
Connector for Microsoft Excel User Guide

Platform Symphony™
Version 5.1
April 2011

Copyright © 1994-2011 Platform Computing Corporation

All rights reserved.

Although the information in this document has been carefully reviewed, Platform Computing Corporation
(“Platform”) does not warrant it to be free of errors or omissions. Platform reserves the right to make corrections,
updates, revisions or changes to the information in this document.

UNLESS OTHERWISE EXPRESSLY STATED BY PLATFORM, THE PROGRAM DESCRIBED IN THIS
DOCUMENT IS PROVIDED “AS IS” AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL PLATFORM COMPUTING BE LIABLE TO
ANYONE FOR SPECIAL, COLLATERAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING
WITHOUT LIMITATION ANY LOST PROFITS, DATA, OR SAVINGS, ARISING OUT OF THE USE OF OR
INABILITY TO USE THIS PROGRAM.

We’d like to hear
from you

You can help us make this document better by telling us what you think of the content, organization, and usefulness
of the information. If you find an error, or just want to make a suggestion for improving this document, please address
your comments to doc@platform.com.

Your comments should pertain only to Platform documentation. For product support, contact support@platform.com.

Document
redistribution and
translation

This document is protected by copyright and you may not redistribute or translate it into another language, in part or
in whole.

Internal
redistribution

You may only redistribute this document internally within your organization (for example, on an intranet) provided
that you continue to check the Platform Web site for updates and update your version of the documentation. You may
not make it available to your organization over the Internet.

Trademarks ® LSF is a registered trademark of Platform Computing Corporation in the United States and in other jurisdictions.
™ ACCELERATING INTELLIGENCE, PLATFORM COMPUTING, PLATFORM SYMPHONY, PLATFORM JOB
SCHEDULER, PLATFORM ISF, PLATFORM ENTERPRISE GRID ORCHESTRATOR, PLATFORM EGO, and the
PLATFORM and PLATFORM LSF logos are trademarks of Platform Computing Corporation in the United States and
in other jurisdictions.
® UNIX is a registered trademark of The Open Group in the United States and in other jurisdictions.

Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.

Microsoft is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other
countries.
® Windows is a registered trademark of Microsoft Corporation in the United States and other countries.

Intel®, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the
United States and other countries.

Other products or services mentioned in this document are identified by the trademarks or service marks of their
respective owners.

Third-party
license
agreements

http://www.platform.com/Company/third.part.license.htm

Third-party
copyright notices

http://www.platform.com/Company/Third.Party.Copyright.htm

Contents
Overview .. 5
About the connector for Excel ... 6
Prerequisites for integrating Excel and Symphony .. 7

Excel version ... 7
Symphony version and platforms .. 7
Install Excel ... 7
Install Symphony ... 8

Basic Symphony concepts .. 9
Connector for Excel components .. 11
Installing the application .. 12
Developing a connector for Excel client ... 13

Review and understand the sample .. 13
Build the sample client and add the application .. 18
Run the sample client and service .. 19

Configuring an application ... 24
Configure custom application profile ... 24
Configure logging .. 24

Testing and debugging spreadsheets ... 25
Test the demo spreadsheet .. 25
Test your spreadsheet .. 25
Debug your spreadsheet ... 26

Troubleshooting ... 27
"Out of memory" dialog in Excel ... 27
"Unable to Run Macro" dialog in Excel ... 28
Dialog Sniffer does not log data in %SOAM_HOME%\logs\Sniffer and does not
recognize FATAL_PATTERNS and NON_FATAL_PATTERNS 28
Client hangs when running Excel 2003 on 64-bit compute host 29
"This workbook has lost its VBA project ..." message in Excel 2007 29

Application profile .. 30
START_SNIFFER .. 30
FATAL_PATTERNS .. 30
NON_FATAL_PATTERNS .. 31
DISMISS_DLG_WITH_PATTERNS ... 31
FATAL_TIMEOUT ... 32
NON_FATAL_TIMEOUT ... 32
APP_DEPLOY_DIR .. 32

Connector for Microsoft Excel User Guide 3

Service data flow ... 33

4 Connector for Microsoft Excel User Guide

Overview
This document provides instructions for installing and configuring the Symphony—Excel integration
package on a host where Symphony DE is installed. Once integrated, clients can submit Excel spreadsheets
and data to Symphony to run on the grid.

Overview

Connector for Microsoft Excel User Guide 5

About the connector for Excel
The Platform Symphony connector for Excel enables Excel to run as a service in Symphony and perform
calculations in parallel on compute hosts in the cluster.

License agreement
Usage of this integration software is contingent upon acceptance of the terms and conditions of the
Platform Computing Corporate Software License Agreement (the "Clickwrap Agreement")
accompanying the Symphony software.

About the connector for Excel

6 Connector for Microsoft Excel User Guide

Prerequisites for integrating Excel and
Symphony
Excel version

• Microsoft Office 2000
• Microsoft Office 2002
• Microsoft Office 2003 SP2
• Microsoft Office 2007

Symphony version and platforms
Table 1: Symphony and Symphony DE version 5.1 on the following Windows operating systems:

Operating System

Windows Server 2003 Windows Server 2003 Standard Edition

Windows Server 2003 Enterprise Edition

Windows Server 2003 R2 Standard Edition

Windows Server 2003 R2 Enterprise Edition

Windows XP Windows XP Professional

Windows 2000 Windows 2000 Server

Windows 2000 Professional

Windows Vista Windows Vista Business

Windows Server 2008 Windows Server 2008 Standard Edition

Install Excel
1. Install Excel on all compute hosts. Refer to Excel documentation for more details.
2. Ensure that all Microsoft Office components are installed on each compute host. Do not use the "install

on first use" option during installation. This option causes Excel to pop up dialogs that cannot be
programmatically removed.

3. Log onto all compute hosts at least once with the user account under which Symphony workload will
be executed, to initialize the data associated with this user profile.

4. Set Excel macro security to Low. This prevents security dialogs from displaying. For Excel 2000, 2002,
and 2003, go to Tools > Macro > Security. For Excel 2007, on the Developer tab, in the Code group,
click Macro Security.

Prerequisites for integrating Excel and Symphony

Connector for Microsoft Excel User Guide 7

Install Symphony
1. Install Symphony DE on the client host and Symphony on the compute and management hosts. The

system environment variable SOAM_HOME should point to the Symphony DE installation directory.

Prerequisites for integrating Excel and Symphony

8 Connector for Microsoft Excel User Guide

Basic Symphony concepts

Application
A service-oriented application is a type of application software, where the business logic is encapsulated
in one or multiple software programs called services that are separated from its client logic.

Application profile
The application profile is an XML file that defines the properties of a Symphony application, including
the name of the service that performs the calculation and the scheduling parameters to apply.

The application profile contains runtime parameters for workload, service, and the middleware that define
how Symphony runs workload. An application profile provides flexibility to dynamically change
application parameters without requiring you to change your application code and rebuild the application.

An application profile is associated with an application. An application is associated with one consumer.
You must register the application profile of every application you want Symphony to manage.

Symphony client application
A program or executable that needs work done through a service. Requests are submitted via an API to
the service.

Symphony service
A service is a self-contained business function that accepts one or more requests and returns one or more
responses through a well-defined, standard interface.

The service performs work for a client program. It is a component capable of performing a task, and is
identified by a name. Platform Symphony runs services on hosts in the cluster.

The Symphony service is the part of your application that does the actual calculation. The service
encapsulates business logic.

Session
A group of tasks that share common characteristics, such as data.

Connection
The connection on which a session is created provides a conduit for the tasks.

Task
A task is the unit of work that runs on each individual host when Symphony workload is running. The
task consists of a message request (input) and, when completed by a service, a response (output).

Basic Symphony concepts

Connector for Microsoft Excel User Guide 9

Consumer
A consumer is a generalized notion of something that uses resources.

Log files and levels
The integration software uses the log4j logging framework. Log classes can be found in the log4j properties
files located in the conf directory. Here are the most commonly-used logging levels in the log4j
framework:

• ALL has the lowest possible rank and is intended to turn on all logging.
• DEBUG level designates fine-grained informational events that are most useful for debugging an

application.
• ERROR level designates error events that might still allow the application to continue running.
• FATAL level designates very severe error events that will presumably lead the application to abort.
• INFO level designates informational messages that highlight the progress of the application at coarse-

grained level.
• TRACE level designates finer-grained informational events than the DEBUG level.
• WARN level designates potentially harmful situations.

Basic Symphony concepts

10 Connector for Microsoft Excel User Guide

Connector for Excel components

Service
Located in %SOAM_HOME%\5.1\Integrations\ConnectorForMsExcel\service. The service acts
as a wrapper to Excel, and uses the information passed from the client: spreadsheet name, macro name
and two parameters for the macro to invoke Excel on the compute host and execute the macro.

The VBA macro formats its result message and returns the result to the service. The service then sends
the result back to the client. The service closes Excel upon completion of the task.

Note:
Output messages generated by the service are quite large, approximately
1 KB in size. Take this into account when examining performance.

The service also contains ConnectorForExcel.dll, which is a service DLL used to invoke Excel.

ConnectorForExcelDemo.xls
Located in %SOAM_HOME%\5.1\Integrations\ConnectorForMsExcel\samples
\spreadsheets. Actual spreadsheet that contains the business logic to perform calculations in Excel.
Contains the MyMacro VBA function. The client sends this spreadsheet as common data for the
ConnectorForMsExcel Service to process.The demo spreadsheet can be used as a template for modifying
your own spreadsheets to work with the ConnectorForMsExcel service.

DialogSniffer.exe
Used for troubleshooting. Parameters for DialogSniffer are configured in the application profile. Detects
dialog boxes that appear during the execution of a task, and writes the dialog box text to a log file. Can
dismiss dialogs based on text patterns specified in the application profile so that Excel can continue
calculations.

VBAMacroTest.xls
Autonomous spreadsheet used to debug a macro in your own spreadsheet. Uses
ConnectorForExcel.dll directly as a COM-object without Symphony. Packaged with the service so
that you can test spreadsheets on compute hosts if needed.

Connector for Excel components

Connector for Microsoft Excel User Guide 11

Installing the application
Perform the following steps on the client host.

1. Double-click the SymphonyConnectorForMsExcel5.1.0_win32.msi file.
2. Follow the screen prompts to install the package.
3. Go through the sample tutorial.

Refer to Developing a connector for Excel client.

Installing the application

12 Connector for Microsoft Excel User Guide

Developing a connector for Excel client

Goal
In this tutorial, you will learn how to run Excel as a service in Symphony and perform calculations on
compute hosts in the cluster.

At a glance
Before you begin, ensure you have installed and started Symphony DE. You will do the following:

1. Review and understand the sample
2. Build the sample client and deploy the sample service
3. Run the sample client and service

Review and understand the sample
Review the C++ sample client code to learn how to link your Excel spreadsheets to Symphony.

The connector for Excel package also includes a VB client sample that connects to Symphony using the
COM API; refer to the Cross-language tutorial in the Knowledge Center for more information.

Locate the code samples
Note:
%SOAM_HOME% is an environment variable that represents the
Symphony DE installation directory; for example, C:\SymphonyDE.

Solution file (Visual Studio .NET)

%SOAM_HOME%\5.1\Integrations\ConnectorForMsExcel\samples\CPP
\AsyncClient\connector_for_ms_excel_sample_<version>.sln

where <version> is the version of Visual Studio
Client

%SOAM_HOME%\5.1\Integrations\ConnectorForMsExcel\samples\CPP
\AsyncClient\AsyncClient.cpp

Input, output, and data objects

%SOAM_HOME%\5.1\Integrations\ConnectorForMsExcel\src\

Service
%SOAM_HOME%\5.1\Integrations\ConnectorForMsExcel\service
\ConnectorForMsExcel.zip

Spreadsheet
%SOAM_HOME%\5.1\Integrations\ConnectorForMsExcel\samples\spreadsheets
\ConnectorForExcelDemo.xls

Developing a connector for Excel client

Connector for Microsoft Excel User Guide 13

Application profile

The service required to compute the input data along with additional application
parameters are defined in the application profile:

%SOAM_HOME%\5.1\Integrations\ConnectorForMsExcel\samples\CPP
\AsyncClient\connectorForExcelSampleApp.xml

What the sample does
The sample provides an asynchronous C++ client, Excel spreadsheet, and wrapper service for Excel. The
Excel spreadsheet contains business logic implemented in the form of a macro (VBA function) that
performs calculations.

When you run the sample, here is the sequence of events:

1. The client sends task input messages and common data to the ConnectorForMsExcel service. Each
task input message contains:

• workbook name (ex. ConnectorForExcelDemo.xls) containing the macro
• macro name (ex. MyMacro)
• input string (data) passed to the macro.

The common data contains the path of the Excel spreadsheet.
2. The ConnectorForMsExcel service launches Excel, which opens the workbook and executes the VBA

macro. The VBA macro processes the input data string that is sent with each task input message.
3. The macro formats the result message and passes it to the service. The service sends the message to

the client, which displays it in the command prompt window. The service closes Excel upon
completion of the tasks.

Step 1: Develop the spreadsheet macro
The spreadsheet contains the logic (VBA code) that performs the calculations on the input data. When
we create the input message, we pass the name of the VBA macro and other data to the service.

In the ConnectorForExcelDemo.xls spreadsheet, we implement MyMacro() as the main function. It calls
the Initialize() function, which parses the input data string to extract the values for
<NumberIterations> and <Seed>.

The Sim_RunFunction() performs a cycle of calculations based on the number of iterations specified
in the input data string and prints out the results in the spreadsheet.

Step 2: Initialize the client
In AsyncClient.cpp, when you initialize, you initialize the Symphony client infrastructure. You
initialize once per client.

Important:
Initialization is required. Otherwise, API calls will fail.

...
 SoamFactory::initialize();
...

Developing a connector for Excel client

14 Connector for Microsoft Excel User Guide

Step 3: Implement the response handler (callback)
method to retrieve output messages

With an asynchronous client, when a task is completed by the service, there must be a means of
communicating this status back to the client. The response handler or callback is implemented for this
purpose. It is called by the middleware each time a service completes a task.

In this sample, the OnResponse() method is the response handler. It is a member of the
MySessionCallback class that inherits from the SessionCallback class. The method accepts the
TaskOutputHandle as an input argument, which is passed to the method by the middleware whenever
the respective task has completed.

First, we check if there is output to retrieve. If so, get the output message from the service and print out
the task ID. Extract and print the message from the task result using the populateTaskOutput()
method.

Increment the counter that records the number of task results received. The critical section object ensures
that another thread does not try to increment the counter while it is being accessed.

 void onResponse(TaskOutputHandlePtr &output) throw()
 {
 cout << "onResponse handler called" << endl;
 try
 {
 cout << "Check for success of task" << endl;
 // check for success of task
 if (true == output->isSuccessful())
 {
 // get the message returned from the service
 ExcelMessage outMsg;
 output->getMessage(&outMsg);
 // display content of reply
 cout << "Task Succeeded [" << output->getId() << "]" << endl;
 string message = outMsg.GetResult();
 if(message.length() > 512)
 {
 string tmp = message.substr(0, 512);
 cout << tmp ;
 cout << "(to display the actual size " << (unsigned int)
 message.length() << " is truncated to 512)" << endl << endl;
 }
 else
 {
 cout << outMsg.GetResult() << endl << endl;
 }
 }
 else
 {
 // get the exception associated with this task
 SoamExceptionPtr ex = output->getException();
 cout << "Task Failed : " << ex->what() << endl << endl;
 }
 }
 catch(SoamException &exception)
 {
 cout << "Exception occured in OnResponse() : " << exception.what() << endl;
 }
 // Update counter used to synchronize the controlling thread
 // with this callback object
 EnterCriticalSection(&m_criticalSection);
 ++m_tasksReceived;
 LeaveCriticalSection(&m_criticalSection);
 }

Developing a connector for Excel client

Connector for Microsoft Excel User Guide 15

Step 4: Connect to an application
To send data to be calculated in the form of input messages, you connect to an application.

You specify an application name, a user name, and password. The application name must match that
defined in the application profile.

For Symphony DE, there is no security checking and login credentials are ignored—you can specify any
user name and password. Security checking is done however, when your client application submits
workload to the actual grid.

The default security callback encapsulates the callback for the user name and password.

...
 const char appName[]="ConnectorForExcel";
...
 // setup application authentication information using the default security
 //provider,
 DefaultSecurityCallback securityCB("Guest", "Guest");
...
 // connect to the specified application
 ConnectionPtr conPtr = SoamFactory::connect(appName, &securityCB);
...
 // retrieve and print our connection ID
 cout << "get connection ID=" << conPtr->getId() << endl << endl;

...

Step 5: Create a session to group tasks:
In AsyncClient.cpp, perform this step after you have connected to the application.

When creating an asynchronous session, you need to specify the session attributes by using the
SessionCreationAttributes object. In this sample, we create a SessionCreationAttributes object called
attributes and set five parameters in the object.

The first parameter is the session name. This is optional. The session name can be any descriptive name
you want to assign to your session. It is for information purposes, such as in the command line interface.

The second parameter is the session type. The session type is optional. You can leave this parameter blank
and system default values are used for your session.

The third parameter is the session flag, which we specify as SF_RECEIVE_ASYNC. You must specify it
as shown. This indicates to Symphony that this is an asynchronous session.

The fourth parameter is the common data object containing the path to the Excel spreadsheet that you
want to send to the service.

The fifth parameter is the callback object.

We pass the attributes object to the createSession() method, which returns a pointer to the session.

Developing a connector for Excel client

16 Connector for Microsoft Excel User Guide

...
 // create call back
 MySessionCallback myCallback;
 std::vector<std::string> fileNames;
 std::string pathToWorkBookeFile="C:\\SymphonyDE\\DE32\\3.2\\Integrations\\
 ConnectorForMsExcel\\samples\\spreadsheets\\ConnectorForExcelDemo.xls";
 fileNames.push_back(pathToWorkBookeFile);
 ExcelCommonData commonData(fileNames);
 cout << "Creating an asynchronous Session" << endl;
 // Create an asynchronous Session
 SessionCreationAttributes attributes;
 attributes.setSessionName("mySession");
 attributes.setSessionType("ShortRunningTasks");
 attributes.setSessionFlags(Session::ReceiveAsync);
 attributes.setCommonData(&commonData);
 attributes.setSessionCallback(&myCallback);
 // Create a synchronous session
 SessionPtr sesPtr = conPtr->createSession(attributes);
 cout << " Session created" << endl;
 // retrieve and print session ID
 cout << " Session ID:" << sesPtr->getId() << endl << endl;
...

Step 6: Send input data to be processed
In this step, we create 10 input messages to be processed by the service. We call the
fillMessageWithExcelData() method. The fillMessageWithExcelData() method fills the
inMsg object with (1) spreadsheet name, (2) macro name, and (3) data input string. When a message is
sent with the sendTaskInput() method, a task input handle is returned. This task input handle contains
the ID for the task that was created for this input message.

...
 int tasksToSend = 10;
 cout << "Send " << tasksToSend << " messages to Excel service" << endl;
 for (int taskCount = 0; taskCount < tasksToSend; taskCount++)
 {
 // Create a message
 ExcelMessage inMsg;
 cout << "Preparing message #" << taskCount +1 << endl;
 fillMessageWithExcelData(inMsg);

 cout << " " << inMsg.ToString() << endl;
 cout << "Trying to submitt task..." << endl;
 // send it
 TaskInputHandlePtr input = sesPtr->sendTaskInput(&inMsg);

 // retrieve and print task ID
 cout << " Task submitted with ID : " << input->getId() << endl << endl;
 }
...

...
void fillMessageWithExcelData(ExcelMessage &inMsg)
{
 char cWorkbookName[]="ConnectorForExcelDemo.xls";
 inMsg.SetWorkbookName(cWorkbookName);
 char cMacroName[]="MyMacro";
 inMsg.SetMacroName(cMacroName);
 char sInputString[]="<NumberIterations>1</NumberIterations><Seed>55545</Seed>";
 inMsg.SetParam(sInputString);
}
...

Developing a connector for Excel client

Connector for Microsoft Excel User Guide 17

Step 7: Wait for replies
After all 10 tasks (messages) have been sent to the service, the main client execution thread must wait for
all tasks to be processed before uninitializing the client API. As each task is completed by the service, the
m_tasksReceived variable is incremented; refer to Step 3. The myCallback.getReceived() method
returns the value of m_tasksReceived. If m_tasksReceived is less than the total number of tasks sent and
there are no exceptions thrown, the main thread waits two seconds before checking the value of
m_tasksReceived again. This cycle continues until all the tasks results are received.

...
cout << "Wait till all replies have been received asynchronously by our callback ..."
 << endl << endl;
 while ((myCallback.getReceived() < tasksToSend) && !myCallback.getDone())
 {
 ourSleep(2);
 }
...

...
void ourSleep(unsigned long sleepInSeconds)
{
 soam::Sleep(sleepInSeconds * 1000);
}
...

Step 8: Uninitialize
Always uninitialize the client API at the end of all API calls. If you do not call uninitialize, the client API
will be in an undefined state and resources used by the client will be held indefinitely.

Important:
Once you uninitialize, all objects become null. For example, you can no
longer create a session or send an input message.

...
SoamFactory::uninitialize();
...

Build the sample client and add the application
Build the sample client

1. Locate solution file connector_for_ms_excel_sample_<version>.sln in %SOAM_HOME%\5.1
\Integrations\ConnectorForMsExcel\samples\CPP\AsyncClient.

2. Load the file into Visual Studio and build it. You can find the compiled client binary in %SOAM_HOME
%\5.1\Integrations\ConnectorForMsExcel\samples\CPP\output\

Add the application
When you add an application through the DE PMC, you must use the Add Application wizard. This
wizard defines a consumer location to associate with your application, deploys your service package, and
registers your application. After completing the steps with the wizard, your application should be ready
to use.

Developing a connector for Excel client

18 Connector for Microsoft Excel User Guide

1. Click Symphony Workload > Configure Applications.

The Applications page displays.
2. Select Global Actions > Add/Remove Applications.

The Add/Remove Application page displays.
3. Select Add a new application, then click Continue.

The Adding an Application page displays.
4. Select Use existing profile and add application wizard. Click Browse and navigate to %SOAM_HOME

%\5.1\Integrations\ConnectorForMsExcel\samples\CPP\AsyncClient.
5. Select application profile connectorForExcelSampleApp.xml, then click Continue.

The Service Package location window displays.
6. Click Browse and navigate to %SOAM_HOME%\5.1\Integrations\ConnectorForMsExcel

\service. Select service package ConnectorForMsExcel.zip, then click Continue.

The Confirmation window displays.
7. Review your selections, then click Confirm.

The project wizard creates your application and registers it within Symphony.
8. Click Close.

The application is now enabled.

Run the sample client and service
To run the service, you run the client application. The service a client application uses is specified in the
application profile.

1. Go to the directory in which the client executable is located:

cd %SOAM_HOME%\5.1\Integrations\ConnectorForMsExcel\samples\CPP\output
2. Run the client application:

AsyncClient.exe

The client starts and the system starts the corresponding service. You should see the following output
in the command line window as tasks are submitted to the service.

Developing a connector for Excel client

Connector for Microsoft Excel User Guide 19

Developing a connector for Excel client

20 Connector for Microsoft Excel User Guide

Developing a connector for Excel client

Connector for Microsoft Excel User Guide 21

Developing a connector for Excel client

22 Connector for Microsoft Excel User Guide

Developing a connector for Excel client

Connector for Microsoft Excel User Guide 23

Configuring an application
Configure custom application profile

1. Copy %SOAM_HOME%\5.1\Integrations\ConnectorForMsExcel\samples\CPP
\AsyncClient\connectorForExcelSampleApp.xml and create a new file.

2. Change the consumer section to indicate your application name and consumer:

...
 <Consumer applicationName="ConnectorForExcel"
consumerId="/SampleApplications/SOASamples"
.../>
...

3. Consider and decide which of the following parameters to change, if necessary, for your application.

...<env name="START_SNIFFER">false</env>
<env name="FATAL_PATTERNS">Compile error</env>
<env name="NON_FATAL_PATTERNS">The Office Assistant
 could not be started</env>
<env name="DISSMISS_DLG_WITH_PATTERNS">Simulated error
 happened</env>
<env name="FATAL_TIMEOUT">30</env>
<env name="NON_FATAL_TIMEOUT">40</env>
<env name="APP_DEPLOY_DIR">${SOAM_DEPLOY_DIR}</env>
...

Configure logging
1. Make a backup copy of the api.log4j.properties file in %SOAM_HOME%\conf.
2. Copy the %SOAM_HOME%\5.1\Integrations\ConnectorForMsExcel\conf

\api.log4j.properties file to %SOAM_HOME%\conf.

Configuring an application

24 Connector for Microsoft Excel User Guide

Testing and debugging spreadsheets
Test the demo spreadsheet

Before using your spreadsheet with Symphony, debug it with VBAMacroTest.xls. The macro in this
spreadsheet performs the exact same steps as the ConnectorForExcel service.

1. Register ConnectorForExcel.dll.

regsvr32 ConnectorForExcel.dll
2. In Excel, open %SOAM_HOME%\5.1\Integrations\ConnectorForMsExcel\samples

\spreadsheets\VBAMacroTest.xls.
3. Ensure the ConnectorForExcel.dll is referenced. The VBA code in VBAMacroTest.xls requires

the ConnectorForExcel.dll COM object to be properly referenced because it attempts to create
an instance of that COM object.
a) Select Tools > Macro > Visual Basic Editor.
b) In the Visual Basic Editor window, select Tools > References.

The VBAProject dialog box opens.
c) In the dialog, select the "ConnectorForMSExcel 1.0 Type Library" to place a checkmark in the

checkbox.
4. Test that VBAMacroTest.xls works with the demo spreadsheet.

a) In VBAMacroTest.xls, specify parameters to test the spreadsheet:

1. Name of spreadsheet to test: ConnectorForExcelDemo.xls
2. Absolute path to the directory that contains the spreadsheet to test:

For example: %SOAM_HOME%\5.1\Integrations\ConnectorForMsExcel\samples
\spreadsheets

b) Click the button Excecute Macro.

You should see the following output:

Test your spreadsheet
1. Open VBAMacroTest.xls and specify parameters for your spreadsheet:

1. Name of spreadsheet to test: Specify the name of your Excel spreadsheet.

Testing and debugging spreadsheets

Connector for Microsoft Excel User Guide 25

2. Name of VBA macro to test: Indicate the macro to execute.
3. Fill in the remaining fields as required.

Debug your spreadsheet
1. In VBAMacroTest.xls, use the VBA debugger to stop in the Sub CommandButton1_Click() line,

and check step-by-step what ConnectorForExcel.dll returns in the following statements:

• result_start = TestExcelRunnerDemo.StartExcel(pid)
• result = TestExcelRunnerDemo.ExecuteMacro(SheetName, MacroName, Param, PathPrefix)
• result_quit = TestExcelRunnerDemo.QuitExcel()

2. Examine the dialog box messages raised during execution of your macro and eliminate their causes.
3. Consider your current memory threshold setting in Excel, and ensure it is set at a level that will allow

macro execution. See Troubleshooting section for details.

Testing and debugging spreadsheets

26 Connector for Microsoft Excel User Guide

Troubleshooting
This section provides troubleshooting tips in response to error messages that may appear when running
your application.

"Out of memory" dialog in Excel

Reason:
An "Out of Memory" message may be reported if there is insufficient memory available to complete each
process, even if it seems that there is sufficient memory available in the system as a whole. In this case,
the Dialog Sniffer log file may contain one or both of the following messages:

I_n_s_p_e_c_t_W_i_n_d_o_w_H_o_o_k__i_s__i_n_v_o_k_e_d__i_n_ r_e_s_p_o_n_s_e__t_o_
W_M__I_N_I_T_D_I_A_L_O_G_. Tue Oct 19 12:17:47 2004 E_n_t_e_r_e_d__I_s_A_M_e_s_s_a_g_e_
B_o_x__f_u_n_c_t_i_o_n_._._.
T_h_e__o_p_e_n_e_d__w_i_n_d_o_w_'_s__c_l_a_s_s__n_a_m_e__i_s_:__<#32770>
T_h_e__o_p_e_n_e_d__w_i_n_d_o_w_'_s__t_e_x_t__i_s_:__<Microsoft Visual Basic>
S_t_a_t_i_c__t_e_x_t__i_s_:__<Microsoft Visual Basic>
D_e_s_t_r_o_y__p_a_t_t_e_r_n_s__r_e_t_r_i_e_v_e_d_. B_e_g_i_n__t_o_
_i_n_s_p_e_c_t__t_h_e__w_i_n_d_o_w_. C_l_a_s_s__N_a_m_e_:__<Button>
B_u_t_t_o_n__c_o_n_t_a_i_n_s__t_h_i_s__t_e_x_t:__<OK> B_e_g_i_n__t_o_
_i_n_s_p_e_c_t__t_h_e__w_i_n_d_o_w_. C_l_a_s_s__N_a_m_e_:__<Button>
B_u_t_t_o_n__c_o_n_t_a_i_n_s__t_h_i_s__t_e_x_t:__<Help> B_e_g_i_n__t_o_
_i_n_s_p_e_c_t__t_h_e__w_i_n_d_o_w_. C_l_a_s_s__N_a_m_e_:__<Static>
_G_e_t_W_i_n_d_o_w_T_e_x_t__r_e_t_u_r_n_s__t_h_e__e_r_r_o_r_:__ <Cannot create a file when that file
already exists. > B_e_g_i_n__t_o_ _i_n_s_p_e_c_t__t_h_e__w_i_n_d_o_w_. C_l_a_s_s__N_a_m_e_:__<Static>
S_t_a_t_i_c__t_e_x_t__i_s_:__<Out of memory>

I_n_s_p_e_c_t_W_i_n_d_o_w_H_o_o_k__i_s__i_n_v_o_k_e_d__i_n_ r_e_s_p_o_n_s_e__t_o_
W_M__I_N_I_T_D_I_A_L_O_G_. Tue Oct 19 12:24:25 2004 E_n_t_e_r_e_d__I_s_A_M_e_s_s_a_g_e_
B_o_x__f_u_n_c_t_i_o_n_._._.
T_h_e__o_p_e_n_e_d__w_i_n_d_o_w_'_s__c_l_a_s_s__n_a_m_e__i_s_:__<#32770>
T_h_e__o_p_e_n_e_d__w_i_n_d_o_w_'_s__t_e_x_t__i_s_:__ <Microsoft Excel>
S_t_a_t_i_c__t_e_x_t__i_s_:__<Microsoft Excel> D_e_s_t_r_o_y__p_a_t_t_e_r_n_s__r_e_t_r_i_e_v_e_d_.
B_e_g_i_n__t_o_ _i_n_s_p_e_c_t__t_h_e__w_i_n_d_o_w_. C_l_a_s_s__N_a_m_e_:__<Button>
B_u_t_t_o_n__c_o_n_t_a_i_n_s__t_h_i_s__t_e_x_t:__<OK> B_e_g_i_n__t_o_
_i_n_s_p_e_c_t__t_h_e__w_i_n_d_o_w_. C_l_a_s_s__N_a_m_e_:__<Static>
_G_e_t_W_i_n_d_o_w_T_e_x_t__r_e_t_u_r_n_s__t_h_e__e_r_r_o_r_:__ <Cannot create a file when that file
already exists. > B_e_g_i_n__t_o_ _i_n_s_p_e_c_t__t_h_e__w_i_n_d_o_w_. C_l_a_s_s__N_a_m_e_:__<Static>
S_t_a_t_i_c__t_e_x_t__i_s_:__<Not enough memory to run Microsoft Excel.>

Solution:
1. Increase the memory size per process.
2. Increase the desktop heap value as follows:

1. From the Start menu, select Run.
2. Enter regedit to invoke the registry editor.
3. Go to HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Session Manager

\SubSystems\.

Troubleshooting

Connector for Microsoft Excel User Guide 27

4. Double-click the Windows parameter to display the value data.

For example:

%SystemRoot%\system32\csrss.exe ObjectDirectory=\Windows
SharedSection=1024,3072,512 Windows=On SubSystemType= Windows
ServerDll=basesrv,1 ServerDll=winsrv:UserServerDllInitialization,3
ServerDll= winsrv:ConServerDllInitialization,2 ProfileControl=Off
MaxRequestThreads=16

The desktop heap memory is defined under:

SharedSection=1024,3072,512
5. Increase the desktop heap memory.

The third number ("512" in the example above) is a non-interactive desktop heap. Because the
non-interactive desktop heap is mapped into the address space of each and every process, this
value should not be set to an arbitrarily high value, but should only be increased sufficiently to
allow all the desired applications (such as Excel) to run.

"Unable to Run Macro" dialog in Excel

Reason:
Excel security settings are set too high, disallowing the client macros from running without direct user
approval.

Solution:
1. In Excel, select Tools > Macro > Security.
2. Click the Security Level tab, and then click Low.

Dialog Sniffer does not log data in %
SOAM_HOME%\logs\Sniffer and does not
recognize FATAL_PATTERNS and
NON_FATAL_PATTERNS

Reason:
Environment variable "SOAM_HOME" is not set to the "DialogSnifferService" process so the sniffer
crashes when it creates a log folder or file. (The sniffer calls the ACE method and without "SOAM_HOME",
it cannot load ACE.dll.) This behavior has been observed on all Windows platforms.

Solution:
1. Reboot your machine.

Troubleshooting

28 Connector for Microsoft Excel User Guide

Client hangs when running Excel 2003 on 64-bit
compute host

Reason:
Symphony Connector on compute host fails to start Excel process. This behavior has been observed only
on Windows 2003 64-bit machines with Microsoft Office 2003 installed while running Symphony
connector in 32-bit mode.

Solution:
1. Install the latest updates for Microsoft Office 2003 on all compute hosts in the cluster.

"This workbook has lost its VBA project ..."
message in Excel 2007

Reason:
This error happens if "Visual Basic for Application" was not installed during the installation of MS Office
2007.

Solution:
1. Update your installation of MS Office:

a) Close Excel if it is open.
b) In the Control Panel, choose Add or Remove Programs (or Programs and Features in Windows

Vista).
c) Select Microsoft Office in the list and click Change.
d) Choose Add or Remove Features.
e) Select Visual Basic for Applications in the Office Shared Features list and set it to Run from My

Computer. Click Continue.
f) After the installation is finished, you will be able to use the Excel file with its VBA project when

you start Excel.

Troubleshooting

Connector for Microsoft Excel User Guide 29

Application profile
This section provides reference information for the application profile that is specific to the
ConnectorForMsExcel application.

START_SNIFFER
Set this element to "true" to start Dialog Sniffer by the task if it has not yet been started. Dialog Sniffer
detects dialog boxes that appear during the execution of a task, and writes the dialog box text to a log file.

Where used
Service > osTypes > osType > env

Required/Optional
Optional

Valid values
true | false

Default value
false

FATAL_PATTERNS
Only used when START_SNIFFER is set to true.

String indicating a pattern or list of patterns to search for within the log files under directory %SOAM_HOME
%\logs\sniffer.

Separate different strings with double semi-colons (;;).

The ConnectorForExcel service searches the log file for this pattern. If the log file contains one of the
specified patterns, the service terminates the Excel process started by this task and throws a fatal exception.
Symphony will not attempt to rerun this task.

If no patterns are specified, the service will not search the log file for patterns.

Where used
Service > osTypes > osType > env

Required/Optional
Optional

Valid values
string

Application profile

30 Connector for Microsoft Excel User Guide

NON_FATAL_PATTERNS
Only used when START_SNIFFER is set to true.

String indicating a pattern or list of patterns to search for within the log files under directory %SOAM_HOME
%\logs\sniffer.

Separate different strings with double semi-colons (;;).

The ConnectorForExcel service searches the log file for this pattern. If the log file contains one of the
specified patterns, the service terminates the Excel process started by this task and throws a failure
exception. Symphony will attempt to rerun this task up to the taskRetryLimit indicated in the session
type.

If no patterns are specified, the service will not search the log file for patterns.

Where used
Service > osTypes > osType > env

Required/Optional
Optional

Valid values
string

DISMISS_DLG_WITH_PATTERNS
Only used when START_SNIFFER is set to true.

String indicating a pattern or list of patterns to search for within the log files under directory %SOAM_HOME
%\logs\sniffer.

Separate different strings with double semi-colons (;;).

The ConnectorForExcel service searches the log file for this pattern. If the log file contains one of the
specified patterns, Symphony dismisses any dialog boxes that contain text with the specified patterns.
Dismissed dialog boxes are registered in the log files under directory %SOAM_HOME%\logs\sniffer.

If no patterns are specified, no dialogs are dismissed.

Where used
Service > osTypes > osType > env

Required/Optional
Optional

Valid values
string

Application profile

Connector for Microsoft Excel User Guide 31

FATAL_TIMEOUT
Task timeout in seconds for Fatal exceptions.

The ConnectorForExcel service throws a fatal exception when it detects that the execution time of the
task exceeds the specified timeout. Before throwing this fatal exception, the service terminates the Excel
process started by this task. Symphony will not retry the terminated task.

If a timeout is not specified, or if it is equal to 0, task execution time is considered unlimited.

Where used
Service > osTypes > osType > env

Required/Optional
Optional

Default value
30 seconds

NON_FATAL_TIMEOUT
Task timeout in seconds for Failure exceptions.

The ConnectorForExcel service throws a failure exception when it detects that the execution time of the
task exceeds the specified timeout. Symphony will attempt to rerun this task up to the taskRetryLimit
indicated in the session type.

If a timeout is not specified, or if it is equal to 0, task execution time is considered unlimited.

Where used
Service > osTypes > osType > env

Required/Optional
Optional

Default value
40 seconds

APP_DEPLOY_DIR
Do not use. Reserved for system use.

Application profile

32 Connector for Microsoft Excel User Guide

Service data flow
This section describes the data flow through the ConnectorForExcel service. Understanding these
concepts will help you design your spreadsheets for optimal performance.

• In onCreateService(), the ConnectorForExcel service:

1. Creates a COM object instance of ConnectorForExcel.dll.
2. ConnectorForExcel.dll starts the Excel process and waits for task inputs from the client.

• In onInvoke(), the ConnectorForExcel service:

1. Creates a thread that makes requests to Excel.
2. Executes the macro and sends results back to the client.
3. The onInvoke() method's main thread executes an event loop that waits for external events to

occur such as:

• timeouts

The main thread throws a non-fatal or fatal exception if configured timeouts in the application
profile expire. If a timeout occurs, the service terminates the Excel process started by this task
before throwing a fatal or non-fatal exception.

• pattern match in Dialog Sniffer log file

If patterns specified in the application profile are found, terminates the Excel process started
by this task and throws a non-fatal or fatal exception.

• Dialog Sniffer dismisses dialogs with patterns

Dialog Sniffer attempts to dismiss dialogs with patterns specified in the application profile and
logs a message in the log file. ConnectorForExcel service continues execution regardless of
whether dialog dismissal is successful or not.

• For non-fatal exceptions, Symphony retries the failed task.
• The VBA macro formats its result message and returns the result to the ConnectorForExcel.dll.
• The ConnectorForExcel service sends the result back to the client.
• In onDestroyService(), the ConnectorForExcel service cleans up and shuts down the Excel

process.

Service data flow

Connector for Microsoft Excel User Guide 33

Index
A

application profile
configuring 24
description 9
reference 30

applications
description 9

C

client
building 18
connecting to an application 16
createSession 16
creating a session 16
initializing 14
security 16
sending data to the service 17
unitializing 18

client and service
running 18, 19

common data 11
concepts

basic 9
connections

description 9
Connector for Excel

installing 12
consumer

description 10

D

demo spreadsheet
debugging 25

E

Excel

installing 7

L

log levels
description 10

R

response handler
implementing 15
onResponse() 15
populateTaskOutput() 15

S

sample
developing spreadsheet macro 14
functional description 14

service
data flow 33
description 9, 11
onCreateService() 33
onDestroyService() 33
onInvoke() 33

session description
in client code 16

session type
in client code 16

sessions
description 9

Symphony
Add Application wizard 18
adding an application 18
installing 8

T

task
description 9

34 Connector for Microsoft Excel User Guide

troubleshooting
DialogSniffer 11
Excel fails to start 29

Excel security settings 28
insufficient memory 27

Connector for Microsoft Excel User Guide 35

	Contents
	Copyright
	Overview
	About the connector for Excel
	Prerequisites for integrating Excel and Symphony
	Excel version
	Symphony version and platforms
	Install Excel
	Install Symphony

	Basic Symphony concepts
	Connector for Excel components
	Installing the application
	Developing a connector for Excel client
	Review and understand the sample
	Build the sample client and add the application
	Build the sample client
	Add the application

	Run the sample client and service

	Configuring an application
	Configure custom application profile
	Configure logging

	Testing and debugging spreadsheets
	Test the demo spreadsheet
	Test your spreadsheet
	Debug your spreadsheet

	Troubleshooting
	"Out of memory" dialog in Excel
	Solution:

	"Unable to Run Macro" dialog in Excel
	Solution:

	Dialog Sniffer does not log data in %SOAM_HOME%\logs\Sniffer and does not recognize FATAL_PATTERNS and NON_FATAL_PATTERNS
	Solution:

	Client hangs when running Excel 2003 on 64-bit compute host
	Solution:

	"This workbook has lost its VBA project ..." message in Excel 2007
	Solution:

	Application profile
	START_SNIFFER
	FATAL_PATTERNS
	NON_FATAL_PATTERNS
	DISMISS_DLG_WITH_PATTERNS
	FATAL_TIMEOUT
	NON_FATAL_TIMEOUT
	APP_DEPLOY_DIR

	Service data flow
	Index

