Vacation Booking System

System Architecture for
Vacation Booking

Version 4.1

Table of Contents

L EXECUTIVE SUIMMIATY .etiiitiiiiiiiieiitttteeeeeesseibtbteteeeesessaaatatteeeeeeessaasassseaaaeaeeesssaaassbeaeaeeeeseaasasssssaaeeeeessaaaan saeeeesssnusssssaeaaeeeeessssssssbeaeeeesssssnsssssssaaeeeeessssnnssssneeeeeesssnnnnss 3

1.1.INTENAEA AUGIENCE ... ettt ettt b e b e e bt st e st s bt e bt e bt e bt e sbeesaeesatesaneeaneene eeens 4
2.SYSTEIM OVEIVIEW ...eiiiiieiiiiitiiutiietiiit e seeassesssassseasesaeeaaeaeeeseesseeseeesssessesses ssssssssssssssseeseesseeeeeeeseeesssessssssssssssssssssssssssssssnsssnnsnnsssnssssssseesens 5
B.SYSEEIM CONTIGUIATION 1..eiiiiiiiiiie ettt et e et e b bt e s bt e et te e sate e e ubeesabee e ateesasee e st e e aabeeaaseeeeab e baeesateeeaseeeaabeesasee e abeeenbbeenabeeaabaeenabaesastessubeesnneessusaesneeennne 6
L= or= 1 =3P O P PSPPI 6

L = o Yo) QT o 114 YA Yol =T o F= o [YRR SRNE 6

4.1.1.Book a Flight Scenario (with the Frequent Flyer interface)cocceveeveeneenieniesiecie e 8

4.2.BOOK @ HOTEI SCENAIIO ..ttt ettt ettt ettt e st e st e e s a e sbeeesateesbee e nbeesabeeenbeaeabeeeanees 10

4.3.Passenger CheCK-iN SCENAIIO.......uii ittt e e e st e s e sbe e e s ssbaeeessabtaeessssbeeessnsseeaasnnes 12

Ty N g =T ool S 114 o Yol =T F= Y [T PP PPPTPPRt 14

4.5.CUrrency apPliCation SCENAIIO......iiicciiieeeiieie et et ectre e e e et e e e eetbeeeesebeeeeseabaeeesenttaeesssseeseensseseennes 15

F o W = T Y- [e [T T olY s T- 1 o IS SSPPP 16

Lo [0 gV F=q = 1A o] a Yol =T T= 1 [o TR 17

4.8.Flight MainteNanCe SCENAIIOcevieiiiieeeiee ettt ettt et e st e s sbteesabeessbteesabeesssbeesbeesseeenbeeensaeananes 18

4.9.Mobile Flight TIiCket SCENAIIOuviiiieiiiieicceee e et e e s s sbe e e e s sabtae e sssbeeesssaseeeannnns 19

1. Executive summary

Using the Vacation Booking Demo Environment, you can demonstrate the capabilities of IBM® Rational® Integration Tester.

The Vacation Booking Demo Environment has been built with the intention to demonstrate how the IBM Rational Integration Tester can be used to test a
real product. Vacation Booking is constructed around a set of technologies that are common in the setup IBM clients use in their production environment.

The Demo Environment is tailored around technologies like web services, REST APls, JDBC database communication, Mainframe transactions, Mobile First
applications and JMS/MQ transport.

Web services and REST are used to link the user interface with the backend web application server. In the example scenarios covered in this document, these
technologies are used in the communication between Apache® Tomcat® and IBM WebSphere® Application Server. In the context of Rational Integration
Tester, this helps to highlight features like recording different technology transports and building tests or stubs based on messages from a real system.

JDBC technology is used in Vacation Booking to link the front- and backend with database technologies. This demo environment is using IBM DB2® as a
database, but the scenarios covered in this document are relevant for any particular database technology that provides a JDBC proxy for connectivity. In
Rational Integration Tester this will enable the monitoring and recording of database communication and the creation of a virtual database as a stub.

Mainframe transaction is used in Vacation Booking to link the WAS application and CICS transaction server running on z/0S. In Rational Integration Tester
this allows us to demonstrate how RIT supports the recording and virtualization of CICS® programs running on z/0S®.

Mobile First application is used in Vacation Booking to allow users to checkin for flights using their mobile device. In the context of Rational Test Workbench,
this scenario helps us to create, edit, and perform tests for native, web, and hybrid applications on mobile devices. In this particular case we are using a
hybrid application.

Lastly, IMS/MQ, technology is used as the main communication transport backbone of the Vacation Booking system. The software used to implement the
MQ technology is IBM WebSphere MQ® and it connects to the other service providers of the system — Tomcat and WAS. The MQ allows the entire system to
exchange messages from one service provider to the next mostly in an asynchronous way (for example, Tomcat sends a message onto an MQ queue and
then another relevant service from WAS picks up the message and does further processing). In Rational Integration Tester, the MQ transport is going to be
recorded and monitored for changes and later it can be simulated using stubs.

1.1. Intended Audience

The System Architecture Plan is intended to be used by Client Technical Professionals, trainers and consultants as the primary audience. Secondly, because it
contains information about a complex demonstration platform it can be used by the developers and testers of Rational Integration Tester.

Anyone interested in knowing how to use the Rational Integration Tester can use this document to help them set-up a demonstration environment that will
highlight the key features of the software on an actual system with real data.

This document provides a high-level overview of a common system that would resemble to setups that clients have in their organisations. Thus, following
the Vacation Booking will facilitate the understanding of concepts that Rational Integration Tester is based on.

Vacation Booking

Mobile First T ActiveMQ DB2 | Mainframe (z/0S) Applicati
R ‘ v
e >
VOO
|
| — B
| Acattie
. Sasts WE
b e
JOBC v Sacewd Prsceturs
il
S
[rm
Corderatun
...",.
EBEGLTI
~

RESTNTE it T

2. System overview

The Vacation Booking Demo Environment is a purposely-built fictitious flight and hotel booking
service. The user interacts with the service through a web page developed in java (jsp pages) which is
served by Apache Tomcat. In the background there are different technologies that connect to the
web interface to provide very advanced and complex functionality. The main technologies are IBM
WebSphere Application Server, IBM MQ and IBM DB2. Every technology used in this demonstration
environment is linked with specific features built inside the Vacation Booking system (for example,
Booking a Flight or Passenger Check-in). Above you can find a system diagram of the entire
configuration.

In order to make use of the technologies implemented inside the Vacation Booking system, this
document proposes the use of scenarios. Each scenario consists of a normal process that a user
would undertake in order to use a flight/hotel booking system. This is the list of scenarios that are
supported by Vacation Booking:

e Use a currency web service that provides the system with exchange rates based on
information found in a database.

e Book a flight, there are two different approaches:

0 In this scenario the user fills in a form and then there are web services that deal with
the request, do the validation and pass the message to other parts of the system for
processing the booking.

0 The second method is very similar to the first, but it adds a new component, called
the Frequent Flyer Number in which the user is awarded loyalty points based on the
destination he is flying to.

e Amend a flight booking based on a reference number, this talks with the WAS web service
responsible for the bookings and alters the database after a booking has been made.

e Booking a hotel, very similar to the booking of flights, but this scenario explores the use of a
web service hosted in Tomcat, ActiveMQ queues and uses the currency and hotel payment
standalone applications.

e Checking-in a passenger is the scenario that an airline employee would go through at the
check-in desk in which it confirms the validity of the booking and signs you in for your flight.
This scenario is one of the most complex ones and uses most parts of the Vacation Booking
system.

e Boarding a passenger onto the aircraft based on a valid passport which is processed as a
stored procedure in the database or as a mainframe transaction.

e Immigration of the passenger once he has arrived at destination, again a service the airline
would provide to the client.

e Flight maintenance, where the company would be able to alter flight information, for
example, flight numbers.

o Mobile Flight Ticket, where users can checkin for flights using a hybrid mobile application.

3. System configuration

4. Use cases

For each feature built inside the Vacation Booking Demo Environment, there is a specific
technological path in the backend that supports it. The use cases are useful when you want to
demonstrate a particular technology to the client, for example how WebSphere Application Server
can connect to a JDBC enabled database and how to record the database tables.

Below we will detail the available scenarios built inside the Demo Environment.

4.1. Book a Flight Scenario

In this scenario the user will use the main frontend interface to book a flight for a particular
destination using one of the buttons on the right-hand side on the page (flights to Barcelona and
Edinburgh). There are multiple components active in this scenario and you can follow them in the

Flight Booking
Tomeat [ma [WAS I DB2 Standalone Applications
(PE— LM XMLIMQ

5 ___JDBC
| wbooking. payment global reply T

ices
|
nt | Joec
ation < —> Fd -
,7' - — JDBC and Sioned Procedune
vbooking payment worldwide

vibooking payrent warldwide reply

vbocking payment multinationa | b r_mwws
vbooking paymeht multinational.regly | XMLMQ | ié 7 > T

VBesking- vbecking bocking
home vbooking bocking. reply N
< vbooking. booking. ff.reply —_——
L g
Payment Queues |
ming.puymontﬁb-ui 1 g xMuma S Eecking | VBOOKING

| Payme
Applics

diagram below:

vbooking.booking (vbooking.booking.rep
Processhulti... vbooking.payment multinational (vbooking.payment.multinational_reply)
VBooking XA... SELECT MAX(RESERVATION_NUMBER) FROM RESERVATION
ProcessMulti... vbooking.payment. multinational reply
VBooking XA INSERT INTO RESERWVATION (gender, last_name, middle_name, first_name, week_number, flight number, reservat
... MakeBooking |vbooking.booking.reply

1
2
|
4
5
6

The flight booking process uses components from every part of the Vacation Booking system and is
one of the most complex scenarios.

Starting with Tomcat, the scenario makes use of the JSP web application vbooking-home that deals
with the User Interface. (URL: http://localhost:8089/vbooking-home/index.jsp)

Following along, there are two web services hosted by WAS that deal with the flight booking process.
The two components, Booking Application and Payment Application, both are MQ services
applications that communicate directly with the MQ queues. In this scenario, the components
communicate asynchronously. Both Tomcat and WAS applications publish messages on the MQ
queues and then wait for a reply on the corresponding reply queue.

The six MQ queues (two for each operation) are used to pass messages from one part of the system
to another and their use is detailed below. The DB2 database holds the information about the
passengers, flights and destinations. Finally, the standalone service AvailableSeats is used to verify if
there are seats available on this flight for the requested week.

When you are booking a flight, the following steps are happening in the backend:

1.

When the user books a flight using one of the links on the page, he is presented with a form
to complete. Once the user clicks Proceed, Vacation Booking main app uses XML/MQ to
publish a new booking request on the vbooking.booking queue and waits for a reply on the
vbooking.booking.reply queue.

The message published by the vbooking-home app is picked up by the WebSphere
Application Server Booking Application. This service validates the input and calls the
standalone service 'AvailableSeats'. This standalone service will access the database, calling a
stored procedure. The stored procedure counts the number of people booked on this flight
for the week requested, and compare it to the number of seats advertised on the plane. If
the number of seats available is more than 1 then the booking proceeds else it fails.

Once the seats are verified then depending on the card used for payment when completed
the form (there are three options: global, multinational or worldwide), the Booking service
then publishes a message with the payment details to the appropriate MQ queue
(vbooking.payment.*).

The WAS Payment Application then picks up the message published on the
vbooking.payment.* queue and processes the payment information.

The Payment service then send a reply back on the appropriate queue
vbooking.payment.*.reply. For example if a booking was made using a Global card type, then
the payment information would have been posted on the vbooking.payment.global queue
and the reply would be posted on vbooking.payment.global.reply.

The Booking service picks up the reply on the vbooking.payment.*.reply queue. If there are
no errors in the payment processor, then the Booking service updates the database with the
information using JDBC.

Once a database has been updated with the new booking, the Booking service publishes a
booking confirmation on the vbooking.booking.reply queue.

Tomcat then picks up the message and displays the reservation number to the user.

4.1.1. Book a Flight Scenario (with the Frequent Flyer interface)

The second version of the flight booking process involves another WAS application to return frequent
flyer points.

There are two ways to invoke this process

1) Edit the vbooking-home web.xml file in Tomcat so that the FFVersion parameter appears as
below

<context-param>
<param-name>FFVersion</param-name>
<param-value>YES</param-value>
</context-param>
You will then need to restart Tomcat for this setting to take effect. Then when you use the url
http://localhost:8089/vbooking-home the frequent flyer variant will be used.

2) You can also use the url http://localhost:8089/vbooking-home/indexFF.jsp to invoke this
variant without making it permanent. This can be useful for testing and quick demos where
you want to switch from one to the other.

The process and the background logic is the same as in the previous subchapter (Book a Flight
Scenario). The few differences are that in this scenario the system is making use of the Frequent Flyer
Application and you need to provide a frequent flyer number during the booking process. In addition
to this the vbooking-home app waits for the booking confirmation reply on vbooking.booking.ff.reply
queue. There are multiple components active in this scenario and you can follow them in the
diagram below:

The Frequent Flyer application is a web service hosted on WAS that receives SOAP/XML format
messages over the HTTP transport. It then checks the passenger start and destination airports in the
database and awards travel points based on the result.

Tomcat |
@ KMLMO ; ¢ P
hqu wbeaoking booking.reply

Flight Booking FrequentFlyer

ma ‘ WAS [DB2 | Standalone Applications |

vbooking bocking f.reply

Payment Queves
— = T - !
global | | XMumMe Booking | VBOOKING

Py b 7 Applgaton < JDBC| -
ﬁ;_ <5 . |

‘wbooking payment. multinational | - y | | [. A
| vbooking payment multinational reply xauma. o Payment < | JoBC| | | At se
’711.‘..1.-. = = < \\ ;l;

‘wbooking paymant. worldwide
| vbooking payment worldwide reply JDBC and Seod Procedure |
scapsTTR
SOAP and Rest services |
DeC

ProcessMulti... vbooking.payment.multinational (vbooking.payment. multinational_reply)
... VBooking XA... SELECT MAX{RESERVATION_NUMBER) FROM RESERVATION
. ProcessMulti_.. vbookingpayment_multinationalreply
.. VBooking XA... INSERT INTO RESERVATION (gender, last_name, middle_name, first_name, week_number, flight_number, reservat...
.. IMakeBooking |vbooking.booking.reply

10.

11.

12.

13.

When the user books a flight using one of the links on the page, he is presented with a form
to complete. Once the user clicks Proceed, Vacation Booking main app uses XML/MQ to
publish a new booking request on the vbooking.booking queue and waits for a reply on the
vbooking.booking.ff.reply queue.

The message published by the vbooking-home app is picked up by the WebSphere
Application Server Booking Application. This service validates the input message and calls the
standalone service 'AvailableSeats'. This standalone service will access the database, calling a
stored procedure. The stored procedure counts the number of people booked on this flight
for the week requested, and compare it to the number of seats advertised on the plane. If
the number of seats available is more than 1 then the booking proceeds else it fails.

Once the seats are verified then if a Frequent Flyer number has been provided, it sends a
request to the Frequent Flyer application hosted in WAS over SOAP/HTTP.

The Frequent Flyer app checks that the destination provided is valid and looks up the reward
in the VBOOKING database based on the result.

After the Frequent Flyer returns its result, the Booking service finishes the validation.
Depending on the card used for payment when completed the form (there are three options:

global, multinational or worldwide), the Booking service then publishes a message with the
payment details to the appropriate MQ queue (vbooking.payment.*).

14. The WAS Payment Application then picks up the message published on the
vbooking.payment.* queue and processes the payment information.

15. The Payment service then send a reply back on the appropriate queue
vbooking.payment.*.reply. For example if a booking was made using a Global card type, then
the payment information would have been posted on the vbooking.payment.global queue
and the reply would be posted on vbooking.payment.global.reply.

16. The Booking service picks up the reply on the vbooking.payment.*.reply queue. If there are
no errors in the payment processor, then the Booking service updates the database with the
information using JDBC communication.

17. Once a database has been updated with the new booking, the Booking service publishes a
booking confirmation on the vbooking.booking.ff.reply queue.

18. Tomcat then picks up the message and displays the reservation number together with the
number of points to be earnt to the user.

4.2. Book a Hotel Scenario

In this scenario the user will use the main frontend interface to search and book a hotel. There are
multiple components active in this scenario and you can follow them in the diagram below:

ActiveMQ Tomcat DB2 Standalone
Applications

-~
f

SOAP/HTTP
Y
VBocking-
home
N
L y \) /
SOAPHTTP N T Currency
XMLMQ i L | JDBC | RREE e |
‘ HotelWS S ‘ '
Type
N
king hotel payment N
vbooking.hotel.payment.repl . —_—
v File access$ Hotel
.S Payment
~"hotels.csv ™ carver
~

— 5

XMUMQ

10

17:55:35... CurrencySe POSTicunencyconvener
3.) CurrencySe 200 OK
POST /hotelsWS/services/HotelFinder
200 - OK

POST fcurrencyconverter

44 Currency Se 200 OK
. bookHotel POST /hotelsWS/services/HotelFinder
. bookHotel 200 - OK

The hotel booking process uses various different components from the Vacation Booking system.

Starting with Tomcat, the scenario makes use of the JSP web application vbooking-home that deals
with the User Interface. (URL: http://localhost:8089/vbooking-home/index.jsp). Also, Tomcat is the
web container that hosts the HotelFinder Service that deals with the booking request.

Following along, the HotelFinder Service uses a flat CSV file to provide the user with the available
hotels for his destination of choice.

The Currency Standalone application is a standalone service that receives XML format messages over
HTTP transport. It then checks the exchange rates in the database and returns the conversion rate to
the HotelFinder service.

The Hotel Payment Server validates the payment details of the customer which are exchanged using
XML type messages through ActiveMQ queues.

The final component used in the hotel booking process is the Vacation Booking Exchange Database
(VBEXRATE Database on the diagram).

When you are booking a hotel, the following steps are happening in the backend:

When the user wants to book a hotel, the User Interface allows two separate methods. The first
method is to select “Hotel only” from the left-hand side of the interface and search for a location, for
example, Barcelona. The second method is to book your hotel as a bundle, including the flight as part
of the booking. If you are interested in the second method, please see the Note box below, this
subchapter will detail the first method.

1. The user selects “Hotel only” and provides the city name, the reservation period and clicks
Search. This will send a request to the HotelFinder Service in SOAP format using the HTTP
transport.

2. The hotel finder service will read the CSV file containing the hotels name in the location
provided by the user.

3. The service will also send a SOAP message to the Currency Standalone App to ask for the
exchange rate selected by the user.

4. The currency service will interrogate the VBEXRATE Database using the JDBC connection and
return the exchange rate to the hotel finder service.

5. The hotel finder service will compile a list of hotels available for the searched location and
the correct currency and present the result to the user.

6. The user will select a hotel and provide the information for the booking and click Proceed.
This will again send a request to HotelFinder Service with all the details entered by the user.

11

7. This time the hotel finder service will post a XML message on the ActiveMQ
vbooking.hotel.payment queue and will wait for a reply on the reply queue.

8. The standalone hotel payment service picks up the published messaged and validates the
payment details of the customer and post a reply back on the reply queue (for now the
payment validation always succeeds).

9. The confirmation message on the reply queue is read by the hotel finder service and is
forwarded to the vbooking-home app. The User Interface is updated with the confirmation
for the booking, but this is not stored in any database, so it is just a temporary plain text.

4.3. Passenger Check-in Scenario

In this scenario the user will have to use the Administration interface to check a passenger in for a
particular flight that was already booked. There are multiple components active in this scenario and
you can follow them in the diagram below:

Tomcat MQ WAS DB2 Standalone
Applications
JDBC
—_— y
MQ Services _— —
VBooking- ‘ | - ~
(Sl) vbooking.reserv ations SRR : / \
Reserv ations| | /
| i o ! “
SOfLP/HTﬂ’ ~—COPYBOOK/MQ JDBC \ —
‘ I § 4“ Confimation
vbooking.checkin J \\\:x - /’j/// server
e — = ~—VBOOKING—_~

JDBC. T

‘ SOAP and Rest services |
REST/HTTP | Flight ‘
‘ ‘ JDBC \ /

COPYBOOK/MQ

12

... VBooking XA Data... SELECT distinct FLIGHT_NUMBER FROM RESERVATION ORDER BY FLIGHT_NUMBER
__ localhost-9080 GET /com.vbooking flights rest/ flights/\VBO4
.. VBooking XA Data... SELECT CURRENT SCHEMA FROM SYSIBM.SYSDUMMY1
.. VBooking XA Data... SELECT t0.ARR_AIRPORT, t0.ARR_TIME, t0.DAY_OF_WEEK, t0.DEP_TIME, t0.DEP_AIRPORT, t0.PRICE FROM ...
.. localf 5080 200 - OK
.. local 080 GET /com.vbooking.flights.rest/rest/flights/\V/B232
.. VBooking XA Data... SELECT CURRENT SCHEMA FROM SYSIBM.SYSDUMMY1
.. VBooking XA Data... SELECT t0.ARR_AIRPORT, t0.ARR_TIME, t0.DAY_OF_WEEK, t0.DEP_TIME, t0.DEP_AIRPORT, t0.PRICE FROM ...
.. localhost-9080 204 - No Content
.. localhost-9080 GET /com.vbooking.flights.rest/ g
.. VBooking XA Data... SELECT CURRENT SCHEMA FROM SYSIEM SYSDUMMY1
.. VBooking XA Data... SELECT t0.ARR_AIRPORT, t0.ARR_TIME, t0.DAY_OF_WEEK, t0.DEP_TIME, t0.DEP_AIRPORT, t0.PRICE FROM ...
_ localhost-9080 200 - C Jh

L3 o =

w08 = O

. ReservaionsServi... (vbooking reservations.reply

VEnnkmg XA Data SELECT FRDM RESERVATION WHERE FLIGHT_NUMBER = 'VB297"
_ requestUpgrade /
.. VBooking XA Data... SELECT CARDHOLDER_NAME, CARD_TYPE, CARD_NUMBER, CARD_SEC_CODE FROM RESERVATION WH...
_ requestUpgrade 200 - OK

.. Tomcat checkin vbooking.checkin.reply
.. VBooking XA Data... UPDATE RESERVATION SET COMMENT = ? WHERE RESERVATION_NUMBER = ?

The check-in process uses components from every part of the Vacation Booking system and is one of
the most complex scenarios.

Starting with Tomcat, the scenario makes use of the JSP web application vbooking-admin that deals
with the User Interface. (URL: http://localhost:8089/vbooking-admin/index.jsp) Also, Tomcat
provides a check-in web service that the admin interface uses through XML messages on the HTTP
transport.

Following along, there are two web services hosted by WAS that deal with the check-in process. The
first one on the diagram, the flight service is a REST application that communicates with the admin
app to provide it with information on the flight details, like the destination of the airplane. The
second web service from WAS is the MQ service Reservation service that communicates with the MQ
service to perform the check-in procedure.

The Flight Confirmation Server is a standalone MQ service that receives Copybook format messages
and return an altered message to confirm the check-in.

The four MQ queues (two for each operation) are used to pass messages from one part of the system
to another and their use is detailed below. Finally the DB2 database holds the information about the
passenger and flight.

When you are doing the check-in process, the following steps are happening in the backend:
1. Vacation Booking Admin app uses JDBC to get a list of flights with passengers.

2. The Admin app communicates through REST over HTTP with the flights application hosted by
WAS. The Flights service provides the flight destination for a single flight with each request;
the admin app may make multiple requests.

3. The flight service uses JDBC to access the database for each flight in order to retrieve the
destination.

4. The admin app puts an MQ request on the vbooking.reservations queue and waits for the
reply - this is to get a list of passengers on that flight.

5. The Reservations web service stored also in WAS is listening to the vbooking.reservations
gueue and receives the message.

13

6. The reservations service gets a passenger list via JDBC from the database.

7. Then the reservation app puts the list of passengers on the MQ vbooking.reservations.reply
queue.

8. Vacation Booking admin app receives the reply from the MQ vbooking.reservations.reply
queue and displays the passenger list to the user.

9. The user selects a passenger and then clicks Request Upgrade, Vacation Booking admin sends
a soap message to Check-in service.

10. The Check-in service returns the upgrade string.

11. The user clicks Check-in and Vacation Booking sends an MQ message to vbooking.checkin
gueue and waits for the reply on vbooking.checkin.reply queue.

12. The Flight Confirmation Server receives the message, modifies it and posts the result to the
MQ queue vbooking.checkin.reply.

13. Vacation Booking uses a separate thread to read the result from the vbooking.checkin.reply
queue. It then uses JDBC to update the database with the check-in information. Lastly, the
User Interface is updated with the confirmation for the check-in.

4.4. Amend Flight Scenario

In this scenario the user will have to use the main home interface to change the details for a
particular flight that was already booked. There are multiple components active in this scenario and
you can follow them in the diagram below:

Amend Flight

Tomcat

VBooking-home

SOAP/HTTP,

DB2

14

'com.vbooking. mybooking/services/LogonServicelmpl

ugged‘ On 0S m.vbooking.mybooking/services/LogonServicelmpl
isLoggedOn 200 - OK

POST icmn.\dx)olcing.mytxnl&ilgn‘sewiceleogonSewicehﬂ

m.vbooking mybooking/services/LogonServicelmpl

1
2
4
5
6
7
8
9

isLoggedOn QST / m vbooking. mybooking/services/LogonServicelmpl
10 |sLngged‘ On
--
- VBooklng XA Data SELECT . from RESERVATION WHERE RESERVATION NUMBER = 'A00010'
_|GetBookingByRes__[200 - OK
. ldeatE‘Buuklng T /com.vbooking.mybooking/services/UpdatePort
-7, MIDDLE_NAME=?, LAST_NAME=?, GENDER=? WHERE RESERV...

”DD OK
POST /com.vbooking. mybooking/services/LogonServicelmpl
|200- OK

|
Ll
o
o
=l
w

=1

=

The flight amending process is straightforward and includes only a few components from the
Vacation Booking Demonstration Environment. The first component used in this scenario is the
Tomcat JSP application vbooking-home. This interface is the main point of contact with the user.
Secondly, the request is passed to the My Booking WAS Application for processing and once the
details are validated by the service, finally, the VBOOKING Database is updated with the new
information provided by the user.

When you are amending a flight, the following steps are happening in the backend:

1. In the main interface (URL: http://localhost:8089/vbooking-home/index.jsp) of Vacation
Booking home app, the user will click on “Amend my flight booking”. After the user signs in
(no username or password), a booking reference must be provided. For example, use AO0O005
as a booking reference. This will send a request to the My Booking Application hosted in
WAS. The message format is SOAP over HTTP transport.

2. The My Booking web service will get the request from vbooking-home and interrogate the
database for the matching booking reference, and return the result to the User Interface.

3. The user can then make the changes as needed, and submit them back to the My Booking
web service.

4. The web service will validate the input and update the database using JDBC communication.

4.5. Currency application scenario

This scenario details the capabilities built into the Currency Standalone application. There are
multiple components active in this scenario and you can follow them in the diagram below:

15

Currency

Tomcat DB2 Standalone
SOAP/HTTP Applications

JDBC

1 ® 144734 Currency Server POST /currencyconverter
db2 localhost 5000... SELECT TO_CURRENCY, CONVERSION_RATE FROM CURRENCYRATES WHERE FROM_CURRENCY = ?

3 ™ 144735 Currency Server 200- OK

The Currency Standalone application is used during the booking process for both the hotel and the
flight. The service receives a SOAP message format from the Tomcat User Interface vbooking-home.
That then triggers the web service to access the VBEXRATE Database and return the exchange rate.

When you are making a booking, the following steps are happening in the backend:

1. The Tomcat JSP interface vbooking-home will also send a SOAP message to the Currency
Standalone App to ask for the exchange rate selected by the user.

2. The currency service will interrogate the VBEXRATE Database using the JDBC connection and
return the exchange rate to the main interface.

3. The vbooking-home interface will update the price according to the user currency
preferences.

4.6. Boarding scenario

In this scenario the user will act as a flight operator and will be able to board a passenger onto the
aircraft for departure. There are multiple components active in this scenario and you can follow them
in the diagram below:

16

Boarding

Tomcat WAS DB2 Mainframe
JDBC (z/0S)

VBOOKING

SOAP and Rest services

o - \ N ﬁ

JDBC and|Stored Procedure

REST/HTTP

COPYBOOKI/CTG

VBooking XA... SELECT distinct FLIGHT NUMBER FROM RESERVATION ORDER BY FLIGHT NUMBER
FlightsRes| GET /cor ooking flights.rest/re: B04T
SELECT CURRENT SCHEMA FROM SYSIBM.SYSDUMMY1
SELECT t0.ARR_AIRPORT, t0.ARR_TIME, t0.DAY OF WEEK, t0.DEP_TIME, t0.DEP_AIRPORT, t0.PRICE FROM FLIGHTS t0 WHER...
200 ¢
GET /com.vbooking flight
SELECT CURRENT SCHEMA FROM SYSIBM.SYSDUMMY1
SELECT t0.ARR_AIRPORT, t0.ARR_TIME, t0.DAY_OF_WEEK, t0.DEP_TIME, t0.DEP_AIRPCORT, t0.PRICE FROM FLIGHTS t0 WHER ..
2 No Content
G ooking flights Z
.. SELECT CURRENT SCHEMA FROM SYSIBM.SYSDUMMY1
SELECT t0.ARR_AIRPORT, t0.ARR_TIME, t0.DAY_OF_WEEK, t0.DEP_TIME, t0.DEP_AIRPORT, t0.PRICE FROM FLIGHTS t0 WHER...
0

o el o =

@

o ~

o

thReservations
SELECT CURRENT SCHEMA FROM SYSIBM.SYSDUMMY1
SELECT F.FLIGHT NO, F.DEP_AIRPORT, F.DEP_TIME, F.ARR AIRPCRT, F.ARR TIME, F.DAY OF WEEK, F.PRICE FROM FLIGHT...
200
GET /com.vbooking flights._re:) servations
SELECT CURRENT SCHEMA FROM SYSIBM.SYSDUMMY1
SELECT RFIRST_NAME, R LAST_NAME, R WEEK_NUMBER, R.FLIGHT_NUMBER, R.RESERVATION_NUMBER, R.COMMENT, R.PA ..
200 <

. db29.81.39._. SELECT RFIRST_NAME, R LAST_NAME, R WEEK_NUMBER, R.FLIGHT_NUMBER, R.RESERVATION_NUMBER, R.COMMENT, R.PA__

.. db2 9.81.39.... SELECT R.FIRST_NAME, R.LAST NAME, R WEEK_NUMBER, R.FLIGHT NUMBER, R.RESERVATION_NUMBER, R.COMMENT, R.PA...

db2 9.81.39.... SELECT RFIRST NAME, RLAST NAME, RWEEK NUMBER, R.FLIGHT NUMBER, R.RESERVATION NUMBER, R.COMMENT, R.PA...
db2 9.81.39.... {call doFlyCheck(?,7,2,7,2,2,2,7)}

db2 9.81.39.. SELECT RFIRST_NAME, R.LAST_NAME, R WEEK_NUMBER, R FLIGHT_NUMBER, R.RESERVATION_NUMBER, R COMMENT, R.PA_.
db2 9.81.3 UPDATE RESERVATION SET PASSPORT_ID=?, BOARDED=? WHERE RESERVATION_NUMBER =7 AND LOWER('m')=LOWER...
Fligh GET /com.vbooking flights_re: ervations

db2 9.81.3 SELECT CURRENT SCHEMA FROM SYSIBM.SYSDUMMY1

db2 9.81.3 SELECT R.FIRST_NAME, RLAST_NAME, R WEEK_NUMBER, R.FLIGHT_NUMBER, R.RESERVATION_NUMBER, R.COMMENT, R PA .
Fligr 200 S

The boarding process is accessed through the vbooking-admin administration interface. (URL:
http://localhsot:8089/vbooking-admin/index.jsp) This interface is provided by the Tomcat web
server. Following along, in the background the vbooking-admin service communicates with the Flight
Application WAS service which is a RESTful service. The last component in this process is the
VBOOKING Database which stores all the information about passengers, flights and destinations.

When you are boarding a passenger, the following steps are happening in the backend:

1. The Tomcat JSP interface vbooking-admin will access the database through JDBC
communication to get a list of flights.

2. The vbooking-admin web app will also send a REST request to the Flight Application REST
service hosted in WAS to access a specific flight.

17

3. The user will provide a passport number on the boarding view of the User Interface.
4. Now depending on the method selected for flyCheck there two different approaches:

a. If the flyCheck method selected is SPROC then the database stored procedure is used
to validate the passport number (contains 7 or more characters)

b. If the flyCheck method selected is CICS then the CICS transaction is run using
Copybook format to validate the passport number (contains 1 or more characters)

5. To configure which method to use to perform fly check a System Property needs to be
defined in WAS — flightrest.flyCheckMethod. Its value can be set to either CICS (to use CICS
interface) or SPROC (to use database stored procedure). If this property is not defined then
the default (i.e. SPROC) will be used.

6. Finally, if the Passport number is valid, the boarding information is stored inside the database
and the user interface is updated.

4.7. Immigration scenario

In this scenario the user will act as an airport officer and will be able to do the immigration for all the
boarded passengers in the said aircraft. There are multiple components active in this scenario and
you can follow them in the diagram below:

Immigration

Tomcat MQ WAS DB2

XML/MQ

/ B, | |
| o -e—@
‘ ‘

L |

SOAP and Rest srvices
|
[
REST/HTTP JDBC
: D-@—%
|
[

5. (GET .f'c0m_vb00king_fIightg_rest-"restlfﬂights.f‘\.th}ﬂl?
200 - OK
. GET /com vbooking flights restirest/flights/\/B297

vbooking.esewat:ons_repiy

In the Immigration scenario there are multiple parts used from the Vacation Booking Demo
Environment. Firstly, the user will interact with the vbooking-admin JSP webapp hosted by Tomcat.

18

Secondly, the scenario make use of two WAS services: Flight Application and Reservations
Application. The first one provides the process with the flight details through REST calls. The second
WAS service deals with the processing of passengers that are posted on the MQ queue
vbooking.reservations.*. The last component is the VBOOKING Database which stores all the
information in this process.

When you are doing immigration, the following steps are happening in the backend:

1. The Tomcat ISP interface vbooking-admin will access the database through JDBC
communication to get a list of flights.

2. For each flight returned to the vbooking-admin, the web app will make a REST request to the
Flight Application WAS service for the destination.

3. After a user chooses a flight, vbooking-admin will publish a message on the
vbooking.reservations queue with the flight chosen.

4. The Reservations Application WAS service will pick up the message on the queue and access
the database through JDBC and return a MQ message for each boarded passenger on the
vbooking.reservations.reply queue.

4.8. Flight Maintenance scenario

In this scenario the user will be able to edit details about flights and add new flights. There are
multiple components active in this scenario and you can follow them in the diagram below:

Flight Maintenance

Tomcat WAS DB2

VBooking-
Admin

REST/HTTP

The flight maintenance process is accessed through the vbooking-admin administration interface.
(URL: http://localhsot:8089/vbooking-admin/index.jsp) This interface is provided by the Tomcat web
server. Following along, in the background the vbooking-admin service communicates with the Flight
Application WAS service which is a RESTful service. The last component in this process is the
VBOOKING Database which stores all the information about passengers, flights and destinations.

When you are performing a flight maintenance, the following steps are happening in the backend:

1. The Tomcat ISP interface vbooking-admin will access the database through JDBC
communication to get a list of flights.

19

2. The vbooking-admin web app will also send a REST request to the Flight Application REST
service hosted in WAS to access a specific flight.

3. The user will provide new details for a flight or update an existing one.

4. |If the input is valid, the Flight Application WAS service will update the database using JDBC
communication.

4.9. Mobile Flight Ticket scenario

This scenario uses a mobile first application running on Android to connect to a Mobile First server
and then to the Vacation booking REST service. The mobile application allows a passenger to check in

for a flight. There are multiple components active in this scenario and you can follow them in the
diagram below:

Mobile Flight Ticket

Mobile First Tomcat

flightticket
app
~

JSON/HTTP

RESTHTTP

The FlightTicket application is run on an Android device and provides the mobile user interface to
allow the passenger to checkin for a flight.

Following along, the adapters run in MobileFirst Server and they mediate between the FlightTicket
mobile application and the back-end service running on Tomcat. They expose a set of services to the
mobile app, called procedures. The FlightTicket application invokes these procedures using Ajax
requests. The procedure retrieves information from the back-end application.

20

The flightticket app running on Tomcat is a REST application that communicates with the adapters
and provide them with information on the list of flights that the passenger is booked on..

When you checkin for a flight using the mobile application, the following steps are happening in the
backend:

1. The user launches the FlightTicket mobile application and logs in using a username and
password. This username and password is the first and last name of the user in Vacation
Booking.

2. The users selects the button “My Flights” and this invokes the appropriate procedure in the
adapters.

3. The adapter communicates through REST over HTTP with the flightticket app hosted by
Tomcat. The flightticket app returns the list of flights that this user is booked on.

4. The data that is retrieved by an adapter is presented to the FlightTicket application as a
JSON object.

5. The FlightTicket application processes the JSON result and displays the list of flights to the
user. The user selects a flights that he wants to checkin.

6. This invokes another service through the adapters and they communicate the request over
to the flightticket app. The flightticket app receives the request and updates the check-in
information. The confirmation for check-in is then displayed back to the user.

21

