IBM Cdram Social Program Management

Inside Caram Eligibility and Entitlement
Using Cdram Express Rules

Version 605

<|ll

IBM Cdram Social Program Management

Inside Caram Eligibility and Entitlement
Using Cdram Express Rules

Version 605

<|ll

Note
FBefore using this information and the product it supports, read the information in[“Notices” on page 213|

Revised: May 2013

This edition applies to IBM Ctiram Social Program Management v6.0.5 and to all subsequent releases unless
otherwise indicated in new editions.

Licensed Materials - Property of IBM.

© Copyright IBM Corporation 2012, 2013.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

© Cdram Software Limited. 2011. All rights reserved.

Contents
Figures
Tables

Chapter 1. Introduction
1.1 Purpose.

1.2 Audience .

1.3 Related Reading . .
1.4 Chapters in this Guide .

Chapter 2. Eligibility and Entitlement

Processing at a Glance .

2.1 Introduction .

2.2 Product Configuration .
2.2.1 Example . .

2.3 Recording of Input Data
2.3.1 Example .

2.4 Rules Calculations and Deterrnmatlon Results .

2.4.1 What a Determination Result Contains .
2.4.2 What Triggers the Calculation of a
Determination Result .
2.4.3 How a Determination Result Is Calculated
2.4.4 Example.

2.5 Determination Storage
2.5.1 Example. .

2.6 Scheduling Financials .
2.6.1 Example.

2.7 Determination Retrleval
2.7.1 Example.

Chapter 3. Navigating Determinations

3.1 Introduction . .

3.2 Manual Check Determlnatlons

3.3 Snapshot Determinations.

3.4 Assessment Determinations . .
3.4.1 Current Assessment Determrnatron
3.4.2 Historical Assessment Determinations .
3.4.3 Manual Reassessments .

Chapter 4. Calculating and Dlsplaylng

Eligibility and Entitlement

4.1 Introduction .

4.2 How It Looks . .
4.2.1 Viewing a Determlnatlon S Coverage
Periods . . .
4.2.2 Basic Elrgrbrlrty / entrtlernent Dec1sron
Details . .o .

4.3 How It Works
4.3.1 Calculation of Ehg1b1l1ty and Entrtlernent
4.3.2 Display of Eligibility and Entitlement .

4.4 How to Use It
4.4.1 Understanding El1g1b1hty and Entltlement
Concepts o
4.4.2 Analysis.

© Copyright IBM Corp. 2012, 2013

. Vil

.
N == ==h

o IR BENERN [e o NG I3) |

12
.13
.14
.14
.14
.14
. 15
. 16

17

.17
.17
.17
.18
. 18
. 18
.18

. 19
.19
.19

. 20

. 20
. 20
.21
. 24
.25

.25
.27

4.4.3 Implementation .29
4.4.4 Testing . .42
Chapter 5. Calculating and Dlsplaymg
Key Decision Factors . 45
5.1 Introduction . . 45
5.2 How It Looks . . 45
5.2.1 Viewing Key Dec1s1on Factors Graph1cally 46
5.2.2 Viewing Key Decision Factors in a List . 46
5.3 How It Works . . 46
5.3.1 Calculation of Key Dec1s1on Factors . 47
5.3.2 Display of Key Decision Factors. . 48
5.4 How to Use It . 49
5.4.1 Understanding Key Decrslon Factor
Concepts . .o . 49
5.4.2 Analysis. . 50
5.4.3 Implementation . . 52
5.4.4 Testing . . 57
Chapter 6. Calculating and D|splay|ng
Decision Details. . 59
6.1 Introduction . . 59
6.2 How It Looks . . 59
6.2.1 Summary Dlsplay Category . . 59
6.2.2 Decision Comparison . 60
6.2.3 Sub-screens. .. 60
6.2.4 Basic Eligibility/ ent1tlement Inforrnat10n . .60
6.3 How It Works . . . 60
6.3.1 Calculation of Decision Detarls . . 62
6.3.2 Display of Decision Details . 66
6.4 How to Use It . . 70
6.4.1 Understanding Dec1s1on Deta1ls Concepts 70
6.4.2 Analysis. ()
6.4.3 Implementation . .72
6.4.4 Testing . . 81
Chapter 7. Understanding Rule Object
Converters and Propagators . 83
7.1 Introduction . . 83
7.2 An Initial Assessment Example . . 83
7.2.1 A System Administrator Creates and
Publishes Rule Set Information for a Product . . 84
7.2.2 A System Administrator Creates and
Publishes a New Rate Table . . . 84
7.2.3 A Case Worker Registers a Person . . 85
7.2.4 A Case Worker Creates a New Case for that
Person . . . 85
7.2.5 A Case Worker Adds an Add1t1onal Member
to the Case . 85
7.2.6 A Case Worker Captures and Actlvates
Some Income Evidence . . 86
7.2.7 A Case Worker Activates the Case . . 86
7.3 The Framework for Converters and Propagators 87

iii

7.4 Rule Objects for Use with Eligibility and

Entitlement Processing. . 88
7.4.1 Product Delivery Rule Ob]ects . 88
7.4.2 Rate Rule Objects . .90
7.4.3 Entity Rule Objects . .. 92
7.4.4 Active Succession Set Rule Ob]ects . 100
7.4.5 Active Evidence Row Rule Objects . 107

7.5 Data Configuration Problems . . . 116

7.6 Data Access Points . 116
7.6.1 Normal Conversion . 116
7.6.2 Temporary Access to In—Edlt Evrdence
Changes . . . 117
7.6.3 Incremental Propagatron . .o 117
7.6.4 Bulk Maintenance of Rate Rule Ob]ects .. 118

7.7 Logging . . o . 119

7.8 Supported Domaln Types . . 119

Chapter 8. How Determinations Are

Stored 121

8.1 Introduction . 121

8.2 The Database Tables . . 121
8.2.1 CREOLECaseDetermlnatlon . 121
8.2.2 CREOLECaseDeterminationData . . 123
8.2.3 CaseDecision. . 124
8.2.4 CaseDecrsronOb]ectrve . 125
8.2.5 CaseDecisionObjectiveTag . 126
8.2.6 CREOLECaseDecision. . 127

8.3 Decision Periods 127

8.4 Determination Comparison Strategres . . 127
8.4.1 Strategy Implementatlons Included with
the Engine . 128
8.4.2 Developing your own Strategy
Implementation . 128

Chapter 9. Scheduling Financials . . 131

9.1 Introduction . 131

9.2 Scheduling Frnanc1als for Ehgrble Case

Decisions. . e . 131
9.2.1 How It Looks . 131
9.2.2 How It Works . 132
9.2.3 How to Use It . 135

9.3 Scheduling Financials for Case Deductrons . 136
9.3.1 How It Looks . 137
9.3.2 How It Works . 137
9.3.3 How to Use It . 139

9.4 Scheduling Financials for Payment Correctlons 139
9.4.1 How It Looks . 139
9.4.2 How It Works . 140
9.4.3 How to Use It . 142

Chapter 10. Reassessment - Handling

Changes in Circumstance . . 145

10.1 Introduction 145

10.2 Case-level Reassessment . . 145
10.2.1 Overview . 145

10.3 Bulk Reassessment . . . 146
10.3.1 Types of Change that Cause Bulk
Reassessment . . 146
10.3.2 Approaches to Identrfylng and
Reassessing All Affected Cases . 148

10.3.3 Writing your own Bulk Reassessment

Batch Process . . 155
10.3.4 Bulk Reassessment for Multlple
Simultaneous Changes . . 157
10.3.5 Scheduling . . 158
Chapter 11. Incremental Design and
Evolution . . 161
11.1 Introduction . . 161
11.2 Starting with Rule Sets Included w1th the
Application . . e . lel
11.2.1 How Rule Sets Inter—relate . . 161
11.2.2 Cloning CER Rule Sets . . 162
11.3 Incremental Design . . . 163
11.3.1 Choose Default Conflguratlon Optrons for
Your Product . . 164
11.3.2 Implement a Srngle Product Perrod Frrst 164
11.3.3 Focus on Eligibility /Entitlement Rules 164
11.3.4 Spin-off a Task to Write Rule Classes for
Custom Entities and/or Evidence Types . 165
11.3.5 Top-down Implementations . 165
11.3.6 Bottom-up Implementations . 166
11.3.7 Hard-code Rates at First. . . 166
11.3.8 Keep an Eye on Rule Class Dependencres 166
11.3.9 Try Key Decision Factors before Decision
Details . 167
11.3.10 Re-use the Basrc Decrsron Detarls before
Writing Your Own. . . 167
11.3.11 Start Slowly with Dec1sron Detalls . . 167
11.3.12 Throughout Your Product's Development 168
11.4 Handling Legislation Change . 168
11.4.1 Branching Logic in Your CER Rule Sets 170
11.4.2 Multiple Product Periods for Your
Product . . 170
11.4.3 Choosing the Rrght Approach . 170
11.5 Changing Product Configuration Settings . 173
11.5.1 Decision Summary Display Strategy. . 173
11.5.2 Determination Comparison Strategy. . 174
11.5.3 Allow Open-Ended Cases . . 174
11.5.4 Reassessment Strategy . 174
Appendix A. Compliancy . 175
A.1 The Public API . . . 175
A.1.1 Identifying the Public API . . 175
A.2 Code Package Restrictions. . 175
A.3 Code Table Restrictions. . 175
A.3.1 CaseAssessmentDetReason . 175
A.3.2 CaseSnapshotDetReason . . . 176
A.3.3 Restricted Code Table Packages . 176
A.3.4 Restricted Code Tables . 176
A4 Database Restrictions . 176
A4l RuleOb]ectPropagatorControl . 177
A.4.2 Restricted Database Tables . . . 177
A.5 CER Rule Sets Included with the Apphcat1on 178
Appendix B. The Eligibility and
Entitlement Engine API and
Customizability . 179
B.1 Eligibility and Entitlement Englne API . 179
B.2 Customizability e . 179

iv IBM Ctiram Social Program Management: Inside Ctiram Eligibility and Entitlement Using Ctiram Express Rules

B.2.1 Eligibility and Entitlement Engine Events 179
B.2.2 Eligibility and Entitlement Engine Hooks 179

Appendix C. Extensions to Curam
ExpressRules. 181

C.1 Introduction181
C.2 Expressions.181
C.2.1 combineSuccessionSets 181
C.2.2 legislationChange.187
C23vrate19
C.3 Annotations193
C3.1 Display193
C.3.2 DisplaySubscreen19
C.3.3 Legislation.197

C.3.4 SuccessionSetPopulation . 198

C.3.5 relatedEvidence . 198

C.3.6 relatedSuccessionSet . 200
Appendix D. Environment Variables 203
D.1 Cdaram Environment Variables Governing
Behavior of Engine . 203
Appendix E. Glossary . . . 205
E.1 Terms Used throughout this Guide . . 205
Notices . . 213
Trademarks . . 215

Contents

A\

vi IBM Curam Social Program Management: Inside Ctiram Eligibility and Entitlement Using Ctiram Express Rules

Figures

1. Example XML document for Basic 2. Code example to reassess a CER-based case 157
Eligibility /Entitlement data for a coverag
period65

© Copyright IBM Corp. 2012, 2013 vii

viil IBM Cdram Social Program Management: Inside Ctram Eligibility and Entitlement Using Ctiram Express Rules

Tables

Description of Related Reading

2. When Do Precedent Change Set Items Get

Created?

3. Rule attributes 1nher1ted from
ProductEligibilityEntitlementRuleSet.
AbstractProduct .

4. Rule attributes inherited from

—_

. 30

30.

31.

32.

33.

Example Dependency Storage for Entity Rule
Objects.

Population of related Act1ve$uccess1on$et
rule objects

Propagation of related Act1veEv1 denceRow
rule objects .
Precedents Identified for Act1ve Ev1dence

ProductEligibilityEntitTlementRuleSet.AbstracdDbjectiveTyRow Rule Objects .

5. Rule attributes inherited from

6. Rule attributes inherited from

ProductEligibilityEntitlementRuleSet.Abstrac3€ase 36.

7. Rule attributes inherited from

34.
ProductEligibilityEntitlementRuleSet.Abstrac3ZagTyp85.

Database Details Stored for New EV1dence
Active Evidence Row Rule Object after Initial
Activation of Evidence

Example Dependency Storage for Act1ve
Evidence Row Rule Objects .

ProductEligibilityEntitlementRuleSet.Abstrac3Bbject3vVeTiitibase Details Stored for Changes of

8. Rule attributes inherited from

Circumstances

ProductETigibilityEntitlementRuleSet.Abstrac3@agTim8BineActive Evidence Row Rule Ob]ects after

9. DMX data for CREOLERuleClassLink for your

product structure rule class

10. DMX data for CREOLERuTeClassLink for your
eligibility /entitlement rule class. .

11. DMX data for CREOLEProductPeriod

12. Summarizer Strategy Implementations
Included with the Engine .

13. Rule attributes inherited from
ProductKeyDataRuleSet.AbstractProduct

14. Rule attributes inherited from

. 40

. 40
. 40

.42

. 52

ProductKeyDataRuleSet.AbstractKeyDataTimelin®g3

15. Rule attributes inherited from
ProductKeyDataRuleSet.AbstractKeyEvent

16. DMX data for CREOLERuleClassLink for your
key decision factors rule class

17. DMX data for CREOLEProductPeriod

18. Supported server interfaces for decision details

UIM pages.
19. Rule attributes 1nher1ted from

. 54

. 56
. 56

. 66

ProductDecisionDetailsRuleSet.AbstractCase. 73

20. Rule attributes inherited from

39.
40.

41.
42.
43.
44.
45.
46.
47.
48.
49.

50.

Changes of Circumstances

Database Details Stored for Ended Evrdence
Active Evidence Row Rule Objects after
Evidence Ended. .

Behavior when configuration problems are
found .

Mapping from Curam Domam Types to CER
Rule Attribute Types . S
Population of common
CREOLECaseDetermination data .
Population of CREOLECaseDetermmatmn
data, according to the type of determination
Population of CaseDecision rows . .
Population of CaseDecisionObjective rows
Population of CaseDecisionObjectiveTag rows
Determination Comparison Strategy
Implementations Included with the Engine
Benefits and Limitations to Bulk
Reassessment Approaches

Environment Variables for the
CREOLEBulkCaseChunkReassessmentStream

ProductDecisionDetailsRuleSet.AbstractCaseSuBscreenDisplBpatch Process

21. DMX data for LocalizableText .

22. DMX data for TextTranslation .

23. DMX data for CREOLEProductDecisionDi spCat

24. DMX data for CREOLERuleClassLink

25. DMX data for CREOLEProductPeriodDispCat

26. Example Dependency Storage for Rate Rule
Objects .

27. Precedents Ident1f1ed for Ent1ty Rule Ob]ects

28. Support for Entity Operation Stereotypes

29. Behavior when non-propagatable operations
are invoked

© Copyright IBM Corp. 2012, 2013

.79
.79

79

. 80

80

.92

95
97

.97

51.
52.
53.
54.

55.

Factors involved when choosmg the rlght
approach for legislation change .o
Eligibility and Entitlement Engine Events
Eligibility and Entitlement Engine Hooks
Mapping from Cdram Domain Types to CER
Rule Attribute Types .

Cdram environment variables governmg the
behavior of the Engine

. 100

. 104

. 109

111

112

. 112

. 113

. 113

. 113

114

. 114

. 116

. 119

. 122

. 122
. 124

126
126

. 128

. 154

. 155

. 171

179
179

. 183

. 203

ix

X IBM Ctram Social Program Management: Inside Ctiram Eligibility and Entitlement Using Ctiram Express Rules

Chapter 1. Introduction

1.1 Purpose

The purpose of this guide is twofold:

* To provide an inside look at how a case's eligibility and entitlement is assessed using Ctiram Express
Rules (CER)

* To provide instructions on how to set up and use the application to return eligibility and entitlement
results

To achieve this purpose, the guide provides detailed examples of eligibility and entitlement results,
descriptions of the processing that returns these results, and instructions on how to use this processing.

The guide promotes a "designing in stages" approach, focusing first on returning the basic eligibility and
entitlement results (i.e. eligible periods and entitlement amounts), and then on designing solutions that
return more complex eligibility and entitlement results (e.g. returning eligibility and entitlement results
with detailed explanations of how those results were derived).

Note: The assessment of cases is carried out by the Eligibility and Entitlement Engine, which for the sake
of brevity is referred to as simply "the Engine" throughout this guide.

1.2 Audience

This guide is intended for a technical audience interested in understanding how the Engine fits into case
processing. Designers and developers responsible for building and customizing products will find this
document useful in conjunction with reading the How to Build a Product guide.

This guide is also intended to help system operators understand the operational requirements of the
Engine, particular with regard to bulk case reassessment.

1.3 Related Reading

There are several related documents, some of which provide helpful background information, others that
provide more detailed information on topics covered in this guide. The following provides a brief
description of the related reading materials available:

Table 1. Description of Related Reading

Document Name Description

Curam Integrated Case Management Guide This provides a business overview of Cdram Integrated
Case Management, focusing specifically on the
needs-to-delivery side of case processing.

Ctaram Integrated Case Management Configuration This describes the configuration settings for cases
Guide including product configuration, configuration options
for case pages, and a description of the application
properties relating to case processing.

How to Build a Product This provides sample-based instructions on how to build
a product. It starts off with a simple product sample, and
builds upon complexity with varying product samples.

© Copyright IBM Corp. 2012, 2013 1

Table 1. Description of Related Reading (continued)

Document Name Description

Cdram Dynamic Evidence Configuration Guide This describes the configuration settings for Ctiram
Dynamic Evidence and includes instructions on how to
use the Ctiram Dynamic Evidence Editor to manage case
evidence.

Cuaram Express Rules Reference Manual This describes the Ctdram Express Rules language and
provides instructions on how to design rule sets using
the Ctiram Express Rules Editor.

1.4 Chapters in this Guide

The following list describes the chapters within this guide:

[Chapter 2, “Eligibility and Entitlement Processing at a Glance,” on page 5|
This chapter provides an overview of the end-to-end eligibility /entitlement processing performed
by the Engine. It provides an 'at a glance' view of this processing, with the remaining chapters in
this guide examining eligibility and entitlement processing 'under the microscope'.

[Chapter 3, “Navigating Determinations,” on page 17|
This chapter describes the different types of determinations and how case workers can view the
details of those determinations.

[Chapter 4, “Calculating and Displaying Eligibility and Entitlement,” on page 19
This chapter describes in detail how the Engine calculates and displays core eligibility /
entitlement information for a case.

[Chapter 5, “Calculating and Displaying Key Decision Factors,” on page 45|
This chapter describes in detail how the Engine calculates and displays "key decision factors" to
help case workers understand a case's eligibility /entitlement

[Chapter 6, “Calculating and Displaying Decision Details,” on page 59|
This chapter describes in detail how the Engine calculates and displays free-form "decision
details" to help case workers understand a case's eligibility /entitlement

[Chapter 7, “Understanding Rule Object Converters and Propagators,” on page 83|
This chapter describes how the Engine uses configurable "converters" and "propagators" to make
custom entities and evidence types available for CER rules calculations.

[Chapter 8, “How Determinations Are Stored,” on page 121|
This chapter describes how the Engine stores determination results so that they can be retrieved
later for viewing by case workers and as inputs into financial processing.

[Chapter 9, “Scheduling Financials,” on page 131
This chapter describes how the Engine interacts with Cdram Financials to make payments,
deductions and corrections.

[Chapter 10, “Reassessment - Handling Changes in Circumstance,” on page 145|
This chapter describes how the Engine processes changes of circumstances and reassesses cases.

[Chapter 11, “Incremental Design and Evolution,” on page 161
This chapter provides advice on how to implement complex products and how to maintain them
when legislation changes.

[Appendix A, “Compliancy,” on page 175
This appendix describes how to develop with the Engine in a compliant manner.

[Appendix B, “The Eligibility and Entitlement Engine API and Customizability,” on page 179
This appendix describes the API and extension points for the Engine.

2 IBM Cdram Social Program Management: Inside Ctram Eligibility and Entitlement Using Ctiram Express Rules

[Appendix C, “Extensions to Ctiram Express Rules,” on page 181]
This appendix describes the assessment-specific CER expressions and annotations contributed by
the Engine.

|[Appendix D, “Environment Variables,” on page 203
This appendix lists the Ctiram Environment Variables that you can set to change the Engine's
behavior.

|[Appendix E, “Glossary,” on page 205|
This appendix provides a glossary of terms used with the Engine.

Chapter 1. Introduction 3

4 IBM Ctram Social Program Management: Inside Ctram Eligibility and Entitlement Using Ctiram Express Rules

Chapter 2. Eligibility and Entitlement Processing at a Glance

2.1 Introduction

At a glance, the main objective of the Engine is to work with Ctiram Express Rules (CER) to determine
case eligibility and entitlement over the lifetime of the case. CER is responsible for applying rules logic to
real world data in order to make decisions regarding eligibility and entitlement.

The starting point for case eligibility and entitlement is the Product. A Product contains all the
configuration details which specify which CER rules to use when determining eligibility entitlement.
Once a Product has been configured, its configuration can be used to calculate and store a determination
result based on input data.

This determination result is used to generate financials and is retrieved when a case worker user views
eligibility and entitlement details for the case. When circumstances change which affect an assessment for
an active case, the Engine can automatically reassess the case.

The Engine manages the reassessment of case eligibility and entitlement through the use of a Dependency
Manager. The Dependency Manager stores dependencies when they are identified during the calculation
of eligibility and entitlement, and then identifies items that have changed and queues them for later
processing, typically in deferred processing. When the deferred process is executed, the Dependency
Manager examines its stored dependency records to identify the cases that require reassessment, and for
each identified case it uses to CER to re-calculate the determination result.

The below list describes each of the stages in eligibility and entitlement processing, incorporating the
above-mentioned terms.

* Configure

A product must be configured before it can be used to create product delivery cases. Over its lifetime,
a product's configuration can be updated, e.g. in response to changes in legislation.

* Input
Any input data which affects the case's eligibility and entitlement must be gathered so that it can be
converted into CER Rule Objects that are used by CER to perform calculations on that data.

* Calculate

The Engine requests that CER performs calculations to provide an initial determination result for a
case. The dependencies on input data used during the calculations are stored and thereafter, if any
input data changes which has a bearing on the determination result, the Dependency Manager will
automatically use the stored dependencies and run the CER calculations again to see if the overall

result has changed.

¢ Determination Result

A Determination Result is the overall output from CER eligibility /entitlement rules calculations, and
contains the "three Es" (Eligibility, Entitlement, Explanation) over the full lifetime of the case.

* Store

The Engine takes a snapshot of the Determination Result and stores it so that it can be used to
generate financials, display details to users and act as an audit of how decisions regarding a case were
arrived at.

¢ Schedule Financials

The Engine integrates with the application's Financial Engine to schedule financials (typically,
payments). If cases are retrospectively reassessed, then over and under-payments are automatically
handled.

e Retrieve

© Copyright IBM Corp. 2012, 2013 5

Case workers can view the full history of a case. They can see the eligibility, entitlement and
explanation for a case over its full lifetime (including cases which are open-ended). A full history of
determinations is kept, so that the user can see how corrections have been made to determinations as
circumstances have changed in the real world and/or corrections have been made to input data held
on the system.

* Assessment

The first determination for an active case is recorded as its initial assessment. This assessment is based
on the circumstances of the case at the time it was activated and gives rise to the initial financials for
the case.

* Reassessment

When circumstances change for an active case, or there is a change to the product which affects many
cases, then the Engine reassesses the case, possibly leading to a new determination result which in turn
can affect the financials for the case.

The remaining sections in this chapter provide more detail on eligibility and entitlement processing and
include an example story that spans the sections.

2.2 Product Configuration

An agency must decide what products to offer its clients, and must create a Product in their application.

There are several details that must be configured for a product (for details, see the How to Build a
Product guide). Some important configuration items highlighted here are:

* the types of evidence available on integrated cases and product delivery cases;
* the types of input data that can affect eligibility and entitlement calculations;

* the business rules for how to calculate eligibility and entitlement to the product (and explanations),
based on input data; and

* how the product's lifetime divides up into different "product periods", with different business rules for
legislation changes.

Once a product has been set up in the application, case workers are able to create individual product
delivery cases and progress those cases through a case life cycle, including eligibility and entitlement
processing. For more details on the case life cycle, see the Ciram Integrated Case Management Guide.

2.2.1 Example

An agency decides to offer a new product to provide financial assistance to lone parents (the "Lone
Parent" Benefit).

The business rules for the product dictate that eligibility decisions are based on a number of criteria,
including:
e the age of the child;

* evidence that the child normally resides with the parent, and that the parent has no live-in partner;
and

* a means test, of the family's income.

Product-design users in the agency design a new product configuration, which includes:

* New types of evidence for personal circumstances details pertinent to the Lone Parent Benefit product
(relationships from the claimant to their child or children), living arrangements, employments and
incomes, etc.);

* Eligibility /Entitlement/Explanation rules that calculate based on the parent's living arrangements and
their child or children's ages; and

6 IBM Cdram Social Program Management: Inside Ctram Eligibility and Entitlement Using Ctiram Express Rules

* Rule Object data configurations that allow the personal details of the parent and child, and the new
types of evidence, to be made available to CER for rules processing.

The product-design users notify the agency's case workers that the new product is now available for use
in the creation of product delivery cases to deliver benefits.

2.3 Recording of Input Data

Changes to data which may affect case eligibility and entitlement decisions can come in many forms,
including:

* new evidence records for events that have occurred in the real world;

e corrections to data which were recorded incorrectly or declared fraudulently; and

* product-wide data common to all cases.

Changes to such data can affect both:
* eligibility /entitlement decisions already made; and/or
* eligibility /entitlement decisions to be made in the future.

To accommodate both these needs, the Engine knows the types of data required by rules processing, and
uses the Dependency Manager to manage changes made to this data through the use of "precedent
change sets". When a change is made to data that can affect eligibility/entitlement decisions, an item is
added to a precedent change set. The points in the data capture life cycle where this typically occurs are
below:

Table 2. When Do Precedent Change Set Items Get Created?

What input data is recorded? When is an item added to a precedent change set?
Product Delivery Case When the case is created
Personal details When the personal details are recorded on the system,

but only for types of data configured to be pertinent to
eligibility /entitlement calculations (any other details are
ignored).

Evidence records for a case When the evidence is activated, for the types of evidence
configured to be pertinent to eligibility /entitlement
calculations (NB not when the evidence is first recorded,
as only when the evidence is activated is it deemed
trustworthy for eligibility /entitlement calculations).

Product-wide configuration information When an administrator publishes changes to rate tables,
rule sets, data configurations, or product configurations,
for those items configured to be pertinent to

eligibility /entitlement calculations.

For all input data aside from product-wide configuration information, when an item is written to a
precedent change set this results in the creation of a deferred process that when executed uses the
dependencies stored by the Dependency Manager to determine if any dependents exist for the precedent
change set item, and if so re-calculates those dependents. For changes to product-wide configuration
information an item is written to a precedent change set that is executed in batch mode.

2.3.1 Example

A case worker interviews a claimant who is a single father of a young daughter. The case worker advises
the father to apply for Lone Parent Benefit, and the father agrees to make such an application.

The case worker checks whether the father is already registered on the system, and finds that he is not
registered, and so the case worker must register the father's personal details before a case can be created.

Chapter 2. Eligibility and Entitlement Processing at a Glance 7

When the case worker completes the registration of the father's personal details, the system stores those
details. The system also creates a precedent change set item which results in the execution of a deferred
process. Because no dependencies on the father's personal details have yet been established, no
recalculations occur.

Having registered the father on the system, the case worker can now proceed to create a case for the
Lone Parent Benefit for the father. The case worker creates a product delivery case for the father's claim,
and the system stores a case record. The system also creates a precedent change set item for the creation
of the case that results in the execution of a deferred process, but again because no dependencies have
yet been established, no recalculations occur.

The case worker asks the father for information which the agency needs in order to make a
determination on the case. Initially, the case worker asks for personal details of the daughter (including
her date of birth). The case worker searches for the daughter on the system, but finds no registration
records and proceeds to register the daughter's personal details and also records the daughter as an
additional member of the case. The system stores these details and creates a precedent change set item
for each, but again deferred processing results in no recalculation.

The case worker goes on to ask the father for details of his living arrangement (i.e. partners and spouses)
and income for the household. The case worker records this information (which can change over time) as
evidence. The evidence is "in edit" and so has not yet become trusted data, and so at this point no
precedent change set items are created.

The case worker satisfies herself that the evidence presented by the father is indeed correct, and goes on
to activate the evidence. The system marks the evidence records as active.

2.4 Rules Calculations and Determination Results

When eligibility is determined within a product delivery case (for CER-based products) the system
retrieves any input data which affects the case's eligibility and entitlement from the relevant entities and
creates CER rule objects in memory which are used by CER to perform calculations on that data. This
includes the creation of a "case" rule object responsible for calculating the determination result for a case.
A determination result includes the eligibility, entitlement and explanation for the lifetime of a case, and a
request to calculate this result can occur in either a "active" or "reactive" way.

The following sections give a high-level summary of:

* what a determination result contains;

* what triggers the calculation of a determination result; and
* how a determination result is calculated.

2.4.1 What a Determination Result Contains

Each determination result contains information regarding the eligibility and entitlement of a case over the
case's lifetime and can include detailed explanations on the case eligibility and entitlement.

2.4.1.1 The Three Es: Eligibility, Entitlement, and Explanation
A determination result includes a range of decision information (provided by business rules) which can
be broken down into the categories referred to as the 'three Es': eligibility, entitlement, and explanation.

* Eligibility
The overall "yes" or "no" for whether the claimant is eligible for the product. Typically there will be

business rules which either "rule in" or "rule out" the case according to details of the case (including
personal details of the members of the case and evidence of their circumstances).

¢ Entitlement

The objectives which the claimant (and possibly other parties) are entitled to. For benefit products,
typically there will be monetary objectives, perhaps broken down into separate components. The case's

8 IBM Cdram Social Program Management: Inside Ctram Eligibility and Entitlement Using Ctiram Express Rules

entitlement is often an answer to the question "how much should the claimant receive?", but objectives
can be used for other purposes too. Note that a case's entitlement only applies during periods of
eligibility - whenever the case is ineligible, there is no entitlement.

* Explanation

The explanation (aimed at the case worker) for why the eligibility and entitlement calculation results
are what they are. For periods of eligibility, the explanation typically contains a description of why the
case is eligible, and for periods of ineligibility the explanation typically contains one or more reasons
why the case is ineligible. The explanation (when shown to the case worker) contains a number of tabs
for explaining entitlement calculations broken down into different categories, and also a display of
important events which have a bearing on the case's eligibility and entitlement.

Visually, the Engine presents explanations in these ways:

* a graphical view showing key decision factors. Each factor is shown as a date on which either an
important event occurred (e.g. the date of birth of a new child) or an important quantity changes value
(e.g. a rise in income); and

* display of arbitrary decision details laid out on a dynamic UIM page, for a period during the case's
lifetime for which the explanation is unchanging.

It can be useful to observe that the requirements that underpin eligibility /entitlement and explanation
calculations can come from very different sources:

* Eligibility and Entitlement

The requirements for eligibility and entitlement calculation typically have their roots in legislation or
policy documents, and thus are more-or-less "set in stone" when it comes to the implementation of
CER rules for providing those calculations. The job of the rules analyst and developers is the science of
translating "legalese" into CER rules, clarifying any uncertainties along the way. The acid test of the
implemented CER rules is whether they meet the proscribed legislation and/or policy. The rules
developer can exercise ingenuity in implementing the rules in the simplest way possible, but in the
main there is little creativity involved in the implementation task.

* Explanation

By contrast, the requirements for explanation are much looser, and typically center around "whatever
can be displayed in order to help the case worker understand the case, and/or help the case worker
answer questions from claimants about the case". As such, the analysis and development of CER rules
for explaining a determination are much more akin to art than science. The initial implementation of
explanation rules may be based around the best guesses of what questions might be asked of case
workers, and so it is recommended that explanation rules be implemented in such a way that they can
be easily enhanced later without needing any changes to the underlying (set-in-stone) eligibility and
entitlement rules.

2.4.1.2 The Determination Result Covers the Lifetime of a Case

The eligibility, entitlement and explanation may vary over the lifetime of a case. The lifetime of a case is
the period of time between the case's start and end dates, inclusive. Each case may bear an actual or
expected start date; if an actual start date is present then it is used as the start of the case, otherwise the
expected start date will be used. Similarly, a case may have an actual end date and/or an expected end
date, which governs the end date of the case's lifetime (with the actual date taking precedence over any
expected date).

Important: The end date for a product delivery case is optional. A case without an end date is known as
an "open-ended" case.

Each product is configured to specify whether or not it allows open-ended cases.
Open-ended cases may give rise to open-ended decisions and, ultimately, open-ended financial schedules

(i.e. "pay until further notice").

Chapter 2. Eligibility and Entitlement Processing at a Glance 9

In practice, each open-ended case will ultimately end due to some real-world event (and an end date will
be recorded, and the case will eventually be closed).

The lifetime of a case may include:
e Periods in the past

These are periods which have already occurred, and (assuming that the agency has a correct record of
all pertinent real-world events) will have been correctly calculated and assessed. For financial
components, these past periods will have already been paid (or billed). Any retrospective reassessment
of past periods (arising from corrections, or a lag between events occurring in the real world and their
subsequent notification to the agency) may result in changes to the determination for a past period,
and for these periods the system may need to make corrections to financials, e.g. through the use of
over/under payment cases.

e Periods in the future

These are periods which have yet to occur, and represent the system's "best guess" regarding
determination according to what is already known about the real world. New events which come to
light may cause this "best guess" to change, but in general a change in prediction of future

eligibility / entitlement will not require corrections to financials (except, perhaps, if payments are made
in advance rather than in arrears).

Because a case's determination is a value calculated for the case's lifetime, any change in the case's start
or end date (e.g. the extension of a case's expected end date) will cause the case to be reassessed. From a
CER perspective, the case's start and end dates are simply input data in the same way that evidence,
personal data and rates are.

In general, the eligibility, entitlement and explanation for a case will tend to change on the same dates.
However, in some cases, not all will change - for example, it is possible for a case to remain constantly
ineligible, but the reason for why the case is ineligible may vary over time, and hence the case's
explanation may change value on a date even though the case's eligibility does not change value on that
date.

Of course, the future gradually becomes the past at every passing moment; and so if "left unchecked" (i.e.
there are no changes to input data), the predictions made about future eligibility/entitlement will gently
flow into past "actual" eligibility /entitlement, and will be used as the basis for new financials.

2.4.2 What Triggers the Calculation of a Determination Result
The calculation of a determination is triggered at various points of the case life cycle, in one of two ways:
* Active

For various user-initiated case events, the Engine explicitly requests the value of a determination result
from CER. CER rule objects are created in memory through the use of a converter that retrieves data
from the relevant database entities and rules are then executed against this data.

¢ Reactive

Whenever the Dependency Manager detects that the values used in a case's assessment determination
result have changed, the Dependency Manager invokes the Engine to reassess the case.

The following sections explain Active and Reactive determinations in more detail.

2.4.2.1 Active Determination Calculation Requests
The Engine explicitly requests the value of a determination result from CER at these points in the case
life cycle:

e Prior to evidence activation

A case worker can manually request an interim determination for a case, based on either the active
evidence only, or the active and in-edit evidence on the case. This kind of determination is made

10 IBM Curam Social Program Management: Inside Ctram Eligibility and Entitlement Using Ctiram Express Rules

available on a "what if" basis, and the results are essentially disposable once seen by the case worker
who requested the determination. A request for an interim determination does not result in the storage
of any dependencies by the Dependency Manager.

e Approval

The system automatically records a snapshot of a case's determination result when the case is
submitted for approval, approved or rejected. This snapshot provides an audit trail of the state of the
case's eligibility /entitlement at the point at which important decisions are made about the case (e.g. the
information available to a supervisor at the point when the supervisor chose to accept or reject the
case). Determinations created during the approval process do not result in the storage of any
dependencies by the Dependency Manager.

e Activation

When a case is first activated, the system automatically records a snapshot of the case's determination
result, and this result is used as an input into financials processing. The Engine also uses the
Dependency Manager to store the dependencies that were identified and used by CER during its
calculations.

¢ Manual Redetermination

To support the ability to take a snapshot of a case's determination result at key points in the life cycle
of a case, for example when an appeal is created, a facility exists for a case worker to manually request
a redetermination for a case. For CER-based cases, the system will in most situations be up-to-date
with changes that affect a case and so any manual request to redetermine the case will likely not result
in a change to the case's determination. Determinations created during a manual request for
redetermination may cause changes to dependencies to be stored by the Dependency Manager.

* Generating Payments

When the application is generating payments for a case, it can be configured to reassess the case's
determination first in order to ensure that payments are never generated for out of date
determinations. This behaviour is controlled via the application property
curam.batch.generateinstructionlineitems.dontreassesscase.

At a CER level, a request for the value of a determination result is a request for the value of a particular
rule attribute on the CER rule object for the product delivery case. As described above, upon activation of
the case and creation of the initial assessment determination, the Engine will store the dependencies that
were identified and used by CER during its calculations. This includes all of the dependencies of the rule
attribute that holds the determination result. Once identified, these dependencies are now established so
that the system can react to changes in input data which may affect its value (and may cause reactive
re-determinations).

2.4.2.2 Reactive Determination Calculations

Once a case has been activated and an initial assessment determination has been created, then the items
upon which the determination result depends will be established as dependents so that the system may
react to changes which may affect it. This is in sharp contrast to traditional case processing which is
centered around having to write processing to identify affected cases; instead, the paradigm is much
closer to that of a "spreadsheet”, which automatically calculates results whenever input values change.

When any data that affects eligibility and entitlement is subsequently changed, an item will be written to
a precedent change set, and a request for a deferred process made. When executed, the deferred process
will then use the stored dependencies to determine the dependents for the precedent items that were
changed and recalculate those dependents. A dependent which relates to a case'will cause that case to be
reassessed.

The Dependency Manager does not really "understand" different types of input data; rather, it just knows
that a dependency exists from a determination result value to the various input data values used to

1. The Dependency Manager manages dependencies for items other than cases, too - e.g. Advice.

Chapter 2. Eligibility and Entitlement Processing at a Glance 11

calculate it (in the same way as a spreadsheet does not understand the purpose of the data typed into it).
From a business perspective, the types of input data change that can affect determination results will
typically include:

* changes to case data, e.g. start and end dates;

* changes to personal data, e.g. the correction of a date of birth or the recording of a date of death;

¢ changes to rate data, e.g. an increase in a benefit payment rate; and

* changes to product configuration, e.g. the introduction of a new period of legislation.

The Dependency Manager's lack of understanding of types of input data is the strength underpinning
how reactive determinations work. In a spreadsheet-like way, the Dependency Manager will reassess all
cases that are dependent upon the data that has been changed, regardless of whether that change ends
up affecting zero, one or very many cases. For some changes to input data, the Engine may reassess cases
but find that the overall determination result value has not changed, and in these circumstances no new
determination will be stored.

2.4.3 How a Determination Result Is Calculated

A determination result is calculated by the execution of a chain of CER rules.

These rules fall into two categories:
* Fixed Rules

The Engine includes some fixed rules which cannot be customized. These rules are responsible for
calculating the determination over different legislative periods, and for creating product-specific rule
objects for the execution of product-specific rules.

* Product-Specific Rules
Each product will have rules which contain the business and technical logic for the calculation of

eligibility /entitlement and explanations for that product. These rules also effectively link the product to
types of evidence, personal data and rates to be used in determination calculations for the product.

A high-level summary of the chain of CER rules execution for a determination is as follows:
* the case's lifetime is calculated, with reference to its actual and expected start and end dates;

* the case's lifetime is checked against the product periods for the product, to see which of these periods
overlap with the case's lifetime. These product periods will contribute to the case's determination (any
other product periods lying wholly outside the case's lifetime are ignored);

* for each contributing product period, product-specific rule objects for the case are created (one rule
object for the case's eligibility/entitlement, optionally’one rule object for key decision factors, and one
rule object for each category of decision details’), according to the configuration of the product period;

* for each product-specific rule object created, its output attribute values are calculated to get the
eligibility /entitlement/explanation results for a portion of the case's lifetime;

* the calculation of eligibility /entitlement/explanation results will involve the execution of lower-level
rules, which may perform searches to retrieve personal data, evidence and/or rate data. These searches
effectively link the case to the input data on which the case determination result ultimately depends.

* the results arising from different product periods are then "spliced together" to arrive at an overall
determination result which covers the full lifetime of the case.

2.1t is optional whether to configure the product period for key decision factors. If key decision factors are not configured for the
product period then no key decision factors rule object is created.

3.1t is optional whether to configure the product period for any decision details categories. If no decision details categories are
configured for the product period then no decision details rule objects are created.

12 IBM Curam Social Program Management: Inside Ctram Eligibility and Entitlement Using Ctiram Express Rules

2.4.4 Example

When the case worker has gathered evidence for the father's Lone Parent Benefit case, the father asks
how much benefit he is likely to receive. The case worker requests a manual determination based on the
in-edit evidence gathered (the evidence has not yet been approved).

The system actively calculates a determination result that:

 shows the father is eligible for benefit from 1st January 2001, up until his daughter is expected to reach
the age of majority on 14th December 2010 (which, at the time the claim is created, is many years in
the future);

 shows the father is entitled to $20 per week, but that this amount will rise to $25 per week from 1st
June 2002, when there is a planned increase in benefit payment rates;

* explains that the father meets all the eligibility criteria but has been means tested and thus is entitled to
a reduced rate of benefit due to his income.

At this point, no dependencies are stored by the Dependency Manager because the case has not yet been
activated.

The case worker activates the evidence, which results in items being written to a precedent change set,
and a deferred process being created. Because no dependencies yet exist for the case, no recalculation
occurs when the deferred process is executed.

The case worker then submits the case for approval. The system creates a snapshot of the determination
result (recalculated above) for audit purposes, and routes the case to a supervisor. The supervisor reviews
the case and approves it, and the system creates another snapshot of the determination result, and links it
to the record of the case approval. The case is activated and the system creates the initial assessment
determination result. The dependencies that were identified during the calculation of the determination
result are stored.

On 1st March 2003, the father remarries, and thus stops being a lone parent. The father is somewhat lax
with regard to informing the agency, and only gets around to telling a case worker about his new
marriage three months after it occurred. The case worker records the change in the father's personal
circumstances and activates the change in evidence. An item is written to a precedent change set, and
because the case is dependent upon the evidence in the case, CER recalculates a new determination for
the case. The determination shows that the father's eligibility stopped three months previously (on 1st
March 2003, his date of marriage) and that he has been overpaid in the meantime. The system initiates
overpayment processing to recover the amount overpaid. The case worker can see from the latest
determination that the reason that eligibility ended was due to the father no longer satisfying the "lone"
condition of the product's business rules.

On 1st May 2008, the father's wife dies, and the father notifies the agency that he is again a lone parent.
The change in his personal circumstances again results in an item being written to a precedent change
set, and the case once again being recalculated. It transpires that over the last few years, increases in the
father's income have pushed him out of the low-income bracket, and so despite now being "lone", he is
ineligible for the Lone Parent Benefit due to his income level. The determination viewed by the case
worker shows that when his wife died, the father continued to be ineligible for benefit, but the reason for
ineligibility changed (prior to his wife's death, the reason was that he was not "lone", after her death the
reason was that his means test failed due to his income level). The determination continues to show that
when his daughter finally reaches the age of majority (which is still in the future), he will continue to be
ineligible, but for a different reason again (namely that the father has no minor dependent). The
determination also continues to show all the historical changes in eligibility, entitlement and explanation
since the start of the case.

On 14th December 2010, the daughter becomes an adult. A case worker, who periodically reviews cases,
notices that the case has been inactive for some time and closes the case, recording an end date. The
open-ended determination result is replaced with a closed-period determination result.

Chapter 2. Eligibility and Entitlement Processing at a Glance 13

Throughout the evolving history for the case, each determination shows key decision factors such as the
date that the daughter was born, the date that the daughter became an adult, and changes in the
household's total income. For any constant period of explanation, there are different categories of
explanation, one showing a summary of which eligibility criteria have been met, and another showing
how the means test was applied during that period.

2.5 Determination Storage

For both active and reactive determinations, the Engine stores a snapshot of a determination.

There are two main groups of database tables used to store the determination data:

¢ CREOLECaseDetermination and its related tables - stores full details of the determination for later
viewing by a case worker; and

* CaseDecision and its related tables - stores details of the eligibility /entitlement result for input into
financial processing (typically to make benefit payments to the claimant).

For more details on these database tables and the processing that occurs around the storage of
determinations, see [Chapter 8, “How Determinations Are Stored,” on page 121

2.5.1 Example

When the father's Lone Parent Benefit case was initially activated (i.e. prior to his marriage and other
changes of circumstances), the father's entitlement was $20 per week from 1st January 2001, rising to $25
per week from 1st June 2002, with eligibility halting when his daughter reaches the age of majority on
14th December 2010.

This initial assessment determination would be stored as a single "current" record on the
CREOLECaseDetermination family of database tables, with these related records on the CaseDecision
family of database tables:

* eligible and entitled to $20 per week from 1st January 2001 to 31st May 2002 inclusive;
* eligible and entitled to $25 per week from 1st June 2002 to 13th December 2010 inclusive; and
* ineligible from 13th December 2010 until further notice.

When the evidence on the case and/or payment rates change, the records above are superseded and
replaced with a new set of "current" records.

2.6 Scheduling Financials

The financial scheduler is responsible for scheduling financial transactions based on the eligibility and
entitlement results and the case deductions. These financial schedules, known as financial components,
are used by the Financial Manager to create financial instruction line items. The financial scheduler sits
between the Eligibility and Entitlement Engine and the Financial Manager, translating eligibility and
entitlement results, as well as case deductions, into financial schedules that can be processed into actual
payments or bills.

Financial schedules will only be created from assessment determinations (for more details on the different
types of case determinations, see [Chapter 3, “Navigating Determinations,” on page 17).

2.6.1 Example

The case determination calculated earlier shows that from 1st January 2001 to 31st May 2002 inclusive the
father is entitled to $20 per week and that from 1st June 2002 to 13th December 2010 inclusive the father
is entitled to $25 per week.

14 IBM Curam Social Program Management: Inside Ctram Eligibility and Entitlement Using Ctiram Express Rules

Using this information the financial scheduler will produce one financial component to deliver $20
weekly from the 1st January 2001 to 31st May 2002 inclusive and a second financial component to deliver
$25 weekly from the 1st June 2002 to 13th December 2010 inclusive.

A few months later, the new case determination created following the budgetary review shows that the
father will be entitled to $28 from 1st January 2003.

Using this information the financial scheduler cancels the existing financial components and creates two
new ones. The first will continue to deliver $25 weekly until the current rate expires. The second will
deliver $28 weekly from the date that the revised rate comes into effect until the daughter reaches the age
of majority.

The following year, the new determination created following the father's marriage shows that the father's
eligibility stopped three months earlier (on the date of his marriage) and that the entitlement from that
date onwards was $0.

Using this information the financial scheduler cancels the existing financial component (for $28 weekly)
and creates a payment correction case for the amount overpaid to the father. The financial schedule
created within the payment correction case indicates that the father is liable for a once-off liability to
allow the agency to recoup the amount he has been overpaid.

Five years later, the new determination created after the father's wife dies shows that the father is still
ineligible, due to his income level. Since no eligible case decisions exist no financial schedules will be
created.

The daughter becomes an adult and the case is closed. When a case is closed any live financial
components on the case are also cancelled. However in this example no live financial components exist so
there is nothing for the financial scheduler to do.

The actual number of financial components required to represent these various financial schedules
depends on a number of factors including the nominee component assignments, the nominee delivery
patterns, the period to which the schedule applies and the case decision objective tags which have been
specified.

For more details on scheduling financials, see 2.6, “Scheduling Financials,” on page 14/

2.7 Determination Retrieval

A case worker can view determination snapshots for a product delivery case, including:

* the current assessment determination, if any - i.e. the determination which is the basis of the actual
delivery of the product (e.g. the basis for financials for benefit payments);

e historical assessment determinations, each of which was at one time current but has since been
superseded;

* snapshots taken when a case was submitted for approval, approved or rejected; and
* the result of requesting a manual determination.

When the case worker views a determination snapshot, then the system will analyze the determination
result to find the dates on which one or more of the eligibility/entitlement/explanation changes, and will
use these dates to carve up the case lifetime into coverage periods.

Each coverage period is shown with its from and to dates. If the case is open-ended, then the last

coverage period will be open-ended. If the case worker chooses to see decision details for a coverage
period, then the system will display a "vertical slice" through the determination data for that date.

Chapter 2. Eligibility and Entitlement Processing at a Glance 15

2.7.1 Example

A determination for the father's case establishes the following:

¢ the claim is eligible from 1st January 2001 up to 30th June 2005 inclusive

* the father is entitled to:
— $20 per week from 1st January 2001 to 31st May 2002 inclusive; and
— $25 per week from 1st June 2002 to 30th June 2005 inclusive;

* the explanation of the case varies:
— father passes all eligibility criteria from 1st January 2001 to 30th June 2005 inclusive;
— father fails the "lone" condition from 1st July 2005 to 31st January 2010 inclusive; and
— father fails the income means test from 1st February 2010 until further notice.

The dates on which items change can be combined to carve up the case's lifetime into these coverage
periods (where the eligibility, entitlement and explanation is constant throughout each coverage period):

* 1st January 2001 to 31st May 2002 inclusive;

e 1st June 2002 to 30th June 2005 inclusive;

* 1st July 2005 to 31st January 2010 inclusive; and
¢ 1st February 2010 until further notice.

16 IBM Curam Social Program Management: Inside Ctram Eligibility and Entitlement Using Ctiram Express Rules

Chapter 3. Navigating Determinations

3.1 Introduction

The Engine calculates and stores different types of determination results at various points of the case
lifecycle. This section describes how a case worker user can navigate the determinations using the screens
included with the Engine.

The Engine supports these types of determination:
* Manual eligibility check determinations;
* Snapshot determinations; and

¢ Assessment determinations.

Once the Engine displays a determination, then the case worker can drill into details of the
determination. The different types of details shown in the determination are described in later chapters:

* Eligibility/entitlement calculation results
See 4.2, “How It Looks,” on page 19}
* Key decision factors
See 5.2, “How It Looks,” on page 45 and
* Decision details
See 6.2, “How It Looks,” on page 59

3.2 Manual Check Determinations

The case worker can request a manual eligibility check on a product delivery case and choose whether
that check should include "in edit" evidence changes.

If the case worker chooses to base the eligibility check on in-edit evidence, then the Engine provides a
determination as if pending evidence changes had already been applied (see [7.6.2, “Temporary Access to|
[[n-Edit Evidence Changes,” on page 117), i.e. as if:

* newly-added evidence had been activated;
* corrections to existing evidence had been activated; and

¢ pending-removal evidence had been removed.

If the case worker instead chooses to use active evidence only, then any pending changes to evidence are
ignored.

The Engine displays the determination result for the manual eligibility check, noting whether or not
in-edit evidence was used. Once a manual eligibility check determination has been created, then the case
worker can navigate to the last manual eligibility check created.

3.3 Snapshot Determinations

The Engine automatically records a snapshot of a case's determination result when the case is:
* submitted for approval; and
* approved/rejected.

Snapshot determinations are displayed on the Case Calendar and a decision summary can be accessed
from the calendar view.

© Copyright IBM Corp. 2012, 2013 17

3.4 Assessment Determinations

The Engine creates an assessment determination whenever there is an active or reactive request to assess
a case. The Current Determination page displays the active assessment determination result. The active
assessment determination feeds through to financial processing, typically to dictate the amount payable
on a case.

The Determination History displays the list of all assessment determination results, the active assessment
determination result and superseded assessment determination results. There is also an option to
manually force the reassessment of an active case and view these results.

3.4.1 Current Assessment Determination

When a case worker clicks on the Determinations tab, the Engine displays the current assessment
determination, if any. This current assessment determination is the determination which currently
governs how the product is being delivered (typically, how much is payable).

If there is no current assessment determination (for example if the case has not yet been activated), then
the Engine displays a message explaining that no current assessment determination is available.

3.4.2 Historical Assessment Determinations

Within the Determinations tab, when a case worker clicks on the Determination History option, the
Engine displays a list of assessment determinations on the case (if any). The most recent (current)
assessment determinations (if any) are displayed at the top and the remainder are superseded
determinations (if any) - i.e. determinations which were "current”" at some time in the past, but have been
replaced due to a change which affected the case's determination result.

Recall that each determination covers the complete case lifetime, and typically includes past periods
based on real-world events and predictions based on expected events. Thus each superseded
determination contains the predictions about a case that the Engine made based on the known facts at the
time; if facts change, then the prediction must be superseded and replaced with a more accurate
prediction based on more accurate facts. The current determination represents the best prediction about
the case's future eligibility and entitlement based on facts known today.

3.4.3 Manual Reassessments

To support the ability to take a snapshot of a case's determination result at key points in the life cycle of
a case, for example when an appeal is created, the case worker can manually request that an active case
be reassessed. The case worker must confirm the request to manually reassess a case:

When a case is manually reassessed, the Engine displays the new determination result and notes that it
was due to a manual reassessment request.

18 IBM Curam Social Program Management: Inside Ctram Eligibility and Entitlement Using Ctiram Express Rules

Chapter 4. Calculating and Displaying Eligibility and
Entitlement

4.1 Introduction

Eligibility and entitlement results are the core data calculated by the Engine and underpin how the case
is treated by financial processing. The Engine contains features to calculate additional "explanation”
results (see [Chapter 5, “Calculating and Displaying Key Decision Factors,” on page 45| and |Chapter 6,|
|“Calculating and Displaying Decision Details,” on page 59), but it is critical to understand how the core
eligibility and entitlement results are calculated by the system and displayed to the user.

This chapter describes the flow of processing that allows eligibility and entitlement data to be displayed
to the user. The processing is intentionally described in reverse-chronological order; firstly we describe
the end results, followed by the Engine processing that produces those results, before finally describing
how the data was calculated.

This "backwards" perspective will echo how your rules designers will need to think when designing your
product; they will need to start with the end in mind (namely how case workers and financial processing
will use the eligibility and entitlement results to perform subsequent work on the case).

This chapter is structured as follows:
* How it looks

Describes how eligibility and entitlement information is displayed to a case worker.
* How it works

Describes how fixed processing by the Engine and custom processing combine to calculate and display
eligibility /entitlement results.

* How to use it

Describes the steps you will need to follow to implement eligibility /entitlement calculations for your
product.

4.2 How It Looks

This section describes how eligibility and entitlement information is displayed (in summary form) to a
case worker.

The structure of eligibility and entitlement data is intentionally restrictive; it contains the information
required to allow Cdram Financials to subsequently process the case, such as whether the case can be
paid, and if so how much and to whom.

Because the structure of the eligibility and entitlement data is fixed by the Engine, the Engine knows how
to display this information for any CER-based case, and so includes standard screens capable of
displaying summaries of a case's eligibility and entitlement. (For the display of more flexible data specific
to your product, see |Chapter 5, “Calculating and Displaying Key Decision Factors,” on page 45| and
[Chapter 6, “Calculating and Displaying Decision Details,” on page 59.)

Eligibility /Entitlement data is also used as input into Ctiram Financials; for more details on this use of
the data, see|Chapter 8, “How Determinations Are Stored,” on page 121/ and [Chapter 9, “Scheduling|
[Financials,” on page 131/

© Copyright IBM Corp. 2012, 2013 19

4.2.1 Viewing a Determination's Coverage Periods

The case worker can navigate to an assessment determination for a product delivery case as described in
.4, “ Assessment Determinations,” on page 18|

A determination covers the full lifetime of the case (as known at the time the determination was made -
the case's lifetime may have subsequently changed and a newer determination recorded). The
determination is open-ended because the case itself is open-ended, so the latest decision for this
determination applies until further notice.

The determination is divided into a number of contiguous "Coverage Periods". Broadly each coverage
period is a period of constant eligibility, entitlement and explanation for a determination.

For each coverage period, the system shows the eligibility result for that period, and a summary of the
amount payable. This coverage period data is standard eligibility /entitlement information and the Engine
ships with a standard screen for displaying this information for any CER-based case. You should not
need to write your own coverage period screens unless you have special requirements.

4.2.2 Basic Eligibility/entitlement Decision Details

The Engine also provides the ability to present a case's entitlement information in a very basic way. The
details are presented in a somewhat technical way, as a list of objectives and their respective tags.

The Engine does not automatically show this information for your product; however it is relatively easy
to configure your product to show this information, typically as a stepping stone on the way to fully
developing your product.

These "basic" eligibility /entitlement details are a simple implementation of Decision Details rules (see
[Chapter 6, “Calculating and Displaying Decision Details,” on page 59); typically these details are too
simple to be useful to a case worker, but may be useful to your developers during the development of
your product, and so may be used as "scaffolding" during your development cycle. See[11.3.10, “Re-used]
[the Basic Decision Details before Writing Your Own,” on page 167 for a description of how to enable
these basic details for your product.

4.3 How It Works

This section describes how fixed processing by the Engine and product-specific processing combine to
calculate and display eligibility /entitlement results.

The calculation and display of a determination involves a mixture of:
* fixed processing contributed by the Engine; and
* custom product-specific processing contributed by you (i.e. the implementation of your product).

The Engine follows the following high-level steps to arrive at eligibility and entitlement data that can be
displayed to a case worker:

¢ At Determination Calculation time:

— An action occurs which triggers the determination of a case (either an active or reactive
determination);

— The Engine identifies the product periods (configured for the product) that cover the case's lifetime;

— The Engine uses CER rules (specific to the product) to calculate the eligibility and entitlement for
each contributing product period;

— The Engine calculates the eligibility and entitlement across the lifetime of the case by "splicing
together" the eligibility and entitlement from each contributing product period;

— The Engine calculates the eligibility and entitlement across the lifetime of the case by "splicing
together" the eligibility and entitlement from each contributing product period;

20 IBM Ctram Social Program Management: Inside Ctram Eligibility and Entitlement Using Ctiram Express Rules

— The Engine stores (on the database) a determination result containing the eligibility and entitlement
data (as well as key decision factors and decision details, covered elsewhere in this document).

¢ At Determination View time:
— A case worker requests to view a determination on a case;

— The Engine retrieves the determination result from the database and identifies its coverage periods;
and

— The Engine lists the coverage periods for the case, and uses the decision summary display strategy
configured for the product to produce a summary of the entitlement for each coverage period.

The data interfaces and implementation for calculation of eligibility /entitlement, and subsequent display
of eligibility/entitlement data are described in more detail below.

4.3.1 Calculation of Eligibility and Entitlement

The responsibilities for calculating a case's eligibility and entitlement are divided between fixed
implementations provided by the application and product specific implementations for a product (some
of which must adhere to application-provided interfaces). This section describes the important interfaces
and implementations involved in the calculation of the eligibility /entitlement results that form part of a
determination result.

Sections A, B, and I describe a layer of fixed implementations that are responsible for calculating and
storing the overall determination result.

The processing described in sections C, D, and E represents a combination of fixed interfaces and custom
product-specific processing that is responsible for determining the eligibility and entitlement for the case
across product periods.

Section C describes a fixed interface included with the Engine that serves as the interface between the
fixed eligibility /entitlement processing provided by the Engine and the product-specific rules for the
calculation of eligibility and entitlement results.

Sections D and E both describe custom product-specific processing.

The final layer described in sections F, G, and H represents a mixture of fixed implementation and fixed

interfaces contributed by the engine, as well as custom product-specific processing that is responsible for
retrieving the data from entities, evidence and rate tables used by the custom product-specific processing
described in section D.

4.3.1.1 A) ProductEligibilityEntitlementRuleSet ProductDeliveryCase rule object
When the calculation of a determination is triggered, the Engine automatically creates a
ProductETigibilityEntitTlementRuleSet.ProductDeliveryCase rule object for the case in memory and
populates it with case data, including the case ID, start date, expected start date, end date, and expected
end date. This processing is critical to the Engine and cannot be customized. The rule object is
responsible for calculating the overall determination result (including the calculation of

eligibility / entitlement information).

In particular, the rules for the rule object's calculated attributes are fixed and cannot be customized:

* the value of contributingProductPeriods is provided by the static method
curam.core.sl.infrastructure.assessment.impl.Statics.contributingProductPeriods (which is
included with the Engine), which returns a timeline of ProductPeriod rule objects (see below); and

* the value of determinationResult is provided by the static method
curam.core.sl.infrastructure.assessment.impl.Statics.determinationResult (which is included
with the Engine), which returns a
curam.core.sl.infrastructure.assessment.impl.DeterminationResult Java data object (see below).

Chapter 4. Calculating and Displaying Eligibility and Entitlement 21

4.3.1.2 B) ProductEligibilityEntitlementRuleSet.ProductPeriod rule objects

The Engine also retrieves product period information from the database, including the start date and end
date, and creates a ProductPeriod rule object in memory for each published product period in the system.
For a new product, there is typically only one period covering the lifetime of the product, but as new
legislation is introduced, then it is possible (depending on design approach) for the product to have more
than one period. For more information on adding product periods over time, see
[“Incremental Design and Evolution,” on page 161

These product periods allow the Engine to identify which ones will contribute to a determination on a
case - namely the periods that overlap in any way with the case's lifetime. Other product periods outside
the case's lifetime (i.e. before the case started or after it ended) do not contribute. The structure and
maintenance of the ProductPeriod rule objects is fixed by the Engine and cannot be customized.

4.3.1.3 C) ProductEligibilityEntitlementRuleSet AbstractCase rule class

The Engine creates an Abstract Case rule object in memory for each Product Period rule object stored in
memory. The AbstractCase rule class acts as the interface between the fixed eligibility /entitlement
processing provided by the Engine, and the product-specific rules for the calculation of eligibility and
entitlement results.

This "interface" rule class ensures that concrete sub-rule-classes have implementations for the following
calculated rule attributes, which provide the fixed-structure eligibility and entitlement results required by
the Engine:
* isEligibleTimeline
Responsible for calculating the intervals of time during which the case is/is not eligible during the
product period; and
* objectiveTimelines
Responsible for calculating the objectives that the case may be entitled to, and for each objective, the

intervals of time when the case is/is not entitled to the objective, and the tag values available (see
W4.4.3.2, “Write the Case Eligibility /Entitlement Calculation Rule Classes,” on page 33 for more details).

The Engine-supplied interface rule set has no implementations for these attributes - rule classes must be
written (see below) to provide implementations for the business requirements of the product; rather the
interface rule class allows the Engine to communicate with the rule classes by specifying a contract for
the data structures that it requires.

4.3.1.4 D) Custom rule classes for eligibility/entitlement

When the Engine calculates eligibility /entitlement results for a product period, the Engine first asks the
product period which rule class should be used (which is recorded on the product period as part of
setting up a product).

The rule class specified on the product period must ultimately extend from the
ProductETigibilityEntitTementRuleSet.AbstractCase interface rule class. For ease of upgrades, it is
recommended that the rule class extends the DefaultProductEligibiTlityEntitlementRuleSet.DefaultCase
rule class which provides default implementations.

The rule class must provide implementations of the isEligibleTimeline and objectiveTimelines rule
attributes, which is where the bulk of the implementation effort for eligibility /entitlement calculations
will lie (and in fact this effort may form the bulk of the overall product implementation). See
|“Write the Case Eligibility/Entitlement Calculation Rule Classes,” on page 33| for more details on the
work involved in implementing these attributes.

If the product has different product periods, due to a change in legislation that affects how eligibility
and/or entitlement is calculated, then each product period will be configured to use a different rule class.

22 IBM Ctram Social Program Management: Inside Ctram Eligibility and Entitlement Using Ctiram Express Rules

4.3.1.5 E) Custom rule classes for calculations

Typically the calculations of eligibility and entitlement stored in the isEligibleTimeline and
objectiveTimelines rule attributes may involve complex business calculations, and CER rule classes can
be created to structure these calculations in line with business requirements.

Any such rule classes do not need to adhere to any application-supplied interfaces (although the CER
"extends" mechanism may be used to create a hierarchy of rule classes to treat rule objects in a

polymorphic way if useful).

Some of the calculations will involve accessing stored data, by retrieving rule objects of these types:

* rate cells (see 4.3.1.6, “F) RateRuleSet.RateCell rule objects and propagation configuration”);

+ custom entities (see 4.3.1.7, “G) Custom Entity rule objects”); and /or

* custom evidence (see [4.3.1.8, “H) Custom Evidence rule objects.”|

Note: These retrievals cause a dependency to be stored between the case's determinationResult and the
underlying stored data, which is how the Engine handles reassessment of cases when data changes (see
[Chapter 10, “Reassessment - Handling Changes in Circumstance,” on page 145

4.3.1.6 F) RateRuleSet.RateCell rule objects and propagation configuration

The Engine stores and maintains RateCell rule objects on CER's database tables for cells from certain rate
tables. The data from the rate table cells is propagated to these rule objects when modified and is stored
in a valueTimeline rule attribute that stores the value of the rate over time. The list of rate tables that are
propagated to rule objects is configurable (see [7.4.2.2, “Configuration,” on page 90), but otherwise the
processing is supplied by the Engine and cannot be customized.

Typically the eligibility and/or entitlement calculations for a product will involve comparisons with or
multiplications by rates (in addition to case-specific data); and rules for calculations will access such rates
via RateCell rule objects.

4.3.1.7 G) Custom Entity rule objects

When the calculation of a determination is triggered, the Engine queries rule object data configurations to
determine what entities contain data that is required by CER for rules processing and supports the
population of CER rule objects in memory for each of the relevant entities. The Engine contains a generic
mechanism for populating the rule objects with the data from these custom entities (see
[Rule Objects,” on page 92).

4.3.1.8 H) Custom Evidence rule objects

When the calculation of a determination is triggered, the Engine queries rule object data configurations to
determine what custom evidence types (both static and dynamic evidence) contain data that is required
by CER for rules processing and supports the population of CER rule objects in memory for each of the
relevant evidence types. The Engine contains a generic mechanism for populating the rule objects with
the data from these custom evidence types (see|7.4.4, “Active Succession Set Rule Objects,” on page 100|
and [7.4.5, “Active Evidence Row Rule Objects,” on page 107).

Each rule class for a custom evidence type must ultimately extend the Engine-supplied
PropagatorRuleSet.ActiveSuccessionSet or PropagatorRuleSet.ActiveEvidenceRow rule classes.

The population of CER rule objects for dynamic evidence types is handled automatically (see the section
on "Generated Rule Sets" in the Ciram Dynamic Evidence Configuration Guide).

Chapter 4. Calculating and Displaying Eligibility and Entitlement 23

4.3.1.9 |) DeterminationResult

The ultimate determination output from the
ProductEligibiTityEntitTlementRuleSet.ProductDeliveryCase.determinationResult attribute is an
immutable instance of the curam.core.sl.infrastructure.assessment.impl.DeterminationResult
interface.

This object holds data only (the methods on the interface are accessors only). The determination result is
created by the Engine when splicing together the individual eligibility and entitlement results across the
case's division into different product periods and is stored on the database. Note that in the simple case
(typically for recently-created products) where the product has only one product period, the entire
eligibility and entitlement results are exactly those contributed by the single product period which covers
the entire case lifetime.

The DeterminationResult data holds the following:
* productDeliveryID

The unique identifier of the product delivery case;
* determinationDateRange

The "lifetime" of the determination, which was the lifetime of the case at the time the determination
was taken;

* determinationEligibilityEntitlementTimeline

The varying eligibility/entitlement data for the case, spliced together from the isETigibleTimeline and
objectiveTimelines values from the rule objects created for each of the contributing product periods;
and

* Other data not directly relevant to eligibility and entitlement (and so covered elsewhere in this
document - see5.3.1.5, “E) DeterminationResult,” on page 48| and 6.3.1.7, “G) DeterminationResult,’]

|9n page 64|D.

The DeterminationResult structure is provided by the Engine and cannot be customized in any way.

4.3.2 Display of Eligibility and Entitlement

The vast majority of data processing for eligibility and entitlement occurs at the time when the
determination result was calculated, as described in the previous section.

However, some data processing for eligibility and entitlement occurs at the time that the data is viewed;
and this section describes the display-time processing of eligibility and entitlement data.

When a case worker views a determination then the Engine automatically:
* divides the determination into coverage periods; and
* displays a summary of entitlement for each coverage period.

4.3.2.1 Dividing the Determination into Coverage Periods

When a case worker views a determination, the Engine automatically divides up the case lifetime into a
number of coverage periods. Each coverage period is a period within the determination where the
following are constant:

* The eligibility (yes/no);
* The entitlement (which objectives, their targets and references, and their tag values); and

* The decision details data (see [Chapter 6, “Calculating and Displaying Decision Details,” on page 59).

Or, to put it another way, any change in eligibility, entitlement and/or decision details along the lifetime
of the determination causes a new coverage period to come into effect on that date.

24 IBM Curam Social Program Management: Inside Ctram Eligibility and Entitlement Using Ctiram Express Rules

Note: A change in a key decision factor on a particular date does not in itself cause a new coverage
period to start on that date.

Typically, though, the fact that there is a change to a key decision factor on that date tends to mean that
the eligibility /entitlement and/or decision details are likely to change on that date, too (and the change
in eligibility /entitlement and/or decision details will cause a new coverage period to start on that date).

The division of the determination into contiguous coverage periods occurs automatically on the Engine's
standard screens for viewing a determination, and cannot be customized.

4.3.2.2 Displaying a Summary of Entitlement for a Coverage Period

The Engine includes an interface for providing a summary description of the entitlement for a coverage
period: curam.core.sl.infrastructure.assessment.impl.DeterminationIntervalSummarizerStrategy
interface. See the JavaDoc for this interface for more details.

When you set up your product, you may specify an implementation of this interface that the Engine will
use when displaying a coverage period. The Engine invokes this strategy implementation whenever it
displays a coverage period for a determination, and the strategy implementation is responsible for
returning an appropriate summary line of text (in the user's locale).

Note that:

* if you do not specify a strategy implementation for your product, then no summary for the coverage
period will be displayed; and

* if you subsequently change the strategy implementation for your product, then only the display output
shown to users is affected; the system will not reassess cases nor cause any changes in financial output.

As such, specifying a strategy implementation for entitlement summaries is not critical to getting your
product up and running; this task can be deferred until later in the development cycle if need be.

4.4 How to Use It

Most of the high-level processing for eligibility and entitlement is fixed logic provided by the Engine.
However, you will have to provide implementations for certain lower-level logic. In order to do this, you
must understand the basic concepts of eligibility and entitlement.

In addition to providing an understanding of these concepts, this section describes the work you will
need to do to complete the eligibility and entitlement logic for your product, as follows:

* Analysis;
¢ Implementation; and
* Testing.

Note: This section describes the complete work for eligibility/entitlement logic; however, for short-cuts
you can take to get your product up-and-running quickly, see[11.3, “Incremental Design,” on page 163|

4.4.1 Understanding Eligibility and Entitlement Concepts

The Engine has a fixed data structure for eligibility and entitlement data. Understanding the structure of
this data is critical as you must map your business requirements to the concepts in this structure.

4.4.1.1 Case Lifetime

The lifetime of a case is the period of time between the case's start and end dates, inclusive.

Each case may bear an actual or expected start date; if an actual start date is present then it is used as the
start of the case, other- wise the expected start date will be used.

Chapter 4. Calculating and Displaying Eligibility and Entitlement 25

Similarly, a case may have an actual end date and/or an expected date, which governs the end date of
the case's lifetime (with the actual date taking precedence over any expected date).

A case without an end date is known as an "open-ended" case. A determination for an open-ended case
will thus be an open-ended determination; and the final coverage period in that determination will be
open-ended too.

4.4.1.2 Eligibility

On any given day in the case's lifetime, the case is either eligible or ineligible for delivery (depending on
the circumstances of the case).

The Engine thus treats the case's eligibility as a Boolean value which can vary over the lifetime of the
case (and thus in CER terms is a Timeline of Boolean values).

For example, a claim for child benefit may be eligible today but will cease to be eligible once the child
being claimed for reaches the age of majority.

4.4.1.3 Objectives

An objective is something "delivered" by a product delivery case to a particular target. Commonly an
objective is a payment of some kind of benefit or allowance paid to a client, but an objective could also
be (for example) an amount to bill, or a non-monetary outcome such as a recommendation to the client.

The Engine has separate concepts for:

* the types of objective supported by your product, e.g. your product supports the concept of a personal
benefit allowance; each type of objective defines its name and other fixed data such as the type of
client that it targets; vs.

* an instance of an objective on a particular product delivery case, e.g. on case 123 for your product,
claimant John Smith is entitled to personal benefit allowance from 1st Jan 2011 until 15th Feb 2011;
each objective instance describes the particular target to deliver to and the period(s) for which that
target is entitled to the objective.

On any given day in the case's lifetime, if the case is eligible then the case is either entitled or not entitled
to any particular objective instance. Equivalently, we say that an objective instance was attained or not
attained on that day.

The rule classes for objective types and instances described later in this section show the full details
available.

4.4.1.4 Objective Tags

An objective tag is a frequency at which an objective may be delivered. Commonly for payment
objectives, the objective will support a mixture of delivery frequencies, e.g. daily and weekly, to support:

* Different frequencies of payment offered to the client; and

¢ Payments for ramp-up and ramp-down periods. These are described more in |9.2.2.4, ”Calculatingj
[Financial Component Cover Periods,” on page 132

The Engine has separate concepts for:

* the types of tag supported by a particular type of objective, e.g. the personal benefit allowance
(supported by your product) may be paid either weekly or daily; vs.

* an instance of a tag on a particular objective instance, e.g. on case 123 for your product, claimant John
Smith can be paid $10 per week, when receiving the personal benefit allowance to which he is entitled.

The rule classes for objective tag types and instances described later in this section show the full details
available.

26 IBM Curam Social Program Management: Inside Ctram Eligibility and Entitlement Using Ctiram Express Rules

4.4.2 Analysis

You must understand the requirements for your product, and analyze how these requirements broadly
map to the Engine's eligibility /objective/tag concepts before starting implementation.

Typically, the requirements for eligibility /entitlement are enshrined in legislation, and so the task of
implementing the requirements is, to a certain extent, a translation exercise (albeit a complex one). We
note this here as the tasks described later in this document (for key decision factors and decision details)
differ in nature.

The following steps should aid your analysis.

4.4.2.1 Ildentify the product periods for your product
You must understand whether there are any significant changes in legislation already in place for your
product, and whether you will implement these changes using multiple product periods.

Typically, for new products there is (to date) only a single version of the legislation, and so usually a new
product will initially have only a single product period set up. Subsequent changes in legislation may
occur once your product matures, of course.

See [11.4, “Handling Legislation Change,” on page 168 for how to decide whether your product should
have multiple product periods for legislation changes, or rules that branch based on legislation change.
This will help you analyze how many periods your product is split up into.

Each product period will typically have its own special rule class for eligibility and entitlement
calculations.

For a new benefit product created via the dynamic product wizard a default product period is
automatically inserted and has a default eligibility and entitlement rule set associated with it. Although
the default product period is published upon creation of the benefit product, the default eligibility and
entitlement rule set is left in an in-edit state following completion of the dynamic product wizard. The
rule set appears in the list of rule sets available for publication on the Ctiram Express Rule Sets page of
the Administration Workspace and is a generic rule set which is not suitable for product use prior to
update. The rule set should be edited within the Ctiram Express Rules editor to meet product
requirements prior to use of the newly created product. See the section "Configuring the Product in the
Administration Workspace" in the How to Build a Product Guide for additional information about new
products created using the dynamic product wizard.

4.4.2.2 |dentify what types of objective are delivered by your product, and at what
frequencies
For each product period, you must identify the types of objectives that your product supports.

Identify what it is that your product "delivers". A common type of delivery is that of a benefit payment
to a person or a household. There may be more than one type of thing delivered by your product, for
example your product may deliver two different financial components (aimed at different types of
nominees - for example a personal allowance and a child allowance), and also a recommendation.

Once you have identified what it is that your product delivers, you need to map these deliverable things
to types of objectives. You may have a design decision to make regarding whether to have a smaller
number of complex objective types, or a larger number of simple objective types.

To answer this you may need to consider such things as whether each case needs to have the flexibility to
pay certain types of benefits to one nominee and other types of benefit to different types of nominee:

* if so, you may well need to have separate types of objectives for the different types of benefit that your
product delivers; however

Chapter 4. Calculating and Displaying Eligibility and Entitlement 27

* if benefit payments are always to a single nominee, then your choice of whether to implement separate
objective types may rest on whether the total benefit paid is a simple aggregation of all objectives
achieved, or whether there are complex rules to come up with the total amount payable (if the latter,
then one complex objective type is likely to be more suitable).

You may find it useful to come up with a trial design of objectives, and walk through different business
scenarios and how they are treated by the Engine and financial processing, to ensure that your business
requirements mapping to objective types allows your business requirements for your product to be met.

Once you are happy with your types of objectives, then for each type of objective, identify at what
frequency it can be delivered. Typically a daily rate is always required (to handle ramp up and ramp
down periods) but you can implement longer periods such as weekly or monthly too. These longer
periods can be useful if your daily rate represents a rounded-up fraction of a weekly or monthly rate, or
if your eligibility results are always exactly some larger unit, e.g. if you have business requirements that
say each case is either entitled to an objective for an entire month or not at all.

At this point, you have identified the types of things delivered by your product in general; now you need
to turn your attention to how the system will decide HOW to deliver a particular product delivery CASE.

4.4.2.3 ldentify the rules that govern when a case is eligible
You must analyze the rules for how the system should determine a case's eligibility. The structure of
these rules can vary very much from product to product.

It is common for eligibility rules to center around the claimant or household falling into a particular
category, where each category is determined by the claimant or household meeting a number of
conditions. The categories and the rules for each typically form the "highest level" of rules for eligibility.

For some products, the case's overall eligibility can be determined without reference to the entitlement to
any objectives; for other products the eligibility and entitlement calculations are much more intertwined
(e.g. for some products, you may only want the case to be deemed eligible if one or more objectives are
attained). You will need to visit your business requirements to understand the interplay (if any) between
eligibility and entitlement calculations for your product.

The eligibility result calculated by the Engine is a Timeline of Boolean results, and thus allows for the
eligibility to vary over time. For some simple products, the eligibility on any given day is purely
determined by the case's circumstances on that day; however, for some more complex products, the
eligibility on one day may be influenced by events that have occurred on other days (e.g. an event that
occurred in on a different day in the same month). You should take care to understand your business
requirements for applying events that occur on one day to an overall eligibility result for different days.

For more information on CER's support for Timelines, (see "4.5 Handling Data that Changes Over Time"
in the Ciram Express Rules Reference Manual)

4.4.2.4 Identify the rules that govern the objectives for each case
You must analyze which objective instances are required for each case. Typically the creation of objectives
falls into one of these patterns:

* Single Objective
For a given objective type, there is always exactly one objective instance for the case; and/or
* Multiple Objective

For a given objective type, there is one objective instance for each member of the case who meets
certain criteria.

For example, a product aimed at a household with children might always deliver exactly one "basic
household allowance" objective to the overall household, but also deliver a "child allowance" objective to

28 IBM Curam Social Program Management: Inside Ctram Eligibility and Entitlement Using Ctiram Express Rules

each child. Thus a household with 3 children would be have 4 objectives created - one for the household
and one for each child. A household with no children would have only a "basic household allowance"
objective created.

Note that the Engine does not impose these single/multiple objective patterns; the creation of objectives
can be as complex as your business requirements dictate.

4.4.2.5 ldentify the rules that determine when an objective has been attained and
its target

For each objective instance that will be created for a case, you must analyze the rules for deciding at
which points in the case lifetime the case is entitled to the objective.

Whether or not a particular objective has been attained can vary over time - e.g. an allowance payable
whenever a parent is absent from the household will be attained when a parent leaves and will cease to
be attained once the parent returns; if the parent leaves and returns many times over the case's lifetime,
then the case's entitlement to the objective will similarly vary many times.

For some simple products, the case is always entitled to an objective by dint of the case being eligible for
that period of time, and thus there is no real entitlement calculation required. For other more complex
products, the rules for entitlement to a given objective can rival those for overall case eligibility in terms
of their complexity. It can be useful to have an understanding of the relative complexity of your overall
case eligibility rules vs. the entitlement rules for your various objective types.

You must also analyze the requirements for the target of each objective instance, and any useful related
reference information. The Engine allows the values these to vary over time, but for typical products the
values are constant.

4.4.2.6 ldentify the rules that determine the values at which an objective can be
delivered

For each objective, you must analyze the value(s) to be used when it is delivered (i.e. during periods
when the overall case is eligible, and also that the case is entitled to the objective).

Earlier you analyzed each type of objective to understand the frequencies at which instances may be
delivered; now for each these frequencies you must analyze how the Engine will calculate value of an
objective instance at that frequency.

For some simple products, the value may be a fixed rate (possibly retrieved from a rate table); for other
more complex products, the value may be a complex calculation involving the case's circumstances.

It is common to see a pattern whereby the value for one frequency provided by a calculation, and then
values for other frequencies based on it. For example, on one product there may be a complex calculation
to provide a daily rate for an entitlement, but the calculation for the weekly rate is simple 7 x <daily
rate>; or on another product, there may be a complex calculation for a monthly rate, and then the daily
rate is calculated as 12 x <monthly rate> / 365, rounded up to the nearest cent (in favor of the claimant).

Note that the Engine does not enforce these patterns; the calculation of each frequency's value can be as
complex as business requirements dictate.

4.4.3 Implementation

Having analyzed your business requirements, you are now in a position to start the implementation of
your eligibility and entitlement calculations for your product. A default eligibility and entitlement rule set
is automatically created for benefit products by the dynamic product wizard, and this rule set should be
edited in line with the guidelines below to suit your product needs. The default name of this default
eligibility and entitlement rule set is ProductNameWithBlankSpacesRemoved
DefaultEligibiTityEntitTementRuleSet, but it is possible to override the name of this rule set on the

Chapter 4. Calculating and Displaying Eligibility and Entitlement 29

Eligibility Determination page of the dynamic product wizard. It is also possible to create a new
eligibility and entitlement rule set for your product, which should follow the guidelines below.

If your product is complex, then consider sketching out the implementation rule classes on paper or in an
object-oriented modelling tool prior to creating CER rule sets. You can then use the sketch to validate
your rule classes against various business scenarios.

The rule classes that you create will end up interrelating so it will be useful to keep these
interrelationships in mind as you implement your rule classes. The sections below this provide a
step-by-step path to implement your eligibility /entitlement calculations.

4.4.3.1 Write the Product Structure Rule Classes

For each product period, you must create a rule class which is responsible for describing the structure of
your product, i.e. which types of objectives it supports. Typically the structure of your product will be
identical across product periods and you need only create one set of rule classes which will be used on
each product period.

For a new benefit product created via the dynamic product wizard, a product structure rule class will be
included in the default eligibility and entitlement rule set that is associated with the default product
period created for the product at the completion of the dynamic product wizard. This default product
structure rule class should be edited to meet your product requirements prior to product use.

You will require the following rule classes:
* one Product rule class for your overall Product;
* one or more Objective Type rule classes, one for each type of objective supported by your product; and

* one or more Objective Tag Type rule classes, one for each frequency supported for each of the types of
objective supported by your product.

You will also relate these rule classes to each other by implementing rules that return instances of your
rule classes; thus the product rule class has an attribute for identifying its types of objectives, and each
objective type has an attribute for identifying its supported tags. The default eligibility and entitlement
rule set created for the benefit product by the dynamic product wizard will already contain each of these
rule classes, but they should be edited to meet your product requirements prior to product use.

The following sections describe the creation of these rule classes and their interrelations in detail.
Write the Product rule class

Your rule class to describe your product's structure must ultimately extend from the
ProductETigibilityEntitlementRuleSet.AbstractProduct interface rule class. For ease of upgrades, it is
recommended that your rule class extends the
DefaultProductEligibilityEntitTlementRuleSet.DefaultProduct rule class which provides default
implementations. The default eligibility and entitlement rule set that is automatically created for benefit
products by the dynamic product wizard will contain a Product rule class which extends the
DefaultProductETigibilityEntitlementRuleSet.DefaultProduct rule class.

Here is a description of the attributes inherited from AbstractProduct:

Table 3. Rule attributes inherited from ProductEligibilityEntitlementRuleSet. AbstractProduct

Rule Attribute name Data type Description

objectiveTypes List of The types of objective supported by this product.
AbstractObjectiveType

30 IBM Ciram Social Program Management: Inside Ctram Eligibility and Entitlement Using Ctiram Express Rules

To write the Product rule class, create a rule class which extends
DefaultProductETigibilityEntitlementRuleSet.DefaultProduct. The rule class should be named in line
with your product, e.g. ProductName Product (the Engine does not have any technical constraint on the
rule class name - rather a good name for your rule class may make it easier to develop and maintain
your rule sets). The default name of the Product rule class within the default eligibility and entitlement
rule set that is automatically created for a benefit product by the product wizard is
ProductNameWithBlankSpacesRemoved Product.

The inherited implementation of objectiveTypes returns an empty list; leave this implementation for now
and you will return to it once you have created your objective type and tag rule classes.

Write the Objective Type rule classes

For each type of objective supported by your product (for example, a Personal Benefit Allowance or a
Child Benefit Allowance), you must create a rule class which must ultimately extend from the
ProductETigibiTityEntitlementRuleSet.AbstractObjectiveType interface rule class. For ease of upgrades,
it is recommended that your rule class extends the
DefaultProductEligibilityEntitlementRuleSet.DefaultObjectiveType rule class which provides default
implementations. The default eligibility and entitlement rule set created for benefit products by the
dynamic product wizard will contain two Objective Type rule classes each of which extends the
DefaultProductETigibilityEntitlementRuleSet.DefaultObjectiveType rule class.

Here is a description of the attributes inherited from AbstractObjectiveType:

Table 4. Rule attributes inherited from ProductEligibilityEntitlementRuleSet.AbstractObjectiveType

Rule Attribute name Data type Description
objectiveTypelD String Identifier of the object type, which must be unique
within the product. The length of this identifier must be
no more than the number of characters dictated by the
RULES_OBJECTIVE_ID domain (which by default is 16
characters).
name Code from the The code for the display name of this objective type.
RulesComponentType code
table
financialComponentType Code from the The financial component type associated with this
RuTesComponentFCType code |objective, CT1 if this is a benefit, CT2 if it is a liability.
table
rateTarget Code from the The target for this objective, Client, Product Provide,
RuTesComponentTarget code |Service Supplier, Employer, etc..
table
tagTypes List of AbstractTagType The tag types available for this objective type, indicating
the frequencies at which this objective can be delivered
description Localizable message A description of this type of objective
comments Localizable message Comments describing this type of objective
isDeductionAllowable Boolean Whether case workers are allowed to select objective
instances of this type when creating case deductions.

For each objective type supported by your product, create a rule class which extends
DefaultProductEligibilityEntitlementRuleSet.DefaultObjectiveType. The default eligibility and
entitlement rule set that is automatically created for benefit products by the dynamic product wizard will
already contain two rule classes which extend the
DefaultProductETigibilityEntitlementRuleSet.DefaultObjectiveType rule class. These two default rule
classes are named PersonalBenefitAllowanceObjectiveType and ChildBenefitAllowanceObjectiveType. If

Chapter 4. Calculating and Displaying Eligibility and Entitlement 31

you are writing a new rule class, the name of your rule class should be in line with the name of your
objective type (ObjectiveTypeName ObjectiveType), to ease development and maintenance, e.g.
PersonalBenefitAllowanceObjectiveType or ChildBenefitAlTowanceObjectiveType.

The inherited implementation of tagTypes returns an empty list; leave this implementation for now and
you will return to it once you have created your objective tag rule classes.

For all other inherited rule attributes, use your analysis of your business requirements to implement rules
to return values appropriate to your objective type. The default eligibility and entitlement rule set should
be edited to reference values suitable to your product. If you are writing a new eligibility and entitlement
rule set rather than using the default rule set created by the product wizard, typically you will add a new
value to the RulesComponentType code table to implement the name for your objective type, but you will
use one of the values provided from the RulesComponentFCType and RulesComponentTarget code tables
when implementing the rules for financialComponentType and rateTarget respectively.

Write the Objective Tag Type rule classes

For each of your product's supported objectives (e.g. a Personal Benefit Allowance), your analysis
determined frequencies at which that objective may be delivered (e.g. a Personal Benefit Allowance might
be payable either daily or weekly, at the choice of the claimant or to handle ramp-up/ramp-down
periods).

For each frequency for an objective type, you must create a rule class which must ultimately extend from
the ProductETigibilityEntitlementRuleSet.AbstractTagType interface rule class. For ease of upgrades, it
is recommended that your rule class extends the
DefaultProductEligibilityEntitlementRuleSet.DefaultTagType rule class which provides default
implementations. The default eligibility and entitlement rule set created for benefit products by the
dynamic product wizard will already contain three objective tag type rule classes each of which extends
the DefaultProductETigibilityEntitlementRuleSet.DefaultTagType rule class.

Here is a description of the attributes inherited from AbstractTagType:

Table 5. Rule attributes inherited from ProductEligibilityEntitlementRuleSet.AbstractTagType

Rule Attribute name Data type Description

tagTypelD Long Identifier of the tag type, which must be unique within
the product.

name Localizable message The display name of this tag type.

pattern Frequency Pattern The frequency at which this tag type is delivered. For

more information, see the JavaDoc for
curam.util.type.FrequencyPattern.

valueType Code from the The type of value held in instances of this tag type.
RulesTagType code table

description Localizable message A description of this type of objective tag.

The three objective tags defined in the default eligibility and entitlement rule set created for benefit
products by the dynamic product wizard are daily, weekly and monthly tags. If you are extending this
default rule set to include additional objective tags, or if you are creating a new eligibility and
entitlement rule set, for each objective tag supported by your product create a rule class which extends
DefaultProductEligibilityEntitTementRuleSet.DefaultTagType. Again the name of your rule class
should be in line with the name of your objective tag type (TagTypeName TagType), to ease development
and maintenance, e.g. PersonalBenefitAllowancelWeeklyDeliveryTagType or
PersonalBenefitAllowanceDailyDeliveryTagType.

32 IBM Ctram Social Program Management: Inside Ctram Eligibility and Entitlement Using Ctiram Express Rules

For all the inherited rule attributes, use your analysis of your business requirements to implement rules
to return values appropriate to your objective tag type. Typically you will use one of the values provided
from the RulesTagType code table when implementing the rules for valueType.

Relate each Objective Type to its supported Objective Tag Types

Now that you have created rule classes for your objective types and objective tag types, you must relate
each objective type to its list of supported objective tag types.

For each objective type rule class that you created, you must now implement its tagTypes attribute to
create a list of instances of the rule classes which represent its tag types. Typically this list is a
<fixedlist> where each member in the list is a simple <create> expression.

For example, for the PersonalBenefitAllowanceObjectiveType, its implementation of tagTypes, in
pseudo-code, would be:

* Create a list of AbstractTagType, with members:
— Create an instance of PersonalBenefitAllowanceWeeklyDeliveryTagType; and
— Create an instance of PersonalBenefitAllowanceDailyDeliveryTagType.

Relate the Product to its supported Objective Types

Now that you have created rule classes for your product and objective types, you must relate the product
to its list of supported objective tag types. This association will already be in place if you are using the
default eligibility and entitlement rule set that is automatically created for benefit products by the
dynamic product wizard.

For your product rule class, you must now implement its objectiveTypes attribute to create a list of
instances of the rule classes which represent its objective types. Typically this list is a <fixed1ist> where
each member in the list is a simple <create> expression.

For example, for a product which supports Personal Benefit Allowance and Child Benefit Allowance
objective types, its implementation of objectiveTypes, in pseudo-code, would be:

* Create a list of AbstractObjectiveType, with members:
— Create an instance of PersonalBenefitAllowanceObjectiveType; and
— Create an instance of ChildBenefitAllowanceObjectiveType.

4.4.3.2 Write the Case Eligibility/Entitlement Calculation Rule Classes

Now that you have implemented rule classes to describe the structure of your product, you can start to
implement the rule classes which calculate the eligibility and entitlement results for a given product
delivery case.

For each product period that you are creating, you must create a rule class which is responsible for
calculating the eligibility and entitlement for a case, i.e. which objectives must be created on the case and
their entitlement.

Typically the eligibility and entitlement calculations for your product will be different across product
periods (because it was these differences which led you to identify multiple product periods in the first
place). However, it is likely that large swathes of the eligibility /entitlement logic are identical between
product periods and you should consider factoring your rule classes so that common logic is
implemented and maintained in a single place, just as you would do in most kinds of development work.

In a development environment, initially it is recommended that you do just enough implementation work

for eligibility and entitlement calculations so that you can view your product in a development database
and assure yourself that you can create cases against it and see early eligibility /entitlement results.

Chapter 4. Calculating and Displaying Eligibility and Entitlement 33

You can then return to the non-trivial task of fleshing out your eligibility /entitlement calculation rules to
provide the full logic required by your business requirements.

You will require the following rule classes:
* one Case rule class responsible for the overall eligibility /entitlement calculations for a particular case;
* for each Objective Type supported by your product, one Objective Instance rule class; and

e for each Objective Tag Type supported by each of your Objective Types, one Objective Tag Instance
rule class.

The default eligibility and entitlement rule set created for the benefit product by the dynamic product
wizard will already contain each of these rule classes, but they should be edited to meet your product
requirements prior to product use.

Write the Case rule class

Your rule class to calculate a case's eligibility /entitlement must ultimately extend from the
ProductETigibilityEntitlementRuleSet.AbstractCase interface rule class. For ease of upgrades, it is
recommended that your rule class extends the
DefaultProductEligibilityEntitlementRuleSet.DefaultCase rule class which provides default
implementations. The default eligibility and entitlement rule set that is automatically created for benefit
products by the dynamic product wizard will already contain a rule class which extends the
DefaultProductEligibilityEntitlementRuleSet.DefaultCase rule class.

Here is a description of the attributes inherited from AbstractCase:

Table 6. Rule attributes inherited from ProductEligibilityEntitlementRuleSet.AbstractCase

Rule Attribute name Data type Description

productDeliveryCase ProductDeliveryCase The controlling rule object which is responsible for
splicing together the determination result from the
contributions made by the product period. Passed in
when the instance of AbstractCase is created.

isEligibTeTimeline Timeline of Boolean The varying overall eligibility of the case.

objectiveTimelines List of The objectives created for this case.
AbstractObjectiveTimeline

Create a rule class which extends DefaultProductEligibilityEntitlementRuleSet.DefaultCase. The
default eligibility and entitlement rule set that is automatically created for benefit products by the
dynamic product wizard will name the rule class in line with the newly created product. The default
name of the rule class is ProductNamelithBlankSpacesRemoved Case. If you are creating a new eligibility
and entitlement rule set, the rule class should be named in line with your product, e.g. ProductName Case
(the Engine does not have any technical constraint on the rule class name - rather a good name for your
rule class may make it easier to develop and maintain your rule sets).

The value of productDeliveryCase will be automatically set to be the Engine's rule object for the overall
case. This rule object can be used to access information about the case, such as its unique identifier.

You must provide an implementation for isEligibleTimeline. The isEligibleTimeline is created by
default within the default eligibility and entitlement rule set that is automatically created for benefit
products by the dynamic product wizard, but should be edited prior to use in line with your product
requirements. Typically this implementation will be non-trivial (and in fact its implementation may well
be the bulk of the effort in the development of your product), as it is responsible for ultimately
calculating your case's overall eligibility during the product period, and its full implementation will need
to access data about the case (e.g. using rule objects for evidence recorded on the case) and/or
product-wide data such as rates. The implementation may involve the creation of many "calculator" rule

34 IBM Ctram Social Program Management: Inside Ctram Eligibility and Entitlement Using Ctiram Express Rules

classes which provide interim calculated results required to perform the complex calculations dictated by
your business requirements for case eligibility on your product.

In a development environment, you may choose to initially implement a very simple cut-down version of
your eligibility rules, e.g. that the case is eligible whenever the claimant fits into one of a number of very
broad categories, or (even more simply) that the case is always eligible. Once you have completed the
skeleton implementation of your eligibility rules and checked that cases can be created against it, then
you can return to the much-longer development task of implementation your full eligibility rules, which
will involve the creation of other rule classes, e.g. which map to your custom evidence types, or which
provide intermediate calculation results.

The inherited implementation of objectiveTimelines returns an empty list (i.e. your case never has any
objectives at all); leave this implementation for now and you will return to it once you have created your
objective instance and tag instance classes.

Write the Objective Instance rule classes

Each objective rule object created for your case will be an AbstractObjectiveTimeline, which is
responsible for calculating the periods when the case is entitled to the objective.

For each type of objective supported by your product (for example, a Personal Benefit Allowance or a
Child Benefit Allowance), you must create a rule class which must ultimately extend from the
ProductEligibilityEntitTementRuleSet.AbstractObjectiveTimeline interface rule class. For ease of
upgrades, it is recommended that your rule class extends the
DefaultProductEligibilityEntitTementRuleSet.DefaultObjectiveTimeline rule class which provides
default implementations. This rule class will already have been created for each type of objective within
the default eligibility and entitlement rule set that is automatically created for benefit products by the
dynamic product wizard, but they should be edited in line with your product requirements prior to
product use.

Here is a description of the attributes inherited from AbstractObjectiveTimeline:

Table 7. Rule attributes inherited from ProductEligibilityEntitlementRuleSet.AbstractObjectiveTimeline

Rule Attribute name Data type Description
objectiveType AbstractObjectiveType The type of this objective timeline.
isEntitledTimeline Timeline of Boolean The varying entitlement to this objective. The value of

this timeline is only taken into account during periods
when the case is eligible.

targetIDTimeline Timeline of Long The varying ID of the target participant (e.g. Person,
Service Supplier, Product Provider, Employer, etc.)
which is targeted by this objective.

tagTimelines List of AbstractTagTimeline | The frequencies at which this objective can be delivered.

relatedReferenceTimeline |Timeline of String The varying reference to additional business-specific
information relating to this objective. The
relatedReference attribute can be used to store
information that will help distinguish the difference
between one instance of a rules objective and another,
which may be important for financial processing to
explain the breakdown of a payment. The length of this
identifier must be no more than the number of
characters dictated by the
RELATED_REFERENCE_TEXT domain (which by
default is 4000 characters).

description Localizable message A description of this objective instance

Chapter 4. Calculating and Displaying Eligibility and Entitlement 35

For each objective type supported by your product, create a rule class which extends
DefaultProductEligibilityEntitlementRuleSet.DefaultObjectiveTimeline. The default eligibility and
entitlement rule set that is automatically created for benefit products by the dynamic product wizard will
already contain two rule classes which extend the
DefaultProductETigibilityEntitlementRuleSet.DefaultObjectiveTimeline rule class. These two default
rule classes are named PersonalBenefitAllowanceObjectiveTimeline and
ChildBenefitATlowanceObjectiveTimeline. If you are writing a new rule class, again the name of your
rule class should be in line with the name of your objective type (ObjectiveTypeName ObjectiveTimeline),
to ease development and maintenance, e.g. PersonalBenefitAllowanceObjectiveTimeline or
ChildBenefitAllowanceObjectiveTimeline.

The inherited implementation of tagTimelines returns an empty list (i.e. your objective has no supported
frequencies at which it can be delivered); leave this implementation for now and you will return to it
once you have created your objective tag instance rule classes.

Implement the other rule attributes on the rule class. Typically the bulk of the work is in the
implementation of isEntitledTimeline, the complexity of which depends on your requirements. For
some types of objective, the objective is always attained whenever the case is eligible; for other types of
objective, the case is only entitled to the objective if the circumstances of the case allow it.

Some types of objective will require additional context in order to calculate their entitlement. For any
additional context required, create extra rule attributes to hold the context. Later when you create
instances of your objective rule class, the <create> expressions will need to pass in the values for these
"context" rule attributes.

Tip: In particular, multiple objectives (i.e. multiple instances of your rule class) will need some sort of
context to distinguish them, e.g. the person to which the multiple objective relates.

Write the Objective Tag Instance rule classes

Each objective rule object created for your case needs to list its supported tags (as instances of
AbstractTagTimeline which are responsible for calculating the values at which the objective can be
delivered).

For each type of tag supported by each type of objective supported by your product (for example, a
weekly delivery of a Personal Benefit Allowance or a daily delivery of a Child Benefit Allowance), you
must create a rule class which must ultimately extend from the
ProductETigibilityEntitlementRuleSet.AbstractTagTimeline interface rule class. For ease of upgrades, it
is recommended that your rule class extends the
DefaultProductEligibilityEntitlementRuleSet.DefaultTagTimeline rule class which provides default
implementations. The default eligibility and entitlement rule set created for benefit products by the
dynamic product wizard will already contain four such rule classes each of which extends the
DefaultProductETigibilityEntitlementRuleSet.DefaultTagTimeline rule class. These default rule classes
should be edited or added to in line with your product requirements prior to product use.

Here is a description of the attributes inherited from AbstractTagTimeline:

Table 8. Rule attributes inherited from ProductEligibilityEntitlementRuleSet.AbstractTagTimeline

Rule Attribute name Data type Description
tagType AbstractTagType The type of this tag timeline.
valueTimeline Timeline of Object The varying value of this tag timeline. When converted

to a String, the length of this value must be no more
than the number of characters dictated by the
RULES_OBJECT_TAG_VALUE domain (which by
default is 1024 characters).

36 IBM Ctram Social Program Management: Inside Ctram Eligibility and Entitlement Using Ctiram Express Rules

For each tag type supported by your product, create a rule class which extends
DefaultProductEligibilityEntitTlementRuleSet. DefaultTagTimeline. Again the name of your rule class
should be in line with the name of your tag type (TagTypeName TagTimeline), to ease development and
maintenance, e.g. PersonalBenefitAlTowanceWeeklyDeliveryTagTimeline or
ChildBenefitAllowanceDailyDeliveryTagTimeline. The four default tag timeline rule classes that are
defined in the default eligibility and entitlement rule set created for benefit products by the dynamic
product wizard are PersonalBenefitAllowanceDailyDeliveryTagTimeline,
PersonalBenefitAllowanceWeeklyDeliveryTagTimeline,
PersonalBenefitAllowanceMonthlyDeliveryTagTimeline and
ChildBenefitAllowanceDailyDeliveryTagTimeline.

The inherited implementation of tagTimelines returns an empty list; leave this implementation for now
and you will return to it once you have created your objective tag instance rule classes.

Implement the tagType rule attribute, typically to just <create> an instance of the appropriate tag type
rule class (see [4.4.3.1, “Write the Product Structure Rule Classes,” on page 30)).

Implement the valueTimeline rule attribute to calculate the varying value of the tag. The complexity of
the implementation will hinge on the complexity of your requirements; some objectives have fixed value
tags (e.g. the payment value on any attained objective is identical across cases - the payment amount
does not take into account any circumstances on the case), whereas for other objectives, the amount to
pay for an attained objective varies according to the circumstances of the case (e.g. reductions in payment
amounts due to means tests). It is also possible for the implementation of a tag's value for one frequency
to lean on the calculation for a related tag for a different frequency (see the example in4.4.2.6, “Identify]
{the rules that determine the values at which an objective can be delivered,” on page 29).

The implementation of valueTimeline may require that extra context is passed in when the tag timeline is
created. If required, create additional rule attributes to hold this context. Later when you create instances
of your tag rule class, the <create> expressions will need to pass in the values for these "context" rule
attributes.

Create tag instances from your objective rule classes

Now that you have created rule classes for your objective instances and tag instances, you must
implement how each objective instance will create its tag instances.

The default implementation of tagTimelines inherited from
DefaultProductEligibilityEntitlementRuleSet.DefaultObjectiveTimeline returns an empty list - i.e. no
tags are supported for the objective.

For each objective instance rule class that you created, you must now override and implement its
inherited tagTimelines attribute to create a list of instances of the rule classes which represent its tag
instances. Typically this list is a <fixed]ist> where each member in the list is a simple <create>
expression.

For example, for the PersonalBenefitAllowanceObjectiveTimeline rule class, its implementation of
tagTimelines, in pseudo-code, would be:

* Create a list of AbstractTagTimeline, with members:
— Create an instance of PersonalBenefitAllowancelWeeklyDeliveryTagTimeline; and
— Create an instance of PersonalBenefitAllowanceWeeklyDeliveryTagTimeline.

When creating tags, you will need to pass in any additional context required by that tag (by specifying

values to set in the <create> expressions). In turn, this additional context may give rise to additional
"context" rule attributes being required on the objective rule class itself.

Chapter 4. Calculating and Displaying Eligibility and Entitlement 37

For example, if the value of an objective's tag depends on total income of the person targeted by the
objective, then the tag instance rule class may require the person to be set as a context rule attribute; in
turn, the objective instance rule class will need such a rule attribute in order to pass it to the tag instance
at creation time.

Create objective instances from your case rule class

Now that you have created rule classes for your objective instances, you must implement how the case
calculates which objectives are available.

The default implementation of objectiveTimelines inherited from
DefaultProductEligibilityEntitlementRuleSet.DefaultCase returns an empty list - i.e. the case has no
objective instances at all.

For your case rule class that you created, you must now override and implement its inherited
objectiveTimelines attribute to create a list of instances of the rule classes which represent its objective
instances. This attribute will already have been created within the default eligibility and entitlement rule
set that is created for benefit products by the dynamic product wizard, but it should be edited prior to
product use.

If your product contains only single objectives, your implementation of objectiveTimelines will typically
be a <fixedlist> where each member in the list is a <create> expression, e.g. (in pseudo-code):

e Create a list of AbstractObjectiveTimeline, with members:

— Create an instance of BasicHouseholdATTowanceObjectiveTimeline, setting productDeliveryCase =
this.productDeliveryCase; and

— Create an instance of ColdWeatherPaymentObjectiveType, setting productDeliveryCase =
this.productDeliveryCase.

If your product has multiple objective instances of a given type, your implementation of
objectiveTimelines will typically be a <dynamiclist> to create an objective instance for each object of a
particular kind, e.g.

* For each child in the household:

— Create an instance of ChildBenefitAllowanceObjectiveType, setting child = current child.

Your product may contain a mixture of single objective instances and multiple objective instances (and
indeed many different types of multiple objectives for different types), in which case you will need to
nest the <fixedlist> and <dynamiclist; creations within a <joinlists> expression.

It may be clearer to factor out the creation of different types of objectives to their own rule attribute
before joining the lists together, e.g.

* Create an attribute called singleObjectiveTimelines, which creates a fixed list of all the single
objective instances for your product;

* Create an attribute called childBenefitAlTlowanceObjectiveTimelines, which creates a dynamic list
containing one objective instance per child on the case;

e Implement objectiveTimelines to join together the singleObjectiveTimelines and
childBenefitAllowanceObjectiveTimelines lists.

Important: The list of object timelines for your case is a simple list which does not vary over time; rather,
the case's entitlement to each objective is the thing that varies over time.

You must create an objective instance for any objective which could in theory be attained at some point in
the case lifetime, even if for some or all of the case lifetime it is not attained.

38 IBM Ctram Social Program Management: Inside Ctram Eligibility and Entitlement Using Ctiram Express Rules

For example, if a product has an objective type is aimed at paying child benefit for each child on the
case, then at some point those children will each become adults but possibly remain resident in the
household. At that point, the objective for that person (who was a child, but now an adult) will not
longer be attained; but it still must be listed in the simple list of objective timelines for the case. As such,
typically each person (rather than just each child) in the household should have a child benefit objective
instance created for them; however, for a person who was already an adult when the case began will
never be entitled to that objective.

When creating objective instances, you will need to pass in any additional context required by that
objective instance (by specifying values to set in the <create> expressions).

For example, if the case requires there to be one objective targeted at each person in the household, then
the objective instance rule class may require the person to be set as a context rule attribute; when creating
the multiple objectives, the implementation of objectiveTimelines will have to create an objective for
each person in the household, and pass that person to the objective instance so that it can use that person
as its target.

Tip: It can be useful to pass the case rule object's productDeliveryCase value to objective and tag
instance classes, so that they can access its value of caselID and other data.

A note on manipulating Timelines in CER

Your output data from eligibility /entitlement calculations are centered around CER Timelines. For
example, the isETigibleTimeline for the case and the isEntitledTimeline for your objectives are both
timelines of Boolean values.

In general, most of your input data into eligibility /entitlement calculations is already in timeline format,
as populated by the Active Succession Set Rule Object Converter (see[7.4.4, “Active Succession Set Rule]
[Objects,” on page 100).

Typically, then, your rules for eligibility/entitlement calculations will generally transform input timelines
into output timelines (via intermediate timelines). CER contains a number of expressions for
manipulating timelines, but given the nature of eligibility /entitlement calculations, the expressions you
should expect to see most commonly are <timelineoperation> and <intervalvalue>.

Use of other CER expressions for creating timelines is rare, but may be useful:

* to create timeline data from non-timeline data, such as custom entities (as opposed to custom
evidence); and/or

* as "scaffolding” to hard-code timeline data (such as a rate that changes over time) during the early
days of your product's implementation.

4.4.3.3 Write the Product Periods

For each period in your product, you must create a product period record and link it to the rule classes
you created to:

* describe the product structure; and

¢ calculate eligibility/entitlement results for cases.

The way you create and link these records differs depending on whether you are working in a
development environment or a running system. A default product period is automatically inserted for a
benefit product that is created via the dynamic product wizard, and this product period will have been
automatically linked to the rule classes of the default eligibility and entitlement rule set that is also
automatically inserted by the product wizard for the benefit product.

Chapter 4. Calculating and Displaying Eligibility and Entitlement 39

Working in a Development Environment

Create DMX entries for any new rule sets you created for your rule classes (see section D.5.1. in the Ciram
Express Rules Reference Manual).

For each product period, perform the following steps in the custom component:

e Create an entry in a CREOLERuleClassLink.dmx file, which points to the rule class for your product
structure:

Table 9. DMX data for CREOLERuleClassLink for your product structure rule class

Attribute Name Value
creoleRuleClassLinkID A unique ID from your custom key range.
creoleRuleSetID The value of CREOLERuleSet.creoleRuleSetID you

assigned above for the rule set containing your product
structure rule class.

ruleClassName The unqualified name of your product structure rule
class.
versionNo 1

Important: You must create a separate record for use by each product period, even if multiple product
periods point to the same product structure rule class.

* Create an entry in a CREOLERuleClassLink.dmx file, which points to the rule class for your case
eligibility /entitlement calculations:

Table 10. DMX data for CREOLERuleClassLink for your eligibility/entitlement rule class

Attribute Name Value
creoleRuleClassLinkID A unique ID from your custom key range.
creoleRuleSetID The value of CREOLERuleSet.creoleRuleSetID you

assigned above for the rule set containing your
eligibility /entitlement rule class.

ruleClassName The unqualified name of your eligibility/entitlement rule
class.
versionNo 1

Important: You must create a separate record for use by each product period, even if multiple product
periods point to the same eligibility/entitlement rule class.

* Create an entry in a CREOLEProductPeriod.dmx file:

Table 11. DMX data for CREOLEProductPeriod

Attribute Name Value

creoleProductPeriodID A unique ID from your custom key range.
productID The ID of your CER-based product.
startDate The start date of this product period.

If your product has a single period, typically this start
date should be the same as Product.startDate.

endDate The end of this product period.

If your product has a single period, typically this end
date should be blank.

40 IBM Ciiram Social Program Management: Inside Ctram Eligibility and Entitlement Using Ctiram Express Rules

Table 11. DMX data for CREOLEProductPeriod (continued)
Attribute Name Value

productStructureRCLID The value of
CREOLERuleClassLink.creoleRuleClassLinkID you
assigned for your product structure rule class.

decisionRCLID The value of
CREOLERuleClassLink.creoleRuleClassLinkID you
assigned for your case eligibility/entitlement calculation
rule class.

otherkKeyDataRCLID Leave blank.

(You will change this later if you implement key decision
factor rules for your product.)

namelD The value of LocalizableText.localizableTextID you
assigned above.

versionNo 1

See the core data dictionary for a full description of these database columns.
Working in a Running System
Publish your rule sets containing your new rule classes.

Start the admin application and navigate to Product Delivery Cases, select your product, choose Rule Sets
and copy the product for edit (if it is not already in edit).

For each product period in your analysis, perform the following steps:
* Create a product period;

* Set the value of "Product Structure Rule" to be the rule class you created for your product's structure;
and

* Set the value of "Eligibility /Entitlement Rule" to the rule class you created for the calculation of a
case's eligibility /entitlement results for your product.

* (Leave the value of "Key Decision Factors Rule" blank - it is not required for eligibility/entitlement
rules.)

Do not set up any display categories - they are not required for eligibility/entitlement rules.

Publish your changes to the product.

4.4.3.4 Choose or Create a Summarizer Strategy
14.3.2.2, “Displaying a Summary of Entitlement for a Coverage Period,” on page 25| described how the
Engine can summarize the entitlement for a coverage period within a determination.

To use this feature, you must configure your Product to specify a strategy implementation to use. You
must either:

* in development, change your CREOLEProduct.dmx file to populate your product's
detIntSummarizerStrategyType column with the code (from the DetIntSummarizerStrategy code table)
for your chosen strategy implementation; or

* in a running system, start the admin application and navigate to Product Delivery Cases, select your
product, choose Rule Sets and choose Eligibility Determination, change "Decision Summary Display
Strategy" to be your chosen strategy implementation.

Chapter 4. Calculating and Displaying Eligibility and Entitlement 41

When choosing a strategy implementation to use, you can either:
* use a strategy implementation included with the Engine (described below); or

* develop your own strategy implementation (described below).
Strategy Implementations Included with the Engine

The Engine includes these implementations which are suitable for most products:

Table 12. Summarizer Strategy Implementations Included with the Engine

Display/code Implementation Class

blank curam.core.sl.infrastructure.assessment.impl.
BlankDeterminationIntervalSummarizerStrategy

Total daily monetary |curam.core.sl.infrastructure.assessment.impl.

entitlement TotalDailyMonetaryEntitlementDeterminationIntervalSummarizerStrategy
Total weekly monetary | curam.core.sl.infrastructure.assessment.impl.

entitlement TotaTMonthlyMonetaryEntitTementDeterminationIntervalSummarizerStrategy
Total monthly curam.core.sl.infrastructure.assessment.impl.

monetary entitlement |TotalWeeklyMonetaryEntitlementDeterminationIntervalSummarizerStrategy

See the JavaDoc for the above classes for more details on the behavior of each strategy implementation.
Developing your own Strategy Implementation

If you have custom requirements not met by the implementations, you may develop your own strategy

implementation(s) for use in your products as follows:

¢ Add a new entry to the DetIntSummarizerStrategy code table (using custom.ctx files);

* Create an implementation class which implements the DeterminationIntervalSummarizerStrategy
interface; implement the required method to return an appropriate summary of the coverage period;

* Bind the code table entry to your implementation, in your custom Guice Module:

// Register your custom determination interval summarizer strategies
final MapBinder<DETERMINATIONINTERVALSUMMARIZERSTRATEGYEntry,
DeterminationIntervalSummarizerStrategy>
determinationIntervalSummarizerStrategies = MapBinder
.newMapBinder(binder(),
DETERMINATIONINTERVALSUMMARIZERSTRATEGYEntry.class,
DeterminationIntervalSummarizerStrategy.class);

determinationIntervalSummarizerStrategies.addBinding(
DETERMINATIONINTERVALSUMMARIZERSTRATEGYEntry.YOUR_STRATEGY).to(
YourDeterminationIntervalSummarizerStrategy.class);
}

(replacing YOUR_STRATEGY with the constant for your new code table code and
YourDeterminationlnterval SummarizerStrategy with your strategy implementation class as appropriate)

* Build your application;

* Configure your product to use your new strategy (see instructions above).

4.4.4 Testing

For a complex product created in a development environment, you should create unit tests for individual
parts of your product's eligibility/entitlement rules, using CER's support for rules testing.

42 1BM Ciiram Social Program Management: Inside Ctram Eligibility and Entitlement Using Ctiram Express Rules

You might consider creating end-to-end unit tests that test full scenarios involving the creation and
activation of evidence, and the creation and activation of product delivery cases, to test that the overall
eligibility and entitlement results are calculated as expected.

You might also perform manual testing of the online system to check that your eligibility /entitlement
scenarios are handled as expected.

The Engine will be unable to calculate eligibility /entitlement results for a period in the case's lifetime if
there is no product period covering part of the case's lifetime - to fix this you must change the product
periods configured for your product so that all cases created have their entire lifetimes covered by exactly
one product period. In particular, if your product allows open-ended cases, then typically the last product
period for your product should be open-ended too (unless you intend your product to reach its
end-of-life soon).

If the Engine detects a missing product period for a particular period in the case's lifetime, then:
* at determination calculation time, the Engine will:

— store one or more instances of DeterminationProblem in the determination result (each problem
stores a message and a stack trace of the underlying error, if any); and

— write out the problem to the application logs (according to the setting of the Ctram Environment
Variable curam.creole.log.case.determination.problems); and

* at determination display time, the Engine will display to the case worker an eligibility result of
"Eligibility could not be determined" (as opposed to "Eligible" or "Not Eligible") for the coverage period
within the case.

If there is a runtime error in the calculation of a CER attribute value for eligibility /entitlement, such as a
reference not found (analogous to a Nul1PointerException in Java), or a division by zero, or any other
calculation problem, then the Engine will throw an exception. The application logs will contain details of
this exception including its stack trace. For CER calculation errors, the stack trace can include important
information regarding the location within a CER rule set where the error occurred. To fix this, you will
need to debug and retest your rules.

Chapter 4. Calculating and Displaying Eligibility and Entitlement 43

44 1BM Ciram Social Program Management: Inside Ctram Eligibility and Entitlement Using Ctiram Express Rules

Chapter 5. Calculating and Displaying Key Decision Factors

5.1 Introduction

The Engine contains features to calculate and display key decision factors - pieces of data which were
important in arriving at eligibility and entitlement results.

When you design your product, you can choose to output such factors. The structure of the output data
for key decision factors is imposed by the Engine; and since the structure is fixed, the Engine contains a
generic set of screens to display the key decision factors to case worker users.

Typically, the rules for calculation of key decision factors will "sit on top of" the rules for calculating a
case's eligibility and entitlement. If you follow the best practice recommendation and layer your rules this
way, then you can make changes to the output of key decision factors for cases while guaranteeing not to
affect any case's underlying eligibility /entitlement results. Data calculated for key decision factors never
affects financial processing or any other processing - the data is used for display purposes only.

This chapter describes the flow of processing that allows key decision factors to be displayed to the user.
The processing is intentionally described in reverse-chronological order; firstly we describe the end
results, followed by the Engine processing that produces those results, before finally describing how the
data was calculated.

This "backwards" perspective will echo how your rules designers will need to think when designing your
product; they will need to start with the end in mind (namely how case workers will benefit from the
additional ability to comprehend a case's details through the medium of key decision factors).

This chapter is structured as follows:
* How it looks

Describes how key decision factors are displayed to a case worker.
* How it works

Describes how fixed processing by the Engine and custom processing combine to calculate and display
key decision factors.

* How to use it
Describes the steps you will need to follow to implement key decision factors for your product.

5.2 How It Looks

This section describes how key decision factors are displayed to a case worker.

The structure of eligibility and entitlement data is intentionally restrictive; it contains very basic
information such as the name of a key decision factor, the dates on which its value changes and/or text
describing certain events that occurred.

Because the structure of the key decision factor data is fixed by the Engine, the Engine knows how to
display this information for any CER-based case, and so includes standard screens capable of displaying
key decision factors. When you require to display data outside of this fixed structure, consider
implementing decision details rules instead (see [Chapter 6, “Calculating and Displaying Decision|
[Details,” on page 59).

© Copyright IBM Corp. 2012, 2013 45

5.2.1 Viewing Key Decision Factors Graphically

A graphical view of the key decision factors for a determination is provided via the 'Graphical View' tab,
for a case on a product which has key decision factors enabled.

A mixture of different types of event are displayed:
* Case events, which are automatically generated by the Engine - e.g. "Case Started";

¢ Eligibility/Entitlement events, which are automatically generated by the Engine - e.g. "Eligible $150
Weekly", "Not Eligible";

+ Custom events specific to this product, for changes in a data value, e.g. "Total Income $50.00 Weekly",
"Total Income $60.00 Weekly"; and

* Custom events specific to this product, for important events, e.g. "Client Turned 65: James Smith
turned 65 and is no longer eligible.".

The events are displayed with earlier dates on the left and later dates to the right. A filter is provided to
allow the user to restrict the events displayed to those of a particular type or to narrow the date range.

5.2.2 Viewing Key Decision Factors in a List

A list view of key decision factors for a determination is also provided as an alternative to the graphical
view (described in the previous section), for a case on a product which has key decision factors enabled.

The list displays the events with the latest event shown first (which may be in the future). The list can be
sorted in the standard way, by clicking on the column headings.

The list displays the date that the event occurred (or is expected to occur, for future events), the type of
event and its text description. For Decision-type events, the user can click on the action to view the
coverage period containing the decision event.

5.3 How It Works

This section describes how fixed processing by the Engine and custom processing combine to calculate
and display key decision factors.

The calculation and display of a determination involves a mixture of:
* fixed processing contributed by the Engine; and

* custom product-specific processing contributed by the implementation of the product.

Note that it is not mandatory to configure custom key decision factors for your product periods; any or
all of the product periods can opt not to use key decision factors, and if so no custom key decision
factors will be displayed for those periods.

The Engine follows the following high-level steps to arrive at key decision factors that can be displayed
to a case worker:

¢ At Determination Calculation time:

— An action occurs which triggers the determination of a case (either an active or reactive
determination);

— The Engine identifies the product periods (configured for the product) that cover the case's lifetime;

— The Engine uses CER rules (specific to the product) to calculate the custom key decision factors for
each contributing product period;

— The Engine calculates the key decision factors across the lifetime of the case by "splicing together"
the key decision factors from each contributing product period;

— The Engine stores (on the database) a determination result containing the key decision factors data
(as well as eligibility /entitlement results and decision details, covered elsewhere in this document).

46 IBM Ctram Social Program Management: Inside Ctram Eligibility and Entitlement Using Ctiram Express Rules

e At Determination View time:
— A case worker requests to view a determination on a case;

— The Engine retrieves the determination result from the database and interrogates the determination
result to obtain its key decision factors;

- the fixed case and decision factors for the determination, using the summarizer strategy
configured for the product to produce a summary of the case's entitlement for each decision; and

- the custom key decision factors for the determination (if any).

The data interfaces and implementation for calculation of key decision factors, and subsequent display of
key decision factors are described in more detail below.

5.3.1 Calculation of Key Decision Factors

The system of interfaces and implementations involved in the calculation of the key decision factors that
form part of a determination result follow a similar pattern to that for eligibility /entitlement calculations
(see [4.3.1, “Calculation of Eligibility and Entitlement,” on page 21).

The responsibilities for calculating a case's key decision factors are divided between fixed
implementations provided by the application and custom implementations for a product (some of which
must adhere to interfaces included with the application).

Sections A and E describe a layer of fixed implementations similar to that of the eligibility /entitlement
calculations, and contribute to calculating and storing the overall determination result, which includes the
key decision factors. Although not described below, this layer also includes the calculation of contributing
product periods.

The processing described in sections B, C, and D represents a combination of fixed interfaces and custom
product-specific processing that is responsible for determining the key decisions factors across product
periods.

Similar to eligibility /entitlement calculations, section B describes a fixed interface included with the
Engine and sections C and D both describe custom product-specific processing.

Although not described below, the fixed implementation and fixed interfaces contributed by the engine
that are responsible for retrieving the data from entities, evidence and rate tables for

eligbility /entitlement calculations are also used by the custom product-specific processing described in
section D.

5.3.1.1 A) ProductEligibilityEntitlementRuleSet.ProductDeliveryCase rule object
This is the single rule object that controls the overall determination for the case, described in[4.3.1.1, “A)|
[ProductEligibilityEntitlementRuleSet ProductDeliveryCase rule object,” on page 21|

5.3.1.2 B) ProductKeyDataRuleSet AbstractCase rule class

The AbstractCase rule class acts as the interface between the fixed key decision factor processing
provided by the Engine, and the product-specific rules for the calculation of key decision factors for a
case.

This "interface" rule class ensures that concrete sub-rule-classes have an implementation for the following
rule attribute, which provides the fixed-structure key decision factors required by the Engine:

* keyDataTimelines - responsible for calculating the named key data items, and their dates when the key
decision factor changes value or undergoes a significant event.

Chapter 5. Calculating and Displaying Key Decision Factors 47

The Engine-supplied interface rule set has no implementations for this attribute - rule classes must be
written (see below) to provide an implementation for the business requirements of the product; rather the
interface rule class allows the Engine to communicate with the rule classes by specifying a contract for
the data structures that it requires.

5.3.1.3 C) Custom rule classes for key decision factors

When the Engine calculates key decision factors for a product period, the Engine first asks the product
period which rule class should be used (which is recorded on the product period as part of setting up the
product).

The rule class specified on the product period must ultimately extend from the
ProductKeyDataRuleSet.AbstractCase interface rule class. For ease of upgrades, it is recommended that
the rule class extends the DefaultProductKeyDataRuleSet.DefaultCase rule class which provides default
implementations.

The rule class must provide an implementation of keyDataTimelines, which is where the bulk of the
implementation effort for the key decision factor work will lie.

5.3.1.4 D) Custom rule classes for calculations
The calculation of the key decision factors may require complex business recalculation, which may be
served by custom "calculator” rule classes.

Typically the implementation of keyDataTimelines will reuse calculation rules which you have already
implemented for eligibility /entitlement calculations, although on rare occasions some refactoring of the
existing rules may be required to make the common rules suitable for both eligibility/entitlement and
key decision factor purposes.

The calculations will typically ultimately retrieve (and thus depend on) entity, evidence or rate data.
These dependencies behave in a similar way to those for eligibility/entitlement calculations (see
[“E) Custom rule classes for calculations,” on page 23).

5.3.1.5 E) DeterminationResult
The Determination Result (described in[4.3.1.9, “I) DeterminationResult,” on page 24) also holds the key
decision factors for the case, as determinationKeyDataTimelines.

When splicing together key decision factors across different product periods, the Engine matches
contributions from different product periods by the description of each key decision factor. For each key
decision factor found, the Engine draws event dates from the different product periods; naturally enough,
only the dates that fall within each product period's effective range are used.

The Engine shows the key decision factors in the order they are listed in the keyDataTimelines rule
attribute value. Typically each product period will define the same key decision factors, in the same
order, but in the rare situation where the ordering of key decision factors is different across contributing
product periods, then the order is determined by the latest product period to contain that key decision
factor.

5.3.2 Display of Key Decision Factors

The vast majority of data processing for key decision factors occurs at the time when the determination
result was calculated, as described in the previous section.

However, some data processing for key decision factors occurs at the time that the data is viewed; and
this section describes the display-time processing of key decision factors.

When a case worker views key decision factors for a determination (whether using the Graphical View or
the List View), then the Engine retrieves the custom key decision factors stored in the case determination
but also automatically adds in:

48 IBM Ctram Social Program Management: Inside Ctram Eligibility and Entitlement Using Ctiram Express Rules

e case lifetime events; and

e case decision events.

5.3.2.1 Adding Case Lifetime Events

The Engine automatically adds key decision events for:
* the case's start date (with the actual start date taking precedence over an expected start date); and

* the case's end date (if the case has an end date, with the actual end date taking precedence over an
expected end date).

These key decision events are part of the Engine's processing and cannot be customized.

5.3.2.2 Adding Case Decision Events

The Engine automatically adds key decision events for each decision period within a determination. The
event shows whether the case is eligible or not during a decision period, and if eligible shows a summary
of entitlement.

These key decision events are part of the Engine's processing and cannot be customized.

The Engine uses the Summarizer Strategy configured for the product to calculate the text to show on the
event for the decision period. See i.3.2.2, “Displaying a Summary of Entitlement for a Coverage Period,”]

for more details.
5.4 How to Use It

Most of the high-level processing for key decision factors is fixed logic provided by the Engine. However,
you will have to provide implementations for certain lower-level logic. In order to do this, you must
understand the basic concepts of key decision factors.

In addition to providing an understanding of these concepts, this section describes the work you will
need to do to complete the key decision factors logic for your product, as follows:

* Analysis;
¢ Implementation; and

* Testing.

Note: This section describes the complete work for key decision factors logic; however, for short-cuts you
can take to get your product up-and-running quickly, see [11.3, “Incremental Design,” on page 163]

5.4.1 Understanding Key Decision Factor Concepts

The Engine has a fixed data structure for key decision factors. Understanding the structure of this data is
critical as you must map your business requirements to the concepts in this structure. Each case (for a
product where key decision factors have been implemented) will calculate a list of key decision factors
when a determination is stored.

Key decision factors can represent a value which changes over time, e.g. a person's income. They can also
represent key events that happen once over the lifetime of a case, e.g, a person's date of birth. Once-off
key events must be explicitly in a logical fashion that makes sense to a case worker.

5.4.1.1 Fixed Data Structure for Key Decision Factors
Each key decision factor is an object with:

* a localizable description (displayed as the name of the key decision factor);
* a value which changes over time such as a person's income (optional); and

* a list of named key events such as a person's date of birth (optional and described in more detail
below).

Chapter 5. Calculating and Displaying Key Decision Factors 49

Typically each key decision factor uses exactly one of these optional features - i.e. the key decision factor
is centered around a value which changes or a list of key events. It is possible to combine both features if
you require. (Technically it is also possible to use neither feature; however, such a key decision factor
would not be displayed and would be somewhat pointless.)

5.4.1.2 Explicitly Named Key Events
In contrasts to key decision factors with values that change over time, certain key events do not represent
changes in a single piece of data, but rather a once-off significant event.

These key events are objects with:
* a localizable description, describing the event, e.g. person's date of birth; and
* the date on which the event occurred.

It is possible to combine a key decision factor that changes over time, e.g. an employment with earnings
that vary over time, and the named events such as when the employment started and ended. For named
events, you should analyze whether each event always occurs for the key decision factor, or just may
occur. For example, an employment key decision factor will always have a start date but may or may not
have an end date.

5.4.2 Analysis

You must understand the requirements for your product, and analyze how these requirements broadly
map to the Engine's key decision factor/key event concepts before starting implementation.

Unlike the requirements for eligibility/entitlement, typically requirements for key decision factors are not
enshrined in legislation, but instead are based off informed predictions of the kinds of information that
may be useful to a case worker, when the case worker is trying to understand a complex case (and
perhaps answer questions about the case from customers.)

As such, producing requirements for your key decision factors is perhaps more art than science. For a
new product, you might consider revisiting your key decision factor requirements once a product has
been live for some time, in light with the kinds of information that case workers are attempting to
understand when they view determinations. If you layer your requirements and implementation
according to the recommendations, you should be able to implement and deploy changes to your key
decision factor rules without affecting any underlying eligibility /entitlement calculations.

The following steps should aid your analysis.

5.4.2.1 Identify which decision factors are "key"
For a non-trivial product, the eligibility /entitlement calculations are likely to be complex, with many
layers and interactions.

Ultimately each of these calculations has a bearing on the overall eligibility/entitlement result; however,
you must decide which of these results are "key" to aiding a case worker's understanding of a case. You
might prepare a candidate list of key decision factors and discuss them with your business experts
and/or senior end-users.

If you identify too few key decision factors, then case workers might not be able to readily understand a
determination. By contrast, if you identify too many key decision factors, then the key decision view may
become too cluttered for case workers to easily use. In particular, take care to distinguish candidates for
key decision factor output from requirements for decision details (which are amenable to more detailed
display - see [Chapter 6, “Calculating and Displaying Decision Details,” on page 59).

For example, let's say you have a product where a household is means tested, by comparing the total
household income against a set of income thresholds.

50 IBM Ctram Social Program Management: Inside Ctram Eligibility and Entitlement Using Ctiram Express Rules

The total household income is calculated by adding up the total household income for each person in the
household. Moreover, each person can have many concurrent employments (e.g. a day job, a night job
and/or a weekend job) and so the total income for each person is calculated by adding up the earnings
from each income.

In this example, the following are candidates for key decision factors:
e which income threshold the household falls into;

¢ the income thresholds themselves (which happen to be constant across all products - still potentially
useful to show to the case worker, though);

e the total household income;
¢ for each person in the household, the total person income;

* for each income, the earnings for that income, and the dates that the income started and ended.

An implementation which included all of the above key decision factors could well be too cluttered to
use, so business analysts producing requirements for key decision factors must choose carefully.

5.4.2.2 Identify the cardinality and descriptions for your key decision factors
Each type key decision factor that you have identified will typically fall into one of these patterns:

* Single key decision factor

Each case has exactly one instance of this key decision factor, e.g. a "total household income" key
decision factor for the case;

* Multiple key decision factor

Each case has a number of instances of this key decision factor, depending on the case's circumstances,
e.g. a "total person income" key decision factor for each of the people in the case's household.

Note that the Engine does not impose these single/multiple key decision factor patterns; the creation of
key decision factors can be as complex as your business requirements dictate.

For a single key decision factor, the description of the factor can be a fixed piece of (localized) text, e.g.
"Total Household Income".

For a multiple key decision factor, each instance of the factor in a determination must have a unique
name - this uniqueness is required by the Engine and also is necessary for the case worker to distinguish
between multiple instances of the key decision factor. Thus the description for a multiple key decision
factor typically requires a calculation involving some fixed text and some variable data from the case, e.g.
"Total Person Income for <person-full-name>". Your analysis should include the calculation requirements
for these kinds of descriptions.

5.4.2.3 ldentify the data type for each key decision factor

For each key decision factor identified, you must analyze whether the key decision factor will display:
¢ the changes in value of a single piece of data; and/or
* important named events.

Each of these relay events to the case worker, as each change in value of an important piece of data (such
as total household income) is a kind of event in itself - with the pattern that visually, reporting the new
value of the data (such as $100) is enough information to communicate the event (since text for a named
event such as "The total household income is now $100" could well be overly-wordy).

By contrast, events such as a person being born or dying are not changes in a single piece of data, and
must be explicitly named events.

Chapter 5. Calculating and Displaying Key Decision Factors 51

5.4.3 Implementation

Having analyzed your business requirements, you are now in a position to start the implementation of
your key decision factors for your product.

You are likely to re-use calculation results already implemented for your eligibility /entitlement
calculations, as typically the factors that identify as "key" are those already part of your eligibility and
entitlement logic. As such, the effort required to implement key decision factors is typically far smaller
than that required for eligibility /entitlement logic calculations.

It is recommended that you implement your key decision factors rule classes in a rule set separate from
your eligibility /entitlement rule set(s), but allow your key decision factor rule classes to depend on your
eligibility /entitlement rule classes (but not the other way around).

This approach means that you can evolve your key decision factor implementation in the future without
having to retest your eligibility /entitlement implementation; this can be important since key decision
factors are merely "view" data to aid the case worker, whereas eligibility /entitlement results may affect
more critical business functions such as how much a client is actually paid.

It can be helpful to track the dependencies between your rule sets so that as your product evolves, you
have an insight into how changes in one rule set might affect other rule sets that depend on it.

For each product period, you must create a rule class which is responsible for identifying and calculating
the key decision factors for the case.

It is possible that your key decision factors are calculated in an identical way across product periods, in
which case you may be able to re-use one case rule class for many product periods. Your factoring of
common calculated eligibility /entitlement results may affect how you must factor your case rule classes
for key decision factors.

You will write the following rule classes:

* one case rule class (per product period) to hold the overall identification and calculation of key
decision factors;

* one or more key decision factor rule classes, one for each type key decision factor supported by your
product; and

* zero or more key event rule classes, one for each type of named event supported by any of your key
decision factors.

The sections below detail a step-by-step path to implement your key decision factors.

5.4.3.1 Write the Case rule class

Your rule class to identify and calculate key decision factors for a case must ultimately extend from the
ProductKeyDataRuleSet.AbstractCase interface rule class. For ease of upgrades, it is recommended that
your rule class extends the DefaultProductKeyDataRuleSet.DefaultCase rule class which provides default
implementations.

Here is a description of the attributes inherited from AbstractCase:

Table 13. Rule attributes inherited from ProductKeyDataRuleSet.AbstractProduct

Rule Attribute name Data type Description

productDeliveryCase ProductDeliveryCase The controlling rule object which is responsible for
splicing together the determination result from the
contributions made by the product period. Passed in
when the instance of AbstractCase is created.

52 IBM Ctram Social Program Management: Inside Ctram Eligibility and Entitlement Using Ctiram Express Rules

Table 13. Rule attributes inherited from ProductKeyDataRuleSet.AbstractProduct (continued)

Rule Attribute name Data type Description

keyDataTimelines List of The list of key decision factors for the case.
AbstractKeyDataTimeline

Create a rule class which extends DefaultProductKeyDataRuleSet.DefaultCase. The rule class should be
named in line with your product, e.g. ProductName KeyDecisionFactors (the Engine does not have any
technical constraint on the rule class name - rather a good name for your rule class may make it easier to
develop and maintain your rule sets).

The inherited implementation of keyDataTimelines returns an empty list; leave this implementation for
now and you will return to it once you have created your key decision factor classes.

5.4.3.2 Write the Key Decision Factor rule classes

For each type of key decision factor that you have identified, you must create a rule class which must
ultimately extend from the ProductKeyDataRuleSet.AbstractKeyDataTimeline interface rule class. For ease
of upgrades, it is recommended that your rule class extends the
DefaultProductKeyDataRuleSet.DefaultKeyDataTimeline rule class which provides default
implementations.

Here is a description of the attributes inherited from AbstractkeyDataTimeline:

Table 14. Rule attributes inherited from ProductKeyDataRuleSet.AbstractKeyDataTimeline

Rule Attribute name Data type Description

description Localizable message The identifying description of this key decision factor
(as displayed to the user)

timeline Timeline of Object The single varying value whose changes will be
reported as events for this key decision factor.

keyEvents List of AbstractKeyEvent The named events for this key decision factor.

Create a rule class which extends DefaultProductKeyDataRuleSet.DefaultKeyDataTimeline. The rule class
should be named in line with your key decision factor (KeyDecisionFactorName KeyDecisionFactor), e.g.
TotalHouseholdIncomeKeyDecisionFactor (the Engine does not have any technical constraint on the rule
class name - rather a good name for your rule class may make it easier to develop and maintain your
rule sets).

Implement a meaningful description attribute for your rule class. For a single key decision factor, a fixed
localizable message (typically from a resource file, using CER's ResourceMessage expression) may suffice,
e.g. "Total Household Income".

For a multiple key decision factor, the implementation of the description attribute will need to have some
variable text, e.g. "Total Person Income for <person-full-name>", typically using CER's <ResourceMessage>
expression to substitute variable text for placeholder in a message from a resource file, e.g. "Total Person
Income for {0}".

Your key decision factor rule class will typically need some context in order to calculate its events and its
description (for key decision factors which support multiple instances). This context will typically be a
rule object which will be passed in when an instance of your rule class is created (see sections below).
You should identify the context and model rule attribute(s) for the context in your rule class.

For example, if your key decision factor shows the total income for a person, then the context required
may be a rule object for that person, so that your key decision factor rule class can use that person's data

to calculate total income.

Chapter 5. Calculating and Displaying Key Decision Factors 53

Leave the keyEvents with its inherited implementation; you may revisit it later if required.

The inherited implementation of timeline returns a Timeline with a constant value (and thus has no
change events); if your key decision factor has only named events (as supplied by the keyEvents
attribute), then do not create an implementation for the timeline attribute.

If your key decision factor does require events for a single varying value, then you must implement the
timeline attribute to obtain that value, typically retrieving an existing Timeline attribute from another
rule class, perhaps creating a rule object instance based off the context passed in to your key decision
factor rule class.

For example, if your key decision factor displays the total income for a person, then:
* your key decision factor rule class will have a person attribute, of type Person (another rule class);

* your key decision factor rule class will have a personCalculator attribute, which creates a
PersonCalculator instance (PersonCalculator is another rule class), passing in the person instance;

¢ your implementation of the timeline attribute on your key decision rule class will retrieve the
personCalculator.totalIncome rule attribute value (which is already a Timeline).

Write the Key Event rule classes

For each type of key decision factor that supports named events, you must create a rule class for each
type of event. For example, if your key decision factor describes an employment, you might write these
rule classes:

e EmploymentStartedEvent; and
* EmploymentEndedEvent.

For each type of key event that you have identified (if any), you must create a rule class which must
ultimately extend from the ProductKeyDataRuleSet.AbstractKeyEvent interface rule class. For ease of
upgrades, it is recommended that your rule class extends the

DefaultProductKeyDataRuleSet.DefaultKeyEvent rule class which provides default implementations.

Here is a description of the attributes inherited from AbstractKeyEvent:

Table 15. Rule attributes inherited from ProductKeyDataRuleSet.AbstractKeyEvent

Rule Attribute name Data type Description

description Localizable message The description of this key event (as displayed to the
user)

date Date The date on which the event occurred (or is expected to
occur).

Create a rule class which extends DefaultProductKeyDataRuleSet.DefaultKeyEvent. The rule class should
be named in line with your key event (EventName Event), e.g. EmploymentStartedEvent (the Engine does
not have any technical constraint on the rule class name - rather a good name for your rule class may
make it easier to develop and maintain your rule sets).

Implement a description for your event, which may or may not require context data to be passed into
your rule class, e.g.:

* (no context required) "Employment started"; or

* (age context required) "Customer turned <new age on birthday>".

If the calculation of the date is complex, you may wish to implement a derivation for the date attribute.
Otherwise, the value of date can be set by the calling rules when implementing the keyEvents rule

attribute (see below).

54 IBM Curam Social Program Management: Inside Ctram Eligibility and Entitlement Using Ctiram Express Rules

Tip: Events which have a date of null will not be displayed. This can be useful for optional events such
as those for an end date. If you have an EmploymentEndedEvent which applies only if an employment has
an end date, then you can simply create an EmploymentEndedEvent instance and set its date to the end
date of the employment; if the end date is null (i.e. the employment is ongoing), the event will not
display, but if the employment has an end date recorded then the event will have a non-null date and
will display.

This treatment of null dates typically results in more maintainable rule logic that the alternative approach
whereby there is conditional logic governing which event instances to create.

Relate each Key Decision Factor to its supported Key Events

For each key decision factor rule class, you must consider whether to implement the keyEvents attribute.
The inherited implementation of keyEvents returns an empty list; if your key decision factor has only
events for a single varying value (as supplied by the timeline attribute), then do not create an
implementation for the keyEvents attribute.

If your key decision factor does require named events, then your implementation of keyEvents must
create a list of event objects. Depending on your implementation of the key event rule class, the each key
event rule object may require additional context to be passed in when it is created.

For a fixed set of events (e.g. a start event and an end event), your implementation of keyEvents will
typically be a <fixedlist> where each member in the list is a <create> expression, e.g. (in pseudo-code):

e Create a list of AbstractKeyEvent, with members:
— Create an instance of EmploymentStartedEvent, setting date = myEmployment.startDate; and

— Create an instance of EmploymentEndedEvent, setting date = myEmployment.endDate (see tip above
about how a null date prevents an event from being displayed).

For some events, there may be an arbitrary number depend on other conditions, such as a number of
birthdays. For these types of events, you will need to use other constructs such as <dynamiclist> or
<joinlists> to create your list of key events for the key decision factor.

Relate the Case to its supported Key Decision Factors

You must implement the keyDataTimelines attribute on your case rule object to return a list of key
decision factors for the case.

If your product contains only single key decision factors, your implementation of keyDataTimelines will
typically be a <fixedlist> where each member in the list is a <create> expression, e.g. (in pseudo-code):

e Create a list of AbstractKeyDataTimeline, with members:

— Create an instance of TotalHouseholdIncomeKeyDecisionFactor, setting productDeliveryCase be
this.productDeliveryCase; and

— Create an instance of ClaimantLifeEvents, setting productDeliveryCase be
this.productDeliveryCase.

If your product has multiple key decision factor instances of a given type, your implementation of
keyDataTimelines will typically be a <dynamiclist> to create a key decision factor for each object of a
particular kind, e.g.:

* For each person in the household:

— Create an instance of PersonIncomeKeyDecisionFactor, setting person = current person.
Typically your product may contain a mixture of single key decision factors, and multiple key decision
factors (and indeed many different types of multiple key decision factors), in which case you will need to

nest the <fixedlist> and <dynamiclist; creations within a <joinlists> expression.

Chapter 5. Calculating and Displaying Key Decision Factors 55

It may be clearer to factor out the creation of different types of events to their own rule attribute before

joining the lists together, e.g.:

* Create an attribute called singleKeyDecisionFactors, which creates a fixed list of all the single key
decision factors for your product;

* Create an attribute called personIncomeKeyDecisionFactors, which creates a dynamic list containing
one key decision factor per person on the case;

e Implement keyDataTimelines to join together the singleKeyDecisionFactors and
personIncomeKeyDecisionFactors lists.

Update the Product Periods: For each period in your product, you must modify the product periods
you created for eligibility/entitlement calculations (see|4.4.3.3, “Write the Product Periods,” on page 39)
to link each period to your case rule class for key decision factors.

The way you link these records differs depending on whether you are working in a development
environment or a running system.

Working in a Development Environment

Create DMX entries for any new rule sets you created for your rule classes (see section D.5.1. in the Ciram
Express Rules Reference Manual).

For each product period, perform the following steps in the custom component:

* Create an entry in a CREOLERuleClassLink.dmx file, which points to the rule class for your case rule
class for key decision factors:

Table 16. DMX data for CREOLERuleClassLink for your key decision factors rule class

Attribute Name Value
creoleRuleClassLinkID A unique ID from your custom key range.
creoleRuleSetID The value of CREOLERuleSet.creoleRuleSetID you

assigned above for the rule set containing your key
decision factors rule class.

ruleClassName The unqualified name of your key decision factors rule
class.
versionNo 1

Important: You must create a separate record for use by each product period, even if multiple product
periods point to the same key decision factors rule class.

* Update your entry in your CREOLEProductPeriod.dmx file, setting the following attribute:
Table 17. DMX data for CREOLEProductPeriod
Attribute Name Value

otherKeyDataRCLID The value of
CREOLERuleClassLink.creoleRuleClassLinkID you
assigned for your key decision factors rule class.

Working in a Running System
Publish your rule sets containing your new rule classes.
Start the admin application and navigate to Product Delivery Cases, select your product, choose Rule Sets

and copy the product for edit (if it is not already in edit).

56 IBM Ctram Social Program Management: Inside Ctram Eligibility and Entitlement Using Ctiram Express Rules

For each product period, set the value of "Key Decision Factors Rule" to be the rule class you created for
your case's key decision factors.

Publish your changes to the product. Note that if the product has existing cases, these cases will be
reassessed if batch processes are run to reassess all potentially affected cases, so that the new
determination contains key decision factor data. If you have followed the recommendations regarding the
dependencies between your rule sets, then no eligibility /entitlement changes should result from the
reassessment (and thus no payments for cases will be affected).

5.4.4 Testing

For a complex product created in a development environment, you should create unit tests for individual
parts of your product's key decision factor rules, using CER's support for rules testing.

You might consider creating end-to-end unit tests that test full scenarios involving the creation and
activation of evidence, and the creation and activation of product delivery cases, to test that the overall
key decision factor results are calculated as expected.

You might also perform manual testing of the online system to check that your overall key decision factor
scenarios are handled as expected.

The Engine may encounter runtime problems when calculating key decision factors, due to calculation
errors in CER attribute values.

If there is a runtime error in the calculation of a CER attribute value for a key decision factor, such as a
reference not found (analogous to a NulTPointerException in Java), or a division by zero, or any other
calculation problem, then the Engine will throw an exception. The application logs will contain details of
this exception including its stack trace. For CER calculation errors, the stack trace can include important
information regarding the location within a CER rule set where the error occurred. To fix this, you will
need to debug and retest your rules.

Chapter 5. Calculating and Displaying Key Decision Factors 57

58 IBM Ctram Social Program Management: Inside Ctram Eligibility and Entitlement Using Ctiram Express Rules

Chapter 6. Calculating and Displaying Decision Details

6.1 Introduction

The Engine contains features to calculate and display decision details on free-form screens for displaying
the detailed breakdown of eligibility /entitlement calculations.

When you design your product, you can choose to output such decision details. Unlike the structure of
eligibility / entitlement results and key decision factors, the structure of the output data for decision
details is product-specific and so the content and layout of the data shown on screens must be defined
(using dynamic UIM screens). The Engine uses these product-specific UIM screens to display the decision
details to case worker users.

Typically, the rules for calculation of decision details will "sit on top of" the rules for calculating a case's
eligibility and entitlement. If you follow the best practice recommendation and layer your rules this way,
then you can make changes to the output of decision details for cases while guaranteeing not to affect
any case's underlying eligibility /entitlement results. Data calculated for decision details never affects
Curam financials or other processing - the data is used for display purposes only.

This chapter describes the flow of processing that allows decision details to be displayed to the user. The
processing is intentionally described in reverse-chronological order; firstly we describe the end results,
followed by the Engine processing that produces those results, before finally describing how the data was
calculated.

This "backwards" perspective will echo how your rules designers will need to think when designing your
product; they will need to start with the end in mind (namely how case workers will navigate decision
details, which details to display and how they are laid out on the screen).

This chapter is structured as follows:
* How it looks

Describes how decision details are displayed to a case worker.
* How it works

Describes how fixed processing by the Engine and custom processing combine to calculate and display
decision details.

* How to use it
Describes the steps you will need to follow to implement decision details for your product.

6.2 How It Looks

This section describes how decision details are displayed to a case worker.

Unlike eligibility /entitlement and key decision factor data, the structure of decision details data is
intentionally very flexible; rules designers can include all different types of information in decision
details.

Because the structure of the decision details data is very flexible, the Engine cannot know by itself how to

display this information, and product designers must create dynamic UIM screens which can extract their
required data from the decision details and format it appropriately for a case worker user.

6.2.1 Summary Display Category

A decision details tab is provided for a coverage period within a determination.

© Copyright IBM Corp. 2012, 2013 59

The header area of the screen displays summary information about the case (its start and end dates) and
the coverage period selected (its date range and the eligibility decision during that date range). This
header area is supplied automatically by the Engine.

Below the header area is a strip of tabs, one for each display category configured for the product. It is
recommended that the first tab shown should be an overall summary of the case's eligibility and
entitlement calculation, because:

* This tab is displayed by default when the coverage period is shown; and

* The details from this first tab are also shown when the user expands a coverage period listed on the
overall determination.

The main body of the screen contains "summary" details for the coverage period, using standard UIM
features such as headers, tabular labels and values, and formatting such as bold text and a total line.

6.2.2 Decision Comparison

The Engine contains features that allow a decision details page to also show data from the previous case
decision within the determination. This feature can be useful to see how details of the case have changed
along the determination.

6.2.3 Sub-screens

The Engine contains features that allow rows of data on a decision details page to be expanded to show
further details on a sub-screen. This feature can be useful to allow a case worker to drill down into
further detail.

6.2.4 Basic Eligibility/entitlement Information

The Engine includes "basic" screens and decision detail rules to display:
* the overall case eligibility; and

* (if eligible) the objectives and tags that the case is entitled to.

This information is too basic to be of genuine use to a case worker, however you may find it useful to
re-use this output in the early days of developing your product (with a view to removing this "basic"
category once you have implemented custom decision details rules and screens for your product).

The screen definitions and decision details rules included with the application also serve as examples
which may be useful when you come to implement your custom decision details; and these "basic"
artifacts are also used as examples in the remainder of this chapter.

6.3 How It Works

This section describes how fixed processing by the Engine and custom processing combine to calculate
and display decision details.

The calculation and display of a determination involves a mixture of:
* fixed processing contributed by the Engine; and

* custom product-specific processing contributed by you (i.e. the implementation of your product).

The list of display categories are configured at a product level; in other words, the strip of display
category tabs available for a determination are the same no matter which product period contributes to a
coverage period.

Note that for any display category, it is not mandatory to configure decision details rules for your
product periods; any or all of your product periods can opt not to use decision details rules for a display

category, and if so the Engine will display a message on the screen to say that no details are available.

60 IBM Curam Social Program Management: Inside Ctram Eligibility and Entitlement Using Ctiram Express Rules

This situation can arise if a change in legislation means that a new display category must be introduced
for a product, yet only new (later) product periods need to display details for that category (because that
category of details are simply not relevant to an earlier period).

For example, let's say that a product is implemented which has a means test against a household's
income. The product is configured to show an "Income" decision details tab which provides details of
how the total income for the household was derived. However, in 2010 legislation changed so that from
2010 onwards, the means test includes the value of a household's assets as well as total income. To
implement the new legislation, the following steps would be taken:

* anew evidence type would be created to record Asset details for people in a household;
¢ the product's configuration would be changed to include a new "Assets" tab;

¢ the product's lifetime would be divided into two product periods ("pre-2010" and "2010 onwards"); in
other words the existing single product period would be ended and a new product period created;

* the "2010 onwards" product period would implement decision details rules for the "Assets" tab, but the
"pre-2010" product period would not implement any new decision details rules, as the household assets
have no relevance to that period on the case (and in any case there would be no historical asset
evidence recorded prior to 2010, because the evidence type is new and did not exist at the time that
older cases were created).

The Engine follows the following high-level steps to arrive at decision details that can be displayed to a
case worker:

e At Determination Calculation time:

— An action occurs which triggers the determination of a case (either an active or reactive
determination);

— The Engine identifies the product periods (configured for the product) that cover the case's lifetime;
— For each display category configured for the product:

- The Engine uses CER rules (specific to the product) to calculate the decision details for each
contributing product period;

- The Engine calculates the decision details across the lifetime of the case by "splicing together" the
decision details from each contributing product period;

— The Engine stores (on the database) a determination result containing the decision details for each
display category (as well as eligibility /entitlement results and key decision factors, covered
elsewhere in this document).

e At Determination View time:

— A case worker requests to view the details for a display category on a coverage period within a
determination on a case;

— The Engine retrieves the determination result from the database, and extracts from the
determination the decision details for the required category (the value of which may vary over the
lifetime of the case).

— The Engine gets the value of the decision details for the coverage period required, and creates an
XML document containing the decision details data;

— The Engine retrieves the dynamic UIM page configured to display decision details for the required
display category;
— The Engine displays header details for the case and coverage period; and

— The dynamic UIM page extracts data from the XML document and formats that data to display the
body of the decision details.

e If the screen contains expandable rows of data, then there is further processing at the time a row is
expanded:

— A case worker expands a row on a decision details page (which displays details for a display
category on a coverage period within a determination on a case);

Chapter 6. Calculating and Displaying Decision Details 61

— As above, the Engine retrieves the determination result from the database, and extracts from the
determination the decision details for the required category. The Engine gets the value of the
decision details for the coverage period required.

— The Engine uses the subscreenName passed in from the screen to identify the required attribute from
the case rule object. The Engine obtains its value, and then looks through the list of rule objects to
match on the businessObjectID passed in from the screen.

— The Engine creates an XML document for the matching rule object details.

— The top-level dynamic UIM page opens an inner dynamic UIM page; the inner page receives the
XML document, extracts data from it and formats it to display the expanded details.

The data interfaces and implementation for calculation of decision details, and subsequent display of
decision details are described in more detail below.

6.3.1 Calculation of Decision Details

The system of interfaces and implementations follows a similar pattern to that for eligibility /entitlement
calculations (see 4.3.1, “Calculation of Eligibility and Entitlement,” on page 21) and key decision factors
[5.3.1, “Calculation of Key Decision Factors,” on page 47} however, given the free-form structure of
decision details data, there are some important differences which are described throughout this section.

The responsibilities for calculating a case's decision details are divided between fixed implementations
provided by the application and custom implementations for a product (some of which must adhere to
application-shipped interfaces).

Sections A and G describe a layer of fixed implementations similar to that of the eligibility /entitlement
calculations, and contribute to calculating and storing the overall determination result, which also holds
the decision details. Although not described below, this layer also includes the calculation of contributing
product periods.

The processing described in sections B, C, D, E, and F represents a layer that results in rule objects that
are created in-memory only and are not stored on the database. Similar to eligibility /entitlement
calculations, section B and D describes a fixed interface shipped by the Engine and sections C, E, and F
describe custom product-specific processing.

Although not described below, there is also a final layer similar to that described in [4.3.1, “Calculation of]
[Eligibility and Entitlement,” on page 21| that is responsible for the creation of rule objects that are
retrieved by the custom product-specific processing described in section F.

This section describes the important interfaces and implementations involved in the calculation of the
decision details that form part of a determination result.

6.3.1.1 A) ProductEligibilityEntitlementRuleSet.ProductDeliveryCase rule object
This is the single rule object that controls the overall determination for the case, described in}4.3.1.1, “A)
[ProductEligibilityEntitlementRuleSet ProductDeliveryCase rule object,” on page 21

6.3.1.2 B) ProductDecisionDetailsRuleSet AbstractCase rule class

The AbstractCase rule class acts as the interface between the fixed decision details processing provided
by the Engine, and the product-specific rules for the calculation of decision details for a case (to provide
details for a top-level display category screen; the interface for sub-screens is described below).

Unlike the interface rule classes for eligibility/entitlement and key decision factors, the
ProductDecisionDetailsRuleSet.AbstractCase interface rule class does not mandate a fixed data
structure for concrete sub-rule-classes to implement. Later we will see how the Engine "walks" free-form
data to calculate decision details for the case.

62 IBM Curam Social Program Management: Inside Ctram Eligibility and Entitlement Using Ctiram Express Rules

6.3.1.3 C) Custom rule classes for decision details

When the Engine calculates decision details for a display category on a product period, the Engine first
asks the product period which rule class should be used for that display category (which is recorded on
the product period as part of setting up your product).

The rule class specified on the product period/display category must ultimately extend from the
ProductDecisionDetailsRuleSet.AbstractCase interface rule class. For ease of upgrades, it is
recommended that your rule class extends the DefaultProductDecisionDetailsRuleSet.DefaultCase rule
class which provides default implementations.

Your rule class will have one or more attributes annotated with Display or DisplaySubscreen, which is
where the bulk of the implementation effort for your decision details work will lie.

6.3.1.4 D) ProductDecisionDetailsRuleSet.AbstractCaseSubscreenDisplay rule class
The AbstractCase rule class acts as the interface between the fixed decision details processing provided
by the Engine, and the product-specific rules for the calculation of decision details for a case (to provide
details for a sub-screen expanded from within a top-level display category screen).

This "interface" rule class ensures that concrete sub-rule-classes have an implementation for the following
rule attribute:

* businessObjectID - identifies the object being expanded on the screen, so that details relevant to that
object only can be retrieved and displayed.

6.3.1.5 E) Custom rule classes for sub-screen details

When the Engine accumulates decision details for a determination, the data accumulated may include
data to be included on a sub-screen, i.e. a panel shown when a row on a dynamic UIM screen is
expanded by a user.

Data for sub-screens must be specified by a rule class which must ultimately extend from the
ProductDecisionDetailsRuleSet.AbstractCaseSubscreenDisplay interface rule class. For ease of upgrades,
it is recommended that your rule class extends the
DefaultProductDecisionDetailsRuleSet.DefaultCaseSubscreenDisplay rule class which provides default
implementations.

Your rule class will have one or more attributes annotated with Display, which is where the bulk of the
implementation effort for your decision details work will lie.

6.3.1.6 F) Custom rule classes for calculations
The calculation of your decision details (and/or sub-screen data) may require complex business
recalculation, which may be served by custom "calculator” rule classes.

Typically the implementation of your attributes annotated with Display or DisplaySubscreen will reuse
calculation rules which you have already implemented for eligibility /entitlement calculations, although
on rare occasions some refactoring of your existing rules may be required to make the common rules
suitable for both eligibility /entitlement and decision details purposes.

You may also create new rule classes to accumulate data for display and/or transform data into a format
more suitable for display. Your rule classes will have one or more attributes annotated with Display, but
may also have non-annotated attributes to hold interim calculation results.

The calculations will typically ultimately retrieve (and thus depend on) entity, evidence or rate data.
These dependencies behave in a similar way to those for eligibility/entitlement calculations (see
[“E) Custom rule classes for calculations,” on page 23).

Chapter 6. Calculating and Displaying Decision Details 63

6.3.1.7 G) DeterminationResult

The Determination Result (described in[4.3.1.9, “I) DeterminationResult,” on page 24) also holds the
decision details for the case, as determinationDecisionDetailsTimelines.
determinationDecisionDetailsTimelines is a map from each display category to a timeline of XML data
(which holds the varying decision detail data for that display category).

Each product period can contribute to the XML data for a particular display category. If a product period
does not have rules configured for a particular display category, then for the period of time that the
product period contributes to the case's determination, the XML data will be empty and no decision
details can be displayed for that period.

The Engine calculates the XML data for a product period's contribution to a display category by starting
with a rule object created for that product period/display category, and then "walking" the values on that
rule object to gather XML data as follows:

* The Engine walks all the displayable data to find out all the "change dates" on which any timeline
values change (because the eventual overall XML will change on each of these change dates). The
Engine walks the displayable data in a recursive fashion as follows:

— Create an instance of the decision details rule class (see [6.3.1.3, “C) Custom rule classes for decisior|
[details,” on page 63);

— Find every attribute on the rule object which is annotated with the Display annotation (other non-
Display attributes are ignored).
— For each Display attribute, processing differs according to the type of the attribute:
- Timeline
If the value is a timeline, then inspect the timeline value to find the dates on which it changes
value, and contribute these dates to the overall change dates.
- Rule Object
If the value is another rule object (which has not yet been walked), then recurse to inspect its
Display attributes and add their change dates to the overall change dates.
- List
If the value is a list of rule objects or Timelines, then each item in the list is checked to identify
change dates to contribute to the overall change dates.
- Other
If the value type is not a Timeline, Rule Object or List then it does not contribute to the overall
change dates.

* For each date on which any display data changes, the Engine creates an XML document by re-walking
the data above, to find the value of each displayable item on that date (see the example below in
[-3.1.8, “Basic Eligibility/Entitlement example XML output”). There are special cases for sub-screen
data and their business object IDs to automatically include them.

* The Engine combines the XML documents for each change date into a timeline of XML documents.
This timeline holds all the displayable data for a display category on the case, and the Engine stores it
in the map of display categories to XML timelines.

6.3.1.8 Basic Eligibility/Entitlement example XML output

Here is an example of an XML document for a particular change date, produced by the
AbstractBasicProductDecisionDetailsRuleSet.AbstractBasicCase rule class included with the Engine (to
display basic eligibility /entitlement details):

64 IBM Curam Social Program Management: Inside Ctram Eligibility and Entitlement Using Ctiram Express Rules

<DecisionDetails>

<BasicCase>
<isEligibleTimeline domain="SVR_BOOLEAN">true</isEligibleTimeline>
<displayObjectiveTimelines>
<Item>
<relatedReferenceTimeline domain="SVR_UNBOUNDED STRING" />
<index domain="SVR_INT64">0</index>
<objectiveTypelD
domain="SVR_UNBOUNDED_STRING">CREOLE 1</objectiveTypeID>
<targetIDTimeline domain="SVR_INT64">123</targetIDTimeline>
<isEntitTedTimeline
domain="SVR_BOOLEAN">true</isEntitledTimeline>
</Item>
</displayObjectiveTimelines>
<displayObjectiveTimelineSubscreens>
<Item>
<displayTagTimelines>
<Item>
<pattern domain="FREQUENCY_PATTERN">000120100</pattern>
<valueTimeline
domain="SVR_UNBOUNDED_STRING">0</valueTimeline>
</Item>
</displayTagTimelines>
<businessObjectID domain="SVR_INT64">0</businessObjectID>
</Item>
</displayObjectiveTimelineSubscreens>
</BasicCase>

</DecisionDetails>

Figure 1. Example XML document for Basic Eligibility/Entitlement data for a coverage period

The XML has the following structure:

A top-level DecisionDetails element; this is a fixed-named element provided by the Engine;

A BasicCase element; the name of this element is that of a rule class used to provide decision details
rules (in this example, for the "basic" objectives/tags output); this element represents a BasicCase rule
object and the child elements represent the point-in-time values for attribute values from the rule object
(for attributes which have been annotated with Display, to command them to be recorded in this
XML);

A isEligibleTimeline element for the value of the BasicCase. isEligibleTimeline timeline during this
coverage period (in this case "true"); also specifies the domain type of the value so that the dynamic
UIM understands the type of the data and can display or process it appropriately.

Note: The domain type is automatically provided by the Engine by inspecting the data type of the rule
attribute; usually this is sufficient but in some data conversion scenarios, you may explicitly specify the
domain to use within the Display annotation.

A displayObjectiveTimelines element for another attribute on BasicCase which is annotated with
Display. This attribute returns a list of rule objects, and so this XML element has a child Item element
(because in this example the list holds a single rule object - there will be one Item child element for
each entry in the list value).

The child elements of Item correspond to the attributes of the rule object in the
displayObjectiveTimelines list value (in this case, attributes on the
AbstractBasicProductDecisionDetailsRuleSet.DisplayObjectiveTimeline rule class)

A displayObjectiveTimelineSubscreens element for an attribute on BasicCase which is annotated with
DisplaySubscreen. This data will be used to allow the user to expand a row on the screen to drill
down its detail by displaying a sub-screen of a data, keyed on the businessObjectID of the required
item.

Chapter 6. Calculating and Displaying Decision Details 65

6.3.2 Display of Decision Details

Some data processing for decision details occurs at the time when the determination result was
calculated, as described in the previous section.

However, in contrast to eligibility /entitlement and key decision factors, display of decision details also
involves some considerable processing, described in this section.

A case worker can choose to view Decision Details in these ways:

* When viewing a determination's list of coverage periods, the user can expand a row for a coverage
period, to display the decision details for the first display category configured on the product; and/or

* The user can click on the date range shown for a coverage period to display the full decision details

pages, which show a clickable tab for each display category (with the first display category shown by
default).

Either of these actions instructs the Engine to display decision details for a particular date and display

category on a determination for a case. When instructed, the Engine performs the following steps:

* The Engine looks up the Dynamic UIM page to display, based on the display category requested. The
configuration for which page to display is stored on the
CREOLEProductDecisionDispCat.displayPageName database column.

e The web server loads the Dynamic UIM page, which will specify an appropriate server interface to call
to retrieve data for the screen. The supported server interfaces are as follows:

Table 18. Supported server interfaces for decision details UIM pages

Server interface Description
CaseDetermination. Retrieves XML data for the top-level decision details
viewDecisionDisplayRulesCategoryXML screen for a single coverage period.
CaseDetermination. Retrieves XML data for a sub-screen of decision details
viewDecisionDisplayRuleCategorySubscreenXML screen for a single coverage period and business object
ID (identifying the sub-screen being expanded).
CaseDetermination. Retrieves XML data for the case decision period
viewPreviousDecisionDisplayRulesCategoryXML succeeded by the coverage period requested. Typically

used in addition to
CaseDetermination.viewDecisionDisplayRulesCategoryXM
to provide data for a comparison screen.

CaseDetermination. Retrieves XML data for the same period in the
viewPreviousDeterminationDecisionDisplayRulesCategoryXittermination superseded by the requested
determination - reserved for use by Engine screens to
compare under/over-payment determinations only.

* The Dynamic UIM page calls its server interface(s) to retrieve XML data for the coverage period.

¢ The Dynamic UIM page contains XPath-like expressions for querying the XML data returned. The
Dynamic UIM page executes these XPath-like expressions against the XML data obtained from the calls
to server interface(s), and obtains data to use in UIM constructs (such as field values and conditions).

* The web server displays the formatted page of decision details.

6.3.2.1 Basic Eligibility/Entitlement UIM examples

The Engine includes with a set of screens to display decision details for basic objective and tag
information (see[4.2.2, “Basic Eligibility /entitlement Decision Details,” on page 20)). This section uses
those screens to illustrate the mechanisms used for displaying decision details.

You should refer to the full Dynamic UIM page definitions and associated .properties files for the
following pages:

* CREOLEDispTayRules_basicCaseDisplay; and

66 IBM Curam Social Program Management: Inside Ctram Eligibility and Entitlement Using Ctiram Express Rules

* CREOLEDisplayRules _basicCaseDisplay objectiveTagSubscreen.
Use of data in a condition

CREOLEDisplayRules_basicCaseDisplay.uim makes use of a Boolean value in a condition, which governs
which cluster is displayed when the case is eligible or ineligible:

<SERVER_INTERFACE
CLASS="CaseDetermination"
NAME="DISPLAY"
OPERATION="viewDecisionDisplayRulesCategoryXML"
/>

<CLUSTER
NUM_COLS="1"
SHOW_LABELS="FALSE"
TITLE="Cluster.Title.ETigibility"

>

<CONDITION>
<IS_FALSE
EXTENDED_PATH=
"/DecisionDetails/BasicCase/isEligibleTimeline"
NAME="DISPLAY"
PROPERTY="xmlData"
/>
</CONDITION>

The XPath-like syntax of /DecisionDetails/BasicCase/isEligibleTimeline retrieves the value from the
XML returned. In the example XML shown in 6.3.1.8, “Basic Eligibility /Entitlement example XMI]
loutput,” on page 64, the value retrieved would be "true" (as a SVR_BOOLEAN) from the xmlData, which
enables it to be used in the condition for the cluster.

Displaying a list of data

CREOLEDisplayRules_basicCaseDisplay.uim makes use of a list to display the list of objectives to which an
eligible case is entitled. The Item[] syntax is used to refer to an item in the list.

<CLUSTER
NUM_COLS="1"
TITLE="Cluster.Title.Entitlement"
>

<LIST>
<DETAILS_ROW>
</DETAILS_ROW>

<FIELD
DOMAIN="SVR_UNBOUNDED_STRING"
LABEL="Field.Label.0ObejctiveTypelID"
>
<CONNECT>
<SOURCE
EXTENDED_PATH=
"/DecisionDetails/BasicCase/displayObjectiveTimelines/Item[]/objectiveTypelD"
NAME="DISPLAY"
PROPERTY="xmlData"
/>
</CONNECT>
</FIELD>

Chapter 6. Calculating and Displaying Decision Details 67

<FIELD
DOMAIN="SVR_BOOLEAN"
LABEL="Field.Label.Entitled"
>
<CONNECT>
<SOURCE
EXTENDED_PATH=
"/DecisionDetails/BasicCase/displayObjectiveTimelines/Item[]/isEntitledTimeline"
NAME="DISPLAY"
PROPERTY="xml1Data"
/>
</CONNECT>
</FIELD>

<FIELD
DOMAIN="SVR_INT64"
LABEL="Field.Label.Target"
>
<CONNECT>
<SOURCE
EXTENDED_PATH=
"/DecisionDetails/BasicCase/displayObjectiveTimelines/Item[]/targetIDTimeline"
NAME="DISPLAY"
PROPERTY="xmlData"
/>
</CONNECT>
</FIELD>

<FIELD
DOMAIN="SVR_UNBOUNDED_STRING"
LABEL="Field.Label.RelatedReference"
>
<CONNECT>
<SOURCE
EXTENDED PATH=
"/DecisionDetails/BasicCase/displayObjectiveTimelines/Item[]/relatedReferenceTimeline"
NAME="DISPLAY"
PROPERTY="xmlData"
/>
</CONNECT>
</FIELD>
</LIST>
</CLUSTER>

Connecting a top-level screen to a sub-screen

CREOLEDisplayRules_basicCaseDisplay.uim allows each objective in its list to be expanded to show makes
use of a list to display the list of objectives to which an eligible case is entitled. The Item[] syntax is used
to refer to an item in the list. This is the top-level, or "outer" screen in the example:

<CLUSTER
NUM_COLS="1"
TITLE="Cluster.Title.Entitlement"

>

<LIST>

<DETAILS_ROW>
<INLINE_PAGE PAGE_ID=
"CREOLEDisplayRules_basicCaseDisplay objectiveTagSubscreen">
<CONNECT>
<SOURCE
NAME="PAGE"

68 IBM Curam Social Program Management: Inside Ctram Eligibility and Entitlement Using Ctiram Express Rules

PROPERTY="determinationID"
/>
<TARGET
NAME="PAGE"
PROPERTY="determinationID"
/>
</CONNECT>
<CONNECT>
<SOURCE
NAME="PAGE"
PROPERTY="displayDate"
/>
<TARGET
NAME="PAGE"
PROPERTY="displayDate"
/>
</CONNECT>
<CONNECT>
<SOURCE
EXTENDED_PATH=

"/DecisionDetails/BasicCase/displayObjectiveTimelines/Item[]/index"

NAME="DISPLAY"
PROPERTY="xml1Data"
/>
<TARGET
NAME="PAGE"
PROPERTY="businessObjectID"
/>
</CONNECT>
</INLINE_PAGE>
</DETAILS ROW>

</LIST>
</CLUSTER>

This is the "inner" screen, CREOLEDisplayRules basicCaseDisplay objectiveTagSubscreen:

<PAGE_PARAMETER NAME="determinationID"/>
<PAGE_PARAMETER NAME="displayDate"/>
<PAGE_PARAMETER NAME="businessObjectID"/>

The inner screen receives the parameters from the outer screen.

<SERVER_INTERFACE
CLASS="CaseDetermination"
NAME="DISPLAY"

OPERATION="viewDecisionDisplayRuleCategorySubscreenXML"

/>

The inner screen calls the CaseDetermination.viewDecisionDisplayRuleCategorySubscreenXML bean to get
details for the businessObjectID passed. The bean returns XML for the required "[tem".

<CLUSTER NUM_COLS="1">
<LIST>

<FIELD
DOMAIN="SVR_UNBOUNDED_STRING"
LABEL="Field.Label.Value"
>
<CONNECT>
<SOURCE
EXTENDED_PATH=
"/Item/displayTagTimelines/Item[]/valueTimeline
NAME="DISPLAY"
PROPERTY="xmlData"

Chapter 6. Calculating and Displaying Decision Details

69

/>
</CONNECT>
</FIELD>

The inner screen contains XPath-like expressions to query the sub-screen XML to populate its sublist.

6.4 How to Use It

Most of the high-level processing for decision details is fixed logic provided by the Engine. However, you
will have to provide implementations for certain lower-level logic. In order to do this, you must
understand the basic concepts of decision details.

Note that for eligibility/entitlement and key decision factor work, you needed only to provide server-side
logic, because the Engine contains fixed screens to display eligibility /entitlement and key decision factor
output. By contrast, you must implement not only server-side logic but also Dynamic UIM screens for
your decision details logic, and ensure that these implementations integrate correctly.

In addition to providing an understanding of decision details, this section describes the work you will
need to do to complete the decision details logic for your product, as follows:

* Analysis;
¢ Implementation; and
* Testing.

Note: This section describes the complete work for decision details logic; however, for short-cuts you can
take to get your product up-and-running quickly, see [11.3, “Incremental Design,” on page 163

6.4.1 Understanding Decision Details Concepts
The Engine contains these high-level concepts:
* Top-level screen

A screen of decision details that is displayed when the user views a display category for a coverage
period, showing a point-in-time view of the details of a case.

¢ Sub-screen

A panel of details which is displayed when the user expands a row on a top-level screen (or parent
sub-screen).

e Case Rule Class

The rule class configured by a product period on a display category, responsible for identifying all the
data to be made available for display.

* Display attribute

A rule attribute annotated with the Display annotation, indicating that its data should be made
available in decision details XML;

* DisplaySubscreen attribute

A rule attribute on a Case Rule Class annotated with the DisplaySubscreen annotation, indicating that
it returns a list of rule objects which can be queried for display on an expanded sub-screen.

* businessObjectID

A unique numerical identifier for data displayed when a row of data is expanded to show a
sub-screen.

6.4.2 Analysis

You must understand the requirements for your product, and analyze how these requirements broadly
map to the Engine's decision details concepts before starting implementation.

70 IBM Cdram Social Program Management: Inside Ctram Eligibility and Entitlement Using Ctiram Express Rules

Unlike the requirements for eligibility /entitlement, typically requirements for decision details are not
enshrined in legislation, but instead are based off informed predictions of the kinds of information that
may be useful to a case worker, when the case worker is trying to understand a complex case (and
perhaps answer questions about the case from customers.)

As such, producing requirements for your decision details is perhaps more art than science (in a similar
way as for key decision factors; however, requirements for decision details tend to be more complex than
those for key decision factors, given the flexibility of the Engine's support for decision details and the
wealth of data items that are candidates for display).

For a new product, you might consider revisiting your decision details requirements once a product has
been live for some time, in light with the kinds of information that case workers are attempting to
understand when they view determinations. If you layer your requirements and implementation
according to the recommendations, you should be able to implement and deploy changes to your
decision details rules without affecting any underlying eligibility /entitlement calculations.

The following steps should aid your analysis.

6.4.2.1 Identify the Display Categories
You must identify and name your display categories, and consider the order in which the categories will
be displayed to a case worker.

Recall that the first category will be displayed by default when the user is presented with a row of tabs,
and moreover the first category will also be used when the user expands a coverage period row when
viewing details of a determination. It is recommended that you design your first display category to
show overall "summary" details of the case's eligibility and entitlement calculations.

6.4.2.2 Sketch out the Screens

For anything other than the most trivial of screens, it can be helpful to sketch out an example of the data
to be shown on each of your display category screens.

For each display category that you have identified, sketch out an example of the screen with some
realistic data laid out appropriately, giving particular attention to:

* whether any expandable sub-screens are required to display further details on any data; and indeed
whether the sub-screens themselves require further sub-screens (possibly creating separate sketches if
warranted by the complexity of the sub-screens);

 any data which is only to be displayed if a particular condition is met (and possibly create a separate
sketch for how the screen should look if this condition is not met); and/or

* any non-standard layout such as bold characters, total lines, etc.

6.4.2.3 Map displayed data to eligibility/entitlement data
For each data item displayed on your screen examples (and any data item used as a condition), you must
identify where the data will come from.

Some data may be sourced from existing data used or derived during eligibility /entitlement calculations.
Other data may need further transformation before being suitable for display.

For example, your rules for eligibility may state that, under certain circumstances, the household must be
means-tested in order to determine eligibility (whereas under other circumstances, the household must
fulfill other conditions to be eligible, but those conditions do not include a means-test).

You may require to display a "Means test" item on your decision details screen with values "Passed",

"Failed" and "Not applicable". To populate this item, you may need a calculation specific to decision
details to translate the condition of whether or not a means test is required, and if so whether it passed.

Chapter 6. Calculating and Displaying Decision Details 71

This calculated "means test status" value is probably of no relevance to your underlying
eligibility / entitlement rules and thus will require implementing specifically to support your decision
details screen.

It may be helpful to keep track of which data for your screens is already available directly from
eligibility /entitlement rules vs. which data requires screen-specific calculations.

6.4.2.4 Identify keys for sub-screens

For any expandable sub-screens, you must identify a numerical key (businessObjectID) that can be used
to uniquely identify the row being expanded (and thus also uniquely identifies the sub-screen to display
for the row).

6.4.2.5 Identify comparison data
Each of your screens will show data from a coverage period within a determination. However it also
possible for a top-level screen to display additional data from the previous case decision.

For each top-level screen, you must identify whether (in addition to data from the "current" coverage
period), the top-level screen will also display data from the previous case decision period (if any).
Typically most top-level screens do not display comparison data.

6.4.3 Implementation

Having analyzed your business requirements, you are now in a position to start the implementation of
your decision details for your product.

You are likely to re-use some of the calculation results already implemented for your

eligibility /entitlement calculations, as some decision details are already part of your eligibility and
entitlement logic. Other decision details may require additional calculations to make them suitable for
display.

It is recommended that you implement your decision details rule classes in a rule set separate from your
eligibility /entitlement rule set(s), but allow your decision details rule classes to depend on your
eligibility / entitlement rule classes (but not the other way around).

This approach means that you can evolve your decision details implementation in the future without
having to retest your eligibility/entitlement implementation; this can be important since key decision
details are merely "view" data to aid the case worker, whereas eligibility /entitlement results may affect
more critical business functions such as how much a client is actually paid.

It can be helpful to track the dependencies between your rule sets so that as your product evolves, you
have an insight into how changes in one rule set might affect other rule sets that depend on it.

For each product period and display category, you must create:
* a rule class which is responsible for identifying and calculating the decision details for the case; and

* a dynamic UIM page which is responsible for retrieving the details and formatting them for display to
a case worker.

It is possible that your decision details are calculated in an identical way across product periods, in which
case you may be able to re-use one case rule class for many product periods. Your factoring of common
calculated eligibility /entitlement results may affect how you must factor your case rule classes for
decision details.

You may also create an arbitrary number of rule classes to model the data for display and/or provide
intermediate calculations for decision details data. The flexibility of decision details data means that there
are no fixed data structures to adhere to (unlike the steps for implementing eligibility/entitlement and
key decision factor rules).

72 IBM Cdram Social Program Management: Inside Ctram Eligibility and Entitlement Using Ctiram Express Rules

The sections below detail a step-by-step path to implement your decision details.

6.4.3.1 Write the Case rule class

Your rule class to identify and calculate decision details for a particular display category on a case must
ultimately extend from the ProductDecisionDetailsRuleSet.AbstractCase interface rule class. For ease of
upgrades, it is recommended that your rule class extends the
DefaultProductDecisionDetailsRuleSet.DefaultCase rule class which provides default implementations.

Here is a description of the attributes inherited from AbstractCase:

Table 19. Rule attributes inherited from ProductDecisionDetailsRuleSet.AbstractCase

Rule Attribute name Data type Description

productDeliveryCase ProductDeliveryCase The controlling rule object which is responsible for
splicing together the determination result from the
contributions made by the product period. Passed in
when the instance of AbstractCase is created.

Create a rule class which extends DefaultProductKeyDataRuleSet.DefaultCase. The rule class should be
named in line with your product and display category, e.g. ProductNameDisplayCategoryName (the Engine
does not have any technical constraint on the rule class name - rather a good name for your rule class
may make it easier to develop and maintain your rule sets).

The inherited implementation from DefaultCase means that you have a valid rule class for use with
decision details, but as yet your rule class will not gather any useful data for display.

6.4.3.2 Implement attributes to return top-level screen data
You must add new Display attributes to your case rule class to identify data that must be made available
for display.

For calculated data which is already implemented via eligibility /entitlement calculations, you should
implement an attribute to obtain this data. Typically you will use CER's <create> expression to create an
instance of the eligibility/entitlement rule object (specifying the productDeliveryCase value passed in),
and then use CER's <reference> expression to obtain data from the eligibility /entitlement rule object. The
eligibility / entitlement rule object will tend to be required by many Display attributes and can be created
in its own rule attribute which is not annotated with Display.

For data which requires display-specific calculations, then you must implement these calculations.
Typically any intermediate steps in these calculations are not required for display, and so any attributes
you implement for intermediate-only steps should not be annotated with Display. You may also create
your own display-specific rule classes which contain a mixture of Display/non-Display rule attributes.

For a list of data items, you will typically use CER's <dynamiclist> expression to transform a list of data
into a list of "wrapper" rule objects, where each rule object has annotated attributes which identify which
values to display and which provide any display-specific calculations.

For example, you may require a summary display category to show the following:
* The name of the claimant;

¢ The number of people in the household; and

* A list of assets owned by the claimant.

You identify that all these details are available by manipulation of data already used in

eligibility /entitlement calculations, and so your decision details need to create an instance of your
eligibility / entitlement rule class (as is typically the case).

Chapter 6. Calculating and Displaying Decision Details 73

The name of the claimant can be obtained by navigating to the person rule object already retrieved by
your eligibility /entitlement rules, and so create a claimantName Display attribute on your case rule object,
which navigates the eligibility /entitlement rules to obtain the required data.

The number of people in the household is not directly relevant to eligibility /entitlement rules, so you
implement a householdCount Display attribute which retrieves the list of household members from your
eligibility /entitlement rules and then provides display-specific processing to count the number of items in
the list.

To display the list of assets, you implement a rule class named AssetDisplay with the responsibility for
display each asset. You implement an assets rule attribute on your case rule class which retrieves the
eligibility /entitlement Asset instances and for each one creates an AssetDisplay instance, passing in the
eligibility /entitlement Asset instance.

In pseudo-code, your case rule class ends up containing rule attributes like this:
e eligibilityEntitlementCase (not annotated with Display):

— Create an instance of the eligibility /entitlement rule class for the product, specifying the value of
productDeliveryCase

* claimantName (annotated with Display):

— Retrieve the value of personName from the value of claimant from the value of
eligibilityEntitlementCase worked out above (or, in a more Java-like notation,
eligibilityEntitlementCase.claimant.personName)

* householdCount (annotated with Display):

— Retrieve the value of householdMembers from the value of eligibilityEntitlementCase worked out
above; and

— Count the number of items in the householdMembers list.
* assets (annotated with Display):

Retrieve the value of assets from the value of eligibilityEntitlementCase worked out above.

For each asset, create an instance of AssetDisplay, passing in the current asset.
— Return a list of AssetDisplay instances.

Tip: To aid parallel development of dynamic UIM screens while rules are being developed, initially you
can create your Display attributes with dummy implementations which return fixed values; the real
attribute implementations can then be developed while another developer creates the Dynamic UIM
screens and tests them against the dummy rule attribute implementations.

6.4.3.3 Implement attributes and rule classes for sub-screen data

If your top-level screen allows rows to be expanded to show sub-screens, then you must create an
attribute on your case rule class that returns a list of rule objects and annotate that attribute with the
DisplaySubscreen annotation. This annotation allows the data to be searched by the Engine when a user
expands a row of data. It is recommended that you name your attribute datatype Subscreens .

The rule objects returned in the list from your DisplaySubscreen attribute must ultimately extend the
ProductDecisionDetailsRuleSet.AbstractCaseSubscreenDisplay rule class shipped by the Engine. For
ease of upgrades, it is recommended that your rule class extends the
DefaultProductDecisionDetailsRuleSet.DefaultCaseSubscreenDisplay rule class which provides default
implementations.

Here is a description of the attributes inherited from AbstractCaseSubscreenDisplay:

74 IBM Cdram Social Program Management: Inside Ctram Eligibility and Entitlement Using Ctiram Express Rules

Table 20. Rule attributes inherited from ProductDecisionDetailsRuleSet.AbstractCaseSubscreenDisplay

Rule Attribute name Data type Description

businessObjectID Number Identifier of the row being expanded (must be unique
amongst all sibling rows).

Create a rule class which extends DefaultProductDecisionDetailsRuleSet.DefaultCaseSubscreenDisplay
rule. It is recommended that you name your rule class Datatype Subscreen, in line with the attribute you
created above.

Typically, instances of your rule class will be constructed passing some underlying eligibility /entitlement
rule object to be displayed on the sub-screen. You must provide an implementation of businessObjectID
on your sub-screen rule class, and typically this implementation will refer to some identifier on the
underlying eligibility /entitlement rule object.

The implementation of the attribute on your case rule class will typically use CER's <dynamiclist>
expression to create an instance of your rule class to wrap some eligibility /entitlement rule object.

For example, let's say that the AssetDisplay rule class in the previous section is used to populate a list of
assets on the summary decision details screen, and that furthermore we want the user to be able to
expand each asset to see further details such as purchase date and a list of valuations for that asset.

You would write the following;:
e AValuationDisplay rule class, with the following attributes:
— valuation (the underlying eligibility /entitlement rule class), not annotated;

— valuationAmount, annotated with Display, which retrieves the valuationAmount value from the
underlying valuation;

e An AssetSubscreen rule class, extending
DefaultProductDecisionDetailsRuleSet.DefaultCaseSubscreenDisplay, with the following attributes:

— asset (the underlying eligibility /entitlement rule class), not annotated;
— businessObjectID, not annotated, which retrieves the assetID from the underlying asset;
— purchaseDate, annotated with Display, which retrieves the purchaseDate from the underlying asset;

— valuations, annotated with Display, which retrieves the underlying valuations for the asset and for
each one creates a ValuationDisplay to wrap it;

* An assetSubscreens attribute on your case rule object, annotated with DisplaySubscreen, which
retrieves all the assets on the case and for each one creates an AssetSubscreen to wrap it.

It is possible that your top-level screen allows multiple types of expansion (i.e. your top-level screen
shows multiple lists, each of which may be expanded). For each type of expansion, you must create
separate DisplaySubscreen attributes in your case rule class.

It is also possible that your sub-screens also allow further drill down into sub-screens. In this situation,
all data for the lower sub-screens still needs to be returned by a DisplaySubscreen attribute on your case
rule class.

Tip: CER's <joinlists> expression can sometimes be useful to aggregate lists of lists into a single list in
such a situation.

6.4.3.4 Write the Dynamic UIM screens
For each top-level screen and sub-screen, you must write a Dynamic UIM file and associated .properties
file, and then store these files on the database.

Chapter 6. Calculating and Displaying Decision Details 75

Top-level screens

For each top-level screen, write UIM including the following:
e Accept these page parameters:

<PAGE_PARAMETER NAME="determinationID"/>
<PAGE_PARAMETER NAME="displayDate"/>

* Call the standard interface to retrieve XML data for a display category for a coverage period, and
connect the parameters required by the call:

<SERVER_INTERFACE
CLASS="CaseDetermination"
NAME="DISPLAY"
OPERATION="viewDecisionDisplayRulesCategoryXML"
/>
<CONNECT>
<SOURCE
NAME="PAGE"
PROPERTY="determinationID"
/>
<TARGET
NAME="DISPLAY"
PROPERTY="key$determinationID"
/>
</CONNECT>
<CONNECT>
<SOURCE
NAME="PAGE"
PROPERTY="displayDate"
/>
<TARGET
NAME="DISPLAY"
PROPERTY="key$date"
/>
</CONNECT>
<CONNECT>
<SOURCE
NAME="TEXT"
PROPERTY="CategoryRef"
/>
<TARGET
NAME="DISPLAY"
PROPERTY="key$categoryRef"
/>
</CONNECT>

* Decide on a "category reference" for your display category (which will be used later when
configuration your product's display categories). Create a .properties entry for the CategoryRef of the
display category:

CategoryRef=MY_CATEGORY_REF

* If your top-level screen requires data from the previous decision period to compare to, then write a call
to perform additional retrievals and connect the parameters:

<SERVER_INTERFACE
CLASS="CaseDetermination"
NAME="DISPLAY_ PREV"
OPERATION="viewPreviousDecisionDisplayRulesCategoryXML"
/>
<CONNECT>
<SOURCE
NAME="PAGE"
PROPERTY="determinationID"
/>
<TARGET
NAME="DISPLAY_ PREV"
PROPERTY="key$determinationID"

76 IBM Cdram Social Program Management: Inside Ctram Eligibility and Entitlement Using Ctiram Express Rules

/>
</CONNECT>
<CONNECT>
<SOURCE
NAME="PAGE"
PROPERTY="displayDate"
/>
<TARGET
NAME="DISPLAY_PREV"
PROPERTY="key$date"
/>
</CONNECT>
<CONNECT>
<SOURCE
NAME="TEXT"
PROPERTY="CategoryRef"
/>
<TARGET
NAME="DISPLAY_PREV"
PROPERTY="key$categoryRef"
/>
</CONNECT>

¢ Write custom UIM to query the xm/Data returned from the server call(s) via XPath-like expressions, and
lay out this data on the screen. (This step is typically where the bulk of your screen implementation
effort will lie.)

* If the screen allows the expansion of rows to show sub-screens, write UIM to connect to your
sub-screen.

See the screen CREOLEDisplayRules_basicCaseDisplay.uim included with the Engine for a full example of
a decision details top-level screen (including connection to a sub-screen).

Sub-Screens

For each sub-screen, write UIM including the following:
* Accept these page parameters:

<PAGE_PARAMETER NAME="determinationID"/>
<PAGE_PARAMETER NAME="displayDate"/>
<PAGE_PARAMETER NAME="businessObjectID"/>

* Call the standard interface to retrieve XML data for a business object within a display category for a
coverage period, and connect the parameters required by the call:

<SERVER_INTERFACE
CLASS="CaseDetermination"
NAME="DISPLAY"
OPERATION="viewDecisionDisplayRuleCategorySubscreenXML"
/>
<CONNECT>
<SOURCE
NAME="PAGE"
PROPERTY="determinationID"
/>
<TARGET
NAME="DISPLAY"
PROPERTY="key$determinationID"
/>
</CONNECT>
<CONNECT>
<SOURCE
NAME="PAGE"
PROPERTY="displayDate"
/>
<TARGET
NAME="DISPLAY"

Chapter 6. Calculating and Displaying Decision Details 77

PROPERTY="key$date"
/>
</CONNECT>
<CONNECT>
<SOURCE
NAME="TEXT"
PROPERTY="CategoryRef"
/>
<TARGET
NAME="DISPLAY"
PROPERTY="key$categoryRef"
/>
</CONNECT>
<CONNECT>
<SOURCE
NAME="PAGE"
PROPERTY="businessObjectID"
/>
<TARGET
NAME="DISPLAY"
PROPERTY="key$businessObjectID"
/>
</CONNECT>
<CONNECT>
<SOURCE
NAME="TEXT"
PROPERTY="SubscreenName"
/>
<TARGET
NAME="DISPLAY"
PROPERTY="key$subscreenName"
/>
</CONNECT>
* Create a .properties entry for the CategoryRef of the display category, and the SubscreenName (which

is the name of the attribute on the case rule object which is annotated with DisplaySubscreen):

CategoryRef=MY_CATEGORY_REF
SubscreenName=myCaseRuleAttributeWithDisplaySubscreenAnnotation

* Write custom UIM to query the xmlData returned from the server call via XPath-like expressions, and
lay out this data on the screen. (This step is typically where the bulk of your screen implementation
effort will lie.)

e If the screen allows the expansion of rows to show further sub-screens, write UIM to connect to your
sub-screen.

See the screen CREOLEDisplayRules _basicCaseDisplay objectiveTagSubscreen.uim included with the
Engine for a full example of a decision details sub-screen.

Storing your screens

Refer to the Ciiram Web Client Reference Manual for more details.

6.4.3.5 Configure the Product

For each display category identified for your product, you must create a display category record and link
your product period(s) to it.

The way you create these records differs depending on whether you are working in a development
environment or a running system.

Working in a Development Environment

Create DMX entries for any new rule sets you created for your rule classes (see section D.5.1. in the Ciram
Express Rules Reference Manual).

78 IBM Cdram Social Program Management: Inside Ctram Eligibility and Entitlement Using Ctiram Express Rules

For each display category, perform the following steps in the custom component:

* Create an entry in a LocalizableText.dmx file with the following attributes (to point to the name of

your display category):
Table 21. DMX data for LocalizableText

Attribute Name

Value

localizableTextID

A unique ID from your custom key range.

richTextInd

0

versionNo

1

* Create an entry in a TextTranslation.dmx file with the following attributes (to name your display

category in your default locale):

Table 22. DMX data for TextTranslation

Attribute Name

Value

textTranslationID

A unique ID from your custom key range.

localizableTextID

The value of LocalizableText.localizableTextID you
assigned above.

localeCode

Your default locale code, e.g. "en".

* Create an entry in a CREOLEProductDecisionDispCat.dmx file with the following attributes:

Table 23. DMX data for CREOLEProductDecisionDispCat

Attribute Name

Value

creoleProductDecisionDispCatID

A unique ID from your custom key range.

categoryRef The category reference you assigned to your display
category (and used in your UIM .properties files).

displayOrder The placement(Thus the display category with the lowest
displayOrder value for the product will be displayed
first (and also displayed when a coverage period row is
expanded).)of this display category amongst those for the
same product.

displayPageName The name of your Dynamic UIM page that you created
for this display category.

nameID The value of LocalizableText.localizableTextID you
assigned above.

productID The ID of your CER-based product.

versionNo 1

(Thus the display category with the lowest displayOrder
value for the product will be displayed first (and also
displayed when a coverage period row is expanded).)

For each product period, you must decide whether the product period will support display of decision

details for your display category.

For each product period that supports your display category, perform the following steps in the custom
component to link your product period to your display category:

 Create an entry in a CREOLERuleClassLink.dmx file, which points to the rule class for your case rule

class for decision details:

Chapter 6. Calculating and Displaying Decision Details 79

Table 24. DMX data for CREOLERuleClassLink

Attribute Name

Value

creoleRuleClassLinkID

A unique ID from your custom key range.

creoleRuleSetID

The value of CREOLERuleSet.creoleRuleSetID you
assigned above for the rule set containing your decision
details rule class.

ruleClassName

The unqualified name of your decision details rule class.

versionNo

1

Important: You must create a separate record for use by each product period, even if multiple product
periods point to the same decision details rule class.

* Create an entry in a CREOLEProductPeriodDispCat.dmx file with the following attributes:

Table 25. DMX data for CREOLEProductPeriodDispCat

Attribute Name

Value

creoleProductPeriodDispCatID

A unique ID from your custom key range.

creoleProductPeriodID

The ID of your product period.

creoleProductDecisionDispCatID

The value of CREOLEProductDecisionDispCat.
creoleProductDecisionDispCatID you assigned above.

decisionDetailsRCLID The value of
CREOLERuTeClassLink.creoleRuleClassLinkID you
assigned above.

versionNo 1

See the core data dictionary for a full description of these database columns.

Working in a Running System

Publish your rule sets containing your new rule classes.

Start the admin application and navigate to Product Delivery Cases, select your product, choose Rule Sets
and copy the product for edit (if it is not already in edit).

Click on "Display Categories”, and for each display category in your analysis, perform the following

steps:
¢ Create a new display category;

* Set the value of "Name" to be the name of the display category in the user's locale;

* Set the value of "Display Order" to be the placement of this display category amongst those for the

same product;

* Set the value of "Display Page" to be the placement of this display category amongst those for the same

product;

* Set the value of "Display Order" to be the name of your Dynamic UIM page that you created for this

display category; and

* Set the value of "Category Reference" to be the category reference you assigned to your display

category (and used in your UIM .properties files).

Click on "Product Periods" and for each product period perform the following steps:

* For each display category that the product period must support, choose "Associate Decision Details

Rule...";

80 IBM Curam Social Program Management: Inside Ctram Eligibility and Entitlement Using Ctiram Express Rules

¢ Choose the Display Category; and
* Search for your case rule class that you created for the display category.

Publish your changes to the product.

6.4.4 Testing

For a complex product created in a development environment, you should create unit tests for individual
parts of your product's decision details rules, using CER's support for rules testing.

You might consider creating end-to-end unit tests that test full scenarios involving the creation and
activation of evidence, and the creation and activation of product delivery cases, to test that the overall
decision details results are calculated as expected.

You might also perform manual testing of the online system to check that your overall decision details
scenarios are handled as expected. This step is particularly important for decision details, as the
implementation of decision details involves custom screens (unlike the display of eligibility/entitlement
and key decision factor results, which use screens included with the Engine).

It is particularly important to ensure that the XPath-like expressions in your Dynamic UIM screens
matches the structure of the XML data produced by the Engine when it creates a determination; the
structure of the XML data is in turn mandated by the annotations on your case rule object for the product
period/display category.

Tip: In a development environment, it can be useful to set breakpoints on the CaseDetermination facade
method(s) called from your Dynamic UIM pages, so that you can inspect the XML returned. In a situation
where a screen value is failing to display as intended, it can be useful to see if:

¢ the value is present in the returned XML, in which case the error most likely lies with your XPath-like
expression in the Dynamic UIM; or

* The value is not present in the returned XML, in which case the error most likely lies with the
annotations in your rule classes for decision details.

Note that it is possible for the XML returned from the server to contain data which is not used on any
decision details screen. Under rare circumstances, it is possible for a case worker to view a determination,
shown as a number of coverage periods, with the decision details for those coverage periods seeming (to
the case worker) to appear as identical. In this situation, it is possible that the Engine is splitting the
determination into coverage periods based on some data in the XML which is not shown to the user. You
should take care to ensure that there is no such extraneous data in your XML - i.e. that all Display
attributes do in fact appear on one or more decision detail screens or subscreens.

The Engine may encounter runtime problems when calculating decision details for a particular display
category, due to calculation errors in CER attribute values.

If there is a runtime error in the calculation of a CER attribute value for a display category, such as a
reference not found (analogous to a NulTPointerException in Java), or a division by zero, or any other
calculation problem, then the Engine will throw an exception. The application logs will contain details of
this exception including its stack trace. For CER calculation errors, the stack trace can include important
information regarding the location within a CER rule set where the error occurred. To fix this, you will
need to debug and retest your rules.

Chapter 6. Calculating and Displaying Decision Details 81

82 IBM Curam Social Program Management: Inside Ctram Eligibility and Entitlement Using Ctiram Express Rules

Chapter 7. Understanding Rule Object Converters and
Propagators

7.1 Introduction

Cdram eligibility and entitlement processing relies on CER to calculate determination results based on
details of the case, evidence recorded against the case and stand-alone data such as personal details and
rates. CER is able to access such data via the use of rule object converters, which are responsible for
retrieving data from business tables and converting that data into rule objects that can be used by CER.

Caram's eligibility and entitlement processing also relies on the Dependency Manager to track the data
that a determination result depends on, and for the Dependency Manager to request a reassessment
whenever such data changes. The Engine contains a number of rule object propagators which are
responsible for listening for changes in data which could affect calculations, and for informing the
Dependency Manager that such data has changed.

Typically, for each type of data that is used in determination calculations, there is a corresponding
converter and propagator pair which complement each other; the converter retrieves data of that type
when requested by CER calculations while the propagator listens for changes to that data of that type.

For some of these converter/propagator pairs, there are configuration options to set exactly which
business data will be converted/propagated; and where there are such configuration options, both the
converter and the propagator use the same underlying configuration data.

This chapter describes in details how the rule object converters and propagators work and how you can
configure them for your business needs.

7.2 An Initial Assessment Example

This section walks through an example of how business data on the database is converted to CER rule
objects throughout the lifecycle of a product and case and how changes in that data are propagated to the
Dependency Manager.

The example follows these steps:

* A system administrator creates and publishes rule set information for a Product;
* A system administrator creates and publishes a new Rate Table;

* A case worker registers a Person;

* A case worker creates a new Case for that Person;

e A case worker adds an additional member to the Case;

* A case worker captures and activates some Income evidence; and

* A case worker activates the Case.

As these steps progress, we will see how data from various parts of the system is converted into CER
rule objects.

Propagation processing (to inform the Dependency Manager of changes) occurs later in the case lifecycle
when changes of circumstances occur (see [Chapter 10, “Reassessment - Handling Changes in|
[Circumstance,” on page 145).

© Copyright IBM Corp. 2012, 2013 83

7.2.1 A System Administrator Creates and Publishes Rule Set
Information for a Product

Before any kind of eligibility and entitlement processing can occur for a Product, that Product must first
be created and rule set information for that Product published. For details on how a Product is built, see
the see the How to Build a Product guide.

In this example, the Product is for a Sickness Benefit. The system administrator sets up the new Product
details, associates rule set information to the Product, and submits the rule set information for
publication.

When the rule set information is published, rows are written to a number of database tables, and in
particular the data from the database tables listed here will be required later, during the calculation of
each case's determination result:

* CREOLEProductPeriod;
¢ CREOLEProductPeriodDispCat; and
* CREOLERuleClassLink.

Important: These database tables are configured to be converted and propagated by the Entity converter
and propagator respectively (see [7.4.3, “Entity Rule Objects,” on page 92).

The configuration is included by the application in the .../EJBServer/components/core/data/initial/
blob/EntityPropagatorConfiguration.xml file.

This configuration is critical to the correct operation the Engine, and must not be modified or removed by
customers.

Note that the data on the CREOLEProductDecisionDispCat database table is not required by rules
processing and is not present in the configuration included in the application.

Later, during the calculation of a case's determination result, the Entity converter will populate rule object
instances of these rule classes from the ProductEligibilityEntitlementRuleSet rule set:

* ProductPeriod;
* ProductPeriodDisplayCategory; and
* RuleClassLink.

Important: The rule ProductETigibilityEntitlementRuleSet rule set provided by the application is
critical to the correct operation of Ctram Eligibility and Entitlement, and must not be modified or
removed by customers.

7.2.2 A System Administrator Creates and Publishes a New Rate Table

The rules for the new Sickness Benefit require a household's total income to be tested against a maximum
threshold (i.e. if the total household income exceeds this threshold, then the case is not eligible).

This threshold will vary over time (as policy makers decide from time to time), so rather than hard-code
the threshold into rules, the rule set designer has required that the threshold be stored in a new "Income
Limits" rate table. The rates for this year and next year have already been decided.

The administrator creates the new rate table including an effective-dated change when this year's limit
will increase to next year's limit.

When finished, the administrator adds the new rate table to the configuration for the Rate Rule Object
Propagator (see [7.4.2, “Rate Rule Objects,” on page 90), and chooses to "Apply Changes" to the new rates.

84 IBM Curam Social Program Management: Inside Ctram Eligibility and Entitlement Using Ctiram Express Rules

The system is now configured to create rule objects for the cells in the new Income Limits rate table, and
so creates a CER rule object (of class RateRuleSet.RateCell) for each distinct cell in the new rate table.
CER stores these new rule objects on its database tables, for later retrieval during the calculation of a
case's determination result.

The income threshold rate varies over time, and so the valueTimeline in the rule object reflects both this
year's and next year's rate.

7.2.3 A Case Worker Registers a Person

An unmarried father applies for Sickness Benefit. Before his claim can be registered, the case worker user
must register the father as a person on the system.

When the system registers the father, a row is inserted onto the Person database table.

The Entity Rule Object Propagator (see[7.4.3, “Entity Rule Objects,” on page 92) is configured to listen for
changes to the Person database table, because that table is mapped to a rule class
(ParticipantEntitiesRuleSet.Person), and so the Entity Rule Object Propagator informs the Dependency
Manager that data that could potentially affect calculations has changed.

In this situation, the Dependency Manager identifies that the new data for the father does not affect any
existing calculations and thus takes no further action.

7.2.4 A Case Worker Creates a New Case for that Person

Now that the father has been registered, the case worker goes on to register a Sickness Benefit case for
the father.

When the system registers the case, it writes a row to each of these database tables:
e (CaseHeader; and
¢ ProductDelivery.

Later, during case determination, the data on these rows will be converted to a
ProductETigibiTityEntitlementRuleSet.ProductDeliveryCase rule object by the Product Delivery Rule
Object Converter (see [7.4.1, “Product Delivery Rule Objects,” on page 88). This rule object will be used to
calculate the determination result for the case.

When the system registers the case, it also records the father as a member of the case, by writing a row to
the CaseParticipantRole database table. Later, during case determination, the Entity Rule Object Converter
will convert the data on this row to a CaseEntitiesRuleSet.CaseParticipantRole rule object for the
father's role on the case.

At this point we now have:
¢ RateCell rule objects stored on CER's database tables rule objects for the new rate table; and

* business data stored on Ciram's application database tables, ready to be converted into CER rule
objects during later processing;:

— product data;
— non-case business data (personal details); and

— case-specific data (product delivery/case details and case participant role details).

7.2.5 A Case Worker Adds an Additional Member to the Case

The father has a daughter who must be added to the case. The case worker registers the daughter on the
system and adds her to the case.

Chapter 7. Understanding Rule Object Converters and Propagators 85

The system creates additional rows on Person and CaseParticipantRole, and as before these rows are
ready to be converted to rule objects during case determination processing later.

7.2.6 A Case Worker Captures and Activates Some Income Evidence

The rules for Sickness Benefit rely on calculating the total income for a household, and comparing that
total income to a predetermined threshold.

The total income for the household can vary over time (as can the threshold, shown earlier as a rate
table). In order that the system can calculate the total income (later), a record of the father's varying
income must be stored on the system.

The case worker captures the history of the father's income since the start of the case, and the system
stores the income data using evidence (see Designing Ciram Evidence Solutions).

The father has received pay rises over the lifetime of the income, and so a number of income records are
stored within the same evidence succession set. Each evidence record bears the income effective from a
particular date (i.e. the date of the pay rise).

While the income evidence is being recorded, each evidence record is "in edit", and so generally is not
available to case determination calculations (i.e. would not be converted into rule objects by the active
evidence converters). For eligibility and entitlement processing, rule objects represent the "best known
truth" about real-world data, and while the evidence is in-edit, it has not yet become "truth", so to speak.

After all the income evidence has been captured and verified, the case worker chooses to activate the
evidence, at which point its data becomes part of the system's "best known truth". Later, during case
determination, evidence in the "active" state is converted into rule objects so that the evidence data can be
used in CER's calculation of the determination result.

Later, during case determination, CER will make a request for the rule object for the father's income. The
Active Succession Set Rule Object Converter will retrieve all the active evidence versions for the father's
income (which form a single "succession set" of evidence) and create a single rule object representing the
father's income changing over time. The rule object created has:

* static values for non-changing details regarding the Income (e.g. its owning caseParticipantRoleID and
its startDate, which cannot vary over time); and

* timeline values for details which may change over time (e.g. its amount).

At this point we have all the data required in order to calculate the case's eligibility and entitlement (but
no such calculation has yet occurred for this case).

7.2.7 A Case Worker Activates the Case

The members of the case and the case evidence have now been recorded, and so the case worker
progresses the case through its approval and activation steps (see the Ciiram Integrated Case Management
Guide).

When the case is activated, the system assesses the case. The system:

* searches for the ProductDeliveryCase rule object for the case, matching on its caselD (in this example,
search for a caselD value of 1234). The Product Delivery Rule Object Converter (see|7.4.1, “Productj
[Delivery Rule Objects,” on page 88) reads the CaseHeader and ProductDelivery rows for caselD 1234
and forms a ProductDeliveryCase rule object which is returned to the Engine;

* requests the value of the determinationResult attribute value on the ProductDeliveryCase rule object,
which causes CER to perform calculations in order to calculate the requested value. During the
calculation, there are calculation rules which require data for the:

— Product

86 IBM Curam Social Program Management: Inside Ctram Eligibility and Entitlement Using Ctiram Express Rules

Data regarding the structure of the product (e.g. the product periods which make up the product) is
retrieved by the Entity Rule Object Converter and converted into CER rule objects;

— Personal Details
Data from stand-alone entities such as personal details are also retrieved by the Entity Rule Object
Converter;

— Rates
Rule objects for rates are retrieved directly from CER's database tables for stored rule objects; and

— Evidence
Data for evidence is retrieved by the Active Succession Set Rule Object Converter and converted into
CER rule objects.

gathers dependencies by analyzing the kinds of data retrieved by CER (above). These dependencies are
then passed to the Dependency Manager for storage, so that there is now a record of which data the
case's determination result depends on. The record of these dependencies will be checked whenever
data (such as personal details or evidence) changes, so that the case can be automatically reassessed.
stores the varying determination result on the CREOLECaseDetermination and
CREOLECaseDeterminationData database tables, and stores the point-in-time financial decisions on the
CaseDecision, CaseDecisionObjective and CaseDecisionObjectiveTag database tables (see
[“How Determinations Are Stored,” on page 121).

Note: CER does not store on the database any of the rule objects populated by rule object converters. The
rule objects are brought into memory as required and are released when no longer required in memory.

7.3 The Framework for Converters and Propagators

The application maintains a registry of converter and propagators that allow application components to
contribute to rule object conversion and rule object propagation processing.

At runtime, the application invokes the appropriate converter or propagator implementation from
amongst those registered.

Some converters and propagators have fixed behavior, whereas others have configurable behavior.
Typically each type of data is handled by a converter/propagator pair, which are responsible for
managing their own configuration.

Important: The application will validate that each rule class is mapped at most once by the data
configurations for a particular converter/propagator.

Do not attempt to use the same rule class in data configurations across different converter/propagator
implementations.

The following types of rule objects are handled by the converters and propagators included with the
application:

Product Delivery Rule Objects;

Rate Rule Objects;

Entity Rule Objects;

Active Succession Set Rule Objects; and
Active Evidence Row Rule Objects.

Important: Some other application components also contribute their own rule object converters and
propagators targeted at their own functional needs.

These other rule object converters and propagators are not suitable for eligibility /entitlement processing
are so are not listed in this guide.

Chapter 7. Understanding Rule Object Converters and Propagators 87

The sections below cover:

* rule objects for use with eligibility and entitlement processing;
* data configuration problems;

* data access points;

* logging; and

* supported domain types.

7.4 Rule Objects for Use with Eligibility and Entitlement Processing

This section describes the types of rule objects which can be used with eligibility and entitlement
processing.

The Engine includes a number of rule object converters which are responsible for reading data from the
database and populating rule objects so that CER can access their data in calculations.

The Engine also includes a number of rule object propagators which are responsible for listening for
changes in data and notifying the Dependency Manager that data has changed, so that the Dependency
Manager can request the Engine to reassess cases which may be affected by the data changes.

7.4.1 Product Delivery Rule Objects

7.4.1.1 Overview

The Product Delivery Rule Object Converter is responsible for populating the rule object for a product
delivery case for a CER-based product. The Product Delivery Rule Object Propagator is responsible for
detecting when changes in data occur that would affect the data populated on the case rule object and for
interacting with the Dependency Manager.

Note: Any product delivery case for a product which is configured to use Ctiram Rules is ignored by this
converter and propagator.

7.4.1.2 Configuration
The behavior of the propagator can be configured via the "Reassessment Strategy" option on each
CER-based product. See [7.4.1.5, “Propagation Processing,” on page 89| below.

7.4.1.3 Conversion Processing

The details of a CER-based product delivery case are converted to a
ProductETigibilityEntitTementRuleSet.ProductDeliveryCase rule object. This rule object contains a
calculated attribute determinationResult which has the responsibility of calculating the overall
determination result for the case (see #.3.1.1, “A) ProductETigibilityEntitlementRuleSet]|
[ProductDeliveryCase rule object,” on page 21).

The rule object will be converted on demand whenever assessment processing requires it. For case
assessment determinations (see [3.4, “Assessment Determinations,” on page 18), the Engine will analyze
which input values were accessed by CER during the calculation of the determination result and record
dependencies in the Dependency Manager. In particular, the determination result calculation will access
the case's start and end dates (both actual dates and expected dates), and the dependencies recorded on
these dates gives rise to CER's ability to automatically recalculate the determination result when these
dates change.

The following case-level data items are used to populate the attributes on the rule object:
 from the CaseHeader database row:

— caselD;

— concernRolelD;

— integratedCaselD;

88 IBM Curam Social Program Management: Inside Ctram Eligibility and Entitlement Using Ctiram Express Rules

— startDate;
— endDate;
- expectedStartDate; and
- expectedEndDate; and
* from the ProductDelivery database row:
- productID.

7.4.1.4 Precedents Identified

Access to Product Delivery Rule Objects during CER calculations does not give rise to any precedents
being identified.

Product Delivery Rule Objects are intended to be used to calculate determination results only.

7.4.1.5 Propagation Processing

Whenever the CaseHeader or ProductDelivery data changes for a CER-based product delivery, the
propagator requests the ProductEligibilityEntitlementRuleSet.ProductDeliveryCase rule object for the
case and manipulates it in memory.

For a product which has its reassessment strategy set to "Do not reassess closed cases", then:

* when a product delivery case for the product is closed, then the propagator removes the rule object in
memory and also deletes all dependency records for the case's determination result, to prevent
automatic reassessment of the case; and

* when a product delivery case for the product is re-opened and subsequently re-activated, then the
Engine will calculate the case's determination result and will also build back up the dependency
records for the case's determination result, to allow automatic reassessment of the case if data changes
in the future.

For a product which has its reassessment strategy set to "Automatically reassess all cases", then no such
processing occurs and the continuing presence of the dependency records in the Dependency Manager
while a case is closed means that the case will continue to be reassessed due to data changes even if it is
closed.

See [11.5.4, “Reassessment Strategy,” on page 174|for details of the processing that occurs if an
administrator chooses to change the reassessment strategy for an existing product that has product
delivery cases created against it.

7.4.1.6 Example

A CER-based product is set up in the system with a reassessment strategy set of "Do not reassess closed
cases".

A case worker registers a new product delivery case for the product, with concernRolelD 2345, and an
actual start date of 1st January 2001, but with no expected or actual end date (i.e. an open-ended case).
When the case is activated, the Engine requests the rule object for the case, and CER invokes the Product
Delivery Rule Object Converter to convert the case data into the required CER rule object. The Engine
requests the rule object's determinationResult and also requests CER to determine the data dependencies
for the calculation. The Engine passes these dependencies to the Dependency Manager for storage.

Some time later, a user maintains the case and enters an expected end date of 31st December 2001. The
Entity Rule Object Propagator notifies the Dependency Manager that a CaseHeader row has changed, and
the Dependency Manager identifies that the case requires reassessment. The Engine reassesses the case,
and when it requests the rule object for the case the Product Delivery Rule Object Converter retrieves the
latest data for the case and forms a rule object that has its expected end date set. The Engine gets the

Chapter 7. Understanding Rule Object Converters and Propagators 89

determination result from the rule object, which now takes into account the expected end date. The
Engine detects that the determination result has changed (due to the expected end date now set) and
stores the new determination.

The case comes to a natural end and is closed by the case worker. The Product Delivery Rule Object
Propagator removes the dependency records for the case's determination result (because the product is
set not to reassess closed cases).

Later, new evidence comes to light which requires the case to be re-opened. When the case worker
re-activates the case, the Product Delivery Rule Object Propagator triggers the Engine to reassess the case
to build back up the dependency records for the case's determination result. The Engine finds that there
is no change in the case's determination result since it was last assessed and so does not store a new
determination. The case worker records and activates the changes in evidence, and the Active Succession
Set Rule Object Propagator notifies the Dependency Manager that evidence on the case has changed. The
Dependency Manager identifies that the case requires reassessment and triggers the Engine to reassess
the case, which will now take into account the recently-activated changes in evidence. The Engine finds
that the determination result has changed and stores a new determination.

7.4.2 Rate Rule Objects

7.4.2.1 Overview

The Rate Rule Object Propagator is responsible for the creation, maintenance and removal of rate cell rule
objects for nominated rate tables. In contrast to the other propagators, this propagator stores rule objects
on CER's database tables.

The Engine contributes a rate expression to CER (see [C.2.3, “rate,” on page 190)) which can be used to
retrieve a rule object populated by the Rate Rule Object Converter.

7.4.2.2 Configuration

This propagator accepts configurations which adhere to the following structure:

* propagator type must be "ROPT2006" (the code for 'Rate' from the RuleObjectPropagatorType code
table); and

* each rate table to be propagated must be listed in a ratetable element with a type matching the rate
table's type code.

Configurations are cumulative, i.e. there may be many configurations of type "ROPT2006", and if a rate
table's code is present in any of those configurations then the rate table will be propagated; otherwise, the
rate table will be ignored.

The following type of configuration problem will be detected by the Rate Rule Object Converter:
* Rate table type code not specified in the ratetable element.

7.4.2.3 Conversion Processing
There is no converter for rate data - CER rule objects for rates are read directly from CER's database
tables when retrieved during CER calculations.

7.4.2.4 Precedents Identified

If Rate Rule Objects are accessed during a CER calculation, and the CER utility is used to identify
precedents, then internal IDs for the rate values on the CER rule objects will be identified directly by
CER.

Ani confiiuration problems detected will be processed according to [7.5, “Data Configuration Problems,”]

See the Cdram Express Rules Reference Manual.

90 IBM Ciram Social Program Management: Inside Ctram Eligibility and Entitlement Using Ctiram Express Rules

7.4.2.5 Propagation Processing
This propagator creates CER rule objects for rate data, which are stored by CER on its database tables.

In contrast to other propagators, rate data is not propagated incrementally. This is because typically a user
may want to change several rate tables before applying all the changes in one go, at which point the
system will identify all the cases affected.

As such, rates are only propagated during initial/full propagation (as for the other propagators), or when
the user explicitly chooses to apply rate changes to CER products. When any of these propagation
triggers occur, the system will:

* read the configurations for the Rate Rule Object Propagator (i.e. those of type "ROPT2006");

* read all the rate cells for the configured rate tables;

* identify each rate cell's varying value over the history of the rate table (ignoring any range data);
e for each rate cell's varying value, create or update the corresponding RateCell rule object;

* remove any RateCell rule objects for rate cells which have been removed; and

e for any rates which have been created, updated or removed, inform the Dependency Manager of the
changes in data so that the Dependency Manager can identify which cases require reassessment.
Dependencies on rate data are stored at the Attribute Value level (i.e. per rate cell).

Important: Only rate cells which are in top-level rows and columns are propagated. Any rate cell which
belongs to a sub-row and/or sub-column is ignored.

Only the value of a rate cell is used during propagation. Any min or max range data for the rate cells is
ignored during propagation.

For more information on rate tables, see "Implementing Rate Tables" in the Ciram Integrated Case
Management Configuration Guide.

Each rate cell will only be valid as far back as its earliest rate header record. Before this date, the timeline
for the rate's varying value will be defaulted to zero.

7.4.2.6 Example

Let's say that a user creates a new rate table named "Income Limits", with a single column named
"Maximum Allowable Limit" and a single row named "Sickness Benefit". Furthermore, the user specifies
that the initial rate for this single column/row is 10,000 valid from 1st January 2000, rising to 12,000
effective 1st January 2001 (until further notice).

The administrator configures the Rate Rule Object Propagator to propagate the new "Income Limits" rate
table, and then chooses the "Apply Changes" option for rate tables.

The Rate Rule Object Propagator will create a single RateCell rule object with a valueTimeline populated
as follows:

* Beginning of time - 31st December 1999: 0 (the default value for rates for periods before the rate comes
into effect);

¢ 1st January 2000 - 31st December 2000: 10,000; and

* 1st January 2001 - End of time: 12,000.

A case is registered and assessed, and the calculation of the determination result involves the use of the
[C.2.3, “rate,” on page 190|expression to retrieve the "Maximum Allowable Limit" and "Sickness Benefit"
rate timelines.

The Engine invokes the CER utility to identify these dependencies (which are stored using the
Dependency Manager):

Chapter 7. Understanding Rule Object Converters and Propagators 91

Table 26. Example Dependency Storage for Rate Rule Objects

Dependent Precedent

Case 453's Entitlement depends on Attribute 'valueTimeline' on rule object ID '23423456'
(RateRuleSet.RateCell)

Case 453's Entitlement depends on Attribute 'valueTimeline' on rule object ID '9879872342'
(RateRuleSet.RateCell)

7.4.3 Entity Rule Objects

7.4.3.1 Overview
The Entity Rule Object Converter is responsible for converting a generic database row into a CER rule
object. You should use this converter to populate CER rule objects from your CRUD-style entity data.

CAUTION:
You should not use the Entity Rule Object Converter to populate rule objects from:

* Rate tables
See[7.4.2, “Rate Rule Objects,” on page 90| instead; or
* Evidence

See[7.4.4, “Active Succession Set Rule Objects,” on page 100 instead.

The Entity Rule Object Propagator is responsible for listening for database writes that occur in the
application's processing and for notifying the Dependency Manager that data for entity rule objects has
changed.

7.4.3.2 Configuration
The converter and propagator share a common set of configuration data, and accept configurations which
adhere to the following structure:

* propagator type must be "ROPT2003" (the code for 'General CRUD entity' from the
RuleObjectPropagatorType code table);

* each entity to be converted or propagated must be listed in a table element with a name exactly
matching the database table's name, as per the application model;

* each propagation target must be listed as a ruleset element (within the table element), specifying the
name of the rule set to target and optionally the rule class (if the name of the rule class differs from
that of the database table);

* each table element may optionally specify a column/value combination which identifies the row as
"canceled"; any row on the table which has this column/value combination will not be propagated -
this feature allows physically and logically deleted rows to behave the same (i.e. to cause the Entity
Rule Object Converter to not populate a rule object where the underlying database row is marked as
logically deleted); and

* each ruleset element may optionally specify a filter element to specify a custom filter class which
determines whether each row should be included or excluded from the Entity Rule Object Converter
and Propagator. The filter element must specify the name of the filter implementation, and may
include a filterconfig element to provide filter configuration specific to the filter implementation. The
Engine includes an EntityAttributePropagationFilter which provides a simple ANT-like filtering
mechanism based on include and exclude elements.

Configurations are cumulative, i.e. there may be many configurations of type "ROPT2003", and if an
entity is present in any of those configurations then the entity will be converted and propagated;
otherwise, the entity will be ignored.

Note: Any database tables which are on the "exclude" list (see [7.4.3.5, “Propagation Processing,” on page|
@ cannot be propagated (and will be ignored).

92 IBM Ctram Social Program Management: Inside Ctram Eligibility and Entitlement Using Ctiram Express Rules

Tip: You are free to create your own rule classes to match database entities whose data you require in
CER rules. However, you should first check whether existing rule classes are already suitable for your
needs - while it is possible to convert each database row to many different rule classes, this flexibility
comes with a potential maintenance cost for your rule sets.

In particular, the application includes configurations to convert and propagate data which is particularly
often used in eligibility /entitlement processing to rule classes included with the Engine in these rule sets:

* ParticipantEntitiesRuleSet; and
e CaseEntitiesRuleSet.

You should consider reusing these rule classes when creating your own rule sets, in order to avoid
maintenance overhead for your rule sets.

When you create your own rule classes for propagated data, it is recommended that you:

* implement a meaningful calculation of the description rule attribute (which can be useful for
debugging); but

* do not implement any other calculated attributes on the rule class (in order to promote re-use of your
rule classes across products).

If you require to map all rows from a database table to one rule class, but only the non-canceled rows to
a different rule class, then you should create separate table elements which name the same database
table, but only specify the canceledValue and statusColumn attributes on one of the table elements.
Similarly, if you require different filters for different rule classes, create separate table elements which
name the same database table.

The following types of configuration problems will be detected by the Entity Rule Object
Converter/Propagator processing:

* Entity name not specified in the table element;
e The modeled database table with the specified name could not be found;
¢ The modeled database table does not have a single-field primary key;

* The modeled database table is propagated to a rule class which does not contain an attribute
corresponding to the primary key of the rule class.

* A rule class is targeted by more than one source entity;
* The filter class specified for a filter is invalid; and
* The name or value is missing when using the EntityAttributePropagationFilter.

Any configuration problems detected will be processed according to [7.5, “Data Configuration Problems,”|

7.4.3.3 Conversion Processing

When a database row is converted to a rule object, then the values of the database columns are used to
map to identically-named rule attributes on the rule object. Any database column without a
corresponding rule attribute is ignored. The key column for the database table must have a corresponding
rule attribute, as this rule attribute will be used to identify the rule object.

Rows from a database table may only be converted if the database table has been modeled to have a
primary key which contains a single column, with a data type supported by the converter (see
[“Supported Domain Types,” on page 119). If a database table has no primary key, or has a primary key
made up of more than one column, then any attempt to use that database table in this converter's
configuration will result in a warning being logged and the configuration for the database table will be
ignored.

Chapter 7. Understanding Rule Object Converters and Propagators 93

Restrictions on Access

In your CER rule sets you will use CER's <readall>/<match> expression to access rule objects converted
from entity data.

You may only specify a retrievedattribute which matches a database column on the underlying
database row used to populate the CER rule object. The data type of the attribute must be Number or
String.

If you attempt to specify a retrievedattribute to be the name of an attribute which is calculated by
CER, or which is of a data type other than Number or String, then the Entity Rule Object Converter will
throw a runtime exception when the CER <readall>/<match> expression is executed.

Do not attempt to search for a retrievedattribute passing a value which would be stored as a NULL by
the application's Data Access Layer. No rule objects will be found for such values, e.g. for a unique
identifier value of 0 or an empty string.

You may specify the ruleset and ruleclass for the <readall> expression to be a rule class mapped by
the data configuration. If you attempt to specify a rule class which is not directly mapped (e.g. a base
rule class that you have created from which your concrete rule classes inherit) then no rule objects will be
found.

Important: You can use <readall> without a <match> to retrieve all rule objects converted from the entity,
but you should do so with care, because:

¢ there may be a large number of instances of rule objects for that entity; and/or

¢ the dependent will be recalculated every time a new row is stored for that entity or an existing row
removed.

A <readall> without a <match> is likely to useful only to convert rule objects from a "control" entity
which holds only a small number of rows and it is expected that additions to or removals from those
control rows should cause dependents to be recalculated.

7.4.3.4 Precedents Identified

If Entity Rule Objects are accessed during a CER calculation, and the CER utility is used to identify
precedents, then the following precedents will be identified:

Table 27. Precedents Identified for Entity Rule Objects

Name When Identified Trigger for Recalculation
Entity Row Identifies any entity row for which: A precedent change item for the entity row
« a search was executed against the row's will be written to a precedent change set if:

primary key (regardless of whether a row |* any data on the entity row changes;
with that primary key value was found); |.

a new entity row is inserted onto the
and/or

database(This precedent change caters for
* one or more attribute values were accessed an edge case whereby previously a CER
for the rule object populated data from the | expression had sought a row matching a

entity row with that primary key value. primary key value, but none was found;
but now a new row matching that primary
The precedent ID refers to the name of the key value is being inserted.); and/or

entity, the name of the entity's primary key

field and the primary key value sought. * an existing entity row is removed from the

database.

94 IBM Curam Social Program Management: Inside Ctram Eligibility and Entitlement Using Ctiram Express Rules

Table 27. Precedents Identified for Entity Rule Objects (continued)

Name

When Identified

Trigger for Recalculation

'readall’ search

Identifies any searches to retrieve all Entity
Rule Objects for a given rule class.

The precedent ID refers to the name of the
rule class sought by the readall expression.

A precedent change item for the rule class
will be written to a precedent change set if:

* a new entity row is inserted into the
database;

* an existing entity row is removed from the
database;

* the data on the entity row changes in such
a way that it is now considered logically
deleted, or ceases to be considered
logically deleted (if the logical deletion
feature of the Entity data configuration is
in use); and/or

* the data on the entity row changes in such
a way that it now passes the filter, or
ceases to pass the filter (if the filter feature
of the Entity data configuration is in use).

'readall/match' search

Identifies any readall/match searches against
Entity Rule Objects other than by primary
key.

The precedent ID refers to the name of the
rule class sought by the readall/match
expression, together with the attribute name
and value used as the search criterion.

A precedent change item for the rule class
and its attribute name and match value will
be written to a precedent change set if, for
the entity that is mapped to the rule class by
the data configurations:

* a new entity row is inserted into the
database;

* an existing entity row is removed from the
database;

* the data on the entity row changes in such
a way that it is now considered logically
deleted, or ceases to be considered
logically deleted (if the logical deletion
feature of the Entity data configuration is
in use);

* the data on the entity row changes in such
a way that it now passes the filter, or
ceases to pass the filter (if the filter feature
of the Entity data configuration is in use);
and/or

* the value of the attribute's data on the
entity row changes.

Rule Object Data
Configurations

Identifies the use of the configuration for the
Entity Rule Object Converter if any Entity
Rule Object is accessed during the
calculation.

If changes to the data configuration for the
Entity Rule Object Converter are published,
then a precedent change item for the
converter's data configuration will be written
to a precedent change set.

(This precedent change caters for an
edge case whereby previously a CER
expression had sought a row
matching a primary key value, but
none was found; but now a new row
matching that primary key value is

being inserted.)

Chapter 7. Understanding Rule Object Converters and Propagators

95

7.4.3.5 Propagation Processing
When a row of data changes for a table which is configured for Entity rule objects, then the Entity Rule
Object Propagator requests the corresponding rule object and manipulates it in memory.

A rule object may be created, modified or removed, according to the nature of the change to the
underlying database row (and taking into account configurations for logical deletions and/or filters).

The Entity Rule Object Propagator informs the Dependency Manager of any rows that have changed so
that the Dependency Manager can determine the effects of those changes. Dependencies on entity data
are stored at the entity row level, by recording a dependency on the entity's name and the row's key
value.

Each database row may map to a number of target rule classes, according to the configurations for the
Entity Rule Object Propagator held on the system. However, for the sake of clarity, the rest of this section
describes the behavior of the Entity Rule Object Propagator in the situation where an entity is configured
to be propagated to a single rule class only.

Support for Entity Operation Stereotypes

Cudram database tables are modeled as entities in the application model. Each modeled entity may
contain several database operations, each with their own stereotype. Not all of these operations
stereotypes can be reliably propagated. The table below shows the support for propagating data from
invocations of methods for these stereotypes:

Table 28. Support for Entity Operation Stereotypes

Entity Operation Stereotype Support in Entity Rule ObjectPropagator
(unstereotyped) Ignored - no data written.
batchinsert Supported. Each row in the batch will be propagated, if

possible (as per nsinsert).

batchmodify Supported(There is one edge-case which is not
supported, which is where a batchmodify operation
contains a number of modify operations, each of which
change the primary key value of an entity, and which
form a chain of changes to the same underlying row, e.g.
the batchmodify contains two operations:

* a modify which changes a row's key from keyValuel
to keyValue2; and

* another modify which changes the same row's key
from keyValue2 to keyValue3.

The net effect of these chained modify operations is to
change the database row's key from keyValuel to
keyValue3. Such a change cannot be reliably propagated
by the Entity Rule Object Propagator and should be
avoided. (It is good practice to avoid creating modify
operations that change a row's key anyway.)). Each row
in the batch will be propagated, if possible (as per

nsmodify).
insert Supported.
modify Supported.
nkmodify Supported.
nkread Ignored - no data written.
nkreadmulti Ignored - no data written.
nkremove Supported.

96 IBM Curam Social Program Management: Inside Ctram Eligibility and Entitlement Using Ctiram Express Rules

Table 28. Support for Entity Operation Stereotypes (continued)

Entity Operation Stereotype

Support in Entity Rule ObjectPropagator

ns For read operations, ignored.
For write operations, not supported, as the operation can
contain arbitrary SQL and in general it is not possible to
reliably detect which database rows have been affected
by the operation.

nsinsert Supported, as long as the details being written to the
database include a value for the primary key (i.e. no
reliance on database-level key assignment).

nsmodify Supported.

nsmulti Ignored - no data written.

nsread Ignored - no data written.

nsreadmulti Ignored - no data written.

nsremove Supported.

read Ignored - no data written.

readmulti Ignored - no data written.

remove Supported.

(There is one edge-case which is not supported, which is where a batchmodify operation contains a number of
modify operations, each of which change the primary key value of an entity, and which form a chain of changes to
the same underlying row, e.g. the batchmodify contains two operations:

* a modify which changes a row's key from keyValuel to keyValue2; and
* another modify which changes the same row's key from keyValue2 to keyValue3.

The net effect of these chained modify operations is to change the database row's key from keyValuel to keyValue3.
Such a change cannot be reliably propagated by the Entity Rule Object Propagator and should be avoided. (It is
good practice to avoid creating modify operations that change a row's key anyway.))

Any operation that has the "no generated SQL" option set will not be supported by the rule object
propagators included with the application.

If the EntityRuleObjectPropagator detects that an unsupported operation has occurred, then its behavior
is governed by the value of the curam.ruleobjectpropagation.nonpropagatableoperation.errorlevel

environment variable:

Table 29. Behavior when non-propagatable operations are invoked

Value of
curam.ruleobjectpropagation.
nonpropagatableoperation.errorievel

Behavior of Entity Rule Object
Propagator

Comments

warn (default value)

The Entity Rule Object Propagator
writes a warning to the application
logs.

This is the default behavior and
should be suitable for most
environments.

ignore

The Entity Rule Object Propagator
ignores the non-propagatable
operation.

Consider using this setting if you
have very many invocations of
non-propagatable operations, and
you already have in place procedures
to identify and recalculate any
dependents potentially affected.

Chapter 7. Understanding Rule Object Converters and Propagators 97

Table 29. Behavior when non-propagatable operations are invoked (continued)

Value of

curam.ruleobjectpropagation. Behavior of Entity Rule Object

nonpropagatableoperation.errorlevel| Propagator Comments

error The Entity Rule Object Propagator Consider using this setting if you do
raises an exception with the details of | not expect to have any
the non-propagatable operation non-propagatable operations.

(which will typically result in the
overall database transaction being
rolled back).

If a non-propagatable operation occurs (and the Entity Rule Object Propagator is configured to warn the
operator), then the operator should follow your procedures to identify and recalculate any dependents
potentially affected.

The "Exclude" List for Entity Propagation

Some database tables are unsuitable for consideration by the Entity Rule Object Propagator because:
* they contain non-business data only;
¢ they have abnormally high numbers of data writes; and/or

* access to their data occurs before the propagation framework has been initialized.

The application allows components to register such database tables on an "exclude" list, and writes to
these database tables are never considered for propagation to the Dependency Manager. The application's
components may contribute to the exclude list, and customers may add further entries to the list by
adding a binding inside a Guice module as follows:

98 IBM Curam Social Program Management: Inside Ctram Eligibility and Entitlement Using Ctiram Express Rules

import com.google.inject.AbstractModule;
import curam.core.sl.infrastructure.propagator.impl.
RuleObjectDatabaseWritelListener.ExcludedTable;

public class MyModule extends AbstractModule {

//
@0verride
public void configure() {

// register excluded tables

final Multibinder<ExcludedTable> excludedTables = Multibinder
.newSetBinder(binder(), ExcludedTable.class);

excludedTabTes
.addBinding()
.toInstance(
new ExcludedTable(
curam.core.sl.infrastructure.assessment.intf.
MyEntityl.class));
excludedTables
.addBinding()
.toInstance(
new ExcludedTable(
curam.core.sl.infrastructure.assessment.intf.
MyEntity2.class));

}
}

For information on writing Guice modules, see the Persistence Cookbook.

7.4.3.6 Example

Let's say that a user creates a new rule set (MyRuleSet) with a MyPerson rule class. The user adds some
rule attributes to the rule class named after some columns on the Person database table:

* concernRolelD (the primary key of the database table);
e dateOfBirth; and
e dateOfBirthVerInd.

The user creates a new configuration to propagate Person database rows to the new MyRuleSet.MyPerson
rule class. There also continues to be an existing configuration (provided by the application) to propagate
Person database rows to the ParticipantEntitiesRuleSet.Person rule class.

After a new row is inserted into the Person database table, then if a MyRuleSet.MyPerson rule object is
requested for that person row during CER calculations, then the Entity Rule Object Converter will create
a rule object in memory from the data on that row. The MyRuleSet.MyPerson rule object has its values for
concernRolelD, date0fBirth and dateOfBirthVerInd populated from the database row. It does not have
any value for dateOfDeath because there is no such rule attribute on the MyPerson rule class.

By contrast, if a ParticipantEntitiesRuleSet.Person rule object is requested for that person row during
CER calculations, then the Entity Rule Object Converter will populate the
ParticipantEntitiesRuleSet.Person rule object from the same underlying database row.
ParticipantEntitiesRuleSet.Person does have an attribute for dateOfDeath but not for
dateOfBirthVerInd. Both rule classes have a concernRolelD rule attribute, which is required because
concernRolelID is the primary key of the Person database table.

Chapter 7. Understanding Rule Object Converters and Propagators 99

If the person row is subsequently modified on the database, then the Entity Rule Object Propagator
notifies the Dependency Manager that the row has changed, and the Dependency Manager identifies all
case determination results that depend on that row and requests that those cases be reassessed.

Let's say there are rules which require access to a claimant's personal details, and also requires access to
details of other people related to the claimant, such as spouses and relatives. The rules would:

* use the claimant's concernRolelD to search for the ParticipantEntitiesRuleSet.Person rule object by
concernRolelD (a primary key search) and access the claimant's personal details;

* use the claimant's concernRolelID to search for ParticipantEntitiesRuleSet.ConcernRoleRelationship
rule objects by concernRoleID (not a primary key search); and

» for each ParticipantEntitiesRuleSet.ConcernRoleRelationship found, use the relConcernRolelD to
search for the ParticipantEntitiesRuleSet.Person rule object by concernRolelD (a primary key search)
and access the related person's details.

Claimant Joe (concernRolelD 392) has relationships to wife Mary (concernRoleID 393) and brother Frank
(concernRoleID 394) stored as concern role relationships (concernRoleRelationshipIDs 773 and 774
respectively). These details are retrieved during the eligibility/entitlement calculation for Joe's case

(caselD 453).

The Engine invokes the CER utility to identify these dependencies (which are stored using the

Dependency Manager):

Table 30. Example Dependency Storage for Entity Rule Objects

Dependent

Precedent

Case 453's Entitlement

depends on

Entity row from table Person' where attribute
‘concernRolelD' has value '392'

Case 453's Entitlement depends on <readall>/<match> expression against rule attribute
'ParticipantEntitiesRuleSet.ConcernRoleRelationship.conce
matching value 392

Case 453's Entitlement depends on Entity row from table 'ConcernRoleRelationship' where
attribute 'concernRoleRelationshipID' has value '773'

Case 453's Entitlement depends on Entity row from table 'Person' where attribute

‘concernRolelD' has value '393'

Case 453's Entitlement

depends on

Entity row from table 'ConcernRoleRelationship" where
attribute 'concernRoleRelationshipID' has value '774'

Case 453's Entitlement

depends on

Entity row from table Person' where attribute
‘concernRolelD' has value '394'

Case 453's Entitlement

depends on

Data configuration for conversion of Entity rule objects

7.4.4 Active Succession Set Rule Objects

7.4.4.1 Overview

The Active Succession Set Rule Object Converter is responsible for converting a succession set of active
evidence records into a CER rule object.

The Active Succession Set Rule Object Propagator is responsible for listening for changes to active
evidence records and for notifying the Dependency Manager that active evidence data for succession set

rule objects has changed.

100 1BM Ctram Social Program Management: Inside Ctram Eligibility and Entitlement Using Ctiram Express Rules

rmRolelD’,

CAUTION:

Do not confuse the Active Succession Set Rule Object Converter and Propagator (suitable for use in
eligibility/entitlement processing) with the Active/In-Edit Succession Set Rule Object Converter and
Propagator class (which is not suitable for eligibility/entitlement processing, and thus not described in
this guide - see the Ciram Advisor Configuration Guide).

Evidence (see Designing Ciram Evidence Solutions) allows developers to store records of evidence that
can change over time. When circumstances change in the real world, a user can record those changes in
the system by "succeeding" an earlier version of evidence. These versions of evidence make up a
"succession set" which describe the history of some real-world evidence.

By contrast, in CER rules it is typically far easier to treat each piece of changeable evidence as one rule
object, which has timeline-based attributes (see "4.5 Handling Data that Changes Over Time" in the Ciram
Express Rules Reference Manual). The Active Succession Set Rule Object Converter automates the
conversion of a succession set of evidence rows into a single rule object with a mixture of timeline and
non-timeline attributes.

Changes to evidence go through an edit/activate lifecycle. Only evidence changes which have been
activated are considered by the Active Succession Set Rule Object Converter; any pending additions,
changes or removals are ignored.

Each rule class targeted by the Active Succession Set Rule Object Converter must extend the
PropagatorRuleSet.ActiveSuccessionSet rule class included by the Engine. This rule class contains a
successionlD rule attribute which is used as a unique identifier, since the rule object represents the entire
succession set of evidence.

Both dynamic and non-dynamic evidence types can be used with the Active Succession Set Rule Object
Converter.

The Active Succession Set Rule Object Converter also populates relationships between rule objects for
parent and child succession sets, if required.

7.4.4.2 Configuration
This converter and propagator share a common set of configuration data, and accept configurations
which adhere to the following structure:

* propagator type must be "ROPT2005" (the code for 'Active succession set' from the
RuleObjectPropagatorType code table);

* each evidence type to be converted or propagated must be listed in an evidence element with a type
exactly matching the evidence's type from the EvidenceType code table; and

* each conversion/propagation target must be listed as a ruleset element (within the evidence element),
specifying the name of the rule set to target and optionally the rule class (if the name of the rule class
differs from that of the database table).

Configurations are cumulative, i.e. there may be many configurations of type "ROPT2005", and if an
evidence type is present in any of those configurations then the evidence type will be converted and
propagated; otherwise, the evidence type will be ignored.

The following types of configuration problems will be detected by the Active Succession Set Rule Object
Converter:

* Evidence type not specified in the evidence element;

* The evidence type with the specified type code could not be found;

¢ The targeted rule class does not extend the PropagatorRuleSet.ActiveSuccessionSet rule class; and
* Arule class is targeted by more than one source evidence type.

Chapter 7. Understanding Rule Object Converters and Propagators 101

Any configuration problems detected will be processed according to [7.5, “Data Configuration Problems,’]

7.4.4.3 Conversion Processing

Each evidence type may map to a number of target rule classes, according to the configurations for the
Active Succession Set Rule Object Converter held on the system. However, for the sake of clarity, the rest
of this section describes the behavior of the Active Succession Set Rule Object Converter in the situation
where an evidence type is mapped to a single rule class only.

When an Active Succession Set Rule Object is requested during a CER calculation, the Active Succession
Set Rule Object Converter is invoked to populate that rule object. The Active Succession Set Rule Object
Converter will retrieve all the active evidence rows in the succession set and use them to populate the
attribute values on the rule object.

The values of the evidence fields are used to map to identically-named rule attributes on the rule class.
Any evidence field without a corresponding rule attribute is ignored. Evidence fields are defined by:

* Dynamic evidence

The evidence fields available are those defined by the dynamic evidence metadata for the evidence
type (see the Ciram Dynamic Evidence Configuration Guide); and

* Non-dynamic evidence

The evidence fields available are those defined on the evidence-specific database table modeled for the
static evidence type (see the Ciram Evidence Generator guide).

When populating a particular attribute value on a rule object, the behavior of the Active Succession Set
Rule Object Converter differs according to whether the rule attribute's type is a Timeline. The Active
Succession Set Rule Object Converter also contains special processing to populate rule attributes to point
to rule objects for related succession sets.

The following sections detail how the Active Succession Set Rule Object Converter populates timeline and
non-timeline data, and relationship data, along with some useful rule attributes inherited from the
ActiveSuccessionSet rule class.

Timeline-based data types

If the data type of the attribute is Timeline< some data type >, then the Active Succession Set Rule
Object Converter allows the possibility of the evidence value to differ (across different evidence versions
in the succession set).

The identification of the "lifetime" of the succession set depends on the use of the
SuccessionSetPopulation annotation on the rule class (see [C.3.4, “SuccessionSetPopulation,” on paged
198).

The Active Succession Set Rule Object Converter will form a timeline value from the evidence versions as
follows:

e Calculate the start of the evidence lifetime

The Active Succession Set Rule Object Converter inspects the SuccessionSetPopulation annotation on
the rule class to get the name of the attribute which the rule designer has designated as holding the
start date of the evidence's lifetime. If no such rule attribute has been designated, or the rule attribute
holds a blank value, then the evidence is deemed to have started from the beginning of time.

¢ Calculate the end of the evidence lifetime

The Active Succession Set Rule Object Converter inspects the inspects the SuccessionSetPopulation
annotation on the rule class to get the name of the attribute which the rule designer has designated as

102 IBM Ctram Social Program Management: Inside Ctram Eligibility and Entitlement Using Ctiram Express Rules

holding the end date of the evidence's lifetime. If no such rule attribute has been designated, or the
rule attribute holds a blank value, then the evidence is deemed to continue to exist until the end of
time (i.e. "until further notice").

* Accumulate the varying values for the timeline

The Active Succession Set Rule Object Converter uses the evidence versions in the succession set to
work out which values apply from which dates. The succession set will typically hold a single
EvidenceDescriptor with a blank effective date, and the value of the evidence field on this evidence
version will be used from the start of the evidence lifetime. The other EvidenceDescriptor rows will
each have a populated effective date (on which the change of circumstances occurred), and the value of
the evidence field will be used from that date in the timeline.

e Assemble the timeline

The Active Succession Set Rule Object Converter inspects the effective dates for the varying values.
Any dates which occur outside of the lifetime start and end are discarded. For periods before the
lifetime start and after the lifetime end (if any), a default value is used (see[7.8, “Supported Domain|
[Types,” on page 119). A timeline value is built*from the values and used to populate the rule attribute
value.

Tip: Because only values from within the evidence lifetime are used, then typically the timeline value
will change to the default value on the day after the end date for the evidence (if any).

Non-timeline data types

If the data type of the attribute is not Timeline< some data type > then the Active Succession Set
Rule Object Converter does not allow the possibility of the evidence value to differ (across different
evidence versions in the succession set). Ordinarily each version of evidence in the succession set should
bear the same data value for the evidence field, and this single data value will be used to populate the
rule attribute value.

However, it is possible that for such fields, either the rules designer has made an incorrect assumption
that the data should not change over time, and/or a case worker has not consistently applied a correction
to data consistently across the versions in the succession set. In these circumstances, the value of the
evidence field may be inconsistent across the versions in the succession set, and if so the Active
Succession Set Rule Object Converter will:

* propagate the value from the evidence version with the latest effective date (on the grounds that this is
the version that a case worker is most likely to have maintained); and

* write a warning to the application logs saying that inconsistent evidence data was found.

Tip: If you see many warnings in your application logs pertaining to inconsistent evidence data, you
should revisit your evidence and/or rule class design to resolve the inconsistency.

It is especially important to investigate any warnings which pertain to evidence fields which are
designated as the start or end date of your succession set's lifetime, as any errors in such dates can lead
to unreliable timelines being used to populate CER attribute values.

For more information about whether data should be modeled as a Timeline or not, see "What Is Timeline
Data?" in the Clram Express Rules Reference Manual.

4. As for all timelines, any contiguous values which are identical are combined into a single interval.

This can occur when two neighboring versions of evidence have the same value for an evidence field - the second version of the
evidence has been recorded because a different evidence field has changed value.

See the example where two neighboring evidence rows have the same value for amount, because only the employmentStatus has
changed.

Chapter 7. Understanding Rule Object Converters and Propagators 103

Population of relationships to rule objects for other succession sets

When a succession set of active evidence is converted into a rule object, then any rule attributes which
are annotated with [C.3.6, “relatedSuccessionSet,” on page 200| will be automatically populated with rule
objects for related succession sets:

* parent
the attribute will be populated with the rule objects for the succession sets for the parent(s) of the
evidence; or

* child
the attribute will be populated with the rule objects for the succession sets for the children of the
evidence.

The type of the related evidence is identified from the type of the attribute, which can either be a rule
class (extending ActiveSuccessionSet) or a list of such rule classes. The behavior of the Active Succession
Set Rule Object Converter differs according to whether a list is used:

Table 31. Population of related ActiveSuccessionSet rule objects

Value propagated when attribute Value propagated when attribute

Number of related versions found |type is a rule class type is a List<rule class>

0 null Empty list

1 The rule object for the related A list with a single item (the rule
succession set found object for the related succession set

found)

many (An exception is thrown at A list with the rule objects for all the

population time) related succession sets found

Note: Typically in evidence design, a parent evidence item has 0, 1 or many child items (of a given type),
while each child evidence item relates to exactly 1 parent.

However, the evidence infrastructure does not impose any constraints in this area, and so on occasion
you may encounter child evidence types which relate to multiple parent types, and/or parent evidence
types which expect only a single child evidence type.

Tip: The relationships between parent and child rule objects are not stored as timelines - a relationship
between a parent and child rule object holds "for all time", even outside the parent or child's lifetime.

Typically any rules for the parent rule object, which retrieve the related children, will make reference to
the lifetime of the child rule object (i.e. will use the value of the child's exists timeline (see
[“Conversion Processing,” on page 102).

Rule attributes inherited from ActiveSuccessionSet

Each rule class targeted by the Active Succession Set Rule Object Converter must ultimately extend the
PropagatorRuleSet.ActiveSuccessionSet rule class, and so will inherit the following rule attributes:

e successionID

Populated from the successionID value on the EvidenceDescriptor rows, and used to uniquely identify
the rule object (amongst other rule objects of the same rule class);

e caselD

Populated from the caselD value on the EvidenceDescriptor row. If the evidence relates to an
integrated case, the case ID will be that of an integrated case; if the evidence relates to a product
delivery case, the case ID will be that of the particular product delivery that holds the evidence;

* description

104 1BM Ctram Social Program Management: Inside Ctram Eligibility and Entitlement Using Ctiram Express Rules

Contains a default rule to derive a description for the succession set rule object; sub-classes are free to
override this description if required;

* exists

A Boolean timeline which indicates the period of time for which the succession set rule object "exists",
i.e. true for the dates between the designated start and end dates (inclusive), and false for dates before
the start of the lifetime or after its end, if any; and

¢ evidenceDescriptorID

A Number timeline, populated from the evidenceDescriptorID value on the EvidenceDescriptor rows
which make up the succession set. The values vary according to the evidence row "in effect” at various
points along the lifetime of the succession set rule object. Each value uniquely identifies the active
EvidenceDescriptor row which contains the source of the data in effect on a particular date on the
timeline-based attributes on the rule object. Note that these values will change when an evidence
correction is activated, because at that point a different evidence row becomes an active member of the
succession set.

Tip: The exists rule attribute can be useful for certain eligibility /entitlement calculations.

For example, if a particular objective is attained whenever one of the parents of a minor is absent from
the household, and periods of Absence are recorded as succession sets of evidence (with start and end

dates naturally mapping to the start and end of the period of absence), then the value of the objective's
isEntitledTimeline is (in pseudo-code, using appropriate timeline operations):

* Get the periods of absence for the minor's parents;
* Entitled when any:
— (iterate through the periods of absence)

- the current period of absence "exists"
Handling of in-edit evidence changes
In general, the Active Succession Set Rule Object Converter ignores in-edit pending changes to evidence.
However, during manual determinations using in-edit evidence, the Active Succession Set Rule Object

Converter supports a special processing mode to allow in-edit pending changes to be taken into account.
See[7.6.2, “Temporary Access to In-Edit Evidence Changes,” on page 117| for more details.

Restrictions on Access

In your CER rule sets you will use CER's <readal1>/<match> expression to access rule objects converted
from active succession set data.

You may only specify the retrievedattribute to be the caselD.

If you attempt to specify a retrievedattribute to be the name of any other attribute, then the Active
Succession Set Rule Object Converter will throw a runtime exception when the CER <readall>/<match>
expression is executed.

Tip: If you require only some of the active evidence row evidence of a given type for a case, then
consider wrapping the <readall>/<match> expression within a <filter> expression to return only the
data you require, e.g. use <readall>/<match> matching on caselD to find all the Income active succession
set rule objects for a case, and then use a <filter> to restrict the rule objects to just those for a particular
member of the case.

Chapter 7. Understanding Rule Object Converters and Propagators 105

You may specify the ruleset and ruleclass for the <readall> expression to be a rule class mapped by
the data configuration. If you attempt to specify a rule class which is not directly mapped (e.g. a base
rule class that you have created from which your concrete rule classes inherit) then no rule objects will be
found.

CAUTION:
Do not use a <readall> without a <match>.

Such an unqualified <readall> would typically retrieve a very large number of rule objects and no
dependency on the overall set of rule objects will be stored.

7.4.4.4 Precedents Identified

Access to Product Delivery Rule Objects during CER calculations does not give rise to any precedents
being identified.

Product Delivery Rule Objects are intended to be used to calculate determination results only.

7.4.4.5 Propagation Processing

Whenever the CaseHeader or ProductDelivery data changes for a CER-based product delivery, the
propagator requests the ProductEligibilityEntitlementRuleSet.ProductDeliveryCase rule object for the
case and manipulates it in memory.

For a product which has its reassessment strategy set to "Do not reassess closed cases"”, then:

* when a product delivery case for the product is closed, then the propagator removes the rule object in
memory and also deletes all dependency records for the case's determination result, to prevent
automatic reassessment of the case; and

e when a product delivery case for the product is re-opened and subsequently re-activated, then the
Engine will calculate the case's determination result and will also build back up the dependency
records for the case's determination result, to allow automatic reassessment of the case if data changes
in the future.

For a product which has its reassessment strategy set to "Automatically reassess all cases", then no such
processing occurs and the continuing presence of the dependency records in the Dependency Manager
while a case is closed means that the case will continue to be reassessed due to data changes even if it is
closed.

See [11.5.4, “Reassessment Strategy,” on page 174 for details of the processing that occurs if an
administrator chooses to change the reassessment strategy for an existing product that has product
delivery cases created against it.

7.4.4.6 Example

A CER-based product is set up in the system with a reassessment strategy set of "Do not reassess closed
cases".

A case worker registers a new product delivery case for the product, with concernRoleID 2345, and an
actual start date of 1st January 2001, but with no expected or actual end date (i.e. an open-ended case).
When the case is activated, the Engine requests the rule object for the case, and CER invokes the Product
Delivery Rule Object Converter to convert the case data into the required CER rule object. The Engine
requests the rule object's determinationResult and also requests CER to determine the data dependencies
for the calculation. The Engine passes these dependencies to the Dependency Manager for storage.

Some time later, a user maintains the case and enters an expected end date of 31st December 2001. The
Entity Rule Object Propagator notifies the Dependency Manager that a CaseHeader row has changed, and
the Dependency Manager identifies that the case requires reassessment. The Engine reassesses the case,
and when it requests the rule object for the case the Product Delivery Rule Object Converter retrieves the
latest data for the case and forms a rule object that has its expected end date set. The Engine gets the

106 IBM Ctram Social Program Management: Inside Ctram Eligibility and Entitlement Using Ctiram Express Rules

determination result from the rule object, which now takes into account the expected end date. The
Engine detects that the determination result has changed (due to the expected end date now set) and
stores the new determination.

The case comes to a natural end and is closed by the case worker. The Product Delivery Rule Object
Propagator removes the dependency records for the case's determination result (because the product is
set not to reassess closed cases).

Later, new evidence comes to light which requires the case to be re-opened. When the case worker
re-activates the case, the Product Delivery Rule Object Propagator triggers the Engine to reassess the case
to build back up the dependency records for the case's determination result. The Engine finds that there
is no change in the case's determination result since it was last assessed and so does not store a new
determination. The case worker records and activates the changes in evidence, and the Active Succession
Set Rule Object Propagator notifies the Dependency Manager that evidence on the case has changed. The
Dependency Manager identifies that the case requires reassessment and triggers the Engine to reassess
the case, which will now take into account the recently-activated changes in evidence. The Engine finds
that the determination result has changed and stores a new determination.

7.4.5 Active Evidence Row Rule Objects

7.4.5.1 Overview

The Active Evidence Row Rule Object Converter is responsible for converting a row of active evidence
into a CER rule object. Each active version of the evidence is converted to its own CER rule object (unlike
the Active Succession Set Rule Object Converter which converts all active evidence rows from a single
succession set into a single rule object).

Each rule class targeted by the Active Evidence Row Rule Object Converter must extend the
PropagatorRuleSet.ActiveEvidenceRow rule class included by the Engine. This rule class contains a
correctionSetID rule attribute which is used as a unique identifier, since in any correction set of evidence
there can be at most one active record.

Both dynamic and non-dynamic evidence types can be used with the Active Evidence Row Rule Object
Converter.

The Active Evidence Row Rule Object Converter also populates relationships between rule objects for
parent and child evidence versions, if required.

Tip: The Active Evidence Row Rule Object Converter is likely to be useful only for evidence which is not
temporal in nature, and/or which does not use standard evidence facilities for recording real-world
changes of circumstances, because any CER eligibility /entitlement rules which handle changes of
circumstances will typically need to manipulate the separate rule objects into timelines.

If you have evidence which does use standard evidence facilities, see I7.4.4, “Active Succession Set Rulel
[Objects,” on page 100| instead.

7.4.5.2 Configuration

The converter and propagator share a common set of configuration data, and accept configurations which

adhere to the following structure:

* propagator type must be "ROPT2004" (the code for 'Active evidence row' from the
RuleObjectPropagatorType code table);

* each evidence type to be converted or propagated must be listed in an evidence element with a type
exactly matching the evidence's type from the 'EvidenceType' code table; and

* each conversion/propagation target must be listed as a ruleset element (within the evidence element),
specifying the name of the rule set to target and optionally the rule class (if the name of the rule class
differs from that of the database table).

Chapter 7. Understanding Rule Object Converters and Propagators 107

Configurations are cumulative, i.e. there may be many configurations of type "ROPT2004", and if an
evidence type is present in any of those configurations then the evidence type will be converted and
propagated; otherwise, the evidence type will be ignored.

The following types of configuration problems will be detected by the Active Evidence Row Rule Object
Converter/Propagator:

* Evidence type not specified in the evidence element;
* The evidence type with the specified type code could not be found;
* The targeted rule class does not extend the PropagatorRuleSet.ActiveEvidenceRow rule class; and

* A rule class is targeted by more than one source evidence type.

Any configuration problems detected will be processed according to [7.5, “Data Configuration Problems,”|
ﬁon page 116.

7.4.5.3 Conversion Processing

Each evidence type may map to a number of target rule classes, according to the configurations for the
Active Evidence Row Rule Object Converter held on the system. However, for the sake of clarity, the rest
of this section describes the behavior of the Active Evidence Row Rule Object Converter in the situation
where an evidence type is mapped to a single rule class only.

When an Active Evidence Row Rule Object is requested during a CER calculation, the Active Evidence
Row Rule Object Converter is invoked to populate that rule object. The Active Evidence Row Rule Object
Converter will retrieve the active row for the evidence's correction set and use it populate the attribute
values on the rule object.

The values of the evidence fields are used to map to identically-named rule attributes on the rule object.
Any evidence field without a corresponding rule attribute is ignored. Evidence fields are defined by:

* Dynamic evidence

The evidence fields available are those defined by the dynamic evidence metadata for the evidence
type (see the Ciram Dynamic Evidence Configuration Guide); and

* Non-dynamic evidence

The evidence fields available are those defined on the evidence-specific database table modeled for the
static evidence type (see the Ciram Evidence Generator guide).

Population of relationships to rule objects for other evidence rows
When a row of active evidence is converted to a rule object, then any rule attributes which are annotated

with|C.3.5, “relatedEvidence,” on page 198 will be automatically populated with rule objects for related
evidence versions:

* parent
the attribute will be populated with the rule objects for the version(s) for the parent evidence item(s) of
the evidence version; or

* child
the attribute will be populated with the rule objects for the version(s) for the child evidence item(s) of
the evidence version.

The type of the related evidence is identified from the type of the attribute, which can either be a rule

class (extending ActiveEvidenceRow) or a list of such rule classes. The behavior of the Active Evidence
Row Rule Object Converter differs according to whether a list is used:

108 IBM Ctram Social Program Management: Inside Ctram Eligibility and Entitlement Using Ctiram Express Rules

Table 32. Propagation of related ActiveEvidenceRow rule objects

Number of related versions found

Value populated when attribute type
is a rule class

Value populated when attribute type
is a List<rule class>

propagation time)

0 null Empty list

1 The rule object for the related A list with a single item (the rule
instance found object for the related instance found)

many (An exception is thrown at A list with the rule objects for all the

related instances found

Important: Remember that the related ActiveEvidenceRow rule objects are each a version of evidence.

Even if a real-world child object can only have one real-world parent, if that parent has data that changes
over time, then each child version may relate to many parent versions.

For a rule attribute that holds related parent or child rule objects, you should model that rule attribute as
a list of rule classes, unless you can guarantee that there will only ever be one active version of the
related parent/child evidence (which would generally only be the case if the related evidence type does
not store data which can undergo a change of circumstances).

Rule attributes inherited from ActiveEvidenceRow

Each rule class targeted by the Active Evidence Row Rule Object Converter must ultimately extend the
PropagatorRuleSet.ActiveEvidenceRow rule class, and so will inherit the following rule attributes:
* correctionSetID
Populated from the correctionSetID value on the EvidenceDescriptor row, and used to uniquely
identify the rule object (amongst other rule objects of the same rule class);
* caselD

Populated from the caselD value on the EvidenceDescriptor row. If the evidence relates to an
integrated case, the case ID will be that of an integrated case; if the evidence relates to a product
delivery case, the case ID will be that of the particular product delivery that holds the evidence;

* description
Contains a default rule to derive a description for the evidence rule object; sub-classes are free to
override this description if required;

o effectiveDate

Populated from the effectiveFrom value on the EvidenceDescriptor row; will be null for evidence
effective from the start of the case;

* evidenceDescriptorID

Populated from the evidenceDescriptorID value on the EvidenceDescriptor row; uniquely identifies the
active EvidenceDescriptor row which contains the source of the data on the rule object. Note that this
value will change when an evidence correction is activated, because at that point a different evidence
row becomes the only active row in the correction set; and

* successionID
Populated from the successionID value on the EvidenceDescriptor row.

Handling of in-edit evidence changes
In general, the Active Evidence Row Rule Object Converter ignores in-edit pending changes to evidence.
However, during manual determinations using in-edit evidence, the Active Evidence Row Rule Object

Converter supports a special processing mode to allow in-edit pending changes to be taken into account.
See [7.6.2, “Temporary Access to In-Edit Evidence Changes,” on page 117 for more details.

Chapter 7. Understanding Rule Object Converters and Propagators 109

Restrictions on Access: In your CER rule sets you will use CER's <readall>/<match> expression to
access rule objects converted from active evidence row data.

You may only specify the retrievedattribute to be the caselD.

If you attempt to specify a retrievedattribute to be the name of any other attribute, then the Active
Evidence Row Rule Object Converter will throw a runtime exception when the CER <readall>/<match>
expression is executed.

Tip: If you require only some of the active evidence row evidence of a given type for a case, then
consider wrapping the <readall>/<match> expression within a <filter> expression to return only the
data you require, e.g. use <readall>/<match> matching on caselD to find all the Income active evidence
row rule objects for a case, and then use a <filter> to restrict the rule objects to just those for a
particular member of the case.

You may specify the ruleset and ruleclass for the <readall> expression to be a rule class mapped by
the data configuration. If you attempt to specify a rule class which is not directly mapped (e.g. a base
rule class that you have created from which your concrete rule classes inherit) then no rule objects will be

found.

CAUTION:

Do not use a <readall> without a <match>.

Such an unqualified <readall> would typically retrieve a very large number of rule objects and no
dependency on the overall set of rule objects will be stored.

7.4.5.4 Precedents Identified

If Active Evidence Row Rule Objects are accessed during a CER calculation, and the CER utility is used
to identify precedents, then the following precedents will be identified:

Table 33. Precedents Identified for Active Evidence Row Rule Objects

Name

When Identified

Trigger for Recalculation

Active Evidence

Identifies any case for which(In practice
these two conditions amount to the same
thing - that Active Evidence Row Rule
Objects for the case's evidence were accessed
in some way. Generally, a search will be
executed to retrieve rule objects in order that
one or more attribute values can be accessed
on those rule objects anyway.):
» a search was executed to retrieve Active
Evidence Row Rule Objects; and/or

e one or more attribute values were accessed
for one or more Active Evidence Row Rule
Objects for the case's evidence

The precedent ID refers to the caseID which
owns the evidence that was accessed.

If in-edit evidence changes for a case are
activated, then a precedent change item for
the case will be written to a precedent
change set.

Rule Object Data
Configurations

Identifies the use of the configuration for the
Active Evidence Row Rule Object Converter
if any Active Evidence Row Rule Object is
accessed during the calculation.

If changes to the data configuration for the
Active Evidence Row Rule Object Converter
are published, then a precedent change item
for the converter's data configuration will be
written to a precedent change set.

110 I1BM Cdram Social Program Management: Inside Ctiram Eligibility and Entitlement Using Ctiram Express Rules

(In practice these two conditions
amount to the same thing - that
Active Evidence Row Rule Objects
for the case's evidence were accessed
in some way. Generally, a search will
be executed to retrieve rule objects in
order that one or more attribute
values can be accessed on those rule
objects anyway.)

7.4.5.5 Propagation Processing

When evidence changes are applied for an evidence type that is configured for Active Evidence Row Rule
Objects, then the Active Evidence Row Rule Object Propagator listens to internal events from the
Evidence Controller, requests the corresponding rule object and manipulates it in memory.

A rule object may be created, modified or removed, according to whether evidence is being activated for
the first time, is undergoing corrections or changes of circumstances, or is being canceled.

The Active Evidence Row Rule Object Propagator informs the Dependency Manager of active evidence
data that has changed so that the Dependency Manager can determine the effects of those changes.
Dependencies on active evidence are stored at the case level, by recording a dependency on the caselD of
the case that owns the evidence.

7.4.5.6 Example

Let's say that a person's Income from an employment is modeled as evidence. The income starts when a
person starts an employment, and ends if the employment is subsequently terminated. (This example is
intentionally similar to that for|7.4.4, “Active Succession Set Rule Objects,” on page 100.)

Over the lifetime of an employment, the income amount (i.e. the per annum pay) can vary, as the
employee receives pay rises. Similarly, but independently, the person can be employed on a permanent or
temporary basis, and this "employment status" can change over the lifetime of the employment. It is
possible for the income's amount to change on the same date as the employment status, but a change in
income amount can occur without a change in employment status, and vice versa.

The evidence designer designs an Income evidence entity as follows:
¢ startDate
The date that the income (i.e. the overall employment) started;
* endDate
The date that the income (i.e. the overall employment) ended, if any;
e employer
Identifier of the employer;
* amount
The per-annum pay amount; and
¢ employmentStatus
Code for whether the employment status is permanent or temporary.

A rules designer then models an new Income rule class, extending the ActiveEvidenceRow rule class, and
adds rule attributes:

e startDate;
* endDate;

* employer;
e amount; and

Chapter 7. Understanding Rule Object Converters and Propagators 111

* employmentStatus.

An administrator publishes the rule set changes, and then publishes a data configuration for Active
Evidence Row Rule Object Converter and Propagator to map the Income evidence type to the new rule

class.

A case worker records some new Income evidence (for a temporary employment which started on 1st
January 2000, salary $10,000). Initially the evidence is "in edit".

The details stored on the data are as follows (not all evidence details are included here, only those of

interest to the converter):

Table 34. Database Details Stored for New Evidence

Database Column

Evidence Version Record 1

EvidenceDescriptor.evidenceDescriptor]D 978
EvidenceDescriptor.caselD 453
EvidenceDescriptor.correctionSetID 476
EvidenceDescriptor.effectiveFrom (blank)
Income.startDate 1st January 2000
Income.endDate (blank)
Income.employer Acme Ind.
Income.amount $10,000

Income.employmentStatus

Temporary (code)

When evidence capture is complete, the case worker activates the evidence and activates the case.

During the calculation of the case's determination result, the Active Evidence Row Rule Object Converter
retrieves the data for the newly-activated Income evidence and populates a rule object for it, with values

as follows:

Table 35. Active Evidence Row Rule Object after Initial Activation of Evidence

Rule Attribute Name

Value for Rule Object 1

ActiveEvidenceRow.description

"Income, correctionSetID 476"

ActiveEvidenceRow.caselD 453
ActiveEvidenceRow.correctionSetID 476
ActiveEvidenceRow.evidenceDescriptorID 978
ActiveEvidenceRow.effectiveDate (blank)
Income.startDate 1st January 2000
Income.endDate (blank)
Income.employer Acme Ind.
Income.amount $10,000
Income.employmentStatus Temporary

The Engine invokes the CER utility to identify these dependencies (which are stored using the

Dependency Manager):

112 IBM Cdram Social Program Management: Inside Ctiram Eligibility and Entitlement Using Ctiram Express Rules

Table 36. Example Dependency Storage for Active Evidence Row Rule Objects

Dependent Precedent

Case 453's Entitlement depends on Active Evidence for case 453

Case 453's Entitlement depends on Data configuration for conversion of Active Evidence

Row rule objects

Over time, real-world circumstances change:
* on 1st January 2001, the income amount increases; and
* on Ist May 2002, the employment status changes from "temporary" to "permanent".

The agency is informed of these evidence changes and a case worker records new versions of the Income
evidence, leading to the system storing new EvidenceDescriptor / Income pairs of rows for the evidence
data effective from each change date:

Table 37. Database Details Stored for Changes of Circumstances

Database Column Evidence Version Record 1 | Evidence Version Record 2 | Evidence Version Record 3

EvidenceDescriptor. 978 979 980
evidenceDescriptorID

EvidenceDescriptor.caseID | 453 453 453
EvidenceDescriptor. 476 477 478
correctionSetID

EvidenceDescriptor. (blank) 1st January 2001 1st May 2002
effectiveFrom

Income.startDate 1st January 2000 1st January 2000 1st January 2000

Income.endDate (blank) (blank) (blank)
Income.employer Acme Ind. Acme Ind. Acme Ind.
Income.amount $10,000 $12,000 $12,000

Income.employmentStatus | Temporary (code) Temporary (code) Permanent (code)

When the case worker activates the change-of-circumstances evidence changes, the Evidence Controller
notifies the Active Evidence Row Rule Object Propagator of the evidence changes, and the Active
Evidence Row Rule Object Propagator in turn notifies the Dependency Manager that evidence for a case
has changed. The Dependency Manager identifies the product delivery case that depends on the changed
evidence and requests that the Engine reassesses the case. During reassessment, the Engine invokes CER
to calculate the determination result, and as part of this calculation the Active Evidence Row Rule Object
Converter is called upon to populate the rule objects for the changed evidence, which are populated as
follows:

Table 38. Active Evidence Row Rule Objects after Changes of Circumstances

Rule Attribute Name

Value for Rule Object 1

Value for Rule Object 2

Value for Rule Object 3

ActiveEvidenceRow. "Income, correctionSetID "Income, correctionSetID "Income, correctionSetID
description 476" 477" 478"
ActiveEvidenceRow.caselD |453 453 453

ActiveEvidenceRow. 476 477 478

correctionSetID

ActiveEvidenceRow. 978 979 980
evidenceDescriptorID

Chapter 7. Understanding Rule Object Converters and Propagators

113

Table 38. Active Evidence Row Rule Objects after Changes of Circumstances (continued)

Rule Attribute Name

Value for Rule Object 1

Value for Rule Object 2

Value for Rule Object 3

ActiveEvidenceRow.
effectiveDate

(blank)

1st January 2001

1st May 2002

Income.startDate

1st January 2000

1st January 2000

1st January 2000

Income.endDate (blank) (blank) (blank)
Income.employer Acme Ind. Acme Ind. Acme Ind.
Income.amount $10,000 $12,000 $12,000
Income.employmentStatus | Temporary Temporary Permanent

On 30th June 2002, the employment comes to an end

version of the evidence:

Table 39. Database Details Stored for Ended Evidence

and a case worker records the end date on the latest

Database Column

Evidence Version Record 1

Evidence Version Record 2

Evidence Version Record 3

EvidenceDescriptor. 978 979 981
evidenceDescriptorID

EvidenceDescriptor.caselD | 453 453 453
EvidenceDescriptor. 476 477 478
correctionSetID

EvidenceDescriptor. (blank) 1st January 2001 1st May 2002
effectiveFrom

Income.startDate

1st January 2000

1st January 2000

1st January 2000

Income.endDate (blank) (blank) 30th June 2002
Income.employer Acme Ind. Acme Ind. Acme Ind.
Income.amount $10,000 $12,000 $12,000

Income.employmentStatus

Temporary (code)

Temporary (code)

Permanent (code)

The case worker activates the changes, which causes the existing latest EvidenceDescriptor / Income pair
to become "superseded" (evidenceDescriptorID 980) and a new pair to become "active"
(evidenceDescriptorID 981).

Again the Active Evidence Row Rule Object Propagator causes the case to be reassessed on foot of the
evidence changes. During reassessment the Active Evidence Row Rule Object Converter populates the
rule object with these values:

Table 40. Active Evidence Row Rule Objects after Evidence Ended

Rule Attribute Name

Value for Rule Object 1

Value for Rule Object 2

Value for Rule Object 3

ActiveEvidenceRow. "Income, correctionSetID "Income, correctionSetID "Income, correctionSetID
description 476" 477" 478"
ActiveEvidenceRow.caselD |453 453 453

ActiveEvidenceRow. 476 477 478

correctionSetID

ActiveEvidenceRow. 978 979 981
evidenceDescriptorID

ActiveEvidenceRow. (blank) 1st January 2001 1st May 2002
effectiveDate

114 1BM Curam Social Program Management: Inside Ctiram Eligibility and Entitlement Using Ctiram Express Rules

Table 40. Active Evidence Row Rule Objects after Evidence Ended (continued)

Rule Attribute Name

Value for Rule Object 1

Value for Rule Object 2

Value for Rule Object 3

Income.startDate

1st January 2000

1st January 2000

1st January 2000

Income.endDate (blank) (blank) 30th June 2002
Income.employer Acme Ind. Acme Ind. Acme Ind.
Income.amount $10,000 $12,000 $12,000
Income.employmentStatus | Temporary Temporary Permanent

At some time later, a review of the case finds that the entire history of the income has been recorded
against the wrong person. All the evidence records for the Income are canceled by the case worker, and
the evidence re-recorded against the correct person (in a new correction sets). When the case is
reassessed, the Active Evidence Row Rule Object Converter does not populate rule objects for the
evidence because now none of its evidence records are "active".

Some new legislation is introduced which affects how eligibility and entitlement must be calculated, and
in order to comply with this legislation, the agency must now capture more details about periods of
employment, specifically to capture details of the varying responsibilities that a person had during each
employment. An employee may have several responsibilities at the same time during an employment,
and each responsibility may begin and end independently of others.

An evidence designer models a new type of evidence named Responsibility, which is a child evidence
type of the Income evidence type:

* income
The parent Income evidence of which the Responsibility evidence is a child;
* type
Code for the type of responsibility (e.g. management, clerical tasks, financial control, etc.);
¢ startDate
The date that the responsibility started; and
* endDate
The date that the responsibility ended, if any.

A rules designer creates a new Responsibility rule class, and identifies that rules centered around the
Responsibility will need to navigate to parent Income rule objects:

* parentIncomeVersions, of type List<Income>, annotated to mark it to be populated from parent related
evidence;

* type;
e startDate; and
* endDate.

The rules designer also identifies that rules centered around the Income will need to navigate to child
Responsibility rule objects, and so adds a new rule attribute to the existing Income rule class:

¢ childResponsibilityVersions, of type List<Responsibility>, annotated to mark it to be populated
from child related evidence;

The evidence design changes, rules changes and new data configuration for the Responsibility rule class
are published.

A case worker records details for an employment where there is a pay rise on 1st January 2005. From the
start of the employment, the employee is responsible for clerical tasks, but from 1st July onwards, the
employee is also responsible for financial tasks (in addition to still be responsible for clerical tasks).

Chapter 7. Understanding Rule Object Converters and Propagators 115

When the case is assessed, the Active Evidence Row Rule Object Converter populates these rule objects:

* A parent Income rule object effective from the start of the case, with an amount of $15,000 and with its
childResonsibilityVersions value set to be a list containing the two Responsibility rule objects
below;

* Another parent Income rule object effective from 1st January 2005, with an amount of $16,000 and with
its childResonsibilityVersions value also set to be a list containing the two Responsibility rule
objects below;

* A child Responsibility rule object for the clerical tasks, with its parentIncomeVersions value set to be
a list containing the two Income rule object above; and

* Another child Responsibility rule object for the financial tasks, with its parentIncomeVersions value
also set to be a list containing the two Income rule object above.

Note that there are two Responsibility rule objects, because there are two distinct real-world
responsibilities, each stored as different succession sets. There are two Income rule objects, one for each
version of the evidence as it changed over time.

7.5 Data Configuration Problems

For converters and propagators which are configurable, there may be problems detected in the data
configurations.

The behavior of converters and propagators which encounter configuration problems is governed by the
value of the curam.ruleobjectpropagation.configuration.errorlevel environment variable:

Table 41. Behavior when configuration problems are found

Value of
curam.ruleobjectpropagation.configuration.errorlevel | Behavior of configurable converters and propagators

warn (default value) The converter or propagator writes a warning to the
application logs, and ignores the problematic
configuration.

ignore The converter or propagator ignores the problematic
configuration.

error The converter or propagator raises an exception with the

details of the configuration problem, and does not allow
processing (typically, application startup) to continue.

Configuration problems may be detected:

* when the configurations are initially loaded, shortly after application start-up (as soon as database
writes for non-excluded tables are detected); and/or

+ whenever changes to configurations are published (see [10.3.1.3, “Rule Object Data Configurations,” on|

7.6 Data Access Points

This section gives an overview of the various points at which the rule object converters and propagators
interact with data from the application database.

7.6.1 Normal Conversion

During normal processing, rule object converters are invoked by CER whenever CER is instructed to
perform a search against rule objects.

116 IBM Cdram Social Program Management: Inside Ctiram Eligibility and Entitlement Using Ctiram Express Rules

CER looks up the appropriate rule object converter based on the rule class being searched, and invokes
the rule object converter to gather the appropriate data from the application database and populate CER
rule objects in memory, which can then be used in further CER calculations.

In particular, during normal processing, these converters access the active evidence records on the
application database:

* [7.4.4, “Active Succession Set Rule Objects,” on page 100} and
* [7.4.5, “Active Evidence Row Rule Objects,” on page 107.|

The retrieval of active evidence records is used when the Engine requests CER to calculate one of the
following types of determination:

* an assessment determination (see [3.4, “Assessment Determinations,” on page 18);

* a snapshot determination (see 3.3, “Snapshot Determinations,” on page 17);

* a manual check determination where the user has chosen the option to include active evidence only (see
[‘Manual Check Determinations,” on page 17);

In contrast, the evidence converters also support a special data access mode to provide a calculation
based off in-edit evidence data (see [7.6.2, “Temporary Access to In-Edit Evidence Changes”).

7.6.2 Temporary Access to In-Edit Evidence Changes

The converters for these CER rule objects read data from evidence:

s [7.4.4, “Active Succession Set Rule Obijects,” on page 100} and
* [7.4.5, “Active Evidence Row Rule Objects,” on page 107

These converters support a special mode to allow the population of rule object data from in-edit evidence
changes whenever a case worker requests a manual determination based on in-edit pending changes to one
or more evidence items (see [3.2, “Manual Check Determinations,” on page 17). This is in contrast to
normal processing (see [7.6.1, “Normal Conversion,” on page 116) whereby these converters have access to
active evidence data only.

When the case worker requests a manual determination based on in-edit pending changes to evidence,
then the Engine:

e gstarts a new CER session;

* instructs these converters to temporarily use in-edit evidence changes to populate rule objects during
the session, i.e. to:

— take into account any pending addition of new evidence;
- take into account any pending modification to existing evidence; and
— disregard evidence data for any pending removal of existing evidence; and

* requests the determinationResult value from CER. The calculation will invoke the rule object
converters to access rule objects for evidence, which will take into account the in-edit evidence changes
when populating those rule objects.

7.6.3 Incremental Propagation

During normal running of the application, the system detects changes to data which may have been used
to populate CER rule objects, by listening for these internal events:

* changes to evidence, such as the activation of in-edit evidence changes; and

 changes to entity rows, for entities which are mapped in data configurations for the Entity Rule Object
Converter.

Chapter 7. Understanding Rule Object Converters and Propagators 117

The processing of these internal events as they occur is known as "incremental propagation". Incremental
propagation is used to inform the Dependency Manager of changes to precedent data, so that the
Dependency Manager can take care of identifying dependents to recalculation.

There are situations where incremental propagation cannot automatically detect changes to precedent
data, namely:

* a non-propagatable data write operation is executed (see [7.4.3.5, “Propagation Processing,” on page 96);
and/or

* data is written to the database outside the control of standard modeled entity operations, e.g. via an
SQL script or another system connected to the application's database.

If either of these occur you must take manual steps to identify and reassess cases which may be
potentially affected.

7.6.4 Bulk Maintenance of Rate Rule Objects

The Engine uses CER to store rule objects for rate table data on CER's database tables. These stored rule
objects act as a "mirror" copy of the rate table data in a form that can be accessed during CER
calculations.

The CER rule objects may not accurately reflect the latest rate table data for a number of reasons:
* An administrator has changed rates in the application but not yet applied the rate changes to CER.

The administration application contains an "Apply Changes" action, which will request a deferred
process to execute which will incrementally make changes to the affected CER rule objects.

¢ The system has been initially deployed into production and no CER rule objects have yet been created
for rate table data.

A system operator must arrange to run the RateCreateInitialRuleObjects process (see the
Propagating Non Cdram Data For Cdram Express Rules guide).

* A database for a development system has been built and no CER rule objects have yet been created for
rate table data.

The developer can run the build prepare.application.data target prior to starting the application, or
else the creation of rule objects will be performed automatically at application start-up’.

* Changes to rate table data have been made outside of the application's APIs.
Depending on the number of changes to rate table data, a system operator must arrange to either:
— choose the "Apply Changes" action (for small numbers of changes); or

— run the FullPropagationToRuleObjects batch process (for larger numbers of changes - see the Ciiram
Operations Guide).

5. Shortly after start-up, the system checks the RuleObjectPropagatorControl table and runs initial propagation if it has not already
been run. In a development environment, there is typically no discernible effect; however, in a production environment, the
higher data volumes can mean that any initial propagation run after start-up (typically during user login) will cause the database
transaction to timeout, depending on application server timeout settings.

To avoid this problem, be sure to run build prepare.application.data prior to starting the application.

Initial propagation is controlled by a single control row on the RuleObjectPropagatorControl table, which is populated by the
DMX file included by the application. This control row ensures that initial propagation is only run once in an environment where
many JVM instances attach to the database (e.g. during repeated runs of JUnit tests in a development environment, or when
many application servers are used in a production environment).

The EJBServer/components/core/data/initial/RULEOBJECTPROPAGATORCONTROL.dmx file included by the application is required for
the correct behavior of initial propagation, and so this file must not be customized or removed by customers. The control row
populated by this DMX file must be reflected in any production database.

118 I1BM Cdram Social Program Management: Inside Ctiram Eligibility and Entitlement Using Ctiram Express Rules

7.7 Logging

Configuration problems encountered by rule object propagators are automatically written to the
application logs. You should monitor the logs and correct any warnings reported.

On occasion, it can be useful to log the detailed actions taken by the rule object converters and
propagators.

The logging behavior of the rule object propagators is governed by these Ctiram environment variables:
e curam.trace.ruleobjectpropagation (specific to rule object propagation); and

e curam.trace (general Ctram trace level).

The amount of logging performed by rule object converters and propagators can be controlled by setting
either of these variables to one of the following (if both are setting, the more verbose setting takes
precedence):

e trace_off;
¢ trace_on;
e trace_verbose; or

e trace_ultra_verbose.

Types of actions logged include:
* the details of a database write operation that has occurred;
* the details of a database write operation that is/is not of interest to a particular propagator;

¢ the details of a search for existing rule objects that match a database row which has changed or has
been removed;

¢ details of each rule object created, modified or removed; and
e the value that a converter sets on a CER rule attribute.

7.8 Supported Domain Types

The conversion of business data into CER rule objects supports the use of the majority of the application's
fundamental domain types.

The table below shows the correct CER data type to use for a CER rule attribute, which at rule object
conversion time will be populated from a database or evidence field based on a domain. The table also
describes any logic which is applied at data conversion time and the default value that the rule object
converters will use for any values which are not sourced directly from data sources (e.g. when populating
before-start or after-end values in a timeline):

Table 42. Mapping from Curam Domain Types to CER Rule Attribute Types

Cdram Domain Type CER Rule Attribute Type |Data conversion logic Default value

Numerical types: Java class - Number Converted to CER's own 0
» SVR_DOUBLE; numerical format.
* SVR_FLOAT;

* SVR_INTS;

* SVR_INTI16;

* SVR_INT32;

* SVR_INT64; and
* SVR_MONEY.

Chapter 7. Understanding Rule Object Converters and Propagators 119

Table 42. Mapping from Curam Domain Types to CER Rule Attribute Types (continued)

Ctram Domain Type CER Rule Attribute Type |Data conversion logic Default value
Character types: * Java class - String, for An empty String (™).
* SVR_STRING; and text data other than a

« SVR CHAR. code table code; or

* Code table entry
(specifying the
appropriate code table)
for text data which is a
code table code

SVR_BLOB Not supported.

SVR_BOOLEAN Java class - Boolean false

SVR_DATE Java class - The "zero date" (blank) is null
curam.util.value.Date converted to a null value.

SVR_DATETIME Java class - The "zero date time" (blank) | null

curam.util.value.DateTime |is converted to a null value.

Tip: If there is a mismatch between the database column domain type and the CER rule attribute type,
then at conversion time CER will report an error that the value set on the rule attribute does not match
its expected type. This error points to the incorrect attribute data type having been modeled on the target
rule class.

Important: Each CER rule attribute automatically has a description rule attribute (of type
curam.creole.value.Message), inherited from the RootRuleClass.

Rule attributes of this curam.creole.value.Message data type do not map to a domain type, and so

cannot be populated by the rule object converter. Any data named "description” in the source data will be
ignored.

120 1BM Ctram Social Program Management: Inside Ctram Eligibility and Entitlement Using Ctiram Express Rules

Chapter 8. How Determinations Are Stored

8.1 Introduction

After the Engine has calculated a determination result, the Engine must choose whether to store the
determination result, and if so, how to store it.

The choice of whether to store a determination result hinges on a number of factors, described later.
Typically each new determination result will end up being stored.

The Engine stores the determination result by writing a row to the CREOLECaseDetermination database
table (and also some other data written to child database tables). The data stored includes the full details
of the determination result and optionally also a "snapshot" of all the CER rule objects used in the
calculation of the determination result.

The Engine also stores rows of eligibility and entitlement data CaseDecision and its child tables, so that
this data can be used later by Ctiram Financials to generate financial components for the case. The Engine
links the CaseDecision rows to the CREOLECaseDetermination row by storing rows on
CREOLECaseDecision.

Note: In general, you should not need to access the data on any of these tables; this chapter merely
provides a reference to the data stored.

This chapter is structured as follows:
* The Database Tables
A description of the tables that the Engine uses to store determination data;
* Decision Periods
How the Engine splits a determination into periods of constant eligibility /entitlement; and
* Determination Comparison Strategies
How the Engine decides whether a new determination is "different” from an existing determination.

8.2 The Database Tables

The database tables below are used by the Engine to store determination data:
* CREOLECaseDetermination;

* CREOLECaseDeterminationData;

e CaseDecision;

* CaseDecisionObjective;

* CaseDecisionObjectiveTag; and

* CREOLECaseDecision.

8.2.1 CREOLECaseDetermination

This is the main table which owns the record of each determination.
The Engine stores a single row on this table for each determination result which ends up getting stored.
The details stored vary slightly depending on the type of determination being stored (Manual Check

/Snapshot/Case Assessment). For data which is common to all types of determination, see the core Entity
Relationship Diagram. The tables below show:

© Copyright IBM Corp. 2012, 2013 121

* the CREOLECaseDetermination data which is populated regardless of the type of determination; and

* the CREOLECaseDetermination data which varies according to the type of determination.

Table 43. Population of common CREOLECaseDetermination data

Attribute Name

Value

creoleCaseDeterminationlID

Unique ID assigned by the system.

caselD

Identifier of the case which has its eligibility and
entitlement determined.

determinationDateTime

The date and time that the determination was made.

type The type of this determination.
The value of this attribute governs the varying data
stored, as shown in the following table.
createdByUser The user who created this determination.

determinationResultDatalD

The ID of the record which stores the XML document for
the overall determination result.

Table 44. Population of CREOLECaseDetermination data, according to the type of determination

attribute
name/determination type

Manual Check

Snapshot Case Assessment

assessmentReason

blank

blank Value from the
CaseAssessmentDetReason
code table indicating the
reason why the case
assessment determination
was requested.

You are permitted to add
new values to this code
table to contribute your
own assessment reasons if
required.

assessmentStatus

blank

blank Value from the
CaseDeterminationStatus
code table indicating
whether this determination
1S:

e Current (and thus is
being used for deliveries
such as financials); or

* Superseded (and thus
has been replaced by a
different Current record).

Extensions to this code
table are not supported.

122 IBM Ciiram Social Program Management: Inside Ctram Eligibility and Entitlement Using Ctiram Express Rules

Table 44. Population of CREOLECaseDetermination data, according to the type of determination (continued)

attribute
name/determination type

Manual Check

Snapshot

Case Assessment

snapshotReason

blank

Value from the
CaseSnapshotDetReason
code table indicating the
reason that the snapshot
was requested.

You are permitted to add
new values to this code
table to contribute your
own snapshot reasons if
required.

blank

evidenceUsed

Value from the
CaseDetEvidenceUsed code
table indicating whether the
manual check was based
off:

* in-edit changes to
evidence; or

* active evidence only.

Extensions to this code
table are not supported.

blank

blank

ruleObjectSnapshotDatalD

blank, unless the application
has been configured to
record snapshots for
manual check
determinations (using the
curam.creole.manualeligibilitych
environment variable), in
which case this attribute
stores the ID of the record
which stores the XML
document of the snapshot
of the rule object data used

in the determination.

The ID of the record which
stores the XML document
of the snapshot of the rule
object data used in the
determination.
eckdetermination.store.ruleobject

The ID of the record which
stores the XML document
of the snapshot of the rule
object data used in the
determination.

snapshot

See also the core data dictionary.

8.2.2 CREOLECaseDeterminationData

This table stores XML data for determinations.

The Engine can store two different types of XML data for each determination (and so for each row on
CREOLECaseDetermination there are typically two related rows on CREOLECaseDeterminationData):

¢ Determination result

An XML representation of a determination result, including the full eligibility /entitlement, key decision
factor and decision details over the lifetime of the case, and also details of any errors encountered
during calculation of the determination. This XML will be used when data from the determination
result is subsequently displayed to a case worker; and

* Snapshot of Rule Objects

An XML snapshot of the CER rule objects used in the calculation of the determination result. This
snapshot provides a point-in-time view of the CER rule objects and is stored to provide a full technical
audit of how the determination result was calculated. The CER rule objects include those for input data

Chapter 8. How Determinations Are Stored 123

(such as evidence, personal details and rates) and also all intermediate calculation steps. The snapshot
points to the versions of the rule sets that were in place when the time that the snapshot was taken, so
that the subsequent publication of changes to those rule sets do not affect the ability to read the
snapshot data. The snapshot can be read using CER's SnapshotDataStorage feature. A snapshot is
stored for assessment and snapshot determinations, but is only stored for manual check determinations
if the application has been configured to do so (using the
curam.creole.manualeligibilitycheckdetermination.store.ruleobjectsnapshot environment variable).

In the unlikely event that the XML data is too long to fit onto a single CREOLECaseDeterminationData,
the data will be truncated to fit and the extra data stored on an "overflow"
CREOLECaseDeterminationData row (or chain of overflow rows).

CAUTION:
The XML format of determination results and CER rule object snapshots is internal to the application
and direct access to this XML is not supported.

The data contained in the XML may be accessed via the application's published APIs only.

8.2.3 CaseDecision

A determination result typically contains eligibility and entitlement data that varies over the lifetime of
the case. For assessment determinations, the Engine stores details of the case's varying eligibility and
entitlement on the CaseDecision table (and its child tables, CaseDecisionObjective and
CaseDecisionObjectiveTag, see below), so that financial processing can use this data to deliver the case's
attained objectives.

When the Engine stores a new assessment determination, the Engine first supersedes the existing stored
determination (if any) and supersedes any CaseDecision rows linked to that determination. For other
types of determination no superseding takes place.

Then, for the new determination, the Engine inspects the varying eligibility and entitlement data to
determine the dates on which the eligibility and/or entitlement changes (see[8.3, “Decision Periods,” on|
. For each of these eligibility /entitlement change dates, the Engine stores a row on CaseDecision
(and rows on its child tables) to detail the eligibility and entitlement results that apply from that date
until the next change.

Sometimes it is possible for a determination result to contain key decision factors and/or decision details
which change on a particular date where there is no accompanying change in eligibility and entitlement,
for example where the case continues to be eligible but for a different business reason than previously. In
these circumstances, the Engine will not store a CaseDecision record effective from the change date,
because there has not been a change in eligibility and entitlement.

The CaseDecision table is used to store eligibility /entitlement data for CER-based cases as described
above. However, it continues to be used to store eligibility /entitlement data for cases assessed using
Cdram Rules (as opposed to CER). Some of the attributes on CaseDecision are reserved for use by Ciram
Rules®.

The Engine stores the following values in CaseDecision attributes for CER-based cases:

Table 45. Population of CaseDecision rows

Attribute on CaseDecision Value stored by the Engine
caseDecisionID Primary key
caselD ID of case for which has been determined.

6.See Inside Ciram Eligibility and Entitlement Using Cdram Rules.

124 1BM Ctram Social Program Management: Inside Ctram Eligibility and Entitlement Using Ctiram Express Rules

Table 45. Population of CaseDecision rows (continued)

Attribute on CaseDecision

Value stored by the Engine

decisionDate

Set to the decisionToDate.

resultCode

 "Eligible" if the eligibility result for the period is true;
or

* "Not eligible" otherwise (if the result is false or cannot
be calculated).

methodCode blank (reserved for use by Ciram Rules cases)
initReasonCode Value stored depends on the type of determination:
¢ For manual check determinations, "Pre-release".
* For snapshot determinations, "Release".
* For assessment determinations, "Release".
typeCode Always "Product Delivery Eligibility".
statusCode Value stored depends on the type of determination:

* For manual check determinations, "Superseded".
* For snapshot determinations, "Superseded".

¢ For assessment determinations, "Current" if the
CREOLECaseDetermination is Current, otherwise
"Superseded".

decisionFromDate

Start of period from which the decision applies.

decisionToDate End of period to which the decision applies - blank if the
decision period is open-ended, i.e. is the last decision
period in an open-ended case

runMode blank (reserved for use by Ctiram Rules cases)

decisionFlow

blank (reserved for use by Ciram Rules cases)

decisionResult blank (reserved for use by Ctiram Rules cases)
tagValue blank (reserved for use by Ctiram Rules cases)
evidenceUsed blank (reserved for use by Ctiram Rules cases)

decisionFlowOverflowInd

Always false (reserved for use by Ciram Rules cases).

decisionResultOverflowInd

Always false (reserved for use by Ciram Rules cases).

evidenceUsedOverflowInd

Always false (reserved for use by Ciram Rules cases).

creationDate

System date at the time the record is created.

8.2.4 CaseDecisionObjective

This describes an objective attained (i.e. entitled) for a parent CaseDecision. Objectives which are not

entitled are not stored.

The Engine will create a set of CaseDecisionObjective rows for each change in a case's entitlement during
its lifetime, as present in a determination result. Each CaseDecisionObjective row describes a single
objective attained for the period of the CaseDecision (a CaseDecision may have zero, one or many

attained objectives).

The Engine stores the following values in CaseDecisionObjective attributes for CER-based cases, centered
around the determination data drawn from an AbstractObjectiveTimeline rule object:

Chapter 8. How Determinations Are Stored 125

Table 46. Population of CaseDecisionObjective rows

Attribute on CaseDecisionObjective

Value stored by the Engine

caseDecisionObjectivelD

Primary key

objectivelD

The identifier of the type of objective attained. Set to the
CER attribute value
AbstractObjectiveType.objectiveTypelD from the
objective type returned by
AbstractObjectiveTimeline.objectiveType.

caseDecisionlID

ID of the parent CaseDecision which owns this
CaseDecisionObjective record.

concernRolelD

The target of the attained objective. Set to the value
during the decision period for the CER attribute value
AbstractObjectiveTimeline.targetIDTimeline.

value

blank (reserved for use by Ciram Rules cases)

relatedReference

The related reference of the attained objective. Set to the
value during the decision period for the CER attribute
value
AbstractObjectiveTimeline.relatedReferenceTimeline.

overflowlnd

Always false (reserved for use by Ctiram Rules cases).

8.2.5 CaseDecisionObjectiveTag

This describes the frequency at which an attained objective can be delivered.

The Engine will create a set of CaseDecisionObjectiveTag rows for each row on CaseDecisionObjective.
These tags are used to calculate the amounts on the financial schedules. For more information see|9.2.2.6

|“Calculating Financial Component Amounts,” on page 133]

The Engine stores the following values in CaseDecisionObjective attributes for CER-based cases, centered
around the determination data drawn from an AbstractTagTimeline rule object:

Table 47. Population of CaseDecisionObjectiveTag rows

Attribute on CaseDecisionObjectiveTag

Value stored by the Engine

caseDecisionObjectiveTagID

Primary key

caseDecisionlID

ID of the parent CaseDecision which owns this
CaseDecisionObjectiveTag record.

objectiveTagID

The identifier of the type of tag which can be delivered.
Set to the CER attribute value
AbstractTagType.tagTypelD from a tag type returned by
AbstractTagTimeline.tagType.

value

The value of the objective if delivered at the frequency of
this tag. Set to the value during the decision period for
the CER attribute value
AbstractTagTimeline.valueTimeline, with appropriate
numeric-to-String conversions if required.

description

blank (reserved for use by Ctiram Rules cases)

type

The type of data held in the value attribute. Set to the
CER attribute value AbstractTagType.valueType from the
tag type returned by AbstractTagTimeline.tagType.

pattern

The frequency at which this tag is delivered. Set to the
CER attribute value AbstractTagType.pattern from the
tag type returned by AbstractTagTimeline.tagType.

126

IBM Ctiram Social Program Management: Inside Ctiram Eligibility and Entitlement Using Ctiram Express Rules

Table 47. Population of CaseDecisionObjectiveTag rows (continued)

Attribute on CaseDecisionObjectiveTag Value stored by the Engine

objectivelD The type of objective for the parent objective which owns
this tag.

caseDecisionObjectivelD The ID of the parent objective which owns this tag.

relatedReference blank (reserved for use by Ctiram Rules cases)

moneyValue Holds the precise string representation of a money
objective tag.

8.2.6 CREOLECaseDecision

This is the link between a CREOLECaseDetermination and a CaseDecision which records a period of
constant eligibility and entitlement within the determination.

The Engine stores a row on CREOLECaseDecision for every CaseDecision row which forms part of the
determination written to CREOLECaseDetermination.

8.3 Decision Periods

The Engine stores details on CaseDecision and its child tables whenever there is a "change" in eligibility
and/or entitlement over the lifetime of a case. In other words, the Engine splits a determination into
"decision periods" of constant eligibility /entitlement, and stores each of those period as a row on
CaseDecision (and links those rows back to the CREOLECaseDetermination).

The CER rule objects for eligibility and entitled objectives/tags contain a mixture of fixed data and data
which changes over time. For the sake of clarity, this section describes each of the types of data changes
which the Engine considers a "change" in eligibility and/or entitlement:

* Each date on which the eligibility result changes;

* Each date on which the set of attained objectives changes; or

* Each date on which any of these values change for an attained objective:
— The target for the objective;
— The related reference for the objective; and/or
— The value of any type of tag for the objective.

Each change to any of the above will result in a CaseDecision record (plus child records) for that period
during a determination.

8.4 Determination Comparison Strategies

When the Engine calculates a determination result, then the Engine will store that determination result if
the new result is "different” from the previous result stored. Each CER-based Product can be configured
to set just how "different” a new determination result needs to be in order to be stored (and thus to
supersede the existing determination).

When the Engine stores a new determination snapshot (i.e. stores a new row on

CREOLECaseDetermination), it will either:

* if the new determination result is "different" from the previously stored determination result, store a
new row for the determination's XML documents on CREOLECaseDeterminationData, and link the
new CREOLECaseDetermination to the new rows for the XML documents; or

* if the new determination result is not "different" from the previously stored determination result, link
the new CREOLECaseDetermination to the existing rows for the XML documents stored against the
previous determination.

Chapter 8. How Determinations Are Stored 127

For example, if a case worker repeatedly requests manual eligibility checks on the same data, each
request will result in a (small) row being written to CREOLECaseDetermination, but only one pair of
(large) rows being written to CREOLECaseDeterminationData.

Each CER-based Product must specify a strategy that the Engine will use when comparing
determinations. You must either:

* in development, change your CREOLEProduct.dmx file to populate your product's
determinationCompStrategyType column with the code (from the DeterminationCompStrategy code
table) for your chosen strategy implementation; or

* in a running system, start the admin application and navigate to Product Delivery Cases, select your
product, choose Rule Sets and choose Eligibility Determination, change "Determination Comparison
Strategy" to be your chosen strategy implementation.

The interface for the strategy is
curam.core.sl.infrastructure.assessment.impl.DeterminationComparisonStrategy. You must choose an
existing comparison strategy or implement one of your own.

Tip: In the early stages of developing your product, it may be useful to initially use the "Compare all
user-facing data" strategy included with the Engine, and then later in your development revisit whether
this strategy meets your requirements.

Depending on the strategy in place for a product, it is possible for a new determination to be stored even
though its eligibility and entitlement are identical to the that for the previous determination (i.e. the new
CaseDecision and child records contain effectively the same data as the old records.).

This situation can arise when two determinations differ in explanation only. For example, a case may be
determined to be ineligible forever because the claimant is not a citizen. If the claimant acquires
citizenship, the case will be reassessed but the case may still be ineligible forever because the claimant
fails a means test. In this way, the underlying eligibility and entitlement is unchanged (namely, "ineligible
forever"), yet the explanation for the ineligibility has changed, and may cause a new determination to be
stored (depending on the determination comparison strategy in place for the product).

8.4.1 Strategy Implementations Included with the Engine

The Engine includes these implementations which are suitable for most products:

Table 48. Determination Comparison Strategy Implementations Included with the Engine

Display/code

Compare all user-facing data

Compare eligibility /entitlement data only

8.4.2 Developing your own Strategy Implementation

If you have custom requirements not met by the implementations included with the Engine, you may
develop your own strategy implementation(s) for use in your products as follows:

* Add a new entry to DeterminationCompStrategy code table (using custom .ctx files);

* Create an implementation class which implements the DeterminationComparisonStrategy interface;
implement the required method to return whether the two determinations passed in are considered to
have equal data;

* Bind the code table entry to your implementation, in your custom Guice Module:

128 IBM Ctram Social Program Management: Inside Ctram Eligibility and Entitlement Using Ctiram Express Rules

// Register your custom determination comparison strategies
final MapBinder<DETERMINATIONCOMPARISONSTRATEGYEntry,
DeterminationComparisonStrategy>
determinationComparisonStrategies
= MapBinder.newMapBinder(binder(),
DETERMINATIONCOMPARISONSTRATEGYEntry.class,
DeterminationComparisonStrategy.class);

determinationComparisonStrategies.addBinding(
DETERMINATIONCOMPARISONSTRATEGYEntry.YOUR_STRATEGY.to(
YourDeterminationComparisonStrategy.class));

(replacing YOUR_STRATEGY with the constant for your new code table code and
YourDeterminationComparisonStrategy with your strategy implementation class as appropriate)

* Build your application;
* Configure your product to use your new strategy (see instructions above).

Chapter 8. How Determinations Are Stored 129

130 IBM Ctram Social Program Management: Inside Ctram Eligibility and Entitlement Using Ctiram Express Rules

Chapter 9. Scheduling Financials

9.1 Introduction

The financial scheduler is responsible for scheduling financial transactions based on eligibility and
entitlement results and case deductions. These financial schedules, known as financial components, are
used by the Financial Manager to create financial instruction line items. The financial scheduler sits
between the Eligibility and Entitlement Engine and the Financial Manager, translating eligibility and
entitlement results as well as case deductions into financial schedules that can be processed into actual
payments or bills.

This chapter covers the scheduling of financials for eligible case decisions, case deduction items, and
payment corrections. The approach used to describe each of these financial schedules is the same
followed throughout this guide. For each financial schedule here is a description of how it looks, how it
works, and how to use it.

Financial components are schedules of transactions to be realized into actual financial transactions. A
financial component encompasses all of the elements that constitute a financial schedule, e.g. amount,
cover period, frequency, validity period, effective date and so on.

9.2 Scheduling Financials for Eligible Case Decisions

The case determination information produced by the Engine is used to create the financial schedules for
the case. Only eligible case decisions are considered and each eligible decision will have one or more
associated case decision objectives. Each of these case decision objectives represents a component for
which financials must be scheduled. One or more financial components are created for each case decision
objective, and these financial components are used to create one or more instruction line items that
represent the actual financial transactions.

9.2.1 How It Looks

This section describes how financial information is displayed to a case worker. A financial instruction
representing a benefit payment to a nominee is generated and displayed. From this, the case worker can
view the total amount due, the instruction line items which make up the total payment, the nominee and
the delivery details.

For example, a financial instruction has been generated and is displayed for the period 22nd June to 10th
July, for the amount of $407.15. This financial instruction is comprised of three payment instruction line
items. The nominee was determined eligible to receive an Income Assistance component and entitled to a
weekly amount of $150. The financial scheduler uses the one case decision objective produced by the
Engine to create two financial components.

The first financial component serves as a ramp-up financial component to cover a partial payment period.
Because the nominee is assigned a delivery pattern of 'Weekly by Check in Advance on a Monday' and
becomes eligible starting on Wednesday 22nd of June 2011, the financial scheduler creates a one-time
ramp-up financial component that is processed by the Financial Manager into one instruction line item
for a partial week payment of $107.15 that covers the period from Wednesday 22nd of June 2011 through
Sunday 26th of June 2011.

The second financial component serves as a recurring financial component that is processed by the

Financial Manager into two instruction line items, one for a full weekly payment of $150 for the week
starting Monday 27th of June 2011 and the second for the week starting Monday 4th of July 2011.

© Copyright IBM Corp. 2012, 2013 131

9.2.2 How It Works

There are a number of factors taken into consideration when deciding how to represent a specific case
decision as a financial schedule. These include the case decision objectives, the nominee component
assignments, the nominee delivery patterns, the period to which the decision applies and the case
decision objective tags which have been specified. The following sections provide more information on
each of these factors.

9.2.2.1 Considering Case Decision Objectives

An eligible case decision is first turned into a set of virtual components, one virtual component for each
of associated case decision objectives. The start and end dates of these virtual components will match the
start and end dates of the decision. If the decision is open-ended the virtual components will also be
open-ended.

For example, a case decision which indicates eligibility for the Income Assistance component from 13th
June 2011 until 29th July 2011 would generate a virtual component starting on 13th June 2011 and ending
on 29th July 2011.

9.2.2.2 Considering Nominee Component Assignments

Once an initial virtual component has been created the next step is to examine the nominee component
assignments. Any changes to the component assignment during the cover period of the virtual
component are identified and are used to split the initial virtual component into multiple, nominee
specific parts.

For example, the Income Assistance component is assigned to nominee James from 13th June 2011 to 5th
July 2011 and is then assigned to nominee Linda from 6th July 2011 onwards. Using this information the
initial virtual component is split up, giving one virtual component for nominee James, which covers the
period 13th June 2011 to 5th July 2011 and one virtual component for nominee Linda, which covers the
period 6th July 2011 to 29th July 2011.

9.2.2.3 Considering Nominee Delivery Patterns

Once the nominee specific virtual components have been created, the next step is to examine the nominee
delivery patterns. Any changes to the nominee's delivery pattern during the cover period of their virtual
component are identified and are used to split it again into multiple, delivery pattern specific parts.

For example, nominee James is paid using the pattern 'Weekly by EFT in Advance on a Monday' from
13th June 2011 to 3rd July 2011 and then paid 'Daily by EFT' from 4th July 2011 onwards. Nominee Linda
is paid using the pattern 'Weekly by Check in Advance on a Monday' from 6th July 2011 onwards. In this
situation the virtual component for nominee James will be split into two parts. One virtual component for
the period of the 'Weekly by EFT in Advance on a Monday' delivery pattern and once virtual component
for the period of the 'Daily by EFT" delivery pattern.

At the end of this processing we will have three virtual components that must be realized into
appropriate financial schedules as follows:

* Monday 13th of June 2011 until Sunday 3rd July 2011 for James, Weekly by EFT in Advance on a
Monday
* Monday 4th of July 2011 until Tuesday 5th July 2011 for James, Daily by EFT

* Wednesday 6th of July 2011 until Friday 29th of July 2011 for Linda, Weekly by Check in Advance on a
Monday

9.2.2.4 Calculating Financial Component Cover Periods

Each of the virtual components that we have at this stage is then further split up based on how its cover
period matches with the frequency of the nominee delivery pattern. For each virtual component up to
three financial components may be created. Each financial component will apply for a specific interval
during the period to which the virtual component applies.

132 IBM Ctram Social Program Management: Inside Ctram Eligibility and Entitlement Using Ctiram Express Rules

If the virtual component does not begin on a day that can initiate a complete delivery period, a financial
component is created to cover the period between the virtual component start date and the beginning of
the first complete delivery period. This is known as a ramp-up financial component.

A second financial component may be generated to cover all complete cycles of the delivery frequency
that can be achieved within the virtual component cover period. This is known as a recurring financial
component.

A final financial component may be created to cover the period between the end of the last complete
delivery period and the virtual component end date. This is known as a ramp-down financial component.

For example, the virtual component for nominee Linda covers the period from Wednesday 6th of July
2011 to Friday 29th of July 2011 and uses the delivery frequency Weekly by Check on Monday. Using the
frequency of this nominee delivery pattern to split up the virtual component means that a separate
financial component is generated to cover each of the periods listed below:

1. From Wednesday 6th July 2011 to Sunday 10th July 2011. This financial component covers the interval
from the start of the virtual component to the start of the first complete delivery cycle, i.e. Monday
11th July.

2. From Monday 11th July 2011 to Sunday 24th July 2011. This financial component covers the period of
the virtual component that contains all of the complete delivery frequency cycles.

3. From Monday 25th July 2011 to Friday 29th July 2011. This financial component covers the period
between the end of the last complete delivery cycle and the virtual component end date.

9.2.2.5 Calculating Open Ended Financial Component Cover Periods

If a product supports open ended cases, it means that the last decision on a case may be open ended.
When the last decision is eligible, then it results in the creation of a recurring, open-ended financial
component. This means that a ramp-down financial component is not required.

For example, an eligible, open ended decision has been created starting on Wednesday 6th of July 2011
which applies until further notice. For a case with one nominee component assignment and one nominee
delivery pattern which has the delivery frequency Weekly by Check on Monday, one open ended virtual
component will be created. Using the frequency of the nominee delivery pattern to split up the open
ended virtual component means that a separate financial component is generated to cover each of the
periods listed below:

1. From Wednesday 6th July 2011 to Sunday 10th July 2011. This financial component covers the interval
from the start of virtual component to the start of the first complete delivery cycle, i.e. Monday 11th
July.

2. From Monday 11th July 2011 until further notice. This financial component covers the period of the
virtual component that contains complete delivery frequency cycles.

At some point in the future, an end date will be added to the case. This might be because of a change of
circumstance or because the case is being closed. When this occurs, the case will be reassessed and the
previous open ended decision will be replaced by one which has an end date. At that point the open
ended financial component will be replaced by a bounded financial component which applies until the
case end date.

9.2.2.6 Calculating Financial Component Amounts

After the required financial components have been identified, the amount and effective date must be
determined for each one. The amount is determined by examining the period for which the financial
component applies. For a ramp-up or ramp-down financial component, this will be the cover period of
the financial component. For a recurring or open-ended financial component, this will be cover period of
the first complete delivery cycle.

For example, if we take the three financial components identified above for nominee Linda, the periods
specified would be:

Chapter 9. Scheduling Financials 133

1. From Wednesday 6th July 2011 to Sunday 10th July 2011.
2. From Monday 11th July 2011 to Sunday 24th July 2011.
3. From Monday 25th July 2011 to Friday 29th July 2011.

The amount used for each individual financial component depends on the case decision objective tags
which have been specified in the rule set for the product. Each tag has an associated frequency. The
available frequencies are daily, weekly, bi-monthly, monthly and yearly.

When calculating the amount for a recurring financial component typically the frequency will match one
of the available tags. When calculating the amount for a ramp-up or ramp-down financial component the
available tags are applied largest first.

For example, if the rule set for the product specified a 'daily' case decision objective tags with an amount

of $10 (indicating that for a single day the amount of 10 should be paid) and a 'weekly' case decision

objective tag with an amount of $65 (indicating that for a full week the amount of 65 should be paid), the

amounts calculated for the three financial components would be as follows:

1. From Wednesday 6th July 2011 to Sunday 10th July 2011 the amount would be $50 (five days at $10
per day).

2. From Monday 11th July 2011 to Sunday 24th July 2011 the amount would be $65 (one full week at $65
per week).

3. From Monday 25th July 2011 to Friday 29th July 2011 the amount would be $50 (five days at $10 per
day).

Consider this second example which explains how the tags are applied largest first. If the delivery
frequency is monthly and a ramp-up financial component is required for the period from 8th June 2011
until 30th June 2011 (23 days in total), and the following case decision objective tags are specified:

1. A monthly tag at $250 per month
2. A weekly tag at $65 per week.
3. A daily tag at $10 per day.

Using these Tags to calculate the amount for the ramp-up financial component would give a total of $215
(three weekly tags plus two daily tags).

However, if no weekly tag had been specified then the amount calculated for the ramp-up financial
component would be $230 (twenty three daily tags).

9.2.2.7 Calculating Financial Component Effective Dates

The effective date for the financial component is determined using a combination of the cover period
type and the delivery pattern. For each of the supported cover period types, the effective date is
calculated as follows:

e Issue in Advance

The effective date is the start date of the first delivery period covered by the financial component.
Therefore, for the three financial components defined above for nominee Linda, the effective dates
would be Monday 4th July, Monday 11th July and Monday 25th July respectively. It is worth noting
that the effective date for the first financial component is not within the cover period for that
component.

e Issue in Arrears

The effective date is the start date of the delivery period following the first delivery period covered by
the financial component. Therefore, for the three financial components defined above for nominee
Linda, the effective dates would be Monday 11th July, Monday 18th July and Monday 1st August
respectively.

e Issue for Full Month

134 IBM Ctram Social Program Management: Inside Ctram Eligibility and Entitlement Using Ctiram Express Rules

The effective date is the start date of the financial component. Therefore, for the three financial
components defined above for nominee Linda, the effective dates would be Wednesday 6th July,
Monday 11th July and Monday 25th July respectively.

e Once-off Issue

The effective date is the start date of the financial component. Therefore, for the three financial
components defined above for nominee Linda, the effective dates would be Wednesday 6th July,
Monday 11th July and Monday 25th July respectively.

* Issue in Advance - N Days Prior to Issue Date

The effective date is N days prior to the start date of the first delivery period covered by the financial
component. For example, if N equals 2, then for the three financial components defined above for
nominee Linda, the effective dates would be Saturday 2nd July, Saturday 9th July and Saturday 23rd
July respectively.

* Issue in Arrears - N Days Prior to Issue Date

The effective date is N days prior to the start date of the delivery period following the first delivery
period covered by the financial component. For example, if N equals 2, then for the three financial
components defined above for nominee Linda, the effective dates would be Saturday 9th July, Saturday
16th July and Saturday 30th July respectively.

* Issue in Advance - on the Nth Day of Month Prior
The effective date is the Nth day of the month prior to the start date of the financial component cover

period. For example, if N equals 2, then for each of the three financial components defined above for
nominee Linda the effective date would be Friday 3rd June.

9.2.3 How to Use It

This section describes the information that must be provided to allow financial schedules to be generated
for an eligible case decision. It is divided into two sections, mandatory information and optional
information.

9.2.3.1 Mandatory Information
Case Decision Objectives

These are defined in the rule set assigned to the product on which this case is based. An Objective is
anything that can be awarded as part of a determination result calculated by CER rules. An eligibility
rule set can have multiple objectives.

For more information see |4.4.1.3, “Objectives,” on page 26.|

Case Decision Objective Tags

These are also defined in the rule set assigned to the product on which this case is based. An Objective
Tag represents how a particular objective is awarded for a specific period of time (from days to years).
An objective may have several objective tags. For example, a Loan Parent benefit product may have two
objective tags, one applying 'per day' and one 'per week'. An objective tag can be an amount of money or
a formula that evaluates an amount of money for a specific objective.

For more information see |4.4.1.4, “Objective Tags,” on page 26|

Financial Code Tables

There are five code tables which must be customized to enable the financial schedules and subsequent
financial transactions to be generated correctly from the eligible case decisions. They are:

1. RulesComponentType;
2. FinComponentType;
3. ProductComponentFCConv;

Chapter 9. Scheduling Financials 135

4. ILIType; and
5. TranslatelILIType.

For more information see the 'Financial Code Tables' section of the Inside the Ciram Financial Manager
Guide.

9.2.3.2 Optional Information
Nominee Component Assignments

Every component available on a case must be assigned to a nominee. When a case is first created all the
components are initially assigned to the default nominee. However, if an additional nominee has been
added to the case they can be assigned a component from a certain date or for a specific period of time.

Assigning a component to multiple nominees during the lifetime of an eligible case decision will result in
the creation of separate financial components for each of those nominees. Nominee Component
Assignments can be configured via the Transactions page of the case.

For more information see the Ciram Nominees Guide.
Nominee Delivery Patterns

Every nominee must have a delivery pattern which indicates how they wish to receive payments and at
what frequency. A nominee's delivery pattern can change over time, but no gaps are allowed. The
delivery pattern can be specified when the nominee is being added to the case. If one is not explicitly
selected, then the nominee is given the delivery pattern currently in use by the default nominee.

Having multiple delivery patterns for a nominee during the lifetime of an eligible case decision will
result in the creation of separate financial components for each of the delivery patterns used. Nominee
Delivery Patterns can be configured via the Transactions page of the case.

The nominee delivery pattern is also where the delivery frequency and the cover period type are
specified, as well as any offsets.

For more information see the Ciram Nominees Guide.
Allow Open Ended Cases Indicator

This indicator can be found on the Eligibility Determination tab of the Rule Sets page for a Product. It is
set to 'Yes' by default, meaning that cases based on this product may be open ended. Only open ended
cases can generate open ended decisions and subsequently open ended financial schedules. Setting this
indicator to 'No' ensures that an end date or expected end date must always be set for cases based on
this product and ensures that any financial schedules created for such a case will always have an explicit
end date.

For more information see the Ciram Integrated Case Management Configuration Guide.

9.3 Scheduling Financials for Case Deductions

The case deduction item information on a case is used to create the deduction financial schedules. Only
active case deduction items are considered. Deductions can either be for a fixed amount or for a
percentage of the payment amount, with the specific amount being calculated during payment
generation.

For a fixed deduction, the value of the deduction financial component is taken directly from the case
deduction item. A fixed deduction is applied to the total payment amount of all the deductible
components that the specified nominee has received.

136 IBM Ctram Social Program Management: Inside Ctram Eligibility and Entitlement Using Ctiram Express Rules

For a variable deduction, a rate is used instead. The rate indicates the percentage of the payment amount
that should be deducted. A variable deduction is applied to the total payment amount of a specific
component if one is selected, otherwise it is applied to the total payment amount of all the deductible
components on the case. Since a variable deduction represents a percentage of the total payment, the
same percentage is deducted from each nominee receiving one of the applicable components.

Each active case deduction item defined for a case will result in the generation of one or more financial
components depending upon the number of nominees affected. One or more deduction instruction line
items will then be generated for each financial component.

For more information on configuring deductions, see the Ciiram Deductions Guide.

9.3.1 How It Looks

This section describes how financial information is displayed to a case worker when a deduction is taken
from a payment. A financial instruction representing a benefit payment to a nominee is generated and
displayed. From this, the case worker can view the total amount due, the instruction line items and the
deduction items which make up the total payment, the nominee and the delivery details.

For example, a financial instruction has been generated and is displayed for the period 22nd June to 10th
July, for the amount of $397.15. This financial instruction is comprised of three payment instruction line
items and one deduction instruction line item. The nominee was determined eligible to receive an Income
Assistance component and entitled to a weekly amount of $150. A fixed deduction of $10 has also been
created for the nominee in order to assist the nominee in making payments for a utility bill. The financial
scheduler uses the one case decision objective produced by the Engine to create two financial components
to represent the payment, and uses the case deduction item information to create one financial
component to represent the deduction.

The first payment related financial component serves as a ramp-up financial component to cover a partial
payment period. Because the nominee was assigned a delivery pattern of 'Weekly by Check in Advance
on a Monday' and became eligible starting on Wednesday 22nd of June 2011, the financial scheduler
creates a one-time ramp-up financial component that is processed by the Financial Manager into one
instruction line item for a partial week payment of $107.15 to covers the period from Wednesday 22nd of
June 2011 through Sunday 26th of June 2011.

The second payment related financial component serves as a recurring financial component that is
processed by the Financial Manager into two instruction line items, one for a full weekly payment for
$150 for the week starting Monday 27th of June 2011 and the second for the week starting Monday 4th of
July 2011.

The deduction financial component is processed by the Financial Manager into one instruction line item
for the amount of $10 that is deducted from the payment financial instruction created for the nominee.

9.3.2 How It Works

There are a number of factors taken into consideration when deciding how to represent a specific case
deduction item as a financial schedule. These include whether the deduction is fixed or variable, the
nominee component assignments, the nominee delivery patterns, the period to which the deduction
applies and the latest payment date associated with the case itself. The following sections provide more
information on each of these factors.

9.3.2.1 Considering Case Deduction ltems

First the active case deduction items are retrieved. Only a case deduction item with an end date after the
last paid to date of the case will be considered. If an active deduction has already ended, it will not be
used generate financial schedules.

Chapter 9. Scheduling Financials 137

For example, a case which starts on 13th of June 2011 and has an expected end date of 10th July 2011
delivers two components, Income Assistance and Medical Assistance. The case has two nominees Lisa
and Paul, but no payments have been issued yet.

Lisa is the default nominee and so is assigned both components from the case start date. Lisa's nominee
delivery pattern is 'Weekly by EFT in Advance on a Monday' and applies from the case start date. Paul's
nominee delivery pattern is 'Weekly by Check in Advance on a Monday' and also applies from the case
start date. Paul is assigned the Income Assistance component from 27th June 2011 (the start of the third
week).

The case also has two case deductions specified as follows:

1. A fixed deduction for the amount $12, assigned to nominee Lisa. The deduction starts on 13th of June
2011 and has no end date specified, meaning that it applies until further notice.

2. A variable deduction for 20% against the Income Assistance component. It starts on 20th of June 2011
and has an end date of 5th July 2011.

In this example, both case deduction items will be retrieved and used to generate financial components.

9.3.2.2 Considering Deduction Types

Once the case deduction items have been identified, the next step is to check the deduction type to
determine how many nominees are affected. A fixed deduction will affect a single nominee while a
variable deduction may affect multiple nominees depending on the components it is targeted at and the
nominee component assignments. Any changes to the component assignments during the cover period of
the deduction are identified and are used to split the initial deduction component into multiple, nominee
specific parts. This is done for each component affected by the deduction.

In our example, the fixed deduction is assigned to Lisa, so it can be represented by a single deduction
financial component. The variable deduction is against the Income Assistance component which is
assigned to Lisa for the first two weeks and then to Paul for the remainder of the case, so the deduction
financial component representing this must be split in two.

At the end of this processing we will have three deduction financial components as follows:

1. From Monday 13th of June 2011 until Sunday 10th July 2011 for nominee Lisa, deducting $12 per
week from her total payment.

2. From Monday 13th of June 2011 until Sunday 26th June 2011 for nominee Lisa, deducting 20% per
week from her total payment.

3. Monday 27th of June 2011 until Sunday 10th July 2011 for nominee Paul, deducting 20% per week
from his total payment.

9.3.2.3 Calculating Deduction Cover Periods

The cover period of the deduction financial component starts on the case deduction item start date,
unless that date is before the last date paid out on the case. In that situation, the financial component
cover period starts the day after the last date paid.

The cover period of the deduction financial component ends on the case deduction item end date, if
specified. If no end date has been specified the expected end date of the case is used instead.

For example, if the case deduction item has a start date of 13th June 2011 and no end date is specified
and the case to which it belongs has an expected end date of Sunday 10th July 2011 and has been paid
up to Sunday 19th June 2011. The cover period of the deduction financial component would be from
Monday 20th June 2011 to Sunday 10th July 2011.

138 IBM Ctram Social Program Management: Inside Ctram Eligibility and Entitlement Using Ctiram Express Rules

9.3.3 How to Use It

This section describes the information that must be provided to allow financial schedules to be generated
for a case deduction item. It is divided into two sections, mandatory information and optional
information.

9.3.3.1 Mandatory Information
Case Deduction Items

The relevant case deduction item must be added to the case. It must have been Activated, and its end
date, if specified, must be later than the last date paid out on the case.

For more information see the Ciram Deductions Guide.

9.3.3.2 Optional Information
Nominee Component Assignments

Every component available on a case must be assigned to a nominee. When a case is first created all the
components are initially assigned to the default nominee. However, if an additional nominee has been
added to the case they can be assigned a component from a certain date or for a specific period of time.

Assigning a component to multiple nominees during the lifetime of a variable case deduction item
targeted at that component will result in the creation of separate deduction financial components for each
of those nominees. Nominee Component Assignments can be configured via the Transactions page of the
case.

For more information see the Ciram Nominees Guide.

9.4 Scheduling Financials for Payment Corrections

The reassessment information produced by the Engine is used to create the payment correction financial
schedules.

When a change of circumstance results in a reassessment over a period which has already been paid, that
reassessment may determine that the entitlement amount originally calculated and subsequently issued to
the nominee for that period was incorrect. When this occurs the original entitlement must be corrected
and a balancing payment or bill must be issued. A payment correction is the mechanism used to do this.

If the original payment was larger that it should have been, an overpayment correction will be created. If
the original payment was smaller that it should have been, an underpayment correction will be created. If
the original payment was comprised of multiple components and the total amount for the overpaid
components was found to be the same as the total amount for the underpaid components, a net zero
payment correction will be created.

Reassessment information is stored for each nominee affected by the payment correction in the
NomineeOverUnderPayment table. This information is then broken down by component for each
nominee and stored in the OverUnderPaymentBreakdown table and is used to create evidence for
payment correction. The type and number of evidence records created depends upon the type of product
used to deliver the payment correction. Each evidence record results in the creation of one corresponding
financial component which in turn is used to create one instruction line item.

9.4.1 How It Looks

This section describes how financial information is displayed to a case worker when an overpayment or
underpayment occurs and is processed within a Payment Correction case.

Chapter 9. Scheduling Financials 139

For example, a nominee was initially determined eligible to receive both an Income Assistance and
Medical Assistance component and is entitled to a weekly amount of $150 for the Income Assistance
component and a weekly amount of $35 for the Medical Assistance component. The financial scheduler
uses the two case decision objectives produced by the Engine to create two financial components that are
processed by the Financial Manager into a payment.

Due to a change in circumstance for the nominee, reassessment of the nominee's eligibility and
entitlement occurs resulting in an overpayment for both components and the creation of a Payment
Correction case. The financial scheduler uses the reassessment information produced Engine to create two
financial components.

The first financial component is created for the Income Assistance component and is processed by the
Financial Manager into one liability instruction line item for $6.41 that covers the period of the original
payment, from Wednesday 22nd of June 2011 through Thursday 7th of July 2011.

The second financial component is created for the Medical Assistance component and is processed by the
Financial Manager into one liability instruction line item for $10.71 that covers the period of the original
payment, from Wednesday 22nd of June 2011 through Thursday 7th of July 2011.

A financial instruction representing a liability for an overpayment to a nominee is displayed within a
Payment Correction case for the amount of $17.12. This financial instruction is comprised of the two
liability instruction line items created by the Financial Manager.

In the originating Product Delivery case, the Engine has determined that the entitlement amount
originally calculated and subsequently issued was larger than it should have been, resulting in the
creation of an overpayment.

The overpayment of $17.12 that resulted in the creation of the Payment Correction case is displayed. The
overpayment is broken down into an overpayment of $10.71 for the Medical Assistance component and
an overpayment of $6.41 for the Income Assistance component.

9.4.2 How It Works

For a payment correction, the generation of the financial schedules is normally a two step process. First a
product delivery case is created and the reassessment information is used to create the evidence for the
case. When that case is subsequently activated the evidence is used as the basis for the financial
schedules.

An alternative process is possible for an underpayment correction. With this approach it is possible to
deliver the underpayment on the original benefit case, rather than using a separate underpayment case.
In this situation the reassessment information is still used to create the evidence, but the necessary
financial component(s) are created immediately afterwards.

There are a number of factors taken into consideration when deciding how to represent a payment
correction as a financial schedule. These include the payment correction type determined by the
reassessment, the product used to deliver the payment correction, the number of components included in
the reassessment, and various administration and product settings. The following sections provide more
information on each of these factors.

9.4.2.1 Considering Payment Correction Types

An overpayment correction is created when the original payment was larger that it should have been. If
the original payment was comprised of multiple components then it is possible that some of those
component could have been overpaid while others have been underpaid, but when the totals are
combined the balance is an overpayment.

140 1BM Ctram Social Program Management: Inside Ctram Eligibility and Entitlement Using Ctiram Express Rules

An underpayment correction is created when the original payment was smaller that it should have been.
If the original payment was comprised of multiple components then it is possible that some of those
component could have been overpaid while others have been underpaid, but when the totals are
combined the balance is an underpayment.

A net zero payment correction is created when the original payment was comprised of multiple
components and the total amount for the overpaid components was found to be the same as the total
amount for the underpaid components. When the totals are combined the balance is zero.

In the example, the Engine has determined that an overpayment correction is required. The reassessment
information shows that the total overpayment amount is $17.12 and this total was calculated by adding
the overpayment of $10.71 for the Medical Assistance component and the overpayment of $6.41 for the
Income Assistance component.

9.4.2.2 Considering Correction Products
There are three products which can be used when creating financial schedules for a payment correction.
They are:

* The Payment Correction product which has the ability to produce individual financial schedules for
each component which was over or under paid on the original benefit case. This product supports all
the payment correction types (overpayment, underpayment and net-zero).

* The Overpayment product which has the ability to produce a single liability financial schedule for the
total amount overpaid on the original benefit case. This product supports only the overpayment
correction type.

¢ The Underpayment product which has the ability to produce a single benefit financial schedule for the
total amount underpaid on the original benefit case. This product supports only the underpayment
correction type.

The payment correction product will be used by default, however an application property is provided
that allows the overpayment and underpayment products to be used instead.

In the example, the product associated with the case is configured to use the Payment Correction
product, and since this is an overpayment correction a Payment Correction case will be created.

Once the Payment Correction case has been created the appropriate evidence is added to it. In this
example, two evidence records will be created:

1. An overpayment record for the amount of $10.71 to correct the original payment for the Medical
Assistance component.

2. An overpayment record for the amount of $6.41 to correct the original payment for the Medical
Assistance component.

Important: Cases that have been migrated from earlier versions of the application may have existing
reassessment information. For case such as this, the granular reassessment information will not be
available. Therefore the payment correction product cannot be used. So these cases will continue to use
the overpayment and underpayment products as before.

9.4.2.3 Considering Nominees
For an overpayment correction, the nominee on the Payment Correction case will be the primary client of
the original benefit case and the nominee delivery pattern will be 'Once-off by Invoice'.

For an underpayment correction the nominee on the Payment Correction case will be same as the
nominee underpaid on the original benefit case. If this is different to the primary client, a second
nominee will be added to the Payment Correction case to support this. The nominee delivery pattern will
be 'Once-off by X' (where X is the delivery method of that nominee on the original benefit case). A new
nominee can also be added to the underpayment case and assigned to the benefit underpayment
component, however unlike regular benefit cases, the payment cannot be split between multiple

Chapter 9. Scheduling Financials 141

nominees over different period of times because an underpayment is a single once off payment. In order
for a different nominee to receive the underpayment, the date range of the component assignment must
cover the entire cover period of the benefit underpayment component. If the date range of the component
assignment does not cover the entire cover period, then the original nominee will still receive the entire
underpayment.

For a net zero payment correction, the nominee on the Payment Correction case will be the primary client
of the original benefit case and the nominee delivery pattern will be 'Once-off by X' (where X is the
delivery method of that nominee on the original benefit case).

In the example, the Engine has determined that an overpayment correction is required. The nominee on
the financial component will be the primary client of the original benefit case and the nominee delivery
pattern will be 'Once-off by Invoice'.

9.4.3 How to Use It

This section describes the configuration settings which control how financial schedules are generated for
payment corrections. All the configuration options described here have default values which can be
changed if required.

The 'Use Rolled Up Reassessment Products' setting is a configuration option which controls the product
that will be used to deliver a correction. When this is set to 'NO, it indicates that the Payment Correction
product should be used. When it is set to 'YES', it indicates that the legacy, Overpayment and
Underpayment products should be used. The default value for this setting is 'NO'".

For more information see the Ciram Integrated Case Management Configuration Guide.

9.4.3.1 When will an Overpayment Correction case be created?

Depending on the value of the 'Use Rolled Up Reassessment Products' setting, either a payment
correction case or an overpayment case may be created to deliver the overpayment correction. The
following configuration settings also affect the behaviour:

e Automatic Overpayment Case Processing

This setting works in conjunction with the 'Use Rolled Up Reassessment Products’ setting mentioned
above and can be configured in one of three ways. The first option allows an administrator to specify
that a separate case should be automatically created when an overpayment correction is detected. This
will be either an overpayment case or a payment correction case depending on the value that is
specified for the 'Use Rolled Up Reassessment Products' setting. Once the case is created, a user must
manually approve, activate, and generate the liability financials required to recoup the overpayment.

The second option allows an administrator to specify that a separate case should be automatically
created and approved, activated, and liability financials generated without the intervention of a user.
Note that this option is only available for benefit products for which the value of the 'Use Rolled Up
Reassessment Products' setting is 'NO'.

The third option instructs the system not to automatically create a separate case to correct the
overpayment. Instead, a task is generated to alert the user of the overpayment. The user can then
manually create and manage a liability case to recoup the overpayment.

9.4.3.2 When will an Underpayment Correction case be created?

Depending on the value of the 'Use Rolled Up Reassessment Products' setting, either a payment
correction case or an underpayment case may be created to deliver the underpayment correction.
Alternatively, in some situations it is possible for the underpayment correction to be delivered on the
original benefit case. The following configuration settings also affect the behaviour:

* Automatic Underpayment Case Creation

This setting works in conjunction with the 'Use Rolled Up Reassessment Products’ setting mentioned
above and can be configured in two ways. The first option allows an administrator to specify that a
separate case should be automatically created when an underpayment correction is detected. This will

142 1BM Ctram Social Program Management: Inside Ctram Eligibility and Entitlement Using Ctiram Express Rules

be either an underpayment case or a payment correction case depending on the value that is specified
for the 'Use Rolled Up Reassessment Products' setting. Once the case is created, a user must manually
approve, activate, and generate the benefit financials required to issue the underpayment.

The second option instructs the system not to automatically create a separate case to correct the
underpayment. Instead, an underpayment financial component should be created on the original
benefit case to deliver the underpayment.

* curam.miscapp.checkforliveliabilities

This application property determines whether a check is performed by the system to establish the
existence of outstanding liabilities for a client when an underpayment correction has been detected.
The default value of this property is 'YES', meaning that a separate case will always be created to
deliver the underpayment when an outstanding liability exists for this client.

* curam.miscapp.underpmtcase.createfornomineediff

This application property determines whether a check is performed by the system to establish whether
the nominee on the original benefit case, currently assigned the underpaid component, is the same as
the underpaid nominee. The default value of this property is "YES', meaning that a separate case will
always be created to deliver the underpayment when the nominee currently assigned the component is
not the nominee underpaid.

¢ Invalidate Payments
This is not a configuration option, rather it is a check that is carried out internally by the financial

scheduler. If the underpayment correction is for a period that has been paid, but the payment was
cancelled and invalidated, then a separate case will always be created to deliver the underpayment.

9.4.3.3 When will a Net Zero Correction case be created?

Net zero payment corrections are created when the overpaid components and underpaid components
included in a reassessment cancel each other out. Since the creation of a net zero payment correction case
is only possible when the Payment Correction product is used, the value of the 'Use Rolled Up
Reassessment Products’ setting must be 'NO'.

Net zero payment correction cases will not be of great interest to a case worker, but they facilitate fund
management and accurate account management.

With this in mind, net zero payment correction cases are automatically created, approved, activated, and
the financials generated without the intervention of a user.

Chapter 9. Scheduling Financials 143

144 1BM Ctram Social Program Management: Inside Ctram Eligibility and Entitlement Using Ctiram Express Rules

Chapter 10. Reassessment - Handling Changes in
Circumstance

10.1 Introduction

When a case worker first activates a product delivery case, the Engine creates a determination for the
initial assessment for that case, and uses that determination as input into financial processing.

This initial assessment takes into account:
* Case-specific circumstances known at the time of the initial assessment, including;:
— personal data, such as dates of birth;
— case data, such as case start and end dates; and
— evidence, such as income levels for household members; and
* Product-wide configuration, including:
— product periods;
— the product rules for eligibility /entitlement, key decision factors and decision details; and

— rate data.

Any of all of these types of data can change as time goes on; families move, they have more children,
their income fluctuates, they encounter unforeseen problems which lead to greater need; product
legislation and/or policy changes, rates change in line with costs of living.

Depending on the nature of the change, some changes may affect future periods on cases which have not
yet been paid. However, other types of change may affect periods on cases which have already been
paid, resulting in under- or over-payments (see 9.4, “Scheduling Financials for Payment Corrections,” on|
|- ge 139)

This chapter describes how reassessment works for:
e case-level reassessment; and

e bulk reassessment.

10.2 Case-level Reassessment

10.2.1 Overview
Most data changes recorded in the application affect a very small number of cases:

* when evidence recorded directly against a product delivery case is activated, typically only that
product delivery case is affected;

* when evidence recorded against an integrated case is activated, typically only the product delivery
cases belong to that integrated case are affected;

¢ when personal data is changed, typically only cases which involve those persons are affected (such
cases may reference the person data directly, or may use Evidence Broker to control the use of the
personal data in cases);

* when product delivery case data such as case start/end dates are changed, typically only that product
delivery case is affected.

Note: The above observations are based off typical behavior for cases; the Engine does not enforce any
restrictions about sharing evidence or other data across cases.

© Copyright IBM Corp. 2012, 2013 145

Product delivery cases are automatically reassessed when the type of data described above changes.
When changes to data occur they are written to a precedent change set and processed by the Dependency
Manager. The Dependency Manager processes the precedent change set by finding the unique set of
dependents affected by any of the items in the precedent set and instructing each affected dependent to
recalculate itself. Each type of dependent in the system has a registered 'dependent handler' which, when
invoked by the Dependency Manager, is responsible for taking the appropriate steps to recalculate a
dependent. If any of the dependents affected are a case assessment determination then the appropriate
step is to request that the Engine reassesses the case, by invoking CER to recalculate the value of the
determinationResult attribute value for the case.

The processing of precedent change set items that are likely to affect a small amount of cases occurs in
deferred processing.

Note: Because the Engine uses the Dependency Manager in such a way as to use deferred processing,
then a case affected by a change in data can be either:

* reassessed within the deferred process; or

e prior to the execution of the deferred process, if reassessment is initiated within the case itself as a
result of manual reassessment, a change in evidence, or the generation of financial payments.

10.3 Bulk Reassessment

Certain types of system-wide change can affect many or all of the product delivery cases on the system.

This section describes these types of system-wide change and the facilities available to you to handle the
effects of system-wide changes, by identifying and reassessing the affected product delivery cases.

10.3.1 Types of Change that Cause Bulk Reassessment

This section describes the types of change that the Engine treats as causing bulk reassessment, i.e. where
the expected effect of the changes is not limited to a low number of cases (unlike case-level reassessment -
see [10.2, “Case-level Reassessment,” on page 145).

The effects of any of these types of change are handled in batch processing, and so require the execution
of batch jobs to be scheduled, either on a regular schedule provided by your third-party scheduling
software, or on an ad hoc basic by being manually run by system operator staff.

The Engine treats any change to the following system-wide data as "bulk change" potentially affecting a
large number of cases, and thus requiring bulk reassessment processing:

* Product configuration;

¢ CER Rules used by the Product;

* Rule Object Data Configurations; and

* Rate Tables.

The following sections describe these types of change in more detail, and explain the lifecycle of each
type of change. In general terms, each type of change can be worked on by an administrator without
causing any effects on the system, followed by a "publish" action where the completed changes start to
take effect and are available for case processing.

Tip: When changes to any of these types of data are published, an informational message (advising that
a system-wide change has occurred and that bulk reassessment processing is required) is shown on the
publication screen and also written to the application logs.

It may be useful to monitor the application logs for this informational message if you choose to run bulk

reassessment processing on an ad hoc basis (i.e. only when a bulk change has occurred).

146 1BM Ctram Social Program Management: Inside Ctram Eligibility and Entitlement Using Ctiram Express Rules

10.3.1.1 Product Configuration
Any change to the configuration of a Product has the potential to affect assessment determinations for the
product's cases.

In particular, changes to the product periods for your product may affect the product's cases. Product
period changes include:

* adding a new product period (e.g. to implement a change in legislation, using the multiple product
periods approach, see [11.4.2, “Multiple Product Periods for Your Product,” on page 170);

* removing an existing product period;
* changing the start and/or end date of an existing product period;
* changing the name’of the eligibility /entitlement rule class for an existing product period;

* adding, changing or removing the name of the key decision factor rule class for an existing product
period; and/or

* adding, changing or removing the name of the decision details rule class for any display category on
an existing product period.

The administration application contains a "sandbox" area where an administrator can accumulate changes
to a product (including its product periods) before choosing to "publish" those changes, at which point
the changes to the product will start to affect product delivery cases. Unpublished product changes have
no effect on case processing.

There is additional processing required if a change is made to the Product's reassessment strategy. See
[11.5.4, “Reassessment Strategy,” on page 174

10.3.1.2 CER Rules used by your Product

Any change to any part of these CER rule sets, for any product period on the product, has the potential
to affect assessment determinations for the product's cases:

* the rule set containing the eligibility /entitlement rule class;
¢ the rule set containing the key decision factors rule class (if configured);
¢ the rule set (s)containing any of the decision details rule classes(if configured); and/or

* any other rule set containing any rule attribute that was encountered during the calculation of a case's
determination, e.g. those on "calculator” rule classes and "data" rule classes for custom entity and
evidence types, which may be stored in "common" rule sets separate from the rule sets containing the
rule classes named by your product period(s).

Note: Other processing in the application (outside the Engine) may also rely on CER rule sets, and so it
is possible that CER rule sets are being changed for reasons unrelated to case assessments.

The Dependency Manager does not know which CER rule sets do or do not affect cases, and so for any
change in CER rule sets, the Dependency Manager will treat the change as one that might affect cases,
but will simply identify that no product delivery cases are affected.

The administration application contains a "sandbox" area where an administrator can accumulate changes
to CER rules before choosing to "publish” those changes, at which point the changes to CER rules will
start to affect product delivery cases. Unpublished rule set changes have no effect on case processing.

7. This change refers to changing which rule class the product period "points at" for eligibility/entitlement calculations; i.e. changing
the product period from pointing to one rule class to instead point to another; similarly for key decision factors and decision
details rule classes.

Changes to the CER rules themselves are described below.

Chapter 10. Reassessment - Handling Changes in Circumstance 147

10.3.1.3 Rule Object Data Configurations

Any change to any configuration for any of the configurable rule object data configurations has the
potential to affect product delivery cases, because the entities and evidence to be used by CER during the
execution of rules may have changed.

Note: Other processing in the application (outside the Engine) may also rely on rule objects created by
configurable rule object data configurations, and so it is possible that configurations are being changed
for reasons unrelated to case assessments.

The Dependency Manager does not know which configuration changes do or do not affect cases, and so
for any change in data configurations, the Dependency Manager will treat the change as one that might
affect cases. If the data configuration changes are unrelated to case assessments, then the Dependency
Manager will simply identify that no product delivery cases are affected.

The administration application contains a "sandbox" area where an administrator can accumulate changes
to rule object data configurations before choosing to "publish" those changes, at which point the changes
to the data configurations will start to affect product delivery cases. Unpublished data configurations
changes have no effect on case processing.

10.3.1.4 Rate Tables

Any change to a rate table (which is configured to populate RateCell rule objects) has the potential to
affect product delivery cases, typically when the value of an existing version of a rate is changed or a
new effective period of a rate table comes into effect (see "Implementing Rate Tables" in the Ciram
Integrated Case Management Configuration Guide).

Note: Other processing in the application (outside the Engine) may also rely on the values stored in rate
tables, and so it is possible that rate tables are being changed for reasons unrelated to case assessments.

The Dependency Manager does not know which rate tables do or do not affect cases, and so for any
change in rate table data, the Dependency Manager will treat the change as one that might affect cases. If
rate table changes are unrelated to case assessments, then the Dependency Manager will simply identify
that no product delivery cases are affected.

In contrast to the other types of data changes described above, there is no system-wide "publication” step
for rate table changes.

However, the Engine contains a special "Apply Changes" option which allows an administrator to choose
when the changes made to rate tables will start to affect product delivery cases. Until an administrator
chooses this option, rate table changes have no effect on case processing (for CER-based cases). Other
processing outside the Engine will see the rate table changes immediately, though.

10.3.2 Approaches to Identifying and Reassessing All Affected Cases

10.3.2.1 Requirements for Bulk Reassessment
When identifying and reassessing cases in response to a system-wide change, typically the requirements
for processing fall into one of these categories:

* Consistency

All cases affected by the change must be identified and reassessed (i.e. all reassessments which are
sufficient to make those cases consistent with the change). It is not acceptable for any case affected by
the change to be "missed" during batch processing.

 Efficiency
Only cases affected by the change should be identified and reassessed (i.e. only those reassessments
which are necessary should occur). It can be wasteful to spend system time either reassessing cases
which are not affected and/or reassessing any particular case more than once.

148 1BM Ctram Social Program Management: Inside Ctram Eligibility and Entitlement Using Ctiram Express Rules

¢ Concurrency
It must be possible to reassess cases in parallel batch streams (to promote scalability). It must be
possible to reassess cases in batch while the online application is being used (to avoid the necessity for
system downtime for online users).
* Business-specific control and processing
You may have your own business-specific requirements to control reassessment of cases and/or
perform additional processing, e.g.:
— to reassess cases in a particular order, e.g. by surname of the claimant;
— to reassess only a particular subset of cases, e.g. those for claimants who have social security
numbers in a particular range; or
— to perform additional business processing for each case, e.g. to send out special correspondence with
each reassessed case which is pertinent only to bulk reassessment on this occasion, e.g. an

explanatory leaflet sent to each claimant who has a case affected by a particular piece of legislation
change.

In practice, there are trade-offs to be made to meet these requirements. [10.3.2.3, “Driving the]
[[dentification of Affected Cases,” on page 150| describes the various approaches available for handling a
bulk change, i.e. for identifying the cases identified so that they can each be reassessed.

10.3.2.2 Multiple Reassessments during a Case's Lifetime

At this point it's worth pausing to recall what happens each time a case is reassessed:

* the Engine invokes CER to calculate a new determination result for the case;

¢ the Engine retrieves the existing determination result for the case from the database;

¢ the Engine compares the new determination against the existing determination, and only if the new
determination is "different”:
- the Engine supersedes the existing determination result and stores the new determination result on

the database;

— the Engine updates the case's financial schedule;

— the Engine identifies whether there have been any over- or under-payments and if so takes
corrective action.

Bulk case reassessment is no different from online case lifecycle processing in this regard - i.e. processing
can reassess a case any number of times, but it is only when the new assessment determination result
differs from the existing assessment determination result that a new determination result is stored and
potentially financial impacts are stored (such as changes to the financial schedule, and possibly the
identification of over- or under-payments and corrective actions).

As such, a "needless" reassessment which results in no change to the existing assessment determination is
not as expensive (in system terms) as a "necessary" reassessment which results in a change to the
determination; but on the other hand performing a "needless" reassessment is more expensive than
avoiding it. Needless reassessments have no business impact on the case, though. You should consider
your performance requirements to determine to what extent needless reassessments are tolerable in your
system and bear that in mind when choosing your approach to bulk reassessments.

There are a number of common processing points in the application which will cause a case to be
reassessed:

* case lifecycle events - e.g. if the case is closed, and then reopened, and then reactivated, the case will
be reassessed at reactivation time;

¢ when a case worker chooses to manually reassess the case;
* when case-level reassessment occurs, e.g. in response to changes in evidence or personal details;

* if the financials batch programs are configured to force a reassessment of each case prior to generating
financials for the case; and

Chapter 10. Reassessment - Handling Changes in Circumstance 149

* bulk case reassessment (the subject of this section).

Once system-wide changes to data have been made, then for any particular product delivery case, the
first processing point to reassess the case (e.g. one of the events listed above) will calculate a new
determination result which takes into account all the system-wide changes to data, and any subsequent
processing point will calculate an identical determination result and take no further action (assuming that
there have been no other data changes which affect the case in the meantime).

Important: Because the first processing point to reassess the case takes into account all system-wide
changes to data, you must consider carefully:

* when to publish the system-wide changes;
* how long after publication the batch processing will run to identify and reassess affected cases;

« whether case workers should be allowed to view and maintain®cases during the lag between
publication of the system-wide changes and completion of the batch processing; and

* how your business processes will cope with any case that would have had a new determination stored
by the batch processing, except that some online processing (e.g. a manual reassessment by a case
worker) caused a new determination (taking into account the published system-wide changes) to be
stored already:.

This last point is especially important if you require to run additional business processing during your
batch identification and reassessment of cases (e.g. to send out a particular type of correspondence), as
online processes such as a manual reassessment by a case worker will not automatically include that
additional processing. In such circumstances it may be important to schedule the publication of the
system-wide changes and the full batch processing (to completion) during downtime when caseworkers
do not have access to the system, and/or make your batch business processing tolerant to the situation
that a case may have already been reassessed by an online action.

Assuming that you have no additional business processing that relies on being the first processing point
to reassess a case after system-wide changes have been published, then in general it is safe to run bulk
reassessment batch processing concurrently with the online system. You should note though that:

* online users may experience a performance degradation while batch processing is ongoing; and

* if an online user performs an action which leads to a case being reassessed, at the same time that the
bulk reassessment batch processing is attempting to reassess the same case, then it is possible for either
the online and/or batch transaction to fail:

— the online user's transaction may fail and the user advised to try again;

— a deferred transaction to reassess the case triggered from the online user's action may fail and will
be retried a set number of times; and/or

— the batch "chunk" may fail and will be automatically retried.

10.3.2.3 Driving the Identification of Affected Cases

After system-wide changes to data have been made, you must run batch processing to identify the cases
affected, and reassess each case.

The algorithm(s) that you choose to identify cases will depend on your business requirements. In general
there are these types of case-identification algorithm to choose from (or possibly combine):

* Bottom-up

8. For example, you might have to carefully communicate to your case workers that a system-wide change has occurred, and to let
them know that it will be some time until all affected cases have been reassessed, but that urgent cases can be manually
reassessed in the meantime.

Depending on your business needs, this situation may be perfectly acceptable, or on the other hand be needlessly confusing for
case workers.

150 IBM Ctram Social Program Management: Inside Ctram Eligibility and Entitlement Using Ctiram Express Rules

Identify cases that are known by the system to be affected by the change, i.e. use the dependency
records stored in the Dependency Manager; and/or

* Top-down

Identify cases by some facet of the case, e.g. all active cases for a particular product, or all cases for
claimants in a particular range of social security numbers.

The application includes an implementation of the bottom-up algorithm in the form of the batch suite
provided by the Dependency Manager (see the Ciram Express Rules Reference Manual). The batch suite
uses the dependency records to identify cases potentially affected by system-wide changes in data and
reassesses them.

CAUTION:
The Dependency Manager batch suite has the capability to reassess cases, but it also has the capability
to recalculate other types of dependents, such as Advice.

If you choose not to use the Dependency Manager batch suite to reassess cases, you must still use the
batch suite to recalculate other types of dependents.

Tooling has been provided to assist with running the Dependency Manager batch suite, please see the
'‘Dependency Manager Batch Tooling' section of the 'Ctiram Operations Guide' for more information.

The application also includes a sample implementation of a top-down algorithm in the form of the
CREOLEBulkCaseChunkReassessmentByProduct batch process (see the Ciram Operations Guide), and
instructions for writing your own batch process to implement your own top-down algorithm are included
below (see [10.3.3, “Writing your own Bulk Reassessment Batch Process,” on page 155).

When scheduling batch processing to reassess cases affected by your published system-wide changes, you
can choose’to schedule one or both of:

* an implementation of a top-down algorithm, either that included with the application or your own
custom batch process; and/or

* the bottom-up algorithm included in the Dependency Manager batch suite.

The benefits and limitations in the choices of approach are outlined in the table below:

9. You can choose the most appropriate approach each time you publish one or more system-wide changes, or you can choose to
use the same approach each time.

Any custom batch processing you require to support bulk case reassessment will need to be implemented and deployed to your
production environment, of course.

Chapter 10. Reassessment - Handling Changes in Circumstance 151

Table 49. Benefits and Limitations to Bulk Reassessment Approaches

Approach

Benefits

Limitations

Use the Dependency
Manager batch suite
only

* The implementation is included with the
application - no custom processing needs
to be implemented.

* The Dependency Manager batch suite
provides robust identification of all cases
potentially affected by system-wide
changes made through the application's
APIs(If system-wide changes to data are
made outside of the application's APIs,
e.g. by an SQL script, then the
Dependency Manager cannot
automatically identify affected cases.).

* The Dependency Manager batch suite

must be run anyway to recalculate other
dependents such as Advice.

* You cannot control the order in which the
Dependency Manager reassesses cases.

* You cannot perform any additional
business processing at the point at which
the Dependency Manager batch suite
reassesses the case.

If you have requirements to perform
specific business processing for all the
cases that were identified and reassessed
by the Dependency Manager and/or those
for which new determinations were
recorded, you must satisfy yourself that
you can identify these cases in some way
after the Dependency Manager batch suite
has completed and implement your own
custom batch program to perform the
required post-reassessment business
processing.

152 IBM Ctram Social Program Management: Inside Ctram Eligibility and Entitlement Using Ctiram Express Rules

Table 49. Benefits and Limitations to Bulk Reassessment Approaches (continued)

Approach

Benefits

Limitations

Use an
implementation of a
top-down case
identification/
reassessment
algorithm, followed
by a run of the
Dependency Manager
batch suite

* You get to "prioritize" the processing of
certain cases (those identified by your
top-down algorithm) ahead of any other
cases and any other dependent types (such
as Advice).

* You control the order in which cases are
reassessed.

* For cases reassessed by your top-down
case reassessment implementation, you
can perform additional business
processing at the point of reassessment.

* Any case that your top-down algorithm
fails to identify(There may be edge cases
not obvious during the design of your
case identification algorithm.

For example, a rate table may be primarily
used in the determination calculations for
a particular product, and thus it would be
possible to drive the identification of cases
to reassess by finding all active cases for
that product.

If, unbeknownst to the administrator, a
rules designer has reused that rate table in
way that it is used by a handful of
unusual cases for another product, then
these cases will not be identified by the
naive "all active cases for a product"
algorithm run against the main product
which uses the rates.), but which is
affected by the system-wide change, will
still be identified and reassessed by the
Dependency Manager batch suite, so by
the end of the batch run all affected cases
will have been identified and reassessed;

* You can schedule this "clean-up" run of
the Dependency Manager batch suite quite
some time after the run of the top-down
batch processing which identified and
reassessed your "priority" cases. For
example, you might wish to schedule the
"priority" (top-down) case processing to
run overnight starting on the evening
when the system-wide changes were
published, but defer the "clean-up"
(bottom-up) case processing until the next
weekend.

* The Dependency Manager batch suite
must be run anyway to recalculate other
dependents such as Advice.

* You will have additional development
activity to implement and test your
custom case identification algorithm
and/or post-reassessment business
processing (unless you are using the
CREOLEBuTkCaseChunkReassessmentByProduc
batch process included with the
application).

* Some cases identified by the Dependency
Manager batch suite will have already
been identified and reassessed by your
top-down case identification/reassessment
algorithm, so some of the reassessments
performed by the Dependency Manager
may turn out to be needless.

* If a case is missed by your top-down
algorithm and is instead identified and
reassessed by the Dependency Manager
batch suite, then the Dependency Manager
batch suite cannot perform any additional
processing that your top-down algorithm
might have done at the point where it
would have reassessed the case.

If you have requirements to perform
specific business processing for the cases
that were cleaned-up by the run of the
Dependency Manager batch suite, then
you must satisfy yourself that you can
identify these cases in some way after the
Dependency Manager batch suite has
completed and implement your own
custom batch program to perform the
required post-reassessment business
processing.

Chapter 10. Reassessment - Handling Changes in Circumstance

153

Table 49. Benefits and Limitations to Bulk Reassessment Approaches (continued)

Approach

Benefits

Limitations

Use an
implementation of a
top-down case
identification/
reassessment
algorithm only

You get to "prioritize" the processing of
certain cases (those identified by your
top-down algorithm) ahead of any other
cases and any other dependent types (such
as Advice).

You control the order in which cases are
reassessed.

For cases reassessed by your top-down
case reassessment implementation, you
can perform additional business

processing at the point of reassessment.

You will have additional development
activity to implement and test your
custom case identification algorithm
and/or post-reassessment business
processing (unless you are using the
CREOLEBuTkCaseChunkReassessmentByProduc
batch process included with the
application).

You take sole responsibility for the
accurate and complete identification of
cases affected by the system-wide data
change. Any case that your algorithm fails
to identify will not be reassessed by the
batch processing run, and its stored
determination will not be consistent with
the system-wide data change until such
time as the case is reassessed for some
other reason.

The Dependency Manager batch suite
must be run anyway to recalculate other
dependents such as Advice. Your system
operators must be instructed explicitly not
to run the Dependency Manager batch
suite for dependents of type "case
assessment determination".

(If system-wide changes to data are made outside of the application's APIs, e.g. by an SQL script, then the
Dependency Manager cannot automatically identify affected cases.)(There may be edge cases not obvious during the
design of your case identification algorithm.

For example, a rate table may be primarily used in the determination calculations for a particular product, and thus
it would be possible to drive the identification of cases to reassess by finding all active cases for that product.

If, unbeknownst to the administrator, a rules designer has reused that rate table in way that it is used by a handful
of unusual cases for another product, then these cases will not be identified by the naive "all active cases for a
product” algorithm run against the main product which uses the rates.)

Note that it is always possible for the Dependency Manager to identify a case for reassessment, but
having reassessed that case the Engine finds out that the reassessment turned out to be needless, due to
the granularity at which dependency records are stored for case determination dependents. Examples
where such a needless reassessment might occur are:

* a change to column value on an entity row, where other unchanged columns for that entity row have
been used as the input to determination calculations;

* a change to a common CER rule set which is used to calculate determinations, and also for some other
purpose such as Advice, but the changed rules are not accessed during determination calculations;

* a change to a rate (such as for income thresholds) which does not affect the overall determination

result for a case.

Note: There are only two options regarding a reassessment which turns out to be needless:

* either the system performs the reassessment, and only once a new determination is calculated can the
system discover that the reassessment turned out to be needless, at the risk of using up processing

time; or

154

IBM Ctiram Social Program Management: Inside Ctiram Eligibility and Entitlement Using Ctiram Express Rules

* a human outside the system uses his or her business knowledge to implement processing to identify
cases in such as way as to eliminate or minimize needless reassessments, at the risk of human error
(i.e. that needless reassessments still occur for some cases, or, more seriously, that some necessary
reassessments were not identified.

You should weigh up these unavoidable risks as part of your decision as to which approach to use for
bulk reassessment processing.

10.3.2.4 Reassessment Processing
Once bulk processing (whether bottom-up or top-down) has identified cases to reassess, each case can be
reassessed by streamed batch processing.

CAUTION:

Be careful when implementing extra business processing that occurs at reassessment time, either
using:

* hook points provided by the Engine; and/or

e custom business processing in your implementation of a top-down algorithm.

Any extra business processing that causes database writes may cause new precedent change items to
be recorded in the batch precedent change set. A run of the Dependency Manager batch suite will be
required to process these new precedent change items.

10.3.3 Writing your own Bulk Reassessment Batch Process

If you decide that you require to implement your own algorithm for identifying cases to reassess, and/or
require custom business processing to occur at the time that each case is reassessed, then you must
implement your own batch process for bulk reassessment. This section describes how to implement such
a custom batch process.

If on the other hand you decide to use the bulk reassessment batch processes included with the
application, you can skip this section.

10.3.3.1 The CREOLEBulkCaseChunkReassessmentByProduct Batch Process

This process, included with the application, identifies and reassesses all active cases for a given product.

The curam.core.sl.infrastructure.assessment.impl.CREOLEBulkCaseChunkReassessmentByProduct class is
a "Chunker" batch job which takes a productID as a standard batch parameter and identifies all product
delivery cases for that product, with a status of "Active".

The curam.core.sl.infrastructure.assessment.impl.CREOLEBulkCaseChunkReassessmentStream class is
the corresponding "Stream" job.

The behavior of the batch process can be configured using the following environment variables:

Table 50. Environment Variables for the CREOLEBulkCaseChunkReassessmentStream Batch Process

Environment variable name Description Default value
curam.batch. The number of cases in each chunk | 500
creolebulkcasechunkreassessment. that will be processed by the
chunksize CREOLE Bulk Case Chunk

Reassessment batch program.
curam.batch. Should CREOLE Bulk Case Chunk NO
creolebulkcasechunkreassessment. Reassessment batch program sleep
dontrunstream while waiting for the processing to be

completed (rather than run a stream

in its context).

Chapter 10. Reassessment - Handling Changes in Circumstance 155

Table 50. Environment Variables for the CREOLEBulkCaseChunkReassessmentStream Batch Process (continued)

Environment variable name Description Default value
curam.batch. The interval (in milliseconds) for 1000
creolebulkcasechunkreassessment. which the CREOLE Bulk Case Chunk
chunkkeywaitinterval Reassessment batch program will

wait before retrying when reading
the chunk key table.

curam.batch. The interval (in milliseconds) for 1000
creolebulkcasechunkreassessment. which the CREOLE Bulk Case Chunk
unprocessedchunkwaitinterval Reassessment batch program will

wait before retrying when reading
the chunk table.

curam.batch. Should CREOLE Bulk Case Chunk NO
creolebulkcasechunkreassessment. Reassessment batch program process
processunprocessedchunk any unprocessed chunks found after

all the streams have completed.

10.3.3.2 Steps to Implement your own Bulk Reassessment Batch Process
Batch processing must be written using the chunked batch processing architecture (see the Curam Batch
Performance Mechanisms document).

Write these batch programs:

* a "Chunker" batch job which identifies'’the list of cases and passes them, along with appropriate
control parameters to the BatchChunker to divide them into smaller lots. This process of identifying the
cases can be controlled by whatever parameters are required, such as Product ID, case status, etc.

* a "Stream" job which takes one of these chunks of work and performs full reassessment of each case
contained in it.

You must decide on appropriate metrics to capture during the stream processing, such as the number of
cases processed, and/or the number of cases reassessed which did/did not result in a changed
determination result. Your chunker and streamer must share data structures so that the stream processing
can capture metrics and the chunker can accumulate them into its report.

The "Stream” job must perform a full reassessment of each CER-based case as follows'":

10. You should ensure that each case is identified at most once.

For simple database queries this is unlikely to be challenging; however for non-trivial queries you might consider using SQL's
DISTINCT keyword, e.g. SELECT DISTINCT (caseID) FROM....

11. You must also include:
* processing to capture the metrics for your batch program; and

* appropriate error handling to communicate with the chunked batch processing architecture's support for skipping cases.

This extra code is beyond the scope of this guide.

156 IBM Ciram Social Program Management: Inside Ctram Eligibility and Entitlement Using Ctiram Express Rules

// class member
@Inject
protected DeterminationCalculatorFactory
determinationCalculatorFactory;

public void yourBatchMethod(...yourparameters...)
throws AppException, InformationalException {

// process an identified case
final long caselD = ...;

final DeterminationCalculator determinationCalculator =
determinationCalculatorFactory
.newInstanceForCaseID(caselD);

final DetermineEligibilityKey determineEligibiltyKey =
new DetermineEligibilityKey();

determineEligibiltyKey.caseID = caselD;

/*
* reassess the case and determine whether the decision has
* changed
*/
final boolean decisionChanged =
determinationCalculator
.hasDecisionChanged (
determineEligibiltyKey,
CASEASSESSMENTDETERMINATIONREASONEntry.SOMEREASON) 3

}

Figure 2. Code example to reassess a CER-based case

10.3.4 Bulk Reassessment for Multiple Simultaneous Changes

It is possible for one business change to require technical changes to a number of system-wide data
artefacts. For example, a change in legislation may involve all of:

* changes to existing CER rule sets associated with your product;

* division of the lifetime of the product into several product periods, together with new CER rule sets
for the new product periods;

* the capture of new types of evidence which map to new rule classes (i.e. new data configurations for
rule object converters); and

¢ changes in benefit rates.

There are separate publication mechanisms for products, CER rule sets, data configurations and rates, and
so changes to different types of system-wide data cannot be published in a single action. However, when
bulk reassessment is run, each case affected will be identified only once and the reassessment of each
case will take into account all the system-wide changes that have occurred since the case was last
assessed.

As such, when you prepare to publish a number of system-wide data changes (whether those changes are
inter-related or not), you should consider carefully when bulk reassessment should be run. Depending on
your business needs, you might want to run bulk reassessment after each publication or instead hold off
until a number of publications have occurred.

Note: When a case is reassessed by the Dependency Manager batch suite, the system chooses a
"reassessment reason" for any new determinations that are stored. Each determination can only show a

Chapter 10. Reassessment - Handling Changes in Circumstance 157

single reassessment reason, so in the situation where there are multiple system-wide changes published
which each affect a case, only one related reason will show on that case.

If the case is reassessed using your own top-down algorithm, then that algorithm is responsible for
specifying an appropriate reason to store on any new determinations.

10.3.5 Scheduling

Once you have decided your approach for identifying and reassessing cases in batch processing, you
must arrange for that batch processing to execute.

Broadly, you can run batch processing either:

¢ regularly, on a pre-determined schedule, either manually or through the use of third-party scheduling
software; or

* on an ad hoc basis, in response to the publication of system-wide data changes.

The Dependency Manager batch suite is amenable to being executed on a pre-determined schedule,
because if there have been no system-wide changes to data (written to the batch precedent change set)
then the batch suite will quickly identify that there are no cases to reassess. If you use such a
pre-determined schedule, then you can ignore the on-screen and application log messages that advise that
bulk reassessment processing is required.

It is not recommended to execute top-down case identification algorithms on a pre-determined schedule
because those algorithms will identify cases to reassess regardless of whether there have been any
system-wide data changes published.

If you are executing batch processing that uses the chunked batch processing architecture (such as the
Dependency Manager batch suite, the CREOLEBuTkCaseChunkReassessmentStream batch process, or the
recommended way to implement your own top-down case identification/reassessment batch process),
then you have some flexibility when manually executing chunker and streamer processes:

¢ during the reassessment phase you can start up more instances of the streamer batch processes in order
to spread the reassessment work across more physical machines;

* if you find that you need some physical machines for other purposes (e.g. to run the online application
in parallel with batch processing), you can manually terminate one or more streamer processes and any
uncompleted work for those terminated streamer processes will be automatically picked up by one of
the remaining streamer processes; and/or

* if you find that you need to pause the entire batch processing (e.g. you need all your physical
machines to be dedicated to the online application) then you can manually terminate the chunker
process and all the streamer processes; when you subsequently re-run the chunker process it will
continue running from the point where it left off.

Tip: If you have configured your chunker process to automatically perform streamer processing once the
case identification phase is over and the case reassessment phase has begun, and you wish to run
multiple parallel streamer processes to spread the reassessment load across your physical machines, then
you should start your streamer processes before starting your chunker process. The streamer processes
will simply wait until the chunker process has completed its case identification phase and the case
reassessment phase has begun.

If you start your streamer processes after the chunker processing, then in a situation where the chunker
process identifies only a few cases, it is possible for some of the streamers (including the chunker process
itself) to complete reassessment processing on all the cases identified, and the overall batch processing
would complete. If this happens, then the other streamer processes will have no work to do but will wait
until the chunker process is next run, which could be quite some time later; from an operational
perspective, these other streamer processes are just hanging and would need to be manually terminated,
which is not ideal under normal operational procedures.

158 IBM Ciram Social Program Management: Inside Ctram Eligibility and Entitlement Using Ctiram Express Rules

If you are executing the Dependency Manager batch suite, then you must run the
PerformBatchRecalculationsFromPrecedentChangeSet streamed batch process once per dependent type.
You can choose the order of these runs - for example, you may decide that it is more urgent to have your
cases reassessed in response to a system-wide data change than it is to have advice recalculated.

If your batch run includes both a top-down case identification/reassessment algorithm and a run of the
Dependency Manager batch suite (see [10.3.2.3, “Driving the Identification of Affected Cases,” on pagel
, then typically you should run the top-down case identification/reassessment algorithm first so that
your priority cases are identified and reassessed.

If your batch run includes the execution of the ApplyProductReassessmentStrategy batch process (see
[11.5.4, “Reassessment Strategy,” on page 174) then typically there are no ordering constraints - but note
that cases which could previously not be reassessed will only be able to be reassessed (and identifiable by
the Dependency Manager batch suite) once the ApplyProductReassessmentStrategy batch process has
completed.

If you are planning to publish multiple changes to system-wide data (see[10.3.4, “Bulk Reassessment for]
Multiple Simultaneous Changes,” on page 157)), then you may choose to hold off on manually running
your preferred approach to case identification/reassessment (or suspend your regular batch schedule, if
you have one) until all those system-wide data changes are published. In this way, each case will only be
identified and reassessed once in response to the combined system-wide data changes.

Chapter 10. Reassessment - Handling Changes in Circumstance 159

160 IBM Ctram Social Program Management: Inside Ctram Eligibility and Entitlement Using Ctiram Express Rules

Chapter 11. Incremental Design and Evolution

11.1 Introduction

Products can be complex. Their requirements may come from complex legislation and/or policy
documents. The explanations available to case workers may need to be very detailed.

Over time, products can become even more complex, as legislation and/or policy is changed.
The Engine supports a rich set of features that allow the implementation of even the most complex of
products; however, when starting off the implementation of your product, the complexity of your product

combined with the richness of the Engine's features can together be quite daunting.

This chapter offers some advice on how to get started with your product's initial implementation, and
describes the options available when your implemented product is required to evolve in the future.

11.2 Starting with Rule Sets Included with the Application

A default eligibility and entitlement rule set is automatically created for a benefit product that is created
via the dynamic product wizard. You are also free to create your product's rules "from scratch" by
starting with empty rule sets. However, if you have purchased a solution, you may wish to use rule sets
from these solutions as a starting point for your product.

This section describes the process whereby you can clone certain existing rule sets to come up with rule
sets that you are free to customize.

11.2.1 How Rule Sets Inter-relate

The CER rules structure is made up of CER rules artifacts and the relationships between them.
Understanding the structure of CER rules is key to the cloning process.

11.2.1.1 CER Rules Artifacts - Technical Dependencies

CER rules are composed of rule sets which contain rule classes which, in turn, contain rule attributes.
CER rules are exposed at the level of rule sets. Each rule set is an independently delivered unit, however
there may be interdependencies between the rule classes and rule attributes both within a rule set and
across rule sets.

So while a rule set does not have any direct dependencies outside of itself, it can have such dependencies
based on the rule classes and rule attributes it contains.

Dependency Types

CER supports both build time dependencies which are based on defined relationships, these are covered
in more detail in the following sections, and runtime dependencies which are free form, and hence need
to examined in detail when used rather than following well defined patterns.

Rule Class Dependencies

A rule class can extend another rule class; this is a form of implementation inheritance for rule classes.

Each rule class can only extend at most one other rule class (single inheritance). The extended rule class
can be from the same rule set or from a different rule set from the extending rule class.

© Copyright IBM Corp. 2012, 2013 161

Rule Attribute Dependencies

A rule attribute can define its type to be a rule class, or a collection (such as a list or Timeline) of a rule
class, or its type can be a built in Java type. The rule class used for an attribute type can be from the
same rule set or from a different rule set from the rule attribute.

A rule attribute can be derived:
* as a fixed (externally <specified>) value; or
* using rules in the following ways (which can be combined into an arbitrarily complex expression)

a direct reference to a rule attribute (using the <reference expression), with the rule attribute
possibly on a rule class in a different rule set;

— using the <readall> expression to retrieve instances of a rule class, with that rule class possibly in a
different rule set;

— using the <create> expression to create an instance of a rule class, with that rule class possibly in a
different rule set; and/or

— using a list of rule class instances, with that rule class possibly in a different rule set.

11.2.1.2 CER Rules Artifacts - Logical Categorizations
Logically, appropriately structured CER rules can be thought of as being made up of rules classes for two
distinct logical functions:

* Data

Data rule classes are those which are an exact mirror for the data held by the application. For example
Income Evidence would be a data rules class.

* Derived Data/Business Logic

All other rule classes can be considered as Derived Data/Business Logic rule classes. For example
Monthly Income would be such a rule class.

Additionally each rule class, provided out of the box, can be thought of as containing either:
e Infrastructure

Fixed processing which is relied upon by other processing in the application, and which cannot be
altered; or

* Application
Processing which can be cloned and used as the starting point for your rule set work.

11.2.2 Cloning CER Rule Sets

This section describes the process you must follow to clone rule sets included with the application so that
you can customize the cloned rule sets to meet your product's needs.

If you need to customize any rules element in a rule set included with the application, or if you rely on
the current functionality of the version of a rule set included with the application, then you must clone
the rule set and all of its dependencies, in terms of application derived data/business logic rules classes
(but not infrastructure rule classes).

CAUTION:
The application does not support the modification of any application-included rule sets "in place".

See the compliancy statement in|A.5, “CER Rule Sets Included with the Application,” on page 178/

Please refer to the Rule Set Interdependencies developer documentation located alongside the Data
Dictionary for more information on which rule sets are Application (clone-able) and which are
Infrastructure (not clone-able).

162 IBM Ctram Social Program Management: Inside Ctram Eligibility and Entitlement Using Ctiram Express Rules

Follow these steps to clone rule sets:
* Identify the rule set(s) that is your entry point into the rules (typically from a rule class).

* For each of these rule sets, follow the arrows on the ruleset inter-dependency documentation, to find
any other Application rule sets on which those to customize depend. Repeat this step recursively until
there are no more links to Application rule sets.

* For each of the Application rule sets found in the above steps, follow the arrows backwards to pick up
any additional Application rule sets that depend on the rule sets found so far. Repeat this step
recursively until there are no more links to follow backwards.

* Each of the Application rule sets found during the above steps must now be cloned. Follow the steps
below.

— For each rule set to be cloned, copy its rule set source XML file from EJBServer/components/
component name /CREOLE Rule Sets/ someruleset.xml to EJBServer/components/custom/
CREOLE_Rule_Sets/ someruleset Custom.xml .

— For each cloned rule set, create an entry in EJBServer/components/custom/data/initial/
CREOLERuleSet.dmx (which you must create if it does not already exist). The contents of this entry
should be a copy of the entry for the original rule set, with the exception of the 'ruleSetDefinition'
attribute. This should be updated to the new location of the cloned rule set in the custom
component.

— Similarly, for each cloned rule set, create an entry in EJBServer/components/custom/data/initial/
AppResource.dmx (which you must create if it does not already exist). The contents of this entry
should be a copy of the entry for the original rule set, with the exception of the 'content' attribute.
This should be updated to the new location of the cloned rule set in the custom component.

On completion of rule set cloning, if you wish to add further propagator configuration for your cloned
rule sets, you should complete these in the custom directory:

* Propagator configurations should be added to: EJBServer/components/ custom /data/ directory
/RuleObjectProapgatorConfig.dmx

* Propagator configuration XML files should be located in the blob/clob directories within the custom
data directories.

11.3 Incremental Design

When you are grappling with the complexity of your product, it can be useful to take certain shortcuts so
that you can start to see your product "up and running" before it is fully implemented. This section
suggests some useful approaches which may help you incrementally design and/or implement your
product.

CAUTION:

There is more to getting a product up and running than is described in this guide. This guide covers
only the configuration options specific to CER-based products; for other configuration options and
initial set-up tasks, see the How to Build a Product guide.

Any short-cuts that you take during the initial development of your product must be recognised for
what they are - each short-cut builds up a certain amount of "debt" which must be later repaid. Keep
track of which short-cuts you take and plan to place each short-cut with a robust implementation later
in your development cycle.

The initial goal of incremental design is to get something up and running for your product, even though it
is far from fully implemented. This initial version of your product should be able to have cases created
against it and determinations made, but those determinations may show fixed eligibility /entitlement
information (which does not take into account the case's circumstances) and no key decision factors or
decision details.

Chapter 11. Incremental Design and Evolution 163

These chapters earlier in this document describe how to configure your product. The chapters linked
below give details for the full implementation of their respective areas:

* Eligibility and Entitlement Calculations

See 4.4, “How to Use It,” on page 25| in [Chapter 4, “Calculating and Displaying Eligibility and|
[Entitlement,” on page 19|

* Key Decision Factors

See 5.4, “How to Use It,” on page 49| in [Chapter 5, “Calculating and Displaying Key Decision Factors,”|

Ign page 45.|

¢ Decision Details

See 6.4, “How to Use It,” on page 70| in [Chapter 6, “Calculating and Displaying Decision Details,” on|

IEage 59.|

11.3.1 Choose Default Configuration Options for Your Product

When you initially set up your product, you must choose certain configuration options. You can use these
default options and revisit them later in your development cycle to replace them with more appropriate
options:

* Open-ended cases
Allow your product to support open-ended cases.
* Summarizer Strategy

Choose "Total weekly monetary entitlement" (see [4.4.3.4, “Choose or Create a Summarizer Strategy,” on|
page 41).

* Determination Comparison Strategy

Choose "Compare all user-facing data" (see [8.4, “Determination Comparison Strategies,” on page 127).

* Reassessment Strategy

Choose "Do not reassess closed cases" (see [7.4.1, “Product Delivery Rule Objects,” on page 8§).

11.3.2 Implement a Single Product Period First

In the unlikely event that your initial version of product requires multiple product periods (i.e. already
has changes of legislation and/or policy to deal with), first work with a single product period only,
starting at the start of your overall product, and with no end date. Further product periods can be
implemented when this initial product period is up-and-running. A default product period and associated
eligibility and entitlement rule set is automatically created and published for a benefit product that is
created via the dynamic product wizard. This eligibility and entitlement rule set is intended to be edited
in line with your product requirements prior to product use.

When you have implementations for your single product period up-and-running, then you can split your
product into multiple product periods, cloning your rule sets from the first period you implemented, as a
starting point.

11.3.3 Focus on Eligibility/Entitlement Rules

The core rules to get your product up-and-running are those for eligibility and entitlement calculations.
Do not initially implement any rules for key decision factors or decision details.

For a benefit product that has been created via the product wizard, an initial version of the

eligibility /entitlement rules will automatically have been created for your product. If you are creating a
new eligibility and entitlement rule set, the initial version of your eligibility /entitlement rules can
hard-code the following (to be replaced by real implementations later):

A fixed eligibility result, such as "always eligible", or "eligible for January 2010 to December 2011 only";
and

164 1BM Ctram Social Program Management: Inside Ctram Eligibility and Entitlement Using Ctiram Express Rules

* Fixed entitlement, i.e. fixed values for all objectives, a fixed number of occurrences for any multiple
objectives, and fixed entitlement for each objective (such as "always entitled").

Typically it is easier to work on single objectives before moving on to multiple objectives (see
[“Identify the rules that govern the objectives for each case,” on page 28).

11.3.4 Spin-off a Task to Write Rule Classes for Custom Entities and/or
Evidence Types

While one rule developer creates the initial eligibility /entitlement rules, another developer can (in
parallel) write rule sets for "data" rule classes for your:

* custom entities (which are required for rules calculations); and/or
* custom evidence types that you have created for your product.

Important: To maximize re-use of these "data" rule classes, it is recommended that you place them in
their own rule set - i.e. not the same rule set as the eligibility /entitlement rule classes.

Unless you have special requirements for handling versions of active evidence, typically you will find the
Engine's support for succession sets the easiest option when later working with evidence in your
eligibility /entitlement rules (see [7.4.4, “Active Succession Set Rule Objects,” on page 100

The initial implementation of the "data" rule classes should concentrate on creating the rule attributes
with the correct data types.

Later, you can add:
* adescription rule attribute to each data rule class (to aid debugging); and

¢ rule attributes (suitably annotated) to allow navigation to related parent or child evidence (see|7.4.4.3
[‘Conversion Processing,” on page 102).

Important: To maximize re-use of these "data" rule classes, there should not be any calculated rule
attributes on any rule class other than the description rule attribute.

Product-specific calculations should be placed on product-specific "calculator" rule classes later.

Once the "data" rule classes have been written and their rule sets published, the developer can write and
publish rule object propagator configurations so that rule objects are automatically created by the Engine.
These configurations will need to be in place before the overall product can be tested online, but are not

required while the eligibility /entitlement rules are hard-coded, and are not required in order to unit-test

parts of implemented eligibility /entitlement rules.

Later you can revisit your data rule classes and check for commonality across your products. You can
refactor your rule classes so that any which are common across products are normalized into a common
rule set, and thus are propagated to only once (to improve performance and lower database storage
requirements).

11.3.5 Top-down Implementations

Once your hard-coded eligibility and entitlement rule implementations are in place, you can use a
top-down approach to replace these hard-coded implementations with real logic appropriate to your
product. As you drill down, you may create new hard-coded lower-level implementations, which
(depending on your factoring of rule sets) might be handed-off to multiple developers for further
implementation.

For example, the "Lone Parent" Benefit outlined in |2.2.1, “Example,” on page 6| might initially be
implemented as "always eligible".

Chapter 11. Incremental Design and Evolution 165

The next step in implementing the eligibility calculation for "Lone Parent" Benefit would be to replace the
"always eligible" calculation with (in pseudo-code, and assuming relevant timeline operations):

e childInEligibleAgeRange AND
e childResidingWithParent AND
e parentIsLone AND

e familyPassesMeansTest.

These new attributes would each initially be hard-coded to be "true forever". The top-down process can
then undergo another iteration and the implementations of these new attributes each changed from the
hard-coded "true forever" into real implementations, possibly with further new attributes which are
initially hard-coded; e.g. the childInEligibleAgeRange could apply date logic to the child's date of birth,
but that date of birth could initially be hard-coded instead of coming from a propagated rule class for an
entity or evidence type.

11.3.6 Bottom-up Implementations

If you know that there are complex calculations around a propagated rule class, then you can implement
and test "calculator” rule classes even though these are not yet used by eligibility /entitlement rules.

Later you can integrate these bottom-up implementations with your top-down implementations and
re-test.

11.3.7 Hard-code Rates at First

In the initial implementation of your eligibility /entitlement rules, you may require data which is best
implemented as rate tables.

Initially, though, you may find it easier to hard-code the rate information directly in your rule
implementations; later you can refactor your rules to move the data to Ctram rate tables, and replace
your implementation with the rate expression, and create propagator configuration entries to allow your
new rate tables to be propagated [7.4.2, “Rate Rule Objects,” on page 90]

CAUTION:

If your implemented product goes live with rates hard-coded in the rule sets, then any subsequent
rate changes will involve rule set changes (with the associated re-testing effort), rather than a rate-only
change external to your rule sets.

11.3.8 Keep an Eye on Rule Class Dependencies
It is recommended that you keep these rule classes in separate rule sets:
* Data rule classes

Keep the data rule classes for your custom entities and evidence types in a separate rule set to
maximize their re-use across different products.

* Eligibility/entitlement rule classes

Keep the rule classes for your eligibility /entitlement calculations in a separate rule set so that
display-only changes to rules do not require re-testing of core eligibility /entitlement implementations.

* Key decision factor rule classes

Keep the rule classes for your key decision factors in a separate rule set so that they can be maintained
independently of your eligibility /entitlement rule classes.

* Decision details rule classes

Keep the rule classes for your decision details in a separate rule set so that they can be maintained
independently of your eligibility /entitlement rule classes.

¢ Common calculator rule classes

166 IBM Ciram Social Program Management: Inside Ctram Eligibility and Entitlement Using Ctiram Express Rules

As you identify calculator rule classes which are common between your eligibility/entitlement, key
decision factor and/or decision detail rule classes, you can consider placing such rule classes in
"common" rule sets.

While it is important to adhere to the recommended structure above by the time your product's
implementation is complete, you do not have to strictly adhere to it in the early days of your product's
development cycle.

You can refactor your rule sets later to match this structure, although such a refactoring task will become
more complex the longer it is put off. In any case, to refactor freely you will need to have built up a good
bank of unit tests for the behavior of your rule classes.

11.3.9 Try Key Decision Factors before Decision Details

Writing rules for key decision factors is easier than writing rules for decision details, because:

¢ The data structure for key decision factors is fixed, whereas the data structure for decision details is
free-form and requires design work

* The Engine provides screens to display key decision factors, whereas you have to implement your own
dynamic UIM screens for decision details.

When starting to implement visualizations for the explanation of a case's determination result, consider
implementing key decision factors before embarking on the more onerous task of implementing decision
details. Key decision factors may be sufficient to demonstrate that the eligibility /entitlement results for
your product's cases are not only "correct”, but are "correct for the right reasons".

11.3.10 Re-use the Basic Decision Details before Writing Your Own

The Engine includes support for basic eligibility /entitlement decision details (see
[Eligibility / entitlement Decision Details,” on page 20).

Consider re-using this basic display category before implementing your own (more suitable) display
categories. This re-use will help you understand how decision details are implemented and will enable
your testers to see more details about your cases (albeit only very basic details).

You can remove the Basic display category later when you implement more appropriate display
categories.

To re-use the basic decision details, follow these steps (as part of the general steps involved in
implementation decision details - see [6.4.3, “Implementation,” on page 72):

¢ When you create your case rule class (see [6.4.3.1, “Write the Case rule class,” on page 73)), make your
rule class extend AbstractBasicProductDecisionDetailsRuleSet.AbstractBasicCase. You must
implement the inherited abstract abstractCase rule attribute, to create an instance of the underlying
rule class for your eligibility /entitlement (i.e. the one you created in[4.4.3.2, “Write the Case|
[Eligibility /Entitlement Calculation Rule Classes,” on page 33), specifying the value for
productDeliveryCase; and

* When you create you create your dynamic UIM and properties files, clone those for the following
pages to your custom component:

— CREOLEDisplayRules_basicCaseDisplay; and
— CREOLEDisplayRules basicCaseDisplay objectiveTagSubscreen.

You must provide new unique names for your cloned dynamic UIM and .properties files, and update
their contents to point to your new names.

11.3.11 Start Slowly with Decision Details

The implementation of decision details (rules and screens) can be a complex area.

Chapter 11. Incremental Design and Evolution 167

Start off with simple screens that do not require subscreens or comparison data. Avoid conditional
display in your dynamic UIM until you have all displayable data reliably flowing from rules to
determination results to screens.

Later you can start to implement conditional display, and more complex screens that have subscreens or
comparison data.

When implementing a dynamic UIM screen, if you require data that is not already available in rules, then
initially you can create a new rule class/rule attribute with a hard-coded dummy implementation only;
once you have the data flowing to the screen you can revisit the rule attribute to implement real logic
(possibly giving the task to another developer to work on in parallel to screen development).

11.3.12 Throughout Your Product's Development

The sections above describe various short-cuts that can be taken during initial development.

However, there are some approaches which are important no matter which part of the development cycle
you're in:
* Understand Timelines

CER's concept of Timelines, and its expressions for manipulating them, are widespread in rule sets
used by products. Ensure that you are comfortable with how timelines work and when they are used,
before you implement any rule sets for your product. See also 4.4.3.2, “Write the Casel

[Eligibility /Entitlement Calculation Rule Classes,” on page 33.

* Comment as you go

Write comments for your rule classes and rule attributes as you implement them, while they are fresh
in your mind.

* Test as you go
Once you have simple processing up-and-running, write unit tests for blocks of rules as you implement

them. Write integration tests for your product once there are enough end-to-end processing steps
implemented for your product.

* Draw on rule sets included with Ciram Solutions

Look at the rule sets included with Ctiram Solutions for ideas on how to structure and implement
different styles of rules.

¢ Refactor

Don't be afraid to refactor rules as you discover commonality and better structures. A good bank of
unit tests will allow you to refactor with confidence. Draw pictures of complex structures (because any
system of a certain complexity cannot be entirely self-documenting).

* Monitor application logs

The Engine tries hard to continue processing even when configuration is not quite correct. Keep an eye
on non-fatal warnings and/or errors written to the application logs and console output. Use the
Engine's environment variables to increase the logging verbosity to help track down problems (see
[Appendix D, “Environment Variables,” on page 203).

11.4 Handling Legislation Change

When a product is first implemented, typically there is an initial version of legislation which takes effect
until further notice.

However, over time, for political, policy or budgetary reasons, the legislation underpinning the functional
requirements for your product may change. One style of change prevalent amongst social security
legislation is whereby the eligibility and entitlement rules for cases change over the lifetime of the case.
Typically (but not always):

168 IBM Ctram Social Program Management: Inside Ctram Eligibility and Entitlement Using Ctiram Express Rules

¢ the change in rules "takes effect" on a particular date; the case's eligibility and entitlement is calculated
according the "old" rules before that date, and according to the "new" rules after that date;

* the date that the rules changes takes effect is the same for all cases for that product, i.e. there is no data
on any case which affects the date from which the new rules apply;

* cases that came to a natural end before the change in legislation are unaffected;
* cases that start after the new rules have taken effect use the new rules only; and

* after the new rules have taken effect, any new claims which are registered to retrospectively start before
that date will use a mixture of old and new rules, just as for claims which were registered on time
before that date.

The Engine uses the term "legislation era" to refer to a period of constant legislation; in other words, a
change in legislation (no matter how big or small) ushers in a new legislation era for a product.

The following example illustrates how a product set-up might need to change from supporting just the
"old" rules, to supporting a mixture of "old" and "new" rules, to be applied to different legislative eras.

A client has been receiving an Income Assistance benefit but the case has subsequently ended. Another
client has been receiving the same benefit and continues to do so. Both of these cases are using the
eligibility and entitlement rules that were implemented to meet the requirements of the single (initial)
version of the legislation.

New legislation is enacted resulting in the need for the social services agency to modify the eligibility
and entitlement rules. Changes are made to the rule set and made effective from the date on which the
legislation went into effect.

For the case that has already ended, eligibility and entitlement continues to be determined using the
initial version of the rules because the case ended before the effective date of the legislation changes. For
the case that remains open, eligibility and entitlement continues to be determined using the initial version
of the rules up to the effective date of the legislation change, but uses the new version of the rules from
the effective date onwards.

For any cases that are created after the date on which the new version of the rule set took effect,
eligibility and entitlement will be determined using the new version of the rule set. For any cases that are
retrospectively created and begin before the effective date of the legislation changes, eligibility and
entitlement will be determined using the initial version of the rule set up to the effective date and the
new version of the rule set from that date onwards.

The Engine supports two different mechanisms for implementing legislation change:
* Branching logic in your CER rule sets

You can create a new version of your existing rule sets used by your product, and this new version of
the rule set can contain branches which apply different logic to the periods on your cases, before and
after the date that the legislation changes.

e Multiple product periods for your product

You can change your product's set-up so that the lifetime of the product is carved up into distinct
"product periods”, and you can assign different eligibility /entitlement CER rule sets to each of the
product periods.

Each of these approaches has its own benefits and limitations. The remainder of this chapter describes
these two supported mechanisms in greater detail, followed by some important points to consider when
choosing which approach to follow when implementing a particular change in legislations.

Important: You should familiarize yourself with the details of these approaches prior to deciding how

best to implement changes in legislation which affect your product's requirements.

Chapter 11. Incremental Design and Evolution 169

11.4.1 Branching Logic in Your CER Rule Sets

If you choose to implement branching logic in your rule sets, then you will first need to identify which
rule attribute implementations will need to have branching logic. (Indeed, if this identification shows that
a very large number of attributes require branching logic, you may be better off switching to the
[“Multiple Product Periods for Your Product”|approach instead.)

For each rule attribute that requires branching logic, use CER's 1egislationChange expression to
implement different logic for different "eras" of time. See [C.2.2, “TegislationChange,” on page 187 for a
full description of this expression.

Update your rule set tests to test for the behavioral changes introduced by your legislation change.

Once your changes to your existing rule sets are complete, publish the changes, which will result in
existing cases being bulk-reassessed, typically leading to new determinations being stored for some
existing cases.

11.4.2 Multiple Product Periods for Your Product

If you choose to use multiple product periods for your product, then typically it will be helpful to clone
the rule sets for your existing product period (assuming that the structure of the rules is still suitable, and
that some significant number of existing rules implementations do not require updating to implement the
legislation change).

Clone the rule sets using the process described above in [11.2.2, “Cloning CER Rule Sets,” on page 162
You need only clone the rule sets down as far as those rules which are affected by the legislation change.
It may be helpful to rename your rule sets in line with your eras of legislation. You may also identify
useful refactorings to make common any rule classes which are unaffected by the legislation change.

Update your cloned rule sets to implement the change in legislation.

You must create tests for your rule set changes; because you have cloned rule sets, you may need to clone
your bank of rule set tests, and update the cloned tests to use your cloned rule sets. This cloning of tests
will help ensure that existing functionality unaffected by the legislation change continues to work as
expected. Update your cloned rule set tests to test for the behavioral changes introduced by your
legislation change.

Once your changes to the newly-created cloned rule sets change are complete, publish the changes.

Set an end date on the existing product period. Create a new product period (see 4.4.3.3, “Write the|
[Product Periods,” on page 39) and configure the new product period to use your cloned rule sets.

Publish your changes to the product periods, which will result in existing cases being bulk-reassessed,
typically leading to new determinations being stored for some existing cases.

11.4.3 Choosing the Right Approach

When you come to implement a change in legislation, there are many factors which you should bear in
mind when choosing which approach is better for your change. Sometimes the competing factors will
mean that there is no overall clear-cut answer, and you will need to make an informed decision based on
the details of the change that you need to make.

Over time, a product may undergo several legislation changes, and each legislation change must be taken

on its merits when deciding which approach to take; in other words, a long-lived product may have had
several historical legislation changes implemented using branching logic, and also other historical

170 IBM Ctram Social Program Management: Inside Ctram Eligibility and Entitlement Using Ctiram Express Rules

legislation changes implemented using multiple product periods. Indeed, it is possible (but rare) that a
single legislation change may be implemented using a combination of the "branching logic" and "multiple

product periods" approaches.

This table describes some important consequences to keep in mind when making your choice.

Table 51. Factors involved when choosing the right approach for legislation change

Consequences under the "branching

Consequences under the "multiple

Factor logic" approach product periods" approach

Testing For existing unit test that test The full bank of unit tests for a
attributes which now contain cloned rule set must also be cloned
branching logic, the tests need to be |and maintained in line with the
updated to test the output of rule cloned rule set; in particular, tests for
attributes taking into account eras of |cloned attributes which are updated
old legislation and new legislation; in line with the legislation change
these tests will need to deal with must be updated to test the behavior
both versions of the legislation. of the changed attribute. Each test

only needs to deal with one version
of the legislation, however.

Refactoring Typically (depending on the The cloning of rule sets may present
complexity of the legislation change) |an opportunity to refactor rule sets so
no refactoring will be required to that common logic unaffected by the
make logic common, as existing legislation change can be refactored
common logic should already have |to exist only once - but this
been factored to normalize common | refactoring will take implementation
logic. and retesting effort.

Maintenance The number of rule classes and rule | The number of rule classes and rule
attributes will typically be attributes will increase due to
unchanged; however, the cloning; however, the implementation
implementation of some rule of rule attributes should remain at
attributes will become more complex, |the existing level of complexity.
as those attributes have to deal with | Future bug fixes to the rule set
legislation change. Future bug fixes | (which span legislation eras) may
to the rule set (which span legislation | require implementation in more than
eras) will typically require one rule set, depending on whether
implementation in one rule set only. |logic common across rule sets has

been refactored.

Complexity This approach is suited to legislation | This approach is suited to legislation

changes which affect a small number
of rule attributes, where the
human-readability of the overall rule
set is not overly-compromised by the
limited introduction of branching
logic.

changes which affect a large number
of rule attributes, where the
human-readability of the overall rule
set would be overly-compromised by
the wide-ranging introduction of
branching logic.

Guarantees regarding stability of
decisions under older legislation

You must test that your
implementation of branching logic
has correct dates for eras, and does
not accidentally affect past periods
already determined for cases.

Existing periods of determinations for
the old product period (now with an
end date) are guaranteed not to be
affected by the legislation change
introduced by the new product
period.

Chapter 11. Incremental Design and Evolution 171

Table 51. Factors involved when choosing the right approach for legislation change (continued)

Factor

Consequences under the "branching
logic" approach

Consequences under the "multiple
product periods" approach

Existing display categories

You must test that the existing
dynamic UIM screens for display
categories should continue to work
with your updated rule sets.

You must test that the existing
dynamic UIM screens for display
categories work with the different
rule sets configured for your different
product periods. Either update the
existing dynamic UIM screens (if
necessary), or if the display output
for an existing rule set category is
sufficiently different after the
legislation change, you may need to
clone the display category so that
there are different tabs (and thus
different dynamic UIM screens) for
before/after the legislation change. If
you clone a display category, then
case workers will need to click on
one of two display categories,
depending on which one is
implemented for the coverage period
displayed.

New display categories

If a new display category is
introduced for the legislation change,
then your existing rules must create
appropriate "no output” values for
older eras of legislation.

Your cloned rule sets and new
product period can introduce support
for a new display category which is
not supported by older product
periods.

Whether the legislation change affects
all cases on the same date

Each attribute which is updated to
contain legislation change logic can
have an implementation which uses
different era dates from other
attributes (and can even use dates
which vary according to
circumstances of the case).

The cloned version of the rule sets
affects all cases on the same date -
namely the date of the new product
period. The date cannot vary across
cases.

Whether the legislation change date
is important enough to flag to case
workers on each determination

If the date of legislation change is
important in its own right, consider
implementing a key decision factor
which shows the date that legislation
changed.

If the date of legislation change is
important in its own right, consider
implementing a key decision factor
which shows the date that legislation
changed. Note that if the format of
the decision details data is different
between your old product period and
your new product period, then when
a case worker views a determination
which spans these periods, then the
Engine will split the determination
into different coverage periods
anyway (due to the change in
decision details across the product
periods).

Typically, the choice of approach does not significantly affect performance and/or data storage. The
multiple product period approach will lead to more rule objects being created in memory during the
calculation of a determination result; but these rule objects are not stored on the database. They are
included in rule object snapshots, however, but if common logic has been normalized, then when CER is
requested to create a rule object with common logic, CER will re-use a similarly-created rule object that

172

IBM Ctiram Social Program Management: Inside Ctiram Eligibility and Entitlement Using Ctiram Express Rules

has the same initialization/specified values, and thus the common rule object will appear only once in
the rule object snapshot, regardless of which approach is used.

Some types of legislation change require that newly-registered cases are treated differently from cases
which already existed at the time that the legislation change came into effect, even if those
newly-registered cases are recorded to retrospectively start before the legislation change (i.e. if the case
was registered "late" and its start date is back-dated). Under these circumstances, regardless of which
approach is chosen, the case's registration date will become an important piece of evidence in its own
right, as it will govern how the case is treated. If you are considering the "multiple product period"
approach, then you might implement and test the changes to branch logic based on the case registration
date before cloning your rule sets, as the branching logic may be common to the determination results for
both eras of legislation.

Some types of legislation change introduce "transitional" periods whereby claims are treated different.
You may need to include branching logic for several dates, or create more than one new product period,
to cater for how cases are treated before/during/after any transitional periods.

If a start date of a case is incorrectly recorded, then when it is corrected, there may be a change to the
product periods which contribute to that case, and thus the case may now be affected by a legislation
change whereas previously it was not, or vice versa. This kind of retrospective correction to case start
dates behaves as you would expect and is automatically handled by the Engine.

Legislation changes can be future-only or contain an element of retrospective change, depending on
whether the effective date of the legislation change is in the future or the past; indeed, sometimes a
legislation change targeted at a future date might, due to lags introduced by legal/policy departments,
end up being in the past by the time it is implemented. The implementation of legislation changes will
typically affect a large number of cases, which will undergo changes in their determination results. For
future-dated changes, the periods of the determinations affected will be in the future, typically for
periods not yet processed by financial processing, and thus there will be no corrective under- or
over-payments issued on foot of the change. For retrospective legislation changes though, it is possible to
affect determinations for periods already delivered, typically leading to corrective under- or
over-payment processing on a number of cases, as is to be expected.

11.5 Changing Product Configuration Settings

There are a number of configuration settings at the product level which can be changed at any time,
including for a product which has already had product delivery cases created for it:

* decision summary display strategy;

¢ determination comparison strategy;

* allow open-ended cases; and

* reassessment strategy.

The sections below describe these configuration settings in more detail.

11.5.1 Decision Summary Display Strategy

The strategy in place for the product governs how each coverage period is summarized when shown to
the a case worker (see {.2.1, “Viewing a Determination's Coverage Periods,” on page 20,|/5.2.1, “Viewing|
Key Decision Factors Graphically,” on page 46 and [5.2.2, “Viewing Key Decision Factors in a List,” on|

page 49]).

If you change this setting for your product, then it will affect how all determinations for the product are
displayed, including historical determinations already created and stored as well as any new
determinations created in the future.

Chapter 11. Incremental Design and Evolution 173

11.5.2 Determination Comparison Strategy

The strategy in place for the product governs how "different" a new assessment determination must be to
be worthy of storage (see [8.4, “Determination Comparison Strategies,” on page 127).

If you change this setting for your product, then it will only affect the processing of new determinations
created in the future; all existing determinations which have already been created and stored are entirely
unaffected.

11.5.3 Allow Open-Ended Cases

This setting governs whether the Engine allows a new case to be created without an expected or actual
end date.

If you change this setting for your product, then it will only affect the processing of new cases created in
the future; all existing cases which have already been created and stored are entirely unaffected. Thus it is
possible for a product not to allow the creation of open-ended cases, yet have cases registered against
which are open-ended (because those cases were registered at a time in the past when the product did
support open-ended cases).

11.5.4 Reassessment Strategy

This setting governs the types of cases that the Engine can reassess.

The supported settings are:
* Automatically reassess all cases

The Engine will allow reassessment of all cases and will maintain dependency records for each case's
assessment for as long as the case is recorded on the system. Over time, depending on the number of
cases on your system, the ever-growing number of dependency records may have an effect on the
performance of your system.

* Do not reassess closed cases

The Engine will allow reassessment of all cases except for those with a status of "Closed". The Engine

will maintain dependency records for each non-closed case. If a case's circumstances change when it is
closed, the Engine will not reassess the case (but if the case is re-opened, the Engine will then reassess
the case).

This setting is the default for new products you add to your system.

If you change this setting for your product, then all existing cases will be checked to see if dependency
records should be created or deleted as appropriate.

Important: The checking of existing cases is performed by the ApplyProductReassessmentStrategy batch
job.

When a user publishes changes to a product which include a change to the product's reassessment
strategy, then at the point where the user is asked to confirm the publication, the system will warn the
user that a batch job request will be queued up, and that the batch job must be executed before the new
reassessment strategy takes effect for existing cases.

For each product delivery case for the product:

e if the case was not reassessable under the old strategy but becomes reassessable under the new
strategy, then an assessment is performed on the case to build up the dependency records for the case's
determination result;

e if the case was reassessable under the old strategy but is no longer reassessable under the new strategy;,
then the dependency records for the determination result are removed;

* otherwise no action is performed on the case.

174 1BM Ctram Social Program Management: Inside Ctram Eligibility and Entitlement Using Ctiram Express Rules

Appendix A. Compliancy

This appendix explains how to develop using the Eligibility and Entitlement Infrastructure in a compliant
manner.

A.1 The Public API

The Eligibility and Entitlement Infrastructure has a public API which customers may invoke in
application code. Nothing will be changed or removed in this public API without following the standards
for handling customer impact.

A.1.1 Identifying the Public API

The JavaDoc for the code packages listed in [A.2, “Code Package Restrictions”] is the sole means of
identifying which public classes, interfaces and methods form the Eligibility and Entitlement
Infrastructure public APL

A.2 Code Package Restrictions

The following code packages are restricted:

e curam.core.facade.infrastructure.assessment.impl;

e curam.core.facade.infrastructure.creole.rulesetadmin.impl;
* curam.core.facade.infrastructure.paymentcorrection.impl;
e curam.core.facade.infrastructure.product.creole.impl;

* curam.core.facade.infrastructure.propagator.impl;

e curam.core.sl.infrastructure.assessment.event.impl;

* curam.core.sl.infrastructure.assessment.impl;

e curam.core.sl.infrastructure.creole.extension.impl;

e curam.core.sl.infrastructure.creole.impl;

e curam.core.sl.infrastructure.paymentcorrection.impl;

e curam.core.sl.infrastructure.product.creole.impl;

e curam.core.sl.infrastructure.propagator.impl; and

e curam.core.sl.infrastructure.rate.impl

These packages contain interfaces and classes internal to the Eligibility and Entitlement Infrastructure.
Unless explicitly permitted in the JavaDoc, customers must not provide their own implementation of any
Java interface nor subclass any implementation Java class contained in these packages. Customers must
not place any custom classes or interfaces in these packages.

For convenience the available customization points are described in|Appendix B, “The Eligibility and|
[Entitlement Engine API and Customizability,” on page 179.|

A.3 Code Table Restrictions

A.3.1 CaseAssessmentDetReason

The CaseAssessmentDetReason code table contains codes which indicate why a particular assessment
occurred (for example 'Case Activation' or 'Change of Evidence'). It can be found in the
curam.core.sl.infrastructure.assessment.codetable package.

© Copyright IBM Corp. 2012, 2013 175

In contrast to the other code tables in the same package, customers are free to add custom codes to the
CaseAssessmentDetReason code table using the recommended approach.

A.3.2 CaseSnapshotDetReason

The CaseSnapshotDetReason code table contains codes which indicate why a particular snapshot was
taken occurred (for example 'Case Approval or 'Case Rejection’). It can be found in the
curam.core.sl.infrastructure.assessment.codetable package.

In contrast to the other code tables in the same package, customers are free to add custom codes to the
CaseSnapshotDetReason code table using the recommended approach.

A.3.3 Restricted Code Table Packages

The following code table code packages are restricted:

e curam.core.sl.infrastructure.assessment.codetable;

e curam.core.sl.infrastructure.codetable;

e curam.core.sl.infrastructure.propagator.codetable; and

e curam.core.facade.infrastructure.creole.rulesetadmin.codetable.

With the exception of CaseAssessmentDetReason and CaseSnapshotDetReason, all code tables contained in
these packages are reserved for use by the Eligibility and Entitlement Infrastructure. Customers must not
modify these code tables in any way. In particular, the creation of custom versions of these code tables to
contain additional codes is not supported.

A.3.4 Restricted Code Tables

The following code tables in the curam.codetable package are also restricted:
* AssessmentDatelistType;

» (CaseDecisionMethodCode;

e CaseDecinitReasonCode;

* ReassessmentAmount;

* ReassessmentProcMode; and

* ReassessmentResult.

These code tables are reserved for use by the Eligibility and Entitlement Infrastructure. Customers must
not modify these code tables in any way. In particular, the creation of custom versions of these code
tables to introduce custom codes is not supported.

A.4 Database Restrictions

The Eligibility and Entitlement Infrastructure includes a number of database tables. In general, these
tables are internal to the Eligibility and Entitlement Infrastructure and the data on them may only be read
or written via the public APL

For more details on the read/write restrictions for these database tables, see the following subsections.
Note: There are database tables prefixed with CREOLE which are part of other application components
(in particular the CER Infrastructure), and which are subject to their own compliancy statements. Only

the compliancy statements for the Eligibility and Entitlement Infrastructure database tables are described
below.

176 IBM Ctram Social Program Management: Inside Ctram Eligibility and Entitlement Using Ctiram Express Rules

A.4.1 RuleObjectPropagatorControl

RuleObjectPropagatorControl is a single-row control table which is used to control the execution of the
initial propagation of application data to CREOLE rule objects.

This table contains a single row which indicates whether initial propagation has been run. This control
row ensures that initial rule object propagation is run by exactly one application server instance during
Guice initialization.

The data on this table is internal to the Eligibility and Entitlement Infrastructure and may not be read or
written by any other component.

The single row on this table is populated via a DMX file provided with the application. Customers must
not alter this DMX file nor create any other DMX files which target the RuleObjectPropagatorControl
table.

A.4.2 Restricted Database Tables

The remaining database tables which are included with the Eligibility and Entitlement Infrastructure are:
* BreakdownlInfo

¢ BulkCaseReassessment

* BulkReassessRecalcGroup
 CaseDecision

* CaseDecisionObjective

* CaseDecisionObjectiveTag

* CaseNomineeProdDelPattern

* ConfigurationChangeltem

* ConfigurationPublication

* CREOLECaseDecision

¢ CREOLECaseDetermination

* CREOLECaseDeterminationData
* CREOLECaseReassessment

* CREOLEProduct

* CREOLEProductDecisionDispCat
¢ CREOLEProductPeriod

* CREOLEProductPeriodDispCat
¢ CREOLEProductPublicationltem
¢ CREOLEProductSandbox

* CREOLEProductSnapshot

* CREOLERecalcRequestGroup

* CREOLERecalculationRequest
* CREOLERuleClassLink

¢ CREOLERuleSetCategory

¢ CREOLERuleSetCategoryLink

* CREOLERuleSetPublicationltem
* NomineeOverUnderPayment

* OverPaymentEvidence

¢ OverUnderPaymentBreakdown
¢ OverUnderPaymentHeader

Appendix A. Compliancy 177

* PaymentCorrectionEvidence
* PaymentCorrectionFCLink
* PropConfigPublicationltem
* ReassessmentAmountInfo

* ReassessmentBalancelnfo

¢ ReassessmentInfo

* RuleObjPropConfigSandbox
* RuleObjPropConfigSnapshot
¢ UnderPaymentEvidence

These Eligibility and Entitlement Infrastructure database tables must not be customized through extension
of the model. The data on these database tables must not be read or written other than through the
public APL In particular, initial population of these database tables via DMX files is not supported.

A.5 CER Rule Sets Included with the Application

The source of CER rule sets included by the application must not be changed "in place".

If you wish to use CER rule sets included with the application as the basis for your own rule sets, then
you must clone those rule sets (and, transitively, their dependent and precedent rule sets) to your custom
component. See [11.2.2, “Cloning CER Rule Sets,” on page 162| for the steps to follow.

178 IBM Ciram Social Program Management: Inside Ctram Eligibility and Entitlement Using Ctiram Express Rules

Appendix B. The Eligibility and Entitlement Engine API and
Customizability

B.1 Eligibility and Entitlement Engine API

The Eligibility and Entitlement Engine API was developed as a means of clearly identifying the entry
points into the eligibility and entitlement engine, which is used in determining a client's eligibility and
entitlement. The classes comprising the Eligibility and Entitlement Engine API are as follows:

e AssessmentEngine

* AssessmentEngineImpl

* AssessmentEngineEntity

* AssessmentEngineEntityImp]l

These classes are located inside the following package:
.\E]JBServer\components\core\source\curam\core\sl\infrastructure\assessment\impl

Important: You must not provide your own implementation of any of the Java interfaces above nor
subclass any implementation Java class.

Nothing will be changed or removed in this public API without following the standards for handling
customer impact.

B.2 Customizability

A number of customization points are provided throughout the Eligibility and Entitlement Engine, either
through events being raised or through a series of hooks.

B.2.1 Eligibility and Entitlement Engine Events

The Eligibility and Entitlement Engine raises several business events which allow customers add logic at
various points in the application. For details on how to add event listeners, please refer to the
Persistence Cookbook. The following table lists the event class(es) available in the Eligibility and
Entitlement Engine. For additional information, please refer to the JavaDoc of the associated class.

Table 52. Eligibility and Entitlement Engine Events

Event Class Description
curam.core.sl.infrastructure.assessment.event. This class contains events which are raised inside the
imp1.AssessmentEngineEvent Eligibility and Entitlement Engine.

B.2.2 Eligibility and Entitlement Engine Hooks

The Eligibility and Entitlement Engine contains a number of hooks which can be availed of by customers
needing to provide custom input to the Eligibility and Entitlement Engine. The following table lists the
hook class(es) available in the Eligibility and Entitlement Engine. For additional information, please refer
to the JavaDoc of the associated class.

Table 53. Eligibility and Entitlement Engine Hooks

Hook Class Description
curam.core.sl.infrastructure.assessment.impl. This class contains a number of Eligibility and
AssessmentEngineHooks Entitlement Engine customization/hook points.

© Copyright IBM Corp. 2012, 2013 179

Table 53. Eligibility and Entitlement Engine Hooks (continued)

Hook Class Description

curam.core.sl.infrastructure.assessment.impl. This class contains a number of product specific

ReassessE1igiblityHook hook/customization points called during Eligibility
Assessment.

For the AssessmentEngineHooks, there is an out-of-the-box implementation of some of these hooks inside
AssessmentEngineHooksImpl. Customers can provide their own implementation and make these available
in the application through the use of Guice bindings, binding AssessmentEngineHooks.class to the
custom implementation. The detail of how to do this is covered in the Persistence Cookbook.

For the ReassessET1igibilityHook, customers can provide an implementation of these hook points for a
specific product, and make them available to the application through the use of Guice bindings, as
follows:

final MapBinder<Long, ReassessEligibilityHook> reassessEligibilityHooks =
MapBinder.newMapBinder(binder(), Long.class, ReassessEligibilityHook.class);

reassessEligibilityHooks.addBinding(new Long(<PRODUCT_ID>)).to(<HOOK_ IMPL>.class);

180 IBM Ctram Social Program Management: Inside Ctram Eligibility and Entitlement Using Ctiram Express Rules

Appendix C. Extensions to Curam Express Rules

C.1 Introduction

The Engine contributes some expressions and annotations to CER. For more information about CER, see
the Clram Express Rules Reference Manual.

CAUTION:
These expressions and annotations are for use in case eligibility and entitlement processing only, and
are not supported for use by any other purpose.

C.2 Expressions

The Engine contributes these expressions to CER:

* [C.2.1, “combineSuccessionSets”}
+ [C.2.2, “legislationChange,” on page 187 and
+ [C.2.3, “rate,” on page 190

C.2.1 combineSuccessionSets

C.2.1.1 Overview
The Active Succession Set Rule Object Converter (see [7.4.4, “Active Succession Set Rule Objects,” on page]
100) supports the creation of one rule object per succession set of evidence records.

In some circumstances, a real-world entity (such as a person) can have periods of time with certain
characteristics (such as a period of absence from the household). These periods of time may each be
recorded as their own succession sets, and in some circumstances it can be beneficial to combine each of
these succession sets into a single history of those periods.

The combineSuccessionSets expression allows you to "splice together" succession sets which each
represent a non-overlapping period, with default values used for the "gaps" between those periods.

C.2.1.2 Example

Let's say that details of a person's absence from their household are captured as evidence.

Each period of absence has a start date and (optionally) an end date. Each period of absence also has a
reason for the person's absence, but notably the reason can change during the absence (i.e. the person can
be initially absent for one reason, then from a given date continues to be absent but for a different
reason).

For a given person, no two periods of absence can overlap (a person cannot be absent in more than one
way at any given time). In particular, the person can have at most one open-ended period of absence.

Each separate period of absence is captured as its own succession set of absence; in other words, if the
person is absent from the household, and then returns, and then later leaves the household again, the
second period of absence is a different succession set of evidence from the first.

Some eligibility /entitlement rules for the person require to derive information from the person's history

of absences. Legislation states that a person is eligible for benefit if present in the household, or is absent
for the reason of "Education” only.

© Copyright IBM Corp. 2012, 2013 181

To simplify these eligibility /entitlement rules, it is desirable to compute a single history of absence details
from the person's absence periods (of which there may be zero, one or many). The
combineSuccessionSets expression is used to compute this single history of absence details for the
person.

Now let's create a history of absences for a Person and work through it as an example.

The person John Smith is absent from his household on these occasions:

* John leaves the household on 1st January 2000 to pursue his college education. Unfortunately, on 28th
January 2000, John falls seriously ill and is hospitalized. His absence from the household continues but
its reason changes from Education to Medical Treatment. John recuperates and returns home on 8th
March 2000.

* John's curtailed college education and subsequent illness leave him with personal problems, and after
committing a spate of petty crimes he is jailed on 2nd June 2000. A new absence is recorded for John,
with a reason of Incarceration throughout (this particular absence does not vary in reason). He is
released from prison on 30th June 2000.

¢ Determined to make a fresh start, John enlists in the army and is then absent from the household from
10th August 2000 until further notice, with an absence reason of Military.

Three Absence rule objects are populated for John's three periods of absence by the Active Succession Set
Rule Object Converter. Each Absence rule object is populated by the succession set of evidence records
captured for the related period of absence, e.g. the first Absence rule object is populated with a start date
of 1st January 2000 and an end date of 8th March 2000. Each Absence rule object also has a reason
attribute with values that vary over time.

A single CombinedAbsence rule object is then created by the combineSuccessionSets expression. The single
CombinedAbsence rule object for John has a reason attribute with these values that vary over time:

* prior to 1st January 2000, the absence reason is blank (the default value), as John is not absent at this
time;
* from 1st January 2000, the absence reason is Education, John's initial reason for his first absence;

* from 28th January 2000, the absence reason changes to Medical Treatment, in line with the change in
reason part-way through John's his first absence;

¢ from 9th March 2000 (the day after John's last day in hospital), the absence reason changes back to
blank, because John is no longer absent;

* from 2nd June 2000, John begins his second period of absence, with a reason of Incarceration;
* from 1st July 2000, the absence reason changes back to blank, because John is no longer absent; and

* from 10th August 2000 until further notice, John begins his third period of absence, with a reason of
Military.

The single CombinedAbsence rule object for John also has an exists attribute which simply combines the
periods for which the contributing absences each exist.

C.2.1.3 Detailed Behavior

Each instance of combineSuccessionSets must:

* take a single argument which must be a list of rule objects, each of which must ultimately inherit from
the PropagatorRuleSet.ActiveSuccessionSet rule class;

* nominate a rule class to use as the type of the new rule object created and returned when the
expression is evaluated.

When an instance of combineSuccessionSets is evaluated, a rule object of the nominated return rule class

is created. The attribute values on this return rule object will be set by matching their names to those on
the input succession set rule objects being combined.

182 IBM Ctram Social Program Management: Inside Ctram Eligibility and Entitlement Using Ctiram Express Rules

For periods of time not covered by the input succession set rule objects (i.e. for the "gaps" between
periods, or the values used if the input list is empty), then default values will be used as shown in the

following table:

Table 54. Mapping from Curam Domain Types to CER Rule Attribute Types

Data type for succession set attribute used as an input
timeline

Default value, used for "gaps" between input
succession sets

Timeline<Number>

0

Timeline<Boolean>

false

Timeline<Code table entry>

null (not-specified) entry from the code table

null

(any other data type)

If the input list of succession set of rule objects is empty (e.g. a person who has never been absent from
their household), then the default values shown above will be used throughout the entire timelines.

The combineSuccessionSets expression applies validations when the rule set is validated, and also when
the expression is evaluated, as described in the following sections.

Validation checks made when the rule set is validated

Each instance of combineSuccessionSets will be checked to ensure that it meets the following constraints:

* the single argument to the expression must return a list of rule objects, and the rule class for these rule
objects must be annotated with the [C.3.4, “SuccessionSetPopulation,” on page 198 annotation;;

¢ for the rule class nominated as the return type of the combineSuccessionSets expression:
— the rule class must not be abstract and must not contain any initialized attributes; and

— each rule attribute on the rule class that has a specified derivation must have an identically-named
attribute on the rule class for the input list of rule objects.

If the above conditions are not met, then the rule set will not pass validation checks.
Validation checks made when combineSuccessionSets is evaluated

When an instance of combineSuccessionSets is evaluated at run time, each rule object for a contributing
succession set being combined must:

* have a non-blank start date - i.e. the value of the attribute named in the
[“SuccessionSetPopulation,” on page 19§ annotation must not be null; and

* not overlap with any other contributing succession set rule objects - i.e. the lifetimes of each
contributing succession set (calculated with reference to the start/end date attributes named in the
[C.3.4, “SuccessionSetPopulation,” on page 198 annotation) must each cover distinct periods. In
particular, at most one contributing succession set is allowed to be open-ended.

If the above conditions are not met, then combineSuccessionSets throws an appropriate exception.

C.2.1.4 CER Editor reference
The CombineSuccessionSet element provides a graphical representation of the combineSuccessionSet
expression. It is accessed from the Technical Logic pallet.

The steps below describe how to implement the logic described in [C.2.1.2, “Example,” on page 181.|For
brevity, some steps (such as the best practice of creating description rule attributes) are omitted.

183

Appendix C. Extensions to Ctiram Express Rules

Create an Absence rule class for evidence

Create a rule class named Absence to represent a Person 's succession set of Absence evidence, and add
the following attributes:

» caseParticipantRolelID (Number);

* startDate (Date);

* endDate (Date); and

+ absenceReason (Code table entry, from the AbsenceReason code table, then made into a Timeline).

On this Absence rule class, select the "Succession Set" check box, set the "Start Date Attribute" to
startDate and the "End Date Attribute" to endDate. Edit the "Extends" to select the "ActiveSuccessionSet"

rule class from the PropagatorRuleSet..

See the Ciram Express Rules Reference Manual for more details on general properties for all rule
elements.

Write the CombinedAbsence return class

The CombineSuccessionSet expression will combine the details from the Absence rule objects, and you
need a new rule class to hold the combined details.

Create a CombinedAbsence rule class with the following attributes:
+ absenceReason (Code table entry, from the AbsenceReason code table, then made into a Timeline); and
* exists (Boolean, then made into a Timeline).

Write the Person rule class

Each absence pertains to a person, and thus you must create a Person rule class to contain the list of
absence details (which will be combined in a single rule object showing the combined absence details for
the person).

Add a caseParticipantRoleID (Number) attribute.

Add a Rule Attribute for the Person 's Absence Succession Sets

On the Person rule class, add an absences attribute which retrieves the Absence succession set rule objects
for the Person.

Add a Rule Attribute to combine the Person 's Absence Succession Sets

On the Person rule class, add an combinedAbsences attribute which combines the Absence succession set
rule objects for the Person (using the CombineSuccessionSets expression).

Add a Rule Attribute to calculate eligibility based on absence reason

On the Person rule class, add an isEligibleTimeline attribute (Boolean, made into a Timeline) which
tests the absence reason for the combined absence history for the person.

C.2.1.5 XML Reference

This section provides a reference to the underlying XML representation of combineSuccessionSets.

Each combineSuccessionSets instance contains:
* aruleclass attribute naming the rule class to be used as the return type;

184 IBM Ctram Social Program Management: Inside Ctram Eligibility and Entitlement Using Ctiram Express Rules

* optionally, a ruleset attribute naming the rule set containing the rule class to be used as the return
type (required only if that rule class is in a different rule set); and

* a single child expression, which must return a list of succession set rule objects.

The following XML implements the logic described in|C.2.1.2, “Example,” on page 181

Appendix C. Extensions to Ctiram Express Rules 185

<?xml version="1.0" encoding="UTF-8"?>

<RuleSet name="Example_combineSuccessionSets"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">

<!-- Rule class for a person on a case. -->
<Class name="Person'">

<Attribute name="caseParticipantRoleID">
<type>
<javaclass name="Number"/>
</type>
<derivation>
<specified/>
</derivation>
</Attribute>

<l-- Retrieves the absence succession sets (if any) for this
person on the case. -->
<Attribute name="absences">
<type>
<javaclass name="List">
<ruleclass name="Absence"/>
</javaclass>
</type>
<derivation>
<readall ruleclass="Absence">
<match retrievedattribute="caseParticipantRoleID">
<reference attribute="caseParticipantRoleID"/>
</match>
</readall>
</derivation>

</Attribute>
<Attribute name="combinedAbsences">
<type>
<ruleclass name="CombinedAbsence"/>
</type>

<derivation>
<combineSuccessionSets ruleclass="CombinedAbsence">
<reference attribute="absences"/>
</combineSuccessionSets>
</derivation>
</Attribute>

<!l-- Eligible if present in the household (i.e. no absence,
which means the absence reason is blank), or absent
for the reason of education. -->
<Attribute name="isEligibleTimeline">
<type>
<javaclass name="curam.creole.value.Timeline">
<javaclass name="Boolean"/>
</javaclass>
</type>
<derivation>
<timelineoperation>
<choose>
<type>
<javaclass name="Boolean"/>
</type>
<test>
<reference attribute="absenceReason">
<intervalvalue>
<reference attribute="combinedAbsences"/>
</intervalvalue>
</reference>
</test>
186 1BM Ct’frvggl(iéoz)&%a% 1.l?)rr(]);ram Management: Inside Ctiram Eligibility and Entitlement Using Ctiram Express Rules
<Code table="AbsenceReason">
<l-- Not absent - eligible -->
<null/>

C.2.2 legislationChange
C.2.2.1 Overview

A choice of approaches for implementing changes in legislation is supported (see [11.4, “Handling]|
[Legislation Change,” on page 168).

One approach is to use the TegislationChange expression to provide "branching" logic in your rule set,
by applying different logic contributed by different "legislation eras" to come up with a timeline of values
based on the changes in legislation.

C.2.2.2 Example

Let's say that a person's eligibility for a product is based on whether that person is "low-waged".

Initially, legislation is enacted which lays down that a person is considered to be "low-waged" if that
person's total pre-tax income is less than $20,000 per annum.

However, after some successful lobbying, the legislation is revisited and it is agreed that from 2001
onwards, a person will instead be deemed to be "low-waged" based on whether that person's post-tax
income is less than $15,000 per annum.

After a change in administration, the legislation comes under scrutiny again, and from 2002 revised
legislation takes effect which broadens the low-income net to cover persons with pre-tax income less than
$22,000 per annum and/or post-tax income less than $16,000.

The initial eligibility calculation (for a person) is based directly off the pre-tax income (for that person).
When the agency implements the changes in legislation, then a rule set designer changes the initial
implementation to instead use the TegislationChange expression to combine contributions from the
different legislation "eras". (The implementation of the initial era is just that for the initial
implementation; there are new implementations for the subsequent eras.)

John Smith makes a claim for benefit. John's income levels are as follows:

* from 1st January 2000, pre-tax income of $19,500 and post-tax income of $15,500;
 from 1st June 2001, pre-tax income of $18,000 and post-tax income of $14,700;

e from 1st July 2002, pre-tax income of $26,000 and post-tax income of $22,300.

John's eligibility varies not only according to the variations in his income levels, but also according to the
changes in legislation that are enacted:

C.2.2.3 Detailed Behavior

Each instance of 1egislationChange must:

* specify the data type of the intervals in the timeline returned; and

* specify one or more eras of legislation, including an "initial" era (valid from the start of time, i.e. a null
date). Each era must return a timeline of the same value type as that returned by the overall
TegislationChange expression

When an instance of legislationChange is evaluated, each era is evaluated and the resultant timelines are
"spliced together" according to their era dates. An overall return timeline is assembled from these
era-contributions, and this return timeline obeys the usual semantics of Timelines in general (in particular,
identical contiguous values in the timeline will be amalgamated into a single value).

As such, if a particular change in legislation does not affect a calculation, then the resultant timeline will
not change value on the legislation change date.

Appendix C. Extensions to Ctiram Express Rules 187

C.2.2.4 CER Editor reference

The Legislation Change element provides a graphical representation of the legislation Change expression.
It is accessed from the Business Logic pallet.

The steps below describe how to implement the logic described in|C.2.2.2, “Example,” on page 187.|For
brevity, some steps (such as the best practice of creating description rule attributes) are omitted.

Note: For brevity and clarity, the cut-off rates are "hard-coded" into this example.

A production-quality rule set would instead externalize these rates using Ctiram rate tables. See
[“rate,” on page 190| for further details.

Create a Person rule class

Create a rule class named Person, and add the following attributes:
» caseParticipantRolelID (Number);

* preTaxIncomeTimeline (Number, made into a Timeline);

* postTaxIncomeTimeline (Number, made into a Timeline); and

* iskEligibleTimeline (Boolean, made into a Timeline).

Note: No derivations will be given for the preTaxIncomeTimeline and postTaxIncomeTimeline attributes
in this example. These attributes are assumed to be populated from an outside source (such as evidence).

Implement legislation change logic

Implement the derivation of isETigibleTimeline to take into account the three eras of legislation:

C.2.2.5 XML Reference

This section provides a reference to the underlying XML representation of legislationChange.

Each legisTlationChange instance contains:
* an intervaltype element naming the data type for the intervals in the resultant timeline returned; and
* one or more era elements, each containing:

— a from element, which must contain an expression returning a Date (which governs from which date
the legislation era takes effect); and

— a value element, which must contain an expression returning a timeline of the same type as that
returned by the overall TegislationChange expression (which provides the values to be used in the
resultant timeline, for the portion of that timeline contributed by this era).

The following XML implements the logic described in|C.2.2.2, “Example,” on page 187

Note: For brevity and clarity, the cut-off rates are "hard-coded" into this example.

A production-quality rule set would instead externalize these rates using Ctiram's rate tables. See m
[“rate,” on page 190|for further details.

188 IBM Ctram Social Program Management: Inside Ctram Eligibility and Entitlement Using Ctiram Express Rules

<?xml version="1.0" encoding="UTF-8"?>

<RuleSet name="Example_TlegislationChange"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">

<!-- Rule class for a person on a case. -->
<Class name="Person'">

<!-- The pre-tax income for this person. -->
<Attribute name="preTaxIncomeTimeline">
<type>
<javaclass name="curam.creole.value.Timeline">
<javaclass name="Number"/>
</javaclass>
</type>
<derivation>
<specified/>
</derivation>
</Attribute>

<l-- The pre-tax income for this person. -->
<Attribute name="postTaxIncomeTimeline">
<type>
<javaclass name="curam.creole.value.Timeline">
<javaclass name="Number"/>
</javaclass>
</type>
<derivation>
<specified/>
</derivation>
</Attribute>

<!-- Eligible if "Tow-waged", where the definition of
"lTow-waged" varies as changes in legislation are
enacted. -->
<Attribute name="isEligibleTimeline">
<type>
<javaclass name="curam.creole.value.Timeline">
<javaclass name="Boolean"/>
</javaclass>
</type>
<derivation>
<legislationChange>
<l-- The type of the timeline returned is a timeline of
Boolean values. -->
<intervaltype>
<javaclass name="Boolean"/>
</intervaltype>

<l-- Initial legislation era. -->
<era>
<from>
<null/>
</from>
<value>
<timelineoperation>
<!-- Low-waged if pre-tax income is below
20,000. -->
<compare comparison="<">
<intervalvalue>
<reference attribute="preTaxIncomeTimeline"/>
</intervalvalue>
<Number value="20000"/>
</compare>
</timelineoperation>
</value>
</era>

<l-- A change in legislation, effective from 1st Jaﬁﬂ@%
2001, -->
<era>
<from>

endix C. Extensions to Ctiram Express Rules

Y

189

C.2.3 rate

C.2.3.1 Overview

The Rate Rule Object Propagator (see[7.4.2, “Rate Rule Objects,” on page 90) automatically creates rule
objects which mirror the data from cells specified rate tables. The rate expression provides a convenience
mechanism for searching for the rule object corresponding to a particular cell in a particular rate table.

C.2.3.2 Example

Let's say that a person's eligibility for a product is based on whether that person's total income is below a
certain limit. This limit is revised periodically in line with costs of living and inflation.

The rules for eligibility do not vary as such; however the income limit does vary over time, and so a
rules designer models the income limit as a rate table, rather than "hard-coding" the income limit directly
in the rule set. This approach allows the income limit to vary independently of rules; changes to the
income limit can be effected by publishing changes to the rate table, rather than by changing the rule set.
In particular, the rule set itself does not need to be retested when the income limit changes (but of course
any users changing rate tables should satisfy themselves that the change being made will have the
desired effect, possibly by first trialling the change in a test environment).

The eligibility rules will use the rate expression to retrieve the value of the required rate, and use this
value to determine whether a person's total income is within the bounds for eligibility.

John Smith makes a claim for benefit. John's total income varies as follows:
* from 1st January 2000, total income of $21,000;

* from 1st June 2001, total income of $23,500; and

 from 1st July 2002, total income of $26,200.

In parallel, the agency varies the income limit applied to eligibility calculations as follows:
* from 1st January 2000, income limit of $20,000;

* from 1st January 2001, total income of $22,000; and

 from 1st January 2002, total income of $24,000.

John's eligibility varies not only according to the variations in his total income level, but also according to
the varying income limit rate:

C.2.3.3 Detailed Behavior

Each instance of rate must specify the "co-ordinates" of required cell in from a rate table. The
co-ordinates which uniquely identify a cell are:

* the code for the name of the rate table (i.e. the code for the entry from the RateTableType code table);

* the code for the name of the row in the rate table (i.e. the code for the entry from the RateRowType code
table); and

* the code for the name of the column in the rate table (i.e. the code for the entry from the
RateColumnType code table).

Recall that each rate table can have multiple "version" with values effective from a specified date;
whereas the rule object created by the Rate Rule Object Propagator has a timeline of numbers
representing a varying rate value. Thus the value returned by the rate is the value of the rate cell as it
varies over different versions of its rate table.

Note: If two neighboring versions of rate table contain the same value for a particular rate cell, then the
timeline value for that rate cell will not change value on the rate table change data. As per Timeline
semantics, contiguous identical values are amalgamated into single unchanging value.

190 IBM Ctram Social Program Management: Inside Ctram Eligibility and Entitlement Using Ctiram Express Rules

This situation can arise where a new version of a rate table is recorded to change values in some of its
rate cells only; values in other rate cells may remain unchanged.

When an instance of rate is evaluated, a rate rule object matching the required rate cells co-ordinates is
sought. Ordinarily the required rate rule object will be found, and its varying rate cell value returned as a
timeline of numbers.

However, if the required rate rule object has not been found (e.g. if rate propagation has not been run, for
example in a unit test that creates a rate but does not publish changes), then the rate expression will
create an internal rule object to hold the varying value from the rate table (subject to the same constraints
that apply to the Rate Rule Object Converter - i.e. cells in sub-rows and sub-columns are not supported).
If such internal rule object are created, then if a rate table change is subsequently published, then the
rate expression will safely recalculate to pick up the external rule object created by the propagator. This
feature means that it is possible to write unit tests that interact with rates without having to worry about
rate propagation.

CAUTION:
All uses of the rate expression require a database transaction to be in effect.

For normal application processing, a database transaction will be in effect just as for other server
logic.

However, for speed of testing, CER promotes the use of in-memory testing of rule sets which do not
access the database. If you write any unit tests which cause a rate expression to be evaluated, then
that test must run in the context of database transaction (which is in sharp contrast to the majority of
unit tests for CER rule sets, which do not require a database transaction).

You must either:

* wrap your test in a database transaction (such as that provided by inheriting from CuramServerTest);
or

* prevent the evaluation of rate expressions by using CER's "specify" mechanism to override the
values of any attribute values whose definition includes one or more rate expressions.

C.2.3.4 CER Editor reference

The Rate Table element provides a graphical representation of the rate expression. It is accessed from the
Data Types pallet.

The steps below describe how to implement the logic described in|C.2.3.2, “Example,” on page 190.| For
brevity, some steps (such as the best practice of creating description rule attributes) are omitted.

Create a Person rule class

Create a rule class named Person, and add the following attributes:
* totalIncomeTimeline (Number, made into a Timeline); and
* iskEligibleTimeline (Boolean, made into a Timeline).

Note: No derivations will be given for the totalIncomeTimeline in this example. This attribute is
assumed to be populated from an outside source (such as evidence).

Implement rate retrieval logic

Implement the derivation of isETigibleTimeline to retrieve the required rate data and compare it to the
person's total income.

Appendix C. Extensions to Ctiram Express Rules 191

C.2.3.5 XML Reference

This section provides a reference to the underlying XML representation of rate.

Each rate instance contains:
* a table attribute naming the code from the RateTableType code table;
* a row attribute naming the code from the RateRowType code table;

* a column attribute naming the code from the RateColumnType code table;

The following XML implements the logic described in|C.2.3.2, “Example,” on page 190

<?xml version="1.0" encoding="UTF-8"?>

<RuleSet name="Example rate"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">

<l-- Rule class for a person on a case. -->
<Class name="Person">

<!-- The total income for this person. -->
<Attribute name="totalIncomeTimeline">
<type>
<javaclass name="curam.creole.value.Timeline">
<javaclass name="Number"/>
</javaclass>
</type>
<derivation>
<specified/>
</derivation>
</Attribute>

<!-- Eligible if total income is below an income limit (from a
rate table). -->
<Attribute name="isEligibleTimeline">
<type>
<javaclass name="curam.creole.value.Timeline">
<javaclass name="Boolean"/>
</javaclass>
</type>
<derivation>
<compare comparison="<">
<intervalvalue>
<reference attribute="totalIncomeTimeline"/>
</intervalvalue>
<intervalvalue>
<!-- code table constants for the rate table/rate
row/rate column -->
<rate table="RTT_LIMITS" row="RR_INCOME"
column="RC_AMOUNT" />
</intervalvalue>
</compare>
</derivation>
</Attribute>

</Class>
</RuleSet>

192 IBM Ctram Social Program Management: Inside Ctram Eligibility and Entitlement Using Ctiram Express Rules

C.3 Annotations

The Engine contributes these annotations to CER:

C.3.1, “Display’}

C.3.2, “DisplaySubscreen,” on page 195|;

C.3.3, “Legislation,” on page 197

C.3.4, “SuccessionSetPopulation,” on page 198

C.3.5, “relatedEvidence,” on page 198 and

C.3.6, “relatedSuccessionSet,” on page 200.|

C.3.1 Display

This marks an attribute for inclusion when the Engine walks rule objects to gather decision details to
include in a determination (see [Chapter 6, “Calculating and Displaying Decision Details,” on page 59).

This annotation may be placed on a rule attribute only.

C.3.1.1 XML Reference

Here is an example rule set with Display and non-Display rule attributes:

Appendix C. Extensions to Ctiram Express Rules

193

<?xml version="1.0" encoding="UTF-8"?>

<RuleSet name="Example_Display"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">

<Class name="HouseholdMember">

<!-- This attribute will be made available for display in
decision details -->
<Attribute name="dateOfBirth">
<Annotations>
<Display/>
</Annotations>
<type>
<javaclass name="curam.util.type.Date"/>
</type>
<derivation>
<specified/>
</derivation>
</Attribute>

<!-- This attribute will be made available for display in
decision details -->
<Attribute name="fullName">
<Annotations>
<Display/>
</Annotations>
<type>
<javaclass name="curam.creole.value.Message"/>
</type>
<derivation>
<XmlMessage>
<replace>
<reference attribute="firstName"/>
</replace>
<replace>
<String value=" "/>
</replace>
<replace>
<reference attribute="surname"/>
</replace>
</XmlMessage>
</derivation>
</Attribute>

<!-- This attribute is used as an input into the calculated
fullName, but is not directly required for display -->
<Attribute name="firstName">
<type>
<javaclass name="String"/>
</type>
<derivation>
<specified/>
</derivation>
</Attribute>

<!-- This attribute is used as an input into the calculated
fullName, but is not directly required for display -->
<Attribute name="surname">
<type>
<javaclass name="String"/>
</type>
<derivation>
<specified/>
</derivation>
</Attribute>
19<4& Cl %E’Is\@ Ctiram Social Program Management: Inside Ctram Eligibility and Entitlement Using Ctiram Express Rules
</RuleSet>

C.3.2 DisplaySubscreen

This marks an attribute as returning data for a subscreen of decision details, which can be displayed by
the Engine when a user expands a row on a decision details screen (see [6.2.3, “Sub-screens,” on page 60).

This annotation may be placed on a rule attribute only, on a rule class which ultimately extends from
ProductDecisionDetailsRuleSet.AbstractCase.

C.3.2.1 XML Reference

Here is an example rule set with DisplaySubscreen rule attributes:

Appendix C. Extensions to Ctiram Express Rules 195

<?xml version="1.0" encoding="UTF-8"?>

<RuleSet name="Example_DisplaySubscreen"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">

<Class name="MyProductSummary" extends="DefaultCase"
extendsRuleSet="DefaultProductDecisionDetailsRuleSet">

<!-- Allow the screen to display a Tist of members for the
case. -->
<Attribute name="householdMembers">
<Annotations>
<Display/>
</Annotations>
<type>
<javaclass name="List">
<ruleclass name="HouseholdMember"/>
</javaclass>
</type>
<derivation>
<specified/>
</derivation>
</Attribute>

<l-- Allow the screen to drill down into more details for each
household member -->
<Attribute name="householdMemberSubscreens">
<Annotations>
<DisplaySubscreen/>
</Annotations>
<type>
<javaclass name="List">
<ruleclass name="HouseholdMemberSubscreen"/>
</javaclass>
</type>
<derivation>
<dynamiclist>
<list>
<reference attribute="householdMembers"/>
</Tist>
<l-- Create a wrapper HouseholdMemberSubscreen for each
HouseholdMember -->
<listitemexpression>
<create ruleclass="HouseholdMemberSubscreen">
<specify attribute="householdMember">
<current/>
</specify>
</create>
</Tistitemexpression>
</dynamiclist>

</derivation>
</Attribute>

</Class>

<Class name="HouseholdMember">
<Attribute name="concernRoleID">
<type>
<javaclass name="Number"/>
</type>
<derivation>
<specified/>
</derivation>
</Attribute>
196 <A %%M t% ’rém?] Ejsnﬁ)ggale%rrq%a?n%%réqg)emem: Inside Ctram Eligibility and Entitlement Using Ctiram Express Rules
<type>
<javaclass name="Number"/>
</type>

C.3.3 Legislation

This allows a rule element to be linked to an arbitrary HTML document which describe the legislation
underpinning that rule element.

This annotation may be placed on:
e a rule set;

e a rule class;

e a rule attribute; or

* an expression.

The CER Editor can open legislation links in your web browser as follows:
* a legislation link value that starts with http:// or https:// will open the absolute page for that link; or
* any other legislation link value will be used as a path relative to your application.

C.3.3.1 XML Reference

Here is an example rule set with various legislation link values:

<?xml version="1.0" encoding="UTF-8"?>

<RuleSet name="Example_Legislation"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">

<Annotations>
<!l-- Rule set - an absolute Tink. -->
<Legislation
Tink="http://www.somelegislationsite.com/somepagel"/>
</Annotations>
<Class name="Citizen">
<Annotations>
<!-- Rule class - another absolute link. -->
<Legislation
Tink="http://www.somelegislationsite.com/somepage2"/>
</Annotations>

<Attribute name="dateOfBirth">
<Annotations>
<l-- Rule attribute - a relative link. -->
<Legislation Tink="somedirectory/onmywebserver/page.html"/>
</Annotations>
<type>
<javaclass name="curam.util.type.Date"/>
</type>
<derivation>
<specified>
<Annotations>
<l-- Expression - another relative link. -->
<LegisTation
link="anotherdirectory/onmywebserver/page.html"/>
</Annotations>
</specified>
</derivation>
</Attribute>
</Class>
</RuleSet>

Appendix C. Extensions to Ctiram Express Rules 197

C.3.4 SuccessionSetPopulation

This annotation indicates to the Active Succession Set Rule Object Converter (see [7.4.4, “Active Succession|
[Set Rule Objects,” on page 100) which attributes on a rule class hold the start and end dates which mark
the "lifetime" of the succession set of evidence.

This annotation may be placed on a rule class only. The annotated rule class must ultimately extend the
PropagatorRuleSet.ActiveSuccessionSet rule class included with the application.

The names of the start date attribute and the end date attribute are each optional in this annotation.
However, if present, each named attribute must exist on the rule class (i.e. must be declared by or
inherited by the rule class), and must return a Date value.

If the start date attribute is not named by the annotation, or is named but at evaluation time is found to
have a null value, then the data in the initial version of the succession set is assumed to apply from the
beginning of time.

Similarly, if the end date attribute is not named by the annotation, or is named but at evaluation time is
found to have a null value, then the data in the final version of the succession set is assumed to apply
until the beginning of time.

C.3.4.1 XML Reference

Here is the XML for an example rule set, with a rule class extending
PropagatorRuleSet.ActiveSuccessionSet, with its succession set start date and end date attributes set:

<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_SuccessionSetPopulation">
<Class name="Employment" extends="ActiveSuccessionSet"
extendsRuleSet="PropagatorRuleSet">
<Annotations>
<SuccessionSetPopulation startDateAttribute="startDate"
endDateAttribute="terminationDate"/>
</Annotations>
<Attribute>
<type>
<javaclass name="curam.util.type.Date"/>
</type>
<derivation>
<specified/>
</derivation>
</Attribute>
<Attribute>
<type>
<javaclass name="curam.util.type.Date"/>
</type>
<derivation>
<specified/>
</derivation>
</Attribute>
</Class>
</RuleSet>

C.3.5 relatedEvidence

When Active Evidence Row Rule Objects are populated (see|7.4.5, “Active Evidence Row Rule Objects,”|
, indicates that the value of the annotated attribute should be automatically populated with
rule object(s) for related evidence. See [7.4.5.3, “Conversion Processing,” on page 108|for full details on the
processing the rule object converter performs, taking into account this annotation.

This annotation may be placed on a rule attribute only. Furthermore, the following restrictions apply:

198 IBM Ciram Social Program Management: Inside Ctram Eligibility and Entitlement Using Ctiram Express Rules

¢ the annotated attribute must be on a rule class that ultimately extends the
PropagatorRuleSet.ActiveEvidenceRow rule class; and

* the return type of the annotated attribute must be either:
— a rule class that ultimately extends the PropagatorRuleSet.ActiveEvidenceRow rule class; or

— a List of such a rule class.

C.3.5.1 XML Reference
Here is an example rule set with rule attributes for related parent and child evidence rows annotated to
be automatically populated using the Active Evidence Row Rule Object Propagator:

Appendix C. Extensions to Ctiram Express Rules 199

<?xml version="1.0" encoding="UTF-8"?>

<RuleSet name="Example_relatedEvidence"

xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">

<Class name="HouseholdMember" extends="ActiveEvidenceRow"
extendsRuleSet="PropagatorRuleSet">
<Attribute name="incomes">
<Annotations>
<!-- The Active Evidence Row Rule Object Propagator will
automatically populate this attribute with a Tist of
related Income rule objects.-->
<relatedEvidence relationship="child"/>
</Annotations>
<type>
<javaclass name="List">
<ruleclass name="Income"/>
</javaclass>
</type>
<derivation>
<specified/>
</derivation>
</Attribute>

</Class>

<Class name="Income" extends="ActiveEvidenceRow"
extendsRuleSet="PropagatorRuleSet">

<Attribute name="householdMembers">
<Annotations>
<l-- The Active Evidence Row Rule Object Converter will
automatically populate this attribute with a Tist of
related HouseholdMember rule objects.

Note that a list is still used because there may be
multiple versions of the parent household member
evidence.-->
<relatedEvidence relationship="parent"/>
</Annotations>
<type>
<javaclass name="List">
<ruleclass name="HouseholdMember"/>
</javaclass>
</type>
<derivation>
<specified/>
</derivation>
</Attribute>

</Class>
</RuleSet>

C.3.6 relatedSuccessionSet

When Active Succession Set Rule Objects are populated (see [7.4.4, “Active Succession Set Rule Objects,”|
, indicates that the value of the annotated attribute should be automatically populated with
rule object(s) for related evidence. See [7.4.4.3, “Conversion Processing,” on page 102|for full details on the
processing the rule object converter performs, taking into account this annotation.

This annotation may be placed on a rule attribute only. Furthermore, the following restrictions apply:

200 IBM Ctram Social Program Management: Inside Ctram Eligibility and Entitlement Using Ctiram Express Rules

¢ the annotated attribute must be on a rule class that ultimately extends the
PropagatorRuleSet.ActiveSuccessionSet rule class; and

* the return type of the annotated attribute must be either:
— a rule class that ultimately extends the PropagatorRuleSet.ActiveSuccessionSet rule class; or

— a List of such a rule class.

C.3.6.1 XML Reference

Here is an example rule set with rule attributes for related parent and child succession sets annotated to
be automatically populated using the Active Succession Set Rule Object Propagator:

<?xml version="1.0" encoding="UTF-8"?>

<RuleSet name="Example_relatedSuccessionSet"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">

<Class name="HouseholdMember" extends="ActiveSuccessionSet"
extendsRuleSet="PropagatorRuleSet">
<Attribute name="incomes">
<Annotations>
<!-- The Active Succession Set Rule Object Converter will
automatically populate this attribute with a Tist of
related Income rule objects.-->
<relatedSuccessionSet relationship="child"/>
</Annotations>
<type>
<javaclass name="List">
<ruleclass name="Income"/>
</javaclass>
</type>
<derivation>
<specified/>
</derivation>
</Attribute>

</Class>

<Class name="Income" extends="ActiveSuccessionSet"
extendsRuleSet="PropagatorRuleSet">

<Attribute name="householdMembers">
<Annotations>
<!l-- The Active Succession Set Rule Object Converter will
automatically populate this attribute with the
related HouseholdMember rule object. -->
<relatedSuccessionSet relationship="parent"/>
</Annotations>
<type>
<ruleclass name="HouseholdMember"/>
</type>
<derivation>
<specified/>
</derivation>
</Attribute>

</Class>
</RuleSet>

Appendix C. Extensions to Ctiram Express Rules 201

202 IBM Ctram Social Program Management: Inside Ctram Eligibility and Entitlement Using Ctiram Express Rules

Appendix D. Environment Variables

D.1 Curam Environment Variables Governing Behavior of Engine

This appendix lists the Ctiram Environment Variables that you can set to change the Engine's behavior.

Table 55. Curam environment variables governing the behavior of the Engine

Environment variable name

Description

More Information

curam.trace

General trace setting for the overall
application.

[7.7, “Logging,” on page 119 and the
Caram Server Developer's Guide.

curam.trace.ruleobjectpropagation

The logging level for rule object
propagation log messages.

Valid values are:

* trace_off;

¢ trace_on;

* trace_verbose; and

* trace_ultra_verbose.

|7.7, “Logging,” on page 119.|

curam.ruleobjectpropagation.
configuration.errorlevel

Whether a problem in the
configuration for a rule object
propagator is reported as:

* an application error (error);
* alogged warning (warn); or

* ignored (ignore).

7.5, “Data Configuration Problems,”|

on page 116.|

curam.ruleobjectpropagation.
nonpropagatableoperation.
errorlevel

Whether a database operation which
cannot be propagated to rule objects
is reported as:

* an application error (error);
* alogged warning (warn); or

* ignored (ignore).

7.4.3.5, “Propagation Processing,” on|

[page 96.|

problems

curam.creole.log.case.determination.

Whether details of problems
encountered during a case
determination should be listed as
warnings in the application log.

4.4.4, “Testing,” on page 42 |/5.4.4)
“Testing,” on page 57 and [6.4.4,|
“Testing,” on page 81.

curam.batch.
creolebulkcasechunkreassessment.
chunksize

The number of cases in each chunk
that will be processed by the
CREOLE Bulk Case Chunk
Reassessment batch program.

10.3.3.1, “Tha

CREOLEBulkCaseChunkReassessmentByPr

oduct|

Batch Process,” on page 155.|

curam.batch.
creolebulkcasechunkreassessment.
dontrunstream

Should CREOLE Bulk Case Chunk
Reassessment batch program sleep
while waiting for the processing to be
completed (rather than run a stream
in its context).

10.3.3.1, ”Tha

CREOLEBuTlkCaseChunkReassessmentByPry

oduct|

Batch Process,” on page 155.|

curam.batch.
creolebulkcasechunkreassessment.
chunkkeywaitinterval

The interval (in milliseconds) for
which the CREOLE Bulk Case Chunk
Reassessment batch program will
wait before retrying when reading
the chunk key table.

10.3.3.1, “The|

CREOLEBulkCaseChunkReassessmentByPy

oduct|

Batch Process,” on page 155.|

© Copyright IBM Corp. 2012, 2013

203

Table 55. Curam environment variables governing the behavior of the Engine (continued)

Environment variable name

Description

More Information

curam.batch.
creolebulkcasechunkreassessment.
unprocessedchunkwaitinterval

The interval (in milliseconds) for
which the CREOLE Bulk Case Chunk
Reassessment batch program will
wait before retrying when reading
the chunk table.

10.3.3.1, ”Tha

CREQOLEBulkCaseChunkReassessmentByPr

oduct|

Batch Process,” on page 155.|

curam.batch.
creolebulkcasechunkreassessment.
processunprocessedchunk

Should CREOLE Bulk Case Chunk
Reassessment batch program process
any unprocessed chunks found after
all the streams have completed.

10.3.3.1, ”Tha

CREOLEBuTlkCaseChunkReassessmentByPy

oduct|

Batch Process,” on page 155.|

curam.workflow.
gendetermineeligibityfailureticket

"YES"/"NO" flag which determines
whether a workflow ticket is
automatically generated whenever a
determine product eligibility for a
case fails.

curam.workflow.
geneligibilityreassesssiccessticket

"YES"/"NQO" flag which determines
whether a workflow ticket is
automatically generated whenever a
case has been reassessed and the case
decision is now "eligible".

curam.trace.productconfiguration.
publication

The logging level for product
configuration publication log
messages.

Valid values are:

e trace_off;

* trace_on;

e trace_verbose; and

e trace_ultra_verbose.

curam.trace.caseassessment

The logging level for case assessment
log messages.

Valid values are:

e trace_off;

* trace_on;

* trace_verbose; and

* trace_ultra_verbose.

curam.creole.

store.ruleobjectsnapshot

manualeligibilitycheckdetermination.

Whether the system will store a
snapshot of rule objects used in the
calculation of a manual eligibility
check determination.

8.2, “The Database Tables,” on page|

121

204

IBM Ctiram Social Program Management: Inside Ctiram Eligibility and Entitlement Using Ctiram Express Rules

Appendix E. Glossary

E.1 Terms Used throughout this Guide

This appendix provides a glossary of terms used with the Engine.
Activation

Activation refers to:

¢ Cases

A case is activated so that a product can be delivered (typically, so that financials can be
generated). Only approved cases can be activated.

See the Ciram Integrated Case Management Guide.
* Evidence

Evidence is activated so that it can be used during the calculation of assessment determinations
for cases.

See the Clram Evidence Guide.
Active Determination

A determination which was triggered by an explicit action from a user, for example when a case
is activated.

See [2.4.2.1, “Active Determination Calculation Requests,” on page 10.|

Administrator
A user who administers the application and has rights to change its configuration.

Assessment
The initial determination of eligibility and entitlement that occurs upon case activation.

Assessment Determination
A determination made when a case is initially assessed during case activation or subsequently
reassessed due to a change in circumstance. The result of an assessment determination is typically
used in the generation of financials on a case).

See [3.4, “Assessment Determinations,” on page 18|

Attained Objective
An objective to which a case is entitled.

See Entitlement.

Attribute Value
The value of an attribute on a CER rule object.

For example, if there is a CER rule object for James Smith, and that rule object has an attribute
named firstName, then the attribute value on that rule object will be "James".

See the Ciram Express Rules Reference Manual.

Basic eligibility/entitlement details
A simple technical description of a case's eligibility, objectives and tags.

See 4.2.2, “Basic Eligibility/entitlement Decision Details,” on page 20)

Bulk Case Reassessment
The reassessment of a large number of cases following a system-wide change in data or
configuration.

See [10.3, “Bulk Reassessment,” on page 146

© Copyright IBM Corp. 2012, 2013 205

Case Decision
A record of eligibility /entitlement for a period of time on a case.

See [8.2.3, “CaseDecision,” on page 124/

Case Lifetime
The length of time that a case lasted or is expected to last, with reference to the case's start and
end dates.

See[2.4.1, “What a Determination Result Contains,” on page 8/

Case Worker
A user responsible for the ongoing management of cases.

CER Data Configurations
The on-screen term for configurations for rule object converters and propagators.

See |Chapter 7, “Understanding Rule Object Converters and Propagators,” on page 83

CER Acronym for Ciiram Express Rules.
See the Ciram Express Rules Reference Manual.

Configuration
The ability to change a system's behavior by changing settings in the running application rather
than using traditional systems development and redeployment techniques.

Converter
See Rule Object Converter.

Correction Set
A set of related evidence records which reflects the history of the system's record of evidence.

Older items in the correction set were (at one time) thought to be true but are now known to
have been recorded incorrectly.

Coverage period
A period within a determination of constant eligibility, entitlement and explanation.

See 4.3.2.1, “Dividing the Determination into Coverage Periods,” on page 24|

Current Assessment Determination
The most up-to-date assessment determination, which is currently being used to deliver the
product (typically, used to calculate the amounts payable under the case).

Custom Entity
A database table added to the application by the customer - not included with the application.

See the Clram Modeling Reference Guide.

Custom Evidence Type
A type of Dynamic or Non-Dynamic Evidence added to the application by the customer - not
included with the application.

See Evidence.

Decision Details
Free-form calculated output which helps explain to a case worker how the eligibility /entitlement
results were arrived at.

See [Chapter 6, “Calculating and Displaying Decision Details,” on page 59|

Decision Period
A period within a determination of constant eligibility and entitlement. Stored as a Case Decision.

206 IBM Ctram Social Program Management: Inside Ctram Eligibility and Entitlement Using Ctiram Express Rules

Deferred Processing
Background processing which occurs outside of main online processing. Requests for deferred
processing can be added to a queue.

Dependency Manager
Software included with the application which stores and manages how one value (a Dependent)
depends on other values (Precedents). Used to identify Dependents which may be affected by
changes to one or more Precedents.

See the Ciram Express Rules Reference Manual.

Dependent
See Dependency Manager.

Determination
The act of calculating a Determination Result.

Determination Result
A record of a case's eligibility, entitlement and explanation, as they vary over the lifetime of the
case.

See [2.4.1, “What a Determination Result Contains,” on page 8

Display Category
A tab on a determination screens which allows the case worker to choose a category of
explanation.
Examples include:
* Summary;
* Household Members;
* Income; and

* Resources.

See [6.4.2.1, “Identify the Display Categories,” on page 71

Dynamic Evidence
Types of Evidence which are created by configuring a running application.

See the Dynamic Evidence Configuration Guide.

Dynamic UIM
Refer to the UIM Reference chapter of the Ciiram Web Client Reference Manual for more details.

Eligibility
Whether a product can be delivered.

Typically, whether a case will result in the generation of financial payments or liabilities.

See [4.4.1.2, “Eligibility,” on page 26|

Engine
The application's Eligibility and Entitlement Engine.

See [Chapter 1, “Introduction,” on page 1]

Entitlement
The objectives attained on a case. Typically, objectives are financial and are used in the generation
of payments or liabilities on a case.

Only eligible periods have entitlement; ineligible periods have no entitlement.

See |4.4.1.3, “Objectives,” on page 26/

Appendix E. Glossary 207

Explanation

Additional calculated data which helps a case worker understand how a case's eligibility and
entitlement were arrived at.

See[2.4.1, “What a Determination Result Contains,” on page 8

Expression
A function available in CER for calculating an output value based on input values.

See the Ciram Express Rules Reference Manual.

Financial Schedule
A schedule of payments or liabilities for a nominee.

See |Chapter 9, “Scheduling Financials,” on page 131

Frequency Pattern
A recurring time interval over which to deliver a product, e.g.:

¢ Daily;
* Weekly; or
* Monthly.

See |4.4.1.4, “Objective Tags,” on page 26

In-edit evidence
Changes to evidence which have not yet been activated.

See [7.6.2, “Temporary Access to In-Edit Evidence Changes,” on page 117

Integrated Case

A type of case used to manage the delivery of products and services to a household or related
group of individuals.

An Integrated Case can contain a number of child product delivery cases. Evidence can be
captured at either the integrated case level (and thus applies to all product deliveries under the
integrated case) and/or the product delivery level (and thus applies to that product delivery
only).

See the Ciram Integrated Case Management Guide.

Interface Rule Class
A CER rule class which enforces a data interface between the Engine and custom business rules.
See the following sections:
« ¥.3.1.3, “C) ProductEligibilityEntitlementRuleSet AbstractCase rule class,” on page 22}
[5.3.1.2, “B) ProductKeyDataRuleSet AbstractCase rule class,” on page 47} and
.3.1.2, “B) ProductDecisionDetailsRuleSet AbstractCase rule class,” on page 62}

Key Decision Factor

A named item which has simple events or data changes which can help explain a determination
to a case worker.

Examples:
* Person events, such as "Claimant born", "Claimant married", "Claimant died"; and/or

* Data change events such as "Total Annual Income: $10,000", "Total Annual Income: $12,000"

See [Chapter 5, “Calculating and Displaying Key Decision Factors,” on page 45,

Legislation
The legal documents underpinning the requirements for eligibility/entitlement calculations (and
other behavior for a product).

See [11.4, “Handling Legislation Change,” on page 168

208 IBM Ctram Social Program Management: Inside Ctram Eligibility and Entitlement Using Ctiram Express Rules

Manual Eligibility Check Determination
An active determination manually requested by a case worker to provide an interim
determination on a case. The determination may be based on in-edit evidence or active evidence
only.

See [3.2, “Manual Check Determinations,” on page 17.|

Nominee
A recipient of an attained objective on a case. Typically the nominee is the primary client of the
product delivery case but can be any person.

Non-Dynamic Evidence
Types of Evidence which are developed using standard development techniques (and requiring
redeployment of the application).

Objective
An item to be delivered on a case, to a particular target. Typically, a type of payment on a case,
e.g. an income assistance benefit or a medical allowance benefit.

See |4.4.1.3, “Objectives,” on page 26)

Objective Tag
A frequency at which an objective may be delivered, e.g. income assistance benefit weekly, or
income assistance benefit daily.

Larger frequencies are typically used for recurring delivery periods; smaller periods are typically
used for ramp-up and ramp-down delivery periods.

See 4.4.1.4, “Objective Tags,” on page 26/

Open-ended
Open-ended applies to:

* A Case
An open-ended case has no end date.
* A Determination

An open-ended determination has no end date and thus its final coverage period applies until
further notice.

* A Case Decision

An open-ended case decision has no end date and its eligibility /entitlement applies until
further notice

* A Financial Component

An open-ended financial component has no end date and will continue to be used to generate
instruction line items until further notice.

In practice, each of these items will close at some point in the future, as circumstances change
(e.g. when the claimant dies, or a child leaves home, or the claimant finds employment, etc.).

Policy Procedures and rules specified by an expert department, based on legislation for a product.

Precedent
See Dependency Manager.

Product
A benefit or liability delivered by the organization.

Typically a benefit product will result in payments to clients.

Product Configuration
Configuration affecting a product's behavior, including:

* the splitting of the product's lifetime into product periods;

Appendix E. Glossary 209

* the association of business rules for calculating the product's eligibility, entitlement and
explanation; and

* the categories of explanation available and the dynamic UIM screens for displaying those
explanations.

Product Delivery Case
A type of case used to deliver a product.

Product Period
A period within a product's lifetime that has a single set of business rules for the calculation of
eligibility, entitlement and explanation.

See [11.4, “Handling Legislation Change,” on page 168

Product Structure
A description of the types of objectives available for the product and the frequencies at which
they can be delivered.

See [4.4.3.1, “Write the Product Structure Rule Classes,” on page 30.|

Propagator
See Rule Object Propagator.

Publication
The act of taking pending changes from a sandbox and making those changes part of the running
system's configuration.
Applies to:
+ CER Rule Sets - see[10.3.1.2, “CER Rules used by your Product,” on page 147

* CER Data Configurations - see [10.3.1.3, “Rule Object Data Configurations,” on page 148}
and/or

* Products - see 4.4.3.3, “Write the Product Periods,” on page 39|

Ramp-up, Recurring, Ramp-down
The initial, ongoing and final part of a periodic delivery respectively. Typically applies to benefit
payments.

See |[Chapter 9, “Scheduling Financials,” on page 131/

Rate Table
A table of numerical system-wide data that may change over time.

See "Implementing Rate Tables" in the Ciram Integrated Case Management Configuration Guide.

Reactive Determination
A determination automatically made by the Engine in response to data changes.

See [2.4.2.2, “Reactive Determination Calculations,” on page 11}

Reassessment
A determination of eligibility and entitlement that occurs after a case is activated, due to a change
in circumstances within the case and/or a change to product configuration which may affect its
calculations.

Rule Attribute
A named piece of data on a CER Rule Class.

e.g. a Person rule class might have a firstName rule attribute.
See the Cdram Express Rules Reference Manual.

Rule Category
A categorization of a CER rule set to allow for filtering when a user is searching for a rule set.

210 IBM Ctram Social Program Management: Inside Ctram Eligibility and Entitlement Using Ctiram Express Rules

Rule Class
A defined type of data manipulated by CER rules.

e.g. a rule set might contain a Person rule class.
See the Ciram Express Rules Reference Manual.

Rule Object
An instance of a rule class.

e.g. A Person rule class might have rule object instances for James Smith and Linda Smith.
See the Ciram Express Rules Reference Manual.

Rule Object Converter
Software which makes data available to CER as rule objects. Some types of rule object converters
can be configured.

See |Chapter 7, “Understanding Rule Object Converters and Propagators,” on page 83

Rule Object Propagator
Software which automatically maintains rule objects when application data changes in the
application. Some types of rule object propagators can be configured.

See [Chapter 7, “Understanding Rule Object Converters and Propagators,” on page 83

Rule Set
A collection of rule classes, which may be maintained and published.

Typically all the rule classes in a rule set are geared towards the same purpose.
See the Ciram Express Rules Reference Manual.

RuleDoc
A development tool for creating an HTML document to explain the structure of rule sets.

See the Ciram Express Rules Reference Manual.

Rules Declarations of business and/or technical logic for performing calculations.

Sandbox
An area where pending changes to the system can be accumulated prior to publication. Sandbox
data does not affect calculations which are based off published data.
Examples include:
e Sandbox for CER Rule Sets;
+ Sandbox for product configurations;
* Sandbox for CER Data Configurations; and
* Sandbox for in-edit evidence on a case (the Evidence Workspace).

SessionDoc
A development tool for viewing the rule objects manipulated in a CER Session.

See the Ciram Express Rules Reference Manual.

Snapshot Determination
A point-in-time record of a case's eligibility, entitlement and explanation.

See [3.3, “Snapshot Determinations,” on page 17|

Sub-screen
A dynamic UIM screen shown when a case worker expands a row of data on the screen, to "drill
down" into further details.

See [6.2.3, “Sub-screens,” on page 60

Appendix E. Glossary 211

Succession Set

A set of related evidence records which reflects the history of real-world changes in circumstance.
Older items in the succession set apply to circumstances which used to be true in the real world
but which are no longer true now.

Superseded Assessment Determination

Tag
Target

An assessment determination which used to form the basis of the delivery of a product, but has
since been replaced by a more up-to-date determination which has taken into account changes in
evidence or product-wide configuration.

See [3.4.2, “Historical Assessment Determinations,” on page 18]

See Objective Tag.
The participant who has caused an objective to be attained (typically the person in respect of
which benefit is paid).

For example, there may be a child benefit objective on a case for each child in the household;
each objective will be targeted at a different child (even if, overall, the total amount payable is
received by the primary client).

Evidence

Evidence of real-world circumstances which varies over time due to corrections and/or
successions.

See the following guides:

e Clram Evidence Guide;

* Clram Evidence Generator Business Guide;
e Cdram Evidence Generator Specification;
e Cdram Evidence Generator Modeling Guide;
* Designing Cidram Evidence Solutions;

e Cdram Evidence Developers Guide;

e Cdram Evidence Generator Cookbook; and

* Dynamic Evidence Configuration Guide.

Timeline

212

A CER data item which varies over time.

See the Ciram Express Rules Reference Manual.

IBM Ctiram Social Program Management: Inside Ctiram Eligibility and Entitlement Using Ctiram Express Rules

Notices

This information was developed for products and services offered in the U.S.A. IBM may not offer the
products, services, or features discussed in this document in other countries. Consult your local IBM
representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service. IBM
may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not grant you any license to these patents. You can send license
inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
US.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing

Legal and Intellectual Property Law.

IBM Japan Ltd.

19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some
states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this
statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in

any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 2012, 2013 213

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you. Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently created programs and other
programs (including this one) and (ii) the mutual use of the information which has been exchanged,
should contact:

IBM Corporation
Dept Fo, Bldg 1

294 Route 100

Somers NY 10589-3216
US.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided
by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or
any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be the
same on generally available systems. Furthermore, some measurements may have been estimated through
extrapolation. Actual results may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of performance, compatibility or any
other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only

All IBM prices shown are IBM's suggested retail prices, are current and are subject to change without
notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to change before the
products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs

in any form without payment to IBM, for the purposes of developing, using, marketing or distributing

214 IBM Ctram Social Program Management: Inside Ctram Eligibility and Entitlement Using Ctiram Express Rules

application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must include a copyright
notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs.
© Copyright IBM Corp. _enter the year or years_. All rights reserved.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
"Copyright and trademark information" at [http: / /www.ibm.com/legal /us/en/copytrade.shtmll

Other names may be trademarks of their respective owners. Other company, product, and service names
may be trademarks or service marks of others.

Notices 215

http://www.ibm.com/legal/us/en/copytrade.shtml

216 IBM Ciram Social Program Management: Inside Ctram Eligibility and Entitlement Using Ctiram Express Rules

Printed in USA

	Contents
	Figures
	Tables
	Chapter 1. Introduction
	1.1 Purpose
	1.2 Audience
	1.3 Related Reading
	1.4 Chapters in this Guide

	Chapter 2. Eligibility and Entitlement Processing at a Glance
	2.1 Introduction
	2.2 Product Configuration
	2.2.1 Example

	2.3 Recording of Input Data
	2.3.1 Example

	2.4 Rules Calculations and Determination Results
	2.4.1 What a Determination Result Contains
	2.4.1.1 The Three Es: Eligibility, Entitlement, and Explanation
	2.4.1.2 The Determination Result Covers the Lifetime of a Case

	2.4.2 What Triggers the Calculation of a Determination Result
	2.4.2.1 Active Determination Calculation Requests
	2.4.2.2 Reactive Determination Calculations

	2.4.3 How a Determination Result Is Calculated
	2.4.4 Example

	2.5 Determination Storage
	2.5.1 Example

	2.6 Scheduling Financials
	2.6.1 Example

	2.7 Determination Retrieval
	2.7.1 Example

	Chapter 3. Navigating Determinations
	3.1 Introduction
	3.2 Manual Check Determinations
	3.3 Snapshot Determinations
	3.4 Assessment Determinations
	3.4.1 Current Assessment Determination
	3.4.2 Historical Assessment Determinations
	3.4.3 Manual Reassessments

	Chapter 4. Calculating and Displaying Eligibility and Entitlement
	4.1 Introduction
	4.2 How It Looks
	4.2.1 Viewing a Determination's Coverage Periods
	4.2.2 Basic Eligibility/entitlement Decision Details

	4.3 How It Works
	4.3.1 Calculation of Eligibility and Entitlement
	4.3.1.1 A) ProductEligibilityEntitlementRuleSet ProductDeliveryCase rule object
	4.3.1.2 B) ProductEligibilityEntitlementRuleSet.ProductPeriod rule objects
	4.3.1.3 C) ProductEligibilityEntitlementRuleSet AbstractCase rule class
	4.3.1.4 D) Custom rule classes for eligibility/entitlement
	4.3.1.5 E) Custom rule classes for calculations
	4.3.1.6 F) RateRuleSet.RateCell rule objects and propagation configuration
	4.3.1.7 G) Custom Entity rule objects
	4.3.1.8 H) Custom Evidence rule objects
	4.3.1.9 I) DeterminationResult

	4.3.2 Display of Eligibility and Entitlement
	4.3.2.1 Dividing the Determination into Coverage Periods
	4.3.2.2 Displaying a Summary of Entitlement for a Coverage Period

	4.4 How to Use It
	4.4.1 Understanding Eligibility and Entitlement Concepts
	4.4.1.1 Case Lifetime
	4.4.1.2 Eligibility
	4.4.1.3 Objectives
	4.4.1.4 Objective Tags

	4.4.2 Analysis
	4.4.2.1 Identify the product periods for your product
	4.4.2.2 Identify what types of objective are delivered by your product, and at what frequencies
	4.4.2.3 Identify the rules that govern when a case is eligible
	4.4.2.4 Identify the rules that govern the objectives for each case
	4.4.2.5 Identify the rules that determine when an objective has been attained and its target
	4.4.2.6 Identify the rules that determine the values at which an objective can be delivered

	4.4.3 Implementation
	4.4.3.1 Write the Product Structure Rule Classes
	4.4.3.2 Write the Case Eligibility/Entitlement Calculation Rule Classes
	4.4.3.3 Write the Product Periods
	4.4.3.4 Choose or Create a Summarizer Strategy

	4.4.4 Testing

	Chapter 5. Calculating and Displaying Key Decision Factors
	5.1 Introduction
	5.2 How It Looks
	5.2.1 Viewing Key Decision Factors Graphically
	5.2.2 Viewing Key Decision Factors in a List

	5.3 How It Works
	5.3.1 Calculation of Key Decision Factors
	5.3.1.1 A) ProductEligibilityEntitlementRuleSet.ProductDeliveryCase rule object
	5.3.1.2 B) ProductKeyDataRuleSet AbstractCase rule class
	5.3.1.3 C) Custom rule classes for key decision factors
	5.3.1.4 D) Custom rule classes for calculations
	5.3.1.5 E) DeterminationResult

	5.3.2 Display of Key Decision Factors
	5.3.2.1 Adding Case Lifetime Events
	5.3.2.2 Adding Case Decision Events

	5.4 How to Use It
	5.4.1 Understanding Key Decision Factor Concepts
	5.4.1.1 Fixed Data Structure for Key Decision Factors
	5.4.1.2 Explicitly Named Key Events

	5.4.2 Analysis
	5.4.2.1 Identify which decision factors are "key"
	5.4.2.2 Identify the cardinality and descriptions for your key decision factors
	5.4.2.3 Identify the data type for each key decision factor

	5.4.3 Implementation
	5.4.3.1 Write the Case rule class
	5.4.3.2 Write the Key Decision Factor rule classes

	5.4.4 Testing

	Chapter 6. Calculating and Displaying Decision Details
	6.1 Introduction
	6.2 How It Looks
	6.2.1 Summary Display Category
	6.2.2 Decision Comparison
	6.2.3 Sub-screens
	6.2.4 Basic Eligibility/entitlement Information

	6.3 How It Works
	6.3.1 Calculation of Decision Details
	6.3.1.1 A) ProductEligibilityEntitlementRuleSet.ProductDeliveryCase rule object
	6.3.1.2 B) ProductDecisionDetailsRuleSet AbstractCase rule class
	6.3.1.3 C) Custom rule classes for decision details
	6.3.1.4 D) ProductDecisionDetailsRuleSet.AbstractCaseSubscreenDisplay rule class
	6.3.1.5 E) Custom rule classes for sub-screen details
	6.3.1.6 F) Custom rule classes for calculations
	6.3.1.7 G) DeterminationResult
	6.3.1.8 Basic Eligibility/Entitlement example XML output

	6.3.2 Display of Decision Details
	6.3.2.1 Basic Eligibility/Entitlement UIM examples

	6.4 How to Use It
	6.4.1 Understanding Decision Details Concepts
	6.4.2 Analysis
	6.4.2.1 Identify the Display Categories
	6.4.2.2 Sketch out the Screens
	6.4.2.3 Map displayed data to eligibility/entitlement data
	6.4.2.4 Identify keys for sub-screens
	6.4.2.5 Identify comparison data

	6.4.3 Implementation
	6.4.3.1 Write the Case rule class
	6.4.3.2 Implement attributes to return top-level screen data
	6.4.3.3 Implement attributes and rule classes for sub-screen data
	6.4.3.4 Write the Dynamic UIM screens
	6.4.3.5 Configure the Product

	6.4.4 Testing

	Chapter 7. Understanding Rule Object Converters and Propagators
	7.1 Introduction
	7.2 An Initial Assessment Example
	7.2.1 A System Administrator Creates and Publishes Rule Set Information for a Product
	7.2.2 A System Administrator Creates and Publishes a New Rate Table
	7.2.3 A Case Worker Registers a Person
	7.2.4 A Case Worker Creates a New Case for that Person
	7.2.5 A Case Worker Adds an Additional Member to the Case
	7.2.6 A Case Worker Captures and Activates Some Income Evidence
	7.2.7 A Case Worker Activates the Case

	7.3 The Framework for Converters and Propagators
	7.4 Rule Objects for Use with Eligibility and Entitlement Processing
	7.4.1 Product Delivery Rule Objects
	7.4.1.1 Overview
	7.4.1.2 Configuration
	7.4.1.3 Conversion Processing
	7.4.1.4 Precedents Identified
	7.4.1.5 Propagation Processing
	7.4.1.6 Example

	7.4.2 Rate Rule Objects
	7.4.2.1 Overview
	7.4.2.2 Configuration
	7.4.2.3 Conversion Processing
	7.4.2.4 Precedents Identified
	7.4.2.5 Propagation Processing
	7.4.2.6 Example

	7.4.3 Entity Rule Objects
	7.4.3.1 Overview
	7.4.3.2 Configuration
	7.4.3.3 Conversion Processing
	7.4.3.4 Precedents Identified
	7.4.3.5 Propagation Processing
	7.4.3.6 Example

	7.4.4 Active Succession Set Rule Objects
	7.4.4.1 Overview
	7.4.4.2 Configuration
	7.4.4.3 Conversion Processing
	7.4.4.4 Precedents Identified
	7.4.4.5 Propagation Processing
	7.4.4.6 Example

	7.4.5 Active Evidence Row Rule Objects
	7.4.5.1 Overview
	7.4.5.2 Configuration
	7.4.5.3 Conversion Processing
	7.4.5.4 Precedents Identified
	7.4.5.5 Propagation Processing
	7.4.5.6 Example

	7.5 Data Configuration Problems
	7.6 Data Access Points
	7.6.1 Normal Conversion
	7.6.2 Temporary Access to In-Edit Evidence Changes
	7.6.3 Incremental Propagation
	7.6.4 Bulk Maintenance of Rate Rule Objects

	7.7 Logging
	7.8 Supported Domain Types

	Chapter 8. How Determinations Are Stored
	8.1 Introduction
	8.2 The Database Tables
	8.2.1 CREOLECaseDetermination
	8.2.2 CREOLECaseDeterminationData
	8.2.3 CaseDecision
	8.2.4 CaseDecisionObjective
	8.2.5 CaseDecisionObjectiveTag
	8.2.6 CREOLECaseDecision

	8.3 Decision Periods
	8.4 Determination Comparison Strategies
	8.4.1 Strategy Implementations Included with the Engine
	8.4.2 Developing your own Strategy Implementation

	Chapter 9. Scheduling Financials
	9.1 Introduction
	9.2 Scheduling Financials for Eligible Case Decisions
	9.2.1 How It Looks
	9.2.2 How It Works
	9.2.2.1 Considering Case Decision Objectives
	9.2.2.2 Considering Nominee Component Assignments
	9.2.2.3 Considering Nominee Delivery Patterns
	9.2.2.4 Calculating Financial Component Cover Periods
	9.2.2.5 Calculating Open Ended Financial Component Cover Periods
	9.2.2.6 Calculating Financial Component Amounts
	9.2.2.7 Calculating Financial Component Effective Dates

	9.2.3 How to Use It
	9.2.3.1 Mandatory Information
	9.2.3.2 Optional Information

	9.3 Scheduling Financials for Case Deductions
	9.3.1 How It Looks
	9.3.2 How It Works
	9.3.2.1 Considering Case Deduction Items
	9.3.2.2 Considering Deduction Types
	9.3.2.3 Calculating Deduction Cover Periods

	9.3.3 How to Use It
	9.3.3.1 Mandatory Information
	9.3.3.2 Optional Information

	9.4 Scheduling Financials for Payment Corrections
	9.4.1 How It Looks
	9.4.2 How It Works
	9.4.2.1 Considering Payment Correction Types
	9.4.2.2 Considering Correction Products
	9.4.2.3 Considering Nominees

	9.4.3 How to Use It
	9.4.3.1 When will an Overpayment Correction case be created?
	9.4.3.2 When will an Underpayment Correction case be created?
	9.4.3.3 When will a Net Zero Correction case be created?

	Chapter 10. Reassessment - Handling Changes in Circumstance
	10.1 Introduction
	10.2 Case-level Reassessment
	10.2.1 Overview

	10.3 Bulk Reassessment
	10.3.1 Types of Change that Cause Bulk Reassessment
	10.3.1.1 Product Configuration
	10.3.1.2 CER Rules used by your Product
	10.3.1.3 Rule Object Data Configurations
	10.3.1.4 Rate Tables

	10.3.2 Approaches to Identifying and Reassessing All Affected Cases
	10.3.2.1 Requirements for Bulk Reassessment
	10.3.2.2 Multiple Reassessments during a Case's Lifetime
	10.3.2.3 Driving the Identification of Affected Cases
	10.3.2.4 Reassessment Processing

	10.3.3 Writing your own Bulk Reassessment Batch Process
	10.3.3.1 The CREOLEBulkCaseChunkReassessmentByProduct Batch Process
	10.3.3.2 Steps to Implement your own Bulk Reassessment Batch Process

	10.3.4 Bulk Reassessment for Multiple Simultaneous Changes
	10.3.5 Scheduling

	Chapter 11. Incremental Design and Evolution
	11.1 Introduction
	11.2 Starting with Rule Sets Included with the Application
	11.2.1 How Rule Sets Inter-relate
	11.2.1.1 CER Rules Artifacts - Technical Dependencies
	11.2.1.2 CER Rules Artifacts - Logical Categorizations

	11.2.2 Cloning CER Rule Sets

	11.3 Incremental Design
	11.3.1 Choose Default Configuration Options for Your Product
	11.3.2 Implement a Single Product Period First
	11.3.3 Focus on Eligibility/Entitlement Rules
	11.3.4 Spin-off a Task to Write Rule Classes for Custom Entities and/or Evidence Types
	11.3.5 Top-down Implementations
	11.3.6 Bottom-up Implementations
	11.3.7 Hard-code Rates at First
	11.3.8 Keep an Eye on Rule Class Dependencies
	11.3.9 Try Key Decision Factors before Decision Details
	11.3.10 Re-use the Basic Decision Details before Writing Your Own
	11.3.11 Start Slowly with Decision Details
	11.3.12 Throughout Your Product's Development

	11.4 Handling Legislation Change
	11.4.1 Branching Logic in Your CER Rule Sets
	11.4.2 Multiple Product Periods for Your Product
	11.4.3 Choosing the Right Approach

	11.5 Changing Product Configuration Settings
	11.5.1 Decision Summary Display Strategy
	11.5.2 Determination Comparison Strategy
	11.5.3 Allow Open-Ended Cases
	11.5.4 Reassessment Strategy

	Appendix A. Compliancy
	A.1 The Public API
	A.1.1 Identifying the Public API

	A.2 Code Package Restrictions
	A.3 Code Table Restrictions
	A.3.1 CaseAssessmentDetReason
	A.3.2 CaseSnapshotDetReason
	A.3.3 Restricted Code Table Packages
	A.3.4 Restricted Code Tables

	A.4 Database Restrictions
	A.4.1 RuleObjectPropagatorControl
	A.4.2 Restricted Database Tables

	A.5 CER Rule Sets Included with the Application

	Appendix B. The Eligibility and Entitlement Engine API and Customizability
	B.1 Eligibility and Entitlement Engine API
	B.2 Customizability
	B.2.1 Eligibility and Entitlement Engine Events
	B.2.2 Eligibility and Entitlement Engine Hooks

	Appendix C. Extensions to Cúram Express Rules
	C.1 Introduction
	C.2 Expressions
	C.2.1 combineSuccessionSets
	C.2.1.1 Overview
	C.2.1.2 Example
	C.2.1.3 Detailed Behavior
	C.2.1.4 CER Editor reference
	C.2.1.5 XML Reference

	C.2.2 legislationChange
	C.2.2.1 Overview
	C.2.2.2 Example
	C.2.2.3 Detailed Behavior
	C.2.2.4 CER Editor reference
	C.2.2.5 XML Reference

	C.2.3 rate
	C.2.3.1 Overview
	C.2.3.2 Example
	C.2.3.3 Detailed Behavior
	C.2.3.4 CER Editor reference
	C.2.3.5 XML Reference

	C.3 Annotations
	C.3.1 Display
	C.3.1.1 XML Reference

	C.3.2 DisplaySubscreen
	C.3.2.1 XML Reference

	C.3.3 Legislation
	C.3.3.1 XML Reference

	C.3.4 SuccessionSetPopulation
	C.3.4.1 XML Reference

	C.3.5 relatedEvidence
	C.3.5.1 XML Reference

	C.3.6 relatedSuccessionSet
	C.3.6.1 XML Reference

	Appendix D. Environment Variables
	D.1 Cúram Environment Variables Governing Behavior of Engine

	Appendix E. Glossary
	E.1 Terms Used throughout this Guide

	Notices
	Trademarks

