Extending Your Mainframe for More Business Value

Add A Workload – Communications Backbone

Business Challenge

Our payments business is a key source of revenue, but it is too costly to maintain the connections

Service Oriented Finance CIO

A Communications Backbone can solve this problem

IBM

Providing Application-to-Application Connectivity In A Diverse Environment

System Platforms

Programming Models

Asynchronous Messaging

Synchronous RPC

Publish/ Subscribe

Programming Languages

Transport Protocols

Web Services WebSphere MQ

JMS

FTP

TCP/IP Multicast

HTTP

SMTP

Standards & Message Formats

ACORD

HIPAA

ebXML

COBOL Copybook **SWIFT**

EDI-X.12

Custom Formats

XML

IFX

AL3

EDI-FACT

HL77

Word/Excel/PDF

Quiz

What is An Enterprise Service Bus?

Answer: An ESB connects anything to everything

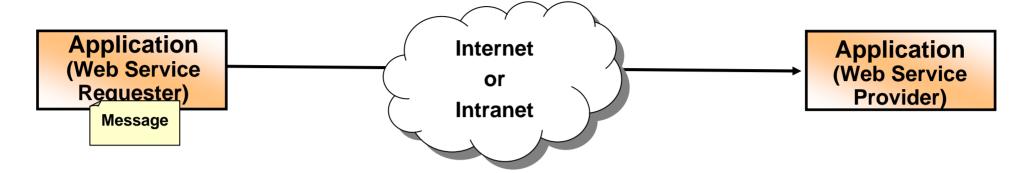
How to Provide Application-to-Application Connectivity

- Installed environments are very diverse
 - No single technology can provide the all of the required power and flexibility
- Use a combination of middleware technologies as needed
 - 1. Web Services

Standards-based, heterogeneous, Internet-based exchanges

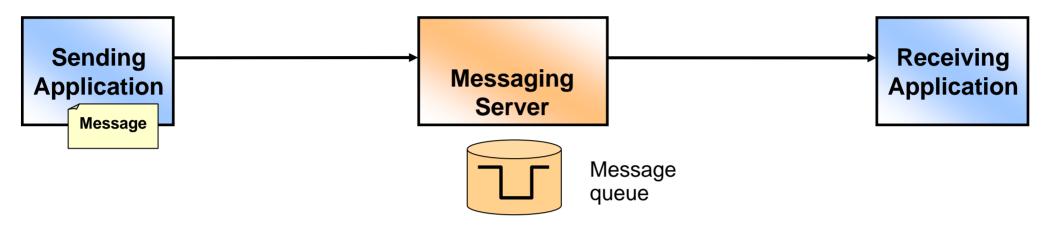
2. Asynchronous Messaging

Adds reliability, assured delivery, application de-coupling


3. Mediation Broker

Adds services to transform and enrich information as it flows from one application to another

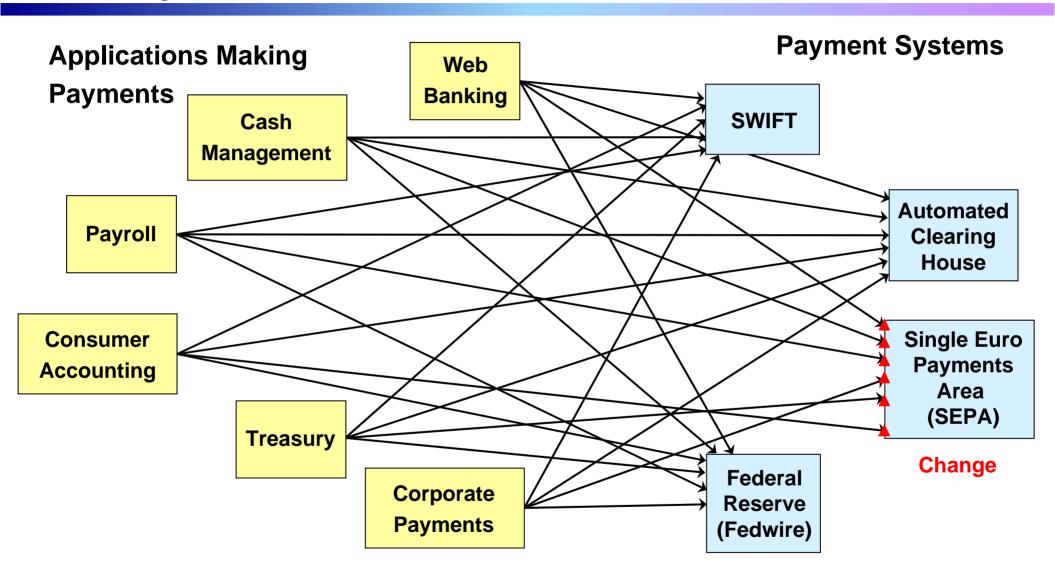
Implementations of these technologies is known as an


Enterprise Service Bus

Web Services Provide Simple Point-to-Point Connectivity

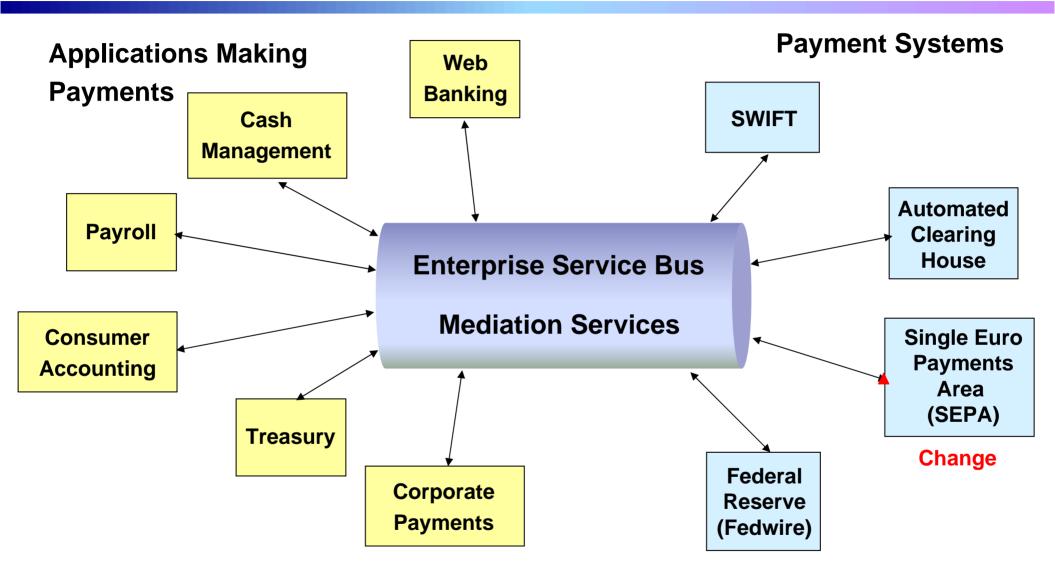
- Advantages
 - Almost every platform supported
 - Standards-based, works across the internet
- But there are considerations...
 - The requester and provider must be running at the same time
 - No infrastructure for managing overall web services
- Mainframe supports web services via WebSphere Application Server, CICS, and IMS SOAP Gateway

Message Queues Provide Greater Flexibility with Asynchronous Messaging



- Sender and receiver do not need to run at same time
 - Put and get messages from queues
- Reliable, assured delivery
- Sender and receiver can process messages at different rates
- Message servers can be networked together
 - Messages automatically arrive at named destination queue
- Mainframe supports messaging via WebSphere MQ and WebSphere Application Server (JMS)

Connect Applications Point-to-Point with WebSphere MQ

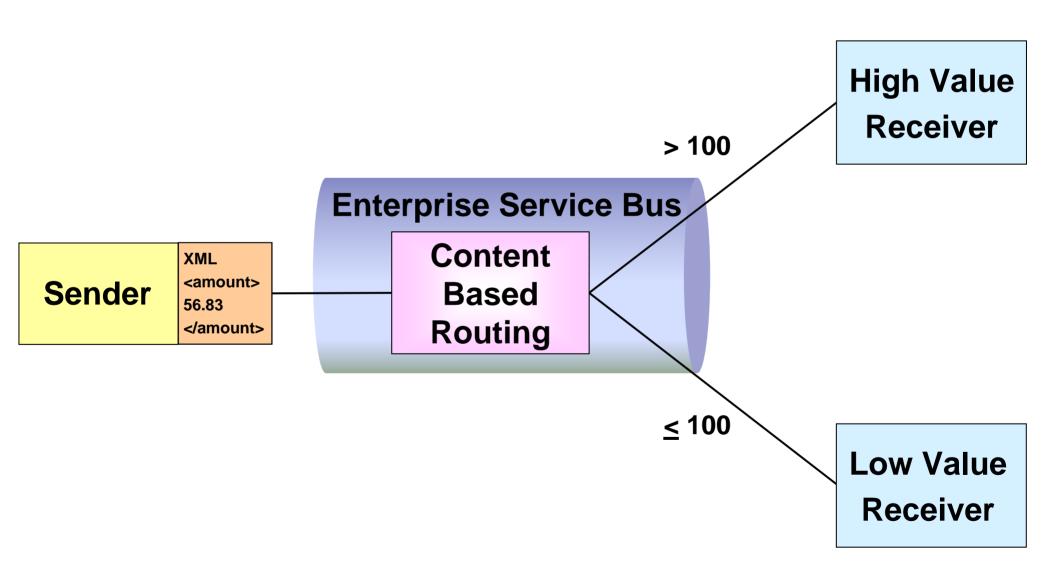

- Connects to virtually everything
 - Over 80 platform configurations
 - Uses IBM Message Queuing Interface (MQI), Java Message Service (JMS), or SOAP/JMS
 - Bridges Web 2.0 AJAX client applications to the WebSphere MQ queues using RESTful interfaces
- Very simple API (put/get) for all main programming languages: C++, C#, Visual Basic, .NET, COBOL, Java
- The de facto standard for asynchronous messaging
 - ▶ 42% of z/OS customers have WebSphere MQ
 - 90% of the Fortune 100 businesses have WebSphere MQ
 - Banking clients move transactions worth \$35 trillion/day
 - Government clients move 675+ million messages/day

However, Point-to-Point Connectivity Can Be Costly to Maintain

- Services are tightly coupled to one another
- One change requires many other changes

An Enterprise Service Bus Reduces Costs By Providing Centralized Mediation Services

- A change requires only one change in the ESB mediation services
- Services can be created and maintained independently


Health Insurance Company – Analysis Showed Benefit of Using WebSphere Message Broker for Enterprise Integration

- The ESB on z/OS solution offered these benefits over the custom point-to-point connection option over the 5-year period:
 - ▶ 62% reduction in solution build cost
 - ▶ 73% reduction in on-going code maintenance of the integration solution
 - 42% reduction in infrastructure administration
- For an investment of \$2.5M in WebSphere software, the company would realize a benefit of \$165M over a 5-year period
 - Resulting in an ROI of 6,715%

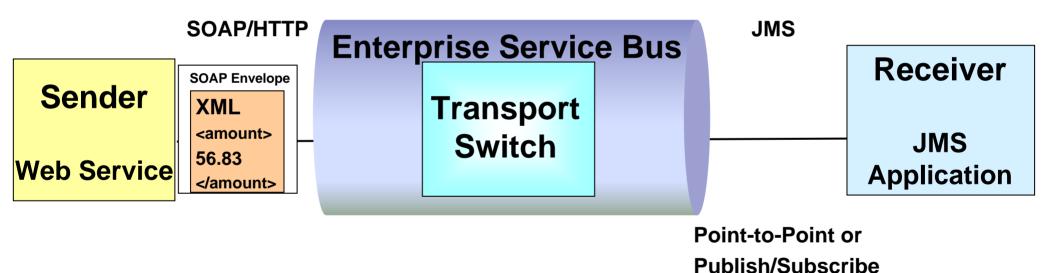
Source: High-level analysis for a large U.S. Health Insurance Company using IBM's Business Value Assessment (BVA) model, 2006

Mediation Service: Content-Based Routing

Example: Route payment based on payment amount

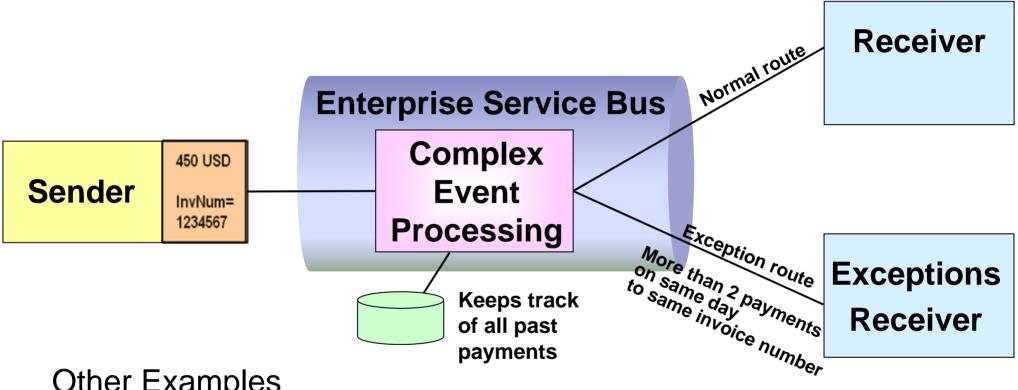
Mediation Service: Data Transformation

Example: Transform XML to binary format

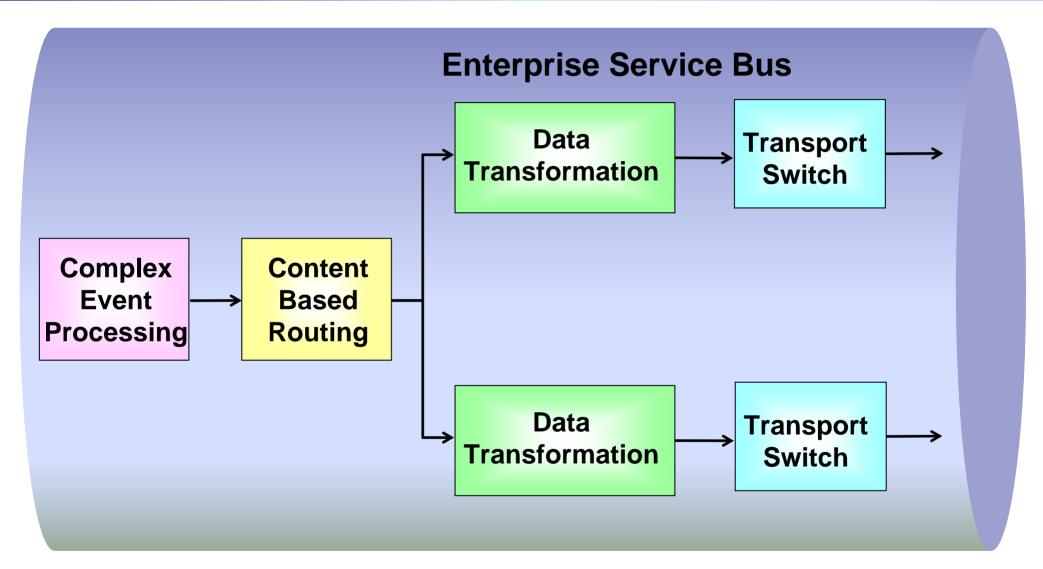


Other Common Transformations

- One XML schema to another XML schema
- Industry specific transformations, e.g., IFX to SWIFT

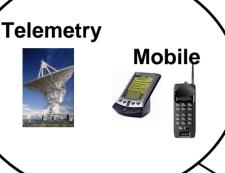

Mediation Service: Transport Switching

Example: Switch from SOAP/HTTP to a JMS message


Complex Event Processing

Example: Fraud detection and alerting

- Other Examples
- Enforcement of regulatory constraints
- Periodically report aggregate payments
- Service level agreement monitoring and notification


Combine Mediation Services Together To Meet Connectivity Requirements

- Combine mediation services in any order
- Construct mediation flow to connect services

IBM Enterprise Service Bus Connects Almost Anything to Anything

Devices

Data Formats

ACORD COBOL Copybook XML SWIFT EDIFACT MIME HL7 HIPAA **IDoc** C Header X12 **TLOG Custom Binary**

Messaging Systems

Sonic MQ WebSphere MQ Any JMS **TIBCO EMS TIBCO Rendezvous** WebSphere platform messaging

File System

IBM Enterprise Service Bus

Platforms

z/OS AIX Linux **Solaris** HP/UX Windows

Databases

SQL Server DB₂ **Oracle Sybase**

Protocols

SOAP FTP **TCP/IP Sockets LDAP** HTTP

SMTP

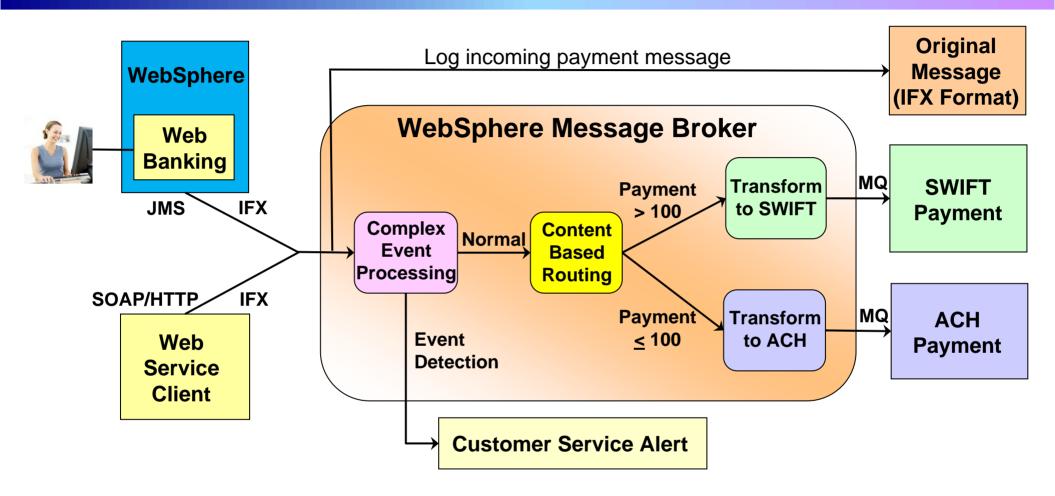
Single copy of message delivered simultaneously to many subscribers

Multicast

Enterprise WebSphere Applications

Adapters

Ariba JD Edwards SAP **PeopleSoft** Oracle **i2 SunGard**


Siebel

04 - Extend Connectivity With A Mainframe Communications Backbone v6.1 - for Distributionl.ppt

Implementing Your Enterprise Service Bus Depends Upon Your Requirements

	Web Services and Mediation	Extend Reach and Speed	
	WebSphere ESB (Runs on z/OS)	WebSphere Message Broker (Runs on z/OS)	
Built on WebSphere Application Server	✓		
Wide Range of Platforms	✓	✓ ✓ ✓ ✓	
Web Services (SOAP/HTTP)	✓		
Content-Based Routing & Transformation	✓		
Transport Switching & Database Support	✓		
Adapters for Enterprise Applications	✓		
XML Data Format	✓		
Non-XML Data Formats		✓	
Complex Event Processing		✓	
Content-Based Publish/Subscribe		√	
Mobile and Telemetry Devices		✓	
Multicast		✓	
Third Party Messaging Systems		✓	
	1 1 D 11 (4 C D)		

DEMO: Using WebSphere Message Broker For Payments

- Web banking payments routed to payment system based on amount
- Transformation from IFX to SWIFT and ACH formats
- 3rd payment on same invoice number on same day creates customer service alert
- Payments are processed exactly the same for a web service client

Run Your Communications Backbone on the Mainframe

What platform should I use to run my communications backbone?

Service Oriented Finance CIO

Extend your mainframe to provide a communications backbone with WebSphere MQ and WebSphere Message Broker on System z

IBM

Communications Backbone

WebSphere Message Broker Developer Toolkit Windows or Linux WebSphere Message Broker Includes three components installed in one LPAR with z/OS

WebSphere Message Broker

WebSphere MQ

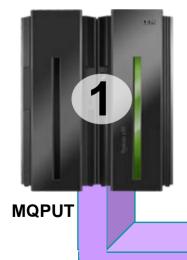
(Extended Security Edition optional)

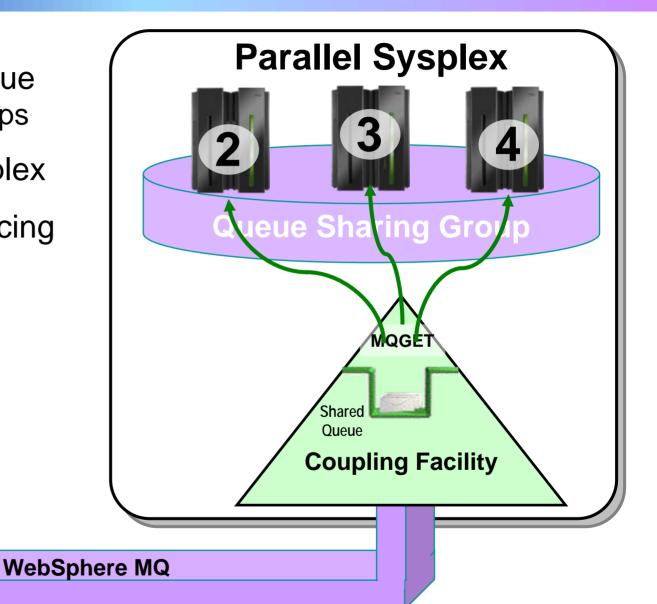
DB2

(Configuration Data)

Crypto express2

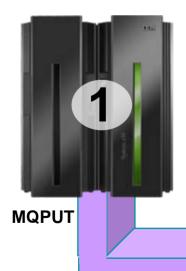
Optional hardware

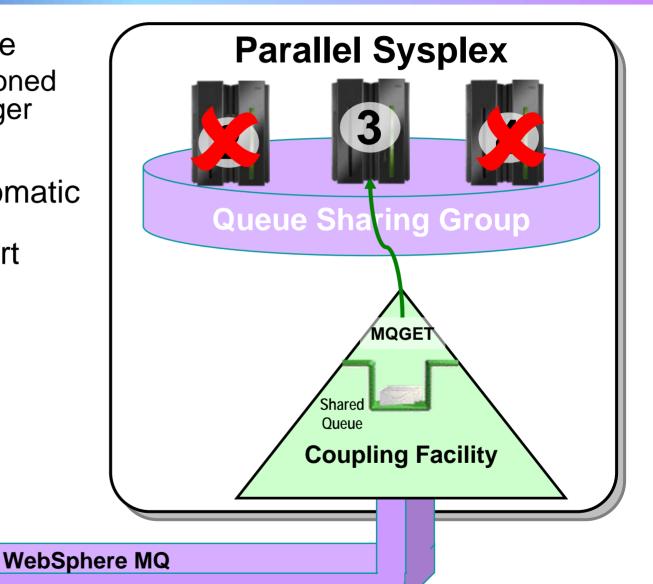

z/OS LPAR (includes Communication Server)


Communications Backbone Exploits z/OS Capabilities

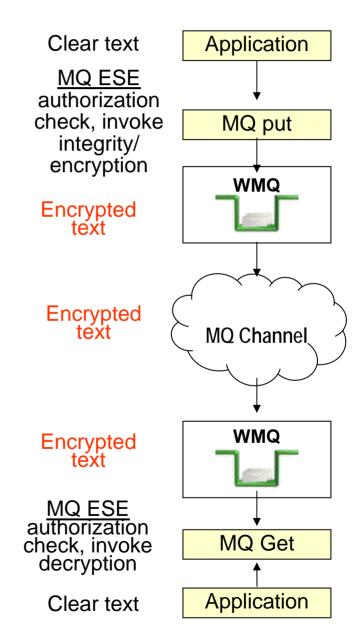
- Exploits sysplex clustering to provide true 24X7 operations
 - WebSphere MQ takes advantage of Parallel Sysplex to enable MQ shared queues
- Leverage System z hardware advantages
 - ► Huge I/O bandwidth (z10 InfiniBand 6 GBps)
 - ► Hipersocket in-memory networking eliminates latency
 - Unmatched hardware reliability
 - Crypto Cards accelerate encryption
- RACF security
- Disaster recovery via GDPS
- Capacity upgrade on-demand for unexpected peaks

WebSphere MQ Shared Queues on z/OS


- Any processor can access the same queue
 - Queue sharing groups
- Exploits Parallel Sysplex
- Automatic load balancing
- Scalable throughput



Shared Queues Enable High Availability

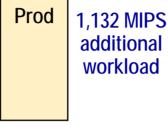

- Queue Manager failure
 - No messages marooned due to queue manager failure
- Leverages ARM (Automatic Restart Manager) for Queue Manager restart

WebSphere MQ Extended Security Edition for z/OS V6 Enhances Security and Compliance

- Protects message data end-to-endincluding when it resides in queues.
 3 security levels:
 - None-authorization only
 - Integrity-attaches digital signatures to messages
 - Privacy-encrypt/decrypt
- Exploits System z cryptographic processor
- Simple upgrade on top of WebSphere MQ
 - Intercepts application message before it enters/leaves queues
- Provides key element of solution for Payment Card Industry (PCI) Data Security Standard (DSS)

Case Study: Mainframe Extension Solution -Communications Backbone

Existing Mainframe


Existing z10: 2 GP 1.720 MIPS DB2 workload

Existing Disaster Recovery Site

Existing: 1 GP for hot disaster switch-over 1 "dark" DR processors

Add 1 LPAR for New WMB workload

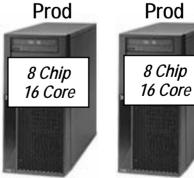
Incremental: 2 GP 1132 MIPS WMB, MQ, DB2 1 GB Memory

additional

workload

And Add Disaster Recovery

3 year cost of acquisition \$4.28M


Capacity Backup: 2 GP

Or add 2 HP 9000 rp7440 Servers With TIBCO BusinessWorks and Enterprise Message Service

And Add Disaster Recovery

3 year cost of acquisition \$5.59M

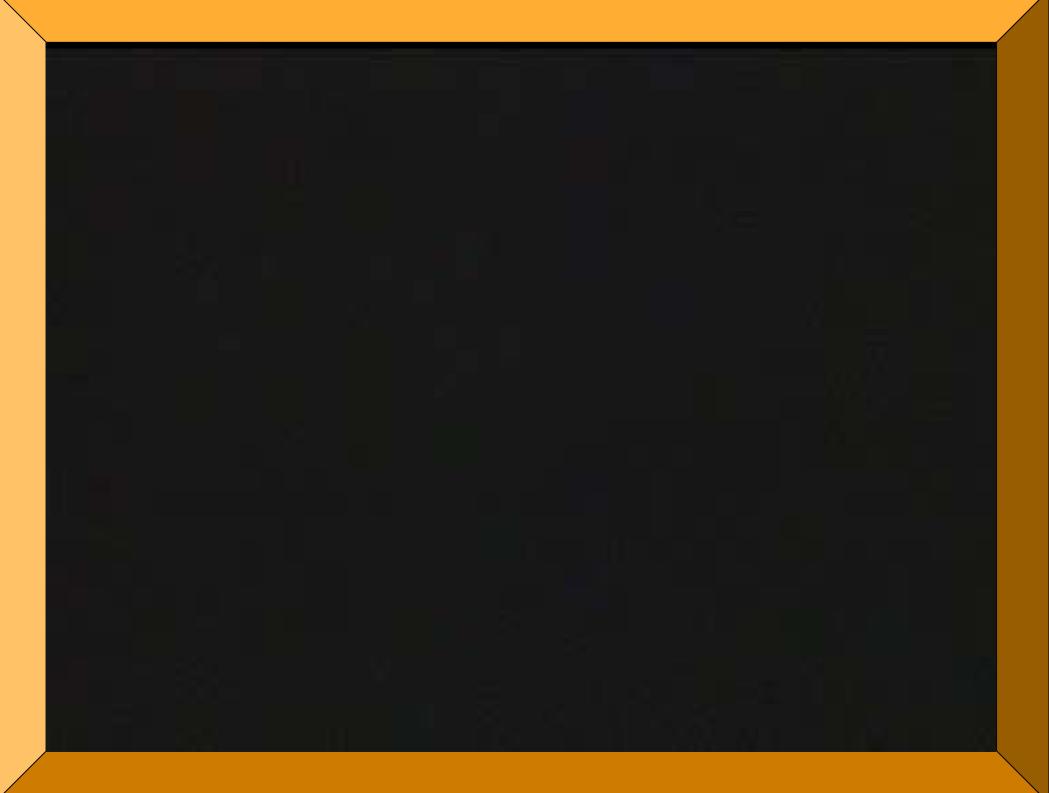
HP DR solution is used in software and hardware

Communications Backbone Incremental Cost Breakdown

Mainframe Incremental Hardware

Mainframe	Incremental	Software
-----------	-------------	----------

<u> </u>						
0	TC	ANNUAL				
General Processor	\$1,981,000	Drocossor				
Memory (1 GB)	\$6,000	Processor Maintenance * (For year 2, 3)	\$105,955			
DR Processors	\$42,000					
TOTAL	\$2,029,000	TOTAL \$105,95	5 (year 2, 3)			


		<u> </u>	<u> </u>	
ОТС		ANNUAL		
WebSphere Message Broker	\$533,520	WebSphere Message Broker S&S	\$133,380	
		DB2 MLC x12	\$145,176	
		z/OS MLC x12	\$76,056	
		MQ MLCx12	\$146,028	
TOTAL	\$533,520	TOTAL	\$500,640	

Distributed Incremental Hardware

Distributed Incremental Software

OTC		ANN	NUAL	ОТО	<u>, </u>	Α	NNUAL
HP	\$754,622	Processor	\$86,935	Oracle SE	\$65,625	Oracle S&S	\$14,438
Processors- Production		Maintenance		Unix	\$50,208	Unix S&S	\$18,774
HP	\$452,773		TIBCO EMS &	\$136,666	(Prepaid in year 1 for 3 years)	r 1 for 3 years)	
Processors-	,			MQ Adapter	· ,	EMS/MQ Ada	S&S \$32,800
DR		(prepaid in year 1 for 3 years)	TIBCO BusinessWorks	\$2,133,334	TIBCO BusinessWor S&S	\$512,000 ks	
TOTAL	\$1,207,395	TOTAL \$2	60,804 (year 1)	TOTAL	\$2,385,833	TOTAL \$	\$615,560 (year 1) 559,238 (year 2, 3)

^{*} Mainframe Processor Maintenance includes the maintenance for general purpose processors and specialty engines

