT_DIR (PIF directory): This directory is used for the output of PIF files during the
Gateway execution. The output PIF files of one rule are passed to the next rule via this
directory. If required, PIF files can also be stored here in between Gateway iterations,
when they must be saved for certain rules.

e OUT_DIR: This directory is used for the output of the final performance data files from
the Gateway execution. These may be loaded into the PM system either directly from
these directories or transferred using the transfer engine to a remote server.

e Storage directories: These directories are used to optionally store the raw, intermediate
and output files. Typically a different directory is configured for the storage of each of the
different file types.

UG-9

Gateway Installation

3 Gateway Installation

This chapter describes the steps involved in the download and installation of a vendor
gateway.

Unlike previous releases, version 3.x of the Gateway Framework is now decoupled from the
Vendor Gateway. The Gateway Framework and the Vendor Gateway are now supplied and

installed separately. This has a number of advantages for release management and version
support. It also reduces duplication for installation of multiple Gateways on a single server.

Before proceeding with getting the vendor gateway installation up and running the follow
tasks must be completed:
e a valid version of Perl installed.

e the Gateway Framework installed.

3.1 Installing Perl

The Gateway Framework requires Perl version 5.6.1 installed. Perl is not included with the
Gateways package. Download the appropriate Perl version and build Perl on a supported
architecture. Refer to the Perl Build Instructions on each platform for more details.

3.2 Installing Gateways

Before installing and configuring a Gateway Configuration, the Gateway Framework and
respective Vendor Gateways must be installed. The Gateway Framework and Vendor
Gateways consist of the set of common modules used by all Gateway Configurations. Hence
it is be installed once on a server and referenced by multiple Gateway Configurations.

Refer to the Gateway Installation Note for more details.

Page 10

Gateway Configuration and Management

4 Gateway Configuration and Management

This chapter describes the configuration of the Gateway and its various stages, and the
system management via the supplied scripts.

4.1 Gateway Configuration

General configuration of the Gateway is performed in 2 files:
e gateway start.sh - set the location of basic installation parameters such as Perl
and the Gateway Framework installation.

e properties — set general, system level configuration, such as the directories for
the raw, intermediate and output data. The property entries can include
environment variables in the form of ${var}

4.1.1 gateway_start.sh

The gateway_start.sh script starts the Vendor Gateway. It contains a humber of
configuration entries that may be set either within the file, or via environment variables. The
configuration entries are:

e PERL5: The path to the Perl 5.6.1 installation. This should be set to:

/usr/local/metrica/bin/perl
[If the correct Perl installation has been downloaded].

e GATEWAY_FRAMEWORK: The path to the Gateway Framework installation. For
example

/metrica/gateways/framework

e VENDOR_GATEWAY: The path to the Vendor Gateway installation. For example
/metrica/gateways/nokia-ascii

e LOG_FILE: The name and location to write the log file to. By default set to
./log

e LOG_LEVEL: The log level of the Gateway. Set to 5, the highest level by default. This
is useful during installation and configuration of the Gateway, and the level should be
reduced to 3 for the final commissioning.

e RELEASE: The name of the release directory containing the vendor specific
configuration data, by default set to vstart. This can be set to different values if
different versions of configuration are being supported.

e PROPERTY_FILE: The name and location of the properties file. By default this points
to the standard properties file contained in vstart.

UG- 11

Gateway Configuration and Management

4.1.2 Properties

The properties file .configuration entries are in the following format:
<name>=<value>

where <name> is the name of the property, and <value> the value assigned to it. The
property file entries are:

e AUDIT_FILE: The name of the file to write the audit trail messages to. By default set
to:

AUDIT _FILE=audit

e DISK_FREE: The Gateway can be configured to check for a minimum disk free space
on all used directories on startup. If this space is not available the Gateway will log a
warning with the required and available free space and exit. The free space required
can be specified as a percentage:

DISK_FREE=10%

or number of MB free.

DISK_FREE=300MB

This setting can be used to prevent the Gateway failing during processing as it
exhausts disk space while writing intermediate or output files. Set the value to 0 to
ignore.

e IN_DIR: The root directory for the raw performance data files. The Vendor Engine
rules will read this directory for files to process. Subdirectories can be created to
separate different types of files, if appropriate.

e INT_DIR: The intermediate directory for PIF files. If PIF data is being cached to
memory then only PIF files being kept between Gateway iterations will be visible in
this directory (non debug mode).

e OUT_DIR: The output directory, for the final performance output files created by the
Gateway.

e INPUT_STORAGE_DIR: The directory to store the raw files after processing. This is
optional, set to 0 if not required.

e INTERMEDIATE_STORAGE_DIR: The directory to store the PIF files created during the
Gateway execution. This is optional, set to 0 if not required. Even if in memory PIF
caching is being used, they will be output as files to this directory, if it is configured.

e OUTPUT_STORAGE_DIR: The directory to store the performance LIF files.

e DEBUG: Switch on/off debugging. With debugging on, the raw and PIF files will not
be removed from their directories, to allow the execution of the Gateway to be
traced.

DEBUG=debug

switches on debugging

DEBUG=0

switches off debugging.

Page 12

Gateway Configuration and Management

e COMPRESS: Compress data in the storage directories. The default is 0, no
compression. The entry:

COMPRESS=0

turns off compression and:

COMPRESS=true
turns on compression

¢ COMPRESS_TOOL: The compression utility to use for compressing files. This should
be set to the path where compress or gzip is installed.

e REMOTE_COMPRESS_TOOL: This entry is similar to the COMPRESS_TOOL, but it is
meant for the remote server. The compression utility specified here must match with
the one specified in COMPRESS_TOOL. This will enable ecpio channel to compress the
data before transferring. Refer section 3.2 for bulk transfer information.

e PIF_MODULE: The PIF storage option to use for the storage of PIFs during processing.
There are the following 2 options:

PIF_MODULE=PIF_ Handler

This is the standard mode, where PIF data is written and read from files in the
intermediate directory.

PIF_MODULE=PIF_Cache

The PIF data is written and read to local memory rather than disk. PIF files will still be
written out to disk if required between Gateway iterations, and to the
INTERMEDIATE_STORAGE_DIR if configured. In memory PIF caching has
performance advantages over disk based PIF storage. Note that PIF caching no longer
applies to the engine stage of processing and only starts at the Post Parser stage.

e MAX_PIF_LOCAL_MEMORY: The maximum local memory that should be used by the
PIF_Cache. If it exceeds this value, then a warning will be printed in the log file. In

general the memory based PIFs require about 2.3 times the amount of space of the
disk based PIFs.

e MAX_NUMBER_OF_PROCESSES: The maximum number Gateway processes allowed
to spawn for independent blocks defined in the UserConfig.pm.

e ENABLE_LIF_BUCKET: Enable/disable LIF_Bucket for OUTPUT_FORMAT whenever
LIF_Writer is used. The LIF_Bucket feature is to batch LIF files automatically for every
rule that outputs using LIF_Writer.

ENABLE_ LIF_ BUCKET=true

enables LIF_Bucket

ENABLE_LIF_BUCKET=0

disables LIF_Bucket.

UG-13

Gateway Configuration and Management

e LIF_BUCKET_LIMIT: The maximum number of records for the LIF files output by
LIF_Bucket. Default is 10,000.

Initially in this file, all that must be set to get the Gateway up and running is the data
directories. Other values can be configured as required. The properties value settings can
also include environment variables in the form ${var}.

4.1.3 Launching the Gateway

Typically the Gateway is run at specified intervals, for example every 15 minutes. This is
controlled using the standard unix tool, cron.

The Gateway has functionality to ensure that a second Gateway will not be launched to
process the same set of raw performance files. This can occur in a backlog situation, where
the amount of data to process takes longer than can be handled in the 15 minute period.

4.2 Transfer Configuration
The Transfer stage controls the transfer of files both onto and off the local server. Raw files

are transferred into the local input directory for processing, and performance LIF files may
be transferred from the local server to a remote destination for loading.

This stage is optional, and may not be necessary or may be performed by external tools. In
this case the default TransferConfig.pm, which is empty, can be used.

Multiple transfer rules may be configured within this file. Raw files can be copied from
multiple remote destinations, and similarly the performance data can be transferred to
multiple remote destinations.

The mandatory configuration entries are:
e RULE_DESC: A description that will be logged to the audit file. This is useful for
tracking the rule execution.

e DIRECTION: Set to IN or OUT. Specifies whether files are being transferred to/from a
remote destination. Raw files for processing would be specified with

DIRECTION => IN
and performance files for transfer to a remote server
DIRECTION => OUT

e PROTOCOL: The Protocol to use for transfer. This may be set to ftp, scp or rcp. If
performing a transfer to/from the local server, set the protocol to rcp, and the
TransferEngine will automatically detect that it is a local directory, and use the
appropriate local commands.

NOTE: Gateway Framework requires FTP transfer to run in passive-mode. It is
recommended to enable the passive-mode by exporting environment variable
FTP_PASSIVE to true prior to starting the Gateway Framework.

e HOST: The hostname or IP address of the remote destination

Page 14

Gateway Configuration and Management

e LOCAL_DIR: The local directory to copy files to when DIRECTION is IN, OR the local
directory to copy files from when DIRECTION is OUT

e REMOTE_DIR: The remote directory to copy files from when DIRECTION is OUT, OR
the remote directory to copy to when DIRECTION is IN.

e TIMESTAMP_FILE: The file to use to save the timestamp of last file copied in or out.

NOTE: this file must be unique for each rule entry. See further notes on the timestamp file.

e DEPTH: The directory depth to follow down when copying files from a remote server.
If DEPTH is set to 0, then only files in the base remote directory will be copied, if
DEPTH is set to 1 then sub directories one down also be copied. Note this directory
structure will be replicated in the local directory.

e INPUT_FILE_DESCRIPTION: A hash containing the regular expressions used to match
different file types for copying. Only files matching the entries in this hash will be
copied.

The optional configuration entries are:

STATISTICS_FILENAME: The name of the file to output the statistics to. This file will be
suffixed with the date and time the Transfer stage ran and will contain statistics on the
total time, number of files copied, size of files, for each entry in
INPUT_FILE_DESCRIPTION. Overall statistics also for the all files transferred are also
outputted.

OUTPUT_FORMAT: The format to use to write out the Transfer Statistics. Can be any of
the supported output formats LIF_Writer, CSV_Writer, XML_Writer.

PRODUCE_PIF: If set to true, statistics will be output in PIF format. They may be then
joined to File Statistics if required. ENABLE_PING: Whether or not to attempt to ping the
remote host before initiating the transfer session.

PING_PROTOCOL: The protocol to use for the ping request. This can be set to icmp, udp,
or tcp depending on the ping type required. Note for icmp pings the Gateway must be
running as root user.

PING_RETRY_ATTEMPTS: The number of times to reattempt the ping if it fails. Default is
0.

RETRY_INTERVAL: The number of seconds to wait between ping attempts. Default is 5
seconds.

ENABLE_LOCAL_COMPRESSION: Whether or not to compress the local files copied in or

out. Files transferred in will be compressed once they have been transferred. Files
transferred out will be compressed before transfer to reduce the network load.

NUMBER_OF_FILES_TO_PROCESS: If required, the files can be drip fed into the
Gateway. If set to a value, the TransferEngine will not copy in more than this number of
files on each iteration. Only applies to files being copied onto the local server. For scp/rcp
protocol, DELETE_ORIGINAL must be set in order to use this configuration.

DELETE_ORIGINAL: Whether or not to delete the original file on the remote server, in
the case of DIRECTION in, or on the local server, in the case of DIRECTION out. Defaults
to 0, do not delete.

UG-15

Gateway Configuration and Management

e TMP_FILENAME_EXTENSION: The temporary extension to use on files while they are
being copied. This prevents incomplete files being read by a process during transfer.
Defaults to ".pt".

e TIMEOUT: Numerical value in seconds for file transfer timeout. Defaults to 20 seconds if
not set.

e OVERWRITE_FILES: Whether or not to overwrite the existing file on the remote server, in
the case of DIRECTION out, or on the local server, in the case of DIRECTION in. Defaults
to 0, do not overwrite. Set to ‘True’ to overwrite.

For the protocols supported there are number of protocol specific entries.
For the ftp protocol:

USER: the username to use to login to the remote server.
PASS: the password to use on login to the remote server.

TRANSFER_MODE: The transfer mode can be either be configured to ‘ASCII’ or
‘BINARY' only. The transfer mode is set to binary by default.

LIST_SLEEP: the number of seconds to sleep after getting the list of files to be
transferred. This is to allow any files that are still in the process of populating data to
finish before they are copied over.

AGE_LIMIT : with this entry defined, the transfer will only extracts the files with
modification time not older than the number of hours specified. Otherwise, it will
depend on the value in TIMESTAMP_FILE, and will usually transfer all files on its first
run.

DIR_FILTER: This optional directory filter accepts regular expression to limit
directories to follow down when copying files from remote server. This regular
expression works from specified REMOTE_DIR down to specified DEPTH. Each depth
level regular expression is separated by special '/' delimiter. For example
'VendorA.*/.*/.*' means at REMOTE_DIR, follow down only directories that start with
'VendorA' expression such as 'VendorA_BSC', 'VendorARNC' etc but not
'VendorB_BSC' etc. Note that filter works from left to right and limited to DEPTH. In
case number of regular expression is more than depth, the excessive right regular
expression will be ignored, like wise, if number of regular expression is less than
depth, additional levels will be followed without filtering, therefore the previous
example could be written as 'VendorA.*' as well.

For the scp/rcp protocol:

PROTOCOL_PATH: The location of the protocol installation. This should be the path to
where the ssh/rsh installation is, usually /usr/local/bin. This is used to execute the
ssh/scp and rsh/rcp commands used during the transfer process.

BULK_TRANSFER: When this entry is set to ‘TRUE’ or *1’, the ecpio command will be
used in transferring files. The cpio command will create a private channel between
local host and remote host before transferring files, thus increasing the performance
when there is a big quantity of files to transfer. To further increase the performance,
a new entry in “properties” file for remote server compression utility is required.
Refer section 3.1.2 for details. All destination files will be overwritten and drip feed
mechanism will be ignored for bulk transfer. Do not set BULK_TRANSFER, or set to ‘0’
to disable bulk transfer.

Page 16

Gateway Configuration and Management

NOTE: The total size of files to be transferred is limited to 2GB for bulk transfer. This is a limitation of
cpio tool imposed by XPG/4 and POSIX 2 standard.

e ENABLE_REMOTE_COMPRESSION: Whether or not to compress the remote files
copied in or out before the are transferred.

NOTE: ENABLE_LOCAL_COMPRESSION and ENABLE_REMOTE_COMPRESSION will work
exclusively, where ENABLE_REMOTE_COMPRESSION will take precedence when DIRECTION
‘IN’, and ENABLE_LOCAL_COMPRESSION will take precedence when DIRECTION ‘OUT".

e RETRY_ATTEMPTS: The number of times to reattempt the transfer if it fails. Default is
0.

For ssh installations, the ssh key exchange must be validated to ensure that the transfer
process will run correctly without prompting for a user or password. This is checked by

running:

> ssh <remote server>

This should login into the remote server without prompting for a user name/password, if the
ssh keys have been properly configured.

Below is the sample configuration of an input an output transfer rule from
TransferConfig.pm:

{

Lt

4

Incoming rule

RULE_DESC => 'Copy raw files in for processing',
PROTOCOL => 'ftp',
DIRECTION => 'IN',
HOST => 'nok_server',
PING_PROTOCOL => 'udp', # only for unreliable connections
PING_RETRY_ ATTEMPTS => 2,
RETRY_INTERVAL => 2,
USER => 'metrica',
PASS => 'metrica’,
DEPTH => 0,
LOCAL_DIR => "../data_dirs/input_d",
REMOTE_DIR => "/spool/nokia/dumped_ files",
TIMESTAMP_FILE => "./lock_dir/.itimestamp",
INPUT_FILE_DESCRIPTION => {
BSC => 'bsc_.*\.raw',
BTS => 'bts_.*\.raw',
},
DELETE_ORIGINAL => 0,
ENABLE_LOCAL_COMPRESSION => 'TRUE',
OVERWRITE_FILES => 'TRUE',

Outgoing rule

RULE_DESC => 'Copy LIF files to PM server using scp',
PROTOCOL => 'scp',

HOST => 'pmserver',

PROTOCOL_PATH => '/usr/local/bin’',

UG-17

Gateway Configuration and Management

4.2.1

DIRECTION => 'OUT',
LOCAL_DIR => "../data_dirs/output_d",
REMOTE_DIR => "/spool/loader/nokia",
TIMESTAMP_FILE => "./lock_dir/.otimestamp",
INPUT FILE_DESCRIPTION => {
NOKIA => '.* 1if’',

},
DELETE_ORIGINAL => 'TRUE',
BULK_TRANSFER => 'TRUE',
STATISTICS_FILENAME => 'transfer nokia', # output transfer stats
OUTPUT_FORMAT => 'LIF_Writer',

}

The timestamp file

This section explains the usage of the timestamp file within the different protocols. As stated
above the timestamp file must be unique for each rule entry.

ftp: When configured with the ftp protocol, the TransferEngine will create the
timestamp file in the local directory on the local server. Within this file it stores the
modification time of the last file, and the list of the last files copied. This is to ensure
that if using drip feed of files, it will know which files with a certain modification time
have already been copied.

The timestamp file for ftp consists of the last modification time for each subdirectory
that it traverses into depending on the DEPTH specified. Below is a sample timestamp
file format for ftp:

Smod_time = {
'/<remote_dir_1>' => {
'"LAST_TIME' => <last_file _mod_time>,
bo
'/<remote_dir_2>' => {
'"LAST_TIME' => <last_file _mod_time>,
}l
bi

Where <remote_dir_#> is the full path of the directories on the remote server, and
<last_file_mod_time> is the modification time of the last file transferred in POSIX time.
The time should be consistent with the time from the previous timestamp file format.

scp/rcp: When configured with the scp/rcp protocol, the TransferEngine will create
the timestamp file in the remote directory on the remote server. The engine uses this
file in combination with the “find” command to get a list of files which are newer than
the timestamp file on the remote server. It then filters the files based on the
INPUT_FILE_DESCRIPTION. The timestamp file does not contain any information,
only the modification time of the file is used. Drip feed cannot be used with scp/rcp
unless DELETE_ORIGINAL is also set to true.

The timestamp file for scp/rcp is an empty touched file with the modification time set
using the local time of the transfer for the Gateway run.

Page 18

Gateway Configuration and Management

4.3 Engine Configuration

The configuration for the engine stage, where the raw performance data is parsed in the
standardised PIF format, is contained in EngineConfig.pm.

This configuration can consists of a number of rule entries, depending on the complexity of
the vendor data and the number of formats supported. The configuration entries and values
within each of these depends on the Vendor Engine Rule.

This section describes the standard entries, mandatory and optional, that apply to all Vendor
Engine rules.

The mandatory entries for all rules are:
e RULE_TYPE: The name of the Vendor Engine that is being executed. This must match
the name of the Perl module in the parsersrc directory.

RULE_TYPE => ‘NOKIA ASCII’

e INPUT_FILE_DESCRIPTION: A scalar or array specifying the regular expressions
which the files must match. This is to ensure only the appropriate raw files are
passed to the vendor engine rule for processing. Can be configured as single entry:

INPUT_FILE DESCRIPTION => ‘BSC.*.raw’

or an array of different filenames

INPUT_FILE_DESCRIPTION => [‘BSC.*\.raw’, NSS.*\.raw’]

The optional configuration entries are:
e RULE_DESC: A text string that will be logged to the audit file. This can be useful for
tracing execution of the same engine rule.

RULE_DESC => ‘Parse Nokia ASCII BSC raw performance data

e NUMBER_OF_FILES_TO_PROCESS: The number of files to be processed at one time
through the Engine and Post-parser. This is used to drip feed files through the system
in a backlog scenario.

e ORDER_OF_FILES: The order in which files are to be processed. These options are:
= YOUNGEST_FIRST
= OLDEST_FIRST
= DIRECTORY_ORDER
= FILENAME_ASCENDING
= FILENAME_DESCENDING

e FILENAME_HEADER_FIELDS: A set of new counters extracted from the filename,
which are passed to the vendor engine rule. In the example below the date and time
are being extracted from the filename.

FILENAME HEADER FIELDS => {
DATE => ‘BSC\. (\d{8}).*’
TIME => ‘BSC\.\d{8}(\d{2}:\d{2})’

UG-19

Gateway Configuration and Management

}

e DIRECTORY_HEADER_FIELDS: Similar to above, with fields extracted from the
directory path to the raw file.

e INPUT_DIR_DEPTH: The maximum depth in the raw input directory to follow. For
example:

INPUT_DIR DEPTH => 1

the engine will process all files in the raw directory, and files down one further
directory level.

e DO_NOT_DELETE: Do not delete the raw files or move them to the storage directory.

4.4 Post Parser Configuration

Once the Engine stage is complete, the intermediate PIF files are passed to the Post Parser
stage. The post parser stage is configured in UserConfig.pm. The rules are processed in the
order that they appear in UserConfig.pm, so the output of one Post Parser rule can feed into
the next. Two types of Post Parser rules may be configured:

e Standard: These are the Post Parser rules shipped as standard with the Gateway
Framework. These rules fulfil most of the standard functions required to create
the output performance data. Standard Post Parser rules contains a full
description of these standard rules.

¢ Vendor Specific: Where the standard rules don’t meet the user requirements for
output, Vendor Specific Post Parser rules are designed to meet the specific needs
of the Vendor data. These are shipped with the vendor Gateway.

The specific configuration entries for each Post Parser rule depend upon the functionality it

offers. However all Post Parser rules support some standard entries which are configured for

each rule.

e RULE_TYPE: The Post Parser rule to run. This must be the same as the name of the Perl
module that implements the rule.

RULE_TYPE => 'JOIN',

e INPUT_FILE_DESCRIPTION: The list of files to match against this rule.

INPUT_FILE DESCRIPTION => [
'~P_NBSC_TRAFFIC-#-(\d{8}.*\d{2}:\d{2}-#-BSC—#-\d+—-#-\d+) -#-I.pif"’,
'~P_NBSC_RES_AVAIL-#-(\d{8}.*\d{2}:\d{2}-#-BSC—#-\d+—#-\d+) —#-I.pif’
1,

e RULE_DESC: A text string that will be logged to the audit file. This can be useful for
tracing execution of the same engine rule.

'RULE_DESC' => 'Join P_NBSC_TRAFFIC, P_NBSC_RES_AVAIL files',

e PRODUCE_PIF: Whether or not to produce PIF output from the rule.
PRODUCE_PIF => ‘True’

e OUTPUT_FORMAT: The output format module to use to write out the final data. For LIF
data specify:
OUTPUT_FORMAT => 'LIF_Writer',

Page 20

Gateway Configuration and Management

HEADER_COUNTERS_ORDER: The order to output the header counters in. If not set no
sorting is performed. Only list the counters that are required to be sorted and appear at
the start of the output block. All other counters in the output data will be sorted lexically.

HEADER_COUNTERS_ORDER => [qw(BSC DATE STARTTIME)],

DATA_COUNTERS_ORDER: Similar to HEADER_COUNTERS_ORDER, the order to output
the data counters in.

DATA_COUNTERS_ORDER => [qw(C_3 C_4 C_2) 1,

OUTPUT_RECORD_KEY: A list of data counters to form the record key as the first column
of the output block.

OUTPUT_RECORD_KEY_DELIMITER: A string to separate the counter names for the
output record key. If not set, the default '-#-' is used.

REDUNDANT_DATA_COUNTERS: A list of data counters to remove from the output.
REDUNDANT_HEADER_COUNTERS: A list of header counters to remove from the output.

DISABLE_LIF_BUCKET: An optional configuration entry to disable LIF_Bucket for a
specific rule in the Post Parser configuration if the LIF_Bucket is enabled in the properties
file. If this entry is not defined, the default to follow the properties ENABLE_LIF_BUCKET
environment variable. Set “True” to disable, “0” to enable.

LIF_BUCKET_LIMIT: The maximum number of records for the LIF_Bucket for the specific
rule. This will supercede the environment variable LIF_BUCKET_LIMIT defined in
properties files.

Refer Standard Post Parser rules for information on the complete set of rules available and their use.

4.5 Statistics Configuration
The Gateway Framework supports 4 different types of statistics:

1.

File Statistics — Statistics on the raw performance data files processed and the output LIF
files produced.

Block Statistics — Statistics on the names, number of instances of each block name in the
output, and the number of counters in each block.

Counter Statistics — Statistics on the names of counters present in both the raw and LIF
data.

Transfer Statistics — Statistics on the raw performance files being transferred in, and the
LIF files transferred off the server. See Transfer Configuration for more information.

Statistics serve 2 main purposes with the Gateway Framework:

1.

Verify the integrity and completeness of data being presented to the Gateway for parsing
and the output data for loading to the PM system.

2. Self reporting of the type, amount (number of files) and size (of files) being parsed by

the Gateway.

All statistics are produced in a configurable output format so that they can be loaded directly
into the PM system.

UG - 21

Gateway Configuration and Management

Note that the File and Block statistics form the basis of the event notification message being
sent to the notification engine for dispatching.

There is an overhead in running statistics on the raw and output performance data. To turn
off statistics completely, remove or comment out the entries from the statistics configuration
file, StatisticsConfig.pm.

The entries relating to the different areas for statistics collection are described below.

4.5.1 File Statistics

File statistics are collected for each iteration of the Gateway. These statistics are then
summarised at a configurable interval, the summary period. For example the Gateway may
be executing every 15 minutes, but the File Statistics are summarised once a day.

File Statistics collect the following statistics on the raw files parsed by the Gateway:
e summary start date and time

e summary end time

e measurement type

e number of raw files parsed (successfully, failed, 0 size)
e total size of raw files (in KB)

e the number of files in each measurement period. This is a sliding scale, with the humber
of files for each 30 minute period for the first 2 hours, then hourly periods.

e The calculations are based on the time difference between the current time of parsing
and the end time of the performance measurement file period. These values can
therefore be used to detect backlog buildup.

e total parsing time (in seconds)

For the output file data the following information is captured:
e The number of output files created.

e The size of these output files.

These statistics are stored in intermediate PIF files during the Gateway execution and then,
depending on the configured summary period, joined to create the final output file.

The configuration of File_Statistics is described below:
e RULE_TYPE: The rule type, must be set to “File_Statistics”

RULE_TYPE => ‘File_ Statistics’

e RULE_DESC: A brief description of the rule.
RULE_DESC => ‘Get file statistics for raw and LIF data’

e STATISTICS_FILE_DESCRIPTION: The regular expressions listing the input raw files that
will be matched by this rule. Statistics will be gathered for the set of files and grouped

by type.
STATISTICS_FILE_DESCRIPTION => [‘HLR’,’VLR’],

Page 22

Gateway Configuration and Management

e STATISTICS HEADER_ENTRIES: A list of counter names and values to insert into the
output statistics file.

STATISTICS_HEADER_ENTRIES => {
'GatewayID' => "3GPP_XML",
'Network' => "NSS",
'Version' = "1.2",

b,

e STATISTICS_HEADER_MAPPINGS: A list of counter names to be mapped into the
statistics output header. The hash keys are the header counter names to use in the
output statistics header data. The hash values are the actual header counter names from
the engine PIF output for one raw file processing whose values are mapped to the output
statistics header data. Note that it the engine module is responsible for populating these
and it is critical that this mapping works in order to collect File Statistics.

The entries StartDate, StartTime, EndTime and Type are all mandatory and must be
mapped.
STATISTICS_HEADER MAPPINGS => {
'StartDate' => 'StartDate',
'StartTime' => 'StartTime',
'EndTime' => 'EndTime',
‘Type' => "Network FileType"
},

e HEADER_INFO_FOR_STATS_FILE: The list of header values to use when creating the
name of the statistics file. These can be from either the

STATISTICS_HEADER_MAPPINGS or STATISTICS_HEADER_ENTRIES list

HEADER INFO_FOR_STATS_FILE => [
qgw (GatewayID Type ParsingDate ParsingTime)]

e STATISTICS_OUTPUT_DIRECTORY: The output directory to write the File Statistics files
to for collection. The directory must exist and be read/writable.

STATISTICS_OUTPUT_ DIRECTORY => ', /file_statistics/’,

e LIF_TYPE_MAPPINGS: This provides a map between the input raw files and the resultant
output files, the LIF. Each entry consists of the Type (derived in the
STATISTICS_HEADER_MAPPINGS) being mapped to a series of REs which match the LIF
files which are produced by those raw file types (HLR/VLR etc).

LIF_TYPE MAPPINGS => ({
NSS => ['HLR', 'MSC'],
BSS => 'BSC',

},

e STATISTICS_SUMMARY_PERIOD: The period (in minutes) to summarise file statistics.
This is to allow file statistics to be accumulated independently of the scheduled interval of
the Gateway.

STATISTICS_SUMMARY PERIOD => 1440, # One day.

UG-23

Gateway Configuration and Management

The gateway checks to see if the summary period has passed. If true, then the existing
file statistics PIF files generated during the summary period are summarised and
outputted using Post Parser JOIN and ACCUMULATE rules.

The file statistics current in the Gateway statistics buffers for the current execution will
not be included in the summary. These will be outputted in PIF format and summarised
in the next summary.

e OUTPUT_FILENAME_START: An optional string to prepend to the output filename.
OUTPUT_FILENAME_START => 'File_Statistics’',

e DATA_KEY_NAME: A dummy key to insert into the PIF files which can then be used by
the JOIN and ACCUMULATE rules when summarising the results over the
STATISTICS_SUMMARY_PERIOD.

DATA KEY_ NAME => 'FS_Key',

A full example of the rule configuration is contained in StatisticsConfig.pm, supplied with the Vendor
Gateway.

Note that the file statistics included in the event notification message are based on the results for the just
completed execution of the Gateway, and do not rely on the summarised data.

4.5.2 Block Statistics

The block statistics are collected on the output formatted files. The block statistics are
output directly to the configured output format file. Note that the functionality has been
updated to only output one block statistics file per execution of the Gateway.

Each block statistics output file contains:
¢ the start date and time

e the end time
e the measurement type

And a block in the block statistics output file for each block in the output data containing:
e the block name
e the number of blocks of this name

e the number of counters in this block

Sample Block statistics output.

StartTime 10:30

EndTime 20050810104500z

GatewayID 3GPP_XML

Network Ericsson_UTRAN

Version 3

Type statsfile

SUB_TYPE ManagedElement_RncFunction_UtranCell
StartDate 10Aug2005

Page 24

Gateway Configuration and Management

MeasurementType UTRAN

Ericsson_UTRAN_BLOCK_Stats {
Block_name ManagedElement_TransportNetwork_Aal2Sp
Number_of blocks 12
Number_of_counter_ per Block_records 6

}

Ericsson_UTRAN_BLOCK_Stats {
Block name ManagedElement_ TransportNetwork_SccpSp_SccpScrc
Number_of_blocks 6
Number_of_counter_ per Block_records 16

}

Ericsson_UTRAN_BLOCK_Stats {
Block name ManagedElement_ Equipment_Subrack_ Slot_PlugInUnit
Number_of_blocks 414
Number_of_counter_per Block_records 8

}

The block statistics configuration entries are:
e RULE_TYPE: The type of statistics rule, must be Block_Statistics

RULE_TYPE => ‘Block_Statistics’

e RULE_DESC: Optional description of the block statistics rule.
RULE_DESC => ‘Derive block statistics for XML data’

e STATISTICS_FILE_DESCRIPTION: The list of REs, one of which the LIF files must match,
for statistics collection from that LIF. The entry below matches all output LIF files.

STATISTICS_FILE_DESCRIPTION => [‘.*\.1lif’],

e STATISTIC_FILE_ENTRIES: The list of entries that will be extracted from the LIF
filename, which can be subsequently used in the block statistics filename or header.
STATISTICS_FILE_ENTRIES => {
SUB_TYPE => '~(\w{3})"',
},

e STATISTIC_HEADER_ENTRIES: The list of counter name/value attributes that will be
printed to the LIF header.

STATISTICS_ HEADER_ ENTRIES => {
GatewayID => "3GPP_XML",
Network => "NSS",

Version = "1.2",

MeasurementType => "HLR",

b,

e STATISTICS_HEADER_MAPPINGS: The names of header entries from the output file to
map to the statistics header. These are hash entries where the key represents the name
of the counter that will be outputted in the block statistics output file and the value
represents the name of the counter in the output file from which we are collecting
statistics.

STATISTICS_HEADER_MAPPINGS => {
StartDate => 'DATE',

UG-25

Gateway Configuration and Management

Time => 'TIME',
},

STATISTICS_UNKNOWN_SUB_TYPE: A list of entries that have been extracted from the
LIF filename, using STATISTICS_FILE_ENTRIES. These entries will then be used as part
of the block statistics filename.

STATISTICS_UNKNOWN_SUB TYPE => 'NULL',

STATISTICS_FILE_ENTRIES_FOR_HEADER: A list of entries that have been extracted
from the LIF filename, using STATISTICS_FILE_ENTRIES. These entries will then be used
as part of the block statistics filename.

STATISTICS_FILE ENTRIES_FOR_HEADER => [qw(SUB_TYPE)],

HEADER_INFO_FOR_STATS_FILE: The values from the STATISTICS_HEADER_MAPPINGS
and STATISTICS_HEADER_ENTRIES to use to create the filename. These can be used to
ensure uniqueness of the block statistics filenames.

HEADER_ INFO_FOR_STATS_FILE = [
qgw (GatewayID MeasurementType DATE TIME)],

STATISTICS_BLOCKS_DESCRIPTION: The list of REs, which the block name must match,
for statistics to be gathered. The sample below matches all blocks.

STATISTICS_BLOCKS_DESCRIPTION => ['.*'],

STATISTICS_OUTPUT_DIRECTORY: The name of the directory to write the block statistics
files out to. This directory must exist and be writable.

STATISTICS_OUTPUT DIRECTORY => '../block_statistics'’

BLOCK_NAME: The name to use for each of the statistics blocks written to the LIF.
BLOCK_NAME => 'GATEWAY_ BLOCK'

OUTPUT_FILENAME_START: An optional text string to prepend to the block statistics
filename.

OUTPUT_FILENAME_START => 'block_stats'

A full configuration can also be seen in the StatisticsConfig.pm file.

A summary of the Block Statistics data is used in the notification event command sent to the
notification engine if Block Statistics gathering has been configured.

4.5.3 Counter Statistics

Counter statistics are collected both from the raw input files and the LIF output. The counter
statistics are outputted to a single LIF file for each Gateway execution.

The counter statistics are output, one counter per block, with the following information:

the name of the counter.

the group (block name) it belongs to.

whether it was in the configured list for monitoring.
whether it was present in the raw file.

Page 26

Gateway Configuration and Management

whether it was present in the LIF file.

The counter statistics configuration entries are:

RULE_TYPE: The type of rule, must be Counter_Statistics
RULE_TYPE => ‘Counter_Statistics’

RULE_DESC: Optional description of the block statistics rule.
RULE_DESC => ‘Derive counter statistics for XML data’

STATISTICS_HEADER_ENTRIES: The list of header names and values to insert into the
LIF header block.
STATISTICS_HEADER ENTRIES =>

{
GatewayID => "Nortel",

Network => "GPRS CN",
Version = 1.2,
SenderType => "HLR",
SenderID => "HLR-MSCW",

},

STATISTICS_HEADER_MAPPINGS: This hash contains the names of the header counters
to be mapped from header counters in the LIF block. Each entry is in the form

<output_name> => <1lif block name>

where <output_name> is the name of the counter in the Counter Statistics file and <lif
block name> is the name in the output LIF block.

STATISTICS_HEADER_MAPPINGS =>
{
'START_DATE' => 'StartDate',
'START_TIME' => 'StartTime',
'END_TIME' => 'EndTime’',
'SENDER_ID' => 'MeasType',

},

HEADER_INFO_FOR_STATS_FILE: An array containing the list of entries from
STATISTICS_HEADER_ENTRIES and STATISTICS_HEADER_MAPPINGS that are to be
used in creating the counter statistics LIF filename.

HEADER_INFO_FOR_STATS FILE =>
[gqw (GatewayID START DATE START_ TIME SenderType)],

STATISTICS_OUTPUT_DIRECTORY: The path to the directory for the counter statistic
files.

STATISTICS_OUTPUT_ DIRECTORY => '../counter_stats'

COUNTER_LIST: The list of counters that are specifically required to be checked for in the
raw and LIF file. Any counter that is contained in this list will have IN_CONFIG set to true
in the output LIF. All other counters found which are not in this list will have IN_CONFIG
set to FALSE.

COUNTER_LIST => [gqw (VS.C7LKSYNU VS.LKFAIL

UG -27

Gateway Configuration and Management

VS.C7COV VS.C7ONSET1) 1,

e DISABLE_STATS: Used to disable Counter_Statistics in the Gateway if required. If set to
TRUE, no counter stats will be run. This may be done for performance reasons if there is
a problem with backlogs or load.

DISABLE_STATS => O,

e OUTPUT_FILENAME_START: A string to prepend to the output LIF name, if required.
OUTPUT_FILENAME_ START => "C_STATS",

The full configuration for Counter_Statistics can be seen in StatisticsConfig.pm.

4.6 Notification Configuration

Historically it has not always been easy to monitor the activity of a Gateway, especially with
multiple vendor Gateway installations. One of the reasons for this was that all activities were
reported to log and audit files, which are not always very accessible.

The Gateway Framework has been updated to include configurable notification functionality
that will send north-bound event and alarm notifications. These notifications should logically
go to the application consuming the output data from the Gateway. The current release of
the Gateway has support for the following application notification API’s:

e IBM Tivoli Monitoring Agent for Gateways - itmlog

e MPM Notification Command Line Interface - mpmalarm
e Metrica/PAS for Metrica/NPR — npralarm

The Notification Engine dispatches 2 types of activities from the Gateway Framework:
e Alarm activities - critical exit status and errors during processing of data.

e Event activities - statistical information with regards to blocks and files processed.

Alarm Notifications

Alarm notifications are sent for the following system errors:
e Engine module failure.

e Disk space failures.

e Failure to fork processes.

¢ File transfer failures.

Note that configuration failures will not generate alarm notification failures, as these are
typically setup teething problems.

Event Notifications

Events notification will be dispatched, if configured, for the following events:
e Engine file parsing completed.

e Statistics of Blocks processed if Block Statistics collection is configured.

Page 28

Gateway Configuration and Management

e Statistics of Files processed if File Statistics collection is configured. Note that the File
Statistics summary rules (JOIN and ACCUMULATE) and functionality are not required as
File Statistics event notifications are sent for each execution of the Gateway.

The File and Block statistical data is a reduced subset or summary of the normal statistical
data produced. This is due to message size limitations of the receiving system.

File statistical data entries used in notification event messages are as follows:
e Start date

e Start time

e File type

e (O/P file size total
e Raw file size total
e No files bad O,

¢ No files OK

A File Statistics notification event is dispatched for every File Statistics file type collected.

4.6.1 Configuration

The specific configuration entries, for each Alarm Activities and Event Activities rule depends
on the Notification Type. All Notification type uses the same standard entries, which are
configured for each rule.

Only one event and one alarm notification rule entries are allowed in the configuration. The
type of rule hash entry is governed by NOTIFICATION_TYPE. This reflects the design where
there is only one gathering source each for all event and alarm notifications respectively.

The following are the standard notification entries to be included in the NotificationConfig.pm

module

e RULE_TYPE: The rule type to dispatch message. This must be the same as the name of
the Perl module that implements the notification system. Note that this modularised
approach also facilitates the inclusion of new notification modules as required.

RULE_TYPE => 'ITM_Notification'
e RULE_DESC: A text string that will be logged to the audit file. This can be useful for
tracing execution of the notification rule.
'RULE_DESC' => 'ITM Event notification’,
e NOTIFICATION_TYPE: The notification activity to dispatch. This is either 'Alarm’, or
'Event'. Note that only one of each is allowed in the configuration.
NOTIFICATION_TYPE => 'Event'
e NOTIFICATION_TARGET: A text string of the target defined in the notification system, or

the path and file name of the log file. This would depend on the
NOTIFICATION_COMMAND used. The following is an example for the itmlog, where the

UG-29

Gateway Configuration and Management

log filename should be consistent with the Gateway Configuration vendor sub-system
and release directory name.

NOTIFICATION_TARGET => '/appl/virtuo/logs/itm/<vendor-
subsys>_ <release>'

Note: Update the <vendor-subsys> and <release> to reflect the directory name for the
Gateway Configuration.

e NOTIFICATION_COMMAND: The command line script to dispatch message.
NOTIFICATION_COMMAND => 'itmlog’

The following is a specific configuration entry for ITM Notification only:
e ENABLE_PER_FILE_NOTIFICATION: Optional entry for ITM Notification only. Set to 1 to
enable logging of detailed data file information. By default is disabled, set to 0.

ENABLE_PER_FILE_NOTIFICATION => 1,

The following are the specific configuration entries for NPR and MPM Notifications only:

¢ REMOTE_SHELL_COMMAND: The command line to execute a remote shell on the remote
server. If a remote command is not required, as is the case if the Gateway is sharing a
host system with the service assurance application, then the REMOTE_SHELL_COMMAND
value will reflect this.

REMOTE_SHELL_COMMAND => 'rsh server_name -l virtuo'

e SYSTEM_ENV_SETUP: The environment setup scripts or commands for the notification
system.

SYSTEM_ENV_SETUP =>"'. /appl/virtuo/gways/gateway_setup.sh’
The following describes the installation procedure for setting up the NotificationConfig.pm
into an existing Gateway Configuration:

e Copy the NotificationConfig.pm from the Gateway Framework example directory into the
Gateway Configuration vendor sub-system release directory.

¢ Modify the NotificationConfig.pm for the sub-routine notification_config() to return
the array name of the required rule to enable notification. Notification is disabled by
default when returning the array name @rules. The array names available for
notification are @rules_ITM,

@rules_MPM, and @rules_NPR.
return \@rules_ITM; # to enable ITM_Notification

Appendix A shows an example of the NotificationConfig.pm.

Page 30

Gateway Configuration and Management

4.7 Parallel Processing

The Gateway can be configured for parallel processing. This allows a single Gateway to
spread the load of certain engine and Post Parser rules across multiple processors.

Before considering configuring Engine or Post Parser rules over multiple processors, the

following points should be considered:

1. Has the Gateway been analysed to ensure it is configured for optimum performance? It
should be ensured that the Gateway is as efficient as possible before considering splitting
it over multiple processors.

2. Are there multiple processors available to run the Gateway on? The rules should not be
configured to run with any more processes than there are processors on the machine.

3. Is there spare capacity that can be utilised? Ensure that the server capacity has not been
exhausted already.

4. Is there an advantage to be gained? It is recommended that an engine or post parser
rule is taking at least 10 seconds to process its set of files before it is considered for
multi processor configuration. There is an overhead with spawning unix processes and
managing them subsequently.

There are a number of internal constraints on parallel processing:

1. The PIF_Handler must be used, so that PIF files are being read/written to disk, and can
be easily shared between processes. The in memory PIF_Cache cannot be used.

2. File_Statistics must not be configured.

Parallel processing is configured individually for each engine and post parser rule. For
example, if there were 100 files to be processed by a particular post parser rule, these could
be split over 4 processes, with each process handling 25 files. These processes run in
parallel, and are monitored by the Gateway. They must complete before the next rule is
initiated.

4.7.1 Properties

Parrallel processing can be configured in the properties file for spawning Gateway processes
for each independent block. Define the environment variable MAX_NUMBER_OF_PROCESS in
the properties file to allow Gateway to spawn multiple processes for each independent block
in the UserConfig.pm.

4.7.2 Configuration

Parallel processing is configured individually for each engine and post parser rule. There are
three configuration variables that control its use.

= NUMBER_OF_PROCESSES: The number of processes to split the processing of the rule
over. Should not be more than the number of actual processors on the server.

NUMBER_OF_PROCESSES => 4

= MIN_FILES_PER_PROCESS: The minimum number of files to assign per process. This
value ensures that processes are only created if there are sufficient files available. For
example for a rule processing very large files which each take 20 seconds to parse, it
would be acceptable to assign one file per process. For other Post Parser rules, each file

UG - 31

Gateway Configuration and Management

may take such as short period that at least 20 files per process would need to be
assigned.

MIN_FILES_PER_PROCESS => 20

= NUMBER_OF_PROCESSES_DIST (Optional): This entry can be used to configure different
process distributions over certain hourly periods. For example it may be required that
only 2 processes run at certain hours during backup periods, to reduce the load. The
example below specifies only one process from midnight to 2 A.M. and two processes
from 3 A.M. to 4 A.M.
NUMBER_OF_PROCESSES_DIST => {
'00-02' => 1,
'03-04"' => 2,
}

A sample configuration of the Post Parser PIF_2_OUTPUT rule, splitting files over 4 processes is shown
below.
{

RULE_TYPE => 'PIF_2 OUTPUT',

RULE_DESC => 'Convert all BSC PIFs to LIF',

INPUT_FILE DESCRIPTION => ' . *BSC.*\.pif',

OUTPUT_FORMAT => 'LIF Writer',

NUMBER_OF _PROCESSES => 4,

MIN FILES_PER PROCESS => 10,

}

All engine rules support parallel processing.

4.7.3 Log and Audit output

Parallel processes cannot write to the same log or audit file. Each parallel process forked will
create its own log and audit file. This log and audit file will be the name of the base file
suffixed by .<X> where <X> is the child number. The main Gateway process will continue to
write to the main log and audit file.

For example if the Gateway is using the files log and audit, and 2 processes are being
created for parallel processing, the following files will be created.
log.0, log.1, audit.O0, audit.1

4.7.4 Post Parser rules supporting parallel processing

Certain rules cannot support parallel processing due to their functionality requiring input of
more than one file type. The Post Parser rules that support parallel processing are:
e ACCUMULATE

e AGGREGATE_LINE

e CVAL_MANIP

e DATALINE_WHERE

e FILE_SPLIT

e FILE_SPLIT_BY_COUNTERS
e MERGE_RECORDS

Page 32

Gateway Configuration and Management

e PERLIZE
e PIF_2_OUTPUT
e PIF_2_CSV

e SPLIT_RECORDS

UG-33

Standard Post Parser rules

5 Standard Post Parser rules

This chapter describes the standard Post Parser rules supplied with the Gateway Framework.

These rules are configured in UserConfig.pm. If they don’t meet the requirements for the
manipulation of output data they can be augmented by vendor specific Post Parser rules.

Note: The gateway framework is not designed to handle multiple data blocks in
intermediate PIF files. To ensure no data lost, the best practice is to split the intermediate
PIF files such that the PIF files contain only one block type.

Each rule is accompanied by a sample of the input and output PIF if applicable, to
demonstrate its use.

Where configuration is not straightforward or is in a complex structure, an example is
included in the description.

5.1 ACCUMULATE

The accumulate supports:
e accumulation of counter values over a number of data rows given a counter key to match
data rows.

e deriving maximum/minimum values for counters over a number of data rows given a
counter key to match data rows

5.1.1 Sample rule application

Given the following block of PIF data:
##START | DATA_BLOCK
CELL | COUNT1 | COUNTZ2 | COUNT3 | LOAD | TRX
DF0001(1|2|3|100]|1
DF0001|1|2|3|10]2
DF0001|1]2|3|50]3
DF0001|1]2|3|90|4
DF0002|1]2|3|60]|1
DF0002|1|2|3|0]2
DF0002|1|2|3|30]|3
DF0002|1|2|3|20]|4
##END | DATA_BLOCK

In this example the counters, COUNT1, COUNT2 and COUNT3 are being accumulated using
CELL value as the row key, with the maximum and minimum of the LOAD counter also being
derived.
The output after processing by ACCUMULATE:
##START | ACCUM
CELL | LOAD_MIN | COUNT1 | COUNT2 | LOAD_MAX | ACCUM_NUM_IN_SUM|COUNT3
DF0001|10]4|8|100]4]12
DF0002|0]4|8|60]4]12
##END | ACCUM

Page 34

Standard Post Parser rules

Note :

The three counters COUNT1, 2 and 3 have been accumulated across the CELL. The minimum and
maximum value have been placed in MIN_LOAD and MAX_LOAD respectively. The number of rows
that matched the key to create the accumulated values is contained in ACCUM_NUM_IN_SUM.

5.1.2 Configuration

This section describes the rule specific configuration entries for ACCUMULATE. It does not
include the standard entries supported by every Post Parser rule, detailed in the section:
Post Parser Configuration.

The mandatory configuration entries are:

e OUTPUT_BLOCK_NAME: the block name to use in the output PIF/LIF.

¢ COUNTERS_TO_SORT_ON: the set of counters to use as the key for accumulation.
COUNTERS_TO_SORT ON => [qw(CELL)],

The optional configuration entries are:
e NON_ADDITIVE_COUNTERS: Counters that are not to be accumulated, but passed
through in the output as they are found. For example date and time fields.

e APPEND_STR: A string to appended to the accumulated counters

e OLD_COUNTER_NAMES: A list of old counters to rename. NEW_COUNTER_NAMES must
also be configured.

e NEW_COUNTER_NAMES: The list of the new counter names to replace the
OLD_COUNTER_NAMES with.

e COUNTER_NULL_VALUE: The value to insert for the accumulated counters when there is
an error calculation their value, for example when they are non-numeric values.

¢ MAXIMUM_COUNTERS: the list of counters to derive the maximum values for.
MAXIMUM_ COUNTERS => [qw(LOAD)],

¢ MAXIMUM_APPEND_STR: the string to append to the MAXIMUM_COUNTERSs to create the
name of the new counter.

MAXIMUM APPEND_STR => "_MAX",

e MAXIMUM_NO_APPEND_STR: the counter(s) that will have MAXIMUM_APPEND_STR
removed. This will give counter name with its maximum value.

MAXIMUM_NO_APPEND_STR => [qw (LOAD)],

e MINIMUM_COUNTERS - the list of counters to derive the minimum values for.
MINIMUM_ COUNTERS => [qw(LOAD)],

e MINIMUM_APPEND_STR - the string to append to the MINIMUM_COUNTERS to create the
name of the new counter containing the minimum value.

MINIMUM APPEND_STR => "_MIN",

e MINIMUM_NO_APPEND_STR: the counter(s) that will have MINIMUM_APPEND_STR
removed. This will give counter name with its minimum value.

MINIMUM NO_APPEND_STR => [qw(LOAD)],

UG-35

Standard Post Parser rules

AVERAGE_COUNTERS - the list of counters to derive the average values for.
AVERAGE_COUNTERS => [qw(LOAD)],

e AVERAGE_APPEND_STR - the string to append to the AVERAGE_COUNTERSs to create the
name of the new counter containing the average value.

AVERAGE_APPEND_STR => "_AVG",

e AVERAGE_NO_APPEND_STR: the counter(s) that will have AVERAGE_APPEND_STR
removed. This will give counter name with its average value.

AVERAGE_NO_APPEND_STR => [qw (LOAD)],

e SUM_COUNTERS - the list of counters to derive the sum values for.
SUM_COUNTERS => [qw (LOAD)],

e SUM_APPEND_STR - the string to append to the SUM_COUNTERs to create the name of
the new counter containing the sum value.

SUM_APPEND_STR => "_SUM",

e SUM_NO_APPEND_STR: the counter(s) that will have SUM_APPEND_STR removed. This
will give counter name with its sum value.

SUM_NO_APPEND_STR => [qw (LOAD)],

Note :

When configurations for MAXIMUM, MINIMUM, AVERAGE and/or SUM are not defined, the
counter(s) will have its accumulation value.

The MAXIMUM, MINIMUM, AVERAGE and SUM must always be defined with
*_APPEND_STR.

When a combination of MAXIMUM, MINIMUM, AVERAGE and/or SUM are defined with
*_NO_APPEND_STR, the order or precedence to have counter name is SUM, AVERAGE,
MAXIMUM and MINIMUM.

A sample configuration used in the sample application of the rule:

{
RULE_TYPE => 'ACCUMULATE',

RULE_DESC => 'Accumulate Sample’',
INPUT_FILE DESCRIPTION => ['.*'],
COUNTERS_TO_SORT ON => [qw(CELL)],
OUTPUT_BLOCK_NAME => 'ACCUM',
REDUNDANT_DATA_COUNTERS => [],
PRODUCE_PIF => 'True',
OUTPUT_FORMAT => 'LIF Writer',
NON_ADDITIVE_COUNTERS => [],
MAXIMUM COUNTERS => [qw(LOAD)],
MINIMUM COUNTERS => [qw(LOAD)],
MAXIMUM APPEND_STR => "_MAX",
MINIMUM APPEND_STR => "_MIN",

Page 36

Standard Post Parser rules

5.2 AGGREGATE_LINE

This rule, similar to ACCUMULATE, accumulates a set of values. But rather than accumulate
across a set of rows, the values are accumulated from a set of counters on a particular row.

The set of counters for accumulation are matched via a series of regular expressions. All
counters matching the regular expression are accumulated into a single value.

5.2.1 Sample Application

Given the following input block:
##START | DATA_BLOCK
Cc_1.1|Cc_1 2|C_1_3|C_1_4|C_2_1|c_1_5|c_2_2|c_2_3
20|20]10|30]20|30]10]20
10|0|40]20]0]0]0]|10
20|20|30|30]10(|0]0]10
10|30/40|0]20|0]10]|20
30|0]10]0]20(|30|10]|20
##END | DATA_BLOCK

The set of 5 counters C_1_1 to C_1_5 and the set of counters C_2_1 to C_2_3 are going to
be totalled for each row of data into 2 new counters, C_1_Total and C_2_Total.

##START | DATA_BLOCK

C_1 Total|C_ 1 1|C 1 2|C 1 3|C_1 4|C_2_1|C 1 5|C_ 2 2|C 2 3|C_2 Total

110|120|120110|30|20|30|10|20]|50

70110]0]40|20|0|0|0|10]|10

100|20]20|30]30|10|0]J0]10]|20

80110|30]40|0]20]|0|10]20]|50

70130]0]10]0|20|130|10(|20]|50

##END | DATA_BLOCK

5.2.2 Configuration

This section describes the rule specific configuration entries for AGGREGATE_LINE. It does
not include the standard entries supported by every Post Parser rule, detailed in the section:
Post Parser Configuration.

The mandatory configuration entries are:
e DEFAULT_NULL_VALUE: The value to insert for the new counter, if no counters in the
data match it for accumulation.

e COUNTER_GROUPS: A hash containing a list of new counter names, each of which maps
to an existing set of counters to be accumulated using a RE.
COUNTER_GROUPS => {
C_1_Total => 'C_1_\d+',
C_2_Total => 'C_2_\d+',
},

The optional configuration entries are:

e COUNTER_NAME_TO_EXTRACT: As well as defining new counters to be created in
COUNTER_GROUPS, this entry can be used to define a sub-string to extract from the
counter name. This will prefix the new COUNTER_GROUP counters created.

UG-37

Standard Post Parser rules

e OUTPUT_BLOCK_NAME: The name to use for the output block.

The configuration used for the sample application is below:

{

RULE_TYPE => 'AGGREGATE_LINE',
RULE_DESC => 'Sample A/L configuration',
INPUT FILE DESCRIPTION => ' .*',
REDUNDANT DATA COUNTERS => [],
DEFAULT NULL_VALUE => 'NULL',
COUNTER_GROUPS => {

C_1 Total => 'C_1_\d+’',

C_2 Total => 'C_2_\d+',
},

5.3 BATCHFILES

The BATCHFILES rule batches, or joins, a number of files together to create one large output
file, usually a LIF. The batching of smaller PIF objects is usually performed to reduce the
number of files being presented to the PM system for loading.

5.3.1 Sample Application

Given a list of PIF files:
BSC—#-02Mar2004-#-1200-#-103-#-I.pif
BSC-#-02Mar2004-#-1200-#-132-#-I.pif
BSC-#-02Mar2004-#-1200-#-131-#-I.pif
NSS—-#-02Mar2004-#-1200-#-172-#-I.pif
NSS-#-02Mar2004-#-1200-#-131-#-I.pif
NSS-#-02Mar2004-#-1200-#-173-#-I.pif

In this example the BSC and NSS files will be batched together to create a single BSC and
NSS file for loading:
BATCHED-#-BSC-#-02Mar2004-#-1200-#-1-#-BF . 1if
BATCHED-#-NSS-#-02Mar2004-#-1200-#-1-#-BF . 1if

The files are prefixed with the "BATCHED"” string, followed by the matched pattern from the
INPUT_FILE_DESCRIPTION, in this case the type and date time, for example “"BSC-#-
02Mar2004-#-1200".

5.3.2 Configuration

This section describes the rule specific configuration entries for BATCHFILES. It does not
include the standard entries supported by every Post Parser rule, detailed in the section:
Post Parser Configuration.

The optional configuration entries are:

e OUTPUT_BLOCK_NAME: The block name to use in the output data

e OUTPUT_FILENAME_START: A string to prepend the filename with

¢ HOURS_TO_WAIT_FOR_PARTNER_FILES: The number of hours to wait after the last file
before the files present are processed without their partner files. If set to -1, it will not
wait for partner files.

Page 38

Standard Post Parser rules

e QUOTE_INPUT_PIFS: If set to true the names of the PIFs used to create the output
performance LIF will be included as a comment at the top of the file.

The configuration used for the sample application:

{
RULE_TYPE => 'BATCHFILES',

RULE_DESC => 'Batch BSC and NSS PIFs',
INPUT FILE DESCRIPTION => [

' (BSC.*)—#-\d+-#-I\.pif"',

' (NSS.*)—#-\d+-#-I\.pif"'
1,
REDUNDANT_DATA_COUNTERS => [],
PRODUCE_LIF => 'True',
HOURS_TO WAIT FOR PARTNER FILES => -1,
OUTPUT FILENAME START => 'BATCHED',
REDUNDANT HEADER_COUNTERS => [],

5.4 CVAL_MANIP

The CVAL_MANIP Post Parser rule provides the functionality to manipulate counter values.
Example of it use are:
e to wrap a counter value in quotes

e remove a substring from a counter value
e replace a counter value
e rearrange a counter value

5.4.1 Sample Application

Given the PIF input:
##START | BLOCK_DATA
c_3|c_4|c_5|c_1|c_2
314|511 10]|2
3141512 1412
3|4|5|KEY-6|2
3|4|5|KEY-2|2
3|4|5|KEY-8|2
##END | BLOCK_DATA

The counter value manipulation will be performed on counter C_1. The following operations
will be performed on this counter:
e any values prefixed by “KEY-" will have the portion of the value removed

e any values with one or more spaces will be quoted and the value replaced with one
space.

The application of the CVAL_MANIP rule produces the following output:
##START | BLOCK_DATA
c_3|c_5|c_1|c_2
3|15|1"1 10"|2
3151"2 14" |2
315162

UG -39

Standard Post Parser rules

3151212
3151812
##END | BLOCK_DATA

5.4.2 Configuration

This section describes the rule specific configuration entries for CVAL_MANIP. It does not
include the standard entries supported by every Post Parser rule, detailed in the section:
Post Parser Configuration.

The mandatory configuration entries are:
e CNAME_MANIP: The name of the counter to be manipulated.

CNAME_MANIP => 'C_1',

e MATCH: A list of regular expressions (in order of preference) that the counter values are
expected to match in order for the values to be manipulated. Each regular expression
should contain at least one pattern to be extracted if the value is to be manipulated.

MATCH => ['*(KEY)\-(\d+)', '~ (\d+)\s+(\d+) '],

e PATTERN: A list of patterns that define how the counter value will be manipulated. There
is one-to-one correspondence between the position of the regular expression in list
MATCH and the patterns in PATTERN. Any occurrence of $1, $2, ... in PATTERN will be
substituted by the values of the tagged expressions matched by the corresponding
regular expression in MATCH. Hence the list MATCH and PATTERN must have the same
number of elements.

PATTERN => ['$2', '"$1 $2"']

The optional configuration entries are:
e OUTPUT_BLOCK_NAME: The block name to use in the output data.

e OQOUTPUT_DIR: The name of an alternate directory that the loader files can be written for
this rule. If not configured then LIFs will be written to the configured parser output
directory.

e NON_MATCH_RECORD: Whether or not to output a PIF record whose counter value fails
to match any of the patterns. If set to true, it will discard the row.

The configuration used for the sample application of the rule:
{

RULE_TYPE => 'CVAL MANIP',
RULE_DESC => 'Counter manipulation example',
INPUT FILE_DESCRIPTION => ['~.*'],
REDUNDANT_DATA_COUNTERS => ["C_4"],
PRODUCE_PIF => 'True',
PRODUCE_LIF => 0,
CNAME_MANIP => 'C_1°',
MATCH => ['~(KEY)\-(\d+)', '~ (\d+)\s+(\d+) '],
PATTERN => ['$2', '"$1 $2"'],

Page 40

Standard Post Parser rules

5.5 DATALINE_WHERE

The DATALINE_WHERE post parser rule is used to either remove or keep PIF data rows
based on expected counter values.

5.5.1 Sample Application

Given the following input data:
##START | DATA_BLOCK
C_3|C_4|C_5|KEY|C_1|C_2
3141511112
3141512122
3141513112
314151413|2
31415151312
3141516122
##END | DATA_BLOCK

The following operation is performed by DATALINE_WHERE to filter out PIF data rows:
e Any row with KEY value 1-5 AND with a C_1 value not equal to 1 or 3 will be kept.

This produces the output PIF:
##START | DATA_BLOCK
C_3|C_4|C_5|KEY|C_1|C_2
314151222
##END | DATA_BLOCK

Only one data row matches both criteria.

5.5.2 Configuration

This section describes the rule specific configuration entries for DATALINE_WHERE. It does
not include the standard entries supported by every Post Parser rule, detailed in the section:
Post Parser Configuration.

The mandatory entries are:
e COUNTER_NAMES: The entry is mandatory and is configured as an array of anonymous
hashes. Each hash entry contains:

e COUNTER_NAME: the name of the counter to be checked.

e KEEP_WHERE (optional): A list of regular expressions. The counter value must match
ONE of these RE's for the data line to be kept.

e REMOVE_WHERE (optional): A list of regular expressions. If the value counters matches
ONE of these RE’s then it will be removed.

Either KEEP_WHERE or REMOVE_WHERE must be configured. If both are configured any
data rows which pass the KEEP_WHERE list will be checked against the REMOVE_WHERE
list.

UG- 41

Standard Post Parser rules

COUNTER_NAMES =>
[
{
COUNTER_NAME => 'KEY',
KEEP_WHERE => ['~[1-5]'],
REMOVE_WHERE => [],

COUNTER_NAME => 'C_1',
KEEP_WHERE => [],
REMOVE_WHERE => ['~1|3%'],

}

] 14

The optional configuration entries are:
e OUTPUT_BLOCK_NAME: The block name to use in the output files.

e ADD_NEW_COUNTER: The name of a new counter to be added to the output data.
e NEW_COUNTER_VALUE: The value of the new counter.

e FILENAME_ADDITION: A string inserted into the output filename before the '-#-DW'
sequence.

The configuration below was used to produce the sample output:
{
RULE_TYPE => 'DATALINE_WHERE',
RULE_DESC => 'Dataline usage example ',
INPUT FILE_DESCRIPTION => ['~.*.pif'],
REDUNDANT_DATA_COUNTERS => ['C_0'],
PRODUCE_PIF => 'True',
PRODUCE_LIF => 0,
COUNTER_NAMES =>
[
{
COUNTER_NAME => 'KEY',
KEEP_WHERE => ['~[1-5]'],
REMOVE_WHERE => [],

COUNTER_NAME => 'C_1',
KEEP_WHERE => [],
REMOVE_WHERE => ['~1|3§'],

}

1,
FILENAME ADDITION => 'TEST'

5.6 FILE_SPLIT

The file split rule splits PIF files into smaller files based a split key made up of one or
more counter values.

Page 42

Standard Post Parser rules

5.6.1 Sample Application

Given the input data:
##START | BLOCK
C_3|C_4|C_5|TIME|KEY|C 1|C_2
2|6]|9|00:00|KEY_O0|0]|1
715|2]01:00|KEY_1]|11|5
1/4|5|02:00|KEY_2|0]|4
6|7]19|00:00|KEY_O0|2]5
4|4|6|01:00|KEY_1|5]|1
2|8|3|02:00|KEY_2|3]|6
3|/6|13|00:00|KEY_O0|0]|6
4|0|7]|01:00|KEY_1]4]|3
##END | BLOCK

This PIF data is split on the TIME and KEY counters. Each data row with a different file split
key from these counter values will be output to a separate PIF.

The split key will also be used in the PIF filename to ensure the split filenames are unique.
In this case there are 3 different keys producing 3 PIFs:

File “fs_in-#-00:00-+#-0-#-FS.pif” containing:
##START |FS
C_3|C_4|C_5|KEY|TIME|C_1
2|6|9|KEY_0]00:00]0
6|7|9|KEY_0]00:00]2
3|/6|3|KEY_0|00:00]|0
##END | FS

File “fs_in-#-01:00-#-1-#-FS.pif” containing:
##START |FS
C_3|C_4|C_S5|KEY|TIME|C_1
7|5|2|KEY_1]01:00]|1
4|4|6|KEY_1]01:00|5
4|0|7|KEY_1]01:00]/4

##END |FS

File “fs_in-#-02:00-#-2-#-FS.pif” containing:
##START|FS
C_3|C_4|C_5|KEY|TIME|C_1
1|4|5|KEY_2|02:00]|0
2|8|3|KEY_2[02:00]|3

##END |FS

5.6.2 Configuration

This section describes the rule specific configuration entries for FILE_SPLIT. It does not
include the standard entries supported by every Post Parser rule, detailed in the section:
Post Parser Configuration.

The mandatory entries are:

UG-43

Standard Post Parser rules

e COUNTERS_USED_TO_SPLIT_FILE: A hash containing the information on how to split the
file. The key is the counter names to split on and the value is a regular expression
describing the portion of the counter value to extract as a key.

COUNTERS_USED_TO_SPLIT_FILE => {
TIME => '(.*)',
KEY => '~KEY_(\d+)',
}I

e SPLIT_COUNTERS_ORDER: The order of the counter keys used to split the file in the new
filename.

SPLIT_ COUNTERS_ORDER => [qw(TIME KEY)],

The optional configuration entries are:
e OUTPUT_BLOCK_NAME: The block name to use in the output files.

The configuration used to produce the sample application:
{
RULE_TYPE => 'FILE_SPLIT',
RULE_DESC => "splitting large files into smaller files",
INPUT_FILE_DESCRIPTION => ['.*'],
COUNTERS_USED_TO_SPLIT _FILE => {
TIME => '(.%)',
KEY => '~KEY_(\d+)',
},
SPLIT_COUNTERS_ORDER => [qw(TIME KEY)],
PRODUCE_PIF => "True",
PRODUCE_LIF => 0,
OUTPUT_BLOCK_NAME => 'FS',
REDUNDANT_DATA_COUNTERS => ['C_2'],
}

5.7 FILE_SPLIT BY_COUNTERS

This rule allows you to split any PIF file into several smaller files according to the counters
grouping set by the user.

A list of counter names and a tagged regular expression must be defined to create an
identifier for which output file the line of data should be written to.

5.7.1 Sample Application

Given the input data:
##START | DATA_BLOCK
CELL | TRX | COUNT1 | COUNT2 | COUNT3
DF0001|1]1|2]|11
DF0001|2|3|4|22
DF0002|1]|9|10]|11
DF0002|2]11|12)22
##END | DATA_BLOCK

Let us say that in this example we want to split the file on the counters COUNT1, COUNT2
and COUNT3 so that each counter is written to its own file.

Page 44

Standard Post Parser rules

The correctly configured rule would produce the following files:
file_in-#-1-#-1-#-FSC.pif:
##START | DATA_BLOCK
CELL | TRX | COUNT1
DF0001]1]|1
DF0001|2|3
DF0002|1|9
DF0002|2)11
##END | DATA_BLOCK

file_in-#-1-#-2-#-FSC.pif:
##START | DATA_BLOCK
CELL | TRX | COUNT2
DF0001|1]2
DF0001|2]|4
DF0002|1]10
DF0002]2]12
##END | DATA_BLOCK

file_in-#-1-#-1-#-FSC.pif:
##START | DATA_BLOCK
CELL | TRX | COUNT3
DF0001|1]11
DF0001|2]22
DF0002|1]11
DF0002|2]|22
##END | DATA_BLOCK

5.7.2 Configuration

This section describes the rule specific configuration entries for FILE_SPLIT_BY_COUNTERS.
It does not include the standard entries supported by every Post Parser rule, detailed in the
section: Post Parser Configuration.

The mandatory entries are:

e SPLIT_CNAMES: A mandatory field that consists of a hash. The key of the hash will be a
unique string that will identify the new split file data block suffix. The values of the hash
will consist of a list of regular expressions of the counter names.

The optional configuration entries are:
e ONLY_INSERT: An optional list of other counter names to be reported in every record.

e WRITE_DATA_LINE: This option, when set to 'True', controls the action of this rule to
output the data line even when there are no matching counters or the counters are null.
When this option is not defined, by default the records without matching counters will not
be output.

e OUTPUT_BLOCK_NAME: The block name to use in the output files

The configuration used to produce the sample application:

{
RULE_TYPE => 'FILE_SPLIT BY COUNTERS',

RULE_DESC => 'Split file by COUNT',

UG-45

Standard Post Parser rules

INPUT FILE DESCRIPTION => 'file_in-#-I\.pif',
SPLIT CNAMES => {
"1' => ['COUNT1'],
'2' => ['COUNT2'],
'3' => ['COUNT3'],
},
ONLY_INSERT => [qw(CELL TRX) 1,
PRODUCE_PIF => 'True',
PRODUCE_LIF => 0,
},

5.8 INFOINSERT

The info insert rule inserts counter data from a secondary information file, into a primary
data file. It is typically used to insert hierarchy data from a configuration file into a main file,
based on a counter key.

These counter keys may be made up of one or more counters, with both header and data
counters configurable for both the primary and secondary files.

5.8.1 Sample Application

INFOINSERT requires at least 2 input files for processing. The primary PIF data:

##START | BLOCK

C_3|Cc_4|Cc_5|0BJ_ID|C_1|C_2

3141511112

3141511112

3141513112

3141514112

3141515112

##END | BLOCK

and a secondary information file, to insert data from:
##START | BLOCK
CELL | INFO_KEY | TRX
10-0|1|10-10-49°
10-0|2|10-10-50
10-2|3]10-10-60
10-3|4]10-10-69
10-3|5|110-10-79
10-3|6|10-10-50
10-0]7]10-10-22
10-2|8]10-10-80
10-319]10-10-77
10-7110]10-10-27
##END | BLOCK

In this example the key matched between the files is the OBJ_ID from the primary file and
INFO_KEY from the secondary file. The counters CELL and TRX are being inserted from the
secondary file.

This produces the following output:
##START | INS_BLOCK
C_3|C_4|C_5|CELL|INFO_KEY|OBJ_ID|C_1|TRX|C_2

Page 46

Standard Post Parser rules

31415/10-0]1]1|1]10-10-49|2
31415/10-0]1]1]1]10-10-49|2
31415/10-213]3|1]10-10-60]2
31415/10-3]4]14|1]10-10-69]2
31415110-3]5]5|1]10-10-79|2
##END | INS_BLOCK

5.8.2 Configuration

This section describes the rule specific configuration entries for INFOINSERT. It does not
include the standard entries supported by every Post Parser rule, detailed in the section:
Post Parser Configuration.

The mandatory entries are:

HEADER_NAMES_USED_TO_ID DATA_RECORD: A list of header names that form the
first part of a key that is used to identify which record of secondary information should
be insert in this data record.

HEADER NAMES_ USED_TO_ID_DATA RECORD => [],

NAMES_USED_TO_ID_DATA_RECORD: a list of counter names that are used to construct
the second part of an identifier that is used to choose which record of secondary
information should be included with each data record.

NAMES_USED_TO_ID_ DATA_RECORD => ['OBJ_ID'],

INFO_FILE_DESCRIPTION: a regular expression or a list of regular expressions describing
the names of the secondary files that contain the information that is to be substituted
into the data lines of the files that are described in the option
INPUT_FILE_DESCRIPTION.

INFO_FILE_DESCRIPTION => ['info.pif'],

HEADER_NAMES_USED_TO_ID INFORMATION: a list of header counter names that form
the first part of the key that is used to create the unique key to identify the secondary
data for insertion.

HEADER NAMES_ USED_TO_ID_INFORMATION => [],

NAMES_USED_TO_ID_INFORMATION a list of counter names used to construct a unique
identifier for the records of data in the secondary information file.

NAMES_ USED_TO_ID INFORMATION => ['INFO_KEY'],

The optional entries are:

ONLY_INSERT: This list can be used to configure the list of counter names that are
required for insertion, if the full set of data from the information file is not required.

ONLY_INSERT => ['CELL', 'TRX'],

WRITE_DATA_LINE: This option controls the action of this rule when there is no
information to substitute for a line of data, i.e. the key from the main file is not found in
the secondary file. If set to “"True” and there is no data to substitute, the data row will be

UG - 47

Standard Post Parser rules

output anyway, with NULL values inserted for the secondary keys. If set to false the data
row will not be outputted.

e OUTPUT_BLOCK_NAME: The name that should be used for the section name in the loader
file.

e OUTPUT_FILENAME_START: A prefix that the output file name will start with.

e INFO_FILES_STORAGE_DIR: An optional scalar entry containing a directory name where
information files can be stored. Information files not stored are deleted, as will be the
case if INFO_FILES_STORAGE_DIR is not set in the INFOINSERT configuration or is set to
zero (in non-debug mode).

e REMOVE_INFO_FILES: By default the information files are kept for the run. In certain
situations, where the information files are being created for each Gateway iteration, this
is not necessary. If this option is set to true the information files will be deleted.

The configuration used to produce the sample application:
{
RULE_TYPE => 'INFOINSERT',
RULE_DESC => 'INFOINSERT sample usage',

INPUT FILE DESCRIPTION => ['main_file.pif'],
HEADER NAMES_USED_TO_ID DATA RECORD => [],
NAMES_USED_TO_ID DATA_ RECORD => ['OBJ_ID'],
INFO_FILE_DESCRIPTION => ['info.pif'l],
HEADER NAMES_USED_TO_ID_INFORMATION => [],
NAMES_USED_TO_ID_ INFORMATION => ['INFO_KEY'],
OUTPUT_BLOCK_NAME => 'INS_BLOCK',
OUTPUT FILENAME START => 'II',
REDUNDANT DATA_COUNTERS => [],

ONLY_INSERT => ['CELL', 'TRX'],

WRITE_DATA LINE => 'True’,

PRODUCE_PIF => 'True’,

OUTPUT_FORMAT => 'LIF Writer',

}

5.9 JOIN

The JOIN rule is used to join rows from multiple files into a single file based on the following:
pattern matching in the file name.

e counter key matching within each file.

The JOIN rule produces one larger file, with a single data row containing the data rows from
the individual files in the output.

5.9.1 Sample Application

The example requires a number of input files to show the full usage. Two input files are
configured:

File "CELL-HO-#-20Mar2004-#-01:00-#-1.pif":
##START | CELL_HO
CHO_3|CELL_ID|BTS_ID|CHO_1|CHO_2
3]10-10-1]10-1|1|2
3110-10-2]10-2|1|2

Page 48

Standard Post Parser rules

3/10-10-3]|10-0]1]2
3/10-10-4]10-1]1]2
3110-10-5]10-2]1|2
3/10-10-6]10-0]1|2
##END | CELL_HO

and file "CELL-TRAFFIC-#-20Mar2004-#-01:00-#-I1.pif”
##START | CELL_TRAFFIC
CELL_ID|CTRF_1|BTS_ID|CTRF_2|CTRF_3
10-10-132]10-1|91]118
10-10-2|5]10-2]123]290
10-10-3|35]|10-0]193]|7
10-10-4|90|10-1|158]|82
10-10-5|38|10-2|47|50
10-10-6|25|10-0|78]103
##END | CELL_TRAFFIC

These 2 files are joined based on the date time pattern in the filename, and on the counter

keys BTS_ID and CELL_ID.

This creates one output file "CELLDATA-#-1-#-].pif” with the joined contents:
##START | CELLDATA
CHO_3|CELL_ID|CTRF_1|BTS_ID|CTRF_2|CHO_1|CTRF_3|CHO_2
3110-10-6|25]10-0|78]1]103|2
3110-10-3|35|10-0|193|1|7]|2
3110-10-4|90|10-1|158|1|82]|2
3110-10-1|32]10-1|91]1|118]|2
3110-10-5|38|10-2|47]1|50|2
3110-10-2|5|10-2|123|1|290|2
##END | CELLDATA

The joined file contains the data rows from each PIF joined to create a single row containing
both the handover and traffic counters for each CELL.

5.9.2 Configuration

This section describes the rule specific configuration entries for JOIN. It does not include the
standard entries supported by every Post Parser rule, detailed in the section: Post Parser

Configuration.

The mandatory entries are:
e COUNTERS_TO_JOIN_ON: The list of counters to join the input files on.

COUNTERS_TO_JOIN_ON => [qw(CELL_ID BTS_1ID)],
e OUTPUT_BLOCK_NAME: The name of the new data block in the output file.

The optional configuration entries are:
e OUTPUT_FILENAME_START: A prefix to use on the output file name

e HEADER_COUNTERS_TO_USE_IN_OUTPUT_FILENAME: A list of counter names to
use to construct the output file name.

e HOURS_TO_WAIT_FOR_PARTNER_FILES: This is the amount of time for a PIF file
to wait for its partner file before it can be joined. This entry should be removed
from the configuration or set to -1 if there is no partner file to wait for.

UG-49

Standard Post Parser rules

TIME_JOINFILE_PRODUCED: If set to true, the rule will add time/date to the
output joined file. The time/date is in the format
<DAY><DATE><MON><YEAR>_HH:MM:SS

QUOTE_INPUT_PIFS: If set, the rule will add the names of the input PIFs to the
output LIF. Can be useful when trying to debug the joining of a large number of
files or a complex rule.

The sample rule configuration:

{

}

RULE_TYPE => 'JOIN',

RULE_DESC => 'Example join of files ',

INPUT_FILE_DESCRIPTION => ['ACELL-HO-#-(.*)—-#-I.pif"',
'ACELL-TRAFFIC-#-(.*)-#-I.pif'],

OUTPUT_BLOCK_NAME => 'CELLDATA',

REDUNDANT_DATA_COUNTERS => [],

PRODUCE_PIF => 'True',

PRODUCE_LIF => O,

COUNTERS_TO_JOIN_ON => [qw(CELL_ID BTS_ID)],

HEADER COUNTERS_TO_USE_IN_OUTPUT_FILENAME => [],

HOURS_TO_WAIT_ FOR_PARTNER FILES => -1,

OUTPUT_FILENAME_ START => 'CELLDATA',

REDUNDANT HEADER_COUNTERS => [],

5.10MERGE_RECORDS

The MERGE_RECORDS Post Parser rule merges PIF data records within one PIF file based on
a counter key. As each row contains the same counter names, the rule can be configured
either to insert all values of a counter in the output row, or just a single value.

5.10.1 Sample Application

Given the input PIF data:
##START | DATA_BLOCK
OBJ_KEY|C_3|PEAK_TYPE|PEAK|C_1|C1l0_Total|C_2
10-10-1|3|TRAF|t200|1|1100]|2
10-10-2|3|TRAF|t300]1]1200]|2
10-10-3|3|TRAF|t400]1]1300]|2
10-10-4|3|TRAF|t500]1]1400]|2
10-10-0|3|TRAF|t600|1|1000]|2
10-10-1|3|CPU|p700|1]1100]2
10-10-2|3|CPU|p800|1|1200]|2
10-10-3|3|CPU|p900|1|1300]|2
10-10-4|3|CPU|p1000|1]|1400]|2
10-10-0|3|CPU|p1100|1]1000]2
##END | DATA_BLOCK

The PIF data rows are going to be joined on the counter OBJ_KEY. All counters being merged
onto the same row have the same value except for PEAK, which needs to be preserved from
each row. This produces the following output:

##START | NEW_BLOCK

OBJ_KEY |C_3|PEAK_TYPE |NUM_MERGED | TCPU_PEAK | TTRAF_PEAK|C_1|C10_Total|C_2

10-10-0|3|TRAF|2|p1100|t600|1]|1000]|2

Page 50

Standard Post Parser rules

10-10-1|3|TRAF|2|p700|t200]1|1100]2
10-10-2|3|TRAF|2|p800|t300]1|1200]2
10-10-3|3|TRAF|2|p900|t400|1|1300|2
10-10-4|3|TRAF|2|pl000|t500(|1]1400]|2
##END | NEW_BLOCK

e The counters C_1, C_2, C_3 and C10_Total are merged into a single value.

e A new counter NUM_MERGED is added which counts the number of rows merged to
create the new line.

e The PEAK value from each row is preserved. The rule creates 2 new counters,
TCPU_PEAK and TTRAF_PEAK, which have the counter value from each of the merged
rows. The counter PEAK_TYPE has been as a grouping key to identify the different
counter values from each merged row.

5.10.2 Configuration

This section describes the rule specific configuration entries for MERGE_RECORDS. It does
not include the standard entries supported by every Post Parser rule, detailed in the section:
Post Parser Configuration.

The mandatory entries are:
e COUNTERS_TO_SORT_ON: A list of counters for the merge key. All rows with the same
key will be merged into one output row.

COUNTERS_TO_SORT _ON => ['OBJ_KEY'],

The optional configuration entries are:
e OUTPUT_BLOCK_NAME: The block name used in the output files.

e GROUP_KEY: A counter name whose values within a collective set of data to be merged
can be regarded as a key, the values will be used to prefix the counter names of records
to be merged. If this option is not configured then a dummy prefix is used (TO, T1 ..).

GROUP_KEY => 'PEAK_ TYPE',

e MANIP_ONLY: List of counter names whose values from all rows are to be preserved in
the output data. If option is not configured then all counter names other than those listed
in option COUNTERS_TO_SORT_ON and REDUNDANT_DATA_COUNTERS (if configured)
will be manipulated.

MANIP ONLY => ['PEAK']

The configuration used for the sample application of the rule:
{
RULE_TYPE => 'MERGE_RECORDS',
RULE_DESC => 'Merge Records test’,
INPUT FILE_DESCRIPTION => ['~.* . pif'],
OUTPUT_BLOCK_NAME => 'NEW_BLOCK',
REDUNDANT_DATA_COUNTERS => [],
PRODUCE_PIF => 'True',
PRODUCE_LIF => 0,
GROUP_KEY => 'PEAK TYPE',

UG - 51

Standard Post Parser rules

COUNTERS_TO_SORT _ON => ['OBJ _KEY'],
MANIP_ONLY => ['PEAK'],
}

5.11PERLIZE

The PERLIZE Post Parser rule, unlike other rules, has complete flexibility as to how it is used.
The functions for manipulating the header or counter data are configured in the Post Parser
configuration file. The rule passes out each row of header and/or counter data to separate
functions in the Post Parser configuration.

Here the data, both header and counter rows, can be manipulated in many ways including:
e deriving new counters from existing values, including using mathematical operations.

e adding new counters.

e renaming counters.

e removing counters.

o filtering files via the header fields, and counter rows individually.

5.11.1 Sample Application

Given the input data:
##START | HEADER
HC_1|HC_2|HC_3|DATETIME
0]1|115|]20Mar2004_12:00
##END | HEADER
##START | DATA_BLOCK
c_3|c_1|c_2
19|4|6
1413|119
221013
25|5]|16
0|3]10
##END | DATA_BLOCK

The PERLIZE rule is configured to call out to the following 2 sub-routines:
1. one to manipulate the header data, and create 2 new counters, DATE and TIME, from the
current DATETIME counter.

2. one to manipulate the counter data, and create a new counter, C_ACCUM, which is the
sum of all counter values on each row.

This produces the following output:
##START | HEADER
DATE |HC_1|HC_2|HC_3|TIME
20Mar2004|0]1|15]12:00
##END | HEADER
##START | DATA_BLOCK
C_ACCUM|C_3|C_1]|C_2
29|19141|6
361141319
25(22|0|3
46|25|5]|16

Page 52

Standard Post Parser rules

1310]3]10
##END | DATA_BLOCK

5.11.2 Configuration

This section describes the rule specific configuration entries for PERLIZE. It does not include
the standard entries supported by every Post Parser rule, detailed in the section:Post Parser
Configuration.

The mandatory configuration entries are:

e FILENAME_SUFFIX: A suffix string to append to the output file. This should reflect the
operation performed by PERLIZE.

The optional configuration entries are:
e OUTPUT_BLOCK_NAME: The block name to use in the output data.

e OUTPUT_DIR: An alternative directory to write out the performance LIF data to.

e HEADER_COUNTERS_OP: A subroutine to process the header block. This subroutine will
be passed a reference to a hash containing the header names and values. If the
subroutine returns non 0 then the file is discarded. The example below is creating
separate date/time counters from one combined header counter, DATETIME:

HEADER_COUNTERS_OP => sub
{
my $h_ref = shift;
split date/time into 2 separate counters
my @data = split("_",$h_ref->{DATETIME});
$h_ref->{"DATE"} = $data[0];
$h_ref->{"TIME"} = $data[l];
keep PIF
return O;

},

e DATA_COUNTERS_OP: Same as above except each PIF data row will be passed out as a
hash reference. If the subroutine returns non 0, then the row will be discarded. In the
example below the total of all current counters is being output in a new counter
C_ACCUM.

DATA_COUNTERS_OP => sub
{
my $c_ref = shift;
create a new counter
my $accum = 0;
foreach (values %$c_ref) {
Saccum += $_;
}
$c_ref->{C_ACCUM} = $accum;
keep row
return O;

},

This configuration was used for the sample application of the rule:
{
RULE_TYPE => 'PERLIZE',

UG -53

Standard Post Parser rules

}

RULE_DESC => 'Show PERLIZE usage',
INPUT_FILE DESCRIPTION => '.*\.pif',
HEADER COUNTERS_OP => sub

{

},

my $h_ref = shift;

split date/time into 2 separate counters
my Q@data = split("_",S$h_ref->{DATETIME});
$h_ref->{"DATE"} = $data[0];
$h_ref->{"TIME"} = $datal[l];

all okay

return O;

DATA COUNTERS_OP => sub

{

},

my S$c_ref = shift;

create a new counter

my S$accum = 0;

foreach (values %$c_ref) {
Saccum += $_;

}

$c_ref->{C_ACCUM} = S$accum;

all okay

return O;

FILENAME SUFFIX => 'PZ',
REDUNDANT_DATA_COUNTERS => [],
REDUNDANT_HEADER_COUNTERS => ['DATETIME'],

5.12PIF_2 OUTPUT

The PIF_2_OUTPUT Post Parser rule converts PIF based data to the final output format. It

has 2 principal functions:

1. It allows the configuration of any output format that supports the LIF_Writer interface.
The Gateway Framework contains as standard CSV_Writer and XML_Writer modules, as

output formats.

2. Header and data counters can be output in the data in a sorted order. This is useful
during development and installation, to track the values of specific counter names in the
output data.

5.12.1 Sample Application

Given the input PIF:
##START | HEADER
DATE | STARTTIME |BSC|ENDTIME |H_1|H _2|H_3
20Mar2004|12:00|10-20-30]12:15(|2)41|6
##END | HEADER
##START | BLOCK
ID_1|ID_2|C_3|C_4|C_1l|C_2
113|30]70]|10]|30
115/10]40|20]|30
2|3|30|50]10]30
2|5|40|50]20]10

Page 54

Standard Post Parser rules

##END | BLOCK

The PIF_2_OUTPUT rule is run on this data to:
e output the data using the LIF_Writer, hence the output will be LIF format.

e output the header counters in BSC, DATE, STARTTIME order. Other counters not in this
list will be sorted lexically.

e Delete the header counter H_3
e Delete the data counter C_1

This produces the following LIF (partial output shown):
#%npr
#
{

BSC 10-20-30
DATE 20Mar2004
STARTTIME 12:00
ENDTIME 12:15
H 12
H 2 4
OUT_BLOCK {
ID 1-ID_2 1-3
Cc_3 30
c_4 70
Cc_2 30
ID 11
ID 2 3
}
OUT_BLOCK {
ID 1-ID 2 1-5
CcC_3 10
C_4 40
Cc_2 30
ID 1 2
ID 2 4
}

5.12.2 Configuration

This section describes the rule specific configuration entries for PIF_2_OUTPUT. It does not

include the standard entries supported by every Post Parser rule, detailed in the section:

Post Parser Configuration.

There are no mandatory entries other than those that apply to all Post Parser rules.

The optional entries are:

e OUTPUT_FORMAT: The module to use to write out the performance data. This can be set
to LIF_Writer, XML_Writer, or CSV_Writer.

OUTPUT_FORMAT => ‘LIF_ Writer’

e OUTPUT_BLOCK_NAME: The block name to use in the output data.
e OUTPUT_FILENAME_START: A string to prepend to the output filename.

UG -55

Standard Post Parser rules

e OUTPUT_DIR: The directory to output the performance data to, if it is not to be written
to the output directory configured for the Gateway.

¢ NEW_HEADER_COUNTERS: A hash, containing a set of hames and values of new
counters to be output in the header.

e OUTPUT_RECORD_KEY: A list of data counters to form the record key as the first column
of the output block records.
OUTPUT_RECORD_KEY => [qw (ID_1 ID_2)],

e OUTPUT_RECORD_KEY_DELIMITER: A string to separate the counter names for the
output record key. If not set, the default '-#-' is used.

OUTPUT_RECORD_KEY DELIMITER => '-',

The configuration used to produce the sample application of the rule:

{

}

RULE_TYPE => 'PIF_2_ OUTPUT',

RULE_DESC => 'Test PIF 2 output rule'’,

INPUT FILE_DESCRIPTION => '.*',
OUTPUT_BLOCK_NAME => 'OUT_BLOCK',
OUTPUT_FILENAME_START => 'P20’,
REDUNDANT_HEADER COUNTERS => [qw(H_3)],
REDUNDANT_DATA_COUNTERS => [qw(C_1)1],
OUTPUT_FORMAT => 'LIF_Writer',
HEADER_COUNTERS_ORDER => [qw(BSC DATE STARTTIME)],
DATA_COUNTERS_ORDER => [qw (C_3 C_4 C_2) 1,
OUTPUT RECORD_KEY => [qw (ID_1 ID_2) 1,
OUTPUT_RECORD_KEY DELIMITER => '-',

5.13PIF_2_CSV

The PIF_2_CSV Post Parser rule has configuration to entries with PIF_2_OUTPUT while the
main output is CSV format files. It has additional configuration entries for additional
functionalities. By default the OUTPUT_FORMAT entry is set to ‘CSV_Writer'.

5.13.1 Sample Application

Given the input PIF:
##START | HEADER
DATE | STARTTIME | BSC|ENDTIME |H_1|H 2|H_3
20Mar2004]112:00]10-20-30|12:15(|2|4|6
##END | HEADER
##START | BLOCK
ID_1|ID_2|C_3|C_4|C_1]|C_2
113130170]10]|30
1/5/10140(|20]|30
2131305011030
2|5|40150(20]10
##END | BLOCK

The PIF_2_CSV rule is run on this data to:

Page 56

Standard Post Parser rules

e output the header counters in BSC, DATE, STARTTIME, ENDTIME, ID_1, ID_2 order.
Other counters not in this list will be sorted lexically.

e Delete the header counter H_3
e Delete the data counter C_1

This produces the following CSV:
BSC,DATE, STARTTIME, ENDTIME, ID_1,ID_2,C_2,C_3,C_4,H 1,H 2
10-20-30,20Mar2004,12:00,12:15,1,3,30,30,70,2,4
10-20-30,20Mar2004,12:00,12:15,1,5,30,10,40,2,4
10-20-30,20Mar2004,12:00,12:15,2,3,30,30,50,2,4
10-20-30,20Mar2004,12:00,12:15,2,5,10,40,50,2,4

5.13.2 Configuration

This section describes the rule specific configuration entries for PIF_2_CSV. Refer to the
PIF_2_OUTPUT configuration for common entries.

There are no mandatory entries other than those that apply to all Post Parser rules.

The optional entries are:

e HEADER_FIELDS_FOR_OUTPUT_FILENAME: Takes an array of header fields which will be
used to create the filename of the CSV file. If not defined, defaults to the input PIF
filename suffixed with a ‘P’ tag and ‘.csv’ file extension.

HEADER FIELDS_FOR_OUTPUT_ FILENAME =>
['TIME_SEGMENT PREFIX', 'DATA _TYPE', 'SGSNNAME'],

e OUTPUT_FILENAME_DELIMITER: A string to delimit the header fields in the filename. If
not defined, defaults to *-#-'.

OUTPUT_FILENAME DELIMITER => ‘_’',

e COUNTERS_ORDER: An array specifying the order of the header and data counters
collectively for the output file. Defined counters will be ordered at the front of each
record, while the rest of the counters will be sorted lexically thereafter. If entry not
defined, no ordering will be done on the counters, and will be random depending on the
hash output.

COUNTERS_ORDER => ['IMSI', 'MSISDN', 'MOBILESTATIONIP',
' SUBSCRIBERTYPE', 'SUBSCRIBERGROUP', 'IMEISV', 'CGI', 'RAI’,
'BSSNAME', 'SGSNNAME', 'APN', 'CAUSETYPE', 'TRANSACTIONTYPE',
'TRANSACTIONTYPEINFO', 'TRANSACTIONTERMINATIONCAUSE',
'TRANSACTIONCOUNT', 'TOTALTRANSACTIONDURATION'],

e FIELD_DELIMITER: A string to delimit the field values in the CSV output. If not defined,
defaults to comma, ',".

FIELD DELIMITER => '|'

The configuration used to produce the sample application of the rule:
{
RULE_TYPE => 'PIF_2_CSV',
RULE_DESC => 'CSV output',
INPUT_FILE_DESCRIPTION => ['“sample-#-I\.pif'],
HEADER_ FIELDS_FOR_OUTPUT_FILENAME => ['BSC', 'DATE', 'STARTTIME'],

UG - 57

Standard Post Parser rules

OUTPUT FILENAME DELIMITER => ' ',
COUNTERS_ORDER => ['BSC', 'DATE', 'STARTTIME', 'ENDTIME',
'ID_ 1', 'ID_2'],
REDUNDANT HEADER_COUNTERS => ['H 3'],
REDUNDANT DATA_COUNTERS => ['C_1'],
},

5.14PIF_REMOVE

The PIF_REMOVE rule removes PIF objects during the Post Parser stage. This can be useful to:
e reduce the complexity of configuring subsequent rules.

e reduce the memory/disk space requirements by freeing up space before further Post
Parser rules run.

5.14.1 Sample Application

This section is not applicable. All files that match the INPUT_FILE_DESCRIPTION of the rule will be
deleted.

5.14.2 Configuration

There are no non-standard entries for this Post Parser rule. In the example configuration below all BSC
files with the “A” suffix are being deleted.
{
RULE_TYPE => 'PIF _REMOVE',
RULE_DESC => 'Remove all accumulated BSC files',
INPUT_FILE DESCRIPTION => ['~BSC.*-#-A\.pif'l],
}

5.15SPLIT_RECORDS

The SPLIT_RECORDS rule splits a single PIF data row into multiple rows, based on different counter
names. Counters that are being used to split the data will have a new value in each new data rows.

5.15.1 Sample Application

Given the input PIF data:
##START | BLOCK
C_3|C_1|SV_KEY|CV_KEY|C_2
31|10|sv_2|cCcv_0]|13
14|10|sv_18|CV_11]|12
23]10|sv_22|Ccv_1]|11
##END | BLOCK

The rule will perform the following:
e split each row into 2 rows, using the keys SV_KEY and CV_KEY. The type used to split
the row will be placed in a new counter COUNTER_ID.

e The value that was contained in SV_KEY or CV_KEY will be output in a new counter KEY.
e The counters C_2 and C_3 will be written out in each data row.
The output PIF produced by the rule:

Page 58

Standard Post Parser rules

##START | SPLIT_BLOCK
C_3|COUNTER_ID|KEY|C_2
31|T_SV|SV_2|13
31|T_CV|CV_0[13
14|T_SV|SV_18]|12
14|T_CV|CV_11|12
23|T_SV|SvV_22]|11

23|T _cv|Ccv_1|11
##END | SPLIT BLOCK

5.15.2 Configuration

This section describes the rule specific configuration entries for SPLIT_RECORDS. It does not include
the standard entries supported by every Post Parser rule, detailed in the section: Post Parser Configuration.

The mandatory configuration entries are:

SPLIT_CNAMES: The key of the hash will be a unique string that will identify the new
split record. The new split record will report values for the counter names list in its array.
The size of the array can be variable, but should not exceed the number of elements
configured for the array NEW_CNAMES. The counter names listed in different arrays do
not need to be mutually exclusive. Unless the options 'ONLY_INSERT' or
'REDUNDANT_DATA_COUNTERS' are configured, any counter names that are not listed in
the arrays are automatically reported in each of the split records.
SPLIT_CNAMES => {
'"T_CV' => ['CV_KEY'],
'"T_SV' => ['SV_KEY'],
}I
NEW_CNAMES: An array of new counter names that will apply to the counters that have
been split in the record.

NEW_CNAMES => ['KEY'],

The optional configuration entries are:

OUTPUT_BLOCK_NAME: A replacement data block name used in the output files
OUTPUT_DIR: Full path to an alternative directory where the output files will be written.

ONLY_INSERT: A list of other counter names to be reported in every record. If not set,
nor REDUNDANT_DATA_COUNTERS is set, no such counter names values will be
inserted.

ONLY INSERT => ['C_3', 'C_2'],

REDUNDANT_DATA_COUNTERS: A list of counters that should be deleted from the
resultant output. If set then all other counter names reported and not specified in
SPLIT_CNAMES will be reported. If both REDUNDANT_DATA_COUNTERS and
ONLY_INSERT, ONLY_INSERT takes precedence. If neither is set no counter names will
be inserted.

NEW_REC_ID_NAME: Defines the new counter name in the block, it reports as its values
the keys of the hash 'SPLIT_CNAMES'.

NEW_REC_ID_NAME => 'COUNTER_ID',

The configuration for the sample application of the rule is below:

UG -59

Standard Post Parser rules

RULE_TYPE => 'SPLIT RECORDS',
RULE_DESC => 'Split records test’',
INPUT FILE_DESCRIPTION => ['~.*.pif'],
SPLIT_CNAMES => {
'T CV' => ['CV_KEY'],
'T SV' => ['SV_KEY'],
},
NEW_CNAMES => ['KEY'],
NEW_REC_ID_ NAME => 'COUNTER_ID',
OUTPUT_BLOCK_NAME => 'SPLIT BLOCK',
ONLY_INSERT => ['C_3', 'C_2'],
PRODUCE_PIF => 'True',
}

5.16 UNPEGGER

The UNPEGGER Post Parser rule is used to derive unpegged values for pegged counter types.

Pegged counters are defined as those whose value constantly increases up to a set value,
until it rolls over back to 0. A single value of a pegged counter contains no information on
system performance. At least 2 values are required to derive the change in value over a
period.

For example:

At 15:00 counter pdpContexts had a pegged value of 13456.
At 15:15 counter pdpContexts had a pegged value of 14456.
At 15:30 counter pdpContexts had a pegged value of 20000.

Therefore the unpegged value for this period at 15:15 is 1000, and at 15:30 the unpegged
value is 5544.

These type of counters are usually found in IP based networks, and are either 32 or 64 bit in
size.

5.16.1 Sample Application

The application of this rule is quite complicated. The example described here only gives the
simplest application of the rule’s usage.

Given 2 input files "GGSN-#-GGSN-R1D9-#-02Mar2004-+#-14:15-#-1.pif”
Parser Intermediate File
##START | HEADER
H_4|STARTTIME | DATE |ManagedElement |H_1|H_2|DURATION|H_3
4114:15|/02Mar2004 |GGSN-R1D9|1|2|15|3
##END | HEADER
##START | GGSN_BLOCK
GgsnFunction|VS.IPSec.IncDataOct |VS.IPSec.DiscDataPkt |GiIsp|VS.IPSec.Inc
DataPkt |VS.IPSec.OutDataOct
01961]12034|419995|5305
011431211621 |7)14441)|2846
0]11455|7127|1216533|4730

Page 60

Standard Post Parser rules

0]12076(4191]119|5113|14295
0]11901|9860]28]1607|3949
##END | GGSN_BLOCK

and file "GGSN-#-GGSN-R1D9-#-02Mar2004-#-14:30-#-1.pif":
Parser Intermediate File
##START | HEADER
H_4|STARTTIME | DATE |ManagedElement |H_1|DURATION|H_2|H_3
4114:30)]02Mar2004 |GGSN-R1D9|1|15(|2|3
##END | HEADER
##START | GGSN_BLOCK
GgsnFunction|VS.IPSec.IncDataOct |VS.IPSec.DiscDataPkt |GiIsp|VS.IPSec.Inc
DataPkt |VS.IPSec.OutDataOct
0118284129817 |14129650]25838
0115924124286 |7)128204|18781
0124969127115|112|28747|28223
0117761123425]19|28908|15957
0121861119129|28|17700|17415
##END | GGSN_BLOCK

The following processing is performed by the rule:
e Each GGSN pattern in the file name, "GGSN-#-GGSN-R1D9"” is processed as a group.

e Files with the GGSN pattern are then processed within the date time key, in this case
02Mar2004-#-14:15 followed by 02Mar2004-+#-14:30.

e Since the file 14:15 has no previous file no unpegged output is produced, the file is
saved for the next iteration.

¢ The counter values in the 14:30 file are unpegged against the previous file 14:15.

e The DATE, STARTTIME and DURATION counters in the header are used to derive the time
difference between the files.

e The counters GgsnFunction and Gilsp are used as data row keys to match the related
data rows between each PIF file.

e The VS.IPSec* counters are being unpegged. They are all 32 bit counters.
e The output PIF file will be prefixed with "UNPEG”.

This produces the output file:
“UNPEG-#-GGSN-#-GGSN-R1D9-#-02Mar2004-#-14:30-#-Lpif”:
Parser Intermediate File
##START | HEADER
H_4|STARTTIME | DATE |[ManagedElement |H_1|DURATION|H 2|H 3
4)114:30|02Mar2004 |GGSN-R1D9|1|15|2]|3
##END | HEADER
##START | GGSN_BLOCK
GgsnFunction|VS.IPSec.IncDataOct|VS.IPSec.DiscDataPkt |GiIsp|VS.IPSec.Inc
DataPkt |VS.IPSec.OutDataOct
0117323129817 |4|19655|25838
011612]24286|7|13763|18781
0123514127115|12|22214|28223
0]15685]123425|19|23795|15957
0]19960]119129|28|16093|17415
##END | GGSN_BLOCK

UG - 61

Standard Post Parser rules

This is the unpegged data. For example in the first row (GgsnFunction=0, Gilsp=4), the
difference in value for counter VS.IPSec.IncDataOct from 14:15 to 14:30 is

18284 (from 14:30 file) less 961 (from 14:15 file) = 17323

The rule can equally be configured to unpeg data for multiple date/time periods in a single
PIF file.

The rule can also handle a backlog of files, as multiple files are sorted in date/time order and
then processed in this order.

5.16.1.1 Time and Duration Formats

Unpegging of valid data must be based on valid date, time and duration calculations. The
UNPEGGER supports a number of formats for the date and time in the pegged filename, as
extracted using INPUT_FILE_DATETIME_KEY. These formats are:
<day><month><year>[DATE SEP]<hour>[HOUR SEP]<minute>
where:

e day - is a 2 digit value

e month - is a 2 digit value, or a 3 letter prefix e.g. Apr

e year - is a 4 digit value

e [DATE SEP] - is an optional date separator. Acceptable values for the separator are “-

\\, _Il, \\'Il and _#_\\'

e hour - the hour in 24 hourly format

e minute - is a 2 digit value.
Examples of valid datetime values are:

02Mar2004-#-11:00

02032004_11.00
02Mar20041100

5.16.2 Configuration

This section describes the rule specific configuration entries for UNPEGGER. It does not
include the standard entries supported by every Post Parser rule, detailed in the section:
Post Parser Configuration.

The mandatory configuration entries are:

e INPUT_FILE_DESCRIPTION: The list of pegged files to be processed by this rule. The
element ID and key must be extracted in the configuration. This ensures that the correct
element is unpegged against its previous file. In the example below the element type,
GGSN, along with the element ID is being used as the pattern to match.

INPUT_FILE DESCRIPTION => '*(GGSN-#-\w+\-\w+).*\.pif',

e INPUT_FILE_DATETIME_KEY: A regular expression matching the input file name and
extracting the date and time key from the filename. This is required to sort the input files
in the correct order, so the oldest input file will be processed first.

INPUT_FILE DATETIME KEY =>
"AUF—#-(\d{2}\w{3}\d{4}-#-\d{2}:\d{2}) -#-I\.pif",

Page 62

Standard Post Parser rules

e INPUT_DATE_FORMAT: A string configuring the sequence of the date string matched in
INPUT_FILE_DATETIME_KEY. The configuration can either be set to 'DMY’', YMD' or 'MDY"
depending on the order of the Day, Month, and Year in the matched string. If this
configuration entry is not defined, the order of the date format used will be as in the
order above.

INPUT_DATE_ FORMAT => 'YMD',

e PEG_FILENAME_PREFIX: The prefix used to generate the previous pegged PIF file. Once
the current file has been unpegged, it must be saved as the previous file. The values in
this file will be used as the previous values for the next iteration of the rule.

PEG_FILENAME PREFIX => 'SAVED',

e UNPEG_FILE_TYPE: The type of pegged files that are being handled. This may be set to
either:

e HEADER, where the datetime and duration fields are contained in the header, and apply
to the whole file.

e DATA, where the datetime and duration fields are contained in the pif data rows, and
apply individually to the pif data row.

UNPEG_FILE TYPE => 'HEADER',

e KEEP_RAW_GRANULARITY: This option decides what happens when a PIF file is missing.
A PIF file is determined as missing when the previous PIF endtime does not match the
current PIF starttime. When this occurs a decision must be made on whether to output a
LIF, with the values calculated with the available files. If KEEP_RAW_GRANULARITY is set
to TRUE then a LIF file will be created, ignoring the missing PIF. If
KEEP_RAW_GRANULARITY is set to 0, then no output LIF will be produced to preserve
the expected raw performance data granularity.

KEEP_RAW_GRANULARITY => 'TRUE',

e MAX_PEG_PIF_AGE: This formula is used to calculate the maximum time difference that
is allowed between the previous timestamp and current timestamp before the previous is
considered to have expired. This may be the date/time counters in either the header or
counter data depending on the type of unpegging being done.

This formula should include the DURATION tag, as the max age should be calculated as a
factor of this. Duration is calulated as the difference between the start and end time of
the current PIF. For example if the starttime of the file is 13:15, the endtime is 13:30,
the MAX_PEG_PIF_AGE will be 120 minutes (15*4+60). If the file has expired the
previous PIF will be deleted and the current saved for the next run.

MAX PEG_PIF_AGE => 'DURATION*4+60',

e CALCULATE_ROLLOVER: The option decides whether or not the unpegged value is
calculated when rollover occurs. Pegged counter values always increase until they reach
their max size (2°32-1 for example), and are then rolled over to 0. If
CALCULATE_ROLLOVER is set to true, the UNPEGGER rule will calculate the rollover
value, based on the maximum configured in PEG_COUNTERS.

If CALCULATE_ROLLOVER is set to 0, a NULL value will be inserted into the LIF for the
counter value when rollover occurs.

UG -63

Standard Post Parser rules

CALCULATE_ROLLOVER => 'TRUE',

DEFAULT_NULL_VALUE: The value to use as the null value when required in the LIF
output.
DEFAULT NULL_VALUE => 'NULL'

DATETIME_COUNTERS: This hash supports three options used to calculate the time
difference between current and previous peg files, and the measurement duration.

The date/time counters can be in almost any format as they are parsed using a DateTime
module, which is extremely flexible in it accepted format.

INPUT_DATE_FORMAT is required for ambiguous date format in the data record, similar
to the one for the file name date above.

One of these combinations must exist in the PIF.

Start date/time and end date/time.

This hash maps the counters, STARTDATE, STARTTIME, ENDDATE and ENDTIME to the
counter names for the start and end date/times in the PIF header.

DATETIME_COUNTERS => {
STARTDATE => 'StartDate',
STARTTIME => 'StartTime',
ENDDATE => 'EndDate’,
ENDTIME => 'EndTime’,
INPUT_DATE_FORMAT => 'YMD',

}

Start date/time and duration.

This hash maps the counters STARTDATE, STARTTIME, and DURATION to the counter
names for the start date, start time and duration in the PIF header.

The optional FORMAT entry determines how the DURATION value is interpreted. Valid
values are 'seconds' and 'minutes'. Defaults to minutes.

DATETIME_COUNTERS => {
STARTDATE => 'StartDate',
STARTTIME => 'StartTime',
DURATION => 'gp',

FORMAT => 'seconds',
INPUT DATE_FORMAT => 'YMD',
}

End date/time and duration.

This hash maps the counters ENDDATE, ENDTIME, and DURATION to the counter names
for the end date, end time and duration in the PIF header.

DATETIME_COUNTERS => {
ENDDATE => 'EndDate’',
ENDTIME => 'EndTime’,
DURATION => 'gp',

Page 64

Standard Post Parser rules

FORMAT => 'seconds',
INPUT_DATE_FORMAT => 'YMD',
}

¢ COUNTERS_TO_SORT_ON: The list of counters in the data rows used to map the row in
the previous PIF to the current, when calculating the unpegged values:

COUNTERS_TO_SORT_ON => [gw (GgsnFunction GiIsp) 1],

e PEG_COUNTERS: A hash containing list of REs. Any counters in the input data which
match the RE will be unpegged. The hash value specifies the rollover value for the
counter.

For 32 bit counters this should be set to 4294967295.

For 64 bit counters this should be set to 18446744073709551615.

PEG_COUNTERS => {
'VS\.IPSec.*' => '4294967295"
},

The optional configuration entries are:
e INPUT_DATE_FORMAT: A string that defines the format of the input, either ‘YMD’, ‘MDY’
or ‘DMY’. If not defined by default is *YMD'.

¢ ROLLOVER_WINDOW: A hash containing list of REs similar to PEG_COUNTERS. The hash
values specifies the rollover window value from the rollover value defined in
PEG_COUNTERS.

ROLLOVER_WINDOW => {
'VS\.IPSec.*' => '500000000'
b

The configuration sample for the worked example is below:
{
RULE_TYPE => 'UNPEGGER',
RULE_DESC => 'unpeg counter values for LIF output',
INPUT_FILE_DESCRIPTION => '~ (GGSN-#-\w+\-\w+).*\.pif"',
INPUT FILE DATETIME KEY =>
"ALUx=#-(\d{2}\w{3}\d{4}-#-\d{2}:\d{2}) -#-I\.pif’,
PEG_FILENAME_ PREFIX => 'SAVED',
UNPEG_FILENAME PREFIX => 'UNPEG',
UNPEG_FILE_TYPE => 'HEADER',
PRODUCE_PIF => 1,
OUTPUT_FORMAT => 'LIF Writer',
KEEP_RAW GRANULARITY => 'TRUE',
MAX PEG_PIF_AGE => 'DURATION*4+60',
CALCULATE ROLLOVER => 'TRUE',
DEFAULT NULL VALUE => 'NULL',
DATETIME COUNTERS => {
STARTTIME => 'STARTTIME',
STARTDATE => 'STARTDATE',
DURATION => 'DURATION',
},
COUNTERS_TO_SORT ON => [gqw (GgsnFunction GiIsp) 1],

UG - 65

Standard Post Parser rules

REDUNDANT HEADER_COUNTERS => [1,
REDUNDANT DATA_COUNTERS => [],
PEG_COUNTERS => {

'VS\.IPSec.*' => '4294967295'
},

Page 66

Performance Tips

6 Performance Tips

The amount, size and complexity of data to be processed varies from vendor to vendor.
Hence performance of different vendor Gateways can vary widely. Any productised Vendor
Gateways are profiled for performance problems as part of the testing process. However,
there can be issues with server installations and configurations that require performance
tuning.

This section details some common changes that can improve performance of the Gateway.
Before applying any changes, ensure the Gateway is outputting the correct LIF data for
loading. It is also advisable to make a reference copy of the output so the resultant data
from the any changes can be validated.

1. Minimize the number of intermediate and output files: Typically a Gateway will
process less larger files with more data more efficiently than a greater number of smaller
files with a smaller number of records. For example it is preferable to process a set of
TRX counters in one large file per BSC, rather than a number of smaller files per CELL,
even if it means that hierarchy data is duplicated. This is less of an issue if using PIF data
is cached in memory. It may also have an impact on the loadmap configuration.

2. Use BATCHFILES in preference to PIF_2_LIF: The BATCHFILES rule can be used to
create larger output PIF and LIF files, where multiple files matching the same pattern are
joined into one larger file. This should be used in preference to the PIF_2_LIF rule as it
produces less files, reducing I/0. It is also more efficient for subsequent loading.

3. If outputting to multiple directories, use the Transfer Stage: For parallel PM/NPR
installations it is often required to output the performance data to 2 destinations. Rather
than using multiple instances of the same rule to output to 2 directories, use the Transfer
Engine or external scripts to distribute the files.

4. Use tmpfs filesystems or cache PIF data in memory: Performance data goes
through a number of transformations before final output. Disk I/O can be a major
bottleneck. Use either tmpfs filesystems or configure the PIF data to be cached in
memory. This can offer significant savings.

5. Use parallel processing: If the server has more than one processor, configure parallel
processing for rules which meet the guidelines detailed. This can also be beneficial if the
disk is slow, as multiple reads/writes can be queued to the disk.

6. Use PERLIZE for complex operations: If there is a specific counter
manipulation/calculation requirement which requires a number of transformations, use
the PERLIZE rule to configure it in a single function, rather than write specific rule(s).

7. Gently stop Gateway process: If required, the execution chain can be stopped gently
by creating an empty file named stop_gateway in the input directory. Gateway will
stop the current engine stage (does not parse all remaining raw files) and proceed to
post parsing stage. The remaining raw files will be parsed when the Gateway is
restarted.

UG- 67

Appendix

Index

ACCUMULATE

APPEND_STR, 29
configuration, 29

COUNTER_NULL_VALUE, 29
COUNTERS_TO_SORT_ON, 29
MAXIMUM_APPEND_STR, 29

MAXIMUM_COUNTERS, 29

MINIMUM_APPEND_STR, 29

MINUMUM_COUNTERS, 29

NEW_COUNTER_NAMES, 29
NON_ADDITIVE_COUNTERS, 29
OLD_COUNTER_NAMES, 29

OUTPUT_BLOCK_NAME, 29
Post Paser Rule, 28
sample rule application, 28
ADD_NEW_COUNTER, 35
AGGREGATE_LINE
configuration, 30
COUNTER_GROUPS, 30

COUNTER_NAME_TO_EXTRACT, 31

DEFAULT_NULL_VALUE, 30
OUTPUT_BLOCK_NAME, 31
Post Paser Rule, 30
sample application, 30
APPEND_STR, 29
AUDIT_FILE, 7
BATCHFILES, 59
configuration, 32

HOURS_TO_WAIT_FOR_PARTNER_FILES, 32

OUTPUT_BLOCK_NAME, 32

OUTPUT_FILENAME_START, 32

Post Paser Rule, 31
QUOTE_INPUT_PIFS, 32
sample application, 31

Block Statistics, 19
BLOCK_NAME, 21
BULK_TRANSFER, 11
cache

pif data, 59
CALCULATE_ROLLOVER, 56
CNAME_MANIP, 33
COMPRESS, 8
COMPRESS_TOOL, 8
Compression

transfer, 10, 11
Configuration

ACCUMULATE, 29

AGGREGATE_LINE, 30
BATCHFILES, 32
CVAL_MANIP, 33
DATALINE_WHERE, 34
engine, 13
FILE_SPLIT, 37

FILE_SPLIT_BY_COUNTERS, 38

gateway, 6
INFOINSERT, 40

JOIN, 42
MERGE_RECORDS, 44
parallel processing, 24, 26
PERLIZE, 46
PIF_2_CSV, 50
PIF_2_OUTPUT, 48
PIF_REMOVE, 51

post Parser, 14
properties file, 7
SPLIT_RECORDS, 52
statistics, 16
transfer, 9
UNPEGGER, 55

Conventions, vi
Counter

statistics, 21
COUNTER_LIST, 22
COUNTER_NAME, 34

COUNTER_NAME_TO_EXTRACT, 31

COUNTER_NAMES, 34
COUNTER_NULL_VALUE, 29
COUNTERS_ORDER, 50
COUNTERS_TO_JOIN_ON, 42

COUNTERS_TO_SORT_ON, 44, 57
COUNTERS_USED_TO_SPLIT_FILE, 37

cron, 9

CVAL_MANIP
CNAME_MANIP, 33
configuration, 33
MATCH, 33
NON_MATCH_RECORD, 33
OUTPUT_BLOCK_NAME, 33
OUTPUT_DIR, 33
PATTERN, 33
Post Paser Rule, 32
sample application, 32

DATA, 56
DATA_COUNTERS_OP, 46

DATA_COUNTERS_ORDER, 15

Page 68

Appendix

DATA_KEY_NAME, 18 Rules, 13

DATALINE_WHERE EngineConfig.pm, 13
ADD_NEW_COUNTER, 35 FIELD_DELIMITER, 50
configuration, 34 File

COUNTER_NAMES, 34
COUNTER_NAMES, COUNTER_NAME, 34
COUNTER_NAMES, KEEP_WHERE, 34
COUNTER_NAMES, REMOVE_WHERE, 35
FILENAME_ADDITION, 35
NEW_COUNTER_VALUE, 35
OUTPUT_BLOCK_NAME, 35

Post Paser Rule, 34

statistics, 16

FILE_SPLIT
configuration, 37
COUNTERS_USED_TO_SPLIT_FILE, 37
OUTPUT_BLOCK_NAME, 37
Post Paser Rule, 36
sample application, 36

sample application, 34 SPLIT_COUNTERS_ORDER, 37

DATETIME_COUNTERS, 57 FILE_S_PLIT__BY_COUNTERS
ENDDATE, 57 configuration, 38
ENDTIME, 57 ONLY_INSERT, 38
STARTDATE, 57 OUTPUT_BLOCK_NAME, 39

STARTTIME, 57 Post Paser R.ule(37
sample application, 37

DEBUG, 7 SPLIT_CNAMES, 38
DEFAULT_NULL_VALUE, 56 WRITE_DATA_LINE, 38
DELETE_ORIGINAL, 10, 13 FILENAME_ADDITION, 35
DEPTH, 10 FILENAME_HEADER_FIELDS, 14
Directories FILENAME_SUFFIX, 46
gateway, 4 Gateway configuration, 6
multiple, 59 . .
Gateway directories, 4
Directory IN DIR, 4
parsersrc, 13 IN; DII,D\ 4
STATISTICS_OUTPUT_DIRECTORY, 21, 22 OUT_ DIR, 4

transfer, 9 parsersrc, 4

DIRECTORY_HEADER_FIELDS, 14 storage, 4

DISABLE_LIF_BUCKET, 15 vstart, 4

DISABLE_STATS, 22 Gateway framework

Disk I/0, 59 installation, 5

DISK_FREE, 7 path, 6

DO_NOT_DELETE, 14 Gateway installation, 5

ENABLE_LIF_BUCKET, 8 Gateway launching, 9

ENABLE_LOCAL_COMPRESSION, 10, 11 gateway_start.sh, 6

ENABLE_PER_FILE_NOTIFICATION, 25 GROUP_KEY, 44

ENDDATE, 57 HEADER, 56

ENDTIME, 57 HEADER_COUNTER_ORDER, 15

Engine HEADER_COUNTERS_OP, 46
Configuration, 13 HEADER_COUNTERS_TO_USE_IN_OUTPUT_FILENAME,
DIRECTORY_HEADER_FIELDS, 14 42
DO_NOT _DELETE, 14 HEADER_FIELDS_FOR_OUTPUT_FILENAME, 50
FILENAME_HEADER_FIELDS, 14 HEADER_INFO_FOR_STATS_FILE, 17, 20, 22
INPUT_DIR_DEPTH, 14 HEADER_NAMES_USED_TO_ID_DATA_RECORD, 40
INPUT_FILE_DESCRIPTION, 13 HEADER_NAMES_USED_TO_ID_INFORMATION, 40
NUMBER_OF_FILES_TO_PROCESS, 14 HOST. 9
ORDER_OF_FILES, 14 !
RULE_DESC, 13 HOURS_TO_WAIT_FOR_PARTNER_FILES, 32, 42
RULE_TYPE, 13 IN_DIR, 4, 7

UG-69

Appendix

INFO_FILE_DESCRIPTION, 40
INFO_FILES_STORAGE_DIR, 41
INFOINSERT

configuration, 40

HEADER_NAMES_USED_TO_ID_DATA_RECORD, 40
HEADER_NAMES_USED_TO_ID_INFORMATION, 40

INFO_FILE_DESCRIPTION, 40
INFO_FILES_STORAGE_DIR, 41
NAMES_USED_TO_ID_DATA_RECORD, 40
NAMES_USED_TO_ID_INFORMATION, 40
ONLY_INSERT, 40
OUTPUT_BLOCK_NAME, 41
OUTPUT_FILENAME_START, 41
Post Paser Rule, 39
REMOVE_INFO_FILES, 41
sample application, 39
WRITE_DATA_LINE, 40
INPUT_DATE_FORMAT, 55, 58
INPUT_DIR_DEPTH, 14
INPUT_FILE_DATETIME_KEY, 55
INPUT_FILE_DESCRIPTION, 10, 13, 15, 55
INPUT_STORAGE_DIR, 7
Installation
gateway, 5
gateway framework, 5
parallel, 59
Perl, 5
INT_DIR, 4, 7
INTERMEDIATE_STORAGE_DIR, 7

JOIN
configuration, 42
COUNTERS_TO_JOIN_ON, 42

HEADER_COUNTERS_TO_USE_IN_OUTPUT_FILENAM

E, 42

HOURS_TO_WAIT_FOR_PARTNER_FILES, 42

OUTPUT_BLOCK_NAME, 42
OUTPUT_FILENAME_START, 42
Post Paser Rule, 41
QUOTE_INPUT_PIFS, 43
sample application, 41
TIME_JOINFILE_PRODUCED, 43

KEEP_RAW_GRANULARITY, 56
KEEP_WHERE, 34
Key

counter, 36
Launch

gateway, 9
LIF_BUCKET_LIMIT, 9, 15
LIF_TYPE_MAPPINGS, 18
LOCAL_DIR, 9
Log

level, 6

location, 6

output, parallel processing, 27
MANIP_ONLY, 44
MATCH, 33
MAX_NUMBER_OF_PROCESSES, 8
MAX_PEG_PIF_AGE, 56
MAX_PIF_LOCAL_MEMORY, 8
MAXIMUM_APPEND_STR, 29
MAXIMUM_COUNTERS, 29
MERGE_RECORDS

configuration, 44

COUNTERS_TO_SORT_ON, 44

GROUP_KEY, 44

MANIP_ONLY, 44

OUTPUT_BLOCK_NAME, 44

Post Paser Rule, 43

sample application, 43
MIN_FILES_PER_PROCESS, 26
MINIMUM_APPEND_STR, 29
MINUMUM_COUNTERS, 29
MP_FILENAME_EXTENSION, 10
NAMES_USED_TO_ID_DATA_RECORD, 40
NAMES_USED_TO_ID_INFORMATION, 40
NEW_CNAMES, 52
NEW_COUNTER_NAMES, 29
NEW_COUNTER_VALUE, 35
NEW_HEADER_COUNTERS, 49
NEW_REC_ID_NAME, 52
NON_ADDITIVE_COUNTERS, 29
NON_MATCH_RECORD, 33
Notification, 3

ENABLE_PER_FILE_NOTIFICATION, 25

NOTIFICATION_COMMAND, 25

notification_config, 25

NOTIFICATION_TARGET, 24

NOTIFICATION_TYPE, 24

REMOTE_SHELL_COMMAND, 25
SYSTEM_ENV_SETUP, 25

NOTIFICATION_COMMAND, 25
notification_config, 25
NOTIFICATION_TARGET, 24
NOTIFICATION_TYPE, 24
NUMBER_OF_FILES_TO_PROCESS, 10, 14
NUMBER_OF_PROCESSES, 26
NUMBER_OF_PROCESSES_DIST, 26
OLD_COUNTER_NAMES, 29
ONLY_INSERT, 38

ONLY_INSERT, 40

Appendix

ONLY_INSERT, 52 installation, 5
ORDER_OF_FILES, 14 path, 6
OUT_DIR, 4, 7 PERLIZE, 59
OUTPUT_BLOCK_NAME, 39 configuration, 46

DATA_COUNTERS_OP, 46
FILENAME_SUFFIX, 46
HEADER_COUNTERS_OP, 46

OUTPUT_BLOCK_NAME, 31, 32, 33, 35, 37
OUTPUT_BLOCK_NAME, 41

OUTPUT_BLOCK_NAME, 42 OUTPUT _BLOCK_NAME, 46
OUTPUT_BLOCK_NAME, 44 Post Paser Rule, 45
OUTPUT_BLOCK_NAME, 46 sample application, 45
OUTPUT_BLOCK_NAME, 48 PIF
OUTPUT_BLOCK_NAME, 52 maximum local memory, 8
OUTPUT_DIR, 33, 46, 48, 52 module, 8

storage, 8
OUTPUT_FILENAME_DELIMITER, 50 PIF 2 26
OUTPUT_FILENAME_START, 18, 21, 32, 41, 42, 48 -

PIF_2_CSV

OUTPUT_FORMAT, 10, 15, 48

configuration, 50
OUTPUT_RECORD_KEY, 15

COUNTERS_ORDER, 50

OUTPUT_RECORD_KEY, 49 FIELD_DELIMITER, 50
OUTPUT_RECORD_KEY_DELIMITER, 15, 49 HEADER_FIELDS_FOR_OUTPUT_FILENAME, 50
OUTPUT_STORAGE_DIR, 7 OUTPUT_FILENAME_DELIMITER, 50
OVERWRITE_FILES, 10 Post Paser Rule, 49

sample application, 49
PIF_2_LIF, 59
PIF_2_OUTPUT

Parallel PM/NPR installations, 59
Parallel processing, 25, 59
configuration, 24, 26

log and audit output, 27 configuration, 48
MIN_FILES_PER_PROCESS, 26 NEW_HEADER_COUNTERS, 49
NUMBER_OF_PROCESSES, 26 OUTPUT_BLOCK_NAME, 48
NUMBER_OF_PROCESSES_DIST, 26 OUTPUT_DIR, 48

OUTPUT_FILENAME_START, 48
OUTPUT_FORMAT, 48
OUTPUT_RECORD_KEY, 49
OUTPUT_RECORD_KEY_DELIMITER, 49

Post Parser processing, 27
parsersrc, 4
directory, 13

Parsing process Post Paser Rule, 47
engine, 2 sample application, 47
post parser, 2 PIF_Handler, 26
transfer in, 2

PIF_MODULE, 8
transfer out, 3
PIF_REMOVE

vendor gateway, 3
PASS, 11 configuration, 51

Post Paser Rule, 51

Path e
sample application, 51
Gateway framework, 6
Perl 6 PING_PROTOCOL, 10
protocol, 11 PING_RETRY_ATTEMPTS, 10
Vendor gateway, 6 Post Parser
PATTERN, 33 ACCUMULATE rule, 28

ACCUMULATE, sample rule application, 28
AGGREGATE_LINE rule, 30
AGGREGATE_LINE, sample application, 30

PEG_COUNTERS, 58
PEG_FILENAME_PREFIX, 56

pegged counter types, 53 BATCHFILES rule, 31

Performance BATCHFILES, sample application, 31
tips, 59 configuration, 14

Perl CVAL_MANIP rule, 32

uG-71

Appendix

CVAL_MANIP, sample application, 32 INPUT_STORAGE_DIR, 7
DATA_COUNTERS_ORDER, 15 INT_DIR, 7

DATALINE_WHERE rule, 34 INTERMEDIATE_STORAGE_DIR, 7
DATALINE_WHERE, sample application, 34 LIF_BUCKET_LIMIT, 9
DISABLE_LIF_BUCKET, 15 location, 6

FILE_SPLIT rule, 36 MAX_NUMBER_OF_PROCESSES, 8
FILE_SPLIT, sample application, 36 MAX_PIF_LOCAL_MEMORY, 8
FILE_SPLIT_BY_COUNTERS rule, 37 OUT_DIR, 7
FILE_SPLIT_BY_COUNTERS, sample application, 37 OUTPUT_STORAGE_DIR, 7
HEADER_COUNTER_ORDER, 15 PIF_MODULE, 8

INFOINSERT rule, 39 REMOTE_COMPRESS_TOOL, 8
INFOINSERT, sample application, 39 Protocol
INPUT_FILE_DESCRIPTION, 15 ftp, 11, 12

JOIN rule, 41 SCp/I’Cp, 11, 13

JOIN, sample application, 41
LIF_BUCKET_LIMIT, 15
MERGE_RECORDS rule, 43

PROTOCOL, 9
PROTOCOL_PATH, 11

MERGE_RECORDS, sample application, 43 QUOTE_INPUT_PIFS, 32, 43
OUTPUT_FORMAT, 15 REDUNDANT_DATA_COUNTERS, 15, 52
OUTPUT_RECORD_KEY, 15 REDUNDANT_HEADER_COUNTERS, 15

OUTPUT_RECORD_KEY_DELIMITER, 15
Parallel processing rules, 27

PERLIZE rule, 45

PERLIZE, sample application, 45

Release directory, 6
REMOTE_COMPRESS_TOOL, 8
REMOTE_DIR, 9

PIF_2 CSV rule, 49 REMOTE_SHELL_COMMAND, 25
PIF_2_CSV, sample application, 49 REMOVE_INFO_FILES, 41
PIF_2_OUTPUT rule, 47 REMOVE_WHERE, 35
PIF_2_OUTPUT, sample application, 47 RETRY ATTEMPTS. 11

PIF_REMOVE rule, 51
PIF_REMOVE, sample application, 51
PRODUCE_PIF, 15

RETRY_INTERVAL, 10
ROLLOVER_WINDOW, 58

REDUNDANT_DATA_COUNTERS, 15 RULE_DESC, 13, 17, 20, 21
REDUNDANT_HEADER_COUNTERS, 15 RULE_TYPE, 13, 17, 20, 21
RULE_DESC, 15 RULE_TYPE:, 14

RULE_TYPE, 14
rules, standard, 14
rules, vendor specific, 14

SPLIT_CNAMES, 38, 52
SPLIT_COUNTERS_ORDER, 37

SPLIT_RECORDS rule, 51 SPLIT__RECO_RDS

SPLIT_RECORDS, sample application, 51 configuration, 52

standard rules, 28 NEW_CNAMES, 52

UNPEGGER rule, 53 NEW_REC_ID_NAME, 52

UNPEGGER, sample application, 53 ONLY_INSERT, 52
PRODUCE PIF. 10. 15 OUTPUT_BLOCK_NAME, 52

OUTPUT_DIR, 52
Post Paser Rule, 51
REDUNDANT_DATA_COUNTERS, 52
Properties file sample application, 51
AUDIT_FILE, 7 SPLIT_CNAMES, 52
COMPRESS, 8
COMPRESS_TOOL, 8
configuration entries, 7

properties

gateway configuration, 6

ssh installations, 11
STARTDATE, 57
STARTTIME, 57

DEBUG, 7

DISK_FREE, 7 STATISTIC_HEADER_ENTRIES, 20
ENABLE_LIF_BUCKET, 8 Statistics

IN_DIR, 7 block, 19

Page 72

Appendix

configuration, 16
counter, 21
file, 16

Statistics, block
BLOCK_NAME, 21
HEADER_INFO_FOR_STATS_FILE, 20
OUTPUT_FILENAME_START, 21
RULE_DESC, 20
RULE_TYPE, 20
STATISTICS_BLOCKS_DESCRIPTION, 21
STATISTICS_FILE_DESCRIPTION, 20
STATISTICS_FILE_ENTRIES, 20

STATISTICS_FILE_ENTRIES_FOR_HEADER, 20

STATISTICS_HEADER_ENTRIES, 20
STATISTICS_HEADER_MAPPINGS, 20
STATISTICS_OUTPUT_DIRECTORY, 21
STATISTICS_UNKNOWN_SUB_TYPE, 20
Statistics, counter
COUNTER_LIST, 22
DISABLE_STATS, 22
HEADER_INFO_FOR_STATS_FILE, 22
RULE_DESC, 21
RULE_TYPE, 21
STATISTICS_HEADER_ENTRIES, 21
STATISTICS_HEADER_MAPPINGS, 22
STATISTICS_OUTPUT_DIRECTORY, 22
UTPUT_FILENAME_START, 22
Statistics, file
DATA_KEY_NAME, 18
HEADER_INFO_FOR_STATS_FILE, 17
LIF_TYPE_MAPPINGS, 18
OUTPUT_FILENAME_START, 18
RULE_DESC, 17
RULE_TYPE, 17
STATISTICS_FILE_DESCRIPTION, 17
STATISTICS_HEADER_ENTRIES, 17
STATISTICS_HEADER_MAPPINGS, 17
STATISTICS_OUTPUT_DIRECTORY, 18
STATISTICS_SUMMARY_PERIOD, 18
STATISTICS_BLOCKS_DESCRIPTION, 21
STATISTICS_FILE_DESCRIPTION, 17, 20
STATISTICS_FILE_ENTRIES_FOR_HEADER, 20
STATISTICS_FILENAME, 10
STATISTICS_HEADER_ENTRIES, 17, 21
STATISTICS_HEADER_MAPPINGS, 17, 20, 22
STATISTICS_OUTPUT_DIRECTORY, 18, 21, 22
STATISTICS_SUMMARY_PERIOD, 18
STATISTICS_UNKNOWN_SUB_TYPE, 20
StatisticsConfig.pm, 16, 18
Storage directories, 4
SYSTEM_ENV_SETUP, 25
TATISTIC_FILE_ENTRIES, 20

UG-73

TIME
counter, 36
Time and duration formats
unpegged data, 55
TIME_JOINFILE_PRODUCED, 43
TIMEOUT, 10
timestamp file, 12
TIMESTAMP_FILE, 9
tmpfs filesystems, 59
Transfer
bulk, 11
BULK_TRANSFER, 11
configuration, 9
DELETE_ORIGINAL, 10
DEPTH, 10
DIRECTION, 9
ENABLE_LOCAL_COMPRESSION, 10, 11
ftp, 11, 12
HOST, 9
INPUT_FILE_DESCRIPTION, 10
LOCAL_DIR, 9
NUMBER_OF_FILES_TO_PROCESS, 10
OUTPUT_FORMAT, 10
OVERWRITE_FILES, 10
PING_PROTOCOL, 10
PING_RETRY_ATTEMPTS, 10
PRODUCE_PIF, 10
protocol, 11
PROTOCOL, 9
PROTOCOL_PATH, 11
REMOTE_DIR, 9
RETRY_ATTEMPTS, 11
RETRY_INTERVAL, 10
RULE_DESC, 9
scp/rcp, 11, 13
stage, 59
STATISTICS_FILENAME, 10
TIMEOUT, 10
timestamp file, 12
TIMESTAMP_FILE, 9
TMP_FILENAME_EXTENSION, 10
tool, 9
TransferConfig.pm, 9, 11
UNPEG_FILE_TYPE, 56
DATA, 56
HEADER, 56
Unpegged data
time and duration formats, 55
UNPEGGER
CALCULATE_ROLLOVER, 56
INPUT_DATE_FORMAT, 55
INPUT_FILE_DATETIME_KEY, 55
KEEP_RAW_GRANULARITY, 56

Appendix

MAX_PEG_PIF_AGE, 56

PEG_FILENAME_PREFIX, 56

UNPEG_FILE_TYPE, 56
UNPEGGER

configuration, 55

INPUT_FILE_DESCRIPTION, 55

Post Paser Rule, 53

sample application, 53
UNPEGGER

DEFAULT_NULL_VALUE, 56
UNPEGGER

DATETIME_COUNTERS, 57
UNPEGGER

COUNTERS_TO_SORT_ON, 57
UNPEGGER

PEG_COUNTERS, 58
UNPEGGER

INPUT_DATE_FORMAT, 58
UNPEGGER
ROLLOVER_WINDOW, 58
USER, 11
UserConfig.pm, 14, 28
UTPUT_FILENAME_START, 22
Vendor

engine rule, 13
post Parser rules, 14

Vendor gateway, 3
gateway_start.sh, 6
path, 6

Vendor gateways, 4

vstart, 4

WRITE_DATA_LINE, 38

WRITE_DATA_LINE, 40

Page 74

Appendix

Examples

NotificationConfig.pm

#
w

Modify/Add rules for ITM Notification

#
my Q@rules_ITM = (
{

RULE_TYPE => 'ITM Notification',

RULE_DESC => 'ITM Alarm and Event Notification',

NOTIFICATION_TYPE => 'Alarm|Event’',

NOTIFICATION_COMMAND => 'itmlog', # command line script
NOTIFICATION_TARGET => '/appl/virtuo/logs/itmlog/gwstat',
ENABLE_PER_FILE_NOTIFICATION => 0, # set 1 to enable, 0 to disable

}I

Modify/Add rules for NPR Notification

HH =

my @rules_NPR = (
{
RULE_TYPE => 'NPR_Notification',
RULE_DESC => 'NPR Alarm Notification',
NOTIFICATION_TYPE => 'Alarm',
NOTIFICATION_COMMAND => 'npralarm', # command line script
NOTIFICATION_TARGET => 'TmnUdp',
REMOTE_SHELL_ COMMAND => 'remsh server -1 metrica', # modify the servername and rsh command
SYSTEM ENV_SETUP => '. /LOCAL/metrica/npr/setup.sh', # source environment setup

RULE_TYPE => 'NPR _Notification',

RULE_DESC => 'NPR Event Notification',

NOTIFICATION TYPE => 'Event',

NOTIFICATION_COMMAND => 'npralarm', # command line script

NOTIFICATION TARGET => 'TmnUdp',

REMOTE_SHELL_ COMMAND => 'remsh servername -1 metrica', # modify the servername and rsh

command
SYSTEM_ENV_SETUP => '. /LOCAL/metrica/npr/setup.sh', # source environment setup

}I

Modify/Add rules for MPM Notification

H

my @rules_MPM = (
{
RULE_TYPE => 'MPM Notification',
RULE_DESC => 'MPM Alarm Notification',
NOTIFICATION_TYPE => 'Alarm',
NOTIFICATION_COMMAND => 'mpmalarm', # command line script
NOTIFICATION_TARGET => 'Alarm Target',
REMOTE_SHELL_COMMAND => 'remsh server -1 metrica', # modify the servername and rsh command
SYSTEM ENV_SETUP => 'cd /LOCAL/metrica/mpmalarm dir', # go to the mpmalarm directory

RULE_TYPE => 'MPM Notification',

RULE_DESC => 'MPM Event Notification',

NOTIFICATION_TYPE => 'Event',

NOTIFICATION_COMMAND => 'mpmalarm', # command line script

NOTIFICATION_TARGET => 'Event_Target',

REMOTE_SHELL COMMAND => 'remsh servername -1 metrica', # modify the servername and rsh

command
SYSTEM _ENV_SETUP => 'cd /LOCAL/metrica/mpmalarm dir', # go to the mpmalarm directory

}I

UG-75

Appendix

Modify the rules name to return
#
w
sub notification_config {
return \Qrules;

}

Page 76

Appendix

Notices and Trademarks

This appendix contains the following:
* Notices

e Trademarks

Notices
This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in all countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user’s
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not grant you any license to these patents. You can send license
inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.

1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES
CORPORATION PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain
transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication. IBM
may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

UG -77

Appendix

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this one)
and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
274A/101

11400 Burnet Road
Austin, TX 78758
USA.

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the results
obtained in other operating environments may vary significantly. Some measurements may have been made
on development-level systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been estimated through
extrapolation. Actual results may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and cannot
confirm the accuracy of performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or withdrawal without notice,
and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Page 78

Appendix

Trademarks

IBM, the IBM logo and ibm.com are trademarks of International Business Machines Corp., registered in
many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other
companies. A current list of IBM trademarks is available on the Web at "Copyright and trademark
information" at http://www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or trademarks of
Adobe Systems Incorporated in the United States, and/or other countries.

Microsoft and Windows are trademarks of Microsoft Corporation in the United States, other countries, or
both.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon, Intel
SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in the
-5 United States, other countries, or both.

Java

[OMPATIBLE

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product or service names may be trademarks or service marks of others.

uG-79

Printed in the U.S.A.

