
IBM Cúram Social Program Management
Version 7.0.7

Developing Evidence

IBM

Note

Before using this information and the product it supports, read the information in “Notices” on page
106

Edition

This edition applies to IBM® Cúram Social Program Management v7.0.7 and to all subsequent releases unless otherwise
indicated in new editions.

Licensed Materials - Property of IBM.
© Copyright International Business Machines Corporation 2012, 2019.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

Figures... iv

Tables... v

Chapter 1. Developing static evidence..1
Developing evidence manually..1

Evidence components.. 1
Developing an evidence solution... 8

Developing with the Evidence Generator..32
Inputs and outputs...32
Evidence patterns...33
Modeling that is required for the evidence patterns... 35
Evidence Generator specification.. 42
Evidence Generator Cookbook.. 73
Identifying problems..98

Notices..106
Privacy Policy considerations..107
Trademarks..107

 iii

Figures

1. Asset entity diagram... 77

2. Sample custom evidence.properties..83

iv

Tables

1. Additional aggregations.. 41

2. Additional aggregations.. 41

3. Additional aggregations.. 42

 v

vi

Chapter 1. Developing static evidence
You can develop static evidence manually, that is, hand-crafted, or you can use the Evidence Generator to
create evidence entities.

Developing evidence manually
Custom evidence solutions can be developed with Cúram Evidence. All of the evidence server-side
infrastructure artifacts are available in the curam.core.sl.infrastructure.impl package. The evidence
metadata entity contains metadata about each evidence type. This entity must be populated before
evidence maintenance can proceed. Evidence maintenance functions are available in the administration
application.

Use Cúram's Evidence framework to design and implement evidence solutions. Before you design or
implement evidence solution, ensure that you are familiar with the information in the Evidence patterns
related link.

Related concepts
Evidence patterns
When you design evidence entities for large modules, all entities must fit into a relatively small number of
patterns. These patterns are typically governed by how an evidence type, or entity, relates to another
evidence type.

Evidence components
The two types of evidence components are server-side artifacts and client-side artifacts.

Server-side artifacts
All the evidence server-side infrastructure artifacts are shipped in the
curam.core.sl.infrastructure.impl package.

The key elements in the curam.core.sl.infrastructure.impl package include the Evidence
Controller Hook classes and the Evidence Interfaces. For more information, see the Evidence Controller
Hook and the Standard Evidence Interface related links.

The interfaces are part of the interface hierarchy. Both the Participant Evidence Interface and the
Evidence Interface extend the Standard Evidence Interface, which is the parent interface. Each evidence
entity must implement the evidence interface artifacts.

Related concepts
Evidence Controller Hook
The Evidence Controller Hook is the evidence infrastructure class that contains the extension points for
the evidence maintenance pattern.
Standard Evidence Interface
The Standard Evidence Interface defines the following methods, which are common to both inheriting
interfaces. The interface and its associated methods are shown with the appropriate Javadoc comments.

Standard Evidence Interface
The Standard Evidence Interface defines the following methods, which are common to both inheriting
interfaces. The interface and its associated methods are shown with the appropriate Javadoc comments.

/*
 * Licensed Materials - Property of IBM
 *
 * PID 5725-H26
 *
 * Copyright IBM Corporation 2012. All Rights Reserved.
 *
 * US Government Users Restricted Rights - Use, duplication or disclosure
 * restricted by GSA ADP Schedule Contract with IBM Corp.

© Copyright IBM Corp. 2012, 2019 1

 */
package curam.core.sl.infrastructure.impl;

import curam.core.sl.infrastructure.entity.struct.AttributedDateDetails;
import curam.core.sl.infrastructure.struct.EIEvidenceKey;
import curam.core.sl.infrastructure.struct.EIEvidenceKeyList;
import curam.core.sl.infrastructure.struct.EIFieldsForListDisplayDtls;
import curam.core.sl.infrastructure.struct.ValidateMode;
import curam.core.struct.CaseKey;
import curam.util.exception.AppException;
import curam.util.exception.InformationalException;
import curam.util.type.Date;

/**
 * This interface is a key component of the Curam Temporal Evidence Solution.
 * Implementations hoping to manage evidence via the Temporal Evidence Solution
 * must ensure that the evidence entities contained within the solution
 * implement the Evidence Interface. By doing this, the evidence is utilizing
 * the Evidence Controller pattern whereby a lot of the common business
 * functions for maintaining evidence are contained within the out-of-the-box
 * evidence infrastructure.
 * <p>
 * This interface is the super interface that that will be extended by other
 * evidence interfaces that wish to provide custom functionality for that type
 * of evidence. The methods defined on this evidence are common to any interface
 * that extends it.
 */
public interface StandardEvidenceInterface {

 // ___
 /**
 * Method for calculating case attribution dates. The calculation of evidence
 * attribution is an integral part of a temporal evidence solution as it
 * determines the period of time for which a piece of evidence is effective.
 * The implementation of this function will contain the logic that derives the
 * appropriate effective period for the evidence of a particular type.
 *
 * @param caseKey Contains a case identifier
 * @param evKey Contains the evidenceID / evidenceType pairing of the evidence
 * to be attributed
 *
 * @return Case attribution details
 *
 * @throws AppException Generic Exception Message
 * @throws InformationalException Generic Exception Message
 */
 AttributedDateDetails calcAttributionDatesForCase(CaseKey caseKey,
 EIEvidenceKey evKey) throws AppException, InformationalException;

 // ___
 /**
 * <p>
 * Retrieves a summary of evidence details which are used to populate the
 * 'Details' column on the following evidence pages:
 * <p>
 * <p>
 *
 * All evidence workspace pages
 * Apply changes page
 * Apply user changes page
 * Approve page
 * Reject page
 *
 *
 * @param key Contains an evidenceID / evidenceType pairing
 *
 * @return A summary of the evidence details to be displayed
 *
 * @throws AppException Generic Exception Message
 * @throws InformationalException Generic Exception Message
 */
 EIFieldsForListDisplayDtls getDetailsForListDisplay(EIEvidenceKey key)
 throws AppException, InformationalException;

 /**
 * Method to get the business end date for this evidence record.
 *
 * @param key Contains an evidenceID / evidenceType pairing
 *
 * @return The end date for this evidence
 *
 * @throws AppException Generic Exception Message

2 IBM Cúram Social Program Management: Developing Evidence

 * @throws InformationalException Generic Exception Message
 */
 Date getEndDate(EIEvidenceKey evKey)
 throws AppException, InformationalException;

 /**
 * Method to get the business start date for this evidence record.
 *
 * @param key Contains an evidenceID / evidenceType pairing
 *
 * @return The start date for this evidence
 *
 * @throws AppException Generic Exception Message
 * @throws InformationalException Generic Exception Message
 */
 Date getStartDate(EIEvidenceKey evKey)
 throws AppException, InformationalException;

 // ___
 /**
 * Method for inserting evidence records.
 *
 * @param dtls Custom evidence details to be inserted
 * @param parentKey Contains the evidence type of the evidence being inserted
 *
 * @return Contains the evidenceID / evidenceType of the evidence inserted
 *
 * @throws AppException Generic Exception Message
 * @throws InformationalException Generic Exception Message
 */
 EIEvidenceKey insertEvidence(Object dtls, EIEvidenceKey parentKey)
 throws AppException, InformationalException;

 // ___
 /**
 * Method for inserting evidence records on modification. An insert on
 * modification takes place when the record being modified is 'Active'.
 *
 * @param dtls Evidence details to be inserted
 * @param origKey Contains the evidenceID / evidenceType pairing of the
 * evidence being modified
 * @param parentKey Contains the evidence type of the evidence to be inserted
 *
 * @return Contains the evidenceID / evidenceType of the evidence inserted
 *
 * @throws AppException Generic Exception Message
 * @throws InformationalException Generic Exception Message
 */
 EIEvidenceKey insertEvidenceOnModify(Object dtls, EIEvidenceKey origKey,
 EIEvidenceKey parentKey) throws AppException, InformationalException;

 // ___
 /**
 * Method for modifying evidence records. This function is called when 'In Edit'
 * evidence is being modified in place.
 *
 * @param key Contains the evidenceID / evidenceType pairing of the evidence
 * to be modified
 * @param dtls Modified evidence details
 *
 * @throws AppException Generic Exception Message
 * @throws InformationalException Generic Exception Message
 */
 void modifyEvidence(EIEvidenceKey key, Object dtls)
 throws AppException, InformationalException;

 // ___
 /**
 * Method for retrieving all child evidence for a specified parent.
 *
 * @param key Contains a parent evidenceID / evidenceType pairing
 *
 * @return List of all child evidence (evidenceID / evidenceType pairings) for
 * the specified parent
 *
 * @throws AppException Generic Exception Message
 * @throws InformationalException Generic Exception Message
 */
 EIEvidenceKeyList readAllByParentID(EIEvidenceKey key)
 throws AppException, InformationalException;

 // ___

Chapter 1. Developing static evidence 3

 /**
 * Method for reading evidence records.
 *
 * @param key Contains the evidenceID / evidenceType pairing of the evidence to
 * be read
 *
 * @return Custom evidence details
 *
 * @throws AppException Generic Exception Message
 * @throws InformationalException Generic Exception Message
 */
 Object readEvidence(EIEvidenceKey key)
 throws AppException, InformationalException;

 // ___
 /**
 * Method for retrieving the list of evidence to be used in the validation
 * procedure. This is based on the evidenceID / evidenceType pairing passed
 * into this function.
 * <p>
 * If the input evidence key was that of parent evidence, then this function
 * should return the parent and its associated 'Active' and 'In Edit' child
 * evidence records, if they exist.
 *
 * @param evKey Contains the evidenceID / evidenceType pairing of the evidence
 * being "acted upon".
 *
 * @return List of evidenceID / evidenceType pairings to be used in the
 * validation procedure
 *
 * @throws AppException Generic Exception Message
 * @throws InformationalException Generic Exception Message
 */
 EIEvidenceKeyList selectForValidation(EIEvidenceKey evKey)
 throws AppException, InformationalException;

 // ___
 /**
 * Method for validating evidences based on the validate mode setting.
 *
 * @param evKey The evidenceID / evidenceType pairing of the evidence being
 * "acted upon"
 * @param evKeyList The evidence hierarchy structure for the evKey parameter.
 * If the evKey identified the parent evidence, the evKeyList may contain this
 * parent and its relevant children for validation purposes
 *
 * @param mode The validation mode (insert, modify, validateChanges,
 * applyChanges)
 *
 * @throws AppException Generic Exception Message
 * @throws InformationalException Generic Exception Message
 */
 void validate(EIEvidenceKey evKey, EIEvidenceKeyList evKeyList,
 ValidateMode mode) throws AppException, InformationalException;
}

Evidence Interface
The Evidence Interface and its associated methods are shown with the appropriate Javadoc comments.

/*
 * Licensed Materials - Property of IBM
 *
 * PID 5725-H26
 *
 * Copyright IBM Corporation 2017. All Rights Reserved.
 *
 * US Government Users Restricted Rights - Use, duplication or disclosure
 * restricted by GSA ADP Schedule Contract with IBM Corp.
 */
package curam.core.sl.infrastructure.impl;

import curam.core.sl.entity.struct.CaseParticipantRoleDtlsList;
import curam.core.sl.infrastructure.struct.EIEvidenceKey;
import curam.core.sl.infrastructure.struct.EvidenceTransferDetails;
import curam.core.struct.CaseHeaderKey;
import curam.util.exception.AppException;
import curam.util.exception.InformationalException;
import curam.util.type.Date;
import curam.util.type.Implementable;

4 IBM Cúram Social Program Management: Developing Evidence

/**
 * This interface extends the StandardEvidenceInterface, therefore any class
 * that implements EvidenceInterface must provide its own implementations of the
 * methods defined in the standard interface. Any methods specific to "classic"
 * (i.e. not participant) evidence are to be defined in this interface.
 */
@Implementable
@curam.util.type.AccessLevel(curam.util.type.AccessLevelType.EXTERNAL)
public interface EvidenceInterface extends StandardEvidenceInterface {

 // ___
 /**
 * Transfers evidence from one case to another.
 *
 * @param details Contains the evidenceID / evidenceType pairings of the
 * evidence to be transferred and the transferred
 * @param fromCaseKey The case from which the evidence is being transferred
 * @param toCaseKey The case to which the evidence is being transferred
 *
 * @throws AppException Generic Exception Message
 * @throws InformationalException Generic Exception Message
 */
 @curam.util.type.AccessLevel(curam.util.type.AccessLevelType.EXTERNAL)
 void transferEvidence(EvidenceTransferDetails details,
 CaseHeaderKey fromCaseKey, CaseHeaderKey toCaseKey)
 throws AppException, InformationalException;

 /**
 * Reads all CaseParticipantRoles associated with a given evidence instance.
 *
 * @param key Contains the evidenceID / evidenceType pairings of the evidence
 *
 * @returns A list of all CaseParticipantRoleDtls
 *
 * @throws AppException Generic Exception Message
 * @throws InformationalException Generic Exception Message
 */
 public CaseParticipantRoleDtlsList getCaseParticipantRoles(
 EIEvidenceKey key) throws AppException, InformationalException;

 /**
 * Method to set the business end date for the give evidence object.
 *
 * @param dtls The evidence object to be updated
 * @param date The value which the evidence object's end date should be set
 * with
 *
 * @throws AppException Generic Exception Message
 * @throws InformationalException Generic Exception Message
 *
 * @see #getEndDate(EIEvidenceKey)
 */
 void setEndDate(Object dtls, Date date)
 throws AppException, InformationalException;

 /**
 * Method to set the business start date for the give evidence object.
 *
 * @param dtls The evidence object to be updated
 * @param date The value which the evidence object's start date should be set
 * with
 *
 * @throws AppException Generic Exception Message
 * @throws InformationalException Generic Exception Message
 *
 * @see #getStartDate(EIEvidenceKey)
 */
 void setStartDate(Object dtls, Date date)
 throws AppException, InformationalException;
}

Participant Evidence Interface
The Participant Evidence Interface and its associated methods are shown with the appropriate Javadoc
comments.

/*
 * Licensed Materials - Property of IBM
 *

Chapter 1. Developing static evidence 5

 * PID 5725-H26
 *
 * Copyright IBM Corporation 2012. All Rights Reserved.
 *
 * US Government Users Restricted Rights - Use, duplication or disclosure
 * restricted by GSA ADP Schedule Contract with IBM Corp.
 */
package curam.core.sl.infrastructure.impl;

import curam.core.sl.infrastructure.struct.EIEvidenceKey;
import curam.core.sl.infrastructure.struct.EIEvidenceKeyList;
import curam.core.sl.struct.ConcernRoleIDKey;
import curam.util.exception.AppException;
import curam.util.exception.InformationalException;
import java.util.ArrayList;

/**
 * This interface extends the StandardEvidenceInterface therefore any class that
 * implements ParticipantEvidenceInterface must provide its own implementations
 * of the methods defined in the standard interface. Any methods specific to
 * participant evidence be defined in this interface.
 */
public interface ParticipantEvidenceInterface
 extends StandardEvidenceInterface {

 // ___
 /**
 * Method to check if the attributes that changed during a modify require
 * reassessment to be run when they are applied.
 *
 * @param attributesChanged A list of Strings. Each represents the name of an
 * attribute that changed
 *
 * @return {@code true} if reassessment is required, otherwise {@code false}
 *
 * @throws AppException Generic Exception Message
 * @throws InformationalException Generic Exception Message
 */
 boolean checkForReassessment(ArrayList attributesChanged)
 throws AppException, InformationalException;

 // ___
 /**
 * Method for creating the snapshot record related to a participant evidence
 * record.
 *
 * @param key Contains an evidenceID / evidenceType pairing
 *
 * @return The uniqueID and the evidence type of the Snapshot record.
 *
 * @throws AppException Generic Exception Message
 * @throws InformationalException Generic Exception Message
 */
 EIEvidenceKey createSnapshot(EIEvidenceKey key)
 throws AppException, InformationalException;

 // ___
 /**
 * Method to compare attributes on two records of the same entity type. It
 * then returns an ArrayList of strings with the names of each attribute that
 * was different between them.
 *
 * @param key Contains an evidenceID / evidenceType pairing
 * @param dtls A struct of the same type as the key containing the attributes
 * to be compared against
 *
 * @return A list of Strings. Each represents an attribute name that differed.
 *
 * @throws AppException Generic Exception Message
 * @throws InformationalException Generic Exception Message
 */
 ArrayList getChangedAttributeList(EIEvidenceKey key, Object dtls)
 throws AppException, InformationalException;

 // ___
 /**
 * Method to search for records on a participant entity by concernRoleID and
 * status.
 *
 * @param key The unique concernRoleID of the participant.
 *
 * @return A list of EIEvidenceKey objects each containing an

6 IBM Cúram Social Program Management: Developing Evidence

 * evidenceID/evidenceType pair.
 *
 * @throws AppException Generic Exception Message
 * @throws InformationalException Generic Exception Message
 */
 EIEvidenceKeyList readAllByConcernRoleID(ConcernRoleIDKey key)
 throws AppException, InformationalException;

 // ___
 /**
 * Method removing participant evidence. This method is called when
 * participant evidence is being cancelled
 *
 * @param key Contains an evidenceID / evidenceType pairing
 * @param dtls Modified evidence details
 *
 * @throws AppException Generic Exception Message
 * @throws InformationalException Generic Exception Message
 */
 void removeEvidence(EIEvidenceKey key, Object dtls)
 throws AppException, InformationalException;
}

Adopting an interface approach enforces a pattern upon entity design and development as each entity
must implement the same interface. By using this approach, the IBM Cúram Social Program Management
Platform can provide as much common functionality as possible so that custom implementations can
concentrate more on business aspects of evidence maintenance, such as validations. Each evidence
entity must implement the Evidence Interface to have access to the Evidence Controller class. This class
implements the common business logic across all evidence entities and the custom business logic
specific to each evidence entity.

Accessing non-modeled functions
When the Evidence Interfaces are implemented by evidence entities, the methods that are defined by
these interfaces are implemented by those evidence entities.

As the methods are non-modeled, the methods exist only on the evidence entity impl classes. To access
the non-modeled functions, you must cast from the impl class. For more information, see the List
evidence related link.

For the casting mechanism to work, the factory class must extend the impl class rather than to the base
class. For the factory class to extend the impl rather than to the base class, if no non-stereotyped
functions are being added to the class, is to add a non-stereotyped dummy function. If a non-stereotyped
dummy function is not added, a runtime error results when the casting is run.

Related concepts
List evidence
A list evidence operation involves client and server development. The list operation is used to populate an
evidence workspace page.

Client-side artifacts
The client-side infrastructure artifacts are located inside the \webclient\components\core
\Evidence Infrastructure directory.

The \webclient\components\core\Evidence Infrastructure folder primarily contains uim and
vim client pages. The vim files are typically included inside solution-specific uim pages to manage
generic evidence details. The vim pages contain complete default functions for evidence maintenance.

Benefits of the vim files

The key benefit of the vim files is that the files can be changed to match with any enhancements that are
made to the evidence maintenance solution without affecting specific implementations. So, the upgrade
is seamless.

The following four files are examples of infrastructural vim files:

• Evidence_createHeader.vim
• Evidence_modifyHeader.vim

Chapter 1. Developing static evidence 7

• Evidence_viewHeader.vim
• Evidence_viewHeaderForModal.vim

Managing infrastructural attributes

The proceeding artifacts are used to manage the infrastructural attributes of evidence maintenance and
must be included in the create, modify, and view evidence pages. The following three files are further
examples of vim files to include.

• Evidence_typeWorkspace.vim
• Evidence_workspaceInEditHighLevelView.vim
• Evidence_workspaceActiveHighLevelView.vim

The preceding artifacts are used to populate evidence workspaces. An evidence workspace is a central
location for managing evidence. The preceding vim files are included by the workspace.uim pages.

The proceeding three files are examples of infrastructural uim pages that provide entire evidence
maintenance functions:

• Evidence_applyChanges1.uim
• Evidence_addNewEvidence.uim
• Evidence_dashboard.uim

Evidence_applyChanges1 lists all work-in-progress evidence, that is, all new and updated evidence or
evidence that is pending removal. The display and action bean on the page live on the Evidence facade
that is part of the centralized evidence maintenance functions.

Evidence_addNewEvidence lists all possible evidence types, which are filtered by category, and starts
an appropriate create page for each.

Evidence_dashboard lists all evidence types on the case and is broken into categories. It highlights
that types have In Edit evidence that is recorded and that have verifications or issues outstanding.

Note: In some cases, .vim files in the client infrastructure package are included in infrastructure pages.
For instance, Evidence_dashboardView.vim is included inside the Evidence_dashboard page and
Evidence_flowView.vim is included inside the Evidence_flow page.

Developing an evidence solution
Developing an evidence solution can involve various steps, such as creating, modifying, reading, and
listing evidence maintenance operations, evidence attribution and reattribution, registering evidence
implementations, and customizing evidence.

Administration: Evidence Metadata entity and Product Evidence Link entity
The Evidence Metadata entity contains metadata information that relates to each evidence type. The
Product Evidence Link entity links evidence to a product.

Evidence Metadata entity

The Evidence Metadata entity must be populated before evidence maintenance can proceed. A number of
evidence page names, including the view and modify page names, are included in the metadata. The page
names are retrieved at run time by using evidence infrastructure resolve scripts and by using
implementations of the Evidence Type interface on the server. The records on the Evidence Metadata
entity are effective dated to facilitate pages that change over time, for example, due to legislation.

8 IBM Cúram Social Program Management: Developing Evidence

Product Evidence Link entity

In some circumstances, evidence might be stored at the Integrated Case level but only some of the
evidence might apply to a product on the Integrated Case. To determine the evidence to attribute to a
product, a lookup of this entity is performed as part of the attribution processing. Then, only evidence that
is linked to the product is attributed.

Create, modify, read, and list evidence maintenance operations
Create, modify, read, and list evidence maintenance operations are outlined by using sequence diagrams,
client screen captures, and server code snippets from a sample product implementation.

Create evidence
A create evidence operation involves client and server development.

Sequence diagram for creating evidence

Client screen to be developed

The client page to be developed must include the evidence infrastructure page
Evidence_createHeader.vim. The included .vim page facilitates the management of infrastructure
attributes. For example, the Evidence Descriptor's receivedDate attribute is managed through this
infrastructure page. If, in the future, more attributes that need to be managed through the create function
are added to the Evidence Descriptor entity, then these attributes might be mapped through this
infrastructure page. So, the operation requires just a once-off infrastructure change rather than many
changes to custom artifacts.

Server methods to implement

The SEGEvidenceMaintainenance.createAssetEvidence facade operation calls the evidence
service layer implementation.

// __
/**
 * Creates an Asset evidence record.
 *
 * @param dtls Details of the new evidence record to be created.
 *
 * @return The details of the created record.
 */
 public ReturnEvidenceDetails createAssetEvidence(

Chapter 1. Developing static evidence 9

 AssetEvidenceDetails dtls)
 throws AppException, InformationalException {

 // set the informational manager for the transaction
 TransactionInfo.setInformationalManager();

 // Asset evidence manipulation object
 Asset evidenceObj = AssetFactory.newInstance();

 // return object
 ReturnEvidenceDetails createdEvidenceDetails =
 new ReturnEvidenceDetails();

 // create the Asset record and populate the return details
 createdEvidenceDetails =
 evidenceObj.createAssetEvidence(dtls);

 createdEvidenceDetails.warnings =
 EvidenceControllerFactory.newInstance().getWarnings();

 return createdEvidenceDetails;
}

These overloaded Asset.createAssetEvidence service layer operations call the Evidence Controller
infrastructure function for inserting evidence.

// __
/**
 * Creates an Asset record.
 *
 * @param dtls Contains Asset evidence record creation details.
 *
 * @return the new evidence ID and warnings.
 */
public ReturnEvidenceDetails createAssetEvidence(
 AssetEvidenceDetails dtls)
 throws AppException,InformationalException {

 return createAssetEvidence(dtls, null, null, false);
}

// __
/**
 * Creates a Asset record.
 *
 * @param dtls Contains Asset evidence record creation details.
 *
 * @param sourceEvidenceDescriptorDtls If this function is called
 * during evidence sharing, this parameter will be non-null and
 * it represents the header of the evidence record being shared
 * (i.e. the source evidence record)
 *
 * @param targetCase If this function is called during evidence
 * sharing, this parameter will be non-null and it represents the
 * case the evidence is being shared with.
 *
 * @param sharingInd A flag to determine if the function is
 * called in evidence sharing mode. If false, the function is
 * being called as part of a regular create.
 *
 * @return the new evidence ID and warnings.
 */
public ReturnEvidenceDetails createAssetEvidence(
 AssetEvidenceDetails dtls,
 EvidenceDescriptorDtls sourceEvidenceDescriptorDtls,
 CaseHeaderDtls targetCase, boolean sharingInd)
 throws AppException,InformationalException {

 // validate the mandatory fields
 validateMandatoryDetails(dtls);

 EvidenceControllerInterface evidenceControllerObj =
 (EvidenceControllerInterface)
 EvidenceControllerFactory.newInstance();
 EvidenceDescriptorInsertDtls evidenceDescriptorInsertDtls =
 new EvidenceDescriptorInsertDtls();

 ReturnEvidenceDetails createdEvidence =
 new ReturnEvidenceDetails();

10 IBM Cúram Social Program Management: Developing Evidence

 if (sharingInd) {

 EvidenceDescriptorDtls sharedDescriptorDtls =
 evidenceControllerObj.shareEvidence(
 sourceEvidenceDescriptorDtls,
 targetCase);

 // Return the evidence ID and warnings
 createdEvidence.evidenceKey.evidenceID =
 sharedDescriptorDtls.relatedID;
 createdEvidence.evidenceKey.evType =
 sharedDescriptorDtls.evidenceType;

 } else {

 // As there is no participant associated with this evidence
 // we must retrieve the case participant to set the evidence
 // descriptor participant.
 CaseHeaderKey caseHeaderKey = new CaseHeaderKey();
 caseHeaderKey.caseID = dtls.caseIDKey.caseID;
 evidenceDescriptorInsertDtls.participantID =
 CaseHeaderFactory.newInstance().readCaseParticipantDetails(
 caseHeaderKey).concernRoleID;

 // Evidence descriptor details
 evidenceDescriptorInsertDtls.caseID = dtls.caseIDKey.caseID;
 evidenceDescriptorInsertDtls.evidenceType =
 CASEEVIDENCE.ASSET;
 evidenceDescriptorInsertDtls.receivedDate =
 dtls.descriptor.receivedDate;

 // Upon creation, the change reason should be Initial
 evidenceDescriptorInsertDtls.changeReason =
 EVIDENCECHANGEREASON.INITIAL;

 // Evidence Interface details
 EIEvidenceInsertDtls eiEvidenceInsertDtls =
 new EIEvidenceInsertDtls();
 eiEvidenceInsertDtls.descriptor.assign(
 evidenceDescriptorInsertDtls);
 eiEvidenceInsertDtls.evidenceObject = dtls.dtls;

 // Insert the evidence
 EIEvidenceKey eiEvidenceKey =
 evidenceControllerObj.insertEvidence(eiEvidenceInsertDtls);

 // Return the evidence ID and warnings
 createdEvidence.evidenceKey.evidenceID =
 eiEvidenceKey.evidenceID;
 createdEvidence.evidenceKey.evType =
 eiEvidenceKey.evidenceType;
 createdEvidence.warnings =
 evidenceControllerObj.getWarnings();
 }

 return createdEvidence;
}

Modify evidence
A modify evidence operation involves client and server development.

Chapter 1. Developing static evidence 11

Sequence diagram for modifying evidence

Client screen to develop

The client page to be developed must include the evidence infrastructure page
Evidence_modifyHeader1.vim. The included.vim page facilitates the viewing or modification or both
of some infrastructure attributes. For example, the received date can be viewed or modified by using
this.vim. Also, the change reason and the effective date of change can be set on the edited record. If, in
the future, more attributes that need to be managed through the modify function are added to the
Evidence Descriptor entity, then these attributes might be mapped through this infrastructure page. So,
the operation requires just a once-off infrastructure change rather than many changes to custom artifacts.

The inclusion of Evidence_modifyHeader1.vim facilitates the following three types of evidence
modification.

• Editing evidence in place

Editing evidence in place refers to the modification of incorrect data on a piece of evidence that is not
yet activated. In this scenario, if the effective date is modified an error is thrown that informs the user
that the date can be modified only when the user is updating an active record.

• Evidence correction

12 IBM Cúram Social Program Management: Developing Evidence

An evidence correction occurs when a piece of data on an active evidence record is modified that
results in superseding the current active record. In this scenario, the effective date field must not be
modified because it results in a creating new record in the succession.

• Evidence succession

If the user modifies the effective date when the user is updating a piece of active evidence, the user is
specifying a new record in the succession set, that is, the new record has the same successionID as the
active record. So, the active record is copied and made effective from the effective date that is specified
by the user and the update is applied to this record.

Note: The activation of newly created records in a succession causes the reattribution of records in that
succession set.

Server methods to implement

The SEGEvidenceMaintenance.modifyAssetEvidence facade operation calls the evidence service
layer implementation.

// __
/**
 * Modifies an Asset evidence record.
 *
 * @param details The modified evidence details.
 *
 * @return The details of the modified evidence record.
 */
public ReturnEvidenceDetails modifyAssetEvidence(
 AssetEvidenceDetails dtls)
 throws AppException, InformationalException {

 // set the informational manager for the transaction
 TransactionInfo.setInformationalManager();

 // Asset evidence manipulation object
 Asset evidenceObj = AssetFactory.newInstance();

 // return object
 ReturnEvidenceDetails modifiedEvidenceDetails =
 new ReturnEvidenceDetails();

 // modify the Asset record and populate the return details
 modifiedEvidenceDetails =
 evidenceObj.modifyAssetEvidence(dtls);

 modifiedEvidenceDetails.warnings =
 EvidenceControllerFactory.newInstance().getWarnings();

 return modifiedEvidenceDetails;
}

The Asset.modifyAssetEvidence service layer operation calls the Evidence Controller infrastructure
function for modifying evidence.

// __
/**
 * Modifies an Asset record.
 *
 * @param dtls Contains Asset evidence record modification
 * details.
 *
 * @return The modified evidence ID and warnings.
 */
public ReturnEvidenceDetails modifyAssetEvidence
 (AssetEvidenceDetails details)
 throws AppException, InformationalException {

 // validate the mandatory fields

Chapter 1. Developing static evidence 13

 validateMandatoryDetails(details);

 // EvidenceController business object
 EvidenceControllerInterface evidenceControllerObj =
 (EvidenceControllerInterface)
 EvidenceControllerFactory.newInstance();

 EIEvidenceKey eiEvidenceKey = new EIEvidenceKey();

 //
 // Call the EvidenceController to modify the evidence
 //

 eiEvidenceKey.evidenceID = details.dtls.evidenceID;
 eiEvidenceKey.evidenceType = CASEEVIDENCE.ASSET;

 // Create the evidence interface modification struct and assign
 // the details
 EIEvidenceModifyDtls eiEvidenceModifyDtls =
 new EIEvidenceModifyDtls();
 eiEvidenceModifyDtls.descriptor.receivedDate =
 details.descriptor.receivedDate;
 eiEvidenceModifyDtls.descriptor.versionNo =
 details.descriptor.versionNo;
 eiEvidenceModifyDtls.descriptor.effectiveFrom =
 details.descriptor.effectiveFrom;
 eiEvidenceModifyDtls.descriptor.changeReceivedDate =
 details.descriptor.changeReceivedDate;
 eiEvidenceModifyDtls.descriptor.changeReason =
 details.descriptor.changeReason;
 eiEvidenceModifyDtls.evidenceObject = details.dtls;

 evidenceControllerObj.modifyEvidence(
 eiEvidenceKey, eiEvidenceModifyDtls);

 //
 // Return details from the modify operation
 //

 ReturnEvidenceDetails returnEvidenceDetails =
 new ReturnEvidenceDetails();
 returnEvidenceDetails.evidenceKey.evidenceID =
 eiEvidenceKey.evidenceID;
 returnEvidenceDetails.evidenceKey.evType =
 eiEvidenceKey.evidenceType;
 returnEvidenceDetails.warnings =
 evidenceControllerObj.getWarnings();

 return returnEvidenceDetails;
}

Read evidence
A read evidence operation involves client and server development.

Sequence diagram for viewing evidence

14 IBM Cúram Social Program Management: Developing Evidence

Client screen to develop

The client page includes the evidence infrastructure page Evidence_viewHeaderForModal.vim. The
included.vim facilitates the viewing of some infrastructure attributes.

Server methods to implement

The SEGEvidenceMaintenance.readAssetEvidence façade operation calls the evidence service
layer implementation.

// __
/**
 * Reads an Asset evidence record.
 *
 * @param key Identifies the evidence record to read.
 *
 * @return The details of the evidence record.
 */
public ReadAssetEvidenceDetails readAssetEvidence(
 EvidenceCaseKey key)
 throws AppException, InformationalException {

 // Asset evidence manipulation object
 Asset evidenceObj = AssetFactory.newInstance();

 // return object
 ReadAssetEvidenceDetails readEvidenceDetails =
 new ReadAssetEvidenceDetails();

 // read the Asset record and populate the return details
 readEvidenceDetails = evidenceObj.readAssetEvidence(key);

 return readEvidenceDetails;

}

Chapter 1. Developing static evidence 15

This service layer operation calls the Evidence Controller infrastructure function for reading evidence.

// __
/**
 * Reads an Asset record.
 *
 * @param key contains ID of record to read.
 *
 * @return Asset evidence details read.
 */
public ReadAssetEvidenceDetails readAssetEvidence(
 EvidenceCaseKey key)
 throws AppException, InformationalException {

 // EvidenceController business object
 EvidenceControllerInterface evidenceControllerObj =
 (EvidenceControllerInterface)
 EvidenceControllerFactory.newInstance();

 EIEvidenceKey eiEvidenceKey = new EIEvidenceKey();
 eiEvidenceKey.evidenceID = key.evidenceKey.evidenceID;
 eiEvidenceKey.evidenceType = CASEEVIDENCE.ASSET;

 // Retrieve the evidence details
 EIEvidenceReadDtls eiEvidenceReadDtls =
 evidenceControllerObj.readEvidence(eiEvidenceKey);

 // Retrieve the evidence descriptor details
 EvidenceDescriptor evidenceDescriptorObj =
 EvidenceDescriptorFactory.newInstance();

 EvidenceDescriptorKey evidenceDescriptorKey =
 new EvidenceDescriptorKey();
 evidenceDescriptorKey.evidenceDescriptorID =
 eiEvidenceReadDtls.descriptor.evidenceDescriptorID;

 EvidenceDescriptorDtls evidenceDescriptorDtls =
 evidenceDescriptorObj.read(evidenceDescriptorKey);

 //
 // Return the evidence
 //

 ReadAssetEvidenceDetails readEvidenceDetails =
 new ReadAssetEvidenceDetails();
 readEvidenceDetails.descriptor
 .assign(evidenceDescriptorDtls);

 readEvidenceDetails.descriptor.approvalRequestStatus =
 eiEvidenceReadDtls.descriptor.approvalRequestStatus;
 readEvidenceDetails.descriptor.updatedBy =
 eiEvidenceReadDtls.descriptor.updatedBy;
 readEvidenceDetails.descriptor.updatedDateTime =
 eiEvidenceReadDtls.descriptor.updatedDateTime;

 // assign the evidence to the return object
 readEvidenceDetails.dtls.assign(
 (AssetDtls)(eiEvidenceReadDtls.evidenceObject));

 return readEvidenceDetails;
}

List evidence
A list evidence operation involves client and server development. The list operation is used to populate an
evidence workspace page.

16 IBM Cúram Social Program Management: Developing Evidence

Sequence diagram for listing evidence

Server methods to develop

Much of the data that is displayed on the workspace page is retrieved by the Evidence Descriptor entity.
The description and period are retrieved by the Evidence Interface methods that must be implemented
for each evidence type.

• Asset.getDetailsForListDisplay entity operation

The description, or summary details, is retrieved by the getDetailsForListDisplay Evidence
Interface method that is implemented by the evidence entities. The proceeding illustrates the
implementation of the getDetailsForListDisplay method for the Asset. This interface function is
also used to retrieve summary data when the user is applying, approving, rejecting evidence and in
evidence sharing, verifications, and, issues screens.
// __
/**
 * Gets evidence details for the list display
 *
 * @param key Evidence key containing the evidenceID and
 * evidenceType
 *
 * @return Evidence details to be displayed on the list page
 */
public EIFieldsForListDisplayDtls getDetailsForListDisplay(
 EIEvidenceKey key)
 throws AppException, InformationalException {

 // Return object
 EIFieldsForListDisplayDtls eiFieldsForListDisplayDtls =
 new EIFieldsForListDisplayDtls();

 // Asset entity key
 final AssetKey assetKey = new AssetKey();
 assetKey.evidenceID = key.evidenceID;

 // Read the Asset entity to get display details
 final AssetDtls assetDtls =
 AssetFactory.newInstance().read(assetKey);

 // Set the start / end dates
 eiFieldsForListDisplayDtls.startDate = assetDtls.startDate;
 eiFieldsForListDisplayDtls.endDate = assetDtls.endDate;

Chapter 1. Developing static evidence 17

 LocalisableString summary = new LocalisableString(
 BIZOBJDESCRIPTIONS.BIZ_OBJ_DESC_ASSET);

 summary.arg(
 CodeTable.getOneItem(SAMPLEASSETTYPE.TABLENAME,
 assetDtls.assetType));

 // Format the amount for display
 TabDetailFormatter formatterObj =
 TabDetailFormatterFactory.newInstance();
 AmountDetail amount = new AmountDetail();
 amount.amount = assetDtls.value;
 summary.arg(formatterObj.formatCurrencyAmount(amount).amount);

 eiFieldsForListDisplayDtls.summary =
 summary.toClientFormattedText();

 return eiFieldsForListDisplayDtls;
}

Validations
The infrastructure facilitates the validation of work-in-progress changes. The validate page can be used
either at a case level or on an individual evidence type.

The purpose of the case level validate page is to provide a means to test validations in advance of
applying the changes. For some products, the full evidence set can be sizeable and results in the apply
changes listing containing a considerable number of evidence changes of varying evidence types.

In that scenario, the individual evidence type validate page can make it easier to associate a validation
message with the correct evidence record. The validate page allows a user to pre-test the evidence
changes. The user can see the validations that fail and then fix the failures before the user applies the
changes.

Two of the Evidence Interface functions that form part of the infrastructure support for evidence
validation are selectForValidations and validate.

selectForValidations

The selectForValidations function is typically used to select all evidences that are related to or
depend on the piece of evidence that is being validated. For example, modifying an amount on a parent
evidence record. As part of the validation of the parent evidence, a check might need to be performed to
ensure that the sum of the child evidence records does not exceed the modified parent amount.

When a user applies changes to evidence records, the Evidence Controller calls out to the
selectForValidations interface function on the entities for each evidence record. The logic within
this method retrieves all related Active and In Edit evidences within the hierarchy for validation. For
instance, where the system is validating a child evidence record within a parent-child-grandchild
relationship structure, both parent evidence and grandchild evidence are retrieved for the validation
processing.

When processing returns to the Evidence Controller, a filter is applied to the list of evidence. The filter
determines the input list and leaves only Active records, or In Edit records, depending on whether
the function must validate against work-in-progress or active only evidence. The filtered list is then
passed to the validate function where custom validation is applied.

The proceeding program listing displays a selectForValidations implementation that is used in the
Asset demonstration.
// __
 /**
 * Selects all the records for validations
 *
 * @param evKey Contains an evidenceID / evidenceType pairing
 *
 * @return List of evidenceID / evidenceType pairings
 */
 public EIEvidenceKeyList selectForValidation(
 EIEvidenceKey evKey)

18 IBM Cúram Social Program Management: Developing Evidence

 throws AppException, InformationalException {

 // Return object
 EIEvidenceKey eiEvidenceKey = new EIEvidenceKey();

 // Casting to impl due to calling non-modeled interface
 curam.seg.evidence.entity.intf.AssetOwnership
 assetOwnershipObj =
 (curam.seg.evidence.entity.impl.AssetOwnership)
 AssetOwnershipFactory.newInstance();

 eiEvidenceKey.evidenceID = evKey.evidenceID;
 eiEvidenceKey.evidenceType =
 CASEEVIDENCE.ASSET;

 EIEvidenceKeyList eiEvidenceKeyList =
 assetOwnershipObj.readAllByParentID(eiEvidenceKey);

 eiEvidenceKeyList.dtls.add(0, evKey);

 return eiEvidenceKeyList;
 }

The code here, on the Asset parent entity, calls the readAllByParentID interface method
implementation on the child entity, Asset Ownership. The proceeding program listing displays the
implementation of the readAllByParentID function on the Asset Ownership.
// __
/**
 * Read all Asset Ownership records
 *
 * @param key Contains the evidenceID and evidenceType
 *
 * @return A list of evidenceID and evidenceType pairs
 */
public EIEvidenceKeyList readAllByParentID(EIEvidenceKey key)
 throws AppException, InformationalException {

 // Return object
 EIEvidenceKeyList eiEvidenceKeyList = new EIEvidenceKeyList();

 // Create the link entity object
 EvidenceRelationship evidenceRelationshipObj =
 EvidenceRelationshipFactory.newInstance();

 // parent entity key
 ParentKey parentKey = new ParentKey();
 parentKey.parentID = key.evidenceID;
 parentKey.parentType = key.evidenceType;

 // Reads all relationship details for the specified parent
 ChildKeyList childKeyList =
 evidenceRelationshipObj.searchByParent(parentKey);

 // Iterate through the link details list
 for (int i = 0; i < childKeyList.dtls.size(); i++) {

 if (childKeyList.dtls.item(i).childType.equals(
 CASEEVIDENCE.ASSETOWNERSHIP)) {

 EIEvidenceKey listEvidenceKey = new EIEvidenceKey();

 listEvidenceKey.evidenceID =
 childKeyList.dtls.item(i).childID;
 listEvidenceKey.evidenceType =
 childKeyList.dtls.item(i).childType;

 eiEvidenceKeyList.dtls.addRef(listEvidenceKey);
 }
 }

 return eiEvidenceKeyList;

}

The preceding function retrieves all child evidence keys for the specified parent. The childID and
childType pairings are returned to the calling mechanism.

Chapter 1. Developing static evidence 19

Evidence attribution and reattribution
Evidence attribution refers to the assignment of a time period to a piece of evidence during which that
piece of evidence is used for entitlement calculations.

Attribution

The attribution period can range from a basic one-to-one mapping from the business start and end dates
through to a more sophisticated algorithm that considers various factors. This custom logic calculates the
attribution period. The evidence controller manages the synchronizing of the attribution period with the
specified effective dates.

Note: The attribution from and to dates can be null in which case the piece of evidence is assumed
effective from the case start date to the expected end date.

Example

One of the Evidence Interface functions is calcAttributionDatesForCase and the implementation of
this function on an entity class is where the attribution From and To dates are determined for evidence on
that entity.

Re-attribution

When evidence is modified as part of a succession and later activated, reattribution of the evidence
records in the succession set occurs.

Example

Business Start Date: 3 May 2006 (=attribution from date)

Business End Date: 30 July 2006 (=attribution to date)

A succession record is created effective from 5 June 2006. On activation of this record, the evidence is
reattributed and the proceeding attribution records are created.

• 3 May 2006 to 4 June 2006
• 5 June 2006 to 30 July 2006

Reattribution also occurs where evidence in a succession set is removed. In the proceeding example,
three attribution records exist for records in the same succession set.

• 3 May 2006 to 4 June 2006
• 5 June 2006 to 30 July 2006
• 31 July 2006 to 29 Sept 2006

The evidence record associated with the second entry, that is, 5 June 2006 to 30 July 2006, is removed.
So, by applying changes the proceeding reattribution is caused.

• 3 May 2006 to 4 June 2006
• 31 July 2006 to 29 Sept 2006

The attribution record 5 June 2006 to 30 July 2006 remains on the database, but is not selected by
eligibility processing as the associated evidence is removed, that is, the associated evidence has a status
of Canceled.

EvidenceRelationship link entity
By default, the Evidence infrastructure facilitates the linking of parent-child evidence by using the
EvidenceRelationship link entity.

The proceeding table lists the structure of the EvidenceRelationship link entity.

20 IBM Cúram Social Program Management: Developing Evidence

Evidence relationship

evidenceRelationshipID

parentID

parentType

childID

childType

The EvidenceRelationship supports the relationship between any parent-child evidence and
eliminates the necessity for customers to model their own link entities for managing such relationships.
When evidence is being inserted, the generic EvidenceController.insertEvidence function calls
to the business process EvidenceRelationship.createLink.

Where a parent type is specified, that is, passed in from the client as part of the insert, then a record is
written to the EvidenceRelationship entity that links the child evidence to its parent. Also, the
system calls to the business process EvidenceRelationship.cloneLinks directly after the call to
the interface operation insertEvidenceOnModify. From cloneLinks, two further calls are made to
cloneLinksForParent and cloneLinksForChild.

Where customers are using their own link entities to manage relationships, customers must override the
Evidence Relationship business processes for creating and cloning links. The evidence type is available in
the input keys of both these functions. So, responsibility can be delegated to the appropriate custom
relationship processing based on the evidence type in the key.

Registering evidence implementations
The evidence maintenance pattern requires the set of evidence entities to be registered before they can
be used so that the controller can access the evidence entities at runtime.

The Core Cúram Framework cannot anticipate the evidence entities to use for the evidence maintenance
facility associated with a particular product implementation. So, the evidence types and their
implementation must be paired at run time.

Evidence registrar module

Use Google Guice dependency injection to register the different evidence types and their
implementations. To register the different evidence types and their implementations, write a new module
class or add the evidence type and their implementations to an existing evidence module class. When the
module class is added to the ModuleCalssName table, then at runtime it is loaded and the evidence
types registered.

The proceeding is an example of a Google Guice dependency injection.

/*
 * Copyright 2011 Cúram Software Ltd.
 * All rights reserved.
 *
 * This software is the confidential and proprietary information
 * of Cúram Software, Ltd. ("Confidential Information"). You
 * shall not disclose such Confidential Information and shall use
 * it only in accordance with the terms of the license agreement
 * you entered into with Cúram Software.
 */

package curam.seg.evidence.service.impl;

import curam.codetable.CASEEVIDENCE;
import com.google.inject.AbstractModule;
import curam.core.impl.FactoryMethodHelper;
import java.lang.reflect.Method;
import com.google.inject.multibindings.MapBinder;
import curam.core.impl.RegistrarImpl;

Chapter 1. Developing static evidence 21

import curam.core.impl.Registrar.RegistrarType;

/**
 * A module class which provides registration for all of the
 * evidence hook implementations.
 */
public class SEGRegistrarModule extends AbstractModule {

 @Override
 public void configure() {

 // Register all hook implementations which implement the
 // interface EvidenceInterface.
 MapBinder<String, Method> evidenceInterfaceMapBinder =
 MapBinder.newMapBinder(binder(), String.class,
 Method.class, new RegistrarImpl(RegistrarType.EVIDENCE));

 evidenceInterfaceMapBinder
 .addBinding(CASEEVIDENCE.ASSET)
 .toInstance(FactoryMethodHelper.getNewInstanceMethod(
 curam.seg.evidence.entity.fact.AssetFactory.class));
 }
}

Legacy evidence registrar

The legacy mechanism for registration of evidence entities is still supported, that is, by using the
Application Properties to specify the factories to populate a hash map of the hook classes. The factory
code does not change to maintain compatibility with an earlier version. However, all default legacy
implementations are deprecated.

Customizing evidence maintenance
As the Evidence Controller functionality is generic to all evidence solutions, the only way to facilitate an
organization's unique requirements is to provide hooks where custom logic can be located to extend the
core solution. Callouts to these hooks, or extension points, are made within the Evidence Controller
maintenance functions.

The Cúram infrastructure handles the maintenance of evidence, such as adding, modifying, removing, and
applying changes. The infrastructure is independent of the evidence type, that is, by default all evidence
types are treated the same.

Customers might need to customize the processing available for immediate use to meet project-specific
needs. To facilitate the customize the processing, the EvidenceControllerHook interface provides a
set of extension points that allows custom code to be run at points in the evidence maintenance process.

As well as adding custom code to the extension points, customers can specify 'case type' specific logic.
Customers can use 'case type' specific logic to allow multiple implementations of the
EvidenceControllerHook to be provided. Each implementation can be mapped to a 'case type' to give
case type-specific customization. For example, the postRemoveEvidence for evidence on a Product
Delivery case might be different than the postRemoveEvidence that is run on an Integrated Case.

Evidence Controller Hook
The Evidence Controller Hook is the evidence infrastructure class that contains the extension points for
the evidence maintenance pattern.

Example

An example of a hook in the evidence infrastructure class is postRemoveEvidence. A call is made to this
function inside the Evidence Controller removeEvidence operation. Where customers want to perform
post-remove evidence processing, customers must override the hook with their custom version.

22 IBM Cúram Social Program Management: Developing Evidence

Providing a custom implementation of the EvidenceControllerHook
To inject a custom implementation at the provided extension points, the abstract base class
curam.core.sl.infrastructure.impl.EvidenceControllerHook can be extended and the
wanted methods can be overridden.

For most methods of the base abstract class, the implementation does nothing, but some default
implementations are provided, such as for the PreRemoveEvidence method. The Java docs of the class
can be referenced to recognize the default implementation. If required, the super().methodname()
notation can be used to start the default implementation from an overridden method to retain the base
functions.

To create a new custom EvidenceController hook, use the proceeding steps.

• A new process class is modeled in, for example, CustomHook. This process must have a
'Generalization' relationship with EvidenceControllerHook class (extends
EvidenceControllerHook).

• An implementation of the newly created process is created, in which any wanted methods are
overridden:

public class CustomHook extends curam.sample.sl.base.CustomHook {

 @Override
 public void postInsertEvidence(CaseKey caseKey,
 EIEvidence eiEvidenceKey){

 }
 }

• A new Module class is created, where the wanted product type is bound to the custom hook
implementation. This class must extend AbstractModule and a configuration for this module class must
be added to MODULECLASSNAME.dmx:

public class TestRegistrarModule extends AbstractModule{

 @Override
 protected void configure() {
 MapBinder<String, Method> evidenceControllerMapBinder =
 MapBinder.newMapBinder(binder(), String.class, Method.class,
 new RegistrarImpl(RegistrarType.EVIDENCE_CONTROLLER_HOOK));

 evidenceControllerMapBinder
 .addBinding(PRODUCTTYPE.CUSTOMPRODUCTTYPE)
 .toInstance(FactoryMethodHelper.getNewInstanceMethod(
 CustomHookFactory.class));
 }
}

The preceding adds a binding of CustomHook implementation to PRODUCTTYPE.CUSTOMPRODUCTTYPE
product type string. Product type is used as a key during the EvidenceControllerHook
implementation look-up. The infrastructure compares this key to the value returned by the
implementation of CaseTypeEvidence.getCaseTypeCode() that is specific to the evidence type that
is being processed. CaseTypeEvidence has many implementations, and the implementation return
different case type codes. Refer to the Javadoc to determine the run type of any particular
implementation. The key that is used in the binding Module must match the value that is returned by
getCaseTypeCode(), otherwise the custom hook is not picked up. For example, evidence on a Product
Delivery case uses a "productType" code that is defined in the PRODUCTDELIVERY database table.
Commonly used case type codes are listed in the proceeding table.

Case name Case type code database location

Default CASHEADER.caseTypeCode

Integrated Case CASHEADER.integratedCaseType

Product Delivery PRODUCTDELIVERY.productType

Screening Case SCREENINGCONFIGURATION.name

Chapter 1. Developing static evidence 23

Case name Case type code database location

Assessment Delivery ASSESSMENTCONFIGURATION.assessmentType

Investigation Delivery INVESTIGATIONDELIVERY.investigationType

The Evidence Controller Hook Manager class manages the static initialization of the Evidence Controller
Hook mapping and the retrieval of the subclass of the Evidence Controller Hook. If no subclass is found,
the version of the Evidence Controller Hook class that is available for immediate use is returned.

Evidence Controller Hook Registrar and Manager
The registration of the Evidence Controller Hook class uses a similar pattern to the Evidence Registrar and
the underlying Dependency Injection pattern. An Evidence Controller Hook Registrar interface is shipped
as part of the evidence infrastructure.

As before, at run time, the Evidence Controller starts the Registrar's register method that performs the
dependency injection of the associated custom Evidence Controller Hook. This is the class that extended
the default Evidence Controller Hook and overridden the methods that are being customized. This
"injector" class is located through runtime configuration where the injector class itself is referred to as the
"Evidence Controller Hook Registrar".

Dependency injection

The dependency injection involves two steps. First, a custom Evidence Controller Hook Registrar, which
implements the Evidence Controller Hook Registrar interface, must be located and the Registrar then
started to register the customized hook class. For example, the product type and custom Evidence
Controller Hook class pairing is entered into a hash map and then the class looked up by the product type
when it is required. To locate the Evidence Controller Hook Registrar, its class name must be configured
that uses the environment variable curam.case.evidencecontrollerhook.registrars.

Note: More entries need to be added to the environment variable in a comma-delimited format.

The implementation of the Registrar's register method must reference the customized Evidence
Controller Hook class. By using code, rather than as configuration, provides a compile-time check that the
referenced class exists. The existence of the Registrar, though, is only ascertained from the provided
configuration, and can result in a runtime failure if the application is not correctly configured.

The Evidence Controller Hook Manager class manages the static initialization of the Evidence Controller
Hook mapping as well as the retrieval of the subclass of the Evidence Controller Hook. If no subclass is
found, the default version of the Evidence Controller Hook class is returned.

Customizing multiple participant evidence
Use the multiple participant evidence to insert multiple records, modify multiple records, or discard
multiple records in a single action.

Multiple participant evidence can save time and effort when caseworkers are managing multiple clients
on a case, such as adding the same address for all family members in a single operation.

Multiple participant evidence extension points
You can use six extension points for customization.

The proceeding six hook points are provided.

• Pre-create multiple participant evidence.
• Post-create multiple participant evidence.
• Pre-modify multiple participant evidence.
• Post-modify multiple participant evidence.
• Pre-discard multiple participant evidence.
• Post-discard multiple participant evidence

24 IBM Cúram Social Program Management: Developing Evidence

Implementation example

Perform the proceeding two steps to enact custom functionality.

1. Create a new class in your custom package that implements the
curam.core.sl.infrastructure.impl.MultiEvidenceHook

2. Implement each method of the interface.

Note: The arguments supplied to the customization hook points are clones of the original. Modifications
of the values are not reflected in the default flow.

class CustomMultiEvidenceHookImpl implements curam.core.sl.infrastructure.impl.MultiEvidenceHook
 {
 /**
 * Include your custom processing in this function
 * and it will
 * be invoked before the multiple create operation.
 */
 public void preCreateMultiEvidence(final List<CaseParticipantRoleKey>
participantList)throws AppException, InformationalException
 {
 for (final CaseParticipantRoleKey item : participantList) {
 // Custom participant processing for pre create
 // multiple participant evidence
 …
 }
 }
 // Implement all other interface methods, even if they do nothing.
 …
 }

Configuration example

When you create a MultiEvidenceHook implementation, perform the proceeding two steeps to
configure the implementation for use.

1. In your custom package,, create a new class that extends com.google.guice.AbstractModule.
2. Bind the custom implementation to interface that uses Guice binding.

public class HookModule extends AbstractModule {
 @Override public void configure()
 {
 // Bind custom multi evidence hook
 bind(MultiEvidenceHook.class).to(CustomMultiEvidenceHookImpl .class);
 }
}

Configuring custom filters for multiple participant evidence
You can customize multiple participant evidence to configure custom filters.

Use the multiple participant evidence maintenance filter to control the list of options that are presented
to the user during multiple participant operations, specifically in the proceeding three scenarios.

1. The list of participants that are presented to the user during create operations.
2. The list of evidence that is presented to the user during modify operations.
3. The list of evidence that is presented to the user during a discard operations.

Filter types

You can use two types of filters: global filters and evidence type filters.

Chapter 1. Developing static evidence 25

1. Use global filters as general filters to apply to all evidence, removing the need to apply for every
evidence type. Also, global filters ensue that the filter is applied to newly created evidence types that
support multiple participant evidence.

2. Use evidence type filters as specific filters to apply at the evidence type level. Evidence type filters
permit a more fine grained control over how filters are applied.

Configuring global filters
Global filters are applied to all evidence types. Global filters can be used to provide general rules that are
applied across all evidence types.

Using global filters removes the need to replicate filtering rules across multiple types and removes the
need to create new filters for each newly created evidence type.

Default global filters

When the system displays a multiple participant create, update or discard page, the list of items that is
presented to the user is constructed from the case participants or evidence records. For more information
about how these lists are constructed, see the Javadoc information of the
curam.evidence.impl.DynamicEvidenceMultiEvidenceOperations class.

After the unfiltered list is constructed, a global filter is applied for each operation type. For more
information about how each default global filter works, see the Javadoc information of the
curam.core.sl.infrastructure.impl.MultiEvidenceFiltersImpl..

Replacing global filters

If the default global filter is not suitable for your business scenario, the default global filter can be
replaced with a custom version by configuring a new global filter.

You can implement a global filter for a multiple create scenario, multiple modify scenario, and multiple
discard scenario.

Global filter for multiple create

The proceeding example shows how a global create filter can be applied to all evidence types that use
multiple participant evidence maintenance. The class must extend the
AbstractMultiEvidenceFiltersImpl and implement the
evaluateParticipantForMultiCreate operation.

The filter in the proceeding example uses three criteria.

1. Participant exists on the case for the given received date.
2. Participant is of type PRIMARY or MEMBER.
3. Participant is active.

 public class CustomMultiEvidenceFiltersImpl extends AbstractMultiEvidenceFiltersImpl
 {
 /**
 * Removes the given participant from the list presented during multiple participant
create
 * operation.
 * The participant will be removed if they are not active, current and have a
participant
 * type of PRIMARY OR MEMBER.
 *
 * @param participant
 * a case participant who is currently included in the multiple create list.
 * @return
 * true if the participant should be excluded from the list.

26 IBM Cúram Social Program Management: Developing Evidence

 *
 */
 protected boolean excludeParticipantFromMultiCreate(final MultiParticipantDtls
participant)
 {
 return participant.recordStatus.equals(RECORDSTATUS.NORMAL) &&
 (participant.typeCode.equals(CASEPARTICIPANTROLETYPE.PRIMARY) ||
 participant.typeCode.equals(CASEPARTICIPANTROLETYPE.MEMBER)) && new
 DateRange(participant.startDate,
participant.endDate).contains(getCurrentReceivedDate());
 }
 }

Global filter for multiple modify

The proceeding example shows how a global modify filter can be applied to all evidence types that use
multiple participant evidence maintenance. The class must extend the
AbstractMultiEvidenceFiltersImpl and implement the
evaluateParticipantForMultiModify operation.

The filter in the proceeding example uses two criteria.

1. For the participant whose evidence the modify operation was initiated from, filter out all other
evidence records belonging to this participant.

2. Filter evidence that does not exist on the case for the given received date.

 /**
 * Custom class to redefine the global filter for the multiple participant
maintenance
 * evidence lists.
 */
 public class CustomMultiEvidenceFiltersImpl extends AbstractMultiEvidenceFiltersImpl
 {
 /**
 * Return true if you want to filter this item from the list of evidence that can be
 * modified.
 *
 * @param evidence
 * an evidence record that is currently included in the multiple participant
update list.
 *
 * @return true if the evidence should be excluded from the multiple participant
update
 * list.
 */
 protected boolean excludeEvidenceFromMultiModify(final MultiEvidenceDtls evidence)
{
 // Do not exclude by default
 boolean shouldExclude = false;
 try {
 shouldExclude = evidence.participantID !=
getCurrentEvidenceDescriptorDtls().participantID
 && !new DateRange(evidence.startDate,
evidence.endDate).contains(
 getCurrentDynamicEvidenceObject().getReceivedDate());
 } catch (AppException e) {
 // Do not exclude
 } catch (InformationalException e){
 // Do not exclude
 }
 return shouldExclude;
 }
 }

Chapter 1. Developing static evidence 27

Global filter for multiple discard

The proceeding example shows how a global discard filter can be applied to all evidence types that use
multiple participant evidence maintenance. The class must extend the
AbstractMultiEvidenceFiltersImpl and implement the
evaluateParticipantForMultiDiscard operation.

The filter in the proceeding example uses one criteria.

1. For the participant whose evidence the discard operation was initiated from, filter out all other
evidence records belonging to this participant.

 /**
 * Custom class to redefine the global filter for the multiple participant
maintenance
 * evidence lists.
 */
 public class CustomMultiEvidenceFiltersImpl extends AbstractMultiEvidenceFiltersImpl
implements MultiEvidenceFilters {

 /**
 * Return true if you want to filter this given item from the list of evidence that
can be
 * discarded.
 *
 * @param evidence
 * an evidence record that is currently included in the multiple participant
update list.
 *
 * @return true if the evidence should be excluded from the multiple participant
update
 * list.
 */
 protected boolean excludeEvidenceFromMultiDiscard(final MultiEvidenceDtls evidence)
{
 boolean shouldFilter = false;
 try {
 shouldFilter = evidence.participantID !=
getCurrentEvidenceDescriptorDtls().participantID;
 } catch (AppException e) {
 // Do not filter
 } catch (InformationalException e){
 // Do not filter
 }
 return shouldFilter;
 }
 }

Global filters configuration

The proceeding example shows how to configure your custom filter for use. In the example, the
CustomMultiEvidenceFiltersImpl class is bound to the default MultiEvidenceFiltersImpl
class that results in the custom class that is overriding the default class.

1. In your custom package, create a new class that extends com.google.guice.AbstractModule.
2. Bind the custom implementation to interface using Guice binding.

 /**
 * Configure Filters for Multiple Participant Evidence Maintenance.
 */
 public class FilterModule extends AbstractModule {
 @Override
 public void configure() {
 // Bind custom evidence filter
 bind(MultiEvidenceFiltersImpl.class).to(CustomMultiEvidenceFiltersImpl.class);
 }
 }

28 IBM Cúram Social Program Management: Developing Evidence

Configuring evidence type filters
Use evidence type filters to customize specific evidence types for multiple participant update operations.
A custom filter can be configured to apply to one or more evidence types.

Note: Evidence type filters replace global filters. The type-specific filter receives the full set of records
that can be legitimately displayed for the operation. For example, all case participants, including canceled
ones, or all evidence of the same type, regardless of whether it is canceled or end dated. Evidence type
filters provide you with full control over how records are filtered. However, it is likely that you must
reapply some of the global rules.

Evidence type filters are configured by mapping the evidence type code of an evidence to a custom filter.

Implementing the multiple participant evidence filter

A multiple participant evidence filter can be implemented by extending the
curam.core.sl.infrastructure.impl.AbstractMultiEvidenceFiltersImpl abstract class.

Perform the proceeding two steps to customize the filter.

1. Implement a custom filter by extending the AbstractMultiEvidenceFiltersImpl.
2. Add a binding for the custom filter implementation that uses Guice binder.

Implementing the new multiple participant evidence-specific filter

The proceeding example demonstrates how to create an evidence type-specific filter. The example
excludes email addresses from the multiple update list of an email address modify or discard operation
where email addresses are not of the same type as the email address record selected for update.

1. Create a custom class that extends AbstractMultiEvidenceFiltersImpl and implements the
exclude methods for modify and discard operations.

 public class MyCustomEmailAddressMultiEvidenceFiltersImpl extends
AbstractMultiEvidenceFiltersImpl {

 @Override protected boolean excludeEvidenceFromMultiModify(final MultiEvidenceDtls
evidence){
 return excludeEmailAddressEvidence(evidence);
 }

 @Override protected boolean excludeEvidenceFromMultiDiscard(final
MultiEvidenceDtls evidence){
 return excludeEmailAddressEvidence(evidence);

 }

 /**
 * Exclude evidence from email address multiple evidence update.
 */
 protected boolean excludeEmailAddressEvidence(final MultiEvidenceDtls evidence) {
 boolean shouldExclude = false;
 // Include by default.

 final EvidenceDescriptorKey evidenceDescriptorKey = new EvidenceDescriptorKey();
 evidenceDescriptorKey.evidenceDescriptorID = evidence.evidenceDescriptorID;
 try {
 // Re-apply the global filter rules because we have disabled them by
 // adding this type specific filter.
 boolean evidenceShouldBeConsidered = evidence.participantID !=
getCurrentEvidenceDescriptorDtls().participantID
 && !new DateRange(evidence.startDate,
evidence.endDate).contains(getCurrentDynamicEvidenceObject().getReceivedDate());

 if (evidenceShouldBeConsidered) {
 boolean shouldExclude =

((String)readDynamicEvidenceObject(evidenceDescriptorKey).getAttributeValue(PDCEmailAddress.
emailAddressTypeAttr)).equals((String)

Chapter 1. Developing static evidence 29

getCurrentDynamicEvidenceObject().getAttributeValue(PDCEmailAddress.emailAddressTypeAttr));
 }
 catch (AppException e) {
 // Default to include
 }catch (InformationalException e){
 // Default to include
 }
 return shouldExclude;
 }
 }

2. Create a Guice module to bind the implementation. For more information about using the Guice
modules with Curam, see the Creating a Guice module related link. Use the evidence type code to bind
the implementation that uses the standard Guice map binder strategy. In the example, the evidence
type code that is needed for the binding is PDC0000260, which maps to the ‘Email Addresses’
evidence type. You can look up the evidence type code value on the EvidenceType code table.

 public class EvidenceFilterModule extends AbstractModule {

 @Override public void configure() {
 final MapBinder<String, MultiEvidenceFilters>
 pdcMultiEvidenceFiltersMapBinder = MapBinder.newMapBinder(binder(),
String.class, MultiEvidenceFilters.class);
 pdcMultiEvidenceFiltersMapBinder.addBinding(“PDC0000260”).to(
 MyCustomEmailAddressMultiEvidenceFiltersImpl.class);
 }
 }

Related concepts
Creating a Guice module

Evidence end dating feature implementation
Caseworkers create an evidence record by recording the evidence in the first page of the evidence wizard.
If an administrator enables the end dating feature for the evidence type and the end dating criteria are
met, a second page is displayed in the evidence wizard. On the page, caseworkers can end date previous
evidence records. Administrators need to be aware of some implementation details and behavior in
relation to the end dating of evidence records through the evidence wizard.

The following information supplements the configuration information that is described in the Enabling the
End Dating of Previous Evidence When Creating Evidence topic. Also, the following information
supplements the procedural information that is described in the Applying end dating in the creation of
evidence records topic. For more information, see the related links.

Navigating to the end dating evidence option in the evidence wizard

In the evidence wizard, to navigate from the first page where an evidence record is created to the second
page where evidence records can be end dated, caseworkers must click Save and Next. Note the
following points:

• If the create evidence transaction fails, the transaction is rolled back, no record is committed to the
database, and the appropriate validation error is displayed to the caseworker on the same evidence
record creation page. The caseworker is not redirected to the next wizard page.

• If the create evidence transaction is successful, the evidence is created and committed to the database,
and the caseworker is directed to the second page of the wizard. Therefore, as the create and end date
processes are separated as end-to-end transactions, the caseworker cannot navigate back to the
previous evidence record creation page.

Completing the evidence wizard

In the evidence wizard, when the caseworker clicks Finish in the evidence end dating page, the end date
evidence transaction is triggered. Note the following points:

1. If the end date evidence transaction fails, the transaction is rolled back, no record is committed to the
database and the appropriate validation errors are displayed to the caseworker in the same evidence

30 IBM Cúram Social Program Management: Developing Evidence

end dating page. For dynamic evidence records, the end dating validation errors are aggregated so that
all validation errors are displayed to the caseworker. To enable aggregated validation error messages
for non-dynamic evidence records, in the customized non-dynamic evidence validation classes,
replace the InformationalManager.failOperation() method call with the
MultiFailOperation.failOperationWithMPO() method call. If you do not replace the method,
when the first validation error occurs, the application might display the validation error message in the
user interface instead of in the aggregated validation error messages.

Note: The end date of all selected evidence records is aggregated in one single transaction. Therefore,
if the end dating of one evidence record fails, the whole transaction is rolled back and no evidence
records are end dated.

2. If the end date evidence transaction is successful, all selected evidence records are end dated and the
data is committed to the database.

Customizing the default implementation

You can customize the default implementation in the
curam.core.sl.infrastructure.impl.ListAutoEndDateEvidenceImpl.listEvidenceForAu
toEndDating() method. The method lists the evidences to be end dated that are displayed in the
evidence record end dating page of the evidence wizard. To customize the method, create a custom
implementation class that extends the
curam.core.sl.infrastructure.impl.ListAutoEndDateEvidenceImpl default implementation
class.

The custom class must never directly implement the interface class because compilation exceptions
might occur during an upgrade if you add new methods to the interface. To ensure that the application
runs the new custom class rather than the default implementation, you must use the standard Guice
dependency injection mechanism to implement a new module class that extends the
com.google.inject.AbstractModule module. You must insert the fully qualified module class name
into the MODULECLASSNAME database table.

Enabling hook points

You can enable the hook points through the standard Guice dependency injection mechanism. Hook
points are provided to the evidence end dating feature through the following interface methods:

• The
curam.core.sl.infrastructure.impl.AutoEndDateEvidenceHook.preAutoEndDateEvide
nce(curam.core.facade.infrastructure.struct.AutoEndDateEvidenceDetails)
interface method is started before the end dating of evidence records.

• The
curam.core.sl.infrastructure.impl.AutoEndDateEvidenceHook.postAutoEndDateEvid
ence(curam.core.facade.infrastructure.struct.AutoEndDateEvidenceDetails
interface method is started after the end dating of all evidence records.

The hook points are started only through the end dating process that is triggered when a caseworker
clicks Finish in the evidence wizard evidence end dating page.

Related tasks
Enabling the end dating of previous evidence when creating evidence
Applying end dating in the creation of evidence records

Chapter 1. Developing static evidence 31

Developing with the Evidence Generator
The Evidence Generator greatly reduces the repetitive work that is required to build custom evidence
entities and ensures that all evidence entities that are developed comply with the evidence standards.

Designing, developing, and maintaining custom evidence entities and the screens necessary for capturing
the evidence takes time. With evidence, every custom entity must implement the evidence interface.
Therefore, there is repetition in the code that is used to create and maintain evidence entities.

Using the Evidence Generator makes creating evidence entities easier and saves you time. The evidence
entities are also far easier to maintain. Changes to how the entities work can be made through a single
change to the Evidence Generator instead of making many individual changes to all the entities.

Inputs and outputs
To use the Evidence Generator, you must provide evidence type information in four files. When you run
the Evidence Generator, it produces specific server code, client screens, and online help screens.

Inputs for the Evidence Generator
Rational® Software Architect Designer Model

You must model the evidence type in Rational Software Architect Designer. You must add new
evidence entity, its attributes, and its operations to the Rational Software Architect Designer Model.

XML file
Extra server-side metadata is recorded in an XML file. This additional information can include, for
example, the evidence entity's relationship with a parent or child entity.

EUIM file
Extra client-side metadata is recorded in an Evidence User Interface Metadata (EUIM) file. The
information that the EUIM file produces is used by the Evidence Generator to build all the screens that
are needed for maintaining an evidence entity.

Properties file
The properties file contains globalized information and online help content that is required for the
evidence maintenance screens.

Outputs from the Evidence Generator
Server code

All the necessary server code is generated for the functions:

• Creating a new evidence record.
• Reading an evidence record.
• Modifying an evidence record.
• Deleting an evidence record.

The Evidence Generator also provides list functions so that lists of the evidence records can be
displayed on various pages.

Client screens
The Evidence Generator produces the evidence client screens and views, which includes tab
configurations and the dmx data that is necessary for evidence wizard pages. The generated client
screens use the Evidence User Interface (EUI), and, so, are consistent with the existing evidence
screens.

Online help screens
The Evidence Generator produces an individual online help screen for each evidence maintenance
page.

32 IBM Cúram Social Program Management: Developing Evidence

Attribution periods or validations are not generated

The Evidence Generator does not produce the attribution periods or validations of an evidence type.

Attribution periods
Attribution periods are the periods of time during which a piece of evidence is used in case
assessment. The Evidence Generator does not generate the code that is used for attribution periods.
Instead, you must write module-specific code that calculates:

• The attribution From date.
• The attribution To date.

Validations
Evidence validations are checks that are run on a piece of evidence to ensure that the evidence meets
the business requirements that are defined for the evidence type. Handcrafting the validations is
more efficient than attempting to generate them. Use the Evidence Generator to generate evidence
entities to "call out" to the validations you create. For more information about Validate CallOut
patterns, see the Validate CallOut patterns related link.

Related information
Validate CallOut patterns

Evidence patterns
When you design evidence entities for large modules, all entities must fit into a relatively small number of
patterns. These patterns are typically governed by how an evidence type, or entity, relates to another
evidence type.

These patterns are the basis of the Evidence Generator. To use the Evidence Generator to create a new
evidence type, you must analyze the relationships and behaviors of your proposed evidence type. When
you identify the evidence type's relationships, typically the correct choice of pattern is clear. An evidence
entity can use more than one pattern.

The characteristics of each Evidence Generator pattern are explained to help you recognize them when
you analyze the requirements for your own custom evidence types.

Parent-Child pattern
Use the Parent-Child pattern to capture a logical relationship between two entities that meet the criteria
of a parent-child relationship.

The Parent-Child pattern is the most common pattern. Use it for entities that have a parent-child
relationship.

The characteristics of a Parent-Child relationship are:

• The child entity must belong to a parent, and cannot exist without a parent.
• The parent entity can have many children.

Example of when to use the Parent-Child pattern

Use the Parent-Child pattern to model the relationship between income evidence and income usage
evidence. An income record for the money that is received by the client must exist before you can create
an income usage record for how that money was spent. As the money received might be spent to pay a
number of bills, multiple income usage records can be associated with the income record.

When not to use the Parent-Child pattern

The Parent-Child pattern is not suitable in these two instances:

• Loosely associated evidence entities.
• The evidence entity in the child role can exist without a relationship to the parent entity.

Chapter 1. Developing static evidence 33

Pre-Association pattern
A Pre-Association relationship exists between two evidence entities that can live independently of each
other until they are associated with each other by a caseworker.

Like the Parent-Child pattern, the Pre-Association pattern is commonly used.

Example of when to use the Pre-Association pattern

Use the Pre-Association pattern where a logical relationship exists between two records and to facilitate a
caseworker in easily establishing this relationship. Before a caseworker can enter data about the main
evidence type, the caseworker is prompted to select evidence as defined by this pre-association pattern.
By selecting evidence, a relationship between the two evidence records is established.

For example, a client is a member of a household. The member details are captured in a household
member evidence record. Later, a child is born to the household member. A household member evidence
record captures the child's birth. However, the mother-child relationship must also be captured by using a
household relationship evidence record. By specifying a pre-association pattern for household
relationship evidence to household member evidence, when a caseworker creates a new household
relationship record to capture the mother-child relationship, the caseworker is prompted to:

1. Select the household member.
2. Enter the household relationship details.

Performing the preceding steps shows that there is a logical relationship between the member and the
household relationship. The member must be selected before a relationship and related member can be
created.

When not to use the Pre-Association pattern

Do not use the Pre-Association pattern for evidence entities that are not logically related or entities that
more naturally fall into a Parent-Child relationship. To record an associative relationship between an
evidence entity and a non-evidence entity, use a Related pattern not a Pre-Association pattern. For more
information about the Related pattern, see the Related Pattern link.

Related concepts
Related pattern
Use the Related pattern to show a relationship between a new evidence entity and a record that is not an
evidence entity.

Related pattern
Use the Related pattern to show a relationship between a new evidence entity and a record that is not an
evidence entity.

Creating the evidence entity depends on the existence of the other record. Likewise, a child record
requires a parent record.

When to use the Related pattern

Use the Related pattern to link an evidence entity to a non-evidence entity. A common example of the
Related pattern is where creating a paid employment record depends on the existence of a (core)
employment record. A paid employment record is an evidence entity, and an employment record is part of
the data that is captured for a client in the participant manager. The relationship between a paid
employment record and an employment record is typically a foreign key relationship.

Search Case Participant pattern
Use the Search Case Participant pattern where creating or maintaining your new evidence entity requires
that you search for any case participant.

Example of when to use the Search Case Participant pattern

34 IBM Cúram Social Program Management: Developing Evidence

Use the Search Case Participant pattern to associate a case participant with the evidence that is being
created. For example, it might be necessary to search for the client's employer when you are creating
employment evidence as the employer's case participant role identifier might be stored on the client's
employment record.

Validate CallOut pattern
Use the Validation CallOut pattern to add validations to generated evidence entities.

Validations for a generated evidence entity are not created by the Evidence Generator. Instead, you
create validations in a separate file. Use the Validation CallOut Pattern when you design the evidence
entity to ensure that it can "call out" to the file that contains the validations.

When you use the Validate CallOut pattern, the generated validate class is only generated once.
Therefore, during subsequent generation the generated validate class is not overwritten. Add this class to
your own software versioning control system so that you can modify it as required.

When to use the Validation CallOut pattern

You must use the Validation CallOut pattern if custom validations must be added to the generated
evidence entity.

Page Hierarchy pattern
Use the Page Hierarchy pattern when you design an evidence entity that can be associated with many
different types of records.

An evidence entity can have many different relationships. Where an evidence entity is associated with
many different types of record, these types of records must be accessible from the navigation bar on the
evidence maintenance screens.

When to use the Page Hierarchy pattern

Use the Page Hierarchy pattern to generate the page hierarchy where many evidence types can be
associated with an evidence entity.

Modeling that is required for the evidence patterns
Specific entity modeling is required when you use the Cúram Evidence Generator as the generator relies
on certain, attributes, structs, and aggregations within the generated code. Use this information to learn
about entity modeling that is required to use the Cúram evidence generator. The evidence generator
relies on the existence of certain attributes, structs, and aggregations within the generated code. Various
modeling strategies are required for the different metadata patterns available in the generator.

To model the structs, ensure that you are familiar with the information in the following three links: Cúram
Server Developer, Designing an evidence solution, and Developing with evidence.

Related concepts
Developing evidence manually
Custom evidence solutions can be developed with Cúram Evidence. All of the evidence server-side
infrastructure artifacts are available in the curam.core.sl.infrastructure.impl package. The evidence
metadata entity contains metadata about each evidence type. This entity must be populated before
evidence maintenance can proceed. Evidence maintenance functions are available in the administration
application.
Related information
Cúram Server Developer

Entity modeling: entities
In addition to the normal entity modeling, specific settings are required so that the entity can work
correctly with the generated code.

Chapter 1. Developing static evidence 35

Code package

The code package for the entity and its associated structs must be specified in the model. For example:
CODE_PACKAGE=seg.evidence.entity

Note: The code package must correspond with the product.ejb.package property. For more
information about the product.ejb.package, see the Asset as generated evidence: implementing a
sample evidence type related link.

Optimistic locking

Optimistic locking must be turned on at the entity level because the evidence solution, which interacts
with the entity, relies on database-controlled versioning.

Required attributes

The evidence generator relies on certain attributes to run successfully.

Key field

The key field of the entity must be named evidenceID because it results in fewer generated entity key
structs on the server side.

Required operations

The evidence generator relies on the existence of certain operations to successfully run.

Insert

The insert operation must use the stereotype insert. With the insert operation, you can use the
Auto ID setting and the pre-data access operation in the following ways:

• The Auto ID setting must be turned on for the evidenceID to generate the unique identifier to insert
records into the database. The evidence generator is configured to expect that the Auto ID setting is
turned on.

• The pre-data access operation must be set to Yes.

modify

The modify operation must use the stereotype modify. With the modify operation, you can use the
pre-data access operation and optimistic locking in the following ways:

• The pre-data access operation must be set to Yes.
• Optimistic locking must be set to Yes.

read

The read operation bus use the stereotype read.

remove

The remove operation must use the stereotype remove.

Customizing a default evidence entity

To customize a default evidence entity, create an entity extension in the custom model. For more
information on creating an entity extension in the custom model, see the Cúram Server Modeling Guide.

Code package

36 IBM Cúram Social Program Management: Developing Evidence

The code package for the extension must be specified in the model. For example:
CODE_PACKAGE=custom.seg.evidence.entity

Note: The code package must correspond with the product.ejb.package property that is configured
in the default product, prepended with the text custom., as in preceding example. For more information
about the product.ejb.package, see the Asset as generated evidence: implementing a sample
evidence type related link.

Related information
Asset as generated evidence: implementing a sample evidence type

Entity modeling: required structs
Rather than creating similar or identical structs at each layer, the evidence generator uses the structs that
are created at the entity layer to pass data to the façade layer.

So, it is important for the generator that certain structs are created and named with the correct naming
convention. Also, extra aggregations are required under certain conditions. For more information about
the conditions that apply, see the proceeding <EntityName>EvidenceDetails and
Read<EntityName>EvidenceDetails sections and the Entity modeling: build process related link.

<EntityName>EvidenceDetails

A struct that is named <EntityName>EvidenceDetails must be created. This struct must have no
attributes of its own, and must include the following three aggregations:

Object Aggregation name Multiplicity

The entity that is being modeled dtls 1:1

core.sl.EvidenceDescriptorDetails Descriptor 1:1

core.sl.CaseIDKey caseIDKey 1:1

Read<EntityName>EvidenceDetails

A struct that is named Read<EntityName>EvidenceDetails must be created. This struct must have
no attributes of its own, and must include the following two aggregations:

Object Aggregation name Multiplicity

The entity that is being modeled dtls 1:1

core.sl.EvidenceDescriptorDetails Descriptor 1:1

Related concepts
Entity modeling: the build process
No additional modeling is required beyond the entity layer because the evidence generator infers the
classes that are requiredthat are at service and façade layer.

Entity modeling: the build process
No additional modeling is required beyond the entity layer because the evidence generator infers the
classes that are requiredthat are at service and façade layer.

For the following two reasons, the evidence generator can infer the classes that are requiredthat are at
service and façade layer:

• The evidence solution provides the necessary tools for maintaining evidence records.
• The evidence generator uses a combination of the structs you created at the entity layer and a number

of structs that are provided by the evidence solution.

Chapter 1. Developing static evidence 37

Service layer

During the build, the generator creates a process class for each evidence entity at the service layer level.
The process class that is created has at least the following three operations:

• create<Entity Name>
• read<Entity Name>
• modify<Entity Name>

More functions might be created to handle the more specialized scenarios, but those functions are
generated by the evidence generator. Likewise, the implemented code that is required to run these
functions is generated by the evidence generator.

Facade layer

At the façade layer, the evidence generator generates a single process class per product that contains all
the functions that are required for evidence maintenance. For each single entity, at least the following
three functions are added to this process class:

• create<Entity Name>Evidence
• create<Entity Name>Evidence
• modify<Entity Name>Evidence

Similar to the service layer, extra functions might be created to handle the more specialized scenarios,
but those functions are generated by the evidence generator.

Note: No list<Entity Name>Evidence function is listed in the preceding section as the generic
listEvidencefunction on the evidence facade is used instead. The generic listEvidence function
also accounts for no list<Entity Name> function on the service layer.

Parent-child relationships
Where an evidence entity is taking the role of a child in a parent-child relationship, additional
aggregations must be specified.

Additional aggregations: <EntityName>EvidenceDetails

The <EntityName>EvidenceDetails struct must now also aggregate the structs that are listed in
proceeding table.

Object Aggregation name Multiplicity

core.sl.EvidenceKey parEvKey 1:1

core.sl.ParentSelectDetails selectedParent 1:1

Multiple mandatory parent relationships
Where an evidence entity is taking the role of a child with multiple mandatory parents, additional
aggregations must be specified.

Additional aggregations
<EntityName>EvidenceDetails

The <EntityName>EvidenceDetails struct must now also aggregate the following struct for each of
the mandatory parent types.

38 IBM Cúram Social Program Management: Developing Evidence

Object Aggregation name Multiplicity

core.sl.EvidenceKey <Parent Entity
Name>ParEvKey

1:1

Note: To keep with standard Java™ naming practices, the first letter in the preceding aggregation name
must be lowercase.

Read<EntityName>EvidenceDetails

The Read<EntityName>EvidenceDetails struct must now also aggregate the following struct for
each of the mandatory parent types.

Object Aggregation Name Multiplicity

core.sl.ParentEvidenceLink <Parent Entity
Name>ParentEvidenceLi
nk

1:1

Note: To keep with standard Java naming practices, the first letter in the preceding aggregation name
must be lowercase.

Pre-association relationships
When you use the pre-association pattern, specific additional modeling is required.

Additional aggregations
<EntityName>EvidenceDetails

The <EntityName>EvidenceDetails struct must now also aggregate the proceeding struct.

Object Aggregation name Multiplicity

core.sl.EvidenceKey preAssocKey 1:1

Case participant attributes
When you add a case participant attribute to the entity, further aggregations are required to permit the
details be added correctly.

Additional aggregations
<EntityName>EvidenceDetails

The <EntityName>EvidenceDetails struct must now also aggregate the proceeding struct.

Object Aggregation name Multiplicity

core.sl.CaseParticipantDetails caseParticipantDetails 1:1

Read<EntityName>EvidenceDetails

The Read<EntityName>EvidenceDetails struct must now also aggregate the proceeding struct.

Object Aggregation name Multiplicity

core.sl.ReadCaseParticipantDetailss caseParticipantDetails 1:1

Chapter 1. Developing static evidence 39

Additional case participant attributes

In certain circumstances, a business requirement might be to have a case participant, other than the
primary case participant, stored as a piece of evidence data. For example, a piece of evidence named
'Medical Report'. In such a case, two requirements apply:

• It is necessary to store the ID of the person for whom the medical report was commissioned.
• It is necessary to store the ID of the medical practitioner who compiled the report.

Other examples of case participants are Education Faculties, Unions, or Employers.

You can flag an attribute, by using metadata, as being a special 'case participant' attribute. This means
that this attribute stores the role ID of the case participant. You must provide the name attribute in the
CaseParticipant element of the EUIM metadata, and use this name when aggregating the structs.

Additional aggregations

To facilitate the generator in its handling of this special flag, the two required structs must aggregate
additional structs.

<EntityName>EvidenceDetails

The <EntityName>EvidenceDetails struct must now also aggregate the proceeding struct.

Object Aggregation name Multiplicity

core.sl.CaseParticipantDetails <name>CaseParticipant
Details

1:1

Read<EntityName>EvidenceDetails

The Read<EntityName>EvidenceDetails struct must now also aggregate the proceeding structs:

Object Aggregation name Multiplicity

core.sl.ReadCaseParticipantDetails <name>CaseParticipant
Details

1:1

Related entity attributes
In certain circumstances, a business requirement might require that a field value from a related entity is
available either to display or to use when the user is maintaining an entity.

For users, the availability of such a field value can be a helpful hint when users are entering information.
Typically, the information that is used is from a parent evidence record. For example, displaying the
remaining unallocated amount of an income record when a user wants to allocate this income against
expenses.

Additional structs
Additional structs

In a scenario similar to the preceding scenario, an additional struct must be created at the entity layer to
hold the related information.

<EntityName>RelatedEntityAttributesDetails

The <EntityName>RelatedEntityAttributesDetails struct must have, as attributes, any
attribute that is to be shared between the entities. The attribute must be of the appropriate type.

40 IBM Cúram Social Program Management: Developing Evidence

Additional aggregations
Read<EntityName>EvidenceDetails

The Read<EntityName>EvidenceDetails struct must now also aggregate the proceeding structs.

Object Aggregation name Multiplicity

<EntityName>RelatedEntityAttributesDetails relatedEntityAttributes 1:1

Non-evidence attributes
Where an entity uses the non-evidence details pattern, an extra struct must be modeled and aggregated
into the standard evidence struct.

Additional struct that are required
<EntityName>NonEvidenceDetails

The <EntityName>NonEvidenceDetails struct must be modeled. The struct must hold all the
extra attributes that are required for this entity.

Additional aggregations
<EntityName>EvidenceDetails

The <EntityName>EvidenceDetails struct must now also aggregate the proceeding struct.

Table 1. Additional aggregations

Object Aggregation name Multiplicity

<EntityName>NonEvidenceDetails nonEvidenceDetails 1:1

Read<EntityName>EvidenceDetails

The Read<EntityName>EvidenceDetailsstruct must now also aggregate the proceeding struct.

Table 2. Additional aggregations

Object Aggregation name Multiplicity

<EntityName>NonEvidenceDetails nonEvidenceDetails 1:1

Non-modifiable entities
Where you require that the entity cannot be modified, additional modeling is required.

Additional struct that are required

Additional aggregations
Read<EntityName>EvidenceDetails

The Read<EntityName>EvidenceDetails struct must now also aggregate the proceeding struct.

Chapter 1. Developing static evidence 41

Table 3. Additional aggregations

Object Aggregation name Multiplicity

curam.core.sl.infrastructure.struct.ECWarningsDt
lsList

warnings 1:1

Evidence Generator specification
Use the Cúram Evidence Generator as a rapid way to develop the server side code and client side screens
for evidence entities that integrate fully with the standard Cúram Evidence Solution.

Note: The generator requires that the entity is modeled with specific options set, and that certain
associated structs are created according to a naming convention and with specific aggregations. For more
information, see the Modeling for the Evidence Generator related link.

This section provides a complete reference for the following:

• Configuring the Cúram Evidence Generator
• Developing the evidence entities that use the Cúram Evidence Generator

This section also describes the patterns that can be applied at development time, the meta data required
for each, and how it affects the generated output.

Related concepts
Modeling that is required for the evidence patterns
Specific entity modeling is required when you use the Cúram Evidence Generator as the generator relies
on certain, attributes, structs, and aggregations within the generated code. Use this information to learn
about entity modeling that is required to use the Cúram evidence generator. The evidence generator
relies on the existence of certain attributes, structs, and aggregations within the generated code. Various
modeling strategies are required for the different metadata patterns available in the generator.

Input sources for the generator
The generator relies on specific input sources to produce its outputs.

Configuration
The generator is configured by using a components evidence.properties file. The file provides
options for, for example, setting the code package of generated code, the location of generated files, and
so on.

Standard properties and message files

Each component must also provide a general message, and the following two standard properties files:
general.properties

The file provides many of the standard properties that are needed by the generator, such as various
page and list titles and standard action control links. It helps to ensure a consistent experience across
all evidence types under the generators control.

employment.properties
The file provides many of the standard properties that are needed by the generator when it is linked
with core employments, including various page and list titles and standard action control links. The
file helps to ensure a consistent experience across all evidence types under the generators control.

Ent<product.prefix>GeneralError.xml
This file provides many of the error messages that the generated code attempts to throw under
certain circumstances.

Entity metadata

Each entity that is generated requires its own metadata files to be provided. These describe various
features of the entity that is generated, and are roughly separated into two distinct sections.

42 IBM Cúram Social Program Management: Developing Evidence

Server side
The server side metadata is used to define various things, including the relationships between various
entities, the participant the record relates to, the business dates of the entity, and any cached
database operations.

Client side
The client side metadata is more concerned with the layout of the generated screens, and the text
labels and descriptions that appear on them.

Outputs from the generator
The Cúram Evidence Generator produces the code, screens, and configuration files that are required for
evidence types to fully integrate with the standard Cúram Evidence Solution. No further coding is
required.

The generator also produces skeleton implementations of various extension points in the code to permit
simple customization of the generated evidence. For example, for validations, and both pre- and post-
processing for the standard Create, Read and Update methods.

Modeling
For each entity that is handled by the generator, a service layer class and various extension classes are
modeled. The modeling ensures that all generated code can be accessed by using the normal application
interface-factory method. In addition, a facade class is generated per component to provide access to all
the Create, Read, Update, and Delete operations for those entities.

Code implementation

Implementation code is generated for all of the modeled classes that are created by the generator, and
for the entity layer. The code implementation ensures that there is no requirement to write any further
code.

However, there are several extension points that are generated where custom code can be easily
integrated into the generated implementation code. The extension points are useful for things such as
validations, evidence object descriptions.

Message files

The generator also produces a message file per entity with specific error messages that are contained
within.

Screens

The generator writes all the screens that are required for creating, modifying, viewing, listing, and so on,
the different evidence records. The generator also resolves scripts that are required to integrate the
generated screens with the standard infrastructure screens.

Wizards

When you select to create an evidence object at runtime, often related or parent objects must be
selected. In this case, the generator produces all the wizard configuration and screens that are required
to take the user through this process, step-by-step.

Tabs

Each entity also has a Business Object Tab that is produced to permit the user to view all details about an
evidence object, such as its change history, and any related objects.

Base directory and directory structure setup
The base directory for the configuration and metadata must be named evidence, and the file
evidence.properties must exist. The base directory must contain three sub-directories: properties,
server metadata, and client metadata.

Chapter 1. Developing static evidence 43

The Cúram Evidence Generator is designed to automatically find any locations where evidence must be
generated by looking for a specific directory and file structure within each component in the component
order. It is essential to get the structure correct.

Note: The case of letters in the directory and file names is important and must be created exactly as
specified.

Properties directory

Within the evidence directory, there must be a directory that is called properties. The directory is the
location for the general.properties and employment.properties files.

Server metadata directory

Within the evidence directory, there must be a directory that is called server. Within server is a
directory that is called metadata. The directory is the location for your server metadata files.

Client metadata directory
Integrated case level

Within the evidence directory, there must be a directory that is called integrated. Within the
directory, there is a directory that is called metadata. The directory must be the location for your client
metadata files for integrated level cases.

Product delivery case level

Within the evidence directory, there must be a directory that is called product. Within the directory,
there is a directory called metadata. The directory is the location for your client metadata files for
product delivery level cases.

Configuration and common page properties
You can customize different aspects of the Cúram Evidence Generator. Two common page properties are
general.properties and employment.properties.

Configuration

The evidence.properties file permits customization of different aspects of the Cúram Evidence
Generator. The customization ranges from the location of generated output files to the java code package
used.

For more information about the customization options, see the evidence.properties related link.

general.properties

The general.properties file is used to specify common properties that are used on many generated
pages. The properties range from page titles and list column headers to labels for common actions.

For more information about the properties' options, see the general properties related link.

employment.properties

The employment.properties file is used to specify common properties that are used on generated
pages that involve related generated evidence to the core employment entity.

For more information about the properties' options, see the employment properties related link.

Server metadata: the entity node
The server-side metadata is used to describe the relationships between entities, and several options in
respect of cached methods and the participant to associate the evidence to.

For more information about the metadata format and possible values to use, see the Server metadata:
document structure related link.

44 IBM Cúram Social Program Management: Developing Evidence

The entity node

The root node of a server metadata XML document is the Entity node. The node contains attributes for
specifying the logical name of the Entity and an attribute to specify which case participant a record
must be associated with.
<Entity logicalName="PaidEmployment"
 relateEvidenceParticipantID="employeeCPRID"
 >
 ...
 </Entity>

Relationships

The Relationships node is used to specify information about how the current entity relates to other
evidence entities, and certain core entities. There are no attributes on this node. However, four sub-
patterns can be used:

• Parent-child relationships
• Multiple mandatory parents
• Pre-association relationships
• Related relationships

Parent-child relationships

The parent-child relationship pattern describes a hierarchical relationship between two evidence entities.
It is the fundamental relationship in Cúram Evidence. The relationship essentially means that the child
cannot be created until a parent record is created. The relationship is enforced by the navigation within
the application. The pattern can be used to create multitier, that is, generational, relationships. For
example, parent-child-grandchild-greatgrandchild.

Metadata entries

The metadata for describing a parent-child relationship requires listing the possible parent or child
types for each entity. In the following example, a parent-child relationship exists between Paid
Employment (Parent) & Employment Address (Child).

From PaidEmployment.xml (that is, the XML to describe the Paid Employment entity):
<Relationships>
 <Child name="EmploymentAddress" />
 </Relationships>

From EmploymentAddress.xml (that is, the XML to describe the Employment Address entity):
<Relationships>
 <Parent name="PaidEmployment"/>
 </Relationships>

Multiple mandatory parents

The multiple mandatory parents pattern is similar to the standard parent-child pattern except that more
than one parent must be specified for each.

Metadata entries

To describe a multiple mandatory parents relationship, the list of parent types must be wrapped in a
MandatoryParents node.

Expanding on the example from the parent-child section, from EmploymentAddress.xml:
<Relationships>
 <MandatoryParents>
 <Parent name="PaidEmployment"/>
 <Parent name="AnotherParentType"/>
 </MandatoryParents>
 </Relationships>

Pre-association relationships

Chapter 1. Developing static evidence 45

The pre-association pattern is used when an association exists between two entities and the user is
required to select the associated record before the user creates the record that completes the
association.

Metadata entries

The metadata for this pattern is simple and involves specifying the list of entity types to be chosen as
a pre-association.
<Relationships>
 <PreAssociation to="AnotherEntityType"/>
 </Relationships>

Related relationships

The related pattern is used to relate an evidence record to a non-evidence record. The related pattern is
typically achieved by storing the unique identifier of the non-evidence record as a foreign key on the
evidence entity. An example might be to relate a Paid/Self-Employment evidence record to a core
Employment record. The related pattern is done by storing the unique identifier of the core Employment
record on the Paid/Self employment entity.

A feature of the related pattern is that it is necessary to specify a list of case participant roles to be able to
list the related records that might be selected.

Metadata entries

Taking the example of a PaidEmployment evidence type, the following metadata would be used to
allow the user to choose from a list of core Employments relating to case participants of types
PRIMARY or MEMBER
<Relationships>
 <Related to="Employment">
 <ParticipantType type="PRIMARY"/>
 <ParticipantType type="MEMBER"/>
 </Related>
 </Relationships>

Related concepts
Server metadata: document structure
The server-side metadata is provided as a well-formed XML document, named <Entity Name>.xml.

The Business Dates pattern and override
The Business Dates pattern is used to specify which, if any, of the date fields on the entity correspond
to the business start and end dates of that entity. These dates are then used in the calculation of the
period for which the evidence object applies.

The generator returns these dates from the getStartDate() and getEndDate() methods that are
defined on the EvidenceInterface.

Metadata entries

Using the BusinessDates node, either the startDate, endDate or both can be specified as follows:
<Entity logicalName="PaidEmployment" ... >
 <BusinessDates startDate="employmentStartDate"
 endDate="terminationDate"/>
 </Entity>

Override

Use the Override node to override a default entity that is provided with application modules or to add a
custom entity to a default product.

For more information, see the Overriding a default evidence entity: example related link.

Related concepts
Overriding a default evidence entity: example

46 IBM Cúram Social Program Management: Developing Evidence

To meet business requirements, customers can override the default evidence entity by, for example,
editing the server-side metadata and client-side metadata.

The Cached Operation pattern and metadata entries
Use the Cached Operation pattern to cache SQL operations in the generated entity layer class.

The generator uses a caching pattern to implement and manage the cache. The operation must be an SQL
operation on the entity because the entity class is generated. Therefore, it is not possible to implement
business logic within it.

Metadata entries

In the PaidEmployment example, to cache the readDetails method, use the following code:
<Entity logicalName="PaidEmployment" ... >
 <CachedOperation>
 databaseRead = "read"
 operationName = "readDetails"
 returnType =
 "curam.example.evidence.entity.struct.
 PaidEmploymentDtls"
 </CachedOperation>
 </Entity>

Client metadata
Typically, the client-side metadata is used to describe the layout of the screens that must be generated.
The client metadata code specifies how to select values for case participant fields and when to create
new role types for those participants.

Entity node

The root node of a client metadata EUIM document is the Entity node. The node contains attributes for
specifying the name of the entity and the display name for use on screens. You can also specify here
whether the entity can be modified.
<Entity name="PaidEmployment"
 displayName="Paid Employment"
 modify="Yes"
 >
 ...
 </Entity>

User interface (UI)

The UserInterface node is the containing node for all UI elements. The node includes an attribute that
you can use to specify whether the create screen for the entity must contain a Save & New button.
<UserInterface saveAndNewButton="Yes">
 ...
 </UserInterface>

Cluster node

As with developing in UIM, the EUIM Cluster node is used to group UI elements. There are a number of
attributes available for specifying the number of columns, the label, and description text. There are also
three special attributes, create, modify and view, so that the Cluster can be hidden, or shown on
different screens, allowing a different layout to be used on create screens versus modify ones.

The proceeding code creates one Cluster that is visible on create and modify pages only, and is a label
that is specified by the property Cluster.Label in the associated properties file, and a second
Cluster that is only shown on view pages.
<Clusters>
 <Cluster label="Cluster.Label" create="Yes" view="No">
 ...
 </Cluster>
 <Cluster label="Cluster2.Label" create="No" modify="No">
 ...

Chapter 1. Developing static evidence 47

 </Cluster>
 </Clusters>

Field node

The Field node is used to specify an individual field on the screen. There are many attributes that can be
used to control the behavior of this node, including the database columnName it is associated with and
the use of blank or default values in codetable fields.

An extra attribute, metatype, can also be used to control the behavior of the field.

For more information about the available meta types, see the Meta types related link.

Using an example of an entity attribute that is called employmentType, that is a codetable of possible
employment types, the proceeding code produces a field on screen that started with the default value
from the codetable. When set on the entities create page, the codetable cannot be modified from the
entities modify page.
<Cluster ... >
 <Field columnName="employmentType" use_default="true"
 label="Field.EmploymentType.Label" modify="No"
 />
 </Cluster>

Related concepts
Meta types
The Evidence Generator supports seven meta types.

Case participant fields
When you use a Field node to represent a case participant attribute on the entity, a number of further
metadata entries are required.

Note: The metatype attribute of the Field node must be set to CASE_PARTICIPANT_SEARCH

There are three ways of specifying a participant on screens that are created by the generator.

• Selecting from a drop-down list

The metadata can be used to specify what case participant types must be included in the list.
• Searching

The system can be searched for an appropriate participant.
• Registering a new representation

A new representative can be added to the system.

CaseParticipant node

The CaseParticipant node provides extra information about the field and how the information is
stored. It includes options for, among other things, telling the system to create a new case participant
role for the chosen participant.

SearchType node

The SearchType node is used to specify a particular type of case participant role that must be listed in
the drop-down select box.

CreateCaseParticipant node
When you select a pre-existing case participant from the drop-down list, there is the option of creating a
new role for that participant, if they do not already have it. For example, you might select to populate the
drop-down with all case participants of type PRIMARY, MEMBER and ALIEN, and select to create a new
role for the participant of type ALIEN. Then, if the participant selected was already of type ALIEN, no new
role would be created. However, if the type was either PRIMARY or MEMBER, a new role is created.

48 IBM Cúram Social Program Management: Developing Evidence

Example

The following EUIM code, provides a Case Participant field onscreen where the drop-down is populated
with participants of type PRIMARY and MEMBER. As the create option is turned off, the user must search
the system for a participant, or to register a new representative.
<Cluster ... >
 <Field columnName="myCaseParticipant"
 label="Field.MyCaseParticipant.Label"
 metatype="CASE_PARTICIPANT_SEARCH"
 >
 <CaseParticipant create="No">
 <SearchType type="PRIMARY"/>
 <SearchType type="MEMBER"/>
 </CaseParticipant>
 <Field>
 </Cluster>

The following EUIM code, builds on the first example, and now creates a role type of MEMBER if the
chosen participant does not already have that role. As well as the drop-down list, the user can now search
the system for a suitable participant and can specify a new representative.
<Cluster ... >
 <Field columnName="myCaseParticipant"
 label="Field.MyCaseParticipant.Label"
 metatype="CASE_PARTICIPANT_SEARCH"
 >
 <CaseParticipant create="Yes">
 <CreateCaseParticipant
 participantType="Person"
 roleType="MEMBER"
 />
 <SearchType type="PRIMARY"/>
 <SearchType type="MEMBER"/>
 </CaseParticipant>
 <Field>
 </Cluster>

Adding functionality
There are a number of extension classes that can be coded, with the generator providing a default
skeleton implementation for each in your source code directory. Additionally each of these classes is
automatically modeled by the generator, so all follow the standard factory, interface, implementation
pattern used in the application.

Customize class
The customize class provides methods that get called at specific points within the generated service layer
code. You can use this to implement your own custom logic, and modify the values that are passed to and
from the screen.
Class name

The class is named Customise<Entity Name>.java

Package name

The class is placed in the package

curam.<product.package>.evidence.customise.impl

where product.package is as specified in the evidence.properties file.

Customize methods

The proceeding customize methods are provided.

Method Details

preCreate Allows custom processing to be performed before the evidence insert
operation happens.

Chapter 1. Developing static evidence 49

Method Details

postCreate Allows custom processing to be performed after the evidence insert
operation happens.

preModify Allows custom processing to be performed before the evidence modifies
operation happens.

postModify Allows custom processing to be performed after the evidence modify
operation happens.

preRead Allows custom processing to be performed before the evidence read
operation happens.

postRead Allows custom processing to be performed after the evidence read
operation happens.

Hook class
The hook class provides you with access to a number of infrastructure methods from the
EvidenceInterface that must be implemented for each entity. Typically, you implement these
methods on the entities implementation class. However, as this is now generated, the hook class must be
used instead.
Class name

The class is named <Entity Name>Hook.java

Package name

The class is placed in the package

curam.<product.package>.evidence.hook.impl

where product.package is as specified in the evidence.properties file.

Methods

The proceeding methods are provided.

Method Details

calcAttributionDatesFor
Case

Returns the attribution dates for an entity.

getDetailsForListDispla
y

Returns the textual description of an evidence object.

Validate class
The validate class provides methods where custom validations can be added for an entity.
Class name

The class is named Validate<Entity Name>.java

Package name

The class is placed in the package

curam.<product.package>.evidence.validation.impl

where product.package is as specified in the evidence.properties file.

Validate methods

The proceeding methods are provided.

50 IBM Cúram Social Program Management: Developing Evidence

Method Details

preModifyValidate Called from within the entities preModify method.

preInsertValidate Called from within the entities preInsert method.

validate Called from within the entities standard validate method.

Related attributes class
When you use the related entity attributes pattern, a further class is generated that provides a method for
reading these related values and returning them. The method is called during the service layers read
operation. The method is also called when the create screen is being loaded so that the values can also
be displayed there.
Class name

The class is named <Entity Name>RelatedEntityAttributes.java.

Package name

The class is placed in the package

curam.<product.package>.evidence.relatedattribute.impl

where product.package is as specified in the evidence.properties file.

Validate methods

The proceeding methods are provided.

Method Details

getRelatedEntityAttribu
tes

Method to read any related attributes from alternative sources.

evidence.properties: explanation and sample file
The evidence.properties file is used to configure the generator options.

Description of properties

The proceeding provides a full list of the properties that can be set and the function of each.

Property key Description

product.build.option Defaults to false. Must be set to true to build or
clean evidence for this product. Otherwise, the
Evidence Generator ignores evidence for this
product.

product.name Insert the product name here. It is used to specify
to where all generated files are output.

product.ejb.package Code package name that is used for all impl layer
directories in the product for which evidence is
being generated.

product.prefix The prefix is prepended to the name of all
generated UIM pages and certain generated
classes, such as the façade.

product.appendAltID Flag to determine whether the primary alternate ID
is appended to all Case Participant names (on
generated evidence screens). Defaults to false.

Chapter 1. Developing static evidence 51

Property key Description

product.component.root Root directory that specifies where generated
server files are copied to.

product.evidence.build.root Root directory that specifies where all temp
generated output is copied.

evidence.properties.dir Location for individual products properties file,
which contains all product building config
information. This must end with an 'evidence'
directory.

properties.home Product properties directory. Contains properties
files and localized values for product-wide client
screen label values.

product.webclient Root directory that specifies where generated
client pages are output to.

server.evidence Location of EvidenceEntities.xml output that is
used for server-side and infrastructure generation.

casetype.product.evidence Name and location of EvidenceEntities.xml output
for caseType ’Product’ used for client-side Product
Delivery evidence screen generation.

casetype.integratedCase.evidence Name and location of EvidenceEntities.xml output
for caseType ’Integrated Case’ used for client-side
integrated evidence record screen generation.

server.metadata Location of server XML files that describe the
entity's relationships, function creation, and
infrastructure generation.

caseType.integratedCase.metadata Location of EUIM files that are used for
EvidenceEntities.xml generation that is used for
client-side integrated evidence record screen
generation.

caseType.product.metadata Location of EUIM files that are used for
EvidenceEntities.xml generation that is used for
client-side Product Delivery evidence screen
generation.

Sample file

Four properties must be set to specific values for your product. The values are listed first in this sample
file. Recommended values are provided for the subsequent files as the properties mostly relate to
intermediary files produced during generation. So, in most situations, no benefit is gained by customizing
the properties.

Note: No line breaks in individual properties are permitted.
Values Specific to your component
product.name = <Component Name>
product.prefix = <Chosen Prefix>
product.ejb.package = <Chosen Package>
product.webclient = ${sysenv.CLIENT_DIR}/components/<Component Name>

Recommended Values
product.build.option = true
product.appendAltID = false
product.component.root =
 ${product.components.root}/${product.name}
evidence.properties.dir =

52 IBM Cúram Social Program Management: Developing Evidence

 ${product.components.root}/${product.name}/evidence
properties.home = ${evidence.properties.dir}/properties/
product.evidence.build.root =
 ${evidence.build.root}/${product.name}
server.evidence = ${product.evidence.build.root}/model/server
casetype.product.evidence =
 ${product.evidence.build.root}/model/product/
 EvidenceEntities.xml
casetype.integratedCase.evidence =
 ${product.evidence.build.root}/model/integrated/
 EvidenceEntities.xml
server.metadata =
 ${product.components.root}/${product.name}/evidence/
 server/metadata
caseType.integratedCase.metadata =
 ${product.components.root}/${product.name}/evidence/
 integrated/metadata
caseType.product.metadata =
 ${product.components.root}/${product.name}/evidence/
 product/metadata
create.employment.link = true
create.clientlist.for.employment = false

general.properties
The general.properties file contains all generic label values for the product. The generic labels
consist of localized label values for all common buttons, page titles, and so on. Some generic labels
permit dynamic values, that is, the name of the evidence entity the page title is describing. All properties
within this file must be set.

Note: The property keys cannot be changed, added, or removed as doing so would cause errors in the
running of the evidence generator.

Dynamic properties
For dynamic properties, use a dynamic placeholder to give more meaning to the operation of the dynamic
property.

Dynamic property values

Dynamic properties are properties where you can add a dynamic value to a property at generation time.
The feature can be useful for page titles, menu options, and so on, or anywhere that further context is
useful.

Dynamic properties are achieved by using a placeholder where you want the dynamic value to be placed
during the generation of the properties file. One placeholder type is supported by the evidence generator.
The placeholder type is directly related to metadata tags within the EUIM files.

Note: A dynamic placeholder can be used multiple times in a property value and or a combination of
different placeholders. However, the user must be aware of the relationship between these placeholders
and the actual evidence metadata that the evidence generator processes. A value is substituted into the
placeholder only if the metatype tag that this placeholder maps to exists in the evidence entity metadata.

<displayName>
The name of the evidence entity as it appears on-screen. The name is not the same as the physical
name appears on the table in the database, as demonstrated in the following example:

physical name = PaidEmployment

display name = Paid Employment

Examples of dynamic value usage

The proceeding uses displayName as an example:

Using for this example the Page.Title.EntityWorkspace the value for this property would be entered as
follows:
Page.Title.EntityWorkspace=<displayName> Evidence

Chapter 1. Developing static evidence 53

At build time, the correct substitutions occur when the evidence generator processes the EUIM files.
Using the Paid Employment evidence entity, for instance, the following property would be generated
into the appropriate.properties files.
Page.Title=Paid Employment Evidence

Page title keys

The proceeding table describes the property keys for generic page title properties.

This table describes the property keys for generated Page Title properties.

Property key Description

Page.Title.EntityWorkspace Title for the main page of the evidence workspace
that is generated for each evidence type that is
used in the evidenceFlow control.

Page.Title.ModifyEntity Title that is used for the generated modify pages.

Page.Title.NewEntity Title that is used for generated create pages.

Page.Title.ViewEntity Title that is used for generated view pages.

Help.PageDescription keys

UIM pages use a property that is called Help.PageDescription to provide help for the page. The
proceeding table describes the property keys that must be set to provide help for generated pages.

This table describes the property keys for generic Page Help properties.

Property Description

Help.PageDescription.CreateEntity Provides help for the generated create pages.

Help.PageDescription.List.EvidenceEntities Provides help for all generated workspace list
pages.

Help.PageDescription.ModifyEntity Provides help for the generated modify pages.

Help.PageDescription.ViewEntity Provides help for the generated view pages.

Help.PageDescription.List.EvidenceTypeVerificatio
ns

Provides help for the generated workspace
verification pages.

Help.PageDescription.List.EvidenceTypeIssues Provides help for the generated workspace issues
pages.

Help.PageDescription.List.ChangeHistory Provides help for the generated business object
tab change history pages.

Field label keys

The proceeding table displays the field label properties and their associated descriptions that are
required in the general.properties file.

By creating another property of the same name but with .Help appended, each property can include an
associated help property that is specified.

54 IBM Cúram Social Program Management: Developing Evidence

This table describes the property keys for generic Field Label properties.

Property Description

Field.Label.New Label that is used for the New link in the actions
menu on the generated evidence workspace.

Field.Label.Validate Label that is used for the Validate link in the
actions menu on the generated evidence
workspace.

Page informational keys

Page informationals are warning messages that are shown on screen in response to user actions. The
properties are a special case as they take the formatting options that are used in normal application
message files. So, the number of parameters cannot be changed. However, the message itself can be
changed. The properties required no help.

Page.Informational.NotModifiable

The warning message is displayed on the screen when a user attempts to modify an evidence entity
record that was marked as not modifiable in the EUIM metadata.

The suggested value is %1s Evidence is not modifiable.

This table describes the parameters for the Page.Informational.NotModifiable property.

Parameter Description

%1s The parameter is filled with the display name of
the evidence entity in question.

Static properties
Static properties include action control label keys, field label keys, list label keys, cluster keys, business
object tab keys, and wizard screen description keys.

Action control label keys

The proceeding table lists the static action control properties and the properties' associated descriptions
that are required in the general.properties file.

Each property can have an associated help property that is specified by creating another property of the
same name but with .Help appended.

This table describes the property keys for generic static Action Control Label properties.

Property Description

ActionControl.Label.Cancel Button label that is used on multiple pages to
cancel the action within that context.

ActionControl.Label.Close Button label that is used on multiple pages to close
the dialog.

ActionControl.Label.Save Button label that is used in Create and Modify
evidence entity pages to save new evidence entity.

ActionControl.Label.View Link label that is used on to view specific evidence
entity.

Chapter 1. Developing static evidence 55

This table describes the property keys for generic static Action Control Label properties.

(continued)

Property Description

ActionControl.Label.SaveAndNew Button label that is used on Create pages to save
and add a new entity of this type.

ActionControl.Label.Search Button label that is used for a Search button on
various pages.

ActionControl.Label.Yes Button label for a Yes button.

ActionControl.Label.No Button label for a No button.

ActionControl.Label.New Button label for a New button.

ActionControl.Label.Details In Page Navigation link that is used on the view
modal pages for an entity.

ActionControl.Label.History In Page Navigation link used on the view correction
history modal pages for an entity

ActionControl.Label.Back Label for a Back button, which is used on
generated wizard screens.

ActionControl.Label.Next Label for a Next button, which is used on
generated wizard screens.

ActionControl.Label.Finish Label for a Finish button, which is used on
generated wizard screens.

Field label keys

The proceeding table displays the static field label properties and their associated descriptions that are
required in the general.properties file.

This table describes the property keys for generic static Field Label properties.

Property Description

Field.Label.firstName Used for the first name field when registering a
new representative.

Field.Label.secondName Used for the second name field when registering a
new representative.

Field.Label.address Used for the address field when registering a new
representative.

Field.Label.areaCode Used for the area code field when registering a new
representative.

Field.Label.phoneNumber Used for the phone number field when registering a
new representative.

List label keys

The proceeding table displays the static list label properties and their associated descriptions that are
required in the general.properties file.

No help properties are associated.

56 IBM Cúram Social Program Management: Developing Evidence

This table describes the property keys for generic static List Label properties.

Property Description

List.Title.Type Used for the type of an evidence object on an
evidence create wizard screen.

List.Title.Description Used for the description of an evidence object on
an evidence create wizard screen.

List.Title.Period Used for the period of an evidence object on an
evidence create wizard screen.

List.Title.Participant Used for the participant of an evidence object on
an evidence create wizard screen.

Cluster keys

The proceeding table displays the static cluster properties and their associated descriptions that are
required in the general.properties file.

No help properties are associated.

Property Description

Cluster.EvidenceHeader.Modify.Title Title for the Cluster that is used to wrap the
included infrastructure evidence header VIM on an
entities-generated modify screen.

Business object tab keys

The proceeding static properties are used when you generate the business object tab for each evidence
type.

No help properties are associated.

Property Description

leaf.title.Home The title of the main navigation tab on generated
Business Object Tabs for each entity type.

leaf.title.ChangeHistory The title of the change history navigation tab on
generated Business Object Tabs for each entity
type.

leaf.title.Verifications The title of the Verification navigation tab on
generated Business Object Tabs for each entity
type.

leaf.title.Issues The title of the Issues navigation tab on generated
Business Object Tabs for each entity type.

Submenu.Title.New The actions menu New link for any child entities.
The display name of the child entity is
automatically appended to the end of the property.

Submenu.Tooltip.New The actions menu New tooltip for any child entities.
The display name of the child entity is
automatically appended to the end of the property.

MenuItem.Title.Edit

Chapter 1. Developing static evidence 57

Property Description

MenuItem.Tooltip.Edit

MenuItem.Title.Delete

MenuItem.Tooltip.Delete

MenuItem.Title.ContinueEdititing

MenuItem.Tooltip.ContinueEdititing

MenuItem.Title.Discard

MenuItem.Tooltip.Discard

MenuItem.Title.CancelDeletion

MenuItem.Tooltip.CancelDeletion

Wizard screen description keys

The proceeding static properties are used as default, helpful text descriptions to users on the generated
create wizard select screens.

The cluster for selecting a core employment record uses a simple text property. In contrast, the cluster
for selecting a parent or pre-association record uses a separate starting and ending property, that is
combined with a comma delimited list of the possible types that are being listed.

For example, if the list contained records of type Paid Employment and Self Employment, the proceeding
constructed description text would apply.

Property Description

Wizard.SelectEmployment.Description Text description for the core Employment object
list cluster on the generated create wizard pages.

Wizard.SelectEvidence.Description.Start Start of the text description for the select evidence
object cluster

Wizard.SelectEvidence.Description.End Start of the text description for the select evidence
object cluster

<Wizard.SelectEvidence.Description.Start> Paid Employment,
 Self Employment <Wizard.SelectEvidence.Description.End>

Sample file for dynamic and static properties
Use the general.properties sample file as a reference for dynamic and static properties.

Note: No line breaks in individual properties are permitted.
##
Dynamic Values
##

Page Titles

Page.Title.EntityWorkspace=<displayName> Evidence

Page.Title.ModifyEntity=Edit <displayName> Evidence

Page.Title.NewEntity=New <displayName> Evidence

Page.Title.ViewEntity=View <displayName> Evidence

Page Help Descriptions

Help.PageDescription.CreateEntity=This page allows you to create
 a <displayName> evidence record.

58 IBM Cúram Social Program Management: Developing Evidence

Help.PageDescription.List.EvidenceEntities=This page allows you
 to view a list of the <displayName> evidence recorded
 in the system.

Help.PageDescription.ModifyEntity=This page allows you to modify
 a <displayName> evidence record.

Help.PageDescription.ViewEntity=This page allows you to view a
 <displayName> evidence record.

Help.PageDescription.List.EvidenceTypeVerifications=This page
 allows you to view a list of the <displayName> verifications
 recorded in the system.

Help.PageDescription.List.EvidenceTypeIssues=This page allows
 you to view a list of the <displayName> issues recorded
 in the system.

Help.PageDescription.List.ChangeHistory=This page allows you to
 view the change history of a <displayName> record.

Page Informationals

Page.Informational.NotModifiable=%1s Evidence is not modifiable

Field Labels

Field.Label.New=New
Field.Label.New.Help=Press the New button to create a new
 <displayName> evidence record.

Field.Label.Validate=Validate
Field.Label.Validate.Help=Press the New button to create a new
<displayName> evidence record.

##
Static Values
##

Action Controls

ActionControl.Label.Cancel=Cancel
ActionControl.Label.Cancel.Help=Generic help message for cancel
 actions

ActionControl.Label.Close=Close
ActionControl.Label.Close.Help=Generic help message for close
 actions

ActionControl.Label.Save=Save
ActionControl.Label.Save.Help=Generic help message for save
 actions

ActionControl.Label.SaveAndNew=Save & New
ActionControl.Label.SaveAndNew.Help=The Save & New creates
 a new record from the information entered on the page and
 resets the page allowing an additional record to be created.

ActionControl.Label.View=View
ActionControl.Label.View.Help=Generic help message for View
 actions

ActionControl.Label.Search=Search
ActionControl.Label.Search.Help=Generic help message for search
 actions

ActionControl.Label.Yes=Yes
ActionControl.Label.Yes.Help=Yes

ActionControl.Label.No=No
ActionControl.Label.No.Help=No

ActionControl.Label.New=New
ActionControl.Label.New.Help=New

ActionControl.Label.Details=Details
ActionControl.Label.Details.Help=Shows details of the current
 record.

Chapter 1. Developing static evidence 59

ActionControl.Label.History=History
ActionControl.Label.History.Help=Choose this to view the
 correction history of this record.

ActionControl.Label.Back=Back
ActionControl.Label.Next=Next
ActionControl.Label.Finish=Finish

Field Labels

Field.Label.caseParticipant=Case Participant

Field.Label.participant=Participant

Field.Label.firstName=First Name

Field.Label.secondName=Surname

Field.Label.singleName=Name

Field.Label.address=Address

Field.Label.areaCode=Phone Area Code

Field.Label.phoneNumber=Phone Number

Field.Label.singleName=Name

List Titles

List.Title.Type=Type

List.Title.Description=Description

List.Title.Period=Period

List.Title.Participant=Participant

Page Titles

Page.Title.NewEvidenceWizard=New Evidence
Wizard.Text.SelectEmployment=Select Employment
Wizard.Title.SelectEmployment=Select Employment
Wizard.Text.SelectEvidence=Select Evidence
Wizard.Title.SelectEvidence=Select Evidence

InPageNav.Label.Verifications=Verifications
InPageNav.Label.Verifications.Help=Select this tab to view
 Verifications

InPageNav.Label.Issues=Issues
InPageNav.Label.Issues.Help=Select this tab to view Issues

InPageNav.Label.Evidence=Evidence
InPageNav.Label.Evidence.Help=Select this tab to view Evidence

Generated Tab Properties

leaf.title.Home=Home

leaf.title.ChangeHistory=Change History

leaf.title.Verifications=Verifications

leaf.title.Issues=Issues

Submenu.Title.New=New
Submenu.Tooltip.New=New

Miscellanious

Cluster.EvidenceHeader.Modify.Title=Change Details
Cluster.EvidenceHeader.Modify.Title.Help=Contains header details
 for the evidence record.

Wizard.SelectEmployment.Description=Please select one of the
 following Employments.
Wizard.SelectEvidence.Description.Start=Please select one of
Wizard.SelectEvidence.Description.End= from the following list.

60 IBM Cúram Social Program Management: Developing Evidence

employment.properties
The employment.properties file contains all generic label values for the employment pages
generated. The generic label values consist of localized label values for all common buttons, page titles,
and so on.

Note: The property keys cannot be changed, added or removed. By changing, adding, or removing
property keys causes errors in the running of the evidence generator.

Page titles

The proceeding table shows the page title properties and their associated descriptions that are required
in the employment.properties file.

This table describes the property keys for generated Page Title properties.

Property key Description

Page.Title.Delete.Emploment Title for the delete employment confirmation page.

Page.Title.Employment Title for the employment list page.

Page.Title.Modify.Employment Title for the modify employment page.

Page.Title.View.Employment Title for the view employment page.

Field labels

The proceeding table shows the field label properties and their associated descriptions that are required
in the employment.properties file.

Each property can have an associated help property that is specified by creating another property of the
same name but with .Help appended.

This table describes the property keys for generated Field Label properties.

Property key Description

Field.StaticText.CancelEmployment Confirmation text for removing an employment.

Field.Label.Primary Label for the field that indicates whether this is a
primary employment or not.

Field.Label.Occupation Label for the field that specifies the occupation
that is associated with the employment.

Field.Label.Employer Label for the field that specifies the name of the
employer.

Field.Label.From Label for the field that specifies the start date of
the employment.

Field.Label.To Label for the field that specifies the end date of the
employment.

Container.Label.Action Label for the Action container field on generated
pages.

Action control labels

The proceeding table shows the action control label properties and their associated descriptions that are
required in the employment.properties file.

Chapter 1. Developing static evidence 61

Each property can have an associated help property that is specified, by creating another property of the
same name but with .Help appended.

This table describes the property keys for generated Action Control Label properties.

Property key Description

ActionControl.Label.Delete Label for a Delete button.

ActionControl.Label.Edit Label for an Edit button.

ActionControl.Label.Employment Label for an Employment button.

Sample employment.properties file

Note: No line breaks are permitted in individual properties.
Field Labels

 Field.StaticText.CancelEmployment=Are you sure\
 you want to delete this Employment?

 Field.Label.Primary=Primary

 Field.Label.Occupation=Occupation

 Field.Label.Employer=Employer

 Field.Label.From=From

 Field.Label.To=To

 Container.Label.Action=Action

 ### Page Titles

 Page.Title.Delete.Emploment=Delete Employment Details

 Page.Title.Employment=Employment

 Page.Title.Modify.Employment=Modify Employment Details

 Page.Title.View.Employment=View Employment Details

 ### Action Controls

 ActionControl.Label.Delete=Delete

 ActionControl.Label.Edit=Edit

 ActionControl.Label.Employment=Add Employment

General error messages
The general error message file for a component must be named
Ent<product.prefix>GeneralError.xml. The file must be located in the components messages
folder.

Note: The preceding <product.prefix> represents the same value as specified in the property
product.prefix in your components evidence.properties file.

For more information, see the evidence.properties: explanation and sample file related link.

ERR_FV_CREATE_PROVIDER_DETAILS_SET_NO_NAME

The error message warns of a missing name field when other details were provided for registering a
new representative.

The proceeding value is suggested:
The %1s Name must be entered when any of the
 %1s details are entered.

where the argument is the case participant field that is being specified.

62 IBM Cúram Social Program Management: Developing Evidence

ERR_FV_CREATE_PROVIDER_NAME_SET_NO_ADDRESS

The error message warns when no address is specified while the user is registering a new
representative.

The proceeding value is suggested:
The %1s Address must be entered when the
 %1s Name is entered.

where the argument is the case participant field that is being specified.

ERR_FV_FIELD_MUST_BE_ENTERED_WHEN_ANOTHER_FIELD_ENTERED

The error message warns when one field is specified and another isn't when the user is registering a
new representative.

The proceeding is the suggested value for the error.
The %1s must be entered when the %2s is entered.

where the argument values are the two fields in question.

ERR_FV_REMOVE_RECORD_ASSOCIATED

The error message warns when discarding an evidence record when it has an associated record.

The following is the suggested value for the error.
This %2s record cannot be discarded as there is an
 associated %1s record.

where the argument values are the types of the evidence records in question.

ERR_FV_NO_PARENT_RECORD

The error message warns of a missing parent record when creating a child record.

The proceeding is the suggested value for the error.
This %1s record cannot be discarded as the
 parent %2s does not exist.

where the argument values are the two evidence types in question.

ERR_FV_PARTICIPANT_EMPTY

The error message warns when no participant was chosen or a new one specified for a case
participant field.

The proceeding is the suggested value for the error.
%1s Details must be provided.

where the argument value is the participant field left empty.

ERR_XFV_MORE_THAN_ONE_PART

The error message warns when more than one option is chosen for a case participant field, that is, a
registered person is chosen and a new representative is specified as well.

The proceeding is the suggested value for the error.
Only one %1s can be entered. Please search for
 a registered %1s or enter details for an unregistered %1s.

where the arguments are the name of the field in question.

ERR_XFV_PHONE_NUMBER

The error message warns when an incomplete phone number is provided while the user is registering
a new representative.

The proceeding is the suggested value for the error.
Phone Number must be entered when Phone Area Code is entered.

Chapter 1. Developing static evidence 63

ERR_XFV_PHONE_AREA_CODE

The error message warns when an incomplete phone number is provided while registering a new
representative.

The proceeding is the suggested value for the error.
Phone Area Code must be entered when Phone Number is entered.

where the arguments are the name of the field in question.

ERR_XRV_CHILD_EXISTS_FOR_PARENT_TO_DISCARD

The error message warns when an attempt is made to discard a parent record that has a child record
that is associated with it.

The proeeding is the suggested value for the error.
This %1c record cannot be discarded as there is a
 related %2c record. To discard the %3c record,
 you must first discard/remove the
 related %4c record.

where the arguments are the evidence types concerned.

ERR_FV_CASEPARTICIPANT_CHANGE

The error message warns when an attempt is made to change the case participant on an evidence
record.

The proceeding is the suggested value for the error.
A participant cannot be changed for this evidence.

ERR_FV_EVIDENCE_SELECTION_REQUIRED

The error message warns when no parent or per-association record was chosen on the create new
evidence wizard screens.

The proceeding is the suggested value for the error.
An Evidence record must be selected.

ERR_FV_EMPLOYMENT_SELECTION_REQUIRED

The error message warns when no employment record was selected on the create new evidence
wizard screens.

The proceeding is the suggested value for the error.
An Employment record must be selected.

Related concepts
evidence.properties: explanation and sample file
The evidence.properties file is used to configure the generator options.

Server metadata: document structure
The server-side metadata is provided as a well-formed XML document, named <Entity Name>.xml.

The proceeding is the full reference for the structure of the .xml file.

Entity node (required)

The Entity node is the root of the metadata document. The Entity node contains the proceeding basic
information about the entity.

Attribute Mandatory Possible values Description

logicalName Yes Any valid entity
name

The logical name of the entity,
as it appears on the database.

64 IBM Cúram Social Program Management: Developing Evidence

Attribute Mandatory Possible values Description

relateEvidenceParticip
antID

No Any valid case
participant
attribute from the
entity

If set,
relateEvidenceParticip
antID shows the participant
to be set on the
EvidenceDescriptor record. If
left blank on a top level entity,
the participant field on the
descriptor is set to the
primary client of the
associated case. If left blank
on a child entity, the
generator iterates up the
hierarchy (Parent,
Grandparent, and so on) until
a suitable participant is
identified.

relateEvidenceParticipantID node (required)

Attribute Mandatory Possible values Description

relatedEntityAttribute
s

Yes Yes/No relatedEntityAttribute
s is a Yes/No attribute. It
determines whether the
entity has related entity
attributes. Related entity
attributes are considered to
be any piece of data that is
required that cannot be read
from the entity table directly.
The result of the value 'Yes' is
that an additional class is
created with a method stub.
You must handcraft the code
required to read any related
entity attributes.

exposeOperation Yes Yes/No exposeOperation is a
Yes/No attribute. It
determines whether the
business process for
retrieving the related entity
attributes must be exposed to
a facade, so generating beans
for it. The bean is also be
used on the create screen.

Relationships node (required)

The node is used to specify all relationship details about the entity. Entities can have 0..n relationships of
type Parent, Child, Mandatory Parents, PreAssociation or Related.

Parent node (optional)

Add a Parent node for every possible parent type that the evidence entity has.

Chapter 1. Developing static evidence 65

Attribute Mandatory Possible values Description

name Yes Any valid evidence
entity name.

The logical name of the
parent evidence entity.

Mandatory Parents node (optional)

Where an entity has multiple parents that must all be specified, the <Parent> elements must be wrapped
in an outer <MandatoryParents> element. The proceeding illustrates how the elements must be wrapped.
<MandatoryParents>
 <Parent name="Parent1"/>
 <Parent name="Parent2"/>
</MandatoryParents>

Child node (optional)

Add a Child node for every possible child type that the evidence entity has.

Attribute Mandatory Possible values Description

name Yes Any valid evidence
entity name.

The logical name of the child
evidence entity.

PreAssociation node (optional)

Add a PreAssociation node where the entity must be associated with another entity before creation so
that related attributes from the associated entity can be displayed on the create screen.

Attribute Mandatory Possible values Description

to Yes Any valid entity
name.

The evidence type that the
entity is associated 'to'.

BusinessDates node (optional)

The Evidence Interface now defines two methods, getStartDate and getEndDate, that return the
business dates of the entity. The methods getStartDate and getEndDate are used in the period
calculation.

The BusinessDates node permits you to note which date attributes of the entity must be returned from
these methods.

Attribute Mandatory Possible values Description

startDate No Any valid date
attribute of the
entity.

The date attribute to use as
the business start date for the
entity.

endDate No Any valid date
attribute of the
entity.

The date attribute to use as
the business end date for the
entity.

Override node (optional)

Use the Override element when a customer wants to override or extend a default entity.

The relevant metadata must be copied to the custom evidence directory and, at a minimum, the element
must be added.

This element must also be added where a new entity is being added to the product that is being
overridden.

Note: For more information about using the Override element, see the Overriding a default evidence
entity: example related link.

66 IBM Cúram Social Program Management: Developing Evidence

Attribute Mandatory Possible values Description

newEntity No Yes/No Shows if this is a new entity or
not.

customize No Yes/No Set to Yes if you want to
override the provided
Customise<Entity Name>
class.

hook No Yes/No Set to Yes if you want to
override the provided <Entity
Name>Hook class.

relatedAttribute No Yes/No Set to Yes if you want to
override the provided <Entity
Name>RelatedEntityAttribute
s class.

validation No Yes/No Set to Yes if you want to
override the provided
Validate<Entity Name> class.

CachedOperation node (optional)
Use the CachedOperation node to specify a database read operation to be cached by the application.
You must provide the following three values:

• The name of the operation to be cached.
• The name of the database read operation.
• The fully qualified name of the return struct.

Attribute Mandatory Possible values Description

operationName Yes Any sensible
operation name.

The name of the cached
operation.

databaseRead Yes The name of the
SQL entity read to
be cached.

The name of the SQL entity
read to be cached.

returnType Yes The qualified name
of the struct that is
returned by the
entity read.

The qualified name of the
struct that is returned by the
entity read.

Related concepts
Overriding a default evidence entity: example
To meet business requirements, customers can override the default evidence entity by, for example,
editing the server-side metadata and client-side metadata.

Client metadata: document structure
The client-side metadata is provided as a well-formed XML document, named <Entity Name>.euim, along
with associated properties files that can be specified in multiple locales.

The proceeding is the full reference for the structure of the .xml file.

Entity node

The proceeding table displays the entity attributes.

Chapter 1. Developing static evidence 67

Attribute Mandatory Possible values Description

name Yes Any valid entity name. The logical name of the
entity.

displayName Yes Any sensible string
value.

The name of the entity
as it is to appear on
client screens. For
example, an entity might
have a logical name of
'PaidEmployment', but
on the client screens it is
better to display the
name as 'Paid
Employment'.

modify No Yes/No This attribute shows
whether the entity must
be modifiable. This
attribute is defaulted to
Yes.

UserInterface node

The UserInterface node is the beginning of the screen layout.

Attribute Mandatory Possible values Description

saveAndNewButton No Yes/No Defaults to No. If set to
Yes, then a Save And
New button is added to
the entity's create page.

Clusters node

The Clusters node contains each individual cluster.

Cluster node

The Cluster node contains information about each field that appears in the cluster. The cluster can
contain any number of Field or SkipField elements in any order.

Attribute Mandatory Possible values Description

Description No Any valid entry from the
associated properties
file.

The attribute maps
directly to the UIM
cluster description
attribute.

numCols No Integer value. The attribute maps
directly to the UIM
cluster numCols
attribute. If not
specified, the value
defaults to 2.

68 IBM Cúram Social Program Management: Developing Evidence

Attribute Mandatory Possible values Description

label No Any valid entry from the
associated properties
file.

The attribute maps
directly to the UIM
cluster TITLE attribute.

create No Yes/No By default, a cluster is
displayed on the create
page. To stop a cluster
from being displayed on
the create page, set this
attribute to No.

modify No Yes/No By default, a cluster is
displayed on the modify
page. To stop a cluster
from being displayed on
the modify page, set this
attribute to No.

view No Yes/No By default, a cluster is
displayed on the view
page. To stop a cluster
from being displayed on
the view page, set this
attribute to No.

SkipField node

The SkipField node indicates to the generator to insert a blank UIM Field in this position. The node
permits greater control over the formatting of the fields in the UIM Cluster.

Field node

The Field node contains information about the attributes of a particular field on the screen.

Attribute Mandatory Possible values Description

columnName Yes A valid attribute name. The entity attribute
name, as it appears on
the database.

label No Any valid entry from the
associated properties
file.

The attribute maps
directly to the UIM field
label attribute.

Chapter 1. Developing static evidence 69

Attribute Mandatory Possible values Description

modify No Yes/No/Many By default, a field is
modifiable on the
entity's modify screen.
By setting this attribute
to No, the field is read-
only on the modify
screen.

Case Participant fields
are slightly different as
they are typically not
modifiable. By setting
this attribute to Yes, it
can be left blank on the
create screen and to set
it one time on the
modify screen. After it is
entered one time, it is
read-only on the modify
screen. Alternatively, by
setting this attribute to
Many, it can be
overwritten many times
on the modify screen.

use_default No True/False If specified, it maps
directly to the UIM field
USE_DEFAULT attribute.

use_blank No True/False If specified, it maps
directly to the UIM field
USE_BLANK attribute.

notOnEntity No Yes/No If set to Yes, this
attribute indicates that
the field is not directly
mapped to an entity
field. The default is No.

metatype No Any metatype
recognized by the
Evidence Generator.

Use metatype to
specify additional
information about an
attribute, and how it
must be formatted.

mandatory No Yes/No Determines whether the
mandatory indicator
must be set on the field
in the create and modify
screens. The default is
No..

CaseParticipant node

The CaseParticipant node contains additional information about the field that relates to case
participant information that is stored in the field.

70 IBM Cúram Social Program Management: Developing Evidence

Attribute Mandatory Possible values Description

create No Yes/No Determines whether a
case participant is to be
created.

name No Any sensible string
value.

The name refers to how
the associated attribute
is named. For example,
the attribute might be
named
'empCaseParticipantRol
eID'. In this instance,
the name attribute must
have a value of 'emp'.

readOnly No Yes/No Determines whether the
case participant is 'read
only'.

nsStruct No Yes/No When the user searches
for a previously
registered participant on
the system, the default
is to search for the
Person type. To search
for other types, set this
to Yes. You must model
your own struct with the
same structure as
CaseParticipantDet
ails and aggregate this
instead. A further
attribute that is called
participantType
must be added, which
links to a codetable of
participant types that
must be searchable.
This displays a drop-
down list of participant
types beside the search
button, and the correct
search dialog appears
based on the type that is
selected from this list.

singleNameField No Yes/No This attribute is used
when a newly registered
participant for this field
must have one name
only rather than a first
and second name. For
example, if the user is
registering a school.

Chapter 1. Developing static evidence 71

CreateCaseParticipant node

The CreateCaseParticipant node contains information about creating a case participant. Including
this node indicates that the selected participant must be registered as the specified case participant type,
if they are not already registered as such.

Attribute Mandatory Possible values Description

participantType Yes Any valid participant
type.

This field provides more
meta information to the
generator about the type
of participant.

roleType Yes The Java Identifier of an
entry from the
CaseParticipantRoleTyp
e code table.

Specifies the role that
the participant must be
registered on the case
with.

SearchType node

When you use a case participant field, the system can provide a per-populated, drop down list of existing
case participants that can be selected from. The SearchType node, which can be specified multiple
times within a CaseParticipant node, indicates which case participant role types to include in this list.

Attribute Mandatory Possible values Description

type Yes Any valid Java Identifier
from the
CaseParticipantRoleTyp
e codetable.

Displays the case
participant role type to
list for selection.

Meta types
The Evidence Generator supports seven meta types.
PARENT_CASE_PARTICIPANT_ROLE_ID

On Child or Grandchild evidence, when you apply the meta type
PARENT_CASE_PARTICIPANT_ROLE_ID to a field the following two things occur:

• The field displays as the name of the parents' associated case participant role (for example, James
Smith).

• The name of the parents' associated case participant role is a link to the Participant home page.

EMPLOYER_CASE_PARTICIPANT_ROLE_ID
When you apply the meta type EMPLOYER_CASE_PARTICIPANT_ROLE_ID to a field, it implies that
the field is storing an Employer's participant role ID in the field. The result is that the Employer's name
is displayed as a link to the Employerhome page.

CASE_PARTICIPANT_SEARCH
When you apply the meta type CASE_PARTICIPANT_SEARCH to a field, it implies that the field is
storing the case participant ID of the case participant with which the evidence record is being
associated. The result is that the participant's name is displayed as a link to the Participant home
page.

CODETABLE_CODE
When you apply the meta type CODETABLE_CODE to a field, it implies that the field is storing a
codetable value that is to be displayed as part of the description string that is generated by the
function StandardEvidenceInterface::getDetailsForListDisplay. The result is that the
code that is stored in the field is replaced by the description string from the codetable.

72 IBM Cúram Social Program Management: Developing Evidence

REPRESENTATIVE_LINK
When you apply the meta type REPRESENTATIVE_LINK to a field, it implies that the field is storing an
ID that can be used to link to the Representative home page. The result is that the representative's
name appears as a link to the Representative home page.

COMMENTS
When you apply the meta type COMMENTS to a field, it implies that the field is storing free text. The
result is that the field is the full width of the screen and three rows high.

RELATED_ENTITY_ATTRIBUTE
When you apply the meta type RELATED_ENTITY_ATTRIBUTE to a field, the system indicates to the
generator that the field comes from the modeled-related attributes struct rather than from the entity
itself. Fields of this type are read-only.

Participant types
The CreateCaseParticipant node in the Evidence Generator supports five participant types.

Note: Select the closest match to the participant type to be created.

• Person
• Employer
• ServiceProvider
• Union
• Unknown

Evidence Generator Cookbook
Use the evidence generator as part of the standard Cúram build targets to dynamically create evidence
entities that are based on certain criteria that are set for the evidence types. The evidence generator
caters for all of the high level, repeatable evidence patterns across a number of large evidence-based
solutions.

Quick overview
Use the Evidence Generator for all the high level, repeatable patterns that are identified across various
large evidence-based solutions that are provided by the IBM Cúram Social Program Management
Platform.

Before you use the Evidence Generator

Before you use the Evidence Generator, be familiar with the information in the Developing evidence
manually related link.

When to use the Evidence Generator
For more information about repeatable patterns, see the Evidence Generator specification related link.
Use custom solutions to identify patterns that are not catered for by the generator. For patterns that are
not catered for by the generator, the solution must develop the entities manually, that is, outside the
generator. Such patterns are untypical.

The Evidence Generator is run as part of the standard Cúram build targets. The generator iterates through
every evidence folder under each component. The generator initially targets the file
evidence.properties. The file evidence.properties defines the paths to various files and folders
that are required during generation. Where the file evidence.properties does not exist, the generator
moves to the next folder.

Sample component

A sample directory of the finished component includes:

Chapter 1. Developing static evidence 73

1. A model directory. The model directory contains any model files that are used for the evidence entity
modeling.

2. An 'evidence' directory that contains the evidence.properties.

The evidence.properties then defines the locations for:

• Any server, evidence metadata.
• Any integrated case, client, evidence metadata.
• Any product delivery, client, evidence metadata.
• The required properties files for common client display text.

Related concepts
Evidence Generator specification
Use the Cúram Evidence Generator as a rapid way to develop the server side code and client side screens
for evidence entities that integrate fully with the standard Cúram Evidence Solution.
Related information
Developing evidence manually

Generator inputs and outputs
The Evidence Generator uses five resources as input data. The Evidence Generator produces five outputs.

Generator inputs

The Evidence Generator uses the following resources as input data:

evidence.properties
The evidence.properties is a resource to configure the Evidence Generator. The file
evidence.properties contains all the product and component-specific properties. For example,
naming conventions, directory locations, and product-wide settings. Some of these properties are
also included in the generation itself. These properties are defined once per product.

general.properties and employment.properties
The resources general.properties and employment.properties generate the client screens.
The resources contain generic text labels that are used on many client screens. Descriptions of these
fields are used in the application online help. These properties are defined once per product.

Server metadata file (for example, Expenses.xml)
The server metadata file defines the names of your entities and the entities' relationships to other
evidence entities.

Client metadata file (for example, Expenses.euim)
This client metadata file defines the client screens that are used to maintain your evidence entity.

Client properties file (for example, Expenses.properties)
The client properties file is required by your Evidence User Interface Metadata (EUIM) file. The client
properties file defines the text labels that are used and the descriptions of these fields that are used
for the application online help and a modeled entity.

Generator outputs

The Evidence Generator produces the outputs:

1. Facade and service layer model.
2. Java code.
3. Client UIM/VIM.
4. Wizard data APPRESOURCE.dmx.
5. Tab configurations.

74 IBM Cúram Social Program Management: Developing Evidence

Configuring an existing product
By configuring an existing product for use with the Evidence Generator, the product is ready for its first
generatable evidence implementations.

About this task

To configure an existing product, five steps are required:

1. Create an evidence directory.
2. Create and configure the evidence properties file (evidence.properties).
3. Create the general properties file (general.properties).
4. Create the product employment properties file (employment.properties).
5. Configure the module.

Procedure

1. Create directory evidence under the product root directory in EJBServer. For example,
SampleEGProduct is used as the product name. So, the evidence directory is EJBServer/
components/SampleEGProduct/evidence.

2. Create an evidence.properties file. Use the file to configure various mandatory product
parameters, including locations of input files, such as EUIMs, and locations of output files, such as
generated UIMs.

Note: The location of the evidence.properties is important. The location must be within a
directory named evidence. However, you can locate the directory anywhere within your component.
For convenience the following location is suggested:
EJBServer/components/
SampleEGProduct/evidence/evidence.properties

Within the properties file, specify the location of the remaining mandatory files in arbitrary locations.
Again, for convenience, sub directories under the evidence directory are the logical choice.

The proceeding is a sample of the product parameters required. For a complete list of product
parameters, see the evidence.properties: explanation and sample file related link.
product.name=SampleEGProduct

This setting copies the generated evidence files to ./components/SampleEGProduct.
product.ejb.package=seg

Based on the product name in the previous example, the code package name might, for example, be
seg. So, the format of the package structure of the generated classes is curam.seg.evidence.

Note: Setting the preceding property to evidence generates a package structure of curam.evidence
(not curam.evidence.evidence).

In the prefix
product.prefix=SEG

the prefix is prepended to the name of all generated UIM pages and certain generated classes, for
example, the façade. Here, the generated façade class is SEGEvidenceMaintenance.
product.webclient=${webclient.dir}/components/${product.name}

The location of the root directory for client product is webclient/components/SampleEGProduct.

Note: Set the property ${webclient.dir} in the Evidence Generator. The property points to the
directory webclient/components. Using the property is optional for the user.

3. Create the general properties file (general.properties). The file contains all generic client page
properties, client message properties, and online help properties for this product. For more
information about the general properties file, see the general properties related link.

Note: All the keys (properties) specified in the general properties related link are mandatory. Omission
of any keys is likely to break the build or cause compilation errors.

Chapter 1. Developing static evidence 75

4. Create the product employment properties file (employment.properties). The file contains all
generic employment that is specific to client page properties, client message properties, and online
help properties for the product. For more information about the employment properties file, see the
employment.properties related link.

Note: Like general.properties, all the keys (properties) specified in the employment.properties
related link are mandatory. Omission of any keys is likely to break the build or cause compilation
errors.

5. Configure the module. The Evidence Generator produces a single registrar module for all the
generated evidence types, which registers the implementations of the evidence interface and the
evidence comparison interface. Add the fully qualified class name to the module class name initial
data. In the preceding example, the class that is generated is
curam.seg.evidence.service.impl.SEGRegistrarModule.

Related concepts
evidence.properties: explanation and sample file
The evidence.properties file is used to configure the generator options.
general.properties
The general.properties file contains all generic label values for the product. The generic labels
consist of localized label values for all common buttons, page titles, and so on. Some generic labels
permit dynamic values, that is, the name of the evidence entity the page title is describing. All properties
within this file must be set.
employment.properties
The employment.properties file contains all generic label values for the employment pages
generated. The generic label values consist of localized label values for all common buttons, page titles,
and so on.

Asset as generated evidence: implementing a sample evidence type
To generate asset as evidence, you must generate the server-side and client-side artefacts for the
evidence entity.

Step 1: Model evidence entity
During entity modeling, the defined metadata is used to support and connect to the Evidence Generator
by using the service layer, façade layer, or client.

Modeling the evidence entity is independent from the Evidence Generator. The evidence entity is
modeled in the standard way and included in the standard Cúram build. For more information about
evidence entity modeling, see the Modeling for the Evidence Generator related link.

Asset entity and aggregations

The attributes of the asset entity are:

• Value
• Asset type
• Start date
• End date

The screens for maintaining the expense entity display the employer of the case participant and the
associated record. The related information is not stored on the expense entity. Instead, the information is
only displayed on the screens where it is deemed that it is useful to the caseworker as the caseworker
maintains the expense information.

The expense entity must include the attributes (with their associated domain definition):

• The primary key of the entity evidenceID (this is expected by the generator).
• All other attributes as required.
• Optimistic locking on the entity enabled.

76 IBM Cúram Social Program Management: Developing Evidence

• The entity with the standard read, insert, and modify operations automatically generated.

Adhere to the naming conventions, for example, the naming of structs and aggregations that are required
for each entity, and multiplicities for the aggregations and code packages that match the
product.ejb.package property. For more information about naming conventions, see the Modeling for
the Evidence Generator related link.

Additional modeling

Displaying the employment name on the maintenance screens for the Expense entity is not necessary.
However, communicating the information from the system to the screen is required. Use a 'placeholder'
to communicate the information. Use a RelatedEntityAttribute struct to create the placeholder. A
RelatedEntityAttribute struct is an ordinary struct with a specific naming convention and
aggregation. You must adhere to the conventions that are outlined in the Modeling for the Evidence
Generator related link.

In the preceding example, the new struct, ExpenseRelatedEntityAttribute, is created with one
attribute: employerName. The ReadExpenseEvidenceDetails struct must aggregate the
ExpenseRelatedEntityAttribute struct. The multiplicity must be 1:1 and the aggregation must be
named relatedEntityAttributes.

Related concepts
Modeling that is required for the evidence patterns
Specific entity modeling is required when you use the Cúram Evidence Generator as the generator relies
on certain, attributes, structs, and aggregations within the generated code. Use this information to learn
about entity modeling that is required to use the Cúram evidence generator. The evidence generator
relies on the existence of certain attributes, structs, and aggregations within the generated code. Various
modeling strategies are required for the different metadata patterns available in the generator.

Asset entity diagram
You can complete the model evidence entity when the entity's attributes are defined and the necessary
structs and aggregations are modeled.

Figure 1. Asset entity diagram

Chapter 1. Developing static evidence 77

Step 2: Create evidence metadata
The Evidence Generator is configured to identify specific files.

In the configured directories, the Evidence Generator is configured to identify:

• Server XML metadata files
• Integrated case EUIM metadata files and their corresponding properties files
• Product delivery EUIM metadata files and their corresponding properties files

Each entity has one server XML file and one pair of EUIM and properties files that define the entity.

Asset server XML
Specific attributes are required to generate the wizard page when you configure evidence end dating for
non-dynamic evidence.

The proceeding sample is the server XML metadata file for Asset:

<EvidenceEntity>
 <Entity
 logicalName="Asset"
 relateEvidenceParticipantID=""
 >
 <RelatedEntityAttributes
 exposeOperation="No"
 relatedEntityAttributes="No"
 />
 <Relationships/>
 <BusinessDates
 startDate="startDate"
 endDate="endDate"
 />
 </Entity>
</EvidenceEntity>

Generating the wizard page when you configure evidence end dating for non-dynamic evidence

To generate the wizard page when you configure evidence end dating for non-dynamic evidence, the
following attributes must be present in the asset server XML metadata file:

• <AutoEndDate active ="Yes"/>
• <BusinessDates endDate="endDate" />

The proceeding example shows the asset server XML file after you add the attributes:

<EvidenceEntity>
 <Entity
 logicalName="Asset"
 relateEvidenceParticipantID=""
 >
 <AutoEndDate active="Yes"/>
 <RelatedEntityAttributes
 exposeOperation="No"
 relatedEntityAttributes="No"
 />
 <Relationships/>
 <BusinessDates
 startDate="startDate"
 endDate="endDate"
 />
 </Entity>
</EvidenceEntity>

To disable the wizard page generation for the evidence end dating feature:

• Remove the <AutoEndDate active='Yes'/> attribute from the XML metadata OR
• Update the value of the active attribute value to No; for example, <AutoEndDate active='No'/>.

78 IBM Cúram Social Program Management: Developing Evidence

Asset client Evidence UIM (EUIM)
View the client Evidence UIM (EUIM) metadata file for asset and the associated properties file for
Asset.euim.

The client Evidence UIM (EUIM) metadata file for asset is:
<Entity name="Asset" displayName="Asset">
 <UserInterface>
 <Clusters>
 <Cluster label="Cluster.Title.AssetDetails"
 numCols="2">
 <Field label="Field.Label.AssetType"
 columnName="assetType" mandatory="Yes"
 use_blank="true"/>
 <Field label="Field.Label.StartDate"
 columnName="startDate" mandatory="No"
 use_default="false"/>
 <Field label="Field.Label.AssetValue"
 columnName="value" mandatory="Yes"
 use_default="false"/>
 <Field label="Field.Label.EndDate"
 columnName="endDate" mandatory="No"
 use_default="false"/>
 </Cluster>
 <Cluster label="Cluster.Title.Comments">
 <Field columnName="comments" mandatory="No"
 metatype="COMMENTS" label=""/>
 </Cluster>
 </Clusters>
 </UserInterface>
</Entity>

Note: EUIM is similar to UIM. For example, data is described in terms of 'fields' and the layout is
described in terms of 'labels', 'clusters', and 'fields'. EUIM uses a format with which developers are
familiar.

The associated properties file for Asset.euim is:
Cluster.Title.AssetDetails=Asset Details

Field.Label.AssetType=Type
Field.Label.AssetType.Help=The type of the asset

Field.Label.AssetValue=Value
Field.Label.AssetValue.Help=The value of the asset

Field.Label.StartDate=Received
Field.Label.StartDate.Help=The date the asset was received

Field.Label.EndDate=Disposed
Field.Label.EndDate.Help=The date the asset was disposed

Cluster.Title.Comments=Comments
Cluster.Title.Comments.Help=Additional information

Step 3: Standard evidence configuration
Specific steps are required to configure a new evidence type.

Checklist to configure a new evidence type before you generate an asset

• To name the asset evidence type, add an entry to the Evidence Type Code Table OR
• Create a static description for asset evidence by using a new entry in the Text Tanslation initial data.

Link the Text Translation to a new entry in the Localizable Text initial data. As the step is only visible to
the user on the New Evidence screen, you can defer the step until later.

• Add an entry in the Evidence Metadata initial data linking it to the Evidence Type and, optionally for
now, to the Localizable Text.

• Link the Evidence Metadata to either an integrated case or a product by adding an entry to the Admin IC
Evidence Link or the Product Evidence Link initial data, respectively. If the evidence is to belong to an
evidence category, for example, Resources, set the category attribute here.

Chapter 1. Developing static evidence 79

• If the asset Evidence Business Object Tab is to be used in a section of the application, contribute to the
section definition, for example, file DefaultAppSection.sec. Without this contribution, the asset
Evidence Business Object page loads in the current content panel only.

A sample section file is generated for each product, including all the evidence tabs. The location of the
sample is EJBServer/components/EvGen/ tab/BusinessObjectTab/
<product.prefix>GeneratedAppSection.sec.
<sc:section
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:sc=
 "http://www.curamsoftware.com/curam/util/client/section-config"
 id="DefaultAppSection"
>
 <sc:tab id="AssetObject"/>
</sc:section>

Note: One handcrafted implementation must be completed after the generator is run. If the handcrafted
implementation is not completed after the generator is run, the user cannot access some evidence
screens. For more information, see the Asset handcrafted code: asset hook getDetailsForListDisplay
related link.

Related concepts
Asset handcrafted code: asset hook getDetailsForListDisplay
All evidence entities must implement the asset hook method getDetailsForListDisplay.

Executing the Evidence Generator
Users can call on Evidence Generator targets and expect specific outcomes.

Evidence Generator standard targets
The Evidence Generator builds targets into the standard targets.

The Evidence Generator has a clear design, that is, the generator integrates the standard build targets so
that:

• No extra environment variables are required.
• No new targets are required to generate evidence.

When the preceding steps are complete, the standard build targets suffice to generate or clean:

• The metadata driven-evidence.
• The standard files.

build generated

By calling the build generated target, the EJBServer generates:

• The evidence inf and impl layers.
• The normal server layers.

build client

By calling the build client target in web client, the EJBServer generates and builds:

• The client screens
• The standard client screens

Note: Like a normal build, if the build client is called before a build that is generated after changes to the
model or metadata, the client build might fail. Typically, the failure is due to changes in the client UIMs or
VIMs to use new features that are implemented on the server and then rebuilding the client without first
rebuilding the server.

With evidence generation, any changes to the EUIMs or server XMLs are automatically generated the next
time that the client is generated. So, if the EUIM or server XML changes affect the façade layer in any way,
you must first generate the server.

80 IBM Cúram Social Program Management: Developing Evidence

build clean

The target to clean generated evidence is incorporated into the standard target so that the target is clear.
The target is the same on the server and the client, build clean.

Note: Customized generated code is not deleted. For more information, see the Asset handcrafted code:
asset hook getDetailsForListDisplay related link.

Related concepts
Asset handcrafted code: asset hook getDetailsForListDisplay
All evidence entities must implement the asset hook method getDetailsForListDisplay.

Evidence Generator specific targets
Use the specific targets build egtools.clean and build egtools.client.clean to provide more
granular control over evidence generation.

By using the specific targets build egtools.clean and build egtools.client.clean, you can
speed up the development process because:

• The specific targets clean the generated evidence.
• The specific targets do not remove any of the standard generated files.

build egtools.clean and build egtools.client.clean are located within EJBServer/
build.xml.

build egtools.clean

The build egtools.clean target cleans all server-related evidence files. The clean is only applied if
the prerequisites are met. The clean is applied whether:

• New EUIM and server XML files are added OR
• Existing EUIM and server XML files were updated since the last build.

build egtools.client.clean

The build egtools.client.clean target cleans all client-related evidence files. The clean is only
applied if the prerequisites are met. The clean is applied whether:

• New EUIM and server XML files are added OR
• Existing EUIM and server XML files were updated since the last build.

Generator output
When evidence generation is complete, new directories are added in the locations that are specified in
the evidence.properties file.

Note: As all entity, service, and façade level-generated code is written directly to the build directory, the
code is not displayed within your components source directory.

Asset handcrafted code: asset hook getDetailsForListDisplay
All evidence entities must implement the asset hook method getDetailsForListDisplay.

Custom code can be written in some stubs that are generated by the server output, that is, placeholders
for customers to add their own code. The placeholders provide flexibility when a generated evidence
pattern is not an exact match for an evidence entity. For more information about extending the function of
a generated entity, see the Adding functionality related link.

Asset hook getDetailsForListDisplay

Implementing the asset hook method getDetailsForListDisplay is mandatory for all evidence
entities. By using getDetailsForListDisplay, text descriptions are created for a particular asset
business object on the evidence workspace pages. As the link text is used on the client screens, the link
text must be populated to access all screens.

Chapter 1. Developing static evidence 81

The getDetailsForListDisplay implementation for asset is:
//__
/**
* Get evidence details for the list display
*
* @param key Key containing the evidenceID and evidenceType
*
* @return Evidence details to be displayed on the list page
*/
public EIFieldsForListDisplayDtls getDetailsForListDisplay(
 EIEvidenceKey key)
 throws AppException, InformationalException {

 // Return object
 EIFieldsForListDisplayDtls eiFieldsForListDisplayDtls =
 new EIFieldsForListDisplayDtls();

 // Asset entity key
 final AssetKey assetKey = new AssetKey();
 assetKey.evidenceID = key.evidenceID;

 // Read the Asset entity to get display details
 final AssetDtls assetDtls =
 AssetFactory.newInstance().read(assetKey);

 // Set the start / end dates
 eiFieldsForListDisplayDtls.startDate = assetDtls.startDate;
 eiFieldsForListDisplayDtls.endDate = assetDtls.endDate;

 LocalisableString summary = new LocalisableString(
 BIZOBJDESCRIPTIONS.BIZ_OBJ_DESC_ASSET);

 summary.arg(
 CodeTable.getOneItem(SAMPLEASSETTYPE.TABLENAME,
 assetDtls.assetType));

 // Format the amount for display
 TabDetailFormatter formatterObj =
 TabDetailFormatterFactory.newInstance();
 AmountDetail amount = new AmountDetail();
 amount.amount = assetDtls.value;
 summary.arg(formatterObj.formatCurrencyAmount(amount).amount);

 eiFieldsForListDisplayDtls.summary =
 summary.toClientFormattedText();

 return eiFieldsForListDisplayDtls;
}

Related concepts
Adding functionality
There are a number of extension classes that can be coded, with the generator providing a default
skeleton implementation for each in your source code directory. Additionally each of these classes is
automatically modeled by the generator, so all follow the standard factory, interface, implementation
pattern used in the application.

Customizing a product
While a default evidence solution is provided with some of the Cúram solutions, the customer can extend
and customize the default evidence solution to match the customer's business requirements.

Custom evidence properties

The default product is configured with an evidence.properties file. For more information about
creating and configuring an evidence.properties file, see the Configuring an existing product related
link. To override a default product, the custom product requires its own, thin version of
evidence.properties.

Note: The override.product property must be set to product.name. Otherwise, the evidence
generator treats the evidence product as new. For more information about evidence properties, see the
evidence.properties: explanation and sample file related link.

82 IBM Cúram Social Program Management: Developing Evidence

Unique name (product.name) of the OOTB product to override
override.product=SampleEGProduct

Prefix used to specify where all metadata files are copied to
product.prefix=SEG

Other Mandatory Properties in an Overriding Product

product.build.option=true

evidence.properties.dir
 = %SERVER_DIR%/components/custom/EvGenComponents/SEG/evidence

properties.home=${evidence.properties.dir}/properties/

server.metadata=${evidence.properties.dir}/server/metadata

caseType.integratedCase.metadata
 = ${evidence.properties.dir}/integrated/metadata

caseType.product.metadata
 = ${evidence.properties.dir}/product/metadata

Figure 2. Sample custom evidence.properties

Note: The evidence.properties must be located in a directory that is named evidence within any
subdirectory of:
EJBServer/components/custom

As the custom directory can contain many of the overridden products and the evidence directories, use
a naming scheme. For example:
EJBServer/components/custom
 /EvGenComponents/<ProductName>/evidence

Build process and generated files: an overview

The evidence generator build process identifies evidence sub directories in all the components that are
listed in the SERVER_COMPONENT_ORDER. During the build process:

1. The product's metadata and display properties are gathered to the build directory.
2. A search of the custom directory finds any evidence.properties that override the queued product.

Where overriding in the build is required, the customized metadata, and the display properties, are
gathered and copied over the queued product's metadata in the build directory. The customized
metadata, and the display properties, are not merged. The product's evidence is then generated from the
super-set of metadata.

Note: Most artefacts generated by a default product are not modifiable. Likewise, most artefacts
generated by a default product are added to source control.

The only artefacts that are modifiable are the handcrafted Java classes that are provided for customizable
hook points that are called throughout the non-modifiable generated codebase. The handcrafted Java
classes are only generated where they did not exist. Then, the handcrafted Java classes must be
maintained as part of source control.

Therefore, by overwriting the metadata before the build all the generated custom artefacts are generated
as if they belonged to the default product, that is, the product's directories. The only exception is
handcrafted Java classes.

Overriding display text

Display text is defined in the properties files that are associated with:

• An EUIM
• The general properties file
• The employment properties file

The preceding files can be overridden in the custom directory.

Chapter 1. Developing static evidence 83

Related concepts
evidence.properties: explanation and sample file
The evidence.properties file is used to configure the generator options.
Related tasks
Configuring an existing product
By configuring an existing product for use with the Evidence Generator, the product is ready for its first
generatable evidence implementations.

Overriding a default evidence entity: example
To meet business requirements, customers can override the default evidence entity by, for example,
editing the server-side metadata and client-side metadata.

In the proceeding example, it is assumed that the expense entity was provided as part of a Cúram
evidence solution. The customer decided that the entity does not provide the fields that are required to
fully meet the business requirements. To meet their requirements, the customer added two extra
attributes to the entity:

1. The user name of the user who creates or modifies the record.
2. The number, if any, of children that the case participant has.

Modeling

By conforming with the requisite guidelines, an extension class is created and the class is linked to the
provided expense entity. For more information about modeling guidelines, see the Modeling for the
Evidence Generator related link and the Cúram modeling reference related link.

Metadata

The metadata for a customized entity is almost identical to the standard metadata. The metadata for a
customized entity is captured in two files:

• <Entity-Name>.xml
• <Entity-Name>.euim

To start customizing an entity, copy all the default entity's metadata and then make the required changes.
The two types of metadata are:

• Server-side metadata
• Client-side metadata

84 IBM Cúram Social Program Management: Developing Evidence

Server-side metadata

The asset changes apply only to extra fields. So, with one exception the server-side metadata is identical
to the metadata of the entity that you are overriding. The exception is that an extra node Override is
required. The extra node specifies:

• Whether the entity is new
• The custom handcrafted classes to generate.

For more information about overriding nodes, see the Server metadata: document structure related link.

The proceeding is the custom server XML metadata file for asset:

 <EvidenceEntity>
 <Entity logicalName="Asset"
 relateEvidenceParticipantID="">
 <Override newEntity="No" customize="No" hook="Yes"
 relatedAttribute="No" validation="No" />
 <RelatedEntityAttributes exposeOperation="No"
 relatedEntityAttributes="No" />
 <Relationships/>
 <BusinessDates
 startDate="startDate"
 endDate="endDate"
 />
 </Entity>
</EvidenceEntity>

Client-side metadata

Except for including any extra required fields, the client-side metadata is identical to the metadata of the
entity that you are overriding. In the proceeding example, you must include the reference text field on
the user interface so the user can populate the field. Do not display the user name on the user interface.

Note: You cannot remove any attributes from an entity.

The proceeding is the custom client EUIM metadata file for asset:

 <Entity name="Asset" displayName="Asset">
 <UserInterface>
 <Clusters>
 <Cluster label="Cluster.Title.AssetDetails"
 numCols="2">
 <Field label="Field.Label.AssetType"
 columnName="assetType" mandatory="Yes"
 use_blank="true"/>
 <Field label="Field.Label.StartDate"
 columnName="startDate" mandatory="No"
 use_default="false"/>
 <Field label="Field.Label.ReferenceText"
 columnName="referenceText" mandatory="No"
 use_default="false"/>
 <Field label="Field.Label.AssetValue"
 columnName="value" mandatory="Yes"
 use_default="false"/>
 <Field label="Field.Label.EndDate"
 columnName="endDate" mandatory="No"
 use_default="false"/>
 </Cluster>
 <Cluster label="Cluster.Title.Comments">
 <Field columnName="comments" mandatory="No"
 metatype="COMMENTS" label=""/>
 </Cluster>
 </Clusters>
 </UserInterface>
</Entity>

The proceeding is the associated properties file for Asset.euim:

 Cluster.Title.AssetDetails=Asset Details
 Field.Label.ReferenceText=Reference Name
Field.Label.ReferenceText.Help=Reference Name to help the user
 differentiate similar records.
 Field.Label.AssetType=Type

Chapter 1. Developing static evidence 85

Field.Label.AssetType.Help=The type of the asset

Field.Label.AssetValue=Value
Field.Label.AssetValue.Help=The value of the asset

Field.Label.StartDate=Received
Field.Label.StartDate.Help=The date the asset was received

Field.Label.EndDate=Disposed
Field.Label.EndDate.Help=The date the asset was disposed

Cluster.Title.Comments=Comments
Cluster.Title.Comments.Help=Additional information

Generated output

Other than the handcrafted code, everything else is generated in the same way it is when the default
entity is defined.

For a custom extension for a default entity, handcrafted implementations pre-exist. The generator creates
handcrafted classes in the custom source package. Where the superclass is the existing default
implementation, the handcrafted classes are modeled by using the replace superclass option. The
superclass contains method stubs only. By default, each of the method stubs begins by calling the
superclass implementation.

In the preceding example, you must update the handcrafted preCreate function to assign the value of the
user name attribute to the creation struct. Also, you must update the handcrafted validateDetails function
to ensure the reference text field is not left blank.

Related concepts
Modeling that is required for the evidence patterns
Specific entity modeling is required when you use the Cúram Evidence Generator as the generator relies
on certain, attributes, structs, and aggregations within the generated code. Use this information to learn
about entity modeling that is required to use the Cúram evidence generator. The evidence generator
relies on the existence of certain attributes, structs, and aggregations within the generated code. Various
modeling strategies are required for the different metadata patterns available in the generator.
Server metadata: document structure
The server-side metadata is provided as a well-formed XML document, named <Entity Name>.xml.
Related information
Cúram modeling reference

Adding a new custom entity
To add a new custom entity to a custom evidence product that overrides a default product, develop the
entity in the same way you develop an entity in any other product but with one exception.

The exception is:

• Use the Override node.
• Set the newEntity to Yes.

Note: Use the same codepath as in the default product.

Generated output

In the preceding example, you do not implement the default handcrafted code. To ensure that the code is
as simple as possible, a copy of the default handcrafted code is generated inside the build source
directory that is under the default's code package. Ensure that the derived custom version is:

• Generated into the custom source directory
• Added to source control

86 IBM Cúram Social Program Management: Developing Evidence

Identifying entities, patterns and relationships
You can use four types of evidence relationships: parent-child, pre-associated, multiple mandatory
parents, and related relationships.

Identifying entities

Evidence is data that is collected by an organization to facilitate the delivery of services to the
organization's clients. In the application, evidence is typically used to determine clients' eligibility and
entitlement. For the Evidence Generator, evidence is:

• Any entity that implements the standard evidence interface AND
• Maintained by the evidence solution.

Identifying patterns

A pattern is any function the evidence entity uses. Examples of functions are:

• Features within a maintenance screen
• Extra code that is specific to an entity

By using metadata that is captured in XML, a function of the Evidence Generator is to specify the patterns
that apply to specific entities. During evidence generation, the metadata is read and converted to the
appropriate feature. Examples are:

• A button on a client page.
• A callout class stub where you can then implement business logic.

Identifying relationships

In evidence, relationships describe how evidence entities interact and exist in relation to each other. Use
a function in the generator to specify the relationships between evidence entities. Then, the generator
produces the associated server-side code and client page functions to facilitate the maintenance of the
relationships. You can use four types of evidence relationships: parent-child, pre-associated, multiple
mandatory parents, and related relationships.

Parent-Child relationships

Parent-Child is one of the most common logical relationships between evidence entities. Typically, a
parent-child relationship is a one-to-many relationship where:

• The parent can have many children AND
• Each child must belong to a parent.

Use parent-child relationships to capture the logical relationship between two entities where:

• The child entity cannot live without the parent entity AND
• The details on the child are logically related to the details captured on the parent.

An example of a parent-child relationship is where:

• Student details are stored in a student entity AND
• Student expenses are stored in a student expenses entity.

In this example, student expenses cannot exist without the student entity, but the student entity can
exist on its own.

Pre-Associated relationships

Pre-Associated relationships are non-hierarchical relationships between evidence entities that can
exist independently of each other. Before you create the evidence, you must know the association
between evidence entities so that you can access data from the associated entity as you create the
evidence.

Chapter 1. Developing static evidence 87

Multiple mandatory parents relationships

Use the multiple mandatory parents relationship pattern where an entity must simultaneously be the
child of more than one parent entity.

Related relationships

Related relationships are non-hierarchical. Use related relationships to associate an evidence record
to a non-evidence record. A primary example is the relation of evidence-based employment records
to the core employment record. That relationship is found in all evidence-based modules that are built
by the application.

Examples of evidence-based employment entities are:

• Self-employment
• Paid employment

Such examples are a key functional area typical of solutions. For this reason, evidence-based
employment entities are categorized as a separate pattern.

The evidence controller
The evidence controller is responsible for most of business processing that is required to maintain
evidence.

The evidence controller balances the common infrastructure that is applied across all evidence types for
maintaining evidence and any parts of evidence maintenance that were customized to meet business
requirements.

Common logic is provided in the evidence controller for enacting the steps in the processes that form part
of the overall evidence pattern, which prevents repeating the logic across all evidence types in a custom
evidence solution.

To provide a balance, the evidence controller also orchestrates the logic specific to an evidence type. The
evidence controller contains methods that call evidence interface methods for the evidence types.
Therefore, each custom evidence entity must implement this interface to take part in the evidence
pattern.

Evidence hooks and registrar
Evidence hooks provide extension points where customized business logic can be added to an evidence
processing. The registrar process works along with evidence hooks.

Evidence hooks

When evidence is being removed, the evidence controller calls an evidence hook where extended
functionality can be added.

Evidence registrar

The purpose of the evidence registrar is to permit the business logic to be customized on a per product
basis. Each product can register with an evidence subpattern its own hook. When a product is registered,
the evidence controller enacts the extended processing for the process specific to that product.

List evidence
The list evidence process presents the user with relevant information about an evidence in the evidence
list.

There are a few different list methods. One list method provides a view of all the evidence objects of a
type. There are separate methods to provide lists of active objects of all types, and in edit objects of all
types.

88 IBM Cúram Social Program Management: Developing Evidence

Insert evidence
The insert evidence process is used to capture evidence information for an evidence type. The result is a
new evidence record with an in edit status.

Step 1

Insert a new evidence record that specifies the evidence type and pass control to the evidence controller.
A user that wants to insert new evidence is presented with an insert screen that is unique to the evidence
type.

Step 2

When the evidence controller creates an evidence descriptor record, the evidence descriptor record
includes five characteristics for the participant to whom the evidence applies:

• The correction set ID
• The succession ID
• The status (in edit)
• The case ID
• The participant ID

For information about the evidence descriptor entity, see the Evidence descriptor related link.

Step 3

Step 3 occurs only if the new evidence record is a child of a parent evidence record. The evidence
controller creates an evidence relationship record to acknowledge the relationship between the parent
evidence record and its new child.

Step 4

Step 4 is the insertion of an entry into the evidence change history table. This is the first entry in the
evidence change history as it captures the actual creation of the evidence.

Step 5

The final step is to callout to an evidence hook. The hook enacts any extra steps steps that are required to
insert a new evidence record based on business requirements for an evidence type.

Modify evidence
The modify evidence process allows a user to update evidence information for an active or in edit
evidence record.

As with the insert evidence process, the modify evidence process specifies the evidence type and passes
control to the evidence controller. The evidence controller retrieves evidence information for the evidence
record from both the custom evidence entity table and the evidence descriptor table. The information is
displayed to the user who wants to modify it. While most of the information retrieved from the custom
evidence entity table is modifiable, the information retrieved from the evidence descriptor table cannot
be modified. The exception is the evidence received date, change received date, and effective date.

When the user saves the evidence changes, the evidence controller validates the evidence that can result
in warnings, errors, or both. The evidence solution provides two validations to support the approval check
process that are called during an enactment of the modify evidence process. One validation is used to
warn users that their modifications are being made to a piece of evidence that is awaiting approval. The
second validation is used to stop a user from changing evidence that is approved and is ready for
activation.

The modify evidence process continues in one of two directions. If the changes apply to active evidence,
the evidence controller inserts a new evidence record that contains the modified evidence. The evidence
controller labels the modified evidence as either an evidence correction or an evidence succession. For

Chapter 1. Developing static evidence 89

more information about evidence correction, see the Evidence correction and succession related link.
Alternatively, if the changes apply to in edit evidence, the existing evidence record is updated and no new
evidence record is created.

The evidence controller then adds an entry to the evidence changes history table. This entry captures
information about the modifications that are made to the evidence record. The evidence controller
completes the process of modifying evidence by calling out to an evidence hook. The hook enacts any
additional steps that are required to modify the evidence based on business requirements.

Related concepts
Evidence correction and succession
The evidence pattern supports two types of evidence change: evidence correction and evidence
succession.

Evidence correction and succession
The evidence pattern supports two types of evidence change: evidence correction and evidence
succession.

An evidence correction is the replacement of an existing evidence record with a new evidence record to
correct an incorrect piece of data. For example, an active bank account evidence record that contains an
incorrect bank account number can be updated such that the new bank account number supersedes the
incorrect one.

An evidence succession is the set of evidence records that collectively represents a piece of evidence as it
changes over time. For example, a bank account evidence record can include a bank account balance.
This bank account balance is likely to change over time and the succession of bank account balances
collectively represent the changes to the bank account.

The evidence controller uses the correction ID, succession ID, and effective date attributes to manage
evidence changes.

A correction set ID and succession ID are assigned to all new evidence records. The correction set ID is
used to track corrections that are made to evidence; the succession ID is used to track changes in
circumstance.

When a user is updating an active evidence record, the user can modify the effective date of change or
else leave it the same. The effective date of change is the field that determines whether a modification to
an active evidence record is a succession or a correction.

When a user is modifying evidence, if no change is made to the effective date of change field, the
modification is a correction. For all evidence corrections, the system assigns the in-edit evidence record
the same correction ID as the active evidence record. This ensures that the evidence corrections
supersede the existing active evidence. Also, it allows for all evidence corrections to be tracked in a single
evidence change history.

If the effective date of change is changed as part of modifying evidence, the modification is a change
during the lifetime of the evidence and as such is a succession. To monitor a succession of updates that
are made to an active evidence record, the system assigns each in edit evidence record the same
succession ID, but a different correction set ID. When activated, the succession of updates does not
supersede any existing active evidence.

Important: The effective date of change can be updated only for active evidence records. The evidence
pattern provides validation that prevents a user from modifying the effective date of change for in edit
evidence. If the user enters an incorrect effective date of change when the user is updating active
evidence, the user must discard the incorrect in edit record and restart the update process.

View evidence
The view evidence process displays evidence information for an evidence record. The view evidence
process is initiated when a user selects to view an evidence record in the evidence list.

The evidence controller retrieves evidence information for the evidence record from both the custom
evidence entity table and the evidence descriptor table. The evidence controller also retrieves the name

90 IBM Cúram Social Program Management: Developing Evidence

of the user responsible for the last modification from the evidence change history table. The evidence
information is presented to the user on the view evidence screen unique to the evidence type.

Remove evidence
The remove evidence process marks an active evidence record as pending removal.

Note: Enacting the remove evidence process does not remove an active evidence record. The evidence
record remains active after it is flagged as pending removal. To initiate the pending removal, the apply
evidence changes process must be run.

The remove evidence process involves two steps:

1. Specifying the evidence ID to the evidence controller. The evidence controller retrieves the evidence
record and sets the active evidence to pending removal. While the evidence record status remains
active, the evidence record's pending removal indicator is flagged. An entry is also added to the
evidence changes history table.

2. Specifying the evidence type to the evidence controller. The evidence controller calls out to an
evidence hook. This hook enacts any additional steps that are required to mark the evidence as
pending removal based on business requirements.

Apply evidence changes
The apply evidence changes process serves two purposes: to activate new and updated evidence, and to
remove active evidence that is flagged as pending removal.

A user can start the apply evidence change process in three different ways:

• The user applies all outstanding changes.
• The user applies only their own changes.
• The user selects the specific changes that apply from the complete list of pending changes.

Both the calculate attribution period and the submit for approval process are called as part of applying
evidence changes. The purpose of the calculate attribution period process is to calculate and store the
period during which the newly activated evidence is used in eligibility and entitlement determination. The
purpose of the submit for approval process is to determine whether an evidence change requires
approval from the case supervisor and to start the processing that is approved.

At a high level, the process of applying evidence changes can be divided into stages. In the first stage, the
evidence controller validates the pending evidence changes. In the second stage, the evidence controller
determines whether the evidence changes require approval from the case supervisor. In the third stage,
the evidence controller activates the in-edit evidence and calculates the attribution periods for the newly
activated evidence. In the fourth stage, it cancels any active evidence that is pending removal. In the final
stage, the eligibility and entitlement engine is called.

1. Validating evidence changes
During the first stage of applying evidence changes, the evidence controller validates the pending
evidence changes.

The evidence controller uses the following three steps to validate the pending evidence changes:

1. The evidence controller calls out to a hook that checks for evidence requirements at the case level
such as the minimum set of evidence records that must exist for a case. This hook can call custom
validations that apply at the case level rather than at the evidence type level.

2. The evidence controller then calls all validations that are associated with applying evidence changes
for the specific evidence type.

3. If any of the validations fail, an exception is thrown and the user must make the appropriate updates
before the user tries to apply the changes again.

Chapter 1. Developing static evidence 91

2. Checking whether evidence requires approval
During the second stage of applying evidence changes, the evidence controller checks whether the
pending evidence changes require approval from the case supervisor.

To determine whether the pending evidence changes require approval from the case supervisor, the
evidence controller performs five steps:

1. The evidence controller checks if manual approvals are already outstanding for the evidence by
checking whether the approval status is submitted. The evidence controller does not add the evidence
to the list of pending updates because it still requires approval. However, the evidence is not be sent
for manual approval a second time because the case supervisor is already informed.

2. The evidence controller checks if the evidence was previously rejected. If so, the evidence controller
submits the evidence for approval.

3. The evidence controller checks if the evidence was previously approved. If so, the evidence does not
require approval and is thus added to the list of pending updates (ready for the next steps that are
required to apply evidence changes).

4. The evidence controller checks if the evidence was previously automatically approved. If so, the
evidence does not require manual approval again, so the evidence controller adds it to the list of
pending updates.

5. For all other evidence, the evidence controller calls the Check for Evidence Approval API that reads the
evidence approval checks table and determines whether the evidence must be manually approved.
Evidence that requires approval is submitted for approval; evidence not requiring approval is added to
the list of pending updates.

To set an evidence's approval status to submitted, the evidence controller performs five steps:

1. The evidence controller creates an approval request record and an evidence descriptor approval
request record with the current approval request indicator set to true.

2. The evidence controller updates any previous evidence descriptor approval request records for the
same evidence descriptor record by setting the current approval request indicator to false.

3. The evidence controller updates the evidence descriptor record by setting the approval request
indicator to true and the approval status to submitted.

4. The evidence controller adds an entry to the evidence change history to acknowledge that the
evidence is submitted for approval.

5. The evidence controller enacts the evidence approval workflow. For more information about the
evidence approval workflow, see the Submit evidence for approval workflow related link.

Related concepts
Submit evidence for approval workflow
When the case supervisor approves or rejects a manual activity, the workflow splits and continues in one
of two directions.

3. Activating evidence and calculating attribution periods
During the third stage of applying evidence changes, the evidence controller activates in edit evidence
and calculates the attribution periods for the newly activated evidence.

To activate in edit evidence and calculate the attribution periods for the newly activated evidence, the
evidence controller performs six steps:

1. The evidence controller changes the status of the new and updated evidence records from in edit to
active and populates the evidence activation date with the current date on the system. It also searches
for existing active evidence records with the same correction set ID as the newly active evidence
records. If found, the evidence controller changes the status of the existing active evidence records to
superseded.

2. To create attribution periods for the newly active evidence, the evidence controller initiates the
calculate attribution period process by calling out to a hook. This hook retrieves the list of case IDs
that require an attribution period for the active evidence. If the evidence is maintained for a stand-
alone product delivery, only one case ID is returned. If evidence is maintained at the integrated case

92 IBM Cúram Social Program Management: Developing Evidence

level, each product delivery case that shares the evidence must have its own attribution period. So, the
case IDs for each of these product deliveries are returned.

3. The evidence controller creates a new attribution period for each of the case IDs.
4. The evidence controller searches for existing active evidence records that have the same succession

ID as the newly activated evidence records. If found, the evidence controller reattributes all evidence
records in the succession.

5. The evidence controller continues applying evidence changes to in edit evidence by calling out to
another hook. This hook enacts any additional steps that are required to activate the in edit evidence.

6. The evidence controller adds an entry to the evidence change history table for each evidence record
that is activated.

4. Removing active evidence
The fourth stage of applying evidence changes is to apply pending removal changes to active evidence.

To apply pending removal changes to active evidence, activate in edit evidence and calculate the
attribution periods for the newly activated evidence, the evidence controller performs four steps:

1. The evidence controller applies the evidence changes to active evidence that is pending removal by
changing the status of this evidence to canceled.

2. The evidence controller searches for existing active evidence records that have the same succession
ID as the newly canceled evidence records. If found, the evidence controller reattributes all evidence
records in the succession.

3. The evidence controller calls out to a hook that enacts any additional steps that are required to cancel
the active evidence.

4. The evidence controller adds an entry to the evidence change history table for each evidence record
that is canceled.

5. Assessing evidence changes
The last step in applying changes is to assess affected product delivery cases.

The evidence controller calls the eligibility and entitlement engine by using an eligibility and entitlement
determination period that consists of the earliest attributed From and latest attributed To dates for all
applied evidence.

Calculating attribution periods: additional functionality
The evidence framework provides additional functionality for calculating attribution periods. The
additional functionality includes support for simulating the activation of in-edit evidence and also includes
the automatic calculation of attribution periods for new product delivery cases.

Simulating the activation of in-edit evidence

As part of the manual check eligibility process, users can check eligibility by using in-edit evidence. The
system simulates the activation of the in-edit evidence records by calculating virtual attribution periods
for the in-edit evidence records. The system also virtually supersedes the existing active evidence
records. The result is that the user is able to see the eligibility results that might be achieved by applying
evidence changes to all in-edit evidence.

Automatic calculation of attribution periods

The evidence framework includes functionality that automatically reenacts the calculate attribution
period process for existing active evidence to create attribution periods for the new product delivery
cases. The functionality occurs when these product delivery cases are submitted.

When evidence is activated, the evidence controller creates an attribution period for each product
delivery case within an integrated case that shares the evidence.

Note: Additional product delivery cases can get added to the integrated case after the evidence was
activated and these new product deliveries require attribution periods for their active evidence.

Chapter 1. Developing static evidence 93

Submit evidence for approval workflow
When the case supervisor approves or rejects a manual activity, the workflow splits and continues in one
of two directions.

The first activity in this workflow is a manual activity. The purpose of this activity is to send a task to the
case supervisor with instructions to approve or reject a piece of evidence on a case. The task includes
links to the approve and reject evidence pages. The manual activity is completed when the case
supervisor approves or rejects the activity.

The workflow splits and continues in one of two directions based on the outcome of the manual activity. If
the evidence is approved, the next activity is the evidence approval activity; if rejected, the next activity is
the evidence rejection activity. Both of these activities are route activities whose purpose is to send a
notification to the user who selected to activate the evidence. The notification informs the user of the
evidence approval outcome and includes a link to the relevant evidence list screen.

Participant evidence integration
Participant data is also regarded as evidence.

A concern's date of birth, for example, is regarded as evidence. Even though such data is maintained from
the Participant Manager, the date must be accessible to all cases that are required to use it as evidence.
The following entities are integrated into the default application for the evidence solution.

• Address
• Alternate ID
• Alternate Name
• Bank Account
• Citizenship
• Concern Role
• Concern Role Relationship
• Education
• Employer
• Employment
• Employment Working Hour
• Foreign Residency
• Person
• Prospect Employer
• Prospect Person

Modifications to these entities automatically applies to all cases using the data and triggers eligibility and
entitlement re-determination of all cases using the data.

For more information about participant evidence integration, see the Participant evidence integration
related link.

Evidence generation
Evidence entities, and the relationships between them, fall into a relatively small number of high level
patterns.

As the maintenance overhead on evidence code can be quite considerable, especially if the modules
being maintained are large, the idea of generating evidence artefacts was initiated. The evidence
generator takes input data about the entity, its relationships to other entities as well as meta-data about
how it will be maintained on the client and generates the server-side code and client-side UIM, VIM files,
and the associated properties and help.

For more information about the evidence generator, see the related links for Evidence Generator
specification, Developing dynamic evidence, and Modeling for the Evidence Generator.

94 IBM Cúram Social Program Management: Developing Evidence

Related concepts
Evidence Generator specification
Use the Cúram Evidence Generator as a rapid way to develop the server side code and client side screens
for evidence entities that integrate fully with the standard Cúram Evidence Solution.
Evidence Generator Cookbook
Use the evidence generator as part of the standard Cúram build targets to dynamically create evidence
entities that are based on certain criteria that are set for the evidence types. The evidence generator
caters for all of the high level, repeatable evidence patterns across a number of large evidence-based
solutions.
Modeling that is required for the evidence patterns
Specific entity modeling is required when you use the Cúram Evidence Generator as the generator relies
on certain, attributes, structs, and aggregations within the generated code. Use this information to learn
about entity modeling that is required to use the Cúram evidence generator. The evidence generator
relies on the existence of certain attributes, structs, and aggregations within the generated code. Various
modeling strategies are required for the different metadata patterns available in the generator.

Evidence period calculation
The evidence period calculation algorithm completes the dates for the evidence record and its intended
period of validity.

The following elements can be contained in an evidence record period:

• A start date and an end date for the evidence record.
• An effective date for the evidence record, when successive end dates are used.
• A case creation date when no other period dates exist for the evidence record.

The period for the evidence record can depend on the type of evidence that is entered and how it is
configured. Some evidence types can require a change of state and other evidence types successive
periods for the evidence to be recorded.

The following five steps are completed by the algorithm to establish the system-recorded period for the
evidence until the valid start or effective date is established for the evidence record:

1. The evidence period start date is set to the evidence effective date.
2. The evidence period start date is set to the evidence business start date when the start date cannot be

determined by the previous step.
3. The evidence period start date is set to the case start date when the start date cannot be determined

by the previous steps.
4. If there is a succession to the evidence record, then the evidence period end date is set to the day

before the effective date of the succeeding record.
5. The evidence period end date is set to the evidence business end date when the end date cannot be

determined by the previous step.

The evidence period calculation algorithm uses the Evidence Controller class and the
getPeriodForEvidenceRecord method.

In certain instances, customers might not want to use the default logic. For information about using a
customization hook point to override the business start date, see the Customizing the evidence start and
end dates related link.

Related tasks
Customizing the evidence start and end dates

Chapter 1. Developing static evidence 95

Where a business start date or end date is not configured on an evidence record, organizations can use a
customization hook point to override the start or end dates.

Customizing the evidence start and end dates
Where a business start date or end date is not configured on an evidence record, organizations can use a
customization hook point to override the start or end dates.

About this task

For customers who do want to use the default logic where the case creation date is used when no
business start date is defined, a customization hook point is available. The following three use cases are
examples of where displaying a case start date in the evidence period is not correct:

• An organization might be required to manage the full history of the Names evidence by using a person’s
date of birth. Currently, the default Names evidence does not contain a business Start Date. As a result,
when a person is registered in the system, Names evidence displays the Case Start Date in the Person
Home Evidence List page. Organizations might require the flexibility to change the date that is
displayed on the Names evidence to reflect the participant's date of birth. Consequently, the
organization can easily manage changes in a person's name before the person was registered in the
system.

• A child evidence that does not contain a business start date. When the caseworker views the In-Edit or
Active Evidence list for the child evidence, the period that is displayed to the caseworker is the Case
Start Date.

• An evidence that is related to another entity, for example, an existing evidence type that is named Paid
Employment, with no business start and end date. However, the evidence type that is linked to the
Employment entity does not contain associated business dates. So, the Paid Employment evidence
displays the Case Start Date instead of the employment start dates.

Where a business start date is not configured, the business start date can be overridden by using
the EvidencePeriodHook. When the EvidencePeriodHook is used, anywhere that uses the
method getPeriodForEvidenceRecord returns the overridden date. For example, the Evidence
List pages and the Incoming Evidence List pages.

The proceeding example illustrates how the EvidencePeriodHook works. The example consists of two
sample evidences:

• An Income evidence. The evidence is a parent evidence. The Income evidence contains the business
start date, the business end date, employer information, and the payment frequency.

• A Tax evidence. The Tax evidence is a child of Income evidence. The Tax evidence captures a tax
amount and a tax band. The Tax evidence does not capture start and end dates. Start and end dates are
captured per income.

When a caseworker views the tax records from the Evidence List page, the tax records display the Case
Start Date even though the start of the tax payment is based on the Income evidence. For the
caseworkers to easily understand when the tax records start from, the Income evidence start date can be
displayed when the caseworker is viewing the list of tax records. The proceeding example shows how the
Case Start Date can be overridden to be the Income evidence start date.

Procedure

1. An implementation of EvidencePeriodHook class must be provided with the getStartDate() and
getEndDates() methods implemented.

2. If either the getStartDate() or the getEndDates() functions are not required in the new
implementation, the function must return null to preserve the default application behavior.

3. Add a Guice binding of the new implementation to a module class that is bound to the required
evidence type. The module class can be a new or existing class.

96 IBM Cúram Social Program Management: Developing Evidence

Example

The following code is a sample module class with a binding for Income-Tax:

public class EvidencePeriodHookTestModule extends AbstractModule {

 public EvidencePeriodHookTestModule() {
 super();
 }

 @Override
 public void configure() {

 final MapBinder<String, EvidencePeriodHook> mapBinder
 = MapBinder.newMapBinder(binder(),
 String.class, EvidencePeriodHook.class);
 mapBinder.addBinding("taxEvidenceType").
 to(IncomeTaxEvidencePeriodHookImpls.class);
 }
 }

The following code is a sample hook implementation:

public class IncomeTaxEvidencePeriodHookImpl.class implements EvidencePeriodHook{
 /**
 * This implementation returns the income evidence business start date
 */
 @Override
 public Date getStartDate(EvidenceDescriptorDtls dtls)
 throws AppException, InformationalException {

 //Tax evidence object
 TaxEvidence taxEvidenceObj =
 TaxEvidenceFactory.newInstance();

 //Income evidence object
 IncomeEvidence incomeEvidenceObj =
 IncomeEvidenceFactory.newInstance();

 //Read tax evidence details to get income evidence ID
 EvidenceCaseKey key = new EvidenceCaseKey();
 key.caseIDKey.caseID=dtls.caseID;
 key.evidenceKey.evidenceID=dtls.relatedID;
 key.evidenceKey.evType=dtls.evidenceType;
 ReadTaxEvidenceDetails readTaxEvidenceDetails =
 taxEvidenceObj.readTaxEvidence(key);

 //Read and return start date from income evidence
 EIEvidenceKey evKey = new EIEvidenceKey();
 evKey.evidenceID=readTaxEvidenceDetails.incomeEvidenceID;
 evKey.evidenceType="incomeEvidenceType";

 return incomeEvidenceObject.getStartDate(evKey);
 }
 /**
 * This implementation returns income evidence business end date
 */
 @Override
 public Date getEndDate(EvidenceDescriptorDtls dtls) throws AppException,
 InformationalException {

 //Tax evidence object
 TaxEvidence taxEvidenceObj =
 TaxEvidenceFactory.newInstance();

 //Income evidence object
 IncomeEvidence incomeEvidenceObj =
 IncomeEvidenceFactory.newInstance();

 //Read tax evidence details to get income evidence ID
 EvidenceCaseKey key = new EvidenceCaseKey();
 key.caseIDKey.caseID=dtls.caseID;
 key.evidenceKey.evidenceID=dtls.relatedID;
 key.evidenceKey.evType=dtls.evidenceType;
 ReadTaxEvidenceDetails readTaxEvidenceDetails =
 taxEvidenceObj.readTaxEvidence(key);

 //Read and return end date from income evidence
 EIEvidenceKey evKey = new EIEvidenceKey();

Chapter 1. Developing static evidence 97

 evKey.evidenceID=readTaxEvidenceDetails.incomeEvidenceID;
 evKey.evidenceType="incomeEvidenceType";

 return incomeEvidenceObject.getEndDate(evKey);
 }
}

Identifying problems
When you run the Evidence Generator, problems can occur if the set-up steps are not completed
correctly.

Configuration errors: generation
The Evidence Generator produces seven types of generation errors that are associated with configuration
(evidence properties).

Generation errors

The seven types of generation errors that are associated with configuration (evidence properties) are:

1. Evidence will not build or evidence will not clean.
2. Evidence not found.
3. '<EntityName>Details' is not present in the model.
4. No source files match the extensions XML.
5. The general properties file was not found.
6. <$server.metadata> was found to contain no source files that match the extensions XML.
7. No EUIM source files.

See the following explanation of the symptom, cause, and solution for each generation error.

1. Evidence will not build or Evidence will not clean

Symptom
No new evidence is generated when the target is generated. No evidence is deleted when the target is
clean.

Cause
The product.build.option is:

• Set to False OR
• Missing.

Solution
If the evidence is to be generated, set product.build.option=true. If
product.build.option=true is missing from the evidence.properties, add
product.build.option=true to evidence.properties.

2. Evidence not found

Symptom
Error when build generated is called on EJBServer:..\CEF-Core\EJBServer\components\<
$product.name>\Evidence not found.

Cause
The property product.name in evidence.properties does not match the property in the
codebase.

Solution
Set product.name=correct Product Name as it appears under EJBServer/components/
<ProductName>.

3. '<EntityName>Details' is not present in the model

98 IBM Cúram Social Program Management: Developing Evidence

Symptom
Error when build generated is called from EJBServer: Parameter 'dtls' (of
operation...) has type '<EntityName> EvidenceDetails', but '<EntityName>Details'
is not in the model.

Cause
The property product.ejb.package in evidence.properties does not match part of the
CODE_PACKAGE on the model.

Solution
Set product.ejb.package=Model CODE_PACKAGE up to first "." delimiter. For example:
CODE_PACKAGE = seg.evidence.entity

product.ejb.package=seg

4. No source files match the extensions XML

Symptom
Error when build generated is called displayed in the XML Digestor output: 'The source location <
$server.metadata> was found to contain no source files that match the extensions XML.'

Cause
server.metadata does not match the physical root directory for the product's evidence directory.

Solution
Set server.metadata to point to the correct directory.

5. The general properties file was not found

Symptom
Error when build generated is called displayed in the XML Digestor output: 'The general properties file
was not found at the location $properties.home\.'

Cause
properties.home does not match the physical properties directory.

Solution
Set properties.home=Directory where general.properties was created.

6. <$server.metadata> was found to contain no source files that match the extensions XML

Symptom 1
Error when build generated is called on EJBServer:Error#. The source location <
$server.metadata> contains no source files that match the extensions XML.

Cause 1
The property server.metadata in evidence.properties does not point to the location of server
XML files.

Solution 1
Set server.metadata=<correct location of server metadata>.

Symptom 2
Error when build client is called on Webclient: Error #. The source location <
$server.metadata> contains no source files that match the extensions XML.

Cause 2
The property product.name in evidence.properties does not match the property in the
codebase.

Solution 2
Set product.name=correct Product Name as it appears under EJBServer/components/
<ProductName>.

7. No EUIM source files

Symptom 1
Error when build generated is called on EJBServer:. No EUIM source files were found within the
EUIM source directory <$caseType.integratedCase.metadata>.

Chapter 1. Developing static evidence 99

Cause 1
The property caseType.integratedCase.metadata in evidence.properties does not point
to the location of integrated EUIM files.

Solution 1
Set caseType.integratedCase.metadata=<correct location of integrated
metadata>.

Symptom 2
Error when build generated is called on EJBServer:. No EUIM source files were found within the
EUIM source directory <$caseType.product.metadata>.

Cause 2
The property caseType.product.metadata in evidence.properties does not point to the
location of product EUIM files.

Solution
Set caseType.product.metadata=<correct location of product metadata>.

Configuration error: runtime
The Evidence Generator produces one runtime error that is associated with configuration (evidence
properties): HTTP Status 404 error message.

HTTP Status 404 Error Message
Symptom

A page not found error when the page tries to access the generated evidence workspace.
Cause

product.codetable is set incorrectly, that is, not pointing at the product codetable directory.
Solution

Set product.codetable=<product_Root_CodeTable_directory>.

Model errors: generation
The Evidence Generator produces one generation model error.

Invalid mandatory field

Symptom
Error when build generated is called from EJBServer:. The mandatory field 'dtls.<fieldName>
specified for parameter 'dtls' of operation '<EntityName>.create<EntityName>Evidence' is
invalid.

Cause
The "dtls" association between the <EvidenceEntity>Details struct and the EvidenceEntity
entity is missing. The association is mandatory for all evidence entities.

Solution
Create an association between the two structs. For more information about creating an association
between two structs, see the Step 1: Model evidence entity related link.

Related concepts
Step 1: Model evidence entity
During entity modeling, the defined metadata is used to support and connect to the Evidence Generator
by using the service layer, façade layer, or client.

Model errors: compilation
The Evidence Generator produces 11 types of compilation model errors.

Compilation errors

The 11 types of compilation model errors are:

1. '<EntityName>Details' is not present in the model.

100 IBM Cúram Social Program Management: Developing Evidence

2. details.parEvKey cannot be resolved or is not a field.
3. evidenceDetails.parEvKey cannot be resolved or is not a field.
4. dtls.selectedParent cannot be resolved or is not a field.
5. dtls.caseIDKey cannot be resolved or is not a field.
6. evidenceDetails.caseIDKey cannot be resolved or is not a field.
7. readEvidenceDetails.descriptor cannot be resolved or is not a field.
8. details.descriptor cannot be resolved or is not a field.
9. evidenceDetails.descriptor cannot be resolved or is not a field.

10. readEvidenceDetails.dtls cannot be resolved or is not a field.
11. readEvidenceDetails.caseParticipantDetails cannot be resolved or is not a field.

See the following explanation of the symptom, cause, and solution for each compilation error.

1. '<EntityName>Details' is not present in the model

Symptom
Error when build generated is called <EntityName>Details' is not present in the model.

Cause 1

The first element, that is, up to the first delimiter "." in CODE_PACKAGE does not match evidence
property product.ejb.package in evidence.properties.

Cause 2
The second and third elements in CODE_PACKAGE are not evidence.entity.

Solution 1
Set first part of CODE_PACKAGE=product.ejb.package or the other way around.

Solution 2
Set second part of CODE_PACKAGE=evidence. Set third part of CODE_PACKAGE=entity.

2. details.parEvKey cannot be resolved or is not a field

Symptom
A compilation error in generated code evidenceDetails.parEvKey cannot be resolved or is not a
field.

Cause
The "parEvKey" association between the <EvidenceEntity>Details struct and the EvidenceKey
struct is missing.

Solution
Create an association between the two structs. For more information about creating an association
between two structs, see the Step 1: Model evidence entity related link.

3. evidenceDetails.parEvKey cannot be resolved or is not a field

Symptom
A compilation error in generated code evidenceDetails.parEvKey cannot be resolved or is not a
field.

Cause
The "parEvKey" association between the <EvidenceEntity>Details struct and the EvidenceKey
struct is missing.

Solution
Create an association between the two structs. For more information about creating an association
between two structs, see the Step 1: Model evidence entity related link.

4. dtls.selectedParent cannot be resolved or is not a field

Symptom
A compilation error in the generated code dtls.selectedParent cannot be resolved or is not a
field.

Chapter 1. Developing static evidence 101

Cause
The "selectedParent" association between the <EvidenceEntity>Details struct and the
ParentSelectDetails struct is missing. The ParentSelectDetails is present and the
association between ParentSelectDetails and the entity details struct is required if the entity is a
child of another evidence entity.

Solution
Create an association between the two structs. For more information about creating an association
between two structs, see the Step 1: Model evidence entity related link.

5. dtls.caseIDKey cannot be resolved or is not a field

Symptom
A compilation error in the generated code dtls.caseIDKey cannot be resolved or is not a field.

Cause
The "caseIDKey" association between the <EvidenceEntity>Details struct and the CaseIDKey
struct is missing. This association is mandatory for all evidence entities.

Solution
Create an association between the two structs. For more information about creating an association
between two structs, see the Step 1: Model evidence entity related link.

6. evidenceDetails.caseIDKey cannot be resolved or is not a field

Symptom
A compilation error in the generated code evidenceDetails.caseIDKey cannot be resolved or is
not a field.

Cause
The "caseIDKey" association between the <EvidenceEntity>Details struct and the CaseIDKey
struct is missing. The association is mandatory for all evidence entities.

Solution
Create an association between the two structs. For more information about creating an association
between two structs, see the Step 1: Model evidence entity related link.

7. readEvidenceDetails.descriptor cannot be resolved or is not a field

Symptom
A compilation error in the generated code readEvidenceDetails.descriptor cannot be resolved
or is not a field.

Cause
The "descriptor" association between the Read<EvidenceEntity>Details struct and the
EvidenceDescriptorDetails struct is missing. The association is mandatory for all evidence
entities.

Solution
Create an association between the two structs. For more information about creating an association
between two structs, see the Step 1: Model evidence entity related link.

8. details.descriptor cannot be resolved or is not a field

Symptom
A compilation error in the generated code details.descriptor cannot be resolved or is not a
field.

Cause
The "descriptor" association between the <EvidenceEntity>Details struct and the
EvidenceDescriptorDetails struct is missing. The association is mandatory for all evidence
entities.

Solution
Create an association between the two structs. For more information about creating an association
between two structs, see the Step 1: Model evidence entity related link.

9. evidenceDetails.descriptor cannot be resolved or is not a field

102 IBM Cúram Social Program Management: Developing Evidence

Symptom
A compilation error in the generated code evidenceDetails.descriptor cannot be resolved or is
not a field.

Cause
The "descriptor" association between the <EvidenceEntity>Details struct and the
EvidenceDescriptorDetails struct is missing.

Solution
Create an association between the two structs. For more information about creating an association
between two structs, see the Step 1: Model evidence entity related link.

10. readEvidenceDetails.dtls cannot be resolved or is not a field

Symptom
A compilation error in the generated code readEvidenceDetails.dtls cannot be resolved or is
not a field.

Cause
The "dtls" association between the Read<EvidenceEntity>Details struct and
the<EvidenceEntity> entity is missing. The association is mandatory for all evidence entities.

Solution
Create an association between the two structs. For more information about creating an association
between two structs, see the Step 1: Model evidence entity related link.

11. readEvidenceDetails.caseParticipantDetails cannot be resolved or is not a field

Symptom
A compilation error in the generated code readEvidenceDetails.caseParticipantDetails
cannot be resolved or is not a field.

Cause
The "caseParticipantDetails" association between the ReadCaseParticipantDetails struct and
the <EvidenceEntity> entity is missing. The association is mandatory for all evidence entities.

Solution
Create an association between the two structs. For more information about creating an association
between two structs, see the Step 1: Model evidence entity related link.

Related concepts
Step 1: Model evidence entity
During entity modeling, the defined metadata is used to support and connect to the Evidence Generator
by using the service layer, façade layer, or client.

Metatype errors: incorrect participant, date, and comments
Specify metatypes on fields to force extra behavior on the field. If you incorrectly specify a metatype, the
error typically relates to the metatype participant, date, or comments.

Examples of metatype uses:

• Turn the stored value in a field into a link.
• Display a text area rather than field.

See the following explanation of the symptom, cause, and solution for common metatype errors.

Incorrect participant metatype
Symptom

On the evidence maintenance screens, the primary case participant's name does not display as a link
to the case participant home page.

Cause
The CASE_PARTICIPANT_SEARCH or PARENT_CASE_PARTICIPANT_ROLE_ID was not specified as
the metatype on the field that stores the case participant role ID.

Chapter 1. Developing static evidence 103

Solution
Set the metatype of the field that stores the case participant role ID to either:

• CASE_PARTICIPANT_SEARCH OR
• PARENT_CASE_PARTICIPANT_ROLE_ID.

Incorrect date metatype

Symptom
The "start" and "end" dates on the evidence workspace screen do not populate.

Cause
In the metadata for the fields that store the "start" and "end" dates, the metatype of START_DATE or
END_DATE was not specified.

Solution
Specify the metatype of START_DATE or END_DATE to the appropriate field.

Incorrect comments metatype
Symptom

The comments field in an evidence screen has a field height of one row and displays on half the
screen only.

Cause
In the metadata for the field that stores the comments data, the metatype of COMMENTS was not
specified.

Solution
Specify the metatype of COMMENTS to the appropriate field.

Property errors: generation
Three property errors are common during generation.

The general properties file was not found at the location $properties.home\
Symptom

Error when build generated is called displayed in XML Digestor output: The general properties file was
not found at the location $properties.home\.

Cause
general.properties does not exist.

Solution
If general.properties does not exist, create and set properties.home to point to
general.properties.

The employment properties file was not found at the location $properties.home\
Symptom

Error when build generated is called displayed in XML Digestor output: The employment properties
file was not found at the location $properties.home\.

Cause:
employment.properties does not exist.

Solution
If employment.properties does not exist, create and set properties.home to point to
employment.properties.

104 IBM Cúram Social Program Management: Developing Evidence

No such property exists
Symptom

Error when build client is called: The text property <evidence property> used in the file <generated
evidence VIM or UIM > could not be resolved as no such property exists in the properties file
<generated evidence properties file >.

Cause
The property key is missing from either the general.properties file or the
employment.properties file.

Solution
The missing key is likely in the general.properties file or the employment.properties file.
View the generated properties file. The generated properties file that is required to contain the
missing property key might indicate whether the property is from the general or employment
properties. For more information about mandatory property keys, see the general properties related
link and the employment.properties related link.

Related concepts
general.properties
The general.properties file contains all generic label values for the product. The generic labels
consist of localized label values for all common buttons, page titles, and so on. Some generic labels
permit dynamic values, that is, the name of the evidence entity the page title is describing. All properties
within this file must be set.
employment.properties
The employment.properties file contains all generic label values for the employment pages
generated. The generic label values consist of localized label values for all common buttons, page titles,
and so on.

Chapter 1. Developing static evidence 105

Notices

This information was developed for products and services offered in the United States.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can send
license inquiries, in writing, to:

IBM Director of Licensing IBM Corporation North Castle Drive, MD-NC119 Armonk, NY 10504-1785 US

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing Legal and Intellectual Property Law IBM Japan Ltd. 19-21, Nihonbashi-
Hakozakicho, Chuo-ku Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Director of Licensing IBM Corporation North Castle Drive, MD-NC119 Armonk, NY 10504-1785 US

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-
IBMproducts. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

106 Notices

Statements regarding IBM's future direction or intent are subject to change or withdrawal without notice,
and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject to change without
notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to change before the
products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Privacy Policy considerations
IBM Software products, including software as a service solutions, (“Software Offerings”) may use cookies
or other technologies to collect product usage information, to help improve the end user experience, to
tailor interactions with the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you to
collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below.

Depending upon the configurations deployed, this Software Offering may use session cookies or other
similar technologies that collect each user’s name, user name, password, and/or other personally
identifiable information for purposes of session management, authentication, enhanced user usability,
single sign-on configuration and/or other usage tracking and/or functional purposes. These cookies or
other similar technologies cannot be disabled.

If the configurations deployed for this Software Offering provide you as customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

For more information about the use of various technologies, including cookies, for these purposes, see
IBM’s Privacy Policy at http://www.ibm.com/privacy and IBM’s Online Privacy Statement at http://
www.ibm.com/privacy/details the section entitled “Cookies, Web Beacons and Other Technologies” and
the “IBM Software Products and Software-as-a-Service Privacy Statement” at http://www.ibm.com/
software/info/product-privacy.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
“ Copyright and trademark information ” at http://www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

Notices 107

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/privacy/details
http://www.ibm.com/legal/copytrade.shtml

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other names may be trademarks of their respective owners. Other company, product, and service names
may be trademarks or service marks of others.

108 IBM Cúram Social Program Management: Developing Evidence

IBM®

Part Number:

(1
P)
 P

/N
:

	Contents
	Figures
	Tables
	Chapter 1. Developing static evidence
	Developing evidence manually
	Evidence components
	Server-side artifacts
	Standard Evidence Interface
	Evidence Interface
	Participant Evidence Interface
	Accessing non-modeled functions

	Client-side artifacts

	Developing an evidence solution
	Administration: Evidence Metadata entity and Product Evidence Link entity
	Create, modify, read, and list evidence maintenance operations
	Create evidence
	Modify evidence
	Read evidence
	List evidence

	Validations
	Evidence attribution and reattribution
	EvidenceRelationship link entity
	Registering evidence implementations
	Customizing evidence maintenance
	Evidence Controller Hook
	Providing a custom implementation of the EvidenceControllerHook
	Evidence Controller Hook Registrar and Manager

	Customizing multiple participant evidence
	Multiple participant evidence extension points
	Configuring custom filters for multiple participant evidence
	Configuring global filters
	Configuring evidence type filters

	Evidence end dating feature implementation

	Developing with the Evidence Generator
	Inputs and outputs
	Evidence patterns
	Parent-Child pattern
	Pre-Association pattern
	Related pattern
	Search Case Participant pattern
	Validate CallOut pattern
	Page Hierarchy pattern

	Modeling that is required for the evidence patterns
	Entity modeling: entities
	Entity modeling: required structs
	Entity modeling: the build process
	Parent-child relationships
	Multiple mandatory parent relationships
	Pre-association relationships
	Case participant attributes
	Related entity attributes
	Non-evidence attributes
	Non-modifiable entities

	Evidence Generator specification
	Input sources for the generator
	Outputs from the generator
	Base directory and directory structure setup
	Configuration and common page properties
	Server metadata: the entity node
	The Business Dates pattern and override
	The Cached Operation pattern and metadata entries

	Client metadata
	Case participant fields

	Adding functionality
	Customize class
	Hook class
	Validate class
	Related attributes class

	evidence.properties: explanation and sample file
	general.properties
	Dynamic properties
	Static properties
	Sample file for dynamic and static properties

	employment.properties
	General error messages
	Server metadata: document structure
	Client metadata: document structure
	Meta types
	Participant types

	Evidence Generator Cookbook
	Quick overview
	Generator inputs and outputs

	Configuring an existing product
	Asset as generated evidence: implementing a sample evidence type
	Step 1: Model evidence entity
	Asset entity diagram
	Step 2: Create evidence metadata
	Asset server XML
	Asset client Evidence UIM (EUIM)

	Step 3: Standard evidence configuration

	Executing the Evidence Generator
	Evidence Generator standard targets
	Evidence Generator specific targets
	Generator output

	Asset handcrafted code: asset hook getDetailsForListDisplay
	Customizing a product
	Overriding a default evidence entity: example
	Adding a new custom entity

	Identifying entities, patterns and relationships
	The evidence controller
	Evidence hooks and registrar
	List evidence
	Insert evidence
	Modify evidence
	Evidence correction and succession

	View evidence
	Remove evidence
	Apply evidence changes
	1. Validating evidence changes
	2. Checking whether evidence requires approval
	3. Activating evidence and calculating attribution periods
	4. Removing active evidence
	5. Assessing evidence changes

	Calculating attribution periods: additional functionality
	Submit evidence for approval workflow
	Participant evidence integration
	Evidence generation
	Evidence period calculation
	Customizing the evidence start and end dates

	Identifying problems
	Configuration errors: generation
	Configuration error: runtime
	Model errors: generation
	Model errors: compilation
	Metatype errors: incorrect participant, date, and comments
	Property errors: generation

	Notices
	Privacy Policy considerations
	Trademarks

