
IBM Cúram Social Program Management
7.0.8 or 7.0.4.4

IBM Universal Access Responsive Web
Application 2.3.0

IBM

Note

Before using this information and the product it supports, read the information in “Notices” on page
215

Edition

This edition applies to IBM® Cúram Social Program Management 7.0.8 or 7.0.4.4

Licensed Materials - Property of IBM.
© Copyright International Business Machines Corporation 2018, 2019.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

Figures.. v

Tables.. vi

Chapter 1. IBM Cúram Universal Access...1
What's new in Universal Access.. 1

What's new for Universal Access in September 2019.. 1
IBM Cúram Universal Access release notes... 2

2.3.0 release notes...2
IBM Cúram Universal Access business overview..3

Screening citizens for benefits...3
Applying for benefits.. 7
Change of circumstances with Life Events.. 14
Appealing benefit decisions...16
Citizen account... 18

Installing the IBM Cúram Universal Access development environment... 24
Prerequisites and supported software.. 24
Installing the IBM Cúram Universal Access development environment..27
Upgrading the IBM Universal Access Responsive Web Application...29

Customizing the IBM Cúram Universal Access application..30
React environment variable reference.. 30
Universal Access Responsive Web Application starter pack and packages.......................................35
Sample application project structure.. 37
Developing compliantly..39
Enforce code style with ESlint... 39
Universal Access UI coding conventions...40
The sampleApplication feature... 42
Manage state with React Hooks.. 43
Error handling with a React higher-order component (HOC)..45
Developing with routes.. 46
Redux in Universal Access... 49
Connecting to Universal Access APIs.. 56
Developing authentication... 62
Developing with headers and footers.. 64
Adding images, fonts, and files.. 66
Customizing the color scheme or typography... 67
Developing toast notifications... 69
Providing the application in another language.. 70
Customization scenarios.. 74
Customizing IEG forms in the Universal Access Responsive Web Application..................................90
Customizing appeals in the Universal Access Responsive Web Application................................... 105
Implementing page view analytics..106
Implementing a test environment...107

Deploying your web application to a web server..123
Building the Universal Access Responsive Web Application for deployment..................................124
Install and configure IBM HTTP Server with WebSphere Application Server..................................124
Install and configure Oracle HTTP Server with Oracle WebLogic Server... 126
Installing and configuring Apache HTTP Server..127
Deploying your web application.. 128

Configuring the IBM Cúram Universal Access server... 129

 iii

Prerequisites.. 129
Configuring service areas and PDF forms..129
Configuring programs...130
Configuring screenings...134
Configuring applications.. 139
Configuring online categories.. 142
Configuring the citizen account... 143
Configuring life events... 154

Securing IBM Cúram Universal Access... 158
The security model...158
Authorization roles and groups..159
Integrating external security... 159
Customizing account creation and management..177
Data caching...178

Customizing the IBM Cúram Universal Access server..179
Customizing screening...179
Customizing submitted applications... 180
Customizing the Citizen Account... 183
Customizing life events.. 194
Customizing advanced life events... 195
Artifacts with limited customization scope... 212

Troubleshooting and support..213
Citizen Engagement components and licensing... 213
Citizen Engagement support strategy... 214
Examining log files... 214

Notices..215
Privacy Policy considerations..216
Trademarks..216

iv

Figures

1. Appeals process overview.. 16

2. IdP-initiated flow in Universal Access..161

3. SP-initiated flow in Universal Access... 162

4. Universal Access SSO configuration components... 165

5. Intake application workflow... 180

6. Holding Evidence XML Example... 199

7. Data Store XML Sample.. 199

8. XSLT Transform for Vehicle Resource Information... 200

9. Evidence XML with Updates... 204

 v

Tables

1. Dashboard panes.. 19

2. Supported IBM Cúram Social Program Management versions for IBM Universal Access Responsive
Web Application... 24

3. The withErrorBoundary parameters... 45

4. Information messages for browser preferences... 129

5. Appeal request acknowledgment...144

6. Appeal rejection.. 144

7. Application acknowledgment... 144

8. Meeting invite..145

9. Meeting cancellation...146

10. Meeting update... 146

11. Payment issued...149

12. Payment canceled.. 149

13. Payment due... 150

14. Case suspended..150

15. Case unsuspended..150

16. ACS trust association interceptor custom properties..168

17. Account configurations...177

18. Account events... 178

19. Message properties files...185

20. Payment messages and related properties... 189

21. Payment message expiry property...189

22. Meeting messages.. 190

vi

23. Meeting message display date property.. 190

24. Application acknowledgment message expiry property... 190

25. Application error codes.. 193

 vii

viii

Chapter 1. IBM Cúram Universal Access
IBM Cúram Universal Access provides a configurable citizen-facing application that enables agencies to
offer a web self-service solution to their citizens. Introduced in Universal Access v7.0.3, you can choose
to use the IBM Universal Access Responsive Web Application instead of the classic client application. The
Universal Access Responsive Web Application uses modern technologies, such as React JavaScript, and
the IBM Social Program Management Design System to enable citizens to better access services in a
browser from desktop, tablet, and mobile devices.

Use this information to customize Universal Access to provide your own custom citizen-facing web
application. For information about working with the classic client application, see IBM Cúram Universal
Access with the classic client application.

The Universal Access Responsive Web Application asset is updated at more regular intervals than IBM
Cúram Universal Access and the IBM Cúram Social Program Management Platform platform and has its
own version numbering scheme.

Note: Online documentation for Universal Access is provided for the most recent version only. To read the
documentation for older versions in PDF format, see the IBM Cúram Social Program Management PDF
library.

What's new in Universal Access
Read about enhancements and improvements in IBM Cúram Universal Access with the IBM Universal
Access Responsive Web Application.

What's new for Universal Access in September 2019
Read about enhancements and improvements in IBM Cúram Universal Access with IBM Universal Access
Responsive Web Application 2.3.0. In addition, read about minor release 2.2.4, a new blog entry, and a
new deep dive video.

Support for longer explanation text in IEG forms

You can now provide large sections of explanation text on IEG forms that are hidden by default, giving a
less cluttered form. Based on their level of knowledge or experience, the title might provide enough
information for users, or they can choose to expand and read the longer explanation. For more
information, see “Configuring explainer text for forms” on page 95.

Updated test environment with support for Jest and Enzyme testing

You can now use the test-framework package to quickly and easily set up your IBM Universal Access
Responsive Web Application test environment for unit and snapshot testing with Jest and Enzyme. With
your test environment set up, we provide guidance and helper files to help you to develop and write unit
and snapshot tests for your project. For more information, see “Implementing a test environment” on
page 107.

IBM Universal Access Responsive Web Application 2.2.4

A minor release to deliver important bug fixes, in addition to the regular monthly release 2.3.0. For more
information, see the 2.2.4 release notes.

New blog entry for IBM Cúram Universal Access

In the Watson Health Community blog, Mael Le Bideau provides some guidance for script writers in this
article, see Did I already add that bill? Helping citizens remember the form data added in real time (before
the summary).

© Copyright IBM Corp. 2018, 2019 1

http://www.ibm.com/support/docview.wss?uid=swg27041327
http://www.ibm.com/support/docview.wss?uid=swg27041327
https://developer.ibm.com/watsonhealth/2019/09/05/did-i-already-add-that-bill-helping-citizens-remember-the-form-data-added-in-real-time-before-the-summary/
https://developer.ibm.com/watsonhealth/2019/09/05/did-i-already-add-that-bill-helping-citizens-remember-the-form-data-added-in-real-time-before-the-summary/

New deep dive video for the IBM Social Program Management Web Development Accelerator and
IEG combo box

 Click here for a video presentation that gives an overview of the Social Program Management Web
Development Accelerator and combo box.

IBM Cúram Universal Access release notes
Read the release notes for recent versions of IBM Cúram Universal Access.

To read the release notes for older versions in PDF format, see the IBM Cúram Social Program
Management PDF library.

2.3.0 release notes
Read about bug fixes and enhancements to IBM Cúram Universal Access with IBM Universal Access
Responsive Web Application 2.3.0, which is compatible with IBM® Cúram Social Program Management
7.0.4.4, or 7.0.8.

You must have the appropriate IBM Cúram Social Program Management version to benefit from the latest
server enhancements and bug fixes. For information about the latest server updates, see the IBM Cúram
Social Program Management release notes for your version.

Enhancement to single-sign on

When you use single sign-on to authenticate users, you can now choose what to display while verification
takes place, You can display an application spinner component, an empty header, or any React
component by setting the placeholder property of the SSOVerifier component. (3522)

Optional label displayed on individual check boxes

As check boxes are typically optional, the optional indicator is no longer displayed for check box
options in IEG forms. (3669)

ComboBox makes unnecessary calls to custom functions on keyboard Up Arrow and Down Arrow key
events

Previously, the ComboBox component made unnecessary custom function calls on keyboard Up Arrow
and Down Arrow key events in IEG forms. Now, the ComboBox component makes custom function calls
on input text changes only (3614).

Up and Down keys do not work for ComboBox in Microsoft Internet Explorer 11

Previously in Microsoft Internet Explorer 11, the Up Arrow and Down Arrow keys did not work for
ComboBox components. These keys are now working as expected. (3611).

Tab order was not reset when navigating through IEG forms

Previously, when you clicked Continue in an IEG form, the tab order was not reset to the top as
expected. Now, the tab order correctly resets to the top when you navigate through the form. (3506)

Missing heading levels on IEG summary pages

Previously, section headings on summary pages went from h1 to h3 without an intervening h2 heading,
which can cause an accessibility violation with assistive technologies. This issue was resolved and
summary pages now use h1 and h2 as appropriate. (3712)

WAI-ARIA heading role implemented incorrectly

Previously, div elements with heading roles unnecessarily wrapped heading tag elements such as h1 or
h2. This was fixed by removing the redundant div elements to leave only the heading tags. (3707)

2 IBM Cúram Social Program Management 7.0.8 or 7.0.4.4: IBM Universal Access Responsive Web Application
2.3.0

https://developer.ibm.com/watsonhealth/videos/ibm-universal-access-web-development-accelerator-and-combo-box/
https://developer.ibm.com/watsonhealth/videos/ibm-universal-access-web-development-accelerator-and-combo-box/
http://www.ibm.com/support/docview.wss?uid=swg27041327
http://www.ibm.com/support/docview.wss?uid=swg27041327
https://www-01.ibm.com/support/docview.wss?uid=swg27037963
https://www-01.ibm.com/support/docview.wss?uid=swg27037963

Non-empty legends added to fieldsets as labels for radio buttons and check boxes in IEG

An accessibility violation was fixed where the legend element contained a block element in the
RadioButtonGroup and CheckboxGroup components. (3732)

IBM Cúram Universal Access business overview
IBM Cúram Universal Access is a citizen-facing web application that provides citizens with online
facilities. Use this business overview to help you to map the existing Universal Access features and
capability to your organization's business requirements during business analysis.

Screening citizens for benefits
Citizens can screen themselves for benefits without applying for them first.

Screening confers many advantages for citizens and agencies alike:

• Citizens can screen for one or more benefits that the agency offers without having to apply for them
first.

• Screening reduces the need for citizens to interact with the agency.
• Screening reduces the time and effort that caseworkers need to spend on screening tasks, freeing them

up to concentrate on their core duties.
• Screening is quick and easy, it determines if citizens are potentially eligible for one or more benefits

based on a short set of guided questions and eligibility rules. Based on this determination, citizens can
then decide whether to apply for the benefits that screening identifies for them.

Eligibility screening determines citizens' potential eligibility to receive a program or programs. Eligibility
screening consists of a script to collect data and a rule set to determine the citizen's potential eligibility
for one or more programs.

Eligibility screening rules are run upon completion of the screening script and the results are displayed for
citizens on the What you might get page. To adapt to changing circumstances, you can quickly configure
the text that is displayed in the What you might get page header in the administration application. For
more information, see Configuring screening display information.

The eligibility screening rules are only run for programs that are associated with the screening.

Note: This documentation uses the term "screening", however in the context of citizen-facing content,
this term is ambiguous and has been replaced by "Check what you might get", "check eligibility" or
"eligibility check".

Related concepts
Printing an application
Citizens can open and print an application form in two ways.
Configuring screening display information
Configure the screening information display fields for each screening.

Screening types
To balance the need for quick screening results against the need to gather detailed citizen information,
IBM Cúram Universal Access supports filtered screening and eligibility screening. Screening results
indicate the programs for which citizens might be eligible.

Filtered screening

Filtered screening allows citizens to quickly see whether they are eligible for any benefits before going
through the more detailed eligibility screening process. As its name suggests, filtered screening reduces
the number of programs for which citizens might want to screen for and apply. For example, eligibility
screening might screen for 50 programs. However, a filtered screening IEG script gathers answers to
questions that can quickly identify and eliminate programs for which citizens are unlikely to be eligible.
Questions like 'Are you married?' and 'Are you pregnant?' are examples.

Chapter 1. IBM Cúram Universal Access 3

Filtered screening is defined by specifying a simple filter script and rules. Typically, a filtered screening
script is not longer than two pages. If filtered screening is defined, the system immediately displays the
filtered screening script when citizens select the screening. The system does not prompt citizens to select
programs. Instead, the system runs the rules for all programs that are defined in the filtered screening
rule set.

You can easily and quickly customize a filtered screening. For each screening, you configure the available
programs and eligibility requirements. You then configure the script, rules, and data schema to collect
and process citizen information, and define what information is displayed to citizens. When defined,
citizens can screen themselves to identify programs that they might be eligible to receive. For more
information, see Configuring screenings.

Note: Program selection takes precedence over filtered screening. For more information on program
selection, see Starting the screening process.

Eligibility screening

To gather the detailed information vital to determine if citizens qualify for benefits, eligibility screening
collects answers to more detailed questions by using a longer, more detailed IEG script. In this case, an
IEG script gathers more detailed citizen information, in comparison to filtered screening. Typical
questions that are defined in the script relate to the citizen's resources, for example, savings, stocks, or
bonds. By performing filtered screening first, citizens can avoid answering such questions. That is,
citizens can be quickly informed of the programs for which completing full eligibility screening is likely to
be most beneficial to them.

The relationship between filtered and eligibility screening

Some points to note regarding the two screening types:

• Filtered screening is a precursor to eligibility screening.
• Having performed filtered screening, citizens must then perform eligibility screening before they can

apply for benefits.
• Filtered screening is optional. Citizens can screen for eligibility without performing filtered screening.

Related concepts
The screening auto-save property
Use the screening curam.citizenworkspace.auto.save.screening property to set whether screenings are
automatically saved for authenticated citizens.
Configuring screenings
Define different types of screenings that citizens can complete to identify programs that they might be
eligible to receive.
Related information
Natural Flow of an IEG Script

Starting the screening process
Screening starts when citizens select Check what you might get on the organization Home page.

When citizens select to create a new account, an account creation screen is displayed. After the citizen
successfully creates the account, the citizen is automatically logged in to the system and the screening
process proceeds.

If citizens are logged in and they click Check button on any screening where they have a previously
completed or in-progress screening of that type, they are alerted to the existence of that previous
screening. Citizens can then either view the current progress of that screening or they can start screening
again.

If citizens start screening again, any in progress screenings are overwritten. Any completed screening is
only overwritten when citizens get to the screening results page.

The Check what you might get page lists and describes each of the screenings that are available.

4 IBM Cúram Social Program Management 7.0.8 or 7.0.4.4: IBM Universal Access Responsive Web Application
2.3.0

Note: The Check what you might get page is laid out as follows:

• Page description - a banner indicating to citizens that they can screen themselves.
• A list of screenings with a description of what each screening is.
• A list of benefits with a description of what each benefit offers.

A screening might allow citizens to screen for one or more programs. Citizens are prompted to select the
programs for which they want to be screened. However, there are three situations when citizens are not
prompted to select programs:

• If filtered screening is defined for the screening. In this instance, citizens are prompted to select the
programs for which they want to be screened when filtered screening is complete.

• If a single program is defined for the screening.
• If a screening has been configured to disable program selection by citizens. The Program Selection

indicator determines whether citizens can select specific programs to screen for or whether they are
brought directly into a screening script where they are screened for all programs associated with the
screening. For more information, see Defining Program Selection.

Note: Program selection takes precedence over filtered screening. Also, if filtered screening is enabled
but only one program configured, citizens are brought directly to eligibility screening for that single
program.

Citizens select the screening and the programs for which they want to be screened and then click Check.
The system then starts the associated IEG script so that screening can start.

Related concepts
Configuring screenings
Define different types of screenings that citizens can complete to identify programs that they might be
eligible to receive.
Starting the screening process
Screening starts when citizens select Check what you might get on the organization Home page.

Authenticated and anonymous screening
IBM Cúram Universal Access supports both authenticated and anonymous screening.

Citizens who are logged in can perform authenticated screening. Citizens who are not logged in, and want
to retain a degree of anonymity, can screen anonymously, but they cannot save their progress until they
log in. For more information, see Configuring authenticated screening.

Anonymous screening
Citizens who are not logged in to Universal Access can screen themselves anonymously.

Citizens can screen themselves for benefits without logging in but they cannot save their screening until
they log in. Administrators can use an IEG script configuration to set if citizens have an option to save
their progress. If an admin has set the option to save progress on a particular script, unauthenticated
citizens are taken to the Log in page. When logged in or signed up, citizens' screening progress is saved
and they are taken to the Dashboard. For more information on IEG script configuration, see Configuring
IEG.

Related information
Configuring IEG

Authenticated screening
Citizens who are logged in to Universal Access can perform authenticated screening.

Pre-populating citizen data

Citizens may want the convenience of having their data pre-populated when they start screening. You can
use the system property curam.citizenaccount.prepopulate.screening to pre-populate citizen data into a
screening. If citizens are linked users, their basic details are populated into the script if

Chapter 1. IBM Cúram Universal Access 5

curam.citizenaccount.prepopulate.screening is enabled. If curam.citizenaccount.prepopulate.screening it
is disabled, citizens must fill in their details. For more information, see Pre-populating the screening script.

Saving screenings for authenticated citizens

Authenticated citizens can save a screening and resume it later. As citizens progress through the script,
information that is entered on the previous page is automatically saved each time that citizens click Next
in the IEG script. If there is a timeout or the browser is closed accidentally, automatically saving the
information prevents the loss of the screening information. Use the
curam.citizenworkspace.auto.save.screening property to set whether screenings are automatically
saved in the citizen account. For more information, see The screening auto-save property.

In-progress screenings

When citizens save an in-progress screening or a screening is automatically saved by the system, an alert
is displayed in the citizens' dashboard page to remind them that they have an in-progress screening.
Citizens can complete the in-progress screening or they can delete it. When citizens complete a
screening, the Here's what you might get page is displayed and the in-progress screening banner is
removed. The screening also appears on the Benefits checker page on the Dashboard.

The Benefits checker panel

Citizens can view completed screenings on the Benefits checker panel in the citizen Dashboard. To avoid
confusion and to ensure that the most recent results of a screening kept relevant for the citizen, citizens
can only have one screening of the same type in the complete state at one time. Citizens can use the
Benefits checker panel to view the results of the screening or delete the screening from the panel.

Configuring re-screening
Citizens may need to change a screening if they have forgotten to provide some information or their
circumstances have changed. In the administration console, the agency can set whether to allow citizens
to change and re-submit their screening. If the setting is set to Yes, citizens can re-screen from the
Benefits checker panel or from the Screening results page. If the setting is No, citizens do not see these
links, in this case if the citizen wants to re-screen, the must delete their screening and start again. For
more information, see Configuring re-screening.
Related concepts
Pre-populating the screening script
When citizens screen from within a citizen account, you can pre-populate information already known
about the citizen performing the screening.
The screening auto-save property
Use the screening curam.citizenworkspace.auto.save.screening property to set whether screenings are
automatically saved for authenticated citizens.
Related tasks
Configuring re-screening
Configure whether citizens can change and resubmit their screenings.

Screening results
After completing a screening, eligibility rules are run and the results are displayed on the Here's what
you might get page.

The Here's what you might get page

The structure of the Here's what you might get page is similar to the Apply for benefits page because
benefits are displayed according to the applications they are attached to. For example, there are Learn
more links that are similar to those on the Apply for benefits page. However, citizens receive a
customized message based on the details they entered into the screening on the What you might get
page.

The eligibility screening results page is divided into two sections.

6 IBM Cúram Social Program Management 7.0.8 or 7.0.4.4: IBM Universal Access Responsive Web Application
2.3.0

• Programs for which citizens might be eligible. these programs are marked with the Eligible icon.
Citizens can then select Apply to apply for these programs online through the Apply for benefits flow.

• Programs for which eligibility could not be determined.

Administrators can use Cúram Express® Rules (CER) to provide detailed explanatory text to help citizens
understand the decisions that are made about potential eligibility. For more information, see Working with
Cúram Express Rules

If citizens' circumstances change, they can re-screen by clicking Check again for what you might get to
start the screening again.

Applying for benefits online and offline

The Here's what you might get page shows benefits that citizens can apply for online and offline.
Benefits that citizens can apply for online are marked with the Apply button. Benefits that citizens can
apply for offline are marked with a heading that is similar to the following:
Or apply for these programs by filling out the form and sending or
bringing it to your nearest office.

Programs that can be applied for offline have a Download application link.

How to apply

For each screening type, you can configure helpful, informative text that is displayed on the Here's what
you might get page header that is directly relevant to the screening. This text is configured in the How to
apply rich text editor within the admin console. For more information, see Configuring screening display
information.

The How to apply editor allows a lot of flexibility for the agency on how they want to communicate to the
citizen the different ways they can apply. For example the agency might advise citizens to apply online
using the Apply button beside each application type. The page also allows citizens to print the application
so the agency might advise citizens to mail the application to the agency.

Finally the How to apply editor allows you to include URL links onto the page. This is useful if the agency
wants citizens to visit their local office. For example the agency might choose to use Google Maps as a
way to show the citizen where their local office is. The agency is free to use the maps provider of their
choice that suits their needs.

Transferring data from screening to application

A sysadmin configuration setting allows citizens' screening data to be re-used when they apply directly
from the Here's what you might get page. When set to ON, some details based on the schema applied is
transferred into the application saving the citizen time when filling out their application.

Related concepts
Configuring screening display information
Configure the screening information display fields for each screening.
Related information
Working with Cúram Express Rules

Applying for benefits
Citizens can apply for benefits from the organization home page or the Dashboard. Citizens must submit
an application that includes personal details like income, expenses, employment, education. This
information is the evidence of the citizen's case. Agencies can use this information to determine eligibility
for benefits. Citizens can also apply offline by downloading the application form, filling it in and sending it
to the agency. Citizens can also contact their local agency office.

Chapter 1. IBM Cúram Universal Access 7

Before you begin
Citizens can apply for benefits by logging in to their account. Citizens who log in can save an application
for a benefit before they submit it and then return later to complete the application. Citizens can also
partially apply for benefits without logging in. If the configuration option submit on completion is set to
No, citizens can submit a partial submitted application. Citizens do not have to be logged in to submit the
partial application.

A customizable icon for each application is displayed with the application name, followed by a description
of the application. The application and benefit descriptions are configurable in the administration
configuration.

Note: The terms "benefit" and "program" are synonymous. An application might consist of one or more
benefits. For example, the "Income Support" application might contain the "Food Assistance" and "Cash
Assistance" benefits.

Procedure

1. Citizens click Apply for benefits on the organization Home page, the Dashboard, or the Your benefits
tab.

Note: Benefits are displayed in alphabetical order by default, but you can override this order.
2. For each benefit type, citizens can take the following actions:

a) Click Learn more to find out more about the benefit. If the More Info URL setting is configured for
the application, Learn more is conditionally displayed.

b) Click Print application to print the application form, complete it by hand and mail it to the agency.
If the PDF Application Form setting is configured for the application, Print application is
conditionally displayed.

c) Click Apply to start the application process for the benefit. Apply is conditionally displayed if
multiple applications is set to Yes or if multiple applications set to No and the citizen has no
existing, pending decision applications.

3. Citizens can also click Check what you might get to see what benefits they might qualify for.

Results

If citizens quit the application without saving it, the application displays a warning dialog so that citizens
can return to the application if this option is selected in error.

Note: Citizens must click the application name on the page in to see the Leave this application dialog.
The application name is also conditionally enabled depending on whether the quit and delete option is
enabled in the IEG script.

Clicking Leave brings citizens to the dashboard if they are logged in or the organization home if they are
not logged in.

Clicking Cancel returns citizens to the point at which they left the application script with the previously
entered data available. Citizens can cancel an application without saving at any point before they submit.
Citizens can only cancel when the application is in progress, if they Save and Exit they can only Delete
the application.

Citizens can also:

• Resume an application by selecting the Continue link on the Your benefits page, or by selecting
Continue on any in-progress application alerts in the Dashboard.

• Withdraw an application. If available, the withdraw option is displayed for the pending decision
application on the Your benefits page.

• Delete an application. Citizens can only delete an in progress application that they did not submit to the
agency.

8 IBM Cúram Social Program Management 7.0.8 or 7.0.4.4: IBM Universal Access Responsive Web Application
2.3.0

Starting and selecting an application
Citizens can select the benefits they want to apply for.

Citizen start an application by selecting Apply for benefits on the Organization home page or selecting
the Benefits navigation item. Citizens are then brought to the Apply for benefits page.

The Apply for benefits page describes each of the available applications. To make it easier for
administrators to find the required application, they are grouped into categories, for example
"unemployment services". The applications, and their categorization, are defined in the Universal Access
Administration section of the Administration Application. Citizens can also Learn more about each
application or can Print application to a PDF file.

Citizens can Apply for a benefit. Citizens start an application for a benefit they have already applied for,
they can resume the application or they can Start again.

A customizable icon is displayed for each benefit type along with the benefit name and a description of
the benefit.

Citizens might use an application to apply for one or more programs. Typically, the system prompts
citizens to select the programs they want to apply for. However, in two situations the system does not
prompt the citizen to select programs:

• A single program is defined for the application.
• Each application is configured so that the citizen can select a program or automatically select all of the

programs that are associated with the application.

Configuring the application process

You can configure the application process as follows:

• Each configured application is displayed. If an application has more than one associated program, it is
displayed in the second column of the Apply for benefits page.

• A configuration property program selection is available at the application level. If the property is set to
Yes, an Include benefits page is displayed allowing the citizen to select all, or a subset of the
configured programs.

• If an application only contains one program and the configuration property program selection is set to
Yes, the Include benefits page is not displayed.

• If the program selection is set to No and the application contains multiple programs, all the programs
are automatically applied for and the Include benefits page is not displayed.

• A configuration property multiple application is available at the program level. If this property is set to
No there is an existing pending decision for the program, the Apply option is visible but disabled.

• A system property curam.citizenaccount.prepopulate.screening sets whether the IEG script is pre-
populated with any available citizen information.

When citizens select the applications and the programs they want to apply for, the system starts the
associated IEG script. Citizens use the script to complete the selected applications.

Managing existing applications
When a citizen logs in, any existing applications are listed and the citizen is presented with different
options that depend on the state of an application.

The agency can configure the system to specify whether citizens need to be authenticated before they
apply for benefits:

• If authentication is enabled, citizens must either create a new user account or log in to an account
before they start the application process.

• If authentication is disabled, citizens can proceed with the application without authentication.

The configuration property curam.citizenworkspace.authenticated.intake specifies whether citizens must
log in to apply for benefits. If the property is set to NO, citizens do not have to log in to apply for benefits.

Chapter 1. IBM Cúram Universal Access 9

If the property is set to YES, citizens must create an account or log in to an existing account to apply for
benefits.

Depending on how authentication is configured, applications are managed in one of the following ways:
Citizens can log in to their account, or they can sign up from the application overview page. Citizens can
also be prompted to log in, sign up, or send application without an account at the end of the IEG
application script.

If citizens create an account, they are automatically logged in to the system and the intake process starts.
The system also checks whether they have any existing applications.

The configuration property curam.citizenworkspace.authenticated.intake is available at the application
level. If this property is set to No, citizens can submit a partially completed application, if this property is
set to Yes, citizens cannot submit a partially completed application.

Existing applications are in one of the following categories:

• Application in progress. The application is in progress but is not yet submitted. Citizens can either
continue or delete applications in this category.

• Pending decision. The application is awaiting a decision from the case worker. Citizens can either
download or withdraw applications in this category.

• Active. The caseworker has authorized the application.
• Denied The caseworker has rejected the application.
• Authorization failed. Citizens can download applications in this state.
• Withdrawn. Citizens can withdraw the application if it is Pending decision or the caseworker has

Denied the application.

The application lists are displayed only if there are items in the list, that is, if there are no saved
applications. If applications are listed, the citizen is presented with different options that depend on the
state of an application. The citizen might resume or delete an incomplete application, withdraw a
submitted application, or start a new application.

Related concepts
Securing IBM Cúram Universal Access
The gives citizens access to their most sensitive personal data over the internet. Security must be a
primary concern in the development of citizen account customizations. All projects that are built on
Universal Access must focus on delivering security from beginning to end.

Saving an application
By default, applications are automatically saved for citizens who are logged in. Citizens can also manually
save applications, including in-progress applications.

During a timeout or the accidental closure of the browser window, the application is automatically saved
each time that citizens click Next in the IEG script. When citizens click Next, the information on the
previous page is saved. Citizens can also use the Benefits page to resume or to delete each in-progress
screening. Automatic saving works for logged-in citizens only. Applications for citizens who are not logged
are not saved.

A system property specifies whether applications are automatically saved. By default, this property is
enabled. For more information, see Configuring applications.

When citizens quit an application, three options are displayed. The options the system displays depends
on how the intake application is configured. Citizens can take one of the following actions:

• Save the application
• Leave the application without saving
• Cancel the application

If citizens save the application and they are not logged in, the save application screen is displayed.
Citizens can create an account, log in, or send the application without logging in.

10 IBM Cúram Social Program Management 7.0.8 or 7.0.4.4: IBM Universal Access Responsive Web Application
2.3.0

If the administration setting Submit on Completion Only is set to No, citizens cannot submit a partially
completed application, so the option to Send application without account is displayed when citizens
select Save and exit. If the administration setting is set to Yes citizens can submit a partially completed
application, so the option to Send application without account is not displayed when citizens select
Save and exit.

Related concepts
Configuring applications
Use the administration system to define applications. For each application, you can configure the
available programs and an application script and data schema. You can also configure the remaining
applications details, including application withdrawal reasons.

Resuming an application
Logged-in citizens can resume an application by selecting the Continue link on either the Dashboard or
the Your benefits page.

Selecting the Continue link in the citizen's Dashboard resumes the application from where the
application was last saved. When an application is resumed, the data that is entered is automatically
saved as citizens moves from page to page through the script.

When citizens resume an application, they are brought to where they left off when the application was
saved.

Submitting an application
To allow citizens to submit an application to the agency, you must specify a submission script for the
application in the administration system. After citizens submit an application, the way the script is
processed depends on the configuration of the programs for which the citizen is applying.

The application might be submitted when citizens complete the intake script or when they exit a script
before it completes. An intake application can be configured so that an agency can dictate whether an
application script can be submitted before it is complete or not.

If citizens send an application to the agency, either by exiting or completing a script, the screen that is
displayed depends on:

• Whether citizens are logged in
• Whether citizens must either create or log in to an account before the application is submitted.

If citizens are not logged in, they are prompted to log in or create a new account. If the property is
enabled, citizens must log in to an existing account or create a new account before the application can be
sent to the agency. For more information, see Managing existing applications.

Specifying log in requirements

The system can be configured so that:

• Citizens are not required to identify themselves to the system AND
• Citizens can send the application to the agency without logging in or creating an account.

Alternatively, the system can be configured so that citizens must create an account or log in. For more
information, see Managing existing applications.

Managing in-progress and submitted applications

If citizens log in before they send the application to the agency, the system can determine whether:

• There is an in-progress application of the same type OR.
• Citizens previously submitted applications for the same programs that are still pending disposition, that

is, awaiting a decision by the agency.

For an in-progress application of the same type, a page is displayed. From here, citizens can send the new
application to the agency or keep the saved application, thus discarding the new application. The options
available are to Start again or Resume the in-progress application.

Chapter 1. IBM Cúram Universal Access 11

If citizens submit applications for the same programs, the system determines whether they can still
submit any of the programs to the agency for processing. Programs can be configured so that multiple
applications can be submitted for the program at any time. For example, submitting a new application for
cash assistance for a different household unit than a previously submitted application that the agency is
processing. This screen indicates that the application cannot be submitted for all of the programs for
which the citizen wants to apply. However, the application might still be sent to the agency. There are
three options: continue to submit the application for the programs for which the citizen can apply, save
the application, or delete the application.

The configuration property Multiple application is available at the program level. If this property is set to
No and there is a pending decision for the program, the Apply option is visible but disabled.

Specifying a submission script

To submit an application to the agency, a submission script must be specified for the application in
administration. The submission script is required because applications require additional information,
which does not form part of the application, to be captured before the applications can be submitted. For
example, a Cash Assistance application requires information that relates to the citizen's ability to attend
an interview. This information would not be appropriate for another type of application that does not
require an interview to be conducted, for example, unemployment insurance. Electronic signatures are
another example of the type of information that would typically be captured by using a submission script.
This data might not be captured as part of the script, as citizens can submit the application before
completing the script.

Processing a submitted script

The processing that happens on completion of the submission script depends upon the configuration of
the programs for which citizens are applying. Program eligibility can be configured such that it might be
determined by using IBM Cúram Social Program Management or a remote system. If IBM Cúram Social
Program Management is specified as the eligibility system, an application case creation process is
started. The application case creation process includes a search and match capability, which attempts to
match citizens on a new application to registered persons on the system based on configured search
criteria. When search and match finishes, one or more application cases are created. If the programs that
are applied for are configured for different application case types, multiple application cases are created.
If the application was submitted within the business hours of the root location for the organization, the
application date on the application case is set to today's date. If the application is submitted outside of
the business hours of the organization, the application date is set to the next business date.

Mapping the application data to case evidence tables

The data that is entered for the application might be mapped to case evidence tables. The mappings are
configured for a particular program by using the Cúram Data Mapping Editor. For the appropriate evidence
entities to be created and populated in response to an online application submission, a mapping
configuration must be specified for a program.

Associating requested programs with application cases

When the application case is created, the programs that are requested by the citizen are associated with
the relevant application case. Some organizations might impose time limits within which an application
for a program must be processed. A number of timer configuration options are available for a particular
program. These timers are set when a program is associated with an application case.

If the eligibility is determined by a remote system, configurations are provided to allow a web service to
be started on a remote system.

Displaying submission confirmation

The submission confirmation page is displayed upon successful submission of an application to the
agency. The submission confirmation page displays the reference number that is associated with the

12 IBM Cúram Social Program Management 7.0.8 or 7.0.4.4: IBM Universal Access Responsive Web Application
2.3.0

submitted application. Citizens can use this reference number in any further correspondence about
application with the agency.

Configuring intake applications for PDFs

The citizen might also open and print a PDF. The configuration of the intake application determines the
actual PDF that opens. The application can be configured to use a PDF designed specifically by the agency
with the intake application, or, if no PDF form is specified, to use a generated generic PDF. If an agency-
designed form is specified, this form is opened when the citizen clicks the PDF link. For programs with
associated mapping configurations of type PDF Form Creation, the data that is entered during the online
application is copied to the PDF form. The data is copied for each of the programs for which the citizen is
applying with this mapping configuration. If a mapping configuration is not associated with a program, the
information that is entered during the online application for that program is not copied to the PDF form. If
a PDF form is not specified, a generic generated form opens instead. This form contains a copy of the
information that is entered by the citizen when the citizen is completing the online application.

The agency can define additional information to be displayed on the generic generated form. Typically,
the additional information that is required helps the agency to process the application quickly. Proof of
identity is an example of this additional information. This additional information is configurable for each
type of application.

Submission confirmation

When citizens successfully submit an application, going through the sign and submit screen, they are
brought to an updated version of the Overview. The stages specific to the application process are now
updated with a confirmation message to indicate that the application was successfully submitted:

• A customizable icon
• An application reference number
• Informational message for the citizen
• A Save submitted application PDF link that allows citizens to download the information entered as

part of the application, in PDF format.

Related concepts
Managing existing applications
When a citizen logs in, any existing applications are listed and the citizen is presented with different
options that depend on the state of an application.

Printing an application
Citizens can open and print an application form in two ways.

• Citizens are directed to a PDF that they can open, complete, and print.
• Citizens are taken through a script. After citizens complete or exit the script, they can open a PDF

containing the information they entered.

PDF forms can be configured to provide versions in all supported languages. The programs that can be
applied for using the PDF form can also be configured.

Each PDF form that is defined in the administration system is displayed on the Apply for Benefits page.
The Apply for benefits page is displayed when Apply For Benefit is selected from the organization Home
page.

If PDF Application Form is configured for the application, Print application is displayed.

To open the PDF form, citizens click Print application. Citizens can also identify the address of the local
office to which to send the form. A system property sets whether the system uses postal codes or
counties for this function.

Chapter 1. IBM Cúram Universal Access 13

Withdrawing an application
Citizens can withdraw successful applications from the Your benefits page. If the application did not
successfully submit, the Withdraw option is not displayed.

Citizens can withdraw a successfully submitted application or they can also withdraw applications for all
or any one of the programs.

Citizens can withdraw each program individually. The reasons for withdrawing the program application
can be configured for the intake application in the administration system.

The Reason field contains a list of configurable code table values that are defined by the administrator.
The list of values is configured at application level.

The First name, Last name, and Reason fields are mandatory.

The submit action on the page withdraws the application. The system automatically updates the status of
the programs that are associated with the application case to Withdrawn and sends a notification to the
application caseworker.

The difference between deleting and withdrawing an application

The Withdraw action is different from the Delete action in that only a submitted application can be
withdrawn and only an in-progress application can be deleted. Also, Delete physically deletes the
application record, Withdraw changes the status of the application to Withdrawn after the citizen goes
through a workflow.

Related concepts
Citizen account
When citizens create a secure citizen account, they can access a range of relevant information. Citizens
can also use the citizen account to track and manage interactions with the agency.

Deleting an application
Citizens can delete applications that are not yet submitted to the agency.

Citizens can delete applications from the Dashboard or the Your benefits pages. When citizens click the
Delete application link for an in-progress application, a confirmation dialog is displayed.

Change of circumstances with Life Events
Citizens can submit a change in their circumstances to the agency by using Life Events. Examples of
changes in circumstances include a change of address, a birth, or marriage. These significant events in
citizens' lives might affect the programs and services that they are receiving or are due to receive.

Consider the following scenario: James Smith is currently in receipt of child benefit and is also working
full time. However, he has just lost his job as the company he is working for is closing. James now needs
to let the agency know about losing his job so that he can get his benefit reviewed. Life Events allows
James to communicate this change to the agency without having to visit the office, Life Events also
reduces the amount of interaction with the agency and consequent usage of caseworkers' valuable time.

 Click here for a video presentation that gives an overview of Life Events.

Accessing life events
Authenticated citizens can submit a change in their circumstances either by selecting Tell us if anything
has changed on the dashboard or selecting Profile.

Citizens can select Your Account on the Organization Home page. Citizens can now see that the Your
Account card also contains text telling them that they can submit a change in their circumstances by
clicking the card.

Tell us if anything has changed on the Profile page is an obvious place for citizens to go to when they to
make a change in their circumstances and is consistent with other applications.

The agency administrator can categorize life events in Universal Access life event administration so that
citizens can easily identify a life event. For example, changing jobs, income changes, and change of

14 IBM Cúram Social Program Management 7.0.8 or 7.0.4.4: IBM Universal Access Responsive Web Application
2.3.0

https://developer.ibm.com/watsonhealth/videos/life-events-deep-dive/

address life events might be categorized under the Employment category. If a life event is not
categorized, it appears in the All category tab. If citizens cannot immediately see the life event they want
to select, they can select See more to see a full list of life events across all categories.

Each configured Life Event is a clickable card, making it intuitive and easy to understand how to submit a
change in their circumstances. A description of the life event is provided so that citizens can identify the
correct life event. The description of the life event is also configurable in Universal Access life event
administration.

Also on Tell us if anything has changed, citizens can see a Previous changes link which brings them to a
list of their previously-submitted life events. For more information see, Reviewing life events change
history.

Related concepts
Configuring a life event
Reviewing life events change history
Citizens can access their previously submitted life events from the dashboard by clickingTell us if
anything changed? > > Previous changes.

The Life Event Overview page
When citizens select the life event that they want to submit, they are presented with an Overview page
that informs them of the steps to submit that life event.

The steps on the Overview page tell citizens the information and documentation they need to include as
part of the submission and approximately how long the submission takes to complete. The steps can also
include how the agency might inform them of the change when the change of circumstance is complete.

When citizens read and understand the information presented, they can select Start to enter the
submission form.

When citizens begin a submission form, they are presented with a guided set of questions that use
Intelligent Evidence Gathering (IEG) to gather information in relation to the selected Life Event. The
question script that is presented is defined in Universal Access life event administration when a life event
is configured by the administrator.

The life event submission confirmation page
On successful submission of the life event, citizens are then shown a Confirmation page confirming that
the life event has been submitted successfully.

Consistent with the Application Submission confirmation page, a green tick icon is shown to citizens
when they submit a change in their circumstance. The agency can also display information that is useful
and relevant to the life event that citizens have just submitted. This helpful information can be defined in
Universal Access life event administration. The agency can choose to inform the citizen through the
configurable text area that their change may take some time to take effect as a caseworker might need to
review the submitted change.

The agency can also configure the Next steps panel to display information such as actions that citizens
might need to take after submitting the change. For example, citizens might need to update their rent if
they've just moved into a new home. The Next steps panel can also include links to external websites to
help citizens find and record their rent details. Citizens do not need to have a case on the system to
submit a life event. If citizens don’t have a case on the system, the submitted information isn’t
transmitted to a case owner. Instead, the submitted information is stored internally and the agency must
decide what to do with the information.

The Consent page

After citizens complete the submission form, an optional Consent page can be displayed so that citizens
can consent to having their details sent to selected other agencies or third parties. This optional page is
displayed if it is configured for the selected life event within the Universal Access life event
administration. This action constitutes the citizens' consent to send information to the selected agencies.
The life event can be transmitted to a remote system through a web service or to the relevant case
owners on an IBM Cúram Social Program Management system through the evidence broker.

Chapter 1. IBM Cúram Universal Access 15

Reviewing life events change history
Citizens can access their previously submitted life events from the dashboard by clickingTell us if
anything changed? > > Previous changes.

Citizens can select a life event record from the history list to view a summary of the information they
submitted to the agency as part of that life event update. The list of life events is sorted by the submission
date.

Appealing benefit decisions
If you enable Appeals for your organization, citizens can appeal decisions on their benefits online from
their citizen accounts on their own devices. If your organization uses the IBM Cúram Appeals application
module, your organization can process appeals through the full appeals life-cycle that is provided by that
solution.

Figure 1. Appeals process overview

1. “Decide to appeal” on page 17
2. “Submit an appeal request” on page 17
3. “View your appeals” on page 17
4. “Appeals notices and notifications” on page 18

 Click here for a video presentation that gives an overview of Appeals and Notices.

Related tasks
Customizing appeals in the Universal Access Responsive Web Application

16 IBM Cúram Social Program Management 7.0.8 or 7.0.4.4: IBM Universal Access Responsive Web Application
2.3.0

https://developer.ibm.com/watsonhealth/videos/ibm-curam-social-program-management-universal-access-appeals-and-notices-functionality-deep-dive/

You can customize appeals to suit your organization. You can integrate with an appeals system of your
choice. If you are licensed for the IBM Cúram Appeals application module, the IBM Cúram Social Program
Management appeals functionality is available on installation.

Decide to appeal
If citizens don't agree with a decision on their benefits, they can appeal the decision. They can appeal for
themselves or a family member, and can appeal online regardless of how they originally applied. A citizen
must have applied for at least one benefit in order to appeal.

By default, they can appeal:

• An eligibility determination.
• A change to their eligibility.
• Their calculated benefit.

Citizens are informed of their rights of appeal, and an overview page explains anything that citizens need
to know before they request an appeal.

Submit an appeal request
After they read their appeal rights and understand the appeals process, citizens complete a form with all
of the relevant information. This information can range from details of the benefit itself to supplemental
information needed to establish informal reviews and hearings such as interpreters or emergency needs.

You can configure the form to ask for the specific information that is needed by your organization. The
SPM Design System accommodates a wide range of question formats to enable the citizen to easily
complete this form. You can use a summary page to provide further information in the form to help the
citizen and to alleviate specific concerns.

After they enter and review their appeal request details, citizens sign and submit the request for appeal
and get a confirmation of the submission. The confirmation page outlines the next steps and sets out the
time frames for the organization to respond, and any communications to be expected.

Appeals processing

A caseworker or hearing official can receive notification of that appeal and begin processing.

• When the IBM Cúram Appeals application module is installed, the full appeals lifecycle and statuses in
that solution are supported. A task is created and assigned to an appeal request work queue when the
citizen submits the request. The appeal request is recorded against the citizen's person record. A PDF
file is generated from the IEG script and is stored for caseworker reference as a communication against
the appellant in the caseworker application.

A caseworker can then act on the request and either acknowledge the request and continue with the
appeal process or reject the request. An acknowledgment or rejection message is displayed in the
citizen's account. A list of submitted appeal requests is provided in the citizen's account and provides a
view of the request's status.

• When the IBM Cúram Appeals application module is not installed, a citizen can request an appeal. They
can receive an appeal request submitted status, and the organization must implement an appeals
solution to handle the submitted appeal requests and other appeal lifecycle processing.

• Alternatively, an organization can implement a solution to have a third-party appeals system process
the appeal and to generate the appropriate appeal lifecycle processing, statuses, and messaging.

View your appeals
Citizens can see their appeals on the Appeals page. All appeals that citizens submit are displayed and are
updated with the appropriate color-coded statuses as they move through the Appeals lifecycle of
hearings and decisions. At any stage, citizens can log in and understand what is happening with their
appeal.

The Appeals page displays each appeal in a card, with copy of the original appeal details if needed.
Typically, the details that are provided in the earlier form are added to a PDF, both the citizen and the
caseworker receive a copy.

Chapter 1. IBM Cúram Universal Access 17

The statuses of appeals are updated as the appeal moves through the appeals lifecycle, as pre-configured
for the IBM Cúram Appeals application module, or as configured for your organization's custom appeals
process.

Appeals notices and notifications
Citizens receive both formal notices and informal notifications at specific milestones in the appeals
process. These updates provide them with instant status updates, while they wait for formal notice of a
decision or next steps.
Notices

Citizens can see communications in the Notices page, which are typically formal written
communications about the appeal or hearing, typically issued to meet legal, regulatory, or state
requirements. Notices are often created by using letterhead templates.

Notifications
Citizens can see messages in the Notifications pane on their dashboard, which are typically informal
messages that inform the citizen of any significant point in a process. For example, for appeals,
notification can inform citizens of any progression on their appeal request, such as when their appeal
request was first acknowledged, or if their appeal was accepted or denied.

Citizen account
When citizens create a secure citizen account, they can access a range of relevant information. Citizens
can also use the citizen account to track and manage interactions with the agency.

Browsing the organization home page
Citizens can browse the home page to find out how the organization can help them, how to apply for
benefits, or manage an existing benefit.

Check what you might get

Citizens can select Check what you might get on the organization Home page to check their eligibility for
benefits.

Apply for benefits

Citizens can select Apply for benefits on the organization Home page to start the application process.

View your account

Citizens can select View your account on the organization Home page and either view a dashboard of
applications and eligibility checks or view their benefits.

Creating a citizen account and logging in
Citizens can create a citizen account during the check eligibility and application processes.

Creating an account

Citizens can select Sign up on the organization Home page to create an account. Citizens then enter their
first and last names, an optional email address and account password. If citizens select I don't have an
email address, they can specify a user name instead.

When citizens create an account, a banner similar to the following is displayed:
You have successfully signed up

For more information about the application process, see Completing and submitting benefit applications.

Administration configurations

• Number of login attempts before the account is locked out: 5
• Number of remaining login attempts before a user warning is displayed: 3

18 IBM Cúram Social Program Management 7.0.8 or 7.0.4.4: IBM Universal Access Responsive Web Application
2.3.0

• Number of break-in attempts before an account is locked: 3
• Maximum and minimum characters in a username
• Maximum and minimum characters in a password

For more information on username and password length, see Account management configurations.

Logging in

To log in to the citizen account, citizens select Log in on the organization Home page. Depending on how
they created their account, citizens enter either an Email or username and password and then select
Next. You can configure the number of login attempts citizens have before their account is locked out. For
example, if you set the number of login attempts to three, citizens who make three unsuccessful login
attempts have their accounts locked out.

When citizens log in successfully, a banner similar to the following is displayed:
You're now logged in

In the next page, if the user name and password authentication is successful, the Citizen account
dashboard is displayed.

Related concepts
Screening citizens for benefits
Citizens can screen themselves for benefits without applying for them first.
Account management configurations

Browsing the citizen's dashboard
When the citizen logs in, they see their Dashboard. If your organization uses Appeals, and the citizen has
applied for at least one benefit, they also see a Your appeals page.

Dashboard

The Dashboard displays information in panes as outlined in Table 1.

Table 1. Dashboard panes

User interface pane Description

System messages System messages are broadcast to all logged-in citizens. System
messages inform citizens about, for example, planned system
outages.

In-progress applications Citizens can either continue or delete in-progress applications.

Note: In-progress applications are also known a draft applications.

BENEFITS CHECKER Lists any in-progress eligibility checks. Citizens can either Recheck
or Delete eligibility checks.

PAYMENTS Lists the latest payment made to citizens. Citizens can also view
payment details or see their payment history.

TO-DOs Lists actions that citizens must take to complete an application.

MEETINGS Outlines details of meetings that citizens have been invited to. A date
is included for all meetings. The latest meeting is shown first.

NOTIFICATIONS Shows acknowledgments for all the applications that citizens make.
A date is included for most notifications. The latest notification is
shown first. Example notifications include application
acknowledgment, appeal request messages, or service request
messages.

For more information on configuring messages, see Customizing specific message types.

Chapter 1. IBM Cúram Universal Access 19

Related concepts
Customizing specific message types
Organizations can customize the default message to create a referral message or a service delivery
message.

Viewing payments
The PAYMENTS pane on the Dashboard lists payments that are made to the citizen. The messages
associated with these payments can be retrieved from IBM Cúram Social Program Management or
another remote system. Canceled or expired payments are also displayed.

A payment can be made by check, electronic funds transfer (EFT), cash, or voucher.

Depending on the payment type, different details are displayed. The following details can be displayed on
for each payment:

Check
Payee address and check number

EFT
Bank sort code and bank account number

Cash
Payee address

Voucher
Payee address and voucher number

Note: Citizens do not see these payment details on the dashboard itself. Instead, citizens must select All
payments in the PAYMENTS panel and then select > in a specific payment to see payment details for that
payment.

Viewing TO DOs
The TO DO's pane on the Dashboard lists verifications and action messages that the caseworker creates
for the citizen.

A to do could be, for example, a request to provide supplementary information to support a benefit
application.

Citizen account messages
The PAYMENTS, TO DO'S, MEETINGS, and NOTIFICATIONS panes on the Dashboard display citizen
account messages. Messages can be about meetings the citizen is invited to, or activities that are
scheduled for the citizen. By using web services, messages from remote systems can also be displayed.

Displaying a message

Each message has a title and an icon. In addition, the TO DO'S and NOTIFICATIONS messages have an
effective date and time that specifies when the message is displayed. Usually the effective date of a
message is set to the current date, but in some circumstances configuration settings can specify the
effective date. For example, when a service is scheduled for the citizen, you might not want to display the
message immediately if the service is scheduled for two months in the future. In this case, a configuration
setting is provided to specify the number of days before the start date of the service that the message
must appear in the citizen's account. For example, the system uses these days to populate the effective
date. Messages from remote systems are displayed based on the effective date that is specified in the
web service.

Prioritization and ordering

You can assign a priority to a message so that it is displayed at the top of the MEETINGS listing.

You can also configure the order of messages types in the administration system. For example, you can
configure payment messages to be displayed first and meeting messages to be displayed second.

20 IBM Cúram Social Program Management 7.0.8 or 7.0.4.4: IBM Universal Access Responsive Web Application
2.3.0

Message duration

The message type determines the length of time that the message is displayed. The message duration
can be set either by start and end dates or by replacing one message with another.

Some messages relate to items that have start and end dates that the agency can use to specify the
duration for which a message is displayed. For example, service messages are displayed until the start
date of the service has passed. In other cases, it might be appropriate for a message to be replaced by
another message. The agency can use a configuration setting to determine whether the agency wants to:

• Specify the duration for when a message is replaced.
• Specify the number of days after which the message is removed.

The duration of messages from remote systems is based on the expiry date that is defined in the web
service.

System messages

Agencies use system messages to send a message to everyone who has a citizen account. For example, if
an agency wants to provide information and help line numbers to clients who were affected by a natural
disaster, such as a flood, hurricane, or earthquake. System Messages can be configured in the
Administration application by using the New System Message page.

The Title and Message fields define the title of the message and the message body that is displayed to a
client in the My Messages pane. The message can be defined with a priority by using the Priority field,
which means that the message appears at the top of the messages listing.

The Effective Date and Time field defines an effective date for the message, such as when the message
is displayed in the Citizen Account page. The Expiry Date and Time field define an expiry date for the
message, for instance, when the message no longer is to be displayed in the citizen account.

When the message is saved, it has a status of In-Edit. Before the message is displayed in the citizen
account, it must be published. When it is published, the message is active and is displayed in the citizen
account based on the effective and expiry dates defined.

Predictive Response Manager

The Predictive Response Manager (PRM) is the infrastructure that is used to build and then generate and
display messages on the Citizen Account home page.

A number of default messages are provided and are described in this information along with their
associated configurations

Screening from a citizen account
Citizens can screen themselves for programs while logged in to their citizen account.

By using a short set of guided questions and eligibility rules, citizens can determine whether they might
be eligible for one or more programs. Based on this determination, the citizen can decide whether to
apply for the programs identified.

To perform a screening, citizens take the following steps:

1. Select Check what you might get on the organization Home page.
2. Select Check on the eligibility category.
3. Select the benefits they think they might get on the Include benefits page
4. Select Continue to start the check eligibility process.
5. Citizens then answer the questions on the screening script.
6. Select Next to navigate through the pages in the script.
7. When the process is complete, citizens are shown the benefits they might be eligible for on the Here's

what you might get page.
8. Citizens can then Apply for benefits.

Chapter 1. IBM Cúram Universal Access 21

Related concepts
Pre-populating the screening script
When citizens screen from within a citizen account, you can pre-populate information already known
about the citizen performing the screening.

Browsing the Your benefits page
When the citizen logs in, they can see their benefits on the Your benefits page.

Your benefits

Logged-in citizens who select Your benefits on the Dashboard are brought to the Your benefits page.
Citizens who are not logged in are redirected to the Log in page, when they log in they are brought to the
Your benefits page, which displays all types of applications, these are in-progress, pending, withdrawn,
denied, and active applications.

If a submitted application is approved by the caseworker and a product delivery case is created for that
application, the application also appears on the Your benefits page.

The Your benefits page displays applications that can be in one of the following states:

• Application in progress. The application is in progress but is not yet submitted. Citizens can either
continue or delete applications in this category.

• Pending decision. The application is awaiting a decision from the case worker. Citizens can either
download or withdraw applications in this category.

• Active. The caseworker has authorized the application.
• Denied The caseworker has rejected the application.
• Authorization failed. Citizens can download applications in this state.
• Withdrawn. Citizens can withdraw the application if it is Pending decision or the caseworker has

Denied the application.

Requesting an appeal from the citizen account
When logged into their citizen account, a citizen can review their rights of appeal. They can request an
appeal on a benefit decision if they are a participant on a IBM Cúram Social Program Management
application or case.

Before you begin

For example, a citizen might be deemed ineligible on application, or have their benefit payments reduced.
If they don't agree with the decision or the circumstances of the decision, they can appeal the decision.

Procedure

1. Go to the Your Appeals page.
2. Click Request an appeal. The Overview page is displayed.
3. Review the overview of the appeals process, and when you are ready, click Start. The appeal request

form opens.
4. Complete the appeal request form.
5. Sign and submit the form.
6. Your appeal request is complete. Review the Confirmation and next steps information.

Viewing Notices
When they are logged in, citizens can open the Notices page and see all communications that are relevant
to them that are in sent, received, or normal status. Notices are typically formal written communications
that are issued to meet legal, regulatory, or state requirements, which are created by using letterhead
templates. For example, online appeal requests are shown on the Notices page.

By default, communications are listed where the logged-in citizen is the concern or is a correspondent on
the communication, in other words, for linked users.

22 IBM Cúram Social Program Management 7.0.8 or 7.0.4.4: IBM Universal Access Responsive Web Application
2.3.0

Citizens can see the communication description and any attachment in the expanded view. They can view
or save attachments by clicking the View attachment link.

Citizens can request that notices are sent to them by mail. The system logs the request to have the
communication sent to the citizen. The request includes communication (ID), date, time, and status. After
a citizen requests a notice by mail, the Request this notice by mail link is disabled.

What can I configure or customize?

You can configure the number of communications that are listed, or create a custom implementation to
change what communications are shown, such as showing communications for other family members.

The processing of requests for communications by mail is customizable, which allows customers to add
their own logic for how to deal with these requests.

Related concepts
Customizing the Notices page
By default, the notices relevant to the linked user are listed on the Notices page. You can replace the
default CitizenCommunicationsStrategy implementation with your own custom implementation.
Related tasks
Configuring communications on the Notices page
You can configure the maximum number of communications that are displayed on the Notices page. By
default, up to 20 communications are displayed.

Finding contact information
The citizen's Profile holds the citizen's contact information, and the Contact us link on the footer
provides contact information for the agency caseworker.

Citizen information

Citizens can select Your account > Profile from the dashboard to display their contact information
including address, phone number, and email address. A configuration setting determines whether the
citizen's contact information is displayed on the citizen account. For example, an agency can set the
curam.citizenaccount.contactinformation.show.client.details property to false to
disable citizen contact information. For more information, see Configuring contact information.

Caseworker contact information

The Contact us page displays information for the agency caseworker of each case that the citizen is
associated with is displayed. Caseworker contact information from IBM Cúram Social Program
Management and remote systems can be displayed. The following information can be displayed for the
caseworker:

• Name
• Business phone number
• Mobile phone number
• Pager
• Fax
• Email

Use configuration settings to specify the contact details to display and hide on the contact information
page. For example, an agency can display an caseworker's business phone number and email address
only. Similarly, an agency can hide contact information. For more information about configuring the
display of citizen contact information, see Configuring contact information.

Related concepts
Configuring contact information

Chapter 1. IBM Cúram Universal Access 23

Configure contact information for citizens and caseworkers.

Installing the IBM Cúram Universal Access development environment
Before you install Universal Access, install the prerequisites.

Note: When you install Universal Access the prerequisite design system packages are also installed,
therefore, you do not need to install the IBM Social Program Management Design System.

Prerequisites and supported software
The IBM Universal Access Responsive Web Application asset is released at more frequent intervals than
IBM Cúram Universal Access and the IBM Cúram Social Program Management Platform and requires
specific versions to benefit from the latest server enhancements and bug fixes.

IBM Cúram Social Program Management

IBM Cúram Social Program Management platform and IBM Cúram Universal Access application module
7.0.8 or 7.0.4.4 are prerequisites for developing and deploying your web applications.

Note: Universal Access does not support the dual deployment of the classic client application and the
IBM Universal Access Responsive Web Application client against the same instance of the IBM Cúram
Social Program Management server. You can build and deploy your server without the classic client
application as described in Alternative Targets for IBM WebSphere® Application Server or Multiple EAR
files for Oracle WebLogic Server. Alternatively, you must use another strategy to block access to the
classic client application URLs to ensure that users cannot concurrently access both clients.

Table 2. Supported IBM Cúram Social Program Management versions for IBM Universal Access
Responsive Web Application

IBM Cúram Social Program Management
Platform and IBM Cúram Universal Access
application module

IBM Universal Access Responsive Web
Application asset

7.0.5 with 7.0.8 Refresh Pack applied

or

7.0.2 with 7.0.4.0 Refresh Pack and 7.0.4.4 Fix
Pack applied

2.3.0

7.0.5 with 7.0.7 Refresh Pack and 7.0.7 iFix 1
applied

or

7.0.2 with 7.0.4.3 Refresh Pack applied

2.2.1, 2.2.2, 2.2.3, 2.2.4

7.0.5 with 7.0.7 Refresh Pack applied

or

7.0.2 with 7.0.4.3 Refresh Pack applied

2.2.0

Platforms

There is no dependency on specific hardware platforms, but some minimum hardware requirements
apply:

• Desktop devices that meet Windows 7 specifications.
• Android devices that meet minimum specifications for Android 4.4+ . 4.4+ should function on a two-

year old Android device or younger.

24 IBM Cúram Social Program Management 7.0.8 or 7.0.4.4: IBM Universal Access Responsive Web Application
2.3.0

• Apple devices released in the last 18 months running iOS9 or higher.

Development tools

Node.js is a prerequisite for installing the IBM Universal Access Responsive Web Application and for
developing and deploying your web applications

Supported software Version Prerequisite
minimum

Product
minimum

Operating system
restrictions

Node.js 10 LTS and
future fix packs

10 LTS 2.0.0 No

Interactive Development Environment (IDE)

The Universal Access Responsive Web Application does not depend on a specific IDE, you can choose
your own. There are many IDEs that you can choose, for example Microsoft Visual Studio Code, Atom, and
Sublime. However, IBM uses Microsoft Visual Studio Code to develop the reference application, it
supports many plugins that make development faster and easier, for example it supports the following
tools:

• Linting tools (ESLint)
• Code formatters (Prettier)
• Debugging tools (Debugger for Chrome)
• Documentation tools (JSDoc)

IBM does not own, develop, or support these tools.

Application server, web server, and DBMS

Deploying the Universal Access Responsive Web Application requires a web server in the IBM Cúram
Social Program Management topology. The following application server, web server, and DBMS
combinations are supported for developing and deploying your custom application.

• IBM WebSphere Application Server, IBM HTTP Server/Apache HTTP Server, and IBM Db2®

• IBM WebSphere Application Server, IBM HTTP Server/Apache HTTP Server, and Oracle Database
• Oracle WebLogic Server, Oracle HTTP Server/Apache HTTP Server, and Oracle Database

For more information about installing an application server for IBM Cúram Social Program Management,
see Installing an enterprise application server.

HTTP servers

These HTTP servers are supported for deployment.

Supported software Version Prerequisite
minimum

Product minimum Operating
system
restrictions

IBM HTTP Server 9.0 9.0.0.5 2.0.0 No

8.5.5 8.5.5.9 2.0.0 No

Oracle HTTP Server (12.1.3) and
future fix packs

(12.1.3) 2.0.0 No

Apache HTTP Server 2.4 (and future
patches)

2.4 2.0.0 No

Chapter 1. IBM Cúram Universal Access 25

Web browsers

IBM Cúram Universal Access with the Universal Access Responsive Web Application is developed for
public-facing applications. Every effort was made to ensure that the application pages use standard web
technologies and formats, which should be compatible with all browsers that are listed. However, the
browsers that are listed in the following table are the only browsers that are officially supported.

Note: The browser Back and Forward buttons, and browser refresh, are now supported on IEG pages.
Information that is entered in IEG forms is now retained when the citizen clicks Next or goes back or
forward through a form.

Chrome, Firefox, Edge, and Safari release new versions more frequently than Internet Explorer, and they
install updates automatically by default. Universal Access Responsive Web Application releases are
tested on the latest browser versions that are available at the start of the IBM development cycle.

Note: Only stable Chrome releases are tested.

If no issues result from the tests, IBM certifies the browser version.

For each new product release, the prerequisites list the version that is certified. If IBM cannot certify that
version for any reason, you might need to revert to a previous version that is fully certified. While IBM
supports customers who use newer versions of these browsers than the last certified version, customers
must understand that the versions are not fully tested.

Supported software Version Prerequisite
minimum

Product
minimum

Operating system
restrictions

Apple Safari 12 and future
fix packs

11 2.0.0 No

Google Chrome 76 and future
fix packs

76 2.0.0 No

Microsoft Edge 44 and future
fix packs

41 2.0.0 No

Microsoft Internet
Explorer

11 and future
fix packs

11 2.0.0 No

Mozilla Firefox 68 and future
fix packs

68 2.0.0 No

Accessibility

This accessibility software is supported.

Supported
software

Version Prerequisit
e minimum

Product
minimum

Operating system
restrictions

Browser

Freedom
Scientific JAWS
screen reader
(SPM 7.0.4.1)

18 and
future fix
packs

18 2.0.0 No Microsoft Internet
Explorer 11

Freedom
Scientific JAWS
screen reader
(SPM 7.0.5.0)

2018 and
future fix
packs

2018 2.0.0 No Microsoft Internet
Explorer 11

Apple
VoiceOver

12.4 and
future fix
packs

12 2.0.0 No Table accessibility is
certified on iOS 12.4
with Chrome 76

26 IBM Cúram Social Program Management 7.0.8 or 7.0.4.4: IBM Universal Access Responsive Web Application
2.3.0

Note: The combination of Internet Explorer 11 and JAWS 18 or 2018 is the only certified screen reader
and browser combination.

Previous versions

To see the prerequisites and supported software for previous versions, see the IBM Cúram Social
Program Management PDF library.

Installing the IBM Cúram Universal Access development environment
You can install a lightweight or a full development environment. The IBM Social Program Management
Design System is installed as part of the IBM Universal Access Responsive Web Application installation
and doesn’t need a separate installation.

Before you begin
Lightweight development environment

For quick and easy installation, install the Universal Access React application plus the design system
and Universal Access packages. Then use the universal-access-mocks package to provide mock
data specific to Universal Access business scenarios for testing purposes. universal-access-
mocks is consumed by the mock server to provide mock APIs in the development environment so that
you do not have to host an IBM Cúram Social Program Management server during development.

Full development environment

Install the Universal Access React application plus the design system and Universal Access packages.
Then, install the SPM Java Application Development Environment (ADE) to develop and test your APIs
instead of using the universal-access-mocks package. For more information about installing the
SPM Java ADE, see Installing a development environment.

JavaScript ADE (VS Code, Atom)

Node.js

mock-server API service

universal-access-starter-pack

Universal
Access
packages

Universal Access mocks

SPM
Design System
packages

SPM Java ADE (Eclipse)

Tomcat

REST APIs Main SPM Client

SPM Database

SPM Server

Chapter 1. IBM Cúram Universal Access 27

http://www-01.ibm.com/support/docview.wss?uid=swg27041327
http://www-01.ibm.com/support/docview.wss?uid=swg27041327

About this task

For the IBM Universal Access Responsive Web Application, first extract the spm-universal-access-
starter-pack React starter application. Then install all of the IBM Social Program Management Design
System and IBM Universal Access Responsive Web Application Node packages into the starter
application.

Attention: When working with npm packages, it is important that you familiarize yourself with the
npm ecosystem and how package dependencies work, so that you can adopt a suitable security
strategy for your project needs.

Procedure

1. Download the Universal Access Responsive Web Application and IBM Social Program Management
Design System Node packages.
a) Open IBM Fix Central, select Cúram Social Program Management, select your installed version

and platform, and click Continue.
b) Ensure that Browse for fixes is selected, and click Continue.
c) Select the check boxes for IBMUniversalAccessResponsiveWebApplication and
IBMSocialProgramManagementDesignSystem and click Continue.

d) Only versions that are compatible with your IBM Cúram Social Program Management version are
shown. Download SPM_DS_<version>.zip and UA_Web_App_<version>.zip and extract the
packages in the archive files to any directory.

2. Extract the spm-universal-access-starter-pack_version.tgz file.

The extracted package directory forms the React starter application. You must install all of the other
packages into this directory.

3. Rename the extracted package directory to reflect your project. For example, universal-access-
custom-app.

4. From your custom application directory, install the IBM Social Program Management Design System
Node packages by entering the following commands:

npm install <path>/govhhs-govhhs-design-system-core-<version>.tgz
npm install <path>/govhhs-govhhs-design-system-react-<version>.tgz
npm install <path>/spm-core-<version>.tgz
npm install <path>/spm-core-ui-<version>.tgz
npm install <path>/spm-intelligent-evidence-gathering-<version>.tgz
npm install <path>/spm-intelligent-evidence-gathering-locales-<version>.tgz

Where <path> is the download path and <version> is the package version.

Enter the remaining commands in this order:

npm install <path>/spm-eslint-config-<version>.tgz
npm install <path>/spm-test-framework-<version>.tgz
npm install <path>/spm-web-dev-accelerator-scripts-<version>.tgz
npm install <path>/spm-web-dev-accelerator-<version>.tgz

Note: Ignore any Node package dependency warnings for now. If needed, you can resolve them later.
5. From your custom application directory, install the IBM Universal Access Responsive Web Application

Node packages by entering the following commands. Ignore any warnings for now.

npm install <path>/spm-universal-access-<version>.tgz
npm install <path>/spm-universal-access-ui-<version>.tgz
npm install <path>/spm-universal-access-ui-locales-<version>.tgz
npm install <path>/spm-mock-server-<version>.tgz
npm install <path>/spm-universal-access-mocks-<version>.tgz

Where <path> is the download path and <version> is the package version.
6. Run the following command to install the package dependencies.

28 IBM Cúram Social Program Management 7.0.8 or 7.0.4.4: IBM Universal Access Responsive Web Application
2.3.0

https://www.ibm.com/support/fixcentral/

npm install

7. You can run the Universal Access starter application by entering the following command from your
application directory.

npm start

If the local host does not start automatically, browse to http://localhost:3000/ to see the running
application.

Results

You can now start to customize the Universal Access reference application for your organization.

Upgrading the IBM Universal Access Responsive Web Application
You can upgrade your custom React application with the latest versions of the IBM Universal Access
Responsive Web Application and IBM Social Program Management Design System Node packages to
benefit from the most recent updates.

Before you begin
Before you upgrade, ensure that you review your custom application for any potential upgrade impacts.
For more information, see “Developing compliantly” on page 39.

Procedure

1. Download the IBM Universal Access Responsive Web Application and IBM Social Program
Management Design System Node packages.
a) Open IBM Fix Central, select Cúram Social Program Management, select your installed version

and platform, and click Continue.
b) Ensure that Browse for fixes is selected, and click Continue.
c) Select the check boxes for IBMUniversalAccessResponsiveWebApplication and
IBMSocialProgramManagementDesignSystem and click Continue.

d) Only versions that are compatible with your IBM Cúram Social Program Management version are
shown. Download SPM_DS_<version>.zip and UA_Web_App_<version>.zip and extract the
packages in the archive files to any directory.

2. Read all relevant “IBM Cúram Universal Access release notes” on page 2 to review the changes
between your current version and the new version .

3. Extract the universal-access-starter-pack package to a temporary directory and compare it to
your working custom application directory. Apply any differences you find to your custom application
directory.

4. From your custom application directory, install the IBM Social Program Management Design System
Node packages by entering the following commands:

npm install <path>/govhhs-govhhs-design-system-core-<version>.tgz
npm install <path>/govhhs-govhhs-design-system-react-<version>.tgz
npm install <path>/spm-core-<version>.tgz
npm install <path>/spm-core-ui-<version>.tgz
npm install <path>/spm-intelligent-evidence-gathering-<version>.tgz
npm install <path>/spm-intelligent-evidence-gathering-locales-<version>.tgz

Where <path> is the download path and <version> is the package version.

Enter the remaining commands in this order:

npm install <path>/spm-eslint-config-<version>.tgz
npm install <path>/spm-test-framework-<version>.tgz

Chapter 1. IBM Cúram Universal Access 29

http://localhost:3000/
https://www.ibm.com/support/fixcentral/

npm install <path>/spm-web-dev-accelerator-scripts-<version>.tgz
npm install <path>/spm-web-dev-accelerator-<version>.tgz

Note: Ignore any Node package dependency warnings for now. If needed, you can resolve them later.
5. From your custom application directory, install the IBM Universal Access Responsive Web Application

Node packages by entering the following commands. Ignore any warnings for now.

npm install <path>/spm-universal-access-<version>.tgz
npm install <path>/spm-universal-access-ui-<version>.tgz
npm install <path>/spm-universal-access-ui-locales-<version>.tgz
npm install <path>/spm-mock-server-<version>.tgz
npm install <path>/spm-universal-access-mocks-<version>.tgz

Where <path> is the download path and <version> is the package version.

What to do next

Note: After an upgrade, the react-scripts@^3.0.0 package can display an error when building the
application with npm run build or starting webpack-dev-server with npm run start. This error is
due to optional package installation checks. To avoid this issue with react-scripts, use one of the
following options:

• Set the SKIP_PREFLIGHT_CHECK=true environment variable in the .env file.
• Run npm update --no-save babel-eslint babel-jest babel-loader eslint jest
webpack webpack-dev-server to update the packages respecting the semver, and then run npm
dedupe.

For more information, see the create-react-app issue at https://github.com/facebook/create-react-
app/issues/4167.

Related tasks
Installing the IBM Cúram Universal Access development environment
You can install a lightweight or a full development environment. The IBM Social Program Management
Design System is installed as part of the IBM Universal Access Responsive Web Application installation
and doesn’t need a separate installation.
Related information
Upgrading to a new version of the design system

Customizing the IBM Cúram Universal Access application
Customize the reference application and build your custom IBM Universal Access Responsive Web
Application by using the development resources supplied.

React environment variable reference
A full list of Universal Access React environment variables categorized by REST API, locale, feature
toggles, simple or SSO authentication, user session, Social Program Management Web Development
Accelerator, and Intelligent Evidence Gathering (IEG). You can set environmental variables in .env files in
the root directory of your application. If you omit environment variables, either they are not set or the
default values apply.

The starter pack provides the .env and the .env.development files to get you started. For more
information about using .env files in react-scripts, see Adding Development Environment Variables
In .env in the Create React App documentation.

30 IBM Cúram Social Program Management 7.0.8 or 7.0.4.4: IBM Universal Access Responsive Web Application
2.3.0

https://github.com/facebook/create-react-app/issues/4167
https://github.com/facebook/create-react-app/issues/4167
https://facebook.github.io/create-react-app/docs/adding-custom-environment-variables#adding-development-environment-variables-in-env

REST API
REACT_APP_REST_URL

Specifies the path to the REST services. This can be a URL to a server, or a relative path in the local
deployment server if you are using a proxy. You must set this variable as it is needed by the
Authentication service. For the Universal Access application, it is http{s}://
<ServerHostName>:<Port>/Rest. For example,

REACT_APP_REST_URL=https://192.0.2.4:9044/Rest

Where <ServerHostName> and <Port> are the host name and port number of the server where the
REST services are deployed.

For development with the mock server, you can use local host without /Rest.

REACT_APP_REST_URL=http://localhost:3080

For more information, see “The mock server API service” on page 56.

REACT_APP_API_URL

Specifies the base path to the IBM Cúram Social Program Management server that hosts the REST
APIs that are needed for the application. For the Universal Access application, it is http{s}://
<ServerHostName>:<Port>/Rest/v1/ua. For example,

REACT_APP_API_URL=https://192.0.2.4:9044/Rest/v1/ua

Where <ServerHostName> and <Port> are the host name and port number of the server where the
REST services are deployed.

For development with the mock server, you can use local host without /Rest/v1/ua

REACT_APP_API_URL=http://localhost:3080

For more information, see “The mock server API service” on page 56.

MOCK_SERVER_PORT

Specifies the port to serve mock APIs. For example,

MOCK_SERVER_PORT=3080

For more information, see “The mock server API service” on page 56.

REACT_APP_RESPONSE_TIMEOUT

Specifies the maximum time in seconds to wait for the first byte to arrive from the server, by default
10, but does not limit how long the entire download can take. Set the response timeout to be a few
seconds longer than the actual time it takes the server to respond. The lengthened response allows
for time to make DNS lookups, TCP/IP, and TLS connections. For example,

REACT_APP_RESPONSE_TIMEOUT=10

For more information, see “The RESTService utility” on page 57.

REACT_APP_RESPONSE_DEADLINE

Specifies the maximum time in seconds for the entire request, including all redirects, to complete. If
the response is not fully downloaded within REACT_APP_RESPONSE_DEADLINE, the request is
canceled. The default value is 60. For example,

REACT_APP_RESPONSE_DEADLINE=60

For more information, see “The RESTService utility” on page 57.

Chapter 1. IBM Cúram Universal Access 31

REACT_APP_DELAY_REST_API

(Development only) Specifies a time in seconds to simulate a delay in the response from the API. For
example,

REACT_APP_DELAY_REST_API=2

The value can be set to any positive integer to adjust the delay. For more information, see “The
RESTService utility” on page 57.

Locale
REACT_APP_INTL_LOCALE

Specifies a locale to set the correct regional format for dates and numbers in the application. The
value must align with the curam.environment.default.locale value that is set in your regional
settings on the server, see The Application.prx file.

The format of the locale is xx-XX, for example. en-US, rather than en_US, which is the format used on
the server. For example, to set the US locale:

REACT_APP_INTL_LOCALE=en-US

Feature toggles

You can enable the display of functionality in the application.

REACT_APP_FEATURE_LIFE_EVENTS_ENABLED

Specifies whether to display the Life Events feature in the application with a Boolean value. It is
enabled by default. For example,

REACT_APP_FEATURE_LIFE_EVENTS_ENABLED=true

For more information, see “Enabling and disabling life events” on page 155.

REACT_APP_FEATURE_APPEALS_ENABLED

Specifies whether to display the Appeals feature in the application with a Boolean value. It is disabled
by default. For example,

REACT_APP_FEATURE_APPEALS_ENABLED=false

For more information, see “Enabling and disabling appeals” on page 105.

Social Program Management Web Development Accelerator

For more information, see “Generating Universal Access Redux modules” on page 55.

WDA_MODULES_OUTPUT

(Development only) Specifies the directory to place module files generated by the IBM Social Program
Management Web Development Accelerator, by default src/modules/generated. For example:

WDA_MODULES_OUTPUT=src/modules/generated

WDA_MODULES_CONFIG

(Development only) Specifies a JSON file in which to save the module configuration that you define, by
default modules_config.json. This file contains the metadata that is used to generate the code.
For example:

WDA_MODULES_CONFIG=src/modules/modules_config.json

It is recommended that you add only this file to source control.

32 IBM Cúram Social Program Management 7.0.8 or 7.0.4.4: IBM Universal Access Responsive Web Application
2.3.0

WDA_SPM_SWAGGER

(Development only) Specifies the location of a copy of the IBM Cúram Social Program Management
Swagger specification that defines which REST APIs are available to the Social Program Management
Web Development Accelerator. For example:

WDA_SPM_SWAGGER=spm_swagger.json

You can copy this file from a running IBM Cúram Social Program Management instance at http://
hostname:port/Rest/api/definitions/v1.

Simple authentication

For more information, see “Developing authentication” on page 62.

REACT_APP_SIMPLE_AUTH_ON

(Development only) Specifies to use simple authentication during client development so you don't
need an SPM server. This simple authentication bypasses proper authentication (JAAS or SSO) and
instead accepts the user name dev without any password. The login process can run and allows
access to the 'user account' password protected pages. A Boolean value is accepted. For example,

REACT_APP_SIMPLE_AUTH_ON=true

REACT_APP_SIMPLE_AUTH_USER_TYPE

(Development only) Specifies a user type during development so you can test functionality for those
users.

• PUBLIC, a public citizen account user.
• GENERATED, an anonymous generated account user.
• STANDARD, a standard registered account user.
• LINKED, a linked account user.
• null, no user type.

For more information about user types, see “The security model” on page 158.

For example, to test the application for a linked user:

REACT_APP_SIMPLE_AUTH_USER_TYPE=LINKED

Single sign-on (SSO) authentication

• The <IdP_URL> consists of three parts: the HTTPS protocol, the IdP host name or IP address, and the
listener port number. For example, https://192.168.0.1:12443.

• The <ACS_URL> consists of three parts: the HTTPS protocol, the Assertion Consumer Service (ACS)
host name or IP address, and the listener port number. For example, https://192.168.0.2:443.

For more information, see “Configuring single sign-on properties” on page 163.

REACT_APP_SAMLSSO_ENABLED

Specifies whether SSO authentication is used in the application. By default, the IdP-initiated flow of
the SAML SSO browser profile is used. A Boolean value is accepted. For example, to handle the SAML
SSO browser profile in the application:

REACT_APP_SAMLSSO_ENABLED=true

REACT_APP_SAMLSSO_SP_MODE

(SP-initiated flow only) Specifies whether to use the SP-initiated flow of the SAML SSO Browser
profile. By default, the default IdP-initiated flow of the SAML SSO Browser profile and this setting
overrides it. A Boolean value is accepted. For example,

Chapter 1. IBM Cúram Universal Access 33

REACT_APP_SAMLSSO_SP_MODE=true

REACT_APP_SAMLSSO_USERLOGIN_URL

Specifies the IdP login page URL, that is, the URL where the application sends the user login
credentials. For example:

REACT_APP_SAMLSSO_USERLOGIN_URL=<IdP_URL>/pkmslogin.form

REACT_APP_SAMLSSO_SP_ACS_URL

Specifies the ACS application server URL, that is, the service provider URL where the application
sends the SAML response. For example,

REACT_APP_SAMLSSO_SP_ACS_URL=<ACS_URL>/samlsps/acs

REACT_APP_SAMLSSO_USERLOGOUT_URL

Specifies the IdP logout page URL, that is, the URL where the application sends the user logout
request. For example,

REACT_APP_SAMLSSO_USERLOGOUT_URL=<IdP_URL>/pkmslogout

REACT_APP_SAMLSSO_IDP_LOGININITIAL_URL

(IdP-initiated flow only) Specifies the initial URL to which the application sends the initial login
request to the identity provider. Refer to the identity provider documentation for the correct URL and
values. For example,

REACT_APP_SAMLSSO_IDP_LOGININITIAL_URL=<IdP_URL>/isam/sps/saml20idp/saml20/logininitial?
RequestBinding=
HTTPPost&PartnerId=<ACS_URL>/samlsps/acs&NameIdFormat=Email

REACT_APP_SAMLSSO_IDP_SSOLOGIN_URL

(SP-initiated flow only) Specifies the identity provider URL where the application sends the SAML
request. Refer to the identity provider documentation for the URL. For example

REACT_APP_SAMLSSO_IDP_SSOLOGIN_URL=<IdP_URL>/isam/sps/saml20idp/saml20/login

User session environment variables
REACT_APP_SESSION_INACTIVITY_TIMEOUT

Specifies the time in seconds before a user session expires. The value must match the session
timeout that is configured on the server, by default, 30 minutes, or 1800 seconds.

REACT_APP_SESSION_INACTIVITY_TIMEOUT=1800

For more information, see “Configuring user session timeout” on page 153.

REACT_APP_SESSION_PING_INTERVAL

Specifies the time in sections between each time that the user’s current session is checked to see
whether they are actively using the application or not. By default, the value is 60. For example,

REACT_APP_SESSION_PING_INTERVAL=60

Intelligent Evidence Gathering (IEG)

For more information, see “Customizing IEG forms in the Universal Access Responsive Web Application”
on page 90.

34 IBM Cúram Social Program Management 7.0.8 or 7.0.4.4: IBM Universal Access Responsive Web Application
2.3.0

REACT_APP_DISPLAY_REQUIRED_LABEL

Specifies whether to indicate the required form fields or the optional form fields. As most questions in
a typical form should be required, indicating the optional questions rather than the required questions
typically results in a less cluttered form. By default, optional fields are highlighted in IEG forms. For
example, to display labels for required fields only:

REACT_APP_DISPLAY_REQUIRED_LABEL=true

REACT_APP_DATE_FORMAT

Specifies the date format for form fields, by default, MM/DD/YYYY. The valid values are dd-mm-yyyy
and mm-dd-yyyy. If you omit the environment variable or set an invalid value, the default date format
is used. For example, to change the date format to DD/MM/YYYY:

REACT_APP_DATE_FORMAT=dd-mm-yyyy

REACT_APP_PHONE_MASK_FORMAT

Specifies a phone number mask for a form field in a question. The value must be in ISO 3166-1
alpha-2 code format, for example, US | CA | GB | DE. In your IEG script, you must add the wds-js-
input-mask-phone class name to the question.

REACT_APP_PHONE_MASK_FORMAT=US

where country is the locale that you want to use.
REACT_APP_PHONE_MASK_DELIMITER

Specifies a custom delimiter for phone numbers. For example, to convert 1 636 5600 5600 to
1-636-5600-5600:

REACT_APP_PHONE_MASK_DELIMITER=-

REACT_APP_PHONE_MASK_LEFT_ADDON

Specifies a fixed country code for phone number fields. For example, to convert 1-636-5600-5600 to
+1-636-5600-5600:

REACT_APP_PHONE_MASK_LEFT_ADDON=+

REACT_APP_CURRENCY_MASK_LEFT_ADDON

Specifies a currency symbol to display before the amount. If you omit this value, US dollars are
displayed by default. For example, to specify Euro:

REACT_APP_CURRENCY_MASK_LEFT_ADDON=$

REACT_APP_CURRENCY_MASK_RIGHT_ADDON

Specifies a currency symbol to display after the amount. If both left and right values are set, left takes
precedence. For example, to specify Euro for Luxemburg:

REACT_APP_CURRENCY_MASK_RIGHT_ADDON=€

Universal Access Responsive Web Application starter pack and packages
Using the IBM Universal Access Responsive Web Application starter pack and packages, and Social
Program Management Design System packages, as your starting point, you can customize Universal
Access for your organization.

Each package includes a package-lock.json.sample file, which lists the packages and versions that
the release was built with. This file is for reference only and is not to be used directly for building.

Chapter 1. IBM Cúram Universal Access 35

universal-access-starter-pack

This package contains a development environment and a fully functional and deployable reference
application. The starter application uses the other provided modules to provide an external web
application for Universal Access.

The starter pack demonstrates how a modern and responsive Universal Access client can be built by
using React, Redux, and the IBM Social Program Management Design System. It includes a sample
feature that demonstrates coding conventions and the correct usage of the IBM Social Program
Management Web Development Accelerator tool to help you to get started with developing your own
custom features, see “The sampleApplication feature” on page 42. You can rename, modify, and extend
the starter application to suit the needs of your organization.

universal-access

This package contains a module that connects the Universal Access Responsive Web Application to the
IBM Cúram Social Program Management server. universal-access makes HTTP requests to the server
to allow the web application to interact with the IBM Cúram Universal Access installation. Redux is the
storage mechanism for requests and responses. For more information, see “Redux in Universal Access”
on page 49 and “Universal Access Redux modules” on page 51. This module does not render content,
it depends on universal-access-ui to render the content.

universal-access-ui

This package contains a set of Universal Access Responsive Web Application features that presents views
to the user, it depends on universal-access to provide the data that it needs for those views.

universal-access-ui-locales

This package contains translated UI artifacts for the universal-access-ui package.

universal-access-mocks

This package contains a module that provides mock data specific to Universal Access business scenarios
for testing purposes. It is used by the mock server to provide mock APIs in the development environment
so you don't need to host an IBM Cúram Social Program Management server during development.

mock-server

This package contains a lightweight server that can serve HTTP requests and return mock data as a
response. You can use mock-server during client development as a substitute for a real server to test
features.

core

This package provides JavaScript utilities to help you develop your application. For example, use the
RESTService utility to connect to a IBM Cúram Social Program Management server-side REST API. Use
IntlUtils to format numbers and dates for globalization.

For more information about the core package utilities, see the JSDoc API documentation in spm/core/
doc.

core-ui

This package provides common React UI components to help you develop your application. For example,
use the AppSpinner component to display a spinning animation while a page loads, or use the Toaster
component to display notifications to the user.

For more information about the core-ui components, see the JSDoc API documentation in spm/core-
ui/doc.

36 IBM Cúram Social Program Management 7.0.8 or 7.0.4.4: IBM Universal Access Responsive Web Application
2.3.0

intelligent-evidence-gathering

This package enables IEG scripts that are configured in the IBM Cúram Social Program Management
application to run in your application. An API is provided to call the IEG scripts.

For more information, see the API documentation in spm/intelligent-evidence-gathering/doc.

intelligent-evidence-gathering-locales

This package contains translated artifacts for the intelligent-evidence-gathering package.

spm-web-dev-accelerator

This package contains the Social Program Management Web Development Accelerator rapid feature
development tool, which generates Redux modules to handle the communication between your
application and IBM Cúram Social Program Management REST APIs.

spm-web-dev-accelerator-scripts

This package contains a Swagger parser to retrieve information from IBM Cúram Social Program
Management REST APIs, and scripts to generate the features and modules code from configuration
information in the spm-web-dev-accelerator package.

spm-test-framework

This package contains a number of reusable files to help you to set up a test environment for testing with
Test Cafe, Jest, and Enzyme. You can use the provided helper files to help you to develop and write end-
to-end tests, unit tests, or snapshot tests for your project.

spm-eslint-config

This package contains an ESLint configuration with predefined coding style rules and an EditorConfig
configuration file.

Related information
Design system packages

Sample application project structure
The project structure is based on the Facebook create-react-app.

For more information about create-react-app, see create-react-app.

.
├── mock
├── node_modules
├── package.json
├── public
├── src
| └── App.js
| └── Config
| └── css
| └── Features
| | └── sampleApplication
| | | └── confirmation
| | | | └── SampleApplicationConfirmation.js
| | | └── form
| | | | └── SampleApplicationForm.js
| | | └── overview
| | | | └── SampleApplicationOverview.js
| └── index.js
| └── intl
| └── modules
| └── paths.js
| └── redux
| └── routes.js
| └── routesMessages.js
| └── /sass
| └── serviceWorker.js

Chapter 1. IBM Cúram Universal Access 37

https://github.com/facebookincubator/create-react-app

├── tests
├── .env
├── .env.development

The main files in the project are as follows:

package.json

The package.json file is customized to support the Universal Access starter application. For more
information on standard package.json, see package.json.

/mock

/mock contains the wiring that is needed to interact with the mock-server module. The mock server
replicates the SPM APIs, providing the mocked end points that are used by the sample application.

For more information about the mock server, see “The mock server API service” on page 56.

/public

/public is part of the create-react-app boilerplate. For more information, see create-react-app.

/src

/src is your working folder. The starter pack provides the basic infrastructure that interacts with the
universal-access modules that are the platform for your development effort. /src contains the following
components:

• /src/index.js Initiates the application and adds the following capabilities:

– Connection to a Redux store by using the react-redux module Provider component.
– Globalization is added by using react-intl and the LanguageProvider component.
– The universal-access module has a limited set of configurations that can be modified by using the
AppConfig component.

• src/App.js is launched from the index.js file and wraps the main application in the react-
router.

• src/css contains the compiled CSS styles.
• src/config contains theintl configuration files.
• src/features contains a sample feature to demonstrate how to implement a simple version of the

Apply for benefits feature, see “The sampleApplication feature” on page 42.
• src/redux contains the configuration for Redux reducers and the store.
• src/intl handles React-Intl Initialization.
• src/routes.js provides a point of customization for adding, replacing, or removing routes in your

application.
• src/paths.js provides access the URLs that are mapped to each page by the route configuration.
• src/routesMessages.js contains the text Routes to be displayed on the window's title.
• src/appconfig.sample.json allows parts of universal-access to be customized, for example,

specifying the default and other supported languages.
• src/sass/styles.scss contains the SCSS style definitions.
• src/sass/custom_variables.css provides a configuration point for CSS variables.

.env and .env.development

The .env file contains the environment variables for production. The .env.development file
supersedes the environment variables in .env and sets specific environment variables for development.

38 IBM Cúram Social Program Management 7.0.8 or 7.0.4.4: IBM Universal Access Responsive Web Application
2.3.0

https://docs.npmjs.com/files/package.json
https://github.com/facebookincubator/create-react-app

For more information about environment variables, see the “ React environment variable reference” on
page 30.

Developing compliantly
Follow these guidelines to protect your project from making customization changes that are incompatible
with the base product, or have the potential to incur upgrade impacts.

Never use undocumented APIs

JavaScript does not have access modifiers such as public, private. or protected. It is possible to call
functions in SPM modules that are not intended for public use. Calling these functions is not supported as
those APIs can change in a future release and break your code.

The only JavaScript APIs that are intended for public use are documented in the docs folder of the SPM
node_modules. For example, node_modules/@spm/core/docs/index.html.

Observe the Redux reducer namespace

If you use Redux, your Reducer names must not infringe on the namespace for Universal Access reducers.
All Universal Access reducers are prefixed with UA, for example. UABenefitSelection. When Universal
Access and custom reducers are combined, clashing names override the Universal Access reducers.
Customizing universal-access reducers is not supported.

Don't modify the starter application files

While you can modify the starter application files in place, it is better to copy the files and change the
copy. Your upgrades will then be easier as you can compare files between the current and previous
version of the product without the added complexity of your customization changes. Where upgrade
changes are needed, manually apply the changes to your custom version.

Don't modify or source control any code that is generated

The IBM Social Program Management Web Development Accelerator tool generates code from the
metadata in the modules_config.json file, which is the only file that you need to source control. The
code is generated each time that you click Generate in the tool, or run the npm install, npm run
build, or npm run wda-generate commands.

Enforce code style with ESlint
To help you to run static code analysis on your code, the spm-eslint-config package contains an
ESLint configuration with predefined coding style rules and an EditorConfig configuration file.

The ESLint configuration is in the ./node_modules/@spm/eslint-config/index.js file.

The .editorconfig EditorConfig setup file is in the root directory of the sample application.

Running ESLint

To check the code for ESLint violations, run the following command in the starter application root
directory. Errors are listed in the console.

npm run lint

Fixing ESLint violations

Run the following command for ESLint to fix syntactic problems automatically:

npm run lint -- --fix

You must manually fix any violations that can't be resolved automatically.

Chapter 1. IBM Cúram Universal Access 39

The first time that you run a static code analyzer on your code, particularly if coding style was not
previously enforced, you might see numerous errors. Don't get discouraged, while it might take to fix all of
the violations, ensuring that your team uses a consistent coding style has significant long-term benefits.

ESLint plug-ins for code editors

Most code editors support plug-ins for linting. ESLint plugin is a useful plug-in for Microsoft Visual Studio
Code. ESLint plugins are also available for Atom.

If you use a plug-in, errors are highlighted in the code editor and can be seen and fixed during
development. When all the developers use a plug-in, is easier to maintain a consistent code style.

Automation

If you have a CD/CI pipeline, you can include linting as part of the testing phase. It is a good idea to
correct code with linting issues before you merge it into the codebase.

EditorConfig

The included editor config configuration file ensures consistent coding style when it comes to indentation,
spacing, and quotation types.

EditorConfig works without a plug-in for Microsoft Visual Studio Code. If you use other editors, like Atom
or Sublime Text, you need a plug-in. For more information about available plug-ins, see EditorConfig
website.

Universal Access UI coding conventions
The universal-access-ui package is responsible for the presentation of the UI in the application.
Coding conventions ensure that the UI code is separated by responsibilities, which gives benefits such as
easier maintenance. Features, Components, and Messages are coded to render each page of the
application.

Each page represents a business process function along a specific URL route. It is presented by using
individual IBM Social Program Management Design System components, embedded with localizable
messages, and connected to the Redux store, in the universal-access package, to access and
manage data in the application state (where applicable).

Features

A feature is an intangible concept of individual business functionality that is translated into a view
navigable by a route.

A feature maps a particular business process or functionality, such as showing a user their payments, and
makes it visible to the user in a collection of files that work together and are navigable by a URL route. For
example /payments.

Multiple features can be used to implement a larger or more encompassing business process, such as Life
Events, depending on how many separate views or business process functions are required.

Features are mainly defined through a path, a Routes.js entry, and a directory that references the
feature’s top-level React component.

Paths.js

A simple JavaScript file that exports a JSON object that contains the properties with each navigable
path a user might traverse to in the application.

For a feature, the first step is to declare the appropriate navigable route here, for example:

const PATHS = {
 ...
 USER_ENROLMENT: '/user_enrolment'
 ...
}

40 IBM Cúram Social Program Management 7.0.8 or 7.0.4.4: IBM Universal Access Responsive Web Application
2.3.0

https://marketplace.visualstudio.com/items?itemName=dbaeumer.vscode-eslint
https://atom.io/packages/eslint
https://editorconfig.org/
https://editorconfig.org/
https://editorconfig.org/

Routes.js entry

At a high-level, the Routes.js file in universal-access-ui (not the customizable Routes.js file
in the sample application) renders the feature’s top-level React component (which is exported from
the feature’s index.js file) depending on the current URL route.

react-loadable is used for component-centric code splitting. The feature’s top-level React component
is dynamically imported.

// UserEnrolmentContainer exported by /features/UserEnrolment/index.js
const UserEnrolment = Loadable({
 loader: () =>
 import(/* webpackChunkName: "SomeFeature" */ "../features/UserEnrolment"),
 loading: LoadingPage
});

Declare the route within the render() function, either as a TitledRoute or an
AuthenticatedRoute. Those familiar with React-Router might recognize some of the props.

...
render() {
 return (

 ...
 <TitledRoute
 component={UserEnrolment}
 exact
 path={PATHS.USER_ENROLMENT}
 title={localisableRoutesMessageFile.userEnrolmentTitle}
 />
 ...
)
}

This effectively wires up the feature’s route to the feature’s React components in the internal
Routes.js file.

Adding features, or customizing existing features, for example overriding the FAQs, require some
implementation in your sample-app/src/routes.js file. You must add the new feature or redirect
a route of an existing feature to your custom feature. For information about implementing similar
routing in your custom application, see Developing with routes.

Directory reference

The location of the feature in the file system. Each feature in universal-access-ui is a directory
within /universal-access-ui/src/features. The directory is named after the business process
function. It contains the files responsible for rendering the actual view to the user. A single React
component , typically the Container, is exported by the feature’s index.js to represent the feature
at higher levels, for example Routes.js.

The universal-access-ui package does contain other high-level directories that are responsible
for other functionality, but these are separate or complementary to the base feature concept.

Components

A component is a React component whose responsibility is to manage the data concerns for the piece of
business functionality and render the user’s view of the business functionality by using the data passed as
props, text defined in Messages, and components from the IBM Social Program Management Design
System.

Components are typically the highest-level React component that are exported from a feature (and act as
the starting renderable component) as generally every business process function requires some type of
data to retrieve, manipulate, and display. There are a few exceptions to this rule when the feature is only
an informational or static text view.

Components render the view of the business process function to the user.

Chapter 1. IBM Cúram Universal Access 41

https://github.com/jamiebuilds/react-loadable
https://reacttraining.com/react-router/web/guides/quick-start
https://www.ibm.com/support/knowledgecenter/SS8S5A_7.0.6/com.ibm.curam.universalaccess.doc/CitizenEngagement/c_CECUST_navigation.html

By default, layouts, HTML elements, and more complex UI widgets (like buttons, cards, badges, panels,
sections, headers, etc.) are taken from the IBM Social Program Management Design System. This
provides a standardized theme to the look-and-feel of all our features and benefit from common
concerns, such as accessibility and differing screen size layouts. We reference text defined in a separate
Messages file to render any text content.

Messages

Messages files define a JSON object that contains individual properties for each portion of text that is
used by a component and exported as a parameter to an API of the react-intl library.

Typically, every component renders text as part of it’s view. Each portion of text must be translatable
depending on the user’s language. Universal Access uses the react-intl library to help manage the text
content for translation.

For each component, there is a similarly created messages file, which contains the text that is wrapped in
the react-intl defineMessages() API. For example, UserEnrolmentComponentMessages.js.

import { defineMessages } from 'react-intl';

export default defineMessages({
 userEnrolmentTitle: {
 id: 'UserEnrolment_Title',
 defaultMessage: 'User Enrolment',
 },
 userEnrolmentDescription: {
 id: 'UserEnrolment_Description',
 defaultMessage: "You can enrol in our user's program.",
 },
 userEnrolmentButtonLabel: {
 id: 'UserEnrolment_Button',
 defaultMessage: 'Continue',
 },
 ...
});

The sampleApplication feature
The sample feature illustrates the principles, tools, and technologies for developing features in the
application. It implements a simple Apply for Benefits workflow that complies with the coding
conventions.

The IBM Social Program Management Web Development Accelerator tool significantly speeds up the
development of the Redux modules that connect the application to the REST APIs. The
BaseFormContainer component is used to implement EG forms. The test framework speeds up the
development of tests with less code. Where possible, replacing React containers with standard and
custom React hooks can reduce complexity and further speed up development.

Apply for Benefits workflow

Landing page
The /sample-application page shows a list of application types, which were obtained by using an
API call. The code for that API call was generated with the Social Program Management Web
Development Accelerator tool. Select an application type to go the Overview page. When you select
the application type, the type is stored in a custom Redux store object that was also configured with
the tool.

Overview page
The /sample-application/overview page describes the benefit and provides the option to start
the application. Applying for the benefit starts an IEG script with a script ID that is obtained from an
API call. This API call is configured by using the Social Program Management Web Development
Accelerator.

The Apply for Benefits form
The form is rendered from the IEG script by using the BaseFormContainer component. Enter the
required values to complete the form. When the form is complete, the confirmation page opens.

42 IBM Cúram Social Program Management 7.0.8 or 7.0.4.4: IBM Universal Access Responsive Web Application
2.3.0

https://github.com/yahoo/react-intl
https://github.com/yahoo/react-intl/wiki/API#definemessages

Confirmation page
The /sample-application/confirmation page summarizes the information that you entered.

Looking at the SampleModule module

To review the Redux module for the sample feature in Social Program Management Web Development
Accelerator, start the tool by running npm run wda. From the home page, select View Modules and then
Edit on SampleModule module. On the APIs tab, you can see the two APIs for the Apply for Benefits
workflow.

• The v1/ua/online_categories API returns a list of online categories where each online category
includes details of applications that a user can apply for. This API is used on the landing page.

• The v1/ua/application_form API is used to start a new application form for the logged in user. The
selectedApplicationType value is defined when you click on an application type on the landing
page and is then used on subsequent pages.

On the Store tab, you can see the selector and action for the selectedApplicationType.

Overview of the sample application code
SampleApplicationComponent.js

Displays a list of applications types, this component shows how to do the following tasks:

• To generate a temporary user if the current user is not logged-in using the
useGeneratedUserIfNotLoggedIn React hook.

• To retrieve information from the Redux store state using the useSelector hook.
• To verify whether the Rest API is still fetching information by using the selector
ReduxUtils.generateGlobalFetchingSelector. If it is still fetching data, the component
renders an AppSpinner, otherwise it renders the list of application types.

• To wrap with a HOC the complete component with an error boundary withErrorBoundary.

SampleApplicationConfirmation.js
A confirmation page with the identifier of the application submitted.

SampleApplicationFormComponent.js
This component handles the application IEG Scripts, the general IEG rendering and handling is
delegated to BaseFormContainer.

SampleApplicationOverviewComponent.js
This component gives an end-to-end view of the application process to the user, along with a
summary of the application type and program types that they are applying for. This component shows
how to dispatch an action and create an application form by invoking the useCallback hook
associated with a button onClick handler.

Manage state with React Hooks
React Hooks enable you to use state, execute effects, and other React features without writing a class.
You can use hooks to subscribe to the Redux store and dispatch actions, without having to wrap your
components in connect().

If you use containers, you need to:

• Use a React Class Component.
• Implement mapDispatchToProps to have access to the dispatch object to call actions.
• Implement mapStateToProps to have access to the state object to call selectors.
• Use the connect higher-order component when you export the component to wire it with Redux.

For example:

class SampleContainer extends Component {

Chapter 1. IBM Cúram Universal Access 43

 componentDidMount() {
 //Initializations
 //Calling Action
 this.props.sampleAction();
 }

 ...

 render() {
 //Calling selector
 const selectorValue = this.props.sampleSelector();

 return <>Component body</>;
 }

 ...

}

// We need to implement this function to have access to the `dispatch` object
const mapDispatchToprops = dispatch => ({
 // Call actions using the dispatch object
 sampleAction: () => SampleModuleActions.actionName(dispatch);
})

// We need to implement this function to have access to the `state` object
const mapStateToProps = state => ({
 // Call selectors using the state object
 sampleSelector : () => SampleModuleSelectors.selectorName(state);
})

// To do the wiring with redux, we need to use the `connect` HOC passing the two functions:
`mapStateToProps` and `mapDispatchToProps`
export connect(mapStateToProps, mapDispatchToProps)(SampleContainer);

To do the same with hooks:

• You don't use class components.
• You don't need to use connect, mapStateToProps or mapDispatchToProps.
• Use useDispatch to get the dispatch objects and call the actions.
• Use useSelector to get the state object and call the selectors.
• Use useEffect to simulate the life cycle events, for example componentDidMount

For example:

const SampleComponent = props => {
 //Get the dispatch object to call actions
 const dispatch = useDispatch();

 // Initializations - The same as componentDidMount
 useEffect(() => {
 //Calling action
 SampleActions.actionName(dispatch);
 } , [])

 //To call the selectors you do:
 const selectorValue = useSelector(state => SampleSelectors.selectorName(state));

 return (<>Component body<>);

}

In addition to the reduced code, you can create custom hooks to further reduce the amount of code.

Custom hooks

The following custom hooks are provided:

• useGeneratedUserIfNotLoggedIn: On mounting a component, checks whether the user is logged
in. If not, calls REST APIs to create a temporary user and automatically authenticate the user. This is
useful for anonymous IEG forms.

44 IBM Cúram Social Program Management 7.0.8 or 7.0.4.4: IBM Universal Access Responsive Web Application
2.3.0

• usePublicCitizenIfNotLoggedIn: On mounting a component, checks whether the user is logged
in. If not, automatically authenticate the user as a publicCitizen. For example, this is useful for
landing pages that need to call REST APIs to populate lists.

It is not possible to implement these two custom functions without hooks, as a utility JavaScript file for
example, because they need to modify the React component state.

Error handling with a React higher-order component (HOC)
You can use the withErrorBoundary function as a higher-order component (HOC) to handle API errors
on features. You can then focus on implementing components and delegate the error handling to the
function. Additionally, this approach reduces the amount of code that is needed to implement the
component and its tests.

The withErrorBoundary function is provided in the @spm/universal-access-ui package and
provides the following functions:

• Retrieves the list of errors from the Redux Store. You can use the default
ReduxUtils.generateGlobalErrorSelectorinvoking error selector, or provide a customer
selector.

• For any errors, the withErrorBoundary function throws a JavaScript exception that is caught by the
nearest ErrorBoundary.

• Wraps a component in an ErrorBoundary.
• Clears the errors from the Redux Store when the component is unmounted.

Table 3. The withErrorBoundary parameters

Parameter Mandatory Details

wrappedComponent Yes The component or container to
wrap.

errorSelector No The selector to get the errors. If
you don't provide an error
selector,
ReduxUtils.generateGlobal
ErrorSelector is used.

resetErrorAction No The action to reset the errors.

Examples

Exporting a component with the withErrorBoundary function.

Default values

import withErrorBoundary from '@spm/universal-access-ui';

class Container extends Component {
 ...
 ...
 ...
}

export default withErrorBoundary(Container)
);

With parameters

import withErrorBoundary from '@spm/universal-access-ui';
import { CustomSelectors, CustomActions } from '@spm/universal-access';

class Container extends Component {
 ...
 ...
 ...
}

Chapter 1. IBM Cúram Universal Access 45

export default withErrorBoundary(Container,CustomSelectors.selectError ,
CustomActions.resetError)
);

Developing with routes
Routes define the valid endpoints for navigation in your application. Your application consists of a
network of routes that can be traversed by your users to access the application's pages.

IBM Cúram Universal Access uses the react-router and react-router-dom packages to manage navigation.
React Router defines and works with routes. For more information, see the React Router documentation
at https://reacttraining.com/react-router/web/guides/philosophy.

The Routes component
The module for Universal Access exports the Routes component, which exposes the routes defined by the
module. The defined routes are the suite of pages that are prebuilt and available for reuse in Universal
Access.

Routes component

You can import and reuse the Routes component in your application. The code example shows how
import and reuse the Routes component in a sample application.

import React from 'react';
import { injectIntl, intlShape } from 'react-intl';
 import { BrowserRouter } from 'react-router-dom';
import '@spm/web-design-system/js/govhhs-design-system-core.min';
 import { Routes } from '@spm/universal-access';

const App = (props) => {
 return (
 {/** You must define your routes controller (Hash vs Browser) */}
 <BrowserRouter>
 <div className="app">
 <div className="my-header-navigation">
 Home | Faq
 </div>
 <Routes />
 </div>
 </BrowserRouter>
);
};

App.propTypes = {
 intl: intlShape.isRequired,
};

export default injectIntl(App);

Adding routes
You can add a route by including a new route anywhere inside your Router component.

The following code example adds a route to MyNewPageComponent into the router component:

import { BrowserRouter, Route } from 'react-router-dom';
…
<BrowserRouter>
 <div className="app">
 <div className="my-header-navigation">
 Home | New Page
 </div>
 <UARoutes />
 <Route path="/my-new-page" component={MyNewPageComponent} />
 </div>
</BrowserRouter>

46 IBM Cúram Social Program Management 7.0.8 or 7.0.4.4: IBM Universal Access Responsive Web Application
2.3.0

https://reacttraining.com/react-router/web/guides/philosophy

Replacing routes
You can replace existing paths from the Universal Access module’s Routes component with your
preferred component.

Wrap your routes in a <Switch> component

You can replace existing paths from the Routes component with your preferred component. To achieve
this, you must first wrap your routes in a <Switch> component from react-router. This action ensures that
the first match of the requested path that is found in your application is used to resolve the path. For more
information on Switch, see https://reacttraining.com/react-router/web/guides/philosophy.

Add a route with the same path

When you have wrapped in Switch, you add a route with the same path as the page you are overriding.

Note: This route must come before the <Routes/> component to ensure it is matched first.

The following code example shows a replacement route to MyHomePageComponent enclosed in a
<Switch>:

import { BrowserRouter, Route, Switch } from 'react-router-dom';
…
<BrowserRouter>
 <div className="app">
 <div className="my-header-navigation">
 Home | New Page
 </div>
 <Switch>
 <Route path="/" component={MyHomePageComponent} />
 <Routes />
 <Route path="/my-new-page" component={MyNewPageComponent} />
 </Switch>
 </div>
</BrowserRouter>

Redirecting routes
You can redirect existing paths by using the react-router Redirect component.

Redirecting a route

The following code example imports the Redirect component and redirects the path '/bring-me-home' to
"/".

import { BrowserRouter, Route, Switch, Redirect } from 'react-router-dom';
…
<BrowserRouter>
 <div className="app">
 <div className="my-header-navigation">
 Home | New Page
 </div>
 <Switch>
 <Route path="/" component={MyHomePageComponent} />
 <Redirect path"/bring-me-home" to="/"
 <Routes />
 <Route path="/my-new-page" component={MyNewPageComponent} />
 </Switch>
 </div>
</BrowserRouter>

Removing routes
You can remove unwanted routes from IBM Cúram Universal Access.

You might want to reuse some but not all of the Universal Access <Routes/>. For those routes that you
want to remove instead of replacing, use the react-router <Redirect> component to send users to a ‘404’
style page, or some other valid end point.

Chapter 1. IBM Cúram Universal Access 47

https://reacttraining.com/react-router/web/guides/philosophy

You must declare the redirect before the <Routes/> component. You must also wrap the redirect in a
<Switch> component. The following code example removes the route to "FAQ" by redirecting to a 404
page:

<BrowserRouter>
 <div className="app">
 <div className="my-header-navigation">
 Home | FAQ
 </div>
 <Switch>
 <Redirect path="/faq" to="/404page" />
 <Routes />
 </Switch>
 </div>
</BrowserRouter>

Advanced routing
IBM Cúram Universal Access is now code-split based on routes.

Code splitting

Code-split based on routes is achieved using react-loadable and the @spm/universal-access-ui
package that is in the default LoadingPage component. For more information, see https://github.com/
facebook/create-react-app/blob/master/packages/react-scripts/template/README.md#code-splitting
and https://github.com/jamiebuilds/react-loadable. The following example shows how to achieve the
same split with the routes that you added:

import { LoadingPage } from ‘@spm/universal-access-ui’;
…
const MyNewPageComponent = Loadable({
 loader: () => import(/* webpackChunkName: “MyNewPageComponent” */ '../features/
MyNewPageComponent’),
 loading: LoadingPage,
});
…
 <Route
 component={MyNewPageComponent}
 exact
 path=‘/my-new-page’
 />

Titled routes

Accessibility rules require that a web page should have a descriptive title. You can implement a
descriptive title using the TitledRoute component of the @spm/universal-access-ui package. To localize
the title, TitledRoute exposes a title prop that accepts a react-intl message () and can be used with or
without code-split routes as shown in the following example:

import { TitledRoute } from ‘@spm/universal-access-ui’;
import { defineMessages } from 'react-intl';
…
const titles = defineMessages({
 myNewPage: {
 id: 'app.titles.myNewPage’,
 defaultMessage: ‘My New Page’,
 },
});
…
 <TitledRoute
 component={MyNewPageComponent}
 exact
 path=‘/my-new-page’
 title={titles.myNewPage}
 />

Authenticated routes

You can protect parts of the application in two ways:

48 IBM Cúram Social Program Management 7.0.8 or 7.0.4.4: IBM Universal Access Responsive Web Application
2.3.0

https://github.com/facebook/create-react-app/blob/master/packages/react-scripts/template/README.md#code-splitting
https://github.com/facebook/create-react-app/blob/master/packages/react-scripts/template/README.md#code-splitting
https://github.com/jamiebuilds/react-loadable

1. On access, handle authentication failures to a REST API and redirect to a login page.
2. Block access to specific routes to avoid any cost in running the REST API.

The following example shows how to block access to specific routes. The @spm/universal-access-ui
package provides an AuthenticatedRoute component that accepts an authUserTypes array prop of the
allowed user types to access this route. AuthenticatedRoute also wraps TitledRoute and therefore offers a
title prop. The following is an example of using AuthenticatedRoute:

import { AuthenticatedRoute } from ‘@spm/universal-access-ui’;
import { Authentication } from '@spm/universal-access';
import { defineMessages } from 'react-intl';
…
const titles = defineMessages({
 myNewPage: {
 id: 'app.titles.myNewPage’,
 defaultMessage: ‘My New Page’,
 },
});
…
 <AuthenticatedRoute
 authUserTypes={[Authentication.USER_TYPES.STANDARD, Authentication.USER_TYPES.LINKED]}
 component={MyNewPageComponent}
 exact
 path=‘/my-new-page’
 title={titles.myNewPage}
 />

The example blocks access to the /my-new-page routes for all users who are not of type STANDARD or
LINKED, these users are redirected to the /login route.

Redux in Universal Access
Redux is used as a client-side store to store data that is retrieved by IBM Cúram Social Program
Management APIs and data that is used to present a consistent user experience.

What is Redux?

Redux is a client-side store that provides a mechanism for holding data in the browser.

• The store is typically used to manage state in the client application. State can include the following
types of data:

– System data that is returned from an API request.
– User input data that is collected before it is posted to APIs.
– Application data that is not sent from or to the server, but is created and maintained to control how

the application works. For example, transient user selections like hiding or showing a side pane.
• Redux uses a unidirectional architecture, which simplifies the process of managing state.
• Redux can be used as a caching mechanism to avoid unnecessary network round-trips, although

consider this usage carefully to ensure the data that is presented is always current.
• Redux proves to be beneficial as your application grows and becomes more complex. By centralizing

state management and offering tools that give a holistic view of the application state, development can
scale more easily.

Note: This topic assumes that you are familiar with Redux and using Redux with React components. If
you are not familiar with these technologies and how they work together, you should complete tutorials
from the official sources for these technologies.

How is Redux used in Universal Access?

IBM Cúram Universal Access uses Redux to store the data that is retrieved by the IBM Cúram Social
Program Management APIs.

Each GET API used by Universal Access has an associated ‘store slice’ where the response of the API is
stored. React components can monitor the store for updates relevant to them and automatically update
as data changes. The store is also used for collecting user input, such as user information that is

Chapter 1. IBM Cúram Universal Access 49

requested while users sign up. This data can then be retrieved from the store and posted to the IBM
Cúram Social Program Management server.

Other parts of the store are not tied to IBM Cúram Social Program Management APIs, and track data that
is used to present a consistent user experience.

Creating a Redux store

By default, the Universal Access starter pack is configured to use a Redux store. This configuration is
needed to allow it to use the universal-access and universal-access-ui packages. The store
configuration is initiated from the src/redux/ReduxInit.js file in the starter pack.

...

import configureStore from './store';

...

// ===================================
// 1. Create the store and initialize the universal-access module.
// ==================================

// Create a Redux store
// This is optional, if you don't want to create your own Redux store you can remove this,
const appStore = configureStore();

// Configure the UA package
// 1. If you are using your own store, you must share it with UA
UAReduxStore.configureStore(appStore);

...

For more information on Redux, see https://redux.js.org/.

Configuring the store

Configure the store in the src/redux/store.js file, which exports the configureStore function that
can be called to create a new Redux store. The configure store function can be modified to:

• Add Redux 'middleware'.
• Provide a custom set of reducers.

Note: To work with the universal-access packages, the store must use the reducers that are
exported from the universal-access package.

Clearing Redux store data

The Redux store is a JavaScript object that is stored in the global object for the browser window. The
content of the store is visible through inspection, either programmatically or by browser plug-in tools,
such as the developer tools. It is critical that the store is cleared for the current user when they log out to
ensure that no sensitive user data is left on the device for malicious actors. The log-out feature that is
provided by the starter app triggers a Redux action that clears the store.

Adding reducers

If you decide to use Redux with your custom React components, you must create custom reducers and
add them to the store. All Universal Access reducers are prefixed with UA, for example
UAPaymentsReducer. The intelligent-evidence-gathering package also exposes
IEGReduxReducers reducers, prefixed with IEG. When adding custom reducers, you can combine your
custom reducers with existing reducers. Do not use the UA or IEG prefixes in custom reducers to avoid
overriding existing reducers. Overriding reducers is not supported, see “Developing compliantly” on page
39.

The src/redux/rootReducer.js file defines the set of reducers for the store, and combines them into
a single root reducer that can be passed to the configureStore function in the src/redux/store.js
file.

50 IBM Cúram Social Program Management 7.0.8 or 7.0.4.4: IBM Universal Access Responsive Web Application
2.3.0

https://redux.js.org/

For convenience, the file defines an AppReducers object where you can add custom reducers. The
custom reducers that are defined in the AppReducers object are combined with the UAReducers
imported from the universal-access package, and the superset of reducers is returned.

The following code excerpt shows the rootReducer function that returns the combination of Universal
Access reducers and custom reducers.

const AppReducers = {
 // Add custom reducers here...
 // customReducer: (state, action) => state,
};

/**
 * Combines the App reducers with those provided by the universal-access package
 */
const appReducer = combineReducers({
 ...AppReducers,
 ...UAReduxReducers,
});

/**
 * Returns the rootReducer for the Redux store.
 * @param {*} state
 * @param {*} action
 */
const rootReducer = (state, action = { type: 'unknown' }) => {
 ...
 return appReducer(state, action);
};

Universal Access Redux modules
Modules in the Universal Access Responsive Web Application communicate between the application and
the IBM Cúram Social Program Management REST APIs and manage data for the API in the Redux store.

This design allows the React components to focus on presentation and reduces the complexity of the
code in the presentation layer. Modules manage the communication between the client application and
the IBM Cúram Social Program Management REST APIs, including authentication, locale management,
asynchronous communication, error handling, Redux store management and more.

Modules typically follow the re-ducks pattern for scaling with Redux

Modules and APIs

Modules consist of collection of artifacts that work together to communicate withIBM Cúram Social
Program Management REST APIs and manage the storage and retrieval of the response in the application
state. For example, the Payments module is responsible for communicating with the /v1/ua/payments
API. For more information about IBM Cúram Social Program Management APIs, see Connecting to a
Cúram REST API.

Models

The models.js file is your data representation of the response from the API. It must map the JSON
response properties to an object that can be referenced within your web application.

class UserProfile {
 constructor(json = null) {
 if (json) {
 this.personFirstName = json.personFirstName;
 this.personMiddleName = json.personMiddleName;
 this.personSurname = json.personSurname;
 this.personDOB = json.personDOB
 this.userName = json.userName;
 this.userType = json.userType;
 ...
 }
 }
}

export default UserProfile;

Chapter 1. IBM Cúram Universal Access 51

https://medium.freecodecamp.org/scaling-your-redux-app-with-ducks-6115955638be

Utils

The utils.js file is responsible for the actual communication to the required API. On successful
contact with the API, it constructs the model with the response. For simple GET calls, you can use
RESTService.get to handle the API call. For more information, see the RESTService utility.

import { RESTService } from "@spm/core";
import UserProfile from "./models";

const fetchUserProfileUtil = callback => {
 const url = `${process.env.REACT_APP_API_URL}/user_profile`;
 RESTService.get(url, (success, response) => {
 const modelledResponse = new UserProfile(response);
 callback(success, modelledResponse);
 });
};

export { fetchUserProfileUtil };

ActionTypes and Actions

Module actions are used to modify the Redux store, like inserting, modifying, or deleting data from the
store. For example, the PaymentsActions action modifies the payments slice of the store.

Some actions include calls to APIs. For example, PaymentsActions.getData action calls the
v1/ua/payments API and dispatches the result to the payments slice of the store, or sets an error if
the API call fails.

The actionTypes.js file represents the type of action that is being performed. At its core, they are
simple string types. For more information, see the Redux Glossary.

const FETCH_USER_PROFILE = "UA-CUSTOM/USER_PROFILE/FETCH_USER_PROFILE";

export { FETCH_USER_PROFILE };

The actions.js file contains the Redux actions, which are objects that represent an intention to
change the application state. They are exported to be accessible to call from a Container component.

The following example is a representation of the action that calls the API and attaches the response
to the dispatch, but you might further improve by adding fallback behavior.

import { FETCH_USER_PROFILE } from "./actionTypes";
import { fetchUserProfileUtil } from "./utils";

export default class actions {
 static fetchUserProfile = dispatch => {
 fetchUserProfileUtil((success, payload) => {
 if (success) {
 dispatch({
 type: FETCH_USER_PROFILE,
 payload: payload
 });
 }
 });
 };
}

Reducer

The reducers.js file contains the Redux Reducers. Redux Reducers are just functions that take the
existing state and current actions and calculate a new state, thus updating the application state.

The following example represents a data reducer that updates the state based on the API result. You
can implement more complex reducers based on the action to represent API errors or failures or if the
API is awaiting a response, like an isFetchingUserProfile reducer.

Reducers aren’t called from Container components.

import { combineReducers } from "redux";
import { FETCH_USER_PROFILE } from "./actionTypes";

52 IBM Cúram Social Program Management 7.0.8 or 7.0.4.4: IBM Universal Access Responsive Web Application
2.3.0

https://redux.js.org/glossary#action
https://redux.js.org/basics/reducers

const fetchUserProfileReducer = (state = {}, action) => {
 if (action.type === FETCH_USER_PROFILE) {
 return { ...state, payload: action.payload };
 } else {
 return state;
 }
};

const reducers = combineReducers({
 fetchUserProfile: fetchUserProfileReducer
 // room for more reducers!
});

export default { reducers };

Selectors

Module selectors are used to query the Redux store. They provide the response to predefined store
queries. For example, the PaymentsSelector.selectData selector returns the /payments/data
slice from the store, and the PaymentsSelector.selectError selector returns the value of the /
payments/error slice of the store.

The selectors.js file is responsible for retrieving the data from the application state for use in the
Container component (and likely passed as props to the Presentational component). It selects
information from the state by using the state’s ‘slice’ identifier.

export default class selectors {
 static moduleIdentifier = "UACustomUserProfile";

 static fetchUserProfile = state =>
 state[selectors.moduleIdentifier].fetchUserProfile.payload;
}

Index

You must export the parts of a module that must be accessible. Instead of creating an index.js per
module, create one in the module directory that exports the Actions, Model, and Selectors of each
custom module. These classes or functions are the only ones that need to be accessed from the
container components.

// Modules
export { default as UserProfileActions } from "./UserProfile/actions";
export { default as UserProfileSelectors } from "./UserProfile/selectors";
export { default as UserProfileModels } from "./UserProfile/models";

Blackbox

Modules are blackbox so are not open to customization or extension. The modules expose actions and
selectors to interact with the module. The actions and selectors are APIs that are documented in the
<your-project-root>/node_modules/@spm/universal-access/docs/index.html file.

Reusing Universal Access modules in your custom components

You can use the actions and selectors from the universal-access package to connect your custom
components to existing IBM Cúram Social Program Management APIs and the Redux store. You can use
the react-redux module to connect your components. Examples of this technique can be found in the
universal-access-ui features.

For example, the following code is from the PaymentsContainer file in the Payments feature. The code
shows how the actions and selectors from the Payments module are connected to the properties of the
Payments component.

This pattern is documented extensively in the official Redux documentation.

import { connect } from 'react-redux';
import React, { Component } from 'react';

...

Chapter 1. IBM Cúram Universal Access 53

/**
 * Retrieves data from the Redux store.
 *
 * @param state the redux store state
 * @memberof PaymentsContainer
 */
const mapStateToProps = state => ({
 payments: PaymentsSelectors.selectData(state),
 isFetchingPayments: PaymentsSelectors.isProcessing(state),
 paymentsError: PaymentsSelectors.selectError(state),
});
/**
 * Retrieve data from related rest APIs and updates the Redux store.
 *
 * @export
 * @param {*} dispatch the dispatch function
 * @returns {Object} the mappings.
 * @memberof PaymentsContainer
 */
export const mapDispatchToProps = dispatch => ({
 loadPayments: () => PaymentsActions.getData(dispatch),
 resetError: () => PaymentsActions.resetError(dispatch),
});
/**
 * PaymentsContainer initiates the rendering the payments list.
 * This component holds the user's payment details list.
 * @export
 * @namespace
 * @memberof PaymentsContainer
 */
export default connect(
 mapStateToProps,
 mapDispatchToProps
)(PaymentsContainer);

Related information
Connecting to a Cúram REST API

Social Program Management Web Development Accelerator
The IBM Social Program Management Web Development Accelerator is a tool that automatically
generates code for Universal Access Redux modules. Select and configure Social Program Management
REST APIs and automatically generate all of the module code.

 Click here for a video presentation that gives an overview of the Social Program Management Web
Development Accelerator.

 Click here for a video series that gives a comprehensive view of the Social Program Management Web
Development Accelerator and other recent technologies.

How it works

1. Create a module.
2. Select and configure the Social Program Management REST APIs that are required for the module.
3. Save the module. Your configuration is saved as metadata in a JSON file, which is the only code that

you need to source control.
4. Generate the code. The module code is generated from the metadata and placed into a specified

directory in the project
5. Import the module into your React components.

Note: You don't need to source control the generated code. The code is generated each time that you
click Generate in the tool, or when you run npm install, npm run build or npm run wda-
generate.

54 IBM Cúram Social Program Management 7.0.8 or 7.0.4.4: IBM Universal Access Responsive Web Application
2.3.0

https://developer.ibm.com/watsonhealth/videos/ibm-universal-access-web-development-accelerator-and-combo-box/
https://developer.ibm.com/watsonhealth/videos/ibm-universal-access-web-development-accelerator-and-combo-box/
https://developer.ibm.com/watsonhealth/videos/wda-rapid-feature-implementation-introduction/
https://developer.ibm.com/watsonhealth/videos/wda-rapid-feature-implementation-introduction/

Generating Universal Access Redux modules
In the IBM Social Program Management Web Development Accelerator, you can create a module, select
and configure your REST APIs, and generate all of the code that is needed to handle the API requests and
manage your application state with Redux.

Before you begin
Check that the Social Program Management Web Development Accelerator environment variables are set
correctly, see “ React environment variable reference” on page 30.

Procedure

1. In the root directory of the universal-access-starter-app, run the command:

npm run wda

The Social Program Management Web Development Accelerator opens locally at http://
localhost:3000/.

2. On the home page, click View modules.
3. Click Add module or click an existing module to edit the module.
4. To add APIs, select the APIs tab and click Add API.
5. From the list of available APIs that is defined by the Swagger specification in the

WDA_SPM_SWAGGER environment variable, select the APIs that you need.
The APIs are added to the model metadata JSON file that is specified in the WDA_MODULES_CONFIG
environmental variable.

6. You can customize the default Action functions, Selectors, and Reducers for an API by changing their
names, or by specifying whether the API response is stored in Redux.
a) By default, function names are defined by a convention based on the API URI and verb. Click a

function name to rename the function.
b) By default, each REST API response is cached in the Redux store. If you don't want to store the API

response, clear the Store the API response in Redux? check box. The corresponding functions are
removed from the model.

The APIs are defined in the model.
7. To create a custom store object to cache JavaScript objects, select the Store tab, click Add Store,

enter a name for the store object, and click Confirm.
8. You can preview the code to be generated from the modules metadata by selecting the Code Preview

tab.
9. You can generate the code as follows:

a) From the Modules page, click Generate
b) By using npm, run the command:

npm run wda-generate

The code is also generated each time that the project is installed or built by running npm run
start or npm run build.

The modules and the generated code are written directly to the directory that is defined in the
WDA_MODULES_OUTPUT environment variable.

Chapter 1. IBM Cúram Universal Access 55

Connecting to Universal Access APIs
You must connect your web application to IBM Cúram Social Program Management Universal Access
REST APIs. You can use the mock server API service and the RESTServices utility to help you to develop
and test your REST API connections.

The mock server API service
The mock server is a mock API service that is provided to aid rapid development. The mock server serves
APIs that simulate calling real web APIs. When you are developing your application, the mock server
provides a lightweight environment against which the React components can be tested communicating
with the services that provide their data.

Configuring the mock server

Configure the mock server location through the following properties in the .env.development file. You
can change these values to suit your needs.

• REACT_APP_REST_URL=http://localhost:3080
• REACT_APP_API_URL=http://localhost:3080
• MOCK_SERVER_PORT=3080

Running the mock server

Run the mock server by using the following command from the root directory of your project:

npm run start:mock-server

However, when you are developing locally, you can use the following command that starts both the mock
server and the client:

npm run start

See the package.json file in your project for the full list of commands.

Adding mock APIs

The universal-access project includes a number of mock APIs that simulate calling the SPM Universal
Access APIs. These mock APIs support running some basic scenarios in development mode for the
existing set of features.

As you develop your application, you typically create new APIs that you also want to mock. When the
mock server starts, it looks to import the /mock/apis/mockapis file relative to the folder the command
was started from. In this file, the mock-server expects to find three objects, GET, POST, and DELETE, that
it can query to serve API requests for those HTTP methods.

The format of the mock definition is a relative URL that is assigned a JavaScript object. For example, the
following code assigns the object user to the URL /user, and the object payments.json, which is read
from a file, to the /payments URL.

const user = {

 'firstname': 'James',

 'surname': 'Smith',

 'gender': 'male',

 ...

}

const mockAPIsGET = {
 // ADD YOUR GET MOCKS HERE

 // Example of providing mock data in response to an API request in
 // the format uri:mockobject

56 IBM Cúram Social Program Management 7.0.8 or 7.0.4.4: IBM Universal Access Responsive Web Application
2.3.0

 '/user': user,

 '/payments': readFile('./payments/payments.json)
};

If you use mocking extensively, it is better to use separate files and folders to structure your mocks.

Using universal-access mock APIs

The mockapis.js file is preconfigured to import and use mock APIs defined and exported by the
universal-access package. This allows your project to reuse and extend the set of universal-access mock
APIs.

const mockAPIs = require('@spm/universal-access-mocks');

// Extract the existing universal access GET,POST and DELETE mocks for merging.
const UAMockAPIsGET = mockAPIs.GET;
const UAMockAPIsPOST = mockAPIs.POST;
const UAMockAPIsDELETE = mockAPIs.DELETE;

...

//create custom mocks

...

// Merge UA mocks with custom mocks
const GET = Object.assign({}, UAMockAPIsGET, mockAPIsGET);
const POST = Object.assign({}, UAMockAPIsPOST, mockAPIsPOST);
const DELETE = Object.assign({}, UAMockAPIsDELETE, mockAPIsDELETE);

module.exports = { GET, POST, DELETE };

Where the same URL is used by a custom mock that was previously assigned to a universal-access
package mock, the custom mock replaces the universal access version.

The RESTService utility
The @spm/core package provides the RESTService utility, which you can use to connect your application
to a REST API. You can fetch resources with alternatives such as Fetch API, SuperAgent, or Axios.
However, the RESTService utility provides some useful functions for connecting to SPM REST APIs.

The RESTService utility supports the GET, POST, and DELETE HTTP methods through the following
JavaScript methods:

• RESTService.get(url, callback, params)
• RESTService.post(url, data, callback)
• RESTService.del(url, callback)

The full RESTService class documentation is in the doc folder in the @spm/core package.

The RESTService utility hides details of calls, such as passing credentials, language, and errors. The
callback that is passed to the GET, POST, or DELETE methods is started after the API calls return. API
calls are asynchronous, so write your code to expect and handle a delay in receiving a response.

The RESTService utility provides the following functions during communications.

Authentication

Authentication of the user is handled transparently by the RESTService utility. After a user is
authenticated, the REST APIs automatically send the needed 'credentials', that is, the authentication
cookies, with each request. For information about how authentication is handled for REST, see Cúram
REST API security.

If a user's session is invalidated before a new request is made to a REST API, then the '401 unauthorized'
response is returned by the server. The RESTService utility relays the response to the callback function
passed by the caller.

Chapter 1. IBM Cúram Universal Access 57

Handling responses

The RESTService utility formats the response from the server to ensure that callbacks receive the
response in a consistent manner.

Each GET, POST, and DELETE method accepts a callback function from the caller. When called by the
RESTService utility, the callback function receives a Boolean value that indicates the success or failure of
the API call and the response. The callback function can then deal with the result. For example, a failure
can be used to trigger your code to throw an error with the response data that can be used to trigger an
error boundary. For more information about the callback function parameters, see the API documentation
for the RESTService utility.

User Language

The 'Accept-Language' HTTP header is automatically set by the RESTService utility based on the user's
selected language, which the user can select with the language picker in the application. This approach
lets the server respond in the correct locale where locale sensitive information is being handled on the
server.

The locale that is passed in the header is set in the transaction that is initiated by that REST request, and
is used for the duration of that transaction. For more on transactions, see Transaction control.

Handling timeouts

The RESTService utility can manage unresponsive calls to the server. You can set environment variables
in the .env files to set thresholds for timeouts.

• REACT_APP_RESPONSE_TIMEOUT=10 Wait 10 seconds for the server to start sending.
• REACT_APP_RESPONSE_DEADLINE=60 but allow 1 minute for the file to finish loading.

Simulating slow responses

During development, it is important to test that your application continues to operate in an acceptable
way even when network responses are slow. You can simulate a slow network connection by setting a
property in the .env.development file in the root of your project.

For example, set REACT_APP_DELAY_REST_API=2 to delay the response from all GET requests for 2
seconds. The value can be set to any positive integer to adjust the delay.

Related reference
React environment variable reference
A full list of Universal Access React environment variables categorized by REST API, locale, feature
toggles, simple or SSO authentication, user session, Social Program Management Web Development
Accelerator, and Intelligent Evidence Gathering (IEG). You can set environmental variables in .env files in
the root directory of your application. If you omit environment variables, either they are not set or the
default values apply.

Universal Access REST APIs
The following IBM Cúram Social Program Management REST APIs are relevant to the key business
functions of IBM Universal Access Responsive Web Application.

For the full list of supported Social Program Management APIs, see the Swagger specification, which is
available from a running Social Program Management instance at http://<hostname>:<port>/
Rest/api/definitions/v1.

Appeals

POST /v1/ua/appeals_form

Starts a new IEG execution for an appeal.

POST /v1/ua/appeals_form/exit

58 IBM Cúram Social Program Management 7.0.8 or 7.0.4.4: IBM Universal Access Responsive Web Application
2.3.0

Exits the Appeals IEG Form.

GET /v1/ua/appeals

Returns the list of appeals for the logged in user.

GET /v1/ua/appeals/{online_appeal_request_id}/attachment

Returns the attachment document for an appeal request.

Applications

GET /ua/online_categories

Returns a list of Online Categories. Each category includes details of the applications that a user can apply
for.

GET /ua/submitted_applications

Returns a list of applications that were previously submitted by the logged in user.

POST /ua/submitted_applications/{application_id}/application_programs/
{application_program_id}/withdrawal_request

Creates a withdrawal request for the specified program in a submitted application. The application can be
withdrawn only if it has a status of pending, and if there is not already a pending withdrawal request for
this application. For each program associated with the submitted application, a separate withdrawal
request must be created. Either a withdrawalReason or reasonText value must be supplied, but not
both. See /withdrawal_request_reasons for the list of possible withdrawal reasons that were
configured for the associated application type.

GET /ua/submitted_applications/{application_id}/application_programs/
{application_program_id}/withdrawal_request_reasons

Returns a list of possible withdrawal reasons that a user can choose when they withdraw an application.

GET /ua/application_types

Returns details of the application type definition of the specified draft or submitted intake application.

GET /ua/application_types/{application_type_id}

Returns details of the specified application type.

GET /ua/application_submission_message

Returns details of an application submission message.

GET /ua/application_confirmation_message

Returns details of an application confirmation message. The details are configurable by an Administrator,
by updating the details for the associated application type definition.

GET /ua/draft_applications

Returns a list of draft applications that are currently in-progress for the logged in user.

GET /ua/submitted_applications/{application_id}/attachment

Returns the attachment for the specified submitted application.

GET /ua/form_details/{application_form_id}

Gets details of a form instance.

POST /ua/application_form

Starts a new intake application form for the logged in user. Under the hood, a new datastore is created to
store the data provided in the application form, for later use for when the user is ready to submit their
intake application.

DELETE /ua/application_form/{application_form_id}

Chapter 1. IBM Cúram Universal Access 59

Cancels the specified intake application form without saving the details, which means the application
form cannot be retrieved or resumed at a later stage.

POST /ua/submission_form

Starts a submission form for the logged in user, which is used in association with the specified intake
application form.

GET /ua/submission_form/{submission_form_id}

Gets details of a submission form instance.

GET /ua/submission_form/{submission_form_id}/page_details

Returns details of questions for a single page of the specified form. If the page query parameter has a
value of 'next', or is left empty, then the questions that are returned are for the next unanswered page in
the application, or the first page if no answers were submitted yet. If the page query parameter has a
value of 'previous', the questions that are returned are for the page previous to the last answered page. In
this way, it is possible to navigate through the pages of a form, however it is not permitted to jump
directly to a specific page.

POST /ua/applications

Creates an intake application based on the data that was previously supplied in the specified intake
application and submission forms.

Life events

GET /ua/life_event_categories

Gets the list of life event categories and the life event contexts (of type Citizen/Online) that are
contained inside those categories, and the life event contexts that are not associated with any category.

POST /ua/life_events_form

Get the formId given the lifeEventsContextId.

GET /ua/life_events_form/{formId}

Gets the Life Event Context record based on the IEG form.

POST /ua/life_events_form/exit

Submits the Life Event IEG form.

GET /ua/life_events_history

Get the life event history.

GET /ua/life_event_remote_systems/{formId}

Gets the list of Remote Systems that are associated with the Life Event Context of the specified Life Event
Form.

POST /ua/life_event_remote_systems/{formId}

Sends the Life Event data to the selected Remote Systems.

Messages

GET /ua/messages

Returns a list of system messages and account messages applicable for the logged in user.

Notices

POST /v1/ua/communications/{communication_id}/mark_send_by_post

Mark a communication to be sent by mail. An attribute on the return of the API indicates whether a send
by mail request exists for the communication.

60 IBM Cúram Social Program Management 7.0.8 or 7.0.4.4: IBM Universal Access Responsive Web Application
2.3.0

GET /v1/ua/communications/

Returns the list of communications for the logged in user.

GET /v1/ua/communications/{communication_id}

Returns a communication.

GET /v1/ua/communications/{communication_id}/attachments/{attachment_id}

Returns the communication attachment details.

Organization

GET /ua/organisation

Returns the details of the organization.

GET /ua/local_offices

Returns a list of local offices. The list can be filtered either by county or by ZIP/postal code.

Payments

GET /ua/payments

Returns a list of payments for the logged in user. The returned list is ordered by payment date, with the
most recent payment listed first. The list can be filtered to return a single payment by supplying both
query parameters of payment_id and isPaymentByExternalParty.

GET /ua/payment_messages

Returns details of the user's next payment.

System

GET /ua/system_configurations

Returns a list of system properties. The list can be filtered to return a single system property by supplying
the property ID.

GET /ua/app_image_resource

Returns the requested image resource.

GET /ua/icons/{icon_id}

Returns the requested icon.

User

GET /v1/ua/user

Returns information that is related to the current user, such as user permissions.

GET /ua/profile

Returns details of the logged in user.

GET /ua/profile_image/{image_id}

Returns the requested profile photo. This photo must belong to the logged in user. See /profile for
retrieving the details for the value to use for {image_id}.

POST /ua/user_account

Creates a user account.

POST /ua/email_password_reset

Sends a reset password email to the email address registered for the user.

Chapter 1. IBM Cúram Universal Access 61

POST /ua/secret_question_password_reset

Resets the user's password, with the new password specified. The user's secret question and answer
must be valid, in order for the password to be successfully reset.

POST /ua/password_reset

Resets the user's password, with the new password specified. The specified existing password must be
valid, in order for the password to be successfully reset.

POST /ua/generated_user_accounts

Generates a temporary user account to be used to log in to the Social Program Management system under
the hood, when the citizen user has not logged in or created their own user account. This account
temporarily stores the details of the citizen user, for example any intake applications or benefits they
start, and transfers these details to a permanent user account if the user signs up or logs in with their own
account at a later stage.

POST /ua/application_form_ownership

Changes the ownership of the specified intake application form to the currently logged in user. This action
can be completed only if the previous owner of the intake application form is a system-generated user, it
is not permissible to use this API to change the ownership from one citizen account user to another.

GET /ua/user_account_login

Retrieve the users last successful login date time.

GET /ua/case_contacts

Returns a list of contact information for the caseworkers that are related to the logged in user's cases.

Screening

GET /ua/screening_form

List all screening forms for the current user.

POST /ua/screening_form

Starts a new IEG execution based on the Screening Type.

GET /ua/screening_form/{formId}

Gets the Screening Type and Program selection for a specified Screening Form.

POST /ua/screening_form/{formId}

Updates the Program selection for specified Screening Form.

DELETE /ua/screening_form/{formId}

Delete a screening form.

POST /ua/filter_screening_form

Starts a new Filter Screening IEG execution based on the Screening Type.

POST /ua/screening_form/exit

Exits the Screening IEG Form.

GET /ua/screening_form/{formId}/results

Get the Screening Results.

Developing authentication
The universal-access package exports the Authentication module, which can be used to log in and out of
the application and to inspect the details of the current user. The login service is passed a user name and

62 IBM Cúram Social Program Management 7.0.8 or 7.0.4.4: IBM Universal Access Responsive Web Application
2.3.0

password, and optionally a callback function that is invoked when the authentication request is
completed.

Authentication services

The Authentication API works in three modes:

• Simple Authentication (Development mode)
• Single Sign-on (SSO) Authentication
• JAAS Authentication

Simple Authentication (Development Mode)

During client development, the authentication defaults to use a simple authentication that does not
require an SPM server. This simple authentication bypasses proper authentication (JAAS or SSO) and
instead accepts the user name dev without any password. The login process can be ran and allows
access to the 'user account' password protected pages.

This simple authentication is sufficient to do most client development work and avoids the need to
configure your client application to communicate with an SPM server. It is set by the
REACT_APP_SIMPLE_AUTH_ON=true environment variable in the env.development file.

You can set REACT_APP_SIMPLE_AUTH_ON=false if you want to trigger an SSO or JAAS login service.

SSO Authentication

The application supports single sign-on (SSO), which is a typical use case for many enterprises that serve
multiple applications with a single user name and password for their clients. Set the client application to
use SSO with the REACT_APP_SAMLSSO_ENABLED=true environment property and any other needed
SSO environment variables., see the “ React environment variable reference” on page 30.

For more information about configuring your universal access deployment to use SSO, see “Configuring
single sign-on” on page 160.

JAAS Authentication

If not in development mode, and not using single sign-on, then the login process defaults to use the
standard JAAS login module.

• REACT_APP_SIMPLE_AUTH_ON=false
• REACT_APP_SAMLSSO_ENABLED=false

The JAAS login module is exposed through the SPM universal access API at the /j_security_check
end point and authenticates the user against the SPM database of users. For more information about
JAAS login, see Authentication Architecture.

User Account Types

The universal access client supports three different user account types, Public, Generated, and Citizen.
For more on user accounts and security, see User Accounts. If you want to customize the log in and sign
up process provided by the universal access starter pack, the Authentication module provides log in
functions to support each of these three user account types.

Authentication.login

Authentication.loginAsPublicCitizen

Authentication.loginWithGeneratedUser

Chapter 1. IBM Cúram Universal Access 63

Tracking the logged in user

The universal access client application uses 'session storage' in the browser to store some basic details of
the currently logged-in user after they are authenticated with the server. This session storage is typically
used to inform the client application what views it should present, for example if no user is logged in, then
the login and sign-up page buttons are presented on the home page.

The Authentication module provides functions that query who the current logged in user is and their
account details, according to the session storage in the browser.

Authentication.getLoggedInUser

Authentication.getUserAccount

Logged in on the client or the server

Citizens can seem to be logged in on the client when they are not logged in on the server. This situation
does not compromise the security of the application. The SPM server APIs use session tokens that are
stored in cookies to determine whether the current user is authenticated. The cookies are transmitted
with each API call, and only a valid token results in a successful response.

For example, if a user's session times out on the server, the next API request to the server results in a 401
unauthorized response, even if the user seems to be logged in to the client application. This behavior
ensures that no matter what the client application says about the currently logged-in user, the server
responds only to valid session tokens.

Developing with headers and footers
IBM Cúram Universal Access contains a predefined header and footer. The header and footer contain
content that is found in the header and footer of an application, such as links, log in, and sign up buttons,
and menus for logged in users.

Headers and footers

You can customize your application headers and footers by replacing the sample components with your
own custom versions.

The App.js file in the universal-access-sample-app module, reuses the sample ApplicationHeader and
ApplicationFooter components that are provided by the universal-access module by placing them above
and below the main content of the application:

App.js

 <BrowserRouter>
 <ScrollToTop>
 <div className="app">

 {formatMessage(translations.appSkipLink)}

 <Route path="/" component={ApplicationHeader} />
 <main id="main-content" className="main-content">
 <Content>{routes}</Content>
 </main>

 <ApplicationFooter />
 </div>
 </ScrollToTop>
 </BrowserRouter>

Header

Typically, an application header has two views. One view has items relevant to users who are not logged
in or signed up, for example a Sign Up button. The second view shows items that are relevant to users
who are signed up and logged in, for example an Update your profile button.

64 IBM Cúram Social Program Management 7.0.8 or 7.0.4.4: IBM Universal Access Responsive Web Application
2.3.0

To facilitate the separate views, use a react-router-dom Route component. The App.js sample
demonstrates wrapping the ApplicationHeader component in a Route component and passing Route
information to the ApplicationHeader. This allows the ApplicationHeader to query the Route properties
and decide what to display based on the current location in the application. For example, you might want
to show a different view for the login page route (‘my-app-domain/login’) from the application home page
route (‘my-app-domain/’).

The following code sample shows how the ApplicationHeader queries its location property to find out
what page the application is displaying. The sample code then uses this information to decide what to
show in the header.

 get isOnLoginPage() {
 return this.props.location.pathname === '/login';
}

render() {
 return (
 <Header
 title={this.pageTitle}
 type="scrollable"
 logo={<img src={logo}
 alt="agency"
 id={this.props.loggedInUser} />}>
 <PrimaryNavigation type="scrollable">
 <TabList scrollable>
 <Tab
 id="tab1"
 href="/"
 text={
 this.props.intl.formatMessage(translations.headerHomeLabel)}/>
 <Tab
 id="tab2"
 href="/my-applications"
 text={this.props.intl.formatMessage(
 translations.headerBenefitsLabel)}/>
 </TabList>
 </PrimaryNavigation>
 <SecondaryNavigation type="Scrollable"/>

 {/* Show signed out menu */}
 {!this.isOnLoginPage &&
 this.props.loggedInUser === null &&
 !this.isUserProfileLoaded &&
 this.signInMenu}

 {/* Show signed in menu */}
 {this.props.loggedInUser &&
 this.isUserProfileLoaded &&
 this.profileMenu}
 </SecondaryNavigation>
 </Header>
);
 }

Login and sign up in the header

If you are building your own customer header, you must identify which page you are currently displaying
the Header on, you must also differentiate between logged in and logged out users. Whether a user is
logged in or out can be determined by using the authentication API provided by the universal-access
module. The Authentication API provides functions to allow you to log in and out of the application, and
also allows you to query if a user is logged in and who that user is. For more information, see the
Authentication API documentation.

The following code sample shows how the ApplicationHeader uses the Authentication API. In this
function, a check is made to see whether a user is logged in before it loads that user's profile. The user's
profile is needed to display the user's full name in the header.

fetchProfile() {
 if (Authentication.isLoggedIn() && !this.isUserProfileLoaded) {
 this.props.loadProfile();

Chapter 1. IBM Cúram Universal Access 65

 }
}

Footer

You can add a footer to the bottom of the application page in the same way as you add the header to the
top of the page. The universal-access module provides a sample application footer that is used in the
universal-access-sample-app, see the App.js sample. The sample footer is static and does not change
based on the location or the authentication state, however the footer can be made dynamic by following
the example from the header.

Adding images, fonts, and files
As the Universal Access Responsive Web Application is based on create-react-app, you can follow
one of their standard approaches for adding images, fonts, fonts and files, depending on whether you are
adding images for IEG scripts.

For the application in general, you can co-locate the image or file with the component that requires the
resource, then import this resource within the component as follows:

import React from 'react';
import image from './image.png';

const Component = () => {
 return ;
};

export default Component;

For more information, see Adding Images, Fonts, and Files in the create-react-app documentation.

Adding images for IEG scripts

Some IEG <Text> elements support rich text content that might include HTML tags. If you need to add
an image as part of the text, the URL of the image must target to a resource in the public folder of the
application, for example:

• Create an img folder in the public directory of your application. The relative path should look like this
universal-access-sample-app/public/img.

• Store the image in the img folder, for example universal-access-sample-app/public/img/
image.png.

• Define an IEG text element in the script, for example <display-text
id="DisplayText.Image"/>.

• Define the content of the property as an HTML image tag in the property file :

DisplayText.Image=

Where the src path points to the folder created on the public folder.

Images added in this way are not sized to device screen sizes, therefore take a mobile-first approach
when adding images to IEG Scripts.

For more information about adding resources to the public folder, see Using the Public Folder in the
create-react-app documentation.

66 IBM Cúram Social Program Management 7.0.8 or 7.0.4.4: IBM Universal Access Responsive Web Application
2.3.0

https://facebook.github.io/create-react-app/docs/adding-images-fonts-and-files
https://facebook.github.io/create-react-app/docs/using-the-public-folder

Customizing the color scheme or typography
You can customize the color scheme to display different colors and typography by using Sass. You do not
modify CSS files directly, however, you can use CSS in the Sass files if you prefer.

Using Sass

The design system uses the Sass CSS preprocessor. You can use Sass to declare variables in CSS. You can
define variables for colors, spacing, and typography in a single place and then reuse the variables
throughout the design system stylesheets. To see the variables that are defined, view the
node_modules/@govhhs/govhhs-design-system-core/src/stylesheets/core/
_variables.scss file in your application. The Sass files are compiled into CSS at build time and your
application uses the compiled CSS.

The file structure of the starter pack

The starter pack is configured to use Sass, the relevant files are located in a css folder and a sass folder
under the src folder in the file structure.

.
├── src
| └── css
| | └── styles.css
| └── sass
| | └── customVariables.scss
| | └── styles.scss

The css folder contains the styles that your application uses.

Note: The contents of the css folder are generated at build time. Don't directly edit any files inside the
css folder. For more information, you can view the build-css script in the project’s package.json file.

You must edit the Sass files to make changes. If you don’t want to use Sass features or if you don’t have
previous experience of SaaS, you can still write regular CSS into these files. By default, the sass folder
contains two files:

• styles.scss. Use this file to import the design system stylesheets and all other styles that the app
might use.

• custom-variables.scss. Customize the file by overriding the design system variables values with
your intended values.

Other than changing the design system variables, do not add styling. However, if you want to add extra
styling for your application, create a file in the sass folder. Then import the file in the styles.scss file
as follows:

@import "my-custom-styles.scss";

Changing the color palette

When you select a color scheme for your site, ensure that color contrast is satisfactory. For users with low
vision, low-contrast text is difficult or impossible to read. For more information about color contrast, see
the Text elements must have sufficient color contrast against the background. The color-related variables
are in the color section of the design system’s variables file, that is, node_modules/@govhhs/govhhs-
design-system-cre/src/stylesheets/core/_variables.scss.

 // node_modules/@govhhs/govhhs-wds-design-system-core/src/core/_variables.scss
 //-------------------------
 // � Color
 //-------------------------
 $color-primary: color('blue', 50) !default;
 $color-primary-darker: color-shade($color-primary, 10) !default;
 $color-primary-darkest: color-shade($color-primary, 20) !default;
 $color-primary-light: color-tint($color-primary, 10) !default;
 $color-primary-lightest: color-tint($color-primary, 50) !default;

Chapter 1. IBM Cúram Universal Access 67

https://sass-lang.com/
https://dequeuniversity.com/rules/axe/2.2/color-contrast

The -darker, the darkest, the light, and the lightest variants are derived from the base color-
primary. To obtain the derived color values, use the Sass lighten and darken utilities. Alternatively,
use hardcoded values. To customize, override the values for the variables.

Example

This example shows how to update both the color scheme, that is the primary, secondary, link colors, and
the typography of the application.

The example updates the application with the following color scheme:

• #051380 as the primary color, that is, used on page headers, primary buttons, and hover states.
• #37056b as the application's secondary color, that is, used for avatar backgrounds.
• #2b4380 for the link colors, #0535d2 for the link hover color, and #7834bc for visited links.

The example updates the application with this typography:

• 20px font size with a 33px line height for the body text with a 400 font weight
• 16px font size with a 26px line height for small text with a 400 font weight

1. To start the application, enter the following command from your application. The application is
accessible on your local host.
npm start

2. Edit the sass/custom-variables.scss.
3. Add the intended value to the primary color:

$color-primary: #051380;

4. Define the –darker, the -darkest, the light and the lightest variants by using the lighten or
the darken utilities.

$color-primary-darker: darken($color-primary, 10%);
$color-primary-darkest: darken($color-primary, 20%);
$color-primary-light: lighten($color-primary, 10%);
$color-primary-lightest: lighten($color-primary, 50%);

5. Define the secondary colors.

$color-secondary: #37056b;
$color-secondary-dark: darken($color-secondary, 10%);
$color-secondary-darkest: darken($color-secondary, 20%);
$color-secondary-light: lighten($color-secondary, 10%);
$color-secondary-lightest: lighten($color-secondary, 50%);

6. Save the file. The app is reloaded in the browser so you can see your changes.
7. To define the link colors, use the proceeding color-link, the color-link-hover, and the color-
visited variables.

$color-link: #2b4380;
$color-link-hover: #0535d2;
$color-visited: #7834bc;

8. To change the typography, override the body-font and small-font variables.

// Body font
$body-font: (
 'font-size': 20px,
 'line-height': 33px,
 'font-weight': 400
);

//Small Font
$small-font: (
 'font-size': 16px,
 'line-height': 26px,

68 IBM Cúram Social Program Management 7.0.8 or 7.0.4.4: IBM Universal Access Responsive Web Application
2.3.0

 'font-weight': 400
);

9. Save the file to see your changes.

The final custom-variables.scss file for the example is shown.

$icon-path: "~@govhhs/govhhs-design-system-core/dist/icons";
$image-path: "~@govhhs/govhhs-design-system-core/dist/img";

.success-icon-color {
 fill: #3dc06e !important;
}

// Primary color
$color-primary: #051380;
$color-primary-darker: darken($color-primary, 10%);
$color-primary-darkest: darken($color-primary, 20%);
$color-primary-light: lighten($color-primary, 10%);
$color-primary-lightest: lighten($color-primary, 50%);

// Secondary color
$color-secondary: #37056b;
$color-secondary-dark: darken($color-secondary, 10%);
$color-secondary-darkest: darken($color-secondary, 20%);
$color-secondary-light: lighten($color-secondary, 10%);
$color-secondary-lightest: lighten($color-secondary, 50%);

// Link colors
$color-link: #2b4380;
$color-link-hover: #0535d2;
$color-visited: #7834bc;

// Body font
$body-font: (
 'font-size': 20px,
 'line-height': 33px,
 'font-weight': 400
);

//Small Font
$small-font: (
 'font-size': 16px,
 'line-height': 26px,
 'font-weight': 400
);

Developing toast notifications
A toast as a computing term refers to a graphical control element that communicates certain events to
the user without forcing them to react to the notification immediately. In IBM Curam Universal Access, we
use the web design system Alert component as a base to represent our toast notifications and allow
capability to display these notifications independent of the main display content in any function within the
application.

The <Toaster> component

The exposed <Toaster> component is used in App.js and is responsible for rendering toast notifications
retrieved directly from the Redux store. These notifications are displayed independent of page content.
This means that a deeply nested function can be used to display a notification without regard to the
current component render and/or functionality that is used to navigate to different pages.

The <Toaster> component handles the retrieving of toast slice within the store, and in passing
functionality to remove toast notifications once they have been dismissed.

The <Toast> component

The exposed <Toast> is the preferred component to display toast notifications. It accepts properties as
defined by the web design system Alert component, without requiring the need to specify the component
as an Alert and the properties 'banner', 'center', and 'toast'. It also requires a 'text' property to be defined.

Chapter 1. IBM Cúram Universal Access 69

The Toaster module

Any component that intends to display a toast notification within it's processing must use the Toaster
module action fillToaster function. This can be either passed to component as a property, or connected to
the Redux store and defining the action as a property. For more information, see “Universal Access Redux
modules” on page 51.

An example of a page that implements the Toaster module action fillToaster and a service unavailable
toast notification is shown.

import React from 'react';
import { connect } from 'react-redux';
import { ToasterActions } from '@spm/universal-access';
import { Toast } from '@spm/universal-access-ui';

...

/**
 * Updates the Toast slice of Redux store
 * @param {*} dispatch the dispatch function
 */
export function mapDispatchToProps(dispatch) {
 return {
 fillToaster: data => {
 ToasterActions.fillToaster(dispatch, data);
 },
 };
}

class MyComponent extends React.Component {

 ...

 doSomething({ success }) {
 if (success) {
 ...
 }
 else {
 this.props.fillToaster(
 <Toast
 dismissable={false}
 expireAfter={5}
 text="This service is currently unavailable"
 type="danger"
 />
);
 }
 }

 ...

export default connect(
 null,
 mapDispatchToProps
)(MyComponent);

Providing the application in another language
IBM Cúram Universal Access is globalized, that is it can be translated into different languages. Universal
Access also supports regionalization of currencies, calendar and date formats as defined by IBM Cúram
Social Program Management on which the application depends, for more information, see Developing for
Regional Support.
Related information
Developing for Regional Support

Selecting a language
Citizens can select a preferred language from the language drop-down in the footer of the application.
When citizens select a preferred language, the application is displayed in that language. The application
retains the preferred language setting based on a cached value in the browser.

Note: The language drop-down only appears when more than one language is configured for the
application.

70 IBM Cúram Social Program Management 7.0.8 or 7.0.4.4: IBM Universal Access Responsive Web Application
2.3.0

Note: A citizen's language preference is not saved if the browser is configured to block access to its local
storage, the application reverts to the default language (English) when the page is reloaded.

Configuring the languages provided by the application
Add languages to the application or change the default language.

About this task

The application can provide a number of languages in the user interface. You can customize the
application by adding languages or changing the default language.

Procedure

1. Create a src/config/intl.config.js file.

Note: This file is read by the src/intl/IntlInit.js component, which handles storage of the
configuration and creates the react-intl IntlProvider.

2. Review the following example src/config/intl.config.js:

export default {

 defaultLocale: "en",

 locales: [

 {

 locale: "en",

 displayName: "English",

 localeData: require("react-intl/locale-data/en")

 messages: require("../locale/messages_en”)

 },

 {

 locale: "de",

 displayName: "German",

 localeData: require("react-intl/locale-data/de"),

 messages: require{

 ...require('@spm/intelligent-evidence-gathering-locales/data/messages_de'),

 ...require('@spm/universal-access-ui-locales/data/messages_de'),

 },

 {

 locale: "ar",

 displayName: "Arabic",

 direction: "rtl",

 localeData: require("react-intl/locale-data/ar"),

 messages: require{

 ...require('@spm/intelligent-evidence-gathering-locales/data/messages_ar'),

 ...require('@spm/universal-access-ui-locales/data/messages_ar'),

 },

 {

 locale: "ht",

Chapter 1. IBM Cúram Universal Access 71

 displayName: "Haitian",

 /*

 Custom locale data

 Where the locale you need to support is not found in the
 react-intl locale data you can create your own locale data
 to handle this. Simply create an object with the locale
 property. You must include at a minimum the pluralRuleFunction

 See https://github.com/yahoo/react-intl/issues/1050

 */

 localeData: {

 locale: "ht",

 pluralRuleFunction(arg1, arg2) {

 return arg1 && arg2 === 1 ? "one" : "other";

 }

 },

 messages: require("../locale/messages_ht")

 }

]

};

Note: An src/config/intl.config.js.sample.md is provided which details the intl.config.js
object schema

Translating your application
Use react-intl and babel-plugin-react-intl to extract text from your application. You can then translate the
text into another language and include that translation in the application.

Extracting translatable content
During development, IBM used react-intl (https://github.com/yahoo/react-intl) and babel-plugin-react-intl
(https://github.com/yahoo/babel-plugin-react-intl) to globalize IBM Cúram Universal Access.

About this task

Follow the same method as used by IBM during development to extract the translatable content from
your application.

Note: react-intl provides react components and an API to format dates, numbers, and strings, including
pluralization, and handling translations. babel-plugin-react-intl extracts string messages from React
components that use react-intl.

Procedure

1. Use the react-intl defineMessages API to define the default message string entry within the
application.

2. Add babel-plugin-react-intl and its dependencies babel-cli and babel-preset-react-app to the
application’s devDependencies.

3. Add a .babelrc file in the root of your project. Use .babelrc to configure the settings for the babel-
plugin-react-intl. The following is an example .babelrc file:

{
 "presets": ["react-app"],
 "plugins": [
 [

72 IBM Cúram Social Program Management 7.0.8 or 7.0.4.4: IBM Universal Access Responsive Web Application
2.3.0

https://github.com/yahoo/react-intl
https://github.com/yahoo/babel-plugin-react-intl

 "react-intl", {
 "messagesDir": "translations/messages",
 }
]
]
}

4. Add the following line to your package.json "scripts":

UNIX:

“extractTranslations”: "NODE_ENV=production babel ./src >/dev/null"

Windows:

"extractTranslations": "set NODE_ENV=production&&babel ./src > NUL"

5. Run the extraction command: npm run extractTranslations.

Results

This procedure extracts all translations to the translations/messages directory as specified in
the .babelrc configuration.

The content of translations/messages along with the JSON content under the locale directories of
the @spm/universal-access-ui and @spm/intelligent-evidence-gathering directory form what should be
sent for translation.

What to do next
For more information, see Including translated content in your application.

Including translated content in your application
IBM Cúram Universal Access exposes a src/intl/IntlInit component. This component reads the
configuration provided in the custom src/config/intl.config.js to seed your application with messages for
all the languages you want your application to support.

About this task

Procedure

1. Translations must be returned for use in your product in the format of a single JSON file per locale.
This JSON file should be in the format expected by react-intl, which is {[id: string]: string},
as shown in the following example:

{

“label1”: “Translated text1“,

“label2”: "Translated text2”,

}

Where id is the id that is used in your defineMessages entry and subsequent extracted message id.

Note: The id in this file format {[id: string]: string} must match the id that you define in your code as in
the defineMessages structure. For more information, see https://github.com/yahoo/react-intl/wiki/
API#definemessages.

This single file and its location within the application forms the entry to the messages value with the
intl.config.js for your configured locale, for example:

{

 locale: "de",

Chapter 1. IBM Cúram Universal Access 73

https://github.com/yahoo/react-intl/wiki/API#definemessages
https://github.com/yahoo/react-intl/wiki/API#definemessages

 displayName: "German",

 localeData: require("react-intl/locale-data/de"),

 messages: require("../locale/messages_de")

},

2. react-intl also requires that its own locale configuration (localeData) is provided to support some of its
internal functions. For more information, see https://github.com/yahoo/react-intl/wiki#loading-locale-
data.

Results

When you have configured it correctly with the src/config/intl.config.js file, the
ApplicationFooter language selection drop-down should expose your new locale selection, it should also
load and apply the configured translation messages to the application.

Note: If your application does not find messages for the currently selected language at run time, react-intl
defaults to the text of the defaultMessage entry that was used when the message was defined in the
source code.

Regionalizing your application
User interface elements, such as date formats and currency symbols are defined in IBM Cúram Social
Program Management, for more information, see Developing for Regional Support.

The universal-access module and its components respect the regional settings as defined by the IBM
Cúram Social Program Management to ensure your application is synchronized with the configuration of
the IBM Cúram Social Program Management instance on which it depends.

Related information
Developing for Regional Support

Customization Scenarios
Customize the IBM Cúram Universal Access web application.

The first scenario shows how to change default text on the My Details page. Each subsequent scenario
adds to the previous one to build out new content in your Universal Access project.

Note: Follow the scenarios in sequence. If you start in the middle of the scenario list, you might have to
go back through previous scenarios.

Changing the application text
You can change the default text in the application by providing custom text that overrides the default text
for any language. In this scenario, an English language message is changed.

About this task

Message or text strings in the application use the react-intl package, which supports globalization of
React applications. react-intl allows the messages to be extracted and translated to other supported
languages, it also adds placeholders for data, for example.

To change the existing text of any of the languages that are provided by IBM, you must provide a custom
version of the message that is mapped to the same message id.

Procedure

1. Find the ID of the message you want to replace. All product messages are defined in the universal-
access-ui package. In your project, go to /node_modules/@spm/universal-access-ui/
locale.
a) The locale folder contains message files for each supported locale. For your chosen language,

search the appropriate message_xx.json for the text string that you want to replace. For
example, to change the English text Apply for a benefit, search messages_en.json for that string

74 IBM Cúram Social Program Management 7.0.8 or 7.0.4.4: IBM Universal Access Responsive Web Application
2.3.0

https://github.com/yahoo/react-intl/wiki#loading-locale-data
https://github.com/yahoo/react-intl/wiki#loading-locale-data

as shown in the following example. If there is more than one instance of the string, you must find
the correct message ID for the text you want to change. The simplest way to find the correct
instance is to try replacing each ID one by one, reloading the page each tine to see whether the new
string is displayed.

"System_Messages_Alert_Description": "System messages alert description",

"Payments_NoPaymentMessages": "No payment messages",

"Payments_ApplyForABenefitLink": " Apply for a benefit ",

"TODO_NoTODOMessages": "No to-dos",

"TODO_CaseworkerMessage": "Your caseworkers can create to-dos for you.",

"Meetings_NoMessages": "No meetings",

b) For the Apply for a benefit string, use the associated ID "Payments_ApplyForABenefitLink"
to override the message in your custom messages_en.json.

2. Create a custom message file by creating a messages_en.json file in the src/locale folder.
Custom messages are injected into the application at application start. For more information, see
“Providing the application in another language” on page 70. By default, the starter application
provides a locale folder from where custom messages files are automatically loaded. You can add your
custom file to this folder: src/locale.

3. To replace the message, create a new id:message mapping in your custom message file by using the
same ID value as shown in the following example.

"Payments_ApplyForABenefitLink": " Click here to apply for a benefit ",

Related concepts
Providing the application in another language
IBM Cúram Universal Access is globalized, that is it can be translated into different languages. Universal
Access also supports regionalization of currencies, calendar and date formats as defined by IBM Cúram
Social Program Management on which the application depends, for more information, see Developing for
Regional Support.

Adding content to the application
Build on the text change scenario from Changing application text to add a route. You also add content that
is displayed when the route is loaded.

Before you begin
If you are not familiar with React and React Router, you must take a basic course in building a web
application with React and React Router.

The term "feature" refers to the content that is displayed when a route is loaded, this content is what
citizens see on the user interface. A feature is an abstraction that includes all the content that comes
together to create the user experience. A feature can be a collection of JavaScript files, JSON files, and
APIs that work together to generate the user experience. The term "feature" can be referred to as a page,
view, or component in other application environments.

This scenario adds a feature that presents a logged-in person's details in the main content area when a /
person URL is loaded. This scenario is built on in later scenarios by calling APIs, by using client-side
stores, error handling, or globalization.

Chapter 1. IBM Cúram Universal Access 75

About this task

When you extend the IBM Cúram Universal Access reference application, you might want to introduce
new content that is displayed when citizens click a link.

Procedure

1. Create the content for the feature, take the following steps:
a) Create a folder called features under the /src folder in your project
b) Create a person subfolder and create PersonComponent.js in the folder.

src/features/Person/PersonComponent.js

c) Add some HTML to display when the component is loaded. The following example displays some
data that is returned by an API:

import React from 'react';

const Person = () => { return (
 <div>
 <h1>James Smith</h1>
 <h2>Gender: Male</h2>
 <h2>Born: April 1st 1996</h2>
 </div>
)};
export default Person;

2. Add a route to link to your feature, take the following steps:
a) Declare an associated URI for each feature in the application. The URI allows React to present the

feature when the URI is requested in the browser. This technique is standard 'React Routing'
for displaying features. For more information about routes, see “Developing with routes” on page
46. Add a simple component that displays when the route is loaded:

1) Open routes.js in your project.
2) Import a Person component from the folder features/person.
3) Add a "/person" route that loads the Person component as shown in the following example:

import React from 'react';
import { Route, Switch } from 'react-router-dom';
import { Routes as UARoutes } from '@spm/universal-access-ui';
 import Person from './features/PersonComponent'

export default (
 <Switch>
 <Route path="/person" component={Person} />
 <UARoutes />
 </Switch>
);

3. Load the new feature by using the route, take the following steps:
a) Run your application, enter the following command:

npm run start

b) Start a browser and enter the full URL for the feature, for example: http://localhost:8888/person

Results

When the application loads, the person details are displayed in the main content area.

Related concepts
Developing with routes

76 IBM Cúram Social Program Management 7.0.8 or 7.0.4.4: IBM Universal Access Responsive Web Application
2.3.0

http://localhost:8888/#/person

Routes define the valid endpoints for navigation in your application. Your application consists of a
network of routes that can be traversed by your users to access the application's pages.

Styling content with the Social Program Management Design System
Build on the route and person content scenario that you added in Adding content to the application by
styling the content of a person's details.

Before you begin
The IBM Social Program Management Design System is a design framework that helps you to build a
cohesive and consistent application. By selecting components from a design catalog and applying design
principles, design and development is faster and user experience is improved.

About this task

The full catalog of Social Program Management Design System components, including descriptions of
when and where to use them, is documented in the govhhs-design-system-react package. You can access
these packages through index.html file in /node_modules/@govhhs/govhhs-design-system-
react/docs. This scenario uses a number of Social Program Management Design System components to
improve the person feature.

Procedure

1. Import contents from the Social Program Management Design System. Enter the following command
to import the Avatar and MediaObject components from the package @govhhs/govhhs-design-
system-react:

import {Avatar, MediaObject} from '@govhhs/govhhs-design-system-react'

2. Update PersonComponent.js to use the Grid, Column, Card, MediaObject, Avatar, and List
components to display the person's details. You can also include an address in a separate card.

Use the following code to replace the previous PersonComponent.js:

import React from 'react';
import {Grid, Column, Card,CardBody,CardHeader, List, ListItem, Avatar, MediaObject } from
'@govhhs/govhhs-design-system-react'

const avatarMediaJames = <Avatar initials="JS" size="medium" tooltip="profile photo" />;
const Person = () => {
 return (
 <Grid className="wds-u-p--medium">
 <Column width="1/2">
 <Card>
 <MediaObject media={avatarMediaJames} title="James Smith">
 <List>
 <ListItem>Gender: Male</ListItem>
 <ListItem>Born: April 1st 1996</ListItem>
 </List>
 </MediaObject>
 </Card>
 </Column>
 <Column width="1/2">
 <Card title="Address">
 <CardHeader title="Address"/>
 <CardBody>
 <List>
 <ListItem>1074, Park Terrace</ListItem>
 <ListItem>Fairfield</ListItem>
 <ListItem>Midway</ListItem>
 <ListItem>Utah 12345</ListItem>
 </List>
 </CardBody>
 </Card>
 </Column>
 </Grid>
)};
export default Person;

3. Save PersonComponent.js.

Chapter 1. IBM Cúram Universal Access 77

Results

When you reload the application, you see the updated application style.

Changing the application header or footer
Build on the styling scenario from Using the Social Program Management Design System to style content by
adding a link to the application header or footer.

Before you begin

For more information about the application header and footer, see Developing with headers and footers.

To customize the header, you must create your own custom version. To keep this scenario brief, work on
the header only and copy the existing header from universal-access-ui. Make some small changes
to the header to show how it can be customized. Alternatively, completely replace the header or footer
with your own version.

About this task

Change the application header to include a new link that to take you to the My Details page.

Procedure

1. Copy the Universal Access header by copying the node_modules/@spm/universal-access-
ui/src/features/ApplicationHeader folder to src/features.

2. Fix any broken imports. Take the following steps:
a) Use ESLint or a similar linting tool to find any errors where imports are not found.

Note: If you do not use a linting tool, you get build errors.
b) Errors are generated because the universal-access-ui uses relative paths when it imports

dependencies from its own project. For imports that are within the universal-access-ui
module, but outside the features/ApplicationHeader folder, you must change the imports to
reference the official exported version of those dependencies from the universal-access-ui
node module.

c) For each import that is not resolved, find the equivalent export in the universal-access-ui
package. Inspect node_modules/@spm/universal-access-ui/src/index.js to find the list
of exported artifacts and their exported names.

The Paths module is referenced in the ApplicationHeader by using the default import from a
relative path as shown in the following example: import PATHS from '../../router/
Paths' Amend module as shown in the following example: import { Paths } from
'universal-access-ui'

d) Repeat this procedure for all the files in the ApplicationHeader folder, some of the imports of
'Paths', and for some other references such as 'ErrorBoundary' and 'AppSpinner'.

3. Replace the existing header with your custom version, take the following steps:
a) Open src/App.js file and remove the imported ApplicationHeader from universal-
access-ui.

b) Import your cloned version from ./features/ApplicationHeader as shown in the following
example:
import ApplicationHeader from './features/ApplicationHeader';

Import ApplicationHeader as a default import, without curly brackets, rather than a named
import. Alternatively, you can add a named export to your ApplicationHeader feature.

4. Update the header feature to include a tab that loads the /person page take the following steps:
a) Open constants.js in src/features/ApplicationHeader/components. constants.js

defines an object that represents a navigation item for the header.
b) Add and entry for the new page My Details as shown in the following example:

78 IBM Cúram Social Program Management 7.0.8 or 7.0.4.4: IBM Universal Access Responsive Web Application
2.3.0

/**
 * Application navigation header tabs.
 */
const NAVIGATION_HEADER_TABS = {
 ...

 PROFILE: { NAME: 'PROFILE', ID: 'navigation-profile' },
 CHANGE_PASSWORD: { NAME: 'CHANGE_PASSWORD', ID: 'navigation-change-password' },
 MYDETAILS: { NAME: 'MYDETAILS', ID: 'my-details' } ,

};

c) Open ApplicationHeaderLogic.js. ApplicationHeaderLogic.js. contains the logic that
tracks which tabs are selected so they can be highlighted as active.

d) Update the isTabActiveForUrlPathname function to include the new My Details page in the
Your Account section. For brevity, the value is hardcoded in the following example. However, you
can replicate the pattern that is used by the universal-access code to add it to Paths.

const isTabActiveForUrlPathname = (urlPathname, navigationTabName) => {

 ...
 switch (navigationTabName) {
 case FIND_HELP.NAME:
 return (
 urlPathname === Paths.HOME ||
 urlPathname === Paths.APPLY ||
 urlPathname === Paths.BENEFIT_SELECTION ||
 urlPathname === Paths.APPLICATION_OVERVIEW
);
 case YOUR_ACCOUNT.NAME:
 return (
 urlPathname === Paths.ACCOUNT ||
 urlPathname === Paths.BENEFITS ||
 urlPathname === Paths.PAYMENTS.ROOT ||
 urlPathname === Paths.PAYMENTS.DETAILS ||
 urlPathname === '/person'
);

Open ApplicationHeaderComponent.js, which renders the header, and find the
PrimaryNavigation component.

e) Add a tab called 'My Details' with a link to the person feature inside
ApplicationHeaderComponent.js. For brevity, the example is hardcoded values, but you can
replace these values with variables. If you want, you can also globalize the tab.

..

<PrimaryNavigation>
 <Tabs>
 ...

 <Tab
 id={NAVIGATION_HEADER_TABS.YOUR_BENEFITS.ID}
 href={HASH_SYMBOL + LOCATIONS.BENEFITS}
 label={formatMessage(translations.headerYourBenefitsLabel)}
 />
 <Tab
 id="person_tab"
 href="/person"
 label="My Details"
 />
 </Tabs>
 ...
</PrimaryNavigation>

...

5. Save your file and restart the application.
6. You can modify the application footer in the same way by replacing the universal-access-ui

version in src/App.js with your own custom version.

Chapter 1. IBM Cúram Universal Access 79

Results

Go to the home page. A new tab that is called My Details is in the primary navigation area. When you
select My Details, the person feature is loaded in the main content area.

Related reference
Developing with headers and footers
IBM Cúram Universal Access contains a predefined header and footer. The header and footer contain
content that is found in the header and footer of an application, such as links, log in, and sign up buttons,
and menus for logged in users.

Creating an IBM Cúram Social Program Management REST API
Build on the scenario from Changing the application header or footer, use a REST API to get data to your
application.

About this task

The most common way to get data to your application is to use a REST API to receive the requested data
as a JSON string that your application then parses and renders. IBM Cúram Social Program Management
provides development tools and the runtime infrastructure that you can use to build and deploy a REST
API with your IBM Cúram Social Program Management server. The REST API can be called by using
standard HTTP verbs such as GET, POST, and DELETE. The REST API returns data as a JSON string in the
response body. For more information, see Developing Cúram REST APIs.

Related information
Developing Cúram REST APIs

Connecting to REST APIs from the application
Build on the IBM Cúram Social Program Management REST API that you created in the scenario Creating
an IBM Cúram Social Program Management REST API by calling it from your application.

About this task

Features in your application rely on passing data to and from the IBM Cúram Social Program Management
server or another service. The reference application already consumes a number of Universal Access APIs
to support business features.

This scenario updates the person feature to read the data from an API instead of just displaying
hardcoded values. The scenario shows you how to create and use the following items:

• Use the RESTService utility to helps you call APIs.
• Use the mock server to show you how to create a mock API so you can quickly develop your feature

without spending time building and deploying the real API that it eventually uses.
• Connect your application to a IBM Cúram Social Program Management development environment that

hosts the APIs by using Tomcat to enable real integration testing in the development environment.

Procedure

1. Create a mock API by completing the following steps:
a) In your project, open /mock/apis/mockAPIs.js.

The mock server consumes mockAPIs.js, it contains the mappings from APIs to the mock data.
The mock server uses this information to provide the correct data when an API call is made in
development mode. mockAPIs.js also contains an import from the universal-access-ui
package and assignments for GET, POST, and DELETE APIs as shown in the following example:

const mockAPIs = require('@spm/universal-access-mocks');

// Extract the existing universal access GET,POST and DELETE mocks for merging.
const UAMockAPIsGET = mockAPIs.GET;

80 IBM Cúram Social Program Management 7.0.8 or 7.0.4.4: IBM Universal Access Responsive Web Application
2.3.0

const UAMockAPIsPOST = mockAPIs.POST;
const UAMockAPIsDELETE = mockAPIs.DELETE;

Use these APIs to test the Universal Access application. For more information, see “The mock
server API service” on page 56.

b) To add more mock data, add your mocks to the placeholders provided. This scenario adds the
person data for a person 'James Smith' that is returned when the '/person' path is loaded.

c) Add an object in mockAPIs.js to represent James Smith. For simplicity, do not normalize the
dates, or use code tables, later scenarios show you how to globalize and handle code tables.

const user = {
 firstname: 'James',
 surname: 'Smith',
 dob: 'April 1st 1996',
 gender: 'male',
 address: {
 addr1:'1074, Park Terrace',
 addr2:'Fairfield',
 addr3:'Midway',
 addr4:'Utah 12345',
 }
}

d) Include a value for the URI '/user' in the mockAPIsGET object to return the mock object as
shown in the following example:

const mockAPIsGET = {
 '/user': user,
}

The new '/user' mock API is merged with the mocks from universal-access-ui and is
deployed by the mock server on port 3080.

e) Test that the new API is working, start the application by using npm start.
f) Using the browser, load the /person URL: http://localhost:3080/person. If successful, the browser

displays the response.
2. Use the RESTService utility from the core package to make an Ajax call to the API.

You can use many agents to make Ajax calls. The RESTService utility uses Superagent. The
RESTService utility handles the following functions:

• Authentication credentials are automatically handled for each call, and users are redirect to log in
when appropriate.

• The user's locale is passed to ensure that the response is in the correct locale.
• Timeouts are managed with environment variables in the .env file.
• Errors are captured and thrown in a standard fashion so that the error handling infrastructure is

invoked.

For more information about the RESTService utility, see “The RESTService utility” on page 57.
3. Open PersonComponent.js file. Make the following changes, checking that your application still

displays the page after each step:
a) To enable lifecycle methods that are required to manage the API calls, convert the old stateless

component to a stateful React.Component class:

Old stateless Person component

const Person = () => {
 return (
 <JSX code here>
);
}

Chapter 1. IBM Cúram Universal Access 81

http://localhost:3080/person

Updated stateful Person component

class Person extends Component {
 render(){
 return (
 <JSX code here>
)};
}

b) Create local state to hold the API data.

The local state stores the values returned by the API that drive the render function. Whenever the
state is updated, the component re-renders to reflect the state change. For this scenario, hardcode
the values for the state in your class constructor so that something is displayed on the page. To
differentiate between this temporary default data and the API data, change the firstName to
'Roger'. Later, when you introduce the API, the data for 'James' is returned from the API and not
the default state as shown in the following example:

constructor(props) {
 super(props);
 this.state= {
 user : {
 firstName:'Roger',
 surname:'Smith',
 dob:'April 1st 1996',
 gender: 'Male',
 address: {
 addr1:'1074, Park Terrace',
 addr2:'Fairfield',
 addr3:'Midway',
 addr4:'Utah 12345',
 }
 }
 }
}

c) Convert all hardcoded references to use the values from the state.

Now that you have a state object, replace all hardcoded values with references to the state.
Replace each hardcoded piece of data with a state reference {this.state.user.X}. Examples
are as follows:

...

class Person extends Component {
 render(){
 return (
 ...
 <Card>
 <MediaObject media={avatarMedia} title= {this.state.user.firstName} >
 <List>
 <ListItem>Gender: {this.state.user.gender} </ListItem>
 <ListItem> {this.state.user.gender} </ListItem>
 </List>
 </MediaObject>
)};
 ...
}
...

d) Import the RESTService utility.

To call an API, you must invoke one of the methods of the RESTService utility. First you must import
it from the core package:import { RESTService } from '@spm/core'

e) Create a componentDidMount method to invoke the API call.

When your component is mounted by React, the componentDidMount function is invoked. In
componentDidMount the API call can be made to populate the component state. Update your
constructor to set the user values to blank when initializing, this setting ensure that your data is

82 IBM Cúram Social Program Management 7.0.8 or 7.0.4.4: IBM Universal Access Responsive Web Application
2.3.0

being loaded from the API. Then, add the following code to your Person component. The root
location of the API is taken from the values set in your .env.development file when in
development mode. In production mode, it is taken from the .env file.

The .env.development file specifies the mock server URL as REACT_APP_API_URL, which has
the value http://localhost:3080/ where the mock server is deployed. You can use this environment
variable to prepend the /user API.

The RESTService API accepts a URL and a callback function as parameters. In the following code,
the callback function is passed as an anonymous function in the second parameter. The 'success' is
checked, before the state is updated with the response.

Note: Error scenarios are not handled in this code. The “Handling failures in the application” on
page 85 scenario contains details about failure responses, 'Error Boundaries', and failure
handling.

componentDidMount() {

 const url = `${process.env.REACT_APP_API_URL}/user`;

 const user = RESTService.get(url, (success, response) => {

 if (success) {

 this.setState((user: response));

 }

 });

 }

Results

Start your application, log in and select the My Details tab. The tab loads using data that is pulled from
the /user API.

The REACT_APP_API_URL environment variable that is defined in the .env and .env.development
files determines where the API is served. In development mode, the API calls the mock server. In
production mode, the API calls the SPM server that hosts the application REST APIs. You can seamlessly
switch between development and production, assuming the contract remains the same between your
mock and real APIs. That is, that the JSON structure matches in both.

Related reference
Handling failures in the application
Handle any failures you find when you performed integration testing in the Developing with IBM Cúram
Social Program Management APIs by using Tomcat scenario.

Testing REST API connections with Tomcat
Build on the scenario in Calling an API from the application. Do your integration testing with the real IBM
Cúram Social Program Management APIs instead of the mock APIs in your Universal Access client.

Before you begin
You must be familiar with the IBM Cúram Social Program Management development environment, the
development of REST APIs, and the IBM Cúram Universal Access development environment.

This scenario uses IP address 192.1.1.1 to represent the development computer for the IBM Cúram
Social Program Management server, and 192.9.9.9 for the computer that hosts the Universal Access
client. However, you can use the same computer with the same IP address. Replace this address with the
IP address of your development computer.

Chapter 1. IBM Cúram Universal Access 83

http://localhost:3080/

About this task

The mock server is hosted on the same domain as the application during development http://localhost.
However, when your APIs are served from a different domain, you might encounter Cross Origin Resource
Sharing (CORS) issues. You can use Tomcat to configure your Universal Access client and IBM Cúram
Universal Access server to allow Cross Origin requests. To overcome the CORS issues, the REST toolkit
uses a filter that provides the required HTTP headers to allow browsers to accept responses from a
different domain. In this scenario, the domain is where the REST application is deployed.

Procedure

1. Configure the IBM Cúram Social Program Management server, take the following steps:
a) In your development environment, add the following properties to Bootstrap.properties and

set the hostname/ipaddress of the computer where the Universal Access client is to be
deployed:

• curam.rest.refererDomains = 192.9.9.9
• curam.rest.allowedOrigins = 192.9.9.9

Note: If you develop the server and client on the same computer, you can use "localhost".

The property curam.rest.allowedOrigins is the Origin value in the CORS headers. Both
properties can have comma-delimited domain names, for example,
curam.rest.allowedOrigins = 192.9.9.9, 192.9.9.8, mymachine.mycorp.com to
allow multiple domains to access the IBM Cúram Social Program Management application.

b) Set the CATALINA_HOME environment variable to the location of your Tomcat installation. For
example, on Windows set the following variable: ‘set CATALINA_HOME=C:\DevEnv
\7.0.1\tomcat’

c) Build IBM Cúram Social Program Management by using the appbuild server, database, client, and
other components.

d) Run an extra target appbuild rest to create the REST project in your EJBServer\build
\RestProject\devApp directory.

e) Copy Rest.xml into your Tomcat conf/localhost folder. For more information about building
Cúram APIs, see Developing Cúram REST APIs.

f) Start the server, RMILoginClient, and Tomcat in the normal way for IBM Cúram Social Program
Management.

The REST client starts automatically. When the client is running, the APIs are accessible in the /
Rest base path, for example: http://192.1.1.1:9080/Rest/<myapi>.

2. Configure the Universal Access client by completing the following steps:
a) Modify the following environment variables in the .env.development file in the root of the

application to point to the REST URL on Eclipse/Tomcat as shown in the following example:

REACT_APP_REST_URL=http://192.1.1.1:9080/Rest
REACT_APP_API_URL=http://192.1.1.1:9080/Rest/v1/ua

Note: If you develop the server and client on the same computer, you can use "localhost".

If you want to connect to an application on WebSphere Application Server, you must change
"http" to "https" and update to the correct port. 9044 is the default port.

b) Build the application, enter the following command: npm run build.
c) Start the application, enter the following command: npm run start.

Results

Your Universal Access client application now communicates with the REST API that is deployed on
Eclipse with Tomcat.

84 IBM Cúram Social Program Management 7.0.8 or 7.0.4.4: IBM Universal Access Responsive Web Application
2.3.0

http://localhost

Note: Run the application in debug mode so it stops at breakpoints in the application code.

Related information
Developing Cúram REST APIs

Handling failures in the application
Handle any failures you find when you performed integration testing in the Developing with IBM Cúram
Social Program Management APIs by using Tomcat scenario.

Before you begin

You should build fault-tolerant web applications because, for example, web services such as a REST API
are never fully reliable. When handling the expected response, the application must also allow for
failures, such as network outages, timed out responses, internal server errors, or software bugs.

Universal Access ErrorBoundary component

According to React, "Error boundaries are React components that catch JavaScript errors anywhere in
their child component tree, log those errors, and display a fallback UI instead of the component tree that
crashed."

An error boundary component is a React component that implements the componentDidCatch lifecycle
method. For more information about error boundaries, see https://reactjs.org/

The universal-access-ui package exports a reusable ErrorBoundary component. The component has
a default behavior to handle error scenarios by replacing the failing component with a generic message.

Note: Authentication errors have a specific handler in the ErrorBoundary component. If the error object
that is received by the componentDidCatch method contains a status attribute with a value of '401'
(Unauthorized error), then the client forces a log-out in the client application. Citizens are automatically
redirected to the Log in page, so they can re validate and return to the page they were previously on. This
situation typically happens if the session times out or has been invalidated on the server. The source code
for the ErrorBoundary component is available in the universal-access-ui package.

This scenario shows API error handling in the My Details page where the API call fails. This scenario also
shows how to use the Universal Access ErrorBoundary component to provide a better user experience
when failures occur.

Error boundaries in the Universal Access application

The Universal Access starter pack contains the following two error boundaries:

• The first wraps the entire application to capture errors that might occur when loading the header or
footer.

• The second wraps the main content to capture errors that are raised from components that are loaded
in the main content section.

The error boundaries are shown in the following example:

/**
 * App component entry point.
 */
const App = () => (
 <BrowserRouter>
 <ScrollToTop>
 <ErrorBoundary>
 <ApplicationHeader />
 <ErrorBoundary>
 <Main pushFooter className="wds-u-bg--page">
 {routes}
 </Main>
 </ErrorBoundary>
 <ApplicationFooter />
 </ErrorBoundary>
 </ScrollToTop>

Chapter 1. IBM Cúram Universal Access 85

https://reactjs.org/

 </BrowserRouter>
);

The error boundary on the main section allows the application context to be retained. That is, the header
and footer continue to be displayed when the error is raised from the main section. This continuity
provides a better user experience.

You can replace these error boundaries with your own error boundaries.

Faking an API error

This API failure scenario uses a 404 response as the error, you trigger this failure by temporarily changing
the API call to a non-existent API.

Take the following steps:

1. Open PersonComponent.js
2. Update the API to call in the componentDidMount method to the non-existent '/user1' as shown in

the following example:

 componentDidMount() {
 const url = `${process.env.REACT_APP_API_URL}/user1`;
 RESTService.get(url, (success, response) => {
 if (success) {
 this.setState({user: response});
 });
 }

3. Save your code and wait for the application to reload.

Provided you followed the previous scenarios, when the application reloads it displays the person and
address cards but with no details. The values default to be the values that are created in the constructor
of the PersonComponent.js file. Use the developer tools in your browser to verify the status of the
network call that is made for the '/user1' API. You should see that the response status is a 404 indicating
that the network call failed.

Catching an API failure

Using the failure scenario Faking an API error, you can modify the code to cater for this failure. The API
call is asynchronous, and the callback runs outside the context of the Component tree. This execution
mode means that the error that thrown in the call-back function is not caught by the
componentDidCatch method of the ErrorBoundary. Therefore, instead of throwing an error in the
callback, you update the state of the component. You can then use the lifecycle methods of the React
component to react to the updated state when it arrives. Use a state attribute 'apiCallFailed' to hold the
response.

In the componentDidMount method, add a branch to the callback passed to the RestService.get method.
The failure branch sets the apiCallFailed value to the response value returned by the API as shown in the
following example.

componentDidMount() {
 const url = `${process.env.REACT_APP_API_URL}/user1`;
 RESTService.get(url, (success, response) => {
 if (success) {
 this.setState({user: response});
 } else {
 this.setState({apiCallFailed: response})
 }
 });
 }

When the response is returned it updates the state, and triggers a rerender of the application. You can
validate that the state was updated by printing the value in the console from the render method. An
example response is as follows:

86 IBM Cúram Social Program Management 7.0.8 or 7.0.4.4: IBM Universal Access Responsive Web Application
2.3.0

 render() {
 console.log(`state -> ${this.state.apiCallFailed}`);
 return (
 ...
)
 };

The render method should print the following error in the console: state -> Error: cannot GET
http://localhost:3080/user1 (404)

Throwing an error

Now that you have control of the failure, throw an error with an appropriate value for the ErrorBoundary
component to catch. As indicated, the API call is asynchronous, so you cannot throw the error from the
componentDidMount. The throw could be placed in the render function which will execute when the state
updates, but this pollutes the rendering method with code that is not dedicated to rendering. Instead, use
the componentDidUpdate lifecycle method. This method is called when the state is updated, which
happens when the callback updates the 'apiCallFailed' value.

The error object thrown can be anything that you choose so that the error as useful as possible to the
citizen. In this instance, throw the string object that is returned by the response because it describes the
issue.

Implementing a loading mask
Building on the previous scenarios, use a loading mask to indicate that the application is working on
rendering a page.

About this task

Response times vary for REST APIs over a network. In a many cases, the time it takes to receive the
response is longer than the time it takes for React to render for the first time. This delay leads to a poor
user experience when the page draws the components, but the data is missing.

To avoid poor user experience, use a loading mask to tell users that the application is working on
rendering their page.

This scenario uses the AppSpinner component from the universal-access-ui package to include
a loading mask for the My Details page to demonstrate how your components can handle slow response
times.

API response delay

During development, you must often replicate real world response times for APIs. You can configure the
RestService to set a delay by using the env.development file in your environment. By default this
value is set to 2 seconds. Note this delay in the application when you are in development mode, where
you see spinners while components wait for the data to be returned from the mock server by way of the
RestService module. You can increase or decrease this value to meet your application's needs.

The AppSpinner component

The universal-access-ui package includes the AppSpinner component, which you can reuse in
your project. The AppSpinner component wraps the Spinner component from the govhhs-design-
system-react package and includes a label for accessibility purposes. You can also create your own
loading mask in the same manner. You can view the source code for AppSpinner in the universal-
access-ui package.

Procedure

1. Waiting for the API.
The AppSpinner is displayed while the application waits for the API to respond, so you need a
mechanism to notify you when the data is, and is not loaded. Use the state to indicate when data is
loaded and when it is not. Take the following steps:

Chapter 1. IBM Cúram Universal Access 87

http://localhost:3080/user1

a) Open the PersonComponent.js file.
b) In the constructor, add an attribute called loading to the state, with a value of true.

 ...
 constructor(props) {
 super(props);
 this.state = {
 user: {
 firstName: "",
 surname: "",
 dob: "",
 gender: "",
 address: {
 addr1: "",
 addr2: "",
 addr3: "",
 addr4: ""
 }
 },
 loading: true,
 };
 }
 ...

2. Display the loading mask.

Now you have a value that indicates whether the data is loading, take the following steps to display the
loading mask based on the value:

a) Import the AppSpinner loading mask from universal-access-ui:

import {AppSpinner} from '@spm/universal-access-ui';

b) In the render function, add a check that renders the AppSpinner if the loading value is true:

render() {
 if (this.state.loading){
 return <AppSpinner/>
 }
 return (
 <Grid className="wds-u-p--medium">
 <Column width="1/2">

 ...

)

 }

When you save and reload the application, you see the spinner in the main section area. However,
the spinner continues to display after the data is returned.

3. Remove the loading mask.

When the data is returned from the API, remove the mask by updating the state to indicate that
loading is finished. Take the following steps:

a) In the componentDidMount function, update the state to set the loading value to false when a
successful response is returned as shown in the following example:

componentDidMount() {
 const url = `${process.env.REACT_APP_API_URL}/user`;
 RESTService.get(url, (success, response) => {
 this.setState({loading: false})
 if (success) {
 this.setState({user: response});
 } else {
 this.setState({apiCallFailed: response})
 }
 });
 }

88 IBM Cúram Social Program Management 7.0.8 or 7.0.4.4: IBM Universal Access Responsive Web Application
2.3.0

b) Save and reload the application. Now, when the API response is received, the loading mask is
removed and the user's data is displayed.

Reusing existing features
The reference application that is available when you install IBM Cúram Universal Access satisfies a
number of general business scenarios such as creating an account, logging in, and applying for benefits.
The scenarios are provided both as working software and as examples of how to construct the product.
You can clone and modify existing features in the application.

Before you begin

The universal-access-ui package is structured by feature. Typically, each feature is mapped to a
single route. For example, when the /profile route is loaded, the Profile feature is displayed. The
feature folder is a collection of files that work together to present that feature. An example from the
Profile feature is shown.

/universal-access-ui

--/src

----/Feature

------/Profile

--------/components

----------/ContactInformationComponent.js

----------/PersonalInformationComponent.js

----------/ProfileComponent.js

----------/ProfileComponentMessages.js

--------/index.js

--------/ProfileContainer.js

The feature uses a commonly used pattern to move the data retrieval and management into a container
component, and the rendering logic into stateless presentation components. This pattern is widely
documented and used extensively when you work with React and Redux. The pattern is not covered in
detail here, but you can see how features are structured.

About this task
You can copy the entire code base for a feature into your custom project and replace the route that served
that feature with your version. You can then modify the code base to create your own custom feature.

Note: After you reuse a feature, you now have full ownership of the custom feature. On upgrade of the
universal-access-ui package, you do not receive any changes to the product version of the feature
and must manually apply any updates that you need.

Note: Most features in the universal-access-ui package depend on the modules in the universal-
access package for their data. On upgrade, you must validate that your feature was not affected by any
changes to modules that the feature depends on. See “Universal Access Redux modules” on page 51.

Procedure

1. Find the feature that you want to replace in the universal-access-ui package.
a) Inspect the URL end point that you want to change and note the path.

For example, the path to the faqs feature is /myapp/faqs so the path is faqs.
b) Open the /node_modules/@spm/universal-access-ui/src/router/Path.js file. Search

for the path string literal, in this case '/faqs' is assigned to the Paths.FAQS variable.

const Paths = {
 HOME: '/',

Chapter 1. IBM Cúram Universal Access 89

 ...
 FAQS: '/faqs',
 ...
 SIGNUP: '/signup',
 ...
};
export default Paths;

c) Open the /node_modules/@spm/universal-access-ui/src/router/Routes.js file.
Search for Paths.FAQS to find the route that the variable is being used in. Use the component
value of the route to find the associated feature.
For example, the FAQ route component is imported from '../features/FAQ'.

...
import FAQ from '../features/FAQ';
...
export default () => (
 <Switch>
 ...
 <Route component={FAQ} exact path={PATHS.FAQS} />
 ...
 </Switch>
);

2. Copy the entire feature folder into your custom application.
For example, copy the /node_modules/@spm/universal-access-ui/src/features/FAQ
directory to <myapp>/src/features/FAQ.

3. Replace the route with your custom version.

a) In your project, open the src/routes.js file.
b) Add a route at any point before the UARoutes entry to ensure that your path supersedes the same

path in UARoutes.

import React from 'react';
import { Switch, Route } from 'react-router-dom';
import { Routes as UARoutes } from '@spm/universal-access-ui';
import FAQ from './features/FAQ';

export default (
 <Switch>
 <Route component={FAQ} exact path='/faqs' />
 <UARoutes />
 </Switch>
);

4. You can now verify whether your custom version of the feature is being used. Make an obvious change
to the feature and reload the application to see whether the change is picked up and displayed.

5. Change the code to customize the feature.

Customizing IEG forms in the Universal Access Responsive Web Application
Universal Access provides a number of forms to gather information about citizens, such as applying for
benefits or screening for programs. Where you need to save customer data as evidence, forms are
implemented in Intelligent Evidence Gathering (IEG). IEG is a framework for creating dynamic and
conditional questionnaires and saving the input data as evidence. You can customize IEG forms for your
organization in the Universal Access Responsive Web Application.

Before you begin
If you are not familiar with IEG, you must familiarize yourself with how to author IEG scripts and include
them in the application. For more information about IEG, see Authoring Intelligent Evidence Gathering
scripts and Working with Intelligent Evidence Gathering.

90 IBM Cúram Social Program Management 7.0.8 or 7.0.4.4: IBM Universal Access Responsive Web Application
2.3.0

About this task

Universal Access forms that gather data as evidence are implemented in IEG, as in the standard version.
However, forms are now rendered in the browser by IEG React components from the design system,
which replace the IEG player, and in some cases, the IEG behavior has changed.

Due to the technology and user interface changes, your existing IEG scripts must be tested before use,
and in most cases, at least some minor changes are needed for existing scripts to work in the new
application.

For the best user experience, always disable the Back button on the first page of IEG forms. The Back
button goes back one page in the script, not in the application, so you don't need one on the first page.

Related tasks
Configuring appeal requests
Complete the following steps to enable a citizen to request an appeal from their citizen account.

IEG elements and attributes specific to the design system and Universal Access Responsive Web
Application
The following IEG elements and attributes apply to the design system and Universal Access Responsive
Web Application only.
Display elements and attributes

• The combo-box element, which is a child element of the question element.
• The explainer element, which is a child element of the cluster, question-page, and
relationship-page elements.

• The hint-text element, which is a child element of the container, list-question, and
question elements.

• The next-button-label element, which is a child element of the question-page,
relationship-page, and summary-page elements.

• The relationship-detail-header element, which is a child element of the relationship-
summary-list element.

Display element attributes

• The grouping-id attribute of the cluster element.

Meta-display elements

• The class-names element, which is a child element of the layout element.

For more information about IEG elements, see the IEG script element reference.

IEG configuration not currently supported for the Universal Access Responsive Web Application
The following IEG configuration is not currently supported by the design system and the Universal Access
Universal Access Responsive Web Application.
Question matrices

Question matrices display a list of questions that are based on a code table and, for each of the code
table values and each entity, a check box is displayed for you to select the values that apply to a
particular entity.

Three-field date picker
The three-field date picker is no longer supported and defaults to a single-field date input field.

Grouping individual question help at cluster level
Cluster-level help is supported, however, the compile.cluster.help property, which groups the
help text for each of the questions in a cluster into the cluster help panel is not supported.

Display elements and attributes

• The custom-output element, which renders custom HTML on summary pages only.

• The show-page-elements attribute on the edit-link element for editing specific clusters.

Chapter 1. IBM Cúram Universal Access 91

• The footer-field element, which displays values that are calculated from expressions in the
footer-row element of a list.

• The footer-row element, which adds an extra row at the end of a list to display total or summary
information.

• The help-text element, which displays help text, is not supported for pages.

• The label-alignment element, which is used in the layout element for a cluster to control the
text alignment of the labels in the cluster.

• The label-width element, which is used in the layout element for a cluster to control the width
of the labels in the cluster.

• The num-cols element, which is used in the layout element for a cluster to control the number of
columns in the cluster.

• The type element, which is used in the layout element for a cluster to control the layout of labels
in relation to input controls.

• The width element, which is used in the layout element for a cluster to control the width of the
cluster on the page.

• The legislation element, which creates legislation links at page and question level to point to
relevant legislative information.

• The policy element, which creates policy links at page and question level to point to relevant
policy information

• The skip-field element, which enables a more flexible layout of elements within clusters or
footer rows in lists where no visible display element is needed.

• The row-help element, which specifies help for rows in a list.

• The set-focus attribute of the question-page element, which sets focus for a page.

Meta-display elements

• The codetable-hierarchy-layout element, which is used in questions with a code table
hierarchy type to control different aspects of the layout.

Structural, administrative, and other elements and attributes

• The hide-for-control-question attribute on the ieg-script element, which hides the label
and value of control questions for loops when the loop is entered.

• The highlight-validation attribute on the ieg-script element. Validations are now always
displayed with the failing input field.

• The show-progress-bar attribute on the ieg-script element. Progress through sections is now
indicated by text and the section title. For example, STEP 2 OF 4 · HOUSEHOLD.

• The show-sections attribute on the ieg-script element, which shows a sections panel.

For more information about IEG elements, see the IEG script element reference.

Configuring progress information for forms
If you are developing pages in IEG, you can show progress text and the section title so citizens can see
where they are in the script, for example, STEP 2 OF 4 · HOUSEHOLD.

Add the following IEG configuration property to the ieg-config.properties file to configure the text.
The section title is added automatically.

Text progress bar indicator
progress.bar.indicator.text=Step %1s of %2s

Where %1s is the current step number and the %2s is the total number of steps on the script. The
message is calculated based on the total number of sections and the current section.

92 IBM Cúram Social Program Management 7.0.8 or 7.0.4.4: IBM Universal Access Responsive Web Application
2.3.0

The IEGPageMetadata(JSON); component contains all of the metadata for each IEG form. The text
progress indicator is displayed if IEGPageMetadata finds the metadata['ieg-config']['progress-
indicator'] element in the JSON.

Configuring dynamic titles on forms
If you are developing pages in IEG, you can configure the relationship pages with more relevant titles that
are based on the user's responses.

The relationship page title accepts an ICU message template.

For more information about the ICU messaging format, see http://icu-project.org/apiref/
icu4j/com/ibm/icu/text/MessageFormat.html. Page titles and subtitles accept a specific formatting syntax
based on ICU. It should be used in loops and will give more context to the users.

These six keywords are defined:

• index
• innerIndex
• outerIndex
• ordinal
• innerOrdinal
• outerOrdinal

You can use index and ordinal in simple non-nested loops. If they are used in a nested loop, it is
synonymous to outerIndex and outerOrdinal.

Refer to these examples.

"Add {ordinal} member" displays Add first member, Add second member, ...

"Add the {innerOrdinal} income for the {outerOrdinal} member" displays Add the first
income for the first member ...

"{index, select, 0 {Add your {innerOrdinal} income} other {Add %1s's
{innerOrdinal} income}}" displays Add your first income or Add Jane's first income depending on
the value of index (this is equal to ordinal - 1).

"Ajouter la {ordinal}#feminine# personne" displays Ajouter la première personne.

"Ajouter la {innerOrdinal}#feminine# recette du {outerOrdinal}#%spellout-
ordinal-masculine# membre" displays Ajouter la première recette du premier membre.

You can define the title as follows:

{index, select, 0 {Your relationships} other {{personName}'s relationships}}

The outcome of this message template on the first relationship question page is Your relationships. On
the following relationship question pages, it shows [personName]’s relationships. The reserved word
personName displays the person's first name on the title of the page.

Configuring rich text on forms
You can configure rich text to display with a number of IEG display elements in IEG forms. You can also
configure external links in rich text to open in a new tab or window.

About this task

Rich text is supported in the following IEG display elements that support text:

• cluster title, help, and description
• container title, help, and description
• display-text
• divider

Chapter 1. IBM Cúram Universal Access 93

http://icu-project.org/apiref/icu4j/com/ibm/icu/text/MessageFormat.html
http://icu-project.org/apiref/icu4j/com/ibm/icu/text/MessageFormat.html

• list title, help, and description
• question label and help
• subtitle

For more information about IEG elements, see Display elements.

Configuring external links to open in a new tab or window
You can configure external links to open in a new tab or window in IEG forms. By default, links open in the
current tab.

About this task

For security reasons, HTML in rich text is sanitized to remove certain attributes before display, including
the HTML target attribute. You must configure the rich text to leave the target attribute in the sanitized
content so that the link opens in a new tab or window.

For example, the my link link in rich text opens in the current tab as
intended. The my link link is intended to open in a
separate tab or window. However, because the rich text is sanitized with DOMPurify before display, the
target attribute is removed and the link opens in the current tab by default.

To configure DOMPurify to leave specific attributes, you must add dompurify to the dependencies and
specify a DOMPurify persistent configuration in any JavaScript or JSX code that runs when the app is
loaded. For example, App.js. For more information about DOMPurify, see https://github.com/cure53/
DOMPurify#persistent-configuration.

Only one active configuration at a time is allowed. After you set the configuration, any extra configuration
parameters that are passed to DOMPurify.sanitize are ignored. The DOMPurify configuration persists
until the next call to DOMPurify.setConfig, or until DOMPurify.clearConfig is called to reset it.

Procedure

1. Add dompurify to the dependencies in the package.json file.

npm install dompurify

2. To configure DOMPurify to leave the target attribute, specify the following DOMPurify persistent
configuration in any JavaScript or JSX code that runs when the app is loaded.

import DOMPurify from 'dompurify';
DOMPurify.setConfig({ ADD_ATTR: ['target'] });

Configuring hint text for forms
You can use short sentences of hint text to explain the expected input format or content in IEG forms. For
example, you can explain the expected format for a telephone number.

About this task

Hint text is suitable for short sentences and does not support HTML tags. If you want to add more text or
format text with HTML tags, use the help-text element instead. For more information, see hint-text and
help-text.

Procedure

In your IEG script, you can add the hint-text element to any container, question or list-
question element.

For example:

• Container

<container show-container-help="true">
 <title id="primaryPhoneNumber">primaryPhoneNumber</title>

94 IBM Cúram Social Program Management 7.0.8 or 7.0.4.4: IBM Universal Access Responsive Web Application
2.3.0

https://github.com/cure53/DOMPurify#persistent-configuration
https://github.com/cure53/DOMPurify#persistent-configuration

 <hint-text id="PhoneNumber.Hint">PhoneNumber.Hint</hint-text>
 <help-text id="PhoneNumber.Help">Telephone number must only contain numbers, parentheses,
or dashes and be 10 digits. For example, (212) 555-0010 or 2125550010.</help-text>
 <question id="primaryPhoneType" mandatory="true">
 <help-text id="PhoneNumber.Help">Telephone number must only contain numbers,
parentheses, or dashes and be 10 digits. For example, (212) 555-0010 or 2125550010.</help-
text>
 <label id="PrimaryPhoneType.Label">Primary Phone Type</label>
 </question>
</container>

• Question

<question id="firstName" mandatory="true">
 <hint-text id="FirstName.Hint">FirstName.Hint</hint-text>
 <label id="FirstName.Label">First Name</label>
</question>

• List question

<list-question entity="Person" id="currentlyWorking" mandatory="false">
 <label id="CurrentlyWorking.Label">Please select the people that have a job:</label>
 <hint-text id="CurrentlyWorking.Hint">CurrentlyWorking.Hint</hint-text>
 <item-label>
 <label-element attribute-id="firstName" />
 </item-label>
</list-question>

Configuring explainer text for forms
You can use the explainer element to provide extra text in IEG forms that is initially hidden and that
can be expanded to show further explanation. For example, you can provide background information that
a user can choose to expand only if needed.

About this task

You can use the explainer element to provide a large amount of text without cluttering up the form. For
more information about showing text in IEG forms, see explainer, hint-text, and help-text.

Procedure

In your IEG script, add the explainer element to any cluster, question-page, or relationship-
page element.

For example:

• cluster

<cluster>
 <explainer>
 <title id="ExplainerCluster.Title">Why do we ask for your Social Security Number?</
title>
 <description id="Explainer.Description">Your Social Security Number ensures that
your application is unique to you and reduces processing time.</description>
 </explainer>
 <question control-question="false" id="isSSN" mandatory="true" multi-select="false"
show-field-help="false">
 <label id="IsSSN.Label">What is your Social Security Number?</label>
 </question>
 </cluster>

• question-page

<question-page>
<explainer>
 <title id="ExplainerSSN.Title">Why do we ask for your Social Security Number?</title>
 <description id="ExplainerSSN.Description">Your Social Security Number ensures that your
application is unique to you and reduces processing time.</description>
 </explainer>
</question-page>

Chapter 1. IBM Cúram Universal Access 95

• relationship-page

<relationship-page>
<explainer>
 <title id="ExplainerSSN.Title">Why do we ask for your Social Security Number?</title>
 <description id="ExplainerSSN.Description">Your Social Security Number ensures that your
application is unique to you and reduces processing time.</description>
 </explainer>
</relationship-page>

Configuring required or optional labels for form fields
You can choose whether to indicate the required fields or the optional fields in IEG forms. As the majority
of questions in a typical form should be required, indicating the optional questions rather than the
required questions typically results in a less cluttered form. By default, optional fields are highlighted in
IEG forms.

About this task
By default, fields that are not configured as required in the IEG script are labeled as Optional and
required fields are not labeled. If you choose to indicate required fields instead, fields that are configured
as required in the script are labeled Required and optional fields are not labeled.

Procedure

Show labels for required questions only by adding the REACT_APP_DISPLAY_REQUIRED_LABEL
environment variable to your .env file with a value of true.
For example:

REACT_APP_DISPLAY_REQUIRED_LABEL=true

Configuring input formats and constraints for form fields
You can use environmental variables and input masks to customize field inputs for phone numbers, social
security numbers (SSN), currency, and dates on IEG forms. You can also adjust the width of form fields to
match the length of the expected input. If a field is too long or too short, citizens might wonder if they
have misunderstood the label.

About this task

Masked input fields increase input field readability by formatting or constraining typed data. You can
apply input masks with the IEG class-names element, which is a child element of the layout element.
The class-names element adds the content of the element to the HTML that is generated for the
component, this element accepts multiple values separated by a space.

For more information about the layout element, see layout.

If the class name matches any of the reserved input mask class names, that class name is applied to the
HTML control input. If the class name does not match a reserved input mask class name, the class name
is applied to the <div> element that contains the HTML element (cluster, question or list-question). You
can use the following design system CSS classes that as input masks to format and constrain input values
for questions.

• wds-js-input-mask-currency

Masks input for currency questions. The character limit is 21 characters. You can also set optional
environmental variables for currency symbols, see “Configuring currency symbols” on page 98.

• wds-js-input-mask-ssn

Masks input for social security numbers.
• wds-js-input-mask-phone

Masks input for phone number fields according to the defined locale for the application. Configuring the
phone number input mask requires some additional steps and you can also set optional environmental
variables for delimiters and country codes, see “Configuring phone numbers” on page 97.

96 IBM Cúram Social Program Management 7.0.8 or 7.0.4.4: IBM Universal Access Responsive Web Application
2.3.0

• wds-js-input-layout-size--field_size

Adjusts the width of form fields to match the length of the expected input. Where field_size is one of
the following sizes:

x-small
Use for 2 - 3 characters, such as DD, MM or title.

small
Use for 4 - 6 characters, such as ZIP code or CVV number.

medium
Use for around 8 characters, such as SSN or DD/MM/YYYY.

large
Use for around 16 characters, such as credit card numbers.

x-large
Use for around 24 characters, such as email addresses.

Procedure

In your IEG script, add the appropriate CSS classes to the question. For example:

<question id="ssn" mandatory="true">
 <label id="SSN.Label">SSN</label>
 <layout>
 <class-names>custom-css-class1 wds-js-input-mask-ssn wds-js-input-layout-size--medium
 </class-names>
 </layout>
</question>

Configuring phone numbers
You can configure an input mask class name to format phone number fields in IEG forms according to the
defined locale for the application. You can also configure a phone number delimiter or a country prefix if
needed.

Procedure

1. Add cleave.js as a dependency in your package.json file.

"cleave.js": "<version>"

Where version is the version that you want to use.
2. Import the region-specific .js file in your initializing .js file.

For example:

import 'cleave.js/dist/addons/cleave-phone.[country]';

Where country is the locale that you want to use.
3. Add a REACT_APP_PHONE_MASK_FORMAT environment variable to your .env file.

REACT_APP_PHONE_MASK_FORMAT=[country]

Where country is the locale that you want to use.
4. In your IEG script, add the wds-js-input-mask-phone class name to the question. For example:

<question id="primaryPhoneNumber" mandatory="true" show-field-help="true">
 <layout>
 <class-names>wds-js-input-mask-phone</class-names>
 </layout> <label id="PrimaryPhoneNumber.Label">Primary Phone Number</label>
</question>

5. Optional: You can set a custom delimiter for phone numbers by adding the
REACT_APP_PHONE_MASK_DELIMITER environment variable to your .env file.

Chapter 1. IBM Cúram Universal Access 97

For example, to convert 1 636 5600 5600 to 1-636-5600-5600, set the environment variable as
follows:

REACT_APP_PHONE_MASK_DELIMITER=-

6. Optional: You can set a fixed country code for phone numbers by adding the
REACT_APP_PHONE_MASK_LEFT_ADDON environment variable to your .env file.
For example, to convert 1-636-5600-5600 to +1-636-5600-5600, set the environment variable as
follows:

REACT_APP_PHONE_MASK_LEFT_ADDON=+

Configuring date formats
You can configure the date format in IEG forms by setting the REACT_APP_DATE_FORMAT environment
variable.

About this task

By default, the date format is MM/DD/YYYY if you do not set a value for the REACT_APP_DATE_FORMAT
environment variable.

The valid values are:

dd-mm-yyyy
mm-dd-yyyy

If you set an invalid value, the default date format is used.

Procedure

Change the date format by adding the REACT_APP_DATE_FORMAT environment variable to your .env file.
For example, to change the date format to DD/MM/YYYY, set the environment variable as follows:

REACT_APP_DATE_FORMAT=dd-mm-yyyy

Configuring currency symbols
You can configure currency symbols for currency fields in IEG forms by setting the
REACT_APP_CURRENCY_MASK_LEFT_ADDON or REACT_APP_CURRENCY_MASK_RIGHT_ADDON
environment variables.

About this task

Use the appropriate variable to set the currency symbol either before or after the value. If both
environment variables are set, REACT_APP_CURRENCY_MASK_LEFT_ADDON takes precedence.

Procedure

Add a currency symbol for currency fields by adding the REACT_APP_CURRENCY_MASK_LEFT_ADDON or
REACT_APP_CURRENCY_MASK_LEFT_ADDON environment variables to your .env file.
For example, to set the currency symbol for US dollars, set the environment variable as follows:

REACT_APP_CURRENCY_MASK_LEFT_ADDON=$

Configuring code-table hierarchies for form fields
You can use code-table hierarchies to add two related questions in IEG forms. When you answer the first
question, the second question is enabled.

About this task
Any question where the data type is defined as a code table hierarchy is displayed as two separate
questions in vertically aligned drop-down menus. The first question menu corresponds to the root code

98 IBM Cúram Social Program Management 7.0.8 or 7.0.4.4: IBM Universal Access Responsive Web Application
2.3.0

table in the hierarchy, and displays the label that is specified for the question. The second question menu
corresponds to the second-level code table in the hierarchy, and displays a label that corresponds to the
code table display name. The second menu is disabled until a selection is made in the first menu.
Summary pages display both questions.

Displaying a code-table hierarchy value in a list, or the codetable-hierarchy-layout options, are not
supported.

Procedure

To ensure that the label is displayed correctly for the second question, you must ensure that, for each
code table name element, there is a corresponding locale element within the displaynames element
in your code-table definition.

For example, see the following code-table definition.

<codetables package="curam.codetable" hierarchy_name="CountyCityHierarchy">
 <!-- Parent codetable - County -->
 <codetable java_identifier="COUNTYCODE" name="CountyCode">
 <displaynames>
 <name language="en">County</name>
 <locale language="en">County</name>
 </displaynames>
 <!-- code items... -->
 </codetable>
 <!-- Child codetable - City -->
 <codetable java_identifier="CITYCODE" name="CityCode" parent_codetable="CountyCode">
 <displaynames>
 <name language="en">City</name>
 <locale language="en">City</name>
 </displaynames>
 <!-- code items... -->
 </codetable>
</codetables>

Implementing a combo box for form fields
You can implement a combo box question with an auto-complete search function to help you to complete
form fields in IEG forms as you type. For example, known address fields can be automatically selected
when you enter an address. You can implement the option to add new items if they are not found, for
example, add an address.

About this task

You must implement a search function in the Universal Access Responsive Web Application and register
the search function with IEGRegistry. The search function can point to an internal or external search
service to provide the information. Then, update the datastore schema definition and your IEG script.

 Click here for a video presentation that gives an overview of the combo box.

Implementing search functions for ComboBox components
You can implement the ComboBox component to search external data sources as you type in a form field,
with a built-in filter function. Implement a search function and associated error handling, and make that
search function available to the IEG form. If needed, you can implement an Add New option so that users
can add an item if it is not found.

Procedure

1. Implement the search function. A search function is a JavaScript function that receives one parameter
that contains the value of the ComboBox, and returns an array of items to be displayed by the
ComboBox.

Chapter 1. IBM Cúram Universal Access 99

https://developer.ibm.com/watsonhealth/videos/ibm-universal-access-web-development-accelerator-and-combo-box/

The response of search-function is an array of items, {items}. Each item is an object with the
following structure:

{
 id:"key"
 value:"value"
 item: { "attribute1": "value1", "attribute2": "value2" },
}

Where:

• id is an optional attribute that is used if the id needs to be stored in the data store. If it is not
present, only the value is stored in the data store.

• value is the value of the question to store in the data store and to render in the list of options of the
ComboBox.

• item is an optional complex object with the structure of the formData to be populated if that
element is selected in the ComboBox component.

The structure of the item object must match the formData of the target entity. The following simple
example populates the ResidentialAddress entity:

{
 'street1': 'street1',
 'street2': 'street2',
 'city': 'city',
 'zipCode':' zipCode',
 'state': 'state',
}

2. Register the search function with the IEGRegistry object. IEGForm has access to IEGRegistry
and all registered functions. IEGForm reads the custom functions from IEGRegistry and stores
them on its formContext so IEGForm can call custom functions.

a. Implement the JavaScript function in any .js file.
b. Import IEGRegistry in a JavaScript initial file, such as App.js, and add the custom function to

the registry. For example:

 import { IEGRegistry } from '@spm/core';
 import { searchCity, customFunction } from './examples/playground/customFunctions';
...

const App = () => {
 IEGRegistry.registerComboBoxSearchFunctions({ searchCity, customFunction });

};

Add New option

If you want to render an Add New option in the menu that is displayed by the ComboBox, the response of
the JavaScript function must follow the structure:

{
 newItem: { id: '-1', label: 'Add New', value: ' ', position: 'top' },
 items,
 }

Where:

• newItem is a complex object with the definition of the Add New option.
• id is the id of the new option.
• label is the label of the new option.
• value is the value of the new option.
• position is the position where the new option renders. The possible values are bottom and top.

100 IBM Cúram Social Program Management 7.0.8 or 7.0.4.4: IBM Universal Access Responsive Web
Application 2.3.0

Error messages

The search function must implement its own logic to handle errors if an error needs to be displayed on the
UI, the response of the search function must be:

 {errorMessage: 'Controlled Error Message'}

The error message is displayed underneath the ComboBox.

Configuring combo box scripts and schemas
Add the combo-box element to a question in your IEG script and configure the combo-box element
attributes. Add a cluster after the question to display the information to the user when they select a menu
item. Update the schema definition with the appropriate elements.

About this task

The question schema type must be a string. You cannot use a question with a combo-box child
element as a control question.

You can review the design system usage guidance for the ComboBox component. In your development
environment, open the Social Program Management Design System Storybook documentation at
<path>@govhhs/govhhs-design-system-react/doc/index.html and search for ComboBox.

For more information about the IEG combo-box element, see combo-box.

Procedure

1. Add the combo-box child element to the question element. For example:

<question-page id="AboutTheApplicant_GB" read-only="false" set-focus="false" show-back-
button="false" show-exit-button="true" show-next-button="true" show-person-tabs="false" show-
save-exit-button="true" entity="Person" >

<!-- ComboBox -->
<cluster entity="SearchAddress">
 <title id="SearchAddress.Title">Your address</title>
 <question id="fullAddress" mandatory="true" show-field-help="false">
 <label id="FullAddress.Label">Search for your address</label>
 <combo-box key="id" search-function="searchAddress" target-entity="ResidentialAddress"
filter-items="true" />
</question>
</cluster>
 </question-page>

Where:

• key is the id to be stored in the data store and renders as a hidden widget on the front end. It is
optional and, if defined, the entity must define this property in the schema definition. The key
schema type must be a string.

• search-function is the name of the JavaScript search function to be invoked on each keydown
event.

• target-entity is an optional attribute to show information to the user when they select a combo
box menu item. In target-entity, specify the cluster entity to be populated with the value of the
search-function result item attribute. Update the script to display the cluster entity on the page,
the target entity must be shown on the same page as the combo box. If more than one cluster on the
page is related to the same entity name, the first cluster that matches the entity attribute value with
the target-entity value is populated.

• filter-items is an optional attribute that, if true, filters the items as you type with the built-in
filter functionality. By default, it is false.

2. Add a cluster to display the target-entity information when a user selects a menu item.

<question-page id="AboutTheApplicant_GB" read-only="false" set-focus="false" show-back-
button="false" show-exit-button="true" show-next-button="true" show-person-tabs="false" show-
save-exit-button="true" entity="Person" >

Chapter 1. IBM Cúram Universal Access 101

<!-- ComboBox -->
<cluster entity="SearchAddress">
 <title id="SearchAddress.Title">Your address</title>
 <question id="fullAddress" mandatory="true" show-field-help="false">
 <label id="FullAddress.Label">Search for your address</label>
 <combo-box key="id" search-function="searchAddress" target-entity="ResidentialAddress"
filter-items="true" />
</question>
</cluster>

<!-- ComboBox -->
<cluster entity="ResidentialAddress">
 <title id="Address.Title">Enter address</title>
 <help-text id="ADHelp">You must enter the address in which you physically reside
(residential address).</help-text>
 <question control-question="false" id="street1" mandatory="true" multi-
select="false" show-field-help="false">
 <label id="Street1.Label">Street 1</label>
 </question>
 <question control-question="false" id="street2" mandatory="false" multi-
select="false" show-field-help="false">
 <label id="Street2.Label">Street 2</label>
 </question>
 <question control-question="false" id="city" mandatory="false" multi-select="false"
show-field-help="false">
 <label id="City.Label">City</label>
 </question>
 <question control-question="false" id="zipCode" mandatory="false" multi-
select="false" show-field-help="false">
 <label id="Zipcode.Label">ZIP code</label>
 </question>
</cluster>
 </question-page>

3. Edit the schema definition and add an element for the combo box and the target entity, for example:

<!-- ComboBox -->
<xs:element name="SearchAddress">
 <xs:complexType>
 <xs:attribute name="id" type="IEG_STRING" />
 <xs:attribute name="fullAddress" type="IEG_STRING"/>
 </xs:complexType>
</xs:element>
<!-- Target Entity -->
 <xs:element name="ResidentialAddress">
 <xs:complexType>
 <xs:attribute name="street1" type="IEG_STRING"/>
 <xs:attribute name="street2" type="IEG_STRING"/>
 <xs:attribute name="city" type="IEG_STRING"/>
 <xs:attribute name="zipCode" type="IEG_STRING"/>
 </xs:complexType>
 </xs:element>
2. Associate that new element to a Person entity.
<xs:element name="Person">
 <xs:complexType>
 <xs:sequence minOccurs="0">
 <xs:element ref="SearchAddress" minOccurs="0" maxOccurs="1"/>
 <xs:element ref="ResidentialAddress" minOccurs="0" maxOccurs="unbounded"/>

 </xs:element>
</xs:complexType>

Customizing script behavior with BaseFormContainer
The behavior of scripts in the application is controlled by the BaseFormContainer.js container
component. Each form calls this container component, which controls script behavior such as whether
partial submission is allowed, or where to go on exiting the script. You can customize the behavior for
individual scripts by modifying BaseFormContainer properties.

About this task

The following BaseFormContainer properties are available:

• iegFormId. (Mandatory) This property corresponds to the IEG execution ID that is obtained from one
of the following options:

102 IBM Cúram Social Program Management 7.0.8 or 7.0.4.4: IBM Universal Access Responsive Web
Application 2.3.0

– An API that starts the script, by creating the execution with the necessary script ID and data store
schema.

– Existing executions that can be resumed.

Note: Later, the ID is used on the server to ensure that the current user matches the user who is
associated with the execution in the CitizenScriptInfo table. The ID also ensures that the
execution is not completed.

• title. (Mandatory) The title to be displayed in the header. You can translate the property by using the
formatMessage for react-intl.

• isLoginOrSignupAllowed. If the property is true when Save and exit is clicked and the user is not
logged in, the log-in screen is displayed. The default value is True.

• isPartialSubmissionAllowed. Specifies that partially completed scripts can be submitted. The
corresponding option must be added to the header. The default value is False.

• onExit. Specifies what happens when a user exits the script without saving. By default, it goes to the
home page.

• onFinish. Specifies what happens when the last page of the script is submitted. By default, it goes to
the home page.

• onPartialSubmission. Specifies what happens when a partial script is submitted. By default, it
saves the current page and then starts the OnFinish handler.

• onSaveAndExit. Specifies what happens when a user saves and exits the script. By default, it saves
the current page and determines what page to go to. If the user is not logged in, the log-in page is
displayed. If the user is logged in, the dashboard is displayed.

Procedure

1. To modify the behavior for an existing feature, from the root of your application, open /
node_modules/@spm/universal-access-ui/src/features/Forms. Directories for each
feature with IEG forms are displayed.

2. Open the directory and edit the <feature>FormContainer.js file. For example, Eligibility/
EligibilityFormContainer.js.

3. In the render() function, modify the properties as needed.

Merging clusters with the cluster element grouping-id attribute
If you are developing pages in IEG, you can merge several clusters on summary pages by using the
cluster element grouping-id attribute. The grouping-id attribute is not supported for standard
IBM Cúram Social Program Management web applications.

Related data fields can be defined within different clusters under the following conditions. You can use
the grouping-id attribute to merge these related data fields into a single cluster on IEG pages.

• Data is defined within different schema entities but a single cluster can be defined for a single entity
only.

• Data is defined within a conditional cluster but it must be included in a non-conditional cluster when the
condition is met.

All clusters with a specific grouping-id attribute are merged into the first cluster with that grouping-
id attribute. Aside from the questions, the cluster elements are shown as defined by the first cluster.
Ensure that the other cluster elements in the first cluster, such as the title or buttons, are suitable for the
merged cluster.

Where possible, do not have a conditional cluster as the first cluster if you are merging conditional and
non-conditional clusters. If the first cluster is conditional and the condition is not met, then the merged
cluster is not displayed. If a conditional cluster must be positioned before non-conditional clusters in a
merged cluster, then add a non-conditional cluster with no questions as the first cluster with the
grouping-id.

Chapter 1. IBM Cúram Universal Access 103

This sample XML snippet merges three clusters into a single cluster with the grouping-id attribute. The
three clusters have data fields from three different entities and the last cluster is conditional.

<cluster entity="ResidentialAddress" grouping-id="100">
 <title id="Address.Title">Address</title>
 <edit-link
 skip-to-summary="false"
 start-page="AboutTheApplicant_GB"
 />
 <layout>
 <type>flow</type>
 <num-cols>2</num-cols>
 <label-alignment>left</label-alignment>
 </layout>
 <question
 id="street1"
 >
 <label id="Street1.Label">Street 1:</label>
 </question>
...
</cluster>
<cluster entity="Person" grouping-id="100">
 <question
 id="applyToMailingAddress"
 >
 <label id="ApplyToMailingAddress.Label">Mail to Same Address?</label>
 </question>
</cluster>
<condition expression="Person.applyToMailingAddress=="N2OITYN2"">
 <cluster entity="MailingAddress" grouping-id="100">
 <question
 id="street1"
 >
 <label id="Street1.Label">Street 1:</label>
 </question>
 ...
</cluster>

Configuring relationship pages questions
If you are developing pages in IEG, you can configure the text of the relationship questions on relationship
pages.

By default, the question label is dynamic, in the first relationship question page, it renders as “What is
[Name and Age of the Person related] to you?”. On the following relationship question pages, it renders
“What is [Name and Age of the Person related] to [Name and Age of the Person]?

The attribute name for the start date must be startDate.

To show age in the relationship question label, you must populate the date of birth, which is defined as
the dateOfBirth attribute of the Person entity.

You can use the following IEG configuration property to configure the default text.

relationship question label on relationship page
relationship.question.label={index, select, 0 {What is %2s to you?} other {What is %2s to %1s?}}

The example ICU template does the following:

In the first iteration:

What is %2s to you?

Where %2s is the related person in the first iteration.

From the second iteration until the end:

What is %2s to %1s?

Where %1s is the new main person in the iteration and %2s is the related person in the iteration.

104 IBM Cúram Social Program Management 7.0.8 or 7.0.4.4: IBM Universal Access Responsive Web
Application 2.3.0

Configuring relationship starting dates on relationship summary pages
If you are developing pages in IEG, you can configure the start date of relationships for relationship
summary pages. For example, Married since Jun 12, 2014.

You can use the following IEG configuration property to configure the default text.

relationship type and start date label.
relationship.type.date.label=%1s since %2s

Where %1s is the relationship type and %2s is the relationship start date.

Customizing appeals in the Universal Access Responsive Web Application
You can customize appeals to suit your organization. You can integrate with an appeals system of your
choice. If you are licensed for the IBM Cúram Appeals application module, the IBM Cúram Social Program
Management appeals functionality is available on installation.

About this task

You can customize the following aspect of appeals:

• The Your rights to appeal content text on the dashboard.
• The Your appeals page. The Appeals page is shown only when a citizen has a case to appeal, otherwise

it is not displayed.
• The Request an Appeal Overview page, from which you can start the Request an Appeal form.
• The Request an Appeal IEG script, in which you specify the contents of the form.
• The Confirmation and next steps page.
• The Appeal cards on the Appeals home page, which contain information about each appeal request

that a user creates. Each card shows the status of the appeal request in a colored badge, with text such
as Appeal Request Submitted or Appeal Request Pending. The color depends on the status. For
example, Appeal Request Submitted is blue. You can customize the label text.

Procedure

1. The Appeals feature is unavailable by default. Enable Appeals in the application, see “Enabling and
disabling appeals” on page 105.

2. Review the text on application pages. For more information about modifying text on pages, see
“Changing the application text” on page 74.

3. Review the Request an Appeal form. For more information, see “Configuring appeal requests” on
page 154.

4. Review the Appeal Request cards on the Your appeals page, which show the appeals status. For
more information about customizing the appeals statuses, see “Customizing appeal request statuses”
on page 192.

Related concepts
Appealing benefit decisions
If you enable Appeals for your organization, citizens can appeal decisions on their benefits online from
their citizen accounts on their own devices. If your organization uses the IBM Cúram Appeals application
module, your organization can process appeals through the full appeals life-cycle that is provided by that
solution.

Enabling and disabling appeals
Use the REACT_APP_FEATURE_APPEALS_ENABLED environment variable to enable or disable the
Appeals pages and options in your application. The Appeals feature is disabled by default.

About this task

The following Appeals functionality can be enabled or disabled:

Chapter 1. IBM Cúram Universal Access 105

• The Appeals tab on the home page.
• The Appeals Request page.
• Your rights of appeal message on the home page.
• Appeals-related URLs, for example /appeals.

Procedure

1. Edit the .env file in the root of your application.
2. Set REACT_APP_FEATURE_APPEALS_ENABLED to true or false. If you don't define the

environment variable, the appeals feature is enabled by default.

Implementing page view analytics
You can implement page view analytics in your application to collect citizen page views for analysis. Using
the included page view JavaScript functions, you can start tracking page views by implementing a
callback to send tracking data to a library of your choice for analysis. In this example, the data is sent to
the Google global site tag (gtag.js) JavaScript tagging framework.

Before you begin

The registerPageViewCallback and pageView functions are available for you to implement tracking
in your custom application.

registerPageViewCallback
This function takes a callback, which you must define, as an argument. You must call the
registerPageViewCallback function before the application is rendered.

pageView
This function calls the registered page view callback where present. If the page view callback is not
registered, it is not called.

For IEG pages, pageView passes an object with the following properties as a parameter to the
callback:

• pageType ('IEG')
• pageID (the current IEG page ID)
• scriptID (the IEG script ID)

For non-IEG pages, pageView passes an object with the following properties as a parameter to the
callback:

• title
• location
• path

About this task
To track page views, you must initialize the tracking library, register the callback, and implement the
callback to send tracking data to a library for analysis.

When you define your own custom routes, you must use the TitledRoute component so that the pages
can be tracked. If the route corresponds to an IEG script, you must set the isIEG property for the
TitledRoute component.

Procedure

1. The index.html file is a good place to initialize the library. Insert this snippet, which is as provided
by Google except for the tracking call.

<!-- Global site tag (gtag.js) - Google Analytics -->
<script async src="https://www.googletagmanager.com/gtag/js?id=UA-TRACKINGID"></script>
<script>

106 IBM Cúram Social Program Management 7.0.8 or 7.0.4.4: IBM Universal Access Responsive Web
Application 2.3.0

 window.dataLayer = window.dataLayer || [];
 function gtag(){dataLayer.push(arguments);}
 gtag('js', new Date());
</script>

2. Also in the index.html file, you must update the Content Security Policy to allow the Google script to
run:

<meta http-equiv="Content-Security-Policy" content="script-src 'self' 'unsafe-eval' 'unsafe-
inline' https://www.googletagmanager.com/ http://www.google-analytics.com/" />

3. Implement the callback function.

The callback handles both IEG and non-IEG pages based on the pageType prop.

export default function customCallback(props) {
 const gtagProps = {};
 if (props.pageType && props.pageType === 'IEG') {
 // IEG pages
 gtagProps.page_title = `${props.scriptID} ${props.pageID}`;
 gtagProps.page_path = `/apply/${props.pageID}`;
 } else {
 // Non-IEG pages
 gtagProps.page_title = props.title;
 gtagProps.page_location = props.location;
 gtagProps.page_path = props.path;
 }
 window.gtag('config', 'UA-TRACKINGID', gtagProps);
}

4. In index.js, register the callback before the application renders.

registerPageViewCallback(customCallback);
ReactDOM.render(<App />, document.getElementById('root'));

5. For your own custom routes, you must use the TitledRoute component so that the pages can be
tracked. If the route corresponds to an IEG script, you must set the isIEG property for the
TitledRoute component. For more information, see “Advanced routing” on page 48.

Implementing a test environment
Use the test-framework package to set up your IBM Universal Access Responsive Web Application test
environment for testing with Test Cafe, Jest, and Enzyme. Then, use this guidance and the provided
helper files to write end-to-end tests, unit tests, or snapshot tests for your project. You can configure the
default test environment to suit your project requirements as needed.

End-to-end test environment
The test-framework package contains reusable files to help you set up a test environment with
TestCafe, and to help you to develop end-to-end test scripts.

End-to-end test helper files
The end-to-end test helper files in test-framework are designed to operate best within a page object
framework structure for your end-to-end automation suite.

Browser.js

The Browser.js module simulates interactions a user can have with their browser during an automated
test, such as:

• Retrieving the current URL for the current page displayed in the remote browser.
• Clicking the browsers back button to navigate to the previous page.
• Clicking the browsers forward button to advance to the next page.

Chapter 1. IBM Cúram Universal Access 107

Page.js

The Page.js module simulates common interactions that a user can have with a web page in an
application. A large variety of prebuilt methods are provided in this file, which help you to execute many
user interactions, such as:

• Clearing text and typing new text into an input field.
• Clicking an element.
• Clicking an element only if it is displayed.
• Retrieving the value of an input field.
• Retrieving the text content of an element.
• Waiting for an element to be displayed.
• Plus many more as described in the JS documentation for this package.

In addition, the Page module contains two methods to help you with developing and debugging your end-
to-end test scripts:

• The wait method pauses a test for a specified time (in milliseconds).
• The debug method physically stops the currently executing test script. You can then interact with the

page that is displayed in the remote browser in its current state. You can resume the test script again at
any time.

PageObject.js

The PageObject.js file acts as a base class from which you can build your own custom page objects for
use with end-to-end tests for any application. This class provides a lot of built-in functionality to help you
with your page object development tasks. For more information, see the JS documentation for this
package and the PageObject class documentation.

Verify.js

The Verify.js module provides a number of assertion methods for verifying the results from your
automated test scripts. This module allows you to execute verifications such as:

• Verifying whether an element is displayed in the UI.
• Verifying whether two values are equal (or not).
• Verifying whether a specified value is true or false.

End-to-end test initial setup and configuration
Create your directory structure and index.js file.

Project directory structure

Using the suggested directory structure for your end-to-end test framework helps you to get the best out
of the test-framework package during test development. It also helps you to keep things clean and
maintainable as your test framework scales in size.

.
├── tests
| └── e2e
| | └── config
| | └── data
| | └── page-objects
| | └── scripts

• The config directory contains a single index.js file that serves as the configuration file for all of the
modules and page objects that are going to be used by your test scripts.

• The data directory contains any additional data that is used by the test scripts such as user data or
routes data for your application.

108 IBM Cúram Social Program Management 7.0.8 or 7.0.4.4: IBM Universal Access Responsive Web
Application 2.3.0

• The page-objects directory is where you build the page objects that are required to test each
individual page of your application.

• The scripts directory is where you place the test scripts to be ran by testcafe.

Initial config directory setup

The first step in building your end to end framework is to create an index.js file in the config directory
as shown:

.
├── tests
| └── e2e
| | └── config
| | | └── index.js

This file is where you are import all of the modules from the test-framework package that you want to
reuse in your test scripts. You also configure and export your page objects from this configuration file.
This approach improves your framework's long-term maintainability as everything that is used by your
test scripts is located in and exported from this single file. If something does change, the configuration
file is all that needs to be updated and your scripts automatically inherit all of the changes without the
need to refactor them.

Import the test-framework helper files and export them for use in your test scripts. Initially your
index.js file contains the following code:

import { Browser, Page, Verify } from'@spm/test-framework';

export { Browser, Page, Verify };

If you set up your test directory structure as suggested, then importing each of these modules into your
test scripts follows this pattern:

import { Browser, Page, Verify } from'../config';

Page object development and best practices
The page object model design pattern for building UI automation frameworks is our recommended
practice. A page object is an object-oriented class that is built to represent the individual pages in the
application under test. These representations offer an interface from which your test scripts can interact
with any UI element that is associated with that page similarly to how a user would interact with them.

For example, the page object for the LoginPage in your application might include a login() method
where you specify the user name and password credentials as parameters. This method then provides the
automated steps that are required for logging a user in to your application. This page object can then be
reused by any test script that requires a logged in user, with each test suite calling that login() method
without needing to copy and paste the individual steps each time.

The benefits to the page object model extend far beyond simply reducing code duplication. Further
benefits include:

• The API of your chosen automation framework is completely abstracted away from your test scripts.
This makes tests easier to read, write and review.

• Element selectors are isolated in the page object that requires them.
• Since you are referencing page objects in your test scripts, the scenarios executed by the scripts

document themselves as you write them. Managers and new team members alike will find these test
scripts much clearer and easier to understand. For example: it is much easier to read and instantly
know the meaning of loginPage.goto(); followed by loginPage.login(); as opposed to trying
to make sense of a group of API calls.

• Suppose that an update completely changes the behavior for something that previously exists in one of
your page objects. You need to update only the affected individual page object function to work with the
new behavior and all of your test scripts automatically inherit the changes. You won't need to go back
and change anything in any of your scripts.

Chapter 1. IBM Cúram Universal Access 109

Best practices

Best practices for the development of page objects in your automation framework.

Use CSS selectors to locate your UI elements

Use CSS selectors when trying to locate your UI elements. While you can use XPaths for this purpose,
CSS selectors are the highly recommended practice due to their sheer simplicity, not to mention the
overall speed and performance advantages they have over their XPath equivalents. To get the best out
of CSS selectors, assign some attribute to your UI elements to make them unique from all other
elements. For example, set the id, name, or perhaps a custom data-testid attribute with some
unique identifier for that element.

Keep assertions out of page objects

One of the golden rules for building end-to-end test scripts is that you should aim to include just one
main assertion or set of assertions per test script. It is therefore equally important that you do not
place assertions in any of the functions provided by your page objects. It can be very tempting to add
assertions to a page object function because it always provides an assertion for you every time that
method is invoked.

For example, suppose that a message is briefly displayed to the user to confirm that they have
successfully logged in. You also have a scenario to automate that verifies that this message is
displayed after a user has logged in. You might add the assertions for this as the final steps of the
login() method in your LoginPage page object so that this verification is always made every time
any page object invokes that login() function.

While it can look like a good idea to do this and also promotes the idea that you are getting something
of a free verification for your login behavior in all of your other scripts, this is not a recommended
practice because:

• First, you are losing a lot of clarity in your test scripts by adding verifications to your page object
functions. Seeing loginPage.login() in your script does not clearly imply that this method also
includes a verification therefore the intention of the test script will also be unclear as a result.

• Adding assertions to page objects adds too much ambiguity to your test suites. Your scripts will
automatically inherit multiple assertions, any of which can fail, which may result in the conclusion of
your scripts never being reached and their intended main verification(s) never taking place. Going
back to our login() example, suppose a bug is introduced whereby the login message is not
displayed to the user after successful login. Now all of your test scripts which invoke that login()
method will fail since you added the verifications to confirm the presence of the message even
though only one test in your entire suite should realistically be verifying this.

• Developers that may have to debug a failing test will be forced to dig deep into your page object
framework in order to find what verifications have actually taken place during the test execution.
This will be even more complex a task if you are importing and reusing page objects that have been
developed in a separate framework.

• Verifications aren't as free as you might think. In fact, they can be very expensive for time. Having
multiple verifications taking place throughout your page object functions can slow your test script
execution times down by a significant amount.

The pageObject class
The PageObject.js file in the test-framework package provides an interface from which you can
easily create page objects for use in your end-to-end framework. When you create page objects, you can
use PageObject constructor parameters to automatically generate methods that are commonly used
by page objects during automation.

Import this class into your page object file directly and extend from it to inherit all of its behavior, for
example:

import { PageObject } from'@spm/test-framework';

exportdefaultclassMyPageObjectextendsPageObject {

110 IBM Cúram Social Program Management 7.0.8 or 7.0.4.4: IBM Universal Access Responsive Web
Application 2.3.0

 // ...
}

The PageObject class enables you to set a URL for the web page that is represented by your page
object. It also provides you with a list of additional parameters for automatically generating methods that
are commonly used by page objects during automation. Alternatively, you can call the super method in
the constructor to extend from this class without setting any of the parameters, if you prefer.

The PageObject constructor parameters

The PageObject class provides a number of constructor parameters that you can use to build your
page objects. The sample code shows how to invoke the PageObject constructor and lists all of the
parameters that are accepted:

exportdefaultclassMyPageObjectextendsPageObject {
 /* Invokes the PageObject constructor - the following is the complete list of parameters
supported in their correct order */constructor() {
 super(
 url,
 clickList,
 clickIfDisplayedList,
 clearAndTypeTextList,
 typeTextList,
 selectList,
 getValueList,
 getIsSelectedList,
 getDropdownSelectionList,
 getTextContentList
);
 }
}

@param {JSON} clickList parameter

The clickList parameter specifies a list of CSS selectors in JSON, all of which correspond to elements
in the UI to be clicked during your test execution. For example, these two CSS selectors correspond to
two different buttons in your UI:

constsubmitButton='input[id="submit"]';
constexitButton='button[id="exit"]';

Instead of declaring them as the individual variables as shown, declare them as the clickList
parameter as follows:

constclickList= {
 exitButton:'button[id="exit"]',
 submitButton:'input[id="submit"]'
};

exportdefaultclassMyPageObjectextendsPageObject {
 /* For this example we are only setting the URL and clickList parameters - all other
parameters are left undefined */constructor() {
 super('http://www.ibm.com', clickList);
 }
}

By specifying your UI elements that are to be clicked in this way, you now have access to click methods
for each of the selectors in the clickList after you create an instance of your page object. These click
methods are automatically generated when your page object is created. So for the previous example, the
following code sample demonstrates exactly what methods become available when you create an
instance of the MyPageObject class:

/* First create an instance of your page object */constmyPageObject=newMyPageObject();

/* After creating the page object instance, you will have access to both of these click methods
*/awaitmyPageObject.clickExitButton();
awaitmyPageObject.clickSubmitButton();

Chapter 1. IBM Cúram Universal Access 111

The click method name is derived from the word click followed by the title of the key that you
assigned to your selector. Therefore, if you declared a myCustomSelector key in the JSON that
provided to the clickList parameter, the click method for that selector is
clickMyCustomSelector().

Note: As all of these method names are derived from keys, be careful with your spelling. Any spelling
mistakes in keys are reproduced in the subsequent click method name.

@param {JSON} clickIfDisplayedList parameter

The clickIfDisplayedList parameter works in a similar way to the clickList parameter. Any
element selector that you specify in the clickIfDisplayedList parameter has a subsequent method
that is automatically generated for it when the page object instance is created.

In this case, each of the methods attempts to click the UI element corresponding to your specified
selector only if that selector is displayed in the UI. If the UI element is not displayed, the method exits
cleanly and allows your test script to continue running.

The naming convention for this method is also slightly different in that it follows the format
click_XXX_IfDisplayed where _XXX_ is the title that you assigned to each of your keys.

Taking the previous example, the methods that are generated in this instance are as follows:

constclickIfDisplayedList= {
 exitButton:'button[id="exit"]',
 submitButton:'input[id="submit"]'
};

classMyPageObjectextendsPageObject {
 /* For this example we are only setting the URL and clickIfDisplayedList parameters - all
other parameters are left undefined */constructor() {
 super('http://www.ibm.com', undefined, clickIfDisplayed);
 }
}

/* Now create an instance of your page object */constmyPageObject=newMyPageObject();

/* After creating the page object instance, you will have access to both of these
clickIfDisplayed methods */awaitmyPageObject.clickExitButtonIfDisplayed();
awaitmyPageObject.clickSubmitButtonIfDisplayed();

@param {JSON} clearAndTypeTextList parameter and @param {JSON} typeTextList
parameters

Both of these parameters work in the same way as described with the previous parameters. However, the
functionality of the methods that are generated for each of the element selectors that are specified in
either list is slightly different:

• If you add selectors to the clearAndTypeTextList parameter, then the methods clear all previous
text that was entered into the corresponding UI element before typing new text into that element.

• Any selectors added to the typeTextList parameter generate methods that type text into the UI
element. No previous text is cleared, so the text is appended to the existing text.

While the functionality varies depending on which list that you add your selectors to, the actual method
names that are generated follow the very same naming convention. In both cases the method name will
follow the format type_XXX where _XXX is the title that you assigned to each of your keys. This
type_XXX method also accepts a string parameter where you can specify the exact text that you want
to type into that element.

Following on from our previous examples, the methods generated in this instance are as follows:

constclearAndTypeTextList= {
 firstName:'input[id="first_name"]',
 lastName:'input[id="last_name"]'
};
consttypeTextList= {
 addressLine1:'input[id="address_line_1"]',
 addressLine2:'input[id="address_line_2"]'

112 IBM Cúram Social Program Management 7.0.8 or 7.0.4.4: IBM Universal Access Responsive Web
Application 2.3.0

};

classMyPageObjectextendsPageObject {
 /* For this example we are only setting the URL and both type text parameters - all other
parameters are left undefined */constructor() {
 super(
 'http://www.ibm.com',
 undefined,
 undefined,
 clearAndTypeTextList,
 typeTextList
);
 }
}

/* Now create an instance of your page object */constmyPageObject=newMyPageObject();

/* After creating the page object instance, you will have access to all of these type methods */
awaitmyPageObject.typeFirstName('Michael');
awaitmyPageObject.typeLastName('Myers');
awaitmyPageObject.typeAddressLine1('Haddonfield');
awaitmyPageObject.typeAddressLine2('Illinois');

@param {JSON} selectList parameter

The selectList parameter allows you to specify a list of element selectors that correspond to
<select> elements in your UI. As before, any element selector that specified in this parameter has a
method automatically generated for it when the page object instance is created. The naming convention
for the generated methods follows the format select_XXX, where _XXX is the title that you assigned to
each of your keys. This select_XXX method also accepts a string parameter where you can specify the
exact option that is to be chosen from the list of options in that <select> element.

The following example shows the methods generated for element selectors that are specified in the
selectList parameter:

constselectList= {
 company:'select[id="company"]',
 county:'select[id="county"]'
};

classMyPageObjectextendsPageObject {
 /* For this example we are only setting the URL and the selectList parameter - all other
parameters are left undefined */constructor() {
 super(
 'http://www.ibm.com',
 undefined,
 undefined,
 undefined,
 undefined,
 selectList
);
 }
}

/* Now create an instance of your page object */constmyPageObject=newMyPageObject();

/* After creating the page object instance, you will have access to these select methods */
awaitmyPageObject.selectCompany('IBM');
awaitmyPageObject.selectCounty('Dublin');

@param {JSON} getValueList parameter

For verification purposes in your test scripts, you can retrieve the text value of an <input> field by adding
element selectors to the getValueList parameter.

The naming convention for the methods follows the format get_XXX_Value, where _XXX_ is the title
that you assigned to each of your keys. When you invoke this method in your test script, it retrieves the
current string value of the <input> element corresponding to the CSS selector you specified.

Chapter 1. IBM Cúram Universal Access 113

The following example shows how you might combine a type_XXX method action with a
get_XXX_Value method action to enter text into an <input> field and then retrieve its value again:

constclearAndTypeTextList= {
 firstName:'input[id="first_name"]',
 lastName:'input[id="last_name"]'
};
/* We can re-use both of the existing selectors for the purpose of this list - there's no need
to declare them again */constgetValueList= {
 firstName:clearAndTypeTextList.firstName,
 lastName:clearAndTypeTextList.lastName
};

classMyPageObjectextendsPageObject {
 /* For this example we are only setting the URL, the clearAndTypeTextList parameter and the
getValueList parameter - all other parameters are left undefined */constructor() {
 super(
 'http://www.ibm.com',
 undefined,
 undefined,
 clearAndTypeTextList,
 undefined,
 undefined,
 getValueList
);
 }
}

/* Now create an instance of your page object */constmyPageObject=newMyPageObject();

/* After creating the page object instance, you will have access to all of these methods */
awaitmyPageObject.typeFirstName('Jack');
awaitmyPageObject.typeLastName('Bauer');
constfirstName=awaitmyPageObject.getFirstNameValue();
constlastName=awaitmyPageObject.getLastNameValue();

@param {JSON} getIsSelectedList parameter

During test execution, you can verify whether a specific check box or set of check boxes were selected or
cleared with the getIsSelectedList parameter . The naming convention for the generated methods
follows the format is_XXX_Selected, where _XXX_ is the title that you assigned to each of your keys.
When you invoke this method in your test script, it returns a Boolean true or false value depending on
whether the check box element corresponding to the CSS selector you specified is checked or not.

The following example shows how you might combine a click_XXX method action with an
is_XXX_Selected method action to select a check box and then determine whether it was checked:

constclickList= {
 agreeTermsAndConditions:'input[type="checkbox"][id="terms_and_conditions"]'
};
/* We can re-use this existing selector for the purpose of this list - there's no need to
declare it again */constisSelectedList= {
 agreeTermsAndConditions:clickList.agreeTermsAndConditions
};

classMyPageObjectextendsPageObject {
 /* For this example we are only setting the URL, the clickList parameter and the
isSelectedList parameter - all other parameters are left undefined */constructor() {
 super(
 'http://www.ibm.com',
 clickList,
 undefined,
 clearAndTypeTextList,
 undefined,
 undefined,
 undefined,
 isSelectedList
);
 }
}

/* Now create an instance of your page object */constmyPageObject=newMyPageObject();

/* The first check for whether the checkbox is selected or not will return false */let
isChecked =awaitmyPageObject.isAgreeTermsAndConditionsSelected();

114 IBM Cúram Social Program Management 7.0.8 or 7.0.4.4: IBM Universal Access Responsive Web
Application 2.3.0

/* Now lets click on the checkbox and re-run our previous method - this time it will return
true */awaitmyPageObject.clickAgreeTermsAndConditions();
isChecked =awaitmyPageObject.isAgreeTermsAndConditionsSelected();

@param {JSON} getDropdownSelectionList parameter

You can retrieve the selected option from a <select> element during test execution by adding selectors
to the getDropdownSelectionList parameter. For example, perhaps your test script has already
chosen a value for a <select> element in your UI and you would like to verify that the value is correct
and retained after some other actions are executed.

The naming convention for the generated methods follows the format get_XXX_Selection, where
XXX is the title that you assigned to each of your keys. When you invoke this method in your test script,
it retrieves the string value of the currently selected option in the <select> element corresponding to
the CSS selector you specified.

The following example shows how you might combine a select_XXX method action with an
get_XXX_Selection method action to select an option in a <select> element and then retrieve the
currently selected option from that <select> element again:

constselectList= {
 company:'select[id="company"]',
 county:'select[id="county"]'
};
/* We can re-use these existing selectors for the purpose of this list - there's no need to
declare them again */constgetDropdownSelectionList= {
 company:selectList.company,
 county:selectList.county
};

classMyPageObjectextendsPageObject {
 /* For this example we are only setting the URL, the selectList parameter and the
getDropdownSelectionList parameter - all other parameters are left undefined */constructor() {
 super(
 'http://www.ibm.com',
 undefined,
 undefined,
 undefined,
 undefined,
 selectList,
 undefined,
 undefined,
 getDropdownSelectionList
);
 }
}

/* Now create an instance of your page object */constmyPageObject=newMyPageObject();

/* After creating the page object instance, you will have access to these all of these methods
*/awaitmyPageObject.selectCompany('IBM');
awaitmyPageObject.selectCounty('Dublin');
constcompanySelection=awaitmyPageObject.getCompanySelection();
constcountySelection=awaitmyPageObject.getCountySelection();

@param {JSON} getTextContentList parameter

Similarly to the previous text parameters, the getTextContentList parameter allows you to specify a
list of selectors from which you want to retrieve text content.

The naming convention for the generated methods follows the format get_XXX_TextContent where
XXX is the title that you assigned to each of your keys. When you invoke this method in your test script,
it retrieves the string value of the text content for the UI element corresponding to the CSS selector
that you specified.

The following example shows the methods that are generated for element selectors that are specified in
the getTextContentList parameter:

constgetTextContentList= {
 title:'h1[id="main_heading"]'
};

Chapter 1. IBM Cúram Universal Access 115

classMyPageObjectextendsPageObject {
 /* For this example we are only setting the URL and the getTextContentList parameter - all
other parameters are left undefined */constructor() {
 super(
 'http://www.ibm.com',
 undefined,
 undefined,
 undefined,
 undefined,
 undefined,
 undefined,
 undefined,
 undefined,
 getTextContentList
);
 }
}

/* Now create an instance of your page object */constmyPageObject=newMyPageObject();

/* After creating the page object instance, you will have access to these methods */
consttitleText=awaitmyPageObject.getTitleTextContent();

Adding custom behavior to your page objects
You can add custom behavior to your page objects. For example, a specific click action, or a specific
series of instructions to run for an automated task in your end-to-end test scripts.

As a further example, a web page might render some dynamic content and you need to wait for a specific
element to be visible in the UI before you continue.

The test-framework package provides a PageObject class from which you can take advantage of the
automatically generated methods that are provided. You can add your own custom behavior to your page
objects too.

Sample page object with custom behavior

In this example, you add a simple waitForPageLoad() method to your page object. It is assumed that
your application is rendering some dynamic content, such as a timeline, and that a See More button is
rendered at the foot of the dynamic content.

import { Page, PageObject } from'@spm/test-framework';

consturl='http://www.ibm.com';

/* Now lets define some other selectors that we are going to use to define our custom behaviour
*/constseeMoreButton='input[type="button"][id="see_more"]';

exportdefaultclassMyPageObjectextendsPageObject {
 constructor() {
 /* For this example we will only define the URL - we don't need to define the other lists */
super(url);
 }

 /* Now lets add our custom behaviour to our page object */asyncwaitForPageLoad() {
 awaitPage.waitForElementToBeDisplayed(seeMoreButton);
 }
}

/* Now create an instance of your page object */constmyPageObject=newMyPageObject();

/* Lets navigate to the URL defined in our page object and then wait for the page to load */
awaitmyPageObject.goto();
awaitmyPageObject.waitForPageLoad();

116 IBM Cúram Social Program Management 7.0.8 or 7.0.4.4: IBM Universal Access Responsive Web
Application 2.3.0

Building, exporting and configuring your page objects
Build, export, and configure your page objects so you can import and use them in your end-to-end test
scripts.

Building your page objects

It is best to build each of your page objects by extending from the PageObject class in the test-
framework package. Then, save each of your page object files in the page-objects folder in your test
framework directory structure. The naming convention for page objects is to use the title of the
application web page that the page object represents, for example HomePage.js or LoginPage.js.

.
├── tests
| └── e2e
| | └── page-objects
| | | └── HomePage.js
| | | └── LoginPage.js

Exporting your page objects from page-objects/index.js

After you create your page objects, you must export them from the page-objects directory to import
them into your test scripts. Create an index.js file in the page-objects folder to enable all of your
page object files to be exported from this single location. As you scale your page object framework, you
can have many page objects to export from this folder.

.
├── tests
| └── e2e
| | └── page-objects
| | | └── HomePage.js
| | | └── LoginPage.js
| | | └── index.js

With the index.js file in place, export your page objects by using this file as shown in the example:

export { defaultasHomePage } from'./HomePage';
export { defaultasLoginPage } from'./LoginPage';

Configuring your page objects

You can now import page objects into your project's config/index.js file for reuse with your end-to-
end test scripts. Before you continue, ensure that your test directory structure looks like this structure:

.
├── tests
| └── e2e
| | └── config
| | | └── index.js
| | └── page-objects
| | | └── HomePage.js
| | | └── LoginPage.js
| | | └── index.js

The following sample code shows your config/index.js file after you add your page object
configuration to the file. In the sample code, you are importing each of your custom page objects from
your page-objects folder, instantiating each page object and then exporting each instantiated page
object from the file:

import { Browser, Page, Verify } from'@spm/test-framework';
import {
 HomePage,
 LoginPage// ... also import any other page objects that you require ...
} from'../page-objects';

/* Instantiate all of the page objects to be used during the e2e tests */
consthomePage=newHomePage();
constloginPage=newLoginPage();

Chapter 1. IBM Cúram Universal Access 117

// ... also instantiate any other page objects that you imported ...export {
 Browser,
 Page,
 Verify,
 homePage,
 loginPage// ... export all other instantiated page objects ...
};

With your page objects configured, you can now easily import and use your page objects in your end-to-
end test scripts.

Writing end-to-end scripts
Now that your page objects are developed and your end-to-end framework is configured to use the test-
framework package, you are ready to start writing test scripts that bring everything together. The code
samples are developed with testcafe as the leading framework.

The sample code assumes that your framework directory structure is as shown.

.
├── tests
| └── e2e
| | └── config
| | | └── index.js
| | └── page-objects
| | | └── HomePage.js
| | | └── LoginPage.js
| | | └── index.js
| | └── scripts
| | | └── *.e2e.test.js

Scenario 1: Logging in redirects the user to the home page

You can write a test script for the following sample scenario based on the provided directory structure:

1. Open the application and go to the log-in page.
2. Enter the credentials of a valid user into the username and password fields and click Log in.
3. After you log in, verify that you were redirected to the user's account page.

Now to look at a test script for this scenario that incorporates your page objects and is driven by
testcafe. Comments with each line of code further describe exactly what's happening at each step.

/* Firstly import all relevant page objects and test helper files by importing them from the
config/index.js file */
import { Browser, homePage, loginPage, Verify } from '../config';

fixture('Login e2e').page(loginPage.getUrl()); // Set the initial page to be opened as the
login page

test('Verify that the user is redirected to the home page on successful login', async () => {
 /* Log in as a valid user by re-using the page objects login method */
 await loginPage.login();

 // Re-use the Browser test helper file to get the current URL from the remote browser */
 const currentUrl = await Browser.getCurrentUrl();

 // Finally verify that the current URL in the remote browser matches the expected URL for the
home page
 // It should be noted that every page object has a `getUrl()` method which allows you to
easily retrieve the expected URL for the page it represents
 // Also note that this test is re-using the Verify test helper file to do its verifications
 await Verify.equal(
 currentUrl,
 homePage.getUrl(),
 'User was not redirected to the home page after successfully logging in'
);
});

Save this test into your scripts directory as LoginPage.e2e.test.js. Ensure that you save all other
test scripts for your end-to-end framework in this directory.

118 IBM Cúram Social Program Management 7.0.8 or 7.0.4.4: IBM Universal Access Responsive Web
Application 2.3.0

Running end-to-end tests
It is straightforward to run your tests with testcafe by using a single npm script and a number of
custom-set options.

For example, this npm script runs the specified test scripts by using testcafe. The tests run in Google
Chrome with headless mode enabled and in incognito mode:

"testcafe": "testcafe \"chrome:headless -incognito\" tests/e2e/scripts/*.e2e.test.js",

To add this script to your project, copy and paste the npm script into the package.json file of the project
that contains your end-to-end test framework. From the root of the project, run the script from the
command line as follows:

npm run testcafe

You can watch your test suites run in headless mode from your command line.

You can disable headless mode by removing the :headless section of the script:

"testcafe": "testcafe \"chrome -incognito\" tests/e2e/scripts/*.e2e.test.js",

Now, when you run your test suites, you can see a physical remote browser open on the desktop of your
local computer and you can watch the test execution as it happens.

For more information about the full list of supported browsers and all of the command line switches
available for running scripts, see the TestCafe documentation.

Jest and Enzyme test environment
The test-framework package contains reusable files to help you set up a test environment with Jest
and Enzyme, and to help you to develop unit and snapshot test scripts.

Unit and snapshot test initial setup and configuration
Use the provided files to easily configure a default Jest and Enzyme test environment that you can use to
start writing your unit and snapshot tests.

Project directory structure

By default, the Jest files expect a certain folder structure for your unit and snapshot test framework.
Create the following folder structure in your environment.

.
├── tests
| └── config
| | └── setup-tests.js
| | └── snapshot.config.js
| | └── test-mapper.js
| | └── unit.config.js
| └── snapshots
| | └── *.snap.test.js
| └── unit
| | └── *.unit.test.js

Configuring the setup-tests.js file

Add the following code to the setup-tests.js file to configure Jest to work with enzyme-adapter-
react-16 and to configure the snapshot serializer for use with the snapshot tests:

import Enzyme from 'enzyme';
import { createSerializer } from 'enzyme-to-json';
import Adapter from 'enzyme-adapter-react-16';

Enzyme.configure({ adapter: newAdapter() });

/* Setup snapshot serializer */
expect.addSnapshotSerializer(createSerializer({ noKey:true, mode:'deep' }));

Chapter 1. IBM Cúram Universal Access 119

https://devexpress.github.io/testcafe/documentation/using-testcafe/command-line-interface.html#browser-list

Mocking the Redux store

Some Jest tests mount components that access a Redux store by using the getState method. You
can configure a mock store with the relevant Redux methods by adding this code to the setup-
tests.js file.

global.mockStore = {
 getState: jest.fn(),
 dispatch: jest.fn(),
 subscribe: jest.fn()
};

You can then call the mock store from any component in a Jest test script with the following code:

const myComponent = IntlEnzymeTestHelper.mountWithIntlWithStore(
 <MyComponent />,
 global.mockStore
);

Mocking the Redux store with custom mock state

Some unit tests might need access to a mock Redux store with a specific mock state and with custom
data.

• Add the mock state to the setup-tests.js file as follows:

const mockState = {
 // Add all of your mock data keys and values here
};

• Set the mock getState function to return the mock state when it is called during unit tests:

global.mockStore = {
 getState: jest.fn(() => mockState)
};

Configuring the test-mapper.js file

Jest cannot process data from CSS or image files and throws an error to the console if these files are
referenced by any React component. Jest is designed to test the behavior of the component code and
distances itself from any styling or images that are applied to that component.

To cleanly bypass any of these imports, add the following code to the test-mapper.js file.

module.exports= {};

Configuring the unit.config.js and snap.config.js files

These files are designed to configure the unit tests and snapshot tests for a project. You can use the
default Jest configuration by adding the following content to both files:

// unit.config.js
const { getUnitTestConfig } = require('@spm/test-framework');

module.exports = getUnitTestConfig();

// snapshot.config.js
const { getSnapshotTestConfig } = require('@spm/test-framework');

module.exports = getSnapshotTestConfig();

Setting custom jest configurations

You can customize the default Jest configuration.

120 IBM Cúram Social Program Management 7.0.8 or 7.0.4.4: IBM Universal Access Responsive Web
Application 2.3.0

For example, you can set more project-specific folders to be ignored by the Jest coverage collection
statistics as follows:

const { getUnitTestConfig } = require('@spm/test-framework');

const unitTestConfig = getUnitTestConfig();
unitTestConfig.coveragePathIgnorePatterns.push('<rootDir>/path/to/my/folder1');
unitTestConfig.coveragePathIgnorePatterns.push('<rootDir>/path/to/my/folder2');

module.exports = unitTestConfig;

Unit and snapshot test helper files
The test-framework provides the IntlEnzymeTestHelper.js and TestUtils.js helper files to
help you to write unit and snapshot tests.

IntlEnzymeTestHelper.js

React components that use the react-intl module need access to the intl context, which is not
available when you mount single components with Enzyme. You can use the
IntlEnzymeTestHelper.js class to wrap a valid English-locale intl context around a component
under test.

TestUtils.js

The TestUtils.js class is a utility class for testing React components with Redux modules.

To use the helper files in your Jest tests

Import any of the Jest helper files directly from the test-framework package as follows:

import { IntlEnzymeTestHelper, TestUtils } from '@spm/test-framework';

You can then call any of the class functions from your Jest test scripts as shown in the following
examples:

describe('Test suite', () => {
 it('verifies something', () => {
 // ...
 const wrapper = IntlEnzymeTestHelper.mountWithIntl(
 <MyComponentUnderTest />
);
 // ...
 });

 it('verifies something else', () => {
 const mockData = {
 // mock JSON data
 };
 const mockUtilFunction = TestUtils.mockActionsCallbackFxn([true, mockData]);
 // ...
 });
});

Guidelines for writing unit test scripts
The following guidance might be useful when you write Jest tests for both unit and snapshot testing.

To unit test or to snapshot test?

The first question that you must answer is whether to write a unit test or snapshot test.

Unit tests
Unit tests act as documentation for the project code or React component that you are testing. They
include individual verifications for every piece of behavior in the code. Anyone must be able to read
the verifications in the unit test suite and fully understand which behavior is being triggered and under
which circumstances. Unit tests must be clear and concise and are a perfect indicator of code

Chapter 1. IBM Cúram Universal Access 121

coverage within the overall project. These tests are the primary form of testing for the project code so
you must write unit tests for all code in the project.

Snapshot tests
Snapshot tests can verify only that the DOM output for a React component in the provided state is
correct. Don't use snapshot tests to test React component functionality, but use them as a
complement to your unit tests to verify that the DOM output for a React component is correct. After
unit tests verify the code behavior, snapshot tests can verify that everything is correct from an HTML
markup perspective when the component is output to the DOM.
Snapshot test verifications are far too vague to offer any form of clear documentation for a component
that is being tested. Because of the vague nature of their verifications, snapshot tests are also a poor
indicator of code coverage so don't use them to collect code coverage statistics. It is much more
beneficial for the project to collect code coverage statistics solely for behavioral based verifications,
such as unit tests.

Collecting code coverage statistics for snapshot tests can provide a number of false positives. Code
coverage might increase due to the presence of snapshot tests. However, the functionality of the code
is not tested and verified as correct. You might read a high code coverage percentage in the coverage
report and incorrectly assume that all of the component behavior is tested.

It can be beneficial to write both unit test and snapshot test suites for a project. However, unit tests must
always be your priority given that they directly test the functionality of all of the code. A project can
manage without snapshot tests. However, it can never survive without a thorough suite of unit tests.

Decide what must be tested

For each a new function or React component, you must decide what to test. Read through the code for the
function or component and highlight the key behaviors and when they occur.

Create the unit test suite to test all of the identified functionality. After all of the behaviors are captured
and tested in the unit test suite, then you can write snapshot tests to capture the DOM output for any new
React components.

Your goal is to test all of the available functionality and cover 100% of the code. If there is code that is
unreachable for any reason, then that code must be highlighted by the unit tests and refactored.

Ensure that all tests can be ran independently

All tests must be able to run independently of one another. A test that depends on the completion of
another test is difficult to maintain and can be a direct cause of many avoidable consistency and reliability
problems with your test suites.

• If the first test fails, the dependency can trigger a false negative by causing a dependent test to fail. Jest
tests run concurrently by default so avoid creating tests that depend on each other.

• If a test is finishing work that started in another test, the dependency can significantly reduce the clarity
of what each test is doing.

• If a test fails, the dependency significantly hinders debugging. You need to be able to isolate failing
tests so you can rerun the failing test only. Test preconditions must be automatically included when you
run the failed test independently on your local computer. If a failing test depends on another test, you
must find and run the other test before you can run the failing test. If several tests are chained in a
sequence, you must find and run all preceding tests.

If you need reusable piece of test code for use in multiple test scripts, put the code inside one of the Jest
test hooks, such as beforeAll, beforeEach, afterAll, or afterEach.

Use clear test descriptions

Each unit test in a project verifies some behavior of the code. Therefore, the description of the unit test
must clearly indicate exactly what is being tested and under what circumstances.

There are essentially two ways to declare a unit test description:

122 IBM Cúram Social Program Management 7.0.8 or 7.0.4.4: IBM Universal Access Responsive Web
Application 2.3.0

• You can use a behavior-driven development (BDD) style description. For example:

it('given MyComponent, when the submit button is clicked, then the dialog is rendered', () =>
{
 // ...
});

• You can use a plain English sentence beginning with verifies that... to state exactly what is being
verified. For example:

it('verifies that the dialog is rendered when the submit button is clicked', () => {
 // ...
});

Minimize the number of assertions for each test

Ideally each test script has one main assertion or expect statement that verifies the behavior that is
being tested. It can be tempting to place multiple expect statements into a single test script, but avoid
this practice. If any of the preceding expect statements in the script fail, then none of the subsequent
expect statements will run.

If multiple expect statements are required, you can create a test suite that triggers the behavior to be
tested in a beforeAll or beforeEach test hook. You can then write multiple test scripts that capture
and verify each expected behavior individually. For example:

describe('MyComponent onClick() method behaviour', () => {
 let myComponent;
 let onClick;

 beforeAll(() => {
 onClick = jest.fn();
 myComponent =mount(<MyComponent onClick={onClick} />);
 /* Click the submit button to fire the onClick behaviour */
 myComponent.find('button').prop('onClick')();
 });

 it('verifies that the wds-u-hidden class of the dialog has been removed', () => {
 expect(myComponent.find('Dialog').hasClass('wds-u-hidden')).toBeFalsy();
 });

 it('verifies that the onClick functionality was invoked', () => {
 expect(onClick.mock.calls).toHaveLength(1);
 });
});

Running Jest and Enzyme tests
If you are using the default Jest configuration, you can run the Jest and Enzyme tests by adding scripts to
the package.json file.

Procedure

• Add the following scripts to the package.json file.

"test-snapshots": "jest --config ./tests/config/snapshot.config.js",
"test-snapshots-update": "npm run test-snapshots -- -u",
"test-unit": "jest --config ./tests/config/unit.config.js",
"test-unit-coverage": "npm run test-unit -- --collectCoverage",

Deploying your web application to a web server
You can deploy your web application on a web server in a production-like environment as part of your
development process. Deployment in a production environment is outside the scope of this
documentation, but you can use the instructions in this section for guidance.

Chapter 1. IBM Cúram Universal Access 123

Building the Universal Access Responsive Web Application for deployment
Build Universal Access Responsive Web Application for deployment on an HTTP server.

Before you begin
For production builds, review all of the environment variables in your .env files, and check the order of
the environment variables where you have multiple .env files. For more information about the priority of
different .env files in react-scripts, see What other .env files can be used? in the Create React App
documentation.

Procedure

1. To quickly configure the universal-access-starter-pack application for deployment, edit
the .env configuration file in the root of your app, and modify the following properties to point to the
server that hosts the REST services:

REACT_APP_REST_URL=<ServerHostName>:9044/Rest
REACT_APP_API_URL=<ServerHostName>:9044/Rest/v1/ua

Replace the <ServerHostName> and the port number in the properties with the host name and port of
the server where the REST services are deployed, for example:

REACT_APP_REST_URL=https://192.0.2.4:7002/Rest

2. Enter the following command to install dependent packages:

npm install

3. Enter the following command to build the application into a build folder in the universal-access-
starter-pack:

npm run build

4. Copy and deploy the build folder to either IBM HTTP Server or Oracle HTTP Server. For more
information about deploying the built application, see Deploying your web application.

Related information
Deploying your application

Install and configure IBM HTTP Server with WebSphere Application Server
Install and configure IBM HTTP Server either on the same server as WebSphere Application Server or on a
remote server. To enable cross-origin resource sharing (CORS), you can set the
curam.rest.allowedOrigins property for the REST application on your application server, or install the
IBM HTTP Server plug-in for WebSphere Application Server.

Before you begin
WebSphere Application Server must be installed and configured.

Install IBM Installation Manager. For more information, see the IBM Installation Manager documentation.
You can download IBM Installation Manager from Installation Manager and Packaging Utility download
documents.

About this task

To enable cross-origin resource sharing (CORS), choose one of the following options:

• Set the curam.rest.allowedOrigins property for the REST application that is deployed on the
application server. For more information about setting the curam.rest.allowedOrigins property, see
Cúram REST configuration properties.

124 IBM Cúram Social Program Management 7.0.8 or 7.0.4.4: IBM Universal Access Responsive Web
Application 2.3.0

https://facebook.github.io/create-react-app/docs/adding-custom-environment-variables#what-other-env-files-can-be-used
https://www.ibm.com/support/knowledgecenter/en/SSDV2W/im_family_welcome.html
http://www-01.ibm.com/support/docview.wss?uid=swg27025142
http://www-01.ibm.com/support/docview.wss?uid=swg27025142

• Install and configure the IBM HTTP Server plug-in for WebSphere Application Server to enable IBM
HTTP Server to communicate with WebSphere Application Server. WebSphere Customization Toolbox is
needed to configure the plug-in.

Procedure

1. Install IBM HTTP Server. For more information, see Migrating and installing IBM HTTP Server.
2. Optional: If you don't set the curam.rest.allowedOrigins property, you must install the following

software:
a) Install the IBM HTTP Server plug-in for WebSphere Application Server.

For more information, see Installing and configuring web server plug-ins.
b) Install the WebSphere Customization Toolbox.

For more information, see Installing and using the WebSphere Customization Toolbox.
3. Start IBM HTTP Server. For more information, see Starting and stopping the IBM HTTP Server

administration server.
4. To secure IBM HTTP Server, see Securing IBM HTTP Server.

Generating an IBM HTTP Server plug-in configuration
This task is needed only if you install the IBM HTTP Server plug-in for WebSphere Application Server. Use
WebSphere Customization Toolbox to generate a plug-in configuration.

Before you begin
Start WebSphere Application Server. For more information, see Starting a WebSphere Application Server
traditional server.

Procedure

To generate the IBM HTTP Server plug-in configuration, complete the steps at the WebSphere Application
Server Network Deployment plug-ins configuration topic.

Configuring the IBM HTTP Server plug-in
Configure the IBM HTTP Server plug-in for WebSphere Application Server and WebSphere Customization
Toolbox. This task is necessary only if you have chosen to install the IBM HTTP Server plug-in, instead of
setting the curam.rest.allowedOrigins property for the REST application that is deployed on the
application server.

About this task
You can run the configurewebserverplugin target to complete the following tasks:

• Add the web server virtual hosts to the client hosts configuration in WebSphere Application Server.
• Propagate the plug-in key ring for the web server.
• Map the modules of any deployed applications to the web server.

Procedure

1. Start IBM HTTP Server.
For more information, see Starting and stopping the IBM HTTP Server administration server.

2. On the remote WebSphere Application Server, run the following command.

build configurewebserverplugin -Dserver.name=server_name

The configurewebserverplugin target requires a mandatory server.name argument that
specifies the name of the server when the target is invoked. For more information about the
configurewebserverplugin target, see Configuring a web server plug-in in WebSphere Application
Server.

Chapter 1. IBM Cúram Universal Access 125

https://www.ibm.com/support/knowledgecenter/en/SSEQTJ_8.5.5/com.ibm.websphere.ihs.doc/ihs/welc6top_miginstall_ihs_container.html
https://www.ibm.com/support/knowledgecenter/en/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/tins_webplugins.html
https://www.ibm.com/support/knowledgecenter/en/SSEQTP_8.5.5/com.ibm.websphere.installation.base.doc/ae/tins_wct.html
https://www.ibm.com/support/knowledgecenter/en/SSEQTP_8.5.5/com.ibm.websphere.ihs.doc/ihs/tihs_startadmserv.html
https://www.ibm.com/support/knowledgecenter/en/SSEQTP_8.5.5/com.ibm.websphere.ihs.doc/ihs/tihs_startadmserv.html
https://www.ibm.com/support/knowledgecenter/en/SSEQTJ_9.0.0/com.ibm.websphere.ihs.doc/ihs/tihs_sectaskov.html
https://www.ibm.com/support/knowledgecenter/en/SSEQTP_8.5.5/com.ibm.websphere.wdt.doc/topics/twsrtins.htm
https://www.ibm.com/support/knowledgecenter/en/SSEQTP_8.5.5/com.ibm.websphere.wdt.doc/topics/twsrtins.htm
https://www.ibm.com/support/knowledgecenter/en/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/cins_webplugins.html
https://www.ibm.com/support/knowledgecenter/en/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/cins_webplugins.html
https://www.ibm.com/support/knowledgecenter/en/SSEQTP_8.5.5/com.ibm.websphere.ihs.doc/ihs/tihs_startadmserv.html

3. Consider adding extra aliases to the client_host, as shown in the following examples:

• For WebSphere Application Server, add port number 9044.
• For the default HTTP port, add port number 80.
• For HTTPS ports, add port number 433.

For more information about client host setup, see step 19 in the WebSphere Application Server port
access setup topic.

4. To avoid port mapping issues from web applications, restart WebSphere Application Server and IBM
HTTP Server.
For more information, see Starting and stopping the IBM HTTP Server administration server.

Install and configure Oracle HTTP Server with Oracle WebLogic Server
Install and configure Oracle HTTP Server on either the same server as Oracle WebLogic Server or on a
remote server.

Before you begin
Oracle WebLogic Server must be installed and configured. For more information, see Installing and
Configuring Oracle WebLogic Server and Coherence.

Installing Oracle HTTP Server and its components
Install and configure Oracle HTTP Server in either a stand-alone domain, or in an Oracle WebLogic Server
domain. If Oracle HTTP Server and Oracle WebLogic Server are on different computers, you must install
and configure an Oracle web server plug-in for proxying requests.

About this task

The Oracle web server plugin allows requests to be proxied from Oracle HTTP Server to Oracle WebLogic
Server. If you install and configure the Oracle web server plug-in, requests that are delegated to Oracle
WebLogic Server still appear to originate from the Oracle HTTP Server, even if Oracle HTTP Server and
Oracle WebLogic Server are hosted on two different servers.

Because of the web browser same-origin policy, cross-origin resource sharing (CORS) is restricted in
many browsers by default. The web server plug-into enables CORS where Oracle HTTP Server and Oracle
WebLogic Server are installed on different computers.

CORS enables an instance of your web application that is deployed on Oracle HTTP Server in one domain
to request the REST services that are deployed on Oracle WebLogic Server in another domain.

Procedure

1. Install Oracle HTTP Server for Oracle WebLogic Server. For more information, see Installing and
Configuring Oracle HTTP Server.

2. To configure Oracle HTTP Server, choose one of the following options:

• To configure Oracle HTTP Server in a stand-alone domain, follow the instructions at Configuring
Oracle HTTP Server in a Standalone Domain.

• To configure Oracle HTTP Server in an Oracle WebLogic Server domain, follow the instructions at
Configuring Oracle HTTP Server in a WebLogic Server Domain.

3. If Oracle HTTP Server and Oracle WebLogic Server are installed in different domains, to enable CORS,
install a web server plug-in.
For information about configuring an Oracle WebLogic Server proxy plug-in, see Configuring the Plug-
In for Oracle HTTP Server.

4. To secure Oracle HTTP Server, follow the procedure at Managing Application Security.

126 IBM Cúram Social Program Management 7.0.8 or 7.0.4.4: IBM Universal Access Responsive Web
Application 2.3.0

https://www.ibm.com/support/knowledgecenter/en/SSEQTP_8.5.5/com.ibm.websphere.ihs.doc/ihs/tihs_startadmserv.html
https://docs.oracle.com/middleware/1213/core/WLSIG/toc.htm
https://docs.oracle.com/middleware/1213/core/WLSIG/toc.htm
https://docs.oracle.com/middleware/1213/core/install-ohs/install_gui.htm#WTINS125
https://docs.oracle.com/middleware/1213/core/install-ohs/install_gui.htm#WTINS125
https://docs.oracle.com/middleware/1213/core/install-ohs/standalone_domain.htm#WTINS333
https://docs.oracle.com/middleware/1213/core/install-ohs/standalone_domain.htm#WTINS333
https://docs.oracle.com/middleware/1213/core/install-ohs/colocated_domain.htm#WTINS280
https://docs.oracle.com/middleware/1213/webtier/develop-plugin/oracle.htm#PLGWL510
https://docs.oracle.com/middleware/1213/webtier/develop-plugin/oracle.htm#PLGWL510
https://docs.oracle.com/middleware/1213/webtier/administer-ohs/security.htm#HSADM900

Results
The Oracle HTTP Server instance is now ready to for you to deploy the application. The default location for
deploying the application is OHS_INSTANCE/config/fmwconfig/components/$
{COMPONENT_TYPE}/instances/${COMPONENT_NAME}/htdocs. However, you can configure the
default location value to a different location.

What to do next
Start Oracle HTTP Server. For more information, see Starting the Servers.

Configuring the Oracle HTTP Server plug-in
If a web server such as Oracle HTTP Server is configured in the topology, you must configure a web server
plug-in in Oracle WebLogic Server. The web server plug-in enables Oracle WebLogic Server to
communicate with Oracle HTTP Server.

About this task
To enable an Oracle HTTP Server web server plug-in in Oracle WebLogic Server, you can run the
configurewebserverplugin target.

Procedure

1. Start Oracle HTTP Server.
For more information, see Starting the Servers.

2. On the remote Oracle WebLogic Server, run the following command.
The configurewebserverplugin target requires a mandatory server.name argument that
specifies the name of the server when the target is invoked.

build configurewebserverplugin -Dserver.name=server_name

For more information about the configurewebserverplugin target, see Configuring a web server
plug-in in Oracle WebLogic Server.

Installing and configuring Apache HTTP Server
Install and configure Apache HTTP Server on either the same server as the application server or on a
remote server. To enable cross-origin resource sharing (CORS), you can set the
curam.rest.allowedOrigins property for the REST application on your application server, or install the
appropriate plug-in for your web server.

Before you begin
An application server must be installed and configured.

About this task

To enable cross-origin resource sharing (CORS), choose one of the following options:

• Set the curam.rest.allowedOrigins property for the REST application that is deployed on the
application server. For more information about setting the curam.rest.allowedOrigins property, see
Cúram REST configuration properties.

• Install and configure the plug-in for your server.

Procedure

1. Install Apache HTTP Server. For more information, see Compiling and Installing in the Apache HTTP
Server documentation.

2. Optional: If you don't set the curam.rest.allowedOrigins property, you must choose one of the
following options:

• WebSphere Application Server

Chapter 1. IBM Cúram Universal Access 127

https://docs.oracle.com/middleware/1213/core/install-ohs/standalone_domain.htm#WTINS333
https://docs.oracle.com/middleware/1213/core/WLSIG/create_domain.htm#WLSIG298
https://httpd.apache.org/docs/2.4/install.html

Install the plug-in for WebSphere Application Server, see Installing and configuring web server
plug-ins.

Install the WebSphere Customization Toolbox, see Installing and using the WebSphere
Customization Toolbox.

To configure Apache HTTP Server with WebSphere Application Server, see Configuring Apache
HTTP Server.

• Oracle WebLogic Server:

For more information about configuring an Oracle WebLogic Server proxy plug-in, see Configuring
the Plug-In for Oracle HTTP Server.

To configure Apache HTTP Server with Oracle WebLogic Server, see Configuring the Plug-In for
Apache HTTP Server.

3. Start Apache HTTP Server. For more information, see Starting Apache in the Apache HTTP Server
documentation.

4. To secure Apache HTTP Server server, see Security Tips and Apache SSL/TLS Encryption in the Apache
HTTP Server documentation.

Deploying your web application
To test your web application against an existing IBM Cúram Social Program Management application that
is deployed on an enterprise application server, you can deploy the web application on IBM HTTP Server
or Oracle HTTP Server. Both web servers are based on Apache HTTP server so the deployment procedure
is similar.

Before you begin

You must have built your application for deployment.

About this task

The built deliverable comes with a preconfigured .htaccess configuration file for the Content-Security-
Policy (CSP) header. When you configure the CSP header in the web server, the .htaccess file is
detected and executed by the web server to alter the web server configuration by enabling or disabling
additional functionality. For more information about CSP, see the Content Security Policy Quick Reference
Guide related link.

Procedure

1. Copy and paste the build directory contents to the appropriate directory for your HTTP server.

For more information about the <directory> directive, see the related links.
2. Configure the web server.

The preconfigured .htaccess file contains a comment section with the web server configuration
requirements for both CSP and .htaccess enablement.

For more information about how to configure .htaccess files in a web server, see the Apache HTTP
Server Tutorial: .htaccess files related link.

Related information
GitHub documentation: npm run build
Content Security Policy Quick Reference Guide
Apache core features V2.0: <Directory> Directive
Apache core features V2.4: <Directory> Directive
Apache HTTP Server Tutorial: .htaccess files

128 IBM Cúram Social Program Management 7.0.8 or 7.0.4.4: IBM Universal Access Responsive Web
Application 2.3.0

https://www.ibm.com/support/knowledgecenter/en/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/tins_webplugins.html
https://www.ibm.com/support/knowledgecenter/en/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/tins_webplugins.html
https://www.ibm.com/support/knowledgecenter/en/SSEQTP_8.5.5/com.ibm.websphere.installation.base.doc/ae/tins_wct.html
https://www.ibm.com/support/knowledgecenter/en/SSEQTP_8.5.5/com.ibm.websphere.installation.base.doc/ae/tins_wct.html
https://www.ibm.com/support/knowledgecenter/en/SSAW57_9.0.0/com.ibm.websphere.nd.multiplatform.doc/ae/tins_manualWebApache22.html
https://www.ibm.com/support/knowledgecenter/en/SSAW57_9.0.0/com.ibm.websphere.nd.multiplatform.doc/ae/tins_manualWebApache22.html
https://docs.oracle.com/middleware/1213/webtier/develop-plugin/oracle.htm#PLGWL510
https://docs.oracle.com/middleware/1213/webtier/develop-plugin/oracle.htm#PLGWL510
https://docs.oracle.com/middleware/1213/webtier/develop-plugin/apache.htm#PLGWL395
https://docs.oracle.com/middleware/1213/webtier/develop-plugin/apache.htm#PLGWL395
http://httpd.apache.org/docs/2.4/invoking.html
http://httpd.apache.org/docs/2.4/misc/security_tips.html
http://httpd.apache.org/docs/2.4/ssl/
https://github.com/facebook/create-react-app/blob/master/packages/react-scripts/template/README.md#npm-run-build
https://content-security-policy.com
https://docs.oracle.com/cd/B14099_19/web.1012/q20206/mod/core.html#directory
http://publib.boulder.ibm.com/httpserv/manual24/mod/core.html#directory
http://httpd.apache.org/docs/current/howto/htaccess.html

Configuring the IBM Cúram Universal Access server
System administrators use the following configuration options to configure and maintain IBM Cúram
Universal Access features such as applications and online categories.

Prerequisites
You must enable cookies and JavaScript in the browsers to access the application by configuring the
appropriate browser preferences.

The following table lists the browser preferences that you must configure for the application to work, and
shows the errors that are displayed if the prerequisites are not met.

Table 4. Information messages for browser preferences

Browser preference Information message

When cookies are disabled Cookies are currently disabled and are required for
the application to work. Please enable cookies and
retry.

When JavaScript is disabled JavaScript is currently disabled and is required for
the application to work. Please enable JavaScript
and retry.

When cookies and JavaScript are disabled Cookies and JavaScript are currently disabled and
are required for the application to work. Please
enable and try again.

Configuring service areas and PDF forms
You can define a service area by configuring the counties or ZIP codes that are associated with the service
area. You can also specify a PDF form that citizens can use to apply for programs.

Configuring service areas

Service areas are defined in the Service Areas section of the administration application. When defining a
service area, you must specify a service area name. You can associate counties and zip codes with the
service area, these represent the areas covered by the service area. Service areas can be associated with
a local office which represents the office that services the service areas associated with it. Local offices
identify where citizens can apply in person for a program or where they can send an application. For more
information on associating service areas with local offices where a citizen can apply in person for a
program, see Defining local offices for a program.

Configuring PDF forms

PDF forms are defined in the PDF Forms section of the administration application. When defining a PDF
form, you must specify a name and language. You can also add a version of the form for each language
that is configured. The forms are accessible from the Print and Mail Form page.

You can associate a local office with a PDF form. Associating a local office with a PDF form allows an
administrator to define the local office and associated service areas where citizens can send their
completed application.

Enabling citizens to search for a local office

A search page allows citizens to search for a local office. Citizens can either search by county or by zip
code. The system property curam.citizenworkspace.page.location.search.type determines how the search
works. If you set curam.citizenworkspace.page.location.search.type to Zip, citizens can search for a local
office using a zip code. If you set this property to County, citizens can select from a list of counties to get
a list of local offices.

Chapter 1. IBM Cúram Universal Access 129

Related concepts
Defining local offices for a program
Citizens might be able to apply for a program in person at a local office. A local office must be first defined
in the LocalOffice code table in system administration.

Configuring programs
You can configure different types of programs. To configure a program, you configure display and system
processing information, local offices, mappings to PDFs, and evidence types.

Configured programs can be associated with screenings and applications. The main aspects to configuring
a program are as follows:

• Configure programs and associated display and system processing information.
• Configure local offices where an application for a program can be sent.
• Configure mappings that allow information gathered during application intake to be mapped to a PDF

form.
• Configuring evidence types that allows for expedited authorization of programs that may need to be

processed before other programs within a multi-program application.

Configuring a Program
Programs are configured on the administration New Program page. Details and specifications of the
program are required to be defined when the program is created.

Defining a name and reference
The name that you define is displayed in the administration application.

Define a name and reference when creating a new program. The name that is defined is displayed both to
the citizen and in the internal application. The reference is used to reference the program in code.

Defining an intake processing system
Define an intake processing system for each program.

Two options are available:

• Cúram
• Select from the list of preconfigured remote systems.

If intake is managed by IBM Cúram Social Program Management, select Cúram. If intake is managed by
an external system, the program application is sent to the remote system by using the
ProcessApplicationService web service, select a remote system.

If Cúram is specified as the intake system, an application case type must be selected. An application case
of the specified type is created in response to a submission of an application for the program. An indicator
is provided which dictates whether a Reopen action is enabled on the programs list on an application
case for denied and withdrawn programs of a particular type. A workflow can be specified that is initiated
when the program is reopened. For more information on configuring application cases, see Cúram Intake
overview.

When an application case type is selected, the program can be added manually to that type of application
case by a worker in the internal application as part of intake processing. A configuration setting specifies
whether the program is a coverage type. Coverage types are automatically evaluated by program group
rules in the context of healthcare reform applications, such as insurance affordability. Coverage types
cannot be applied for directly by a citizen or manually added to an application case by a worker and
authorized. If the program is a coverage type, select Yes. The program is filtered out of the list of
programs available to be added to online and internal applications in administration and the list of
programs available to be manually added to an application case by a worker. If the program is not a
coverage type, select No. The program will be available to be manually added to online and internal
applications in administration and to an application case by a worker.

A remote system must be configured in the administration application before it can be selected as the
case processing system. For more information about remote systems, see Configuring Remote Systems.

130 IBM Cúram Social Program Management 7.0.8 or 7.0.4.4: IBM Universal Access Responsive Web
Application 2.3.0

Related information
Cúram Intake overview

Defining case processing details
Define a case processing system for each program.

Two options are available:

• Cúram
• Select from remote systems.

If the program eligibility is determined and managed by using a Cúram-based system, select Cúram. If
eligibility is determined and managed by an external system, select a remote system.

If you select Cúram as the case processing system, more options are available to allow you to configure
program level authorization. Program level authorization means that if an application case contains
multiple programs, each program can be authorized individually, and a separate case is used to manage
the citizens on an ongoing basis.

Defining the integrated case strategy
Define the integrated case strategy so that the system can identify whether a new or existing integrated
case is used when program authorization is successful.

The integrated case strategy identifies whether a new or existing integrated case is used when program
authorization is successful. The integrated case hosts any product deliveries created as a result of the
authorization. If a new integrated case is created, all of the application case clients are added as case
participants to the integrated case. If an existing integrated case is used, any additional clients on the
application case are added as case participants to the integrated case. Any evidence captured on the
application case that is also required on the integrated case is copied to the integrated case upon
successful authorization. The configuration options for the integrated case strategy are as follows:

New
A new integrated case of the specified type is always created when authorization of the program is
successful.

Existing (Exact Client Match)
If an integrated case of the specified type exists with the same citizens as those cases present on the
application case, the existing case is used automatically. If multiple integrated cases that meet these
criteria exist, the caseworker is presented with a list of the cases and must select one to proceed with
the authorization. If no existing cases match the criteria, a new integrated case is created.

Existing (Exact Client Match) or New
If one or more integrated cases of the specified type exist with the same citizens as those cases
present on the application case, the caseworker is presented with the option to select an existing
case to use as the ongoing case, or to create a new integrated case. If no existing cases match the
criteria, a new integrated case is created.

Existing (Any Client Match) or New
If one or more integrated cases of the specified type exist, where any of the clients of the application
case are case participants, the caseworker is presented with the option to select one of the existing
cases to use as the ongoing case, or to create a new integrated case. If no existing cases match the
criteria, a new integrated case is created.

Specifying the Integrated Case Type
The administrator must specify the type of integrated case to be created or used upon successful
program authorization as defined by the Integrated Case strategy listed.

Specifying a client selection strategy
Specify a client selection strategy to define how clients are added from the application case to the
product delivery.

The client selection strategy defines how clients are added from the application case to the product
delivery created as a result of authorization of a program. If a product delivery type is specified, a client
selection strategy must be selected. The configuration options are as follows:

Chapter 1. IBM Cúram Universal Access 131

All Clients
All of the application clients are added to the product delivery case. The application case primary
client is set as the product delivery primary client. All other clients are added to the product delivery
as members of the case members group.

Rules
A rule set determines the clients to be added to the product delivery if a product delivery is
configured. At least one client must be determined by the rules for authorization to proceed.

User Selection
The user selects the clients who are added to the product delivery. The caseworker must select both
the primary client and any other clients to be added to the case member group on the product
delivery.

Specifying a Client Selection Ruleset
A Client Selection Ruleset must be selected when the Client Selection Strategy is Rules.

Specifying a product delivery type
Specify a product delivery type.

The Product Delivery Type drop-down specifies the product delivery that is used to make a payment to
citizens in respect of a program. Product Delivery Type displays all active products configured on the
system.

Note: This field applies to both program and application authorization processing. That is, program and
application authorization can result in the creation of the product delivery type that is specified.

Submitting a product delivery automatically

The Submit Product Delivery indicator specifies if the product delivery created as a result of program
authorization should be submitted automatically for approval. If selected, the product delivery created as
a result of authorization of this program is submitted automatically to a supervisor for approval.

Note: This field applies to both program and application authorization processing. That is, program and
application authorization can result in the automatic submission of a product delivery.

Configuring timers
Agencies can impose time limits within which an application for a program must be processed. You can
configure application timers for each of these programs.

For example, an agency might want to specify that food assistance applications are authorized within 30
business days of the date of application.

The following configuration options are available, including the duration of the timer, whether the timer is
based on business or calendar days, a warning period, and timer extension and approval.

Duration
The length of the timer in days. This value, along with the fields Start Date and Use Business Days
(and the configured business hours for the organization) calculate the expiry date for the timer. This
value is used as a number of business days if Use Business Days is set. If Use Business Days is not
set, this value is used as calendar days.

Start Date
Specifies whether the timer starts on the application date or the program addition date. The options
available are Application Date and Program Addition Date.

Note: In most cases, these dates are the same. That is, the programs are added at the same time as
the application is made. However, when a program is added later to the application, after initial
submission, the dates differ.

Warning Days
Specifies a number of warning days to warn citizens that the timer deadline is approaching. If
configured, the Warning Reached workflow is enabled when the warning date is reached and the
timer is still running (for example, the program is not completed).

132 IBM Cúram Social Program Management 7.0.8 or 7.0.4.4: IBM Universal Access Responsive Web
Application 2.3.0

End Date Extension Allowed
Specifies whether citizens can extend the timer by a number of days.

Extension Approval Required
Specifies whether a timer extension requires approval from a supervisor. If approval is required, the
supervisor either approves or rejects the extension. After the extension is approved, or if approval is
not required, the timer expiry date is updated to reflect the extension.

Use Business Days
Specifies if the timer should not decrement on non-working days. If this indicator is set, the system
uses the Working Pattern Hours for the organization to determine the non-working days when it is
calculating the expiry date for the timer.

Resume Timer
Specifies whether the program timer must be resumed when the program is reopened.

Resume From
If a timer is resumed, the Resume From field specifies the dates from which a program can be
resumed. The values include the date that the program was completed, denied, or withdrawn, and the
date that the program was reopened.

Timer Start
Specifies a workflow that is started when the timer starts.

Warning Reached
Specifies a workflow that is started when the warning period is reached.

Deadline Not Achieved
Specifies a workflow that is enacted if the timer deadline is not achieved; that is, the program is not
being withdrawn, denied, or approved by the timer expiry date.

Configuring multiple applications
Configure multiple applications so that citizens can apply for a program while they have a previous
application pending.

The Multiple Applications indicator dictates if citizens can apply for a program while they have a previous
application pending. If set to true, citizens can have multiple pending applications for the given program.
That is, citizens can submit an application for this program while they already have a pending application
in the system. If it is set to false, this program is not offered if logged in citizens have pending applications
for this program.

This configuration is not applicable to Health Care Reform Applications.

Defining a PDF form
Defining a PDF form for a program enables citizens to print an application for that program and either post
it to the agency or bring it to a local office. When a PDF Form is specified for a program, the PDF form is
displayed on the Print Out and Mail section of the Here's what you might get page that is displayed
when citizens complete a screening. PDF forms must be defined before they can be associated with a
program. When they are defined, they are displayed on the Print and Mail Application Form page.

Defining a URL
If a URL is defined, a More Info link is displayed with the program name so that citizens can find out more
information about the selected program.

Defining description and summary information
When a program is displayed on the Select Programs page, a description can be displayed which gives a
description of the program. The Online Program Description field defines this description.

A description summary of the program can also be defined using the Online Program Summary field. The
field is a high-level description of the program displayed on the Here's what you might get page that is
displayed when citizens complete a screening.

Chapter 1. IBM Cúram Universal Access 133

Defining local office application details
Citizens can apply for programs at a local office. If this is the case, the Citizen Can Apply At Local Office
indicator indicates that local office information is displayed for a program.

Additional information can also be defined, for example, citizens might need to bring proof of identity if
they want to apply at the local office. An administrator can define this information in the Local Office
Application Information field.

Defining local offices for a program
Citizens might be able to apply for a program in person at a local office. A local office must be first defined
in the LocalOffice code table in system administration.

Associating a local office with a program allows an administrator to define the local offices and their
associated service areas where a particular program can be applied for in person. This information is
displayed on the Here's what you might get page that is displayed to citizens when they complete a
screening. Service areas must be defined before they can be associated with a local office.

Defining PDF mappings for a program
The information that citizens enter during an application can be mapped to a PDF form which citizens can
then print.

To map the application data to the PDF Form for all programs a citizen is applying for, there must be a
mapping configuration of type PDF Form Creation for each of the programs. The PDF Form is the form
specified for the Online Application the program is associated with.

Defining program evidence types
Associate evidence types with a program.

Evidence types can support applications for multiple programs where a program must be authorized more
quickly than other programs for which citizens might have applied. Using this type of configuration, only
the evidence required for the program to be authorized is used and copied to the ongoing cases. This
allows benefits for the authorized program to be delivered to citizens, while the caseworker continues to
gather the evidence required for the other programs applied for.

Configuring screenings
Define different types of screenings that citizens can complete to identify programs that they might be
eligible to receive.

For each screening, you can configure the available programs and eligibility requirements. You can then
configure the script, rules, and data schema to collect and process citizen information, and define what
information is displayed to citizens.

Once defined, citizens can perform a screening to identify programs that they may be eligible to receive.
There are four main aspects to configuring a screening:

• Configuring information about a screening to be displayed to citizens.
• Configuring the script, rules and schema used to collect and process the information specified by

citizens to identify their eligibility.
• Configuring the programs for which citizens can check their eligibility when performing a screening.
• Configuring additional screening system properties.

Configuring a new screening
Screenings are configured on the New Screening page.

The screening configurations are as follows.

Defining a name

You must define a name must be defined when creating a screening. The name defined is the name of the
screening displayed to citizens in the IBM Cúram Universal Access portal.

134 IBM Cúram Social Program Management 7.0.8 or 7.0.4.4: IBM Universal Access Responsive Web
Application 2.3.0

Defining program selection

The Program Selection indicator defines whether citizens can select specific programs that they want to
screen for, or whether they are brought directly into a screening script. If citizens are brought to a script,
they are screened for all programs associated with the screening.

Defining a More Info URL

If a More Info URL is defined, a More Info link is displayed.

Allowing re-screening

The Allow Rescreening indicator defines whether citizens can re-screen when they have completed a
screening.

Defining an icon for a screening

If you want an icon displayed with a screening, select an icon from the Icon selection box.

Note: Alternatively, you could modify the img src attribute of the icon directly on the screening HTML
page, for example

Configuring eligibility and screening details
Configure details for eligibility screening or filtered screening

Two types of screening are supported - filtered screening and eligibility screening. Eligibility screening
collects answers to a set of questions, stores this information and processes it to identify eligibility.
Filtered screening reduces the number of programs that a citizen might screen for by asking a short set of
questions and using the answers to filter out the programs that they would not be eligible for.

Configuring eligibility screening details

Specify an IEG script for the screening to collect the answers to a set of questions. You must also specify
a data store schema to store the data entered in the script. On saving the screening, the system creates
an empty template for both the script and schema based on the Question Script and schema that you
specified. You can update these templates from the Screening tab by selecting hyperlinks provided on
the page. Clicking the Question Script link starts the IEG editor that allows you to edit the question script.
Click the schema link to start the Datastore Editor, you can then edit the schema.

You must specify a CER rule set to process the data in the data store and to produce an eligibility result.
When specified on creation of the screening, the system creates an empty rules template. You can then
update the ruleset from the Screenings tab by selecting the hyperlink provided on the page. Clicking the
link starts the CER Editor, which allows you to edit the ruleset. For more information about writing
screening rule sets, see “Writing Rule Sets For Screening” on page 137

Configuring filtered screening details

Specify filtered screening details for a screening so that filtered screening is available before citizens
perform eligibility screening. As with eligibility screening, you must define a Filter Script (IEG) and
associated data store schema to collect and store the answers to questions. You must also specify a Filter
Rules (CER rule set) to process the data and produce a filtered screening result. When specified on the
New Online Screening page, the system automatically creates an empty template for the scripts and
ruleset that can be subsequently updated by selecting the associated hyperlinks on the Screening page.

Reusing rule sets across screenings

Use the system property curam.citizenworkspace.screening.ruleset.reuse.enabled to specify:

• Whether CER rule sets can be reused across different screenings.

Chapter 1. IBM Cúram Universal Access 135

• Whether the same rule set can be used for eligibility and filtered screening.

If curam.citizenworkspace.screening.ruleset.reuse.enabled is enabled, you cannot reuse rule sets, if it is
disabled you can reuse rule sets. You cannot use the ScreeningRulesLinkDAO.readActiveByRuleSet
method when curam.citizenworkspace.screening.ruleset.reuse.enabled property is enabled.

Configuring screening display information
Configure the screening information display fields for each screening.

You can configure the following fields for each screening.

Summary information

Define a high level description of the screening.

Heres's what you might get text

Define the text to be displayed on the Heres's what you might get page which is displayed to show
citizens the results of a completed screening.

Description

Define a description of the screening to be displayed.

How to apply text

Allows an administrator to define the text displayed on the Heres's what you might get page.

Defining programs for a screening
You must associate programs with a screening so that citizens can screen for those programs.

You can associate any program that is described in Configuring Programs with a screening. When
associating programs with a screening, you can assign an order that sets the display order of the selected
program relative to other programs associated with the screening.

Related concepts
Configuring programs
You can configure different types of programs. To configure a program, you configure display and system
processing information, local offices, mappings to PDFs, and evidence types.

The screening auto-save property
Use the screening curam.citizenworkspace.auto.save.screening property to set whether screenings are
automatically saved for authenticated citizens.

By default, curam.citizenworkspace.auto.save.screening is set to true. All screenings, irrespective of
type, are automatically saved for authenticated citizens. Each screening is automatically saved when
citizens click Next to progress through an IEG script. If curam.citizenworkspace.auto.save.screening is
set to false, screenings are not automatically saved.

Configuring re-screening
Configure whether citizens can change and resubmit their screenings.

About this task

In the administration console, you can configure whether to allow citizens to change and re-submit their
screening. If the setting is set to Yes, citizens can re-screen from the Benefits checker page or from the
Screening results page. If the setting is No, citizens who want to re-screen, must delete their screenings
and start again.

Procedure

1. Log in to IBM Cúram Social Program Management as Admin.

136 IBM Cúram Social Program Management 7.0.8 or 7.0.4.4: IBM Universal Access Responsive Web
Application 2.3.0

2. Select Administration Workspace > Shortcuts.
3. Search for and select Universal Access in the navigation.
4. Navigate to Screenings and select the screening you want to change.
5. Select ... > Edit....
6. Select the Allow Rescreening tick box to enable or disable re-screening and Save your changes.

Pre-populating the screening script
When citizens screen from within a citizen account, you can pre-populate information already known
about the citizen performing the screening.

Use the system property curam.citizenaccount.prepopulate.screening to set whether the IEG script is pre-
populated. The default value of this property is true, which means that the script is pre-populated with
information that already known about the citizen.

Related concepts
Authenticated screening
Citizens who are logged in to Universal Access can perform authenticated screening.

Resetting data captured from a previous screening
Determine whether starting an intake application resets data captured by a previously completed
screening.

Determines whether starting an intake application resets datastore data captured by a previously
completed screening

Use the system property curam.citizenworkspace.intake.resets.screening.results to determine
whether starting an intake application resets datastore data that was captured by a previously completed
screening.

Setting curam.citizenworkspace.intake.resets.screening.results to true means that starting an intake
application resets datastore data captured by a previously completed screening.

Setting curam.citizenworkspace.intake.resets.screening.results to false means that starting an intake
application does not reset datastore data captured by a previously completed screening.

Writing Rule Sets For Screening

Develop screening rule sets.

Addin a data store schema
Create a new data store schema for use with screening and intake intelligent evidence gathering (IEG)
scripts. However, some constraints exist on the format of these schemas. In some cases, requirements
dictate that citizens can screen for a program and then follow that screening by applying for benefits.

In many cases, applications are processed by IBM Cúram Social Program Management and are mapped
to Cúram cases and evidence by using the Cúram Data Mapping Engine (CDME). In these circumstances,
use CitizenPortal.xsd as a basis for the schema for screening. This process is used because the
same data store schema also needs to be used for intake. In particular, the CDME features do not work
correctly if a schema is used that removes or changes the data type of any of the attributes or entities in
the CitizenPortal.xsd schema.

All schema that follows the pattern of the CitizenPortal.xsd schema are safe for later releases. This
assurance means that upgrades do not add any new mandatory attributes or entities. Upgrades do not
change any existing attributes or entities that currently are required to support existing Cúram data
mapping engine functions.

The screening rules interface
All screening rule sets must use the screening rules interface so that they can be executed within IBM
Cúram Universal Access.

The ruleset interface is detailed in the following XML example:

Chapter 1. IBM Cúram Universal Access 137

<?xml version="1.0" encoding="UTF-8"?>

<RuleSet xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="http://www.curamsoftware.com/
 CreoleRulesSchema.xsd"
 name="ScreeningInterfaceRuleSet">

 <!-- This class must be extended by all rule sets invoked by
 the Citizen Portal screening results processing. -->
 <Class name="AbstractScreeningResult" abstract="true">

 <Initialization>
 <Attribute name="calculationDate">
 <type>
 <javaclass name="curam.util.type.Date"/>
 </type>
 </Attribute>
 </Initialization>

 <!-- The programs supported by this Screening Ruleset. -->
 <Attribute name="programs">
 <type>
 <javaclass name="List">
 <ruleclass name="AbstractProgram"/>
 </javaclass>
 </type>

 <derivation>
 <!-- Subclasses of AbstractScreeningResult must override
 this attribute to create a list of the Programs
 supported by the rule set. -->
 <abstract/>
 </derivation>
 </Attribute>

 </Class>

 <!-- This class must be extended by all programs supported
 in the rule set. -->
 <Class name="AbstractProgram" abstract="true">

 <!-- Identifies the program as configured in the Citizen
 Portal administration application. -->
 <Attribute name="programTypeReference">
 <type>
 <javaclass name="String"/>
 </type>
 <derivation>
 <abstract/>
 </derivation>
 </Attribute>

 <!-- Whether the claimant is eligible for this program. -->
 <Attribute name="eligible">
 <type>
 <javaclass name="Boolean"/>
 </type>
 <derivation>
 <abstract/>
 </derivation>
 </Attribute>

 <!-- The localizable explanation as to why the claimant is
 or is not eligible for this program. May contain HTML
 formatting/hyperlinks/etc. -->
 <Attribute name="explanation">
 <type>
 <javaclass name="curam.creole.value.Message"/>
 </type>
 <derivation>
 <abstract/>
 </derivation>
 </Attribute>
 </Class>

</RuleSet>

Screening rule sets must include a class that extends the AbstractScreeningResult rule class
outlined .

138 IBM Cúram Social Program Management 7.0.8 or 7.0.4.4: IBM Universal Access Responsive Web
Application 2.3.0

Using the AbstractScreeningResult rule class guarantees that the required attributes are available
when the rules are executed.

Configuring applications
Use the administration system to define applications. For each application, you can configure the
available programs and an application script and data schema. You can also configure the remaining
applications details, including application withdrawal reasons.

You configure applications in the following administration system areas:

• The New Online Application page
• The Property Administration page

You then configure application settings in other parts of the administration system. For example, you
associate programs with the application, define mappings for an application, and configure withdrawal
reasons.

Configuring an application in the Configure a New Online Application page
Use the Cúram administration system to configure an online application.

About this task

Browse to the Configure a New Online Application page and configure an online application.

Procedure

1. Log in to the IBM® Cúram Social Program Management application as Admin.
2. Browse to Administration Workspace > Shortcuts > Universal Access > Applications.
3. Select New....
4. Complete the Configure a New Online Application page. For more information, see Configuring

application information and display information, Configuring scripts, and Defining a PDF form.

Configuring application information and display information
Configure the following information on the New Online Application page.

Name
The name of the application that is displayed in the online portal.

Program selection
Indicates whether citizens can select specific programs to apply for or whether they are brought
directly into an application script. That is, citizens can apply for all programs associated with the
application.

More Info URL
If a URL is defined, a More Info link is displayed with the application name so that citizens can find
out more information about the selected application.

Client registration
Determines whether citizens are registered as prospect persons or persons.

To determine whether to register citizens as prospect persons or persons, the system checks the
client registration configuration in the following two scenarios:

• If Person Search and Match is configured, and no match can be found for the citizen.
• If Person Search and Match is not configured, that is, citizens on an application are always

registered without the system automatically searching and matching them.

If Client Registration is not set, the system checks the system property
curam.intake.registerAsProspect to identify whether citizens are registered as a prospect person or
a person.

Chapter 1. IBM Cúram Universal Access 139

Submit on Completion Only

Determines whether citizens can submit the application to the agency before completing the intake
script.

Defining an icon for an application
If you want an icon displayed with an application, select an icon from the Icon selection box.

Note: Alternatively, you could modify the img src attribute of the icon directly on the application
HTML page, for example

Summary
A high-level description of the application.

Description
An overview description of the application.

Submission Confirmation Page Details
A more detailed description of the application. Use the Title and Text fields to define a title and text to
be displayed on the Submission Confirmation page.

Configuring scripts
Configure an IEG application script to collect the answers to the application questions. Then, configure a
submission script for an application so that citizens can submit applications.
Application scripts

Specify a script name in the Question Script field. Specify a data store schema in the Schema field to
store the data entered in the script. On saving the application, an empty template for both the script
and schema is created by the system based on the question script and schema specified. You can
update these templates from the Application tab by selecting the hyperlinks provided on the page.
Click the Question Script link to start the IEG editor so you can edit the question script. Click the
Schema link to start the Datastore Editor and edit the schema.

Submission scripts
Configure an IEG submission script in the Submission Script. The script defines additional
information that does not form part of the application script to be captured, for example, a TANF
typically requires information regarding the citizen's ability to attend an interview.

On saving the application, an empty template for the submission script is created by the system
based on the Submission Script that you specify. You can update this from the Application tab by
selecting the hyperlink on the page. Clicking the link starts the IEG editor that you use to edit the
question script.

Defining a PDF form
Define a PDF form that is displayed when citizens complete an online application.

The data that is collected during the online application is copied by the system into a PDF form, which
citizens can print. Select the PDF form from the PDF Forms drop down menu. If a PDF form is not
specified for an application, a default generic PDF form can be used. You can get the default template
from the XSL Templates section of the system administration application.

The data passed to the XSL template reads from the data store. Instead of displaying the datastore labels
in the PDF, define a property file to specify user-friendly names for entities and attributes and to hide
entities and attributes that you do not want to display in the PDF. For more information, see XSL
Templates.

Upload the property file to Application Resources in the Intelligent Evidence Gathering section of the
administration application. For more information, see Working with Intelligent Evidence Gathering.

Name the property file using the following convention: <application schema name>PDFProps. The
contents of the property file is as follows:

140 IBM Cúram Social Program Management 7.0.8 or 7.0.4.4: IBM Universal Access Responsive Web
Application 2.3.0

Name an entity
<Entity Name=<Name To Be Displayed in the PDF>, for example, Application=Intake
Application

Hide an entity
<Entity Name.hidden=true, for example, ScreeningType.hidden=true

Hide an attribute
<Entity Name.Attribute Name.hidden=true, for example, Application.user Name.hidden=true

Specify a label for an attribute
<Entity Name.Attribute Name=PDF Label, for example, Submission.dig FirstName=First Name

Related information
XSL Templates
Working with Intelligent Evidence Gathering

Configuring an application in the Property Administration page
Use the Cúram administration system to configure an online application.

About this task

Browse to the Property Administation page and configure properties for an online application

Procedure

1. Log in to the IBM® Cúram Social Program Management application as Sysadmin.
2. Browse to System Configurations > Shortcuts > Application Data.
3. Enter the name of the application property you want to configure in the Name field and select Search.
4. Select ... > Edit Value.
5. Change the property setting, for example change YES to NO and Save your changes. For more

information, see Application properties, which describes the application property settings.

Application properties
Configure application properties for an application.
Using curam.citizenworkspace.authenticated.intake to mandate authentication before applying

If this property set to YES, citizens must create an account or log in before starting an application. If
this property set to NO, citizens are taken directly to the application selection page.

If curam.citizenworkspace.authenticated.intake is set to YES, citizens are brought to the following
components:

• The Apply for benefits page.
• The login page when citizens select Apply.

Using curam.citizenworkspace.intake.allow.login to set Optional authenticated application
If this property is turned on, citizens are given the option to log in before starting an application. If this
property is turned off, citizens are taken directly to the application selection page.

Using curam.citizenworkspace.display.confirm.quit.intake to display a confirmation page to citizens
when they quit the application process

If this property set to YES, a confirmation page is displayed when citizens quit during the application
process. If the system property is set to NO, a confirmation page is not displayed when citizens quit
an application. This property is only used when the property
curam.citizenworkspace.intake.allow.login is set to NO.

Using curam.citizenworkspace.intake.enabled to indicate whether citizens can start the application
process from the organization Home page

If this property is set to YES, the Apply For Benefits link is displayed on the organization Home page.
If this property is set to NO, the applications link is not displayed.

Chapter 1. IBM Cúram Universal Access 141

Using curam.citizenworkspace.intake.submit.intake.mandatory.login to indicate that citizens must log
in before submitting an application

If this property is set to YES on, citizens must create an account or log in before they can submit an
application. If this property is set to NO, citizens can submit an application without logging in.

Using curam.citizenaccount.prepopulate.intake to prepopulate the application with information
already known about authenticated citizens

The default value of this property is true which means that the script is prepopulated.
Using Auto-save intake to mandate whether applications are auto-saved in the citizen account.

Each application is auto-saved when citizens click Next as they progress through the IEG script. By
default, this property is set to true. If this property is set to false, applications are not automatically
saved in the citizen account.

Configuring other application settings
Associate programs with the application, define mappings for an application, and configure withdrawal
reasons.
Associating programs with applications

Any program described in Configuring Programs can be associated with an application. When
associating programs with an application, you can set the display order of the selected program
relative to other programs associated with the application. For more information, see Configuring
programs .

Defining mappings for an application
Applications can be processed by IBM Cúram Social Program Management or a remote system.

If the application is processed by IBM Cúram Social Program Management the information entered in
an application is mapped to the evidence tables associated with the application case defined for the
programs associated with the application. The mappings are configured for an application by creating
a mapping using the Data Mapping Editor. A mapping configuration must be specified in order for the
appropriate evidence entities to be created and populated in response to an online application
submission.

For more information about the Data Mapping Editor, see Configuring with the Data Mapping Editor.

Configuring withdrawal reasons
Citizens can withdraw the application for all or any one of the programs for which they applied.

When withdrawing an application, citizens must specify a withdrawal reason. You can define
withdrawal reasons for an application in the Intake Application section of the administration
application. Before associating a withdrawal reason with an application, you must define withdrawal
reasons in the WithdrawalRequestReason code table. for more information, see Intake Application.

Related concepts
Configuring programs
You can configure different types of programs. To configure a program, you configure display and system
processing information, local offices, mappings to PDFs, and evidence types.
Related information
Intake Application
Configuring with the Data Mapping Editor

Configuring online categories
Online categories group different types of applications or screenings together to make it easier for
citizens to find the ones that they need. You must define online categories for screenings and applications
to be displayed. After you define online categories, you must associate each screening and application to
a category.

Defining online categories

When defining an online category a name and URL must be defined. If a URL is defined a More Info link is
displayed with the name of the online category allowing citizens to find out more information about the

142 IBM Cúram Social Program Management 7.0.8 or 7.0.4.4: IBM Universal Access Responsive Web
Application 2.3.0

selected category. An order can be assigned to a category which dictates the display order of the selected
category relative to other categories.

Associating screenings and applications

Applications and screenings must be associated with an online category so they can be displayed in the
application. When associating a screening with an online category, an order can be applied which dictates
the display order of the screening relative to other screenings within the same category. When associating
an application with an online category an order can be applied which dictates the display order of the
application relative to other applications within the same category.

Configuring the citizen account
Although customization is required to modify some citizen account information, you can configure
information on the citizen account and the Contact Information tab.

Messages can originate as a result of transactions in IBM Cúram Social Program Management or a remote
system. Most of the configuration options apply to all messages but there are a some configuration
options that do not apply to messages originating from a remote system.

Configuring messages
The Messages panel of the organization Home page displays messages to logged-in citizens. For
example, a message that informs citizens when their next benefit payment is due or the amount of the
last payment.

Messages can be displayed which relate to meetings, activities, and application acknowledgments.
Messages can be displayed as a result of transactions in IBM Cúram Social Program Management or they
can originate from remote systems by way of a web service.

The links that follow outline the aspects of the Messages section, which are configurable.

Account messages
Adding a message or changing a dynamic element of an account message requires customization. The
text that is defined for existing messages that are provided in the initial application configuration can be
updated by using a set of properties for each type of message.

Properties are as follows:

• CitizenMessageMyPayments - messages about payments.
• CitizenMessageApplicationAcknowledgement - messages about application acknowledgments.
• CitizenMessageVerificationMessages - messages about verification messages.
• CitizenMessageMeetingMessages - messages about meetings.
• CitizenMessagesReferral.properties - messages about referrals.
• CitizenMessagesServiceDelivery - messages about service deliveries.
• OnlineAppealRequestMessage - messages about appeal requests.

Property files are stored in the Application Resources section of the administration application. To
update the message, each file needs to be downloaded, updated, and uploaded again. The icons that are
displayed in the citizen account for each type of message can be configured in the Account Messages
section of the administration application.

Adding a message that originates from a remote system requires that a code table entry is added to the
ParticipantMessageType code table and an associated entry in the Account Messages listing in the
administration application. Messages then can be sent by the ExternalCitizenMessageWS web
service.

Chapter 1. IBM Cúram Universal Access 143

Creating appeal request acknowledgment or appeal rejection messages
Create messages to acknowledge an appeal request or to reject an appeal request.

Table 5. Appeal request acknowledgment

Message Area Description

Title Appeal Request Acknowledgment

Message We have received your [Appeal Request
- hyperlink to the appeal request on
the My Appeals page] and it is
currently under review. We will
contact you shortly to confirm the
next steps.

Effective Date Current Date.

Duration This value is defined in the
Num.Days.To.Expiry=7 property in the
OnlineAppealRequestMessage properties file
and used in the implementation to set the attribute
expiry date time. The default value is 7.

Notes None.

Table 6. Appeal rejection

Message Area Description

Title Appeal Request Disallowed

Message We have reviewed your appeal request
and determined it to be an invalid
appeal. We will send you written
notice of this, including further
details.

Effective Date Current Date.

Duration This value is defined in the
Num.Days.To.Expiry=7 property in the
OnlineAppealRequestMessage properties file
and used in the implementation to set the attribute
expiry date time. The default value is 7.

Notes None.

Creating application acknowledgments
Create messages to acknowledge an application.

Table 7. Application acknowledgment

Message Area Description

Title <Icon> TANF Application Acknowledgment

Message We have received your TANF Application
form. The status of this application
is pending. We will contact you when
the application has been processed.

Effective Date Current® date

144 IBM Cúram Social Program Management 7.0.8 or 7.0.4.4: IBM Universal Access Responsive Web
Application 2.3.0

Table 7. Application acknowledgment (continued)

Message Area Description

Duration An administrator can use a configuration setting to
define the number of days (from the effective date)
that the message is displayed.

Notes None.

Creating meeting messages
Create messages for a meeting invitation, a meeting cancellation, and a meeting update. An administrator
can use a configuration setting to set the number of days (from the effective date) that the meeting
messages are displayed.

Table 8. Meeting invite

Message Area Description

Title <Icon> Meeting Invitation - Meeting with Case
Worker

Message 1 (Not an all day meeting and the
meeting start and end date are on the same day)

You are invited to attend a meeting
from 9.00AM until 5.00PM on 12/04/2010
in Meeting Room 1, Block C. Please
contact Joe Bloggs at 014567832 or
joe@SemAgency.com if you need more
information or cannot attend.

Message 2 (All day meeting for one day only) You are invited to attend an all day
meeting on 12/04/2010 in Meeting Room
1, Block C. Please contact Joe Bloggs
at 014567832 or joe@SemAgency.com if
you need more information or cannot
attend.

Message 3 (All day meeting for multiple days) You are invited to attend an all day
meeting each day from 12/04/2010 until
15/04/2010 in Meeting Room 1, Block C.
Please contact Joe Bloggs at 014567832
or joe@SemAgency.com if you need more
information or cannot attend.

Message 4 (Non-all day meeting for multiple days) You are invited to attend a meeting
from 9.00AM until 5.00PM from
12/04/2010 to the 13/04/2010 in
Meeting Room 1, Block C. Please
contact Joe Bloggs at 014567832 or
joe@SemAgency.com if you need more
information or cannot attend.

Chapter 1. IBM Cúram Universal Access 145

Table 8. Meeting invite (continued)

Message Area Description

Notes When the case worker is setting up a
meeting, the location is an optional
field. Therefore, if a meeting
location is not specified, the
preceding messages are displayed
without a location. Also, the meeting
organizer's contact details are
optional. Therefore, if no contact
details are found, the preceding
message is displayed without the
organizer's contact details.

Table 9. Meeting cancellation

Message Area Description

Title <Icon> Cancellation - Meeting with Case Worker

Message 1 (Not an all day meeting and the
meeting start and end date are on the same day)

The meeting that you were scheduled to
attend from 2.00PM until 6.00 PM on
12/04/2010 is canceled. Please contact
Joe Bloggs at 014567832 or
joe@SemAgency.com if you need more
information.

Message 2 (All day meeting for one day only) The all day meeting that you were
scheduled to attend on 12/04/2010 is
canceled. Please contact Joe Bloggs at
014567832 or joe@SemAgency.com if you
need more information.

Message 3 (All day meeting for multiple days) The all day meeting that you were
scheduled to attend from 12/04/2010
until 15/04/2010 is canceled. Please
contact Joe Bloggs at 014567832 or
joe@SemAgency.com if you need more
information.

Effective Date Current Date.

Notes The meeting organizer's contact details link opens
a page that shows the organizer's contact details.

Table 10. Meeting update

Message Area Description

Title <Icon> Cancellation - Meeting with Case Worker

Message 1 (Date and Time change of a non-all-day
meeting)

The meeting that you were scheduled to
attend from 2.00PM until 6.00 PM on
12/04/2010 is rescheduled to 3.00PM
until 7.00 PM on 13/04/2010 in Meeting
Room 1, Block C. Please contact Joe
Bloggs at 014567832 or
joe@SemAgency.com if you need more
information or cannot attend.

146 IBM Cúram Social Program Management 7.0.8 or 7.0.4.4: IBM Universal Access Responsive Web
Application 2.3.0

Table 10. Meeting update (continued)

Message Area Description

Message 2 (Location change of a non-all-day
meeting)

The location of the meeting you are
scheduled to attend from 2.00PM until
6.00 PM on 12/04/2010 is changed. This
meeting is now scheduled for Meeting
Room 1, Block D. Please contact Joe
Bloggs at 014567832 or
joe@SemAgency.com if you need more
information or cannot attend.

Message 3 (Date, time, and location change of
non-all-day meeting)

The meeting that you were scheduled to
attend from 2.00PM until 6.00 PM on
12/04/2010 is rescheduled to 3.00PM
until 7.00 PM on 13/04/2010. It is
rescheduled for Meeting Room 2, Block
C. Please contact Joe Bloggs at
014567832 or joe@SemAgency.com if you
need more information or cannot
attend.

Message 4 (Date change of all day meetings for
multiple days)

The all day meeting that you are
scheduled to attend from 12/04/2010
until 15/04/2010 is rescheduled. This
meeting will now take place from
13/04/2010 until 16/04/2010. Please
contact Joe Bloggs at 014567832 or
joe@SemAgency.com if you need more
information or cannot attend.

Message 5 (Location change for all day meeting for
multiple days)

The location of the all day meeting
you are scheduled to attend from
12/04/2010 until 15/04/2010 is
changed. This meeting is rescheduled
for Meeting Room 1, Block D. Please
contact Joe Bloggs at 014567832 or
joe@SemAgency.com if you need more
information or cannot attend.

Message 6 (Date and location change for all-day
meeting for multiple days)

The all day meeting that you are
scheduled to attend from 12/04/2010
until 15/04/2010 is rescheduled. This
meeting will now take place from
13/04/2010 until 16/04/2010 in Meeting
Room 1, Block D. Please contact Joe
Bloggs at 014567832 or
joe@SemAgency.com if you need more
information or cannot attend.

Message 7 (Date change for an all-day meeting) The all day meeting that you are
scheduled to attend on 12/04/2010 is
rescheduled. This meeting will now
take place on 13/04/2010. Please
contact Joe Bloggs at 014567832 or
joe@SemAgency.com if you need more
information or cannot attend.

Chapter 1. IBM Cúram Universal Access 147

Table 10. Meeting update (continued)

Message Area Description

Message 8 (Location change for an all-day
meeting)

The location of the all day meeting
you are scheduled to attend on
12/04/2010 is changed. This meeting is
rescheduled for Meeting Room 1, Block
D. Please contact Joe Bloggs at
014567832 or joe@SemAgency.com if you
need more information or cannot
attend.

Message 9 (Date and location change for an all-day
meeting)

The all day meeting that you are
scheduled to attend on 12/04/2010 is
rescheduled. This meeting is
rescheduled for 13/04/2010 in Meeting
Room 1, Block D. Please contact Joe
Bloggs at 014567832 or
joe@SemAgency.com if you need more
information or cannot attend.

Message 10 (Date and time change of a non-all-
day meeting for multiple days)

The meeting that you are scheduled to
attend from 2.00PM until 6.00 PM on
12/04/2010 until 15/04/2010 is
rescheduled. This meeting is
rescheduled for 2.00PM until 6.00 PM
on 13/04/2010 until 16/04/2010. Please
contact Joe Bloggs at 014567832 or
joe@SemAgency.com if you need more
information or cannot attend.

Message 11 (Location change of a non-all-day
meeting for multiple days)

The location of the meeting you are
scheduled to attend from 2.00PM until
6.00 PM on 12/04/2010 until 15/04/2010
is changed. This meeting is
rescheduled for Meeting Room 1, Block
D. Please contact Joe Bloggs at
014567832 or joe@SemAgency.com if you
need more information or cannot
attend.

Message 12 (Date, time, and, location change of
non-all-day meeting for multiple days)

The meeting that you are scheduled to
attend from 2.00PM until 6.00 PM on
12/04/2010 until 15/04/2010 is
rescheduled. This meeting is
rescheduled for 2.00PM until 6.00 PM
on 13/04/2010 until 16/04/2010 in
Meeting Room 1, Block D. Please
contact Joe Bloggs at 014567832 or
joe@SemAgency.com if you need more
information or cannot attend.

148 IBM Cúram Social Program Management 7.0.8 or 7.0.4.4: IBM Universal Access Responsive Web
Application 2.3.0

Table 10. Meeting update (continued)

Message Area Description

Notes When the case worker is setting up a meeting, the
location is an optional field. Therefore, if a meeting
location is not specified, the preceding messages
are displayed without a location. Also, the meeting
organizer's contact details are optional. Therefore,
if no contact details are found, the preceding
message is displayed without the organizer's
contact details.

Creating payment messages
Create messages for an issued payment, a canceled payment, a due payment, a stopped payment, an
unsuspended payment, an issued overpayment, and an issued underpayment. An administrator can use a
configuration setting to set the number of days (from the effective date) that the payment messages are
displayed.

Table 11. Payment issued

Message Area Description

Title <Icon> Latest Payment

Message 1 Your latest payment of $22.00 was due
on 22/07/2009. Click here to view the
payment details. Your next payment is
due on 29/07/2009. Click My Payments
to view your payment history.

Message 2 (Payment previously canceled) Your latest payment of $22.00 was due
on 22/07/2009. Click here to view the
payment details. This payment was
originally canceled on 23/07/2009.
Click here to view details of the
canceled payment. Your next payment is
due on 29/07/2009. Click My Payments
to view your payment history.

Effective Date Current Date.

Notes A payment can be issued, then canceled, and then
reissued. The here hyper link opens a page that
shows payment details. The My Payments link
opens the My Payments page in the Citizen
Account.

Note: If no more payments are due, the Your
next payment is due on 29/07/2009 part of
the messages is not displayed.

Table 12. Payment canceled

Message Area Description

Title <Icon> Payment Canceled

Chapter 1. IBM Cúram Universal Access 149

Table 12. Payment canceled (continued)

Message Area Description

Message Your payment of $22.00, due on
22/07/2009, has been canceled. Click
here to view the details. Click
Contact Information to contact your
caseworker if you need more
information. Your next payment is due
on 29/07/2009. Click My Payments to
view your payment history.

Effective Date Current Date.

Notes If no more payments are due, the Your next
payment is due on 29/07/2009 part of the
message is not displayed. The Contact
Information link opens the Contact Information
tab in the citizen account. The My Payments link
opens the My Payments page in the Citizen
Account.

Table 13. Payment due

Message Area Description

Title <Icon> Next Payment Due

Message Your next Cash Assistance payment is
due on 29/07/2011.

Effective Date Current Date.

Notes This message is appropriate when it is the first
payment that a citizen receives.

Table 14. Case suspended

Message Area Description

Title <Icon> Payments Stopped

Message Your Cash Assistance payments have
been stopped from 29/07/2009. Click
Contact Information to contact your
caseworker if you need more
information.

Effective Date Current Date.

Notes The Contact Information link opens the Contact
Information tab in the Citizen Account.

Table 15. Case unsuspended

Message Area Description

Title <Icon> Payments Unsuspended

150 IBM Cúram Social Program Management 7.0.8 or 7.0.4.4: IBM Universal Access Responsive Web
Application 2.3.0

Table 15. Case unsuspended (continued)

Message Area Description

Message Your Cash Assistance payment
suspension has been lifted from
29/07/2009. Your next payment is due
on 31/07/2009.

Effective Date Current Date.

Notes None.

System messages
Agencies use system messages to send messages to citizens who have a citizen account. For example, an
agency might want to provide information and helpline numbers to citizens who are affected by a natural
disaster. You can configure system messages in the administration application on the New System
Message page.

Use the Title and Message fields to define the title of the message and the message body that is
displayed in the My Messages pane. If you define the message as a priority with the Priority field, the
message appears first in the messages listing.

Note: If multiple priority messages exist, the effective date of the message and the message type
determines the message order. For more information, see Ordering and Enabling/Disabling Messages.

Use the Effective Date and Time to define an effective date for the message, such as when the message
is displayed in the citizen account. Use the Expiry Date and Time field to define an expiry date for the
message, for example, when to remove the message from the Citizen Account.

The message is saved with a status of In-Edit. Before the message is displayed in the Citizen Account, it
must be published. After it is published, the message is active and is displayed in the Citizen Account
based on the effective and expiry dates defined.

Configuring message duration
System properties set the length of time a type of message is displayed in the citizen account. For
example, a payment message can be configured to be displayed for 10 days. These configuration options
apply only to messages that originate as a result of transactions on IBM Cúram Social Program
Management.

The following system properties are provided:

• curam.citizenaccount.payment.message.expiry.days - sets the number of days from the
effective date that a payment message is displayed in the citizen account. A payment message is
displayed for this duration unless another payment message is created which replaces it. The default
value is 10.

• curam.citizenaccount.intake.application.acknowledgement.message.expiry.days -
sets the number of days from the effective date that an application acknowledgment message is
displayed in the citizen account. An acknowledgment message is displayed for this duration unless
another acknowledgment message is created which replaces it. The default value is 10.

• curam.citizenaccount.meeting.message.effective.days -sets the number of days from the
effective date that a meeting message is displayed. A meeting message is displayed for this duration
unless another meeting message is created which replaces it. The default value is 10.

Switching off messages
An agency might not want to display messages in the Citizen Account. To cater for this choice, the system
property curam.citizenaccount.generate.messages enables an agency to switch all messages on
or off. The default value is true, which means that messages are generated and displayed in the Citizen
Account.

Chapter 1. IBM Cúram Universal Access 151

Configuring last logged in information
The text displayed in the welcome message and last logged on information can be updated using the
properties that are stored in the CitizenAccountHome properties file stored in the Application
Resource section of the Administration Application.

The following properties are provided:

• citizenaccount.welcome.caption - updates the welcome message.
• citizenaccount.lastloggedon.caption - updates the last logged on message.
• citizenaccount.lastloggedon.date.time.text - updates the date and time message.

Configuring contact information
Configure contact information for citizens and caseworkers.

Contact information displayed in the citizen account displays contact details (phone numbers, addresses
and email addresses) stored for the logged in citizen and also caseworker contact details (business phone
number, mobile phone number, pager, fax and email) of the case owners of cases associated with the
logged in citizen in IBM Cúram Social Program Management and on remote systems.

Citizen contact information

The following system property is provided that sets whether contact information is displayed to a citizen.
curam.citizenaccount.contactinformation.show.client.details

If the property is set to true, citizens' address, phone number, and email address are displayed. If
this property is set to false, contact information is not displayed. The default value for this property
is true.

Caseworker

The following system properties are provided to set whether agency worker contact information is
displayed to a citizen, and if displayed, additional system properties are provided to dictate the type of
contact information displayed:
curam.citizenaccount.contactinformation.show.caseworker.details

Sets whether worker contact details are displayed in the citizen account. If this property is set to true,
worker contact details of cases associated with the logged in citizen are displayed. If this property is
set to false, worker contact information is not displayed. The default value for this property is true.

curam.citizenaccount.contactinformation.show.businessphone
Sets whether the worker's business phone number is displayed. The default value of this property is
true.

curam.citizenaccount.contactinformation.show.mobilephone
Sets whether the worker's mobile number is displayed. The default value of this property is true.

curam.citizenaccount.contactinformation.show.emailaddress
Sets whether the worker's email address is displayed. The default value of this property is true.

curam.citizenaccount.contactinformation.show.faxnumber
Sets whether the worker's fax number is displayed. The default value of this property is true.

curam.citizenaccount.contactinformation.show.pagernumber
Sets whether the worker's pager is displayed. The default value of this property is true.

curam.citizenaccount.contactinformation.show.casemember.cases
Sets whether the worker's contact information is displayed for cases where the citizen is a case
member. If this property is set to true, cases where the citizen is a case member are displayed. If this
property is set to false, then only cases where the citizen is the primary client are displayed. Note: this
property only applies to cases originating from IBM Cúram Social Program Management. The types of
product deliveries and integrated cases to be displayed can be configured in the Product section of
the Administration Application. For more information on administering this see the Cúram Integrated
Case Management Configuration Guide.

152 IBM Cúram Social Program Management 7.0.8 or 7.0.4.4: IBM Universal Access Responsive Web
Application 2.3.0

Configuring user session timeout
Configure the user session timeout modal in the System Administration application and the Universal
Access Responsive Web Application so that citizens know when their session is about to expire.

If a user session is inactive for a while, citizens can continue their current session by clicking Stay logged
in so that they don't lose information that they entered on the current page. Citizens can also continue the
current session by navigating away from the Stay logged in button.

If citizens do not continue their session, they are logged out automatically after a configurable period of
time to secure their personal information.

Use the following properties to configure the session timeout:

curam.environment.enable.timeout.warning.modal
You can enable or disable the session timeout feature. For more information, see Customizing the
session timeout warning in Universal Access.

curam.environment.timeout.warning.modal.time
You can configure the maximum time that the Stay logged in dialog is displayed to citizens. For more
information, see Customizing the session timeout warning in Universal Access.

REACT_APP_SESSION_INACTIVITY_TIMEOUT

In the Universal Access Responsive Web Application, use the
REACT_APP_SESSION_INACTIVITY_TIMEOUT environment variable to configure the time in
seconds before a user session expires. You can set the environment variable in the .env
or .env.development files in the root of your application. The value must match the session
timeout that is configured on the server, by default, 30 minutes or 1800 seconds.

Configuring the dialog box text
To configure the dialog box title, informational text, or button text for the Universal Access
Responsive Web Application, use the SessionTimeoutDialogComponentMessages.js file that
accompanies the source files. For more information, see Customizing the IBM Cúram Universal Access
server.

Configuring the login page to notify citizens when their session times out

Use the sessionCountdownTimerEnd property on the router location state to update a customized
login page with a message to notify citizens when their session times out. For more information about
routing, see “Developing with routes” on page 46.

An example of the sessionCountdownTimerEnd is shown:

if (location.state.sessionCountdownTimerEnd) {
<Alert .../>

}

This notification message is configured by default when a citizen's session times out.

Related concepts
Customizing the IBM Cúram Universal Access server
Use this information to customize the Universal Access server.
Developing with routes
Routes define the valid endpoints for navigation in your application. Your application consists of a
network of routes that can be traversed by your users to access the application's pages.
Related information
Customizing the session timeout warning in Universal Access

Chapter 1. IBM Cúram Universal Access 153

Configuring appeal requests
Complete the following steps to enable a citizen to request an appeal from their citizen account.

Procedure

1. Create a custom IEG script and data store schema to capture the appeal information.
2. Set the values of the curam.citizenworkspace.appeals.datastore.schema and the
curam.citizenworkspace.appeals.datastore.script.id properties to the values of the
script and data store schema that you created.

3. Create an XSL template to generate a PDF of the appeal information.

Related tasks
Customizing IEG forms in the Universal Access Responsive Web Application
Universal Access provides a number of forms to gather information about citizens, such as applying for
benefits or screening for programs. Where you need to save customer data as evidence, forms are
implemented in Intelligent Evidence Gathering (IEG). IEG is a framework for creating dynamic and
conditional questionnaires and saving the input data as evidence. You can customize IEG forms for your
organization in the Universal Access Responsive Web Application.
Customizing appeals in the Universal Access Responsive Web Application
You can customize appeals to suit your organization. You can integrate with an appeals system of your
choice. If you are licensed for the IBM Cúram Appeals application module, the IBM Cúram Social Program
Management appeals functionality is available on installation.

Configuring communications on the Notices page
You can configure the maximum number of communications that are displayed on the Notices page. By
default, up to 20 communications are displayed.

Procedure

Edit the curam.citizenaccount.max.communication system property and specify the maximum
number of communications to display.

What to do next

You can further customize the underlying communications implementation if needed. For more
information, see “Customizing the Notices page” on page 190.

Related concepts
Viewing Notices
When they are logged in, citizens can open the Notices page and see all communications that are relevant
to them that are in sent, received, or normal status. Notices are typically formal written communications
that are issued to meet legal, regulatory, or state requirements, which are created by using letterhead
templates. For example, online appeal requests are shown on the Notices page.
Customizing the Notices page
By default, the notices relevant to the linked user are listed on the Notices page. You can replace the
default CitizenCommunicationsStrategy implementation with your own custom implementation.

Configuring life events
For each life event, you must define how information is collected, stored, and displayed. You can
configure life event information categories, mappings to dynamic evidence, and information sharing with
internal and external sources.

Life events are displayed in the citizen account to allow citizens to submit information to the agency. Life
events can also provide citizens with useful information and resources. Life events can be made available
in other channels. For example, they can be submitted online by an agency worker in the internal
application. Configuration settings allow different information to be displayed depending on where the life
event is initiated from. For example, the Having a Baby life event question script that is displayed to

154 IBM Cúram Social Program Management 7.0.8 or 7.0.4.4: IBM Universal Access Responsive Web
Application 2.3.0

citizens can be different from the Having a Baby life event question script that is displayed to an agency
worker.

Enabling and disabling life events
Use the environment property REACT_APP_FEATURE_LIFE_EVENTS_ENABLED to enable or disable life
events pages, panes, and cards. The life events feature is enabled by default.

About this task
The following life events functionality can be enabled or disabled:

• Has anything changed card on the dashboard.
• Has anything changed Pane on the citizen's profile page.
• The View your account callout card is updated to say See your next payment, and more.
• Live event-related URLs are also disabled, for example /life-events/history.

Procedure

1. Edit the .env file in the root of your application.
2. Set REACT_APP_FEATURE_LIFE_EVENTS_ENABLED to true or false. If you don't define the

environment variable, the life event feature is enabled by default.

Configuring a life event

Use the New Life Event page to configure a life event in life event administration.

Defining a name

Specify a name that uniquely identifies the life event. This name is only displayed in the administration
application. You must specify a schema if the life event enables citizens to submit information to the
agency. The schema defines where the information submitted by a citizen or user in the life event script is
stored. For more information about defining data store schemas, see Working With Intelligent Evidence
Gathering.

Defining a channel type

The channel type defines the channel in which a life event is used, for example, 'Online' or 'Internal'.

Defining a display name

The display name represents the name of the life event that appears citizens or agency workers. For
example, a change of job life event might be displayed as Lost My Job to citizens but Client Loses Job to
caseworkers.

Displaying question and answer scripts

Question script is the name of the life event script. Answer script gathers answers to life event questions.

Defining a schema

The name of the data store schema used by the life event script to capture data. Select a schema from the
Schema menu.

Defining the display ruleset

Define the ruleset that determines which recommendations are displayed to citizens when a life event is
submitted.

Chapter 1. IBM Cúram Universal Access 155

Enabling citizen consent

For certain life events, a citizen's consent might be needed before information is sent to a remote system
or agency. The Citizen Consent Enabled selection box allows an administrator to specify whether a
citizen's consent is needed. This provision means that citizens can select the agencies that they would
like to send their life event information to.

If this indicator is specified, a list of remote systems is displayed on completion of the life event script. If
this indicator is not specified, the citizen is not presented with the list. If only one remote system is
associated with the life event, the Citizen Consent If One Choice Only field is provided to determine
whether the citizen is presented with the remote systems list. The citizen must specify their consent to
send information to this remote system by selecting it on completion of the question script.

Defining the channel

The channel that this life event applies to, either online or internal.

Defining a display description

A description of the life event. This description is displayed on the cards on the citizen's profile page. Rich
text is supported.

Defining additional information

Additional information related to the life event can be specified. For example, you can display links to
useful websites or information that the agency deems relevant to a particular life event.

Defining submission text

Configure the text to be displayed to a citizen after they submit a life event. If a rule set was defined, the
following default text is displayed:

Your information has been submitted. Based on the information you have given us, we have
identified services and programs that may be of use to you. View your results.

Defining an icon

You cannot define an icon when first configuring a life event. Instead, you must save the life event and
then take the following steps:

1. Select the ... icon for the new life event and then select New Image....
2. Select Browse..., and select an image file from your local drive.

Note: Only .png or .gif images are supported. Image files must not be animated.
3. Specify an image name and alt text and select Save.

Related information
Working with Intelligent Evidence Gathering

Mapping life event information to evidence entities
Information that is gathered in the life event script is stored in the data store schema that is defined for
the life event.

To pass information gathered in the life event script into IBM Cúram Social Program Management, it must
be mapped to dynamic evidence entities. Dynamic evidence entities must first be defined in the Rules
and Evidence section of the administration application. When defined, you must specify these entities as
Social Record Evidence Types in the administration application. An indicator is also provided to set if a
particular evidence type is visible to citizens. When the social record evidence entities are defined, use
the Data Mapping Editor to map the data from the data store to the appropriate evidence entities. You can
access the Data Mapping Editor from the Mappings tab on the life event.

156 IBM Cúram Social Program Management 7.0.8 or 7.0.4.4: IBM Universal Access Responsive Web
Application 2.3.0

When citizens submit a life event, the information that is gathered is mapped to evidence entities that are
associated with a new case type called a social record case. The evidence broker can then be used to
pass the information from this case to the appropriate ongoing cases.

For more information about dynamic evidence, see the Configuring dynamic evidence related link. For
more information about data mapping, see the Configuring with the data mapping editor related link. For
more information about sharing evidence, see the Sharing evidence with the evidence broker related link.

Related information
Configuring dynamic evidence
Configuring with the Data Mapping Editor
Sharing evidence with the evidence broker

Defining a question script, answer script, and schema
You must define an IEG script for the life event if the life event allows citizens or users to submit
information to the agency.

The IEG script that you define collects the answers to a set of questions related to the life event. Specify a
script name in the Question Script field. You must also specify a schema if the life event allows citizens or
users to submit information to the agency. The schema defines where the information submitted in the
life event script is stored. Specify a schema in the Schema field. You must specify an answer script to
allow citizens to review the answers they have provided to the questions during submission of the life
event. Specify an answer script in the Answer Script field.

When you save the life event, empty template scripts and a schema are created by the system based on
the Question Script, Answer Script and Schema specified. You can then update these from the Life Event
tab by selecting the hyperlinks provided on the page. Clicking on the Question Script and Answer Script
links launch the IEG Editor. Clicking on the Schema link starts the Datastore Editor. Existing schema,
question scripts and answer scripts can be used by selecting them on the Edit Life Event page.

Note: If a life event has been configured to send information to remote systems, set the Finish Page field
in the script properties (accessed by selecting Edit > Configure Script Properties in the IEG Editor) to
cw/DisplayRemoteSystems.jspx.

For more information on defining IEG scripts and schema, see Working with Intelligent Evidence Gathering
Guide.

Related information
Working with Intelligent Evidence Gathering

Categorizing life events
Life event administration allows you to categorize or group together similar life events, for example,
changing jobs, changing address and changing income life events could be categorized within an
employment category.

Categorizing life events makes it easier for citizens or users to find the life event they need. You define
categories in life event administration and then associate them with a life event. When defining a
category, you must specify a name and description . Life events can then be associated with that
category.

Defining Remote Systems
Life event information can be submitted to remote or external systems. You must associate a remote
system with a life event so that life event information can be sent to that system.

The remote system must have the Life Event Service web service associated with it. This is used to
transmit life event information to the remote system. Remote Systems can be configured in the Remote
Systems section of the administration application.

Chapter 1. IBM Cúram Universal Access 157

Securing IBM Cúram Universal Access
The gives citizens access to their most sensitive personal data over the internet. Security must be a
primary concern in the development of citizen account customizations. All projects that are built on
Universal Access must focus on delivering security from beginning to end.

It is recommended that all projects take at least the following steps to ensure the security of the project
delivery:

• Ensure that the project team are familiar with the principles of secure application development, and
common vulnerabilities such as the OWASP Top Ten.

• Develop and apply a Threat Model
• Employ security experts to test everything from requirements to the finished deployment.
• Plan for how the application is used in public spaces like libraries and kiosks.

The security model
The IBM Cúram Universal Access security model implements different account types to support both
anonymous and registered citizens. As citizens use Universal Access, they transition through the account
types.

IBM Cúram Universal Access has the following user types:

Public citizen account

When citizens view the organization Home page they are automatically logged in under the publiccitizen
account. This account only has access to the home page and pages that allow citizens to enter or reset
passwords.

Anonymous account

When the user clicks a link to perform screening or intake, they are logged out as publiccitizen and logged
back as an anonymous account with a random user name. A principle of Universal Access is that users do
not have access to the data of other users. If all intakes and screenings are performed using a single user
account, publiccitizen, for example, one citizen might see data that has been entered by another citizen.

Registered accounts

Standard accounts created by citizens. Citizens can create accounts when they first use the application,
or during processes like applying for benefit. These accounts differ from anonymous accounts in that they
allow citizens to continue previously saved applications, restart applications that were previously
unfinished, and review or withdraw previously submitted applications.

Linked accounts

Linked accounts are accounts that have been linked with an underlying Concern Role ID for a Person
entity.

Some typical scenarios for linking are presented. These are examples, the actual processes for linking is
unique to each citizen. A citizen requests a Citizen Account. The citizen is asked to present themselves at
their local Social Welfare office with drivers license and other personal identification. The caseworker,
uses custom developed functions to enter details for the new linked account after verifying the identity of
the citizen.

A citizen creates a user account for Universal Access and submits an Intake Application. They are
contacted by their caseworker who asks them if they want access to more services. The citizen agrees
and presents themselves at the local office with identification such as a passport. The caseworker is able
to link the citizen to the account they used to submit the Intake Application.

158 IBM Cúram Social Program Management 7.0.8 or 7.0.4.4: IBM Universal Access Responsive Web
Application 2.3.0

http://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
http://www.owasp.org/index.php/Threat_Risk_Modeling

In both of these cases the caseworker does not have access to the citizen's password. Instead, the linking
process triggers a batch job that generates a letter, sent to the citizen's home address. The letter contains
the password and a separate letter then contains an electronic code card. All of this functionality is
developed by the customer however it is supported by Universal Access APIs that allow a user name to
be linked to a Concern Role ID.

Authorization roles and groups
The account types are assigned different authorization roles. The roles limit the methods that can be
invoked. No additional permissions should be granted to authorization roles except for Linked Accounts,
which use the LINKEDCITIZENROLE. If adding additional custom methods to citizen account, additional
permissions will be required.

For more information about adding additional custom methods to citizen account, see Customizing the
citizen account.

If only a subset of the functionality offered by IBM Cúram Universal Access is being used, permission to
invoke the unused methods should be removed from the database. For example, if citizen account is not
used, the LINKEDCITIZENROLE and other related authorization artifacts should be removed, as they are
not needed. Projects not using citizen account should also consider the deployment implications. For
more information, see Customizing the citizen account.

Authorization roles should be configured only for the functionality that is being used. It is recommended
that unused Security IDentifiers (SIDs) should be removed from the database. For example, if citizen
account is not being used, the LINKEDCITIZENROLE and other related authorization artifacts should be
removed, as they are not needed. Projects not using citizen account should also consider the deployment
implications. For more information, see Citizen Account Security Considerations.

Proper use of the authorization roles and groups ensure that no user can access functions for which they
have no permission. It will not however, prevent users from using these functions to access data
belonging to user users. This is the preserve of Data-based Security. Universal Access provides a
framework for Data-based Security and all customizations should use this framework. For more
information, see Citizen Account Security Considerations.

Related concepts
Customizing the Citizen Account
Users can use the Citizen Account to log in to a secure area where users can screen and apply for
programs.
Security and the Citizen Account
Security must be a primary concern when you customize the citizen account customizations. All public-
facing applications must be analyzed and tested before they are deployed. Users must contact IBM
support to discuss unusual customizations that might have specific security issues.

Integrating external security
By default, IBM Cúram Universal Access uses its own authentication system that is backed up by a
database of registered users. However, Universal Access can also be configured to integrate with external
security systems.

As government agencies increasingly provide online services, there is a drive to ensure that citizens can
be authenticated for any of these services by using a single set of credentials. This approach provides
benefits for the government in streamlining the authentication process and also for the citizen because
citizens do not have to remember user names and passwords.

This process, in turn, increases security for the following reasons:

• It makes it less likely that citizens write down their user names and passwords.
• It focuses security efforts on implementing best practice in a single enterprise security system.

Universal Access can be deployed in Identity Only mode for registered users so that creating accounts
occurs externally and user accounts are authenticated externally. For more information, see Identity Only
Authentication.

Chapter 1. IBM Cúram Universal Access 159

Related information
Identity only authentication

Configuring single sign-on
Single sign-on (SSO) authentication enables users to access multiple secure applications by
authenticating once with a single user name and password. Federated single sign-on that uses SAML 2.0
browser profile, using either an IdP-initiated HTTP POST binding or an SP-initiated HTTP POST binding,
can be implemented through the Citizen Engagement application.

If a user authenticates to an SSO system, they are no longer prompted for credentials when they access
any of the other applications that are configured to work with the SSO system.

SSO systems usually maintain the user accounts on a lightweight directory application protocol (LDAP)
server. If user accounts are stored in one location, it is easier for system administrators to safeguard the
accounts. Also, it is easier for users to reset one account password for multiple applications.

The following information describes the scenario where IBM Cúram Social Program Management is
deployed on WebSphere. However, a similar process applies if IBM Cúram Social Program Management is
deployed on another supported application server, such as Oracle Weblogic.

Related information
Oracle: Configuring SAML 2.0 Services

SAML 2.0 single sign-on initiation and flow in Universal Access
For single sign-on, the SAML response, by HTTP POSTs, is interpreted and controlled by logic in Universal
Access.

In all SAML web SSO profile flows, the binding defines the mechanism that is used to send information
through assertions between the identity provider (IdP) and the service provider (SP). WebSphere
supports HTTP POST binding for sending web SSO profiles. The browser sends an HTTP POST request,
whose POST body contains a SAML response document. The SAML response document is an XML
document that contains certain data about the user and the assertion, some of which is optional.

Browser-based single sign-on (SSO) through SAML v2.0 works well with many web applications where the
SAML flow is controlled by HTTP redirects between the identity provider (IdP) and the service provider
(SP). The user is guided seamlessly from login screens to SP landing pages by HTTP redirects and hidden
forms that use the browser to POST received information to either the IdP or the SP.

In a single-page application, all the screens are contained within the application and dynamic content is
expected to be passed only in JSON messages through XMLHttpRequests. Therefore, the rendering of
HTML content for login pages and the automatic posting of hidden forms in HTML content is more difficult.
If the SP processes the content in the same way, it would be necessary to leave the application and hand
back control to either the user agent or the browser, in which case the application state would be lost.

IdP-initiated use case

The IdP can send an assertion request to the service provider ACS in one of two ways:

• The IdP sends a URL link in a response to a successful authentication request. The user must click on
the URL link to post the SAML response to the service provider ACS.

• The IdP sends an auto-submit form to the browser that automatically posts the SAML response to the
service provider ACS.

The ACS then validates the assertion, creates a JAAS subject, and redirects the user to the SP resource.

SP-initiated use case

When an unauthenticated user first accesses an application through an SP, the SP directs the user's
browser to the IdP to authenticate. To be SAML specification compliant, the flow requires the generation
of a SAML AuthnRequest from the SP to the IdP. The IdP receives the AuthnRequest, validates that the
request has come from a registered SP, and then authenticates the user. After the user has been

160 IBM Cúram Social Program Management 7.0.8 or 7.0.4.4: IBM Universal Access Responsive Web
Application 2.3.0

https://docs.oracle.com/middleware/1213/wls/SECMG/saml20.htm#SECMG279

authenticated, the IdP directs the browser to the Assertion Consumer Service (ACS) application that is
specified in the AuthnRequest that was received from the SP.

Assertions and the SAML Response document

To prove the authenticity of the information, the assertion in the SAML response is almost always digitally
signed. To protect the confidentiality of parts of the assertion, the payload can be digitally encrypted. A
typical SAML response contains information that can be sent only through a login by a POST parameter.
After login, an alternative mechanism is typically used to maintain the logged-in security context. Most
systems use some cookie-based, server-specific mechanism, such as a specific security cookie, or the
server’s cookie tied to the user’s HTTP session.

IdP-initiated flow in Universal Access

When Universal Access is configured with an IdP initiated web SSO flow, any attempt to connect to a
protected resource without first authenticating through IdP results in a 403 HTTP response from IBM
Cúram Social Program Management web API. Any authentication requests that are initiated through SP
result in a 403 HTTP response, and the application redirects the user to the login page that is contained in
Universal Access.

The following figure illustrates the IdP initiated flow that is supported by Universal Access in a default
installation.

Figure 2. IdP-initiated flow in Universal Access

1. A user browses to the HTTP server that contains Universal Access.
2. The user can browse as normal by interacting with IBM Cúram Social Program Management as either a

public or a generated user (which is not shown in the diagram). The user then opens the login page to
access protected content, which triggers an initial request to the IdP endpoint.

3. In most IdP configurations, an HTML login form responds to the request. Universal Access ignores the
response.

Chapter 1. IBM Cúram Universal Access 161

4. To authenticate, the user completes the login form and clicks Submit. The form submission triggers an
HTTP POST request that contains login credentials to the IdP.

5. After successful validation of the user credentials at the IdP, the IdP populates the SAML Response
and returns it in an HTML form that contains hidden input fields. Several redirects might occur before
the 200 OK HTTP response that contains the SAML information is received. Universal Access does not
respond to the redirects.

6. Universal Access extracts the RelayState and SAMLResponse values, and inserts them in a new
POST request to the application server Assertion Consumer Service (ACS).

7. The application server ACS validates the signature that is contained in the SAML Response.
WebSphere Application Server also ensures that the originator is a Trusted Authentication Realm. If
the validation is successful, the ACS sends an HTTP redirect that points to the configured IBM Cúram
Social Program Management target landing page, along with an LTPA2 Cookie that will be used in any
subsequent communication.

8. Universal Access begins its standard user setup by requesting account and profile information from
the relevant web API endpoints.

SP-initiated flow in Universal Access

When Universal Access is configured with an SP-initiated web SSO flow, any attempt to connect to a
protected resource without first authenticating results in a 401 HTTP response from the application
server Assertion Consumer Service’s Trust Association Interceptor, and the generation of the SAML
AuthnRequest message to be sent to the IdP.

Figure 3. SP-initiated flow in Universal Access

1. A user browses to the HTTP server that contains Universal Access.

162 IBM Cúram Social Program Management 7.0.8 or 7.0.4.4: IBM Universal Access Responsive Web
Application 2.3.0

2. The user can browse as normal by interacting with IBM Cúram Social Program Management as either
a public or a generated user (which is not shown in the diagram). The user then accesses protected
content in the application, which is intercepted by the Assertion Consumer Service Trust Association
Interceptor (TAI).

3. The TAI triggers an 401 HTTP response with the SAML request message to be sent to the IdP.
4. Universal Access then directs the SAML Request to the IdP SAML endpoint.
5. In most IdP configurations, an HTML login form responds to the request. Universal Access extracts a

hidden authentication token in the login form if present, ignoring the rest of the response.
6. To authenticate, the user completes the login form and clicks Submit. The form submission triggers

an HTTP POST request that contains login credentials to the IdP, along with the token extracted in
the previous step if present.

7. After successful validation of the user credentials at the IdP, the IdP populates the SAML Response
and returns it in an HTML form that contains hidden input fields. Several redirects might occur before
the 200 OK HTTP response that contains the SAML information is received. Universal Access does
not respond to the redirects.

8. Universal Access extracts the RelayState and SAMLResponse values, and inserts them in a new
POST request to the application server Assertion Consumer Service (ACS).

9. The application server ACS validates the signature that is contained in the SAML Response.
WebSphere Application Server also ensures that the originator is a Trusted Authentication Realm. If
the validation is successful, the ACS sends an HTTP redirect that points to the configured IBM Cúram
Social Program Management target landing page, along with an LTPA2 Cookie that will be used in any
subsequent communication.

10. The browser automatically sends a new request to the target URL, but Universal Access does not
respond to the request. Universal Access begins its standard user setup by requesting account and
profile information from the relevant web API endpoints.

Related information
Oasis: SAML 2.0 Technical Overview
Oracle: JAAS Authorization Tutorial

Configuring single sign-on properties
To enable IBM Cúram Universal Access to work with SAML single sign-on (SSO), configure the appropriate
properties in the .env environment variable file in the root of the application. Then, rebuild Universal
Access. The properties are applicable to both identity provider (IdP)-initiated and service-provider (SP)-
initiated SAML 2.0 web SSO unless otherwise stated.

About this task

• The <IdP_URL> consists of 3 parts: the HTTPS protocol, the IdP hostname or IP address, and the
listener port number. For example, https://192.168.0.1:12443.

• The <ACS_URL> consists of 3 parts: the HTTPS protocol, the Assertion Consumer Service (ACS)
hostname or IP address, and the listener port number. For example, https://192.168.0.2:443.

Procedure

• Set the “Single sign-on (SSO) authentication” on page 33 environment variables for your environment.

Chapter 1. IBM Cúram Universal Access 163

https://www.oasis-open.org/committees/download.php/11511/sstc-saml-tech-overview-2.0-draft-03.pdf
https://docs.oracle.com/javase/7/docs/technotes/guides/security/jaas/tutorials/GeneralAcnAndAzn.html#WhatIsAzn

Configuring cross-origin resource sharing
For security reasons, browsers restrict cross-origin HTTP requests, including XMLHttpRequest HTTP
requests, that are initiated inside IBM Cúram Universal Access. When the Universal Access application
and the Universal Access web API are deployed on different hosts, extra configuration is required.

About this task

Universal Access can request HTTP resources only from the same domain that the application was loaded
from, which is the domain that contains the static JavaScript. To enable Universal Access to support
cross-origin resource sharing (CORS), enable the use of CORS headers.

Procedure

1. Log on to the IBM Cúram Social Program Management application as a system administrator, and click
System Configurations.

2. In the Shortcuts panel, click Application Data > Property Administration.
3. Configure the curam.rest.allowedOrigins property with the values of either the host names or the IP

addresses of the IdP server and the web server on which Universal Access is deployed.

Related information
Cúram REST configuration properties

Single sign-on configuration example
The example outlines a single sign-on (SSO) configuration for IBM Cúram Universal Access that uses IBM
Security Access Manager to implement federated single sign-on by using the SAML 2.0 Browser POST
profile. The example applies to both IdP-initiated and SP-initiated flows. Some additional steps are
required to configure SP-initiated flows.

Universal Access SSO configuration components

The following figure shows the components that are included in a Universal Access SSO configuration.

164 IBM Cúram Social Program Management 7.0.8 or 7.0.4.4: IBM Universal Access Responsive Web
Application 2.3.0

Figure 4. Universal Access SSO configuration components

Web browser
A user sends requests from their web browser for applications in the SSO environment.

Web server
The Universal Access ReactJS static content is deployed on a web server, such as IBM HTTP Server,
or Apache HTTP Server.

IBM Security Access Manager (ISAM) server
The IBM Security Access Manager server includes the identity provider (IdP).

LDAP server (user directory)
Among other items, the LDAP server contains the user name and password of all the valid users in the
SSO environment.

IBM WebSphere Application Server
Among other applications, WebSphere Application Server contains the deployed IBM Cúram Social
Program Management, Citizen WorkSpace, and REST enterprise applications.

Chapter 1. IBM Cúram Universal Access 165

WebSphere Application Server SAML EAR
A WebSphere package that contains the packages to run the SAML Assertion Consumer Service (ACS).

SPM Database
Data storage for the IBM Cúram Social Program Management, Citizen WorkSpace, and REST
enterprise applications.

Configuring single sign-on through IBM Security Access Manager
Use the IBM Security Access Manager management console to configure single sign-on (SSO) in IBM
Cúram Universal Access.

Before you begin

1. Start IBM Security Access Manager.
2. In the management console, log on as an administrator.
3. Accept the services agreement.
4. If required, change the administrative password.

About this task

In the IBM Security Access Manager management console, complete the following steps, with reference
to the IBM Security Access Manager 9 Federation Cookbook.

Procedure

1. Configure the IBM Security Access Manager database:
a) In the top menu, click Home Appliance Dashboard > Database Configuration.
b) Enter the database configuration details, such as Database Type, Address, Port, and so on, and

click Save.
c) When the Deploy Pending Changes window opens, click Deploy.

2. To install all the required product licenses, complete the steps in section 4.3 Product Activation from
the IBM Security Access Manager 9 Federation Cookbook.

3. Configure the LDAP SSL database by completing section 25.1.1 Load Federation Runtime SSL
certificate into pdsrv trust store from the IBM Security Access Manager 9 Federation Cookbook.

4. Configure the runtime component by completing 4.6 Configure ISAM Runtime Component on the
Appliance from the IBM Security Access Manager 9 Federation Cookbook.

Configuring IBM Security Access Manager as an IdP
To configure IBM Security Access Manager as an identity provider (IdP), see the IBM Security Access
Manager 9.0 Federation Cookbook that is available from IBM Developer Works.

Before you begin
Download the IBM Security Access Manager 9.0 Federation Cookbook from IBM Developer Works, as
shown in the related link. Also download the mapping files that are provided with the cookbook.

About this task

To set up the example environment, complete the specified sections in the IBM Security Access Manager
9.0 Federation Cookbook.

Procedure

1. Complete Section 5, Create Reverse Proxy instance.
2. Complete Section 6, Create SAML 2.0 Identity Provider federation.

166 IBM Cúram Social Program Management 7.0.8 or 7.0.4.4: IBM Universal Access Responsive Web
Application 2.3.0

In Section 6.1, if you are using the ISAM docker deployment, it is possible to re-use the existing
keystore that is included in the container instead of creating a new keystore. It is important to reflect
this change in subsequent sections where the myidpkeys certificate database is referenced.

3. Complete Section 8.1, ISAM Configuration for the IdP.
In Section 8.1, use the host name of the IdP federation.

4. Optional: After completing Section 8.1.1, if you require ACLs to be defined to allow and restrict access
to the IdP junction, then follow the instructions in Section 25.1.3, Configure ACL policy for IdP.

5. Complete Section 9.1, Configuring Partner for the IdP.
The export from Websphere does not contain all the relevant data. Therefore, in Section 9.1, after you
complete configuring partner for the IdP, you must click Edit configuration and complete the
remaining advanced configuration.

Related information
IBM Security Access Manager 9.0 Federation Cookbook

Configuring WebSphere Application Server
The procedure outlines the high-level steps that are required to configure IBM WebSphere Application
Server as a SAML service provider.

About this task

For more information, see the related link to the WebSphere Application Server documentation.

Procedure

1. Deploy the WebSphereSamlSP.ear file.

Note: So that SAML Assertion Consumer Service (ACS) works with cross-origin resource sharing
(CORS) security requirements during redirections, you must map its modules to the same virtual host
used for the REST target application (that is, client_host).

The WebSphereSamlSP.ear file is available as an installable package. Choose one of the following
methods:

• Log on to the WebSphere Application Server administrative console, and install the
app_server_root/installableApps/WebSphereSamlSP.ear file to your application server
or cluster.

• Install the SAML ACS application by using a Python script. In the app_server_root/bin
directory, enter the following command to run the installSamlACS.py script:

wsadmin -f installSamlACS.py install nodeName serverName

Where nodeName is the node name of the target application server, and serverName is the server
name of the target application server. When you complete this step, you must map the modules to
the REST application, for more information see: Mapping virtual hosts for web modules.

2. Configure the ACS trust association interceptor:
a) In the WebSphere Application Server administrative console, click Global security > Trust

association > Interceptors > New.
b) For Interceptor class name, enter
com.ibm.ws.security.web.saml.ACSTrustAssociationInterceptor.

c) Under custom properties, enter the values that are shown in the following table:
In a standard WebSphere Application Server configuration, you would also define a value for the
login.error.page custom property. However, the preferred method is to log on to the IdP first.
Therefore, if you do not define a value for login.error.page, WebSphere Application Server
returns a 403 error if a user logs on without first logging on to the identity provider (IdP).

Chapter 1. IBM Cúram Universal Access 167

https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/IBM%20Security%20Federated%20Identity%20Manager/page/Federation%20Cookbook
https://www.ibm.com/support/knowledgecenter/en/SSAW57_9.0.0/com.ibm.websphere.nd.multiplatform.doc/ae/trun_app_mapvhosts.html

Table 16. ACS trust association interceptor custom properties

Custom property name Value

sso_1.sp.acsUrl https://WAS_host_name:ssl port//samlsps/acs

sso_1.idp_1.EntityID https://isam_hostname:isam_port//URL of
ISAM/ISAM Junction/IdP endpoint/federation
name/saml20

sso_1.idp_1.SingleSignOnUrl https:// isam_hostname:isam_port//URL of
ISAM/ISAM Junction/IdP endpoint/federation
name/saml20/login

sso_1.sp.targetUrl https://WAS_host_name:WAS_port/Rest

sso_1.idp_1.certAlias isam-conf

sso_1.sp.filter request-url^=/Rest;request-url!=/Rest/
j_security_check

sso_1.sp.enforceTaiCookie false

3. Add the IdP federation partner data. The following substeps describe how to add the IdP data by using
the WebSphere Application Server administrative console.
a) To add the IdP host name or IP address as a trusted realm, click Global security > Trusted

authentication realms - inbound > Add External Realm.
b) Enter either the IBM Security Access Manager host name or IP address.
c) To load the IdP certificate from IBM Security Access Manager, click Security > SSL certificate and

key management > Key stores and certificates > NodeDefaultTrustStore > Signer certificates >
Retrieve from port

d) Enter the IBM Security Access Manager IP address and listener port, for example, 12443, alias
= isam-conf.

Note: When the browser first attempts to connect to the IBM Cúram Social Program Management
web API, an LTPA2 cookie is sent as part of the request. If the WebSphere Application Server
com.ibm.ws.security.web.logoutOnHTTPSessionExpire property is set to true, which is the
default configuration in IBM Cúram Social Program Management, then authentication fails because
an HTTP session does not exist on the application server. By setting the property to false, the
check for a valid HTTP session is not completed and when the LTPA2 token is valid, authentication
succeeds.

To configure the property in the WebSphere Application Serveradministrative console, click
Security > Global security > Custom properties, and set the value of
com.ibm.ws.security.web.logoutOnHTTPSessionExpire to false.

4. Implement cross-origin resource sharing (CORS) from the HTTP server to the WebSphere Application
Server SAML ACS.
a) To add a CORS header, configure a servlet filter for the WebSphereSamlSP.ear file that is

deployed by a Trust Association Interceptor (TAI). The servlet filter adds a CORS HTTP header to
HTTP responses. You can archive the implemented servlet filter as a jar file, and then store it in
the WebSphereSamlSP.ear\WebSphereSamlSPWeb.war\WEB-INF\lib directory that is in the
installedApps directory of your project in WebSphere Application Server.
See the following example of how to implement a servlet filter:

public class SampleFilter implements Filter {

 @Override
 public void doFilter(ServletRequest arg0, ServletResponse servletResponse,
 FilterChain arg2) throws IOException, ServletException {

HttpServletResponse response = (HttpServletResponse) servletResponse;
HttpServletRequest request = (HttpServletRequest) arg0;

168 IBM Cúram Social Program Management 7.0.8 or 7.0.4.4: IBM Universal Access Responsive Web
Application 2.3.0

response.setHeader("Access-Control-Allow-Origin",
 "http://dubxpcvm156.mul.ie.ibm.com:9880"); <hostname or IP address of IBM UA
server>
response.setHeader("Access-Control-Allow-Credentials", "true");
response.setHeader("Access-Control-Allow-Headers", "x-requested-with, Content-Type,
origin, authorization, accept, client-security-token");
response.setHeader("Access-Control-Expose-Headers", "content-length");
 arg2.doFilter(request, response);
 }
}

b) Configure the web.xml file for the deployed TAI EAR file to use the servlet filter for all the requests.
Add the filter element that is shown in the following sample to the web.xml file, with the actual
fully qualified name of the filter.
You can add the filter element as a sibling to any existing element n the web.xml file, such as
<servlet>. The web.xml file is in the WebSphereSamlSP.ear\WebSphereSamlSPWeb.war
\WEB-INF\lib directory, which is in the installedApps directory of your project in WebSphere
Application Server.

<filter>
 <filter-name> SampleFilter </filter-name>
 <filter-class> SampleFilter</filter-class>
 </filter>
 <filter-mapping>
 <filter-name> SampleFilter</filter-name>
 <url-pattern>/*</url-pattern>
 </filter-mapping>

Related information
Enabling WebSphere Application Server to use the SAML web SSO feature

Add and enable the users in LDAP
Complete the following steps to add the users from LDAP and enable them in ISAM.

Procedure

1. To create LDAP and IBM Security Access Manager runtime users, create an ldif file that can be used
to populate OpenLdap, as shown in the following sample:

cat UA_usersCreate_ISAM.ldif
dn: dc=watson-health,secAuthority=Default
objectclass: top
objectclass: domain
dc: watson-health

dn: c=ie,dc=watson-health,secAuthority=Default
objectclass: top
objectclass: country
c: ie

dn: o=curam,c=ie,dc=watson-health,secAuthority=Default
objectclass: top
objectclass: organization
o: curam

dn: ou=curamint,o=curam,c=ie,dc=watson-health,secAuthority=Default
objectclass: top
objectclass: organizationalUnit
ou: curamint

dn: cn=caseworker,ou=curamint,o=curam,c=ie,dc=watson-health,secAuthority=Default
objectclass: person
objectclass: inetOrgPerson
objectclass: top
objectclass: organizationalPerson
objectclass: ePerson
cn: caseworker
sn: caseworkersurname
uid: caseworker
mail: caseworker@curam.com
userpassword: Passw0rd

Chapter 1. IBM Cúram Universal Access 169

https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/twbs_enablesamlsso.html

dn: ou=curamext,o=curam,c=ie,dc=watson-health,secAuthority=Default
objectclass: top
objectclass: organizationalUnit
ou: curamext

dn: cn=jamessmith,ou=curamext,o=curam,c=ie,dc=watson-health,secAuthority=Default
objectclass: person
objectclass: inetOrgPerson
objectclass: top
objectclass: organizationalPerson
objectclass: ePerson
cn: jamessmith
sn: Smith
uid: jamessmith
mail: jamessmith@curamexternal.com
userpassword: Passw0rd

2. Add users to the OpenLDAP database:
a) On the host server that is running the docker containers, enter the following command:

docker cp UA_usersCreate_ISAM.ldif idpisam9040_isam-ldap_1:/tmp

b) To log on to the OpenLDAP container, enter the following command:

docker exec –ti idpisam9040_isam-ldap_1 bash

c) To add the users to OpenLDAP, enter the following command:

ldapadd -H ldaps://127.0.0.1:636 -D cn=root,secAuthority=default -f /tmp/
Curam_usersCreate_ISAM.ldif

3. Import the users into IBM Security Access Manager:
a) To log on to the IBM Security Access Manager command line interface, enter the following

commands:

docker exec -ti idpisam9040_isam-webseal_1 isam_cli
isam_cli> isam admin
pdadmin> login -a sec_master -p <password>

b) To import the users into IBM Security Access Manager, enter the following commands:

pdadmin sec_master> user import caseworker
cn=caseworker,ou=curamint,o=curam,c=ie,dc=watson-health,secAuthority=Default
pdadmin sec_master> user modify caseworker account-valid yes
pdadmin sec_master> user import jamessmith
cn=jamessmith,ou=curamext,o=curam,c=ie,dc=watson-health,secAuthority=Default
pdadmin sec_master> user modify jamessmith account-valid yes

4. To test the identity provider (IdP) flow, enter the following URL in a browser:

https://ISAM login initial URL?RequestBinding=HTTPPost
&PartnerId=webspherehostname:9443/samlsps/acs&NameIdFormat=Email
&Target=WAS hostname:WAS port/Rest/v1

Replace the following values in the URL with the appropriate values for your configuration:

• IBM Security Access Manager login initial URL
• WebSphere host name
• WebSphere Application Server host name
• WebSphere Application Server port; inIBM Cúram Social Program Management the default value is

9044

When the IBM Security Access Manager docker container starts, the IdP endpoints are initialized only
when the first connection request is received. However, if the first connection request is triggered by
IBM Cúram Universal Access, an XHR timeout occurs before the initialization finishes. Therefore, this
test step is required to ensure that the initialization of the IdP endpoints is completed.

5. In a browser, go to the home page and log in.

170 IBM Cúram Social Program Management 7.0.8 or 7.0.4.4: IBM Universal Access Responsive Web
Application 2.3.0

Test IdP-initiated SAML SSO infrastructure
When the IBM Security Access Manager docker container starts, the IdP endpoints are initialized only
when the first connection request is received. However, if the first connection request is triggered by
Universal Access, an XHR timeout occurs before the initialization finishes. This test step is required to
ensure that the initialization of the IdP endpoints is completed.

Procedure

To test the identity provider (IdP) flow, enter the following URL in a browser:

https://<isam_url>/isam/sps/saml20idp/saml20/logininitial?
RequestBinding=HTTPPost&PartnerId=https://<was_url>/samlsps/acs&NameIdFormat=Email&Target=<
was_url>/Rest/api/definitions

where:

• <isam_url> - The URL for IBM Security Access Manager. It consists of the IBM Security Access
Manager host name, and port number, for example, https:// 192.168.0.1:12443.

• <junction_name> - The junction name that is used during the federation configuration in reverse
proxy. The default value is isam.

• <idp_endpoint> - The endpoint that is configured for the IDP federation. The default value is sps.
• <federation_name> - The name that was used when creating the federation.
• WebSphere host name
• WebSphere Application Server host name
• WebSphere Application Server port. The default value is 9044 for IBM Cúram Social Program

Management.

SP-Initiated only: Implementing the SAML AuthnRequest functionality in WebSphere Application Server
WebSphere Application Server does not support SP-initated SAML web SSO by default. In addition to the
previous steps, you must also implement the provided
com.ibm.wsspi.security.web.saml.AuthnRequestProvider interface to handle the
AuthnRequest functionality that is needed in the service provider.

About this task
For more information, see Enabling SAML SP-Initiated web single sign-on (SSO) in the WebSphere
Application Server documentation.

Procedure

1. Implement the AuthnRequestProvider interface as in the following example. Note that in the
getAuthnRequest method, the ssoUrl variable is set to the value of the
ACSTrusAssociationInterceptor interceptor property sso_1.idp_1.SingleSignOnUrl,
while acsUrl is set to the value of the sso_1.sp.acsUrl property.

package curam.sso;
import java.text.SimpleDateFormat;
import java.util.ArrayList;
import java.util.Base64;
import java.util.Date;
import java.util.HashMap;
import java.util.TimeZone;
import javax.servlet.http.HttpServletRequest;
import com.ibm.websphere.security.NotImplementedException;
import com.ibm.wsspi.security.web.saml.AuthnRequestProvider;
public class SPInitTAI implements AuthnRequestProvider {
 @Override
 public String getIdentityProviderOrErrorURL(HttpServletRequest arg0, String arg1, String
arg2,
 ArrayList<String> arg3) throws NotImplementedException {

 return null;
 }

Chapter 1. IBM Cúram Universal Access 171

https://www.ibm.com/support/knowledgecenter/en/SSAW57_9.0.0/com.ibm.websphere.nd.multiplatform.doc/ae/tsec_enable_saml_sp_sso.html

 @Override
 public HashMap<String, String> getAuthnRequest(HttpServletRequest arg0, String arg1,
String arg2,
 ArrayList<String> paramArrayList) throws NotImplementedException {

 //create map with following keys
 HashMap <String, String> map = new HashMap <String, String>();

 String ssoUrl = "https://<isam_hostname>:<isam_port>/<URL of ISAM>/<ISAM Junction>/
<IdP endpoint>/<federation name>/saml20/login";
 String acsUrl = "https://<WAS_host_name>:<ssl port>/samlsps/acs";
 String issuer = acsUrl;
 String destination = ssoUrl;

 map.put(AuthnRequestProvider.SSO_URL, ssoUrl);
 map.put(AuthnRequestProvider.RELAY_STATE, acsUrl);
 String requestID = "Test" + Double.toString(Math.random());
 map.put(AuthnRequestProvider.REQUEST_ID, requestID);

 String authnMessageNew = "<samlp:AuthnRequest xmlns:samlp=
\"urn:oasis:names:tc:SAML:2.0:protocol\" "
 + "ID=\""+requestID+"\" "
 + "Version=\"2.0\" "
 + "IssueInstant=\""+getDateTime()+"\" ForceAuthn=\"false\" IsPassive=\"false
\" "
 + "ProtocolBinding=\"urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST\" "
 + "AssertionConsumerServiceURL=\""+acsUrl+"\" "
 + "Destination=\""+destination+"\"> "
 + "<saml:Issuer xmlns:saml=\"urn:oasis:names:tc:SAML:2.0:assertion\">"+issuer
 + "</saml:Issuer> <samlp:NameIDPolicy Format=
\"urn:oasis:names:tc:SAML:1.1:nameid-format:emailAddress\" AllowCreate=\"true\" />"
 +"<samlp:RequestedAuthnContext Comparison=\"exact\">
<saml:AuthnContextClassRef xmlns:saml=\"urn:oasis:names:tc:SAML:2.0:assertion\">"
 + "urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport</
saml:AuthnContextClassRef></samlp:RequestedAuthnContext> </samlp:AuthnRequest>";

 String encodedAuth = Base64.getEncoder().encodeToString(authnMessageNew.getBytes());

 map.put(AuthnRequestProvider.AUTHN_REQUEST, encodedAuth);

 return map;
 }

 private String getDateTime() {
 // e.g 2018-11-11T23:52:45Z
 String pattern = "yyyy-MM-dd'T'HH:mm:ss'Z'";
 SimpleDateFormat simpleDateFormat = new SimpleDateFormat(pattern);
 simpleDateFormat.setTimeZone(TimeZone.getTimeZone("Zulu"));
 String date = simpleDateFormat.format(new Date());
 return date;
 }
}

2. Pack your AuthnRequestProvider implementation in a JAR, and place it in WAS_HOME/lib/ext.
3. Ensure that your AuthnRequestProvider implementation class is added to the
ACSTrusAssociationInterceptor custom property sso_1.sp.login.error.page so that it
can handle errors.
a) In the WebSphere Application Server admin console, go to Security > Global Security > Web and

Sip Security > Trust association > Interceptors >
com.ibm.ws.security.web.saml.ACSTrustAssociationInterceptor.

b) Set the sso_1.sp.login.error.page custom property to the value curam.sso.SPInitTAI.
c) Click OK and save the configuration.

4. You might need to restart the application server for the changes to take effect.

172 IBM Cúram Social Program Management 7.0.8 or 7.0.4.4: IBM Universal Access Responsive Web
Application 2.3.0

SP-Initiated only: Test SP-initiated SAML SSO infrastructure
Complete the following steps to test the SP-initiated SAML SSO infrastructure.

Procedure

1. Open your browser, with network devtools, and load a protected REST URL like this example:

<was_url>/Rest/api/definitions

where <was_url> is the WebSphere URL, for example https:// 192.168.0.1.
2. You are redirected to the ISAM log-in page. Log in with the credentials that were used to set the

reverse proxy instance as outlined in “Configuring IBM Security Access Manager as an IdP” on page
166.

3. You should be redirected to the definitions page that you opened in step 1.

External security authentication example
Ensure that citizens can be authenticated for any of your services by using a single set of credentials,
which provides the benefits of a streamlined authorization process for both governments and citizens. An
example outlines the implementation of a set of customization requirements for a team that is deploying
Universal Access.

Universal Access, by default, authenticates against a set registered users that are stored on the Cúram
database. You can also configure the system to integrate with external security systems. You can improve
security by enabling the use of a single set of credentials, because citizens do not have to remember lists
of user names and passwords and, hence, are less likely to write down their user names and passwords.
Also, security efforts are focused on implementing best practice in a single Enterprise Security System.

Consider an example analysis of requirements to integrate with an external security system. Any analysis
of requirements for external security integration should consider the following minimum questions:

• Does your deployment support anonymous screening, anonymous intake, or both?
• Is account management supported in IBM Cúram Universal Access or in the external security system?
• Is single sign-on (SSO) required?

Example customization requirements

The topics in this section describe the configuration and development tasks to implement the following
set of customization requirements for a team that is deploying Universal Access. The topics refer to the
requirements as appropriate.

1. Users can access Universal Access and perform anonymous screening or intake.
2. Users who want to access their saved screening or intake information must first create an account on a

system called CentralID.
3. Users who log in to Universal Access can use their CentralID username and password to authenticate.
4. Users perform all of their account management using an external system that is named CentralID, for

example, resetting a password, creating a new account, changing account details.
5. CentralID stores all user records in a secure LDAP server.
6. Because all account management is now performed in CentralID, the account creation screens and

password reset screens are to be removed from Universal Access.
7. Users should be able to log in as soon as they have registered with CentralID, and there should be no

delay while waiting for an ID to propagate to Universal Access.

Chapter 1. IBM Cúram Universal Access 173

Configuring an alternative login ID
By default, you cannot change user names after they are created. However, you can configure an
alternative login ID that can be updated.

For information about configuring alternative login IDs, see Alternate login IDs. If you configure an
alternative login ID for a user name that is case-sensitive, then the alternative login ID is also case-
sensitive.

Related information
Alternate Login IDs

Deploying in identity-only mode for registered users
You must configure the application server to use LDAP for authentication if a user is in Identity–Only
mode. Also, configure the necessary properties to deploy in identity-only mode for registered users.

Configuring the application server to use LDAP for authentication in Identity–Only mode

If a user is in Identity–Only mode, it is necessary to match the login IDs that are stored in LDAP with
the login IDs that are stored in the ExtendedUsersInfo table.

For information about how to configure your application server to use LDAP for authentication, see the
relevant application server documentation.

Configuring properties to deploy in identity-only mode for registered users

Add the following properties to the AppServer.properties file:

curam.security.check.identity.only=true
curam.security.user.registry.disabled.types=EXT_AUTO,EXT_GEN
curam.citizenworkspace.enable.usertypes.for.temporary.users=true
public.user.type=EXT_AUTO

To reconfigure the application server, run the following command:

appbuild configure

The curam.security.check.identity.only property ensures that application security is set to
work in Identity Only mode. For more information about Identity Only authentication mode, see either
Deployment Guide for WebSphere or Deployment Guide for WLS. In Identity Only mode, authentication
uses only the internal user table to check for the existence of the user. The validation of the password is
left to a subsequent module, either a JAAS module (Oracle WebLogic) or the User Registry (IBM
WebSphere).

Take the example of a user, "johnsmith", who has been registered with the CentralID LDAP server. For
John Smith to be able to use Universal Access, there must also be a "johnsmith" entry in the ExternalUser
table. When John Smith logs in, his authentication request is passed to the Cúram JAAS Login Module.
The Cúram JAAS Login Module checks that the user johnsmith exists in the Cúram ExternalUser table
but does not check the password. The authentication then proceeds to the User Registry (WebSphere) or
LDAP JAAS Module (WebLogic) where the user name and password are checked against the contents of
the CentralID LDAP server. For the authentication to work correctly, it is necessary to configure the
application server with the connection details for the secure LDAP server.

The Identity Only configuration allows the application to defer to an external security system such as an
LDAP-based directory service for the authentication of user credentials. However, when an anonymous
user accesses the organization Home page for the first time, the user is automatically logged in as a
publiccitizen user. Subsequently, if the user chooses to screen themselves or to perform an intake,
Universal Access creates a new "generated" anonymous user. Each generated user is unique, which
ensures that the data that belongs to that user is kept confidential. Public citizen users and generated
users are not inserted into the LDAP directory, so they cannot be authenticated by using the Identity Only

174 IBM Cúram Social Program Management 7.0.8 or 7.0.4.4: IBM Universal Access Responsive Web
Application 2.3.0

mechanism. The following line ensures that users with the user type EXT_AUTO (public citizen users) and
EXT_GEN (generated users) are authenticated against the External User table:

curam.security.user.registry.disabled.types=EXT_AUTO,EXT_GEN

After the previous configuration has been applied to the server and the server has been started, perform
the following configuration steps:

1. Log in as sysadmin.
2. Select Application Data > Property Administration.
3. Select category Citizen Account - Configuration.
4. Set the property curam.citizenaccount.public.included.user to EXT_AUTO.
5. Set the property curam.citizenaccount.anonymous.included.user to EXT_GEN.
6. Set the property curam.citizenworkspace.enable.usertypes.for.temporary.users to TRUE.
7. Publish the property changes.

You need another configuration entry so that Universal Access operates correctly with respect to
authentication as shown in the following steps:

8. Select Select Application Data > Property Administration.
9. Select category Infrastructure – Security parameters.

10. Set curam.custom.externalaccess.implementation to
curam.citizenworkspace.security.impl.CitizenWorkspacePublicAccessSecurity.

11. Publish the property changes.
12. Log out and restart the server.

Disabling the Create Account screens
Configure the necessary properties to disable the screens for creating an account that Universal Access
provides by default. Requirement 4 in the example requirements indicates that all account management
functions are handled by the external system, CentralID, including the creation of a new account and
performing a password reset.

Configure Universal Access to disable the screens that are related to account management:

1. Log in as sysadmin.
2. Select Application Data > Property Administration.
3. Select Category Citizen Portal - Configuration.
4. Set the property curam.citizenworkspace.enable.account.creation to NO.
5. Publish the property changes.

The previous steps remove references to Account Creation pages from Universal Access. The Login
screen still contains a link to a page for changing passwords. In this example, the implementation team
can use the following steps to retain the link but change it to open a new browser window on the
CentralID password reset page:

1. Log in as sysadmin.
2. Select Application Data > Property Administration.
3. Select Category Citizen Portal - Configuration.
4. Set the property curam.citizenworkspace.forgot.password.url to , for example http://

www.centralid.gov/resetpassword
5. Publish the property changes.

To completely remove the reset password link, use the following steps:

1. Log in as sysadmin.
2. Select Application Data > Property Administration.

Chapter 1. IBM Cúram Universal Access 175

3. Select Category Citizen Portal - Configuration.
4. Set the property curam.citizenworkspace.display.forgot.password.link to NO.
5. Publish the property changes.

Redirecting users to register with an external system
Replace the message that is displayed in the log in page so that non-registered users are directed to the
CentralID page for registration.

Universal Access invites users to log in with a log in message. You can replace the message so that the log
in page displays a message that is similar to the following example:
"<p>If you are registered with CentralID enter your user name
 and password to log in. To register, go to
 The CentralID
 registration page.</p>"

The properties for controlling the login page message are contained in the <CURAM_DIR>/EJBServer/
components/Data_Manager/Initial_Data/blob/prop/Logon.properties file.

Enabling users to log on immediately after registration with CentralID
Users should be able to log in as soon as they have registered with CentralID. Some configuration is
required to prevent a delay in the propagation of a user's ID to other systems.

To function correctly, each user must have an entry in the ExternalUser table. The customer could build a
batch process to import users from the LDAP directory into the ExternalUser table. However, requirement
7 in the example requirements would not be satisfied, which states that users must be able to register
with CentralID, and then immediately use Universal Access. Another option would be to build a web
service or similar mechanism that would be launched when a new user registers with CentralID. The
implementation of the web service would create the appropriate entry in the ExternalUser table.

A simpler option is to override the default log-in behavior to create new accounts as needed, after the
completion of checks to ensure that the relevant entry exists in the LDAP server. You can override the
default log-in behavior in Universal Access by extending the
curam.citizenworkspace.security.impl.AuthenticateWithPasswordStrategy class and
overriding the authenticate() method. The following code outlines how to use the
AuthenticateWithPasswordStrategy and other security APIs to meet the previous requirements:

public class CustomSecurityStrategy extends AuthenticateWithPasswordStrategy {
 @Inject
 private CitizenWorkspaceAccountManager cwAccountManager;
 ...
 @Override
 public String authenticate(final String username,
 final String password)
 throws AppException, InformationalException {
 final String retval = null;
 if (username.equals(PUBLIC_CITIZEN)) {
 return super.authenticate(username, password);
 }
 // Authenticate generated accounts as normal
 if (cwAccountManager.isGeneratedAccount(username)) {
 return super.authenticate(username, password);
 }
 // Check that the user exists in LDAP
 // This prevents hackers from registering many bogus
 // accounts that exist in Curam but not in LDAP
 if (!isUserInLDAP(username)) {
 return SECURITYSTATUS.BADUSER;
 }
 // If there's no account for this user
 if (!cwAccountManager.hasAccount(username)) {
 createUserAccount(username);
 }
 return SECURITYSTATUS.LOGIN;
 }
 private void createUserAccount(final String username)
 throws AppException, InformationalException {
 final CreateAccountDetails newAcctDetails;
 ...
 cwAccountManager.createStandardAccount(newAcctDetails);

176 IBM Cúram Social Program Management 7.0.8 or 7.0.4.4: IBM Universal Access Responsive Web
Application 2.3.0

 }
}

This code checks to see whether the user is logging in is a public citizen user or a generated account. In
both cases, authentication logic is delegated to the default AuthenticateWithPasswordStrategy
API. In the case of a registered user, the Strategy checks the LDAP directory to ensure that the user exists
in the LDAP directory. If the user exists in the LDAP directory and does not exist yet in Universal Access,
then a new user account is created. Note, the custom code does not need to authenticate the user against
LDAP since the authentication is handled by the User Registry in WebSphere or the LDAP JAAS Module in
WebSphere. It is important to note that the password parameter of the authenticate() method is
passed in clear text.

To install the CustomSecurityStrategy class, it must be bound in place of the Default Security
Strategy class. Use a Guice Module to bind the implementation:

public class CustomModule extends AbstractModule {
 @Override
 protected void configure() {
 binder().bind(SecurityStrategy.class).to(
 CustomSecurityStrategy.class);
 }
}

You must configure the CustomModule at startup by adding a DMX file to the custom component as
shown in the following example:

<CURAM_DIR>/EJBServer/custom/data/initial/MODULECLASSNAME.dmx

<?xml version="1.0" encoding="UTF-8"?>
<table name="MODULECLASSNAME">
 <column name="moduleClassName" type="text" />
 <row>
 <attribute name="moduleClassName">
 <value>gov.myorg.CustomModule</value>
 </attribute>
 </row>
</table>

Customizing account creation and management
You can customize account creation and management.

Account management configurations

A number of configurations properties are used to define the behavior of the validations for citizen
accounts:

Table 17. Account configurations

Property Description

curam.citizenworkspace.username.min.length Minimum number of characters in the username.

curam.citizenworkspace.username.max.length Maximum number of characters in the username.

curam.citizenworkspace.password.min.length Minimum number of characters in the password.

curam.citizenworkspace.password.max.length Maximum number of characters in the password.

curam.citizenworkspace.password.min.special.chars Minimum number of special characters and/or numbers in the password.

The values of these configuration properties can be updated by logging in as sysadmin and selecting
Application Data > Property Administration. Then search for
"curam.citizenworkspace.password.max.length", for example.

Chapter 1. IBM Cúram Universal Access 177

Account management events
Events are raised at key points during account processing. The events can be used to add custom
validations to the account management process.

For more information about adding custom validations to the account management process, see the
Cúram Server Developer section. The following table shows the events that are in the
curam.citizenworkspace.security.impl.CitizenWorkspaceAccountEvents class:

Table 18. Account events

Event Interface Description

CitizenWorkspaceCreateAccountEvents Events raised around account creation. For more information, see the
related Javadoc information in the WorkspaceServices component.

CitizenWorkspacePasswordChangedEvent Event raised when a user is changing their password. For more
information, see the related Javadoc information in the
WorkspaceServices component.

CitizenWorkspaceAccountAssociations Events raised when a user is linked or unlinked from an associated
Person Participant. For more information, see the related Javadoc
information in the WorkspaceServices component.

Related information
Cúram Server Developer

PasswordReuseStrategy API
Use the curam.citizenworkspace.security.impl.PasswordReuseStrategy API to add your
own password change validations.

As part of the password reset function, there is a default validation that prevents a user from entering a
new password that is the same as the user's current password. Using the PasswordReuseStrategy
API, custom validations can be added to restrict users from changing their passwords to current or
previous values if required. For example, a customer might want to implement a password reuse strategy
that prevents users from reusing a previous password until after six password changes.

For further details, see the API Javadoc.

CitizenWorkspaceAccountManager API
Use the curam.citizenworkspace.security.impl.CitizenWorkspaceAccountManager API to
create and link citizen accounts. Use the API to build out custom functionality to support caseworkers
who want to link accounts and create accounts on behalf of the citizen.

The API offers the following methods:

• Creating standard accounts
• Creating linked accounts
• Removing links between participants and accounts.
• Retrieving account information

For more information, see the API Javadoc.

Data caching
Minimize the risk of citizens accessing each others' data from browser and server data caches. Cached
data can be accessed when citizens use the browser back button or browser history to retrieve data
entered by other users, or when PDF files are cached locally on the computer that was used to make the
application.

Server caching

HTTP servers like Apache can set cache-control response headers to not store a cache. Use this approach
to prevent access to data using the browser back button or history.

178 IBM Cúram Social Program Management 7.0.8 or 7.0.4.4: IBM Universal Access Responsive Web
Application 2.3.0

Browser caching

Browsers can be configured not to cache content. If citizens can access the web portal in a "kiosk", then
the browser should be configured never to cache content.

Advise citizens to clear their cache and close all browser windows they have used when they are finished
using the web portal. Also tell citizens to remove PDF documents that they download from the browser's
temporary internet files.

Customizing the IBM Cúram Universal Access server
Use this information to customize the Universal Access server.

Customizing screening
Use the supported classes and APIs to customize screening.

For information on setting up and configuring screening, see Configuring screening.

Related concepts
Configuring screenings
Define different types of screenings that citizens can complete to identify programs that they might be
eligible to receive.

Track the volume, quality, and results of screenings
Use the curam.citizenworkspace.impl.CWScreeningEvents class to access the events that are started for
screening events.

You can use curam.citizenworkspace.impl.CWScreeningEvents to track the volume or results of screening
for reporting purposes. For more information, see to the API Javadoc for CWScreeningEvents in
<CURAM_DIR>/EJBServer/components/CitizenWorkspace/doc

Populating a custom screening results page
Use the performScreening that is contained in the
curam.citizenworkspace.security.impl.UserSession API to populate a custom Screening
Results page.

The Screening Results page is displayed when an IEG screening script is run. The operation runs the
configured rule set for the selected screening type. The results of the screening, that is, the list of eligible
and undecided programs, are stored against the user's session.

The screeningResultsForDisplay return type of the operation allows access to three objects. These objects
contain the information that is required to populate either the default or custom Screening Results page:

ScreeningType
The screening type that the user selected.

List<Program>
A list of the programs that the user was screened for. The ScreeningResultsOrderingStrategy sets the
order of the programs listed.

Map<String, ProgramType>
A join.util.map that contains a mapping of strings to ProgramTypes where the string contains the
unique reference for that ProgramType.

The following is a sample usage:

UserSession userSession = userSessionDAO.get(sessionID);
ScreeningResultsForDisplay screeningResultsForDisplay =
 userSession.performScreening();

Chapter 1. IBM Cúram Universal Access 179

The following is a sample interface definition:

/**
 * Executes the Screening rule set associated with the current screening IEG
 * script data. The return object, {@link ScreeningResultsForDisplay},
 * contains all of the information required to be displayed on the
 * Screening Results page.
 *
 * @return object containing the ordered screening results, the selected
 * {@link ScreeningType} and a map of {@link ProgramType} records.
 *
 * @throws InformationalException
 * Generic exception signature.
 * @throws AppException
 * Generic exception signature.
 */
 ScreeningResultsForDisplay performScreening() throws InformationalException,
 AppException;

For more information, see the API Javadoc for the
curam.citizenworkspace.security.impl.UserSession in <CURAM_DIR>/EJBServer/
components/CitizenWorkspace/doc.

Customizing submitted applications
Use customization points, for example, customizing the generic PDF for processed applications, to
customize the application intake process when an intake application is submitted.

Customizing the intake application workflow
View a summary of the intake application workflow in a flowchart.

Figure 5. Intake application workflow

180 IBM Cúram Social Program Management 7.0.8 or 7.0.4.4: IBM Universal Access Responsive Web
Application 2.3.0

Create intake PDF
This automatic activity creates a PDF document based on the content of the application. For more
information, see Customizing the generic PDF for processed applications.

InvokeLegacySystemProcessing
This automatic activity sends applications to legacy systems via Web Services. This path is taken only
if there are legacy systems associated with at least one of the programs on the application.

CreateParticipantsAndCases
This automatic activity creates participants for the submitted application and then creates a case or
cases for the various programs associated with the application. In most cases, an Application Case or
Cases are created. This path is taken if the value of the configuration property
curam.intake.use.resilience is set to true. For reasons of backward compatibility, this
property is set to false by default, however it is strongly recommended that all production systems set
this value to true. For more information on the implications of setting this value to true, see Using
events to extend intake application processing.

Mapping
This automatic activity uses the Cúram Data Mapping Engine (CDME) to map data collected in the
application script into Case Evidence. Under most circumstances this will proceed smoothly. In the
event that a validation issue occurs with the mapped evidence, this activity will be automatically re-
tried. During the re-try, if there is a single Application Case, the validations will be disabled and a WDO
flag IntakeCaseDetails.mappingValidInd set to false.

EvidenceCorrections
This manual task is invoked if the Mapping activity failed due to a validation error
(IntakeCaseDetails.mappingValidInd set to false). The assignment of this task is
configurable. For more information, see Evidence issues intake strategy. The caseworker or operator
will resolve the evidence validation issues and then re-submit the application.

PostMapping
This automatic activity kicks off the next stage of application processing by invoking the event
IntakeApplication.IntakeApplicationEvents.postMapDataToCuram().

CreateParticipantsCasesAndMapEvidence
This path is followed when the configuration property curam.intake.use.resilience is set to
false. This automatic activity behaves identically to the old, non-resilient workflow. It creates cases
and participants and performs all evidence mapping in a single transaction. This makes the process
less resilient in the event of a failure.

Customers can customize the workflow in the usual recommended manner as described in the Cúram
Development Compliance Guide and Cúram Workflow Management System Guide. Note that
customers should not make any changes to the enactment structs used by these workflows.

Related concepts
Customizing the generic PDF for processed applications
Use IBM Cúram Universal Access to map all intake applications to a generic PDF that records the values
of all the information that the user enters.
Using events to extend intake application processing
The interface IntakeApplication.IntakeApplicationEvents contains events that are invoked
when citizens submit an intake application for processing.
Related information
Evidence Issues Ownership Strategy

Customizing the generic PDF for processed applications
Use IBM Cúram Universal Access to map all intake applications to a generic PDF that records the values
of all the information that the user enters.

This PDF is rendered by the XML Server. Customers can override the default formatting of the generic PDF
as follows:

Chapter 1. IBM Cúram Universal Access 181

1. Copy CURAM_DIR/EJBServer/components/Workspaceservices/Data_Manager/
InitialData/XSLTEMPLATEINST.dmx to CURAM_DIR/EJBServer/components/custom/
Data_Manager/InitialData.

2. Edit project\config\datamanager_config.xml, replace the entry for:CURAM_DIR/
EJBServer/components/Workspaceservices/Data_Manager/InitialData/
XSLTEMPLATEINST.dmx with an entry for: CURAM_DIR/EJBServer/components/custom/
Data_Manager/InitialData/ XSLTEMPLATEINST.dmx

3. Copy CURAM_DIR/EJBServer/components/Workspaceservices/Data_Manager/
InitialData/blob/WSXSLTEMPLATEINST001 to: CURAM_DIR/EJBServer/components/
custom/Data_Manager/InitialData/blob.

4. Edit WSXSLTEMPLATEINST001 to suit the needs of the project.

Using events to extend intake application processing
The interface IntakeApplication.IntakeApplicationEvents contains events that are invoked
when citizens submit an intake application for processing.

Use these events to change the way that intake applications are handled, for example supplement or
replace the standard CDME mapping or perform an action after an application has been sent to a remote
system using web services. For more information, see the API Javadoc information for
IntakeApplication.IntakeApplicationEvents in <CURAM_DIR>/EJBServer/components/
WorkspaceServices/doc.

The interface IntakeProgramApplication.IntakeProgramApplicationEvents contains events
that are invoked at key stages during the processing of an application for a particular program. For
information, see the API Javadoc information for
IntakeProgramApplication.IntakeProgramApplicationEvents in <CURAM_DIR>/
EJBServer/components/WorkspaceServices/doc.

Customizing the concern role mapping process
The curam.workspaceservices.applicationprocessing.impl package contains a
ConcernRoleMappingStrategy API that provides a customization point into the online application process.

Use the ConcernRoleMappingStrategy API to implement custom behavior following the creation of each
new concern role that is added to an application. For example, customers who have customized the
prospect person entity might want to store information on that entity that cannot be mapped using the
default CDME processing.

Enable the ConcernRoleMappingStrategy API
In the administration application, enable the ConcernRoleMappingStrategy API by setting the Enable
Custom Concern Role Mapping property to true.

Procedure

1. Log in to the System Administration application as a user with system administration permissions.
2. Click System Configurations > Application Data > Property Administration.
3. In the Application - Intake Settings category.
4. Search for the property curam.intake.enableCustomConcernRoleMapping.
5. Edit the property to set its value to true.
6. Save the property.
7. Select Publish.

182 IBM Cúram Social Program Management 7.0.8 or 7.0.4.4: IBM Universal Access Responsive Web
Application 2.3.0

Use the ConcernRoleMappingStrategy API
When enabled, use the ConcernRoleMappingStrategy API to implement a strategy for mapping
information to a custom concern role.

About this task
The curam.workspaceservices.applicationprocessing.impl package contains the
ConcernRoleMappingStrategy API.

Procedure

1. Provide an implementation of the customization point.
2. Bind your custom implementation by creating or extending your custom mapping module as follows:

package com.myorg.custom;
class MyModule extends AbstractModule {
 @Override
 protected void configure() {

 bind(ConcernRoleMappingStrategy.class).to(
 MyCustomConcernRoleMapping.class);

3. If you did not already add your MyModule class to the ModuleClassName table by using an appropriate
DMX file, add your MyModule class.

How to send applications to remote systems for processing
Use the Citizen Workspace to send applications to remote systems that use web services for processing.

An event ReceiveApplicationEvents.receiveApplication is raised before the application is sent
to the remote system. The event can be used to edit the contents of the data store that is used to gather
application data before transmission. For more information, refer to the API Javadoc for
ReceiveApplicationEvents, which is in <CURAM_DIR>/EJBServer/components/
WorkspaceServices/doc.

Customizing the Citizen Account
Users can use the Citizen Account to log in to a secure area where users can screen and apply for
programs.

Users also use the Citizen Account to view information relevant to them, including individually tailored
messages, system-wide announcements, updates on their payments, contact information for agency staff
and outreach campaigns that might be relevant to them. The Citizen Account also provides a framework
for customers to build their own pages or override the existing pages.

Security and the Citizen Account
Security must be a primary concern when you customize the citizen account customizations. All public-
facing applications must be analyzed and tested before they are deployed. Users must contact IBM
support to discuss unusual customizations that might have specific security issues.

Permission to call the server facade methods that serve data to citizen account pages is managed by the
standard authorization model. For more information, see the Server Developer documentation. In addition
to the standard authorization checks, each facade method that is called by a Citizen Account page must
complete the following security checks to ensure the user who is associated with the transaction (the
currently logged in user) has permission to access the data they are requesting:

• Ensure that the currently logged in user is of the correct type. They must be an external user with an
applicationCode of CITWSAPP, and have an account of type Linked.

• Ensure that the currently logged in user has permission to access the specific records that they are
reading. For instance, validate any page parameters that are passed in to ensure that the records
requested are related to the currently logged in user in some way.

Chapter 1. IBM Cúram Universal Access 183

Ensure that the currently logged in user is the correct type
The curam.citizenaccount.security.impl.CitizenAccountSecurity API offers a method
performDefaultSecurityChecks that ensures that the user is the correct type. This method checks
the user type, and if not acceptable, writes a message to the logs and fails the transaction.

Note: This API needs to be called in the first line of every custom facade method before any processing or
further validation takes place:

public CitizenPaymentInstDetailsList listCitizenPayments()
 throws AppException, InformationalException {

 // perform security checks
 citizenAccountSecurity.performDefaultSecurityChecks();

 // validate any page parameters (none in this case)

 // invoke business logic
 return citizenPayments.listPayments();
 }

Ensure that the logged in user has access to the requested records
A malicious user who is logged in to a valid linked account might send requests to the system to request
other users' data. To prevent this intrusion from happening, all page parameters must be validated to
ensure that they are somehow traceable back to the currently logged in user. How this conclusion is
determined is different for each type of record.

For example, a Payment can be traced back to the Participant by way of the Case on which it was
entered.

The curam.citizenaccount.security.impl.CitizenAccountSecurity application
programming interface (API) offers methods to complete these checks for the types of records that are
served to citizens by the initially configured pages. For specific information, review the Javadoc of this
API. For custom pages that serve different types of data, additional checks must be implemented to
validate the page parameters.

This process needs to be added to a custom security API and called by the facade methods in question.
The methods need to check to see whether the record requested can be traced back to the currently
logged in user, and if not, it needs to log the user name, method name, and other data. If these conditions
are not met, the transaction needs to be failed immediately (as opposed to adding the issue to the
validation helper and allowing the transaction to proceed):

if (paymentInstrument.getConcernRole().getID()
 != citizenWorkspaceAccountManager
 .getLoggedInUserConcernRoleID().getID()) {

 /**
 * the payment instrument passed in is not related
 * to the logged in user log the user name of the
 * current user, the method invoked and any other
 * pertinent data
 */

 // throw a generic message
 throw PUBLICUSERSECURITYExceptionCreator
 .ERR_CITIZEN_WORKSPACE_UNAUTHORISED_METHOD_INVOKATION();
 }

While as much information as possible regarding the infraction needs to be logged, it is important to
ensure that the exceptions thrown do not display any information that might be useful to malicious users.
A generic exception needs to be thrown that does not contain any information that relates to what went
wrong. The curam.citizenaccount.security.impl.CitizenAccountSecurity API throws a
generic message that states You are not privileged to access this page.

184 IBM Cúram Social Program Management 7.0.8 or 7.0.4.4: IBM Universal Access Responsive Web
Application 2.3.0

Messages
When a linked citizen logs in, messages are gathered from the system and from remote systems for
display.

The curam.citizenmessages.impl.CitizenMessageController API gathers and displays
messages. The API reads persisted messages by participant from the ParticipantMessage database
table. The API also raises the CitizenMessagesEvent.userRequestsMessages event, inviting
listeners to add messages to a list that is passed as part of the event parameter. The messages that are
gathered from each source are sorted, turned into XML, and returned to the citizen for display.

Configuring citizen messages
Global configurations are included that can be specified for Citizen Messages, such as enabling certain
types and configuring their display order. The different types of messages also include their own
configuration points. Specific information about how to customize the various message types is provided
later.

The textual content of a message type also can be configured. Each message type has a related
properties file that includes the localizable text entries for the various messages displayed for that type.
These properties also include placeholders that are substituted for real values related to the citizen at run
time.

The wording of this text can be customized, by inserting a different version of the properties file into the
resource store. The following table defines which properties file need to be changed for each type of
message:

Table 19. Message properties files

Message type Property file name

Payments CitizenMessageMyPayments.properties

Application Acknowledgment CitizenMessageApplicationAcknowledgement.properties

Verifications CitizenMessageVerificationMessages.properties

Meetings CitizenMessageMeetingMessages.properties

Referral CitizenMessagesReferral.properties

Service Delivery CitizenMessagesServiceDelivery.properties

You can also remove placeholders (which are populated with live data at run time) from the properties.
However, there is currently no means to add further placeholders to existing messages. A custom type of
message must be implemented in this situation.

Adding a new type of citizen message
Messages are gathered by the controller in two ways: the controller reads messages that were persisted
to the database by using the curam.citizenmessages.persistence.impl.ParticipantMessage
API, and also gathers them by raising the
curam.participantmessages.events.impl.CitizenMessagesEvent

A decision needs to be made regarding whether to 'push' the messages to the database, or else have
them generated dynamically by a listener that listens for the event that is raised when the citizen logs in.
The specific requirements of the message type need to be considered, along with the benefits and
drawbacks of each option.

Persisted messages

In this scenario, when something takes place in the system that might be of interest to the citizen, a
message is persisted to the database. For example, when a meeting invitation is created, an event is fired.
The initially configured meeting messages function listens for this event. If the meeting invitee is a
participant with a linked account, a message is written to the ParticipantMessage table that informs
the citizen that they are invited to the meeting.

Chapter 1. IBM Cúram Universal Access 185

One benefit of this approach is that little processing is done when the citizen logs in to see this message:
the message is read from the database and displayed, as opposed to calculation that takes place that
would determine whether the message was required. However, the implementation also needs to handle
any changes to the underlying data that might invalidate or change the message, and take appropriate
action.

For example, the meeting message function also listens for changes to meetings to ensure the meeting
time, location, and similar, are up to date, and to send a new message to the citizen to inform the citizen
that the location or time was changed.

Dynamic messages

These messages are generated when the citizen logs in, by event listeners that listen for the
curam.participantmessages.events.impl.
CitizenMessagesEvent.userRequestsMessages event.

Because the message is generated at runtime, code is not required to manage change over time. The
message is generated based on the data within the system each time the citizen logs in. If some
underlying data changes, the next time the citizen logs in, they will get the correct message.

A drawback to this approach is that significant processing might be required at run time to generate the
message. Care must be taken to ensure that this processing does not adversely affect the load time of the
Citizen Account dashboard.

Performance considerations must be evaluated against the requirements of the specific message type
and the effort that is required to manage change to the data that the message is related to over time. For
example, the initially configured verification message is dynamic. When a citizen logs in, it checks to see
whether any outstanding verifications exist for that citizen. This process is a relatively simple database
read, whereas it would be complicated to listen for various events in the Verification Engine and ensure
that an up-to-date message was stored in the database related to the participants' outstanding
verifications. Alternatively, the meeting messages need to inform the citizen of changes to their meetings,
so functionality had to be written to manage changes to the meeting record and its related message over
time.

Implementing a new message type
Organizations can implement a dynamic message or a persisted message.

To implement a new message type, regardless of whether the message is persisted or is generated
dynamically, complete the following steps.

Common tasks

• In the administration system, add an entry to the CT_ParticipantMessageType code table to
represent the new message type.

• Add a DMX entry for the ParticipantMessageConfig database table. This entry stores the type and sort
order of the new message type and is used for administration. For example:
<row>
 <attribute name="PARTICIPANTMESSAGECONFIGID">
 <value>2110</value>
 </attribute>
 <attribute name="PARTICIPANTMESSAGETYPE">
 <value>PMT2001</value>
 </attribute>
 <attribute name="ENABLEDIND">
 <value>1</value>
 </attribute>
 <attribute name="SORTORDER">
 <value>5</value>
 </attribute>
 <attribute name="VERSIONNO">
 <value>1</value>
 </attribute>
 </row>

• Add a properties file to the App Resource store that contains the text properties and image reference
for the message.

186 IBM Cúram Social Program Management 7.0.8 or 7.0.4.4: IBM Universal Access Responsive Web
Application 2.3.0

• Add an image for this message type to the resource store.

Implementing a dynamic message

To implement a dynamic style message, an event listener must be implemented to listen for the
CitzenMessagesEvent.userRequestsMessages event. This event argument contains a reference to
the Participant and a list, to which the listener adds
curam.participantmessages.impl.ParticipantMessage Java™ objects.

For more information, see the Javadoc API for CitzenMessagesEvent in the <CURAM_DIR>/
EJBServer/components/core/doc directory. For a full explanation, see the Javadoc API for
curam.participantmessages.impl.ParticipantMessage and
curam.participantmessages.impl.ParticipantMessages.

The message text is stored in a properties file in the resource store. A dynamic listener retrieves the
relevant properties from the resource store, and creates the ParticipantMessage object. The message text
for a message can include placeholders. Values for placeholders are added to ParticipantMessage objects
as parameters. The CitizenMessagesController resolves these placeholders, replacing them with the real
values for the participant.

For example, look at this entry from the CitizenMessageMyPayment.properties file:

Message.First.Payment=
 Your next payment is due on {Payment.Due.Date}

The actual payment due date of the payment is added to the ParticipantMessage object as a parameter.
The CitizenMessagesController then resolves the placeholders, populating the text with real values, and
then turns the message into XML that is rendered on the citizen account. A public
CitizenMessageController method also exists, which returns all messages for a citizen as a list, see the
Javadoc.

From the curam.participantmessages.impl.ParticipantMessage API:
/**
 * Adds a parameter to the map. The paramReference
 * should be present in the message title or body so
 * it can be replaced by the paramValue before the message
 * is displayed.
 *
 * @param paramReference
 * a string place holder that is present in either the
 * message title or body. Used to indicate where the value
 * parameter should be positioned in a message.

 * @param paramValue
 * the value to be substituted in place of the place holder
 */
 public void addParameter(final String paramReference,
 final String paramValue) {

 parameters.put(paramReference, paramValue);
 }

The call to the method would look like this:
participantMessage.addParameter("Payment.Due.Date", "1/1/2011");

Messages can also include links, which are also resolved at run time. Links can use placeholder values for
the link text. A link is defined in a properties file as shown.
Click {link:here:paymentDetails} to view the payment details.

In this example, here is the text to display, and paymentDetails is the name of the link to be inserted
at that point in the text. For more information, see the Advisor Developer's Guide. For a dynamic listener to
populate this link with a target, it creates a
curam.participantmessages.impl.ParticipantMessageLink object, specifying a target and a
name for the link. The code would look like this example:

ParicipantMessageLink participantMessageLink =
 new ParticipantMessageLink(false,

Chapter 1. IBM Cúram Universal Access 187

 "CitizenAccount_listPayments", "paymentDetails");

 participantMessage.addLink(participantMessageLink);

Before the dynamic listener composes the message, it must check to ensure that the message type in
question is enabled. The curam.participantmessages.configuration.
impl.ParticipantMessageConfiguration record for that message type is read, and the
isEnabled method is used to determine whether this message type is enabled. If not, processing stops.

Note: You can separate the code that listens for the event and the code that composes a specific
message to adhere to the philosophy of "doing one thing and doing it well".

Implementing a persisted message

To display a persisted message to the citizen, it must be written to the database with the
curam.citizenmessages.persistence.impl.ParticipantMessage API. Message arguments are
handled by persisting a curam.advisor.impl.Parameter record and associating it with the
ParticipantMessage record. Links are handled by the curam.advisor.impl.Link API. Parameter
names map to placeholders in the message text. Link names relate to the names of links that are
specified in the message text. For more information, see the Javadoc for
curam.citizenmessages.persistence.impl.ParticipantMessage,
curam.advisor.impl.Parameter, and curam.advisor.impl.Link.

An expiry date time must be specified for each ParticipantMessage. After this date time, the message is
no longer be displayed.

Messages can be removed from the database. If a message needs to be replaced with a modified version,
or removed for another reason, use the curam.citizenmessages.persistence.
impl.ParticipantMessage API.

Each message has a related ID and type that is used to track the record that the message is related to. For
example, meeting messages store the Activity ID and a type of Meeting. Messages can be read by
participant, related ID, and type by the ParticipantMessageDAO.

Before it persists the message, the dynamic listener checks to ensure that the message type in question
is enabled. The curam.participantmessages.configuration.
impl.ParticipantMessageConfiguration record for that message type is read, and the
isEnabled method is used to determine whether this message type is enabled. If not, no further
processing occurs.

Customizing specific message types
Organizations can customize the default message to create a referral message or a service delivery
message.

Referral message

This message type creates messages related to referrals. This is a dynamic message. When the citizen
logs in, a message will be created for each referral that exists for the citizen in the system, provided that
referral has a referral date of today or in the future, and provided that a related Service Offering has been
specified for this referral. The properties file EJBServer\components\CitizenWorkspace\data
\initial\blob\prop\CitizenMessageReferral.properties contains the properties for the
referral message text, message parameters, links and images. This properties file is stored in the
resource store. This resource is registered under the resource name CitizenMessageReferral. To
change the message text of the message, or to remove placeholders or change links, a new version of this
file must be uploaded into the resource store.

Service delivery message

This message type creates messages related to service deliveries. This is a dynamic message. When the
citizen logs in, a message will be created for each service delivery that exists for the citizen in the system,
provided that service delivery has a status of 'In Progress' or 'Not Started'. The properties file EJBServer
\components\CitizenWorkspace\data\initial\blob\prop

188 IBM Cúram Social Program Management 7.0.8 or 7.0.4.4: IBM Universal Access Responsive Web
Application 2.3.0

\CitizenMessageServiceDelivery.properties contains the properties for the service delivery
message text, message parameters, links and images. This properties file is stored in the resource store.
This resource is registered under the resource name CitizenMessageServiceDelivery. To change
the message text of the message, or to remove placeholders or change links, a new version of this file
must be uploaded into the resource store.

Payment messages
The payment message type creates messages based on the payments that are issued or canceled for a
citizen.

The payment messages are persisted to the database. They replace each other, for example, if a payment
is issued and then canceled, the payment issued message is replaced with a payment canceled message.
The properties file EJBServer\components\CitizenWorkspace\data\initial\blob\prop
\CitizenMessageMyPayments.properties contains the properties for financial message text,
message parameters, links, and images. This properties file is stored in the resource store. This resource
is registered in the resource name CitizenMessageMyPayments. To change the message text of
financial messages, or to remove placeholders or change links, upload a new version of this file to the
resource store. The following table lists the messages that are created when events that are related to
payments occur in the system, and the related property in
CitizenMessageMyPayments.properties.

Table 20. Payment messages and related properties

Payment event Message Property

First payment issued on a case Message.First.Payment

Latest payment issued Message.Payment.Latest

Last payment issued Message.Last.Payment

Payment canceled Message.Cancelled.Payment

Payment reissued Message.Reissue.Payment

Payment stopped (case suspended) Message.Stopped.Payment

Payment / Case unsuspended Message.Unsuspended.Payment

Customization of the payment messages expiry date

You can set the number of days that the payment message is displayed to the citizen with a system
property. By default the property value is set to 10 days, but you can override this default from property
administration.

Table 21. Payment message expiry property

Name Description

curam.citizenaccount.payment.message.expiry.days The number of days that the payment message is displayed to the
participant.

Meeting messages
The meeting message type creates messages based on meetings that citizens are invited to, provided that
they are created by using the curam.meetings.sl.impl.Meeting API.

The API raises events that the meeting messages functionality consumes. There are other ways of
creating Activity records without this API, but meetings created in these ways do not have related
messages created as the events are not raised. These messages are persisted to the database. They
replace each other, for example, if a meeting is scheduled and then the location is changed, the initial
invitation message is replaced with one informing the citizen of the location change. The properties file
EJBServer\components\CitizenWorkspace\data\initial\blob\prop
\CitizenMessageMeetingMessages.properties contains the properties for the meeting messages
text, message parameters, links and images. This properties file is stored in the resource store. This
resource is registered in the resource name CitizenMessageMeetingMessages. To change the
message text of meeting messages, or to remove placeholders or change links, a new version of this file
must be uploaded into the resource store. Table 1 describes the messages created when various events

Chapter 1. IBM Cúram Universal Access 189

related to meetings occur in the system, and the properties in
CitizenMessageMeetingMessages.properties that relates to each message created. Different
versions of the message text are displayed depending on whether the meeting is an all day meeting,
whether a location has been specified, and whether the meeting organizer has contact details registered
in the system. Accordingly, the property values in this table are approximations that relate to a range of
properties within the properties file. Refer to the properties file for a full list of the message properties.

Table 22. Meeting messages

Meeting event Message Properties

Meeting invitation Non.Allday.Meeting.Invitation.*, Allday.Meeting.Invitation.*

Meeting update Non.Allday.Meeting.Update.*, Allday.Meeting.Update.*

Meeting canceled Allday.Meeting.Update.*, Allday.Meeting.Cancellation.*

Customization of the meeting messages display date

The number of days before the meeting start date that the message should be displayed to the citizen can
be configured using a system property. By default the property value is set to 10 days, however, this can
be overridden from property administration.

The meeting message expires (it is no longer displayed to the citizen) at the end of the meeting, that is,
the date time at which the meeting is scheduled to end.

Table 23. Meeting message display date property

Name Description

curam.citizenaccount.meeting.message.effective.days The number of days before the meeting start date that the message
should be displayed to the citizen.

Application acknowledgment message
The application acknowledgment message type creates a message when an application is submitted by a
citizen.

The message is persisted to the database. The properties file EJBServer\components
\CitizenWorkspace\data\initial\blob\prop
\CitizenMessageApplicationAcknowledgment.properties contains the properties for the
messages text, message parameters, links and images. This properties file is stored in the resource store.
This resource is registered under the resource name CitizenMessageApplicationAcknowledgment.
To change the message text of the message, or to remove placeholders or change links, a new version of
this file must be uploaded into the resource store.

Customization of application acknowledgment message expiry date

The number of days the Application Acknowledgment message will be displayed to the citizen can be
configured using a system property. By default the property value is set to 10 days, however, this can be
overridden from property administration.

Table 24. Application acknowledgment message expiry property

Name Description

curam.citizenaccount. intake.application.acknowledgement.message.expiry.days The number of days the application acknowledgment
message will be displayed to the participant.

Customizing the Notices page
By default, the notices relevant to the linked user are listed on the Notices page. You can replace the
default CitizenCommunicationsStrategy implementation with your own custom implementation.

For example, you can create a custom implementation to retrieve the communications of all of the
household members of the logged-in citizen, instead of just the citizen.

190 IBM Cúram Social Program Management 7.0.8 or 7.0.4.4: IBM Universal Access Responsive Web
Application 2.3.0

Create an alternative implementation of the
curam.citizenaccount.impl.CitizenCommunicationsStrategy.listCitizenCommunicatio
ns(ConcernRoleKey) method for listing the citizen communication records.

In addition, a number of default hooks are available for custom implementations to customize the
behavior of the communication processing module.

Related concepts
Viewing Notices
When they are logged in, citizens can open the Notices page and see all communications that are relevant
to them that are in sent, received, or normal status. Notices are typically formal written communications
that are issued to meet legal, regulatory, or state requirements, which are created by using letterhead
templates. For example, online appeal requests are shown on the Notices page.
Related tasks
Configuring communications on the Notices page
You can configure the maximum number of communications that are displayed on the Notices page. By
default, up to 20 communications are displayed.

Communication processing hooks and events
How electronic notices are managed and supported in the Citizen Portal affects the communication
processing module.

While the default implementation doesn’t address or implement any of the impacts, the following default
hooks are available for the custom implementation to customize the communication processing module.

curam.core.hook.impl.PreCreateCommunicationHook - can be used in customized scenarios for any
kind of pre creation processing for communication records.

curam.core.hook.impl.PreModifyCommunicationHook - can be used in customized scenarios for any
kind of pre modify processing for communication records.

For e.g.; in situations where create or modify operation is not applicable, this hook points can be used to
redirect the user with customized messages before the creation or modification of communication
records using custom exception handling.

curam.core.hook.impl.CommunicationInvocationStrategyHook - can be used as a toggle the above
hooks i.e., PreModifyCommunicationHook and PreCreateCommunicationHook should be invoked or not.

The following communication processing methods have been updated by the pre creation and pre
modification hooks that are mentioned above to enable further customization.

• curam.core.facade.impl.Communication.modifyWordDocument(ModifyWordDocumentDetails)
• curam.core.facade.impl.Communication.modifyEmail(ModifyEmailCommDetails,

ModifyEmailCommKey)
• curam.core.facade.impl.Communication.modifyRecordedCommunication1(ModifyRecordedCommKey,

ModifyRecordedCommDetails1)
• curam.core.facade.impl.Communication.modifyProForma1(ModifyProFormaCommDetails1)
• curam.core.facade.impl.Communication.createEmailCommunication(CreateEmailCommDetails)
• curam.core.facade.impl.Communication.createEmail(CreateEmailCommDetails)
• curam.core.facade.impl.Communication.createMSWordCommunication1(CreateMSWordCommunicatio

nDetails1)
• curam.core.facade.impl.Communication.createCaseMSWordCommunication1(CreateMSWordCommuni

cationDetails1)
• curam.core.facade.impl.Communication.createRecordedCommunication1(RecordedCommDetails1)
• curam.core.facade.impl.Communication.createProForma1(CreateProFormaCommDetails1)
• curam.core.facade.impl.Communication.createProFormaCommunication1(CreateProFormaCommDetail

s1)

Chapter 1. IBM Cúram Universal Access 191

Communication events

curam.core.events.CONCERNROLEACOMMUNICATION.INSERT_CONCERN_ROLE_COMMUNICATION

curam.core.events.CONCERNROLEACOMMUNICATION.MODIFY_CONCERN_ROLE_COMMUNICATION

These are the events that are raised post-creation or post-modification of a communication record.
Custom implementations can listen to these events for any kind of post processing requirements.

Customizing appeal request statuses
You can create an implementation to enable the display of appeal request status from an external
appeals system in the citizen account by using the provided API.

About this task
The curam.core.onlineappealrequest.impl.OnlineAppealRequestStatus interface takes an appeal request
as an input and passes back a code-table value. You can modify code-table entries as required.

• The appeal status text that you see in the application is hardcoded as <description> tags in two
CT_CitizenAppealRequestStatus.ctx files.

– The EJBServer\components\core\codetable\CT_CitizenAppealRequestStatus.ctx file
contains the code table value for the Appeal Request Submitted status. This is so you can submit an
appeal even if IBM Cúram Appeals is not installed and the Appeals.jar file is not present. You can
modify the description for the Appeal Request Submitted status in this file.

– When IBM Cúram Appeals is installed and the Appeals.jar is present, more appeal status values
are available. You can modify the descriptions for the other code table status values in the
EJBServer\components\Appeal\codetable\CT_CitizenAppealRequestStatus.ctx file.

For information about editing code tables, see Customizing a code table file.
• The color of each appeal status is set by the Badge component in the Social Program Management

Watson Design System. The AppealRequestsComponent.js file contains a
getBadgeDataByCodetable function. The getBadgeDataByCodetable function is a map of code
tables to badge type. For example, the CARS1001 code table is mapped to the warning badge type so
it is displayed in red. In your Web app development environment, you can see the badge colors by
opening the Web Design System Storybook documentation at @govhhs/govhhs-design-system-
react/doc/index.html and expanding to Components > Badge.

Procedure

1. Identify the appeal request ID from the caseworker application.
2. Use the appeal request ID to associate the appeal request status from the external system with the

appeal request status in IBM Cúram Universal Access.
3. Implement the curam.core.onlineappealrequest.impl.OnlineAppealRequestStatus interface to return

the appropriate code table value based on the OnlineAppealRequest.
For example, a custom implementation of this class might call a remote system and map the return
value to an appropriate code table value.

4. Customize an appeal status message to display in the Citizen Account.
5. If you create a new status, you must map it to a badge type to specify a color to display.

Related tasks
Customizing appeals in the Universal Access Responsive Web Application

192 IBM Cúram Social Program Management 7.0.8 or 7.0.4.4: IBM Universal Access Responsive Web
Application 2.3.0

You can customize appeals to suit your organization. You can integrate with an appeals system of your
choice. If you are licensed for the IBM Cúram Appeals application module, the IBM Cúram Social Program
Management appeals functionality is available on installation.

Error logging in the citizen account
When a citizen submits an application, when a citizen clicks Submit a deferred process starts. If a
mapping failure occurs, an error is logged.

Application property

The application property curam.workspaceservices.application.processing.logging.on increases the level
of detail of error messages.

When curam.workspaceservices.application.processing.logging.on is set to true, detailed error messages
are written to the application log files if the submission process fails.

Error codes

Each error message is prepended with an error code. These error codes help to automatically scan
application logs so that unexpected failures can be identified. The error codes that are returned by the
application is defined in the code table file CT_ApplicationProcessingError.ctx.

The range of codes that are reserved for internal processing is APROCER001 – APROCER500. Customers
can use the range APROCER501 – APROCER999 to log errors in custom processing, for example error
codes for extension-mapping handler class.

The list of error codes that are returned by the application, and a brief description of the problem, is listed
in Table 1.

Table 25. Application error codes

Code Description

APROCER001 An error occurred creating a person.

APROCER002 An error occurred creating a prospect person.

APROCER003 A relationship error occurred creating a person.

APROCER004 An error occurred creating a case.

APROCER005 An error occurred while performing a "map-attribute" mapping.

APROCER006 An error occurred while performing a "set-attribute" mapping.

APROCER007 An error occurred while performing a "map-address" mapping.

APROCER008 General mapping failure.

APROCER009 Error creating evidence.

APROCER010 More than one PDF form is registered against the program type.

APROCER011 Error setting the alternate id type for a Prospect Person.

APROCER012 Invalid alternate ID value.

APROCER013 Error the Evidence Application Builder has not been correctly configured.

APROCER014 Evidence type not listed in the Mapping Configuration.

APROCER015 No parent evidence entity found.

APROCER016 An error occurred when trying to unmarshal the application XML.

APROCER017 An error occurred when trying to set a field value.

APROCER018 An error occurred when trying to create the PDF document.

Chapter 1. IBM Cúram Universal Access 193

Table 25. Application error codes (continued)

Code Description

APROCER019 An error occurred when trying to create the PDF document. A form code
could not be mapped to a codetable description.

APROCER020 An error occurred when trying a WorkspaceServices mapping extension
handler.

APROCER021 Missing source attribute in datastore entity.

APROCER022 An attribute in an expression is not valid.

APROCER023 Application builder configuration error.

APROCER024 Failed creating DataStoreMappingConfig, no name specified.

APROCER025 Failed creating DataStoreMappingConfig, the name is not unique.

APROCER026 The mapping to datastore had to be abandoned because the schema is not
registered.

APROCER027 There was a problem parsing the Mapping Specification.

APROCER028 General mapping error. Mapping XML included.

APROCER029 Cannot have multiple primary participants.

APROCER030 No programs have been applied for.

APROCER031 An error occurred while attempting to map to Person data.

APROCER032 An error occurred while attempting to map to Relationship data.

APROCER033 An error occurred while creating Cases.

APROCER034 An error occurred while creating evidence.

APROCER035 No programs have been applied for.

APROCER036 An error occurred reading data from the datastore.

APROCER037 Specified integrated case type does not exist.

APROCER038 Specified case type does not exist

APROCER039 Duplicate SSN entered for prospect person.

APROCER040 Duplicate SSN entered.

APROCER041 There was a problem with the workflow process.

APROCER042 No primary participant has been identified as part of the intake process.

Customizing life events
A description of the high-level architecture of life events and how to perform the analysis and
development tasks in building a life event.

Many types of life events can be built by analysts, some require input from developers. This information
will help analysts to understand how to perform the analysis for a new life event and how to determine
whether input is needed from developers.

How to build a life event
To design a life event for IBM Cúram Universal Access, you must undertake an analysis.

You can build life events for caseworkers or indeed to use life event infrastructure to drive other
processes like certification, but these topics are beyond the scope of this information. Java coding skills

194 IBM Cúram Social Program Management 7.0.8 or 7.0.4.4: IBM Universal Access Responsive Web
Application 2.3.0

are not a prerequisite for developing all life events. Depending on requirements, many and in some cases
all of the artifacts required can be developed by an Analyst. This topic will help Analysts to determine
whether Java Developers will be needed to complete the implementation of a life event.

Broadly speaking, there are two types of life events for citizens:

• Standard life events
• Round tripping life events

Standard life events allow Citizens to enter new life event information and then submit it to the agency.
For example: Imagine, that Linda logs in to IBM Cúram Universal Access and submits a "Having a Baby"
life event. This is all new information. It doesn't really relate to anything that has gone before. If she made
a mistake in the information submitted, say the name of the obstetrician, then she simply starts a new life
event and reenters all the new information again before submitting.

Round tripping life events are more complex. The distinction between these life events and standard life
events is determined by whether the data that is pre-populated into the life event is allowed to be
changed by the user. If the Citizen is expected to update pre-populated information, rather than just
adding new information then the life event should be considered a round tripping life event. It’s
considerably harder to design scripts for this type of life event.

The primary artifacts that constitute a Simple life event are:

• An IEG script and its associated data store schema
• An IEG script to review answers in a previously submitted life event (optional)
• A Cúram Data Mapping Engine specification that describes how to map data from the IEG script into

evidence on the citizen's cases

All of these artifacts can be configured using the Administrator's User Interface. For more information
about configuring Simple life events using the Administrator's UI, see "Configuring life events" in
Configuring the IBM Universal Access Responsive Web Application.

The life events system can take information entered by the user and do one of the following:

1. If the user is linked to the local IBM Cúram Social Program Management case processing system, then
the life events system can update related evidence in any cases they have.

2. If the user is linked to remote systems, then the life events system can send updates to related
remote systems using web services.

If the life event is a round tripping life event or it is required to update the person's evidence in IBM
Cúram Social Program Management then some development work will be needed. See the life events
APIs needed to meet these requirements or indeed to supplement the standard life event behavior with
more custom functionality.

Customizing advanced life events
To develop advanced life events, you must understand the difference between a simple life event and
advanced life event.

When to use advanced life events

Advanced life events enable fully automated round-tripping of data. This means that evidence is read into
the datastore for an IEG script. It is then updated by the citizen. When the life event is submitted, the
original evidence that was read into the IEG script is updated. Advanced life events are only required
when this level of automated round tripping of data is required. Under all other circumstances Simple life
events are the recommended approach. Project Architects should consider carefully whether round
tripping is required or whether the data entered can be treated as new evidence to be integrated into the
citizen's cases.

Advanced life events cannot be configured through the administration user interface, they must be
created by developers.

Chapter 1. IBM Cúram Universal Access 195

How to build a life event

Analysis
The distinction between standard life events and round tripping life events is whether citizens can change
the data that is pre-populated into the life event. If citizens can update pre-populated information, rather
than just adding new information, then use a round tripping life event. It's more difficult to develop this
type of life event. The advanced life events subsystem is designed to cater for round tripping life events.

The following describes how to develop an advanced life event that supports round tripping:

The primary artifacts that constitute an advanced life event are:

• An IEG script and its associated data store schema.
• An IEG script to review answers in a previously submitted life event (optional).
• A Recommendations Ruleset that produces the set of recommendations based on the information that

is entered in the IEG script (optional).

The life events system can take information that is entered by the user and update related evidence in
any cases they have.

The life events system can do one of the following:

1. If the user is linked to the local IBM Cúram Social Program Management case processing system, then
the life events system can update related evidence in any of their cases.

2. If the user is linked to remote systems, then the life events system can send updates to related
remote systems through web services.

You can configure the life events system to ask a citizen's permission before life event information is sent
to remote systems. A standard life event that just sends information to remote systems can be configured
through the administration application. For more information, see Defining Remote Systems.

If the life event is a round tripping life event or is needed to update evidence in the local case processing
system, then some development work is needed to configure the life event. Round tripping life events
must be pre-populated. Pre-population of life events is only supported for users that are linked to the
local IBM Cúram Social Program Management case processing system by using a concern role. To read
information from cases and update those cases, the life events system relies on the Citizen Data Hub
subsystem. The following information outlines the work that is needed to configure the Citizen Data Hub.

The life event broker uses the Data Hub to get the data it needs to populate the life event, so you must
configure the Data Hub to extract this data. The life event Broker also sends the updated data back
through the Data Hub. The Data Hub must be configured to tell it what to do with this updated data.

You can use some of these artifacts to configure the Citizen Data Hub for reading information:

• Transform - converts data from the Holding Case into data store XML
• Filter Evidence Links - When you read Citizen Data, these links filter out only the evidence entities of

interest when reading from the Holding Case.
• View Processors - Java classes for extracting non-evidence data into the data store XML

These are some of the artifacts that are used to configure the Citizen Data Hub for updating information:

• Transforms - Convert a data store XML Difference Description back into Holding Case Evidence
• Update Processors - Do other update tasks or update non-evidence data that relates to citizens

Considerations for life events analysis
The considerations that affect the complexity of developing a particular life event that must read from, or
write to, an evidence or participant-related data store in IBM Cúram Social Program Management. These
considerations inform any analysis of life events development and any resulting estimates.

1. Is the life event a standard life event or a round tripping life event
2. What information needs to be pre-populated into the IEG script?
3. What evidence data is read by the life event?

196 IBM Cúram Social Program Management 7.0.8 or 7.0.4.4: IBM Universal Access Responsive Web
Application 2.3.0

4. What evidence data is updated by the life event?
5. What non-evidence data is read/updated by the life event
6. How many programs or case types are affected by the life event
7. If a life event shares to multiple cases, will those case types also share evidence with each other using

Evidence Broker?
8. Does a life event have associated recommendations? If so, do they relate to Community Services,

Government Programs or both?

Of these items that deal with Non-Evidence Entities presents the greatest challenge. Any life event that
updates non-evidence entities require developers with Java skills.

Building the components of a life event
How you build the component parts of a life event that uses the Citizen Data Hub. This information does
not require any knowledge of Java.

Writing life event IEG Scripts
Writing a life event IEG script is similar to writing any other IEG script. However, there are special
considerations for life event scripts. These considerations depend on whether the life event is a round
tripping life event or a standard life event.

For a round tripping life event, citizen data is read into the data store that is used by the IEG script. This
data can be modified by citizens as they progress from page to page in the life event script. For example, a
citizen can modify income data that is read into the life event script before it’s submitted. The life event
broker ensures that when the citizen changes the income data the changes are detected and propagated
correctly back to the income entity from which the data was read. The life event broker needs a way to
track data from its origin in the income entity, through the life event script, and back to the same income
entity. To facilitate this process, the IEG script designer needs to place a marker into the data store
schema.

The following code block is an example of the definition of an income data store:

 1 <xsd:element name="Income">
 <xsd:complexType>
 <xsd:attribute name="incomeType" type="INCOME_TYPE"
 default=""/>
 5 <xsd:attribute name="cgissIncomeType"
 type="CGISS_INCOME_TYPE"/>
 <xsd:attribute name="incomeFrequency"
 type="INCOME_FREQUENCY" default=""/>
 <xsd:attribute name="incomeAmount" type="IEG_MONEY"
 10 default="0"/>
 <xsd:attribute name="localID" type="IEG_STRING"/>
 <xsd:complexType>
 </xsd:element>

The life event broker uses the attribute localID to track the unique identity of the entity from which the
income data was drawn. When this entity is changed and submitted, the life event broker can use the
value of localID to locate the correct entity to update as a result of the changes in the life event. Other
special markers exist that can be placed in the schema to aid with providing automatic updates to
evidence entities.

When you design a script for a round tripping life event, you must account for the effects that pre-
population of data can have on the flow of the script. One example of this situation is conditional clusters.
Life event scripts need to avoid conditional clusters that are associated with pre-populated data. These
clusters are common in intake scripts but don’t work well when the data store was pre-populated. For
example, for a life event involving the loss of a job, a Boolean flag on the Person entity, hasJob is used
to indicate that person has a job. The IEG script presents the user with a question: Does anyone in
your household have a job?. This question is used to drive the display of a conditional cluster that
identifies which household members who have jobs.

However, if the data in the data store is repopulated, it’s likely one or more Person entities with hasJob
already be set to true. In the current implementation of IEG, it isn’t possible to get the Does anyone in
your household have a job? control question to default to true even when hasJob is true for one

Chapter 1. IBM Cúram Universal Access 197

or more household members. For this reason, the rule needs to be to avoid control questions for
conditional clusters such as when the fields they control are pre-populated.

Pre-Populating a life event
A description of the artifacts that need to be developed in order to pre-populate a life event script:

• How the Data Hub Works for reading data
• How to author Read Transforms
• How to use Pre-Packaged View Processors

How the Data Hub Works for Reading

The Data Hub is a means of collecting data about Citizens from many different locations and returning it
as an XML document in a datastore. The Data Hub can be used to hide the complexities of where data
comes from and how it is represented in it original locations. For example, to drive a "Lost my Job" life
event it might be necessary to gather information about a person's Income, Address and Employment.
These three pieces of information might be represented differently on the underlying system, indeed they
might live on three or more different systems. The caller doesn't need to know this. The Citizen Data Hub
allows its clients to get these pieces of information in one single operation. Operations of this type are
named uniquely, each is called a "Data Hub Context". To animate the "Lost my Job" example we define a
Data Hub Read Context called "CitizenLostJob" that allows the collection of Income, Address and
Employment information in a single query.

One of the sources that the Data Hub can draw on is Evidence on Cases. In particular, Evidence on the
Citizen's Holding Case. The Holding Case can use the Evidence Broker to gather data from many disparate
Integrated Cases or even from other Systems via Web Services. The Holding Case is a little different from
other Cases. There is only ever one per Citizen on a given Cúram system. The Holding Case has an
interface that allows all of the Evidence it contains to be extracted in XML format. This XML format is
optimized for the description of Evidence in particular. Because it is optimized for the description of
Evidence, it isn't necessarily in a format suitable for insertion into a data store. Fortunately it is relatively
easy to translate data in one XML format into another format that contains the same information. This can
be done using a language called XSLT For more information on XSLT please refer to, http://
www.w3.org/TR/xslt.

Authoring Read Transforms

You can write XSLT Transforms for use in the Data Hub. To write Citizen Data Hub Transforms it is
necessary to understand, the structure of the Holding Evidence XML that is the source data and the Data
Store schema that is the target. The "CitizenLostJob" life event is significantly complex so, for the
purposes of an introductory example, this section describes a simple fictitious life event for Citizens who
have bought a new car. This life event is associated with the Data Hub Context "CitizenBoughtCar". This
would not be considered a "life event" in the real world but it nevertheless provides an example of some
of the principles of building a Round Tripping life event. For the purposes of this example consider this
fragment of Holding Evidence XML that is used to describe a Vehicle:

198 IBM Cúram Social Program Management 7.0.8 or 7.0.4.4: IBM Universal Access Responsive Web
Application 2.3.0

<?xml version="1.0" encoding="UTF-8"?>
 <client-data
 xmlns="http://www.curamsoftware.com/schemas/ClientEvidence">
 <client localID="101" isPrimaryParticipant="true">
 <evidence>
 <entity localID="-416020015578349568" type="ET10081">
 <attribute name="vehicleMake">VM2</attribute>
 <attribute name="versionNo">2</attribute>
 <attribute name="startDate">20110301</attribute>
 <attribute name="usageCode">VU1</attribute>
 <attribute name="amountOwed">3,200.00</attribute>
 <attribute name="numberOfDoors">0</attribute>
 <attribute name="evidenceID">
 -5315936410157449216
 </attribute>
 <attribute name="monthlyPayment">0.00</attribute>
 <attribute name="vehicleModel">159</attribute>
 <attribute name="year">2008</attribute>
 <attribute name="equityValue">0.00</attribute>
 <attribute name="endDate">10101</attribute>
 <attribute name="fairMarketValue">17,000.00</attribute>
 <attribute name="curamEffectiveDate">20110301
 </attribute>
 </entity>
 </evidence>
 </client>
 </client-data>

Figure 6. Holding Evidence XML Example

The client element represents data belonging to the participant with concern role id 101. In Cúram
demo data this is James Smith. The client contains a single evidence entity of type ET10081. In the
Cúram Common Evidence layer, ET10081 is the Evidence Type identifier for Vehicle Evidence. The
localID attribute plus the evidence type uniquely identifies the underlying evidence object for the
Vehicle. This data has to be mapped to data store XML so that it can be used to populate an IEG Script.
Consider how the above data is to be represented in data store XML:

<?xml version="1.0" encoding="UTF-8"?>
<Application>
 <Person localID="101" isPrimaryParticipant="true"
 hasVehicle="true">
 <Resource resourcePageCategory="RPC4001"
 localID="-416020015578349568" vehicleMake="VM2"
 versionNo="2" amountOwed="3,200.00" vehicleModel="159"
 year="2008" fairMarketValue="17,000.00"
 curamEffectiveDate="20110301">
 <Descriptor/>
 </Resource>
 </Person>
</Application>

Figure 7. Data Store XML Sample

This XML data must conform to the schema used to build the IEG script. Notice that the XML above
conforms to a schema that is a superset of the CitizenPortal.xsd schema. It is recommended that
the CitizenPortal.xsd schema be used as a starting point for the schemas used in Customer life
events. To these schemas need to be added the "marker" attributes needed for life events. These marker
attributes include the use of localID as discussed previously. Datastore schemata for entities can also
include the following special markers that are specialized for representing Evidence in the Holding Case:
The following XSLT fragment shows how to transform Vehicle Holding Evidence into a corresponding Data
Store Entity:

• curamEffectiveDate - This maps to the effective date of a piece of Cúram Evidence

Chapter 1. IBM Cúram Universal Access 199

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:x="http://www.curamsoftware.com/
 schemas/DifferenceCommand"
 xmlns:fn="http://www.w3.org/2006/xpath-functions"
 version="2.0">
 <xsl:output indent="yes"/>

 <xsl:strip-space elements="*"/>

 <xsl:template match="update">
 <xsl:for-each select="./diff[@entityType='Application']">
 <xsl:element name="client-data">
 <xsl:apply-templates/>
 </xsl:element>
 </xsl:for-each>
 </xsl:template>

 <xsl:template match="diff[@entityType='Person']">
 <xsl:element name="client">
 <xsl:attribute name="localID">
 <xsl:value-of select="./@identifier"/>
 </xsl:attribute>
 <xsl:element name="evidence">
 <xsl:apply-templates/>
 </xsl:element>
 </xsl:element>
 </xsl:template>

 <xsl:template match="diff[@entityType='Resource']">
 <xsl:element name="entity">

 <xsl:attribute name="type">ET10081</xsl:attribute>
 <xsl:attribute name="action">
 <xsl:value-of select="./@diffType"/>
 </xsl:attribute>
 <xsl:attribute name="localID">
 <xsl:value-of select="./@identifier"/>
 </xsl:attribute>
 <xsl:for-each select="./attribute">
 <xsl:copy-of select="."/>
 </xsl:for-each>

 </xsl:element>
 </xsl:template>

 <xsl:template match="*">
 <!-- do nothing -->
 </xsl:template>
</xsl:stylesheet>

Figure 8. XSLT Transform for Vehicle Resource Information

The life event author who adds this transform to their life event can turn Vehicle Evidence recorded on
any Integrated Case into a Data Store format that can be displayed in an IEG script with all the
information pre-populated from the Evidence Record.

Defining Filters for Evidence

When the Holding Case is called upon to return an XML representation of its evidence, by default it will
return all evidence for the citizen concerned. This could be a very large query that returns much more
information than is required. The purpose of a Filter Evidence Link is to define, for each Data Hub Context,
which Evidence Types are of interest. A Filter Evidence Link can be defined by adding entries to a Filter
Evidence Link dmx file. The example below shows a Filter Evidence Link dmx file that defines the
information that should be returned for the "CitizenBoughtCar" life event:

<?xml version="1.0" encoding="UTF-8"?>
<table name="FILTEREVIDENCELINK">
 <column name="FILTEREVLINKID" type="id" />
 <column name="FILTERNAME" type="text" />
 <column name="EVIDENCETYPECODE" type="text" />
 <row>
 <attribute name="FILTEREVLINKID">

200 IBM Cúram Social Program Management 7.0.8 or 7.0.4.4: IBM Universal Access Responsive Web
Application 2.3.0

 <value>175</value>
 </attribute>
 <attribute name="FILTERNAME">
 <value>CitizenBoughtCar</value>
 </attribute>
 <attribute name="EVIDENCETYPECODE">
 <value>ET10081</value>
 </attribute>
 </row>
</table>

Using Pre-Packaged View Processors

Up to this point has focused on how Transforms can be used turn Evidence data into Data store XML for
use in a life event Script. However there are other important pieces of information that are not
represented as Evidence. In general the life event author must develop custom Java code in order to
populate any information that is not represented as evidence. Using Java it is possible to develop View
Processors which can be used to extract non-evidence data and translate this data into data store xml. By
associating these View Processors with the right Data Hub Context, they can add their information into
the data store in addition to the data put there by the transforms. The life events Broker ships with some
pre-packaged View Processors that are capable of inserting certain frequently used non Evidence Data.

• Household View Processor
• The Person Address View Processor

The Household View Processor will find all Persons related to the currently Logged in user and pull them
into the data store along with information on how they are related to the logged in Citizen. This
information is based on the IBM Cúram Social Program Management Platform
ConcernRoleRelationship entity.

The Person Address View Processor populates the most important details of the logged in Citizen, such as
name and Social Security Number. It also pulls in the Residential and Mailing addresses of the logged in
Citizen. Both the Household View processor and the Person Address View Processor can be used together
in the same life event Context but the Person Address View Processor should be run after the Household
View Processor. The excerpt below shows how to configure these two View Processors to execute for the
"CitizenBoughtCar" life event.

<?xml version="1.0" encoding="UTF-8"?>
 <table name="VIEWPROCESSOR">
 <column name="VIEWPROCESSORID" type="id"/>
 <column name="LOGICALNAME" type="text" />
 <column name="CONTEXT" type="text" />
 <column name="VIEWPROCESSORFACTORY" type="text" />
 <column name="RECORDSTATUS" type="text"/>
 <column name="VERSIONNO" type="number"/>
 <row>
 <attribute name="VIEWPROCESSORID">
 <value>4</value>
 </attribute>
 <attribute name="LOGICALNAME">
 <value>CitizenLostJob0</value>
 </attribute>
 <attribute name="CONTEXT">
 <value>CitizenBoughtCar</value>
 </attribute>
 <attribute name="VIEWPROCESSORFACTORY">
 <value>
 curam.citizen.datahub.internal.impl.
 +HouseholdCustomViewProcessorFactory
 </value>
 </attribute>
 <attribute name="RECORDSTATUS">
 <value>RST1</value>
 </attribute>
 <attribute name="VERSIONNO">
 <value>1</value>
 </attribute>
 </row>
 <row>
 <attribute name="VIEWPROCESSORID">
 <value>5</value>
 </attribute>

Chapter 1. IBM Cúram Universal Access 201

 <attribute name="LOGICALNAME">
 <value>CitizenLostJob1</value>
 </attribute>
 <attribute name="CONTEXT">
 <value>CitizenBoughtCar</value>
 </attribute>
 <attribute name="VIEWPROCESSORFACTORY">
 <value>
 curam.citizen.datahub.internal.impl.
 +CustomPersonAddressViewProcessorFactory
 </value>
 </attribute>
 <attribute name="RECORDSTATUS">
 <value>RST1</value>
 </attribute>
 <attribute name="VERSIONNO">
 <value>1</value>
 </attribute>
 </row>
 </table>

The CONTEXT field links the ViewProcessor to the "CitizenBoughtCar" life event Context. This ensures
that this ViewProcessor is called whenever the "CitizenBoughtCar" Data Hub Context is called. Notice
also the use of a logicalName which uniquely distinguishes each View Processor. View Processors for a
given Data Hub Context are executed in lexical order, so a View Processor name with a logicalName of
"AAA" for the DataHubContext "CitizenBoughtCar" will be executed before one with a logicalName of
"AAB".

Driving updates from life events
A description of the artifacts that need to be developed to process the data submitted from a life event
script.

How the Data Hub Works for Updating

Just as the Citizen Data Hub has a notion of Data Hub Context for reading so also does it have Data Hub
Contexts for updating. Life events typically use the same Data Hub Context name for the read and
updates associated with the same life event, so the "CitizenBoughtCar" context describes, not only, a set
of artifacts for pre-populating a "CitizenBoughtCar" life event script but also a set of artifacts for handling
updates to the Citizen's data when the "CitizenBoughtCar" life event script is complete.

An update operation for a given Citizen Data Hub Context can lead to many different individual entities
being updated in a single transaction. The artifacts, provided to a Data Hub following a script submission
are:

• A Data Store root entity
• A Difference command
• A Data Hub Context Name

The Data Store root entity is the root of the data store that has been updated via the life events IEG script.
The Difference Command is an entity that describes how this data store is different to the one that was
passed to the IEG script before it was launched. In other words it describes how the user has changed the
data as a result of executing the life event script. These differences are broken down into three basic
types:

• Creations - The user has created a data store entity as a result of running the IEG script
• Updates - The user has updated an entity as a result of running the IEG script
• Removals - The user has removed an entity as a result of running the IEG script

Of these three, Creations and Updates are the most common. Allowing users to remove items in life
events scripts should generally be considered bad practice. Standard life events tend to be characterized
by a number of Creations whereas Round Tripping life events tend to be a mixture of Creations and
Updates. The Difference Command is generated automatically by the life event Broker after a life event is
submitted.

202 IBM Cúram Social Program Management 7.0.8 or 7.0.4.4: IBM Universal Access Responsive Web
Application 2.3.0

To turn a Data Hub Update Operation into automatic updates to evidence entities on the Holding Case we
need to specify a Data Hub Update Transform. In cases where there is a requirement to update non-
evidence entities, an Update Processor must be developed. These Update Processors involve Java code
development.

Writing Transforms for Updating

Update Transforms, like Read Transforms are specified using a simple XSLT syntax. In order to write
update Transforms, the author must understand both the input XML, and the output Evidence XML
format. The following examples are built around a "CitizenHavingABaby" life event. This life event allows
the user to report that they are due to have a baby. They can enter a number of unborn children to
indicate, for example, that they are expecting twins. The user can also enter a due date and they can
nominate a father for the unborn child. The father can be an existing case participant or someone else
entirely. In the latter case they must enter name, address, Social Security Number etc. This life event is
not a "Round Tripping" life event, it is concerned with the creation of new Evidence rather than the update
of existing Evidence. The input to an Update Transform is an XML-based description of the Data Store
Difference Command. A sample difference command XML for the "CitizenHavingABaby" is depicted
below:

<update>
 <diff diffType="NONE" entityType="Application">
 <diff diffType="NONE" entityType="Person" identifier="102">
 <diff diffType="CREATE" entityType="Pregnancy">
 <attribute name="numChildren">1</attribute>
 <attribute name="dueDate">20110528</attribute>
 <attribute name="curamDataStoreUniqueID">385</attribute>
 </diff>
 </diff>
 <diff diffType="UPDATE" entityType="Person" identifier="101">
 <attribute name="isFatherToUnbornChild">true</attribute>
 <attribute name="curamDataStoreUniqueID">399</attribute>
 </diff>
 </diff>
</update>

The difference command XML corresponds node-for-node with the data store XML. Each diff node
describes how the corresponding data store entity has been modified by the execution of the IEG script.
The curamDataStoreUniqueID attribute identifies which data store entity has changed. The diffType
attribute identifies the nature of the change, for example CREATE, UPDATE, NONE or REMOVE. Attributes
that are listed are those that have changed or been added to each data store entity. In the above
example, the user has registered a pregnancy to Linda Smith (concern role ID 102) with one unborn child,
due on May 28 th 2011. The father is listed as being James Smith (concern role ID 101). For more
information on difference command XML please see the schema in Difference Command XML Schema
section. There are a couple of additional attributes and elements used when updating XML that are
illustrated below:

Chapter 1. IBM Cúram Universal Access 203

<?xml version="1.0" encoding="UTF-8"?>
 <client-data>
 <client localID="102">
 <evidence>
 <entity type="ET10074" action="CREATE" localID="">
 <attribute name="numChildren">1</attribute>
 <attribute name="dueDate">20110528</attribute>
 <entity-data entity-data-type="role">
 <attribute type="LG"/>
 <attribute roleParticipantID="102"/>
 <attribute
 entityRoleIDFieldName="caseParticipantRoleID"/>
 </entity-data>
 <entity-data entity-data-type="role">
 <attribute type="FAT"/>
 <attribute roleParticipantID="101"/>
 <attribute participantType="RL7"/>
 <attribute
 entityRoleIDFieldName="fahCaseParticipantRoleID"/>
 </entity-data>
 <entity type="ET10125" action="CREATE">
 <attribute name="comments"> Unborn child 1</attribute>
 <entity-data entity-data-type="role">
 <attribute type="UNB"/>
 <attribute roleParticipantID="102"/>
 <attribute
 entityRoleIDFieldName="caseParticipantRoleID"/>
 </entity-data>
 </entity>
 </entity>
 </evidence>
 </client>
 </client-data>

Figure 9. Evidence XML with Updates

Note the use of the action attribute which describes the action to be taken to the underlying evidence,
for example, to create the evidence or to update existing evidence. The next section will discuss the
meaning of the <entity-data> element. An example of the XSLT used to transform the above
difference XML into the above Evidence XML is depicted below:

<?xml version="1.0" encoding="UTF-8"?>
<!-- This script plucks out and copies all resource-related -->
<!-- entities from output built by the XMLApplicationBuilder -->
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:x="http://www.curamsoftware.com/
 schemas/DifferenceCommand"
 xmlns:fn="http://www.w3.org/2006/xpath-functions"
 version="2.0">
 <xsl:output indent="yes"/>
 <xsl:strip-space elements="*"/>
 <xsl:template match="update">
 <xsl:for-each select="./diff[@entityType='Application']">
 <xsl:element name="client-data">
 <xsl:apply-templates/>
 </xsl:element>
 </xsl:for-each>
 </xsl:template>
 <xsl:template match="diff[@entityType='Person']">
 <xsl:element name="client">
 <xsl:attribute name="localID">
 <xsl:value-of select="./@identifier"/>
 </xsl:attribute>
 <xsl:element name="evidence">
 <xsl:apply-templates/>
 </xsl:element>
 </xsl:element>
 </xsl:template>
 <xsl:template match="diff[@entityType='Pregnancy']">
 <xsl:element name="entity">
 <xsl:attribute name="type">ET10074</xsl:attribute>
 <xsl:attribute name="action">
 <xsl:value-of select="./@diffType"/>
 </xsl:attribute>
 <xsl:attribute name="localID">
 <xsl:value-of select="./@identifier"/>
 </xsl:attribute>
 <xsl:for-each select="./attribute">

204 IBM Cúram Social Program Management 7.0.8 or 7.0.4.4: IBM Universal Access Responsive Web
Application 2.3.0

 <xsl:copy-of select="."/>
 </xsl:for-each>
 <xsl:element name="entity-data">
 <xsl:attribute name="entity-data-type">
 role
 </xsl:attribute>
 <xsl:element name="attribute">
 <xsl:attribute name="type">LG</xsl:attribute>
 </xsl:element>
 <xsl:element name="attribute">
 <xsl:attribute name="roleParticipantID">
 <xsl:value-of select="../@identifier"/>
 </xsl:attribute>
 </xsl:element>
 <xsl:element name="attribute">
 <xsl:attribute name="entityRoleIDFieldName">
 caseParticipantRoleID
 </xsl:attribute>
 </xsl:element>
 </xsl:element>
 <xsl:element name="entity-data">
 <xsl:attribute name="entity-data-type">
 role
 </xsl:attribute>
 <xsl:element name="attribute">
 <xsl:attribute name="type">FAT</xsl:attribute>
 </xsl:element>
 <xsl:for-each select=
 "../../diff[@entityType='Person']/attribute[
 @name='isFatherToUnbornChild'
 and ./text()='true']">
 <!-- Copy the participant id if a family -->
 <!-- member is the father -->
 <xsl:element name="attribute">
 <xsl:attribute name="roleParticipantID">
 <xsl:value-of select="
 ../@identifier"/>
 </xsl:attribute>
 </xsl:element>
 </xsl:for-each>
 <!-- Copy details of absent parent -->
 <xsl:call-template name="absentFather"/>
 <xsl:element name="attribute">
 <xsl:attribute name="entityRoleIDFieldName">
 fahCaseParticipantRoleID
 </xsl:attribute>
 </xsl:element>
 </xsl:element>
 <xsl:variable name="numBabies">
 <xsl:value-of select="attribute[
 @name='numChildren'
]/text()"/>
 </xsl:variable>
 <xsl:call-template name="unbornChildren">
 <xsl:with-param name="count" select="$numBabies"/>
 </xsl:call-template>
 </xsl:element>
 </xsl:template>

 <xsl:template name="unbornChildren">
 <xsl:param name="count" select="1"/>
 <xsl:if test="$count > 0">
 <xsl:element name="entity">
 <xsl:attribute name="type">ET10125</xsl:attribute>
 <xsl:attribute name="action">
 <xsl:value-of select="./@diffType"/>
 </xsl:attribute>
 <xsl:element name="attribute">
 <xsl:attribute name="name">
 comments
 </xsl:attribute>
 Unborn child <xsl:value-of select="$count"/>
 </xsl:element>
 <xsl:element name="entity-data">
 <xsl:attribute name="entity-data-type">
 role
 </xsl:attribute>
 <xsl:element name="attribute">
 <xsl:attribute name="type">
 UNB
 </xsl:attribute>
 </xsl:element>

Chapter 1. IBM Cúram Universal Access 205

 <xsl:element name="attribute">
 <xsl:attribute name=
 "roleParticipantID">
 <xsl:value-of select="
 ../@identifier"/>
 </xsl:attribute>
 </xsl:element>
 <xsl:element name="attribute">
 <xsl:attribute name=
 "entityRoleIDFieldName">
 caseParticipantRoleID
 </xsl:attribute>
 </xsl:element>
 </xsl:element>
 </xsl:element>
 <xsl:call-template name="unbornChildren">
 <xsl:with-param name="count" select="$count - 1"/>
 </xsl:call-template>
 </xsl:if>
 </xsl:template>

 <xsl:template name="absentFather">
 <xsl:element name="attribute">
 <xsl:attribute name="participantType">
 <xsl:text>RL7</xsl:text>
 </xsl:attribute>
 </xsl:element>

 <xsl:if test="attribute[@name='fahFirstName']">
 <xsl:element name="attribute">
 <xsl:attribute name="firstName">
 <xsl:value-of select="attribute[
 @name='fahFirstName'
]/text()"/>
 </xsl:attribute>
 </xsl:element>
 </xsl:if>

 <!-- etc. map other personal details such as -->
 <!-- SSN, date of birth -->

 <xsl:if test="diff[@entityType='ResidentialAddress']">
 <xsl:if test="diff[
 @entityType='ResidentialAddress']/attribute[
 @name='street1']">
 <xsl:element name="attribute">
 <xsl:attribute name="street1">
 <xsl:value-of select=
 "diff[
 @entityType='ResidentialAddress']
 /attribute[
 @name='street1']/text()"/>
 </xsl:attribute>
 </xsl:element>
 </xsl:if>
 <!-- etc. map other parts of residential address -->
 </xsl:if>
 </xsl:template>

 <xsl:template match="*">
 <!-- do nothing -->
 </xsl:template>
</xsl:stylesheet>

Writing Transforms that create new case participants

Readers who are familiar with Evidence will know that Evidence Entities frequently refer to third parties.
For example, Pregnancy evidence refers to the father via a Case Participant Role. The associated father
can be a Person or a Prospect Person. Other evidence types such as Student may refer to a School which
is entered as a Representative Case Participant Role.

The Evidence XML schema provides a generic element called <entity-data> which can be used to
provide special handling instructions to the Citizen Data Hub. The type of handling depends on the
<entity-data-type> specified. Cúram provides a special processor for the entity-data-type role. This
role entity data processor can be used to create new Case Participant Roles or reference existing Case
Participant Roles for existing Case Participants. Referring to the Evidence XML output in listed in the

206 IBM Cúram Social Program Management 7.0.8 or 7.0.4.4: IBM Universal Access Responsive Web
Application 2.3.0

previous section the attribute denoted by type is used to denote the Case Participant Role Type e.g. FAT
for Father or UNB for Unborn Child. The value provided here should be a codetable value from the
CaseParticipantRoleType code table. The roleParticipantID denotes the ConcernRoleID of an
existing participant on the system. If this is supplied then the system will not attempt to create a new
Case Participant, rather it will reuse a case participant with this id. The entityRoleIDFieldName is the
field name in the corresponding Evidence Entity. In the case of the Pregnancy evidence entity for
example, the name of this field is fahCaseParticipantRoleID. In the case where a new participant
needs to be created the following fields are supported by the Role Entity Data Processor.

• participantType - this is a code table entry from the ConcernRoleType code table. For example, use
RL7 to create a new Prospect Person

• firstName
• middleInitial
• lastName
• SSN
• dateOfBirth
• lastName
• lastName
• street1
• city
• state
• zipCode

Updating Non Evidence Entities

Previous Sections have illustrated how it is possible to configure life events to automatically map updates
through to Evidence Entities on multiple integrated cases. Sometimes life events will be required to
update non-Evidence entities such as a Residential Address, Employment or some other customer
specific non-Evidence entity. Typically these entities will be shared across multiple cases. It is also
typical that these entities would not follow the same controlled Life Cycle as evidence entities. Evidence
has many advantages:

• It is temporal
• It is case specific, with sharing of updates between cases being controlled through the Evidence Broker
• Caseworkers can veto acceptance of updates that come from external sources like IBM Cúram

Universal Access
• It has an in-edit/approval cycle
• It has support for verifications

Non evidence entities have none of these advantages and safeguards. A decision by analysts to update
non-evidence entities based on life events should be made with due care, especially if the changes can be
applied simultaneously across multiple cases. It is possible to update non Evidence entities but this will
always involve custom code. It is strongly recommended that the design of such functionality includes
safeguards to ensure that at least one Agency worker gets to manually approve the changes before they
are applied to the system.

Configuring the evidence broker for use with the holding case
The Holding Case is only a holding area for Evidence before it is sent somewhere else. Normally, after
data is updated on the Holding Case, the goal is to broker these updates to Integrated Cases so that
caseworkers can evaluate the changes and apply them to the relevant cases.

For example, after the data is accepted on Integrated Cases, a user can see the positive impact of
submitting a life event because the updated data has an impact on the user's benefits. The bridge
between the Holding Case and the Integrated Cases is crossed only if the appropriate Evidence Broker

Chapter 1. IBM Cúram Universal Access 207

configuration is defined. For more information about the Evidence Broker, see the Evidence Broker
Developers Guide.

Configuring sharing from the Holding Case

An evidence configuration for sharing of Pregnancy evidence from the Holding Case to an Integrated Case
is shown in the following example:

<?xml version="1.0" encoding="UTF-8"?>
 <table name="EVIDENCEBROKERCONFIG">
 <column name="EVIDENCEBROKERCONFIGID" type="id"/>
 <column name="SOURCETYPE" type="text" />
 <column name="SOURCEID" type="id" />
 <column name="TARGETTYPE" type="text" />
 <column name="TARGETID" type="id"/>
 <column name="SOURCEEVIDENCETYPE" type="text"/>
 <column name="TARGETEVIDENCETYPE" type="text"/>
 <column name="AUTOACCEPTIND" type="bool"/>
 <column name="WEBSERVICESIND" type="bool"/>
 <column name="SHAREDTYPE" type="text"/>
 <column name="RECORDSTATUS" type="text"/>
 <column name="VERSIONNO" type="number"/>
 <row>
 <attribute name="EVIDENCEBROKERCONFIGID">
 <value>10003</value>
 </attribute>
 <attribute name="SOURCETYPE">
 <value>CT10301</value>
 </attribute>
 <attribute name="SOURCEID">
 <value>10330</value>
 </attribute>
 <attribute name="TARGETTYPE">
 <value>CT5</value>
 </attribute>
 <attribute name="TARGETID">
 <value>4</value>
 </attribute>
 <attribute name="SOURCEEVIDENCETYPE">
 <value>ET10000</value>
 </attribute>
 <attribute name="TARGETEVIDENCETYPE">
 <value>ET10074</value>
 </attribute>
 <attribute name="AUTOACCEPTIND">
 <value>0</value>
 </attribute>
 <attribute name="WEBSERVICESIND">
 <value>0</value>
 </attribute>
 <attribute name="SHAREDTYPE">
 <value>SET2002</value>
 </attribute>
 <attribute name="RECORDSTATUS">
 <value>RST1</value>
 </attribute>
 <attribute name="VERSIONNO">
 <value>1</value>
 </attribute>
 </row>
 </table>

When evidence is shared from the Holding Case to another Integrated Case, the source type needs to be
CT10301 and the source ID needs to be set to 10330. The source evidence type needs to be set to
ET10000, which is the code for all Evidence that is stored in Holding Cases. Evidence of this type is
known as Holding Evidence. The target evidence type in this case is ET10074. In Cúram Common
Evidence, this particular designation identifies Pregnancy Evidence. The evidence sharing type needs to
be set to SET2002, which is the code for Non-Identical Sharing.

Note: The AUTOACCEPTIND is set to 0. Always set this value to 0 when it is shared from a Holding Case to
an Integrated Case. This setting means that a caseworker always sees any changes that come from the
citizen's Holding Case.

208 IBM Cúram Social Program Management 7.0.8 or 7.0.4.4: IBM Universal Access Responsive Web
Application 2.3.0

If the caseworker agrees with the changes, the Incoming Evidence link of the Integrated Case Evidence
page can be used to synchronize the data from the Holding Case in the normal way.

To establish Evidence Broker Configuration for a custom component, a DMX file must be created that
contains the configuration that follows the previous example, for example, %SERVER_DIR%\components
\Custom\data\initial\EBROKER_CONFIG.dmx

In sharing Holding Evidence to a Standard Evidence Entity like a Pregnancy, the Evidence Broker copies
the Holding Evidence that contains the Pregnancy data into a new Pregnancy Evidence Record in the
target Integrated Case. Holding Evidence is not standard Evidence. Holding Evidence is stored in an XML
representation, so while the Holding Evidence is copied to the Target Evidence type, the Evidence Broker
converts the XML data into standard Evidence data. To assist with this conversion process, it is necessary
to supply metadata. An example of this metadata is illustrated in the following code block:

<?xml version="1.0" encoding="UTF-8"?>
<data-hub-config>
 <evidence-config package="curam.holdingcase.evidence">
 <entity name="HoldingEvidence" ev-type-code="ET10000">
 <attribute name="entityStruct">
 curam.citizen.datahub.holdingcase.holdingevidence.struct.
 +HoldingEvidenceDtls
 </attribute>
 </entity>
 <entity name="Pregnancy" ev-type-code="ET10074">
 <attribute name="entityStruct">
 curam.evidence.entity.struct.PregnancyDtls
 </attribute>
 <related-entity>
 <case-participant-role>
 <attribute name="linkAttribute">
 fahCaseParticipantRoleID
 </attribute>
 </case-participant-role>
 <case-participant-role>
 <attribute name="linkAttribute">
 caseParticipantRoleID
 </attribute>
 </case-participant-role>
 </related-entity>
 </entity>
 </evidence-config>
</data-hub-config>

The metadata describes each of the entities that can be copied to and from the Holding Case and an
Integrated Case. The metadata describes the dtls structs that are used to build the target evidence. It
also describes which of the attributes in Case Evidence refer to case participant roles. This information
ensures that when the Holding Evidence is copied, it does not blindly copy case participant role identifiers
from Holding Evidence. Instead, it looks for the equivalent case participant role ID on the target case and,
if it does not exist, creates one.

This metadata is stored in an AppResource resource store key. The resource store key is identified by
the Environment Property curam.workspaceservices.datahub.metadata. The initially configured
value for this variable defaults to the value curam.workspaceservices.datahub.metadata. This
variable points to default Holding Evidence Data Hub metadata. You can use the following steps to
replace the default Holding Evidence Data Hub metadata with a custom version to support all Evidence
Types that need to be brokered from the Holding Case to all Integrated Cases:

• Copy the contents of %SERVER_DIR%\components\WorkspaceServices\data\initial\clob
\DataHubMetaData.xml to %SERVER_DIR%\components\Custom\data\initial\clob
\CustomDataHubMetaData.xml

• Edit the contents of CustomDataHubMetaData.xml to describe all the Evidence Entities that need to
be updated by the Data Hub.

• Create a file %SERVER_DIR%\components\Custom\data\initial\APP_RESOURCES.dmx. Add an
entry to this file as shown as follows:

<?xml version="1.0" encoding="UTF-8"?>
<table name="APPRESOURCE">
<column name="resourceid" type="id" />

Chapter 1. IBM Cúram Universal Access 209

<column name="localeIdentifier" type="text"/>
<column name="name" type="text"/>
<column name="contentType" type="text"/>
<column name="contentDisposition" type="text"/>
<column name="content" type="blob"/>
<column name="internal" type="bool"/>
<column name="lastWritten" type="timestamp"/>
<column name="versionNo" type="number"/>
<row>
 <attribute name="resourceID">
 <value>10700</value>
 </attribute>
 <attribute name="localeIdentifier"> <value/>
 </attribute>
 <attribute name="name">
 <value>custom.datahub.metadata</value>
 </attribute>
 <attribute name="contentType">
 <value>text/plain</value>
 </attribute>
 <attribute name="contentDisposition"> <value>inline</value>
 </attribute> <
 attribute name="content"> <value> ./Custom/data/initial/clob/CustomDataHubMetaData.xml </
value>
 </attribute> <attribute name="internal"> <value>0</value> </attribute>
 <attribute name="lastWritten"> <value>SYSTIME</value>
 </attribute> <attribute name="versionNo"> <value>1</value>
 </attribute>
</row>
</table>

• Create or append to the file %SERVER_DIR%\components\Custom\properties
\Environment.xml adding an entry along the following lines:

<environment>
 <type name="dynamic_properties">
 <section code="WSSVCS"
 name="Workspace Services - Configuration">
 <variable name="curam.workspaceservices.datahub.metadata"
 value="custom.datahub.metadata" onlyin="all"
 type="STRING">
 <comment>
 Identifies an AppResource used to configure DataHub
 meta-data.
 </comment>
 </variable>
 </section>
 </type>
 </environment>

Round tripping and configuring sharing to the Holding Case

The previous section described how data is shared from the Holding Case to Integrated Cases. Analysts
also might want to consider whether evidence needs to be transferred in the opposite direction - that is,
from the Integrated Cases to the Holding Case. When sharing is configured from the Integrated Case to
the Holding Case, changes made by the caseworker to selected evidence can be propagated back to the
Holding Case. This process is essential for life events that need to pre-populate data from Evidence
Entities in existing Integrated Cases. This example shows how to configure Pregnancy Evidence for
Sharing to the Holding Case.

<?xml version="1.0" encoding="UTF-8"?>
<table name="EVIDENCEBROKERCONFIG">
 <column name="EVIDENCEBROKERCONFIGID" type="id"/>
 <column name="SOURCETYPE" type="text" />
 <column name="SOURCEID" type="id" />
 <column name="TARGETTYPE" type="text" />
 <column name="TARGETID" type="id"/>
 <column name="SOURCEEVIDENCETYPE" type="text"/>
 <column name="TARGETEVIDENCETYPE" type="text"/>
 <column name="AUTOACCEPTIND" type="bool"/>
 <column name="WEBSERVICESIND" type="bool"/>
 <column name="SHAREDTYPE" type="text"/>
 <column name="RECORDSTATUS" type="text"/>
 <column name="VERSIONNO" type="number"/>
 <row>

210 IBM Cúram Social Program Management 7.0.8 or 7.0.4.4: IBM Universal Access Responsive Web
Application 2.3.0

 <attribute name="EVIDENCEBROKERCONFIGID">
 <value>2</value>
 </attribute>
 <attribute name="SOURCETYPE">
 <value>CT5</value>
 </attribute>
 <attribute name="SOURCEID">
 <value>4</value>
 </attribute>
 <attribute name="TARGETTYPE">
 <value>CT10301</value>
 </attribute>
 <attribute name="TARGETID">
 <value>10330</value>
 </attribute>
 <attribute name="SOURCEEVIDENCETYPE">
 <value>ET10074</value>
 </attribute>
 <attribute name="TARGETEVIDENCETYPE">
 <value>ET10000</value>
 </attribute>
 <attribute name="AUTOACCEPTIND">
 <value>1</value>
 </attribute>
 <attribute name="WEBSERVICESIND">
 <value>0</value>
 </attribute>
 <attribute name="SHAREDTYPE">
 <value>SET2002</value>
 </attribute>
 <attribute name="RECORDSTATUS">
 <value>RST1</value>
 </attribute>
 <attribute name="VERSIONNO">
 <value>1</value>
 </attribute>
 </row>
</table>

Note: Unlike Sharing from Holding Case to Integrated Case, the AUTOACCEPTIND is set to 1. This
designation is because the target case is a Holding Case and Holding Cases are designed to operate
unattended. It is not expected that caseworkers need to review items that are being shared onto the
Holding Case as they come from an authoritative source, for instance, the Integrated Case.

Issues for consideration

With suitable configuration, It is possible to share data from the Holding Case to many different
Integrated Cases. Take the example of two different Integrated Cases (cases A and B) that are configured
to share information with a citizen's Holding Case (case H). Both cases A and B separately recorded an
Income Evidence record for the citizen. In the citizen's Holding Case, this evidence record shows up as
two separate Income Records. As far as cases A and B are concerned, they are two entirely separate
records - A's view of the citizen's Income and B's view of the citizen's Income. However, to the citizen,
this breakdown might not make much sense. The citizen has only one Income and is using one Portal to
communicate with the Social Enterprise Management (SEM) agency or agencies concerned. Why does the
citizen see two records for the same Income? In cases where there is sharing to multiple Integrated
Cases from a single Holding Case, consideration needs to be given to creating another set of sharing
relationships to be established from A to B and B to A. This consideration is an issue that requires proper
consideration early on in the project lifecycle.

Putting it all together
Previous topics showed how to create the parts of a life event, this topic discusses how to join all these
pieces together to make a completed life event.

New life events can be configured using the life event Administration pages. Using the Administration
Pages you can create new life event Types and life event Channels, add rich text descriptions and
associate the life events with IEG Scripts and Recommendation Rule Sets. Once all of the required
Entities are created, the data can be extracted into a set of DMX files that can be used as a basis for
ongoing development. The following set of commands can be used to extract the relevant dmx files:

Chapter 1. IBM Cúram Universal Access 211

build extractdata -Dtablename=LifeEventType
build extractdata -Dtablename=LifeEventContext
build extractdata -Dtablename=LifeEventCategory
build extractdata -Dtablename=LifeEventCategoryLink
build extractdata -Dtablename=LocalizableText
build extractdata -Dtablename=TextTranslation

The LocalizableText and TextTranslation tables contain all of the life event descriptions, but they are also
filled with text translations that do not relate to life events. Developers should audit these DMX files
removing any entries that do not correspond to the relevant life event descriptions before copying the
dmx files to %SERVER_DIR%\components\Custom\data\initial\.

Event APIs for life events

The life event broker is instrumented with guice events. Developers can write listeners that can be bound
to these events. The available events are:

• PreCreateLifeEvent - Invoked before launching a life event
• PostCreateLifeEvent - Invoked after the life event has been initialized. That is after the Data Hub

Transform and View Processors have been executed.
• PreSubmitLifeEvent - Invoked after the life event has been submitted but before the Update

Processors have been run.
• PostSubmitLifeEvent - Invoked after the life event has been submitted.

Note that both the Pre and Post SubmitLifeEvent events are executed from within a Deferred Process so
the current user is expected to be SYSTEM. Life events should never attempt to change the contents of
the life event. The code extract below shows how a Listener class, MyPreCreateListener can be
bound to one of these life events:
Multibinder<LifeEventEvents.PreCreateLifeEvent>
 preCreateBinder =
 Multibinder.newSetBinder(binder(),
 new TypeLiteral<LifeEventEvents.PreCreateLifeEvent>() { /**/
 });

 preCreateBinder.addBinding().to(MyPreCreateListener.class);

Artifacts with limited customization scope
A description of IBM Cúram Universal Access artifacts that have restrictions on their use. Customers that
want to change these artifacts should consider alternatives or request an enhancement to Universal
Access.

Model

Customers are not supported in making changes to any part of the Universal Access model. Changes in
the model such as changing the data types of domains can cause failure of the Universal Access system
and upgrade issues. This applies to the model files in the following packages:

• WorkspaceServices
• CitizenWorkspace
• CitizenWorkspaceAdmin

Code tables

See Extending code tables for a list of restricted code tables.

Related information
Extending code tables

212 IBM Cúram Social Program Management 7.0.8 or 7.0.4.4: IBM Universal Access Responsive Web
Application 2.3.0

Troubleshooting and support
Use this information to help you to troubleshoot issues with the IBM Cúram Universal Access Responsive
Web Application or IBM Social Program Management Design System.

The IBM Cúram Social Program Management supported assets can be installed, customized, and
deployed separately from IBM Cúram Social Program Management, before being integrated into the
system.

When troubleshooting web applications that are integrated with IBM Cúram Social Program Management,
use this troubleshooting information in conjunction with the troubleshooting information for IBM Cúram
Social Program Management. For more information, see the Troubleshooting and support related link.

Citizen Engagement components and licensing
You can use and customize the IBM Universal Access Responsive Web Application for your organization,
or develop your own custom web applications to complement the standard IBM Cúram Social Program
Management application. Use this information to understand the IBM Cúram Social Program Management
components, supported assets, and licenses that you need.

Installable components
IBM Social Program Management Design System supported asset

The design system provides foundational packages for building accessible and responsive web
applications. It consists of a React UI component library, React development resources, and a style
guide for creating web applications.

IBM Universal Access Responsive Web Application supported asset
The IBM Universal Access Responsive Web Application provides a reference web application, which
you can use and customize for your organization. The IBM Universal Access Responsive Web
Application requires the IBM Social Program Management Design System and the Universal Access
application module.

Universal Access application module
The Universal Access (UA) application module provides the Universal Access administrator
application and the Universal Access REST APIs that expose interfaces to Universal Access and IEG
functions for consumption by the IBM Universal Access Responsive Web Application. Universal
Access requires the IBM Cúram Social Program Management Platform.

Licensing Universal Access

You can buy the Universal Access application module, which entitles the IBM Universal Access
Responsive Web Application asset, and IBM Cúram Social Program Management Platform, which entitles
the IBM Social Program Management Design System asset.

Alternatively, you can buy Citizen Engagement, which includes the Universal Access application module,
the IBM Cúram Social Program Management Platform, and both assets.

Licensing the IBM Social Program Management Design System

To develop custom web applications to complement the IBM Cúram Social Program Management
Platform, you can buy the IBM Cúram Social Program Management Platform, which entitles the IBM
Social Program Management Design System asset.

Chapter 1. IBM Cúram Universal Access 213

Citizen Engagement support strategy
The Citizen Engagement assets are expected to be released monthly, and they can be upgraded
independently of the base IBM Cúram Social Program Management product.

Support strategy for the supported assets

Due to the more frequent release schedule, the support strategy is to maintain a single product line for
both new features and maintenance. Where possible, all updates are planned for the latest version of the
assets. Security and defect fixes will be delivered in the latest release only. The assets are supported for
the lifetime of the latest supported IBM Cúram Social Program Management version available at the time
of the asset release.

The assets use semantic versioning. As a general guideline, this means:

• MAJOR version for incompatible API changes
• MINOR version for adding functionality in a backwards-compatible manner
• PATCH version for backwards-compatible bug fixes

The assets will be full releases rather than delta releases regardless of version type.

Although new features (pages) can be delivered in any minor release, new features are typically delivered
at the same time as the Universal Access application module release that contains the new APIs for those
features.

Support strategy for the Universal Access application module

Where possible, Universal Access REST API changes are delivered in refresh pack or other impact-free
releases that impose no forced upgrade impact.

Compatibility

You can confirm compatibility between a version of the supported assets and the IBM Cúram Social
Program Management software by referring to the asset release notes and documentation.

Examining log files
Log files are a useful resource for troubleshooting problems.

Examining the browser console logs

For JavaScript applications, you can examine the browser console logs for errors that might be relevant to
investigating problems. For the exact details about how to locate the console logs within the browser, see
your browser documentation.

Note: When you are developing applications with the IBM Social Program Management Design System,
console logging information might also be displayed in the console that runs the start process for the
application.

Examining the HTTP Server log files

When you deploy a built application on an HTTP Server, the built application introduces a new point with
which logging is captured in your system topology. The IBM HTTP Server, Oracle HTTP Server, and the
Apache HTTP Server include comprehensive logging system and related information.

For more information about troubleshooting the IBM HTTP Server, see Troubleshooting IBM HTTP Server.

For more information about troubleshooting the Oracle HTTP Server, see Managing Oracle HTTP Server
Logs.

For more information about troubleshooting the Apache HTTP Server, see Log Files.

214 IBM Cúram Social Program Management 7.0.8 or 7.0.4.4: IBM Universal Access Responsive Web
Application 2.3.0

https://semver.org/
https://www.ibm.com/support/knowledgecenter/en/SSEQTJ_9.0.0/com.ibm.websphere.ihs.doc/ihs/tihs_troubsteps.html
https://docs.oracle.com/middleware/1212/webtier/HSADM/man_logs.htm#HSADM218
https://docs.oracle.com/middleware/1212/webtier/HSADM/man_logs.htm#HSADM218
https://httpd.apache.org/docs/2.4/logs.html

Notices

This information was developed for products and services offered in the United States.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can send
license inquiries, in writing, to:

IBM Director of Licensing IBM Corporation North Castle Drive, MD-NC119 Armonk, NY 10504-1785 US

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing Legal and Intellectual Property Law IBM Japan Ltd. 19-21, Nihonbashi-
Hakozakicho, Chuo-ku Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Director of Licensing IBM Corporation North Castle Drive, MD-NC119 Armonk, NY 10504-1785 US

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-
IBMproducts. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

© Copyright IBM Corp. 2018, 2019 215

Statements regarding IBM's future direction or intent are subject to change or withdrawal without notice,
and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject to change without
notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to change before the
products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Privacy Policy considerations
IBM Software products, including software as a service solutions, (“Software Offerings”) may use cookies
or other technologies to collect product usage information, to help improve the end user experience, to
tailor interactions with the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you to
collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below.

Depending upon the configurations deployed, this Software Offering may use session cookies or other
similar technologies that collect each user’s name, user name, password, and/or other personally
identifiable information for purposes of session management, authentication, enhanced user usability,
single sign-on configuration and/or other usage tracking and/or functional purposes. These cookies or
other similar technologies cannot be disabled.

If the configurations deployed for this Software Offering provide you as customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

For more information about the use of various technologies, including cookies, for these purposes, see
IBM’s Privacy Policy at http://www.ibm.com/privacy and IBM’s Online Privacy Statement at http://
www.ibm.com/privacy/details the section entitled “Cookies, Web Beacons and Other Technologies” and
the “IBM Software Products and Software-as-a-Service Privacy Statement” at http://www.ibm.com/
software/info/product-privacy.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
“ Copyright and trademark information ” at http://www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

216 Notices

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/privacy/details
http://www.ibm.com/legal/copytrade.shtml

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other names may be trademarks of their respective owners. Other company, product, and service names
may be trademarks or service marks of others.

Notices 217

IBM®

Part Number:

(1
P)
 P

/N
:

	Contents
	Figures
	Tables
	Chapter 1. IBM Cúram Universal Access
	What's new in Universal Access
	What's new for Universal Access in September 2019

	IBM Cúram Universal Access release notes
	2.3.0 release notes
	Enhancement to single-sign on
	Optional label displayed on individual check boxes
	ComboBox makes unnecessary calls to custom functions on keyboard Up Arrow and Down Arrow key events
	Up and Down keys do not work for ComboBox in Microsoft Internet Explorer 11
	Tab order was not reset when navigating through IEG forms
	Missing heading levels on IEG summary pages
	WAI-ARIA heading role implemented incorrectly
	Non-empty legends added to fieldsets as labels for radio buttons and check boxes in IEG

	IBM Cúram Universal Access business overview
	Screening citizens for benefits
	Screening types
	Starting the screening process
	Authenticated and anonymous screening
	Anonymous screening
	Authenticated screening

	Screening results

	Applying for benefits
	Starting and selecting an application
	Managing existing applications
	Saving an application
	Resuming an application
	Submitting an application
	Printing an application
	Withdrawing an application
	Deleting an application

	Change of circumstances with Life Events
	Accessing life events
	The Life Event Overview page
	The life event submission confirmation page
	Reviewing life events change history

	Appealing benefit decisions
	Decide to appeal
	Submit an appeal request
	View your appeals
	Appeals notices and notifications

	Citizen account
	Browsing the organization home page
	Creating a citizen account and logging in
	Browsing the citizen's dashboard
	Viewing payments
	Viewing TO DOs
	Citizen account messages

	Screening from a citizen account
	Browsing the Your benefits page
	Requesting an appeal from the citizen account
	Viewing Notices
	Finding contact information

	Installing the IBM Cúram Universal Access development environment
	Prerequisites and supported software
	Installing the IBM Cúram Universal Access development environment
	Upgrading the IBM Universal Access Responsive Web Application

	Customizing the IBM Cúram Universal Access application
	React environment variable reference
	Universal Access Responsive Web Application starter pack and packages
	Sample application project structure
	Developing compliantly
	Enforce code style with ESlint
	Universal Access UI coding conventions
	The sampleApplication feature
	Manage state with React Hooks
	Error handling with a React higher-order component (HOC)
	Developing with routes
	The Routes component
	Adding routes
	Replacing routes
	Redirecting routes
	Removing routes
	Advanced routing

	Redux in Universal Access
	Universal Access Redux modules
	Social Program Management Web Development Accelerator
	Generating Universal Access Redux modules

	Connecting to Universal Access APIs
	The mock server API service
	The RESTService utility
	Universal Access REST APIs

	Developing authentication
	Developing with headers and footers
	Adding images, fonts, and files
	Customizing the color scheme or typography
	Developing toast notifications
	Providing the application in another language
	Selecting a language
	Configuring the languages provided by the application
	Translating your application
	Extracting translatable content
	Including translated content in your application

	Regionalizing your application

	Customization scenarios
	Changing the application text
	Adding content to the application
	Styling content with the Social Program Management Design System
	Changing the application header or footer
	Creating an IBM Cúram Social Program Management API
	Connecting to REST APIs from the application
	Testing REST API connections with Tomcat
	Handling failures in the application
	Implementing a loading mask
	Reusing existing features

	Customizing IEG forms in the Universal Access Responsive Web Application
	IEG elements and attributes specific to the design system and Universal Access Responsive Web Application
	IEG configuration not currently supported for the Universal Access Responsive Web Application
	Configuring progress information for forms
	Configuring dynamic titles on forms
	Configuring rich text on forms
	Configuring external links to open in a new tab or window

	Configuring hint text for forms
	Configuring explainer text for forms
	Configuring required or optional labels for form fields
	Configuring input formats and constraints for form fields
	Configuring phone numbers
	Configuring date formats
	Configuring currency symbols

	Configuring code-table hierarchies for form fields
	Implementing a combo box for form fields
	Implementing search functions for ComboBox components
	Configuring combo box scripts and schemas

	Customizing script behavior with BaseFormContainer
	Merging clusters with the cluster element grouping-id attribute
	Configuring relationship pages questions
	Configuring relationship starting dates on relationship summary pages

	Customizing appeals in the Universal Access Responsive Web Application
	Enabling and disabling appeals

	Implementing page view analytics
	Implementing a test environment
	End-to-end test environment
	End-to-end test helper files
	End-to-end test initial setup and configuration
	Page object development and best practices
	The pageObject class
	Adding custom behavior to your page objects
	Building, exporting and configuring your page objects
	Writing end-to-end scripts
	Running end-to-end tests

	Jest and Enzyme test environment
	Unit and snapshot test initial setup and configuration
	Unit and snapshot test helper files
	Guidelines for writing unit test scripts
	Running Jest and Enzyme tests

	Deploying your web application to a web server
	Building the Universal Access Responsive Web Application for deployment
	Install and configure IBM HTTP Server with WebSphere Application Server
	Generating an IBM HTTP Server plug-in configuration
	Configuring the IBM HTTP Server plug-in

	Install and configure Oracle HTTP Server with Oracle WebLogic Server
	Installing Oracle HTTP Server and its components
	Configuring the Oracle HTTP Server plug-in

	Installing and configuring Apache HTTP Server
	Deploying your web application

	Configuring the IBM Cúram Universal Access server
	Prerequisites
	Configuring service areas and PDF forms
	Configuring programs
	Configuring a Program
	Defining a name and reference
	Defining an intake processing system
	Defining case processing details
	Defining the integrated case strategy
	Specifying a client selection strategy
	Specifying a product delivery type
	Configuring timers
	Configuring multiple applications
	Defining a PDF form
	Defining a URL
	Defining description and summary information
	Defining local office application details

	Defining local offices for a program
	Defining PDF mappings for a program
	Defining program evidence types

	Configuring screenings
	Configuring a new screening
	Configuring eligibility and screening details
	Configuring screening display information
	Defining programs for a screening
	The screening auto-save property
	Configuring re-screening
	Pre-populating the screening script
	Resetting data captured from a previous screening
	Writing Rule Sets For Screening
	Addin a data store schema
	The screening rules interface

	Configuring applications
	Configuring an application in the Configure a New Online Application page
	Configuring application information and display information
	Configuring scripts
	Defining a PDF form

	Configuring an application in the Property Administration page
	Application properties

	Configuring other application settings

	Configuring online categories
	Configuring the citizen account
	Configuring messages
	Account messages
	Creating appeal request acknowledgment or appeal rejection messages
	Creating application acknowledgments
	Creating meeting messages
	Creating payment messages

	System messages
	Configuring message duration
	Switching off messages

	Configuring last logged in information
	Configuring contact information
	Configuring user session timeout
	Configuring appeal requests
	Configuring communications on the Notices page

	Configuring life events
	Enabling and disabling life events
	Configuring a life event
	Mapping life event information to evidence entities
	Defining a question script, answer script, and schema
	Categorizing life events
	Defining Remote Systems

	Securing IBM Cúram Universal Access
	The security model
	Authorization roles and groups
	Integrating external security
	Configuring single sign-on
	SAML 2.0 single sign-on initiation and flow in Universal Access
	Configuring single sign-on properties
	Configuring cross-origin resource sharing
	Single sign-on configuration example
	Configuring single sign-on through IBM Security Access Manager
	Configuring IBM Security Access Manager as an IdP
	Configuring WebSphere Application Server
	Add and enable the users in LDAP
	Test IdP-initiated SAML SSO infrastructure
	SP-Initiated only: Implementing the SAML AuthnRequest functionality in WebSphere Application Server
	SP-Initiated only: Test SP-initiated SAML SSO infrastructure

	External security authentication example
	Configuring an alternative login ID
	Deploying in identity-only mode for registered users
	Disabling the Create Account screens
	Redirecting users to register with an external system
	Enabling users to log on immediately after registration with CentralID

	Customizing account creation and management
	Account management configurations
	Account management events
	PasswordReuseStrategy API
	CitizenWorkspaceAccountManager API

	Data caching

	Customizing the IBM Cúram Universal Access server
	Customizing screening
	Track the volume, quality, and results of screenings
	Populating a custom screening results page

	Customizing submitted applications
	Customizing the intake application workflow
	Customizing the generic PDF for processed applications
	Using events to extend intake application processing
	Customizing the concern role mapping process
	Enable the ConcernRoleMappingStrategy API
	Use the ConcernRoleMappingStrategy API

	How to send applications to remote systems for processing

	Customizing the Citizen Account
	Security and the Citizen Account
	Ensure that the currently logged in user is the correct type
	Ensure that the logged in user has access to the requested records

	Messages
	Configuring citizen messages
	Adding a new type of citizen message
	Implementing a new message type
	Customizing specific message types
	Payment messages
	Meeting messages
	Application acknowledgment message

	Customizing the Notices page
	Communication processing hooks and events

	Customizing appeal request statuses
	Error logging in the citizen account

	Customizing life events
	How to build a life event

	Customizing advanced life events
	How to build a life event
	Analysis
	Considerations for life events analysis
	Building the components of a life event
	Writing life event IEG Scripts
	Pre-Populating a life event
	Driving updates from life events
	Configuring the evidence broker for use with the holding case
	Putting it all together

	Event APIs for life events

	Artifacts with limited customization scope

	Troubleshooting and support
	Citizen Engagement components and licensing
	Citizen Engagement support strategy
	Examining log files

	Notices
	Privacy Policy considerations
	Trademarks

