
IBM Tivoli Intelligent Orchestrator and
IBM Tivoli Provisioning Manager

Overview Guide
Version 1.1.1

 SC32-1419-01

IBM Tivoli Intelligent Orchestrator

Overview Guide
Version 1.1.1

 SC32-1419-01

Second Edition (December 2003)

© Copyright International Business Machines Corporation 2003. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM
Corp.

 Note
 Before using this information and the product it supports, read the information under "Notices".

Contents
Figures .v

Tables .vii

Preface . ix
Who should read this guide . ix
What this guide contains . ix
Publications . ix
Contacting software support .x
Conventions used in this book .x
Operating system-dependent variables and paths xi

Chapter 1. Introduction to the IBM Tivoli
Intelligent Orchestrator 1
Overview .1
 The Provisioning Manager .2
General architecture .2
Application environments .4
Data center infrastructure .5
 Servers and network devices .5
 External interfaces .5

Chapter 2. System architecture 7
Deployment Engine .8
 Workflow assembly component 8
 Workflow execution component8
Data Center Model .10
Data Acquisition Engine .10
 Application layer acquisition component11
 Operating system acquisition component11
 Server infrastructure acquisition component 11
 Networking infrastructure acquisition component . .12
Application Controller .12
 Prediction component .12
 Workload modeling component 15
 Classification component .15
Global Resource Manager .16
 Resource Broker component16
 Optimization component .17
 Stabilization component .18
 Resource pool manager component 18
Management Interface .18
 Web-based interface .19
 Command-line interface .21

Notices .23
Trademarks .24

Index . 27
© Copyright IBM Corp., 2003 iii

IBM Tivoli Intelligent Orchestrator: Overview Guideiv

Figures
1. The high-level architecture of the Tivoli Intelligent Orchestrator .7

2. The Deployment Engine components .8

3. Data Acquisition Engine components .11

4. Application Controller’s prediction component .13

5. Predicting a future demand level for a server .14

6. Application Controller’s classification component .15

7. The Global Resource Manager’s optimization component .17
© Copyright IBM Corp., 2003 v

IBM Tivoli Intelligent Orchestrator: Overview Guidevi

Tables
© Copyright IBM Corp., 2003 vii

IBM Tivoli Intelligent Orchestrator: Overview Guideviii

Preface
This guide provides an architectural overview of the IBM Tivoli Intelligent Orchestrator,
describes its main components and their interaction, and provides the guidelines for
authoring workflow standards. Also provided is a reference to the database tables used in
mapping information to the Tivoli Intelligent Orchestrator’s Data Center Model database.

Who should read this guide
This guide is intended for anyone who want to learn more about the Tivoli Intelligent
Orchestrator.

It is assumed that you have a certain degree of familiarity with a number of data
center-specific terms. Familiarity with n-tier applications architecture and data center
infrastructure may be helpful but is not required.

What this guide contains
This guide contains the following chapters:
• Chapter 1, “Introduction to the IBM Tivoli Intelligent Orchestrator”, describes the

context that triggered the inception of the Tivoli Intelligent Orchestrator, and provides
general information on the system architecture and functionality.

• Chapter 2, “System architecture”, provides an architectural overview of the Tivoli
Intelligent Orchestrator, provides details for each system component, and describes
the interactions between all of the system components.

Publications
This section lists publications in the Tivoli Intelligent Orchestrator library and related
documents. It also describes how to access Tivoli publications online and how to order
Tivoli publications.

Tivoli Intelligent Orchestrator library
The following manuals are available in the Tivoli Intelligent Orchestrator library for
version 1.1.1:
• This manual, IBM Tivoli Intelligent Orchestrator: Overview Guide provides an

architectural overview of the Tivoli Intelligent Orchestrator, describes its main
components and their interaction.

• The IBM Tivoli Intelligent Orchestrator: Operator’s Guide, contains a general
overview of the architecture and functionality of the Tivoli Intelligent Orchestrator
and describes the procedures to configure and operate the system.

• The IBM Tivoli Intelligent Orchestrator: Installation Guide provides all the necessary
information to install the Tivoli Intelligent Orchestrator and its third-party components
on Windows 2000, AIX, Solaris and RedHat Linux.
© Copyright IBM Corp., 2003 ix

Accessing publications online
IBM posts the Release Notes for the IBM Tivoli Intelligent Orchestrator product along
with publications for this and all other Tivoli products, as they become available and
whenever they are updated, to the Tivoli Software Information Center Web site. The
Tivoli Software Information Center is located by using the following Web address:

http://www.ibm.com/software/tivoli/library/

Click the Product manuals link to access the Tivoli Software Information Center.

Click the IBM Tivoli Intelligent Orchestrator link to access the product library.

Note: If you print PDF documents on other than letter-sized paper, select the Fit to page
check box in the Adobe Acrobat Print dialog. This option is available when you
click File —> Print. Fit to page ensures that the full dimensions of a letter-sized
page print on the paper that you are using.

Contacting software support
If you have a problem with any Tivoli product, refer to the following IBM Software
Support Web site:

http:\\www.ibm.com\software\sysmgmt\products\support\

If you want to contact software support, see the IBM Software Support Guide at the
following Web site:

http:\\techsupport.services.ibm.com\guides\handbook.html

The guide provides information about how to contact IBM Software Support, depending
on the severity of your problem, and the following information:
• Registration and eligibility
• Telephone numbers and e-mail addresses, depending on the country in which you are

located
• Information you must have before contacting IBM Software Support

Conventions used in this book
This guide uses the following typeface conventions:

Bold
• Lowercase commands and mixed case commands that are otherwise difficult to

distinguish from surrounding text
• Interface controls (check boxes, push buttons, radio buttons, spin buttons, fields,

folders, icons, list boxes, items inside list boxes, multicolumn lists, containers,
menu choices, menu names, tabs, property sheets), labels (such as Tip:, and
Operating system considerations:)

• Column headings in a table
• Keywords and parameters in text

Italic
• Citations (titles of books, diskettes, and CDs)
• Words defined in text
• Emphasis of words (words as words)
IBM Tivoli Intelligent Orchestrator: Overview Guidex

http://www.ibm.com/software/tivoli/library/
http:\\www.ibm.comoftwareysmgmt\productsupport\
http:\\techsupport.services.ibm.com�uides\handbook.html

• Letters as letters
• New terms in text
• Variables and values you must provide

Monospace

• Examples and code examples
• File names, programming keywords, and other elements that are difficult to

distinguish from surrounding text
• Message text and prompts addressed to the user
• Text that the user must type
• Values for arguments or command options

<text>
Indicates a variable in a path name. For example, in the path <INSTALL-DIR>\tlm,
INSTALL-DIR depends on the location where you have installed the component, while
\tlm is constant.

Operating system-dependent variables and paths
This guide uses the Windows convention for specifying environment variables and for
directory notation.

When using the UNIX command line, replace %variable% with $variable for
environment variables and replace each backslash (\) with a forward slash (/) in directory
paths.

Note: If you are using the bash shell on a Windows® system, you can use the UNIX®
conventions.
Preface xi

IBM Tivoli Intelligent Orchestrator: Overview Guidexii

Chapter 1. Introduction to the IBM Tivoli Intelligent Orchestrator
This chapter describes the context that triggered the inception of the IBM Tivoli
Intelligent Orchestrator, and provides general information on the Tivoli Intelligent
Orchestrator’s architecture and main components. The following information is included:
• Overview
• General architecture
• Application environments
• Data center infrastructure

Overview
The increased use of information, as well as the increased need of technology to organize
and take advantage of this information led to an increase in the demand on data centers. As
a result, data centers have encountered problems with managing resources and providing
appropriate levels of service for hosted applications.

Data centers host business applications according to certain expected execution service
levels and based on various factors, such as operational responsiveness and application
performance, availability, and security. These expectations are often satisfied via isolation
and over-provisioning.
• Isolation means separating unrelated applications, and dedicating each application to a

certain execution environment consisting of network and server infrastructure. The
goal is to ensure that high application demand, faults, or security breaches do not
affect the performance, availability, and security of another application.

• Over-provisioning means oversupplying server power in order to meet anticipated
peak application demands, and prevent poor response times in case the application
encounters unexpected demands.

When isolation is used, and each application is over-provisioned within each isolated
application environment, the result is a “trapped” capacity, that cannot be used by other
applications during times of high demand. The use of isolation and over-provisioning to
meet expected service levels results in a low aggregated resource utilization and
optimization.

The Tivoli Intelligent Orchestrator is an automated resource management solution for
corporate and Internet data centers. The system is the first and only robust software
solution that creates a direct, real-time correlation between application specific service
level commitments and the computing resources required to meet these commitments. The
Tivoli Intelligent Orchestrator proactively configures resources among applications in a
multi-application environment to balance end-user traffic demands, excess capacity, and
the contractual obligations of service level agreements. Using an adaptive control
technology, the system accurately predicts capacity fluctuations, and facilitates dynamic
infrastructure reallocation.

The Tivoli Intelligent Orchestrator offers a powerful system that can:
• Gather information about the performance of all your application clusters and build a

workload model that can predict resource requirements going forward
© Copyright IBM Corp., 2003 1

• Manage resources across all your application clusters to optimize business-aligned
service level delivery

• Automate the deployment of the optimal computing resources to each application
environment

The Tivoli Intelligent Orchestrator automates the management of data center resources,
allowing automatic policy-based management of computing resources and service level
objectives by automating three key data center processes: infrastructure provisioning,
capacity management, and service level management.

The Tivoli Intelligent Orchestrator enables you to create, customize, and store for further
use a large variety of workflows that automate all data center processes, and makes it
possible to build a powerful library of processes that can be assembled to meet any data
center process requirement. The Tivoli Intelligent Orchestrator’s workflows automate
various data center processes, from configuring and allocating servers, to installing,
configuring, and patching software, and can be either large and complex or as simple as a
single command.

Tivoli Intelligent Orchestrator requires an abstraction of the logical structure of an
application, as well as the physical application deployment. The same application is
deployed into different environments, such as testing, staging, or production
environments. Application software, as well as installing, configuring, patching software
are very complex. By modeling all the software dependencies and identifying software
device drivers, the relationship between workflows and software products is very much
simplified. Deployment Engine workflows become device drivers as part of Tivoli
Intelligent Orchestrator’s support for various hardware and software products. The system
extends the existing Data Center Model and Deployment Engine components, enabling a
new way of viewing workflows.

The Provisioning Manager
Within the IBM® Tivoli® Intelligent Orchestrator, the IBM® Tivoli® Provisioning
Manager is a stand-alone product that can be purchased separately, based on your data
center business needs. The Provisioning Manager automates the manual provisioning
process of infrastructure deployment. It captures and automates the execution of your best
practices for managing data center resources by building a framework to compile and then
repeatedly execute these best practices consistently and efficiently. The Provisioning
Manager comes with predefined best practices for standard products from all major
infrastructure vendors.

General architecture
Tivoli Intelligent Orchestrator’s architecture includes the following main components:

Deployment Engine
This component is responsible for the creation, the storage, and the execution of
repeatable workflows that automate the server configuration and allocation in the
system. A workflow can represent either an entire reconfiguration process
affecting multiple servers, or a single step in a larger reconfiguration process.

Data Center Model
This component includes a representation of all of the physical and logical assets
under Tivoli Intelligent Orchestrator’s management, such as servers, switches,
load balancers, application software, VLANs, security policies, service level
IBM Tivoli Intelligent Orchestrator: Overview Guide2

agreements, etc. It keeps track of the data center hardware and associated
allocations to customer sites.

Data Acquisition Engine
This component is responsible for acquiring and pre-processing performance data
from each managed application environment. Data is captured from the
application, operating system, and infrastructure layers. This component uses a
subscribing mechanism to distribute signals to other components of the Tivoli
Intelligent Orchestrator, and performs filtering of raw signals.

Application Controller
An instance of the Application Controller is created for each application
environment under management. Based on the application’s workload model and
predictions, as well as on real-time performance data, this component determines
the resource requirements of the application.

Global Resource Manager
This component receives requirements for servers or network devices from all the
application controllers, and manages the overall optimization. It has two primary
responsibilities: makes optimal resource allocation decisions, and ensures a stable
control over the application infrastructure. Considering the different server
requirements for each application environment, it determines where the servers
are to be allocated.

Management Interface
This component provides an overview of the state of all physical and logical
assets in the data center infrastructure, offering information about the servers and
their allocation, and generating configurations and allocations. It can also be used
to create application environments. It includes two user interfaces: a web-based
interface, and a command-line interface.

Note: For additional information on the Tivoli Intelligent Orchestrator’s general
architecture, refer to the next chapter, “System architecture”.
Chapter 1: Introduction to the IBM Tivoli Intelligent Orchestrator 3

Application environments
Tivoli Intelligent Orchestrator’s management system proactively configures servers and
network devices in a multi-application environment, so as to balance the demand for
computing resources, excess computing resources, and predetermined levels of service for
each application. Each application managed by the system is part of an application
environment. Based on a service level agreement, each application environment has a
predetermined level of service that must be met. Tivoli Intelligent Orchestrator has an
all-around control over the application environments. Each application environment
includes the following layers:

Networking infrastructure layer
This layer includes the connections between servers in the application
environment and servers outside the application environment, and describes the
way the application environments are interconnected.
It contains various networking infrastructure items, such as switches, routers, load
balancers, and firewalls.

Server infrastructure layer
This layer contains all of the servers allocated to the current application
environment, based on which both the application layer and the operating system
layer function.

Operating system layer
This layer provides a base operating level for the server infrastructure layer. It acts
as an intermediary between the application layer and the server infrastructure
layer, assisting the application layer in performing various functions. The
operating system layer is based on a Microsoft Windows™, Unix, or Linux
operating system.

Application layer
This layer contains the application hosted by the data center infrastructure and
managed by Tivoli Intelligent Orchestrator, and defines the functionality of the
application environment. The available application types are:

System administrators can create application environments by using the user interface that
communicates with all Tivoli Intelligent Orchestrator’s components.
Alternately, the Deployment Engine that communicates with the data center infrastructure,
can automatically create an application environment.

Type Description
Web Processes incoming http requests for applications.
Application Provides business transaction functionality.
Database Ensures the interface with the database, managing information

via creating, reading, updating, or removing records.
IBM Tivoli Intelligent Orchestrator: Overview Guide4

Data center infrastructure
The data center infrastructure contains computing resources that are configured and
managed by Tivoli Intelligent Orchestrator, such as:
• Servers and network devices, from the server infrastructure and networking

infrastructure layers of the application environment.
• External interfaces, that ensure the interaction between Tivoli Intelligent

Orchestrator and the external systems that provide value-added services, such as other
operational support systems.

Servers and network devices
The server infrastructure layer includes all of the servers allocated to the current
application environment. For management purposes, these servers are pooled. The
unallocated servers are grouped, to allow them to be allocated together to an application
environment. An application environment can contain multiple groups of servers.

The network devices in the networking infrastructure layer include network switches,
routers, firewalls, load balancers, etc. When switches are present in the data center
infrastructure, virtual local area networks (VLANs) are possible, and they are controlled
and configured by the Tivoli Intelligent Orchestrator.

External interfaces
An external interface in the data center infrastructure ensures the interaction between
Tivoli Intelligent Orchestrator and external systems that provide other value-added
services. For example, the external interface can have a billing interface, connected to a
billing system, for providing billing functions.

The billing interface is invoked by the Deployment Engine, and provides all the resource
allocation information required for billing purposes. For example, the billing interface
provides information on how many overflow servers have been allocated to a client, and
for how long.

Other external systems that have an interface with Tivoli Intelligent Orchestrator’s
external interface include various other operational support systems, such as system
management applications, content management applications, fault management
applications, and customer portals.
Chapter 1: Introduction to the IBM Tivoli Intelligent Orchestrator 5

IBM Tivoli Intelligent Orchestrator: Overview Guide6

Chapter 2. System architecture
Tivoli Intelligent Orchestrator is a professional data center infrastructure management
system that proactively configures servers and network devices in a multi-application
environment, so as to balance end-user traffic demands, excess capacity, and the
predetermined levels of service for each application. Each application managed by the
system is part of an application environment. Based on a service level agreement, each
application environment has a predetermined level of service that must be met. Tivoli
Intelligent Orchestrator has an all-around control over the application environments.

Tivoli Intelligent Orchestrator’s architecture includes the following main components:
• Deployment Engine
• Data Center Model
• Data Acquisition Engine
• Application Controller
• Global Resource Manager
• Management Interface
The figure below illustrates Tivoli Intelligent Orchestrator’s general architecture, and
shows the interaction between the main components of the system.

Figure 1. The high-level architecture of the Tivoli Intelligent Orchestrator

Note: This includes a
Breach Probability Distribution Function
of the number of servers allocated and
time into the future

DEPLOYMENT ENGINE

GLOBAL RESOURCE MANAGER

Optimizer Stabilizer Resource Pool
Manager

DATA CENTER

DATA
CENTER
MODEL

JDBC

Optimal
requests

SN
MP

SS
H

APPLICATION CONTROLLER

Predicto
r

Classifie
r

Workloa
d Model

APPLICATION CONTROLLER

Predicto
r

Classifie
r

Workloa
d Model

APPLICATION CONTROLLER

Predictor ClassifierWorkload
Model

DATA ACQUISITION ENGINE

JMX Driver

FIR Digital Filter

SNMP
Driver

Fi
lte

re
d

A
pp

1
Pe

rf
 D

at
a

Fi
lte

re
d

A
pp

2
Pe

rf
 D

at
a

Fi
lte

re
d

A
pp

3
Pe

rf
 D

at
a

Step 1

Workflow

SNMP
Driver

SSH
Driver

Step 2 Step n

D
is

tr
ib

ut
io

ns

In
fr

as
tr

uc
tu

re
N

ee
de

d

In
fr

as
tr

uc
tu

re
N

ee
de

d

In
fr

as
tr

uc
tu

re
N

ee
de

d

JD
B

C

D
ep

lo
ym

en
t R

eq
ue

st
s

JDBC

JDBC

SNMP

JMX

Policy Engines components

Resource
Managers

QueriesStable
requests

Recommendations

R
es

ou
rc

e
A

llo
ca

tio
ns

B
es

t S
er

ve
r

© Copyright IBM Corp., 2003 7

Deployment Engine
The Deployment Engine is responsible for the creation, the storage, and the execution of
repeatable workflows that automate the server configuration and allocation in the system.
A workflow can represent either an entire reconfiguration process affecting multiple
servers, or a single step in a larger reconfiguration process. The Deployment Engine
processes high-level configuration requests by executing various low-level configuration
commands that configure any device in the environment. These commands are
sequentially passed onto device-dependent drivers. Multiple processes and physical
servers independently process entire commands, which are further delegated to external
systems for system management. The Deployment Engine receives a reconfiguration
command through a deployment request interface, which forwards the reconfiguration
commands to a deployment engine controller. The controller includes the following
components:
• Workflow assembly component
• Workflow execution component

Workflow assembly component
This component receives the reconfiguration command and coordinates the translation of
the reconfiguration command into an executable workflow. This mechanism searches a
workflow database to determine if the reconfiguration command, or parts of it, can be
represented by workflows that have been previously created and stored in the database.

Workflow execution component
After a workflow has been determined for the reconfiguration command, this component
receives the workflow for execution, and determines which server pertains to which each
step in the workflow. It passes a command corresponding to each step to a servers
interface. A workflow execution controller controls the workflow execution, and provides
multiple working threads to allow simultaneous execution of multiple workflows.

Figure 2. The Deployment Engine components

DEPLOYMENT
REQUEST

INTERFACE

DEPLOYMENT ENGINE
CONTROLLER

WORKFLOW ASSEMBLY
COMPONENT

WORKFLOW
DATABASE

WORKFLOW EXECUTION
COMPONENT

Worklflow Execution
Controller

Step Confirmation
Subsystem

LOGICAL DEVICE OPERATIONS

Cisco
Switch Interface

Extreme Alpine
Switch Interface

Windows OS
Server Interface

Unix
Server Interface
IBM Tivoli Intelligent Orchestrator: Overview Guide8

A step confirmation subsystem awaits for confirmation of successful implementation of
the step on the destination servers. If the confirmation does not arrive in a predetermined
time interval, the step confirmation subsystem informs the workflow execution controller,
which awaits for a predetermined time before executing the next step. If the previous step
was not successfully implemented, the workflow execution controller may re-execute that
previous step. This ensures that each step in the workflow has been successfully
implemented before subsequent steps are executed. Alternatively, the workflow execution
controller can decide to continue execution of the workflow, regardless of the successful
or unsuccessful implementation of each step in the workflow.

Deploying commands to servers
The logical device operations interface contains an interface to each type of device that
can be configured in the data center infrastructure. For example, it can contain different
interfaces for different types of switches, different interfaces for different types of servers,
etc.

The workflow execution mechanism forwards a command to the appropriate interface,
which formats the command messages so as to make them recognizable and easy to handle
by the destination server. The interface sends the formatted command to this server and
awaits the confirmation of the subsequent change in configuration.

When a reconfiguration command is received, the workflow database is searched to
determine if there are any existing workflows that have been previously created for
performing the same function. If the reconfiguration command can be completely
represented by an existing workflow, the workflow is executed. If sufficiently detailed, the
smaller workflow steps are executed by the server or network device for which they are
destined.

Executing the workflow steps
When the level of detail of the steps in the main workflow is appropriate, the workflow is
executed, following these steps:
1. The step is examined to identify the server or network device on which it will be

executed.
2. A command corresponding to the step is created.
3. The command is formatted to be recognizable by the specific server.
4. The formatted command is sent to the appropriate server.
5. A receipt of the command implementation is received from the server.
6. If all steps in the workflow have been executed, the status of the resource is saved in

the Data Center Model database.
The workflows can create new application environments, create new application clusters,
and add or remove servers to or from running application clusters. The workflows can also
be created to perform any of the following functions:
• Deploy an application environment, or any part of it, on a server
• Reboot a server
• Configure network communications on a server
• Communicate with switching devices to reconfigure servers on a VLAN
• Communicate with load balancers to reconfigure a cluster
• Reconfigure an application environment
• Inform the fault management system of an invalid action
Chapter 2: System architecture 9

• Raise a billing event

Data Center Model
The Data Center Model component includes a representation of all of the physical and
logical assets under Tivoli Intelligent Orchestrator’s management, such as servers,
switches, load balancers, application software, VLANs, security policies, service level
agreements, etc. It keeps track of the data center hardware and associated allocations to
customer sites.

The database facilitates the information transfer between all of the other Tivoli Intelligent
Orchestrator components, and makes it possible for these components to read and update
this information according to any resource manipulations that have been performed. Also
stored in the central database is information on various server groups, allocated or
unallocated. For a group of servers, this information can include, for example, server
identifiers, the group size, the number of active and idle servers, server priority within that
group, etc.

Data Acquisition Engine
The Data Acquisition Engine component is responsible for acquiring and pre-processing
performance data from each managed application environment. Data is captured from the
application, operating system, and infrastructure layers. This component uses a
subscribing mechanism to distribute signals to other Tivoli Intelligent Orchestrator
components, and performs filtering of raw signals.

The Data Acquisition Engine contains the following components that gather information
from their respective application environment layers:
• Application layer acquisition component
• Operating system acquisition component
• Server infrastructure acquisition component
• Networking infrastructure acquisition component
All of these acquisition components pass the obtained information to the acquisition
controller, which passes it on to an application controller interface, which then forwards it
to the Application Controller.
IBM Tivoli Intelligent Orchestrator: Overview Guide10

The figure below illustrates the interaction between all of these components.

Figure 3. Data Acquisition Engine components

A timing subsystem controls the timing of the data acquisition, and keeps a record of the
last set of data obtained from each layer in each application environment. At
predetermined intervals, the timing subsystem informs the acquisition controller that a
predetermined time period has elapsed. In response, the acquisition controller sends a
command to one of the acquisition components, to obtain data from a specific application
environment. The acquisition of data from each layer in the application environment can
be performed simultaneously or can be staggered.

Application layer acquisition component
This component gathers information from the application layer through its application
layer interface, that obtains information from all of the web, application, and database
servers in the system. For example, the obtained information could be the processing
speed of requests in the application environment, and the response time to requests.

Operating system acquisition component
This component gathers information from the operating system layer, through its
operating system interface. Involved in this process are mechanisms that are used by both
the infrastructure and the application layers to expose performance data.

Server infrastructure acquisition component
This component gathers information from the server infrastructure layer through its server
infrastructure interface. The obtained information shows how much of the total
processing power or how much of the total memory is currently being used. The
information is based on the server groups that have been allocated to a specific application
environment.

OPERATING SYSTEM
ACQUISITION COMPONENT

Operating System
Interface

SERVER INFRASTRUCTURE
ACQUISITION COMPONENT

Server Infrastructure
Interface

Central Database
Interface

APPLICATION LAYER
ACQUISITION COMPONENT

Application Layer
Interface

NETWORKING
INFRASTRUCTURE

ACQUISITION COMPONENT

Networking Infrastructure
Interface

ACQUISITION
CONTROLLER

Application Controller
Interface

 TIMING
SUBSYSTEM
Chapter 2: System architecture 11

Networking infrastructure acquisition component
This component gathers information from the networking infrastructure layer, through its
networking infrastructure interface. The information is obtained from switches, routers,
firewalls, and load balancers, and shows how much of the bandwidth allocated to an
application environment is being used, and the transaction rates at a protocol level.

Application Controller
An instance of the Application Controller is created for each application environment
under management. Based on the application’s workload model and predictions, and using
the real-time performance data provided by the Data Acquisition Engine, the Application
Controller determines the resource requirements of the application, which are then sent to
the Resource Broker component, which manages the overall optimization. The
Application Controller incorporates prediction into an adaptive controller that suggests
resource requirements to the Resource Broker.

The Application Controller comprises the following components that interact to monitor
the performance and predict the future demand levels for the application environment, so
as to maintain the predetermined level of service:
• A Prediction component
• A Workload modeling component
• A Classification component

Prediction component
The prediction component receives demand information from the Data Acquisition Engine
through the monitoring data interface, and predicts the future demand for the system’s
resources, for example, the arrival rate (hits/sec.) measurements for a web cluster.
The demand information for a particular server or network device is used by the predictor
to determine both stationary and non-stationary trends. By definition, the stationary
(time-serial) trends in the demand information are random, while the non-stationary
(time-varying) trends are periodic, occuring at regular intervals, such as every day at a
particular time, a particular day of the week, etc.

From the monitoring data interface, the demand information is sent to the following
subsystems:
• Autocorrelation subsystem
• Time-varying trends detection subsystem
• Time-varying trends removal subsystem
IBM Tivoli Intelligent Orchestrator: Overview Guide12

The figure below illustrates the interaction between the prediction component’s
subsystems:

Figure 4. Application Controller’s prediction component

Autocorrelation subsystem
This subsystem detects non-randomness in the demand information received from the
monitoring data interface. If the demand information is not random, this subsystem creates
a periodic time series model (or autocorrelation function) of the demand information. This
autocorrelation function is a measurement of similarity between distributions of sample
data.

Time-varying trends detection subsystem
This subsystem receives the demand information and the autocorrelation function from the
autocorrelation subsystem. It analyzes this information to determine time-varying trends
in the demand information for a particular server. The time-varying trends are those
patterns of server demand that occur at regular intervals, such as every day at a particular
time, a particular day of the week, etc.

A modeling unit in the time-varying trends detection subsystem creates a model of the
time-varying information, based on a two factor full factorial design without replication
algorithm. The model created by the modeling unit is periodic, and its periodicity can be
leveraged to extend the model beyond the results provided to predict the future demand
based on the recurring periodic nature of the current demand. The assumption with this
extension is that there will be no large singular demands, and that demand levels will
remain relatively consistent.

Time-varying trends removal subsystem
This subsystem removes the time varying components from the demand information
received from the Time-varying trends detection subsystem. The removed time varying
components are provided to a stationary trends detection subsystem, which creates a
model of time-serial trends in the demand information, based on a linear autoregressive
model.

Monitoring Data
Interface

TIME-VARYING TRENDS
DETECTION SUBSYSTEM

MODELING UNIT

Estimation
Interface

STATIONARY TRENDS
DETECTION
SUBSYSTEM

TIME-VARYING
TRENDS REMOVAL

SUBSYSTEM

AUTOCORRELATION
SUBSYSTEM
Chapter 2: System architecture 13

The time-serial trend model is periodic, and its periodicity can be leveraged to extend the
model beyond the results provided to predict the future demand based on the recurring
periodic nature of the current demand. The assumption with this extension is that there
will be no large singular demands, and that demand levels will remain relatively
consistent.

The models created by the time-varying and stationary trends detection subsystems are
passed to an estimation interface, where they are combined to provide a prediction for
future demand levels, based on the server from which the demand information was taken.
This combination is an aggregation of the time-varying model and the stationary model.

Figure 5. Predicting a future demand level for a server

Prediction algorithm
By modeling the traffic as a composition of two subproblems, one addressing
non-stationary traffic, and another addressing stationary time series traffic, the system can
achieve high probabilistic prediction rates.

Typically, the system uses the fine-grained non-stationary patterns according to the
time-of-day and day-of-week factors. The stationary traffic is obtained from approximating
this pattern and removing it from the original signal, and can be modeled to accommodate
both the random and the growth aspects of the expected traffic.

RECEIVE DEMAND INFORMATION FOR A SERVER

CREATE AN AUTOCORRELATION FUNCTION FROM THE
DEMAND INFORMATION

DETERMINE TIME-VARYING TRENDS IN THE DEMAND
INFORMATION

CREATE A MODEL OF THE TIME-VARYING INFORMATION IN
THE DEMAND INFORMATION

REMOVE THE TIME-VARYING COMPONENT FROM THE
DEMAND INFORMATION

DETERMINE A STATIONARY TRENDS MODEL BASED ON THE
DEMAND INFORMATION WITH THE REMOVED

TIME-VARYING COMPONENT

COMBINE THE TIME-VARYING TRENDS MODEL AND THE
TIME-SERIAL TRENDS MODEL
IBM Tivoli Intelligent Orchestrator: Overview Guide14

Workload modeling component
This Application Controller component estimates each application environment’s
response to incoming traffic. It obtains the predicted future demand load from the
Prediction component, and current performance information for a particular application
environment from the Data Acquisition Engine. The performance information contains
data describing the current demand loads for that application environment, as well as
server performance data for the application environment under that demand. For example,
the performance data can be the utilization of the servers allocated to that application
environment. Based on this information, the servers in that application environment can be
determined by considering the changing levels of demand. Based on the predicted
demand, the workload modeling component estimates how the application environment
will perform under the future load conditions, by using a linear regression model. The
determined performance and demand parameters are: service time, service rate, variance,
etc.

The workload modeling component also generates statistics for the critical CPU and
critical arrival rate, which are then used to calculate the probability breach.
Based on the predetermined level of service for the application environment, the demand
rate obtained from the Prediction component, and the performance and demand
parameters, the workload modeling component uses, for example, a single-station queuing
model, such as M/M/1 (M-distribution of interarrival times is exponential/M-distribution
of service demand times is exponential/1-number of servers). This produces the demand
rate at which the current servers in the application environment will not be able to
maintain the predetermined level of service under the predicted demand. Separate queuing
models are used for each workload class.

Classification component
This Application Controller component uses the information obtained from the Workload
modeling component to determine how each application environment meets the
predetermined level of service, and what changes should be made to maintain it. A server
requirements detection subsystem determines the server demand for that application
environment, to maintain the predetermined level of service.

Figure 6. Application Controller’s classification component

The server requirements detection subsystem uses real environment performance data
indicating the used servers, the level of demand, and the performance of the application
environment under these conditions. Considering the current servers used by the
application environment and its performance, the server requirements detection subsystem
determines the operating requirements of the application environment. The server
requirements for the application environment can be extrapolated from the current
performance.

SERVER
REQUIREMENTS

DETECTION
SUBSYSTEM

DEGRADATION
PREDICTION
SUBSYSTEM
Chapter 2: System architecture 15

A degradation prediction subsystem predicts the way the application environment
performance will degrade if the determined server requirements are not implemented. This
subsystem compares the predicted degradation of performance with the predetermined
service level for the application environment, to determine any discrepancies.

Global Resource Manager
This component receives requirements for servers or network devices from all the
application controllers, and manages the overall optimization. This component has two
primary responsibilities:
• Makes optimal server allocation decisions
• Ensures a stable control over the application infrastructure
Considering the different server requirements for each application environment, the
Global Resource Manager determines where the servers are to be allocated. The server
reconfiguration and allocation data is then passed on to the Deployment Engine, which
breaks down the configuration changes into commands that are formatted and sent to the
involved servers and network devices to implement the changes.

The Global Resource Manager is comprised of the following components that all work
together to determine the configuration and allocation for each server in the system:
• A Resource Broker component
• An Optimization component
• A Stabilization component
• A Resource pool manager component
The Resource Broker component uses real-time optimization algorithms, and manages the
overall data center servers to optimally meet individual system demands. The optimization
component receives the requirements for servers and network devices from the
Application Controller, and determines the server configuration that best meets the
anticipated needs of the application environment. The new server configuration is
analyzed by a stabilization component, to ensure that the requirements for each
application environment have been determined under stable conditions, without erratic
fluctuations in the demand, and that each application environment will remain stable after
the changes. After the new server configuration has been deemed stable, a resource pool
manager determines the individual servers that must be added or removed from each
application environment, in order to meet the anticipated demand changes.

Resource Broker component
This component manages all the resource pools, and attempts to service server requests
from each of the application controllers. Using real-time optimization algorithms, it
manages the overall data center servers to optimally meet individual system demands.
The Resource Broker attempts to maintain some surplus servers for quick deployment into
needy sites. When the overall demand on the data center is near its capacity, this
component weighs individual site’s needs with their particular service level agreements, to
decide which sites get additional capacity and which sites are left underpowered.

This is the central component that manages all requests to optimize the use of available
servers. When a decision requiring a change to the infrastructure is made, the Resource
Broker package issues commands to the Deployment Engine.
IBM Tivoli Intelligent Orchestrator: Overview Guide16

Optimization component
This component uses the anticipated server requirements provided by the application
controllers to determine a balance between requirements for different application
environments that are competing for the same servers. The anticipated server requirements
are received through a requirements interface, which passes this information to a request
type sorting component, which sorts the requests according to the type of server requested.
For example, the requests for an additional server with a Unix operating system are sorted
from the requests for an additional server with a Windows operating system.

The optimization component contains a server optimizer for each type of server in the
system, as exemplified in the following figure. Each server optimizer contains the
following subsystems:
• Creation subsystem
• Trimming/Pruning subsystem
• Search subsystem
• Editing subsystem
The server optimizers create decision trees based on the received server request, the
available servers, and the predetermined level of service for the current application
environment and for all other application environments.

Figure 7. The Global Resource Manager’s optimization component

The request type sorting compunent passes the server request to the appropriate server
optimizer. Within the optimizer, the tree creation subsystem receives the server request,
and creates a decision tree. Each branch in the decision tree specifies the number of
servers to be added or removed from each unallocated or allocated server group.

REQUIREMENTS
INTERFACE

REQUEST TYPE
SORTING

COMPONENT

UNIX OS SERVER OPTIMIZER

TREE SEARCH SUBSYSTEM

SEARCH TIME LIMIT SUBSYSTEM

BRANCH ANALYZING SUBSYSTEM

CPU Utilization
UnitIdle Servers Unit

Threshold
Comparison Unit

Estimate CPU
Utilization Unit

TREE CREATION
SUBSYSTEM

TREE EDITING
SUBSYSTEM

TREE TRIMMING SUBSYSTEM

WINDOWS OS SERVER OPTIMIZER

TREE SEARCH SUBSYSTEM

BRANCH ANALYZING SUBSYSTEM

SEARCH TIME LIMIT SUBSYSTEM

TREE CREATION
SUBSYSTEM

TREE EDITING
SUBSYSTEM

TREE TRIMMING SUBSYSTEM

CPU Utilization
UnitIdle Servers Unit

Threshold
Comparison Unit

Estimate CPU
Utilization Unit
Chapter 2: System architecture 17

The decision tree is created by determining every possible combination, change, or
permutation in the server allocation, and then determining every possible second step
combination, etc. for both current moment in time and throughout the future predicted
time horizon. Starting with the current configuration of each server in the application
environment, new branches are created for each possible configuration change that results
in a new configuration.

Stabilization component
This component analyzes and filters the server changes indicated by the Optimization
component, to determine whether similar changes were recently implemented. It
maintains a stability in the server allocation and configuration, to prevent servers from
being reconfigured and reallocated as a result of erratic changes in demand or performance
of an application environment. The stabilization component can, for example, apply a
time-based filter that prevents multiple opposing changes for a specified period of time.

Resource pool manager component
This component is responsible for the preliminary configuration and allocation of
currently unallocated groups of servers. The preliminary configuration hastens the
allocation of a server to an application environment. The resource pool manager
determines the most used general configuration (for example, operating system), and
configures groups of unallocated servers accordingly, to ensure that more servers that have
the mostly used configuration are available.

Management Interface
This component provides an overview of the state of all physical and logical assets in the
data center infrastructure, offering information about the servers and their allocation, and
generating configurations and allocations. It can also be used to create application
environments.

The Management Interface component includes two distinct user interfaces that can be
used to manage and configure the application resources:
• A Web-based interface, that offers an intuitive way to display information about

applications and components
• A Command-line interface, that can be used by operators who prefer to access the

system’s internal properties and operations using the command line
The management interface interacts with the Data Center Model database to allow user
access to its information. The user interface also communicates with the Data Acquisition
Engine, the Deployment Engine, the Application Controller, and the Global Resource
Manager components.

Note: For additional information on how to configure and operate the Tivoli Intelligent
Orchestrator using these two user interfaces, refer to the IBM Tivoli Intelligent
Orchestrator: Operator’s Guide.

The following sections provide details on each of these interfaces.
IBM Tivoli Intelligent Orchestrator: Overview Guide18

Web-based interface
The Web-based user interface offers a real-time access to the Tivoli Intelligent
Orchestrator, as well as an intuitive way to display information about the deployed
application and components. It allows you to easily monitor and control the resource
management and application performance.

Note: For additional information on the specific screen elements, refer to the
introductory chapter in the IBM Tivoli Intelligent Orchestrator: Operator’s Guide.

Using the navigation trees, you can easily configure and manage typical n-tier application
architectures, as well as hardware assets and other system resources. You can define,
configure, customize, and execute various workflows that meet any data center process
requirement, and you can also create and configure Java plug-ins, simple commands, and
logical device operations to be included in workflow configurations. Also provided is the
ability to generate and output various reports that illustrate the Tivoli Intelligent
Orchestrator’s functionality.

A brief description of the Tivoli Intelligent Orchestrator’s navigation trees is provided in
the following.

Data center assets and resources
This navigation tree enables you to configure and manage all of
your system’s hardware assets and resources. From this tree,
you can:
• Configure blade servers, boot servers, terminal servers,

ACLs, firewalls, load balancers, power units, routers,
servers, switches, switch fabrics, subnetworks, license
pools, software products, software patches, and software
stacks.

• Manage and configure all the available resource pools, and
the resources that are currently under maintenance
(applications, overflow servers, hardware resources).
Chapter 2: System architecture 19

System configuration and workflow management

Customer applications

Realtime performance monitoring

This navigation tree enables you to configure the global
operating mode, manage the Deployment Engine, and also
create, configure, customize, and execute various workflows.
Workflows are grouped by author and category. You can also
manage logical device operations that are included in workflow
configurations, device drivers, Java plug-ins, and simple
commands. From this tree, you can:

• Manage and configure all of the users that are currently
registered with the system.

• Configure all logical device operations and device drivers
defined in the system, as well as all available workflows,
Java plug-ins, and simple commands.

• Add new workflows, copy or customize, execute, or delete
any of the existing workflows, manage variables and
transitions within workflows.

• Determine the current state of a data center component
configuration by reviewing the execution history of the
workflows applied to it.

This navigation tree enables you to configure and manage
typical n-tier application architectures. The in-depth structure
of the Customer applications navigation tree includes
customer accounts, applications, clusters, and servers, and
makes it possible to define, configure, and manage all of these
objects.

This navigation tree enables you to monitor the system’s
health. From this tree, you can:
• List all the servers that are available in the resource pools.
• Monitor the overall performance of the customers,

applications, clusters, and servers defined in the system,
and also evaluate the performance of individual servers.
IBM Tivoli Intelligent Orchestrator: Overview Guide20

Reports

Command-line interface
The command-line interface is designed to be mainly used by data center operators who
prefer to access some of the system’s internal properties and operations using the
command line.

Note: For additional information on the SOAP commands that can be executed using the
Tivoli Intelligent Orchestrator’s command-line interface, refer to the “SOAP com-
mands available through command line” chapter, in the IBM Tivoli Intelligent
Orchestrator Operator’s Guide.

This navigation tree enables you to generate various reports
that illustrate the Tivoli Intelligent Orchestrator’s
functionality, and show the benefits of using the system. From
this tree, you can:
• Generate reports on the availability of resources: which

resources are mostly used, the utilization over a specified
period of time.

• Predict future shortfalls of physical resources.
• Report such status as the current allocation of resources,

the current status of resource pools.
• Obtain usage reports per cluster, application or customer

account, detailing the type of resources, number of times
used, total time used, etc.

• Generate SLM reports showing the measured adherence
to SLOs of each managed application.

• Generate network administration reports, showing all the
commands executed on various network devices.
Chapter 2: System architecture 21

IBM Tivoli Intelligent Orchestrator: Overview Guide22

Notices
This information was developed for products and services offered in the U.S.A. IBM may
not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services cur-
rently available in your area. Any reference to an IBM product, program, or service is not
intended to state or imply that only that IBM product, program, or service may be used.
Any functionally equivalent product, program, or service that does not infringe any IBM
intellectual property right may be used instead. However, it is the user’s responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in
this document. The furnishing of this document does not give you any license to these pat-
ents.You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785 U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellec-
tual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other country
where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUB-
LICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE.

Some states do not allow disclaimer of express or implied warranties in certain transac-
tions, therefore, this statement might not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are
periodically made to the information herein; these changes will be incorporated in new
editions of the publication. IBM may make improvements and/or changes in the product(s)
and/or the program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience
only and do not in any manner serve as an endorsement of those Web sites. The materials
at those Web sites are not part of the materials for this IBM product and use of those Web
sites is at your own risk.
© Copyright IBM Corp., 2003 23

IBM may use or distribute any of the information you supply in any way it believes appro-
priate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs and
other programs (including this one) and (ii) the mutual use of the information which has
been exchanged, should contact:

IBM Corporation
2Z4A/101
11400 Burnet Road
Austin, TX 78758 U.S.A.

Such information may be available, subject to appropriate terms and conditions, including
in some cases, payment of a fee.

The licensed program described in this document and all licensed material available for it
are provided by IBM under terms of the IBM Customer Agreement, IBM International
Program License Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment.
Therefore, the results obtained in other operating environments may vary significantly.
Some measurements may have been made on development-level systems and there is no
guarantee that these measurements will be the same on generally available systems. Fur-
thermore, some measurement may have been estimated through extrapolation. Actual
results may vary. Users of this document should verify the applicable data for their spe-
cific environment.

Information concerning non-IBM products was obtained from the suppliers of those prod-
ucts, their published announcements or other publicly available sources. IBM has not
tested those products and cannot confirm the accuracy of performance, compatibility or
any other claims related to non-IBM products. Questions on the capabilities of non-IBM
products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations.
To illustrate them as completely as possible, the examples include the names of individu-
als, companies, brands, and products. All of these names are fictitious and any similarity
to the names and addresses used by an actual business enterprise is entirely coincidental.

Trademarks
The following terms are trademarks of the IBM Corporation in the United States or other
countries or both:

AIX
DB2
DB2 Universal Database
IBM
The IBM logo
Netfinity
RS/6000
Tivoli
Tivoli Enterprise
WebSphere
IBM Tivoli Intelligent Orchestrator: Overview Guide24

UNIX is a registered trademark of The Open Group in the United States and other coun-
tries.

Microsoft, Windows, Windows NT, and the Windows logo are registered trademarks, of
Microsoft Corporation in the U.S. and other countries.

 Java and all Java-based trademarks and logos are trademarks or registered
 trademarks of Sun Microsystems, Inc. in the U.S., and other countries.

Other company, product, and service names may be trademarks or service marks of others.
Notices 25

IBM Tivoli Intelligent Orchestrator: Overview Guide26

Index
A

algorithm
prediction 14

Application Controller
classification component 15
prediction component 12
workload modeling component 15

application environments
application layer 4
networking infrastructure layer 4
operating system layer 4
server infrastructure layer 4

D

Data Acquisition Engine
application layer acquisition component 11
networking infrastructure acquisition component 12
operating system acquisition component 11
server infrastructure acquisition component 11

data center infrastructure
external interfaces 5
servers and network devices 5

Deployment Engine
deploying commands to servers 9
executing workflow steps 9
workflow assembly component 8
workflow execution component 8

G

Global Resource Manager
optimization component 17
Resource Broker 16
resource pool manager component 18
stabilization component 18

M

Management Interface
command-line interface 21
Web-based interface 19

N

navigation tree
Customer applications 20
Data center assets and resources 19
Realtime performance monitoring 20
Reports 21
System configuration and workflow management 20

P

prediction
algorithm 14
autocorrelation 13
time-varying trends detection 13
time-varying trends removal 13

Provisioning Manager
what is 2

S

system main components
Application Controller 3
Data Acquisition Engine 3
Data Center Model 2
Deployment Engine 2
Global Resource Manager 3
Management Interface 3

T

Tivoli Intelligent Orchestrator
Application Controller 12
application environments 4
Data Acquisition Engine 10
data center infrastructure 5
Data Center Model 10
Deployment Engine 8
general architecture 2
Global Resource Manager 16
introduction 1
Management Interface 18
overview 1
Provisioning Manager 2
system architecture 7
© Copyright IBM Corp., 2003 27

IBM Tivoli Intelligent Orchestrator: Overview Guide28

Program Number: 5724-F75

	Contents
	Figures
	Tables
	Preface
	Who should read this guide
	What this guide contains
	Publications
	Contacting software support
	Conventions used in this book
	Operating system-dependent variables and paths

	Chapter 1.�� Introduction to the IBM Tivoli Intelligent Orchestrator
	Overview
	The Provisioning Manager

	General architecture
	Application environments
	Data center infrastructure
	Servers and network devices
	External interfaces

	Chapter 2.�� System architecture
	Deployment Engine
	Workflow assembly component
	Workflow execution component
	Deploying commands to servers
	Executing the workflow steps

	Data Center Model
	Data Acquisition Engine
	Application layer acquisition component
	Operating system acquisition component
	Server infrastructure acquisition component
	Networking infrastructure acquisition component

	Application Controller
	Prediction component
	Autocorrelation subsystem
	Time-varying trends detection subsystem
	Time-varying trends removal subsystem
	Prediction algorithm

	Workload modeling component
	Classification component

	Global Resource Manager
	Resource Broker component
	Optimization component
	Stabilization component
	Resource pool manager component

	Management Interface
	Web-based interface
	Command-line interface

	Notices
	Trademarks

	Index

