
IBM Cúram Social Program Management
Version 7.0.4

IBM Cúram Universal Access 2.0.2

IBM

Note

Before using this information and the product it supports, read the information in “Notices” on page
163

Edition

This edition applies to IBM® Cúram Social Program Management 7.0.4.1 iFix 2, or 7.0.5.

Licensed Materials - Property of IBM.
© Copyright International Business Machines Corporation 2018, 2019.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

List of Figures.. v
List of Tables.. vi

Chapter 1. IBM Cúram Universal Access (New)... 1
IBM Cúram Universal Access release notes..1

2.0.2 release notes...1
Prerequisites and IBM Cúram Social Program Management compatibility... 2

Prerequisites and supported software...3
IBM Cúram Universal Access business overview..5

Screening citizens for benefits... 5
Citizen account... 10
Life events...15
Applying for benefits.. 17

Installing the IBM Cúram Universal Access development environment..24
Installing the IBM Cúram Universal Access development environment.. 24

Upgrading to later versions of IBM Cúram Universal Access... 27
Customizing the IBM Cúram Universal Access application.. 28

Planning for development.. 28
Development environment...28
Development resources... 29
Developing compliantly..30
Developing with routes...30
Connecting to Universal Access APIs.. 34
Developing authentication... 37
Developing with Redux...39
Developing with universal-access modules.. 41
Developing with headers and footers.. 42
Developing toast notifications... 44
Providing the application in another language.. 45
Customizing forms with IEG...49
Configuring page view analytics...57
Customization scenarios.. 59

Deploying your web application to a web server.. 75
Building IBM Cúram Universal Access for deployment...75
Install and configure IBM HTTP Server with WebSphere Application Server.................................... 76
Install and configure Oracle HTTP Server with Oracle WebLogic Server... 78
Deploying your web application...79

Configuring the IBM Cúram Universal Access server... 80
Prerequisites.. 80
Configuring service areas and PDF forms..80
Configuring programs...81
Configuring screenings...85
Configuring applications...90
Configuring online categories.. 93
Configuring the citizen account..94
Configuring life events... 104

Securing the IBM Cúram Universal Access server..107
The security model...107
Authorization roles and groups..108
Integrating external security... 109
Customizing account creation and management..126

 iii

Data caching...127
Customizing the IBM Cúram Universal Access server..127

Customizing screening... 127
Customizing submitted applications... 129
Customizing the Citizen Account... 132
Customizing life events.. 141
Customizing advanced life events... 142
Artifacts with limited customization scope... 159

Troubleshooting and support.. 160
Citizen Engagement components and licensing... 160
Citizen Engagement support strategy... 161
Examining log files... 161

Notices..163
Privacy Policy considerations..164
Trademarks.. 164

iv

List of Figures

1. IdP initiated flow... 110
2. IdP initiated flow in IBM Cúram Universal Access...112
3. Universal Access SSO configuration components... 115
4. Intake application workflow... 129
5. Holding Evidence XML Example... 145
6. Data Store XML Sample.. 146
7. XSLT Transform for Vehicle Resource Information.. 147
8. Evidence XML with Updates..151

 v

List of Tables

1. Supported IBM Cúram Social Program Management versions for IBM Universal Access Responsive
Web Application... 3

2. Dashboard panes.. 12
3. Process environment variables...37
4. Information messages for browser preferences..80
5. Application acknowledgment... 95
6. Meeting invite.. 95
7. Meeting cancellation... 96
8. Meeting update..97
9. Payment issued... 99
10. Payment canceled...100
11. Payment due... 100
12. Case suspended..100
13. Case unsuspended..101
14. ACS trust association interceptor custom properties..118
15. Account configurations... 126
16. Account events..126
17. Message properties files...133
18. Payment messages and related properties... 138
19. Payment message expiry property...138
20. Meeting messages.. 138
21. Meeting message display date property.. 139
22. Application acknowledgment message expiry property... 139
23. Application error codes.. 140

vi

Chapter 1. IBM Cúram Universal Access (New)
IBM Cúram Universal Access (New) enables citizens to access services in a browser from both desktop,
tablet, and mobile devices. Universal Access uses modern technologies such as React to provide a
working reference application that you can customize to provide your own citizen-facing web application.
In comparison, Universal Access, delivered with versions 7.0.2 and earlier, use traditional technologies to
customize the citizen-facing web application.

Documentation versions

The responsive Universal Access client uses an asset that is called "IBM Universal Access Responsive
Web Application". The asset is updated at more regular intervals than the underlying IBM Cúram Social
Program Management platform and therefore has its own version numbering scheme.

The online documentation applies only to the most recent version of Universal Access. To read the
documentation in PDF format for the earlier versions, see the IBM Cúram Social Program Management
PDF library.

IBM Cúram Universal Access release notes
Read the release notes for the latest release of Universal Access Responsive Web Application.

2.0.2 release notes
Read about updates and changes in Universal Access Responsive Web Application version 2.0.2, which is
compatible with IBM Cúram Social Program Management 7.0.4.1 iFix 2, or 7.0.5.

General Universal Access
New log-in notification for successful login

A log-in toast notification has been implemented using the Toaster design system component. Upon a
successful login, a green notification banner is displayed with the text "You're now logged in". The
banner can be dismissed by the user or it is auto dismissed after 7 seconds. (1644)

Improvements to session timeout message
Previously, the session timeout countdown timer would count down the user's remaining session time
with a long-handed format of "N minutes and N seconds". Now, that has changed to a simple timer,
"mm:ss". The session timeout modal title has also changed from "You're about to be logged out" to
"Stay logged in?". (896)

Improvements in error handling for the Try again link
An issue was fixed where, if a user selected a link or a button in the application and an error occurred
when loading a component, the Try again link did not refresh the application correctly. (570)

Issue with keyboard input in date fields
An issue was fixed with keyboard input from the numeric keypad and the numeric keypad now works
as expected. (PO08089) (1987)

Issue with program ID for draft applications
An issue was fixed where the program ID was not being set correctly for draft applications. (PO08123)
(2129)

HTTP response headers not returned for unsuccessful requests
Previously, the RESTService utility module only returned the HTTP response headers for successful
requests (Code 200). The headers were omitted for unsuccessful request. Now RESTService returns
the HTTP response headers for all requests. (2089)

© Copyright IBM Corp. 2018, 2019 1

http://www.ibm.com/support/docview.wss?uid=swg27041327
http://www.ibm.com/support/docview.wss?uid=swg27041327

Issue with losing the application context after a failed login
Previously, after a failed attempt to login, the application redirected users from /universal/login
to /login. Now, the application context is not removed from the URL and users remain in the correct
context. (1796)

IEG updates

Read about changes to IEG that affect forms in the IBM Cúram Universal Access responsive web
application.

Release notes for Social Program Management server fixes
For information about server enhancements and bug fixes that affect IEG, see the IBM Curam Social
Program Management release notes for your version.

New customization option for the labeling of required or optional questions
In IEG forms, optional fields are now indicated by default instead of required fields. As the majority of
questions in a typical form should be required, the latest design guidance is to indicate the optional
questions instead, which results in a less cluttered form. If you prefer, you can choose to indicate the
required fields instead by setting a new REACT_APP_DISPLAY_REQUIRED_LABEL environment
variable. For more information, see “Configuring required or optional field labels for forms” on page
52. (1939)

Variable-width fields are now supported in containers
You can add variable-width fields for questions in containers by using the class-names child
element of the layout element. For more information, see “Configuring formats and constraints for
input fields” on page 55.

Help improvements for questions in containers
Previously, each field in a container had an individual help icon and help text. Now, a single help icon
is displayed for a container and the help text contains the help for all of the individual fields. (1923)

IEG error messages persist when you navigate to a previous page
An issue was fixed where, under certain loop conditions, error messages on an IEG page persisted
when you navigated back to the previous page. (PO08063) (1924)

Issue with exceeding the character limit in amount fields
Previously, numbers were incorrectly displayed when amounts that exceeded the character limit of 20
were entered in amount fields. This issue was fixed by applying the currency mask to the field. For
more information, see “Configuring formats and constraints for input fields” on page 55. The
currency mask has a character limit of 21 characters. (1860)

Issue with non-numerical characters in numerical fields
Previously when you entered a non-numerical character in a numerical field, an error resulted when
you went to the next page. Now, updated validations prevent data other than numbers or a decimal
point from being added to numerical fields. (PO08110) (2083)

Issue with codes displaying instead of the expected values for code-table hierarchy questions
An issue was fixed where the code-table codes instead of the expected code-table values were
displayed for responses to questions based on a code-table hierarchy. (1952)

Prerequisites and IBM Cúram Social Program Management compatibility
The IBM Universal Access Responsive Web Application asset is released at more frequent intervals than
the IBM Cúram Social Program Management Platform platform and the Universal Access application
module and requires specific versions as follows.

2 IBM Cúram Social Program Management: IBM Cúram Universal Access 2.0.2

https://www-01.ibm.com/support/docview.wss?uid=swg27037963
https://www-01.ibm.com/support/docview.wss?uid=swg27037963

Table 1: Supported IBM Cúram Social Program Management versions for IBM Universal Access
Responsive Web Application

IBM Cúram Social Program Management
Platform and IBM Cúram Universal Access
application module

IBM Universal Access Responsive Web
Application asset

7.0.4.1 Fix Pack, iFix 2, 7.0.5 2.0.2

7.0.4.1 Fix Pack, iFix 1, 7.0.5 2.0.1

7.0.4.1 Fix Pack, 7.0.5 2.0.0

7.0.4.0 Refresh Pack iFix 1 1.4.0, 1.4.2

Prerequisites

To see the prerequisites for the current version, see “Prerequisites and supported software” on page 3.

To see the prerequisites for previous versions, see the IBM Cúram Social Program Management PDF
library.

Prerequisites and supported software
The following prerequisite and supported software apply to this release of IBM Cúram Universal Access
(New).

Platforms

There is no dependency on specific hardware platforms, instead the IBM Cúram Universal Access
dependency is on the browser. However, the following are minimum requirements:

• Desktop devices that meet Windows 7 specifications.
• Android devices that meet minimum specifications for Android 4.4+ . 4.4+ should function on a two year

old Android device or younger.
• Apple devices released in the last 18 months running iOS9 or higher.

Development tools

Node.js is a prerequisite for installing the IBM Cúram Universal Access (New) reference application and
for developing and deploying your web applications

Supported software Version Prerequisite
minimum

Product
minimum

Operating system
restrictions

Node.js 10 LTS and
future fix packs

10 LTS 2.0.0 No

Choose an Interactive Development Environment (IDE) to develop your app.

There are many IDEs that you can choose, for example Visual Studio Code, Atom, and Sublime. Universal
Access does not depend on any specific IDE, you are free to choose your own IDE. However, IBM uses
VSCode to develop the your application, it supports many plug ins that make development faster and
easier, for example it supports the following tools:

• Linting tools (ESLint)
• Code formatters (Prettier)
• Debugging tools (Debugger for Chrome)

IBM Cúram Universal Access (New) 3

http://www-01.ibm.com/support/docview.wss?uid=swg27041327
http://www-01.ibm.com/support/docview.wss?uid=swg27041327

• Documentation tools (JSDoc)

IBM does not own, develop, or support these tools.

IBM Cúram Social Program Management

IBM Cúram Social Program Management platform and Universal Access application module 7.0.4.1 iFix 2,
or 7.0.5. are prerequisites for developing and deploying your web applications.

Application server, web server and DBMS

Deploying Universal Access (New) requires a web server in the IBM Cúram Social Program Management
topology. The following application server, web server, and DBMS combinations are supported for
developing and deploying your Universal Access (New) application.

• IBM WebSphere® Application Server, IBM HTTP Server, and IBM DB2®

• IBM WebSphere Application Server, IBM HTTP Server, and Oracle Database
• Oracle WebLogic Server, Oracle HTTP Server, and Oracle Database

For more information about installing an application server for IBM Cúram Social Program Management,
see Installing an enterprise application server.

HTTP servers

These HTTP servers are prerequisites for deployment.

Supported software Version Prerequisite
minimum

Product minimum Operating
system
restrictions

IBM HTTP Server 9.0 9.0.0.5 2.0.0 No

8.5.5 8.5.5.9 2.0.0 No

Oracle HTTP Server (12.1.3) and
future fix packs

(12.1.3) 2.0.0 No

Web browsers

IBM Cúram Universal Access is developed for public-facing applications. Every effort was made to ensure
that the application pages use standard web technologies and formats, which should be compatible with
all browsers that are listed. However, the browsers that are listed in the following table are the only
browsers that are officially supported.

Note: The browser Back and Forward buttons, and browser refresh, are now supported on IEG pages.
Information entered in IEG forms is now retained when the citizen clicks Next or goes back or forward
through a form.

Chrome, Firefox, Edge and Safari release new versions more frequently than Internet Explorer, and they
install updates automatically by default. Universal Access releases are tested on the latest browser
versions that are available at the start of the IBM development cycle.

Note: Only stable Chrome releases are tested.

If no issues result from the tests, IBM certifies the browser version.

For each new product release, the prerequisites list the version that is certified. If, for any reason, IBM
cannot certify that version, you might need to revert to a version that is previously fully certified. While

4 IBM Cúram Social Program Management: IBM Cúram Universal Access 2.0.2

IBM supports customers who use newer versions of these browsers than the last certified version,
customers must understand that the versions are not fully tested.

Supported software Version Prerequisite
minimum

Product
minimum

Operating system
restrictions

Apple Safari 11 and future
fix packs

11 2.0.0 No

Google Chrome 64 and future
fix packs

64 2.0.0 No

Microsoft Edge 41 and future
fix packs

41 2.0.0 No

Microsoft Internet
Explorer

11 and future
fix packs

11 2.0.0 No

Mozilla Firefox 58 and future
fix packs

58 2.0.0 No

Accessibility

This accessibility software is supported.

Supported
software

Version Prerequisit
e minimum

Product
minimum

Operating system
restrictions

Browser

Freedom
Scientific JAWS
screen reader
(SPM 7.0.4.1)

18 and
future fix
packs

18 2.0.0 No Microsoft Internet
Explorer 11

Freedom
Scientific JAWS
screen reader
(SPM 7.0.5.0)

2018 and
future fix
packs

2018 2.0.0 No Microsoft Internet
Explorer 11

Apple
VoiceOver

12 and
future fix
packs

12 2.0.0 No Apple Safari 12

Note: The combination of Internet Explorer 11 and JAWS 18 or 2018 is the only certified screen reader
and browser combination.

IBM Cúram Universal Access business overview
IBM Cúram Universal Access is a citizen-facing web application that provides citizens with online
facilities. Use this business overview to help you to map the existing Universal Access features and
capability to your organization's business requirements during business analysis.

Screening citizens for benefits
Citizens can screen themselves for benefits without applying for them first.

Screening confers many advantages for citizens and agencies alike:

• Citizens can screen for one or more benefits that the agency offers without having to apply for them
first.

• Screening reduces the need for citizens to interact with the agency.

IBM Cúram Universal Access (New) 5

• Screening reduces the time and effort that caseworkers need to spend on screening tasks, freeing them
up to concentrate on their core duties.

• Screening is quick and easy, it determines if citizens are potentially eligible for one or more benefits
based on a short set of guided questions and eligibility rules. Based on this determination, citizens can
then decide whether to apply for the benefits that screening identifies for them.

Eligibility screening determines citizens' potential eligibility to receive a program or programs. Eligibility
screening consists of a script to collect data and a rule set to determine the citizen's potential eligibility
for one or more programs.

Eligibility screening rules are run upon completion of the screening script and the results are displayed for
citizens on the What you might get page. To adapt to changing circumstances, you can quickly configure
the text that is displayed in the What you might get page header in the administration system, For more
information, see Configuring screening display information.

The eligibility screening rules are only run for programs that are associated with the screening.

Note: This documentation uses the term "screening", however on the context of citizen-facing content,
this term is ambiguous and has been replaced by "Check what you might get", "check eligibility" or
"eligibility check".

Related concepts
Printing an application
Citizens can open and print an application form in two ways.
Configuring screening display information
Configure the screening information display fields for each screening.

Screening types
To balance the need for quick screening results against the need to gather detailed citizen information,
IBM Cúram Universal Access supports filtered screening and eligibility screening. Screening results
indicate the programs for which citizens might be eligible.

Filtered screening

Filtered screening allows citizens to quickly see whether they are eligible for any benefits before going
through the more detailed eligibility screening process. As its name suggests, filtered screening reduces
the number of programs for which citizens might want to screen for and apply. For example, eligibility
screening might screen for 50 programs. However, a filtered screening IEG script gathers answers to
questions that can quickly identify and eliminate programs for which citizens are unlikely to be eligible.
Questions like 'Are you married?' and 'Are you pregnant?' are examples.

Filtered screening is defined by specifying a simple filter script and rules. Typically, a filtered screening
script is not longer than two pages. If filtered screening is defined, the system immediately displays the
filtered screening script when citizens select the screening. The system does not prompt citizens to select
programs. Instead, the system runs the rules for all programs that are defined in the filtered screening
rule set.

You can easily and quickly customize a filtered screening. For each screening, you configure the available
programs and eligibility requirements. You then configure the script, rules, and data schema to collect and
process citizen information, and define what information is displayed to citizens. When defined, citizens
can screen themselves to identify programs that they might be eligible to receive. For more information,
see Configuring screenings.

Note: Program selection takes precedence over filtered screening. For more information on program
selection, see Starting the screening process.

6 IBM Cúram Social Program Management: IBM Cúram Universal Access 2.0.2

Eligibility screening

To gather the detailed information vital to determine if citizens qualify for benefits, eligibility screening
collects answers to more detailed questions by using a longer, more detailed IEG script. In this case, an
IEG script gathers more detailed citizen information, in comparison to filtered screening. Typical
questions that are defined in the script relate to the citizen's resources, for example, savings, stocks, or
bonds. By performing filtered screening first, citizens can avoid answering such questions. That is, citizens
can be quickly informed of the programs for which completing full eligibility screening is likely to be most
beneficial to them.

The relationship between filtered and eligibility screening

Some points to note regarding the two screening types:

• Filtered screening is a precursor to eligibility screening.
• Having performed filtered screening, citizens must then perform eligibility screening before they can

apply for benefits.
• Filtered screening is optional. Citizens can screen for eligibility without performing filtered screening.

Related concepts
The screening auto-save property
Use the screening curam.citizenworkspace.auto.save.screening property to set whether screenings are
automatically saved for authenticated citizens.
Configuring screenings
Define different types of screenings that citizens can complete to identify programs that they might be
eligible to receive.
Related information
Natural Flow of an IEG Script

Starting the screening process
Screening starts when citizens select Check what you might get on the organization Home page.

When citizens select to create a new account, an account creation screen is displayed. After the citizen
successfully creates the account, the citizen is automatically logged in to the system and the screening
process proceeds.

If citizens are logged in and they click Check button on any screening where they have a previously
completed or in-progress screening of that type, they are alerted to the existence of that previous
screening. Citizens can then either view the current progress of that screening or they can start screening
again.

If citizens start screening again, any in progress screenings are overwritten. Any completed screening is
only overwritten when citizens get to the screening results page.

The Check what you might get page lists and describes each of the screenings that are available.

Note: The Check what you might get page is laid out as follows:

• Page description - a banner indicating to citizens that they can screen themselves.
• A list of screenings with a description of what each screening is.
• A list of benefits with a description of what each benefit offers.

A screening might allow citizens to screen for one or more programs. Citizens are prompted to select the
programs for which they want to be screened. However, there are three situations when citizens are not
prompted to select programs:

• If filtered screening is defined for the screening. In this instance, citizens are prompted to select the
programs for which they want to be screened when filtered screening is complete.

• If a single program is defined for the screening.

IBM Cúram Universal Access (New) 7

• If a screening has been configured to disable program selection by citizens. The Program Selection
indicator determines whether citizens can select specific programs to screen for or whether they are
brought directly into a screening script where they are screened for all programs associated with the
screening. For more information, see Defining Program Selection.

Note: Program selection takes precedence over filtered screening. Also, if filtered screening is enabled
but only one program configured, citizens are brought directly to eligibility screening for that single
program.

Citizens select the screening and the programs for which they want to be screened and then click Check.
The system then starts the associated IEG script so that screening can start.

Related concepts
Configuring screenings
Define different types of screenings that citizens can complete to identify programs that they might be
eligible to receive.
Starting the screening process
Screening starts when citizens select Check what you might get on the organization Home page.

Authenticated and anonymous screening
IBM Cúram Universal Access supports both authenticated and anonymous screening.

Citizens who are logged in can perform authenticated screening. Citizens who are not logged in, and want
to retain a degree of anonymity, can screen anonymously, but they cannot save their progress until they
log in. For more information, see Configuring authenticated screening.

Anonymous screening
Citizens who are not logged in to Universal Access can screen themselves anonymously.

Citizens can screen themselves for benefits without logging in but they cannot save their screening until
they log in. Administrators can use an IEG script configuration to set if citizens have an option to save their
progress. If an admin has set the option to save progress on a particular script, unauthenticated citizens
are taken to the Log in page. When logged in or signed up, citizens' screening progress is saved and they
are taken to the Dashboard. For more information on IEG script configuration, see Configuring IEG.

Related information
Configuring IEG

Authenticated screening
Citizens who are logged in to Universal Access can perform authenticated screening.

Pre-populating citizen data

Citizens may want the convenience of having their data pre-populated when they start screening. You can
use the system property curam.citizenaccount.prepopulate.screening to pre-populate citizen data into a
screening. If citizens are linked users, their basic details are populated into the script if
curam.citizenaccount.prepopulate.screening is enabled. If curam.citizenaccount.prepopulate.screening it is
disabled, citizens must fill in their details. For more information, see Pre-populating the screening script.

Saving screenings for authenticated citizens

Authenticated citizens can save a screening and resume it later. As citizens progress through the script,
information that is entered on the previous page is automatically saved each time that citizens click Next
in the IEG script. If there is a timeout or the browser is closed accidentally, automatically saving the
information prevents the loss of the screening information. Use the
curam.citizenworkspace.auto.save.screening property to set whether screenings are automatically saved
in the citizen account. For more information, see The screening auto-save property.

8 IBM Cúram Social Program Management: IBM Cúram Universal Access 2.0.2

In-progress screenings

When citizens save an in-progress screening or a screening is automatically saved by the system, an alert
is displayed in the citizens' dashboard page to remind them that they have an in-progress screening.
Citizens can complete the in-progress screening or they can delete it. When citizens complete a
screening, the Here's what you might get page is displayed and the in-progress screening banner is
removed. The screening also appears on the Benefits checker page on the Dashboard.

The Benefits checker panel

Citizens can view completed screenings on the Benefits checker panel in the citizen Dashboard. To avoid
confusion and to ensure that the most recent results of a screening kept relevant for the citizen, citizens
can only have one screening of the same type in the complete state at one time. Citizens can use the
Benefits checker panel to view the results of the screening or delete the screening from the panel.

Configuring re-screening
Citizens may need to change a screening if they have forgotten to provide some information or their
circumstances have changed. In the administration console, the agency can set whether to allow citizens
to change and re-submit their screening. If the setting is set to Yes, citizens can re-screen from the
Benefits checker panel or from the Screening results page. If the setting is No, citizens do not see these
links, in this case if the citizen wants to re-screen, the must delete their screening and start again. For
more information, see Configuring re-screening.
Related concepts
Pre-populating the screening script
When citizens screen from within a citizen account, you can pre-populate information already known
about the citizen performing the screening.
The screening auto-save property
Use the screening curam.citizenworkspace.auto.save.screening property to set whether screenings are
automatically saved for authenticated citizens.
Related tasks
Configuring re-screening
Configure whether citizens can change and resubmit their screenings.

Screening results
After completing a screening, eligibility rules are run and the results are displayed on the Here's what you
might get page.

The Here's what you might get page

The structure of the Here's what you might get page is similar to the Apply for benefits page because
benefits are displayed according to the applications they are attached to. For example, there are Learn
more links that are similar to those on the Apply for benefits page. However, citizens receive a
customized message based on the details they entered into the screening on the What you might get
page.

The eligibility screening results page is divided into two sections.

• Programs for which citizens might be eligible. these programs are marked with the Eligible icon.
Citizens can then select Apply to apply for these programs online through the Apply for benefits flow.

• Programs for which eligibility could not be determined.

Administrators can use Cúram Express® Rules (CER) to provide detailed explanatory text to help citizens
understand the decisions that are made about potential eligibility. For more information, see Working with
Cúram Express Rules

IBM Cúram Universal Access (New) 9

If citizens' circumstances change, they can re-screen by clicking Check again for what you might get to
start the screening again.

Applying for benefits online and offline

The Here's what you might get page shows benefits that citizens can apply for online and offline.
Benefits that citizens can apply for online are marked with the Apply button. Benefits that citizens can
apply for offline are marked with a heading that is similar to the following:
Or apply for these programs by filling out the form and sending or
bringing it to your nearest office.

Programs that can be applied for offline have a Download application link.

How to apply

For each screening type, you can configure helpful, informative text that is displayed on the Here's what
you might get page header that is directly relevant to the screening. This text is configured in the How to
apply rich text editor within the admin console. For more information, see Configuring screening display
information.

The How to apply editor allows a lot of flexibility for the agency on how they want to communicate to the
citizen the different ways they can apply. For example the agency might advise citizens to apply online
using the Apply button beside each application type. The page also allows citizens to print the application
so the agency might advise citizens to mail the application to the agency.

Finally the How to apply editor allows you to include URL links onto the page. This is useful if the agency
wants citizens to visit their local office. For example the agency might choose to use Google Maps as a
way to show the citizen where their local office is. The agency is free to use the maps provider of their
choice that suits their needs.

Transferring data from screening to application

A sysadmin configuration setting allows citizens' screening data to be re-used when they apply directly
from the Here's what you might get page. When set to ON, some details based on the schema applied is
transferred into the application saving the citizen time when filling out their application.

Related concepts
Configuring screening display information
Configure the screening information display fields for each screening.
Related information
Working with Cúram Express Rules

Citizen account
When citizens create a secure citizen account, they can access a range of relevant information. Citizens
can also use the citizen account to track and manage interactions with the agency.

Creating a citizen account and logging in
Citizens can create a citizen account during the check eligibility and application processes.

Creating an account

Citizens can select Sign up on the organization Home page to create an account. Citizens then enter their
first and last names, an optional email address and account password. If citizens select I don't have an
email address, they can specify a user name instead.

10 IBM Cúram Social Program Management: IBM Cúram Universal Access 2.0.2

When citizens create an account, a banner similar to the following is displayed:
You have successfully signed up

For more information about the application process, see Completing and submitting benefit applications.

Administration configurations

• Number of login attempts before the account is locked out: 5
• Number of remaining login attempts before a user warning is displayed: 3
• Number of break-in attempts before an account is locked: 3
• Maximum and minimum characters in a username
• Maximum and minimum characters in a password

For more information on username and password length, see Account management configurations.

Logging in

To log in to the citizen account, citizens select Log in on the organization Home page. Depending on how
they created their account, citizens enter either an Email or username and password and then select
Next. You can configure the number of login attempts citizens have before their account is locked out. For
example, if you set the number of login attempts to three, citizens who make three unsuccessful login
attempts have their accounts locked out.

When citizens log in successfully, a banner similar to the following is displayed:
You're now logged in

In the next page, if the user name and password authentication is successful, the Citizen account
dashboard is displayed.

Related concepts
Screening citizens for benefits
Citizens can screen themselves for benefits without applying for them first.
Account management configurations

Browsing the organization home page
Citizens can browse the home page to find out how the organization can help them, how to apply for
benefits, or manage an existing benefit.

Check what you might get

Citizens can select Check what you might get on the organization Home page to check their eligibility for
benefits.

Apply for benefits

Citizens can select Apply for benefits on the organization Home page to start the application process.

View your account

Citizens can select View your account on the organization Home page and either view a dashboard of
applications and eligibility checks or view their benefits.

Browsing the dashboard
When the citizen logs in, they see the Dashboard and the Your benefits tabs.

IBM Cúram Universal Access (New) 11

Dashboard

The Dashboard is laid out in a series of panes as outlined in Table 1.

Table 2: Dashboard panes

User interface pane Description

System messages System messages are broadcast to all logged-in citizens. System
messages inform citizens about, for example, planned system
outages.

In-progress applications Citizens can either continue or delete in-progress applications.

Note: In-progress applications are also known a draft applications.

Benefits Checker Lists any in-progress eligibility checks. Citizens can either Recheck or
Delete eligibility checks.

PAYMENTS Lists the latest payment made to citizens. Citizens can also view
payment details or see their payment history.

TO-DOs Lists actions that citizens must take to complete an application.

MEETINGS Outlines details of meetings that citizens have been invited to. A date
is included for all meetings. The latest meeting is shown first.

NOTIFICATIONS Shows acknowledgments for all the applications that citizens make.
A date is included for all notifications. The latest notification is shown
first.

For more information on configuring messages, see Customizing specific message types.

Related concepts
Customizing specific message types
Organizations can customize the default message to create a referral message or a service delivery
message.

Browsing the Your benefits page
When the citizen logs in, they see the Dashboard and the Your benefits tabs.

Your benefits

Logged-in citizens who select Your benefits on the Dashboard are brought to the Your benefits page.
Citizens who are not logged in are redirected to the Log in page, when they log in they are brought to the
Your benefits page, which displays all types of applications, these are in-progress, pending, withdrawn,
denied, and active applications.

If a submitted application is approved by the caseworker and a product delivery case is created for that
application, the application also appears on the Your benefits page.

The Your benefits page displays applications that can be in one of the following states:

• Application in progress. The application is in progress but is not yet submitted. Citizens can either
continue or delete applications in this category.

• Pending decision. The application is awaiting a decision from the case worker. Citizens can either
download or withdraw applications in this category.

• Active. The caseworker has authorized the application.
• Denied The caseworker has rejected the application.
• Authorization failed. Citizens can download applications in this state.

12 IBM Cúram Social Program Management: IBM Cúram Universal Access 2.0.2

• Withdrawn. Citizens can withdraw the application if it is Pending decision or the caseworker has
Denied the application.

Viewing payments
The PAYMENTS pane on the Dashboard lists payments that are made to the citizen. The messages
associated with these payments can be retrieved from IBM Cúram Social Program Management or
another remote system. Canceled or expired payments are also displayed.

A payment can be made by check, electronic funds transfer (EFT), cash, or voucher.

Depending on the payment type, different details are displayed. The following details can be displayed on
for each payment:

Check
Payee address and check number

EFT
Bank sort code and bank account number

Cash
Payee address

Voucher
Payee address and voucher number

Note: Citizens do not see these payment details on the dashboard itself. Instead, citizens must select All
payments in the PAYMENTS panel and then select > in a specific payment to see payment details for that
payment.

Viewing TO DOs
The TO DO's pane on the Dashboard lists verifications and action messages that the caseworker creates
for the citizen.

A to do could be, for example, a request to provide supplementary information to support a benefit
application.

Displaying contact information
The Contact us tab, and Profile link display the citizen's contact information and the contact information
of the agency caseworker.

Citizen information

Citizens can select Citizen Name > Profile to display their contact information including address, phone
number, and email address. A configuration setting determines whether the citizen's contact information
is displayed on the citizen account. For example, an agency can set the
curam.citizenaccount.contactinformation.show.client.details property to false to
disable citizen contact information. For more information, see Configuring contact information.

Caseworker contact information

The Contact us tab displays information for the agency caseworker of each case that the citizen is
associated with is displayed. Caseworker contact information from IBM Cúram Social Program
Management and remote systems can be displayed. The following information can be displayed for the
caseworker:

• Name
• Business phone number
• Mobile phone number
• Pager
• Fax
• Email

IBM Cúram Universal Access (New) 13

Use configuration settings to specify the contact details to display and hide on the contact information
page. For example, an agency can display an caseworker's business phone number and email address
only. Similarly, an agency can hide contact information. For more information about configuring the
display of citizen contact information, see Configuring contact information.

Related concepts
Configuring contact information
Configure contact information for citizens and caseworkers.

Screening from a citizen account
Citizens can screen themselves for programs while logged in to their citizen account.

By using a short set of guided questions and eligibility rules, citizens can determine whether they might
be eligible for one or more programs. Based on this determination, the citizen can decide whether to
apply for the programs identified.

To perform a screening, citizens take the following steps:

1. Select Check what you might get on the organization Home page.
2. Select Check on the eligibility category.
3. Select the benefits they think they might get on the Include benefits page
4. Select Continue to start the check eligibility process.
5. Citizens then answer the questions on the screening script.
6. Select Next to navigate through the pages in the script.
7. When the process is complete, citizens are shown the benefits they might be eligible for on the Here's

what you might get page.
8. Citizens can then Apply for benefits.

Related concepts
Pre-populating the screening script
When citizens screen from within a citizen account, you can pre-populate information already known
about the citizen performing the screening.

Citizen account messages
The PAYMENTS, TO DO'S, MEETINGS, and NOTIFICATIONS panes on the Dashboard display citizen
account messages. Messages can be about meetings the citizen is invited to, or activities that are
scheduled for the citizen. By using web services, messages from remote systems can also be displayed.

Displaying a message

Each message has a title and an icon. In addition, the TO DO'S and NOTIFICATIONS messages have an
effective date and time that specifies when the message is displayed. Usually the effective date of a
message is set to the current date, but in some circumstances configuration settings can specify the
effective date. For example, when a service is scheduled for the citizen, you might not want to display the
message immediately if the service is scheduled for two months in the future. In this case, a configuration
setting is provided to specify the number of days before the start date of the service that the message
must appear in the citizen's account. For example, the system uses these days to populate the effective
date. Messages from remote systems are displayed based on the effective date that is specified in the
web service.

Prioritization and ordering

You can assign a priority to a message so that it is displayed at the top of the MEETINGS listing.

You can also configure the order of messages types in the administration system. For example, you can
configure payment messages to be displayed first and meeting messages to be displayed second.

14 IBM Cúram Social Program Management: IBM Cúram Universal Access 2.0.2

Message duration

The message type determines the length of time that the message is displayed. The message duration
can be set either by start and end dates or by replacing one message with another.

Some messages relate to items that have start and end dates that the agency can use to specify the
duration for which a message is displayed. For example, service messages are displayed until the start
date of the service has passed. In other cases, it might be appropriate for a message to be replaced by
another message. The agency can use a configuration setting to determine whether the agency wants to:

• Specify the duration for when a message is replaced.
• Specify the number of days after which the message is removed.

The duration of messages from remote systems is based on the expiry date that is defined in the web
service.

System messages

Agencies use system messages to send a message to everyone who has a citizen account. For example, if
an agency wants to provide information and help line numbers to clients who were affected by a natural
disaster, such as a flood, hurricane, or earthquake. System Messages can be configured in the
Administration application by using the New System Message page.

The Title and Message fields define the title of the message and the message body that is displayed to a
client in the My Messages pane. The message can be defined with a priority by using the Priority field,
which means that the message appears at the top of the messages listing.

The Effective Date and Time field defines an effective date for the message, such as when the message
is displayed in the Citizen Account page. The Expiry Date and Time field define an expiry date for the
message, for instance, when the message no longer is to be displayed in the citizen account.

When the message is saved, it has a status of In-Edit. Before the message is displayed in the citizen
account, it must be published. When it is published, the message is active and is displayed in the citizen
account based on the effective and expiry dates defined.

Predictive Response Manager

The Predictive Response Manager (PRM) is the infrastructure that is used to build and then generate and
display messages on the Citizen Account home page.

A number of default messages are provided and are described in this information along with their
associated configurations

Life events
Citizens can submit a change in their circumstances to the agency by using Life Events. Examples of
changes in circumstances include a change of address, a birth, or marriage. These significant events in
citizens' lives might affect the programs and services that they are receiving or are due to receive.

Consider the following scenario: James Smith is currently in receipt of child benefit and is also working
full time. However, he has just lost his job as the company he is working for is closing. James now needs
to let the agency know about losing his job so that he can get his benefit reviewed. Life Events allows
James to communicate this change to the agency without having to visit the office, Life Events also
reduces the amount of interaction with the agency and consequent usage of caseworkers' valuable time.

IBM Cúram Universal Access (New) 15

Accessing life events
Authenticated citizens can submit a change in their circumstances either by selecting Tell us if anything
has changed on the dashboard or by selecting their User Name in the application banner and then
selecting Profile.

With the addition of Life Events to the Universal Access responsive web app, the new flow begins from the
Your Account card on the Organization Home page. Citizens can now see that the Your Account card
also contains text telling them that they can submit a change in their circumstances by clicking the card.

The Tell us if anything has changed panel is a new addition to the Profile page. This is an obvious place
for citizens to go to when they to make a change in their circumstances and is consistent with other
applications.

The agency administrator can categorize life events in Universal Access life event administration so that
citizens can easily identify a life event. For example, changing jobs, income changes, and change of
address life events might be categorized under the Employment category. If a life event is not
categorized, it appears in the All category tab. If citizens cannot immediately see the life event they want
to select, they can select See more to see a full list of life events across all categories.

Citizens can see that each configured Life Event is a clickable card, making it intuitive and easy to
understand how to submit a change in their circumstances. A description of the life event is provided so
that citizens can identify the correct life event. The description of the life event is also configurable in
Universal Access life event administration.

Also on Tell us if anything has changed, citizens can see a My change history link which brings them to a
list of their previously-submitted life events. For more information see, Reviewing life events change
history.

Related concepts
Configuring a life event
Reviewing life events change history
Citizens can access their previously submitted life events from the dashboard by clicking the My change
history link on the Tell us if anything changed? card.

The Life Event Overview page
When citizens select the life event that they want to submit, they are presented with an Overview page
that informs them of the steps to submit that life event.

The steps on the Overview page tell citizens the information and documentation they need to include as
part of the submission and approximately how long the submission takes to complete. The steps can also
include how the agency might inform them of the change when the change of circumstance is complete.

When citizens read and understand the information presented, they can select Start to enter the
submission form.

When citizens begin a submission form, they are presented with a guided set of questions that use
Intelligent Evidence Gathering (IEG) to gather information in relation to the selected Life Event. The
question script that is presented is defined in Universal Access life event administration when a life event
is configured by the administrator.

The life event submission confirmation page
On successful submission of the life event, citizens are then shown a Confirmation page confirming that
the life event has been submitted successfully.

Consistent with the Application Submission confirmation page, a green tick icon is shown to citizens
when they submit a change in their circumstance. The agency can also display information that is useful
and relevant to the life event that citizens have just submitted. This helpful information can be defined in
Universal Access life event administration. The agency can choose to inform the citizen through the
configurable text area that their change may take some time to take effect as a caseworker might need to
review the submitted change.

The agency can also configure the Next steps panel to display information such as actions that citizens
might need to take after submitting the change. For example, citizens might need to update their rent if

16 IBM Cúram Social Program Management: IBM Cúram Universal Access 2.0.2

they've just moved into a new home. The Next steps panel can also include links to external websites to
help citizens find and record their rent details. Citizens do not need to have a case on the system to
submit a life event. If citizens don’t have a case on the system, the submitted information isn’t
transmitted to a case owner. Instead, the submitted information is stored internally and the agency must
decide what to do with the information.

The Consent page

After citizens complete the submission form, an optional Consent page can be displayed so that citizens
can consent to having their details sent to selected other agencies or third parties. This optional page is
displayed if it is configured for the selected life event within the Universal Access life event
administration. This action constitutes the citizens' consent to send information to the selected agencies.
The life event can be transmitted to a remote system through a web service or to the relevant case owners
on an IBM Cúram Social Program Management system through the evidence broker.

Reviewing life events change history
Citizens can access their previously submitted life events from the dashboard by clicking the My change
history link on the Tell us if anything changed? card.

Citizens can select a life event record from the history list to view a summary of the information they
submitted to the agency as part of that life event update. The list of life events is sorted by the date that
citizens submitted it.

Applying for benefits
Citizens can apply for benefits from the organization home page or the Dashboard. Citizens must submit
an application that includes personal details like income, expenses, employment, education. This
information is the evidence of the citizen's case. Agencies can use this information to determine eligibility
for benefits. Citizens can also apply offline by downloading the application form, filling it in and sending it
to the agency. Citizens can also contact their local agency office.

Before you begin
Citizens can apply for benefits by logging in to their account. Citizens who log in can save an application
for a benefit before they submit it and then return later to complete the application. Citizens can also
partially apply for benefits without logging in. If the configuration option submit on completion is set to No,
citizens can submit a partial submitted application. Citizens do not have to be logged in to submit the
partial application.

A customizable icon for each application is displayed with the application name, followed by a description
of the application. The application and benefit descriptions are configurable in the administration
configuration.

Note: The terms "benefit" and "program" are synonymous. An application might consist of one or more
benefits. For example, the "Income Support" application might contain the "Food Assistance" and "Cash
Assistance" benefits.

Procedure

1. Citizens click Apply for benefits on the organization Home page, the Dashboard, or the Your benefits
tab.

Note: Benefits are displayed in alphabetical order by default, but you can override this order.
2. For each benefit type, citizens can take the following actions:

a) Click Learn more to find out more about the benefit. If the More Info URL setting is configured for
the application, Learn more is conditionally displayed.

b) Click Print application to print the application form, complete it by hand and mail it to the agency.
If the PDF Application Form setting is configured for the application, Print application is
conditionally displayed.

IBM Cúram Universal Access (New) 17

c) Click Apply to start the application process for the benefit. Apply is conditionally displayed if
multiple applications is set to Yes or if multiple applications set to No and the citizen has no
existing, pending decision applications.

3. Citizens can also click Check what you might get to see what benefits they might qualify for.

Results

If citizens quit the application without saving it, the application displays a warning dialog so that citizens
can return to the application if this option is selected in error.

Note: Citizens must click the application name on the page in to see the Leave this application dialog.
The application name is also conditionally enabled depending on whether the quit and delete option is
enabled in the IEG script.

Clicking Leave brings citizens to the dashboard if they are logged in or the organization home if they are
not logged in.

Clicking Cancel returns citizens to the point at which they left the application script with the previously
entered data available. Citizens can cancel an application without saving at any point before they submit.
Citizens can only cancel when the application is in progress, if they Save and Exit they can only Delete the
application.

Citizens can also:

• Resume an application by selecting the Continue link on the Your benefits page, or by selecting
Continue on any in-progress application alerts in the Dashboard.

• Withdraw an application. If available, the withdraw option is displayed for the pending decision
application on the Your benefits page.

• Delete an application. Citizens can only delete an in progress application that they did not submit to the
agency.

Starting and selecting an application
Citizens can select the benefits they want to apply for.

Citizen start an application by selecting Apply for benefits on the Organization home page or selecting
the Benefits navigation item. Citizens are then brought to the Apply for benefits page.

The Apply for benefits page describes each of the available applications. To make it easier for
administrators to find the required application, they are grouped into categories, for example
"unemployment services". The applications, and their categorization, are defined in the Universal Access
Administration section of the Administration Application. Citizens can also Learn more about each
application or can Print application to a PDF file.

Citizens can Apply for a benefit. Citizens start an application for a benefit they have already applied for,
they can resume the application or they can Start again.

A customizable icon is displayed for each benefit type along with the benefit name and a description of
the benefit.

Citizens might use an application to apply for one or more programs. Typically, the system prompts
citizens to select the programs they want to apply for. However, in two situations the system does not
prompt the citizen to select programs:

• A single program is defined for the application.
• Each application is configured so that the citizen can select a program or automatically select all of the

programs that are associated with the application.

Configuring the application process

You can configure the application process as follows:

• Each configured application is displayed. If an application has more than one associated program, it is
displayed in the second column of the Apply for benefits page.

18 IBM Cúram Social Program Management: IBM Cúram Universal Access 2.0.2

• A configuration property program selection is available at the application level. If the property is set to
Yes, an Include benefits page is displayed allowing the citizen to select all, or a subset of the
configured programs.

• If an application only contains one program and the configuration property program selection is set to
Yes, the Include benefits page is not displayed.

• If the program selection is set to No and the application contains multiple programs, all the programs
are automatically applied for and the Include benefits page is not displayed.

• A configuration property multiple application is available at the program level. If this property is set to
No there is an existing pending decision for the program, the Apply option is visible but disabled.

• A system property curam.citizenaccount.prepopulate.screening sets whether the IEG script is pre-
populated with any available citizen information.

When citizens select the applications and the programs they want to apply for, the system starts the
associated IEG script. Citizens use the script to complete the selected applications.

Managing existing applications
When a citizen logs in, any existing applications are listed and the citizen is presented with different
options that depend on the state of an application.

The agency can configure the system to specify whether citizens need to be authenticated before they
apply for benefits:

• If authentication is enabled, citizens must either create a new user account or log in to an account
before they start the application process.

• If authentication is disabled, citizens can proceed with the application without authentication.

The configuration property curam.citizenworkspace.authenticated.intake specifies whether citizens must
log in to apply for benefits. If the property is set to NO, citizens do not have to log in to apply for benefits.
If the property is set to YES, citizens must create an account or log in to an existing account to apply for
benefits.

Depending on how authentication is configured, applications are managed in one of the following ways:
Citizens can log in to their account, or they can sign up from the application overview page. Citizens can
also be prompted to log in, sign up, or send application without an account at the end of the IEG
application script.

If citizens create an account, they are automatically logged in to the system and the intake process starts.
The system also checks whether they have any existing applications.

The configuration property curam.citizenworkspace.authenticated.intake is available at the application
level. If this property is set to No, citizens can submit a partially completed application, if this property is
set to Yes, citizens cannot submit a partially completed application.

Existing applications are in one of the following categories:

• Application in progress. The application is in progress but is not yet submitted. Citizens can either
continue or delete applications in this category.

• Pending decision. The application is awaiting a decision from the case worker. Citizens can either
download or withdraw applications in this category.

• Active. The caseworker has authorized the application.
• Denied The caseworker has rejected the application.
• Authorization failed. Citizens can download applications in this state.
• Withdrawn. Citizens can withdraw the application if it is Pending decision or the caseworker has

Denied the application.

The application lists are displayed only if there are items in the list, that is, if there are no saved
applications. If applications are listed, the citizen is presented with different options that depend on the
state of an application. The citizen might resume or delete an incomplete application, withdraw a
submitted application, or start a new application.

IBM Cúram Universal Access (New) 19

Related concepts
Securing the IBM Cúram Universal Access server
The IBM Cúram Universal Access web application is gives citizens access to their most sensitive personal
data over the internet. Security must be a primary concern in the development of citizen account
customizations. All projects that are built on Universal Access must focus on delivering security from
beginning to end.

Saving an application
By default, applications are automatically saved for citizens who are logged in. Citizens can also manually
save applications, including in-progress applications.

During a timeout or the accidental closure of the browser window, the application is automatically saved
each time that citizens click Next in the IEG script. When citizens click Next, the information on the
previous page is saved. Citizens can also use the Benefits page to resume or to delete each in-progress
screening. Automatic saving works for logged-in citizens only. Applications for citizens who are not logged
are not saved.

A system property specifies whether applications are automatically saved. By default, this property is
enabled. For more information, see Configuring applications.

When citizens quit an application, three options are displayed. The options the system displays depends
on how the intake application is configured. Citizens can take one of the following actions:

• Save the application
• Leave the application without saving
• Cancel the application

If citizens save the application and they are not logged in, the save application screen is displayed.
Citizens can create an account, log in, or send the application without logging in.

If the administration setting Submit on Completion Only is set to No, citizens cannot submit a partially
completed application, so the option to Send application without account is displayed when citizens
select Save and exit. If the administration setting is set to Yes citizens can submit a partially completed
application, so the option to Send application without account is not displayed when citizens select
Save and exit.

Related concepts
Configuring applications
Use the administration system to define applications. For each application, you can configure the
available programs and an application script and data schema. You can also configure the remaining
applications details, including application withdrawal reasons.

Resuming an application
Logged-in citizens can resume an application by selecting the Continue link on either the Dashboard or
the Your benefits page.

Selecting the Continue link in the citizen's Dashboard resumes the application from where the
application was last saved. When an application is resumed, the data that is entered is automatically
saved as citizens moves from page to page through the script.

When citizens resume an application, they are brought to where they left off when the application was
saved.

Submitting an application
To allow citizens to submit an application to the agency, you must specify a submission script for the
application in the administration system. After citizens submit an application, the way the script is
processed depends on the configuration of the programs for which the citizen is applying.

The application might be submitted when citizens complete the intake script or when they exit a script
before it completes. An intake application can be configured so that an agency can dictate whether an
application script can be submitted before it is complete or not.

20 IBM Cúram Social Program Management: IBM Cúram Universal Access 2.0.2

If citizens send an application to the agency, either by exiting or completing a script, the screen that is
displayed depends on:

• Whether citizens are logged in
• Whether citizens must either create or log in to an account before the application is submitted.

If citizens are not logged in, they are prompted to log in or create a new account. If the property is
enabled, citizens must log in to an existing account or create a new account before the application can be
sent to the agency. For more information, see Managing existing applications.

Specifying log in requirements

The system can be configured so that:

• Citizens are not required to identify themselves to the system AND
• Citizens can send the application to the agency without logging in or creating an account.

Alternatively, the system can be configured so that citizens must create an account or log in. For more
information, see Managing existing applications.

Managing in-progress and submitted applications

If citizens log in before they send the application to the agency, the system can determine whether:

• There is an in-progress application of the same type OR.
• Citizens previously submitted applications for the same programs that are still pending disposition, that

is, awaiting a decision by the agency.

For an in-progress application of the same type, a page is displayed. From here, citizens can send the new
application to the agency or keep the saved application, thus discarding the new application. The options
available are to Start again or Resume the in-progress application.

If citizens submit applications for the same programs, the system determines whether they can still
submit any of the programs to the agency for processing. Programs can be configured so that multiple
applications can be submitted for the program at any time. For example, submitting a new application for
cash assistance for a different household unit than a previously submitted application that the agency is
processing. This screen indicates that the application cannot be submitted for all of the programs for
which the citizen wants to apply. However, the application might still be sent to the agency. There are
three options: continue to submit the application for the programs for which the citizen can apply, save
the application, or delete the application.

The configuration property Multiple application is available at the program level. If this property is set to
No and there is a pending decision for the program, the Apply option is visible but disabled.

Specifying a submission script

To submit an application to the agency, a submission script must be specified for the application in
administration. The submission script is required because applications require additional information,
which does not form part of the application, to be captured before the applications can be submitted. For
example, a Cash Assistance application requires information that relates to the citizen's ability to attend
an interview. This information would not be appropriate for another type of application that does not
require an interview to be conducted, for example, unemployment insurance. Electronic signatures are
another example of the type of information that would typically be captured by using a submission script.
This data might not be captured as part of the script, as citizens can submit the application before
completing the script.

Processing a submitted script

The processing that happens on completion of the submission script depends upon the configuration of
the programs for which citizens are applying. Program eligibility can be configured such that it might be
determined by using IBM Cúram Social Program Management or a remote system. If IBM Cúram Social
Program Management is specified as the eligibility system, an application case creation process is started.

IBM Cúram Universal Access (New) 21

The application case creation process includes a search and match capability, which attempts to match
citizens on a new application to registered persons on the system based on configured search criteria.
When search and match finishes, one or more application cases are created. If the programs that are
applied for are configured for different application case types, multiple application cases are created. If
the application was submitted within the business hours of the root location for the organization, the
application date on the application case is set to today's date. If the application is submitted outside of
the business hours of the organization, the application date is set to the next business date.

Mapping the application data to case evidence tables

The data that is entered for the application might be mapped to case evidence tables. The mappings are
configured for a particular program by using the Cúram Data Mapping Editor. For the appropriate evidence
entities to be created and populated in response to an online application submission, a mapping
configuration must be specified for a program.

Associating requested programs with application cases

When the application case is created, the programs that are requested by the citizen are associated with
the relevant application case. Some organizations might impose time limits within which an application
for a program must be processed. A number of timer configuration options are available for a particular
program. These timers are set when a program is associated with an application case.

If the eligibility is determined by a remote system, configurations are provided to allow a web service to
be started on a remote system.

Displaying submission confirmation

The submission confirmation page is displayed upon successful submission of an application to the
agency. The submission confirmation page displays the reference number that is associated with the
submitted application. Citizens can use this reference number in any further correspondence about
application with the agency.

Configuring intake applications for PDFs

The citizen might also open and print a PDF. The configuration of the intake application determines the
actual PDF that opens. The application can be configured to use a PDF designed specifically by the agency
with the intake application, or, if no PDF form is specified, to use a generated generic PDF. If an agency-
designed form is specified, this form is opened when the citizen clicks the PDF link. For programs with
associated mapping configurations of type PDF Form Creation, the data that is entered during the online
application is copied to the PDF form. The data is copied for each of the programs for which the citizen is
applying with this mapping configuration. If a mapping configuration is not associated with a program, the
information that is entered during the online application for that program is not copied to the PDF form. If
a PDF form is not specified, a generic generated form opens instead. This form contains a copy of the
information that is entered by the citizen when the citizen is completing the online application.

The agency can define additional information to be displayed on the generic generated form. Typically, the
additional information that is required helps the agency to process the application quickly. Proof of
identity is an example of this additional information. This additional information is configurable for each
type of application.

Submission confirmation

When citizens successfully submit an application, going through the sign and submit screen, they are
brought to an updated version of the Overview. The stages specific to the application process are now
updated with a confirmation message to indicate that the application was successfully submitted:

• A customizable icon
• An application reference number
• Informational message for the citizen

22 IBM Cúram Social Program Management: IBM Cúram Universal Access 2.0.2

• A Save submitted application PDF link that allows citizens to download the information entered as
part of the application, in PDF format.

Related concepts
Managing existing applications
When a citizen logs in, any existing applications are listed and the citizen is presented with different
options that depend on the state of an application.

Printing an application
Citizens can open and print an application form in two ways.

• Citizens are directed to a PDF that they can open, complete, and print.
• Citizens are taken through a script. After citizens complete or exit the script, they can open a PDF

containing the information they entered.

PDF forms can be configured to provide versions in all supported languages. The programs that can be
applied for using the PDF form can also be configured.

Each PDF form that is defined in the administration system is displayed on the Apply for Benefits page.
The Apply for benefits page is displayed when Apply For Benefit is selected from the organization Home
page.

If PDF Application Form is configured for the application, Print application is displayed.

To open the PDF form, citizens click Print application. Citizens can also identify the address of the local
office to which to send the form. A system property sets whether the system uses postal codes or
counties for this function.

Withdrawing an application
Citizens can withdraw successful applications from the Your benefits page. If the application did not
successfully submit, the Withdraw option is not displayed.

Citizens can withdraw a successfully submitted application or they can also withdraw applications for all
or any one of the programs.

Citizens can withdraw each program individually. The reasons for withdrawing the program application
can be configured for the intake application in the administration system.

The Reason field contains a list of configurable code table values that are defined by the administrator.
The list of values is configured at application level.

The First name, Last name, and Reason fields are mandatory.

The submit action on the page withdraws the application. The system automatically updates the status of
the programs that are associated with the application case to Withdrawn and sends a notification to the
application caseworker.

The difference between deleting and withdrawing an application

The Withdraw action is different from the Delete action in that only a submitted application can be
withdrawn and only an in-progress application can be deleted. Also, Delete physically deletes the
application record, Withdraw changes the status of the application to Withdrawn after the citizen goes
through a workflow.

Related concepts
Citizen account

IBM Cúram Universal Access (New) 23

When citizens create a secure citizen account, they can access a range of relevant information. Citizens
can also use the citizen account to track and manage interactions with the agency.

Deleting an application
Citizens can delete applications that are not yet submitted to the agency.

Citizens can delete applications from the Dashboard or the Your benefits pages. When citizens click the
Delete application link for an in-progress application, a confirmation dialog is displayed.

Installing the IBM Cúram Universal Access development environment
Before you install Universal Access, install the prerequisites.

Note: When you install Universal Access the prerequisite design system packages are also installed,
therefore, you do not need to install the IBM Social Program Management Design System.

Installing the IBM Cúram Universal Access development environment
The design system is installed as part of the Universal Access installation. Install the Universal Access
React application, into which you then install both the design system and Universal Access node
packages. You can install a lightweight or a full development environment.

Before you begin
Lightweight development environment

For quick and easy installation, install the Universal Access React application, plus the design system
and Universal Access packages. Then use the universal-access-mocks package to provide mock
data specific to Universal Access business scenarios for testing purposes. universal-access-
mocks is consumed by the mock server to provide mock APIs in the development environment so that
you do not have to host an IBM Cúram Social Program Management server during development.

Full development environment

Install the Universal Access React application, plus the design system and Universal Access packages.
Then, instead of using the universal-access-mocks package, install the SPM Java Application
Development Environment (ADE) to develop and test your APIs. For more information about installing
an SPM Java ADE, see Installing a development environment.

24 IBM Cúram Social Program Management: IBM Cúram Universal Access 2.0.2

JavaScript ADE (VS Code, Atom)

Node.js

mock-server API service

universal-access-starter-pack

Universal
Access
packages

Universal Access mocks

SPM
Design System
packages

SPM Java ADE (Eclipse)

Tomcat

REST APIs Main SPM Client

SPM Database

SPM Server

About this task

The Universal Access starter React application is provided in the Universal Access @spm/universal-
access-starter-pack package. You install the starter application first, and then install the following
design system and universal access Node packages to complete the Universal Access reference
application.

Design system packages

• @spm/core
• @spm/intelligent-evidence-gathering
• @spm-intelligent-evidence-gathering-locales
• @govhhs/govhhs-design-system-core
• @govhhs/govhhs-design-system-react

Universal Access packages

• @spm/mock-server
• @spm/universal-access-mocks
• @spm/universal-access
• @spm/universal-access-ui
• @spm-universal-access-ui-locales

Procedure

1. Download the Universal Access Responsive Web Application and IBM Social Program Management
Design System Node packages.
a) Open IBM Fix Central, select Cúram Social Program Management, select your installed version

and platform, and click Continue.
b) Ensure that Browse for fixes is selected, and click Continue.

IBM Cúram Universal Access (New) 25

https://www.ibm.com/support/fixcentral/

c) Select the check boxes for IBMUniversalAccessResponsiveWebApplication and
IBMSocialProgramManagementDesignSystem and click Continue.

d) Only versions that are compatible with your IBM Cúram Social Program Management version are
shown. Download SPM_DS_<version>.zip and UA_Web_App_<version>.zip and extract the
packages in the archive files to any directory.

2. Extract the spm-universal-access-starter-pack_version.tgz file.

The extracted package directory forms the React App, all other packages are installed into this
directory.

3. Rename the extracted package directory to reflect your project. For example, universal-access-
custom-app.

4. From the renamed, extracted package directory, install the IBM Social Program Management Design
System packages. Enter the following commands.

npm install <path>/govhhs-govhhs-design-system-core-<version>.tgz
npm install <path>/govhhs-govhhs-design-system-react-<version>.tgz
npm install <path>/spm-core-<version>.tgz
npm install <path>/spm-intelligent-evidence-gathering-<version>.tgz
npm install <path>/spm-intelligent-evidence-gathering-locales-<version>.tgz

Where <path> is the download path, and <version> is the package version.

Note: Ignore any Node package dependency warnings for now. If needed, you can resolve them later.
5. Enter the following commands from the renamed, extracted package directory to install IBM Cúram

Universal Access packages. Ignore any warnings you might see. <path> and <version> refer to the
download path and package version.

npm install <path>/spm-universal-access-<version>.tgz
npm install <path>/spm-universal-access-ui-<version>.tgz
npm install <path>/spm-universal-access-ui-locales-<version>.tgz
npm install <path>/spm-mock-server-<version>.tgz
npm install <path>/spm-universal-access-mocks-<version>.tgz

6. Run the following command to install the package dependencies.

npm install

7. You can run the Universal Access reference application by entering the following command from your
application directory.

npm start

If the local host does not start automatically, browse to http://localhost:3000/ to see the running
application.

Results

You can now start to customize the Universal Access reference application for your organization.

26 IBM Cúram Social Program Management: IBM Cúram Universal Access 2.0.2

http://localhost:3000/

Upgrading to later versions of IBM Cúram Universal Access
You can upgrade your packages to later versions of IBM Cúram Universal Access. Before you upgrade,
ensure that you review your custom application for any potential upgrade impacts.

Procedure

1. Download the Universal Access Responsive Web Application and IBM Social Program Management
Design System Node packages.
a) Open IBM Fix Central, select Cúram Social Program Management, select your installed version

and platform, and click Continue.
b) Ensure that Browse for fixes is selected, and click Continue.
c) Select the check boxes for IBMUniversalAccessResponsiveWebApplication and
IBMSocialProgramManagementDesignSystem and click Continue.

d) Only versions that are compatible with your IBM Cúram Social Program Management version are
shown. Download SPM_DS_<version>.zip and UA_Web_App_<version>.zip and extract the
packages in the archive files to any directory.

2. Read the latest “IBM Cúram Universal Access release notes” on page 1. Take note of any pre-
installation steps, requirements, restrictions, installation steps, and post-installation steps that might
apply between the new version and your current version.

3. Extract the universal-access-starter-pack to a temporary directory and compare it to your
working custom application directory. Apply any differences you find to your custom application
directory.

4. Enter the following commands from your custom application directory to install the latest IBM Social
Program Management Design System and IBM Cúram Universal Access node packages. <path> and
<version> refer to the download path and package version.

Note: Ignore any warnings that you might see.

npm install <path>/govhhs-govhhs-design-system-core-<version>.tgz
npm install <path>/govhhs-govhhs-design-system-react-<version>.tgz
npm install <path>/spm-core-<version>.tgz
npm install <path>/spm-intelligent-evidence-gathering-<version>.tgz
npm install <path>/spm-intelligent-evidence-gathering-locales-<version>.tgz
npm install <path>/spm-mock-server-<version>.tgz
npm install <path>/spm-universal-access-<version>.tgz
npm install <path>/spm-universal-access-ui-<version>.tgz
npm install <path>/spm-universal-access-ui-locales-<version>.tgz
npm install <path>/spm-universal-access-mocks-<version>.tgz

If you have copied and customized any IBM Cúram Universal Access features in your custom
application, you must manually review those features in the upgraded components. For more
information, see “Reusing existing features” on page 74.

Related tasks
Installing the IBM Cúram Universal Access development environment
The design system is installed as part of the Universal Access installation. Install the Universal Access
React application, into which you then install both the design system and Universal Access node
packages. You can install a lightweight or a full development environment.
Related information
Upgrading to a new version of the design system

IBM Cúram Universal Access (New) 27

https://www.ibm.com/support/fixcentral/

Customizing the IBM Cúram Universal Access application
Customize the reference application and build your custom Universal Access application by using the
development resources supplied.

Planning for development
Review the supported prerequisites, download the required software, and review the release notes.

Planning steps

When you complete the following steps, you are ready to start developing your app:

• Choose an Integrated Development Environment (IDE) to develop your application, for more
information, see Development environment.

• Decide which installation alternative you want to use. You can install IBM Cúram Universal Access in
two ways, as a lightweight installation or as a production-like installation. For more information, see
Installing IBM Cúram Universal Access.

• Review the supported prerequisites to identify the supported versions of your selected software. For
more information, see Installation prerequisites.

• Download the software that you need from IBM Passport Advantage® or from another software vendor
websites as appropriate.

• Install Universal Access, for more information, see Installing IBM Cúram Universal Access.
• Deploy IBM Cúram Universal Access. For more information, see Deploying IBM Cúram Universal Access.
• Review the latest “IBM Cúram Universal Access release notes” on page 1 and complete any relevant

post-installation steps.

Related tasks
Installing the IBM Cúram Universal Access development environment
The design system is installed as part of the Universal Access installation. Install the Universal Access
React application, into which you then install both the design system and Universal Access node
packages. You can install a lightweight or a full development environment.
Building IBM Cúram Universal Access for deployment
Build Universal Access for deployment on an HTTP server.

Development environment
Choose an Integrated Development Environment (IDE) to develop your application.

Development Tools

There are many IDEs that you can use to develop your application, for example:

• Visual Studio Code
• Atom
• Sublime
• Vim
• Webstorm

There is no dependency on any specific IDE, so you can choose your own environment. However, IBM
uses VSCode, which supports many plug ins that make development faster and easier, for example:

• Linting tools (ESLint)
• Code formatters (Prettier)
• Debugging tools (Debugger for Chrome)

28 IBM Cúram Social Program Management: IBM Cúram Universal Access 2.0.2

• Documentation tools (JSDoc)

IBM does not own, develop, or support these tools.

Development resources
IBM Cúram Universal Access includes resources that you can use with the IBM Social Program
Management Design System to customize and extend Universal Access.

universal-access-starter-pack

A development environment and a fully functional and deployable reference application. The application
uses the IBM Cúram Social Program Management modules (core, web-design-system, universal-access,
universal-access-ui) to provide a client that can interact with Universal Access.

You can rename, modify, and extend the starter pack to customize the reference application to suit the
needs of your organization. The pack demonstrates how a modern and responsive Universal Access client
can be built by using React, Redux and the IBM Social Program Management Design System.

universal-access

This module connects the client application to the IBM Cúram Social Program Management server.
universal-access makes HTTP requests to the IBM Cúram Social Program Management server to allow the
client to interact with a Universal Access installation. Unlike the universal-access-ui, this module does not
render content. This module uses Redux as a storage mechanism for requests and responses. For more
information, see Working with Redux.

universal-access-ui

A set of features that presents views to the user, it depends on universal-access to provide the data it
needs for those views.

universal-access-ui-locales

Translated UI artifacts for the universal-access-ui package.

universal-access-mocks

This module provides mock data specific to Universal Access business scenarios for testing purposes. It is
consumed by the mock server to provide mock APIs in the development environment so that developers
are not required to host an IBM Cúram Social Program Management server during development.

mock-server

The mock-server module is a lightweight server that can serve HTTP requests and return mock data as a
response. Use mock-server during client development as a substitute for a real server to test features.

For more information, on IBM Social Program Management Design System packages, see Design system
packages.

Related information
Design system packages

IBM Cúram Universal Access (New) 29

Developing compliantly
Follow these guidelines to protect your project from making customization changes that are incompatible
with the base product, or have the potential to incur upgrade impacts.

Never use undocumented APIs

JavaScript does not have access modifiers such as public/private/protected. It is possible to call functions
in SPM modules that are not intended for public use. Calling these functions is not supported as those
APIs can change in a future release and break your code.

The only JavaScript APIs that are intended for public use are documented in the docs folder of the SPM
node_modules. For example, node_modules/@spm/core/docs/index.html.

Observe the reducer namespace

If you use Redux, your Reducer names must not infringe on the namespace for universal access reducers.
All universal access reducers are prefixed with UA, for example. UABenefitSelection. When universal
access and custom reducers are combined, clashing names override the universal access reducers.
Customizing universal-access reducers is not supported.

Don't modify the starter pack files

While you can modify the starter pack files in place, it is better to copy the files and change the copy. Your
upgrades will then be easier as you can compare files between the current and previous version of the
product without the added complexity of your customization changes. Where upgrade changes are
needed, manually apply the changes to your custom version.

Developing with routes
Routes define the valid endpoints for navigation in your application. Your application consists of a network
of routes that can be traversed by your users to access the application's pages.

IBM Cúram Universal Access uses the react-router and react-router-dom packages to manage navigation.
React Router defines and works with routes. For more information, see the React Router documentation
at https://reacttraining.com/react-router/web/guides/philosophy.

The Routes component
The module for Universal Access exports the Routes component, which exposes the routes defined by the
module. The defined routes are the suite of pages that are prebuilt and available for reuse in Universal
Access.

Routes component

You can import and reuse the Routes component in your application. The code example shows how
import and reuse the Routes component in a sample application.

import React from 'react';
import { injectIntl, intlShape } from 'react-intl';
 import { BrowserRouter } from 'react-router-dom';
import '@spm/web-design-system/js/govhhs-design-system-core.min';
 import { Routes } from '@spm/universal-access';

const App = (props) => {
 return (
 {/** You must define your routes controller (Hash vs Browser) */}
 <BrowserRouter>
 <div className="app">
 <div className="my-header-navigation">
 Home | Faq
 </div>

30 IBM Cúram Social Program Management: IBM Cúram Universal Access 2.0.2

https://reacttraining.com/react-router/web/guides/philosophy

 <Routes />
 </div>
 </BrowserRouter>
);
};

App.propTypes = {
 intl: intlShape.isRequired,
};

export default injectIntl(App);

Adding routes
You can add a route by including a new route anywhere inside your Router component.

The following code example adds a route to MyNewPageComponent into the router component:

import { BrowserRouter, Route } from 'react-router-dom';
…
<BrowserRouter>
 <div className="app">
 <div className="my-header-navigation">
 Home | New Page
 </div>
 <UARoutes />
 <Route path="/my-new-page" component={MyNewPageComponent} />
 </div>
</BrowserRouter>

Replacing routes
You can replace existing paths from the Universal Access module’s Routes component with your preferred
component.

Wrap your routes in a <Switch> component

You can replace existing paths from the Routes component with your preferred component. To achieve
this, you must first wrap your routes in a <Switch> component from react-router. This action ensures that
the first match of the requested path that is found in your application is used to resolve the path. For more
information on Switch, see https://reacttraining.com/react-router/web/guides/philosophy.

Add a route with the same path

When you have wrapped in Switch, you add a route with the same path as the page you are overriding.

Note: This route must come before the <Routes/> component to ensure it is matched first.

The following code example shows a replacement route to MyHomePageComponent enclosed in a
<Switch>:

import { BrowserRouter, Route, Switch } from 'react-router-dom';
…
<BrowserRouter>
 <div className="app">
 <div className="my-header-navigation">
 Home | New Page
 </div>
 <Switch>
 <Route path="/" component={MyHomePageComponent} />
 <Routes />
 <Route path="/my-new-page" component={MyNewPageComponent} />
 </Switch>
 </div>
</BrowserRouter>

IBM Cúram Universal Access (New) 31

https://reacttraining.com/react-router/web/guides/philosophy

Redirecting routes
You can redirect existing paths by using the react-router Redirect component.

Redirecting a route

The following code example imports the Redirect component and redirects the path '/bring-me-home' to
"/".

import { BrowserRouter, Route, Switch, Redirect } from 'react-router-dom';
…
<BrowserRouter>
 <div className="app">
 <div className="my-header-navigation">
 Home | New Page
 </div>
 <Switch>
 <Route path="/" component={MyHomePageComponent} />
 <Redirect path"/bring-me-home" to="/"
 <Routes />
 <Route path="/my-new-page" component={MyNewPageComponent} />
 </Switch>
 </div>
</BrowserRouter>

Removing routes
You can remove unwanted routes from IBM Cúram Universal Access.

You might want to reuse some but not all of the Universal Access <Routes/>. For those routes that you
want to remove instead of replacing, use the react-router <Redirect> component to send users to a ‘404’
style page, or some other valid end point.

You must declare the redirect before the <Routes/> component. You must also wrap the redirect in a
<Switch> component. The following code example removes the route to "FAQ" by redirecting to a 404
page:

<BrowserRouter>
 <div className="app">
 <div className="my-header-navigation">
 Home | FAQ
 </div>
 <Switch>
 <Redirect path="/faq" to="/404page" />
 <Routes />
 </Switch>
 </div>
</BrowserRouter>

Advanced routing
IBM Cúram Universal Access is now code-split based on routes.

Code splitting

Code-split based on routes is achieved using react-loadable and the @spm/universal-access-ui
package that is in the default LoadingPage component. For more information, see For more information,
see https://github.com/facebook/create-react-app/blob/master/packages/react-scripts/template/
README.md#code-splitting and https://github.com/jamiebuilds/react-loadable. The following example
shows how to achieve the same split with the routes that you added:

import { LoadingPage } from ‘@spm/universal-access-ui’;
…
const MyNewPageComponent = Loadable({
 loader: () => import(/* webpackChunkName: “MyNewPageComponent” */ '../features/
MyNewPageComponent’),
 loading: LoadingPage,
});
…
 <Route
 component={MyNewPageComponent}
 exact

32 IBM Cúram Social Program Management: IBM Cúram Universal Access 2.0.2

https://github.com/facebook/create-react-app/blob/master/packages/react-scripts/template/README.md#code-splitting
https://github.com/facebook/create-react-app/blob/master/packages/react-scripts/template/README.md#code-splitting
https://github.com/jamiebuilds/react-loadable

 path=‘/my-new-page’
 />

Titled routes

Accessibility rules require that a web page should have a descriptive title. You can implement a
descriptive title using the TitledRoute component of the @spm/universal-access-ui package. To localize
the title, TitledRoute exposes a title prop that accepts a react-intl message () and can be used with or
without code-split routes as shown in the following example:

import { TitledRoute } from ‘@spm/universal-access-ui’;
import { defineMessages } from 'react-intl';
…
const titles = defineMessages({
 myNewPage: {
 id: 'app.titles.myNewPage’,
 defaultMessage: ‘My New Page’,
 },
});
…
 <TitledRoute
 component={MyNewPageComponent}
 exact
 path=‘/my-new-page’
 title={titles.myNewPage}
 />

Authenticated routes

You can protect parts of the application in two ways:

1. On access , handle authentication failures to a REST API and redirect to a login page.
2. Block access to specific routes to avoid any cost in running the REST API.

The following example shows how to block access to specific routes. The @spm/universal-access-ui
package provides an AuthenticatedRoute component that accepts an authUserTypes array prop of the
allowed user types to access this route. AuthenticatedRoute also wraps TitledRoute and therefore offers a
title prop. The following is an example of using AuthenticatedRoute:

import { AuthenticatedRoute } from ‘@spm/universal-access-ui’;
import { Authentication } from '@spm/universal-access';
import { defineMessages } from 'react-intl';
…
const titles = defineMessages({
 myNewPage: {
 id: 'app.titles.myNewPage’,
 defaultMessage: ‘My New Page’,
 },
});
…
 <AuthenticatedRoute
 authUserTypes={[Authentication.USER_TYPES.STANDARD, Authentication.USER_TYPES.LINKED]}
 component={MyNewPageComponent}
 exact
 path=‘/my-new-page’
 title={titles.myNewPage}
 />

The example blocks access to the /my-new-page routes for all users who are not of type STANDARD or
LINKED, these users are redirected to the /login route.

IBM Cúram Universal Access (New) 33

Connecting to Universal Access APIs
You must connect your web application to IBM Cúram Social Program Management Universal Access
REST APIs. You can use the mock server API service and the RESTServices utility to help you to develop
and test your REST API connections.

The mock server API service
The mock server is a mock API service that is provided to aid rapid development. The mock server serves
APIs that simulate calling real web APIs. When you are developing your application, the mock server
provides a lightweight environment against which the React components can be tested communicating
with the services that provide their data.

Configuring the mock server

Configure the mock server location through the following properties in the .env.development file. You
can change these values to suit your needs.

• REACT_APP_REST_URL=http://localhost:3080
• REACT_APP_BASE_URL=http://localhost:3080
• REACT_APP_API_URL=http://localhost:3080
• MOCK_SERVER_PORT=3080

Running the mock server

Run the mock server by using the following command from the root directory of your project:

npm run start:mock-server

However, when you are developing locally, you can use the following command that starts both the mock
server and the client:

npm run start

See the package.json file in your project for the full list of commands.

Adding mock APIs

The universal-access project includes a number of mock APIs that simulate calling the SPM Universal
Access APIs. These mock APIs support running some basic scenarios in development mode for the
existing set of features.

As you develop your application, you typically create new APIs that you also want to mock. When the
mock server starts, it looks to import the /mock/apis/mockapis file relative to the folder the command
was started from. In this file, the mock-server expects to find three objects, GET, POST, and DELETE, that
it can query to serve API requests for those HTTP methods.

The format of the mock definition is a relative URL that is assigned a JavaScript object. For example, the
following code assigns the object user to the URL /user, and the object payments.json, which is read
from a file, to the /payments URL.

const user = {

 'firstname': 'James',

 'surname': 'Smith',

 'gender': 'male',

 ...

34 IBM Cúram Social Program Management: IBM Cúram Universal Access 2.0.2

}

const mockAPIsGET = {
 // ADD YOUR GET MOCKS HERE

 // Example of providing mock data in response to an API request in
 // the format uri:mockobject
 '/user': user,

 '/payments': readFile('./payments/payments.json)
};

If you use mocking extensively, it is better to use separate files and folders to structure your mocks.

Using universal-access mock APIs

The mockapis.js file is preconfigured to import and use mock APIs defined and exported by the
universal-access package. This allows your project to reuse and extend the set of universal-access mock
APIs.

const mockAPIs = require('@spm/universal-access-mocks');

// Extract the existing universal access GET,POST and DELETE mocks for merging.
const UAMockAPIsGET = mockAPIs.GET;
const UAMockAPIsPOST = mockAPIs.POST;
const UAMockAPIsDELETE = mockAPIs.DELETE;

...

//create custom mocks

...

// Merge UA mocks with custom mocks
const GET = Object.assign({}, UAMockAPIsGET, mockAPIsGET);
const POST = Object.assign({}, UAMockAPIsPOST, mockAPIsPOST);
const DELETE = Object.assign({}, UAMockAPIsDELETE, mockAPIsDELETE);

module.exports = { GET, POST, DELETE };

Where the same URL is used by a custom mock that was previously assigned to a universal-access
package mock, the custom mock replaces the universal access version.

The RESTService utility
The @spm/core package provide the RESTService utility, which you can use to connect your application
to a REST API. You can fetch resources with alternatives such as Fetch API, SuperAgent,or Axios.
However, the RESTService utility provides some useful functions for connecting to SPM REST APIs.

The RESTService utility supports the GET, POST, and DELETE HTTP methods through the following
JavaScript methods:

• RESTService.get(url, callback, params)
• RESTService.post(url, data, callback)
• RESTService.del(url, callback)

The full RESTService class documentation is in the doc folder in the @spm/core package.

The RESTService utility hides details of calls, such as passing credentials, language, and errors. The
callback that is passed to the GET, POST, or DELETE methods is started after the API calls return. API
calls are asynchronous, so write your code to expect and handle a delay in receiving a response.

The RESTService utility provides the following functions during communications.

IBM Cúram Universal Access (New) 35

Authentication

Authentication of the user is handled transparently by the RESTService utility. After a user is
authenticated, the REST APIs automatically send the required 'credentials', that is, the authentication
cookies, with each request. For more on how authentication is handled for REST, see Cúram REST API
security.

If a user's session is invalidated before a new request is made to a REST API, then the '401 unauthorised'
response is returned by the server. The the RESTService utility relays the response to the callback
function passed by the caller.

Handling responses

The RESTService utility formats the response from the server to ensure that callbacks receive the
response in a consistent manner.

Each get, post, and delete method accepts a callback function from the caller. When invoked by the
RESTService utility, the callback function receives a boolean that indicates the success or failure of the
API call and the response. The callback function can then deal with the result. For example, a failure can
be used to trigger your code to throw an error with the response data that can be used to trigger an error
boundary. For more information on the callback function parameters, see the API documentation for the
RESTService utility.

User Language

The 'Accept-Language' HTTP header is automatically set by the RESTService utilitye based on the user's
selected language, which the user can select using the language picker in the reference application. This
allows the server to respond in the correct locale where locale sensitive information is being handled on
the server.

The locale passed in the header is set in the transaction that is initiated by that REST request, and is used
for the duration of that transaction. For more on transactions, see Transaction control.

Handling Timeouts

The RESTService utility can manage unresponsive calls to the server. The following properties are set, and
can be modified, in the .env files to set thresholds for timeouts.

• REACT_APP_RESPONSE_TIMEOUT=10000 // Wait 10 seconds for the server to start
sending

• REACT_APP_RESPONSE_DEADLINE=60000 // but allow 1 minute for the file to
finish loading

Simulating slow responses

During development, it is important to test that your application continues to operate in an acceptable
way even when network responses are slow. You can simulate a slow network connection by setting a
property in the .env.development file in the root of your project.

For example, setting REACT_APP_DELAY_REST_API=2500 delays the response from all GET requests for
2.5 seconds.

The value can be set to any positive integer to adjust the delay.

Table 1 outlines the process environment variables that the API uses. Use the variables to configure the
service.

36 IBM Cúram Social Program Management: IBM Cúram Universal Access 2.0.2

Table 3: Process environment variables

Variable Setting Default Description

REACT_APP_RE
SPONSE_TIMEO
UT

Milliseconds 10 seconds Sets the maximum time to wait for the first byte to
arrive from the server, but does not limit how long
the entire download can take. Set the response
timeout to be a few seconds longer than the actual
time it takes the server to respond. The lengthened
response allows for time to make DNS lookups,
TCP/IP, and TLS connections.

REACT_APP_RE
SPONSE_DEAD
LINE

Milliseconds 60 seconds Sets a deadline for the entire request, including all
redirects, to complete. If the response is not fully
downloaded within
REACT_APP_RESPONSE_DEADLINE, the request is
aborted.

REACT_APP_DE
LAY_REST_API

Milliseconds Use only for development testing to simulate a delay
in the response from the API.

Developing authentication
The universal-access package exports the Authentication module, which can be used to log in and out of
the application and to inspect the details of the current user. The login service is passed a user name and
password, and optionally a callback function that is invoked when the authentication request is
completed.

Authentication services

The Authentication API works in three modes:

• Simple Authentication (Development mode)
• SSO Authentication
• JAAS Authentication

Simple Authentication (Development Mode)

During client development, the authentication defaults to use a simple authentication that does not
require an SPM server. This simple authentication bypasses proper authentication (JAAS or SSO) and
instead accepts the user name dev without any password. The login process can be ran and allows access
to the 'user account' password protected pages.

This simple authentication is sufficient to do most client development work and avoids the need to
configure your client application to communicate with an SPM server. It is triggered by the
REACT_APP_SIMPLE_AUTH_ON=true property in the env.development file.

You can set REACT_APP_SIMPLE_AUTH_ON=false if you want to trigger an SSO or JAAS login service.

SSO Authentication

The application supports single sign-on (SSO), which is a typical use case for many enterprises that serve
multiple applications with a single user name and password for their clients. The client application can be
configured to use SSO through the REACT_APP_SSO_ENABLED=true environment property.

IBM Cúram Universal Access (New) 37

For more information about configuring your universal access deployment to use SSO, see “Configuring
single sign-on” on page 109.

JAAS Authentication

If not in development mode, and not using single sign-on, then the login process defaults to use the
standard JAAS login module.

• REACT_APP_SIMPLE_AUTH_ON=false
• REACT_APP_SSO_ENABLED=false

The JAAS login module is exposed through the SPM universal access API at the /j_security_check
end point and authenticates the user against the SPM database of users. For more information about
JAAS login, see Authentication Architecture.

User Account Types

The universal access client supports three different user account types, Public, Generated, and Citizen.
For more on user accounts and security see User Accounts. If you want to customize the log in and sign
up process provided by the universal access starter pack, the Authentication module provides log in
functions to support each of these three user account types.

Authentication.login

Authentication.loginAsPublicCitizen

Authentication.loginWithGeneratedUser

Tracking the logged in user

The universal access client application uses 'session storage' in the browser to store some basic details of
the currently logged-in user after they are authenticated with the server. This session storage is typically
used to inform the client application what views it should present, for example if no user is logged in, then
the login and signup page buttons are presented on the home page.

The Authentication module provides functions that query who the current logged in user is and their
account details, according to the session storage in the browser.

Authentication.getLoggedInUser

Authentication.getUserAccount

Logged in - Client vs Server

It is possible for the user to seem logged in on the client when they are not logged in on the server. This
does not compromise the security of the application. The SPM server APIs use session tokens that are
stored in cookies to determine whether the current user is authenticated. The cookies are transmitted
with each API call, and only a valid token results in a successful response.

For example, if a user's session times out on the server, the next API request to the server results in a 401
unauthorized response, even if the user seems to be logged in to the client application. This behavior
ensures that no matter what the client application says about the currently logged-in user, the server
responds only to valid session tokens.

38 IBM Cúram Social Program Management: IBM Cúram Universal Access 2.0.2

Developing with Redux
Redux is used as a client-side store to store data that is retrieved by IBM Cúram Social Program
Management APIs and data that is used to present a consistent user experience.

What is Redux?

Redux is a client-side store that provides a mechanism for holding data in the browser.

• The store is typically used to manage state in the client application. State can include the following
types of data:

– System data that is returned from an API request.
– User input data that is collected before it is posted to APIs.
– Application data that is not sent from or to the server, but is created and maintained to control how

the application works. For example, transient user selections like hiding or showing a side pane.
• Redux uses a unidirectional architecture, which simplifies the process of managing state.
• Redux can be used as a caching mechanism to avoid unnecessary network round-trips, although

consider this usage carefully to ensure the data that is presented is always current.
• Redux proves to be beneficial as your application grows and becomes more complex. By centralizing

state management and offering tools that give a holistic view of the application state, development can
scale more easily.

Note: This topic assumes that you are familiar with Redux and using Redux with React components. If you
are not familiar with these technologies and how they work together, you should complete tutorials from
the official sources for these technologies.

How is Redux used in Universal Access

IBM Cúram Universal Access uses Redux to store the data that is retrieved by the IBM Cúram Social
Program Management APIs.

Each GET API used by Universal Access has an associated ‘store slice’ where the response of the API is
stored. React components can monitor the store for updates relevant to them and automatically update
as data changes. The store is also used for collecting user input, such as user information that is
requested while users sign up. This data can then be retrieved from the store and posted to the IBM
Cúram Social Program Management server.

Other parts of the store are not tied to IBM Cúram Social Program Management APIs, and track data that
is used to present a consistent user experience.

Creating a Redux store

By default, the Universal Access starter pack is configured to use a Redux store. This configuration is
needed to allow it to use the universal-access and universal-access-ui packages. The store
configuration is initiated from the src/redux/ReduxInit.js file in the starter pack.

...

import configureStore from './store';

...

// ===================================
// 1. Create the store and initialize the universal-access module.
// ==================================

// Create a Redux store
// This is optional, if you don't want to create your own Redux store you can remove this,
const appStore = configureStore();

IBM Cúram Universal Access (New) 39

// Configure the UA package
// 1. If you are using your own store, you must share it with UA
UAReduxStore.configureStore(appStore);

...

For more information on Redux, see https://redux.js.org/.

Configuring the store

Configure the store in the src/redux/store.js file, which exports the configureStore function that
can be called to create a new Redux store. The configure store function can be modified to:

• Add Redux 'middleware'.
• Provide a custom set of reducers.

Note: To work with the universal-access packages, the store must use the reducers that are exported
from the universal-access package.

Adding reducers

If you decide to use Redux with your custom React components, you must create custom reducers and
add them to the store. All Universal Access reducers are prefixed with UA, for example
UAPaymentsReducer. The intelligent-evidence-gathering package also exposes
IEGReduxReducers reducers, prefixed with IEG. When adding custom reducers, you can combine your
custom reducers with existing reducers. Do not use the UA or IEG prefixes in custom reducers to avoid
overriding existing reducers. Overriding reducers is not supported, see “Developing compliantly” on page
30.

The src/redux/rootReducer.js file defines the set of reducers for the store, and combines them into
a single root reducer that can be passed to the configureStore function in the src/redux/store.js
file.

For convenience, the file defines an AppReducers object where you can add custom reducers. The
custom reducers that are defined in the AppReducers object are combined with the UAReducers
imported from the universal-access package, and the superset of reducers is returned.

The following code excerpt shows the rootReducer function that returns the combination of Universal
Access reducers and custom reducers.

const AppReducers = {
 // Add custom reducers here...
 // customReducer: (state, action) => state,
};

/**
 * Combines the App reducers with those provided by the universal-access package
 */
const appReducer = combineReducers({
 ...AppReducers,
 ...UAReduxReducers,
});

/**
 * Returns the rootReducer for the Redux store.
 * @param {*} state
 * @param {*} action
 */
const rootReducer = (state, action = { type: 'unknown' }) => {
 ...
 return appReducer(state, action);
};

40 IBM Cúram Social Program Management: IBM Cúram Universal Access 2.0.2

https://redux.js.org/

Clearing Redux store data

The Redux store is a JavaScript object that is stored in the global object for the browser window. The
content of the store is visible through inspection, either programmatically or by browser plug-in tools,
such as the developer tools. It is critical that the store is cleared for the current user when they log out to
ensure that no sensitive user data is left on the device for malicious actors. The log out feature that is
provided by the starter pack triggers a Redux action that clears the store.

Developing with universal-access modules
Universal Access modules provide a connection between React components and the Redux store. This
design allows the React components to focus on presentation and reduces the complexity of the code in
the presentation layer. The modules also manage the communication between the client application and
the IBM Cúram Social Program Management APIs, including authentication, locale management,
asynchronous communication, error handling, Redux store management and more.

Modules and APIs

Each universal-access module is responsible for handling the communication between a single API. For
example, the Payments module is responsible for communicating with the /v1/ua/payments API. For
more information about IBM Cúram Social Program Management APIs, see Connecting to a Cúram REST
API.

Blackbox

Modules are blackbox so are not open to customization or extension. The modules expose actions and
selectors to interact with the module. The actions and selectors are APIs that are documented in the
<your-project-root>/node_modules/@spm/universal-access/docs/index.html file.

Actions

Module actions are used to modify the Redux store, like inserting, modifying, or deleting data from the
store. For example, the PaymentsActions action modifies the payments slice of the store.

Some actions include calls to APIs. For example, PaymentsActions.getData action calls the v1/ua/
payments API and dispatches the result to the payments slice of the store, or sets an error if the API call
fails.

Selectors

Module selectors are used to query the Redux store. They provide the response to predefined store
queries. For example, the PaymentsSelector.selectData selector returns the /payments/data
slice from the store, and the PaymentsSelector.selectError selector returns the value of the /
payments/error slice of the store.

Reusing Universal Access modules in your custom components

You can use the actions and selectors from the universal-access package to connect your custom
components to existing IBM Cúram Social Program Management APIs and the Redux store. You can use
the react-redux module to connect your components. Examples of this technique can be found in the
universal-access-ui features.

IBM Cúram Universal Access (New) 41

For example, the following code is from the PaymentsContainer file in the Payments feature. The code
shows how the actions and selectors from the Payments module are connected to the properties of the
Payments component.

This pattern is documented extensively in the official Redux documentation.

import { connect } from 'react-redux';
import React, { Component } from 'react';

...

/**
 * Retrieves data from the Redux store.
 *
 * @param state the redux store state
 * @memberof PaymentsContainer
 */
const mapStateToProps = state => ({
 payments: PaymentsSelectors.selectData(state),
 isFetchingPayments: PaymentsSelectors.isProcessing(state),
 paymentsError: PaymentsSelectors.selectError(state),
});
/**
 * Retrieve data from related rest APIs and updates the Redux store.
 *
 * @export
 * @param {*} dispatch the dispatch function
 * @returns {Object} the mappings.
 * @memberof PaymentsContainer
 */
export const mapDispatchToProps = dispatch => ({
 loadPayments: () => PaymentsActions.getData(dispatch),
 resetError: () => PaymentsActions.resetError(dispatch),
});
/**
 * PaymentsContainer initiates the rendering the payments list.
 * This component holds the user's payment details list.
 * @export
 * @namespace
 * @memberof PaymentsContainer
 */
export default connect(
 mapStateToProps,
 mapDispatchToProps
)(PaymentsContainer);

Related information
Connecting to a Cúram REST API

Developing with headers and footers
IBM Cúram Universal Access contains a predefined header and footer. The header and footer contain
content that is found in the header and footer of an application, such as links, log in, and sign up buttons,
and menus for logged in users.

Headers and footers

You can customize your application headers and footers by replacing the sample components with your
own custom versions.

The App.js file in the universal-access-sample-app module, reuses the sample ApplicationHeader and
ApplicationFooter components that are provided by the universal-access module by placing them above
and below the main content of the application:

App.js

 <BrowserRouter>
 <ScrollToTop>
 <div className="app">

 {formatMessage(translations.appSkipLink)}

42 IBM Cúram Social Program Management: IBM Cúram Universal Access 2.0.2

 <Route path="/" component={ApplicationHeader} />
 <main id="main-content" className="main-content">
 <Content>{routes}</Content>
 </main>

 <ApplicationFooter />
 </div>
 </ScrollToTop>
 </BrowserRouter>

Header

Typically, an application header has two views. One view has items relevant to users who are not logged in
or signed up, for example a Sign Up button. The second view shows items that are relevant to users who
are signed up and logged in, for example an Update your profile button.

To facilitate the separate views, use a react-router-dom Route component. The App.js sample
demonstrates wrapping the ApplicationHeader component in a Route component and passing Route
information to the ApplicationHeader. This allows the ApplicationHeader to query the Route properties
and decide what to display based on the current location in the application. For example, you might want
to show a different view for the login page route (‘my-app-domain/login’) from the application home page
route (‘my-app-domain/’).

The following code sample shows how the ApplicationHeader queries its location property to find out
what page the application is displaying. The sample code then uses this information to decide what to
show in the header.

 get isOnLoginPage() {
 return this.props.location.pathname === '/login';
}

render() {
 return (
 <Header
 title={this.pageTitle}
 type="scrollable"
 logo={<img src={logo}
 alt="agency"
 id={this.props.loggedInUser} />}>
 <PrimaryNavigation type="scrollable">
 <TabList scrollable>
 <Tab
 id="tab1"
 href="/"
 text={
 this.props.intl.formatMessage(translations.headerHomeLabel)}/>
 <Tab
 id="tab2"
 href="/my-applications"
 text={this.props.intl.formatMessage(
 translations.headerBenefitsLabel)}/>
 </TabList>
 </PrimaryNavigation>
 <SecondaryNavigation type="Scrollable"/>

 {/* Show signed out menu */}
 {!this.isOnLoginPage &&
 this.props.loggedInUser === null &&
 !this.isUserProfileLoaded &&
 this.signInMenu}

 {/* Show signed in menu */}
 {this.props.loggedInUser &&
 this.isUserProfileLoaded &&
 this.profileMenu}
 </SecondaryNavigation>
 </Header>
);
 }

IBM Cúram Universal Access (New) 43

Login and sign up in the header

If you are building your own customer header, you must identify which page you are currently displaying
the Header on, you must also differentiate between logged in and logged out users. Whether a user is
logged in or out can be determined by using the authentication API provided by the universal-access
module. The Authentication API provides functions to allow you to log in and out of the application, and
also allows you to query if a user is logged in and who that user is. For more information, see the
Authentication API documentation.

The following code sample shows how the ApplicationHeader uses the Authentication API. In this
function, a check is made to see whether a user is logged in before it loads that user's profile. The user's
profile is needed to display the user's full name in the header.

fetchProfile() {
 if (Authentication.isLoggedIn() && !this.isUserProfileLoaded) {
 this.props.loadProfile();
 }
}

Footer

You can add a footer to the bottom of the application page in the same way as you add the header to the
top of the page. The universal-access module provides a sample application footer that is used in the
universal-access-sample-app, see the App.js sample. The sample footer is static and does not change
based on the location or the authentication state, however the footer can be made dynamic by following
the example from the header.

Developing toast notifications
A toast as a computing term refers to a graphical control element that communicates certain events to the
user without forcing them to react to the notification immediately. In IBM Curam Universal Access, we use
the web design system Alert component as a base to represent our toast notifications and allow capability
to display these notifications independent of the main display content in any function within the
application.

The <Toaster> component

The exposed <Toaster> component is used in App.js and is responsible for rendering toast notifications
retrieved directly from the Redux store. These notifications are displayed independent of page content.
This means that a deeply nested function can be used to display a notification without regard to the
current component render and/or functionality that is used to navigate to different pages.

The <Toaster> component handles the retrieving of toast slice within the store, and in passing
functionality to remove toast notifications once they have been dismissed.

The <Toast> component

The exposed <Toast> is the preferred component to display toast notifications. It accepts properties as
defined by the web design system Alert component, without requiring the need to specify the component
as an Alert and the properties 'banner', 'center', and 'toast'. It also requires a 'text' property to be defined.

44 IBM Cúram Social Program Management: IBM Cúram Universal Access 2.0.2

The Toaster module

Any component that intends to display a toast notification within it's processing must use the Toaster
module action fillToaster function. This can be either passed to component as a property, or connected to
the Redux store and defining the action as a property. For more information, see “Developing with
universal-access modules” on page 41.

An example of a page that implements the Toaster module action fillToaster and a service unavailable
toast notification is shown.

import React from 'react';
import { connect } from 'react-redux';
import { ToasterActions } from '@spm/universal-access';
import { Toast } from '@spm/universal-access-ui';

...

/**
 * Updates the Toast slice of Redux store
 * @param {*} dispatch the dispatch function
 */
export function mapDispatchToProps(dispatch) {
 return {
 fillToaster: data => {
 ToasterActions.fillToaster(dispatch, data);
 },
 };
}

class MyComponent extends React.Component {

 ...

 doSomething({ success }) {
 if (success) {
 ...
 }
 else {
 this.props.fillToaster(
 <Toast
 dismissable={false}
 expireAfter={5}
 text="This service is currently unavailable"
 type="danger"
 />
);
 }
 }

 ...

export default connect(
 null,
 mapDispatchToProps
)(MyComponent);

Providing the application in another language
IBM Cúram Universal Access is globalized, that is it can be translated into different languages. Universal
Access also supports regionalization of currencies, calendar and date formats as defined by IBM Cúram
Social Program Management on which the application depends, for more information, see Developing for
Regional Support.
Related information
Developing for Regional Support

Selecting a language
Citizens can select a preferred language from the language drop-down in the footer of the application.
When citizens select a preferred language, the application is displayed in that language. The application
retains the preferred language setting based on a cached value in the browser.

Note: The language drop-down only appears when more than one language is configured for the
application.

IBM Cúram Universal Access (New) 45

Note: A citizen's language preference is not saved if the browser is configured to block access to its local
storage, the application reverts to the default language (English) when the page is reloaded.

Configuring the languages provided by the application
Add languages to the application or change the default language.

About this task

The application can provide a number of languages in the user interface. You can customize the
application by adding languages or changing the default language.

Procedure

1. Create a src/config/intl.config.js file.

Note: This file is read by the src/intl/IntlInit.js component, which handles storage of the
configuration and creates the react-intl IntlProvider.

2. Review the following example src/config/intl.config.js:

export default {

 defaultLocale: "en",

 locales: [

 {

 locale: "en",

 displayName: "English",

 localeData: require("react-intl/locale-data/en")

 messages: require("../locale/messages_en”)

 },

 {

 locale: "de",

 displayName: "German",

 localeData: require("react-intl/locale-data/de"),

 messages: require{

 ...require('@spm/intelligent-evidence-gathering-locales/data/messages_de'),

 ...require('@spm/universal-access-ui-locales/data/messages_de'),

 },

 {

 locale: "ar",

 displayName: "Arabic",

 direction: "rtl",

 localeData: require("react-intl/locale-data/ar"),

 messages: require{

 ...require('@spm/intelligent-evidence-gathering-locales/data/messages_ar'),

 ...require('@spm/universal-access-ui-locales/data/messages_ar'),

 },

 {

 locale: "ht",

46 IBM Cúram Social Program Management: IBM Cúram Universal Access 2.0.2

 displayName: "Haitian",

 /*

 Custom locale data

 Where the locale you need to support is not found in the
 react-intl locale data you can create your own locale data
 to handle this. Simply create an object with the locale
 property. You must include at a minimum the pluralRuleFunction

 See https://github.com/yahoo/react-intl/issues/1050

 */

 localeData: {

 locale: "ht",

 pluralRuleFunction(arg1, arg2) {

 return arg1 && arg2 === 1 ? "one" : "other";

 }

 },

 messages: require("../locale/messages_ht")

 }

]

};

Note: An src/config/intl.config.js.sample.md is provided which details the intl.config.js
object schema

Translating your application
Use react-intl and babel-plugin-react-intl to extract text from your application. You can then translate the
text into another language and include that translation in the application.

Extracting translatable content
During development, IBM used react-intl (https://github.com/yahoo/react-intl) and babel-plugin-react-intl
(https://github.com/yahoo/babel-plugin-react-intl) to globalize IBM Cúram Universal Access.

About this task

Follow the same method as used by IBM during development to extract the translatable content from
your application.

Note: react-intl provides react components and an API to format dates, numbers, and strings, including
pluralization, and handling translations. babel-plugin-react-intl extracts string messages from React
components that use react-intl.

Procedure

1. Use the react-intl defineMessages API to define the default message string entry within the
application.

2. Add babel-plugin-react-intl and its dependencies babel-cli and babel-preset-react-app to the
application’s devDependencies.

3. Add a .babelrc file in the root of your project. Use .babelrc to configure the settings for the babel-
plugin-react-intl. The following is an example .babelrc file:

{
 "presets": ["react-app"],
 "plugins": [
 [

IBM Cúram Universal Access (New) 47

https://github.com/yahoo/react-intl
https://github.com/yahoo/babel-plugin-react-intl

 "react-intl", {
 "messagesDir": "translations/messages",
 }
]
]
}

4. Add the following line to your package.json "scripts":

UNIX:

“extractTranslations”: "NODE_ENV=production babel ./src >/dev/null"

Windows:

"extractTranslations": "set NODE_ENV=production&&babel ./src > NUL"

5. Run the extraction command: npm run extractTranslations.

Results

This procedure extracts all translations to the translations/messages directory as specified in
the .babelrc configuration.

The content of translations/messages along with the JSON content under the locale directories of
the @spm/universal-access-ui and @spm/intelligent-evidence-gathering directory form what should be
sent for translation.

What to do next
For more information, see Including translated content in your application.

Including translated content in your application
IBM Cúram Universal Access exposes a src/intl/IntlInit component. This component reads the
configuration provided in the custom src/config/intl.config.js to seed your application with messages for
all the languages you want your application to support.

About this task

Procedure

1. Translations must be returned for use in your product in the format of a single JSON file per locale.
This JSON file should be in the format expected by react-intl, which is {[id: string]: string}, as
shown in the following example:

{

“label1”: “Translated text1“,

“label2”: "Translated text2”,

}

Where id is the id that is used in your defineMessages entry and subsequent extracted message id.

Note: The id in this file format {[id: string]: string} must match the id that you define in your code as in
the defineMessages structure. For more information, see https://github.com/yahoo/react-intl/wiki/
API#definemessages.

This single file and its location within the application forms the entry to the messages value with the
intl.config.js for your configured locale, for example:

{

 locale: "de",

48 IBM Cúram Social Program Management: IBM Cúram Universal Access 2.0.2

https://github.com/yahoo/react-intl/wiki/API#definemessages
https://github.com/yahoo/react-intl/wiki/API#definemessages

 displayName: "German",

 localeData: require("react-intl/locale-data/de"),

 messages: require("../locale/messages_de")

},

2. react-intl also requires that its own locale configuration (localeData) is provided to support some of its
internal functions. For more information, see https://github.com/yahoo/react-intl/wiki#loading-locale-
data.

Results

When you have configured it correctly with the src/config/intl.config.js file, the
ApplicationFooter language selection drop-down should expose your new locale selection, it should also
load and apply the configured translation messages to the application.

Note: If your application does not find messages for the currently selected language at run time, react-intl
defaults to the text of the defaultMessage entry that was used when the message was defined in the
source code.

Regionalizing your application
User interface elements, such as date formats and currency symbols are defined in IBM Cúram Social
Program Management, for more information, see Developing for Regional Support.

The universal-access module and its components respect the regional settings as defined by the IBM
Cúram Social Program Management to ensure your application is synchronized with the configuration of
the IBM Cúram Social Program Management instance on which it depends.

Related information
Developing for Regional Support

Customizing forms with IEG
Universal Access provides a number of forms to gather information about citizens, such as applying for
benefits or screening for programs. Where you need to save customer data as evidence, forms are
implemented in Intelligent Evidence Gathering (IEG). IEG is a framework for creating dynamic and
conditional questionnaires and saving the input data as evidence. You can customize IEG forms in the
Universal Access for your organization.

Before you begin
You must familiarize yourself with IEG, and how to author IEG scripts. For more information about IEG,
see

Authoring Intelligent Evidence Gathering scripts

Working with Intelligent Evidence Gathering.

Configuring IEG for Universal Access (New)
Universal Access (New) forms that gather data as evidence are implemented in IEG, as in the standard
version. However, forms are now rendered in the browser by IEG React components from the design
system, which replace the IEG player, and in some cases, the IEG behavior has changed.

Due to the technology and user interface changes, existing IEG scripts must be tested before use, and in
most cases, at least some minor changes are needed for existing scripts to work in the new application.

For the best user experience, always disable the Back button on the first page of IEG forms. The Back
button goes back one page in the script, not in the application, so you don't need one on the first page.

IBM Cúram Universal Access (New) 49

https://github.com/yahoo/react-intl/wiki#loading-locale-data
https://github.com/yahoo/react-intl/wiki#loading-locale-data

IEG elements and attributes specific to the design system and IBM Cúram Universal Access (New)
The following IEG elements and attributes apply to the design system and IBM Cúram Universal Access
(New) only.
Display elements

• The next-button-label element, which is a child element of the question-page,
relationship-page, and summary-page elements.

• The relationship-detail-header element, which is a child element of the relationship-
summary-list element.

• The grouping-id attribute of the cluster element.

Meta-display elements

• The class-names element, which is a child element pf the layout element.

For more information about IEG elements, see the IEG script element reference.

IEG configuration not currently supported for IBM Cúram Universal Access (New)
The following IEG configuration is not currently supported by the design system and IBM Cúram Universal
Access (New).
Question matrices

Question matrices display a list of questions that are based on a code table and, for each of the code
table values and each entity, a check box is displayed for you to select the values that apply to a
particular entity.

Three-field date picker
The three-field date picker is no longer supported and defaults to a single-field date input field.

Grouping individual question help at cluster level
Cluster-level help is supported, however, the compile.cluster.help property, which groups the
help text for each of the questions in a cluster into the cluster help panel is not supported.

Display elements and attributes

• The custom-output element, which renders custom HTML on summary pages only.

• The show-page-elements attribute on the edit-link element for editing specific clusters.

• The footer-field element, which displays values that are calculated from expressions in the
footer-row element of a list.

• The footer-row element, which adds an extra row at the end of a list to display total or summary
information.

• The help-text element, which displays help text, is not supported for pages.

• The label-alignment element, which is used in the layout element for a cluster to control the
text alignment of the labels in the cluster.

• The label-width element, which is used in the layout element for a cluster to control the width
of the labels in the cluster.

• The num-cols element, which is used in the layout element for a cluster to control the number of
columns in the cluster.

• The type element, which is used in the layout element for a cluster to control the layout of labels
in relation to input controls.

• The width element, which is used in the layout element for a cluster to control the width of the
cluster on the page.

• The legislation element, which creates legislation links at page and question level to point to
relevant legislative information.

• The policy element, which creates policy links at page and question level to point to relevant
policy information

50 IBM Cúram Social Program Management: IBM Cúram Universal Access 2.0.2

• The skip-field element, which enables a more flexible layout of elements within clusters or
footer rows in lists where no visible display element is needed.

• The row-help element, which specifies help for rows in a list.

Meta-display elements

• The codetable-hierarchy-layout element, which is used in questions with a code table
hierarchy type to control different aspects of the layout.

Structural, administrative, and other elements and attributes

• The hide-for-control-question attribute on the ieg-script element, which hides the label
and value of control questions for loops when the loop is entered.

• The highlight-validation attribute on the ieg-script element. Validations are now always
displayed with the failing input field.

• The show-progress-bar attribute on the ieg-script element. Progress through sections is now
indicated by text and the section title. For example, STEP 2 OF 4 · HOUSEHOLD.

• The show-sections attribute on the ieg-script element, which shows a sections panel.

For more information about IEG elements, see the IEG script element reference.

Merging clusters with the cluster element grouping-id attribute
If you are developing IEG pages for IBM Cúram Universal Access (New), you can merge several clusters
on summary pages by using the cluster element grouping-id attribute. The grouping-id attribute
is not supported for standard IBM Cúram Social Program Management web applications.

Related data fields can be defined within different clusters under the following conditions. You can use
the grouping-id attribute to merge these related data fields into a single cluster on IEG pages.

• Data is defined within different schema entities but a single cluster can be defined for a single entity
only.

• Data is defined within a conditional cluster but it must be included in a non-conditional cluster when the
condition is met.

All clusters with a specific grouping-id attribute are merged into the first cluster with that grouping-
id attribute. Aside from the questions, the cluster elements are shown as defined by the first cluster.
Ensure that the other cluster elements in the first cluster, such as the title or buttons, are suitable for the
merged cluster.

Where possible, do not have a conditional cluster as the first cluster if you are merging conditional and
non-conditional clusters. If the first cluster is conditional and the condition is not met, then the merged
cluster is not displayed. If a conditional cluster must be positioned before non-conditional clusters in a
merged cluster, then add a non-conditional cluster with no questions as the first cluster with the
grouping-id.

This sample XML snippet merges three clusters into a single cluster with the grouping-id attribute. The
three clusters have data fields from three different entities and the last cluster is conditional.

<cluster entity="ResidentialAddress" grouping-id="100">
 <title id="Address.Title">Address</title>
 <edit-link
 skip-to-summary="false"
 start-page="AboutTheApplicant_GB"
 />
 <layout>
 <type>flow</type>
 <num-cols>2</num-cols>
 <label-alignment>left</label-alignment>
 </layout>
 <question
 id="street1"
 >
 <label id="Street1.Label">Street 1:</label>
 </question>
...
</cluster>

IBM Cúram Universal Access (New) 51

<cluster entity="Person" grouping-id="100">
 <question
 id="applyToMailingAddress"
 >
 <label id="ApplyToMailingAddress.Label">Mail to Same Address?</label>
 </question>
</cluster>
<condition expression="Person.applyToMailingAddress=="N2OITYN2"">
 <cluster entity="MailingAddress" grouping-id="100">
 <question
 id="street1"
 >
 <label id="Street1.Label">Street 1:</label>
 </question>
 ...
</cluster>

Configuring progress information for forms
If you are developing pages in IEG for IBM Cúram Universal Access (New), you can show progress text
and the section title so citizens can see where they are in the script. For example, STEP 2 OF 4 ·
HOUSEHOLD.

Add the following IEG configuration property to the ieg-config.properties file to configure the text.
The section title is added automatically.

Text progress bar indicator
progress.bar.indicator.text=Step %1s of %2s

Where %1s is the current step number and the %2s is the total number of steps on the script. The
message is calculated based on the total number of sections and the current section.

The IEGPageMetadata(JSON); component contains all of the metadata for each IEG form. The text
progress indicator is displayed if IEGPageMetadata finds the metadata['ieg-config']['progress-
indicator'] element in the JSON.

Configuring required or optional field labels for forms
If you are developing IEG forms for IBM Cúram Universal Access (New), you can choose whether to
indicate the required fields or the optional fields. As the majority of questions in a typical form should be
required, indicating the optional questions rather than the required questions typically results in a less
cluttered form. By default, optional fields are highlighted in IEG forms.

About this task
By default, fields that are not configured as required in the IEG script are labeled as Optional and
required fields are not labeled. If you choose to indicate required fields instead, fields that are configured
as required in the script are labeled Required and optional fields are not labeled.

Procedure

Show labels for required questions only by adding the REACT_APP_DISPLAY_REQUIRED_LABEL
environment variable to your .env file with a value of true.
For example:

REACT_APP_DISPLAY_REQUIRED_LABEL=true

Configuring dynamic titles
If you are developing relationship pages in IEG for IBM Cúram Universal Access (New), you can configure
the relationship pages to have more relevant titles based on the user's responses.

The relationship page title accepts an ICU message template.

For more information about the ICU messaging format, see http://icu-project.org/apiref/
icu4j/com/ibm/icu/text/MessageFormat.html. Page titles and subtitles accept a specific formatting syntax
based on ICU. It should be used in loops and will give more context to the users.

These six keywords are defined:

52 IBM Cúram Social Program Management: IBM Cúram Universal Access 2.0.2

http://icu-project.org/apiref/icu4j/com/ibm/icu/text/MessageFormat.html
http://icu-project.org/apiref/icu4j/com/ibm/icu/text/MessageFormat.html

• index
• innerIndex
• outerIndex
• ordinal
• innerOrdinal
• outerOrdinal

You can use index and ordinal in simple non-nested loops. If they are used in a nested loop, it is
synonymous to outerIndex and outerOrdinal.

Some examples are as shown.

"Add {ordinal} member" reads "Add first member", "Add second member", ...

"Add the {innerOrdinal} income for the {outerOrdinal} member" reads "Add the first income for the first
member" ...

"{index, select, 0 {Add your {innerOrdinal} income} other {Add %1s's {innerOrdinal} income}}" reads "Add
your first income" or "Add Jane's first income" depending on the value of index (this is equal to ordinal -
1).

"Ajouter la {ordinal}#feminine# personne" reads "Ajouter la première personne".

"Ajouter la {innerOrdinal}#feminine# recette du {outerOrdinal}#%spellout-ordinal-masculine# membre"
reads "Ajouter la première recette du premier membre"

You can define the title as follows:

{index, select, 0 {Your relationships} other {{personName}'s relationships}}

The outcome of this message template in the first relationship question page is “Your relationships”. On
the following relationship question pages it shows “[Person Name]’s relationships”, The reserved word
personName displays the person's first name on the title of the page.

Configuring relationship pages questions
If you are developing pages in IEG for IBM Cúram Universal Access (New), you can configure the text of
the relationship questions on relationship pages.

By default, the question label is dynamic, in the first relationship question page, it renders as “What is
[Name and Age of the Person related] to you?”. On the following relationship question pages, it renders
“What is [Name and Age of the Person related] to [Name and Age of the Person]?

The attribute name for the start date must be startDate.

To show age in the relationship question label, you must populate the date of birth, which is defined as
the dateOfBirth attribute of the Person entity.

You can use the following IEG configuration property to configure the default text.

relationship question label on relationship page
relationship.question.label={index, select, 0 {What is %2s to you?} other {What is %2s to %1s?}}

The example ICU template does the following:

In the first iteration:

What is %2s to you?

Where %2s is the related person in the first iteration.

From the second iteration until the end:

What is %2s to %1s?

Where %1s is the new main person in the iteration and %2s is the related person in the iteration.

IBM Cúram Universal Access (New) 53

Configuring relationship starting dates on relationship summary pages
If you are developing pages in IEG for IBM Cúram Universal Access (New), you can configure the start
date of relationships for relationship summary pages. For example, Married since Jun 12, 2014.

You can use the following IEG configuration property to configure the default text.

relationship type and start date label.
relationship.type.date.label=%1s since %2s

Where %1s is the relationship type and %2s is the relationship start date.

Configuring rich text
If you are developing pages in IEG for IBM Cúram Universal Access (New), you can configure rich text to
display with a number of IEG display elements. You can also configure external links in rich text to open in
a new tab or window.

About this task

Rich text is supported in the following IEG display elements that support text:

• cluster title, help, and description
• container title, help, and description
• display-text
• divider
• list title, help, and description
• question label and help
• subtitle

For more information about IEG elements, see Display elements.

Configuring external links to open in a new tab or window
If you are developing pages in IEG for IBM Cúram Universal Access (New), you can configure external
links to open in a new tab or window. By default, links open in the current tab.

About this task

For security reasons, HTML in rich text is sanitized to remove certain attributes before display, including
the HTML target attribute. You must configure the rich text to leave the target attribute in the sanitized
content so that the link opens in a new tab or window.

For example, the my link link in rich text opens in the current tab as
intended. The my link link is intended to open in a
separate tab or window. However, because the rich text is sanitized with DOMPurify before display, the
target attribute is removed and the link opens in the current tab by default.

To configure DOMPurify to leave specific attributes, you must add dompurify to the dependencies and
specify a DOMPurify persistent configuration in any JavaScript or JSX code that runs when the app is
loaded. For example, App.js. For more information about DOMPurify, see https://github.com/cure53/
DOMPurify#persistent-configuration.

Only one active configuration at a time is allowed. After you set the configuration, any extra configuration
parameters that are passed to DOMPurify.sanitize are ignored. The DOMPurify configuration persists
until the next call to DOMPurify.setConfig, or until DOMPurify.clearConfig is called to reset it.

Procedure

1. Add dompurify to the dependencies in the package.json file.

npm install dompurify

54 IBM Cúram Social Program Management: IBM Cúram Universal Access 2.0.2

https://github.com/cure53/DOMPurify#persistent-configuration
https://github.com/cure53/DOMPurify#persistent-configuration

2. To configure DOMPurify to leave the target attribute, specify the following DOMPurify persistent
configuration in any JavaScript or JSX code that runs when the app is loaded.

import DOMPurify from 'dompurify';
DOMPurify.setConfig({ ADD_ATTR: ['target'] });

Configuring formats and constraints for input fields
If you are developing pages in IEG for IBM Cúram Universal Access (New), you can use environmental
variables and input masks to customize field inputs for phone numbers, social security numbers (SSN),
currency, and dates. You can also adjust the width of form fields to match the length of the expected
input. If a field is too long or too short, citizens might wonder if they have misunderstood the label.

About this task

Masked input fields increase input field readability by formatting or constraining typed data. You can
apply input masks with the IEG class-names element, which is a child element of the layout element.
The class-names element adds the content of the element to the HTML that is generated for the
component, this element accepts multiple values separated by a space.

For more information about the layout element, see layout.

If the class name matches any of the reserved input mask class names, that class name is applied to the
HTML control input. If the class name does not match a reserved input mask class name, the class name
is applied to the div containing the HTML element (cluster, question or list-question). You can use the
following design system CSS classes that as input masks to format and constrain input values for
questions.

• wds-js-input-mask-currency

Masks input for currency questions. The character limit is 21 characters.
• wds-js-input-mask-ssn

Masks input for social security numbers.
• wds-js-input-mask-phone

Masks input for phone number fields according to the defined locale for the application. Configuring the
phone number input mask requires some additional steps and you can also set optional environmental
variables for delimiters and country codes, see “Configuring phone numbers” on page 56.

• wds-js-input-layout-size--field_size

Adjusts the width of form fields to match the length of the expected input. Where field_size is one of
the following sizes:

x-small
Use for 2-3 characters, such as DD, MM or title.

small
Use for 4-6 characters, such as ZIP code or CVV number.

medium
Use for around 8 characters, such as SSN or DD/MM/YYYY.

large
Use for around 16 characters, such as credit card numbers.

x-large
Use for around 24 characters, such as email addresses.

Procedure

In your IEG script, add the appropriate CSS classes to the question. For example:

<question id="ssn" mandatory="true">
 <label id="SSN.Label">SSN</label>
 <layout>

IBM Cúram Universal Access (New) 55

 <class-names>custom-css-class1 wds-js-input-mask-ssn wds-js-input-layout-size--medium
 </class-names>
 </layout>
</question>

Configuring phone numbers
If you are developing pages in IEG for IBM Cúram Universal Access (New), you can configure an input
mask class name to format phone number fields according to the defined locale for the application. You
can also configure a phone number delimiter or a country prefix if needed.

Procedure

1. Add cleave.js as a dependency in your package.json file.

"cleave.js": "<version>"

Where version is the version that you want to use.
2. Import the region-specific .js file in your initializing .js file.

For example:

import 'cleave.js/dist/addons/cleave-phone.[country]';

Where country is the locale that you want to use.
3. Add a REACT_APP_PHONE_MASK_FORMAT environment variable to your .env file.

REACT_APP_PHONE_MASK_FORMAT=[country]

Where country is the locale that you want to use.
4. In your IEG script, add the wds-js-input-mask-phone class name to the question. For example:

<question id="primaryPhoneNumber" mandatory="true" show-field-help="true">
 <layout>
 <class-names>wds-js-input-mask-phone</class-names>
 </layout> <label id="PrimaryPhoneNumber.Label">Primary Phone Number</label>
</question>

5. Optional: You can set a custom delimiter for phone numbers by adding the
REACT_APP_PHONE_MASK_DELIMITER environment variable to your .env file.
For example, to convert 1 636 5600 5600 to 1-636-5600-5600, set the environment variable as
follows:

REACT_APP_PHONE_MASK_DELIMITER=-

6. Optional: You can set a fixed country code for phone numbers by adding the
REACT_APP_PHONE_MASK_LEFT_ADDON environment variable to your .env file.
For example, to convert 1-636-5600-5600 to +1-636-5600-5600, set the environment variable as
follows:

REACT_APP_PHONE_MASK_LEFT_ADDON=+

Configuring date formats
If you are developing pages in IEG for IBM Cúram Universal Access (New), you can configure the date
format by setting the REACT_APP_DATE_FORMAT environment variable.

About this task

By default, the date format is MM/DD/YYYY if you do not set a value for the REACT_APP_DATE_FORMAT
environment variable.

56 IBM Cúram Social Program Management: IBM Cúram Universal Access 2.0.2

The valid values are:

dd-mm-yyyy
mm-dd-yyyy

If you set an invalid value, the default date format is used.

Procedure

Change the date format by adding the REACT_APP_DATE_FORMAT environment variable to your .env file.
For example, to change the date format to DD/MM/YYYY, set the environment variable as follows:

REACT_APP_DATE_FORMAT=dd-mm-yyyy

Configuring form fields with code-table hierarchies
If you are developing pages in IEG for IBM Cúram Universal Access (New), you can use code-table
hierarchies to add two related questions. When you answer the first question, the second question is
enabled.

About this task
Any question where the data type is defined as a code table hierarchy is displayed as two separate
questions in vertically aligned drop-down menus. The first question menu corresponds to the root code
table in the hierarchy, and displays the label that is specified for the question. The second question menu
corresponds to the second-level code table in the hierarchy, and displays a label that corresponds to the
code table display name. The second menu is disabled until a selection is made in the first menu.
Summary pages display both questions.

Displaying a code-table hierarchy value in a list, or the codetable-hierarchy-layout options, are not
supported.

Procedure

To ensure that the label is displayed correctly for the second question, you must ensure that, for each
code table name element, there is a corresponding locale element within the displaynames element
in your code-table definition.

For example, see the following code-table definition.

<codetables package="curam.codetable" hierarchy_name="CountyCityHierarchy">
 <!-- Parent codetable - County -->
 <codetable java_identifier="COUNTYCODE" name="CountyCode">
 <displaynames>
 <name language="en">County</name>
 <locale language="en">County</name>
 </displaynames>
 <!-- code items... -->
 </codetable>
 <!-- Child codetable - City -->
 <codetable java_identifier="CITYCODE" name="CityCode" parent_codetable="CountyCode">
 <displaynames>
 <name language="en">City</name>
 <locale language="en">City</name>
 </displaynames>
 <!-- code items... -->
 </codetable>
</codetables>

Configuring page view analytics
You can customize your application to collect citizen page views for analysis. Using the included page view
JavaScript functions, you can start tracking page views by implementing a callback to send tracking data

IBM Cúram Universal Access (New) 57

to a library of your choice for analysis. In this example, the data is sent to the Google global site tag
(gtag.js) JavaScript tagging framework.

Before you begin
The registerPageViewCallback and pageView functions are available for you to implement in your
custom application.
registerPageViewCallback

This function must be called before the application is rendered and takes two arguments:

• A callback, which you must define.
• An optional argument to specify a list of IEG paths that must be filtered out when tracking non-IEG

pages to avoid counting pages twice. By default, the list of IEG paths contains all of the existing
Universal Access form paths, and you can extend the list to include your custom IEG form paths.

pageView
This function calls the registered page view callback if present. If the page view callback is not
registered, it is not called.

For IEG pages, pageView is included in the code. It passes an object with the following 3 properties as
a parameter to the callback:

• pageType ('IEG')
• pageID (the current IEG page ID)
• scriptID (the IEG script ID)

For non-IEG pages, pageView is in the Analytics component, which you must add to the routes. It
passes the following properties:

• title
• location
• path

About this task
To start tracking page views, you must initialize the tracking library, update the routes, register the
callback, and implement the callback to send tracking data to a library for analysis.

Procedure

1. The index.html file is a good place to initialize the library. Insert this snippet, which is as provided by
Google except for the tracking call.

<!-- Global site tag (gtag.js) - Google Analytics -->
<script async src="https://www.googletagmanager.com/gtag/js?id=UA-TRACKINGID"></script>
<script>
 window.dataLayer = window.dataLayer || [];
 function gtag(){dataLayer.push(arguments);}
 gtag('js', new Date());
</script>

2. Also in index.html, you must update the Content Security Policy to allow the Google script to run:

<meta http-equiv="Content-Security-Policy" content="script-src 'self' 'unsafe-eval' 'unsafe-
inline' https://www.googletagmanager.com/ http://www.google-analytics.com/" />

3. Add the Analytics component to the routes.js file to enable the tracking of non-IEG pages.

<>
 <Switch>
 <UARoutes />
 </Switch>
 <Analytics />
</>

4. Implement the callback function.

58 IBM Cúram Social Program Management: IBM Cúram Universal Access 2.0.2

The callback handles both IEG and non-IEG pages based on the pageType prop.

export default function customCallback(props) {
 const gtagProps = {};
 if (props.pageType && props.pageType === 'IEG') {
 // IEG pages
 gtagProps.page_title = `${props.scriptID} ${props.pageID}`;
 gtagProps.page_path = `/apply/${props.pageID}`;
 } else {
 // Non-IEG pages
 gtagProps.page_title = props.title;
 gtagProps.page_location = props.location;
 gtagProps.page_path = props.path;
 }
 window.gtag('config', 'UA-TRACKINGID', gtagProps);
}

5. In index.js, register the callback before the application renders.

registerPageViewCallback(customCallback);
ReactDOM.render(<App />, document.getElementById('root'));

Customization Scenarios
Customize the IBM Cúram Universal Access web application.

The first scenario shows how to change default text on the My Details page. Each subsequent scenario
adds to the previous one to build out new content in your Universal Access project.

Note: Follow the scenarios in sequence. If you start in the middle of the scenario list, you might have to go
back through previous scenarios.

Changing the application text
You can change the default text in the application by providing custom text that overrides the default text
for any language. In this scenario, an English language message is changed.

About this task

Each message or text string that citizens see in the app is provide using the react-intl package that
supports the globalization of React apps. react-intl allows the messages to be extracted and translated to
other supported languages, it also adds placeholders for data, for example.

To change the existing text of any of the languages that are provided by IBM, you must provide a custom
version of the message that is mapped to the same message id.

Procedure

1. Find the ID of the message you want to replace. All product messages are defined in the universal-
access-ui package. In your project, go to /node_modules/@spm/universal-access-ui/locale.
a) The locale folder contains message files for each supported locale. For your chosen language,

search the appropriate message_xx.json for the text string that you want to replace. For
example, to change the English text Apply for a benefit, search messages_en.json for that string
as shown in the following example. If there is more than one instance of the string, you must find
the correct message ID for the text you want to change. The simplest way to find the correct
instance is to try replacing each ID one by one, reloading the page each tine to see if the new string
is displayed.

"System_Messages_Alert_Description": "System messages alert description",

"Payments_NoPaymentMessages": "No payment messages",

"Payments_ApplyForABenefitLink": " Apply for a benefit ",

"TODO_NoTODOMessages": "No to-dos",

IBM Cúram Universal Access (New) 59

"TODO_CaseworkerMessage": "Your caseworkers can create to-dos for you.",

"Meetings_NoMessages": "No meetings",

b) For the Apply for a benefit string, use the associated ID "Payments_ApplyForABenefitLink" to
override the message in your custom messages_en.json.

2. Create a custom message file by creating a messages_en.json file in the src/locale folder.
Custom messages are injected into the application at application start. For more information, see
Localizing the application. To help you get started, the starter pack provides a locale folder from where
custom messages files are automatically loaded. Assuming this process has not been customized for
your project, you can add your custom file to this folder: src/locale.

3. To replace the message, create a new id:message mapping in your custom message file by using the
same ID value as shown in the following example.

"Payments_ApplyForABenefitLink": " Click here to apply for a benefit ",

Related concepts
Providing the application in another language
IBM Cúram Universal Access is globalized, that is it can be translated into different languages. Universal
Access also supports regionalization of currencies, calendar and date formats as defined by IBM Cúram
Social Program Management on which the application depends, for more information, see Developing for
Regional Support.

Adding content to the application
Build on the text change scenario from Changing application text to add a new route. You also add content
that is displayed when the route is loaded.

Before you begin
If you are not familiar with React and React Router, you must take a basic course in building a web
application with React and React Router.

The term "feature" refers to the content that is displayed when a route is loaded, this content is what
citizens see on the user interface. A feature is an abstraction that includes all the content that comes
together to create the end user experience. A feature could be a collection of JavaScript files, json files,
and APIs that work together to generate the end user experience. The term "feature" could be referred to
as a page, view, or component in other application environments.

This scenario adds a new feature that presents a logged-in person's details in the main content area when
a /person URL is loaded. This scenario is built on in later scenarios by calling APIs, using client side
stores, error handling, or globalization.

About this task

When you extend the IBM Cúram Universal Access reference application you might want to introduce new
content that is displayed when citizens click a link.

Procedure

1. Create the content for the feature, take the following steps:
a) Create a folder called features under the /src folder in your project
b) Add a subfolder called person, and add a file called PersonComponent.js to that folder as

shown in the following example.

src/features/Person/PersonComponent.js

60 IBM Cúram Social Program Management: IBM Cúram Universal Access 2.0.2

c) Add some HTML to display when the component is loaded. The following example displays some
data that is returned by an API:

import React from 'react';

const Person = () => { return (
 <div>
 <h1>James Smith</h1>
 <h2>Gender: Male</h2>
 <h2>Born: April 1st 1996</h2>
 </div>
)};
export default Person;

2. Add a route to link to your feature, take the following steps:
a) Declare an associated URI for each feature in the application. The URI allows React to present the

feature when the URI is requested in the browser. This technique is standard 'React Routing' for
displaying features. For more information on routes in the Universal Access client, see Customizing
with routes. Add a simple component that displays when the route is loaded:

1) Open routes.js in your project.
2) Import a Person component from the folder features/person which you create in the next

step.
3) Add a new route "/person" that loads the Person component as shown in the following

example:

import React from 'react';
import { Route, Switch } from 'react-router-dom';
import { Routes as UARoutes } from '@spm/universal-access-ui';
 import Person from './features/PersonComponent'

export default (
 <Switch>
 <Route path="/person" component={Person} />
 <UARoutes />
 </Switch>
);

3. Load the new feature by using the route, take the following steps:
a) Run your application, enter the following command:

npm run start

b) Start a browser and enter the full URL for the feature, for example: http://localhost:8888/person

Results

When the application loads, the person details are displayed in the main content area.

Related concepts
Developing with routes
Routes define the valid endpoints for navigation in your application. Your application consists of a network
of routes that can be traversed by your users to access the application's pages.

Using the Web Design System to style content
Build on the route and person content scenario that you added in Adding content to the application by
styling the content of a person's details.

Before you begin
The Web Design System is a design framework that enables developers to build a cohesive and consistent
application. By selecting components from a design catalog and applying design principles, design and
development is faster and user experience is improved.

IBM Cúram Universal Access (New) 61

http://localhost:8888/#/person

About this task

The full catalog of Web Design System components, including descriptions of when and where to use
them, is documented in the govhhs-design-system-react package. You can access these packages through
index.html file in /node_modules/@govhhs/govhhs-design-system-react/docs. This scenario
uses a number of Web Design System components to improve the person feature.

Procedure

1. Import contents from the Web Design System. Enter the following command to import the Avatar and
MediaObject components from the package @govhhs/govhhs-design-system-react:

import {Avatar, MediaObject} from '@govhhs/govhhs-design-system-react'

2. Update PersonComponent.js to use the Grid, Column, Card, MediaObject, Avatar, and List
components to display the person's details. You can also include an address in a separate card.

Use the following code to replace the previous PersonComponent.js:

import React from 'react';
import {Grid, Column, Card,CardBody,CardHeader, List, ListItem, Avatar, MediaObject } from
'@govhhs/govhhs-design-system-react'

const avatarMediaJames = <Avatar initials="JS" size="medium" tooltip="profile photo" />;
const Person = () => {
 return (
 <Grid className="wds-u-p--medium">
 <Column width="1/2">
 <Card>
 <MediaObject media={avatarMediaJames} title="James Smith">
 <List>
 <ListItem>Gender: Male</ListItem>
 <ListItem>Born: April 1st 1996</ListItem>
 </List>
 </MediaObject>
 </Card>
 </Column>
 <Column width="1/2">
 <Card title="Address">
 <CardHeader title="Address"/>
 <CardBody>
 <List>
 <ListItem>1074, Park Terrace</ListItem>
 <ListItem>Fairfield</ListItem>
 <ListItem>Midway</ListItem>
 <ListItem>Utah 12345</ListItem>
 </List>
 </CardBody>
 </Card>
 </Column>
 </Grid>
)};
export default Person;

3. Save PersonComponent.js.

Results

Reload the application, the application should show the updated styling.

Changing the application header or footer
Build on the styling scenario from Using the Web Design System to style content by adding a link to the
application header or footer. For more information about the application header and footer, see
Developing with headers and footers.

Before you begin

To customize the header, you must create your own custom version. To keep this scenario brief, work on
the header only and copy the existing header from universal-access-ui. Make some small changes to the

62 IBM Cúram Social Program Management: IBM Cúram Universal Access 2.0.2

header to show how it can be customized. Alternatively, completely replace the header or footer with your
own version.

About this task

Change the application header to include a new link that to take you to the My Details page.

Procedure

1. Copy the Universal Access header by copying the node_modules/@spm/universal-access-
ui/src/features/ApplicationHeader folder to src/features.

2. Fix any broken imports. Take the following steps:
a) Use ESLint or a similar linting tool to find any errors where imports are not found.

Note: If you do not use a linting tool, you get build errors.
b) Errors are generated because the universal-access-ui uses relative paths when it imports

dependencies from its own project. For imports that are within the universal-access-ui module, but
outside the features/ApplicationHeader folder, you must change the imports to reference
the official exported version of those dependencies from the universal-access-ui node module.

c) For each import that is not resolved, find the equivalent export in the universal-access-ui package.
Inspect node_modules/@spm/universal-access-ui/src/index.js to find the list of
exported artifacts and their exported names.

The Paths module is referenced in the ApplicationHeader by using the default import from a relative
path as shown in the following example: import PATHS from '../../router/Paths' Amend
module as shown in the following example: import { Paths } from 'universal-access-
ui'

d) Repeat this procedure for all the files in the ApplicationHeader folder, some of the imports of
'Paths', and for some other references such as 'ErrorBoundary' and 'AppSpinner'.

3. Replace the existing header with your custom version, take the following steps:
a) Open src/App.js file and remove the imported ApplicationHeader from universal-access-ui.
b) Import your cloned version from ./features/ApplicationHeader as shown in the following

example:
import ApplicationHeader from './features/ApplicationHeader';

Import ApplicationHeader as a default import, without curly brackets, rather than a named import.
Alternatively, you can add a named export to your ApplicationHeader feature.

4. Update the header feature to include a tab that loads the /person page take the following steps:
a) Open constants.js in src/features/ApplicationHeader/components. constants.js

defines an object that represents a navigation item for the header.
b) Add and entry for the new page My Details as shown in the following example:

/**
 * Application navigation header tabs.
 */
const NAVIGATION_HEADER_TABS = {
 ...

 PROFILE: { NAME: 'PROFILE', ID: 'navigation-profile' },
 CHANGE_PASSWORD: { NAME: 'CHANGE_PASSWORD', ID: 'navigation-change-password' },
 MYDETAILS: { NAME: 'MYDETAILS', ID: 'my-details' } ,

};

c) Open ApplicationHeaderLogic.js.. ApplicationHeaderLogic.js. contains the logic that
tracks which tabs are selected so they can be highlighted as active.

IBM Cúram Universal Access (New) 63

d) Update the isTabActiveForUrlPathname function to include the new My Details page in the Your
Account section. For brevity, the value is hardcoded in the following example. However you can
replicate the pattern that is used by the universal-access code to add it to Paths.

const isTabActiveForUrlPathname = (urlPathname, navigationTabName) => {

 ...
 switch (navigationTabName) {
 case FIND_HELP.NAME:
 return (
 urlPathname === Paths.HOME ||
 urlPathname === Paths.APPLY ||
 urlPathname === Paths.BENEFIT_SELECTION ||
 urlPathname === Paths.APPLICATION_OVERVIEW
);
 case YOUR_ACCOUNT.NAME:
 return (
 urlPathname === Paths.ACCOUNT ||
 urlPathname === Paths.BENEFITS ||
 urlPathname === Paths.PAYMENTS.ROOT ||
 urlPathname === Paths.PAYMENTS.DETAILS ||
 urlPathname === '/person'
);

Open ApplicationHeaderComponent.js and find the Web Design System PrimaryNavigation
component. ApplicationHeaderComponent.js renders the header.

e) Add a tab called 'My Details' with a link to the person feature inside
ApplicationHeaderComponent.js. For brevity, the example is hardcoded values, but you can
replace these values with variables. If you want, you can also localize the tab.

..

<PrimaryNavigation>
 <Tabs>
 ...

 <Tab
 id={NAVIGATION_HEADER_TABS.YOUR_BENEFITS.ID}
 href={HASH_SYMBOL + LOCATIONS.BENEFITS}
 label={formatMessage(translations.headerYourBenefitsLabel)}
 />
 <Tab
 id="person_tab"
 href="/person"
 label="My Details"
 />
 </Tabs>
 ...
</PrimaryNavigation>

...

5. Save your file and restart the application.
6. You can modify the application footer in the same way by replacing the universal-access-ui version in
src/App.js with your own custom version.

Results

Navigate to the home page. Note the new tab called My Details in the primary navigation area. When you
select My Details, the person feature is loaded in the main content area.

Related reference
Developing with headers and footers

64 IBM Cúram Social Program Management: IBM Cúram Universal Access 2.0.2

IBM Cúram Universal Access contains a predefined header and footer. The header and footer contain
content that is found in the header and footer of an application, such as links, log in, and sign up buttons,
and menus for logged in users.

Creating an IBM Cúram Social Program Management REST API
Build on the scenario from Changing the application header or footer, use a REST API to get data to your
application.

About this task

The most common way to get data to your application is to use a web API to receive the requested data as
a JSON string that your application then parses and renders. IBM Cúram Social Program Management
provides development tools and the runtime infrastructure that you can use to build and deploy an API
with your IBM Cúram Social Program Management server. The API can be called using the standard HTTP
verbs such as GET, POST, and DELETE. The API returns data as a JSON string in the response body. For
more information, see Developing Cúram REST APIs.

Related information
Developing Cúram REST APIs

Connecting to REST APIs from the application
Build on the IBM Cúram Social Program Management REST API that you created in the scenario Creating
an IBM Cúram Social Program Management REST API by calling it from your application.

About this task

Features in your application rely on passing data to and from the IBM Cúram Social Program Management
server or another service. The reference application already consumes a number of Universal Access APIs
to support business features.

This scenario updates the person feature to read the data from an API instead of just displaying
hardcoded values. The scenario shows you how to create and use the following items:

• Use the RESTService module to helps you call APIs.
• Use the mock server to show you how to create a mock API that allows you to rapidly develop your

feature without spending time building and deploying the real APIs that it eventually uses.
• Connect your application to a IBM Cúram Social Program Management development environment that

hosts the APIs by using Tomcat to enable real integration testing in the development environment.

Procedure

1. Create a mock API, take the following steps:
a) In your project, open /mock/apis/mockAPIs.js.

The mock server consumes mockAPIs.js, it contains the mappings from APIs to the mock data. The
mock server uses this information to provide the correct data when an API call is made in
development mode. mockAPIs.js also contains an import from the universal-access-ui package
and assignments for GET, POST and DELETE APIs as shown in the following example:

const mockAPIs = require('@spm/universal-access-mocks');

// Extract the existing universal access GET,POST and DELETE mocks for merging.
const UAMockAPIsGET = mockAPIs.GET;
const UAMockAPIsPOST = mockAPIs.POST;
const UAMockAPIsDELETE = mockAPIs.DELETE;

Use these APIs to test the Universal Access application. For more information, see Working with the
mock server.

b) To add more mock data, add your mocks to the placeholders provided. This scenario adds the
person data for a person 'James Smith' that is returned when the '/person' path is loaded.

IBM Cúram Universal Access (New) 65

c) Add an object in mockAPIs.js to represent James Smith. For simplicity, do not normalize the
dates, or use code tables, later scenarios show you how to globalize and handle code tables.

const user = {
 firstname: 'James',
 surname: 'Smith',
 dob: 'April 1st 1996',
 gender: 'male',
 address: {
 addr1:'1074, Park Terrace',
 addr2:'Fairfield',
 addr3:'Midway',
 addr4:'Utah 12345',
 }
}

d) Include a value for the URI '/user' in the mockAPIsGET object to return the mock object as shown in
the following example:

const mockAPIsGET = {
 '/user': user,
}

The new '/user' mock API is merged with the mocks from universal-access-ui and is deployed by
the mock server on port 3080.

e) Test that the new API is working, start the application using npm start.
f) Using the browser, load the /person URL: http://localhost:3080/person. If successful, the browser

displays the response.
2. Use the RESTService module from the core package to make an AJAX call to the API.

There are many agents that can be used to achieve this. The RESTService uses Superagent to make the
AJAX call. The RESTService handles the following functions:

• Authentication credentials are automatically handled for each call, and users are redirect to log in
when appropriate.

• The user's locale is passed to ensure the response is in the correct locale.
• Timeouts are managed using the settings from the .env file.
• Errors are captured and thrown in a standard fashion so that the error handling infrastructure is

invoked.

For more information on the RESTService module, see Working with the RESTService.
3. Open PersonComponent.js file. Make the following changes, check that your application is still

displaying the page after each step:
a) To enable lifecycle methods that are required to manage the API calls, convert the old stateless

component to a stateful React.Component class:

Old stateless Person component

const Person = () => {
 return (
 <JSX code here>
);
}

Updated stateful Person component

class Person extends Component {
 render(){
 return (
 <JSX code here>
)};
}

66 IBM Cúram Social Program Management: IBM Cúram Universal Access 2.0.2

http://localhost:3080/person

b) Create local state to hold the API data.

The local state stores the values returned by the API that drive the render function. Whenever the
state is updated, the component rerenders to reflect the state change. For this scenario, hardcode
the values for the state in your class constructor so that something is displayed on the page. To
differentiate between this temporary default data and the API data, change the firstName to
'Roger'. Later, when you introduce the API, the data for 'James' is returned from the API and not the
default state as shown in the following example:

constructor(props) {
 super(props);
 this.state= {
 user : {
 firstName:'Roger',
 surname:'Smith',
 dob:'April 1st 1996',
 gender: 'Male',
 address: {
 addr1:'1074, Park Terrace',
 addr2:'Fairfield',
 addr3:'Midway',
 addr4:'Utah 12345',
 }
 }
 }
}

c) Convert all hardcoded references to use the values from the state.

Now that you have a state object, replace all hardcoded values with references to the state. Replace
each hardcoded piece of data with a state reference {this.state.user.X}. Examples are as follows:

...

class Person extends Component {
 render(){
 return (
 ...
 <Card>
 <MediaObject media={avatarMedia} title= {this.state.user.firstName} >
 <List>
 <ListItem>Gender: {this.state.user.gender} </ListItem>
 <ListItem> {this.state.user.gender} </ListItem>
 </List>
 </MediaObject>
)};
 ...
}
...

d) Import the RESTService module.

To call an API you must to invoke one of the methods of the RESTService module. First you must
import it from the core package:import { RESTService } from '@spm/core'

e) Create a componentDidMount method to invoke the API call.

When your component is mounted by React, the componentDidMount function is invoked. In
componentDidMount the API call can be made to populate the component state. Update your
constructor to set the user values to blank when initializing, this setting ensure that your data is
being loaded from the API. Then, add the following code to your Person component. The root
location of the API is taken from the values set in your .env.development file when in
development mode. In production mode, it is taken from the .env file.

The .env.development file specifies the mock server URL as REACT_APP_API_URL, which has
the value http://localhost:3080/ where the mock server is deployed. You can use this environment
variable to prepend the /user API.

IBM Cúram Universal Access (New) 67

http://localhost:3080/

The RESTService API accepts a URL and a callback function as parameters. In the following code,
the callback function is passed as an anonymous function in the second parameter. Here the
'success' is checked, before the state is updated with the response.

Note: Error scenarios are not handled in this code. The scenario Handling failures in the application
contains details about failure responses, 'Error Boundaries', and failure handling.

componentDidMount() {

 const url = `${process.env.REACT_APP_API_URL}/user`;

 const user = RESTService.get(url, (success, response) => {

 if (success) {

 this.setState((user: response));

 }

 });

 }

Results

Start your application, log in and select the My Details tab. The tab loads using data pulled from the /user
API. The API that you use in development mode is served from the mock server. In production mode, the
'real' API called using the REACT_APP_API_URL defined in the .env file. Assuming the contract remains
the same between your mock and 'real' APIs, that is, the JSON structure matches in both, you can
seamlessly switch between development and production, allowing for a much faster development
process.

Related reference
Handling failures in the application
Handle any failures you find when you performed integration testing in the Developing with IBM Cúram
Social Program Management APIs by using Tomcat scenario.

Testing REST API connections by using Tomcat
Build on the scenario in Calling an API from the application. Perform integration testing with the real IBM
Cúram Social Program Management APIs instead of using the mock APIs in your Universal Access client.

Before you begin
You must be familiar with the IBM Cúram Social Program Management development environment, the
development of REST APIs, and the IBM Cúram Universal Access development environment.

This scenario uses IP address 192.1.1.1 to represent the development computer for the IBM Cúram
Social Program Management server, and 192.9.9.9 for the computer that hosts the Universal Access
client. Therefore, however, these could be the same computer, and you could use the same IP address.
Replace this address with the IP address of your development computer.

About this task

The mock server is hosted on the same domain as the application during development http://localhost.
However, when your APIs are served from a different domain, you might encounter Cross Origin Resource
Sharing (CORS) issues. You can use Tomcat to configure your Universal Access client and IBM Cúram
Universal Access server to allow Cross Origin requests. To overcome the CORS issues, the REST toolkit
uses a filter that provides the required HTTP headers to allow browsers to accept responses from a
different domain. In this scenario, the domain is where the REST application is deployed.

Procedure

1. Configure the IBM Cúram Social Program Management server, take the following steps:

68 IBM Cúram Social Program Management: IBM Cúram Universal Access 2.0.2

http://localhost

a) In your development environment, add the following properties to Bootstrap.properties and set the
hostname/ipaddress of the computer where the Universal Access client is to be deployed:

• curam.rest.refererDomains = 192.9.9.9
• curam.rest.allowedOrigins = 192.9.9.9

Note: If you develop the server and client on the same computer, you can use "localhost".

The property curam.rest.allowedOrigins is the Origin value in the CORS headers. Both properties can
have comma-delimited domain names, for example, curam.rest.allowedOrigins =
192.9.9.9, 192.9.9.8, mymachine.mycorp.com to allow multiple domains to access the
IBM Cúram Social Program Management application.

b) Set the CATALINA_HOME environment variable to the location of your Tomcat installation. For
example, on Windows set the following variable: ‘set CATALINA_HOME=C:\DevEnv
\7.0.1\tomcat’

c) Build IBM Cúram Social Program Management by using the appbuild server, database, client, and
other components.

d) Run an extra target appbuild rest to create the REST project in your EJBServer\build
\RestProject\devApp directory.

e) Copy Rest.xml into your Tomcat conf/localhost folder. For more information about building
Cúram APIs, see Developing Cúram REST APIs.

f) Start the server, RMILoginClient, and Tomcat in the normal way for IBM Cúram Social Program
Management.

The REST client starts automatically. When the client is running, the APIs are accessible in the /
Rest base path, for example: http://192.1.1.1:9080/Rest/<myapi>.

2. Configure the Universal Access client, take the following steps:
a) Modify the .env.development file that is located in universal-access-starter-pack to point to the

REST URL on Eclipse/Tomcat as shown in the following example:

REACT_APP_REST_URL=http://192.1.1.1:9080/Rest
REACT_APP_BASE_URL=http://192.1.1.1:9080/Rest/v1
REACT_APP_API_URL=http://192.1.1.1:9080/Rest/v1/ua

Note: If you develop the server and client on the same computer, you can use "localhost".

If you do want to connect to an application on WebSphere, you must change "http" to "https" and
update to the correct port. 9044 is the default port.

b) Build the application, enter the following command: npm run build.
c) Start the application, enter the following command: npm run start.

Results

Your Universal Access client application now communicates with the REST deployed on Eclipse with
Tomcat.

Note: Run the application on in debug mode to allow it to stop at the breakpoints in the application code.

Related information
Developing Cúram REST APIs

IBM Cúram Universal Access (New) 69

Handling failures in the application
Handle any failures you find when you performed integration testing in the Developing with IBM Cúram
Social Program Management APIs by using Tomcat scenario.

Before you begin

You should build fault-tolerant web applications because, for example, web services such as a REST API
are never fully reliable. When handling the expected response, the application must also allow for failures,
such as network outages, timed out responses, internal server errors, or software bugs.

Universal Access ErrorBoundary component

According to React, "Error boundaries are React components that catch JavaScript errors anywhere in
their child component tree, log those errors, and display a fallback UI instead of the component tree that
crashed."

An error boundary component is a React component that implements the componentDidCatch lifecycle
method. For more information about error boundaries, see https://reactjs.org/

The universal-access-ui package exports a reusable ErrorBoundary component. The component has a
default behavior to handle error scenarios by replacing the failing component with a generic message.

Note: Authentication errors have a specific handler in the ErrorBoundary component. If the error object
that is received by the componentDidCatch method contains a status attribute with a value of '401'
(Unauthorized error), then the client forces a log-out in the client application. Citizens are automatically
redirected to the Log in page, so they can re validate and return to the page they were previously on. This
situation typically happens if the session times out or has been invalidated on the server. The source code
for the ErrorBoundary component is available in the universal-access-ui package.

This scenario shows API error handling in the My Details page where the API call fails. This scenario also
shows how to use the Universal Access ErrorBoundary component to provide a better user experience
when failures occur.

Error boundaries in the Universal Access application

The Universal Access starter pack contains the following two error boundaries:

• The first wraps the entire application to capture errors that might occur when loading the header or
footer.

• The second wraps the main content to capture errors that are raised from components that are loaded
in the main content section.

The error boundaries are shown in the following example:

/**
 * App component entry point.
 */
const App = () => (
 <BrowserRouter>
 <ScrollToTop>
 <ErrorBoundary>
 <ApplicationHeader />
 <ErrorBoundary>
 <Main pushFooter className="wds-u-bg--page">
 {routes}
 </Main>
 </ErrorBoundary>
 <ApplicationFooter />
 </ErrorBoundary>
 </ScrollToTop>
 </BrowserRouter>
);

70 IBM Cúram Social Program Management: IBM Cúram Universal Access 2.0.2

https://reactjs.org/

The error boundary on the main section allows the application context to be retained. That is, the header
and footer continue to be displayed when the error is raised from the main section. This continuity
provides a better user experience.

You can replace these error boundaries with your own error boundaries.

Faking an API error

This API failure scenario uses a 404 response as the error, you trigger this failure by temporarily changing
the API call to a non-existent API.

Take the following steps:

1. Open PersonComponent.js
2. Update the API to call in the componentDidMount method to the non-existent '/user1' as shown in the

following example:

 componentDidMount() {
 const url = `${process.env.REACT_APP_API_URL}/user1`;
 RESTService.get(url, (success, response) => {
 if (success) {
 this.setState({user: response});
 });
 }

3. Save your code and wait for the application to reload.

Provided you followed the previous scenarios, when the application reloads it displays the person and
address cards but with no details. The values default to be the values that are created in the constructor
of the PersonComponent.js file. Use the developer tools in your browser to verify the status of the
network call that is made for the '/user1' API. You should see that the response status is a 404 indicating
that the network call failed.

Catching an API failure

Using the failure scenario Faking an API error, you can modify the code to cater for this failure. The API
call is asynchronous, and the callback runs outside the context of the Component tree. This execution
mode means that the error that thrown in the call-back function is not caught by the componentDidCatch
method of the ErrorBoundary. Therefore, instead of throwing an error in the callback, you update the state
of the component. You can then use the lifecycle methods of the React component to react to the updated
state when it arrives. Use a state attribute 'apiCallFailed' to hold the response.

In the componentDidMount method, add a branch to the callback passed to the RestService.get method.
The failure branch sets the apiCallFailed value to the response value returned by the API as shown in the
following example.

componentDidMount() {
 const url = `${process.env.REACT_APP_API_URL}/user1`;
 RESTService.get(url, (success, response) => {
 if (success) {
 this.setState({user: response});
 } else {
 this.setState({apiCallFailed: response})
 }
 });
 }

IBM Cúram Universal Access (New) 71

When the response is returned it updates the state, and triggers a rerender of the application. You can
validate that the state was updated by printing the value in the console from the render method. An
example response is as follows:

 render() {
 console.log(`state -> ${this.state.apiCallFailed}`);
 return (
 ...
)
 };

The render method should print the following error in the console: state -> Error: cannot GET
http://localhost:3080/user1 (404)

Throwing an error

Now that you have control of the failure, throw an error with an appropriate value for the ErrorBoundary
component to catch. As indicated, the API call is asynchronous, so you cannot throw the error from the
componentDidMount. The throw could be placed in the render function which will execute when the state
updates, but this pollutes the rendering method with code that is not dedicated to rendering. Instead, use
the componentDidUpdate lifecycle method. This method is called when the state is updated, which
happens when the callback updates the 'apiCallFailed' value.

The error object thrown can be anything that you choose so that the error as useful as possible to the
citizen. In this instance, throw the string object that is returned by the response because it describes the
issue.

Using a loading mask
Build on the scenarios you have completed up to now. Use a loading mask to indicate that the application
is working on rendering a page.

About this task

Response times vary when using REST APIs over a network. In a many cases, the time it takes to receive
the response is longer than the time it takes for React to render for the first time. This delay leads to a
poor user experience when the page draws the components, but the data is missing.

To avoid poor user experience, use a loading mask to indicates to the user that the application is working
on rendering their page.

This scenario uses the AppSpinner component from the universal-access-ui package to include a loading
mask to the My Details page to demonstrate how your components can handle slow response times.

API response delay

During development, you must often replicate real world response times for APIs. You can configure the
RestService to set a delay using the env.development file in your environment. By default this value is
already set to 2.5 seconds. You should notice this delay when navigating the application in development
mode, where you see spinners while components wait for the data to be returned from the mock server by
way of the RestService module. You can increase or decrease this value to meet your application's needs.

The AppSpinner component

The universal-access-ui package includes the AppSpinner component, which you can reuse in your
project. The AppSpinner component wraps the Spinner component from the govhhs-design-system-
react package and includes a label for accessibility purposes. You can also create your own loading
mask in the same manner. You can view the source code for AppSpinner in the universal-access-ui
package.

Procedure

1. Waiting for the API

72 IBM Cúram Social Program Management: IBM Cúram Universal Access 2.0.2

http://localhost:3080/user1

The AppSpinner is displayed while the application waits for the API to respond, so you need a
mechanism to notify you when the data is, and is not loaded. Use the state to indicate when data is
loaded and when it is not. Take the following steps:
a) Open the PersonComponent.js file.
b) In the constructor add an attribute called 'loading' to the state, with a value of true.

 ...
 constructor(props) {
 super(props);
 this.state = {
 user: {
 firstName: "",
 surname: "",
 dob: "",
 gender: "",
 address: {
 addr1: "",
 addr2: "",
 addr3: "",
 addr4: ""
 }
 },
 loading: true,
 };
 }
 ...

2. Display the loading mask

Now you have a value that indicates whether the data is loading, take the following steps to display the
loading mask based on the value:

a) Import the AppSpinner loading mask from universal-access-ui:

import {AppSpinner} from '@spm/universal-access-ui';

b) In the render function, add a check that renders the AppSpinner if the loading value is true:

render() {
 if (this.state.loading){
 return <AppSpinner/>
 }
 return (
 <Grid className="wds-u-p--medium">
 <Column width="1/2">

 ...

)

 }

When you save and reload the application, you should see the spinner in the main section area.
However, the spinner continues to display after the data is returned.

3. Remove the loading mask.

When the data is returned from the API, remove the mask by updating the state to indicate that
loading is finished. Take the following steps:

a) In the componentDidMount function, update the state to set the loading value to false when a
successful response is returned as shown in the following example:

componentDidMount() {
 const url = `${process.env.REACT_APP_API_URL}/user`;
 RESTService.get(url, (success, response) => {
 this.setState({loading: false})
 if (success) {
 this.setState({user: response});
 } else {
 this.setState({apiCallFailed: response})

IBM Cúram Universal Access (New) 73

 }
 });
 }

b) Save and reload the application. Now, when the API response is received, the loading mask is
removed and the user's data is displayed.

Reusing existing features
The reference application that is available when you install IBM Cúram Universal Access satisfies a
number of general business scenarios such as creating an account, logging in, and applying for benefits.
The scenarios are provided both as working software and as examples of how to construct the product.
You can clone and modify existing features in the application.

Before you begin

The universal-access-ui package is structured by feature. Typically, each feature is mapped to a
single route. For example, when the /profile route is loaded, the Profile feature is displayed. The
feature folder is a collection of files that work together to present that feature. An example from the
Profile feature is shown.

/universal-access-ui

--/src

----/Feature

------/Profile

--------/components

----------/ContactInformationComponent.js

----------/PersonalInformationComponent.js

----------/ProfileComponent.js

----------/ProfileComponentMessages.js

--------/index.js

--------/ProfileContainer.js

The feature uses a commonly used pattern to move the data retrieval and management into a container
component, and the rendering logic into stateless presentation components. This pattern is widely
documented and used extensively when you work with React and Redux. The pattern is not covered in
detail here, but you can see how features are structured.

About this task
You can copy the entire code base for a feature into your custom project and replace the route that served
that feature with your version. You can then modify the code base to create your own custom feature.

Note: After you reuse a feature, you now have full ownership of the custom feature. On upgrade of the
universal-access-ui package, you do not receive any changes to the product version of the feature
and must manually apply any updates that you need.

Note: Most features in the universal-access-ui package depend on the modules in the universal-
access package for their data. On upgrade, you must validate that your feature was not affected by any
changes to modules that the feature depends on. See “Developing with universal-access modules” on
page 41.

Procedure

1. Find the feature that you want to replace in the universal-access-ui package.
a) Inspect the URL end point that you want to change and note the path.

For example, the path to the faqs feature is /myapp/faqs so the path is faqs.

74 IBM Cúram Social Program Management: IBM Cúram Universal Access 2.0.2

b) Open the /node_modules/@spm/universal-access-ui/src/router/Path.js file. Search
for the path string literal, in this case '/faqs' is assigned to the Paths.FAQS variable.

const Paths = {
 HOME: '/',
 ...
 FAQS: '/faqs',
 ...
 SIGNUP: '/signup',
 ...
};
export default Paths;

c) Open the /node_modules/@spm/universal-access-ui/src/router/Routes.js file.
Search for Paths.FAQS to find the route that the variable is being used in. Use the component
value of the route to find the associated feature.
For example, the FAQ route component is imported from '../features/FAQ'.

...
import FAQ from '../features/FAQ';
...
export default () => (
 <Switch>
 ...
 <Route component={FAQ} exact path={PATHS.FAQS} />
 ...
 </Switch>
);

2. Copy the entire feature folder into your custom application.
For example, copy the /node_modules/@spm/universal-access-ui/src/features/FAQ
directory to <myapp>/src/features/FAQ.

3. Replace the route with your custom version.

a) In your project, open the src/routes.js file.
b) Add a route at any point before the UARoutes entry to ensure that your path supersedes the same

path in UARoutes.

import React from 'react';
import { Switch, Route } from 'react-router-dom';
import { Routes as UARoutes } from '@spm/universal-access-ui';
import FAQ from './features/FAQ';

export default (
 <Switch>
 <Route component={FAQ} exact path='/faqs' />
 <UARoutes />
 </Switch>
);

4. You can now verify whether your custom version of the feature is being used. Make an obvious change
to the feature and reload the application to see whether the change is picked up and displayed.

5. Change the code to customize the feature.

Deploying your web application to a web server
You can deploy your web application on a web server in a production-like environment as part of your
development process. Deployment in a production environment is outside the scope of this
documentation, but you can use the instructions in this section for guidance.

Building IBM Cúram Universal Access for deployment
Build Universal Access for deployment on an HTTP server.

About this task

IBM Cúram Universal Access (New) 75

Procedure

1. To quickly configure the universal-access-starter-pack application, edit the .env
configuration file that is located in universal-access-starter-pack and modify the following
properties to point to the server that hosts the REST services:

REACT_APP_REST_URL=<ServerHostName>:9044/Rest
REACT_APP_BASE_URL=<ServerHostName>:9044/Rest/v1
REACT_APP_API_URL=<ServerHostName>:9044/Rest/v1/ua

Replace the <ServerHostName> and the port number in the properties with the host name and port of
the server where the REST services are deployed, for example:

REACT_APP_REST_URL=https://192.168.1.1:7002/Rest

2. Enter the following command to install dependent packages:

npm install

3. Enter the following command to generate a build folder within the universal-access-starter-
pack and build the application:

npm run build

4. Copy and deploy the build folder to either IBM HTTP Server or Oracle HTTP Server. For more
information on deploying the built application, see Deploying your application.

Related information
Deploying your application

Install and configure IBM HTTP Server with WebSphere Application Server
Install and configure IBM HTTP Server either on the same server as WebSphere Application Server or on a
remote server. To enable cross-origin resource sharing (CORS), you can set the curam.rest.allowedOrigins
property for the REST application on your application server, or install the IBM HTTP Server plug-in for
WebSphere Application Server.

Before you begin
WebSphere Application Server must be installed and configured.

Install IBM Installation Manager. For more information, see the IBM Installation Manager documentation.
You can download IBM Installation Manager from Installation Manager and Packaging Utility download
documents.

About this task

To enable cross-origin resource sharing (CORS), choose one of the following options:

• Set the curam.rest.allowedOrigins property for the REST application that is deployed on the application
server. For more information about setting the curam.rest.allowedOrigins property, see Cúram REST
configuration properties.

• Install and configure the IBM HTTP Server plug-in for WebSphere Application Server to enable IBM
HTTP Server to communicate with WebSphere Application Server. WebSphere Customization Toolbox is
needed to configure the plug-in.

Procedure

1. Install IBM HTTP Server. For more information, see Migrating and installing IBM HTTP Server.
2. Optional: If you don't set the curam.rest.allowedOrigins property, you must install the following

software:
a) Install the IBM HTTP Server plug-in for WebSphere Application Server.

76 IBM Cúram Social Program Management: IBM Cúram Universal Access 2.0.2

https://www.ibm.com/support/knowledgecenter/en/SSDV2W/im_family_welcome.html
http://www-01.ibm.com/support/docview.wss?uid=swg27025142
http://www-01.ibm.com/support/docview.wss?uid=swg27025142
https://www.ibm.com/support/knowledgecenter/en/SSEQTJ_8.5.5/com.ibm.websphere.ihs.doc/ihs/welc6top_miginstall_ihs_container.html

For more information, see Installing and configuring web server plug-ins.
b) Install the WebSphere Customization Toolbox.

For more information, see Installing and using the WebSphere Customization Toolbox.
3. Start IBM HTTP Server. For more information, see Starting and stopping the IBM HTTP Server

administration server.
4. To secure IBM HTTP Server, see Securing IBM HTTP Server.

Generating an IBM HTTP Server plug-in configuration
This task is needed only if you install the IBM HTTP Server plug-in for WebSphere Application Server. Use
WebSphere Customization Toolbox to generate a plug-in configuration.

Before you begin
Start WebSphere Application Server. For more information, see Starting a WebSphere Application Server
traditional server.

Procedure

To generate the IBM HTTP Server plug-in configuration, complete the steps at the WebSphere Application
Server Network Deployment plug-ins configuration topic.

Configuring the IBM HTTP Server plug-in
Configure the IBM HTTP Server plug-in for WebSphere Application Server and WebSphere Customization
Toolbox. This task is necessary only if you have chosen to install the IBM HTTP Server plug-in, instead of
setting the curam.rest.allowedOrigins property for the REST application that is deployed on the
application server.

About this task
You can run the configurewebserverplugin target to complete the following tasks:

• Add the web server virtual hosts to the client hosts configuration in WebSphere Application Server.
• Propagate the plug-in key ring for the web server.
• Map the modules of any deployed applications to the web server.

Procedure

1. Start IBM HTTP Server.
For more information, see Starting and stopping the IBM HTTP Server administration server.

2. On the remote WebSphere Application Server, run the following command.

build configurewebserverplugin -Dserver.name=server_name

The configurewebserverplugin target requires a mandatory server.name argument that
specifies the name of the server when the target is invoked. For more information about the
configurewebserverplugin target, see Configuring a web server plug-in in WebSphere Application
Server.

3. Consider adding extra aliases to the client_host, as shown in the following examples:

• For WebSphere Application Server, add port number 9044.
• For the default HTTP port, add port number 80.
• For HTTPS ports, add port number 433.

For more information about client host setup, see step 19 in the WebSphere Application Server port
access setup topic.

4. To avoid port mapping issues from web applications, restart WebSphere Application Server and IBM
HTTP Server.
For more information, see Starting and stopping the IBM HTTP Server administration server.

IBM Cúram Universal Access (New) 77

https://www.ibm.com/support/knowledgecenter/en/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/tins_webplugins.html
https://www.ibm.com/support/knowledgecenter/en/SSEQTP_8.5.5/com.ibm.websphere.installation.base.doc/ae/tins_wct.html
https://www.ibm.com/support/knowledgecenter/en/SSEQTP_8.5.5/com.ibm.websphere.ihs.doc/ihs/tihs_startadmserv.html
https://www.ibm.com/support/knowledgecenter/en/SSEQTP_8.5.5/com.ibm.websphere.ihs.doc/ihs/tihs_startadmserv.html
https://www.ibm.com/support/knowledgecenter/en/SSEQTJ_9.0.0/com.ibm.websphere.ihs.doc/ihs/tihs_sectaskov.html
https://www.ibm.com/support/knowledgecenter/en/SSEQTP_8.5.5/com.ibm.websphere.wdt.doc/topics/twsrtins.htm
https://www.ibm.com/support/knowledgecenter/en/SSEQTP_8.5.5/com.ibm.websphere.wdt.doc/topics/twsrtins.htm
https://www.ibm.com/support/knowledgecenter/en/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/cins_webplugins.html
https://www.ibm.com/support/knowledgecenter/en/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/cins_webplugins.html
https://www.ibm.com/support/knowledgecenter/en/SSEQTP_8.5.5/com.ibm.websphere.ihs.doc/ihs/tihs_startadmserv.html
https://www.ibm.com/support/knowledgecenter/en/SSEQTP_8.5.5/com.ibm.websphere.ihs.doc/ihs/tihs_startadmserv.html

Install and configure Oracle HTTP Server with Oracle WebLogic Server
Install and configure Oracle HTTP Server on either the same server as Oracle WebLogic Server or on a
remote server.

Before you begin
Oracle WebLogic Server must be installed and configured. For more information, see Installing and
Configuring Oracle WebLogic Server and Coherence.

Installing Oracle HTTP Server and its components
Install and configure Oracle HTTP Server in either a stand-alone domain, or in an Oracle WebLogic Server
domain. If Oracle HTTP Server and Oracle WebLogic Server are on different computers, you must install
and configure an Oracle web server plug-in for proxying requests.

About this task

The Oracle web server plugin allows requests to be proxied from Oracle HTTP Server to Oracle WebLogic
Server. If you install and configure the Oracle web server plug-in, requests that are delegated to Oracle
WebLogic Server still appear to originate from the Oracle HTTP Server, even if Oracle HTTP Server and
Oracle WebLogic Server are hosted on two different servers.

Because of the web browser same-origin policy, cross-origin resource sharing (CORS) is restricted in
many browsers by default. The web server plug-into enables CORS where Oracle HTTP Server and Oracle
WebLogic Server are installed on different computers.

CORS enables an instance of your web application that is deployed on Oracle HTTP Server in one domain
to request the REST services that are deployed on Oracle WebLogic Server in another domain.

Procedure

1. Install Oracle HTTP Server for Oracle WebLogic Server. For more information, see Installing and
Configuring Oracle HTTP Server.

2. To configure Oracle HTTP Server, choose one of the following options:

• To configure Oracle HTTP Server in a stand-alone domain, follow the instructions at Configuring
Oracle HTTP Server in a Standalone Domain.

• To configure Oracle HTTP Server in an Oracle WebLogic Server domain, follow the instructions at
Configuring Oracle HTTP Server in a WebLogic Server Domain.

3. If Oracle HTTP Server and Oracle WebLogic Server are installed in different domains, to enable CORS,
install a web server plug-in.
For information about configuring an Oracle WebLogic Server proxy plug-in, see Configuring the Plug-
In for Oracle HTTP Server.

4. To secure Oracle HTTP Server, follow the procedure at Managing Application Security.

Results
The Oracle HTTP Server instance is now ready to for you to deploy the application. The default location for
deploying the application is OHS_INSTANCE/config/fmwconfig/components/$
{COMPONENT_TYPE}/instances/${COMPONENT_NAME}/htdocs. However, you can configure the
default location value to a different location.

What to do next
Start Oracle HTTP Server. For more information, see Starting the Servers.

78 IBM Cúram Social Program Management: IBM Cúram Universal Access 2.0.2

https://docs.oracle.com/middleware/1213/core/WLSIG/toc.htm
https://docs.oracle.com/middleware/1213/core/WLSIG/toc.htm
https://docs.oracle.com/middleware/1213/core/install-ohs/install_gui.htm#WTINS125
https://docs.oracle.com/middleware/1213/core/install-ohs/install_gui.htm#WTINS125
https://docs.oracle.com/middleware/1213/core/install-ohs/standalone_domain.htm#WTINS333
https://docs.oracle.com/middleware/1213/core/install-ohs/standalone_domain.htm#WTINS333
https://docs.oracle.com/middleware/1213/core/install-ohs/colocated_domain.htm#WTINS280
https://docs.oracle.com/middleware/1213/webtier/develop-plugin/oracle.htm#PLGWL510
https://docs.oracle.com/middleware/1213/webtier/develop-plugin/oracle.htm#PLGWL510
https://docs.oracle.com/middleware/1213/webtier/administer-ohs/security.htm#HSADM900
https://docs.oracle.com/middleware/1213/core/install-ohs/standalone_domain.htm#WTINS333

Configuring the Oracle HTTP Server plug-in
If a web server such as Oracle HTTP Server is configured in the topology, you must configure a web server
plug-in in Oracle WebLogic Server. The web server plug-in enables Oracle WebLogic Server to
communicate with Oracle HTTP Server.

About this task
To enable an Oracle HTTP Server web server plug-in in Oracle WebLogic Server, you can run the
configurewebserverplugin target.

Procedure

1. Start Oracle HTTP Server.
For more information, see Starting the Servers.

2. On the remote Oracle WebLogic Server, run the following command.
The configurewebserverplugin target requires a mandatory server.name argument that
specifies the name of the server when the target is invoked.

build configurewebserverplugin -Dserver.name=server_name

For more information about the configurewebserverplugin target, see Configuring a web server
plug-in in Oracle WebLogic Server.

Deploying your web application
To test your web application against an existing IBM Cúram Social Program Management application that
is deployed on an enterprise application server, you can deploy the web application on IBM HTTP Server
or Oracle HTTP Server. Both web servers are based on Apache HTTP server so the deployment procedure
is similar.

Before you begin

You must have built your application for deployment.

About this task

The built deliverable comes with a preconfigured .htaccess configuration file for the Content-Security-
Policy (CSP) header. When you configure the CSP header in the web server, the .htaccess file is
detected and executed by the web server to alter the web server configuration by enabling or disabling
additional functionality. For more information about CSP, see the Content Security Policy Quick Reference
Guide related link.

Procedure

1. Copy and paste the build directory contents to the appropriate directory for your HTTP server.

For more information about the <directory> directive, see the related links.
2. Configure the web server.

The preconfigured .htaccess file contains a comment section with the web server configuration
requirements for both CSP and .htaccess enablement.

For more information about how to configure .htaccess files in a web server, see the Apache HTTP
Server Tutorial: .htaccess files related link.

Related information
GitHub documentation: npm run build
Content Security Policy Quick Reference Guide
Apache core features V2.0: <Directory> Directive
Apache core features V2.4: <Directory> Directive
Apache HTTP Server Tutorial: .htaccess files

IBM Cúram Universal Access (New) 79

https://docs.oracle.com/middleware/1213/core/WLSIG/create_domain.htm#WLSIG298
https://github.com/facebook/create-react-app/blob/master/packages/react-scripts/template/README.md#npm-run-build
https://content-security-policy.com
https://docs.oracle.com/cd/B14099_19/web.1012/q20206/mod/core.html#directory
http://publib.boulder.ibm.com/httpserv/manual24/mod/core.html#directory
http://httpd.apache.org/docs/current/howto/htaccess.html

Configuring the IBM Cúram Universal Access server
System administrators use the following configuration options to configure and maintain IBM Cúram
Universal Access features such as applications and online categories.

Prerequisites
You must enable cookies and JavaScript in the browsers to access the application by configuring the
appropriate browser preferences.

The following table lists the browser preferences that you must configure for the application to work, and
shows the errors that are displayed if the prerequisites are not met.

Table 4: Information messages for browser preferences

Browser preference Information message

When cookies are disabled Cookies are currently disabled and are required for
the application to work. Please enable cookies and
retry.

When JavaScript is disabled JavaScript is currently disabled and is required for
the application to work. Please enable JavaScript
and retry.

When cookies and JavaScript are disabled Cookies and JavaScript are currently disabled and
are required for the application to work. Please
enable and try again.

Configuring service areas and PDF forms
You can define a service area by configuring the counties or ZIP codes that are associated with the service
area. You can also specify a PDF form that citizens can use to apply for programs.

Configuring service areas

Service areas are defined in the Service Areas section of the administration application. When defining a
service area, you must specify a service area name. You can associate counties and zip codes with the
service area, these represent the areas covered by the service area. Service areas can be associated with
a local office which represents the office that services the service areas associated with it. Local offices
identify where citizens can apply in person for a program or where they can send an application. For more
information on associating service areas with local offices where a citizen can apply in person for a
program, see Defining local offices for a program.

Configuring PDF forms

PDF forms are defined in the PDF Forms section of the administration application. When defining a PDF
form, you must specify a name and language. You can also add a version of the form for each language
that is configured. The forms are accessible from the Print and Mail Form page.

You can associate a local office with a PDF form. Associating a local office with a PDF form allows an
administrator to define the local office and associated service areas where citizens can send their
completed application.

Enabling citizens to search for a local office

A search page allows citizens to search for a local office. Citizens can either search by county or by zip
code. The system property curam.citizenworkspace.page.location.search.type determines how the search
works. If you set curam.citizenworkspace.page.location.search.type to Zip, citizens can search for a local
office using a zip code. If you set this property to County, citizens can select from a list of counties to get a
list of local offices.

80 IBM Cúram Social Program Management: IBM Cúram Universal Access 2.0.2

Related concepts
Defining local offices for a program
Citizens might be able to apply for a program in person at a local office. A local office must be first defined
in the LocalOffice code table in system administration.

Configuring programs
You can configure different types of programs. To configure a program, you configure display and system
processing information, local offices, mappings to PDFs, and evidence types.

Configured programs can be associated with screenings and applications. The main aspects to configuring
a program are as follows:

• Configure programs and associated display and system processing information.
• Configure local offices where an application for a program can be sent.
• Configure mappings that allow information gathered during application intake to be mapped to a PDF

form.
• Configuring evidence types that allows for expedited authorization of programs that may need to be

processed before other programs within a multi-program application.

Configuring a Program
Programs are configured on the administration New Program page. Details and specifications of the
program are required to be defined when the program is created.

Defining a name and reference
The name that you define is displayed in the administration application.

Define a name and reference when creating a new program. The name that is defined is displayed both to
the citizen and in the internal application. The reference is used to reference the program in code.

Defining an intake processing system
Define an intake processing system for each program.

Two options are available:

• Cúram
• Select from the list of preconfigured remote systems.

If intake is managed by IBM Cúram Social Program Management, select Cúram. If intake is managed by
an external system, the program application is sent to the remote system by using the
ProcessApplicationService web service, select a remote system.

If Cúram is specified as the intake system, an application case type must be selected. An application case
of the specified type is created in response to a submission of an application for the program. An indicator
is provided which dictates whether a Reopen action is enabled on the programs list on an application
case for denied and withdrawn programs of a particular type. A workflow can be specified that is initiated
when the program is reopened. For more information on configuring application cases, see Cúram Intake
overview.

When an application case type is selected, the program can be added manually to that type of application
case by a worker in the internal application as part of intake processing. A configuration setting specifies
whether the program is a coverage type. Coverage types are automatically evaluated by program group
rules in the context of healthcare reform applications, such as insurance affordability. Coverage types
cannot be applied for directly by a citizen or manually added to an application case by a worker and
authorized. If the program is a coverage type, select Yes. The program is filtered out of the list of
programs available to be added to online and internal applications in administration and the list of
programs available to be manually added to an application case by a worker. If the program is not a
coverage type, select No. The program will be available to be manually added to online and internal
applications in administration and to an application case by a worker.

A remote system must be configured in the administration application before it can be selected as the
case processing system. For more information about remote systems, see Configuring Remote Systems.

IBM Cúram Universal Access (New) 81

Related information
Cúram Intake overview

Defining case processing details
Define a case processing system for each program.

Two options are available:

• Cúram
• Select from remote systems.

If the program eligibility is determined and managed by using a Cúram-based system, select Cúram. If
eligibility is determined and managed by an external system, select a remote system.

If you select Cúram as the case processing system, more options are available to allow you to configure
program level authorization. Program level authorization means that if an application case contains
multiple programs, each program can be authorized individually, and a separate case is used to manage
the citizens on an ongoing basis.

Defining the integrated case strategy
Define the integrated case strategy so that the system can identify whether a new or existing integrated
case is used when program authorization is successful.

The integrated case strategy identifies whether a new or existing integrated case is used when program
authorization is successful. The integrated case hosts any product deliveries created as a result of the
authorization. If a new integrated case is created, all of the application case clients are added as case
participants to the integrated case. If an existing integrated case is used, any additional clients on the
application case are added as case participants to the integrated case. Any evidence captured on the
application case that is also required on the integrated case is copied to the integrated case upon
successful authorization. The configuration options for the integrated case strategy are as follows:

New
A new integrated case of the specified type is always created when authorization of the program is
successful.

Existing (Exact Client Match)
If an integrated case of the specified type exists with the same citizens as those cases present on the
application case, the existing case is used automatically. If multiple integrated cases that meet these
criteria exist, the caseworker is presented with a list of the cases and must select one to proceed with
the authorization. If no existing cases match the criteria, a new integrated case is created.

Existing (Exact Client Match) or New
If one or more integrated cases of the specified type exist with the same citizens as those cases
present on the application case, the caseworker is presented with the option to select an existing case
to use as the ongoing case, or to create a new integrated case. If no existing cases match the criteria,
a new integrated case is created.

Existing (Any Client Match) or New
If one or more integrated cases of the specified type exist, where any of the clients of the application
case are case participants, the caseworker is presented with the option to select one of the existing
cases to use as the ongoing case, or to create a new integrated case. If no existing cases match the
criteria, a new integrated case is created.

Specifying the Integrated Case Type
The administrator must specify the type of integrated case to be created or used upon successful
program authorization as defined by the Integrated Case strategy listed.

Specifying a client selection strategy
Specify a client selection strategy to define how clients are added from the application case to the
product delivery.

The client selection strategy defines how clients are added from the application case to the product
delivery created as a result of authorization of a program. If a product delivery type is specified, a client
selection strategy must be selected. The configuration options are as follows:

82 IBM Cúram Social Program Management: IBM Cúram Universal Access 2.0.2

All Clients
All of the application clients are added to the product delivery case. The application case primary
client is set as the product delivery primary client. All other clients are added to the product delivery
as members of the case members group.

Rules
A rule set determines the clients to be added to the product delivery if a product delivery is
configured. At least one client must be determined by the rules for authorization to proceed.

User Selection
The user selects the clients who are added to the product delivery. The caseworker must select both
the primary client and any other clients to be added to the case member group on the product
delivery.

Specifying a Client Selection Ruleset
A Client Selection Ruleset must be selected when the Client Selection Strategy is Rules.

Specifying a product delivery type
Specify a product delivery type.

The Product Delivery Type drop-down specifies the product delivery that is used to make a payment to
citizens in respect of a program. Product Delivery Type displays all active products configured on the
system.

Note: This field applies to both program and application authorization processing. That is, program and
application authorization can result in the creation of the product delivery type that is specified.

Submitting a product delivery automatically

The Submit Product Delivery indicator specifies if the product delivery created as a result of program
authorization should be submitted automatically for approval. If selected, the product delivery created as
a result of authorization of this program is submitted automatically to a supervisor for approval.

Note: This field applies to both program and application authorization processing. That is, program and
application authorization can result in the automatic submission of a product delivery.

Configuring timers
Agencies can impose time limits within which an application for a program must be processed. You can
configure application timers for each of these programs.

For example, an agency might want to specify that food assistance applications are authorized within 30
business days of the date of application.

The following configuration options are available, including the duration of the timer, whether the timer is
based on business or calendar days, a warning period, and timer extension and approval.

Duration
The length of the timer in days. This value, along with the fields Start Date and Use Business Days
(and the configured business hours for the organization) calculate the expiry date for the timer. This
value is used as a number of business days if Use Business Days is set. If Use Business Days is not
set, this value is used as calendar days.

Start Date
Specifies whether the timer starts on the application date or the program addition date. The options
available are Application Date and Program Addition Date.

Note: In most cases, these dates are the same. That is, the programs are added at the same time as
the application is made. However, when a program is added later to the application, after initial
submission, the dates differ.

Warning Days
Specifies a number of warning days to warn citizens that the timer deadline is approaching. If
configured, the Warning Reached workflow is enabled when the warning date is reached and the
timer is still running (for example, the program is not completed).

IBM Cúram Universal Access (New) 83

End Date Extension Allowed
Specifies whether citizens can extend the timer by a number of days.

Extension Approval Required
Specifies whether a timer extension requires approval from a supervisor. If approval is required, the
supervisor either approves or rejects the extension. After the extension is approved, or if approval is
not required, the timer expiry date is updated to reflect the extension.

Use Business Days
Specifies if the timer should not decrement on non-working days. If this indicator is set, the system
uses the Working Pattern Hours for the organization to determine the non-working days when it is
calculating the expiry date for the timer.

Resume Timer
Specifies whether the program timer must be resumed when the program is reopened.

Resume From
If a timer is resumed, the Resume From field specifies the dates from which a program can be
resumed. The values include the date that the program was completed, denied, or withdrawn, and the
date that the program was reopened.

Timer Start
Specifies a workflow that is started when the timer starts.

Warning Reached
Specifies a workflow that is started when the warning period is reached.

Deadline Not Achieved
Specifies a workflow that is enacted if the timer deadline is not achieved; that is, the program is not
being withdrawn, denied, or approved by the timer expiry date.

Configuring multiple applications
Configure multiple applications so that citizens can apply for a program while they have a previous
application pending.

The Multiple Applications indicator dictates if citizens can apply for a program while they have a previous
application pending. If set to true, citizens can have multiple pending applications for the given program.
That is, citizens can submit an application for this program while they already have a pending application
in the system. If it is set to false, this program is not offered if logged in citizens have pending applications
for this program.

This configuration is not applicable to Health Care Reform Applications.

Defining a PDF form
Defining a PDF form for a program enables citizens to print an application for that program and either post
it to the agency or bring it to a local office. When a PDF Form is specified for a program, the PDF form is
displayed on the Print Out and Mail section of the Here's what you might get page that is displayed
when citizens complete a screening. PDF forms must be defined before they can be associated with a
program. When they are defined, they are displayed on the Print and Mail Application Form page.

Defining a URL
If a URL is defined, a More Info link is displayed with the program name so that citizens can find out more
information about the selected program.

Defining description and summary information
When a program is displayed on the Select Programs page, a description can be displayed which gives a
description of the program. The Online Program Description field defines this description.

A description summary of the program can also be defined using the Online Program Summary field. The
field is a high-level description of the program displayed on the Here's what you might get page that is
displayed when citizens complete a screening.

84 IBM Cúram Social Program Management: IBM Cúram Universal Access 2.0.2

Defining local office application details
Citizens can apply for programs at a local office. If this is the case, the Citizen Can Apply At Local Office
indicator indicates that local office information is displayed for a program.

Additional information can also be defined, for example, citizens might need to bring proof of identity if
they want to apply at the local office. An administrator can define this information in the Local Office
Application Information field.

Defining local offices for a program
Citizens might be able to apply for a program in person at a local office. A local office must be first defined
in the LocalOffice code table in system administration.

Associating a local office with a program allows an administrator to define the local offices and their
associated service areas where a particular program can be applied for in person. This information is
displayed on the Here's what you might get page that is displayed to citizens when they complete a
screening. Service areas must be defined before they can be associated with a local office.

Defining PDF mappings for a program
The information that citizens enter during an application can be mapped to a PDF form which citizens can
then print.

To map the application data to the PDF Form for all programs a citizen is applying for, there must be a
mapping configuration of type PDF Form Creation for each of the programs. The PDF Form is the form
specified for the Online Application the program is associated with.

Defining program evidence types
Associate evidence types with a program.

Evidence types can support applications for multiple programs where a program must be authorized more
quickly than other programs for which citizens might have applied. Using this type of configuration, only
the evidence required for the program to be authorized is used and copied to the ongoing cases. This
allows benefits for the authorized program to be delivered to citizens, while the caseworker continues to
gather the evidence required for the other programs applied for.

Configuring screenings
Define different types of screenings that citizens can complete to identify programs that they might be
eligible to receive.

For each screening, you can configure the available programs and eligibility requirements. You can then
configure the script, rules, and data schema to collect and process citizen information, and define what
information is displayed to citizens.

Once defined, citizens can perform a screening to identify programs that they may be eligible to receive.
There are four main aspects to configuring a screening:

• Configuring information about a screening to be displayed to citizens.
• Configuring the script, rules and schema used to collect and process the information specified by

citizens to identify their eligibility.
• Configuring the programs for which citizens can check their eligibility when performing a screening.
• Configuring additional screening system properties.

Configuring a new screening
Screenings are configured on the New Screening page.

The screening configurations are as follows.

Defining a name

You must define a name must be defined when creating a screening. The name defined is the name of the
screening displayed to citizens in the IBM Cúram Universal Access portal.

IBM Cúram Universal Access (New) 85

Defining program selection

The Program Selection indicator defines whether citizens can select specific programs that they want to
screen for, or whether they are brought directly into a screening script. If citizens are brought to a script,
they are screened for all programs associated with the screening.

Defining a More Info URL

If a More Info URL is defined, a More Info link is displayed.

Allowing re-screening

The Allow Rescreening indicator defines whether citizens can re-screen when they have completed a
screening.

Defining an icon for a screening

If you want an icon displayed with a screening, select an icon from the Icon selection box.

Note: Alternatively, you could modify the img src attribute of the icon directly on the screening HTML
page, for example

Configuring eligibility and screening details
Configure details for eligibility screening or filtered screening

Two types of screening are supported - filtered screening and eligibility screening. Eligibility screening
collects answers to a set of questions, stores this information and processes it to identify eligibility.
Filtered screening reduces the number of programs that a citizen might screen for by asking a short set of
questions and using the answers to filter out the programs that they would not be eligible for.

Configuring eligibility screening details

Specify an IEG script for the screening to collect the answers to a set of questions. You must also specify
a data store schema to store the data entered in the script. On saving the screening, the system creates
an empty template for both the script and schema based on the Question Script and schema that you
specified. You can update these templates from the Screening tab by selecting hyperlinks provided on
the page. Clicking the Question Script link starts the IEG editor that allows you to edit the question script.
Click the schema link to start the Datastore Editor, you can then edit the schema.

You must specify a CER rule set to process the data in the data store and to produce an eligibility result.
When specified on creation of the screening, the system creates an empty rules template. You can then
update the ruleset from the Screenings tab by selecting the hyperlink provided on the page. Clicking the
link starts the CER Editor, which allows you to edit the ruleset. For more information about writing
screening rule sets, see “Writing Rule Sets For Screening” on page 88

Configuring filtered screening details

Specify filtered screening details for a screening so that filtered screening is available before citizens
perform eligibility screening. As with eligibility screening, you must define a Filter Script (IEG) and
associated data store schema to collect and store the answers to questions. You must also specify a Filter
Rules (CER rule set) to process the data and produce a filtered screening result. When specified on the
New Online Screening page, the system automatically creates an empty template for the scripts and
ruleset that can be subsequently updated by selecting the associated hyperlinks on the Screening page.

86 IBM Cúram Social Program Management: IBM Cúram Universal Access 2.0.2

Reusing rule sets across screenings

Use the system property curam.citizenworkspace.screening.ruleset.reuse.enabled to specify:

• Whether CER rule sets can be reused across different screenings.
• Whether the same rule set can be used for eligibility and filtered screening.

If curam.citizenworkspace.screening.ruleset.reuse.enabled is enabled, you cannot reuse rule sets, if it is
disabled you can reuse rule sets. You cannot use the ScreeningRulesLinkDAO.readActiveByRuleSet method
when curam.citizenworkspace.screening.ruleset.reuse.enabled property is enabled.

Configuring screening display information
Configure the screening information display fields for each screening.

You can configure the following fields for each screening.

Summary information

Define a high level description of the screening.

Heres's what you might get text

Define the text to be displayed on the Heres's what you might get page which is displayed to show
citizens the results of a completed screening.

Description

Define a description of the screening to be displayed.

How to apply text

Allows an administrator to define the text displayed on the Heres's what you might get page.

Defining programs for a screening
You must associate programs with a screening so that citizens can screen for those programs.

You can associate any program that is described in Configuring Programs with a screening. When
associating programs with a screening, you can assign an order that sets the display order of the selected
program relative to other programs associated with the screening.

Related concepts
Configuring programs
You can configure different types of programs. To configure a program, you configure display and system
processing information, local offices, mappings to PDFs, and evidence types.

The screening auto-save property
Use the screening curam.citizenworkspace.auto.save.screening property to set whether screenings are
automatically saved for authenticated citizens.

By default, curam.citizenworkspace.auto.save.screening is set to true. All screenings, irrespective of type,
are automatically saved for authenticated citizens. Each screening is automatically saved when citizens
click Next to progress through an IEG script. If curam.citizenworkspace.auto.save.screening is set to
false, screenings are not automatically saved.

Configuring re-screening
Configure whether citizens can change and resubmit their screenings.

About this task

In the administration console, you can configure whether to allow citizens to change and re-submit their
screening. If the setting is set to Yes, citizens can re-screen from the Benefits checker page or from the

IBM Cúram Universal Access (New) 87

Screening results page. If the setting is No, citizens who want to re-screen, must delete their screenings
and start again.

Procedure

1. Log in to IBM Cúram Social Program Management as Admin.
2. Select Administration Workspace > Shortcuts.
3. Search for and select Universal Access in the navigation.
4. Navigate to Screenings and select the screening you want to change.
5. Select ... > Edit....
6. Select the Allow Rescreening tick box to enable or disable re-screening and Save your changes.

Pre-populating the screening script
When citizens screen from within a citizen account, you can pre-populate information already known
about the citizen performing the screening.

Use the system property curam.citizenaccount.prepopulate.screening to set whether the IEG script is pre-
populated. The default value of this property is true, which means that the script is pre-populated with
information that already known about the citizen.

Related concepts
Authenticated screening
Citizens who are logged in to Universal Access can perform authenticated screening.

Resetting data captured from a previous screening
Determine whether starting an intake application resets data captured by a previously completed
screening.

Determines whether starting an intake application resets datastore data captured by a previously
completed screening

Use the system property curam.citizenworkspace.intake.resets.screening.results to determine whether
starting an intake application resets datastore data that was captured by a previously completed
screening.

Setting curam.citizenworkspace.intake.resets.screening.results to true means that starting an intake
application resets datastore data captured by a previously completed screening.

Setting curam.citizenworkspace.intake.resets.screening.results to false means that starting an intake
application does not reset datastore data captured by a previously completed screening.

Writing Rule Sets For Screening

Develop screening rule sets.

Addin a data store schema
Create a new data store schema for use with screening and intake intelligent evidence gathering (IEG)
scripts. However, some constraints exist on the format of these schemas. In some cases, requirements
dictate that citizens can screen for a program and then follow that screening by applying for benefits.

In many cases, applications are processed by IBM Cúram Social Program Management and are mapped to
Cúram cases and evidence by using the Cúram Data Mapping Engine (CDME). In these circumstances, use
CitizenPortal.xsd as a basis for the schema for screening. This process is used because the same
data store schema also needs to be used for intake. In particular, the CDME features do not work correctly
if a schema is used that removes or changes the data type of any of the attributes or entities in the
CitizenPortal.xsd schema.

All schema that follows the pattern of the CitizenPortal.xsd schema are safe for later releases. This
assurance means that upgrades do not add any new mandatory attributes or entities. Upgrades do not
change any existing attributes or entities that currently are required to support existing Cúram data
mapping engine functions.

88 IBM Cúram Social Program Management: IBM Cúram Universal Access 2.0.2

The screening rules interface
All screening rule sets must use the screening rules interface so that they can be executed within IBM
Cúram Universal Access.

The ruleset interface is detailed in the following XML example:
<?xml version="1.0" encoding="UTF-8"?>

<RuleSet xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="http://www.curamsoftware.com/
 CreoleRulesSchema.xsd"
 name="ScreeningInterfaceRuleSet">

 <!-- This class must be extended by all rule sets invoked by
 the Citizen Portal screening results processing. -->
 <Class name="AbstractScreeningResult" abstract="true">

 <Initialization>
 <Attribute name="calculationDate">
 <type>
 <javaclass name="curam.util.type.Date"/>
 </type>
 </Attribute>
 </Initialization>

 <!-- The programs supported by this Screening Ruleset. -->
 <Attribute name="programs">
 <type>
 <javaclass name="List">
 <ruleclass name="AbstractProgram"/>
 </javaclass>
 </type>

 <derivation>
 <!-- Subclasses of AbstractScreeningResult must override
 this attribute to create a list of the Programs
 supported by the rule set. -->
 <abstract/>
 </derivation>
 </Attribute>

 </Class>

 <!-- This class must be extended by all programs supported
 in the rule set. -->
 <Class name="AbstractProgram" abstract="true">

 <!-- Identifies the program as configured in the Citizen
 Portal administration application. -->
 <Attribute name="programTypeReference">
 <type>
 <javaclass name="String"/>
 </type>
 <derivation>
 <abstract/>
 </derivation>
 </Attribute>

 <!-- Whether the claimant is eligible for this program. -->
 <Attribute name="eligible">
 <type>
 <javaclass name="Boolean"/>
 </type>
 <derivation>
 <abstract/>
 </derivation>
 </Attribute>

 <!-- The localizable explanation as to why the claimant is
 or is not eligible for this program. May contain HTML
 formatting/hyperlinks/etc. -->
 <Attribute name="explanation">
 <type>
 <javaclass name="curam.creole.value.Message"/>
 </type>
 <derivation>
 <abstract/>
 </derivation>
 </Attribute>
 </Class>

IBM Cúram Universal Access (New) 89

</RuleSet>

Screening rule sets must include a class that extends the AbstractScreeningResult rule class
outlined .

Using the AbstractScreeningResult rule class guarantees that the required attributes are available
when the rules are executed.

Configuring applications
Use the administration system to define applications. For each application, you can configure the
available programs and an application script and data schema. You can also configure the remaining
applications details, including application withdrawal reasons.

You configure applications in the following administration system areas:

• The New Online Application page
• The Property Administration page

You then configure application settings in other parts of the administration system. For example, you
associate programs with the application, define mappings for an application, and configure withdrawal
reasons.

Configuring an application in the Configure a New Online Application page
Use the Cúram administration system to configure an online application.

About this task

Browse to the Configure a New Online Application page and configure an online application.

Procedure

1. Log in to the IBM® Cúram Social Program Management application as Admin.
2. Browse to Administration Workspace > Shortcuts > Universal Access > Applications.
3. Select New....
4. Complete the Configure a New Online Application page. For more information, see Configuring

application information and display information, Configuring scripts, and Defining a PDF form.

Configuring application information and display information
Configure the following information on the New Online Application page.

Name
The name of the application that is displayed in the online portal.

Program selection
Indicates whether citizens can select specific programs to apply for or whether they are brought
directly into an application script. That is, citizens can apply for all programs associated with the
application.

More Info URL
If a URL is defined, a More Info link is displayed with the application name so that citizens can find out
more information about the selected application.

Client registration
Determines whether citizens are registered as prospect persons or persons.

To determine whether to register citizens as prospect persons or persons, the system checks the
client registration configuration in the following two scenarios:

• If Person Search and Match is configured, and no match can be found for the citizen.
• If Person Search and Match is not configured, that is, citizens on an application are always

registered without the system automatically searching and matching them.

90 IBM Cúram Social Program Management: IBM Cúram Universal Access 2.0.2

If Client Registration is not set, the system checks the system property
curam.intake.registerAsProspect to identify whether citizens are registered as a prospect person or a
person.

Submit on Completion Only

Determines whether citizens can submit the application to the agency before completing the intake
script.

Defining an icon for an application
If you want an icon displayed with an application, select an icon from the Icon selection box.

Note: Alternatively, you could modify the img src attribute of the icon directly on the application
HTML page, for example

Summary
A high-level description of the application.

Description
An overview description of the application.

Submission Confirmation Page Details
A more detailed description of the application. Use the Title and Text fields to define a title and text to
be displayed on the Submission Confirmation page.

Configuring scripts
Configure an IEG application script to collect the answers to the application questions. Then, configure a
submission script for an application so that citizens can submit applications.
Application scripts

Specify a script name in the Question Script field. Specify a data store schema in the Schema field to
store the data entered in the script. On saving the application, an empty template for both the script
and schema is created by the system based on the question script and schema specified. You can
update these templates from the Application tab by selecting the hyperlinks provided on the page.
Click the Question Script link to start the IEG editor so you can edit the question script. Click the
Schema link to start the Datastore Editor and edit the schema.

Submission scripts
Configure an IEG submission script in the Submission Script. The script defines additional
information that does not form part of the application script to be captured, for example, a TANF
typically requires information regarding the citizen's ability to attend an interview.

On saving the application, an empty template for the submission script is created by the system based
on the Submission Script that you specify. You can update this from the Application tab by selecting
the hyperlink on the page. Clicking the link starts the IEG editor that you use to edit the question
script.

Defining a PDF form
Define a PDF form that is displayed when citizens complete an online application.

The data that is collected during the online application is copied by the system into a PDF form, which
citizens can print. Select the PDF form from the PDF Forms drop down menu. If a PDF form is not
specified for an application, a default generic PDF form can be used. You can get the default template
from the XSL Templates section of the system administration application.

The data passed to the XSL template reads from the data store. Instead of displaying the datastore labels
in the PDF, define a property file to specify user-friendly names for entities and attributes and to hide
entities and attributes that you do not want to display in the PDF. For more information, see XSL
Templates.

Upload the property file to Application Resources in the Intelligent Evidence Gathering section of the
administration application. For more information, see Working with Intelligent Evidence Gathering.

IBM Cúram Universal Access (New) 91

Name the property file using the following convention: <application schema name>PDFProps. The
contents of the property file is as follows:

Name an entity
<Entity Name=<Name To Be Displayed in the PDF>, for example, Application=Intake
Application

Hide an entity
<Entity Name.hidden=true, for example, ScreeningType.hidden=true

Hide an attribute
<Entity Name.Attribute Name.hidden=true, for example, Application.user Name.hidden=true

Specify a label for an attribute
<Entity Name.Attribute Name=PDF Label, for example, Submission.dig FirstName=First Name

Related information
XSL Templates
Working with Intelligent Evidence Gathering

Configuring an application in the Property Administration page
Use the Cúram administration system to configure an online application.

About this task

Browse to the Property Administation page and configure properties for an online application

Procedure

1. Log in to the IBM® Cúram Social Program Management application as Sysadmin.
2. Browse to System Configurations > Shortcuts > Application Data.
3. Enter the name of the application property you want to configure in the Name field and select Search.
4. Select ... > Edit Value.
5. Change the property setting, for example change YES to NO and Save your changes. For more

information, see Application properties, which describes the application property settings.

Application properties
Configure application properties for an application.
Using curam.citizenworkspace.authenticated.intake to mandate authentication before applying

If this property set to YES, citizens must create an account or log in before starting an application. If
this property set to NO, citizens are taken directly to the application selection page.

If curam.citizenworkspace.authenticated.intake is set to YES, citizens are brought to the following
components:

• The Apply for benefits page.
• The login page when citizens select Apply.

Using curam.citizenworkspace.intake.allow.login to set Optional authenticated application
If this property is turned on, citizens are given the option to log in before starting an application. If this
property is turned off, citizens are taken directly to the application selection page.

Using curam.citizenworkspace.display.confirm.quit.intake to display a confirmation page to citizens
when they quit the application process

If this property set to YES, a confirmation page is displayed when citizens quit during the application
process. If the system property is set to NO, a confirmation page is not displayed when citizens quit an
application. This property is only used when the property curam.citizenworkspace.intake.allow.login is
set to NO.

92 IBM Cúram Social Program Management: IBM Cúram Universal Access 2.0.2

Using curam.citizenworkspace.intake.enabled to indicate whether citizens can start the application
process from the organization Home page

If this property is set to YES, the Apply For Benefits link is displayed on the organization Home page.
If this property is set to NO, the applications link is not displayed.

Using curam.citizenworkspace.intake.submit.intake.mandatory.login to indicate that citizens must log
in before submitting an application

If this property is set to YES on, citizens must create an account or log in before they can submit an
application. If this property is set to NO, citizens can submit an application without logging in.

Using curam.citizenaccount.prepopulate.intake to prepopulate the application with information
already known about authenticated citizens

The default value of this property is true which means that the script is prepopulated.
Using Auto-save intake to mandate whether applications are auto-saved in the citizen account.

Each application is auto-saved when citizens click Next as they progress through the IEG script. By
default, this property is set to true. If this property is set to false, applications are not automatically
saved in the citizen account.

Configuring other application settings
Associate programs with the application, define mappings for an application, and configure withdrawal
reasons.
Associating programs with applications

Any program described in Configuring Programs can be associated with an application. When
associating programs with an application, you can set the display order of the selected program
relative to other programs associated with the application. For more information, see Configuring
programs .

Defining mappings for an application
Applications can be processed by IBM Cúram Social Program Management or a remote system.

If the application is processed by IBM Cúram Social Program Management the information entered in
an application is mapped to the evidence tables associated with the application case defined for the
programs associated with the application. The mappings are configured for an application by creating
a mapping using the Data Mapping Editor. A mapping configuration must be specified in order for the
appropriate evidence entities to be created and populated in response to an online application
submission.

For more information about the Data Mapping Editor, see Configuring with the Data Mapping Editor.

Configuring withdrawal reasons
Citizens can withdraw the application for all or any one of the programs for which they applied.

When withdrawing an application, citizens must specify a withdrawal reason. You can define
withdrawal reasons for an application in the Intake Application section of the administration
application. Before associating a withdrawal reason with an application, you must define withdrawal
reasons in the WithdrawalRequestReason code table. for more information, see Intake Application.

Related concepts
Configuring programs
You can configure different types of programs. To configure a program, you configure display and system
processing information, local offices, mappings to PDFs, and evidence types.
Related information
Intake Application
Configuring with the Data Mapping Editor

Configuring online categories
Online categories group different types of applications or screenings together to make it easier for citizens
to find the ones that they need. You must define online categories for screenings and applications to be

IBM Cúram Universal Access (New) 93

displayed. After you define online categories, you must associate each screening and application to a
category.

Defining online categories

When defining an online category a name and URL must be defined. If a URL is defined a More Info link is
displayed with the name of the online category allowing citizens to find out more information about the
selected category. An order can be assigned to a category which dictates the display order of the selected
category relative to other categories.

Associating screenings and applications

Applications and screenings must be associated with an online category so they can be displayed in the
application. When associating a screening with an online category, an order can be applied which dictates
the display order of the screening relative to other screenings within the same category. When associating
an application with an online category an order can be applied which dictates the display order of the
application relative to other applications within the same category.

Configuring the citizen account
Although customization is required to modify some citizen account information, you can configure
information on the citizen account and the Contact Information tab.

Messages can originate as a result of transactions in IBM Cúram Social Program Management or a remote
system. Most of the configuration options apply to all messages but there are a some configuration
options that do not apply to messages originating from a remote system.

Configuring messages
The Messages panel of the organization Home page displays messages to logged-in citizens. For example,
a message that informs citizens when their next benefit payment is due or the amount of the last
payment.

Messages can be displayed which relate to meetings, activities, and application acknowledgments.
Messages can be displayed as a result of transactions in IBM Cúram Social Program Management or they
can originate from remote systems by way of a web service.

The links that follow outline the aspects of the Messages section, which are configurable.

Account messages
Adding a message or changing a dynamic element of an account message requires customization. The
text that is defined for existing messages that are provided in the initial application configuration can be
updated by using a set of properties for each type of message.

Properties are as follows:

• CitizenMessageMyPayments - the messages about payments.
• CitizenMessageApplicationAcknowledgement - messages about application acknowledgments.
• CitizenMessageVerificationMessages - messages about verification messages.
• CitizenMessageMeetingMessages - messages about meetings.
• CitizenMessagesReferral.properties - messages about referrals.
• CitizenMessagesServiceDelivery - messages about service deliveries.
• CitizenAppealRequestMessage - messages about appeal requests.

Property files are stored in the Application Resources section of the administration application. To
update the message, each file needs to be downloaded, updated, and uploaded again. The icons that are
displayed in the citizen account for each type of message can be configured in the Account Messages
section of the administration application.

Adding a message that originates from a remote system requires that a code table entry to be added to
the ParticipantMessageType code table and an associated entry in the Account Messages listing in

94 IBM Cúram Social Program Management: IBM Cúram Universal Access 2.0.2

the administration application. Messages then can be sent by way of the ExternalCitizenMessageWS
web service.

Creating application acknowledgments
Create messages to acknowledge an application.

Table 5: Application acknowledgment

Message Area Description

Title <Icon> TANF Application Acknowledgment

Message We have received your TANF Application
form. The status of this application
is pending. We will contact you when
the application has been processed.

Effective Date Current® date

Duration An administrator can use a configuration setting to
define the number of days (from the effective date)
that the message is displayed.

Notes None.

Creating meeting messages
Create messages for a meeting invitation, a meeting cancellation, and a meeting update. An administrator
can use a configuration setting to set the number of days (from the effective date) that the meeting
messages are displayed.

Table 6: Meeting invite

Message Area Description

Title <Icon> Meeting Invitation - Meeting with Case
Worker

Message 1 (Not an all day meeting and the
meeting start and end date are on the same day)

You are invited to attend a meeting
from 9.00AM until 5.00PM on 12/04/2010
in Meeting Room 1, Block C. Please
contact Joe Bloggs at 014567832 or
joe@SemAgency.com if you need more
information or cannot attend.

Message 2 (All day meeting for one day only) You are invited to attend an all day
meeting on 12/04/2010 in Meeting Room
1, Block C. Please contact Joe Bloggs
at 014567832 or joe@SemAgency.com if
you need more information or cannot
attend.

Message 3 (All day meeting for multiple days) You are invited to attend an all day
meeting each day from 12/04/2010 until
15/04/2010 in Meeting Room 1, Block C.
Please contact Joe Bloggs at 014567832
or joe@SemAgency.com if you need more
information or cannot attend.

IBM Cúram Universal Access (New) 95

Table 6: Meeting invite (continued)

Message Area Description

Message 4 (Non-all day meeting for multiple days) You are invited to attend a meeting
from 9.00AM until 5.00PM from
12/04/2010 to the 13/04/2010 in
Meeting Room 1, Block C. Please
contact Joe Bloggs at 014567832 or
joe@SemAgency.com if you need more
information or cannot attend.

Notes When the case worker is setting up a
meeting, the location is an optional
field. Therefore, if a meeting
location is not specified, the
preceding messages are displayed
without a location. Also, the meeting
organizer's contact details are
optional. Therefore, if no contact
details are found, the preceding
message is displayed without the
organizer's contact details.

Table 7: Meeting cancellation

Message Area Description

Title <Icon> Cancellation - Meeting with Case Worker

Message 1 (Not an all day meeting and the
meeting start and end date are on the same day)

The meeting that you were scheduled to
attend from 2.00PM until 6.00 PM on
12/04/2010 is canceled. Please contact
Joe Bloggs at 014567832 or
joe@SemAgency.com if you need more
information.

Message 2 (All day meeting for one day only) The all day meeting that you were
scheduled to attend on 12/04/2010 is
canceled. Please contact Joe Bloggs at
014567832 or joe@SemAgency.com if you
need more information.

Message 3 (All day meeting for multiple days) The all day meeting that you were
scheduled to attend from 12/04/2010
until 15/04/2010 is canceled. Please
contact Joe Bloggs at 014567832 or
joe@SemAgency.com if you need more
information.

Effective Date Current Date.

Notes The meeting organizer's contact details link opens
a page that shows the organizer's contact details.

96 IBM Cúram Social Program Management: IBM Cúram Universal Access 2.0.2

Table 8: Meeting update

Message Area Description

Title <Icon> Cancellation - Meeting with Case Worker

Message 1 (Date and Time change of a non-all-day
meeting)

The meeting that you were scheduled to
attend from 2.00PM until 6.00 PM on
12/04/2010 is rescheduled to 3.00PM
until 7.00 PM on 13/04/2010 in Meeting
Room 1, Block C. Please contact Joe
Bloggs at 014567832 or
joe@SemAgency.com if you need more
information or cannot attend.

Message 2 (Location change of a non-all-day
meeting)

The location of the meeting you are
scheduled to attend from 2.00PM until
6.00 PM on 12/04/2010 is changed. This
meeting is now scheduled for Meeting
Room 1, Block D. Please contact Joe
Bloggs at 014567832 or
joe@SemAgency.com if you need more
information or cannot attend.

Message 3 (Date, time, and location change of
non-all-day meeting)

The meeting that you were scheduled to
attend from 2.00PM until 6.00 PM on
12/04/2010 is rescheduled to 3.00PM
until 7.00 PM on 13/04/2010. It is
rescheduled for Meeting Room 2, Block
C. Please contact Joe Bloggs at
014567832 or joe@SemAgency.com if you
need more information or cannot
attend.

Message 4 (Date change of all day meetings for
multiple days)

The all day meeting that you are
scheduled to attend from 12/04/2010
until 15/04/2010 is rescheduled. This
meeting will now take place from
13/04/2010 until 16/04/2010. Please
contact Joe Bloggs at 014567832 or
joe@SemAgency.com if you need more
information or cannot attend.

Message 5 (Location change for all day meeting for
multiple days)

The location of the all day meeting
you are scheduled to attend from
12/04/2010 until 15/04/2010 is
changed. This meeting is rescheduled
for Meeting Room 1, Block D. Please
contact Joe Bloggs at 014567832 or
joe@SemAgency.com if you need more
information or cannot attend.

IBM Cúram Universal Access (New) 97

Table 8: Meeting update (continued)

Message Area Description

Message 6 (Date and location change for all-day
meeting for multiple days)

The all day meeting that you are
scheduled to attend from 12/04/2010
until 15/04/2010 is rescheduled. This
meeting will now take place from
13/04/2010 until 16/04/2010 in Meeting
Room 1, Block D. Please contact Joe
Bloggs at 014567832 or
joe@SemAgency.com if you need more
information or cannot attend.

Message 7 (Date change for an all-day meeting) The all day meeting that you are
scheduled to attend on 12/04/2010 is
rescheduled. This meeting will now
take place on 13/04/2010. Please
contact Joe Bloggs at 014567832 or
joe@SemAgency.com if you need more
information or cannot attend.

Message 8 (Location change for an all-day
meeting)

The location of the all day meeting
you are scheduled to attend on
12/04/2010 is changed. This meeting is
rescheduled for Meeting Room 1, Block
D. Please contact Joe Bloggs at
014567832 or joe@SemAgency.com if you
need more information or cannot
attend.

Message 9 (Date and location change for an all-day
meeting)

The all day meeting that you are
scheduled to attend on 12/04/2010 is
rescheduled. This meeting is
rescheduled for 13/04/2010 in Meeting
Room 1, Block D. Please contact Joe
Bloggs at 014567832 or
joe@SemAgency.com if you need more
information or cannot attend.

Message 10 (Date and time change of a non-all-
day meeting for multiple days)

The meeting that you are scheduled to
attend from 2.00PM until 6.00 PM on
12/04/2010 until 15/04/2010 is
rescheduled. This meeting is
rescheduled for 2.00PM until 6.00 PM
on 13/04/2010 until 16/04/2010. Please
contact Joe Bloggs at 014567832 or
joe@SemAgency.com if you need more
information or cannot attend.

Message 11 (Location change of a non-all-day
meeting for multiple days)

The location of the meeting you are
scheduled to attend from 2.00PM until
6.00 PM on 12/04/2010 until 15/04/2010
is changed. This meeting is
rescheduled for Meeting Room 1, Block
D. Please contact Joe Bloggs at
014567832 or joe@SemAgency.com if you
need more information or cannot
attend.

98 IBM Cúram Social Program Management: IBM Cúram Universal Access 2.0.2

Table 8: Meeting update (continued)

Message Area Description

Message 12 (Date, time, and, location change of
non-all-day meeting for multiple days)

The meeting that you are scheduled to
attend from 2.00PM until 6.00 PM on
12/04/2010 until 15/04/2010 is
rescheduled. This meeting is
rescheduled for 2.00PM until 6.00 PM
on 13/04/2010 until 16/04/2010 in
Meeting Room 1, Block D. Please
contact Joe Bloggs at 014567832 or
joe@SemAgency.com if you need more
information or cannot attend.

Notes When the case worker is setting up a meeting, the
location is an optional field. Therefore, if a meeting
location is not specified, the preceding messages
are displayed without a location. Also, the meeting
organizer's contact details are optional. Therefore,
if no contact details are found, the preceding
message is displayed without the organizer's
contact details.

Creating payment messages
Create messages for an issued payment, a canceled payment, a due payment, a stopped payment, an
unsuspended payment, an issued overpayment, and an issued underpayment. An administrator can use a
configuration setting to set the number of days (from the effective date) that the payment messages are
displayed.

Table 9: Payment issued

Message Area Description

Title <Icon> Latest Payment

Message 1 Your latest payment of $22.00 was due
on 22/07/2009. Click here to view the
payment details. Your next payment is
due on 29/07/2009. Click My Payments
to view your payment history.

Message 2 (Payment previously canceled) Your latest payment of $22.00 was due
on 22/07/2009. Click here to view the
payment details. This payment was
originally canceled on 23/07/2009.
Click here to view details of the
canceled payment. Your next payment is
due on 29/07/2009. Click My Payments
to view your payment history.

Effective Date Current Date.

IBM Cúram Universal Access (New) 99

Table 9: Payment issued (continued)

Message Area Description

Notes A payment can be issued, then canceled, and then
reissued. The here hyper link opens a page that
shows payment details. The My Payments link
opens the My Payments page in the Citizen
Account.

Note: If no more payments are due, the Your
next payment is due on 29/07/2009 part of
the messages is not displayed.

Table 10: Payment canceled

Message Area Description

Title <Icon> Payment Canceled

Message Your payment of $22.00, due on
22/07/2009, has been canceled. Click
here to view the details. Click
Contact Information to contact your
caseworker if you need more
information. Your next payment is due
on 29/07/2009. Click My Payments to
view your payment history.

Effective Date Current Date.

Notes If no more payments are due, the Your next
payment is due on 29/07/2009 part of the
message is not displayed. The Contact
Information link opens the Contact Information
tab in the citizen account. The My Payments link
opens the My Payments page in the Citizen
Account.

Table 11: Payment due

Message Area Description

Title <Icon> Next Payment Due

Message Your next Cash Assistance payment is
due on 29/07/2011.

Effective Date Current Date.

Notes This message is appropriate when it is the first
payment that a citizen receives.

Table 12: Case suspended

Message Area Description

Title <Icon> Payments Stopped

100 IBM Cúram Social Program Management: IBM Cúram Universal Access 2.0.2

Table 12: Case suspended (continued)

Message Area Description

Message Your Cash Assistance payments have
been stopped from 29/07/2009. Click
Contact Information to contact your
caseworker if you need more
information.

Effective Date Current Date.

Notes The Contact Information link opens the Contact
Information tab in the Citizen Account.

Table 13: Case unsuspended

Message Area Description

Title <Icon> Payments Unsuspended

Message Your Cash Assistance payment
suspension has been lifted from
29/07/2009. Your next payment is due
on 31/07/2009.

Effective Date Current Date.

Notes None.

System messages
Agencies use system messages to send messages to citizens who have a citizen account. For example, if
an agency wants to provide information and help line numbers to citizens who were affected by a natural
disaster. System messages can be configured in the administration application by using the New System
Message page.

Use the Title and Message fields to define the title of the message and the message body that is
displayed in the My Messages pane. Define the message as a priority by using the Priority field, the
message appears at the top of the messages listing.

Note: If multiple priority messages exist, the effective date of the message and the message type is used
to dictate the message order. For more information, see Ordering and Enabling/Disabling Messages.

Use the Effective Date and Time to define an effective date for the message, such as when the message
is displayed in the citizen account. Use the Expiry Date and Time field to define an expiry date for the
message, for instance, when to remove the message from the Citizen Account.

When the message is saved, it has a status of In-Edit. Before the message is displayed in the Citizen
Account, it must be published. After it is published, the message is active and is displayed in the Citizen
Account based on the effective and expiry dates defined.

Configuring message duration
System properties set the length of time a type of message is displayed in the citizen account. For
example, a payment message can be configured to be displayed for 10 days. These configuration options
apply only to messages that originate as a result of transactions on IBM Cúram Social Program
Management.

The following system properties are provided:

• curam.citizenaccount.payment.message.expiry.days - sets the number of days from the
effective date that a payment message is displayed in the citizen account. A payment message is

IBM Cúram Universal Access (New) 101

displayed for this duration unless another payment message is created which replaces it. The default
value is 10.

• curam.citizenaccount.intake.application.acknowledgement.message.expiry.days -
sets the number of days from the effective date that an application acknowledgment message is
displayed in the citizen account. An acknowledgment message is displayed for this duration unless
another acknowledgment message is created which replaces it. The default value is 10.

• curam.citizenaccount.meeting.message.effective.days -sets the number of days from the
effective date that a meeting message is displayed. A meeting message is displayed for this duration
unless another meeting message is created which replaces it. The default value is 10.

Switching off messages
An agency might not want to display messages in the Citizen Account. To cater for this choice, the system
property curam.citizenaccount.generate.messages enables an agency to switch all messages on
or off. The default value is true, which means that messages are generated and displayed in the Citizen
Account.

Configuring last logged in information
The text displayed in the welcome message and last logged on information can be updated using the
properties that are stored in the CitizenAccountHome properties file stored in the Application
Resource section of the Administration Application.

The following properties are provided:

• citizenaccount.welcome.caption - updates the welcome message.
• citizenaccount.lastloggedon.caption - updates the last logged on message.
• citizenaccount.lastloggedon.date.time.text - updates the date and time message.

Configuring contact information
Configure contact information for citizens and caseworkers.

Contact information displayed in the citizen account displays contact details (phone numbers, addresses
and email addresses) stored for the logged in citizen and also caseworker contact details (business phone
number, mobile phone number, pager, fax and email) of the case owners of cases associated with the
logged in citizen in IBM Cúram Social Program Management and on remote systems.

Citizen contact information

The following system property is provided that sets whether contact information is displayed to a citizen.
curam.citizenaccount.contactinformation.show.client.details

If the property is set to true, citizens' address, phone number, and email address are displayed. If
this property is set to false, contact information is not displayed. The default value for this property
is true.

Caseworker

The following system properties are provided to set whether agency worker contact information is
displayed to a citizen, and if displayed, additional system properties are provided to dictate the type of
contact information displayed:
curam.citizenaccount.contactinformation.show.caseworker.details

Sets whether worker contact details are displayed in the citizen account. If this property is set to true,
worker contact details of cases associated with the logged in citizen are displayed. If this property is
set to false, worker contact information is not displayed. The default value for this property is true.

curam.citizenaccount.contactinformation.show.businessphone
Sets whether the worker's business phone number is displayed. The default value of this property is
true.

curam.citizenaccount.contactinformation.show.mobilephone
Sets whether the worker's mobile number is displayed. The default value of this property is true.

102 IBM Cúram Social Program Management: IBM Cúram Universal Access 2.0.2

curam.citizenaccount.contactinformation.show.emailaddress
Sets whether the worker's email address is displayed. The default value of this property is true.

curam.citizenaccount.contactinformation.show.faxnumber
Sets whether the worker's fax number is displayed. The default value of this property is true.

curam.citizenaccount.contactinformation.show.pagernumber
Sets whether the worker's pager is displayed. The default value of this property is true.

curam.citizenaccount.contactinformation.show.casemember.cases
Sets whether the worker's contact information is displayed for cases where the citizen is a case
member. If this property is set to true, cases where the citizen is a case member are displayed. If this
property is set to false, then only cases where the citizen is the primary client are displayed. Note: this
property only applies to cases originating from IBM Cúram Social Program Management. The types of
product deliveries and integrated cases to be displayed can be configured in the Product section of
the Administration Application. For more information on administering this see the Cúram Integrated
Case Management Configuration Guide.

Configuring user session timeout
Configure the user session timeout modal in the System Administration application and the web
application so that citizens know when their session is about to expire.

If a user session is inactive for a time, citizens can continue their current session by clicking Stay logged
in so that they don't lose information entered on the current page. Citizens can also continue the current
session by navigating away from the Stay logged in button.

If citizens do not click Stay logged in they are logged out automatically after a configurable period of time
to secure their personal information.

Use the following properties to configure the session timeout:

curam.environment.enable.timeout.warning.modal
You can either enable or disable the session timeout feature. For more information, see Customizing
the session timeout warning in Universal Access.

curam.environment.timeout.warning.modal.time
Configure the maximum time that the Stay logged in dialog is displayed to citizens. For more
information, see Customizing the session timeout warning in Universal Access.

REACT_APP_SESSION_INACTIVITY_TIMEOUT

In the web application, use the React app REACT_APP_SESSION_INACTIVITY_TIMEOUT node
environmental property to configure the period of time before a user session expires. The property is
configured in seconds. The default value is 1800 (30 minutes).

You can set REACT_APP_SESSION_INACTIVITY_TIMEOUT in the .env/.env.devlopment file
within the relevant package.

REACT_APP_SESSION_INACTIVITY_TIMEOUT should match the timeout period that is configured for
the server using curam.environment.timeout.warning.modal.time.

Configuring the dialog text
To configure the dialog text, such as title, informational text, and button text, for the web application,
use the SessionTimeoutDialogComponentMessages.js file that accompanies the source files.
For more information, see Customizing the IBM Cúram Universal Access server.

Configuring the login page to notify citizens that the session has timed out

Use the property sessionCountdownTimerEnd on the router location state to update a customized
login page with a message to notify citizens that their sessions have timed. For more information on
routing see Developing with routes.

An example of the sessionCountdownTimerEnd is as follows:

if (location.state.sessionCountdownTimerEnd) {
<Alert .../>

IBM Cúram Universal Access (New) 103

}

This notification message is configured by default when a citizen's session times out.

Related concepts
Customizing the IBM Cúram Universal Access server
Use this information to customize the Universal Access server. Typical customizable features are security
and the citizen account.
Developing with routes
Routes define the valid endpoints for navigation in your application. Your application consists of a network
of routes that can be traversed by your users to access the application's pages.
Related information
Customizing the session timeout warning in Universal Access

Configuring life events
For each life event, you must define how information is collected, stored, and displayed. You can configure
life event information categories, mappings to dynamic evidence, and information sharing with internal
and external sources.

Life events are displayed in the citizen account allowing citizens to submit information to the agency. Life
events can also provide citizens with useful information and resources. Life events can be made available
in other channels, for example, they can be submitted online by an agency worker in the internal
application. Configuration settings allow different information to be displayed depending on where the life
event is initiated from. For example, the Having a Baby life event question script displayed to citizens can
be different from the Having a Baby life event question script displayed to an agency worker.

Enabling and disabling life events
Use the environment property REACT_APP_FEATURE_LIFE_EVENTS_ENABLED to enable or disable life
events pages, panes, and cards.

About this task
REACT_APP_FEATURE_LIFE_EVENTS_ENABLED is set to true by default.

If REACT_APP_FEATURE_LIFE_EVENTS_ENABLED isn’t defined, the life events features are enabled by
default.

If REACT_APP_FEATURE_LIFE_EVENTS_ENABLED is set to false, the following UI components are
disabled:

• Has anything changed card on the dashboard.
• Has anything changed Pane on the citizen's profile page.
• The View your account callout card is updated to say See your next payment, and more.
• Related URLs are also disabled, for example: /life-events/history.

REACT_APP_FEATURE_LIFE_EVENTS_ENABLED is located in the .env file.

Procedure

1. Log on to the server that is running Universal Access.
2. Change directory as follows: /opt/JK_maverick0006/workspace/
Vdevelop_UniversalAccessApp_maverick0006/package

3. Edit the .env file:
a) To disable life events in the user interface, make the following change: set
REACT_APP_FEATURE_LIFE_EVENTS_ENABLED=false

b) Alternatively, to enable life events, make the following change: set
REACT_APP_FEATURE_LIFE_EVENTS_ENABLED=true

104 IBM Cúram Social Program Management: IBM Cúram Universal Access 2.0.2

4. Save your changes to the .env file.
5. Restart your server.

Configuring a life event

Use the New Life Event page to configure a life event in life event administration.

Defining a name

Specify a name that uniquely identifies the life event. This name is only displayed in the administration
application. A schema must be specified if the life event to allow citizens to submit information to the
agency. The schema defines where the information submitted by a citizen or user in the life event script is
stored. For more information on defining data store schema, see Working With Intelligent Evidence
Gathering.

Defining a channel type

The channel type defines the channel in which a life event is used, for example, 'Online' or 'Internal'.

Defining a display name

The display name represents the name of the life event that appears citizens or agency workers. For
example, a change of job life event might be displayed as Lost My Job to citizens but Client Loses Job to
caseworkers.

Displaying question and answer scripts

Question script is the name of the life event script. Answer script gathers answers to life event questions.

Defining a schema

The name of the data store schema used by the life event script to capture data. Select a schema from the
Schema menu.

Defining the display ruleset

The ruleset used to determine the recommendations displayed to citizens when a life event is submitted.

Enabling citizen consent

For certain life events, citizens' consent might be required before information is sent to a remote system
or agency. The Citizen Consent Enabled selection box allows an administrator to specify if a citizen's
consent is required. This provision means that the citizen can select the agencies they would like to send
their life event information to.

If this indicator is specified, a list of remote systems are displayed on completion of the life event script. If
this indicator is switched off, the citizen is not presented with a list of remote systems. If only one remote
system is associated with the life event, the Citizen Consent If One Choice Only field is provided to
dictate if the citizen is presented with the remote systems list. The citizen must specify their consent to
send information to this remote system by selecting it on completion of the question script.

Defining the channel

The channel that this life event applies to, either online or internal.

Defining a display description

A description of the life event. This description is displayed on the cards on the citizen's profile page. Rich
text is supported.

IBM Cúram Universal Access (New) 105

Defining additional information

Additional information can be specified which relates to the life event. This information can be used to
display links to useful websites or information which the agency deems relevant to a particular life event.

Defining submission text

Configure the text to be displayed to a citizen after they submit a life event. If a rule set has been defined,
the following default text is displayed:
'Your information has been submitted. Based on the information you have given us, we have
identified services
and programs that may be of use to you. View your results'

Defining an icon

You cannot define an icon when first configuring a life event. Instead, you must save the life event and
then take the following steps:

1. Select the ... icon for the new life event and then select New Image....
2. Select Browse..., and select an image file from your local drive.

Note: Image types of .png or .gif only are supported. Image files must not be animated.
3. Specify and image name and alt image text and select Save.

Related information
Working with Intelligent Evidence Gathering

Mapping life event information to evidence entities
Information gathered in the life event script is stored in the data store schema defined for the life event.

To pass information gathered in the life event script into IBM Cúram Social Program Management it must
be mapped to dynamic evidence entities. Dynamic evidence entities must be firstly defined in the Rules
and Evidence section of the administration application. When defined, you must specify these entities as
Social Record Evidence Types in the administration application. An indicator is also provided which
allows you to set if a particular evidence type is visible to citizens. When the social record evidence
entities are defined, use the Data Mapping Editor (accessible from the Mappings tab on the life event) to
map the data from the data store to the appropriate evidence entities.

When citizens submit a life event, the information gathered is mapped (using the mappings defined
above) to evidence entities associated with a new case type called a social record case. The evidence
broker can then be used to pass the information from this case to the appropriate ongoing cases.

For more information about dynamic evidence, see the Configuring dynamic evidence related link. For
more information about data mapping, see the Configuring with the data mapping editor related link. For
more information about sharing evidence, see the Sharing evidence with the evidence broker related link.

Related information
Configuring dynamic evidence
Configuring with the Data Mapping Editor
Sharing evidence with the evidence broker

Defining a question script, answer script, and schema
You must define an IEG script for the life event if the life event allows citizens or users to submit
information to the agency.

The IEG script that you define collects the answers to a set of questions related to the life event. Specify a
script name in the Question Script field. You must also specify a schema if the life event allows citizens or
users to submit information to the agency. The schema defines where the information submitted in the
life event script is stored. Specify a schema in the Schema field. You must specify an answer script to

106 IBM Cúram Social Program Management: IBM Cúram Universal Access 2.0.2

allow citizens to review the answers they have provided to the questions during submission of the life
event. Specify an answer script in the Answer Script field.

When you save the life event, empty template scripts and a schema are created by the system based on
the Question Script, Answer Script and Schema specified. You can then update these from the Life Event
tab by selecting the hyperlinks provided on the page. Clicking on the Question Script and Answer Script
links launch the IEG Editor. Clicking on the Schema link starts the Datastore Editor. Existing schema,
question scripts and answer scripts can be used by selecting them on the Edit Life Event page.

Note: If a life event has been configured to send information to remote systems, set the Finish Page field
in the script properties (accessed by selecting Edit > Configure Script Properties in the IEG Editor) to
cw/DisplayRemoteSystems.jspx.

For more information on defining IEG scripts and schema, see Working with Intelligent Evidence Gathering
Guide.

Related information
Working with Intelligent Evidence Gathering

Categorizing life events
Life event administration allows you to categorize or group together similar life events, for example,
changing jobs, changing address and changing income life events could be categorized within an
employment category.

Categorizing life events makes it easier for citizens or users to find the life event they need. You define
categories in life event administration and then associate them with a life event. When defining a
category, you must specify a name and description . Life events can then be associated with that category.

Defining Remote Systems
Life event information can be submitted to remote or external systems. You must associate a remote
system with a life event so that life event information can be sent to that system.

The remote system must have the Life Event Service web service associated with it. This is used to
transmit life event information to the remote system. Remote Systems can be configured in the Remote
Systems section of the administration application.

Securing the IBM Cúram Universal Access server
The IBM Cúram Universal Access web application is gives citizens access to their most sensitive personal
data over the internet. Security must be a primary concern in the development of citizen account
customizations. All projects that are built on Universal Access must focus on delivering security from
beginning to end.

It is recommended that all projects take at least the following steps to ensure the security of the project
delivery:

• Ensure that the project team are familiar with the principles of secure application development, and
common vulnerabilities such as the OWASP Top Ten.

• Develop and apply a Threat Model
• Employ security experts to test everything from requirements to the finished deployment.
• Plan for how the application is used in public spaces like libraries and kiosks.

The security model
The IBM Cúram Universal Access security model implements different account types to support both
anonymous and registered citizens. As citizens use Universal Access, they transition through the account
types.

IBM Cúram Universal Access has the following user types:

IBM Cúram Universal Access (New) 107

http://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
http://www.owasp.org/index.php/Threat_Risk_Modeling

Public citizen account

When citizens view the organization Home page they are automatically logged in under the publiccitizen
account. This account only has access to the home page and pages that allow citizens to enter or reset
passwords.

Anonymous account

When the user clicks a link to perform screening or intake, they are logged out as publiccitizen and logged
back as an anonymous account with a random user name. A principle of Universal Access is that users do
not have access to the data of other users. If all intakes and screenings are performed using a single user
account, publiccitizen, for example, one citizen might see data that has been entered by another citizen.

Registered accounts

Standard accounts created by citizens. Citizens can create accounts when they first use the application, or
during processes like applying for benefit. These accounts differ from anonymous accounts in that they
allow citizens to continue previously saved applications, restart applications that were previously
unfinished, and review or withdraw previously submitted applications.

Linked accounts

Linked accounts are accounts that have been linked with an underlying Concern Role ID for a Person
entity.

Some typical scenarios for linking are presented. These are examples, the actual processes for linking is
unique to each citizen. A citizen requests a Citizen Account. The citizen is asked to present themselves at
their local Social Welfare office with drivers license and other personal identification. The caseworker,
uses custom developed functions to enter details for the new linked account after verifying the identity of
the citizen.

A citizen creates a user account for Universal Access and submits an Intake Application. They are
contacted by their caseworker who asks them if they want access to more services. The citizen agrees
and presents themselves at the local office with identification such as a passport. The caseworker is able
to link the citizen to the account they used to submit the Intake Application.

In both of these cases the caseworker does not have access to the citizen's password. Instead, the linking
process triggers a batch job that generates a letter, sent to the citizen's home address. The letter contains
the password and a separate letter then contains an electronic code card. All of this functionality is
developed by the customer however it is supported by Universal Access APIs that allow a user name to be
linked to a Concern Role ID.

Authorization roles and groups
The account types are assigned different authorization roles. The roles limit the methods that can be
invoked. No additional permissions should be granted to authorization roles except for Linked Accounts,
which use the LINKEDCITIZENROLE. If adding additional custom methods to citizen account, additional
permissions will be required.

For more information about adding additional custom methods to citizen account, see Customizing the
citizen account.

If only a subset of the functionality offered by IBM Cúram Universal Access is being used, permission to
invoke the unused methods should be removed from the database. For example, if citizen account is not
used, the LINKEDCITIZENROLE and other related authorization artifacts should be removed, as they are
not needed. Projects not using citizen account should also consider the deployment implications. For
more information, see Customizing the citizen account.

Authorization roles should be configured only for the functionality that is being used. It is recommended
that unused Security IDentifiers (SIDs) should be removed from the database. For example, if citizen
account is not being used, the LINKEDCITIZENROLE and other related authorization artifacts should be

108 IBM Cúram Social Program Management: IBM Cúram Universal Access 2.0.2

removed, as they are not needed. Projects not using citizen account should also consider the deployment
implications. For more information, see Citizen Account Security Considerations.

Proper use of the authorization roles and groups ensure that no user can access functions for which they
have no permission. It will not however, prevent users from using these functions to access data
belonging to user users. This is the preserve of Data-based Security. Universal Access provides a
framework for Data-based Security and all customizations should use this framework. For more
information, see Citizen Account Security Considerations.

Related concepts
Customizing the Citizen Account
Users can use the Citizen Account to log in to a secure area where users can screen and apply for
programs.
Security and the Citizen Account
Security must be a primary concern when you customize the citizen account customizations. All public-
facing applications must be analyzed and tested before they are deployed. Users must contact IBM
support to discuss unusual customizations that might have specific security issues.

Integrating external security
By default, IBM Cúram Universal Access uses its own authentication system that is backed up by a
database of registered users. However, Universal Access can also be configured to integrate with external
security systems.

As government agencies increasingly provide online services, there is a drive to ensure that citizens can
be authenticated for any of these services by using a single set of credentials. This approach provides
benefits for the government in streamlining the authentication process and also for the citizen because
citizens do not have to remember user names and passwords.

This process, in turn, increases security for the following reasons:

• It makes it less likely that citizens write down their user names and passwords.
• It focuses security efforts on implementing best practice in a single enterprise security system.

Universal Access can be deployed in Identity Only mode for registered users so that creating accounts
occurs externally and user accounts are authenticated externally. For more information, see Identity Only
Authentication.

Related information
Identity only authentication

Configuring single sign-on
Single sign-on (SSO) authentication enables users to access multiple secure applications by
authenticating only once by using a single user name and password. Federated single sign-on that uses a
SAML 2.0 IdP-initiated POST binding can be implemented through the Citizen Engagement application.

If a user authenticates to an SSO system, the user is no longer prompted for credentials when the user
accesses multiple applications that are configured to work with the SSO system.

SSO systems usually maintain the user accounts on an LDAP (lightweight directory application protocol)
server. If user accounts are stored at one location, it is easier for system administrators to safeguard the
accounts. Also, when necessary, it is easier for users to reset their account passwords at one location
instead of at multiple applications.

The following topics discuss the scenario where IBM Cúram Social Program Management is deployed on
WebSphere. However, a similar process applies if IBM Cúram Social Program Management is deployed on
another supported application server, such as Oracle Weblogic.

Related information
Oracle: Configuring SAML 2.0 Services

IBM Cúram Universal Access (New) 109

https://docs.oracle.com/middleware/1213/wls/SECMG/saml20.htm#SECMG279

SAML web single sign-on profile initiation
In general, unauthenticated users can initiate a SAML web single sign-on (SSO) profile through either an
identity provider (IdP) or through a service provider (SP). IBM Cúram Universal Access supports an
identity provider (IdP) initiated web SSO flow.

IdP initiation

The IdP can send the assertion request to the service provider ACS in one of two ways:

• The IdP sends a URL link in a response to a successful authentication request. The user must click on
the URL link to post the SAML response to the service provider ACS.

• The IdP sends an auto-submit form to the browser that automatically posts the SAML response to the
service provider ACS.

The ACS validates the assertion and creates a JAAS subject, and then redirects the user to the SP
resource, as shown in the following figure.

Figure 1: IdP initiated flow

110 IBM Cúram Social Program Management: IBM Cúram Universal Access 2.0.2

SP initiation

When an unauthenticated user first accesses an application through an SP, the SP directs the user's
browser to the IdP to authenticate. To be SAML specification compliant, the flow requires the generation
of a SAML AuthnRequest from the SP to the IdP. The IdP receives the AuthnRequest, validates that the
request has come from a registered SP, and then authenticates the user. After the user has been
authenticated, the IdP directs the browser to the Assertion Consumer Service (ACS) application that is
specified in the AuthnRequest that was received from the SP.

Assertions and the SAML Response document

In all SAML web SSO profile flows, the binding defines the mechanism that is used to send information
through assertions between the IdP and the SP. WebSphere supports HTTP POST binding for sending web
SSO profiles. The browser sends an HTTP POST request, whose POST body contains a SAML response
document. The SAML Response document is an XML document that contains information that includes
the following items:

• – The logged in user’s identity, which includes the user name, password, address and role, and how the
user authenticated, and so on

– The time period for which the assertion is valid
– The identify provider that sent the assertion
– What audiences the assertion is meant to be valid for
– Group and role information about the user
– Other application-specific assertions and attributes that are related to the user

A simple assertion typically includes only the first three items from the previous list. To prove the
authenticity of the information, the assertion is almost always digitally signed. To protect the
confidentiality of parts of the assertion, the payload can be digitally encrypted.

The inclusion of extra attributes and assertions is limitless, which can cause the inclusion of a large
amount of raw data in the document. The use of the XML format increases the size of the XML document
through the inclusion of XML element tags, attribute names, and namespaces. When an assertion is
digitally signed, the XML document includes the key information that is necessary for the receiver to
validate the signature. If an assertion is encrypted, the XML document includes the public certificate that
is used to encrypt the data.

The SAML Response XML document is then deflated and Base64 encoded, which further increases the
size of the data. A typical SAML Response contains information that can be sent only through a login by a
POST parameter. After login, an alternative mechanism is typically used to maintain the logged-in security
context. Most systems use some cookie-based, server-specific mechanism, such as a specific security
cookie, or the server’s cookie tied to the user’s HTTP session.

Related information
Oasis: SAML 2.0 Technical Overview
Oracle: JAAS Authorization Tutorial

The SAML 2.0 single sign-on flow in IBM Cúram Universal Access
To implement a more seamless SAML SSO flow, Universal Access supports an identity provider (IdP)
initiated web SSO flow. The SAML POSTs are controlled through the logic in Universal Access.

Browser-based single sign-on (SSO) through SAML v2.0 works well with many web applications where the
SAML flow is controlled by HTTP redirects between the identity provider (IDP) and the service provider
(SP). The user is guided seamlessly from login screens to SP landing pages by HTTP redirects and hidden
forms that use the browser to POST received information to either the IdP or the SP.

IBM Cúram Universal Access (New) 111

https://www.oasis-open.org/committees/download.php/11511/sstc-saml-tech-overview-2.0-draft-03.pdf
https://docs.oracle.com/javase/7/docs/technotes/guides/security/jaas/tutorials/GeneralAcnAndAzn.html#WhatIsAzn

In a single page application, all the screens are contained within the application and dynamic content is
expected to be passed only in JSON messages through XMLHttpRequests. Therefore, the rendering of
HTML content for login pages and the automatic posting of hidden forms in HTML content is more difficult.
If the SP processes the content in the same way, it would be necessary to leave the application and hand
back control to either the user agent or the browser, in which case the application state would be lost.

Therefore, Universal Access supports only an IdP initiated web SSO flow. Any attempt to connect to a
protected resource without first authenticating through IdP results in a 403 HTTP response from IBM
Cúram Social Program Management web API. Therefore, an authentication request that is initiated
through SP will results in a 403 HTTP response, and the application will then redirect the user to the login
page that is contained in Universal Access.

The following figure illustrates the IdP initiated flow that is supported by Universal Access in a default
installation.

Figure 2: IdP initiated flow in IBM Cúram Universal Access

The following list references the numbered items in the image and provides a description of each step in
the flow.

1. A user browses to the HTTP server that contains Universal Access.
2. The user can browse as normal by interacting with IBM Cúram Social Program Management as either a

public or a generated user (which is not shown in the diagram). The user then opens the login page to
access protected content, which triggers an initial request to the IdP endpoint. In most IdP
configurations, an HTML login form responds to the request. Universal Access ignores the response.

3. To authenticate, the user completes the login form and clicks Submit. The form submission triggers an
HTTP POST request that contains login credentials to the IdP.

4. After successful validation of the user credentials at the IdP, the IdP populates the SAML Response
and returns it in an HTML form that contains hidden input fields. Several redirects might occur before
the 200 OK HTTP response that contains the SAML information is received. Universal Access does not
respond to the redirects.

112 IBM Cúram Social Program Management: IBM Cúram Universal Access 2.0.2

5. Universal Access extracts the RelayState and SAMLResponse values, and inserts them in a new
POST request to the application server Assertion Consumer Service (ACS).

6. The application server ACS validates the signature that is contained in the SAML Response.
WebSphere Application Server also ensures that the originator is a Trusted Authentication Realm. If
the validation is successful, the ACS sends an HTTP redirect that points to the configured IBM Cúram
Social Program Management target landing page, along with an LTPA2 Cookie that will be used in any
subsequent communication. The browser automatically sends a new request to the target URL, but
Universal Access does not respond to the request.

7. Universal Access begins its standard user setup by requesting account and profile information from the
relevant web API endpoints.

Configuring single sign-on properties
To enable IBM Cúram Universal Access to work with SAML single sign-on (SSO), configure the appropriate
properties in the .env environment variable file that is in the root of the starter pack. Then, rebuild
Universal Access.

Procedure

• Edit the following properties:
REACT_APP_SSO_ENABLED

Enables or disables SSO authentication in Universal Access. This property takes a Boolean value.
To enable SSO authentication, set the value to true. If the value is false, SSO is disabled.

REACT_APP_IDP_LOGIN_URL
Specifies the identity provider (IdP) login page URL, for example:

https://192.168.0.1:12443/pkmslogin.form

REACT_APP_ACS_URL
Specifies the Assertion Consumer Service (ACS) application server URL, for example:

https:// 192.168.0.2:9443/samlsps/acs

REACT_APP_SAML_INITIAL
Specifies the SSO SAML initial request URL as defined by the IdP, for example:

REACT_APP_SAML_INITIAL=https://192.168.0.1:12443/isam/sps/saml20idp/saml20/logininitial?
 RequestBinding=HTTPPost&PartnerId=https://192.168.0.2:9443/samlsps/
acs&NameIdFormat=Email)

REACT_APP_IDP_LOGOUT_URL
Specifies the IdP logout page URL, for example:

https://192.168.0.1:12443/pkmslogout

Configuring cross-origin resource sharing
For security reasons, browsers restrict cross-origin HTTP requests, including XMLHttpRequest HTTP
requests, that are initiated inside IBM Cúram Universal Access. When the Universal Access application
and the Universal Access web API are deployed on different hosts, extra configuration is required.

About this task

Universal Access can request HTTP resources only from the same domain that the application was loaded
from, which is the domain that contains the static JavaScript. To enable Universal Access to support
cross-origin resource sharing (CORS), enable the use of CORS headers.

Procedure

1. Log on to the IBM Cúram Social Program Management application as a system administrator, and click
System Configurations.

IBM Cúram Universal Access (New) 113

2. In the Shortcuts panel, click Application Data > Property Administration.
3. Configure the curam.rest.allowedOrigins property with the values of either the host names or the IP

addresses of the IdP server and the web server on which Universal Access is deployed.

Related information
Cúram REST configuration properties

Single sign-on configuration example
The example outlines a single sign-on (SSO) configuration for IBM Cúram Universal Access that uses IBM
Security Access Manager to implement federated single sign-on by using the SAML 2.0 Browser POST
profile. The example applies to both IdP-initiated and SP-initiated flows. Some additional steps are
required to configure SP-initiated flows.

Universal Access SSO configuration components

The following figure shows the components that are included in a Universal Access SSO configuration.

114 IBM Cúram Social Program Management: IBM Cúram Universal Access 2.0.2

Figure 3: Universal Access SSO configuration components

Web browser
A user sends requests from their web browser for applications in the SSO environment.

Web server
The Universal Access ReactJS static content is deployed on a web server, such as IBM HTTP Server, or
Apache HTTP Server.

IBM Security Access Manager (ISAM) server
The IBM Security Access Manager server includes the identity provider (IdP).

LDAP server (user directory)
Among other items, the LDAP server contains the user name and password of all the valid users in the
SSO environment.

IBM WebSphere Application Server
Among other applications, WebSphere Application Server contains the deployed IBM Cúram Social
Program Management, Citizen WorkSpace, and REST enterprise applications.

IBM Cúram Universal Access (New) 115

WebSphere Application Server SAML EAR
A WebSphere package that contains the packages to run the SAML Assertion Consumer Service (ACS).

SPM Database
Data storage for the IBM Cúram Social Program Management, Citizen WorkSpace, and REST
enterprise applications.

Configuring single sign-on through IBM Security Access Manager
Use the IBM Security Access Manager management console to configure single sign-on (SSO) in IBM
Cúram Universal Access.

Before you begin

1. Start IBM Security Access Manager.
2. In the management console, log on as an administrator.
3. Accept the services agreement.
4. If required, change the administrative password.

About this task

In the IBM Security Access Manager management console, complete the steps that are outlined in the
following procedure:

Procedure

1. Configure the IBM Security Access Manager database:
a) In the top menu, click Home Appliance Dashboard > Database Configuration.
b) Enter the database configuration details, such as Database Type, Address, Port, and so on, and

click Save.
c) When the Deploy Pending Changes window opens, click Deploy.

2. To install all the required product licenses, repeat the following steps for each activation code, where
each activation code corresponds to a product license:
a) In the IBM Security Access Manager management console, click Manage System Settings >

Licensing and Activation.
b) To import the licenses for IBM Security Access Manager and the federation add-on, click Import.

3. Configure the LDAP SSL database:
a) In the IBM Security Access Manager management console, click Manage System Settings > SSL

Certificates.
b) Click New and create an Ex: ldap entry.
c) Select the new Ex: ldap entry in the list.
d) Click Manage > Edit SSL Certificate Database.
e) In the Edit SSL Certificate Database window, click Manage > Load.
f) In the window that opens, enter the LDAP server host name or IP address, the port number, and a

name.
g) Click load to retrieve the signer certificate from the LDAP server.

The retrieved signed certificate is displayed in the list.
h) Close the window.
i) Select the option to deploy the pending changes.

4. Configure the runtime component:
a) In the IBM Security Access Manager management console, click Secure Web Settings > Runtime

Component.
b) Click Configure to display Runtime Environment Configuration popup.

116 IBM Cúram Social Program Management: IBM Cúram Universal Access 2.0.2

c) Click the Main tab, then select LDAP Remote for remote LDAP registry and click Next.
d) For Management Domain, select the default value, and enter the relevant data in the remaining

fields.
In IBM Security Access Manager Policy Server, you can retain the default value for Management
Domain.

e) In the LDAP tab, enter the following values:
Hostname

LDAP server host name or IP address
Port

LDAP server host name or IP address
DN

cn=root,secAuthority=Default
Password

LDAP password
Enable SSL check box

Select the Enable SSL check box.
Certificate Database

From the list, select the LDAP SSL database that you created previously, Ex: ldap.
f) Click Finish.

Configuring IBM Security Access Manager as an IdP
To configure IBM Security Access Manager as an identity provider (IdP), see the IBM Security Access
Manager 9.0 Federation Cookbook that is available from IBM Developer Works.

Before you begin
Download the IBM Security Access Manager 9.0 Federation Cookbook from IBM Developer Works, as
shown in the related link. Also download the mapping files that are provided with the cookbook.

About this task

To set up the example environment, complete the specified sections in the IBM Security Access Manager
9.0 Federation Cookbook.

Procedure

1. Complete Section 5, Create Reverse Proxy instance.
2. Complete Section 6, Create SAML 2.0 Identity Provider federation.

In Section 6.1, if you are using the ISAM docker deployment, it is possible to re-use the existing
keystore that is included in the container instead of creating a new keystore. It is important to reflect
this change in subsequent sections where the myidpkeys certificate database is referenced.

3. Complete Section 8.1, ISAM Configuration for the IdP.
In Section 8.1, use the host name of the IdP federation.

4. Optional: After completing Section 8.1.1, if you require ACLs to be defined to allow and restrict access
to the IdP junction, then follow the instructions in Section 25.1.3, Configure ACL policy for IdP.

5. Complete Section 9.1, Configuring Partner for the IdP.
The export from Websphere does not contain all the relevant data. Therefore, in Section 9.1, after you
complete configuring partner for the IdP, you must click Edit configuration and complete the
remaining advanced configuration.

Related information
IBM Security Access Manager 9.0 Federation Cookbook

IBM Cúram Universal Access (New) 117

https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/IBM%20Security%20Federated%20Identity%20Manager/page/Federation%20Cookbook

Configuring WebSphere Application Server
The procedure outlines the high-level steps that are required to configure IBM WebSphere Application
Server as a SAML service provider.

About this task

For more information, see the related link to the WebSphere Application Server documentation.

Procedure

1. Deploy the WebSphereSamlSP.ear file.

Note: So that SAML Assertion Consumer Service (ACS) works with cross-origin resource sharing
(CORS) security requirements during redirections, you must map its modules to the same virtual host
used for the REST target application (that is, client_host).

The WebSphereSamlSP.ear file is available as an installable package. Choose one of the following
methods:

• Log on to the WebSphere Application Server administrative console, and install the
app_server_root/installableApps/WebSphereSamlSP.ear file to your application server
or cluster.

• Install the SAML ACS application by using a Python script. In the app_server_root/bin
directory, enter the following command to run the installSamlACS.py script:

wsadmin -f installSamlACS.py install nodeName serverName

Where nodeName is the node name of the target application server, and serverName is the server
name of the target application server. When you complete this step, you must map the modules to
the REST application, for more information see: Mapping virtual hosts for web modules.

2. Configure the ACS trust association interceptor:
a) In the WebSphere Application Server administrative console, click Global security > Trust

association > Interceptors > New.
b) For Interceptor class name, enter
com.ibm.ws.security.web.saml.ACSTrustAssociationInterceptor.

c) Under custom properties, enter the values that are shown in the following table:
In a standard WebSphere Application Server configuration, you would also define a value for the
login.error.page custom property. However, the preferred method is to log on to the IdP first.
Therefore, if you do not define a value for login.error.page, WebSphere Application Server
returns a 403 error if a user logs on without first logging on to the identity provider (IdP).

Table 14: ACS trust association interceptor custom properties

Custom property name Value

sso_1.sp.acsUrl https://WAS_host_name:ssl port//samlsps/acs

sso_1.idp_1.EntityID https://isam_hostname:isam_port//URL of
ISAM/ISAM Junction/IdP endpoint/federation
name/saml20

sso_1.idp_1.SingleSignOnUrl https:// isam_hostname:isam_port//URL of
ISAM/ISAM Junction/IdP endpoint/federation
name/saml20/login

sso_1.sp.targetUrl https://WAS_host_name:WAS_port/Rest

sso_1.idp_1.certAlias isam-conf

sso_1.sp.filter request-url^=/Rest;request-url!=/Rest/
j_security_check

118 IBM Cúram Social Program Management: IBM Cúram Universal Access 2.0.2

https://www.ibm.com/support/knowledgecenter/en/SSAW57_9.0.0/com.ibm.websphere.nd.multiplatform.doc/ae/trun_app_mapvhosts.html

Table 14: ACS trust association interceptor custom properties (continued)

Custom property name Value

sso_1.sp.enforceTaiCookie false

3. Add the IdP federation partner data. The following substeps describe how to add the IdP data by using
the WebSphere Application Server administrative console.
a) To add the IdP host name or IP address as a trusted realm, click Global security > Trusted

authentication realms - inbound > Add External Realm.
b) Enter either the IBM Security Access Manager host name or IP address.
c) To load the IdP certificate from IBM Security Access Manager, click Security > SSL certificate and

key management > Key stores and certificates > NodeDefaultTrustStore > Signer certificates >
Retrieve from port

d) Enter the IBM Security Access Manager IP address and listener port, for example, 12443, alias
= isam-conf.

Note: When the browser first attempts to connect to the IBM Cúram Social Program Management
web API, an LTPA2 cookie is sent as part of the request. If the WebSphere Application Server
com.ibm.ws.security.web.logoutOnHTTPSessionExpire property is set to true, which is the default
configuration in IBM Cúram Social Program Management, then authentication fails because an
HTTP session does not exist on the application server. By setting the property to false, the check
for a valid HTTP session is not completed and when the LTPA2 token is valid, authentication
succeeds.

To configure the property in the WebSphere Application Serveradministrative console, click
Security > Global security > Custom properties, and set the value of
com.ibm.ws.security.web.logoutOnHTTPSessionExpire to false.

4. Implement cross-origin resource sharing (CORS) from the HTTP server to the WebSphere Application
Server SAML ACS.
a) To add a CORS header, configure a servlet filter for the WebSphereSamlSP.ear file that is

deployed by a Trust Association Interceptor (TAI). The servlet filter adds a CORS HTTP header to
HTTP responses. You can archive the implemented servlet filter as a jar file, and then store it in
the WebSphereSamlSP.ear\WebSphereSamlSPWeb.war\WEB-INF\lib directory that is in the
installedApps directory of your project in WebSphere Application Server.
See the following example of how to implement a servlet filter:

public class SampleFilter implements Filter {

 @Override
 public void doFilter(ServletRequest arg0, ServletResponse servletResponse,
 FilterChain arg2) throws IOException, ServletException {

HttpServletResponse response = (HttpServletResponse) servletResponse;
HttpServletRequest request = (HttpServletRequest) arg0;

response.setHeader("Access-Control-Allow-Origin",
 "http://dubxpcvm156.mul.ie.ibm.com:9880"); <hostname or IP address of IBM UA
server>
response.setHeader("Access-Control-Allow-Credentials", "true");
response.setHeader("Access-Control-Allow-Headers", "x-requested-with, Content-Type,
origin, authorization, accept, client-security-token");
response.setHeader("Access-Control-Expose-Headers", "content-length");
 arg2.doFilter(request, response);
 }
}

b) Configure the web.xml file for the deployed TAI EAR file to use the servlet filter for all the requests.
Add the filter element that is shown in the following sample to the web.xml file, with the actual
fully qualified name of the filter.
You can add the filter element as a sibling to any existing element n the web.xml file, such as
<servlet>. The web.xml file is in the WebSphereSamlSP.ear\WebSphereSamlSPWeb.war

IBM Cúram Universal Access (New) 119

\WEB-INF\lib directory, which is in the installedApps directory of your project in WebSphere
Application Server.

<filter>
 <filter-name> SampleFilter </filter-name>
 <filter-class> SampleFilter</filter-class>
 </filter>
 <filter-mapping>
 <filter-name> SampleFilter</filter-name>
 <url-pattern>/*</url-pattern>
 </filter-mapping>

Related information
Enabling WebSphere Application Server to use the SAML web SSO feature

Configuring CORS for IBM Security Access Manager
To permit cross-origin requests from the HTTP server to the IBM Security Access Manager domain,
configure the IBM Security Access Manager runtime environment.

Procedure

1. To create LDAP and IBM Security Access Manager runtime users, create an ldif file that can be used
to populate OpenLdap, as shown in the following sample:

cat UA_usersCreate_ISAM.ldif
dn: dc=watson-health,secAuthority=Default
objectclass: top
objectclass: domain
dc: watson-health

dn: c=ie,dc=watson-health,secAuthority=Default
objectclass: top
objectclass: country
c: ie

dn: o=curam,c=ie,dc=watson-health,secAuthority=Default
objectclass: top
objectclass: organization
o: curam

dn: ou=curamint,o=curam,c=ie,dc=watson-health,secAuthority=Default
objectclass: top
objectclass: organizationalUnit
ou: curamint

dn: cn=caseworker,ou=curamint,o=curam,c=ie,dc=watson-health,secAuthority=Default
objectclass: person
objectclass: inetOrgPerson
objectclass: top
objectclass: organizationalPerson
objectclass: ePerson
cn: caseworker
sn: caseworkersurname
uid: caseworker
mail: caseworker@curam.com
userpassword: Passw0rd

dn: ou=curamext,o=curam,c=ie,dc=watson-health,secAuthority=Default
objectclass: top
objectclass: organizationalUnit
ou: curamext

dn: cn=jamessmith,ou=curamext,o=curam,c=ie,dc=watson-health,secAuthority=Default
objectclass: person
objectclass: inetOrgPerson
objectclass: top
objectclass: organizationalPerson
objectclass: ePerson
cn: jamessmith
sn: Smith
uid: jamessmith
mail: jamessmith@curamexternal.com
userpassword: Passw0rd

2. Add users to the OpenLDAP database:

120 IBM Cúram Social Program Management: IBM Cúram Universal Access 2.0.2

https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/twbs_enablesamlsso.html

a) On the host server that is running the docker containers, enter the following command:

docker cp UA_usersCreate_ISAM.ldif idpisam9040_isam-ldap_1:/tmp

b) To log on to the OpenLDAP container, enter the following command:

docker exec –ti idpisam9040_isam-ldap_1 bash

c) To add the users to OpenLDAP, enter the following command:

ldapadd -H ldaps://127.0.0.1:636 -D cn=root,secAuthority=default -f /tmp/
Curam_usersCreate_ISAM.ldif

3. Import the users into IBM Security Access Manager:
a) To log on to the IBM Security Access Manager command line interface, enter the following

commands:

docker exec -ti idpisam9040_isam-webseal_1 isam_cli
isam_cli> isam admin
pdadmin> login -a sec_master -p <password>

b) To import the users into IBM Security Access Manager, enter the following commands:

pdadmin sec_master> user import caseworker
cn=caseworker,ou=curamint,o=curam,c=ie,dc=watson-health,secAuthority=Default
pdadmin sec_master> user modify caseworker account-valid yes
pdadmin sec_master> user import jamessmith
cn=jamessmith,ou=curamext,o=curam,c=ie,dc=watson-health,secAuthority=Default
pdadmin sec_master> user modify jamessmith account-valid yes

4. To test the identity provider (IdP) flow, enter the following URL in a browser:

https://ISAM login initial URL?RequestBinding=HTTPPost
&PartnerId=webspherehostname:9443/samlsps/acs&NameIdFormat=Email
&Target=WAS hostname:WAS port/Rest/v1

Replace the following values in the URL with the appropriate values for your configuration:

• IBM Security Access Manager login initial URL
• WebSphere host name
• WebSphere Application Server host name
• WebSphere Application Server port; inIBM Cúram Social Program Management the default value is

9044

When the IBM Security Access Manager docker container starts, the IdP endpoints are initialized only
when the first connection request is received. However, if the first connection request is triggered by
IBM Cúram Universal Access, an XHR timeout occurs before the initialization finishes. Therefore, this
test step is required to ensure that the initialization of the IdP endpoints is completed.

5. In a browser, go to the home page and log in.

External security authentication example
Ensure that citizens can be authenticated for any of your services by using a single set of credentials,
which provides the benefits of a streamlined authorization process for both governments and citizens. An
example outlines the implementation of a set of customization requirements for a team that is deploying
Universal Access.

Universal Access, by default, authenticates against a set registered users that are stored on the Cúram
database. You can also configure the system to integrate with external security systems. You can improve
security by enabling the use of a single set of credentials, because citizens do not have to remember lists
of user names and passwords and, hence, are less likely to write down their user names and passwords.
Also, security efforts are focused on implementing best practice in a single Enterprise Security System.

IBM Cúram Universal Access (New) 121

Consider an example analysis of requirements to integrate with an external security system. Any analysis
of requirements for external security integration should consider the following minimum questions:

• Does your deployment support anonymous screening, anonymous intake, or both?
• Is account management supported in IBM Cúram Universal Access or in the external security system?
• Is single sign-on (SSO) required?

Example customization requirements

The topics in this section describe the configuration and development tasks to implement the following
set of customization requirements for a team that is deploying Universal Access. The topics refer to the
requirements as appropriate.

1. Users can access Universal Access and perform anonymous screening or intake.
2. Users who want to access their saved screening or intake information must first create an account on a

system called CentralID.
3. Users who log in to Universal Access can use their CentralID username and password to authenticate.
4. Users perform all of their account management using an external system that is named CentralID, for

example, resetting a password, creating a new account, changing account details.
5. CentralID stores all user records in a secure LDAP server.
6. Because all account management is now performed in CentralID, the account creation screens and

password reset screens are to be removed from Universal Access.
7. Users should be able to log in as soon as they have registered with CentralID, and there should be no

delay while waiting for an ID to propagate to Universal Access.

Configuring an alternative login ID
By default, you cannot change user names after they are created. However, you can configure an
alternative login ID that can be updated.

For information about configuring alternative login IDs, see Alternate login IDs. If you configure an
alternative login ID for a user name that is case-sensitive, then the alternative login ID is also case-
sensitive.

Related information
Alternate Login IDs

Deploying in identity-only mode for registered users
You must configure the application server to use LDAP for authentication if a user is in Identity–Only
mode. Also, configure the necessary properties to deploy in identity-only mode for registered users.

Configuring the application server to use LDAP for authentication in Identity–Only mode

If a user is in Identity–Only mode, it is necessary to match the login IDs that are stored in LDAP with
the login IDs that are stored in the ExtendedUsersInfo table.

For information about how to configure your application server to use LDAP for authentication, see the
relevant application server documentation.

Configuring properties to deploy in identity-only mode for registered users

Add the following properties to the AppServer.properties file:

curam.security.check.identity.only=true
curam.security.user.registry.disabled.types=EXT_AUTO,EXT_GEN

122 IBM Cúram Social Program Management: IBM Cúram Universal Access 2.0.2

curam.citizenworkspace.enable.usertypes.for.temporary.users=true
public.user.type=EXT_AUTO

To reconfigure the application server, run the following command:

appbuild configure

The curam.security.check.identity.only property ensures that application security is set to
work in Identity Only mode. For more information about Identity Only authentication mode, see either
Deployment Guide for WebSphere or Deployment Guide for WLS. In Identity Only mode, authentication
uses only the internal user table to check for the existence of the user. The validation of the password is
left to a subsequent module, either a JAAS module (Oracle WebLogic) or the User Registry (IBM
WebSphere).

Take the example of a user, "johnsmith", who has been registered with the CentralID LDAP server. For
John Smith to be able to use Universal Access, there must also be a "johnsmith" entry in the ExternalUser
table. When John Smith logs in, his authentication request is passed to the Cúram JAAS Login Module.
The Cúram JAAS Login Module checks that the user johnsmith exists in the Cúram ExternalUser table
but does not check the password. The authentication then proceeds to the User Registry (WebSphere) or
LDAP JAAS Module (WebLogic) where the user name and password are checked against the contents of
the CentralID LDAP server. For the authentication to work correctly, it is necessary to configure the
application server with the connection details for the secure LDAP server.

The Identity Only configuration allows the application to defer to an external security system such as an
LDAP-based directory service for the authentication of user credentials. However, when an anonymous
user accesses the organization Home page for the first time, the user is automatically logged in as a
publiccitizen user. Subsequently, if the user chooses to screen themselves or to perform an intake,
Universal Access creates a new "generated" anonymous user. Each generated user is unique, which
ensures that the data that belongs to that user is kept confidential. Public citizen users and generated
users are not inserted into the LDAP directory, so they cannot be authenticated by using the Identity Only
mechanism. The following line ensures that users with the user type EXT_AUTO (public citizen users) and
EXT_GEN (generated users) are authenticated against the External User table:

curam.security.user.registry.disabled.types=EXT_AUTO,EXT_GEN

After the previous configuration has been applied to the server and the server has been started, perform
the following configuration steps:

1. Log in as sysadmin.
2. Select Application Data > Property Administration.
3. Select category Citizen Account - Configuration.
4. Set the property curam.citizenaccount.public.included.user to EXT_AUTO.
5. Set the property curam.citizenaccount.anonymous.included.user to EXT_GEN.
6. Set the property curam.citizenworkspace.enable.usertypes.for.temporary.users to TRUE.
7. Publish the property changes.

You need another configuration entry so that Universal Access operates correctly with respect to
authentication as shown in the following steps:

8. Select Select Application Data > Property Administration.
9. Select category Infrastructure – Security parameters.

10. Set curam.custom.externalaccess.implementation to
curam.citizenworkspace.security.impl.CitizenWorkspacePublicAccessSecurity.

11. Publish the property changes.
12. Log out and restart the server.

IBM Cúram Universal Access (New) 123

Disabling the Create Account screens
Configure the necessary properties to disable the screens for creating an account that Universal Access
provides by default. Requirement 4 in the example requirements indicates that all account management
functions are handled by the external system, CentralID, including the creation of a new account and
performing a password reset.

Configure Universal Access to disable the screens that are related to account management:

1. Log in as sysadmin.
2. Select Application Data > Property Administration.
3. Select Category Citizen Portal - Configuration.
4. Set the property curam.citizenworkspace.enable.account.creation to NO.
5. Publish the property changes.

The previous steps remove references to Account Creation pages from Universal Access. The Login
screen still contains a link to a page for changing passwords. In this example, the implementation team
can use the following steps to retain the link but change it to open a new browser window on the
CentralID password reset page:

1. Log in as sysadmin.
2. Select Application Data > Property Administration.
3. Select Category Citizen Portal - Configuration.
4. Set the property curam.citizenworkspace.forgot.password.url to , for example http://

www.centralid.gov/resetpassword
5. Publish the property changes.

To completely remove the reset password link, use the following steps:

1. Log in as sysadmin.
2. Select Application Data > Property Administration.
3. Select Category Citizen Portal - Configuration.
4. Set the property curam.citizenworkspace.display.forgot.password.link to NO.
5. Publish the property changes.

Redirecting users to register with an external system
Replace the message that is displayed in the log in page so that non-registered users are directed to the
CentralID page for registration.

Universal Access invites users to log in with a log in message. You can replace the message so that the log
in page displays a message that is similar to the following example:
"<p>If you are registered with CentralID enter your user name
 and password to log in. To register, go to
 The CentralID
 registration page.</p>"

The properties for controlling the login page message are contained in the <CURAM_DIR>/EJBServer/
components/Data_Manager/Initial_Data/blob/prop/Logon.properties file.

Enabling users to log on immediately after registration with CentralID
Users should be able to log in as soon as they have registered with CentralID. Some configuration is
required to prevent a delay in the propagation of a user's ID to other systems.

To function correctly, each user must have an entry in the ExternalUser table. The customer could build a
batch process to import users from the LDAP directory into the ExternalUser table. However, requirement
7 in the example requirements would not be satisfied, which states that users must be able to register
with CentralID, and then immediately use Universal Access. Another option would be to build a web
service or similar mechanism that would be launched when a new user registers with CentralID. The
implementation of the web service would create the appropriate entry in the ExternalUser table.

124 IBM Cúram Social Program Management: IBM Cúram Universal Access 2.0.2

A simpler option is to override the default log-in behavior to create new accounts as needed, after the
completion of checks to ensure that the relevant entry exists in the LDAP server. You can override the
default log-in behavior in Universal Access by extending the
curam.citizenworkspace.security.impl.AuthenticateWithPasswordStrategy class and
overriding the authenticate() method. The following code outlines how to use the
AuthenticateWithPasswordStrategy and other security APIs to meet the previous requirements:

public class CustomSecurityStrategy extends AuthenticateWithPasswordStrategy {
 @Inject
 private CitizenWorkspaceAccountManager cwAccountManager;
 ...
 @Override
 public String authenticate(final String username,
 final String password)
 throws AppException, InformationalException {
 final String retval = null;
 if (username.equals(PUBLIC_CITIZEN)) {
 return super.authenticate(username, password);
 }
 // Authenticate generated accounts as normal
 if (cwAccountManager.isGeneratedAccount(username)) {
 return super.authenticate(username, password);
 }
 // Check that the user exists in LDAP
 // This prevents hackers from registering many bogus
 // accounts that exist in Curam but not in LDAP
 if (!isUserInLDAP(username)) {
 return SECURITYSTATUS.BADUSER;
 }
 // If there's no account for this user
 if (!cwAccountManager.hasAccount(username)) {
 createUserAccount(username);
 }
 return SECURITYSTATUS.LOGIN;
 }
 private void createUserAccount(final String username)
 throws AppException, InformationalException {
 final CreateAccountDetails newAcctDetails;
 ...
 cwAccountManager.createStandardAccount(newAcctDetails);
 }
}

This code checks to see whether the user is logging in is a public citizen user or a generated account. In
both cases, authentication logic is delegated to the default AuthenticateWithPasswordStrategy
API. In the case of a registered user, the Strategy checks the LDAP directory to ensure that the user exists
in the LDAP directory. If the user exists in the LDAP directory and does not exist yet in Universal Access,
then a new user account is created. Note, the custom code does not need to authenticate the user against
LDAP since the authentication is handled by the User Registry in WebSphere or the LDAP JAAS Module in
WebSphere. It is important to note that the password parameter of the authenticate() method is
passed in clear text.

To install the CustomSecurityStrategy class, it must be bound in place of the Default Security
Strategy class. Use a Guice Module to bind the implementation:

public class CustomModule extends AbstractModule {
 @Override
 protected void configure() {
 binder().bind(SecurityStrategy.class).to(
 CustomSecurityStrategy.class);
 }
}

You must configure the CustomModule at startup by adding a DMX file to the custom component as
shown in the following example:

<CURAM_DIR>/EJBServer/custom/data/initial/MODULECLASSNAME.dmx

<?xml version="1.0" encoding="UTF-8"?>
<table name="MODULECLASSNAME">

IBM Cúram Universal Access (New) 125

 <column name="moduleClassName" type="text" />
 <row>
 <attribute name="moduleClassName">
 <value>gov.myorg.CustomModule</value>
 </attribute>
 </row>
</table>

Customizing account creation and management
You can customize account creation and management.

Account management configurations

A number of configurations properties are used to define the behavior of the validations for citizen
accounts:

Table 15: Account configurations

Property Description

curam.citizenworkspace.username.min.length Minimum number of characters in the username.

curam.citizenworkspace.username.max.length Maximum number of characters in the username.

curam.citizenworkspace.password.min.length Minimum number of characters in the password.

curam.citizenworkspace.password.max.length Maximum number of characters in the password.

curam.citizenworkspace.password.min.special.chars Minimum number of special characters and/or numbers in the password.

The values of these configuration properties can be updated by logging in as sysadmin and selecting
Application Data > Property Administration. Then search for
"curam.citizenworkspace.password.max.length", for example.

Account management events
Events are raised at key points during account processing. The events can be used to add custom
validations to the account management process.

For more information about adding custom validations to the account management process, see the
Cúram Server Developer section. The following table shows the events that are in the
curam.citizenworkspace.security.impl.CitizenWorkspaceAccountEvents class:

Table 16: Account events

Event Interface Description

CitizenWorkspaceCreateAccountEvents Events raised around account creation. For more information, see the
related Javadoc information in the WorkspaceServices component.

CitizenWorkspacePasswordChangedEvent Event raised when a user is changing their password. For more
information, see the related Javadoc information in the
WorkspaceServices component.

CitizenWorkspaceAccountAssociations Events raised when a user is linked or unlinked from an associated
Person Participant. For more information, see the related Javadoc
information in the WorkspaceServices component.

Related information
Cúram Server Developer

PasswordReuseStrategy API
Use the curam.citizenworkspace.security.impl.PasswordReuseStrategy API to add your
own password change validations.

As part of the password reset function, there is a default validation that prevents a user from entering a
new password that is the same as the user's current password. Using the PasswordReuseStrategy
API, custom validations can be added to restrict users from changing their passwords to current or
previous values if required. For example, a customer might want to implement a password reuse strategy
that prevents users from reusing a previous password until after six password changes.

126 IBM Cúram Social Program Management: IBM Cúram Universal Access 2.0.2

For further details, see the API Javadoc.

CitizenWorkspaceAccountManager API
Use the curam.citizenworkspace.security.impl.CitizenWorkspaceAccountManager API to
create and link citizen accounts. Use the API to build out custom functionality to support caseworkers
who want to link accounts and create accounts on behalf of the citizen.

The API offers the following methods:

• Creating standard accounts
• Creating linked accounts
• Removing links between participants and accounts.
• Retrieving account information

For more information, see the API Javadoc.

Data caching
Minimize the risk of citizens accessing each others' data from browser and server data caches. Cached
data can be accessed when citizens use the browser back button or browser history to retrieve data
entered by other users, or when PDF files are cached locally on the computer that was used to make the
application.

Server caching

HTTP servers like Apache can set cache-control response headers to not store a cache. Use this approach
to prevent access to data using the browser back button or history.

Browser caching

Browsers can be configured not to cache content. If citizens can access the web portal in a "kiosk", then
the browser should be configured never to cache content.

Advise citizens to clear their cache and close all browser windows they have used when they are finished
using the web portal. Also tell citizens to remove PDF documents that they download from the browser's
temporary internet files.

Customizing the IBM Cúram Universal Access server
Use this information to customize the Universal Access server. Typical customizable features are security
and the citizen account.

Customizing screening
Use the supported classes and APIs to customize screening.

For information on setting up and configuring screening, see Configuring screening.

Related concepts
Configuring screenings
Define different types of screenings that citizens can complete to identify programs that they might be
eligible to receive.

Track the volume, quality, and results of screenings
Use the curam.citizenworkspace.impl.CWScreeningEvents class to access the events that are started for
screening events.

You can use curam.citizenworkspace.impl.CWScreeningEvents to track the volume or results of screening
for reporting purposes. For more information, see to the API Javadoc for CWScreeningEvents in
<CURAM_DIR>/EJBServer/components/CitizenWorkspace/doc

IBM Cúram Universal Access (New) 127

Populating a custom screening results page
Use the performScreening that is contained in the
curam.citizenworkspace.security.impl.UserSession API to populate a custom Screening
Results page.

The Screening Results page is displayed when an IEG screening script is run. The operation runs the
configured rule set for the selected screening type. The results of the screening, that is, the list of eligible
and undecided programs, are stored against the user's session.

The screeningResultsForDisplay return type of the operation allows access to three objects. These objects
contain the information that is required to populate either the default or custom Screening Results page:

ScreeningType
The screening type that the user selected.

List<Program>
A list of the programs that the user was screened for. The ScreeningResultsOrderingStrategy sets the
order of the programs listed.

Map<String, ProgramType>
A join.util.map that contains a mapping of strings to ProgramTypes where the string contains the
unique reference for that ProgramType.

The following is a sample usage:

UserSession userSession = userSessionDAO.get(sessionID);
ScreeningResultsForDisplay screeningResultsForDisplay =
 userSession.performScreening();

The following is a sample interface definition:

/**
 * Executes the Screening rule set associated with the current screening IEG
 * script data. The return object, {@link ScreeningResultsForDisplay},
 * contains all of the information required to be displayed on the
 * Screening Results page.
 *
 * @return object containing the ordered screening results, the selected
 * {@link ScreeningType} and a map of {@link ProgramType} records.
 *
 * @throws InformationalException
 * Generic exception signature.
 * @throws AppException
 * Generic exception signature.
 */
 ScreeningResultsForDisplay performScreening() throws InformationalException,
 AppException;

For more information, see the API Javadoc for the
curam.citizenworkspace.security.impl.UserSession in <CURAM_DIR>/EJBServer/
components/CitizenWorkspace/doc.

128 IBM Cúram Social Program Management: IBM Cúram Universal Access 2.0.2

Customizing submitted applications
Use customization points, for example, customizing the generic PDF for processed applications, to
customize the application intake process when an intake application is submitted.

Customizing the intake application workflow
View a summary of the intake application workflow in a flowchart.

Figure 4: Intake application workflow

Create intake PDF
This automatic activity creates a PDF document based on the content of the application. For more
information, see Customizing the generic PDF for processed applications.

InvokeLegacySystemProcessing
This automatic activity sends applications to legacy systems via Web Services. This path is taken only
if there are legacy systems associated with at least one of the programs on the application.

CreateParticipantsAndCases
This automatic activity creates participants for the submitted application and then creates a case or
cases for the various programs associated with the application. In most cases, an Application Case or
Cases are created. This path is taken if the value of the configuration property
curam.intake.use.resilience is set to true. For reasons of backward compatibility, this
property is set to false by default, however it is strongly recommended that all production systems set
this value to true. For more information on the implications of setting this value to true, see Using
events to extend intake application processing.

Mapping
This automatic activity uses the Cúram Data Mapping Engine (CDME) to map data collected in the
application script into Case Evidence. Under most circumstances this will proceed smoothly. In the

IBM Cúram Universal Access (New) 129

event that a validation issue occurs with the mapped evidence, this activity will be automatically re-
tried. During the re-try, if there is a single Application Case, the validations will be disabled and a WDO
flag IntakeCaseDetails.mappingValidInd set to false.

EvidenceCorrections
This manual task is invoked if the Mapping activity failed due to a validation error
(IntakeCaseDetails.mappingValidInd set to false). The assignment of this task is
configurable. For more information, see Evidence issues intake strategy. The caseworker or operator
will resolve the evidence validation issues and then re-submit the application.

PostMapping
This automatic activity kicks off the next stage of application processing by invoking the event
IntakeApplication.IntakeApplicationEvents.postMapDataToCuram().

CreateParticipantsCasesAndMapEvidence
This path is followed when the configuration property curam.intake.use.resilience is set to
false. This automatic activity behaves identically to the old, non-resilient workflow. It creates cases
and participants and performs all evidence mapping in a single transaction. This makes the process
less resilient in the event of a failure.

Customers can customize the workflow in the usual recommended manner as described in the Cúram
Development Compliance Guide and Cúram Workflow Management System Guide. Note that
customers should not make any changes to the enactment structs used by these workflows.

Related concepts
Customizing the generic PDF for processed applications
Use IBM Cúram Universal Access to map all intake applications to a generic PDF that records the values of
all the information that the user enters.
Using events to extend intake application processing
The interface IntakeApplication.IntakeApplicationEvents contains events that are invoked
when citizens submit an intake application for processing.
Related information
Evidence Issues Ownership Strategy

Customizing the generic PDF for processed applications
Use IBM Cúram Universal Access to map all intake applications to a generic PDF that records the values of
all the information that the user enters.

This PDF is rendered by the XML Server. Customers can override the default formatting of the generic PDF
as follows:

1. Copy CURAM_DIR/EJBServer/components/Workspaceservices/Data_Manager/
InitialData/XSLTEMPLATEINST.dmx to CURAM_DIR/EJBServer/components/custom/
Data_Manager/InitialData.

2. Edit project\config\datamanager_config.xml, replace the entry for:CURAM_DIR/
EJBServer/components/Workspaceservices/Data_Manager/InitialData/
XSLTEMPLATEINST.dmx with an entry for: CURAM_DIR/EJBServer/components/custom/
Data_Manager/InitialData/ XSLTEMPLATEINST.dmx

3. Copy CURAM_DIR/EJBServer/components/Workspaceservices/Data_Manager/
InitialData/blob/WSXSLTEMPLATEINST001 to: CURAM_DIR/EJBServer/components/
custom/Data_Manager/InitialData/blob.

4. Edit WSXSLTEMPLATEINST001 to suit the needs of the project.

Using events to extend intake application processing
The interface IntakeApplication.IntakeApplicationEvents contains events that are invoked
when citizens submit an intake application for processing.

Use these events to change the way that intake applications are handled, for example supplement or
replace the standard CDME mapping or perform an action after an application has been sent to a remote
system using web services. For more information, see the API Javadoc information for

130 IBM Cúram Social Program Management: IBM Cúram Universal Access 2.0.2

IntakeApplication.IntakeApplicationEvents in <CURAM_DIR>/EJBServer/components/
WorkspaceServices/doc.

The interface IntakeProgramApplication.IntakeProgramApplicationEvents contains events
that are invoked at key stages during the processing of an application for a particular program. For
information, see the API Javadoc information for
IntakeProgramApplication.IntakeProgramApplicationEvents in <CURAM_DIR>/
EJBServer/components/WorkspaceServices/doc.

Customizing the concern role mapping process
The curam.workspaceservices.applicationprocessing.impl package contains a
ConcernRoleMappingStrategy API that provides a customization point into the online application process.

Use the ConcernRoleMappingStrategy API to implement custom behavior following the creation of each
new concern role that is added to an application. For example, customers who have customized the
prospect person entity might want to store information on that entity that cannot be mapped using the
default CDME processing.

Enable the ConcernRoleMappingStrategy API
In the administration application, enable the ConcernRoleMappingStrategy API by setting the Enable
Custom Concern Role Mapping property to true.

Procedure

1. Log in to the System Administration application as a user with system administration permissions.
2. Click System Configurations > Application Data > Property Administration.
3. In the Application - Intake Settings category.
4. Search for the property curam.intake.enableCustomConcernRoleMapping.
5. Edit the property to set its value to true.
6. Save the property.
7. Select Publish.

Use the ConcernRoleMappingStrategy API
When enabled, use the ConcernRoleMappingStrategy API to implement a strategy for mapping
information to a custom concern role.

About this task
The curam.workspaceservices.applicationprocessing.impl package contains the
ConcernRoleMappingStrategy API.

Procedure

1. Provide an implementation of the customization point.
2. Bind your custom implementation by creating or extending your custom mapping module as follows:

package com.myorg.custom;
class MyModule extends AbstractModule {
 @Override
 protected void configure() {

 bind(ConcernRoleMappingStrategy.class).to(
 MyCustomConcernRoleMapping.class);

3. If you did not already add your MyModule class to the ModuleClassName table by using an appropriate
DMX file, add your MyModule class.

IBM Cúram Universal Access (New) 131

How to send applications to remote systems for processing
Use the Citizen Workspace to send applications to remote systems that use web services for processing.

An event ReceiveApplicationEvents.receiveApplication is raised before the application is sent
to the remote system. The event can be used to edit the contents of the data store that is used to gather
application data before transmission. For more information, refer to the API Javadoc for
ReceiveApplicationEvents, which is in <CURAM_DIR>/EJBServer/components/
WorkspaceServices/doc.

Customizing the Citizen Account
Users can use the Citizen Account to log in to a secure area where users can screen and apply for
programs.

Users also use the Citizen Account to view information relevant to them, including individually tailored
messages, system-wide announcements, updates on their payments, contact information for agency staff
and outreach campaigns that might be relevant to them. The Citizen Account also provides a framework
for customers to build their own pages or override the existing pages.

Security and the Citizen Account
Security must be a primary concern when you customize the citizen account customizations. All public-
facing applications must be analyzed and tested before they are deployed. Users must contact IBM
support to discuss unusual customizations that might have specific security issues.

Permission to call the server facade methods that serve data to citizen account pages is managed by the
standard authorization model. For more information, see the Server Developer documentation. In addition
to the standard authorization checks, each facade method that is called by a Citizen Account page must
complete the following security checks to ensure the user who is associated with the transaction (the
currently logged in user) has permission to access the data they are requesting:

• Ensure that the currently logged in user is of the correct type. They must be an external user with an
applicationCode of CITWSAPP, and have an account of type Linked.

• Ensure that the currently logged in user has permission to access the specific records that they are
reading. For instance, validate any page parameters that are passed in to ensure that the records
requested are related to the currently logged in user in some way.

Ensure that the currently logged in user is the correct type
The curam.citizenaccount.security.impl.CitizenAccountSecurity API offers a method
performDefaultSecurityChecks that ensures that the user is the correct type. This method checks
the user type, and if not acceptable, writes a message to the logs and fails the transaction.

Note: This API needs to be called in the first line of every custom facade method before any processing or
further validation takes place:

public CitizenPaymentInstDetailsList listCitizenPayments()
 throws AppException, InformationalException {

 // perform security checks
 citizenAccountSecurity.performDefaultSecurityChecks();

 // validate any page parameters (none in this case)

 // invoke business logic
 return citizenPayments.listPayments();
 }

Ensure that the logged in user has access to the requested records
A malicious user who is logged in to a valid linked account might send requests to the system to request
other users' data. To prevent this intrusion from happening, all page parameters must be validated to
ensure that they are somehow traceable back to the currently logged in user. How this conclusion is
determined is different for each type of record.

For example, a Payment can be traced back to the Participant by way of the Case on which it was
entered.

132 IBM Cúram Social Program Management: IBM Cúram Universal Access 2.0.2

The curam.citizenaccount.security.impl.CitizenAccountSecurity application
programming interface (API) offers methods to complete these checks for the types of records that are
served to citizens by the initially configured pages. For specific information, review the Javadoc of this
API. For custom pages that serve different types of data, additional checks must be implemented to
validate the page parameters.

This process needs to be added to a custom security API and called by the facade methods in question.
The methods need to check to see whether the record requested can be traced back to the currently
logged in user, and if not, it needs to log the user name, method name, and other data. If these conditions
are not met, the transaction needs to be failed immediately (as opposed to adding the issue to the
validation helper and allowing the transaction to proceed):

if (paymentInstrument.getConcernRole().getID()
 != citizenWorkspaceAccountManager
 .getLoggedInUserConcernRoleID().getID()) {

 /**
 * the payment instrument passed in is not related
 * to the logged in user log the user name of the
 * current user, the method invoked and any other
 * pertinent data
 */

 // throw a generic message
 throw PUBLICUSERSECURITYExceptionCreator
 .ERR_CITIZEN_WORKSPACE_UNAUTHORISED_METHOD_INVOKATION();
 }

While as much information as possible regarding the infraction needs to be logged, it is important to
ensure that the exceptions thrown do not display any information that might be useful to malicious users.
A generic exception needs to be thrown that does not contain any information that relates to what went
wrong. The curam.citizenaccount.security.impl.CitizenAccountSecurity API throws a
generic message that states You are not privileged to access this page.

Messages
When a linked citizen logs in, messages are gathered from the system and from remote systems for
display.

The curam.citizenmessages.impl.CitizenMessageController API gathers and displays
messages. The API reads persisted messages by participant from the ParticipantMessage database
table, and also raises the CitizenMessagesEvent.userRequestsMessages event, inviting listeners
to add messages to a list it passes as part of the event parameter. The messages that are gathered from
each source are sorted, turned into XML and returned to the citizen for display.

Configuring citizen messages
Global configurations are included that can be specified for Citizen Messages, such as enabling certain
types and configuring their display order. The different types of messages also include their own
configuration points. Specific information about how to customize the various message types is provided
later.

The textual content of a message type also can be configured. Each message type has a related properties
file that includes the localizable text entries for the various messages displayed for that type. These
properties also include placeholders that are substituted for real values related to the citizen at run time.

The wording of this text can be customized, by inserting a different version of the properties file into the
resource store. The following table defines which properties file need to be changed for each type of
message:

Table 17: Message properties files

Message type Property file name

Payments CitizenMessageMyPayments.properties

IBM Cúram Universal Access (New) 133

Table 17: Message properties files (continued)

Message type Property file name

Application Acknowledgment CitizenMessageApplicationAcknowledgement.properties

Verifications CitizenMessageVerificationMessages.properties

Meetings CitizenMessageMeetingMessages.properties

Referral CitizenMessagesReferral.properties

Service Delivery CitizenMessagesServiceDelivery.properties

You can also remove placeholders (which are populated with live data at run time) from the properties.
However, there is currently no means to add further placeholders to existing messages. A custom type of
message must be implemented in this situation.

Adding a new type of citizen message
Messages are gathered by the controller in two ways: the controller reads messages that were persisted
to the database by using the curam.citizenmessages.persistence.impl.ParticipantMessage
API, and also gathers them by raising the
curam.participantmessages.events.impl.CitizenMessagesEvent

A decision needs to be made regarding whether to 'push' the messages to the database, or else have
them generated dynamically by a listener that listens for the event that is raised when the citizen logs in.
The specific requirements of the message type need to be considered, along with the benefits and
drawbacks of each option.

Persisted messages

In this scenario, when something takes place in the system that might be of interest to the citizen, a
message is persisted to the database. For example, when a meeting invitation is created, an event is fired.
The initially configured meeting messages function listens for this event. If the meeting invitee is a
participant with a linked account, a message is written to the ParticipantMessage table that informs
the citizen that they are invited to the meeting.

One benefit of this approach is that little processing is done when the citizen logs in to see this message:
the message is read from the database and displayed, as opposed to calculation that takes place that
would determine whether the message was required. However, the implementation also needs to handle
any changes to the underlying data that might invalidate or change the message, and take appropriate
action.

For example, the meeting message function also listens for changes to meetings to ensure the meeting
time, location, and similar, are up to date, and to send a new message to the citizen to inform the citizen
that the location or time was changed.

Dynamic messages

These messages are generated when the citizen logs in, by event listeners that listen for the
curam.participantmessages.events.impl.
CitizenMessagesEvent.userRequestsMessages event.

Because the message is generated at runtime, code is not required to manage change over time. The
message is generated based on the data within the system each time the citizen logs in. If some
underlying data changes, the next time the citizen logs in, they will get the correct message.

A drawback to this approach is that significant processing might be required at run time to generate the
message. Care must be taken to ensure that this processing does not adversely affect the load time of the
Citizen Account dashboard.

Performance considerations must be evaluated against the requirements of the specific message type
and the effort that is required to manage change to the data that the message is related to over time. For

134 IBM Cúram Social Program Management: IBM Cúram Universal Access 2.0.2

example, the initially configured verification message is dynamic. When a citizen logs in, it checks to see
whether any outstanding verifications exist for that citizen. This process is a relatively simple database
read, whereas it would be complicated to listen for various events in the Verification Engine and ensure
that an up-to-date message was stored in the database related to the participants' outstanding
verifications. Alternatively, the meeting messages need to inform the citizen of changes to their meetings,
so functionality had to be written to manage changes to the meeting record and its related message over
time.

Implementing a new message type
Organizations can implement a dynamic message or a persisted message.

To implement a new message type, regardless of whether the message is persisted or is generated
dynamically, complete the following steps.

Common tasks

• In the administration system, add an entry to the CT_ParticipantMessageType code table to
represent the new message type.

• Add a DMX entry for the ParticipantMessageConfig database table. This stores the type and sort order of
the new message type and is used for administration. For example:
<row>
 <attribute name="PARTICIPANTMESSAGECONFIGID">
 <value>2110</value>
 </attribute>
 <attribute name="PARTICIPANTMESSAGETYPE">
 <value>PMT2001</value>
 </attribute>
 <attribute name="ENABLEDIND">
 <value>1</value>
 </attribute>
 <attribute name="SORTORDER">
 <value>5</value>
 </attribute>
 <attribute name="VERSIONNO">
 <value>1</value>
 </attribute>
 </row>

• Add a properties file to the App Resource store that contains the text properties and image reference for
the message.

• Add an image for this message type to the resource store.

Implementing a dynamic message

To implement a dynamic style message, an event listener needs to be implemented to listen for the
CitzenMessagesEvent.userRequestsMessages event. This event argument contains a reference to
the Participant and a list, to which the listener adds
curam.participantmessages.impl.ParticipantMessage Java™ objects. For further details
please consult the Javadoc API for CitzenMessagesEvent. This can be found in <CURAM_DIR>/
EJBServer/components/core/doc

Developers should also refer to the Javadoc API for
curam.participantmessages.impl.ParticipantMessage and
curam.participantmessages.impl.ParticipantMessages for a full explanation.

The message text is stored in a properties file in the resource store. A dynamic listener retrieves the
relevant properties from the resource store, and create the ParticipantMessage object accordingly. The
message text for a given message can include placeholders. Values for placeholders are added to
ParticipantMessage objects as parameters. The CitizenMessagesController resolves these placeholders,
replacing them with the real values related to the participant in question that have been added as
parameters to the message object.

Take for example this entry from the CitizenMessageMyPayment.properties file:
Message.First.Payment=
 Your next payment is due on {Payment.Due.Date}

IBM Cúram Universal Access (New) 135

The actual payment due date of the payment in question is added to the ParticipantMessage object as a
parameter (see example code). The CitizenMessagesController then resolves the placeholders, populating
the text with real values, and then turns the message into XML that is rendered on the citizen account
(there is also a public CitizenMessageController method that returns all messages for a citizen as a list,
please see the Javadoc information).

From curam.participantmessages.impl.ParticipantMessage API:
/**
 * Adds a parameter to the map. The paramReference
 * should be present in the message title or body so
 * it can be replaced by the paramValue before the message
 * is displayed.
 *
 * @param paramReference
 * a string place holder that is present in either the
 * message title or body. Used to indicate where the value
 * parameter should be positioned in a message.

 * @param paramValue
 * the value to be substituted in place of the place holder
 */
 public void addParameter(final String paramReference,
 final String paramValue) {

 parameters.put(paramReference, paramValue);
 }

The call to the method would look like this:
participantMessage.addParameter("Payment.Due.Date", "1/1/2011");

Messages can also include links. Similarly to placeholders, links are resolved at runtime. Links can use
placeholder values as the text to be displayed for that link. A link is defined in a properties file as such:
Click {link:here:paymentDetails} to view the payment details.

In this example, "here" is the text to display, and "paymentDetails" refers to the name of the link that is to
be inserted at that point in the text. Please see the Advisor Developer's Guide for more
information. For a dynamic listener to populate this link with a target, it would create a
curam.participantmessages.impl.ParticipantMessageLink object, specifying a target and a
name for the link. The code would look like this:
ParicipantMessageLink participantMessageLink =
 new ParticipantMessageLink(false,
 "CitizenAccount_listPayments", "paymentDetails");

 participantMessage.addLink(participantMessageLink);

Before composing the message, the dynamic listener must check to ensure that the message type in
question is currently enabled. The curam.participantmessages.configuration.
impl.ParticipantMessageConfiguration record for that message type should be read, and the
isEnabled method used to determine if this message type is enabled. If not, no further processing
should occur.

* It is recommended to separate the code that listens for the event and the code that composes a specific
message, to adhere to the philosophy of "doing one thing and doing it well".

Implementing a persisted message

To have a persisted message displayed to the citizen, it must be written to the database via the
curam.citizenmessages.persistence.impl.ParticipantMessage API. Message arguments are
handled by persisting a curam.advisor.impl.Parameter record and associating it with the
ParticipantMessage record, and links by the curam.advisor.impl.Link API. Parameter names should
map to placeholders contained within the message text. Link names should relate to the names of links
specified in the message text. Please refer to the Javadoc information of
curam.citizenmessages.persistence.impl.ParticipantMessage,
curam.advisor.impl.Parameter and curam.advisor.impl.Link for more.

An expiry date time must be specified for each ParticipantMessage. After this date time, the message is
no longer be displayed.

136 IBM Cúram Social Program Management: IBM Cúram Universal Access 2.0.2

Messages can be removed from the database. If a message needs to be replaced with a modified version,
or removed for another reason, this can be done via the
curam.citizenmessages.persistence.impl.ParticipantMessage API.

Each message has a related ID and type. This is used to track the record that the message is related to.
For example, meeting messages will store the Activity ID and a type of "Meeting". Messages can be read
by participant, related ID and type via the ParticipantMessageDAO.

Before persisting the message, the dynamic listener checks to ensure that the message type in question is
currently enabled. The curam.participantmessages.configuration.
impl.ParticipantMessageConfiguration record for that message type should be read, and the
isEnabled method used to determine if this message type is enabled. If not, no further processing
should occur.

Customizing specific message types
Organizations can customize the default message to create a referral message or a service delivery
message.

Referral message

This message type creates messages related to referrals. This is a dynamic message. When the citizen
logs in, a message will be created for each referral that exists for the citizen in the system, provided that
referral has a referral date of today or in the future, and provided that a related Service Offering has been
specified for this referral. The properties file EJBServer\components\CitizenWorkspace\data
\initial\blob\prop\CitizenMessageReferral.properties contains the properties for the
referral message text, message parameters, links and images. This properties file is stored in the resource
store. This resource is registered under the resource name CitizenMessageReferral. To change the
message text of the message, or to remove placeholders or change links, a new version of this file must be
uploaded into the resource store.

Service delivery message

This message type creates messages related to service deliveries. This is a dynamic message. When the
citizen logs in, a message will be created for each service delivery that exists for the citizen in the system,
provided that service delivery has a status of 'In Progress' or 'Not Started'. The properties file EJBServer
\components\CitizenWorkspace\data\initial\blob\prop
\CitizenMessageServiceDelivery.properties contains the properties for the service delivery
message text, message parameters, links and images. This properties file is stored in the resource store.
This resource is registered under the resource name CitizenMessageServiceDelivery. To change
the message text of the message, or to remove placeholders or change links, a new version of this file
must be uploaded into the resource store.

Payment messages
The payment message type creates messages based on the payments issued or canceled for a citizen.

The payment messages are persisted to the database. They replace each other, for example, if a payment
is issued and then canceled, the payment issued message will be replaced with a payment canceled
message. The properties file EJBServer\components\CitizenWorkspace\data\initial\blob
\prop\CitizenMessageMyPayments.properties contains the properties for financial message text,
message parameters, links and images. This properties file is stored in the resource store. This resource is
registered in the resource name CitizenMessageMyPayments. To change the message text of financial
messages, or to remove placeholders or change links, a new version of this file must be uploaded into the
resource store. The table below describes the messages created when various events related to
payments occur in the system, and the property in CitizenMessageMyPayments.properties that
relates to each message created.

IBM Cúram Universal Access (New) 137

Table 18: Payment messages and related properties

Payment event Message Property

First payment issued on a case Message.First.Payment

Latest payment issued Message.Payment.Latest

Last payment issued Message.Last.Payment

Payment canceled Message.Cancelled.Payment

Payment reissued Message.Reissue.Payment

Payment stopped (case suspended) Message.Stopped.Payment

Payment / Case unsuspended Message.Unsuspended.Payment

Customization of the payment messages expiry date

The number of days the payment for which the message will be displayed to the citizen can be configured
using a system property. By default the property value is set to 10 days, however, this can be overridden
from property administration.

Table 19: Payment message expiry property

Name Description

curam.citizenaccount.payment.message.expiry.days The number of days the payment message will be displayed to the
participant.

Meeting messages
The meeting message type creates messages based on meetings that citizens are invited to, provided that
they are created by using the curam.meetings.sl.impl.Meeting API.

The API raises events that the meeting messages functionality consumes. There are other ways of
creating Activity records without this API, but meetings created in these ways do not have related
messages created as the events are not raised. These messages are persisted to the database. They
replace each other, for example, if a meeting is scheduled and then the location is changed, the initial
invitation message is replaced with one informing the citizen of the location change. The properties file
EJBServer\components\CitizenWorkspace\data\initial\blob\prop
\CitizenMessageMeetingMessages.properties contains the properties for the meeting messages
text, message parameters, links and images. This properties file is stored in the resource store. This
resource is registered in the resource name CitizenMessageMeetingMessages. To change the
message text of meeting messages, or to remove placeholders or change links, a new version of this file
must be uploaded into the resource store. Table 1 describes the messages created when various events
related to meetings occur in the system, and the properties in
CitizenMessageMeetingMessages.properties that relates to each message created. Different
versions of the message text are displayed depending on whether the meeting is an all day meeting,
whether a location has been specified, and whether the meeting organizer has contact details registered
in the system. Accordingly, the property values in this table are approximations that relate to a range of
properties within the properties file. Refer to the properties file for a full list of the message properties.

Table 20: Meeting messages

Meeting event Message Properties

Meeting invitation Non.Allday.Meeting.Invitation.*, Allday.Meeting.Invitation.*

Meeting update Non.Allday.Meeting.Update.*, Allday.Meeting.Update.*

Meeting canceled Allday.Meeting.Update.*, Allday.Meeting.Cancellation.*

138 IBM Cúram Social Program Management: IBM Cúram Universal Access 2.0.2

Customization of the meeting messages display date

The number of days before the meeting start date that the message should be displayed to the citizen can
be configured using a system property. By default the property value is set to 10 days, however, this can
be overridden from property administration.

The meeting message expires (it is no longer displayed to the citizen) at the end of the meeting, that is,
the date time at which the meeting is scheduled to end.

Table 21: Meeting message display date property

Name Description

curam.citizenaccount.meeting.message.effective.days The number of days before the meeting start date that the message
should be displayed to the citizen.

Application acknowledgment message
The application acknowledgment message type creates a message when an application is submitted by a
citizen.

The message is persisted to the database. The properties file EJBServer\components
\CitizenWorkspace\data\initial\blob\prop
\CitizenMessageApplicationAcknowledgment.properties contains the properties for the
messages text, message parameters, links and images. This properties file is stored in the resource store.
This resource is registered under the resource name CitizenMessageApplicationAcknowledgment.
To change the message text of the message, or to remove placeholders or change links, a new version of
this file must be uploaded into the resource store.

Customization of application acknowledgment message expiry date

The number of days the Application Acknowledgment message will be displayed to the citizen can be
configured using a system property. By default the property value is set to 10 days, however, this can be
overridden from property administration.

Table 22: Application acknowledgment message expiry property

Name Description

curam.citizenaccount. intake.application.acknowledgement.message.expiry.days The number of days the application acknowledgment
message will be displayed to the participant.

Error logging in the citizen account
When a citizen submits an application, when a citizen clicks Submit a deferred process starts. If a
mapping failure occurs, an error is logged.

Application property

The application property curam.workspaceservices.application.processing.logging.on increases the level
of detail of error messages.

When curam.workspaceservices.application.processing.logging.on is set to true, detailed error messages
are written to the application log files if the submission process fails.

Error codes

Each error message is prepended with an error code. These error codes help to automatically scan
application logs so that unexpected failures can be identified. The error codes that are returned by the
application is defined in the code table file CT_ApplicationProcessingError.ctx.

The range of codes that are reserved for internal processing is APROCER001 – APROCER500. Customers
can use the range APROCER501 – APROCER999 to log errors in custom processing, for example error
codes for extension-mapping handler class.

IBM Cúram Universal Access (New) 139

The list of error codes that are returned by the application, and a brief description of the problem, is listed
in Table 1.

Table 23: Application error codes

Code Description

APROCER001 An error occurred creating a person.

APROCER002 An error occurred creating a prospect person.

APROCER003 A relationship error occurred creating a person.

APROCER004 An error occurred creating a case.

APROCER005 An error occurred while performing a "map-attribute" mapping.

APROCER006 An error occurred while performing a "set-attribute" mapping.

APROCER007 An error occurred while performing a "map-address" mapping.

APROCER008 General mapping failure.

APROCER009 Error creating evidence.

APROCER010 More than one PDF form is registered against the program type.

APROCER011 Error setting the alternate id type for a Prospect Person.

APROCER012 Invalid alternate ID value.

APROCER013 Error the Evidence Application Builder has not been correctly configured.

APROCER014 Evidence type not listed in the Mapping Configuration.

APROCER015 No parent evidence entity found.

APROCER016 An error occurred when trying to unmarshal the application XML.

APROCER017 An error occurred when trying to set a field value.

APROCER018 An error occurred when trying to create the PDF document.

APROCER019 An error occurred when trying to create the PDF document. A form code
could not be mapped to a codetable description.

APROCER020 An error occurred when trying a WorkspaceServices mapping extension
handler.

APROCER021 Missing source attribute in datastore entity.

APROCER022 An attribute in an expression is not valid.

APROCER023 Application builder configuration error.

APROCER024 Failed creating DataStoreMappingConfig, no name specified.

APROCER025 Failed creating DataStoreMappingConfig, the name is not unique.

APROCER026 The mapping to datastore had to be abandoned because the schema is not
registered.

APROCER027 There was a problem parsing the Mapping Specification.

APROCER028 General mapping error. Mapping XML included.

APROCER029 Cannot have multiple primary participants.

APROCER030 No programs have been applied for.

APROCER031 An error occurred while attempting to map to Person data.

140 IBM Cúram Social Program Management: IBM Cúram Universal Access 2.0.2

Table 23: Application error codes (continued)

Code Description

APROCER032 An error occurred while attempting to map to Relationship data.

APROCER033 An error occurred while creating Cases.

APROCER034 An error occurred while creating evidence.

APROCER035 No programs have been applied for.

APROCER036 An error occurred reading data from the datastore.

APROCER037 Specified integrated case type does not exist.

APROCER038 Specified case type does not exist

APROCER039 Duplicate SSN entered for prospect person.

APROCER040 Duplicate SSN entered.

APROCER041 There was a problem with the workflow process.

APROCER042 No primary participant has been identified as part of the intake process.

Customizing life events
A description of the high-level architecture of life events and how to perform the analysis and
development tasks in building a life event.

Many types of life events can be built by analysts, some require input from developers. This information
will help analysts to understand how to perform the analysis for a new life event and how to determine
whether input is needed from developers.

How to build a life event
To design a life event for IBM Cúram Universal Access, you must undertake an analysis.

You can build life events for caseworkers or indeed to use life event infrastructure to drive other
processes like certification, but these topics are beyond the scope of this information. Java coding skills
are not a prerequisite for developing all life events. Depending on requirements, many and in some cases
all of the artifacts required can be developed by an Analyst. This topic will help Analysts to determine
whether Java Developers will be needed to complete the implementation of a life event.

Broadly speaking, there are two types of life events for citizens:

• Standard life events
• Round tripping life events

Standard life events allow Citizens to enter new life event information and then submit it to the agency.
For example: Imagine, that Linda logs in to IBM Cúram Universal Access and submits a "Having a Baby"
life event. This is all new information. It doesn't really relate to anything that has gone before. If she made
a mistake in the information submitted, say the name of the obstetrician, then she simply starts a new life
event and reenters all the new information again before submitting.

Round tripping life events are more complex. The distinction between these life events and standard life
events is determined by whether the data that is pre-populated into the life event is allowed to be
changed by the user. If the Citizen is expected to update pre-populated information, rather than just
adding new information then the life event should be considered a round tripping life event. It’s
considerably harder to design scripts for this type of life event.

The primary artifacts that constitute a Simple life event are:

• An IEG script and its associated data store schema
• An IEG script to review answers in a previously submitted life event (optional)

IBM Cúram Universal Access (New) 141

• A Cúram Data Mapping Engine specification that describes how to map data from the IEG script into
evidence on the citizen's cases

All of these artifacts can be configured using the Administrator's User Interface. For more information
about configuring Simple life events using the Administrator's UI, see "Configuring life events" in
Configuring the IBM Universal Access Responsive Web Application.

The life events system can take information entered by the user and do one of the following:

1. If the user is linked to the local IBM Cúram Social Program Management case processing system, then
the life events system can update related evidence in any cases they have.

2. If the user is linked to remote systems, then the life events system can send updates to related remote
systems using web services.

If the life event is a round tripping life event or it is required to update the person's evidence in IBM Cúram
Social Program Management then some development work will be needed. See the life events APIs
needed to meet these requirements or indeed to supplement the standard life event behavior with more
custom functionality.

Customizing advanced life events
To develop advanced life events, you must understand the difference between a simple life event and
advanced life event.

When to use advanced life events

Advanced life events enable fully automated round-tripping of data. This means that evidence is read into
the datastore for an IEG script. It is then updated by the citizen. When the life event is submitted, the
original evidence that was read into the IEG script is updated. Advanced life events are only required
when this level of automated round tripping of data is required. Under all other circumstances Simple life
events are the recommended approach. Project Architects should consider carefully whether round
tripping is required or whether the data entered can be treated as new evidence to be integrated into the
citizen's cases.

Advanced life events cannot be configured through the administration user interface, they must be
created by developers.

How to build a life event

Analysis
The distinction between round tripping life events and round tripping life events is determined by whether
citizens can change the data that is pre-populated into the life event. If citizens can update pre-populated
information, rather than just adding new information, then the life event should be a round tripping life
event. It's more difficult to develop this type of life event. The advanced life events subsystem is designed
to cater for round tripping life events.

The following describes how to develop an advanced life event that supports round tripping:

The primary artifacts that constitute an advanced life event are:

• An IEG script and its associated data store schema.
• An IEG script to review answers in a previously submitted life event (optional).
• A Recommendations Ruleset that produces the set of recommendations based on the information

entered in the IEG script (optional).

The life events system can take information entered by the user and update related evidence in any cases
they have.

The life events system can take information entered by the user and do one of the following:

1. If the user is linked to the local IBM Cúram Social Program Management case processing system, then
the life events system can update related evidence in any cases they have.

142 IBM Cúram Social Program Management: IBM Cúram Universal Access 2.0.2

2. If the user is linked to remote systems, then the life events system can send updates to related remote
systems using web services.

The life events system can be configured to ask citizens' permission before sending life event information
to remote systems. A standard life event that only sends information to remote systems can be configured
through the administration application. For more information, see Defining Remote Systems.

If the life event is a round tripping life event or it’s required to update evidence in the local case
processing system, then some development work is needed to configure the life event. Round tripping life
events must be pre-populated. Pre-population of life events is only supported for users linked to the local
IBM Cúram Social Program Management case processing system by using a concern role. To read
information from cases and update those cases, the life events system relies on a subsystem called the
Citizen Data Hub.

The remainder of this topic outlines the work needed to configure the Citizen Data Hub.

The life event broker uses the Data Hub to get the data it needs to populate the life event, so you must
configure the Data Hub to extract this data. The life event Broker also sends the updated data back
through the Data Hub. The Data Hub must be configured to tell it what to do with this updated data.

These are some of the artifacts used to configure the Citizen Data Hub for reading information:

• Transform - converts data from the Holding Case into data store XML
• Filter Evidence Links - When reading Citizen Data, these links filter out only the evidence entities of

interest when reading from the Holding Case.
• View Processors - Java classes for extracting non-evidence data into the data store XML

These are some of the artifacts that are used to configure the Citizen Data Hub for updating information:

• Transforms - Convert a data store XML Difference Description back into Holding Case Evidence
• Update Processors - Perform other update tasks or update non-evidence data relating to citizens

Considerations for life events analysis
The considerations that affect the complexity of developing a particular life event that must read from, or
write to, an evidence or participant-related data store in IBM Cúram Social Program Management. These
considerations inform any analysis of life events development and any resulting estimates.

1. Is the life event a standard life event or a round tripping life event
2. What information needs to be pre-populated into the IEG script?
3. What evidence data is read by the life event?
4. What evidence data is updated by the life event?
5. What non-evidence data is read/updated by the life event
6. How many programs or case types are affected by the life event
7. If a life event shares to multiple cases, will those case types also share evidence with each other using

Evidence Broker?
8. Does a life event have associated recommendations? If so, do they relate to Community Services,

Government Programs or both?

Of these items that deal with Non-Evidence Entities presents the greatest challenge. Any life event that
updates non-evidence entities require developers with Java skills.

IBM Cúram Universal Access (New) 143

Building the components of a life event
How you build the component parts of a life event that uses the Citizen Data Hub. This information does
not require any knowledge of Java.

Writing life event IEG Scripts
Writing a life event IEG script is similar to writing any other IEG script. However, there are special
considerations for life event scripts. These considerations depend on whether the life event is a round
tripping life event or a standard life event.

For a round tripping life event, citizen data is read into the data store that is used by the IEG script. This
data can be modified by citizens as they progress from page to page in the life event script. For example, a
citizen can modify income data that is read into the life event script before it’s submitted. The life event
broker ensures that when the citizen changes the income data the changes are detected and propagated
correctly back to the income entity from which the data was read. The life event broker needs a way to
track data from its origin in the income entity, through the life event script, and back to the same income
entity. To facilitate this process, the IEG script designer needs to place a marker into the data store
schema.

The following code block is an example of the definition of an income data store:

 1 <xsd:element name="Income">
 <xsd:complexType>
 <xsd:attribute name="incomeType" type="INCOME_TYPE"
 default=""/>
 5 <xsd:attribute name="cgissIncomeType"
 type="CGISS_INCOME_TYPE"/>
 <xsd:attribute name="incomeFrequency"
 type="INCOME_FREQUENCY" default=""/>
 <xsd:attribute name="incomeAmount" type="IEG_MONEY"
 10 default="0"/>
 <xsd:attribute name="localID" type="IEG_STRING"/>
 <xsd:complexType>
 </xsd:element>

The life event broker uses the attribute localID to track the unique identity of the entity from which the
income data was drawn. When this entity is changed and submitted, the life event broker can use the
value of localID to locate the correct entity to update as a result of the changes in the life event. Other
special markers exist that can be placed in the schema to aid with providing automatic updates to
evidence entities.

When you design a script for a round tripping life event, you must account for the effects that pre-
population of data can have on the flow of the script. One example of this situation is conditional clusters.
Life event scripts need to avoid conditional clusters that are associated with pre-populated data. These
clusters are common in intake scripts but don’t work well when the data store was pre-populated. For
example, for a life event involving the loss of a job, a Boolean flag on the Person entity, hasJob is used to
indicate that person has a job. The IEG script presents the user with a question: Does anyone in your
household have a job?. This question is used to drive the display of a conditional cluster that
identifies which household members who have jobs.

However, if the data in the data store is repopulated, it’s likely one or more Person entities with hasJob
already be set to true. In the current implementation of IEG, it isn’t possible to get the Does anyone in
your household have a job? control question to default to true even when hasJob is true for one
or more household members. For this reason, the rule needs to be to avoid control questions for
conditional clusters such as when the fields they control are pre-populated.

Pre-Populating a life event
A description of the artifacts that need to be developed in order to pre-populate a life event script:

• How the Data Hub Works for reading data
• How to author Read Transforms
• How to use Pre-Packaged View Processors

144 IBM Cúram Social Program Management: IBM Cúram Universal Access 2.0.2

How the Data Hub Works for Reading

The Data Hub is a means of collecting data about Citizens from many different locations and returning it
as an XML document in a datastore. The Data Hub can be used to hide the complexities of where data
comes from and how it is represented in it original locations. For example, to drive a "Lost my Job" life
event it might be necessary to gather information about a person's Income, Address and Employment.
These three pieces of information might be represented differently on the underlying system, indeed they
might live on three or more different systems. The caller doesn't need to know this. The Citizen Data Hub
allows its clients to get these pieces of information in one single operation. Operations of this type are
named uniquely, each is called a "Data Hub Context". To animate the "Lost my Job" example we define a
Data Hub Read Context called "CitizenLostJob" that allows the collection of Income, Address and
Employment information in a single query.

One of the sources that the Data Hub can draw on is Evidence on Cases. In particular, Evidence on the
Citizen's Holding Case. The Holding Case can use the Evidence Broker to gather data from many disparate
Integrated Cases or even from other Systems via Web Services. The Holding Case is a little different from
other Cases. There is only ever one per Citizen on a given Cúram system. The Holding Case has an
interface that allows all of the Evidence it contains to be extracted in XML format. This XML format is
optimized for the description of Evidence in particular. Because it is optimized for the description of
Evidence, it isn't necessarily in a format suitable for insertion into a data store. Fortunately it is relatively
easy to translate data in one XML format into another format that contains the same information. This can
be done using a language called XSLT For more information on XSLT please refer to, http://
www.w3.org/TR/xslt.

Authoring Read Transforms

You can write XSLT Transforms for use in the Data Hub. To write Citizen Data Hub Transforms it is
necessary to understand, the structure of the Holding Evidence XML that is the source data and the Data
Store schema that is the target. The "CitizenLostJob" life event is significantly complex so, for the
purposes of an introductory example, this section describes a simple fictitious life event for Citizens who
have bought a new car. This life event is associated with the Data Hub Context "CitizenBoughtCar". This
would not be considered a "life event" in the real world but it nevertheless provides an example of some
of the principles of building a Round Tripping life event. For the purposes of this example consider this
fragment of Holding Evidence XML that is used to describe a Vehicle:

<?xml version="1.0" encoding="UTF-8"?>
 <client-data
 xmlns="http://www.curamsoftware.com/schemas/ClientEvidence">
 <client localID="101" isPrimaryParticipant="true">
 <evidence>
 <entity localID="-416020015578349568" type="ET10081">
 <attribute name="vehicleMake">VM2</attribute>
 <attribute name="versionNo">2</attribute>
 <attribute name="startDate">20110301</attribute>
 <attribute name="usageCode">VU1</attribute>
 <attribute name="amountOwed">3,200.00</attribute>
 <attribute name="numberOfDoors">0</attribute>
 <attribute name="evidenceID">
 -5315936410157449216
 </attribute>
 <attribute name="monthlyPayment">0.00</attribute>
 <attribute name="vehicleModel">159</attribute>
 <attribute name="year">2008</attribute>
 <attribute name="equityValue">0.00</attribute>
 <attribute name="endDate">10101</attribute>
 <attribute name="fairMarketValue">17,000.00</attribute>
 <attribute name="curamEffectiveDate">20110301
 </attribute>
 </entity>
 </evidence>
 </client>
 </client-data>

Figure 5: Holding Evidence XML Example

The client element represents data belonging to the participant with concern role id 101. In Cúram
demo data this is James Smith. The client contains a single evidence entity of type ET10081. In the

IBM Cúram Universal Access (New) 145

Cúram Common Evidence layer, ET10081 is the Evidence Type identifier for Vehicle Evidence. The
localID attribute plus the evidence type uniquely identifies the underlying evidence object for the
Vehicle. This data has to be mapped to data store XML so that it can be used to populate an IEG Script.
Consider how the above data is to be represented in data store XML:

<?xml version="1.0" encoding="UTF-8"?>
<Application>
 <Person localID="101" isPrimaryParticipant="true"
 hasVehicle="true">
 <Resource resourcePageCategory="RPC4001"
 localID="-416020015578349568" vehicleMake="VM2"
 versionNo="2" amountOwed="3,200.00" vehicleModel="159"
 year="2008" fairMarketValue="17,000.00"
 curamEffectiveDate="20110301">
 <Descriptor/>
 </Resource>
 </Person>
</Application>

Figure 6: Data Store XML Sample

This XML data must conform to the schema used to build the IEG script. Notice that the XML above
conforms to a schema that is a superset of the CitizenPortal.xsd schema. It is recommended that
the CitizenPortal.xsd schema be used as a starting point for the schemas used in Customer life
events. To these schemas need to be added the "marker" attributes needed for life events. These marker
attributes include the use of localID as discussed previously. Datastore schemata for entities can also
include the following special markers that are specialized for representing Evidence in the Holding Case:
The following XSLT fragment shows how to transform Vehicle Holding Evidence into a corresponding Data
Store Entity:

146 IBM Cúram Social Program Management: IBM Cúram Universal Access 2.0.2

• curamEffectiveDate - This maps to the effective date of a piece of Cúram Evidence

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:x="http://www.curamsoftware.com/
 schemas/DifferenceCommand"
 xmlns:fn="http://www.w3.org/2006/xpath-functions"
 version="2.0">
 <xsl:output indent="yes"/>

 <xsl:strip-space elements="*"/>

 <xsl:template match="update">
 <xsl:for-each select="./diff[@entityType='Application']">
 <xsl:element name="client-data">
 <xsl:apply-templates/>
 </xsl:element>
 </xsl:for-each>
 </xsl:template>

 <xsl:template match="diff[@entityType='Person']">
 <xsl:element name="client">
 <xsl:attribute name="localID">
 <xsl:value-of select="./@identifier"/>
 </xsl:attribute>
 <xsl:element name="evidence">
 <xsl:apply-templates/>
 </xsl:element>
 </xsl:element>
 </xsl:template>

 <xsl:template match="diff[@entityType='Resource']">
 <xsl:element name="entity">

 <xsl:attribute name="type">ET10081</xsl:attribute>
 <xsl:attribute name="action">
 <xsl:value-of select="./@diffType"/>
 </xsl:attribute>
 <xsl:attribute name="localID">
 <xsl:value-of select="./@identifier"/>
 </xsl:attribute>
 <xsl:for-each select="./attribute">
 <xsl:copy-of select="."/>
 </xsl:for-each>

 </xsl:element>
 </xsl:template>

 <xsl:template match="*">
 <!-- do nothing -->
 </xsl:template>
</xsl:stylesheet>

Figure 7: XSLT Transform for Vehicle Resource Information

The life event author who adds this transform to their life event can turn Vehicle Evidence recorded on any
Integrated Case into a Data Store format that can be displayed in an IEG script with all the information
pre-populated from the Evidence Record.

Defining Filters for Evidence

When the Holding Case is called upon to return an XML representation of its evidence, by default it will
return all evidence for the citizen concerned. This could be a very large query that returns much more
information than is required. The purpose of a Filter Evidence Link is to define, for each Data Hub Context,
which Evidence Types are of interest. A Filter Evidence Link can be defined by adding entries to a Filter
Evidence Link dmx file. The example below shows a Filter Evidence Link dmx file that defines the
information that should be returned for the "CitizenBoughtCar" life event:

<?xml version="1.0" encoding="UTF-8"?>
<table name="FILTEREVIDENCELINK">
 <column name="FILTEREVLINKID" type="id" />
 <column name="FILTERNAME" type="text" />
 <column name="EVIDENCETYPECODE" type="text" />

IBM Cúram Universal Access (New) 147

 <row>
 <attribute name="FILTEREVLINKID">
 <value>175</value>
 </attribute>
 <attribute name="FILTERNAME">
 <value>CitizenBoughtCar</value>
 </attribute>
 <attribute name="EVIDENCETYPECODE">
 <value>ET10081</value>
 </attribute>
 </row>
</table>

Using Pre-Packaged View Processors

Up to this point has focused on how Transforms can be used turn Evidence data into Data store XML for
use in a life event Script. However there are other important pieces of information that are not
represented as Evidence. In general the life event author must develop custom Java code in order to
populate any information that is not represented as evidence. Using Java it is possible to develop View
Processors which can be used to extract non-evidence data and translate this data into data store xml. By
associating these View Processors with the right Data Hub Context, they can add their information into the
data store in addition to the data put there by the transforms. The life events Broker ships with some pre-
packaged View Processors that are capable of inserting certain frequently used non Evidence Data.

• Household View Processor
• The Person Address View Processor

The Household View Processor will find all Persons related to the currently Logged in user and pull them
into the data store along with information on how they are related to the logged in Citizen. This
information is based on the IBM Cúram Social Program Management Platform
ConcernRoleRelationship entity.

The Person Address View Processor populates the most important details of the logged in Citizen, such as
name and Social Security Number. It also pulls in the Residential and Mailing addresses of the logged in
Citizen. Both the Household View processor and the Person Address View Processor can be used together
in the same life event Context but the Person Address View Processor should be run after the Household
View Processor. The excerpt below shows how to configure these two View Processors to execute for the
"CitizenBoughtCar" life event.

<?xml version="1.0" encoding="UTF-8"?>
 <table name="VIEWPROCESSOR">
 <column name="VIEWPROCESSORID" type="id"/>
 <column name="LOGICALNAME" type="text" />
 <column name="CONTEXT" type="text" />
 <column name="VIEWPROCESSORFACTORY" type="text" />
 <column name="RECORDSTATUS" type="text"/>
 <column name="VERSIONNO" type="number"/>
 <row>
 <attribute name="VIEWPROCESSORID">
 <value>4</value>
 </attribute>
 <attribute name="LOGICALNAME">
 <value>CitizenLostJob0</value>
 </attribute>
 <attribute name="CONTEXT">
 <value>CitizenBoughtCar</value>
 </attribute>
 <attribute name="VIEWPROCESSORFACTORY">
 <value>
 curam.citizen.datahub.internal.impl.
 +HouseholdCustomViewProcessorFactory
 </value>
 </attribute>
 <attribute name="RECORDSTATUS">
 <value>RST1</value>
 </attribute>
 <attribute name="VERSIONNO">
 <value>1</value>
 </attribute>
 </row>
 <row>
 <attribute name="VIEWPROCESSORID">

148 IBM Cúram Social Program Management: IBM Cúram Universal Access 2.0.2

 <value>5</value>
 </attribute>
 <attribute name="LOGICALNAME">
 <value>CitizenLostJob1</value>
 </attribute>
 <attribute name="CONTEXT">
 <value>CitizenBoughtCar</value>
 </attribute>
 <attribute name="VIEWPROCESSORFACTORY">
 <value>
 curam.citizen.datahub.internal.impl.
 +CustomPersonAddressViewProcessorFactory
 </value>
 </attribute>
 <attribute name="RECORDSTATUS">
 <value>RST1</value>
 </attribute>
 <attribute name="VERSIONNO">
 <value>1</value>
 </attribute>
 </row>
 </table>

The CONTEXT field links the ViewProcessor to the "CitizenBoughtCar" life event Context. This ensures
that this ViewProcessor is called whenever the "CitizenBoughtCar" Data Hub Context is called. Notice
also the use of a logicalName which uniquely distinguishes each View Processor. View Processors for a
given Data Hub Context are executed in lexical order, so a View Processor name with a logicalName of
"AAA" for the DataHubContext "CitizenBoughtCar" will be executed before one with a logicalName of
"AAB".

Driving updates from life events
A description of the artifacts that need to be developed to process the data submitted from a life event
script.

How the Data Hub Works for Updating

Just as the Citizen Data Hub has a notion of Data Hub Context for reading so also does it have Data Hub
Contexts for updating. Life events typically use the same Data Hub Context name for the read and updates
associated with the same life event, so the "CitizenBoughtCar" context describes, not only, a set of
artifacts for pre-populating a "CitizenBoughtCar" life event script but also a set of artifacts for handling
updates to the Citizen's data when the "CitizenBoughtCar" life event script is complete.

An update operation for a given Citizen Data Hub Context can lead to many different individual entities
being updated in a single transaction. The artifacts, provided to a Data Hub following a script submission
are:

• A Data Store root entity
• A Difference command
• A Data Hub Context Name

The Data Store root entity is the root of the data store that has been updated via the life events IEG script.
The Difference Command is an entity that describes how this data store is different to the one that was
passed to the IEG script before it was launched. In other words it describes how the user has changed the
data as a result of executing the life event script. These differences are broken down into three basic
types:

• Creations - The user has created a data store entity as a result of running the IEG script
• Updates - The user has updated an entity as a result of running the IEG script
• Removals - The user has removed an entity as a result of running the IEG script

Of these three, Creations and Updates are the most common. Allowing users to remove items in life
events scripts should generally be considered bad practice. Standard life events tend to be characterized
by a number of Creations whereas Round Tripping life events tend to be a mixture of Creations and
Updates. The Difference Command is generated automatically by the life event Broker after a life event is
submitted.

IBM Cúram Universal Access (New) 149

To turn a Data Hub Update Operation into automatic updates to evidence entities on the Holding Case we
need to specify a Data Hub Update Transform. In cases where there is a requirement to update non-
evidence entities, an Update Processor must be developed. These Update Processors involve Java code
development.

Writing Transforms for Updating

Update Transforms, like Read Transforms are specified using a simple XSLT syntax. In order to write
update Transforms, the author must understand both the input XML, and the output Evidence XML format.
The following examples are built around a "CitizenHavingABaby" life event. This life event allows the user
to report that they are due to have a baby. They can enter a number of unborn children to indicate, for
example, that they are expecting twins. The user can also enter a due date and they can nominate a father
for the unborn child. The father can be an existing case participant or someone else entirely. In the latter
case they must enter name, address, Social Security Number etc. This life event is not a "Round Tripping"
life event, it is concerned with the creation of new Evidence rather than the update of existing Evidence.
The input to an Update Transform is an XML-based description of the Data Store Difference Command. A
sample difference command XML for the "CitizenHavingABaby" is depicted below:

<update>
 <diff diffType="NONE" entityType="Application">
 <diff diffType="NONE" entityType="Person" identifier="102">
 <diff diffType="CREATE" entityType="Pregnancy">
 <attribute name="numChildren">1</attribute>
 <attribute name="dueDate">20110528</attribute>
 <attribute name="curamDataStoreUniqueID">385</attribute>
 </diff>
 </diff>
 <diff diffType="UPDATE" entityType="Person" identifier="101">
 <attribute name="isFatherToUnbornChild">true</attribute>
 <attribute name="curamDataStoreUniqueID">399</attribute>
 </diff>
 </diff>
</update>

The difference command XML corresponds node-for-node with the data store XML. Each diff node
describes how the corresponding data store entity has been modified by the execution of the IEG script.
The curamDataStoreUniqueID attribute identifies which data store entity has changed. The diffType
attribute identifies the nature of the change, for example CREATE, UPDATE, NONE or REMOVE. Attributes
that are listed are those that have changed or been added to each data store entity. In the above example,
the user has registered a pregnancy to Linda Smith (concern role ID 102) with one unborn child, due on
May 28 th 2011. The father is listed as being James Smith (concern role ID 101). For more information on

150 IBM Cúram Social Program Management: IBM Cúram Universal Access 2.0.2

difference command XML please see the schema in Difference Command XML Schema section. There are
a couple of additional attributes and elements used when updating XML that are illustrated below:

<?xml version="1.0" encoding="UTF-8"?>
 <client-data>
 <client localID="102">
 <evidence>
 <entity type="ET10074" action="CREATE" localID="">
 <attribute name="numChildren">1</attribute>
 <attribute name="dueDate">20110528</attribute>
 <entity-data entity-data-type="role">
 <attribute type="LG"/>
 <attribute roleParticipantID="102"/>
 <attribute
 entityRoleIDFieldName="caseParticipantRoleID"/>
 </entity-data>
 <entity-data entity-data-type="role">
 <attribute type="FAT"/>
 <attribute roleParticipantID="101"/>
 <attribute participantType="RL7"/>
 <attribute
 entityRoleIDFieldName="fahCaseParticipantRoleID"/>
 </entity-data>
 <entity type="ET10125" action="CREATE">
 <attribute name="comments"> Unborn child 1</attribute>
 <entity-data entity-data-type="role">
 <attribute type="UNB"/>
 <attribute roleParticipantID="102"/>
 <attribute
 entityRoleIDFieldName="caseParticipantRoleID"/>
 </entity-data>
 </entity>
 </entity>
 </evidence>
 </client>
 </client-data>

Figure 8: Evidence XML with Updates

Note the use of the action attribute which describes the action to be taken to the underlying evidence,
for example, to create the evidence or to update existing evidence. The next section will discuss the
meaning of the <entity-data> element. An example of the XSLT used to transform the above difference
XML into the above Evidence XML is depicted below:

<?xml version="1.0" encoding="UTF-8"?>
<!-- This script plucks out and copies all resource-related -->
<!-- entities from output built by the XMLApplicationBuilder -->
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:x="http://www.curamsoftware.com/
 schemas/DifferenceCommand"
 xmlns:fn="http://www.w3.org/2006/xpath-functions"
 version="2.0">
 <xsl:output indent="yes"/>
 <xsl:strip-space elements="*"/>
 <xsl:template match="update">
 <xsl:for-each select="./diff[@entityType='Application']">
 <xsl:element name="client-data">
 <xsl:apply-templates/>
 </xsl:element>
 </xsl:for-each>
 </xsl:template>
 <xsl:template match="diff[@entityType='Person']">
 <xsl:element name="client">
 <xsl:attribute name="localID">
 <xsl:value-of select="./@identifier"/>
 </xsl:attribute>
 <xsl:element name="evidence">
 <xsl:apply-templates/>
 </xsl:element>
 </xsl:element>
 </xsl:template>
 <xsl:template match="diff[@entityType='Pregnancy']">
 <xsl:element name="entity">
 <xsl:attribute name="type">ET10074</xsl:attribute>
 <xsl:attribute name="action">
 <xsl:value-of select="./@diffType"/>
 </xsl:attribute>

IBM Cúram Universal Access (New) 151

 <xsl:attribute name="localID">
 <xsl:value-of select="./@identifier"/>
 </xsl:attribute>
 <xsl:for-each select="./attribute">
 <xsl:copy-of select="."/>
 </xsl:for-each>
 <xsl:element name="entity-data">
 <xsl:attribute name="entity-data-type">
 role
 </xsl:attribute>
 <xsl:element name="attribute">
 <xsl:attribute name="type">LG</xsl:attribute>
 </xsl:element>
 <xsl:element name="attribute">
 <xsl:attribute name="roleParticipantID">
 <xsl:value-of select="../@identifier"/>
 </xsl:attribute>
 </xsl:element>
 <xsl:element name="attribute">
 <xsl:attribute name="entityRoleIDFieldName">
 caseParticipantRoleID
 </xsl:attribute>
 </xsl:element>
 </xsl:element>
 <xsl:element name="entity-data">
 <xsl:attribute name="entity-data-type">
 role
 </xsl:attribute>
 <xsl:element name="attribute">
 <xsl:attribute name="type">FAT</xsl:attribute>
 </xsl:element>
 <xsl:for-each select=
 "../../diff[@entityType='Person']/attribute[
 @name='isFatherToUnbornChild'
 and ./text()='true']">
 <!-- Copy the participant id if a family -->
 <!-- member is the father -->
 <xsl:element name="attribute">
 <xsl:attribute name="roleParticipantID">
 <xsl:value-of select="
 ../@identifier"/>
 </xsl:attribute>
 </xsl:element>
 </xsl:for-each>
 <!-- Copy details of absent parent -->
 <xsl:call-template name="absentFather"/>
 <xsl:element name="attribute">
 <xsl:attribute name="entityRoleIDFieldName">
 fahCaseParticipantRoleID
 </xsl:attribute>
 </xsl:element>
 </xsl:element>
 <xsl:variable name="numBabies">
 <xsl:value-of select="attribute[
 @name='numChildren'
]/text()"/>
 </xsl:variable>
 <xsl:call-template name="unbornChildren">
 <xsl:with-param name="count" select="$numBabies"/>
 </xsl:call-template>
 </xsl:element>
 </xsl:template>

 <xsl:template name="unbornChildren">
 <xsl:param name="count" select="1"/>
 <xsl:if test="$count > 0">
 <xsl:element name="entity">
 <xsl:attribute name="type">ET10125</xsl:attribute>
 <xsl:attribute name="action">
 <xsl:value-of select="./@diffType"/>
 </xsl:attribute>
 <xsl:element name="attribute">
 <xsl:attribute name="name">
 comments
 </xsl:attribute>
 Unborn child <xsl:value-of select="$count"/>
 </xsl:element>
 <xsl:element name="entity-data">
 <xsl:attribute name="entity-data-type">
 role
 </xsl:attribute>
 <xsl:element name="attribute">

152 IBM Cúram Social Program Management: IBM Cúram Universal Access 2.0.2

 <xsl:attribute name="type">
 UNB
 </xsl:attribute>
 </xsl:element>
 <xsl:element name="attribute">
 <xsl:attribute name=
 "roleParticipantID">
 <xsl:value-of select="
 ../@identifier"/>
 </xsl:attribute>
 </xsl:element>
 <xsl:element name="attribute">
 <xsl:attribute name=
 "entityRoleIDFieldName">
 caseParticipantRoleID
 </xsl:attribute>
 </xsl:element>
 </xsl:element>
 </xsl:element>
 <xsl:call-template name="unbornChildren">
 <xsl:with-param name="count" select="$count - 1"/>
 </xsl:call-template>
 </xsl:if>
 </xsl:template>

 <xsl:template name="absentFather">
 <xsl:element name="attribute">
 <xsl:attribute name="participantType">
 <xsl:text>RL7</xsl:text>
 </xsl:attribute>
 </xsl:element>

 <xsl:if test="attribute[@name='fahFirstName']">
 <xsl:element name="attribute">
 <xsl:attribute name="firstName">
 <xsl:value-of select="attribute[
 @name='fahFirstName'
]/text()"/>
 </xsl:attribute>
 </xsl:element>
 </xsl:if>

 <!-- etc. map other personal details such as -->
 <!-- SSN, date of birth -->

 <xsl:if test="diff[@entityType='ResidentialAddress']">
 <xsl:if test="diff[
 @entityType='ResidentialAddress']/attribute[
 @name='street1']">
 <xsl:element name="attribute">
 <xsl:attribute name="street1">
 <xsl:value-of select=
 "diff[
 @entityType='ResidentialAddress']
 /attribute[
 @name='street1']/text()"/>
 </xsl:attribute>
 </xsl:element>
 </xsl:if>
 <!-- etc. map other parts of residential address -->
 </xsl:if>
 </xsl:template>

 <xsl:template match="*">
 <!-- do nothing -->
 </xsl:template>
</xsl:stylesheet>

Writing Transforms that create new case participants

Readers who are familiar with Evidence will know that Evidence Entities frequently refer to third parties.
For example, Pregnancy evidence refers to the father via a Case Participant Role. The associated father
can be a Person or a Prospect Person. Other evidence types such as Student may refer to a School which
is entered as a Representative Case Participant Role.

The Evidence XML schema provides a generic element called <entity-data> which can be used to
provide special handling instructions to the Citizen Data Hub. The type of handling depends on the

IBM Cúram Universal Access (New) 153

<entity-data-type> specified. Cúram provides a special processor for the entity-data-type role. This
role entity data processor can be used to create new Case Participant Roles or reference existing Case
Participant Roles for existing Case Participants. Referring to the Evidence XML output in listed in the
previous section the attribute denoted by type is used to denote the Case Participant Role Type e.g. FAT
for Father or UNB for Unborn Child. The value provided here should be a codetable value from the
CaseParticipantRoleType code table. The roleParticipantID denotes the ConcernRoleID of an
existing participant on the system. If this is supplied then the system will not attempt to create a new
Case Participant, rather it will reuse a case participant with this id. The entityRoleIDFieldName is the
field name in the corresponding Evidence Entity. In the case of the Pregnancy evidence entity for
example, the name of this field is fahCaseParticipantRoleID. In the case where a new participant
needs to be created the following fields are supported by the Role Entity Data Processor.

• participantType - this is a code table entry from the ConcernRoleType code table. For example, use
RL7 to create a new Prospect Person

• firstName
• middleInitial
• lastName
• SSN
• dateOfBirth
• lastName
• lastName
• street1
• city
• state
• zipCode

Updating Non Evidence Entities

Previous Sections have illustrated how it is possible to configure life events to automatically map updates
through to Evidence Entities on multiple integrated cases. Sometimes life events will be required to
update non-Evidence entities such as a Residential Address, Employment or some other customer
specific non-Evidence entity. Typically these entities will be shared across multiple cases. It is also typical
that these entities would not follow the same controlled Life Cycle as evidence entities. Evidence has
many advantages:

• It is temporal
• It is case specific, with sharing of updates between cases being controlled through the Evidence Broker
• Caseworkers can veto acceptance of updates that come from external sources like IBM Cúram Universal

Access
• It has an in-edit/approval cycle
• It has support for verifications

Non evidence entities have none of these advantages and safeguards. A decision by analysts to update
non-evidence entities based on life events should be made with due care, especially if the changes can be
applied simultaneously across multiple cases. It is possible to update non Evidence entities but this will
always involve custom code. It is strongly recommended that the design of such functionality includes
safeguards to ensure that at least one Agency worker gets to manually approve the changes before they
are applied to the system.

154 IBM Cúram Social Program Management: IBM Cúram Universal Access 2.0.2

Configuring the evidence broker for use with the holding case
The Holding Case is only a holding area for Evidence before it is sent somewhere else. Normally, after data
is updated on the Holding Case, the goal is to broker these updates to Integrated Cases so that
caseworkers can evaluate the changes and apply them to the relevant cases.

For example, after the data is accepted onto the Integrated Cases, a user can see the positive impact of
submitting a life event because the updated data has an impact on the user's benefits. The bridge
between the Holding Case and the Integrated Cases is crossed only if the appropriate Evidence Broker
configuration is defined. The following section demonstrates how that can be achieved. For more
information, see the Evidence Broker Developers Guide on background on the Evidence Broker.

Configuring sharing from The Holding Case

An evidence configuration for sharing of Pregnancy evidence from the Holding Case to an Integrated Case
is shown in the following example:

<?xml version="1.0" encoding="UTF-8"?>
 <table name="EVIDENCEBROKERCONFIG">
 <column name="EVIDENCEBROKERCONFIGID" type="id"/>
 <column name="SOURCETYPE" type="text" />
 <column name="SOURCEID" type="id" />
 <column name="TARGETTYPE" type="text" />
 <column name="TARGETID" type="id"/>
 <column name="SOURCEEVIDENCETYPE" type="text"/>
 <column name="TARGETEVIDENCETYPE" type="text"/>
 <column name="AUTOACCEPTIND" type="bool"/>
 <column name="WEBSERVICESIND" type="bool"/>
 <column name="SHAREDTYPE" type="text"/>
 <column name="RECORDSTATUS" type="text"/>
 <column name="VERSIONNO" type="number"/>
 <row>
 <attribute name="EVIDENCEBROKERCONFIGID">
 <value>10003</value>
 </attribute>
 <attribute name="SOURCETYPE">
 <value>CT10301</value>
 </attribute>
 <attribute name="SOURCEID">
 <value>10330</value>
 </attribute>
 <attribute name="TARGETTYPE">
 <value>CT5</value>
 </attribute>
 <attribute name="TARGETID">
 <value>4</value>
 </attribute>
 <attribute name="SOURCEEVIDENCETYPE">
 <value>ET10000</value>
 </attribute>
 <attribute name="TARGETEVIDENCETYPE">
 <value>ET10074</value>
 </attribute>
 <attribute name="AUTOACCEPTIND">
 <value>0</value>
 </attribute>
 <attribute name="WEBSERVICESIND">
 <value>0</value>
 </attribute>
 <attribute name="SHAREDTYPE">
 <value>SET2002</value>
 </attribute>
 <attribute name="RECORDSTATUS">
 <value>RST1</value>
 </attribute>
 <attribute name="VERSIONNO">
 <value>1</value>
 </attribute>
 </row>
 </table>

When evidence is shared from the Holding Case to another Integrated Case, the source type needs to be
CT10301 and the source ID needs to be set to 10330. The source evidence type needs to be set to
ET10000, which is the code for all Evidence that is stored in Holding Cases. Evidence of this type is known
as Holding Evidence. The target evidence type in this case is ET10074. In Cúram Common Evidence,

IBM Cúram Universal Access (New) 155

this particular designation identifies Pregnancy Evidence. The evidence sharing type needs to be set to
SET2002, which is the code for Non-Identical Sharing.

Note: The AUTOACCEPTIND is set to 0. It is recommended strongly that this value always be set to 0
when it is shared from a Holding Case to an Integrated Case. This setting means that a caseworker always
gets to examine any changes that come in from the citizen's Holding Case

. Assuming the caseworker agrees with the changes, the Incoming Evidence link of the Integrated Case
Evidence page can be used to synchronize the data from the Holding Case in the normal way.

To establish Evidence Broker Configuration for a custom component, a DMX file must be created that
contains the configuration that follows the previous example, for example, %SERVER_DIR%\components
\Custom\data\initial\EBROKER_CONFIG.dmx

In sharing Holding Evidence to a Standard Evidence Entity like a Pregnancy, the Evidence Broker copies
the Holding Evidence that contains the Pregnancy data into a new Pregnancy Evidence Record in the
target Integrated Case. Previous, it has been alluded that Holding Evidence is not standard Evidence. In
fact, it is stored in an XML representation, so while the Holding Evidence is copied to the Target Evidence
type, the Evidence Broker converts the XML data into standard Evidence data. To assist with this
conversion process, it is necessary to supply metadata. An example of this metadata is illustrated in the
following code block:

<?xml version="1.0" encoding="UTF-8"?>
<data-hub-config>
 <evidence-config package="curam.holdingcase.evidence">
 <entity name="HoldingEvidence" ev-type-code="ET10000">
 <attribute name="entityStruct">
 curam.citizen.datahub.holdingcase.holdingevidence.struct.
 +HoldingEvidenceDtls
 </attribute>
 </entity>
 <entity name="Pregnancy" ev-type-code="ET10074">
 <attribute name="entityStruct">
 curam.evidence.entity.struct.PregnancyDtls
 </attribute>
 <related-entity>
 <case-participant-role>
 <attribute name="linkAttribute">
 fahCaseParticipantRoleID
 </attribute>
 </case-participant-role>
 <case-participant-role>
 <attribute name="linkAttribute">
 caseParticipantRoleID
 </attribute>
 </case-participant-role>
 </related-entity>
 </entity>
 </evidence-config>
</data-hub-config>

The metadata describes each of the entities that can be copied from the Holding Case to an Integrated
Case and vice versa. The metadata describes the dtls structs that are used to build the target evidence.
It also describes which of the attributes in Case Evidence refer to case participant roles. This information
ensures that when the Holding Evidence is copied, it does not blindly copy case participant role identifiers
from Holding Evidence. Instead, it looks for the equivalent case participant role ID on the target case and,
if it does not exist, creates one.

This metadata is stored in an AppResource resource store key. The resource store key is identified by the
Environment Property curam.workspaceservices.datahub.metadata. The initially configured value
for this variable defaults to the value curam.workspaceservices.datahub.metadata. This variable
points to default Holding Evidence Data Hub metadata. The following steps can be used to replace the
default Holding Evidence Data Hub metadata with a custom version to support all Evidence Types that
need to be brokered from the Holding Case to all Integrated Cases:

• Copy the contents of %SERVER_DIR%\components\WorkspaceServices\data\initial\clob
\DataHubMetaData.xml to %SERVER_DIR%\components\Custom\data\initial\clob
\CustomDataHubMetaData.xml

156 IBM Cúram Social Program Management: IBM Cúram Universal Access 2.0.2

• Edit the contents of CustomDataHubMetaData.xml to describe all the Evidence Entities that need to
be updated by the Data Hub.

• Create a file %SERVER_DIR%\components\Custom\data\initial\APP_RESOURCES.dmx. Add an
entry to this file as shown as follows:

<?xml version="1.0" encoding="UTF-8"?>
<table name="APPRESOURCE">
<column name="resourceid" type="id" />
<column name="localeIdentifier" type="text"/>
<column name="name" type="text"/>
<column name="contentType" type="text"/>
<column name="contentDisposition" type="text"/>
<column name="content" type="blob"/>
<column name="internal" type="bool"/>
<column name="lastWritten" type="timestamp"/>
<column name="versionNo" type="number"/>
<row>
 <attribute name="resourceID">
 <value>10700</value>
 </attribute>
 <attribute name="localeIdentifier"> <value/>
 </attribute>
 <attribute name="name">
 <value>custom.datahub.metadata</value>
 </attribute>
 <attribute name="contentType">
 <value>text/plain</value>
 </attribute>
 <attribute name="contentDisposition"> <value>inline</value>
 </attribute> <
 attribute name="content"> <value> ./Custom/data/initial/clob/CustomDataHubMetaData.xml </
value>
 </attribute> <attribute name="internal"> <value>0</value> </attribute>
 <attribute name="lastWritten"> <value>SYSTIME</value>
 </attribute> <attribute name="versionNo"> <value>1</value>
 </attribute>
</row>
</table>

• Create or append to the file %SERVER_DIR%\components\Custom\properties
\Environment.xml adding an entry along the following lines:

<environment>
 <type name="dynamic_properties">
 <section code="WSSVCS"
 name="Workspace Services - Configuration">
 <variable name="curam.workspaceservices.datahub.metadata"
 value="custom.datahub.metadata" onlyin="all"
 type="STRING">
 <comment>
 Identifies an AppResource used to configure DataHub
 meta-data.
 </comment>
 </variable>
 </section>
 </type>
 </environment>

Round Tripping and Configuring Sharing to The Holding Case

The previous section described how data is shared from the Holding Case to Integrated Cases. Analysts
also might want to consider whether evidence needs to be transferred in the opposite direction - that is,
from the Integrated Cases to the Holding Case. When sharing is configured from the Integrated Case to
the Holding Case, changes made by the caseworker to selected evidence can be propagated back to the
Holding Case. This process is essential for life events that need to pre-populate data from Evidence
Entities in existing Integrated Cases. The example that follows shows how to configure Pregnancy
Evidence for Sharing to the holding case.

<?xml version="1.0" encoding="UTF-8"?>
<table name="EVIDENCEBROKERCONFIG">
 <column name="EVIDENCEBROKERCONFIGID" type="id"/>
 <column name="SOURCETYPE" type="text" />
 <column name="SOURCEID" type="id" />

IBM Cúram Universal Access (New) 157

 <column name="TARGETTYPE" type="text" />
 <column name="TARGETID" type="id"/>
 <column name="SOURCEEVIDENCETYPE" type="text"/>
 <column name="TARGETEVIDENCETYPE" type="text"/>
 <column name="AUTOACCEPTIND" type="bool"/>
 <column name="WEBSERVICESIND" type="bool"/>
 <column name="SHAREDTYPE" type="text"/>
 <column name="RECORDSTATUS" type="text"/>
 <column name="VERSIONNO" type="number"/>
 <row>
 <attribute name="EVIDENCEBROKERCONFIGID">
 <value>2</value>
 </attribute>
 <attribute name="SOURCETYPE">
 <value>CT5</value>
 </attribute>
 <attribute name="SOURCEID">
 <value>4</value>
 </attribute>
 <attribute name="TARGETTYPE">
 <value>CT10301</value>
 </attribute>
 <attribute name="TARGETID">
 <value>10330</value>
 </attribute>
 <attribute name="SOURCEEVIDENCETYPE">
 <value>ET10074</value>
 </attribute>
 <attribute name="TARGETEVIDENCETYPE">
 <value>ET10000</value>
 </attribute>
 <attribute name="AUTOACCEPTIND">
 <value>1</value>
 </attribute>
 <attribute name="WEBSERVICESIND">
 <value>0</value>
 </attribute>
 <attribute name="SHAREDTYPE">
 <value>SET2002</value>
 </attribute>
 <attribute name="RECORDSTATUS">
 <value>RST1</value>
 </attribute>
 <attribute name="VERSIONNO">
 <value>1</value>
 </attribute>
 </row>
</table>

Note: Unlike Sharing from Holding Case to Integrated Case, the AUTOACCEPTIND is set to 1. This
designation is because the target case is a Holding Case and Holding Cases are designed to operate
unattended. It is not expected that caseworkers need to review items that are being shared onto the
Holding Case as they come from an authoritative source, for instance, the Integrated Case.

Issues for consideration

With suitable configuration, It is possible to share data from the Holding Case to many different
Integrated Cases. Take the example of two different Integrated Cases (cases A and B) that are configured
to share information with a citizen's Holding Case (case H). Both cases A and B separately recorded an
Income Evidence record for the citizen. In the citizen's Holding Case, this evidence record shows up as
two separate Income Records. As far as cases A and B are concerned, they are two entirely separate
records - A's view of the citizen's Income and B's view of the citizen's Income. However, to the citizen, this
breakdown might not make much sense. The citizen has only one Income and is using one Portal to
communicate with the Social Enterprise Management (SEM) agency or agencies concerned. Why does the
citizen see two records for the same Income? In cases where there is sharing to multiple Integrated
Cases from a single Holding Case, consideration needs to be given to creating another set of sharing
relationships to be established from A to B and B to A. This consideration is an issue that requires proper
consideration early on in the project lifecycle.

158 IBM Cúram Social Program Management: IBM Cúram Universal Access 2.0.2

Putting it all together
Previous topics showed how to create the parts of a life event, this topic discusses how to join all these
pieces together to make a completed life event.

New life events can be configured using the life event Administration pages. Using the Administration
Pages you can create new life event Types and life event Channels, add rich text descriptions and
associate the life events with IEG Scripts and Recommendation Rule Sets. Once all of the required
Entities are created, the data can be extracted into a set of DMX files that can be used as a basis for
ongoing development. The following set of commands can be used to extract the relevant dmx files:

build extractdata -Dtablename=LifeEventType
build extractdata -Dtablename=LifeEventContext
build extractdata -Dtablename=LifeEventCategory
build extractdata -Dtablename=LifeEventCategoryLink
build extractdata -Dtablename=LocalizableText
build extractdata -Dtablename=TextTranslation

The LocalizableText and TextTranslation tables contain all of the life event descriptions, but they are also
filled with text translations that do not relate to life events. Developers should audit these DMX files
removing any entries that do not correspond to the relevant life event descriptions before copying the
dmx files to %SERVER_DIR%\components\Custom\data\initial\.

Event APIs for life events

The life event broker is instrumented with guice events. Developers can write listeners that can be bound
to these events. The available events are:

• PreCreateLifeEvent - Invoked before launching a life event
• PostCreateLifeEvent - Invoked after the life event has been initialized. That is after the Data Hub

Transform and View Processors have been executed.
• PreSubmitLifeEvent - Invoked after the life event has been submitted but before the Update

Processors have been run.
• PostSubmitLifeEvent - Invoked after the life event has been submitted.

Note that both the Pre and Post SubmitLifeEvent events are executed from within a Deferred Process so
the current user is expected to be SYSTEM. Life events should never attempt to change the contents of the
life event. The code extract below shows how a Listener class, MyPreCreateListener can be bound to
one of these life events:
Multibinder<LifeEventEvents.PreCreateLifeEvent>
 preCreateBinder =
 Multibinder.newSetBinder(binder(),
 new TypeLiteral<LifeEventEvents.PreCreateLifeEvent>() { /**/
 });

 preCreateBinder.addBinding().to(MyPreCreateListener.class);

Artifacts with limited customization scope
A description of IBM Cúram Universal Access artifacts that have restrictions on their use. Customers that
want to change these artifacts should consider alternatives or request an enhancement to Universal
Access.

Model

Customers are not supported in making changes to any part of the Universal Access model. Changes in
the model such as changing the data types of domains can cause failure of the Universal Access system
and upgrade issues. This applies to the model files in the following packages:

• WorkspaceServices
• CitizenWorkspace
• CitizenWorkspaceAdmin

IBM Cúram Universal Access (New) 159

Code tables

See Extending code tables for a list of restricted code tables.

Related information
Extending code tables

Troubleshooting and support
Use this information to help you to troubleshoot issues with the IBM Cúram Universal Access Responsive
Web Application or IBM Social Program Management Design System.

The IBM Cúram Social Program Management supported assets can be installed, customized, and
deployed separately from IBM Cúram Social Program Management, before being integrated into the
system.

When troubleshooting web applications that are integrated with IBM Cúram Social Program Management,
use this troubleshooting information in conjunction with the troubleshooting information for IBM Cúram
Social Program Management. For more information, see the Troubleshooting and support related link.

Citizen Engagement components and licensing
You can use and customize the new Universal Access web application for your organization, or develop
your own custom web applications to complement the standard IBM Cúram Social Program Management
web client. Use this information to understand the IBM Cúram Social Program Management components,
supported assets, and licenses that you need.

Installable components
IBM Social Program Management Design System supported asset

The design system provides the foundational packages for building accessible and responsive web
applications. It consists of a React UI component library, React development resources, and a style
guide for creating web applications.

Universal Access Responsive Web Application supported asset
The new Universal Access web application, which you can use and customize for your organization.
The responsive web application requires the IBM Social Program Management Design System and the
Universal Access application module.

Universal Access application module
The Universal Access (UA) application module includes REST APIs that expose interfaces to Universal
Access and IEG functions for consumption by the Universal Access Responsive Web Application.
Universal Access requires the IBM Cúram Social Program Management Platform.

Licensing Universal Access (New)

To use and customize the new Universal Access web application, customers can buy the Universal Access
application module, which entitles the Universal Access Responsive Web Application asset, and IBM
Cúram Social Program Management Platform, which entitles the IBM Social Program Management Design
System asset. Customers can also buy Citizen Engagement, which includes the Universal Access
application module, the IBM Cúram Social Program Management Platform, and the assets.

Licensing the IBM Social Program Management Design System

To develop custom web applications to complement the standard IBM Cúram Social Program
Management web client, customers must buy the IBM Cúram Social Program Management Platform,
which entitles the IBM Social Program Management Design System asset.

160 IBM Cúram Social Program Management: IBM Cúram Universal Access 2.0.2

Citizen Engagement support strategy
The Citizen Engagement assets are expected to be released monthly, and they can be upgraded
independently of the base IBM Cúram Social Program Management product.

Support strategy for the supported assets

Due to the more frequent release schedule, the support strategy is to maintain a single product line for
both new features and maintenance. Where possible, all updates are planned for the latest version of the
assets. Security and defect fixes will be delivered in the latest release only. The assets are supported for
the lifetime of the latest supported IBM Cúram Social Program Management version available at the time
of the asset release.

The assets use semantic versioning. As a general guideline, this means:

• MAJOR version for incompatible API changes
• MINOR version for adding functionality in a backwards-compatible manner
• PATCH version for backwards-compatible bug fixes

The assets will be full releases rather than delta releases regardless of version type.

Although new features (pages) can be delivered in any minor release, new features are typically delivered
at the same time as the Universal Access application module release that contains the new APIs for those
features.

Support strategy for the Universal Access application module

Where possible, Universal Access REST API changes are delivered in refresh pack or other impact-free
releases that impose no forced upgrade impact.

Compatibility

You can confirm compatibility between a version of the supported assets and the IBM Cúram Social
Program Management software by referring to the asset release notes and documentation.

Examining log files
Log files are a useful resource for troubleshooting problems.

Examining the browser console logs

For JavaScript applications, you can examine the browser console logs for errors that might be relevant to
investigating problems. For the exact details about how to locate the console logs within the browser, see
your browser documentation.

Note: When you are developing applications with the IBM Social Program Management Design System,
console logging information might also be displayed within the console that runs the start process for the
application.

Examining the HTTP Server log files

When you deploy a built application on an HTTP Server, the built application introduces a new point with
which logging is captured in your system topology. The IBM HTTP Server and the Oracle HTTP Server
include comprehensive logging system and related information.

For more information about troubleshooting the IBM HTTP Server, see Troubleshooting IBM HTTP Server.

IBM Cúram Universal Access (New) 161

https://semver.org/
https://www.ibm.com/support/knowledgecenter/en/SSEQTJ_9.0.0/com.ibm.websphere.ihs.doc/ihs/tihs_troubsteps.html

For more information about troubleshooting the Oracle HTTP Server, see Managing Oracle HTTP Server
Logs.

162 IBM Cúram Social Program Management: IBM Cúram Universal Access 2.0.2

https://docs.oracle.com/middleware/1212/webtier/HSADM/man_logs.htm#HSADM218
https://docs.oracle.com/middleware/1212/webtier/HSADM/man_logs.htm#HSADM218

Notices

This information was developed for products and services offered in the United States.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not grant you any license to these patents. You can send license
inquiries, in writing, to:

IBM Director of Licensing IBM Corporation North Castle Drive, MD-NC119 Armonk, NY 10504-1785 US

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing Legal and Intellectual Property Law IBM Japan Ltd. 19-21, Nihonbashi-
Hakozakicho, Chuo-ku Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Director of Licensing IBM Corporation North Castle Drive, MD-NC119 Armonk, NY 10504-1785 US

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-
IBMproducts. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

© Copyright IBM Corp. 2018, 2019 163

Statements regarding IBM's future direction or intent are subject to change or withdrawal without notice,
and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject to change without
notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to change before the
products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Privacy Policy considerations
IBM Software products, including software as a service solutions, (“Software Offerings”) may use cookies
or other technologies to collect product usage information, to help improve the end user experience, to
tailor interactions with the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you to
collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below.

Depending upon the configurations deployed, this Software Offering may use session cookies or other
similar technologies that collect each user’s name, user name, password, and/or other personally
identifiable information for purposes of session management, authentication, enhanced user usability,
single sign-on configuration and/or other usage tracking and/or functional purposes. These cookies or
other similar technologies cannot be disabled.

If the configurations deployed for this Software Offering provide you as customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

For more information about the use of various technologies, including cookies, for these purposes, see
IBM’s Privacy Policy at http://www.ibm.com/privacy and IBM’s Online Privacy Statement at http://
www.ibm.com/privacy/details the section entitled “Cookies, Web Beacons and Other Technologies” and
the “IBM Software Products and Software-as-a-Service Privacy Statement” at http://www.ibm.com/
software/info/product-privacy.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
“ Copyright and trademark information ” at http://www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

164 Notices

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/privacy/details
http://www.ibm.com/legal/copytrade.shtml

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other names may be trademarks of their respective owners. Other company, product, and service names
may be trademarks or service marks of others.

Notices 165

IBM®

Part Number:

(1
P)
 P

/N
:

	Contents
	List of Figures
	List of Tables
	Chapter 1. IBM Cúram Universal Access (New)
	IBM Cúram Universal Access release notes
	2.0.2 release notes

	Prerequisites and IBM Cúram Social Program Management compatibility
	Prerequisites and supported software

	IBM Cúram Universal Access business overview
	Screening citizens for benefits
	Screening types
	Starting the screening process
	Authenticated and anonymous screening
	Anonymous screening
	Authenticated screening

	Screening results

	Citizen account
	Creating a citizen account and logging in
	Browsing the organization home page
	Browsing the dashboard
	Browsing the Your benefits page
	Viewing payments
	Viewing TO DOs
	Displaying contact information
	Screening from a citizen account
	Citizen account messages

	Life events
	Accessing life events
	The Life Event Overview page
	The life event submission confirmation page
	Reviewing life events change history

	Applying for benefits
	Starting and selecting an application
	Managing existing applications
	Saving an application
	Resuming an application
	Submitting an application
	Printing an application
	Withdrawing an application
	Deleting an application

	Installing the IBM Cúram Universal Access development environment
	Installing the IBM Cúram Universal Access development environment

	Upgrading to later versions of IBM Cúram Universal Access
	Customizing the IBM Cúram Universal Access application
	Planning for development
	Development environment
	Development resources
	Developing compliantly
	Developing with routes
	The Routes component
	Adding routes
	Replacing routes
	Redirecting routes
	Removing routes
	Advanced routing

	Connecting to Universal Access APIs
	The mock server API service
	The RESTService utility

	Developing authentication
	Developing with Redux
	Developing with universal-access modules
	Developing with headers and footers
	Developing toast notifications
	Providing the application in another language
	Selecting a language
	Configuring the languages provided by the application
	Translating your application
	Extracting translatable content
	Including translated content in your application

	Regionalizing your application

	Customizing forms with IEG
	Configuring IEG for Universal Access (New)
	IEG elements and attributes specific to the design system and IBM Cúram Universal Access (New)
	IEG configuration not currently supported for IBM Cúram Universal Access (New)
	Merging clusters with the cluster element grouping-id attribute
	Configuring progress information for forms
	Configuring required or optional field labels for forms
	Configuring dynamic titles
	Configuring relationship pages questions
	Configuring relationship starting dates on relationship summary pages
	Configuring rich text
	Configuring external links to open in a new tab or window

	Configuring formats and constraints for input fields
	Configuring phone numbers
	Configuring date formats

	Configuring form fields with code-table hierarchies

	Configuring page view analytics
	Customization scenarios
	Changing the application text
	Adding content to the application
	Using the Web Design System to style content
	Changing the application header or footer
	Creating an IBM Cúram Social Program Management API
	Connecting to REST APIs from the application
	Testing REST API connections by using Tomcat
	Handling failures in the application
	Using a loading mask
	Reusing existing features

	Deploying your web application to a web server
	Building IBM Cúram Universal Access for deployment
	Install and configure IBM HTTP Server with WebSphere Application Server
	Generating an IBM HTTP Server plug-in configuration
	Configuring the IBM HTTP Server plug-in

	Install and configure Oracle HTTP Server with Oracle WebLogic Server
	Installing Oracle HTTP Server and its components
	Configuring the Oracle HTTP Server plug-in

	Deploying your web application

	Configuring the IBM Cúram Universal Access server
	Prerequisites
	Configuring service areas and PDF forms
	Configuring programs
	Configuring a Program
	Defining a name and reference
	Defining an intake processing system
	Defining case processing details
	Defining the integrated case strategy
	Specifying a client selection strategy
	Specifying a product delivery type
	Configuring timers
	Configuring multiple applications
	Defining a PDF form
	Defining a URL
	Defining description and summary information
	Defining local office application details

	Defining local offices for a program
	Defining PDF mappings for a program
	Defining program evidence types

	Configuring screenings
	Configuring a new screening
	Configuring eligibility and screening details
	Configuring screening display information
	Defining programs for a screening
	The screening auto-save property
	Configuring re-screening
	Pre-populating the screening script
	Resetting data captured from a previous screening
	Writing Rule Sets For Screening
	Addin a data store schema
	The screening rules interface

	Configuring applications
	Configuring an application in the Configure a New Online Application page
	Configuring application information and display information
	Configuring scripts
	Defining a PDF form

	Configuring an application in the Property Administration page
	Application properties

	Configuring other application settings

	Configuring online categories
	Configuring the citizen account
	Configuring messages
	Account messages
	Creating application acknowledgments
	Creating meeting messages
	Creating payment messages

	System messages
	Configuring message duration
	Switching off messages

	Configuring last logged in information
	Configuring contact information
	Configuring user session timeout

	Configuring life events
	Enabling and disabling life events
	Configuring a life event
	Mapping life event information to evidence entities
	Defining a question script, answer script, and schema
	Categorizing life events
	Defining Remote Systems

	Securing the IBM Cúram Universal Access server
	The security model
	Authorization roles and groups
	Integrating external security
	Configuring single sign-on
	SAML web single sign-on profile initiation
	The SAML 2.0 single sign-on flow in IBM Cúram Universal Access
	Configuring single sign-on properties
	Configuring cross-origin resource sharing
	Single sign-on configuration example
	Configuring single sign-on through IBM Security Access Manager
	Configuring IBM Security Access Manager as an IdP
	Configuring WebSphere Application Server
	Configuring CORS for IBM Security Access Manager

	External security authentication example
	Configuring an alternative login ID
	Deploying in identity-only mode for registered users
	Disabling the Create Account screens
	Redirecting users to register with an external system
	Enabling users to log on immediately after registration with CentralID

	Customizing account creation and management
	Account management configurations
	Account management events
	PasswordReuseStrategy API
	CitizenWorkspaceAccountManager API

	Data caching

	Customizing the IBM Cúram Universal Access server
	Customizing screening
	Track the volume, quality, and results of screenings
	Populating a custom screening results page

	Customizing submitted applications
	Customizing the intake application workflow
	Customizing the generic PDF for processed applications
	Using events to extend intake application processing
	Customizing the concern role mapping process
	Enable the ConcernRoleMappingStrategy API
	Use the ConcernRoleMappingStrategy API

	How to send applications to remote systems for processing

	Customizing the Citizen Account
	Security and the Citizen Account
	Ensure that the currently logged in user is the correct type
	Ensure that the logged in user has access to the requested records

	Messages
	Configuring citizen messages
	Adding a new type of citizen message
	Implementing a new message type
	Customizing specific message types
	Payment messages
	Meeting messages
	Application acknowledgment message

	Error logging in the citizen account

	Customizing life events
	How to build a life event

	Customizing advanced life events
	How to build a life event
	Analysis
	Considerations for life events analysis
	Building the components of a life event
	Writing life event IEG Scripts
	Pre-Populating a life event
	Driving updates from life events
	Configuring the evidence broker for use with the holding case
	Putting it all together

	Event APIs for life events

	Artifacts with limited customization scope

	Troubleshooting and support
	Citizen Engagement components and licensing
	Citizen Engagement support strategy
	Examining log files

	Notices
	Privacy Policy considerations
	Trademarks

