
Application Development Guide

Platform Symphony
Version 5.0
April 2011

Copyright © 1994-2011 Platform Computing Corporation

All rights reserved.

Although the information in this document has been carefully reviewed, Platform Computing Corporation
(“Platform”) does not warrant it to be free of errors or omissions. Platform reserves the right to make corrections,
updates, revisions or changes to the information in this document.

UNLESS OTHERWISE EXPRESSLY STATED BY PLATFORM, THE PROGRAM DESCRIBED IN THIS
DOCUMENT IS PROVIDED “AS IS” AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL PLATFORM COMPUTING BE LIABLE TO
ANYONE FOR SPECIAL, COLLATERAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING
WITHOUT LIMITATION ANY LOST PROFITS, DATA, OR SAVINGS, ARISING OUT OF THE USE OF OR
INABILITY TO USE THIS PROGRAM.

We’d like to hear
from you

You can help us make this document better by telling us what you think of the content, organization, and usefulness
of the information. If you find an error, or just want to make a suggestion for improving this document, please address
your comments to doc@platform.com.

Your comments should pertain only to Platform documentation. For product support, contact support@platform.com.

Document
redistribution and
translation

This document is protected by copyright and you may not redistribute or translate it into another language, in part or
in whole.

Internal
redistribution

You may only redistribute this document internally within your organization (for example, on an intranet) provided
that you continue to check the Platform Web site for updates and update your version of the documentation. You may
not make it available to your organization over the Internet.

Trademarks ® LSF is a registered trademark of Platform Computing Corporation in the United States and in other jurisdictions.
™ ACCELERATING INTELLIGENCE, PLATFORM COMPUTING, PLATFORM SYMPHONY, PLATFORM JOB
SCHEDULER, PLATFORM ISF, PLATFORM ENTERPRISE GRID ORCHESTRATOR, PLATFORM EGO, and the
PLATFORM and PLATFORM LSF logos are trademarks of Platform Computing Corporation in the United States and
in other jurisdictions.
® UNIX is a registered trademark of The Open Group in the United States and in other jurisdictions.

Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.

Microsoft is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other
countries.
® Windows is a registered trademark of Microsoft Corporation in the United States and other countries.

Intel®, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the
United States and other countries.

Other products or services mentioned in this document are identified by the trademarks or service marks of their
respective owners.

Third-party
license
agreements

http://www.platform.com/Company/third.part.license.htm

Third-party
copyright notices

http://www.platform.com/Company/Third.Party.Copyright.htm

Contents
Part I: Application Development . . . 5

1 Overview of API Classes .. 7

2 Getting Started: SampleApp ... 13

3 Developing Clients .. 39

4 Developing Services ... 91

5 Using Eclipse as Your Development Environment ... 117
Using Visual Studio as Your Development Environment .. 123

6 Developing Admin Clients ... 132

7 Running Executables .. 141

8 Development Guidelines and Best Practices ... 151

9 Symphony 64-bit Application Support .. 163

Part II: Debugging and Troubleshooting . . . 169
10 Debugging a Service .. 171

11 Troubleshooting .. 203

Part III: Application Deployment and Management . . . 213
12 Service Package Deployment .. 215

13 Application configuration .. 235
Updating applications .. 277

14 Recovery and Performance Tuning .. 288

15 Scheduling Configuration ... 293

16 Client Configuration .. 303

Part IV: Application Monitoring . . . 307
17 Monitoring and Controlling Applications ... 309

Part V: Developer Edition Administration . . . 315
18 Managing Symphony DE .. 317

Application Development Guide 3

4 Application Development Guide

I
Application Development

P A R T

Application Development Guide 5

Application Development

6 Application Development Guide

1
Overview of API Classes

C H A P T E R

Application Development Guide 7

Symphony API classes
Client classes
Workload management

The following diagram describes the relationships of the API classes that manage session workload.

SoamFactory

Initializes the Symphony API
Connection

Used by the client of an application to maintain a physical connection between the client
and Symphony

Session

Enables the client to manage its workload
SessionCallback

Overview of API Classes

8 Application Development Guide

Called when one task response is ready
TaskInputHandle

Gets the ID of a task Symphony returned
EnumItems

Returns the next item in the enumeration
TaskOutputHandle

Hosts a task ID, a message response (if any), and an exception (if any) from Symphony

Input and output
The following diagram describes the relationships between the API classes that manage communications
between Symphony and the client.

DefaultBinary Message

A default implementation for a binary data message
Message

Used to deliver messages between Symphony and the client
InputStream

A stream object that the message object uses for reading
OutputStream

A stream object that is used by a message object for writing
In the diagrams that follow, dotted lines indicate related classes. Solid lines indicate inheritance.

Overview of API Classes

Application Development Guide 9

Common classes
Security

To ensure system security, the following API classes must be implemented.

DefaultSecurity Callback

The default security implementation invoked when a new Symphony connection
requires a security token

ConnectionSecurity Callback

Invoked when making a new connection to Symphony

Exceptions
Client applications and services can throw two types of exceptions, FailureException and
FatalException. This diagram shows how they relate to the base exception class, SoamException.

SoamException

Base class of exceptions the system generates. Can be accessed by client applications
and services

FailureException

Overview of API Classes

10 Application Development Guide

Exception thrown to indicate a non-fatal error has occurred in a service. The action
taken in the event of a FailureException is dependent on the API method that the
exception is thrown in.

FatalException

Exception thrown to indicate a fatal error has occurred in a service. The action taken in
the event of a FatalException is dependent on the API method that the exception is
thrown in.

Service classes

ServiceContainer

Implements all the required methods to allow the system to interact with the service
instance

ServiceContext

Provides functionality that the service requires throughout its lifetime
SessionContext

Hosts information that may be required while servicing a task from a session
TaskContext

Provides functionality that a service invocation requires

Overview of API Classes

Application Development Guide 11

Overview of API Classes

12 Application Development Guide

2
Getting Started: SampleApp

C H A P T E R

Application Development Guide 13

Tutorial: Synchronous Symphony C++ client tutorial
Goal

This tutorial guides you through the process of building, packaging, deploying, and running the hello
grid sample client and service. It also walks you through the sample client application code.

You learn the minimum amount of code that you need to create a client.

At a glance
Before you begin, ensure you have installed and started Platform Symphony DE. You complete the
following tasks:

1. Build the sample client and service
2. Package the sample service
3. Add the application
4. Run the sample client and service
5. Walk through the code

Build the sample client and service
On Windows

You can build client application and service samples at the same time.

1. In %SOAM_HOME%\5.1\samples\CPP\SampleApp, locate workspace file sampleCPP_vc6.dsw,
or one of the Visual Studio solution files.

2. Load the file into Visual Studio and build it.

On Linux
You can build client application and service samples at the same time.

1. Change to the conf directory under the directory in which you installed Symphony DE.

For example, if you installed Symphony DE in /opt/symphonyDE/DE51, go to /opt/symphonyDE/
DE51/conf.

2. Source the environment:

• For csh, enter
source cshrc.soam

• For bash, enter
. profile.soam

3. Compile using the Makefile located in $SOAM_HOME/5.1/samples/CPP/SampleApp:

make

Package the sample service
On Windows

To deploy the service, you first need to package it.

Getting Started: SampleApp

14 Application Development Guide

1. Go to the directory in which the compiled samples are located.

cd %SOAM_HOME%\5.1\samples\CPP\SampleApp\Output\
2. Create the service package by compressing the service executable into a zip file.

gzip SampleServiceCPP.exe

You have now created your service package SampleServiceCPP.exe.gz.

On Linux
To deploy the service, you first need to package it.

1. Change to the directory in which the compiled samples are located:

cd $SOAM_HOME/5.1/samples/CPP/SampleApp/Output/
2. Create the service package by archiving and compressing the service executable file:

tar -cvf SampleServiceCPP.tar SampleServiceCPP

gzip SampleServiceCPP.tar

You have now created your service package SampleServiceCPP.tar.gz.

Add the application
When you add an application through the DE PMC, you must use the Add Application wizard. This
wizard defines a consumer location to associate with your application, deploys your service package, and
registers your application. After completing the steps with the wizard, your application should be ready
to use.

1. In the DE PMC, click Symphony Workload > Configure Applications.

The Applications page displays.
2. Select Global Actions > Add/Remove Applications.

The Add/Remove Application page displays.
3. Select Add an application, then click Continue.

The Adding an Application page displays.
4. Select Use existing profile and add application wizard. Click Browse and navigate to your application

profile.
5. Select your application profile xml file, then click Continue.

For SampleApp, you can find your profile in the following location:

• Windows—%SOAM_HOME%\5.1\samples\CPP\SampleApp\SampleApp.xml
• Linux—$SOAM_HOME/5.1/samples/CPP/SampleApp/SampleApp.xml

The Service Package location window displays.
6. Browse to the service package you created in .gz or tar.gz format and select it. Click Continue.

The Confirmation window displays.
7. Review your selections, then click Confirm.

The window displays indicating progress. Your application is ready to use.
8. Click Close.

Getting Started: SampleApp

Application Development Guide 15

The window closes and you are now back in the Platform Management Console. Your new application
is displayed as enabled.

Run the sample client and service
On Windows

To run the service, you run the client application. The service a client application uses is specified in the
application profile.

1. Run the client application:

%SOAM_HOME%\5.1\samples\CPP\SampleApp\Output\SyncClient.exe

You should see output on the command line as work is submitted to the system.

The client starts and the system starts the corresponding service. The client displays messages
indicating that it is running.

On Linux
1. Run the client application:

$SOAM_HOME/5.1/samples/CPP/SampleApp/Output/SyncClient

You should see output on the command line as work is submitted to the system.

The client starts and the system starts the corresponding service. The client displays messages
indicating that it is running.

Review and understand the samples
You review the sample client application code to learn how you can create a synchronous client
application.

Locate the code samples
Operating System Files Location of Code Sample

Windows Client %SOAM_HOME%\5.1\samples\CPP\SampleApp
\SyncClient

Message object %SOAM_HOME%\5.1\samples\CPP\SampleApp\Common

Service code %SOAM_HOME%\5.1\samples\CPP\SampleApp
\Service

Application profile The service required to compute the input data along with
additional application parameters are defined in the
application profile:

%SOAM_HOME%\5.1\samples\CPP\SampleApp
\SampleApp.xml

Output directory %SOAM_HOME%\5.1\samples\CPP\SampleApp\Output
\

Getting Started: SampleApp

16 Application Development Guide

Operating System Files Location of Code Sample

Linux Client $SOAM_HOME/5.1/samples/CPP/SampleApp/
SyncClient

Message object $SOAM_HOME/5.1/samples/CPP/SampleApp/Common

Service code $SOAM_HOME/5.1/samples/CPP/SampleApp/Service

Application profile The service required to compute the input data along with
additional application parameters are defined in the
application profile:

$SOAM_HOME/5.1/samples/CPP/SampleApp/
SampleApp.xml

Output directory $SOAM_HOME/5.1/samples/CPP/SampleApp/Output/

What the sample does
The client application sample opens a session and sends 10 input messages, and retrieves the results. The
client application is a synchronous client that sends input and blocks the output until all the results are
returned.

The service takes input data sent by client applications, returns the input data you have sent and replies
"Hello Client!!"

Review the sample code
Input and output: declare the message object

Your client application needs to handle data that it sends as input, and output data that it receives from
the service.

Tip:
Client applications and services share the same message class.

In MyMessage.h:

• We declare the MyMessage class
• We define serialization methods for input and output messages
• We implement methods to handle the data

Note:

Getting Started: SampleApp

Application Development Guide 17

For this example, we have defined the same class for input and output
messages. However, you can define separate classes for input and output
messages.

#pragma once
#include "soam.h"
class MyMessage :
 public soam::Message
{
public:
 MyMessage();
 MyMessage(int i, bool isSync, char* str);
 virtual ~MyMessage(void);
 void onSerialize(
 /*[in]*/ soam::OutputStreamPtr &stream) throw (soam::SoamException);
 void onDeserialize(
 /*[in]*/ soam::InputStreamPtr &stream) throw (soam::SoamException);
// accessors
public:
 int getInt() const{return m_int;}
 void setInt(int _int) {m_int = _int;}
 const char* getString() {return m_string;}
 void setString(const char* str) {freeString(m_string); m_string = copyString(str);}
 bool getIsSync() const{return (m_isSync != 0);}
 void setIsSync(bool isSync) {m_isSync = isSync;}
private:
 char* copyString(const char* strSource);
 void freeString(char* strToFree);
private:
 int m_int;
 bool m_isSync;
 char* m_string;
};

Implement the MyMessage object
Once your message object is declared, implement handlers for serialization and deserialization.

In MyMessage.cpp, we implement methods to handle the data. For data types that are supported by
Symphony DE, see the appropriate API reference.

Note:

Getting Started: SampleApp

18 Application Development Guide

If you already have an application with a message object that is serialized,
you can pass a binary blob through the DefaultBinaryMessage class.

#include "stdafx.h"
#include <string.h>
#include "MyMessage.h"
#include "soam.h"
using namespace soam;
MyMessage::MyMessage()
{
 m_int = 0;
 m_string = copyString("");
}
MyMessage::MyMessage(int i, bool isSync, char* str)
{
 m_int = i;
 m_isSync = isSync;
 m_string = copyString(str);
}
MyMessage::~MyMessage(void)
{
 freeString(m_string);
}void MyMessage::onSerialize(OutputStreamPtr &stream) throw (SoamException)
{
 stream->write(m_int);
 stream->write(m_isSync);
 stream->write(m_string);
}void MyMessage::onDeserialize(InputStreamPtr &stream) throw (SoamException)
{
 stream->read(m_int);
 stream->read(m_isSync);
 freeString(m_string);
 stream->read(m_string);
}char* MyMessage::copyString(const char* strSource)
{
 SOAM_ASSERT(0 != strSource);
 size_t len = strlen(strSource);
 char* newString = new char[len+1];
 SOAM_ASSERT(0 != newString);
 strcpy(newString, strSource);
 return newString;
}
void MyMessage::freeString(char* strToFree)
{
 if (0 != strToFree)
 {
 delete []strToFree;
 }
}

Initialize the client
In SyncClient.cpp, when you initialize, you initialize the Symphony client infrastructure. You initialize
once per client.

Important:
Initialization is required. Otherwise, API calls fail.

...
 try
 {
 // Initialize the API
 SoamFactory::initialize();
...

Getting Started: SampleApp

Application Development Guide 19

Connect to an application
To send data to be calculated in the form of input messages, you connect to an application.

You specify an application name, a user name, and password. The application name must match that
defined in the application profile.

For Symphony DE, there is no security checking and login credentials are ignored—you can specify any
user name and password. Security checking is done however, when your client application submits
workload to the actual grid.

The default security callback encapsulates the callback for the user name and password.

Tip:
When you connect, a connection object is returned.

...
 // Set up application specific information to be supplied to Symphony
 char appName[]="SampleAppCPP";
 // Set up application authentication information using the default security provider
 DefaultSecurityCallback securityCB("Guest", "Guest");
 // Connect to the specified application
 ConnectionPtr conPtr = SoamFactory::connect(appName, &securityCB);
 // Retrieve and print our connection ID
 cout << "connection ID=" << conPtr->getId() << endl;
...

Create a session to group tasks
A session is a way of logically grouping tasks that are sent to a service for execution. The tasks are sent
and received synchronously.

When creating a session, you need to specify the session attributes by using the SessionCreationAttributes
object. In this sample, we create a SessionCreationAttributes object called attributes and set three
parameters in the object.

The first parameter is the session name. This is optional. The session name can be any descriptive name
you want to assign to your session. It is for information purposes, such as in the command-line interface.

The second parameter is the session type. The session type is optional. If you leave this parameter blank
" " or do not set a session type, system default values are used for session attributes. If you specify a session
type in the client application, you must also configure the session type in the application profile—the
session type name in your application profile and session type you specify in the client must match. If you
use an incorrect session type in the client and the specified session type cannot be found in the applicatin
profile, an exception is thrown to the client.

The third parameter is the session flag, which we specify as ReceiveSync. You must specify it as shown.
This indicates to Symphony that this is a synchronous session.

We pass the attributes object to the createSession() method, which returns a pointer to the session.

 // Set up session creation attributes
 SessionCreationAttributes attributes;
 attributes.setSessionName("mySession");
 attributes.setSessionType("ShortRunningTasks");
 attributes.setSessionFlags(Session::ReceiveSync);
 // Create a synchronous session
 SessionPtr sesPtr = conPtr->createSession(attributes);

Getting Started: SampleApp

20 Application Development Guide

Send input data to be processed
In this step, we create 10 input messages to be processed by the service. When a message is sent, a task
input handle is returned. This task input handle contains the ID for the task that was created for this input
message.

 int tasksToSend = 10;
 for (int taskCount = 0; taskCount < tasksToSend; taskCount++)
 {
 // Create a message
 char hello[]="Hello Grid !!";
 MyMessage inMsg(taskCount, true, hello);
 // Create task attributes
 TaskSubmissionAttributes attrTask;
 attrTask.setTaskInput(&inMsg);
 // send it
 TaskInputHandlePtr input = sesPtr->sendTaskInput(attrTask);
 // Retrieve and print task ID
 cout << "task submitted with ID : " << input->getId() << endl;
 }
...

Retrieve output
Pass the number of tasks to the fetchTaskOutput() method to retrieve the output messages that were
produced by the service. This method blocks until the output for all tasks is retrieved. The return value
is an enumeration that contains the completed task results. Iterate through the task results and extract
the messages using the populateTaskOutput() method. Display the task ID and the results from the output
message.

 // Now get our results - will block here until all tasks retrieved
 EnumItemsPtr enumOutput = sesPtr->fetchTaskOutput(tasksToSend);
 // Inspect results
 TaskOutputHandlePtr output;
 while(enumOutput->getNext(output))
 {
 // Check for success of task
 if (true == output->isSuccessful())
 {
 // Get the message returned from the service
 MyMessage outMsg;
 output->populateTaskOutput(&outMsg);
 // Display content of reply
 cout << "Task Succeeded [" << output->getId() << "]" << endl;
 cout << outMsg.getResult() << endl;
 }
 else
 {
 // Get the exception associated with this task
 SoamExceptionPtr ex = output->getException();
 cout << "Task Failed : " << ex->what() << endl;
 }
 }

Catch exceptions
Any exceptions thrown take the form of SoamException. Catch all Symphony exceptions to know about
exceptions that occurred in the client application, service, and middleware.

The sample code above catches exceptions of type SoamException.

Getting Started: SampleApp

Application Development Guide 21

catch(SoamException& exp)
{
// Report exception
cout << "exception caught ... " << exp.what() << endl;
}

Uninitialize
Always uninitialize the client API at the end of all API calls. If you do not call uninitialize, the client API
is in an undefined state, resources used by the client are held indefinitely, and there is no guarantee your
client will be stable.

Important:
Once you uninitialize, all objects become invalid. For example, you can
no longer create a session or send an input message.

 // uninitialize the API
 // This is the only means to ensure proper shutdown
 // of the interaction between the client and the system.
 SoamFactory::uninitialize();
...

Getting Started: SampleApp

22 Application Development Guide

Tutorial: SampleApp: Developing an asynchronous
Symphony C++ client
Goal

The purpose of an asynchronous client is to get the output as soon as it is available. The client thread does
not need to be blocked once the input data is sent and can perform other actions.

In this tutorial, you learn how to convert a synchronous client into asynchronous.

At a glance
Before you begin, ensure you have installed and started Platform Symphony DE. You complete the
following tasks:

1. Build the sample client and service
2. Package the sample service
3. Add the application
4. Run the sample client and service
5. Walk through the code

Build the sample client and service
On Windows

You can build client application and service samples at the same time.

1. In %SOAM_HOME%\5.1\samples\CPP\SampleApp, locate workspace file sampleCPP_vc6.dsw,
or one of the Visual Studio solution files.

2. Load the file into Visual Studio and build it.

On Linux
You can build client application and service samples at the same time.

1. Change to the conf directory under the directory in which you installed Symphony DE.

For example, if you installed Symphony DE in /opt/symphonyDE/DE51, go to /opt/symphonyDE/
DE51/conf.

2. Source the environment:

• For csh, enter
source cshrc.soam

• For bash, enter
. profile.soam

3. Compile using the Makefile located in $SOAM_HOME/5.1/samples/CPP/SampleApp:

make

Getting Started: SampleApp

Application Development Guide 23

Package the sample service
On Windows

To deploy the service, you first need to package it.

1. Go to the directory in which the compiled samples are located.

cd %SOAM_HOME%\5.1\samples\CPP\SampleApp\Output\
2. Create the service package by compressing the service executable into a zip file.

gzip SampleServiceCPP.exe

You have now created your service package SampleServiceCPP.exe.gz.

On Linux
To deploy the service, you first need to package it.

1. Change to the directory in which the compiled samples are located:

cd $SOAM_HOME/5.1/samples/CPP/SampleApp/Output/
2. Create the service package by compressing the service executable into a tar file:

tar -cvf SampleServiceCPP.tar SampleServiceCPP

gzip SampleServiceCPP.tar

You have now created your service package SampleServiceCPP.tar.gz.

Add the application
When you add an application through the DE PMC, you must use the Add Application wizard. This
wizard defines a consumer location to associate with your application, deploys your service package, and
registers your application. After completing the steps with the wizard, your application should be ready
to use.

1. In the DE PMC, click Symphony Workload > Configure Applications.

The Applications page displays.
2. Select Global Actions > Add/Remove Applications.

The Add/Remove Application page displays.
3. Select Add an application, then click Continue.

The Adding an Application page displays.
4. Select Use existing profile and add application wizard. Click Browse and navigate to your application

profile.
5. Select your application profile xml file, then click Continue.

For SampleApp, you can find your profile in the following location:

• Windows—%SOAM_HOME%\5.1\samples\CPP\SampleApp\SampleApp.xml
• Linux—$SOAM_HOME/5.1/samples/CPP/SampleApp/SampleApp.xml

The Service Package location window displays.
6. Browse to the service package you created in .gz or tar.gz format and select it, then, click Continue.

Getting Started: SampleApp

24 Application Development Guide

The Confirmation window displays.
7. Review your selections, then click Confirm.

The window displays indicating progress. Your application is ready to use.
8. Click Close.

The window closes and you are now back in the Platform Management Console. Your new application
is displayed as enabled.

Run the sample client and service
On Windows

To run the service, you run the client application. The service a client application uses is specified in the
application profile.

1. Run the client application:

%SOAM_HOME%\5.1\samples\CPP\SampleApp\Output\AsyncClient.exe

You should see output on the command line as work is submitted to the system.

The client starts and the system starts the corresponding service. The client displays messages
indicating that it is running.

On Linux
1. Run the client application:

$SOAM_HOME/5.1/samples/CPP/SampleApp/Output/AsyncClient

You should see output on the command line as work is submitted to the system.

The client starts and the system starts the corresponding service. The client displays messages
indicating that it is running.

Walk through the code
You review the sample client application code to learn how you can understand the differences between
a synchronous client and an asynchronous client.

Getting Started: SampleApp

Application Development Guide 25

Locate the code samples
Operating System Files Location of Code Sample

Windows Client %SOAM_HOME%\5.1\samples\CPP\SampleApp
\AsyncClient

Message object %SOAM_HOME%\5.1\samples\CPP\SampleApp\Common

Service code %SOAM_HOME%\5.1\samples\CPP\SampleApp
\Service

Application profile The service required to compute the input data along with
additional application parameters are defined in the
application profile:

%SOAM_HOME%\5.1\samples\CPP\SampleApp
\SampleApp.xml

Output directory %SOAM_HOME%\5.1\samples\CPP\SampleApp\Output
\

Linux Client $SOAM_HOME/5.1/samples/CPP/SampleApp/
AsyncClient

Message object $SOAM_HOME/5.1/samples/CPP/SampleApp/Common

Service code $SOAM_HOME/5.1/samples/CPP/SampleApp/Service

Application profile The service required to compute the input data along with
additional application parameters are defined in the
application profile:

$SOAM_HOME/5.1/samples/CPP/SampleApp/
SampleApp.xml

Output directory $SOAM_HOME/5.1/samples/CPP/SampleApp/Output/

What the sample does
The client application sample sends 10 input messages with the data Hello Grid!! and retrieves the results.

Results are returned asynchronously with a callback interface provided by the client to the API. Methods
on this interface are called from threads within the API when certain events occur. In the sample, the
events are:

• When there is an error at the session level
• When results return from Symphony

Considerations for asynchronous clients
Synchronization Because results can come back at any time, it is probable that your callback code needs

synchronization between the callback thread and the controlling thread. The
controlling thread needs to know when work is complete.

Order of results Results are not sent back in order. If order of results is important, the client
application must sort the results.

Getting Started: SampleApp

26 Application Development Guide

Code differences between synchronous and asynchronous clients
An asynchronous client is very similar to a synchronous client. The only differences are:

• You need to specify a callback when creating a session
• You specify a different flag to indicate asynchronous when you create a session
• Retrieval of replies

Let us look at the steps to create synchronous and asynchronous clients and highlight the differences.
Steps in bold indicate differences. Everything else is the same as the synchronous client.

Getting Started: SampleApp

Application Development Guide 27

Declare the message object and implement
As in the synchronous client tutorial, declare the message object and implement your own message object.

If you have not done so already, take a look at the synchronous client application tutorial Your First
Synchronous Symphony C++ Client for details on the Message object, specifically:

• Input and output: declare the message object
• Implement the MyMessage object

Declare and implement your callback object
Perform this step after declaring the Message object and implementing the MyMessage object.

In MyCallback.h, we create our own callback class from the SessionCallback class, and we implemented
onResponse() to retrieve the output for each input message that we send.

Note:

• onResponse() is called every time a task completes and output is returned to the client. The task output
handle allows the client code to manipulate the output.

• isSuccessful() checks whether there is output to retrieve.
• If there is output to retrieve, populateTaskOutput() gets the output. Once results return, we print them

to standard output and return.

#include "soam.h"
using namespace soam;
using namespace std;
#ifndef WIN32
#include <pthread.h>
#else
#include <windows.h>
#endif
class MySessionCallback :
 public SessionCallback
{
 public:
 MySessionCallback()
 :m_tasksReceived(0), m_exception(false)
 {
#ifndef WIN32
 pthread_mutexattr_t attr;
 pthread_mutexattr_init(&attr);
 pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE);
 pthread_mutex_init(&m_mutex, &attr);
 pthread_mutexattr_destroy(&attr);
#else
 InitializeCriticalSection(&m_criticalSection);
#endif
 cout << "Callback created ... " << endl;
 }
virtual ~MySessionCallback()
 {
#ifndef WIN32
 pthread_mutex_destroy(&m_mutex);
#else
 DeleteCriticalSection(&m_criticalSection);
#endif
 }

Getting Started: SampleApp

28 Application Development Guide

///
// This handler is called once any exception occurs
// within the scope of the session.
// ==
virtual void onException(SoamException &exception) throw()
{
cout << "An exception occured on the callback.\nDetails : " << exception.what() << endl;
#ifndef WIN32
 pthread_mutex_lock(&m_mutex);
#else
 EnterCriticalSection(&m_criticalSection);
#endif
 m_exception = true;
#ifndef WIN32
 pthread_mutex_unlock(&m_mutex);
#else
 LeaveCriticalSection(&m_criticalSection);
#endif
}
///
// This handler is called once a message is returned
// from the system when a task completes.
// ==
void onResponse(TaskOutputHandlePtr &output) throw()
 {
 try
 {
 // check for success of task
 if (true == output->isSuccessful())
 { // get the message returned from the service
 MyMessage outMsg;
 output->populateTaskOutput(&outMsg);
 // display content of reply
 cout << "Task Succeeded [" << output->getId() << "]" << endl;
 cout << "Integer Value : " << outMsg.getInt() << endl;
 cout << outMsg.getString() << endl;
 }
 else
 {
 // get the exception associated with this task
 SoamExceptionPtr ex = output->getException();
 cout << "Task Failed : " << ex->what() << endl;
 }
 }
 catch(SoamException &exception)
 {
 cout << "Exception occured in OnResponse() : " << exception.what() << endl;
 }

Getting Started: SampleApp

Application Development Guide 29

// Update counter used to synchronize the controlling thread
// with this callback object
#ifndef WIN32
 pthread_mutex_lock(&m_mutex);
#else
 EnterCriticalSection(&m_criticalSection);
#endif
 ++m_tasksReceived;
#ifndef WIN32
 pthread_mutex_unlock(&m_mutex);
#else
 LeaveCriticalSection(&m_criticalSection);
#endif
 }

 inline long getReceived()
 {
 return m_tasksReceived;
 }
 inline bool getDone()
 {
 return m_exception;
 }

private:
#ifndef WIN32
 pthread_mutex_t m_mutex;
#else
 CRITICAL_SECTION m_criticalSection;
#endif
 long m_tasksReceived;
 bool m_exception;
};

Create a session to group tasks
In AsyncClient.cpp, perform this step after you have connected to the application.

When creating an asynchronous session, you need to specify the session attributes by using the
SessionCreationAttributes object. In this sample, we create a SessionCreationAttributes object called
attributes and set four parameters in the object.

The first parameter is the session name. This is optional. The session name can be any descriptive name
you want to assign to your session. It is for information purposes, such as in the command line interface.

The second parameter is the session type. The session type is optional. You can leave this parameter blank
or not make the API call at all. When you do this, system default values are used for your session.

The third parameter is the session flag, which we specify as ReceiveAsync. You must specify it as shown.
This indicates to Symphony that this is an asynchronous session.

The fourth parameter is the callback object.

We pass the attributes object to the createSession() method, which returns a pointer to the session.

...
 // Create session callback
 MySessionCallback myCallback;
 // Set up session creation attributes
 SessionCreationAttributes attributes;
 attributes.setSessionName("mySession");
 attributes.setSessionType("ShortRunningTasks");
 attributes.setSessionFlags(Session::ReceiveAsync);
 attributes.setSessionCallback(&myCallback);
 // Create an asynchronous session
 SessionPtr sesPtr = conPtr->createSession(attributes);
...

Getting Started: SampleApp

30 Application Development Guide

Synchronize the controlling and callback threads
Perform this step after sending the input data to be processed.

Since our client is asynchronous, we need to synchronize the controlling thread and the callback thread.
In this example, the controlling thread blocks until all replies have come back.

...
// Now wait until all replies have been received asynchronously
// by our callback ... for illustrative purposes we will poll
// until all replies are in.
while ((myCallback.getReceived() < tasksToSend) && !myCallback.getDone())
 {
 ourSleep(2);
 }
...

Getting Started: SampleApp

Application Development Guide 31

Tutorial: SampleApp: Your first Symphony C++
service
Goal

This tutorial guides you through the process of building and running a service, then walks you through
the sample service code.

You learn the minimum amount of code that you need to create a service.

At a glance
Before you begin, ensure you have installed and started Platform Symphony DE.

1. Build the sample client and service
2. Package the sample service
3. Add the application
4. Run the sample client and service
5. Walk through the code

Build the sample client and service
On Windows

You can build client application and service samples at the same time.

1. In %SOAM_HOME%\5.1\samples\CPP\SampleApp, locate workspace file sampleCPP_vc6.dsw,
or one of the Visual Studio solution files.

2. Load the file into Visual Studio and build it.

On Linux
You can build client application and service samples at the same time.

1. Change to the conf directory under the directory in which you installed Symphony DE.

For example, if you installed Symphony DE in /opt/symphonyDE/DE51, go to /opt/symphonyDE/
DE51/conf.

2. Source the environment:

• For csh, enter
source cshrc.soam

• For bash, enter
. profile.soam

3. Compile using the Makefile located in $SOAM_HOME/5.1/samples/CPP/SampleApp:

make

Package the sample service
On Windows

To deploy the service, you first need to package it.

Getting Started: SampleApp

32 Application Development Guide

1. Go to the directory in which the compiled samples are located.

cd %SOAM_HOME%\5.1\samples\CPP\SampleApp\Output\
2. Create the service package by compressing the service executable into a zip file.

gzip SampleServiceCPP.exe

You have now created your service package SampleServiceCPP.exe.gz.

On Linux
To deploy the service, you first need to package it.

1. Change to the directory in which the compiled samples are located:

cd $SOAM_HOME/5.1/samples/CPP/SampleApp/Output/
2. Create the service package by compressing the service executable into a tar file:

tar -cvf SampleServiceCPP.tar SampleServiceCPP

gzip SampleServiceCPP.tar

You have now created your service package SampleServiceCPP.tar.gz.

Add the application
When you add an application through the DE PMC, you must use the Add Application wizard. This
wizard defines a consumer location to associate with your application, deploys your service package, and
registers your application. After completing the steps with the wizard, your application should be ready
to use.

1. In the DE PMC, click Symphony Workload > Configure Applications.

The Applications page displays.
2. Select Global Actions > Add/Remove Applications.

The Add/Remove Application page displays.
3. Select Add an application, then click Continue.

The Adding an Application page displays.
4. Select Use existing profile and add application wizard. Click Browse and navigate to your application

profile.
5. Select your application profile xml file, then click Continue.

For SampleApp, you can find your profile in the following location:

• Windows—%SOAM_HOME%\5.1\samples\CPP\SampleApp\SampleApp.xml
• Linux—$SOAM_HOME/5.1/samples/CPP/SampleApp/SampleApp.xml

The Service Package location window displays.
6. Browse to the service package you created in .gz or tar.gz format and select it, then, click Continue.

The Confirmation window displays.
7. Review your selections, then click Confirm.

The window displays indicating progress. Your application is ready to use.
8. Click Close.

Getting Started: SampleApp

Application Development Guide 33

The window closes and you are now back in the Platform Management Console. Your new application
is displayed as enabled.

Run the sample client and service
On Windows

To run the service, you run the client application. The service a client application uses is specified in the
application profile.

1. Run the client application:

%SOAM_HOME%\5.1\samples\CPP\SampleApp\Output\SyncClient.exe

You should see output on the command line as work is submitted to the system.

The client starts and the system starts the corresponding service. The client displays messages
indicating that it is running.

On Linux
1. Run the client application:

$SOAM_HOME/5.1/samples/CPP/SampleApp/Output/SyncClient

You should see output on the command line as work is submitted to the system.

The client starts and the system starts the corresponding service. The client displays messages
indicating that it is running.

Walk through the code
You review the sample service code to learn how you can create a service.

Locate the code samples
Operating System Files Location of Code Sample

Windows Client %SOAM_HOME%\5.1\samples\CPP\SampleApp
\SyncClient

Message object %SOAM_HOME%\5.1\samples\CPP\SampleApp\Common

Service code %SOAM_HOME%\5.1\samples\CPP\SampleApp
\Service

Application profile The service required to compute the input data along with
additional application parameters are defined in the
application profile:

%SOAM_HOME%\5.1\samples\CPP\SampleApp
\SampleApp.xml

Output directory %SOAM_HOME%\5.1\samples\CPP\SampleApp\Output

Getting Started: SampleApp

34 Application Development Guide

Operating System Files Location of Code Sample

Linux Client $SOAM_HOME/5.1/samples/CPP/SampleApp/
SyncClient

Message object $SOAM_HOME/5.1/samples/CPP/SampleApp/Common

Service code $SOAM_HOME/5.1/samples/CPP/SampleApp/Service

Application profile The service required to compute the input data along with
additional application parameters are defined in the
application profile:

$SOAM_HOME/5.1/samples/CPP/SampleApp/
SampleApp.xml

Output directory $SOAM_HOME/5.1/samples/CPP/SampleApp/Output/

What the sample does
The service takes input data sent by client applications, returns the input data you have sent and replies
"Hello Client !!"

Input and output: declare and implement the Message object:
Your service needs to handle data that it receives as input, and generate output data that can be sent back
to the client application.

Note:
Client applications and services share the same message class. You do
not need to create a different message class. In our example, we have
created a common directory for code that is shared by client and service.
Use the Message object declared and implemented by the client
application.

If you have not done so already, take a look at the synchronous client application tutorial for details on
the Message object.
• Input and output: declare the message object:
• Implement the MyMessage object:

Define a service container:
For a service to be managed by Symphony, it needs to be in a container object. This is the service container.

In SampleService.cpp, we inherited from the ServiceContainer class.

Getting Started: SampleApp

Application Development Guide 35

#include "stdafx.h"
#include <stdio.h>
#include "soam.h"
#include "MyMessage.h"
using namespace soam;
using namespace std;
class MyServiceContainer : public ServiceContainer

Process the input:
Symphony calls onInvoke() on the service container once per task. Once you inherit from the
ServiceContainer class, implement handlers so that the service can function properly. This is where the
calculation is performed.

To gain access to the data set for the client, you must present an instance of the message object to the
populateTaskInput() method on the task context.

The task context contains all information and functionality that is available to the service during an
onInvoke() call in relation to the task that is being processed.

Important:
Services are virtualized. As a result, a service should not read from stdin
or write to stdout. Services can, however, read from and write to files that
are accessible to all compute hosts.

You present to populateTaskInput() the message object that comes from the client application. During
this call, the data sent from the client is used to populate the message object.

{
public:
 virtual void onInvoke (TaskContextPtr& taskContext)
 {
 // get the input that was sent from the client
 MyMessage inMsg;
 taskContext->populateTaskInput(inMsg);
 // We simply echo the data back to the client
 MyMessage outMsg;
 outMsg.setInt(inMsg.getInt());
 std::string str="you sent : ";
 str += inMsg.getString();
 str += "\nwe replied : Hello Client !!\n>>> ";
 if (inMsg.getIsSync())
 {
 str += "Synchronously.\n";
 }
 else
 {
 str += "Asynchronously.\n";
 }
 outMsg.setString(str.c_str());
 // set our output message
 taskContext->setTaskOutput(outMsg);
 }
};

Run the container:
The service is implemented within an executable. At a minimum, we need to create within our main
function an instance of the service container and run it.

Note that your service is started by parameters.

Getting Started: SampleApp

36 Application Development Guide

int main(int argc, char* argv[])
{
 // return value of our service program
 int retVal = 0;
 try
 {
 // Create the container and run it
 MyServiceContainer myContainer;
 myContainer.run();
 }

Catch exceptions:
Catch exceptions in case the container fails to start running.

catch(SoamException& exp)
 {
 // report exception to stdout
 cout << "exception caught ... " << exp.what() << endl;
retVal = -1;
 }
 // NOTE: Although our service program will return an overall
 // failure or success code it will always be ignored in the
 // current revision of the middleware.
 // The value being returned here is for consistency.
 return retVal;
}

Getting Started: SampleApp

Application Development Guide 37

Getting Started: SampleApp

38 Application Development Guide

3
Developing Clients

C H A P T E R

Application Development Guide 39

Synchronous client structure
The following section provides the steps to create a synchronous client.

Summary of steps to develop a synchronous client
To create a synchronous client, you need the following API calls:

1. Initialize an application in Symphony with SoamFactory.initialize().
2. Get a connection to an application with SoamFactory.connect().
3. Create a session with Connection.createSession().
4. Send task inputs to the service in the application with Session.sendTaskInput() .
5. Retrieve task outputs with Session.fetchTaskOutput().
6. Uninitialize the API with SoamFactory.uninitialize().

Important:
Once you uninitialize, all objects become invalid. For example, you can
no longer create a session or send an input message.

Synchronous client flow

1. The client calls the static SoamFactory.initialize() to initialize the API.
2. The client calls the static SoamFactory.connect() to establish a connection with Symphony.

Developing Clients

40 Application Development Guide

3. The method creates and returns a Connection object that represents the physical connection to
Symphony.

4. The client calls Connection.createSession().
5. The method creates and returns a session object, which acts as a conduit through which the client can

send input to its service.
6. The client creates an input message called myMessage and invokes Session.sendTaskInput() on

the session object. This starts the chain of events that eventually sends the input to the service for
processing.

7. The call to sendTaskInput() causes an OutputStream to be internally created.
8. The session calls onSerialize() on the input message and passes the OutputStream to the method.
9. In the onSerialize() method, the input message writes itself to the provided OutputStream.
10. The byte array representation of the input message is sent to Symphony.
11. As a result of the initial sendTaskInput() call, Symphony returns a TaskInputHandle to the

client, which contains an identifier that can help match the input to the output that will later return.
At the same time, Symphony also sends the input message to the service for processing and obtains
the output from the service invocation.

12. The client calls fetchTaskOutput() method on the session object.
13. Symphony sends the output back to the client as a result of the fetchTaskOutput() method call.
14. The output is put into an EnumItems object, which is basically a list of outputs, if multiple outputs

are retrieved.
15. The client iterates over the EnumItems object to inspect each TaskOutputHandle. The

TaskOutputHandle is a container for the output from the Service.
16. The client must call the static SoamFactory.uninitialize() method to uninitialize the API.

Important:
Once you uninitialize, all objects become invalid. For example, you can
no longer create a session or send an input message.

Developing Clients

Application Development Guide 41

Asynchronous client structure
The following section provides the steps to create an asynchronous client.

Asynchronous client flow
The flow for an asynchronous client is very similar to that of a synchronous client.

Differences in the flow for synchronous and asynchronous clients are highlighted below:

4. The client calls the Connection.createSession() method on the Connection object and passes
in a SessionCallback object to the method.

12. Symphony sends the output back to the client as soon as it is ready. A separate thread is used to invoke
the onResponse() method on the callback that was provided at the time of session creation. The
onResponse() receives a TaskOutputHandle argument that contains the output from the service.

Developing Clients

42 Application Development Guide

SessionCallback
Used to receive events in an asynchronous manner. Events can take the form of results, exceptions, etc.,
that can occur within the scope of a session.

Note:
The SessionCallback must exist for the lifetime of the session. The
callback cannot be destroyed until the session is closed.

Developing Clients

Application Development Guide 43

Feature: On-demand results retrieval
The on-demand results retrieval feature enables a Symphony client to request results directly from the
Symphony Session Manager in order to control the amount of memory consumed on the client host.

Scope
Operating system • UNIX and Windows hosts

Limitations • This feature only applies to clients that receive results synchronously.
• This feature does not work consistently if the session type attribute

discardResultsOnDelivery is set to false. This may cause every direct fetch of N
items to return the same results.

About on-demand results retrieval
Before describing how on-demand results retrieval can impact memory management on the client host,
it is helpful to know how results are processed in Symphony’s default model.

Default behavior without on-demand results retrieval
Since the underlying communication channel between the client and the Symphony Session Manager is
asynchronous, results are sent to the client as soon as they are available. If the client makes a request for
results before they arrive, the client code is blocked until the results arrive or the wait period expires. If
the results arrive before the client makes a request, the results are queued (cached) in the local session’s
result set. Since the delivery of results from the Symphony Session Manager is not in sync with the retrieval
of results, it is possible that too many results could be queued in the API layer; this could cause the client
to run out of memory and eventually terminate abnormally.

Behavior with on-demand results retrieval
The purpose of the on-demand results retrieval feature is to control the retrieval of results so that the
client is not overloaded with results and runs out of memory. This is achieved by having the client retrieve
data directly from the Symphony Session Manager instead of from the local result cache. To better
understand the interaction between the client and the Symphony Session Manager, let’s look at the
sequence of events.

1. Symphony Session Manager gets the result from the service and defers dispatching it to the client.
2. Client makes an API call to request the next result set from the Symphony Session Manager.

Developing Clients

44 Application Development Guide

3. The Symphony Session Manager returns as much of the result set that it has available, i.e., 0-N, to the
client.

Client API
The on-demand results retrieval feature can only be accessed through the client API. To use this feature,
the client application must perform the following sequence:

1. Create a session using a flag to inform the API of the client’s intent to fetch results directly from the
Symphony Session Manager.

2. Send the task.
3. Fetch results in manageable amounts.

The session flag is a member of the SessionCreationAttributes class. The following list shows how the
session flag is set for on-demand results retrieval in each supported language.

C++: .setSessionFlags(Session::FetchResultsDirectly)

Java: .setSessionFlags(Session.FETCH_RESULTS_DIRECTLY)

C#.NET: .SessionFlags=SessionFlags.FetchResultsDirectly

Important:
Normally the Session.FetchTaskOutput(ulong countMax) method blocks
indefinitely until countMax task responses are ready. When your session
is created using the FetchResultsDirectly flag, the call does not block
indefinitely but instead returns with 0 - N items. The number of items
returned depends on the amount of results available in the Symphony
Session Manager at the time of the call. Therefore, the client must poll
until the desired number of results have returned.

If the Session.FetchTaskOutput(ulong countMax, long
timeoutInSeconds) method is used while the on-demand results retrieval
feature is enabled, the timeout parameter is ignored by the Symphony
Session Manager.

Developing Clients

Application Development Guide 45

Feature: Selectively Retrieving Task Results
Selective task output retrieval enables a Symphony client to request task results by specifying task IDs, in
order to control the amount of memory consumed on the client host.

Scope
Operating system (client) • All platforms supported by Symphony

Limitations • This feature only applies to clients that receive results synchronously.
• This feature is only available if the session is created with the

FetchResultsDirectly session flag.
• COM API is not supported.
• Multi-threaded use of this feature is not recommended unless the client implements

a synchronization scheme to prevent overlapping criteria from being specified in
concurrently executing threads; otherwise the client may hang or falsely validate
the task output retrieval.

About selective task result retrieval
Before learning how this feature can impact memory management on the client host, it might be helpful
to know how results are processed in Symphony’s default model.

Default task output retrieval
In the default model, the Symphony Session Manager sends results to the client as soon as they are
available. If the client makes a request for results before they arrive, the client code is blocked until the
results arrive or the wait period expires. If the results arrive before the client makes a request, the results
are queued (cached) in the local session’s result set. Since the delivery of results from the Session Manager
is not in sync with the retrieval of results, it is possible that too many results could be queued in the API
layer; this could cause the client to run out of memory and eventually terminate abnormally. One possible
solution is to have the client request a specific number of results directly from the Session Manager; this
feature is explained in On-demand results retrieval on page 44. This can help to manage memory usage
on the client host but the requested results may not be the ones the client is really interested in.

Symphony offers another option, which enables a client to request specific tasks results via selection
criteria. Using this feature, the client gets only the results it wants.

Selective task output retrieval
The purpose of selective task output retrieval is twofold: it controls the retrieval of results so that the client
is not overloaded with results and runs out of memory, and it allows the client to retrieve only the results
it is interested in. This is achieved by having the client retrieve data directly from the Session Manager
instead of from the local result cache. To better understand the interaction between the client and the
Session Manager, let’s look at the sequence of events.

1. Session Manager gets the result from the service and defers dispatching it to the client.
2. The client makes an API call to selectively retrieve task results from the Session Manager by supplying

the task IDs for the results it wants to process.
3. In the non-blocking model (zero timeout), the Session Manager returns all the results (that match the

task IDs) available at the time of the API call. If no matching task IDs are found, no results are returned.

Developing Clients

46 Application Development Guide

In the blocking model (infinite timeout), the API call does not return until all the results with matching
task IDs are available.

Note:
Task results returned to the client are not sorted. For example, if the client
retrieves the output of tasks with IDs 1, 2, 3, the results may be returned
in a different order.

Client API
Selective task results retrieval can only be achieved through the client API. To use this feature, the client
application must perform the following sequence:

1. Create a session using the FetchResultsDirectly flag to inform the API of the client’s intent to
retrieve results directly from the Symphony Session Manager.

2. Send the tasks.
3. Retrieve results by specifying the associated task IDs in a selection filter.

Code samples for the blocking model
The following code samples demonstrate selective task result retrieval for the blocking model in each
supported language. Refer to the API reference documentation in the Knowledge Center for more
information.

Developing Clients

Application Development Guide 47

//C++ sample
try
{
 ……
 // Set up session creation attributes and create the session
 attributes.setSessionFlags(Session::ReceiveSync|Session::FetchResultsDirectly);
 SessionPtr sesPtr = conPtr->createSession(attributes);
 //Create a task ID filter object
 TaskIdFilter filter;

 // Now we will send some messages to our service
 for (int taskCount = 0; taskCount < tasksToSend; taskCount++)
 {
 ……
 // send tasks
 TaskInputHandlePtr input = sesPtr->sendTaskInput(attrTask);
 // add specific task ID into task ID filter
 filter.addId(input->getId());
 }

 //Block until all filtered task outputs are ready.
 EnumItemsPtr enumOutput = sesPtr->fetchTaskOutput(filter);
 //handle the task outputs
 …….
}

//Java sample
try
{
 ……
 // Set up session creation attributes and create the session
 attributes.setSessionFlags(Session.RECEIVE_SYNC | Session.FETCH_RESULTS_DIRECTLY);
 session = connection.createSession(attributes);
 //Create a task ID filter object
 TaskIdFilter filter = new TaskIdFilter();

 // Now we will send some messages to our service
 for (int taskCount = 0; taskCount < tasksToSend; taskCount++)
 {
 ……
 // send tasks
 TaskInputHandle input = session.sendTaskInput(attrTask);
 // add specific task ID into task ID filter
 filter.addId(input.getId());
 }

 //Block until all filtered task outputs are ready.
 EnumItems enumOutput = session.fetchTaskOutput(filter);
 //handle the task outputs
 …….
}

Developing Clients

48 Application Development Guide

//C# sample
try
{
 ……
 // Set up session creation attributes and create the session
 attributes.SessionFlags = SessionFlags.ReceiveSync |
 SessionFlags.FetchResultsDirectly;
 session = connection.CreateSession(attributes);
 //Create a task ID filter object
 TaskIdFilter filter = new TaskIdFilter();

 // Now we will send some messages to our service
 for (int taskCount = 0; taskCount < tasksToSend; taskCount++)
 {
 ……
 // send tasks
 TaskInputHandle input = session.SendTaskInput(attrTask);
 // add specific task ID into task ID filter
 filter.AddId(input.Id);
 }

 //Block until all filtered task outputs are ready.
 EnumItems enumOutput = session.FetchTaskOutput(filter);
 //handle the task outputs
 …….
}

Code samples for the non-blocking model
The following code samples demonstrate selective task result retrieval for the non-blocking model in each
supported language. Refer to the API reference documentation in the Knowledge Center for more
information.

//C++ sample
try
{
 ……
 // Set up session creation attributes and create the session
 attributes.setSessionFlags(Session::ReceiveSync|Session::FetchResultsDirectly);
 SessionPtr sesPtr = conPtr->createSession(attributes);
 //Create a task ID filter object
 TaskIdFilter filter;

 // Now we will send some messages to our service
 for (int taskCount = 0; taskCount < tasksToSend; taskCount++)
 {
 ……
 // send tasks
 TaskInputHandlePtr input = sesPtr->sendTaskInput(attrTask);
 // add specific task ID into task ID filter
 filter.addId(input->getId());
 }
 while (!filter.isSatisfied())
 {
 EnumItemsPtr enumOutput = sesPtr->fetchTaskOutput(filter,
 0 /* non-blocking */);
 //handle the task output
 …….
 // Since the current thread is not blocked waiting for all results, we can do
 // something else in between fetch attempts to make use of the current thread.
 }
}

Developing Clients

Application Development Guide 49

//Java sample
try
{
 ……
 // Set up session creation attributes and create the session
 attributes.setSessionFlags(Session.RECEIVE_SYNC | Session.FETCH_RESULTS_DIRECTLY);
 session = connection.createSession(attributes);
 //Create a task ID filter object
 TaskIdFilter filter = new TaskIdFilter();

 // Now we will send some messages to our service
 for (int taskCount = 0; taskCount < tasksToSend; taskCount++)
 {
 ……
 // send tasks
 TaskInputHandle input = session.sendTaskInput(attrTask);
 // add specific task ID into task ID filter
 filter.addId(input.getId());
 }
 while (!filter.isSatisfied())
 {
 EnumItems enumOutput = session.fetchTaskOutput(filter, 0 /* non-blocking */);
 //handle the task output
 …….
 // Since the current thread is not blocked waiting for all results, we can do
 // something else in between fetch attempts to make use of the current thread.
 }
}

//C# sample
try
{
 ……
 // Set up session creation attributes and create the session
 attributes.SessionFlags = SessionFlags.ReceiveSync |
 SessionFlags.FetchResultsDirectly;
 session = connection.CreateSession(attributes);
 //Create a task ID filter object
 TaskIdFilter filter = new TaskIdFilter();

 // Now we will send some messages to our service
 for (int taskCount = 0; taskCount < tasksToSend; taskCount++)
 {
 ……
 // send tasks
 TaskInputHandle input = session.SendTaskInput(attrTask);
 // add specific task ID into task ID filter
 filter.AddId(input.Id);
 }

 while (!filter.IsSatisfied)
 {
 EnumItems enumOutput = session.FetchTaskOutput(filter, 0 /* non-blocking */);
 //handle the task output
 …….
 // Since the current thread is not blocked waiting for all results, we can do
 // something else in between fetch attempts to make use of the current thread.
 }
}

Developing Clients

50 Application Development Guide

Security
Middleware security

The middleware relies on an external and extensible security infrastructure based on plugins.

Default security implementation
There is a default security plugin that works a user name-password pair for authentication against the
Symphony user database.

In Symphony, you define users in the Platform Management Console. When a client application connects
to Symphony, it provides a user account and password. The system checks the provided user account
name and password against the Symphony user database.

The callback object DefaultSecurityCallback works together with the default plugin to meet very basic
security requirements.

Custom security plugins
The use of the security framework is optional. Your security specialist can write a custom plugin to handle
token generation and server component authentication. This must be coupled with an implementation
of a callback object, which provides the required information on demand, such as for example, user name,
password, eye scan, etc.

Security in Symphony DE
There is no security in Symphony DE.

SecurityCallback
Used in relation to events occurring within the scope of a connection. The SecurityCallback is used
when information is required for authentication.

The callback used for security has to exist for the lifetime of the connection. If this callback has a lifetime
that is less than that of the object it is associated with, some unexpected errors within the client can occur.
For example, you can keep the SecurityCallback as a global variable, or create the callback object on
the heap and destroy it after the associated connection is closed.

Developing Clients

Application Development Guide 51

Connections
About connections

For a client to submit workload, it connects to an application and interacts with a session created on this
connection.

The API binds this logical connection to an actual physical connection, which uses a socket between the
client and Symphony. Multiple concurrent logical connections within the same client are multiplexed on
a single physical connection.

Number of file descriptors opened per connection
One socket per client connection to a session manager.

All communications between the client and session manager are multiplexed on a single connection.

Length of time the connection is maintained
The client maintains a persistent connection to the session manager. This connection exists until the client
explicitly closes the connection or terminates.

Setting client reconnection timeout
By default, the API attempts to refresh the connection between the client and the system if a client abruptly
disconnects. If the attempt fails, the API throws an exception.

To control the way a client reconnects, set the following environment variables on the client machine:

• SOAM_RECONNECTION_RETRY_INTERVAL
• SOAM_RECONNECTION_RETRY_LIMIT
• SOAM_RELOCATED_RECONNECTION_RETRY_INTERVAL
• SOAM_RELOCATED_RECONNECTION_RETRY_LIMIT

For more details on these environment variables, see the Symphony Reference.

Developing Clients

52 Application Development Guide

Sessions
About sessions

You create a local session object that refers to a session in Symphony.

You can interact with a Symphony session by invoking methods on your local Session object.

Once the local session is created by the client, its corresponding Symphony session is valid until one of
the following happens:

• The session is killed by an administrator
• The session aborts because of a fatal exception
• The client goes away without closing the session
• The client closes the session

Session lifecycle
In your client application, you can create a local Session object that refers to a session in Symphony.
You can interact with Symphony session by invoking methods on your local Session object.

Developing Clients

Application Development Guide 53

Using tags for related sessions
Overview

A tag is simply a string that is attached to the session when it is created. Since the running of a functional
job can involve multiple sessions, a session tag that is shared among sessions provides the ability to query
or control these related sessions with a single action.

This functionality not only allows you to change the priority of current sessions that share the same session
tag but can also extend the priority change to future sessions. If required, this priority change for future
sessions can be reset so that the priority is derived from the application profile.

Developing Clients

54 Application Development Guide

Session tag APIs
The client application is responsible for generating the session tag. The tag, which can be up to 128
characters in length, is limited to alphanumeric, hyphen, and underscore characters. If it is set as an empty
string, the session will not have a session tag.

The session tag is set in the SessionCreationAttributes object, which is passed as an input parameter
to the createSession() method. The following code samples demonstrate the use of
SessionCreationAttributes for each of the supported programming languages. A VBA sample is
also included for the COM API. For more details, refer to the API reference documentation.

C++
SesssionCreationAttributes attributes;
attributes.setSessionName("mySession");
attributes.setSessionType("mySessionType");
attributes.setSessionFlags(SF_SYNC);
attributes.setSessionTag("tag");
SessionPtr sesPtr = conPtr->createSession(attributes);

Java
SessionCreationAttributes attributes = new SessionCreationAttributes();
attributes.setSessionName("mySession");
attributes.setSessionType("mySessionType");
attributes.setSessionFlags(Session.SYNC);
attributes.setSessionTag("tag");
session = connection.createSession(attributes);

C# (.NET)
SessionCreationAttributes attributes = new SessionCreationAttributes();
attributes.SessionName="mySession";
attributes.SessionType="mySessionType";
attributes.SessionFlags = SessionFlags.AliasSync;
attributes.SessionTag="tag";
session = connection.CreateSession(attributes);

VBA (COM API)
Set attributes = New CSoamSessionCreationAttributes
attributes.SessionName="mySession"
attributes.SessionType="mySessionType"
attributes.SessionFlags = SessionFlags.ReceiveSync
attributes.SessionTag="tag"
Set session = connection.CreateSession(attributes)

Querying and controlling related sessions
Actions that query and control related sessions can be performed by supplying the session tag via the
command line interface. Refer to the Symphony Reference for more information on the commands that
accept the session tag as a filter.

The session tag can also be supplied through the Platform management console as a filter. Refer to the
online documentation provided with the management console for further information.

Feature: Session-creation attributes
Client-side features of the SessionCreationAttributes API enable developers to dynamically specify
the session-level parameters while creating a session.

Developing Clients

Application Development Guide 55

Scope
Applicability Details

Operating system • Windows
• Linux
• Solaris

Limitations None

About client-side session creation workload attributes
The following attributes can be specified at session creation.

Preemptive

Determines if the session is preemptive. If the value is set to true in conjunction with
the R_PriorityScheduling policy, the session will preempt lower priority sessions to get
resources when it has unsatisfied demand; if set to true for other policies, the session
will only preempt sessions with a lower session ranking. If the value is set to false, and
all resources are occupied by other sessions, the session must wait until the currently
running tasks are completed before it can get any resources. The default value is false.

ReclaimRank

Defines the relative importance of a session; the higher the number, the more servere
the impact to the session if the associated tasks are interrupted. This rank overrides the
configuration defined for the session type in the application profile.

ResourceGroupFilter

Applies a resource group filter to the session. This resource group filter overrides the
one defined for the SessionType in the application profile. Tasks from a session can only
run on resources that belong to one of the resource groups listed in the filter.

ServiceName

Any service name that exists in the application profile. Workload submitted to the
session is sent to the service specified in the SessionCreationAttributes.

If session type is specified, the configured value for ServiceName in the session type will
be used as default.

If session type is not specified when creating the session, the default ServiceName is the
service configured as default="true" in the application profile.

ServiceToSlotRatio

Applies a slot usage requirement to the session by specifying a service-to-slot ratio. This
ratio overrides the one defined for the SessionType in the application profile. Tasks
from this session can only run on service instances that occupy the appropriate number
of slots.

SessionFlags

Flags that control how the API will interact with the session.

Developing Clients

56 Application Development Guide

SessionName

Text to be associated with the session. This name does not have to be unique and exists
to give informational details as desired by the creator of the session. SessionName is
limited to 256 characters.

SessionPriority

A priority between 1 and 10,000 (highest).

If session type is specified, the configured value for SessionPriority in the session
type will be used as default.

If no value is configured for SessionPriority, the default SessionPriority of 1 is
used.

If session type is not specified when creating the session, the default
SessionPriority is 1.

SessionTag

A text to be associated with a session that can be used in administrative operations.
SessionTag is limited to 128 characters.

SessionType

A name associated with a collection of other attributes that can be assigned to a session
on its creation. The session type specified with the API must match the session type that
is defined in the application profile.

The session type is optional. If you leave this parameter blank " " or do not set a session
type, system default values are used for session attributes. If you specify a session type
in the client application, you must also configure the session type in the application
profile—the session type name in your application profile and session type you specify
in the client must match. If you use an incorrect session type in the client and the
specified session type cannot be found in the applicatin profile, an exception is thrown
to the client.

Example: Set workload session attributes with SessionCreationAttributes API
To set a priority of 100 and use the service named calc service associated with the session named My
Session, your session creation code would look like this:

C++ SessionCreationAttributes attrs;
attrs.setSessionPriority(100);
attrs.setServiceName("calc");
attrs.setSessionName("My Session");
attrs.setSessionType("LongRunningSession");
attrs.setSessionFlags(ReceiveSync);
attrs.setSessionTag("S9v234");
...

C# (.NET) SessionCreationAttributes attrs = new SessionCreationAttributes();
attrs.SessionPriority = 100;
attrs.ServiceName="calc";
attrs.SessionName="My Session";
attrs.SessionType="LongRunningSession";
attrs.SessionFlags = ReceiveSync;
attrs.SessionTag="S9v234";

Developing Clients

Application Development Guide 57

...

Java SessionCreationAttributes attrs = new SessionCreationAttributes();
attrs.setSessionPriority(100);
attrs.setServiceName("calc");
attrs.setSessionName("My Session")
attrs.setSessionType("LongRunningSession");
attrs.setSessionFlags(ReceiveSync);
attrs.setSessionTag("S9v234");
...

Developing Clients

58 Application Development Guide

Tasks and messages
Tasks

A task is simply a container to hold matching input and output. You cannot directly create a task. However,
you can submit work to a session by invoking sendTaskInput(), which creates a task in Symphony.
No output object exists until the service instance returns the result to Symphony after processing the
input.

Task lifecycle
Once a task is created, it is valid in Symphony until one of the following conditions exist:

• The client collects the output and Symphony receives confirmation that the output was successfully
collected

• The session is terminated, which in turn terminates all tasks
• The task is killed

You can specify that if a task fails it should be rerun by specifying the taskRetryLimit attribute in the
application profile. This informs Symphony how many times it should rerun the task before giving up.

If a task fails, Symphony attempts to rerun the task up to the number of times specified by the
taskRetryLimit attribute in the application profile. If the task has not successfully run after n retries, and
the abortSessionIfTaskFail attribute is set true in the application profile then the session is aborted.
Otherwise, a single task failure does not affect the session. By default, abortSessionIfTaskFail = false.

Developing Clients

Application Development Guide 59

Task tags: Using tags for related tasks
Overview

A tag is simply a string that is attached to the task when it is created. Since the tasks for each session can
come from different user requests, the tasks that belong to a particular request can be identified by their
tags. The task tag can later be used to filter only those tasks that share the given tag.

Task tag APIs
The client application is responsible for generating the task tag. The tag, which can be up to 128 characters
in length, is limited to alphanumeric, hyphen, and underscore characters. Note that the task tag cannot
begin with a hyphen.

The task tag is set in the TaskSubmissionAttributes object, which is passed as an input parameter
to the sendTaskInput() method. The following code samples demonstrate the use of the task tag for
each of the supported programming languages. For more details, refer to the API reference
documentation.

C++

 // Create a message
 char hello[] = "Hello Grid !!";
 MyMessage inMsg(taskCount, true, hello);
 // Create task attributes
 TaskSubmissionAttributes attrTask;
 attrTask.setTaskInput(&inMsg);
 attrTask.setTaskTag("TaskTagHere");
 // send it
 TaskInputHandlePtr input = sesPtr->sendTaskInput(attrTask);

Java

 // Create a message
 MyInput myInput = new MyInput(taskCount, "Hello Grid !!");
 // Set task submission attributes
 TaskSubmissionAttributes taskAttr = new TaskSubmissionAttributes();
 taskAttr.setTaskInput(myInput);
 taskAttr.setTaskTag("TaskTagHere");
 // Send it
 TaskInputHandle input = session.sendTaskInput(taskAttr);

C# (.NET)

 // Create a message
 MyMessage inputMessage = new MyMessage(taskCount, true, "Hello Grid !!");
 // Set task submission attributes
 TaskSubmissionAttributes taskAttr = new TaskSubmissionAttributes();
 taskAttr.SetTaskInput(inputMessage);
 taskAttr.TaskTag = "TaskTagHere";
 // Send it
 TaskInputHandle input = session.SendTaskInput(taskAttr);

Querying and displaying related tasks
Actions that query and display related tasks can be performed by supplying the task tag or wildcard
characters via the command line interface. Refer to Symphony Reference documentation for more
information on the commands that accept the task tag as a filter.

Developing Clients

60 Application Development Guide

The task tag can also be supplied through the Platform management console as a filter. Refer to the online
documentation provided with the management console for further information.

Priority tasks
When you send input messages, they are used to create tasks.

• If there are enough CPU slots to compute the tasks, tasks are immediately sent to compute hosts.
• If there are not enough CPU slots to compute the tasks, tasks remain pending in a dispatch queue

according to submission time. Tasks are sent to compute hosts in the order in which they were
submitted.

In some cases, when tasks are pending, you may want to have a task jump to the start of the queue and
be sent to compute hosts before other tasks. You can do this by specifying that a task has priority.

Running tasks are not preempted for priority tasks.

When one task has priority
You specify that a task has priority when you send the message.

If more than one task in a session is a priority task, subsequently submitted priority tasks jump ahead of
pending priority tasks that are still waiting to be sent to compute hosts.

If there are pending tasks, the priority task jumps the queue so that it is sent to a compute host for
processing ahead of other tasks in the queue.

Developing Clients

Application Development Guide 61

Messages
Input and output messages

The Message class is an object-oriented construct that enables you to send your data through Symphony
to your client or service.

To send custom input and output, the Message object must be extended and the onSerialize() and
onDeserialize() methods implemented.

The Symphony API follows object-oriented principles to allow your data to be logically encapsulated.

Input messages
Any input to the service that does not fall under the category of common data is referred to as an input
message.

An input message must be sent to invoke your service. Each input message corresponds to one service
invocation.

You can determine the scope of an input message retrieved by the ServiceContainer by accessing the
input message during the execution of onInvoke() on the ServiceContainer

Lifetime of an input message
The input message sent from the client cannot be deleted until sendTaskInput() on the session returns
successfully.

If you have a recoverable session: once sendTaskInput() returns successfully, the input message is
kept in the system until output is successfully retrieved for the task. If you do not retrieve output
successfully, the message is kept in the system until the session is closed or aborted.

If you have a non-recoverable session: if the session manager fails or the system goes down, you need to
keep your input message and resend it, or create a new session and resend. You will not be able to recover
input or output.

Output messages
The result of a service computation to be sent back to the client is referred to as an output message.

Lifetime of an output message
The output message sent from the service cannot be deleted until setOutputMessage() on the
TaskContext returns successfully.

Data passing: serialization and deserialization
In the Symphony API, you need to implement methods to read messages from I/O streams. Symphony
handles the serialization and deserialization of messages between the client application and the service.

Serialization
Input to the onSerialize() method is an empty output stream. You must write the code that puts
your data into that stream.

Developing Clients

62 Application Development Guide

Deserialization
Input to the onDeserialize() method is an output stream that contains your serialized data. You
must write the code to populate your message's member variables with the data from the stream.

Tip:
Remember to double-check that your Message object serialization and
deserialization order are the same.

How messages are serialized and deserialized in the system: a high-level
overview

1. When the client calls the appropriate API method to send a task input to the service, the input message
is serialized to a binary form.

2. Symphony transports this binary data to the service with no knowledge of its content.
3. In order to do its work, the service needs to gain access to the input message. The service calls the

appropriate API method to access the input message, which causes the binary data to be deserialized
to an input message.

4. The service processes the input message and generates a processing result (an output message).
5. The service sets this output message to indicate its intent to return the result to the client. When the

service calls the appropriate API method to set the output, the output message is serialized to a binary
form.

6. When the service processing method returns, Symphony transports this binary data to the client with
no knowledge of the data's content.

7. The client calls the appropriate API method to access the output message from the service, which
causes the binary data to be deserialized to an output message. The client then proceeds to process
the output.

Developing Clients

Application Development Guide 63

Feature: Default message API
The default message API gives developers quicker integration points to help shorten the integration effort
with Symphony for those applications which might have heavy dependence on strings or raw binary data
being transferred between the client and service. Developers now do not need to implement
onSerialize() and onDeserialize() when sending messages composed of a single text string or a
stream of binary data.

Scope
Applicability Details

Operating system • Windows
• Linux
• Solaris

Limitations None

About default message classes
The following message objects give developers instant access to message implementations that are
available out of the box. Both of these objects can be used within cross-language applications to implement
clients and services in different Symphony API targets.

DefaultTextMessage Contains basic implementation to encapsulate a string within a message
object. This means the developer is able to easily transfer a single text string
between client and service by having the application call the setText and
getText methods.

DefaultByteArrayMessage Contains basic implementation to encapsulate a byte array within a
message object. This means the developer is able to easily transfer binary
data between client and service by having the application call the
setByteArray and getByteArray methods.

Developing Clients

64 Application Development Guide

Modifying your client for performance
Feature: Improving throughput in high-latency networks

Aggregating messages prior to putting them on the wire can improve throughput in high-latency networks
such as WANs. This technique enables a Symphony client to maximize utilization of the network
connection between itself and the session manager.

Scope
Applicability Details

Operating system • Windows
• Linux
• Solaris

Best practice This feature is not recommended for recoverable clients since message
aggregation would require complex application coding to handle a client that
terminates abnormally.

The reason that it is not recommended to use message aggregation with
recoverable clients is that due to message aggregation, the number of
outstanding sends to the session manager is greater than 1. As a result, there is
no way to know how many outstanding sends were successfully received or are
in the process of being handled by the session manager.

A recoverable client is a client that can tolerate an abnormal termination of its
execution and is able to recover and continue to process workload. Recovery of
such a client usually involves it being restarted and given enough context to allow
it to connect and open an existing session that previously contained its workload.
For this type of client, it is usually recommended to set the
discardResultsOnDelivery attribute to “false” in the applicaton profile to allow for
a simplified recovery procedure.

About message aggregation
Before describing how message aggregation can improve throughput for a WAN connection, it is helpful
to know how task data is submitted in Symphony’s default model.

Default behavior without message aggregation
Although the underlying communication channel between the client and the session manager is
asynchronous, the data submission protocol is synchronous. Here is the sequence of events when a client
wants to send task data to the session manager:

1. Client sends task data to the API layer.
2. API layer serializes the data and submits it to the underlying communication layer.
3. API layer blocks the client’s submission thread.
4. Data is transferred by the communication layer to the session manager. The session manager replies

with an acknowledgement upon successful receipt of the data.
5. API layer returns a Task Input Handle to the client and unblocks the client’s thread. The client’s thread

is then free to submit more input.

Note:

Developing Clients

Application Development Guide 65

If the session’s recoverable attribute is set to true, the API waits for
confirmation of successful data persistence from the session manager
before returning a Task Input Handle to the client.

Behavior with message aggregation
The message aggregation feature enables the submission of work in a non-blocking mode. To better
understand the interaction between the client and the session manager when using message aggregation,
let’s look at the sequence of events.

1. Client sends task data to the API layer.
2. API layer serializes the data and submits it to the underlying communication layer.
3. API layer returns a Task Input Handle to the client and program execution returns to the client’s

submission thread. The client repeats the data submission process until all the data is submitted.
4. Client waits with a collection of Task Input Handles until the session manager confirms that all the

data has been received.

Note:
The task ID is only set in the Task Input Handle after the message has
been successfully delivered to the session manager, i.e., the client has
received confirmation from the session manager.

Note:
If the session’s recoverable attribute is set to true, the API waits for
confirmation of successful data persistence from the session manager.

Developing Clients

66 Application Development Guide

When deploying message aggregation, the client’s sendTaskInput() call becomes non-blocking and
returns with a valid Task Input Handle object as soon as the data to be sent is queued for dispatch in the
underlying communication layer. Once the call returns, the client can use the returned Task Input Handle
to synchronize and/or query the state of the submission to the session manager. Since the communication
layer dispatches as many queued items as it can fit into a dispatch unit, it means that data is aggregated
transparently to the client code.

Although operations between the client and the session manager are asynchronous, they are still serialized
and have no priority associated with them. This means that the order in which the operations are
dispatched is always preserved. As a consequence, if a "direct fetch" or "close" operation is issued
immediately after the client sends many tasks in rapid succession (as is the case with message aggregation),
it is unlikely that the task queue will be empty. The "direct fetch" or "close" operation will be queued
accordingly and dispatched in due time. As a result, the client may experience a delay for the operation
in the queue to complete if there are many other pending operations at the time of the call.

Dispatch unit aggregation
In WAN networks, since the packet-level turnaround time is longer than for local network connections,
the connection can be better utilized by packing as much data as possible into a packet before sending it.
This is achieved by setting the TCP_NODELAY attribute in the SD.xml configuration file; refer to
Configurable TCP connection attributes.

Client API
The message aggregation feature can only be accessed through the client API.

Client requirements
To enable message aggregation, the client application must do the following:

1. Create a session using the appropriate session flag to inform the API of the client’s intention to send
task data in an overlapped manner.

The session flag is a member of the SessionCreationAttributes class. The following list shows how the
session flag is set for overlapped sending in each supported language.

Developing Clients

Application Development Guide 67

C++: .setSessionFlags(Session::SendOverlapped)

Java: .setSessionFlags(Session.SEND_OVERLAPPED)

C#.NET: .SessionFlags=SessionFlags.SendOverlapped

2. Perform the send operation using sendTaskInput().
3. Since the send operation may be pending, the client must keep track of the returned Task Input Handle

for verification and/or synchronization at a later time.
4. Client must query the Task Input Handle to evaluate whether the data has been successfully submitted

to the session manager. The query may take the form of issuing a waitForSubmissionComplete
() call or the client may poll for an update in the status.

The waitForSubmissionComplete() call has the following possible outcomes:

• Data was successfully submitted so the waitForSubmissionComplete() call returns with a
success code.

• Data was unsuccessfully submitted so the waitForSubmissionComplete() call returns with a
failure code, at which point the client must acquire the exception from the Task Input Handle to
find out the reason for failure. If the optional parameter of throwOnSubmissionFailure is set to
true, the method throws the exception directly. The default behavior is not to throw an exception.

• The waitForSubmissionComplete() call timed out and returns to the client.
• The waitForSubmissionComplete() call may also throw an exception if there is an internal

error while performing the operation.

For more information about the waitForSubmissionComplete() method of the
TaskInputHandle class, refer to the API reference documentation.

Configurable TCP connection attributes
When configuring a remote client using large latency WAN connections, performance may be improved
by setting TCP_NODELAY=0 and applying other appropriate TCP settings (based on user-specific
network parameters to optimize TCP package throughput over the connection). Refer to Configuring
TCP Connections.

Feature: Data compression
Data compression enables a client to improve data throughput in the network by reducing the size of data
it sends to Symphony. The data size threshold can be specified by the application at runtime.

Scope
Applicability Details

Operating system • Windows
• Linux
• Solaris

Limitations N/A

About data compression
By default, data compression is not enabled. Once a session is created with data compression enabled, it
is preserved for the lifetime of the session and cannot be changed by opening or updating the session.

Developing Clients

68 Application Development Guide

Data compression can be used in conjunction with the direct data transfer feature. In this case, compressed
data will be sent to and from the service.

During the compression/decompression step, the client and service will consume additional memory, as
required, to complete the compression/decompression operation. Once compression/decompression has
completed, the additional memory will be released.

When to use data compression
If your data is highly compressible and over 1Kb in size, you can experience an improvement in data
throughput by using data compression. Highly compressible data is characterized as mostly text or a
mixture of text and some binary. Tests have shown that a compression ratio between 85% and 95% can
be achieved for highly compressible data. Since these ratios depend heavily on the makeup of the data,
data analysis and trial runs of different messages within the application can be performed to get a better
idea of the compression ratio for your specific application’s data.

The compression ratio of application data is determined by the following formula:

compression ratio = (1- compressed data size/uncompressed data size) x 100

Enabling data compression for sessions
When data compression is enabled, all task inputs and outputs, as well as all common data and common
data updates can be compressed. Whether the data is compressed depends on the threshold setting.

Here is the sequence for compressing data at the session level and submitting it to Symphony.

1. The client creates a connection to Symphony.
2. The client creates a session and sets the session attributes so that data compression is enabled.
3. The client submits tasks using the session it has created. Data is sent to Symphony in compressed

format if the data size exceeds the threshold setting.

Client API
The data compression feature can only be enabled through the client API.

Enabling data compression for sessions
You can enable data compression for all input/output tasks associated with a session, or for sending
common data or common data updates. To enable data compression at the session level, the client
application must do the following:

1. Create a session using the appropriate session attribute to inform the API of the client’s intention to
send data to Symphony in a compressed format. The session attribute is a member of the
SessionCreationAttributes class.

2. Send the task input messages to Symphony.

The following sample code shows how a SessionCreationAttributes object is set for data compression in
each supported language. For more information about the SessionCreationAttributes and
SessionOpenAttributes classes, refer to the API reference documentation.

C++
SesssionCreationAttributes attributes;
attributes.enableDataCompression(true);

Java
SessionCreationAttributes attributes = new SessionCreationAttributes();
attributes.enableDataCompression(true);

Developing Clients

Application Development Guide 69

C# (.NET)
SessionCreationAttributes attributes = new SessionCreationAttributes();
attributes.EnableDataCompression = true;

Setting the data compression threshold
When data compression is enabled, the threshold specifies the message size in kilobytes that triggers
compression. As long as the byte size of the message is below the threshold, the data will be sent according
to the default Symphony model. If the byte size is greater than the threshold, the data will be sent in a
compressed format. The default threshold is 1 kilobyte.

Note:
In general, empirical data has shown that a threshold of less than 1K does
not yield reasonable compression ratios. In fact, if your threshold is too
low, you can experience negative compression ratios, depending on the
type of data.

To set the data compression threshold, the client application must do the following:

1. Create a session using the appropriate session attribute to set the data compression threshold. The
session attribute is a member of the SessionCreationAttributes class.

2. Send the task input message with the task attributes.

The following sample code shows how to set the data compression threshold with a
SessionCreationAttributes object in each supported language. For more information about the
SessionCreationAttributes class, refer to the API reference documentation.

C++
SessionCreationAttributes attributes;
attributes.setDataCompressionThreshold(5);

Java
SessionCreationAttributes attributes = new SessionCreationAttributes();
attributes.setDataCompressionThreshold(5);

C# (.NET)
SessionCreationAttributes attributes = new SessionCreationAttributes();
attributes.DataCompressionThreshold = 5;

Setting the data compression flag
The following flags offer the ability to further modify data compression behavior when compression is
enabled. The flags are mutually exclusive.

• BetterSize: will give good compression in a reasonable time.
• BestSpeed: performs compression but considering time as a factor. This will yield a smaller

compression ratio but will give the best compression time.

The default flag setting is BestSpeed.

Here is a summary of compression characteristics based on the analysis of empirical data:

• The time to decompress data will always be a fraction of the time it takes to compress the data.
Depending on the compression flag selected, the time to decompress can be between 5% and 50% of
the time to compress.

Developing Clients

70 Application Development Guide

• For data containing mostly text (such as XML), once the data size is greater than 20KB, a compression
ratio above 85% is expected. As the data size increases, the compression ratio approaches 95%.

• For data containing a mixture of text and binary formats, the average compression ratio, once the data
size is greater than 1KB, is between 55% and 60%.

• The option to choose BestSpeed compression (default) or not can make a difference for highly
compressible data, i.e., mostly text. In general, BestSpeed provides ratios that are about 4% lower than
BetterSize in cases where data is highly compressible, but consumes noticeably less time (between 0.5
and 0.75 of the time it takes to compress with BetterSize).

The following sample code shows how to set the compression flags with a SessionCreationAttributes
object in each supported language. For more information about the SessionCreationAttributes, refer to
the API reference documentation.

C++
SesssionCreationAttributes attributes;
attributes.setDataCompressionFlags(Session::BestSpeed);

Java
SessionCreationAttributes attributes = new SessionCreationAttributes();
attributes.setDataCompressionFlags(DataCompressionFlags.
BEST_SPEED);

C# (.NET)
SessionCreationAttributes attributes = new SessionCreationAttributes();
attributes.DataCompressionFlags = DataCompressionFlags.BestSpeed;

Feature: Direct Data Transfer
Direct data transfer enables a Symphony client to maximize utilization of the network bandwidth between
itself and the service. This feature essentially eliminates the session manager from the data flow allowing
applications to optimize the use of different network topologies.

Scope
Applicability Details

Operating system • Windows
• Linux
• Solaris
• AIX (client)

Developing Clients

Application Development Guide 71

Applicability Details

Limitations • This feature cannot be used by offline clients since clients using the direct
data transfer feature must always be available to provide data to the service
instance while there is outstanding workload.

• This feature cannot be used by recoverable clients. When the direct data
transfer feature is enabled, data is actually cached in the running client
instance instead of being sent to the session manager. There is no client-side
recovery capability for this cached data.

• This feature cannot be used with the Service Replay Debugger feature.
• This feature cannot be used when the following session type attributes are

set to the specified values, otherwise an exception is thrown.

• abortSessionIfClientDisconnects=”false”
• discardResultsOnDelivery=”false”

About direct data transfer
This section describes how data is submitted to a service using direct data transfer. But first, it is helpful
to know how data is submitted in Symphony’s default model.

Default behavior without direct data transfer
Here is the sequence of events when a client wants to send task data to the service:

1. Client sends a task input message containing the data to the API layer, which serializes the message
and submits it to the underlying communication layer.

2. The message is transferred by the communication layer to the session manager on the management
host. The session manager replies to the client with an acknowledgement upon successful receipt of
the message.

3. The session manager routes the message to the service instance manager and service instance on the
compute host.

4. The service performs calculations on the input data within the message and returns the result to the
client via the service instance manager and session manager.

The following diagram shows the data flow between the client and the service instance in Symphony’s
default model.

Developing Clients

72 Application Development Guide

Behavior with direct data transfer
When direct data transfer is enabled for task input messages, the messages are sent to the service in the
same manner as in Symphony’s default model. The difference is when direct data transfer is enabled, the
application data is not included in the task input message itself. Only metadata is actually sent with the
task input message. To better understand the data flow between the client and the service when using
direct data transfer for input/output messages, let’s look at the sequence of events.

1. The client formulates a task input message encoded with the URL of the client (metadata). This is the
URL the client will listen on.

2. The message is propagated to the service in the same manner as in Symphony’s default model.
3. The service driver extracts the client URL and uses it to retrieve the data from the client.
4. The service performs calculations on the data and sends the resulting data directly to the client.
5. The client waits for acknowledgement from the session manager about the success of the task before

accessing the output data locally.

The following diagram shows the data flow between the client and the service instance with direct data
transfer enabled for input/output messages.

Developing Clients

Application Development Guide 73

When to use direct data transfer
The direct transfer of application data should be considered in either of the following situations:

• You have many client connections being routed through a session manager. The session manager’s
routing and scheduling overhead can potentially impede data flow to the service.

• The client and service reside on the same subnet but the session manager does not.

Note:
Direct data transfer can be used in conjunction with data compression or
other features such as common data updates. For example, if direct data
transfer and data compression are both enabled, the compressed data
will be sent directly to the service.

Client API
The direct data transfer feature can only be enabled through the client API at the session level.

Enabling direct data transfer for sessions
You can enable direct data transfer for all tasks associated with a session, and optionally, for common
data and common data updates. To enable direct data transfer, the client application must do the following:

1. Create a session using the appropriate session attribute to inform the API of the client’s intention to
send data directly to the service. The session attribute is a member of the SessionCreationAttributes
and SessonOpenAttributes classes.

2. Send the task input messages to Symphony.

Developing Clients

74 Application Development Guide

The following code sample shows how direct data transfer is enabled using the SessionCreationsAttribute
class in each supported language. For more information about the SessionCreationAttributes and
SessionOpenAttributes classes, refer to the API reference documentation.

C++
SesssionCreationAttributes attributes;
attributes.enableDirectDataTransfer(true);

Java
SessionCreationAttributes attributes = new SessionCreationAttributes();
attributes.enableDirectDataTransfer(true);

C# (.NET)
SessionCreationAttributes attributes = new SessionCreationAttributes();
attributes.EnableDirectDataTransfer = true;

Setting direct data transfer flags
The direct data transfer flags allow greater control over Symphony behavior when the direct data transfer
feature is enabled. By default, when direct data transfer is enabled, only the task data is sent directly
between the client and service. This means that common data and common data updates are still sent to
the service via the session manager. To override this behavior, it is necessary to set the appropriate direct
data transfer flag.

For example, to set the direct data transfer flag for all tasks including common data and common data
updates in a new session, the client application must do the following:

1. Create a session using the appropriate session attribute to inform the API to include common data
and common data updates in the direct data transfer. The session attribute is a member of the
SessionCreationAttributes class.

2. Send the task input messages to Symphony.

The following code sample shows how a direct data transfer flag is set with a SessionCreationAttributes
object in each supported language. For more information about the SessionCreationAttributes class, refer
to the API reference documentation.

C++
SessionCreationAttributes attributes;
attributes.setDirectDataTransferFlags(Session::IncludeCommonDataAndUpdates);

Java
SessionCreationAttributes attributes = new SessionCreationAttributes();
attributes.setDirectDataTransferFlags
(DirectDataTransferFlags.INCLUDE_COMMON_DATA_AND_UPDATES);

C# (.NET)
SessionCreationAttributes attributes = new SessionCreationAttributes();
attributes.DirectDataTransferFlags = DirectDataTransferFlags.IncludeCommonDataAndUpdates;

Port configuration
You can define a port or port range for the client to listen for connections from the service. You may want
to do this if your client is running behind a firewall. The SOAM_DIRECT_DATA_PORT environment
variable is used to define the port or port range; e.g., SOAM_DIRECT_DATA_PORT="25000" or
SOAM_DIRECT_DATA_PORT="25000-25100".

Developing Clients

Application Development Guide 75

Note:
If the SOAM_DIRECT_DATA_PORT is not defined, Symphony will use
the value defined in EGO_CLIENT_ADDR. If neither of these variables
are defined, Symphony randomly selects a client port to listen on.

Client memory management
Since direct data transfer will most likely be used in situations where an application needs to transfer large
amounts of data, the client’s memory usage can become an issue. To conserve memory, Symphony can
write the cached input/output data to disk and restore the data to memory only when it is required. Once
the session is completed, Symphony removes all the input/output data from the file system.

For clients that have access to larger address space, for example, 64-bit clients, they have the ability to be
optimized by keeping all the data in memory and relying on O/S paging instead of file caching.

The SOAM_DIRECT_DATA_STORAGE environment variable with possible values of StoreInMemory
or StoreOnDisk is used to define whether the data resides in client memory or is written to disk. The
default behavior when this variable is not defined is StoreOnDisk.

Multiple network interfaces
Symphony allows a non-default interface on the client host to be specified for communication with the
service instance. The SOAM_DIRECT_DATA_ADDRESS environment variable can be defined with a
valid IP address (or hostname alias) that represents the non-default interface.

Developing Clients

76 Application Development Guide

Common data: using data in your application
Data: the issue

The data issue is a generic issue for financial applications. Regardless of how much data can be shared
and pre-loaded in the service instances, you still need to pass some task-specific data between the
Symphony client and service through the Symphony task message.

In many financial applications, a market dataset is often shared by more than one task. If you send this
market dataset through task-specific input messages, the same data is sent more than once across the
network. To reduce network traffic, maximize the shared data and minimize the task-specific data.

Common data
If you have input that is common to all tasks within a session, such as data that is required by every service
invocation for a given session, you can create a Message object to encapsulate this common data. In this
context, the Message object is referred to as common data.

Common data represents state that can be made available to service instances for the duration of a session.

When to use common data
Use common data when you need to set up the session-specific state of a service, and you only want to
do it once per session, not on every task. Common data is useful for passing data from a client to a service.
The service loads the data when the session is created.

You can use common data, for example, to set the environment in the service that is common to all tasks
in a session. This way you only need to set the environment once, when the session is created.

Session-to-service instance affinity
Symphony attempts to use the same service instance for all tasks in a session as much as possible.

A service instance is made available to other sessions only when session workload completes, a session is
closed or aborted, or when another more deserving session is assigned the service instance.

Lifetime of common data
You can access the common data in the service during execution of onSessionEnter() on the
ServiceContainer.

The common data object sent from the client can be deleted after the Connection.CreateSession
() call returns.

Common data update
Common data update allows a client application to send updates to existing common data after a session
is created. You can send the updates from the client to your service by calling the update() method on the
session object. You can access the updated common data in the service, during execution of
onSessionUpdate() on the ServiceContainer.

Developing Clients

Application Development Guide 77

Optimizing common data for multi-slot hosts
The transfer of common data can be optimized for environments that feature sessions running multiple
SIMs on the same host.

Scope
Applicability Details

Operating system • Windows
• Linux
• Solaris

Limitations N/A

About common data and multi-slot hosts
When common data for a session is sent to compute hosts, Symphony, by default, sends one copy of the
data to each SIM. In the case of one session running multiple SIMs on the same host, the same data will
be sent multiple times. The potential drawback of having to send and maintain multiple copies of common
data and common data updates is the burden it puts on host memory and network bandwidth.

Developing Clients

78 Application Development Guide

Figure 1: Common data distribution, Symphony default model

Common data optimization
Symphony allows you to optimize the distribution of common data and common data updates so that
only one copy of the data is sent to each host serving the same session. The single copy of common data
is shared among all SIMs and SIs associated with the same session on the same host. Note that if all the
SIMs on the host get unbound from the session, the common data is lost and must be sent to the host
again if the SIMs get bound to that same session.

Common data is shared among the SIMs using a shared file system. When the first SIM for the session is
started, it receives the common data and stores it in a shared file. When additional SIMs are assigned to
the same session, they use the common data stored in the shared file. The same principle applies to
common data updates, which are stored in a shared file at the same location as the common data.

Developing Clients

Application Development Guide 79

Figure 2: Common data distribution, optimized

When to use common data optimization
Common data optimization is recommended for sessions that are likely to use multiple SIMs on the same
host. Also, the impact of common data optimization is proportional to the size of the common data. The
greater the common data size, the greater the benefit of optimization. For example, if the common data
size is 100 MB and the compute host has four SIMs assigned to the session, the session round trip can be
completed with an 80% savings in time when compared to optimization being disabled. On the other
hand, if the common data size is very small or the compute host has enough memory to store the multiple
copies of common data, optimization may not offer any benefit.

Configuring common data optimization
Common data optimization is configured by setting the enableCommonDataOptimization attribute at
the session level in the application profile. For example:
<SessionTypes>

Developing Clients

80 Application Development Guide

 <Type name="ShortRunningTasks" priority="1" recoverable="false"
 sessionRetryLimit="3" taskRetryLimit="3"
 abortSessionIfTaskFail="false" abortSessionIfClientDisconnect="true"
 suspendGracePeriod="100" taskCleanupPeriod="100"
enableCommonDataOptimization="true" />
 </SessionTypes>

Developing Clients

Application Development Guide 81

Client recovery
Disconnect and reconnect to a session

It is possible to disconnect from a session and reconnect.

You would want to do this when:

• You are creating a client that submits workload but does not have to wait for the results. Output can
be retrieved anytime by other clients.

• A client abruptly disconnects from a session but can recover and wants to reconnect later.

Note:
When opening a session, to ensure that the client gets results in the
expected manner:

• If you set the FetchResultsDirectly flag when creating a session, you
should also set it when opening the session.

• If you did not set the FetchResultsDirectly flag when creating the
session, you should not set it when opening the session.

About client disconnection
• There is no limit on the number of times you can connect to or disconnect from a session.
• Once a session is open on a connection, the connection has exclusive access to the session. Clients

cannot simultaneously connect to a session. If a client attempts to connect to an existing session while
another client has that session open, the client that was connected loses connection to the session and
the new client gains access to the session.

• Clients which have successfully connected to existing sessions may get output that has already been
delivered to a previous client. Client applications must be prepared to handle the same output delivered
more than once.

Explicitly disconnect and reconnect to a session
You have a client that submits workload but does not have to wait for the results. Output can be retrieved
anytime by other clients.

You can find sample code in the Session Reconnection sample in your Developer Edition installation

1. Disconnect from a session to be able to reconnect.
a) Create a connection.
b) Create a session.
c) Store the session ID for later retrieval.
d) Submit tasks.
e) Close the session with the detach flag.

This indicates to the session manager that workload should keep running and the session is to
remain open.

2. Reconnect to the session
a) In the same client or with a different client, create a connection.
b) Open the session using the original session ID.
c) Retrieve output and send more tasks as usual.

Developing Clients

82 Application Development Guide

3. Allow output to be redistributable to a new client

Optional.

In some cases, you may want a new client to retrieve all the output. By default, session manager discards
task results once output has been retrieved. You can configure the session type so that session manager
will keep the output until the session is closed or aborted.
a) Open your application profile.
b) In the SessionType, add the parameter discardResultsOnDelivery=false.

<SessionTypes>
 <Type name="DefaultSession" priority="1"recoverable="false"
abortSessionIfClientDisconnect="true" sessionRetryLimit="3" taskRetryLimit="3"
abortSessionIfTaskFail="false" suspendGracePeriod="100" taskCleanupPeriod="250"
persistSessionHistory="all" persistTaskHistory="error" discardResultsOnDelivery="false"/>
</SessionTypes>

c) Save your application profile.
d) Update your application profile with the soamreg command.

Reconnect to a session after client recovery
You have a client that terminated abnormally in the middle of a long-running session. The client may be
able to recover and continue working without losing its workload.

1. Store the session ID.

When creating a session in your client, store the session ID for later retrieval. This is important. If
your client terminates abnormally, you will be able to reconnect to the session.

2. Configure your session type to not clean up workload when the client disconnects.

By default, once a client disconnects, workload is cleaned up by the session manager. If your client is
recoverable and will attempt to reconnect to sessions, configure workload to not be cleaned up.
a) Open your application profile.
b) In the SessionType, set the parameters abortSessionIfClientDisconnect=false and

discardResultsOnDelivery=false.
 <SessionTypes>
 <Type name="DefaultSession" priority="1"
recoverable="true"abortSessionIfClientDisconnect="false" sessionRetryLimit="3" taskRetryLimit="3"
abortSessionIfTaskFail="false" suspendGracePeriod="100" taskCleanupPeriod="250"
persistSessionHistory="all" persistTaskHistory="error" discardResultsOnDelivery="false"/>
</SessionTypes>

c) Save your application profile.
d) Update your application profile with the soamreg command.

3. Reconnect when your client recovers.

When your client terminates abnormally, restart it.
a) Restart your client when it terminates abnormally.
b) Create connection.
c) Open the session using the original session ID.
d) Continue to operate with the session as usual.

You can retrieve output or send more tasks as usual.

Developing Clients

Application Development Guide 83

Remote clients
Configuration of TCP connections

This topic is only applicable on Symphony grid.

TCP connection attributes are configured on a cluster basis to optimize data throughput over network
connections. These attributes are set in the sd.xml configuration file.

The attributes should be configured for each connection endpoint in the Symphony environment, i.e.,
the client, Session Director, and session manager. The following table lists the relevant attributes.

Tip:
If you want to configure attributes with default values, it is not necessary
to add them to the sd.xml file.

Attribute Default Notes

TCP_NODELAY 1 May be set to 0 for message aggregation.

TCP_KEEP_ALIVE_TIME Value derived
from current OS
setting

OS default is 7200 seconds for most operating systems but
may vary.

TCP_SEND_BUFFER_SIZE 65535 Any new value that is less than or equal to the default value
is ignored.

TCP_RECV_BUFFER_SIZE 65535 Any new value that is less than or equal to the default value
is ignored.

Note:
On Solaris platforms, TCP_KEEP_ALIVE_TIME can only be set system-
wide and not on a per socket basis (this is an OS limitation). Symphony
on Solaris ignores the TCP_KEEP_ALIVE_TIME option if it is set.

Sample configuration in sd.xml:

<ego:EnvironmentVariable name="SDK_TRANSPORT_OPT">TCP_NODELAY=0,TCP_KEEP_ALIVE_TIME=300,
TCP_SEND_BUFFER_SIZE=65536,TCP_RECV_BUFFER_SIZE=65536</ego:EnvironmentVariable>
 ...
<ego:EnvironmentVariable name="SD_SDK_TRANSPORT_OPT">TCP_NODELAY=0,TCP_KEEP_ALIVE_TIME=300,
TCP_SEND_BUFFER_SIZE=65536,TCP_RECV_BUFFER_SIZE=65536</ego:EnvironmentVariable>
 ...
<ego:EnvironmentVariable name="SSM_SDK_TRANSPORT_OPT">TCP_NODELAY=0,TCP_KEEP_ALIVE_TIME=300,
TCP_SEND_BUFFER_SIZE=65536,TCP_RECV_BUFFER_SIZE=65536</ego:EnvironmentVariable>
 ...

Configuring local connections on clients
There may be situations where global TCP connection attributes are not appropriate for all connection
endpoints in the system; for example, remote clients that are geographically distant from the cluster may
require more time to send messages over the network. It is possible to override the system-wide attributes
on the remote client host by setting environment variables in the OS shell before starting the client process.
This method of overriding system-wide attributes can also be applied to remote hosts that are running
services.

The environment variables correspond to the four TCP connection attributes described previously:

Developing Clients

84 Application Development Guide

Environment variable on client Overrides this attribute in SD.xml

PLATCOMMDRV_TCP_NODELAY TCP_NODELAY

PLATCOMMDRV_TCP_KEEPALIVE_TIME TCP_KEEP_ALIVE_TIME

PLATCOMMDRV_TCP_SEND_BUFFER_SIZE TCP_SEND_BUFFER_SIZE

PLATCOMMDRV_TCP_RECV_BUFFER_SIZE TCP_RECV_BUFFER_SIZE

Once the environment variables have been created, you can adjust their values to suit the network
environment.

Connect to different clusters with the same client
• This section applies to Symphony grid, but not Symphony DE.
• There is no firewall that prohibits the client from establishing communication ports to management

hosts in the clusters.
• All clusters to which the client is connecting have the same Symphony version and same patch level .
• All cluster configuration files have the same security plugin configured. The default cluster

configuration file %EGO_CONFDIR%\ego.conf on Windows and $EGO_CONFDIR/ego.conf on
Linux.

You want a client to connect to the same application in a different cluster and to be able to submit work
there. This is useful when you have several clusters and you want to take advantage of idle CPUs.

1. In your client code, when creating a connection, use the connection method that allows you to specify
a connection file name or master host list.

• Use a file name. For example:

• Windows—file://c:\ego\kernel\conf\ego.conf
• Linux—file:///opt/ego/kernel/conf/ego.conf

• Use a cluster URL. For example:
master_list://host1:7870 host2:7870 host3:7870

When you specify a cluster URL, you use the keyword master_list, and indicate the master host
name and port number.

Master hosts and master candidate hosts are specified in the ego.conf file in the cluster
installation with the parameter EGO_MASTER_LIST.

The port number to use for connection is identified with the EGO_KD_PORT parameter in the
cluster’s ego.conf file. All ports numbers must be the same.

Test your connection to multiple clusters. Note that code for this feature can be tested in Symphony DE,
but you will only be able to connect to multiple clusters once in the grid environment.

Developing Clients

Application Development Guide 85

Web Service clients
Web Services provide a standard means of interoperating between different software applications,
running on a variety of platforms and/or frameworks. This section begins with a description of the major
components and concepts of a Web Service. Later, we describe these concepts within the Symphony
environment.

For more information about developing a Symphony Web Service client, refer to the Admin Web Service
client tutorial in the Knowledge Center.

Web Service components
XML

XML is used in the Web Services architecture as the platform-independent format for transferring
information between the Web Service and the Web Service client. The XML format ensures uniform data
representation and exchange.

WSDL
The Web Services Description Language (WSDL) describes the message syntax associated with the
invocation and response of a Web Service. A WSDL file is an XML document that defines the Web Service
operations and associated input/output parameters. In a way, the WSDL can be considered a contract
between the Web Services client and the Web Services server.

Basically, a WSDL document describes three fundamental properties of a Web Service:
• The operations (methods) that the service provides including input arguments needed to invoke them

and the response.
• Details of the data formats and protocols required to access the service’s operations.
• Service location details such as a URL.

WSDL 1.1 was suggested in a note to W3C as an XML format for describing Web Services; refer to http://
www.w3.org/TR/2001/NOTE-wsdl-20010315.

XML Schema
XML schemas are used to specify the structure of WSDL documents and the data type of each element/
attribute. XML schemas describe the documents that serve as the body of the SOAP messages traversing
the Symphony DE Web Service interface.

SOAP
SOAP is the protocol used for communication between the Web Service and the client application. SOAP
uses the Hypertext Transfer Protocol (HTTP or HTTPS) as the underlying protocol for transporting the
data. SOAP 1.1 was suggested in a note to W3C as a protocol for exchanging information in a distributed
environment. Refer to http://www.w3.org/TR/2000/NOTE-SOAP-20000508/.

Web Service security
The Symphony Web Services implementation supports the use of UserNameToken-based authentication
between the Web Service client and the Symphony Web Service. Refer to UsernameToken Profile 1.0
(OASIS Web Security Standard 200401) for further information.

A closer look at a Symphony WSDL and schema
This section looks at some key features of a Symphony WSDL and schema.

Developing Clients

86 Application Development Guide

SOAP binding style
SOAP supports two invocation models: Remote Procedure Calls (RPC) and document style.

In the RPC-style model, clients invoke the Web Service by sending parameters and receiving return values
that are wrapped inside the SOAP body. These procedure calls are synchronous, which means that the
client sends the request and waits for the response.

In the document style model, the client sends the parameters to the Web Service within an XML document.
The Web Service receives the entire document, processes it and possibly returns a response message.
Using the document style, the body of the SOAP message is interpreted as straight XML. Hence, this
combination of sending a document with a literal XML infoset as a payload is referred to as document/
literal. This is opposed to the RPC style that uses RPC conventions for the SOAP body as defined in the
SOAP specification. One advantage of using the document-centric approach is that document messaging
rules are more flexible than the RPC style, which allows for changes to the XML schema without breaking
the calling applications.

The type of binding model that is implemented is determined by an attribute in the WSDL. The style
attribute within the SOAP protocol binding can be set to either RPC or document. Symphony WSDLs
use document style binding and that is why a document must be created for the request and response
messages. Here is an example of a WSDL binding element that is set to document style. Note that the
encoding technique is specified by the soap:body element's use attribute. In this case, it is set to literal.

<soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
...
 <input> <soap:body use="literal"/> </input>

Passing parameters to a Web Service
The following example shows portions of the WSDL file for the Symphony DE Admin Web Service.

...
<types><schema targetNamespace="http://www.platform.com/soam/v2/wsse.xsd"
...
 <element name="sdViewSession">
 <complexType>
 <sequence>
 <element name="appName" type="xsd:string" minOccurs="0" maxOccurs="1"
 nillable="true"/>
 <element name="sessionId" type="soam:SessionID" minOccurs="1" maxOccurs="1"/>
 <element name="filter" type="xsd:string" minOccurs="0" maxOccurs="1"
 nillable="true"/>
 <element name="maxCap" type="xsd:long" minOccurs="1" maxOccurs="1"/>
 </sequence>
 </complexType>
 </element>
...
<message name="sdViewAppResponse"> <part name="parameters" element="soam:sdViewAppResponse"/
></message><message name="sdViewSession"> <part name="parameters"
element="soam:sdViewSession"/></message>
...
<portType name="SoamPortType">
...
<operation name="sdViewSession">
 <documentation>Service definition of function soam__sdViewSession</documentation>
 <input message="tns:sdViewSession"/>
 <output message="tns:sdViewSessionResponse"/>
 </operation>
...

In this example, we look at the sdViewSession operation. This operation takes a single input argument
defined as a message of type sdViewSession. (In the WSDL context, all parameters are called messages.)
Next, we determine the number of parameters in this message and their data types.

Developing Clients

Application Development Guide 87

...
<portType name="SoamPortType">
...
 <operation name="sdViewSession">
 <documentation>Service definition of function soam__sdViewSession</documentation>
 <input message="tns:sdViewSession"/>
 <output message="tns:sdViewSessionResponse"/>
 </operation>
...

If you look up the sdViewSession type in the types element, you will find a complex data type containing
four elements (parameters): appName, sessionId, filter, and maxCap. These parameters have string,
sessionId, string, and long data types, respectively. When you call the sdViewSession operation, you pass
all four parameters as input.

<message name="sdViewSession">
 <part name="parameters" element="soam:sdViewSession"/>
</message>
...
<element name="sdViewSession">
 <complexType>
 <sequence>
 <element name="appName" type="xsd:string" minOccurs="0" maxOccurs="1"
 nillable="true"/>
 <element name="sessionId" type="soam:SessionID" minOccurs="1" maxOccurs="1"/>
 <element name="filter" type="xsd:string" minOccurs="0" maxOccurs="1"
 nillable="true"/>
 <element name="maxCap" type="xsd:long" minOccurs="1" maxOccurs="1"/>
 </sequence>
 </complexType>
</element>
...

Return values from a Web Service
Web Service operations often return information back to the client application. You can determine the
name and data type of returned information by examining the WSDL or schema files for the Web Service.

Referring to the previous portion of the WSDL file for the Admin Web Service, we find that the operation
named sdViewSession returns a message of type sdViewSessionResponse. If you look up the
sdViewSessionResponse type in the types element, you will find it contains a return argument called
sessionAttrVector. You can see that the sdViewSessionResponse element has a complex data type.
Complex data types are serialized as XML and returned from the Web Service as the result. The variable
used to store the result must match the structure of the complex data type.

<element name="sdViewSessionResponse">
 <complexType>
 <sequence>
 <element name="sessionAttrVector" type="soam:SessionAttributeVector" minOccurs="1"
 maxOccurs="1" nillable="false"/>
 </sequence>
 </complexType>
</element>

Building a Web Service client
A Web Services client is an application capable of sending and receiving SOAP messages. Such an
application serializes or deserializes the SOAP messages to a programming language type system enabling
programmatic processing.

Here is the sequence for invoking a Web Service:

Developing Clients

88 Application Development Guide

• Client serializes the arguments of the method call into the XML payload of the SOAP message
• Send the message to the Web Service
• Wait for a response (or timeout)
• Deserialize the XML payload in the response message to a local type/structure
• Return that type/structure as a value from the method call.

Using Axis2 to Develop Java Web Service Clients
As a client to a Web Service, encoding your requests in XML to the Web Service and decoding the responses
you get back would be tedious (not to mention implementing the logic that deals with accepting requests
and sending responses).

Apache Axis2 is an implementation of the SOAP protocol and it shields the developer from the details of
dealing with SOAP and WSDL. You can use Axis on the client side to greatly facilitate the development
of your client. Bear in mind that there are several tools available to aid in the development of a Web Service
client and Platform does not endorse any particular one.

When using Axis2 to write your client, you don't need to deal directly with SOAP and XML. Axis creates
a proxy (or stub) for your clients to abstract away SOAP. All you need to do is make the method calls on
the Web Service proxy as if it were a local object.

The client calls the stub, the stub translates the call into a SOAP message, and the stub sends it to the Web
Service. The listening server receives the SOAP message and translates it into a method call at the server.
Since the server is written in Java, the SOAP message is turned into a Java call. The server's return values
are translated back to SOAP and then returned to the stub, which translates the returned SOAP message
into a response to the client.

A sample Bash shell script is provided that creates client-side classes for consuming services described in
the WSDL file.

Developing Clients

Application Development Guide 89

#!/bin/bash
Add the location of Java tools to PATHexport PATH=/usr/local/jdk/bin/:$PATH
Set the location of Axis2 binary installation
AXIS2_HOME=/home/ACCOUNT DIRECTORY/axis2-0.92-bin
AXIS2_LIB=../ego/axis2
Build Axis2 classpath
AXIS2_CLASSPATH=.
for i in $AXIS2_HOME/lib/*.jar; do AXIS2_CLASSPATH=$AXIS2_CLASSPATH:$i;
done
SCHEMAS="Soam.wsdl"
#Cleanup
rm -fr ./src ./respources *.jar
cp ../../../Soam.wsdl .
Generate the Java classes
for i in $SCHEMAS; do echo $i; j=`echo $i | sed -e 's/\(.*\)\..*/\1/'`; echo $j ;
java -classpath $AXIS2_CLASSPATH org.apache.axis2.wsdl.WSDL2Java -uri $i -o src
done
Compile the generated classes
cd src
for i in codegen codegen/databinding/com/platform/www
 codegen/databinding/com/platform/www/impl codegen/databinding/org/w3/www codegen/databinding/
org/w3/wwwimpl codegen/databinding/org/xmlsoap/schemas codegen/databinding/org/xmlsoap/
schemas/impl;
do
javac -classpath $AXIS2_CLASSPATH $i/*.java;
done
Create the Jar file
jar cf soamAdmin.jar ./codegen ./schemaorg_apache_xmlbeans/
mv soamAdmin.jar ..
#Cleanup
cd ..
#rm -fr ./src
Use the generated jar file in classpath of your application
exit 0

Developing Clients

90 Application Development Guide

4
Developing Services

C H A P T E R

Application Development Guide 91

About services
A service is a process on its own: anything that is executable and can access the Symphony API can
implement a service. The service does not initiate any actions on its own. Symphony triggers all service
actions.

Service containers and service instances
You create your service by extending the ServiceContainer class and implementing the required
handler methods.

A running instance of a ServiceContainer is called a service instance.

Symphony assigns a number of service instances to a session according to policy, session priority, and
the number of tasks in the session.

A service instance can be used to service different sessions within the same application. That is, Symphony
does not need to destroy an existing service instance and start a new service instance to serve different
sessions within the same application.

Service structure
The onInvoke () method in ServiceContainer() is the only required method. All other methods
are optional.

Do not do anything in your service until you:
1. Create a service container
2. Call run on the service container
When the application calls the ServiceContainer run() method, the service instance process registers with
Symphony. The service instance is given a certain time to register before it is considered to have timed
out. If your application does lengthy operations before calling the ServiceContainer run() method, your
service instance may not be able to register before the time out expires. This is considered a failure to start
the service instance.

The following diagram indicates the structure of a service with all methods implemented, in the order
that they need to be implemented. Note method pairs: if you use onCreateService(), you must also
use onDestroyService().

Developing Services

92 Application Development Guide

API method Description Action system takes

onCreateService() Optional. Use this method to
perform any required
environment set up when
your service is initialized.

Symphony invokes onCreateService() just after it
launches the service instance to initialize the service
instance.

This method is called once per service instance that is
started.

If the onCreateService method hangs, you should configure
a timeout. To verify if the method is hanging:

1. Run soamview resource to show that the resource is
assigned to the session.

2. Run soamview session -a to show that the session
deserves the resource but the resource is not assigned
to it

onDestroyService() Optional. Use this method to
clean up a service instance
before it is destroyed.

Symphony invokes onDestroyService() to clean up the
service instance when a service instance is ending its
lifecycle, provided that onCreateService() has been
called and has returned without exception.

Note:
This method will not be called if a service
instance crashes or exits or if a timeout
occurs.

onSessionEnter() Optional. Use this method to
load session common data
into memory.

Symphony invokes onSessionEnter() when a service
instance is assigned to a session.

Note:
Note that if there is no common data in
createSession(), onSessionEnter() is
not called.

onSessionUpdate() Optional. Use this method to
load session updated
common data into memory.

Symphony invokes onSessionUpdate() when a session-
specific update has been propagated to the service
instance.

Note:
Note that if there is no common data in
createSession(), onSessionUpdate() is
not called.

Developing Services

Application Development Guide 93

API method Description Action system takes

onSessionLeave() Optional. Use this method to
free up session common
data that was loaded into
memory with
onSessionEnter().

Symphony invokes onSessionLeave() to do session-
specific uninitialization when the service instance is
unassigned from the session, provided that
onSessionEnter() has been called and has returned
without exception.

Note:
This method will not be called if a service
instance crashes or exits, a timeout
occurs, or there is no common data in
createSession().

onInvoke() Required. Use this method
to compute a task.

Symphony invokes onInvoke() to compute a task. This
method is called once for every input message that is sent
to the service instance.

The method can be called in the same service instance
multiple times to compute multiple tasks for the same
session or for different sessions.

Service main()
The service main() is the entry point to the service. Create the container and run it.

Restrictions

• Do not implement any service initialization before calling the ServiceContainer::run() method. If any
service initialization needs to be done, implement the onCreateService() handler for your service
container.

• Do not implement any service uninitialization after calling the ServiceContainer::run() method. If any
service uninitialization is required, implement the onDestroyService() handler for your service
container since there is no guarantee that the remaining code in main() will be executed after calling
ServiceContainer::run(). Also, in some cases, the remaining code can even cause an orphan service
instance if the code cannot be finished.

Developing Services

94 Application Development Guide

Service lifecycle
Symphony triggers state changes for the ServiceContainer as illustrated in the following diagram. The
calls indicated on the diagram are calls made in the service, with the exception of Register() which is an
internal call made by the system.

The arrows indicate a normal return of the method.

Note:
OnSessionEnter() and OnSessionLeave() are not called if the
client does not relay common data when creating a session.
OnSessionUpdate() is not called if the client does not relay common
data updates to the session.

Service instance lifecycle
A service instance is an executing instance of a service. There can be many instances of a service at any
one time. Service instances are created by service instance managers.

Developing Services

Application Development Guide 95

Service instances can be started either before or when they are assigned to a session. They can stay running
to compute multiple tasks of the same session to use the data and state information cached in memory
for better performance. They can either exit or continue running when their serviced session is finished.

A service is transient if the service instances start and exit per session. A service is persistent if the service
instances stay and serve multiple sessions. A persistent service is a long-running process like a daemon,
which has to be more carefully programmed to avoid any accumulated problems such as memory leaks.

By default, the service instances in Symphony persist for multiple sessions. To make a service instance
transient, you can return a control code from onSessionLeave() to tell Symphony to restart the service
instance once it leaves the current session. This can also be used when you want to clean up any
accumulated problems by restarting your service from time to time.

Timeouts that affect service instance life cycle
The service instance lifecycle can be affected by different configured timeouts. If an application has
timeouts configured, then Symphony will take action if an operation exceeds the configured timeout. In
this case, Symphony terminates the service instance, causing the cleanup methods not to execute under
the following circumstances:

Method Not called

onDestroyService() • When an invocation of one of the following service methods times out:

• SessionEnter
• SessionUpdate
• Invoke
• SessionLeave

• When a task cannot complete before the suspendGracePeriod expires.
• When a task cannot complete before the taskCleanupPeriod expires.
• When a resource on which the service instance is running is reclaimed, and the

service instance cannot clean up before the applied reclaim grace period expires.
• When the application is disabled or unregistered and the service instance cannot

clean up before the cleanupTimeout expires.
• When a middleware component becomes unavailable and the service instance

cannot clean up before the cleanupTimeout expires.

onSessionLeave() • When an invocation of one of the following service methods times out:

• SessionUpdate
• Invoke

• When a task cannot complete before the suspendGracePeriod expires.
• When a task cannot complete before the taskCleanupPeriod expires.
• When a resource on which the service instance is running is reclaimed, and the

service instance cannot clean up before the applied reclaim grace period expires.
• When the application is disabled or unregistered and the service instance cannot

clean up before the cleanupTimeout expires.
• When a middleware component becomes unavailable and the service instance

cannot clean up before the cleanupTimeout expires.

As a best practice, you should configure a timeout for the onCreateService() method if you believe
that it may be hanging, otherwise some sessions may become under-allocated.

To verify if the method is hanging:

Developing Services

96 Application Development Guide

1. Run soamview resource to show that the resource is assigned to the session.
2. Run soamview session -a to show that the session deserves the resource but the resource is not

assigned to it. Note that it is reasonable for the number or deserved resources and the number of
assigned resources to be out-of-synch for some time (they will be out-of-synch while
onCreateService() is executing); if their values do not seem to be converging after periodically
monitoring them, you should suspect that the method is hanging.

Developing Services

Application Development Guide 97

Feature: Access to application attributes in a service
The service API gives developers access to information exposed to the Service Instance.

Scope
Applicability Details

Operating system • Windows
• Linux
• Solaris

Limitations None

About application attributes for services
The service API enables developers to access the following application attributes from the ServiceContext
object:

• Application name
• Service name
• Consumer ID
• Deployment directory
• Configured log directory

Example: Get application attributes with service API
To retrieve and print all the additional information your service code would look like this:

C++ const char* applicationName = serviceContext.getApplicationName();
const char* consumerId = serviceContext.getConsumerId();
const char* deploymentDir = serviceContext.getDeployDirectory();
const char* logDir = serviceContext.getLogDirectory();
const char* serviceName = serviceContext.getServiceName();
...

C# (.NET) string applicationName = serviceContext.ApplicationName;
string consumerId = serviceContext.ConsumerId;
string deploymentDir = serviceContext.DeployDirectory;
string logDir = serviceContext.LogDirectory;
string serviceName = serviceContext.ServiceName;
...

Java String applicationName = serviceContext.getApplicationName();
String consumerId = serviceContext.getConsumerId();
String deploymentDir = serviceContext.getDeployDirectory();
String logDir = serviceContext.getLogDirectory();
String serviceName = serviceContext.getServiceName();
...

Developing Services

98 Application Development Guide

Error codes and embedded service exceptions
When an exception is thrown from within the service of an application during its invocation, during the
processing of common data when the invocation of OnSessionEnter causes the session to be aborted, or
during the processing of common data update when the invocation of OnSessionUpdate causes the session
to be aborted, that exception is propagated to the client. The exception propagated to the client describes
the error as it relates to the middleware. This error may or may not be immediately useful to the application
since it presents itself in a format that is external to the application.

It is possible for an application to get more specific details about the error returned. The application must
attach enough meaningful information to the exception before it is thrown within the service. In general,
you can attach application-specific error information like a string description and/or an error code to an
exception before throwing it in the service code. The error information is preserved and wrapped within
a larger Symphony exception, which is then propagated to the client.

This information can then be used to further qualify how the client responds to any failures it receives
through an exception. For example, when a task fails, you may need to be able to determine whether an
error pertains to the service or to the Symphony system itself.

Attach an error code to service exceptions
To associate an error code to service exceptions, when creating the error message as a FatalException or
FailureException, add the error code and/or description to the exception when it being constructed.

Retrieve embedded service exceptions
Service-specific exceptions thrown within the context of OnInvoke(), OnSessionEnter(), or
OnSessionUpdate() are literally preserved and can be retrieved from the Symphony exception by the
client. Note that stack trace preservation is not available. To retrieve the service-specific exception, use
the SoamException::getEmbeddedException() method. Note that you must check for null before
attempting to use the embedded exception. This embedded exception contains any specific information
that was added in the service side of the application before the exception was thrown. If there is no
exception embedded, then it is likely that the exception is being reported from the system, or the exception
occurred as a result of an unexpected failure in the service code itself.

Example
The following pseudo-code illustrates how to retrieve embedded exceptions and associate error codes
with exceptions. This example relates to a task failing and how it is handled.
If task was successful
{
Process task normally
}
else
{
It must have failed so handle the failure case
// get the exception associated with this task
SoamException ex = output.Exception;
Console.WriteLine(ex.ToString());
SoamException myEx = ex.EmbeddedException;
if (myEx != null)
 {
 if (myEx.ErrorCode == myErrorCodes.error1)
 {
 Handle specific application error
 ...
 }
 else
 if (myEx.ErrorCode == myErrorCodes.error2)

Developing Services

Application Development Guide 99

 {
 Handle specific error
 ...
 }
 }
}

Developing Services

100 Application Development Guide

Service error handling and host blocking
Feature: Service error handling control

With service error handling control, you configure events and corresponding actions to take on sessions,
tasks, and service instances when a service is in a specific state of its lifecycle. This feature also enables
you to configure timeouts for all methods within the service and actions to take when a timeout occurs.

For example, in the service onInvoke() call, you could configure that if the method exits, the system is to
restart the service.

Scope

Applicability Details

Operating system

• Linux, UNIX
• Windows

Allows for • Configuration of actions the system should take upon failure exceptions, fatal
exceptions, exit, and return for service lifecycle methods:

• Register()
• onCreateService()
• onSessionEnter()
• onSessionUpdate()
• onInvoke()
• onSessionLeave()
• onDestroyService()

• Configuration of timeout values for service lifecycle methods and actions to take.
• Configuration of custom control codes upon which the system is to take specific

actions.

Dependencies n/a

Limitations For backwards compatibility, Symphony accepts Symphony 3.1 and later formats in
the <Control></Control> section of the application profile. Application profiles that are
registered with the 3.1 format are modified by the system to the current format.

Note that you cannot use both Symphony 3.1 and a later format in the same application
profile.

About service error handling control
Default and possible configurations for service error handling

The following table lists API methods that can be used in service code, possible events that can be
configured for each method, and possible actions that can be taken on workload (session or task) and on
service instances upon trigger of the event.

In the table, a default control code of 0 is assumed.

Developing Services

Application Development Guide 101

Developing Services

102 Application Development Guide

Service methods for which you can define events and actions
The following table lists the service methods for which you can define events and actions.

Event Description

Register() Register() is an internal method used by the system.

onCreateService() Create the service container.

onSessionEnter() Get common data and store it for later with the session context.

onSessionUpdate() Get an update to existing common data

onInvoke() Process the input message.

onSessionLeave() Free the common data and all updates to common data for the session. Used with
onSessionEnter().

onDestroyService() Destroy and unload the service instance from the service container. The service
instance is no longer associated with the session.

Events that trigger actions on workload and service instances

Condition Description

Return Defines the action to take upon successful return of the method.

Timeout Defines the action to take when the method times out.

If you know that a service method invocation should not exceed a certain amount of
time, you can configure it to be terminated after a specific time period has elapsed.

Failure Exception Defines the action to take when a failure exception occurs within the specified method.

A FailureException indicates that the operation failed in the service but is worth trying
on a different compute host.

Fatal Exception Defines the action to take when a fatal exception occurs within the specified method.

A FatalException indicates that the operation failed in the service and is not likely to
be successful if attempted on a different compute host.

Exit Defines the action to take on the service instance when the service exits while invoking
the method.

Actions that can be taken on workload
The following actions are possible on workload (sessions and tasks). Note that the possible combination
of actions varies according to the method.

Developing Services

Application Development Guide 103

Possible action Description

retry When a specified event occurs, retry the method up to the number of times configured
by the session and task retry limits in the application profile.

For SessionEnter and SessionUpdate, the system attempts to bind the session to the
service instance up to the sessionRetryLimit in the application profile before the
session is aborted.

Note:
The retry count for both of these methods are considered
together. For example, if SessionEnter fails once and
SessionUpdate fails twice, then the session rerun count is
equal to 3. Therefore the SessionRetryCount should be set
to a value that accounts for both SessionEnter and
SessionUpdate failures.

For Invoke, the system attempts to run the task up to the taskRetryLimit defined in the
application profile before the task is failed.

fail When a specified event occurs, abort the session or fail the task, and propagate errors
to the client application.

For SessionEnter or SessionUpdate, immediately abort the session. Do not retry the
method.

For Invoke, immediately fail the task. Do not retry the method.

succeed When the method succeeds, continue taking the action in the method until completion.
No further action is taken on workload. This is a normal return.

Actions that can be taken on service instances
The following actions are possible on the service instance. Note that the possible combination of actions
varies according to the method.

Possible action Description

blockHost When the specified event occurs, terminate the running service instance on this host
and do not use this host to start any other service instance for the application.

The host on which the service instance was running is added to the blocked host list
for the application. This host is no longer selected to run work for the application until
it is explicitly unblocked through the EGO command-line or the Platform Management
Console.

restartService When the specified condition occurs, terminate the service instance, start a new
service instance on the same host, and recover state. There is no limit to the number
of times that a service instance can be restarted.

keepAlive When the specified condition occurs, take no action on the running service instance.

Control codes
The control code is an integer returned either normally through the return of the method, or returned
when a fatal or failure exception occurs. You can configure specific numbers to trigger actions in all
methods except Register() and DestroyService().

Developing Services

104 Application Development Guide

The default value for control codes is 0. So if you do not explicitly set a control code in your service, then
return is considered to have a control code of 0. Symphony executes the behavior defined for control code
="0" for the service event that occurs.

If you want, for example, to sometimes restart the service instance and sometimes not, then use any
number other than 0 for your control code. For example, if you want to restart the service instance on
every 10th invoke, indicate a code of 1. A code of 0 indicates the default action.

Configuration to modify service error handling
You can modify service error handling behavior in the application profile, Control section.

Configuration format
<Control>
 <Method name="Register" >
 <Timeout duration="60" actionOnSI="blockHost"/>
 <Exit actionOnSI="blockHost"/>
 </Method>
 <Method name="CreateService" >
 <Timeout duration="0" actionOnSI="blockHost"/>
 <Exit actionOnSI="blockHost"/>
 <Return controlCode="0" actionOnSI="keepAlive"/>
 <Exception type="failure" controlCode="0" actionOnSI="blockHost"/>
 <Exception type="fatal" controlCode="0" actionOnSI="blockHost"/>
 </Method>
 <Method name="SessionEnter" >
 <Timeout duration="0" actionOnSI="blockHost" actionOnWorkload="retry"/>
 <Exit actionOnSI="blockHost" actionOnWorkload="retry"/>
 <Return controlCode="0" actionOnSI="keepAlive" actionOnWorkload="succeed"/>
 <Exception type="failure" controlCode="0" actionOnSI="keepAlive" actionOnWorkload="retry"/>
 <Exception type="fatal" controlCode="0" actionOnSI="keepAlive" actionOnWorkload="fail"/>
 </Method>
 <Method name="SessionUpdate" >
 <Timeout duration="0" actionOnSI="blockHost" actionOnWorkload="retry"/>
 <Exit actionOnSI="blockHost" actionOnWorkload="retry"/>
 <Return controlCode="0" actionOnSI="keepAlive" actionOnWorkload="succeed"/>
 <Exception type="failure" controlCode="0" actionOnSI="keepAlive" actionOnWorkload="retry"/>
 <Exception type="fatal" controlCode="0" actionOnSI="keepAlive" actionOnWorkload="fail"/>
 </Method>
 <Method name="Invoke" >
 <Timeout duration="0" actionOnSI="restartService" actionOnWorkload="retry"/>
 <Exit actionOnSI=" restartService" actionOnWorkload="retry"/>
 <Return controlCode="0" actionOnSI="keepAlive" actionOnWorkload="succeed"/>
 <Exception type="failure" controlCode="0" actionOnSI="keepAlive" actionOnWorkload="retry"/>
 <Exception type="fatal" controlCode="0" actionOnSI="keepAlive" actionOnWorkload="fail"/>
 </Method>
 <Method name="SessionLeave" >
 <Timeout duration="0" actionOnSI="restartService"/>
 <Exit actionOnSI=" restartService"/>
 <Return controlCode="0" actionOnSI="keepAlive" customizedDebugAction="none"/>
 <Exception type="failure" controlCode="0" actionOnSI="keepAlive"/>
 <Exception type="fatal" controlCode="0" actionOnSI="keepAlive"/>
 </Method>
 <Method name="DestroyService" >
 <Timeout duration="15"/>
 </Method>
</Control>

Configuration example: Block the host when the service process exits during the invoke
<Control>
 ...
 <Method name="Invoke" >
 <Exit actionOnSI="blockHost"/>
 </Method>
</Control>

Developing Services

Application Development Guide 105

Configuration example: Do not rerun the task when a service times out
Configure a timeout value for the onInvoke() method and specify to fail the workload when the method
times out.
<Control>
 ...
 <Method name="Invoke" >
 <Timeout duration="15" actionOnWorkload="fail" />
 </Method>
</Control>

Configuration example: Do not block hosts ever, under any situations
It is possible that in your environment you do not want hosts to be blocked under any circumstances. As
a best practice, setting the system to not block hosts ever is not recommended. This is because if a service
fails on a host, if the host is not blocked, the system may end up in an endless loop attempting to start the
service on the same host on which it is always failing and continuously writing errors to the log files. In
a very short time, your log files grow very large and take up too much disk space on your machine.

However, should you need to do this in your environment, you can accomplish this by setting all
actionOnSI parameters to not block the host:

<SIM startUpTimeout="60" blockHostOnTimeout="false" blockHostOnVersionMismatch="false">
 …
</SIM>
<Control>
 <Method name="Register" >
 <Timeout duration="60" actionOnSI="restartService"/>
 <Exit actionOnSI="restartService"/>
 </Method>
 <Method name="CreateService" >
 <Timeout duration="0" actionOnSI="restartService"/>
 <Exit actionOnSI="restartService"/>
 <Return controlCode="0" actionOnSI="keepAlive"/>
 <Exception type="failure" controlCode="0" actionOnSI="restartService"/>
 <Exception type="fatal" controlCode="0" actionOnSI="restartService"/>
 </Method>
 <Method name="SessionEnter" >
 <Timeout duration="0" actionOnSI="restartService" actionOnWorkload="retry"/>
 <Exit actionOnSI="restartService" actionOnWorkload="retry"/>
 <Return controlCode="0" actionOnSI="keepAlive" actionOnWorkload="succeed"/>
 <Exception type="failure" controlCode="0" actionOnSI="keepAlive" actionOnWorkload="retry"/
>
 <Exception type="fatal" controlCode="0" actionOnSI="keepAlive" actionOnWorkload="fail"/>
 </Method>
 <Method name="SessionUpdate" >
 <Timeout duration="0" actionOnSI="restartService" actionOnWorkload="retry"/>
 <Exit actionOnSI="restartService" actionOnWorkload="retry"/>
 <Return controlCode="0" actionOnSI="keepAlive" actionOnWorkload="succeed"/>
 <Exception type="failure" controlCode="0" actionOnSI="keepAlive" actionOnWorkload="retry"/
>
 <Exception type="fatal" controlCode="0" actionOnSI="keepAlive" actionOnWorkload="fail"/>
 </Method>
 <Method name="Invoke" >
 <Timeout duration="0" actionOnSI="restartService" actionOnWorkload="retry"/>
 <Exit actionOnSI="restartService" actionOnWorkload="retry"/>
 <Return controlCode="0" actionOnSI="keepAlive" actionOnWorkload="succeed"/>
 <Exception type="failure" controlCode="0" actionOnSI="keepAlive" actionOnWorkload="retry"/>
 <Exception type="fatal" controlCode="0" actionOnSI="keepAlive" actionOnWorkload="fail"/>
 </Method>
 <Method name="SessionLeave" >
 <Timeout duration="0" actionOnSI="restartService"/>
 <Exit actionOnSI=" restartService"/>
 <Return controlCode="0" actionOnSI="keepAlive"/>
 <Exception type="failure" controlCode="0" actionOnSI="keepAlive"/>

Developing Services

106 Application Development Guide

 <Exception type="fatal" controlCode="0" actionOnSI="keepAlive"/>
 </Method>
 <Method name="DestroyService" >
 <Timeout duration="15"/>
 </Method>
</Control>

Commands
Commands to display configuration

Command Description

soamview app app_name -p Once the application is registered, use soamview app -p to view the
application profile xml. You can also view the xml configuration through the
Platform Management Console.

Feature: Host blocking
Host blocking—a feature of application error handling—prevents Symphony from repeatedly trying to
run a service on a host that does not have adequate hardware or software resources. You can configure
host blocking to take effect on timeout or exit for each of your services, or when a service throws an
exception or sends a specific return code.

About host blocking
When host blocking takes effect, Symphony creates a blocked host list for the application with which the
service is associated. A host that appears on the blocked host list can no longer be used by the application
until you intentionally unblock the host, or the application is re-registered or disabled and enabled again.

By default, host blocking is enabled for a version mismatch or communication timeout between the session
manager and the service instance manager. You can also configure host blocking for a service instance
error, a service instance exit, or a service instance method timeout. By default, host blocking is enabled
for the following service instance methods:

Method Event types

Register • Timeout
• Exit

CreateService • Timeout
• Exit
• Failure exception
• Fatal exception

SessionEnter • Timeout
• Exit

SessionUpdate • Timeout
• Exit

The following illustrations show the benefits of using the host blocking feature.

Developing Services

Application Development Guide 107

Without host blocking (feature disabled)

Developing Services

108 Application Development Guide

With host blocking enabled

Host blocking triggers
Host blocking triggers automatically when the session manager version on the management host does
not match the service instance manager version on the comput host.

You can configure additional host blocking based on the requirements of your application so that
Symphony triggers host blocking for any of the following reasons:
• A service method times out, exits or crashes, throws an exception, or returns certain control codes.
• The service instance manager does not communicate with the session manager before the configured

timeout period expires (controlled by the startUpTimeout value).
• The service instance does not communicate with the service instance manager before the configured

timeout period expires (controlled by the setting for the Register method actionOnSI attribute).

Slot blocking for Symphony DE
Symphony DE blocks slots—not hosts—under the same conditions that trigger host blocking for a
production grid. Symptoms of blocked slots include fewer resources than expected or no resources serving
your application, more tasks in the PENDING state, a slower rate of workload completion, and clients that
hang. You can check for blocked slots by looking in the ssm.hostname.app_name.log file and
searching for WARN or ERROR messages about blocked hosts. If you see a blocked host message, one or

Developing Services

Application Development Guide 109

more slots might be blocked. You can unblock slots by disabling and then enabling the application or by
restarting the DE cluster.

Scope

Applicability Details

Operating system • All host types that are supported by the Symphony system.

Limitations • For Symphony DE, only slots are blocked.

Configuration to enable host blocking
Host blocking is enabled in the application profile for each application. You can configure host blocking
at the service instance manager level, the service instance level, or both.

Section Attribute name and syntax Behavior

SOAM > SIM blockHostOnTimeout="true"

• Enables host blocking for the application when
the service instance manager times out while
trying to communicate with the session manager.

• Used with the startUpTimeout attribute.

startUpTimeout="seconds"

• Number of seconds to wait for the service
instance manager to communicate with the
session manager. This attribute works in
conjunction with blockHostOnTimeout.

• When the process times out, the session
manager requests a new host from EGO and tries
to start a new service instance manager on the
new host.

Service >
Control >
Method >
Timeout

actionOnSI=blockHost • When a timeout is reached on the method,
terminates the running service instance on this
host and does not use this host to start any other
service instance for the application.

• Used with the duration attribute.
• You can specify the blockHost option for the

following methods:

• Register
• CreateService
• SessionEnter
• SessionUpdate
• Invoke
• SessionLeave

Developing Services

110 Application Development Guide

Section Attribute name and syntax Behavior

Service >
Control >
Method > Exit

actionOnSI=blockHost • When the service instance exits or crashes
during execution of the method, the system does
not use this host to start any other service
instance for the application

• You can specify the blockHost option for the
following methods:

• Register
• CreateService
• SessionEnter
• SessionUpdate
• Invoke
• SessionLeave

Service >
Control >
Method >
Return

actionOnSI=blockHost • When the method returns normally or with a
specified control code, terminates the running
service instance on this host and does not use
this host to start any other service instance for the
application.

• You can specify the blockHost option for the
following methods:

• CreateService
• SessionEnter
• SessionUpdate
• Invoke
• SessionLeave

Service >
Control >
Method >
Exception

actionOnSI=blockHost

• When the specified exception (failure or fatal
exception) occurs, terminates the running service
instance on this host and does not use this host
to start any other service instance for the
application.

• You can specify the blockHost option for the
following methods:

• CreateService
• SessionEnter
• SessionUpdate
• Invoke
• SessionLeave

Host blocking behavior
When host blocking is triggered, the system creates a blocked host list for the application. The following
example illustrates the host blocking process triggered at the service instance level.

Example of the host blocking process

Developing Services

Application Development Guide 111

Configuration to modify host blocking behavior
Not applicable. There are no attributes that change the way that host blocking works other than those
attributes configured in the application profile.

Host blocking actions
Actions to monitor

You can monitor host blocking through the Platform Management Console (PMC), the command line,
and through the Symphony log files located in the logs directory of SOAM_HOME. You can also trap SNMP
events to receive notifications when a service triggers the system to block a host.

User Action Description

• Cluster
administrator

From the Platform Management
Console:

Symphony Workload > Monitor
Workload > application_name >
Blocked Hosts

• Displays a list of blocked hosts for the selected
application.

• Cluster
administrator

• Consumer
administrator

From the command line:

egosh alloc view

• Displays detailed information about all
allocations, including the allocation ID, current
users, consumer, resource groups, resource
requirements, minimum and maximum slots
requested, whether it has exclusive use of the
host, names of the allocated hosts, and any
blocked hosts.

You can find information about host blocking in the following log file:

Developing Services

112 Application Development Guide

Log file Location Event Description

Session manager log file:
ssm.host_name.app_name.
log

Linux/UNIX:

$SOAM_HOME/logs

Windows:

%SOAM_HOME%
\logs

SOA_SERVICE_BLOCKED Error level message that
indicates that host blocking
has occurred.

Actions to control
Typically, a cluster administrator removes a blocked host when the host has been modified—by means
of a software or hardware upgrade, for example—to meet the requirements of the service. A host can be
removed from the blocked host lists in one of two ways:

• Directly from the Platform Management Console (PMC)
• Indirectly, by disabling and re-enabling the application associated with the blocked host

User Action Behavior

• Cluster
administrator

From the Platform Management
Console:

Symphony Workload > Monitor
Workload > application_name >
Blocked Hosts > host_name > Actions
> Remove from Blocked Hosts

• The system removes the host from the blocked
host list

• The application can start a service on the
previously blocked host

• Cluster
administrator

From the Platform Management
Console:

Symphony Workload > Configure
Applications > consumer_name >
application_name > Actions > Disable

• Disables the application, which clears the
blocked host list for the disabled application

• No clients can be served by the disabled
application

• Cluster
administrator

• Consumer
administrator

• Consumer user

From the command line:

soamcontrol app disable
application_name

• Disables the application, which clears the
blocked host list for the disabled application

• No clients can be served by the disabled
application

• For information about how to use the
soamcontrol command to disable and
enable applications, see the Reference

• Cluster
administrator

• Consumer
administrator

From the Platform Management
Console:

• Symphony Workload > Configure
Applications > application_name >
Basic Configuration > Save

• Symphony Workload > Configure
Applications > application_name >
Advanced Configuration > Save

• The system first disables and then re-registers
the application, which clears the blocked host
list for the modified application

For Symphony DE, you can unblock slots by disabling and then enabling the application, or by restarting
the DE cluster.

Developing Services

Application Development Guide 113

User Action Behavior

• Developer From the command line:

soamcontrol app disable
application_name

• Disables the application, which unblocks slots
for the disabled application

• No clients can be served by the disabled
application

soamcontrol app enable
application_name

• Enables the application, which can start
services on any previously blocked slot

• Developer Windows:

• Right-click on the Symphony DE tray
icon and choose Stop Symphony
DE on all hosts. Once the DE cluster
shuts down, right-click on the
Symphony DE tray icon and choose
Start Symphony DE on all hosts.

Linux/UNIX:

• soamshutdown
• soamstartup

• Shuts down and then restarts Symphony DE
• Unblocks slots for all applications running on

the DE cluster

Actions to display configuration

User Command Behavior

• Cluster
administrator

• Consumer
administrator

From the Platform Management
Console:

• Symphony Workload > Configure
Applications > application_name >
Basic Configuration

• Symphony Workload > Configure
Applications > application_name >
Advanced Configuration

• Displays application profile settings for the
selected application

• Cluster
administrator

• Consumer
administrator

• Consumer user

From the command line:

• soamview app app_name -p

• Displays application profile settings for the
selected application

You can also view an application profile using an XML editor.

Developing Services

114 Application Development Guide

Feature: Service interrupt handler
This feature enables developers to respond appropriately to any events that interrupt the running of a
service instance during execution of a task.

Scope
Applicability Details

Operating system • Windows
• Linux
• Solaris

Limitations None

About service interrupt handling
A service interrupt is as any event that is propagated from the middleware to the service instance indicating
an interruption has happened in a running task. Interruptions can arise when:

• A session is killed
• A session is suspended
• A resource is reclaimed
• A task is killed
• An application is unregistered or disabled
• A middleware component is not available

This feature allows interrupt handling to move from a polling model to an event-driven model. The polling
model is still available for backward compatibility.

When a service implements the Service Interrupt handler, the service is informed as soon as the interrupt
occurs. Service developers no longer need to have a separate monitoring thread for interrupts to determine
when an interrupt has occurred.

Only task-level events are propagated to a running service instance. An interrupt is not delivered to a
running service instance if no task is running (onInvoke is not called).

Once the onServiceInterrupt() handler is triggered, it is passed the current service context object.
To get more details about the actual interrupt (for example, to retrieve the event and grace period in the
interrupt handler), the service can call the getLastInterruptEvent method on the service context
object.

Supported interrupts
The Service Interrupt handler can send the following interrupts to a service instance at any time:

Task killed
interrupt

This interrupt is sent as a result of an administrative operation to kill a task or a session.
When called, the onInvoke() handler is expected to return from its processing by the
time the grace period expires. If the grace period expires with no reply from the service,
the service is terminated.

• C++: InterruptTaskKilled
• C# .NET: InterruptEventCode.TaskKilled
• Java: InterruptEvent.TASK_KILLED

Developing Services

Application Development Guide 115

Task
suspended
interrupt

This interrupt is sent as a result of an administrative operation to suspend a session or
when a resource running the service instance is being reclaimed. When called, the
onInvoke() handler is expected to return from its processing by the time the grace period
expires. If the grace period expires with no reply from the service, the service is terminated.
If the onInvoke() handler successfully finishes before the grace period expires, the task
is considered done.

• C++: InterruptTaskSuspended
• C# .NET: InterruptEventCode.TaskSuspended
• Java: InterruptEvent.TASK_SUSPENDED

Error handling
Interrupts do not have any error handling associated with them. Any exception thrown while handling
this method is ignored by the middleware. The middleware reports the exception to the service instance
so that the service instance can take the necessary actions to handle the exception.

Service interrupt handling API
The following handlers are introduced to the service:

C++ virtual void onServiceInterrupt (ServiceContextPtr& serviceContext)

C# (.NET) public override void OnServiceInterrupt(ServiceContext
serviceContext)

Java public void onServiceInterrupt (ServiceContext serviceContext)
throws SoamException

Developing Services

116 Application Development Guide

5
Using Eclipse as Your Development

Environment

C H A P T E R

Application Development Guide 117

Feature: Symphony plug-in for Eclipse
The Symphony plug-in for Eclipse facilitates the software development cycle for Symphony applications.
It provides Java code generation capabilities as well as service and application management tools for the
Eclipse IDE.

Scope
Operating system Follow the System requirements link at the Platform Knowledge Center for a list of

supported operating systems

JDK version • 1.5

Eclipse version • Tested on 3.2.2 and 3.3.0

Limitations • Some dialogs may not display correctly on Linux Platforms due to Eclipse-GTK
integration issues.

• Some windows will not show the minimize button enabled on some Linux Platforms
due to known problems in GTK implementations.

• Some dialogs may display with a redundant input edit control on Linux Platforms
due to Eclipse-GTK integration issues.

• The 32-bit version of Eclipse is not supported on a 64-bit Linux host. A 64-bit version
of Eclipse is available for download from the Eclipse site.

About the Symphony plug-in for Eclipse
The plug-in eases the task of application coding where client and service code must be written or adapted
for the Symphony API. The plug-in automates some of the coding effort, thereby reducing or eliminating
errors. Once the Java project wizard has created a framework of generated code, all you need to do is add
the application logic.

The automation introduced by the plug-in extends to the creation and maintenance of Symphony
applications. For example, the tasks of deploying a service or updating an application profile is simplified
through the Symphony DE Platform Management Console (PMC), which is tightly integrated to the
Eclipse environment. Depending on what type of Symphony operation you want to perform, the
appropriate screen is presented to guide you through the operation.

The plug-in also features extensive online documentation to support your Symphony programming
activities such as informative comments in the generated code, the Symphony Java API reference
documentation, and a tutorial.

Installing the Symphony plug-in
This section describes the steps for installing the Symphony plug-in into the Eclipse IDE.

On Windows
1. Install the Symphony DE package.
2. Launch Eclipse.
3. From the Eclipse menu, select Help > Software Updates > Find and Install.

The Install/Update dialog displays.
4. Select Search for new features to install. Click Next.

Using Eclipse as Your Development Environment

118 Application Development Guide

5. Click New Local Site.
6. Browse to %SOAM_HOME%\5.1\binary_type\plugins.
7. Select eclipse.
8. Click OK.

The Edit Local Site dialog displays.
9. Click OK.

plugins/eclipse is added to the list of update sites.
10. Click Finish.

The Updates dialog displays.
11. Select plugins/eclipse. Click Next.

The Install dialog displays.
12. Select I accept the terms in the license agreement. Click Next.
13. Click Finish.

The update manager installs the plug-in and the Install/Update message displays.
14. Click Yes to restart Eclipse. For an introduction to Symphony code development with Eclipse, refer

to the Developing a Symphony application with Eclipse tutorial.

On Linux
1. Install the Symphony DE package.
2. Launch Eclipse.
3. From the Eclipse menu, select Help > Software Updates > Find and Install.

The Install/Update dialog displays.
4. Select Search for new features to install. Click Next.
5. Click New Local Site.
6. Browse to $SOAM_HOME/5.1/binary_type/plugins.

For example:

$SOAM_HOME/5.1/linux2.6-glibc2.3-x86/plugins

7. Select eclipse.
8. Click OK.

The Edit Local Site dialog displays.
9. Click OK.

plugins/eclipse is added to the list of update sites.
10. Click Finish.

The Updates dialog displays.
11. Select plugins/eclipse. Click Next.

The Install dialog displays.
12. Select I accept the terms in the license agreement. Click Next.
13. Click Finish.

Using Eclipse as Your Development Environment

Application Development Guide 119

The update manager installs the plug-in and the Install/Update message displays.
14. Click Yes to restart Eclipse. For an introduction to Symphony code development with Eclipse, refer

to the Developing a Symphony application with Eclipse tutorial.

Project wizard
The New Project wizard generates Java client, I/O message, and service code based on the information
provided through the GUI screens. The result is a framework of generated code that can either be
incorporated into your code or used as a basis for your application. Once your service code is complete,
you can deploy it to the DE environment using the plug-in’s Symphony Service Packing Utility.

To launch the wizard, select File > New > Project > Symphony from the Eclipse menu. You can create
either a blank project or a project with generated code.

The following paragraphs describe the major steps in the flow of the New Project wizard (with generated
code).

Application definition
In this initial step, you provide the name of your application and Java package name for the generated
classes. If you do not enter a package name, the wizard generates the code in the default namespace.

If you decide to change the application name after you have generated the code with the project wizard,
the CodeGen icon on the Eclipse toolbar provides a dialog where you can change it.

Important:
If you change the application name using this method, you must manually
update the application name in the client code.

Client/service code generation
In this step, you assign names to your client and service classes, and define whether your client will receive
messages synchronously or asynchronously.

Message code generation
This is where you define the messages that will be used within your application, e.g., input and output
message classes. If you already have a class that is serializable then you can include it as an element of this
message. If you include a serializable class that doesn't exist, you will need to add the class to the project
before compiling it.

Project configuration
By default, the wizard adds the JavaSoamApi.jar and JRE system library to the dependency list for
Symphony Java applications. Additional Java project configuration is possible through the native Java
configuration dialog in Eclipse.

Using Eclipse as Your Development Environment

120 Application Development Guide

Symphony operations
In addition to client and service code generation, the plug-in supports a number of operations integral
to the creation and maintenance of Symphony applications. Most of these operations are performed via
the Symphony DE PMC, which is automatically launched when the applicable operation is selected. To
access Symphony operations from Eclipse, select Symphony > Symphony Operations from the menu.

Creating a service package
The Symphony Service Packaging Utility facilitates service package creation and deployment into the
Symphony DE environment. Once you have entered the service class name, package name, and package
path, and included the necessary file(s), you can invoke the utility to create and validate the service package.
If you already have an application profile for this service, the utility can also deploy the service for you.

Adding an application
The Symphony DE PMC enables you to add a Symphony application to the DE environment by using
either an existing application profile or creating a new application profile with basic settings. Once your
application is set up, it is automatically registered with Symphony.

Editing an application profile
The Symphony DE PMC features an application profile editor for most basic and advanced configuration.
Once updated, the application profile can overwrite an existing profile or be exported to a file.

Re-registering with an external application profile
For most basic application settings, you can edit the application profile directly with the Symphony DE
PMC. However, there are some settings that cannot be edited by the GUI. In these cases, you must export
the application profile and use an XML or text editor to edit the profile, then import it back to the
application, i.e., re-register the application.

Monitoring workload
This feature allows you to view session and task status, application properties, and application profile via
the Symphony DE PMC.

Configuring service debug settings
The service replay debugger allows you to replay actual events that occurred in your service instance when
you ran your application in Symphony DE. This feature provides a debugger to step through the service
code and find any errors in your service logic or in the environment.

Selecting this operation from the Eclipse menu launches the application profile editor in the Symphony
DE PMC. Select Advanced Configuration from the dropdown list. You can then configure debug settings
in the Error Handling section of the GUI. Refer to the Service Replay Debugger feature reference for
further details.

Configuring the Symphony DE Platform Management Console for the Eclipse
IDE

When the plug-in is installed, it connects to the Symphony DE PMC through the default port specified
in the vem_resources.conf file. Should the port be reconfigured in the file, you must specify the new port
via the Platform Management Console icon on the Eclipse toolbar.

Using Eclipse as Your Development Environment

Application Development Guide 121

Using Eclipse as Your Development Environment

122 Application Development Guide

Using Visual Studio as Your Development
Environment
Feature: Simplified application on-boarding with
Visual Studio

Application on-boarding is the process of distributing computational logic to the grid and parallelizing
the client logic so that the distributed logic can be run in parallel. The Symphony add-in and extensions
for Visual Studio provide a developer with a simplified process for on-boarding their C# application to
the grid from within the Visual Studio environment.

Scope
Operating system Follow the System requirements link at the Platform Knowledge Center for a list of

supported Windows operating systems

Symphony DE version 5.1 and higher

Visual Studio version Tested on 2008 Professional and 2010 Professional with Windows 2008, Windows XP,
Windows 2003, and Windows 7

Limitations • Inherited methods from parent classes are not supported
• Multiple classes with the same name, even if they are originally from different

namespaces, are not supported.
• Methods with named or optional parameters are not supported.
• Output parameters in constructors are not supported
• Reference parameters in constructors are not supported; they will be converted to

value parameters.

About the Symphony add-in for Visual Studio
The add-in eases the task of grid-enabling and parallelizing compute-intensive portions of an existing
application. A project wizard guides you through the on-boarding process. When on-boarding existing
applications, the feature requires that the computational logic reside in a class library (DLL) file. After
analyzing the DLL, a proxy of the exposed interfaces is generated and added to the client logic in Visual
Studio. The proxy class enables you to interact with your grid-enabled object as if it was a local object.

Alternatively, if you choose to use the feature for on-boarding new applications, the project wizard creates
a framework of generated code for the client and service. All you need to do is add the application logic.

The automation introduced by the add-in extends to the creation and maintenance of Symphony
applications. For example, the tasks of deploying a service or updating an application profile is simplified
through the Symphony Platform Management Console (PMC), which is integrated with the Visual Studio
environment.

The add-in also features extensive online documentation to support your Symphony programming
activities such as informative comments in the generated code, the Symphony .NET API reference
documentation, and a tutorial.

Using Visual Studio as Your Development Environment

Application Development Guide 123

On-boarding overview
This section highlights the key steps for on-boarding an existing application. Refer to the following
diagram.

On-boarding sequence:

1. The wizard inspects the selected the .NET class library to determine the public classes, interfaces, and
methods available. At this point, you have the opportunity to select which classes you intend to interact
with once this library is placed on the grid. The method roles of the selected classes can also be
customized.

2. The wizard creates and compiles the code to make the selected classes and their methods grid-enabled.
3. The wizard creates and deploys a package containing the class library to the grid. The application is

also registered with Symphony.
4. The wizard updates any source code and project settings relevant to the on-boarding activity.
5. Once the wizard exits, you are able to review the contents of a generated readme file. The readme will

contain a reference to the proxy interface and some examples of how to use it.
6. The client, at this point, can interact with the grid-enabled library that was previously deployed, i.e.,

your calculations would actually take place on the grid instead of inside your client process.
7. Parallelize the calculations on the grid by using the .NET Asynchronous Programming Model (APM)

convention and the asynchronous methods generated in the proxy object.
8. Execute your code and verify that your calculations are performed in parallel on the grid.

Using Visual Studio as Your Development Environment

124 Application Development Guide

Prerequisites for application on-boarding
The basic prerequisites for on-boarding new and existing applications are:

• The application must be written in C#
• You have access to a supported Visual Studio environment

Existing applications must meet additional requirements before they can be successfully on-boarded.

1. The application has computational logic that can logically be executed in parallel
2. The computational logic resides in a .NET class library that can be packaged on its own so that it can

be used in a stand-alone manner on the Symphony grid.
3. Only methods with serializable parameters can be used in the proxy object
4. Classes within the class library must be in a namespace

The on-boarding feature also enables you to customize the logic produced during the on-boarding process
by allowing access to the source code.

Considerations for on-boarding an application
1. You must consider any application object state dependence between different application method

calls and realize that when application methods are called in parallel on the grid, the state of the object
cannot rely on a previous method being invoked on the object since there is no guarantee that
subsequent calls will be made to the same object instance being hosted within the grid.

2. Since the setting of properties is achieved through the session update call (common data update
feature), exceptions that occur during the setting of a property could cause the session associated with
the proxy object to be aborted; refer to the Application Development Guide for details about common
data updates.

3. Only items matching the following qualify for being generated in the proxy object:

• Methods must have parameters that are serializable
• Public methods and properties

4. Since stateful methods are implemented using the common data update feature, they cannot have a
return value; for a definition of stateful methods, refer to the stateful role topic in this chapter.

5. Objects containing constructors that have output and reference parameters are allowed to be proxy
objects, but once the constructor completes execution, the output and reference parameters will not
be updated.

6. This feature does not support the construction of objects through the use of a private constructors
from a static class method. This means only public constructors can be used to construct proxy objects.

7. All interfaces supported by the original object are supported by the proxy object, i.e., once you have
constructed a proxy object, you are free to cast it to any of the interfaces supported on the original
object.

8. The generated classes will use fully qualified names with namespace for all variable data types. In each
case, the underlying types of the .NET framework will be used to generate method signatures instead
of the value type aliases that may have been used when the class was originally coded. For example:

Original code:
public int SomeOperation(char a, long b);

Generated code:
public System.Int32 SomeOperation(System.Char a, System.Int64 b);

9. If an application was previously on-boarded, Visual Studio should be restarted before on-boarding
the next application. This is necessary to clear Visual Studio’s memory of any on-boarded DLL
assemblies. Here is a simple example of why you should restart Visual Studio. Suppose you have 2

Using Visual Studio as Your Development Environment

Application Development Guide 125

DLLs to on-board: A and B, and B depends on A. If you on-board A.dll and then on-board B.dll
without adding A.dll in the library dependency list box. the wizard will not report the missing
dependent DLL since A.dll is still in Visual Studio’s memory. The on-boarded B.dll will not work
because A.dll was not included during the on-boarding process.

Consideration for mixed-mode assemblies
As of .NET runtime 4.0, a change was made to no longer load mixed assemblies automatically. In order
to load mixed assemblies, the runtime must be explicitly instructed through the use of a configuration
file. Since all on-boarded applications still rely on the Symphony API (which is implemented as a mixed
assembly), both the client and the service package to be deployed to the grid must be associated with a
configuration file to instruct the runtime to load the mixed assembly. The configuration file must set the
startup attribute useLegacyV2RuntimeActivationPolicy to true. For example;
<?xml version="1.0"?>
<configuration>
 <startup useLegacyV2RuntimeActivationPolicy="true">
 <supportedRuntime version="v4.0"
 sku=".NETFramework,Version=v4.0"/>
 </startup>
</configuration>

The configuration file name must match the name of the associated binary file. For example, the
configuration file for the client executable CalculateInterest.exe must be named
CalculateInterest.exe.config. Refer to Tutorial: On-boarding a Symphony application with
Visual Studio for an example of how to associate configuration files with the client and service.

Installing the Symphony add-in
The Symphony add-in and extensions are automatically installed in Visual Studio during installation of
the Symphony DE package when the Visual Studio add-in option is selected. Visual Studio 2008 or 2010
must be installed on the development host prior to installing Symphony DE.

Symphony menu extensions for Visual Studio
The on-boarding feature enhances the Visual Studio environment with the following menu extensions.

Application details
The application details window is only available within the context of a project that has been designated
as a service project. The application details collected allow you to associate cluster and admin entry points
and service packaging details that can be used multiple times by the add-in during development time
instead of specifying them each time.

Note:
Only one service package can be associated with the application details.

You can access the application details from any of the following locations:

• any service project
• under the Symphony add-in menu
• on the Symphony add-in toolbar

Platform Management Console
From the Visual Studio environment, you can perform the following actions associated with the Platform
Management Console (PMC):

Using Visual Studio as Your Development Environment

126 Application Development Guide

• launch the PMC
• view the application list
• monitor workload

You can access the PMC pages from any of the following locations:

• any service project
• under the Symphony add-in menu
• on the Symphony add-in toolbar

Creating a new project
When you create a new project in Visual Studio, the steps you take depend on whether you want to on-
board an existing application or a new application from scratch.

Note:
The project name specified in the new project wizard will be used for the
namespace so it is important to choose a name that does not conflict with
any of the namespaces you intend to on-board.

Existing applications
If you want to on-board an existing application, you need to have your computational logic contained in
a .NET class library. Create a new project in Visual Studio to launch the project wizard. Select the Grid
Enabled Library template. The project wizard guides you through the rest of the on-boarding process.
The wizard inspects the selected class library to determine the public classes, interfaces, and methods
available in the library. This information is used to generate the proxy object that will be integrated with
the client. The wizard enables the library to run on the grid without any changes to the library itself

The on-boarding process generates the following output:

• an updated client class
• a proxy class that the client can use to access the object on the grid
• a service class
• a transport class to serialize/de-serialize proxy calls to/from the service
• an application profile
• a report file summarizing all the activities performed by the wizard during the on-boarding process

including creating and building projects, deploying service packages, and registering the application.
• a readme file providing details about the interface exposed by the generated proxy object and

instructions.

In addition, the package containing our grid-enabled library and any of its dependencies specified in the
wizard are deployed to the grid.

Once the grid-enabling stages are complete, the optional code update performed by the wizard is limited
to simple redirection of any calls on the objects selected in the wizard to the generated proxy classes.

New applications
When you on-board a new application, you need to create code for the client and service. The Symphony
add-in for Visual Studio provides client and service templates as a framework for code development. All
you need to do is add your own logic to the framework.

Create a new project in Visual Studio to launch the project wizard. Select the Simple Console Client,
Simple Console Client (with callback), or Simple Service template.

Using Visual Studio as Your Development Environment

Application Development Guide 127

The on-boarding process generates the following output depending on the template chosen:

• a client class implemented in a ".cs" file
• a service class implemented in a ".cs" file
• an application profile

How to access a library that has been grid-enabled
The feature creates a proxy containing the constructors and application methods from the class you
selected with the on-boarding wizard. For every stateless application method selected, the proxy contains
three related methods: (refer to Object roles topic for a definition of stateless methods)

1. A method that has the same signature as the application method selected
2. A method that represents the APM suggested method to begin an asynchronous operation
3. A method that represents the APM suggested method to wait for an asynchronous operation to

complete.

For example, let’s look at a class with the following application method:
double CalculateInterest(double amount)

With this application method, you should have access to the following methods on the generated proxy:
double CalculateInterest(double amount);
IAsyncResult BeginCalculateInterest(double amount,
AsyncCallback cb, Object state);
double EndCalculateInterest(IAsyncResult result);

You can either choose to use callback or block the current thread once all asynchronous operations have
been started.

For stateful application methods, you only have access to a single method on the proxy that has the same
signature as the original method. Since stateful updates are asynchronous in nature, no other methods
are needed.

Exception handling for failed method calls
When a method call to a service-side object fails, the exception thrown from the grid-enabled library is
preserved and thrown in the original form from within the proxy interface to the client. The client logic
should be able to catch any application specific exception that can be thrown from the on-boarded .NET
library running on the grid.

In the event that an exception occurs outside of the application logic, for example, a broken connection
that cannot be resolved, a Symphony exception is propagated back to the client. This means that any try-
catch block currently applied to a method in the proxy object must be extended to catch a GridException;
otherwise, an unhandled exception may occur in your client logic.

Your code should be able to catch Symphony-specific exceptions that may be thrown from your proxy
classes.

Any exceptions being propagated from the constructors of their classes in their service-side objects will
not be preserved.

For stateless and property get methods, exceptions are preserved and thrown to the client.

Method roles
Application methods in the proxy object can serve different roles. Although the role associated with a
method is indicated by the on-boarding wizard when you review the libraries being grid-enabled, you
have the option to customize the roles.

Using Visual Studio as Your Development Environment

128 Application Development Guide

Constructor
This role is only assigned to application methods that are identified as constructors of an application
object. You cannot set this role explicitly. Constructor methods are called during the OnSessionEnter
() call in the service.

Property
This role is assigned only to properties of an application object. You cannot set this role explicitly.

Setting a property on the proxy object results in a common data update being dispatched for the session
associated with the object. The setting of a property is executed on all service instances and takes effect
on all object instances once the current method invocation on the service completes. You must consider
and evaluate the need for synchronization between methods currently executing asynchronously and the
state they need to set across all object instances in the grid. Service side object properties are set during
the OnSessionUpdate() call.

Getting a property results in a task being created and dispatched to the session associated with the object
to retrieve the value of the property from any object instance found on the grid. Service side object
properties are retrieved during the OnInvoke() call.

Stateless
You can assign this role to any application method (not including properties and constructors). Calling
this application method results in a task being created and dispatched to the session associated with the
object. The service side object stateless method is called during OnInvoke().

Stateful
This role can be assigned to any application method that does not have an out or return value (not
including properties and constructors). The behavior associated with this application method call is
similar to the setting of a property, i.e., calling it results in a common data update being dispatched to the
session associated with the object. It is intended for those cases where you want to optimize the setting
of state for multiple items in the object at the same time. As with the setting of properties, you must
consider and evaluate the need for synchronization between methods currently executing asynchronously
and the state they need to set across all object instances in the grid. The service side stateful methods are
called during OnSessionUpdate().

Since stateful methods are implemented using the common data update feature, they cannot have a return
value. The wizard prevents you from associating a method that has a return value or out parameter from
being assigned a stateful method role.

Disposal
You can assign this role to any regular methods of the class (not including properties and constructors).
This method is invoked by the service during OnSessionLeave() before the references for the proxy
objects are released. Once a method has been assigned this role, it becomes unavailable for being called
through the proxy since it has been assigned a special role on the service side. Only one method in the
class can be assigned this role. If your object has already implemented the IDisposable interface, the
dispose method will automatically be called so you do not need to select that method with this role.
However, if you need any other method called, you can specify it with this role. The selected method
cannot accept a parameter or return a value.

Using Visual Studio as Your Development Environment

Application Development Guide 129

Interrupt
An interrupt is triggered whenever a task is suspended or killed, or a resource is reclaimed. You can assign
this role to any regular methods of the class (not including properties and constructors). This method is
invoked by the service during the OnServiceInterrupt(). Once a method has been assigned this role,
it becomes unavailable for being called through the proxy since it has been assigned a special role on the
service side. Only one method in the class can be assigned this role. The selected method cannot accept
a parameter or return a value.

How to trace workload submitted by an on-boarded application
When each instance of a new object is created, it gets a dedicated session with the session name assigned
the fully qualified name of the object. The session tag is assigned a modified form of the signature of the
constructor used to create the object.

For example, take the following constructor in application MyApp:
double theInterest = 0.15;
int theDuration = 10;
Calculator obj = new Calculator (theInterest, theDuration);

If you call the Calculator constructor and view the session details, you would see the following:

soamview session MyApp:301 -l

Session name: MyApp_Basic_Calculator

Session tag: Calculator-_double_interest__int_duration_-

Session status: open

Session priority: 1

Application: MyApp

Each instance of a method call has a task dedicated to it with the task tag assigned a modified form of the
signature of the method being called on the object.

For example, look at the following code:
double theAmount = 100;
obj.CalculateInterest(theAmount);

If you call the CalculateInterest method and view the task details, you would see the following:

soamview task MyApp:301:1 -l

Task ID: 1

Task tag: CalculateInterest-_double_amount_-

Task status: done

Application: MyApp

Session ID: 301

The project wizard applies the following general rule for representing method calls as a session name,
session tag or task tag:

• "(" is replaced by "-_"
• ")" is replaced by "_-"
• All other non-alphanumeric characters are replaced by "_"

Using Visual Studio as Your Development Environment

130 Application Development Guide

Best practices
Cleaning up resources

When use of the proxy object is complete, call the Dispose() method for non-static classes and
StaticDispose() for static classes before releasing the reference. This will guarantee that all Symphony
resources are released before the .NET Garbage Collector gets a chance to clean up the object. If a disposal
method is not called on the proxy object, there is a risk of having aborted sessions in the SSM when the
client exits.

Using Visual Studio as Your Development Environment

Application Development Guide 131

6
Developing Admin Clients

Developing Admin Clients

132 Application Development Guide

Tutorial: Admin Web Service client tutorial
Goal

This tutorial walks you through an example of Java client application code that changes the priority of
specified sessions via the Admin Web Service interface. This tutorial was prepared for users that are
already familiar with Web Services.

For information about Web Service concepts, refer to the Web Service clients section of the Application
Development Guide in the Knowledge Center.

At a glance
1. About client - server interactions
2. Review and understand the example

Prerequisites
• JDK 1.4 or higher (for Java development)
• Third-party WSDL - client stub generating tool that complies with the following standards:

• WSDL 1.1
• SOAP 1.1
• Web Service Security UsernameTokenProfile 1.0 (defined in WS-Security 1.0 specification

(UsernameToken part only); refer to http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
wssecurity-secext-1.0.xsd.)

The following tools have been tested for Java and .NET:

• Java: Axis2 0.93
• .NET: Microsoft WSE version 3.0

About client - server interactions
To better understand how the client connects to Symphony, let’s look at the sequence of events from start-
up.

1. When EGO starts up, it launches the service controller.
2. The service controller starts the session director server as a service.
3. Upon startup, the session director listens for incoming connections from clients. The session director

also registers with EGO as a client and uses its connection URL as the client description.
4. The Symphony client opens a connection to EGO.
5. The Symphony client retrieves the connection URL to session director by passing the session director

client name in an API call to EGO and retrieving the client description (connection URL).
6. The Symphony client connects to the session director.

Steps for developing Symphony Web Service clients
Here is a suggested high-level methodology for developing Web Service clients.

General development sequence
1. Read the WSDL documentation to understand the API.

Developing Admin Clients

Application Development Guide 133

2. Use the appropriate tool (that supports the required specifications) to generate language-specific
binding.

3. Use the generated code to write the client application.

Symphony-specific development sequence
1. Find where the Session Director is running.
2. Log on to the cluster and obtain a credential.
3. Use the Session Director's Admin API calls.

Review and understand the example
We will review an example of client code to show how you can create a Java client application that modifies
the session priority for a given application. The Java client code in this example is representative of the
code you would use to access the proxy stub generated from Axis2.

Locate the documentation
You can access additional documentation such as the Web Services WSDL Reference, Java API
Reference, the Platform Symphony Reference, and the Error Reference from the Platform Symphony or
Symphony DE Knowledge Centers.

Windows
• From the Start menu, select Programs > Platform Computing > Symphony Developer Edition

5.1.0 > Developer Knowledge Center

Linux
• $SOAM_HOME/docs/symphonyde/5.1/index.html

What the example does
Using this tutorial, you do the following:
• List all the applications registered with Symphony
• List all the sessions with the specified application
• Change the priority of all the sessions with the specified tag
• List all the open sessions again to demonstrate that the priority has changed
• Handle session director failover.

Step 1: Initialize the client
Create an EGO client object by calling the EGOclient constructor and passing the EGO Web Service
Gateway URL as an input argument. Use the initializePorts() method to set up a connection to each web
service interface (port) that is required for this tutorial.

The session director (one per cluster) is responsible for authenticating clients and processing their
requests. For the client to connect to the session director, it must know its URL. To get the session director's
URL, pass the client name "SD_ADMIN" to the locate() method of the egoClient object. This method
connects to the EGO web service gateway and retrieves all the client information associated with the
session director including its URL, which is stored in the client description property of the ClientInfo
object. The session director URL is in the form of domain name and port number. For more information
about the locate() method, refer to the Web Services WSDL Reference in the Knowledge Center.

Prepend the communication protocol (http://) to the URL to complete it. Create a new proxy object and
initialize it with the session director URL. This sets up a connection to the session director via a web
service interface (port).

Developing Admin Clients

134 Application Development Guide

...
public void initialize(String egoUrl) throws Exception
{
 egoClient = new EGOclient(egoUrl);
 egoClient.initializePorts();
 String sdLocate = locateSD();
 if(0 == sdLocate.length())
 {
 throw new Exception("Cannot get the SD location successfully. Check if the URL
 of Web Service Gateway <" + egoUrl + "> is valid and the state of Web Service
 Gateway is <STARTED>.");
 }
 String sdUrl="http://" + sdLocate;

 System.out.println(sdUrl);
 soamStub = new SoamPortTypeStub(null, sdUrl);
}
...

...
public String locateSD()
{ String SdUrl=""; ClientInfo[] cinfos = egoClient.locate("SD_ADMIN"); if(null !=
cinfos) { if (cinfos.length > 0)
 { SdUrl = cinfos[0].getClientDescription(); } } return SdUrl;}
...

Step 2: List all the applications registered with Symphony
To view a list of all registered applications, we pass an empty string to the viewApp() method.

For the client to interact with Symphony, it must first be authenticated by the session director. This
requires that the client present a security credential. To acquire the credential, set up the security header
using the setSecurityHeader() method. The logon method uses a plain text username and password that
are sent over an SSL-enabled connection. The method returns the encrypted credential, which is stored
in security document securityDoc. For more information about the logon() method, refer to the Web
Services WSDL Reference in the Knowledge Center.

The following XML snippet demonstrates how the actual security header with username and password
would appear on the wire.

<oas:Security xmlns:oas="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
secext
-1.0.xsd">
<wsse:wsse:UsernameToken
xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secex
t-1.0.xsd">
 <wsse:Username>Admin</wsse:Username><wsse:Password
 wsse:Type="wsse:PasswordText">Admin</wsse:Password>
 </wsse:wsse:UsernameToken>
</oas:Security>
...

Since the Symphony admin Web Service uses document-style binding, the SdViewAppDocument and
SdViewAppResponseDocument classes represent the XML documents that are exchanged between the
Web Service and the client. The viewAppReq and resp classes represent the data.

An object of type SdViewAppDocument (viewAppReqDoc) and securityDoc, which has been initialized
with the encrypted credential, is passed to the local proxy method, sdViewApp(). The Web Service returns
the list of registered applications and the result is printed out to the console using the overloaded print()
method.

Developing Admin Clients

Application Development Guide 135

public void viewApp(String appName) throws RemoteException
{
 setSecurityHeader();
 SdViewAppDocument viewAppReqDoc = SdViewAppDocument.Factory
 .newInstance();
 SdViewAppDocument.SdViewApp viewAppReq = viewAppReqDoc
 .addNewSdViewApp();
 viewAppReq.setAppName(appName);
 SdViewAppResponseDocument respDoc = soamStub.sdViewApp(viewAppReqDoc,
 securityDoc);
 SdViewAppResponseDocument.SdViewAppResponse resp = respDoc
 .getSdViewAppResponse();
 AppAttribute[] appVector = resp.getAppAttrVector().getItemArray();
 for (int i = 0; i < appVector.length; i++)
 {
 print(appVector[i]);
 }
}
...

 public void setSecurityHeader()
 {
 String creds = egoClient.logon("Admin", "Admin", null);
 String credential = egoClient.logon(null, null, creds);
 securityDoc = SecurityDocument.Factory.newInstance();
 Security securityReq = securityDoc.addNewSecurity();
 securityReq.setCredential(credential);
 }
...

Step 3: List all the sessions associated with a specific application
To view a list of all sessions associated with a specific application, we pass the application name and a
string ("0") for session ID to the viewSession() method.

Set up the security document securityDoc by calling the setSecurityHeader() method; see Step 2: List all
the applications registered with Symphony.

Create the request document viewSessionReqDoc and its associated request message object
viewSessionReq. Initialize the viewSessionReq object with the application name and session ID that, in
this case, is set to "0" to denote all sessions.

Call the local proxy method sdViewSession() and pass the request document viewSessionReqDoc and
securityDoc as input arguments. The Web Service returns a list of all open sessions including session
attributes, which is printed out to the console using the overloaded print() method.

Developing Admin Clients

136 Application Development Guide

...
public void viewSession(String appName, String sessionId) throws RemoteException
{
 setSecurityHeader();
 SdViewSessionDocument viewSessionReqDoc = SdViewSessionDocument.Factory
 .newInstance();
 SdViewSessionDocument.SdViewSession viewSessionReq = viewSessionReqDoc
 .addNewSdViewSession();
 viewSessionReq.setAppName(appName);
 viewSessionReq.setSessionId(Long.parseLong(sessionId));
 String filter="state=\"open\"";
 viewSessionReq.setFilter(filter);
 SdViewSessionResponseDocument respDoc = soamStub.sdViewSession(
 viewSessionReqDoc, securityDoc);
 SdViewSessionResponseDocument.SdViewSessionResponse resp = respDoc
 .getSdViewSessionResponse();
 SessionAttribute[] sessionVector = resp.getSessionAttrVector()
 .getItemArray();
 if (sessionVector.length > 0)
 {
 for (int i = 0; i < sessionVector.length; i++)
 {
 print(sessionVector[i]);
 }
 }
 else
 {
 System.out.println("No sessions found.");
 }
}
...

Step 4: Change the priority of all the sessions with the specified tag
The modSession() method accepts four input arguments: application name, session ID, session tag,
priority. All these input arguments, with the exception of session ID, are provided as arguments when
you run the main() program. The session ID is initialized to 0 to indicate to the middleware that you want
to modify the priority for sessions that share the specified session tag.

Set up the security document securityDoc by calling the setSecurityHeader() method; see Step 2: List all
the applications registered with Symphony.

Create the request document modSessionReqDoc and its associated request message object
modSessionReq. Initialize the modSessionReq object with the application name, session ID, session tag,
and the new priority.

Call the local proxy method sdModSession() and pass the request document modSessionReqDoc and
securityDoc as input arguments. The Web Service modifies the priority

Developing Admin Clients

Application Development Guide 137

...
public void modSession(String appName, String sessionId, String filter,
String attrs) throws RemoteException
{
 setSecurityHeader();
 SdModSessionDocument modSessionReqDoc = SdModSessionDocument.Factory
 .newInstance();
 SdModSessionDocument.SdModSession modSessionReq = modSessionReqDoc
 .addNewSdModSession();
 modSessionReq.setAppName(appName);
 modSessionReq.setSessionId(Long.parseLong(sessionId));
 modSessionReq.setFilter(filter);
 modSessionReq.setModStr(attrs);
 SdModSessionResponseDocument respDoc = soamStub.sdModSession(
 modSessionReqDoc, securityDoc);
 SdModSessionResponseDocument.SdModSessionResponse resp = respDoc
 .getSdModSessionResponse();
}
...

Step 5: Handle session director failover
If the system is configured for the session director to fail over on different hosts, the Web Service client
has to be written in a way to ensure that the request is sent to the correct session director URL. In the
following example, code has been added to the example from step 3 to handle session director failover
situations.

First, we initialize the retry variable so that a reconnection to the session director is attempted up to three
times. The sdViewSession() method is called and if it succeeds, the variable is reset to zero and the loop
exits. If the method call fails, relocateSD() makes an attempt to find the new host that the session director
is running on. If the URL is found, it is passed to the soamStub object and the sdViewSession() method
call is attempted again; otherwise, a RemoteException is thrown indicating that the session director cannot
be found.

Developing Admin Clients

138 Application Development Guide

 ...
 setSecurityHeader();
 SdViewSessionDocument viewSessionReqDoc =
 SdViewSessionDocument.Factory.newInstance();
 SdViewSessionDocument.SdViewSession viewSessionReq =
 viewSessionReqDoc.addNewSdViewSession();
 viewSessionReq.setAppName(appName);
 viewSessionReq.setSessionId(str2sessionId(sessionId));
 int retry = 3; //retry 3 times
 while(retry > 0)
 {
 try
 {
 SdViewSessionResponseDocument respDoc =
 soamStub.sdViewSession(viewSessionReqDoc,securityDoc);
 retry = 0;
 }
 catch(java.rmi.RemoteException re)
 {
 reLocateSD();
 if (soamStub == null)
 {
 throw re;
 }
 else
 {
 retry--;
 }
 }
 }
 SdViewSessionResponseDocument.SdViewSessionResponse resp =
 respDoc.getSdViewSessionResponse();
 SessionAttribute[] sessionVector = resp.getSessionAttrVector().getItemArray();
...
public void reLocateSD()
{
 String sdUrl="http://" + locateSD();
 soamStub = new SoamPortTypeStub(null, sdUrl);
}
 ...

Developing Admin Clients

Application Development Guide 139

Developing Admin Clients

140 Application Development Guide

7
Running Executables

C H A P T E R

Application Development Guide 141

Feature: Execution tasks integration
This feature supports the running of remote execution tasks using the Symphony infrastructure. An
execution task is a child process executed by a Symphony service instance using a command line specified
by a Symphony client.

Scope
Operating system Linux, Windows, and Solaris hosts supported by Symphony

Limitations If a symexec fetch command is in progress while a fetch or send command is issued
for the same session from another command prompt window, the original fetch
operation will abort and the session will detach from the original client.

About the Symphony execution task feature
The Symphony execution task feature provides the ability to deploy existing executables in a grid
environment, thereby realizing the benefits of Symphony without necessarily redeveloping your
application code. If you have existing executables but are developing new clients, the Symphony SDK API
can be used to start and control the remote execution of executable files. Each application consists of an
execution service and an executable file that are distributed among compute hosts.

The execution service is common to all execution applications and is primarily responsible for starting
the remote execution tasks and returning results to the client. When you install Symphony or Symphony
DE, the execution application is pre-deployed but disabled.

Here are the characteristics of a Symphony execution application:

• only exit codes from the execution tasks are returned to the client. Note that the execution service,
which manages the execution tasks, can still return exceptions

• the execution task is started and stopped by the service process for every task, which has more overhead
than the method invocation of the ordinary Symphony task within the service process.

There are three ways to run, control, and monitor execution tasks from the client host:

• Platform management console (PMC)
• command line interface (CLI)
• client SDK

Each interface offers a different level of functionality. For example, with the client SDK you can spawn a
second thread to issue a non-blocking fetchTaskStatus() call while the client performs other functions.
Or you can use the CLI for scripting execution task commands. For more information, refer to the
Interfaces section of this chapter.

Running Executables

142 Application Development Guide

For the execution application to work, the executable files must reside on the same compute host as the
execution service or at least be accessible from the compute host through a file sharing system or remote
shell. Symphony’s service deployment tools can be used to package the executable files and dependencies,
and distribute them to the compute hosts.

To help you decide whether the execution application is right for your needs, here is the criteria you
should use:

• you have an existing executable and want to reuse it without changing it to integrate with the
Symphony API

• you want to write a script to launch the executable and run it on Symphony
• you have no access to the source code and cannot change it

Application execution flow
To help grasp the concepts, let’s look at the functional flow of an execution application.

1. The client application creates a Symphony execution session and passes the following optional session-
level data to the execution service:

• array of environment variable strings in "name=value" pairs format (can be empty)
• pre-execution command string (can be empty)
• post-execution command string (can be empty)

The execution service ensures that if the pre-execution command completes successfully, the post-
execution command will always be executed, even if errors occur in the user’s command during the
session.

Running Executables

Application Development Guide 143

2. The client application sends the execution tasks to the execution service, which includes:

• an executable command string with arguments
• optional execution task context data including environment variable strings in "name=value" pairs

format and pre-/post- execution commands

Pre- and post-execution commands sequence:

3. Upon receiving the input message on the service side, the execution service spawns a new process
based on the execution task data.

While the execution task process is running, the execution service periodically checks for interruptions
and suspends or aborts the running process if it detects an administrative action such as session
suspend or abort was issued by the CLI or PMC.

4. When the execution task has completed its process, the exit code of the process is sent back to the
client in the execution task status. The error handling associated with this exit code is configurable in
the application profile.

Note:
The exit code of pre- and post-commands is only logged, and not sent
back to the client.

Execution service
The execution service implements the process execution logic as a Symphony service and interacts directly
with the service instance manager (SIM).

To allow the execution task to use some unique identities, the service side execution environment is
supplemented with the following additional environment variables:

• SYM_SERVICE_NAME = execution service name
• SYM_SERVICE_PID = execution service instance OS process identifier
• SYM_SESSION_ID = session identification number
• SYM_TASK_ID = task identification number

The execution service logs session and command start-up and shutdown audit information in a log file.
The path for log files is configurable in the application profile. By default, the log is set to the INFO level,
which includes the following data:

• date/time stamp
• local time zone
• host name
• service instance process identifier

Running Executables

144 Application Development Guide

• session identifier (for session pre- and post- commands)
• execution task identifier (for command-level executions)
• execution level (session or task)
• execution context (pre-, post-, or command execution)

Interfaces
This section describes the three interfaces that are available for sending execution tasks.

Client SDK
The Symphony execution task feature extends the existing Symphony API classes for C++ and Java
languages:

Classes:
• ExecutionSession: a class to enable the client to manage its execution workload
• ExecutionEnumItems: container class for ExecutionStatus objects
• ExecutionStatus: container class for the status of an execution task result
• ExecutionSessionContext: container class for environment variables, session type, and pre-/post-

commands for session-level context
• ExecutionCommandContext: container class for environment variables and pre-/post- commands

for task-level context

Command line interface
Use symexec for the execution application operations. The symexec utility supports the following
commands:
• create - creates an execution session in which to run an execution task. The session stays open until

it is explicitly closed (detachable session)
• send - sends an execution task command in the execution session
• fetch - fetches the statuses of finished execution tasks in the execution session
• close - closes the execution session
• run - creates an un-detachable execution session, runs an execution task, waits and then retrieves the

result, and closes the execution session.
For more details such as command syntax and options, refer to the Command Reference.

Platform management console
The management console implements a GUI panel that allows a single execution task to be sent per session.
The interface also supports the entry of associated pre- and post- commands, as well as environment
variables and their values. Basically, the functionality offered by this panel is identical to the run
subcommand of the symexec CLI where "Guest" is the username and password. If you need to send
multiple concurrent execution tasks, additional GUI dialogs must be opened.

The management console can retrieve log files that are created by the execution service for each execution
session.

For more details, refer to the online help provided with the management console.

Configuration
Application profile

Every application requires an application profile to dynamically configure the application’s behavior
within Symphony. An application profile for the default symexec application is already registered (but

Running Executables

Application Development Guide 145

disabled) when Symphony is installed. There is also a second application profile, specific to execution
applications, included in the Symexec sample that is packaged with Symphony.

The execution service is common to all execution applications. In cases where different consumers are
running execution applications, the name of the application specified in the application profile must be
unique. Also, each application profile name must be unique in the cluster and associated with only one
consumer. At any time, there can be only one enabled application per consumer.

For the execution application to work properly, the following key parameters must be configured in the
application profile:

• recoverable

Set this flag to true since the execution application must be recoverable to support suspend/resume
operations.

• suspendGracePeriod and taskCleanupPeriod

Set both parameters so that the value is greater than the time it takes to complete the post-execution
command that is executed by the service’s onSessionLeave() method. This time period allows for
post-execution cleanup.

• controlCode

In the application profile, the SessionEnter and SessionLeave Method elements correspond to the
service methods onSessionEnter() and onSessionLeave(). It is within these methods that the
session-level pre- and post- execution commands are executed. Similarly, the Invoke Method element
corresponds to the onInvoke() service method where task-level pre- and post- execution commands,
and the execution task’s command itself are executed. For the default execution application, its
application profile is configured so that if the command's exit code has a value of zero, it will be treated
as successful completion and any other value will be treated as a failure of the corresponding execution
task.

When an execution task’s command or session-level pre- and post- command is able to start and
finish, the execution service stores the command’s exit code as a Symphony service context’s control
code and then adds 1 to the control code. Therefore you may configure the control code for the
Return event in the application profile with a value of 1 greater than the exit code you are expecting
from the given command. For example, the default execution application is configured that when the
command executes successfully with an exit code of 0, it sets the control code for this result to 1 (exit
code +1) so that Symphony processes the result as a successful action.

Note:
The exit codes for task-level pre- and post- execution commands are
not stored so consequently the handling of these exit codes cannot be
configured.

The default value for all unspecified control codes is 0. It means that if you have specified control code
equal to 1 to indicate successful action, all failures or system errors that do not have a corresponding
control code in the application profile will be automatically associated with control code 0.

If the command cannot be started by the operating system, the execution service sets the control code
to the system error number returned by the operating system. You can configure the Failure events
in the application profile with control codes to handle specific exceptions. In this case, if the matching
control code is configured as a failure, the exception message with the error code will be propagated
back to the client. If an exception occurs with a control code that is not configured, it will automatically
be associated with the action for control code 0.

Running Executables

146 Application Development Guide

If your execution application has more than one possible exit code to indicate successful completion,
you must configure these multiple control codes in the application profile associated with the
successful action.

If you are using multiple application profiles for multiple execution applications, you can configure the
logDirectory parameter in each profile so that each application stores logs in a unique location. Another
way of organizing log files per application is to use different service names and update the respective
application profile with the new service name. All application profiles use the service name in the sub
directory path (subDirectoryPattern) for logging and this path is fixed on the service side for compute
hosts. Changing the service name for each application profile is another way to ensure a unique location
for each application’s log files.

Logging
Logging that is configurable by level and class name can be enabled for the execution service itself using
a separate section in the api.log4j.properties file. It is located in $SOAM_HOME/conf (Linux) or %
SOAM_HOME%\conf (Windows) on the host where the execution service runs.

Running Executables

Application Development Guide 147

Deploy executables
This topic describes the steps for deploying executables to compute hosts.

Create a deployment package
You must package your executable files before deploying them to Symphony.

1. Create the deployment package by compressing the executable files and any dependencies (for
example, compress into a .zip or .gz file). The executable files should consist of the execution task’s
commands executable and pre-/post- commands, if applicable.

Edit an application profile
This procedure assumes that you are starting with a new application profile for execution application.

1. Open SymexecApplicationProfileTemplate.xml located in %SOAM_HOME%\5.1\samples
\Templates (Windows) or $SOAM_HOME/5.1/samples/Templates (Linux).

2. Edit the application name, package name, and consumer name, if necessary.

Important:
Do not make other changes. The application profile must be configured
for execution applications, i.e., the session types DetachableSession
and UndetachableSession must both be defined in the application
profile.

3. Save the file with a new name such as SymexecApp.xml.

Add an execution application to Symphony
You can add an application to Symphony by using the Add Application wizard in the Platform
Management Console. The wizard defines a consumer location to associate with your application, deploys
your service package, and registers your application. After completing the wizard, your application should
be ready to use.

1. In the Platform Management Console, click Symphony Workload > Configure Applications.

The Applications page displays.
2. Select Global Actions > Add/Remove Applications.

The Add/Remove Application page displays.
3. Select Add an application, then Continue.

The Adding an Application page displays.
4. Select Use existing profile and add application wizard.
5. Select your application profile xml file (for example, SymexecApp.xml), then click Continue

The Service Package location window displays.
6. Browse to the created service package and select it, then, select Continue.

The Confirmation window displays.
7. Review your selections, then select Confirm.

The window displays indicating progress. Your application is ready to use.
8. Click Close.

Running Executables

148 Application Development Guide

The window closes and you are now back in the Platform Management Console. Your new application
is displayed as enabled.

Running Executables

Application Development Guide 149

Retrieving results from execution tasks
The results from an execution task can be in the form of an exit code with optional stdout and stderr data
files from the execution task’s command.

Retrieving the exit code
Exit codes of execution tasks are stored in log files on the compute hosts where the execution tasks run.

There are various ways to retrieve the exit code:

• Log files can be retrieved through the Symphony Platform Management Console; refer to PMC help
for more information. The logDirectory attribute in the application profile can be configured for log
retrieval.

Important:
When configuring the application profile for log retrieval, you must not
change the values of the fileNamePattern and subDirectoryPattern
attributes. If these values are changed, the PMC will not be able to find
the log files.

• If you run the execution application from the DE PMC, you can only retrieve the exit code by
redirecting it to a file; refer to the next section on stdout and stderr for details.

• If you run the execution application using the Symphony client SDK, you can retrieve the exit code
from ExecutionStatus.

• If you run the execution application using the symexec CLI, then the exit code will be printed out by
symexec as the result for fetch and run options. You also can retrieve the exit code by looking at the
execution session's log file.

Here is an example of an exit code entry in a log file:

2007-11-19 12:55:14.414905 hostname 3016 Session #3, Task #1 execution
command: execution finished with exit code <0>.

Retrieving stdout and stderr data
To retrieve the stdout and stderr data from a completed execution task, you must change its command
to run under a shell so the command can redirect the stdout and stderr data to file(s). The file(s) can then
be retrieved by either copying the file from the remote host (for example, with an FTP command) or by
using a shared file system location. The following examples demonstrate how to retrieve the stdout and
stderr data from Windows and Linux hosts.

Windows:

In this example, the command will take the output of the "dir c:\" command and place it in the
dir_content.txt file. The command can be entered in the Start > Run textbox. The cmd /c opens a
command shell and closes it after processing the string.

cmd /c dir c:\ > c:\temp\dir_content.txt

Linux:

In this example, the command will take the output of the "ls /" command and place it in the
root_content.txt file. The sh -c opens a command shell, which reads the commands from the string.

sh -c ’ls / > /tmp/root_content.txt’

Running Executables

150 Application Development Guide

8
Development Guidelines and Best Practices

C H A P T E R

Application Development Guide 151

Client development guidelines
Type of program

A Symphony client does not need to be an end user program. It can be a middle-tier proxy server to pass
multiple end users’ compute requests to a grid, and then return the compute results back to the end users.
It can also be a master application program or even a service that itself is a compute-intensive piece to
work with many other services.

Uninitialization
Once you uninitialize, all objects become invalid. For example, you can no longer create a session or send
an input message.

Serialization and deserialization
Remember to double-check that your Message object serialization and deserialization order are the same.

A client can call different service methods
The Symphony API only provides a basic service invocation mechanism via opaque input/output
messages and an onInvoke() service call. If needed, you can call different methods in a service on top
of this mechanism.

Ensure permissions when writing logs
When you run a client, make sure client application has write permission under its current working
directory since it needs to write logs, or change the directory in which the client application writes logs
in the api.log4j.properties file.

Client applications log to the current directory by default. This is defined in the $SOAM_HOME/conf/
api.log4j.properties on Linux, and %SOAM_HOME%\conf\api.log4j.properties on
Windows.

The client log is updated once the client attempts to access the Symphony API. Ensure your client
application has write privileges to the directory specified in the properties file.

Threads and multithreading
Synchronous clients are not required to do anything special or even be aware of the API's use of threads.
Asynchronous clients need only to follow basic rules for working in a multi-threaded environment, such
as for example, not blocking the callback thread. The API implementation for the most part hides its
threading model from the developer.

Memory management in the client for Java and .NET
Client and service applications handle a lot of data, and out of memory errors may occur.

To help control memory, you can do the following in your code:

• When retrieving task output:

• Retrieve task output asynchronously, using the Session Callback object.

OR

Development Guidelines and Best Practices

152 Application Development Guide

• Retrieve task output synchronously, in groups. For example, if you send 1000 large input messages,
retrieve output in groups of 50 rather than all at once.

• On both the client and service, set unused references to null.
• When you have large data or many tasks, try to trigger the garbage collector periodically to collect

unused objects and avoid running into memory issues.
• For applications that consume large amounts of memory, consider implementing Symphony

serialization instead of native serialization. Use the following guidelines to determine memory
requirements for processing byte arrays and strings.
• Memory requirements for byte arrays:

Symphony serialization—3x the size of the byte array

Native serialization—4x the size of the byte array
• Memory requirements for strings:

Symphony serialization—2x the size of the string in bytes. For example, if a string has 10 characters
= 20 bytes, it will require 40 bytes.

Native serialization—2.5x the size of the string in bytes. For example, if a string has 10 characters
= 20 bytes, it will require 50 bytes.

Recoverable clients
A recoverable client is a client that can tolerate an abnormal termination of its execution and is able to
recover and continue to process workload. Recovery of such a client usually involves it being restarted
and given enough context to allow it to connect and open an existing session that previously contained
its workload. For this type of client, it is usually recommended to set the discardResultsOnDelivery
attribute to “false” in the applicaton profile to allow for a simplified recovery procedure.

Large number of tasks
For large numbers of tasks, for example, if you have 100,000 tasks in one session, you can get better
performance by retrieving output asynchronously in a callback function. If you prefer to retrieve output
synchronously, it is recommended to retrieve output in smaller groups—for example, you get better
performance if you retrieve output for 10,000 tasks at a time, instead of retrieving output for 100,000 tasks
with one fetchTaskOutput() call.

How many sessions to create
There are different ways to manage the Symphony session. You can:
• Close a done session immediately
• Keep the idle session open

Close a done session immediately
The simplest way is to create a session, tightly pack all the tasks in, get all the outputs out, then close the
done session.

Keep an idle session open for quick responsiveness of loosely-packed tasks
For applications that have very short tasks and tasks that come in periodically, creating a session for every
discrete task pack or every task is not efficient because a session is a heavier scheduling unit than a task.
It takes longer to create and close a session than to send a task within an existing session.

For this type of application, create a session and keep it open even if you do not have tasks for a short
time period. This way the system responds much faster.

Development Guidelines and Best Practices

Application Development Guide 153

When there is no task in a session, Symphony immediately moves the service instances from the idle
session to other busy sessions.

It is worth noting that it is not a good idea to keep an idle session open for too long, because open sessions
occupy system resources. As a best practice, close a session if it is idle for too long. (The appropriate length
of idle time should be determined by the developer.)

Smart pointers
A smart pointer is an object that encapsulates a real reference. When an object is no longer required, a
smart pointer frees it. As a developer, you need not be concerned about catching problems like memory
leaks.

In Symphony, you use smart pointers for all objects that are not user-implemented. You never need to
clean up an object that is created with the API. When objects are out of scope, they clean up themselves.

Remember:
Smart pointers do not exist for objects that are user-implemented such as
service containers, messages, and common data. For these objects, you
still need to free up memory and manage it.

Data
Limits on message size

Symphony has no hard limit for the message size other than the physical limits imposed by systems outside
Symphony. These limits may be determined by the size of the physical and virtual memory, and the
operating system. The maximum data size also depends on the type of serialization used. Here is a
guideline:

Note:
Available memory refers to the usable physical memory at the moment,
and not just the manufacturer's specification for the memory.

Windows limits
• Symphony Serialization: 500 MB maximum data size, due to the application memory limit of 2 GB

for a 32-bit host; requires at least 2 GB of available memory on the host to support this.
• Native Serialization: 400 MB maximum data size, due to the application memory limit of 2 GB for a

32-bit host; requires at least 2 GB of available memory on the host to support this.

Linux limits
• Symphony Serialization: 800 MB maximum data size, provided the host has at least 3 GB of available

memory.
• Native Serialization: 800 MB maximum data size, provided the host has at least 3.5 GB of available

memory.

Optimum ratio of task message size to task compute time
The optimum ratio of task message size to task compute time depends on the network bandwidth and
the performance target you want to achieve.

In a normal size grid (100Mbps or 1Gbps network, 500 CPUs), to achieve > 90% CPU efficiency, the best
practices are:

Development Guidelines and Best Practices

154 Application Development Guide

• If the ratio of task data size/task compute time is less than 10KB/second, send the task data by value;
otherwise send the task data by reference

• If the task data sending time is less than 10% of the task compute time, then send the task data by
value; otherwise send the task data by reference

Distributing data among tasks: by value or by reference
A symphony session manager is responsible for managing and scheduling sessions, services, and tasks.
Overloading a session manager with data is not a good idea because it slows task distribution across
compute hosts. As a best practice, think about pass-by-value versus pass-by-reference.

Pass-by-value with sendTaskInput() to pass small, task-specific data
Use sendTaskInput() only to pass small amounts of task-specific data.

If the task-specific input and output data is small, a Symphony client or service can pass the input and
output data by value. The client sends the data value in the Symphony task message through session
manager. The service gets the data value through the Symphony message from session manager.

Pass-by-value with common data if the dataset resides in a client
If the shared market dataset resides in a client, the client can distribute the data with session common
data. The data is distributed to the service instance when the service instance is assigned to the session.
The service instance can access the common data from the onSessionEnter() method. The client can
update the common data by using the update() method.

Service instances can cache the data in memory or the local disk for multiple tasks. You only need to use
the sendTaskInput() call to pass small task-specific data.

Pass-by-reference with common data for large data or when dataset resides in a shared
location

If the shared market dataset resides in a shared location such as a database, file system, or cache system,
the client can distribute a reference to the shared data with session common data. The reference to the
dataset is distributed to the service instance when the service instance is assigned to the session. The
service instance can access the common data from the onSessionEnter() method. The client can
update the common data by using the update() method..

Service instances can load the data from the shared location and cache it in memory or the local disk for
multiple tasks.

You only need to use the sendTaskInput() call to pass small task-specific data.

Using external data sources
In addition to the session common data and task input/output data, the service instances and tasks can
also receive input data from other data sources, and save output data to other data destinations. These
data sources and destinations can be a database, a file server, a cache system, or even directly with the
client application.

Data loss prevention
In a grid environment, there may be hundreds or thousands of compute hosts distributed in a cluster. In
a typical risk management application, there may be hundreds of thousands of perturbations of market
data/conditions. Each one of these can be a workload unit.

Development Guidelines and Best Practices

Application Development Guide 155

When you submit this workload to a grid, you expect the grid system to distribute the workload on grid,
and guarantee processing without losing any workload, even if there are failures in hardware or software
in:

• Grid management machines or software
• Compute machines and service applications

A reliable grid system should guarantee a transactional handling of application execution on the grid. A
failure or even an entire system reboot should not require rerunning the workload from the beginning.

One problem in a traditional MPI-based parallel application is that when there is a failure in a distributed
environment, the MPI-based application may fail and need to rerun from the beginning. Rerunning a
large workload or the entire workload in the system not only wastes time and resources, but also may
miss the time window of business opportunities.

Add recovery with recoverable sessions
Platform Symphony supports reliable computing by persisting Symphony session and task inputs and
outputs. However, sometimes you may not want to recover your workload when a failure or error happens,
or, you may want to trade persistency for performance— task persistency takes time and disk space and
may slow down the overall system response time.

You can define whether a session is recoverable or non-recoverable in the application profile through the
session type. In the client application, you can then specify the appropriate session type in createSession
().

Choose a recoverable session when
• You have a long session that may last hours to compute many CPU-intensive tasks, and you do not

want to waste CPU cycles to resubmit tasks in the session if a failure or error occurs.
• It is difficult or impossible to resubmit tasks in the session when a failure or error occurs.
• You have a mission-critical session that has to be finished before a deadline.

Choose a non-recoverable session when
• You have a short session that may only last for minutes, and you can always create a new session to

resubmit tasks if a failure or error occurs.
• You want Symphony to immediately clean up the session and release the CPUs if a failure or error

happens. Keeping this session running in the system is just waste of CPU cycles.
• You have an interactive online session that requires quick response time.

Implement application-level checkpointing for sessions
If you have long running tasks, you may not want to rerun a task from the beginning in case of failure.

A good practice is to have a long running task that periodically persists its intermediate results, such as
every 10 minutes, so that when the task is rerun by Symphony, it can continue from where the last
intermediate results that were persisted.

You need a persistent shared location like a persistent shared data cache or a shared file system because
a task may be rerun on a different machine than previously.

Once a task can persist its intermediate results, you can perform application-level checkpointing by
suspending the session.

A service instance can get an interrupt event by calling serviceContext.getLastInterruptEvent
(), and use a grace period to persist intermediate results in a persistent shared location. Later on, either

Development Guidelines and Best Practices

156 Application Development Guide

when the whole suspended session is resumed, or then the unfinished task is redispatched, another service
instance picks up the task, and restores the intermediate results from the shared location.

Development Guidelines and Best Practices

Application Development Guide 157

Service development guidelines
Memory management

Any objects created by the API are managed by the API. You do not need to worry about memory. Use
methods in your programming language to free memory for other objects.

How to control memory leaks
Forcing a service instance to restart is one way to control memory leaks.

About threads and multithreading
If you are using a service wrapper to execute UNIX commands and return results to the client, note that
the service wrapper is implemented with fork/exec in the onInvoke() call. The onInvoke() call and other
calls in Symphony are executed in a thread.

The fork/exec in a multithread environment causes race conditions that could result in deadlock. To
resolve this, include -lpthread in the makefile so that the service uses the thread-aware fork in the pthread
library instead of fork in glibc. If you are using a Makefile, change it to include the following:
LIBS = -L $(OUTPUT) -L $(TOP)/$(ARCH_BUILD)/lib \
-lsampleCommon -lsoambase -lsoamapi -lpthread

Development Guidelines and Best Practices

158 Application Development Guide

Library dependencies in clients and services
C++

When creating clients or services, pay special attention to library dependencies.

Compiling your client and service
Symphony API headers

Include soam.h in any source code that needs to refer to the C++ Symphony API.

Binary execution headers
Include symexec.h in any source code that needs to refer to the C++ Symphony Binary Execution API.

Location of headers
Symphony API and Binary Execution API header files are in:

• Windows: %SOAM_HOME%\5.1\include
• Linux/UNIX: $SOAM_HOME/5.1/include

Symphony API implementations
Include the C++ implementation file SoamSrc.cpp in any of your implementation files (.cpp files) so
that all C++ Symphony API wrapper implementations can be compiled and linked to your client or service
code .

Symphony binary execution implementations
Include the C++ implementation file symexec.cpp in any of your implementation files (.cpp files) to
enable proper linking of the Binary Execution API wrapper implementation to your client.

Location of implementations
Symphony API implementations and Binary Execution API implementations are in:

• Windows: %SOAM_HOME%\5.1\src
• Linux/UNIX: $SOAM_HOME/5.1/src

If you are developing in Microsoft Visual Studio, you can include implementations directly into your
project or from your stdafx.cpp file.

If you are developing in Linux/UNIX, you can include implementations in your Makefile instead of in
the source.

Important:
Do not include implementation files in more than one place. Doing so
introduces duplicate symbols and causes link failures.

Linking
On Windows:

• For Visual Studio compilers, use the /gr compiler option.

Development Guidelines and Best Practices

Application Development Guide 159

• Link to the static link library file soambase.lib to establish dynamic links to the soambase.dll
library.

• This file is located in %SOAM_HOME%\5.1\%EGO_MACHINE_TYPE%\lib.
• For 64-bit applications, this file is located in %SOAM_HOME%\5.1\%EGO_MACHINE_TYPE%

\lib64.

On Linux/UNIX:

• Do not disable the -rtti compiler option for gcc.
• Link to the libsoambase.so file in your Makefile.
• This file is located in $SOAM_HOME/5.1/$EGO_MACHINE_TYPE/lib.
• For 64-bit applications, this file is located in $SOAM_HOME/5.1/$EGO_MACHINE_TYPE/lib64.

Java
When creating clients or services, pay special attention to library dependencies.

Building your client and service
Symphony API libraries

The Java Symphony API contains two layers: a Java layer, and a C++ layer. The Java API is in the package
com.platform.symphony.soam. Its Java implementation is located in JavaSoamApi.jar, and its C
++ implementation is located in:

Windows:

• jnativesoamapi_5.1.0.dll(32-bit implementation)
• jnativesoamapi_5.1.0_64.dll(64-bit implementation)

Linux:

• libjnativesoamapi_5.1.0.so(32-bit implementation)
• libjnativesoamapi_5.1.0_64.so(64-bit implementation)

Important:
The jnativesoamapi_5.1.0.dll and jnativesoamapi_5.1.0_64.dll have
implementation specific to Symphony 5.1 and cannot be separated from
JavaSoamApi.jar in the same location.

Symphony binary execution libraries
The Symphony Java Binary Execution API is in the package com.platform.symphony.symexec. Its
implementation is located in the JavaSymexecApi.jar file.

Location of libraries
Symphony API libraries and Binary Execution API libraries are in:

• Windows: %SOAM_HOME%\5.1\%EGO_MACHINE_TYPE%\lib
• Linux: $SOAM_HOME/5.1/$EGO_MACHINE_TYPE/lib

For 64-bit applications, you can use the same libraries.

Development Guidelines and Best Practices

160 Application Development Guide

C# .NET
Building your client and service
Symphony API assembly

The .NET API is in the namespace Platform.Symphony.Soam.

Its implementation is in the Platform.Symphony.Soam.Net.dll assembly. This assembly will be
typically installed in the GAC to accomodate the execution of client and service from any location on a
host on which Symphony is installed.

If you do not have administrative privileges during installation, you will need to manually install the
assembly to the GAC . If manual installation to the GAC is not possible, you can copy the assembly into
the same location as your client and deploy it in your service package as another dependent library of
your service.

For 64-bit applications, use the Platform.Symphony.Soam.Net_64.dll.

Location of assembly
The Platform.Symphony.Soam.Net.dll assembly is in:

• %SOAM_HOME%\5.1\%EGO_MACHINE_TYPE%\lib

For 64-bit applications, the Platform.Symphony.Soam.Net_64.dll assembly is in:

• %SOAM_HOME%\5.1\%EGO_MACHINE_TYPE%\lib64

COM
Building your client
Symphony API libraries

The COM API contains implementation applicable only to clients.

To access the COM API, add a reference to the Platform.Symphony.Soam.COM.dll file in your
project.

Location of libraries
The Platform.Symphony.Soam.COM.dll is in:

• %SOAM_HOME%\5.1\%EGO_MACHINE_TYPE%\lib\COM

Development Guidelines and Best Practices

Application Development Guide 161

Development Guidelines and Best Practices

162 Application Development Guide

9
Symphony 64-bit Application Support

C H A P T E R

Application Development Guide 163

General considerations for porting existing
applications to 64-bit

Symphony developers have the opportunity to deploy application logic compiled to run natively in 64-
bit architectures. Note that if you have an existing application deployed in Symphony on a 32-bit
architecture and plan to move it to a 64-bit platform, you should plan this activity carefully. Without
proper planning, the resulting ported application could yield unexpected results that may delay rollout
of the ported application.

Running in a 64-bit environment without porting
Even if your application is not ported to a 64-bit architecture, it may still be beneficial to run it in a 64-
bit environment. This is because some 64-bit operating system implementations allow an application to
allocate more memory than if it were run in the 32-bit version of the operating system.

An example is WindowsXP Pro 64, which allows application code to consume up to 4GB of memory as
opposed to the 2GB allowed by its 32-bit implementation. Consult the operating system vendor to confirm
this detail about your specific 64-bit operating system implementation.

Required changes to the application profile
If any of your compute hosts are 64-bit, you need to add an osType section in the Service sections with
the type NTX64 or X86_64, depending on whether you have Windows or Linux hosts. If you do not specify
the environment explicitly, then any is selected.

For example:
<Consumer applicationName="MyApplication" consumerId="/consumer"...
 ...
...
<Service name="MyService" description="Description of my service."
...
 <osType name="NTX64"
startCmd="${SOAM_DEPLOY_DIR}/MyService.exe"
workDir="${SOAM_DEPLOY_DIR}">
 </osType>
 <osType name="X86_64"
startCmd="${SOAM_DEPLOY_DIR}/MyService"
workDir="${SOAM_DEPLOY_DIR}">
 </osType>
 ...
</Service>
</Profile>

Additional information about 64-bit architectures
For more information about 64-bit architectures and the implication to your application, refer to public
white papers that contain pertinent information on this topic. You can access such information from the
following sources:

• Windows

http://msdn2.microsoft.com/en-us/library/h2k70f3s(VS.80).aspx
• Linux

http://www-128.ibm.com/developerworks/linux/library/l-port64.html
• Java

http://java.sun.com/j2se/1.5.0/docs/relnotes/features.html

Symphony 64-bit Application Support

164 Application Development Guide

• Building AMD64 Applications with the Microsoft Platform SDK

www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/30887.pdf

Symphony 64-bit Application Support

Application Development Guide 165

Considerations for porting existing C++ applications
to 64-bit
Handling variables of type long and pointer

When porting your applications to the Linux 64-bit architecture, you must take special care when handling
variables of type long and pointer, since the size of these variables may be platform dependent.

Windows
On Windows, 64-bit applications are supported natively within Visual Studio 2005 and later versions.

• Refer to the Symphony C++ samples project settings in Visual Studio to see how to port your C++
application to 64-bit on Windows.

• When compiling the samples for 64-bit using Visual Studio, use the solution files from Visual Studio
2005 or later. You must also select the "x64" configuration since by default the "Win32" configuration
is selected by Visual Studio on first use.

• Note that only a "full" or "custom" installation of Visual Studio 2005 and later versions allow you to
build 64-bit applications. A "typical" installation only installs the 32-bit components for building.

If you are not using Visual Studio 2005 or a later version, the porting process involves installation and
some configuration of the Microsoft Platform Software Development Kit. You can get details on this
porting process from Microsoft's MSDN knowledge base.

Linux
On 64-bit versions of Linux, the GCC compiler defaults to compiling for the 64-bit architecture.

Symphony 64-bit Application Support

166 Application Development Guide

Considerations for porting existing Java applications
to 64-bit

Pay special attention to the JVM that runs the application. The J2SE specification only added support for
X86_64(AMD and Intel 64-bit architectures) version 1.5 of the JDK.

Symphony 64-bit Application Support

Application Development Guide 167

Considerations for porting existing .NET(C#)
applications to 64-bit

Note:
32-bit C# applications still work in a 64-bit environment.

• 64-bit C# applications can only run on .NET Framework 2.0 and above. When installing your
development environment, you must ensure that either the 64-bit version of the .NET SDK or the full
Visual Studio 2005 Professional package or later version is installed on your 64-bit Windows host.

• You must add a reference to the 64-bit version of the .NET API
(Platform.Symphony.Soam.Net_64.dll) in your Visual Studio application project files; see the
64-bit Symphony DE samples for details.

• Since 64-bit C# applications are only supported on .NET framework 2.0 and above, you must use
Visual Studio 2005 or later version to build your 64-bit applications.

Compiling with Visual Studio
When compiling the samples for a 64-bit environment using Visual Studio, you must use the solution
files suffixed with 64.<version>.sln, or 64_<version>.sln where <version> is 2005 or later.

1. In the Platform drop-down list, select x64. (By default, the x64 configuration is selected by Visual
Studio on first use.)

2. In the Platform target drop-down list, select x64.

Symphony 64-bit Application Support

168 Application Development Guide

II
Debugging and Troubleshooting

P A R T

Application Development Guide 169

Debugging and Troubleshooting

170 Application Development Guide

10
Debugging a Service

C H A P T E R

Application Development Guide 171

About debugging a service
There are four ways to debug a service:

1. Customized service replay debugging
2. Full service replay debugging
3. Live service debugging
4. Ad hoc service debugging

Service replay debugging (customized or full) is best used if you need to test your code under realistic
conditions:

• You do not want to limit the number of service instances (slots) available to your application,
• You do not want to modify the application configuration other than debugging configuration, and
• You do not want to modify your service code solely for debugging purposes.

The techniques discussed in this section apply to debugging a service in both Symphony DE and
Symphony.

The following diagram describes the overall process to follow to debug a service.

Debugging a Service

172 Application Development Guide

Customized service replay debugging
Customized service replay debugging generates service event replay logs (SERLs) upon detection of any
error-handling events you customize for that purpose. By default, customized service replay debugging
generates files for the following common service problems:

• The service exits or crashes during the execution of a method,
• The service throws an exception during the execution of a method,
• The service times out while executing a method, and
• The service returns from a method with an exit code.

You can use the service event replay logs to try to reproduce your problem—you replay the relevant service
events that occurred on the service instance.

Debugging a Service

Application Development Guide 173

You should be able to catch the most common service problems using this mode, particularly problems
that are isolated (non-cumulative). If you cannot reproduce your problem in this mode, try debugging
your service using the full service replay debugging.

Note:
Running your application in customized debug mode uses more memory
on the compute host than running with no debugging, or running in full
debug mode. You may not be able to use customized service replay
debugging if you have large common data or large task input.

Tip:
Consider moving your application into production with customized service
replay debugging enabled. You can test your service thoroughly in a grid
environment until your service no longer produces service event replay
logs in testing. Therefore any service replay debug logs generated in
production reflect new problems (i.e. those that did not arise in testing).

Full service replay debugging
Full service replay debugging generates service event replay logs for every service instance in your cluster,
regardless of whether an error occurs in that service instance.

You can use the service event replay logs to try to reproduce your problem—you replay the service events
that occurred on the service instance.

You should be able to use this mode to catch problems that are cumulative. For example, this mode may
help you to find that your service memory becomes more and more corrupted at each task invocation.
You would also use full service replay debugging if your service problem does not generate a SERL in
customized mode, or if you cannot reproduce the problem using customized service replay debugging.

Tip:
This mode is also useful for unit testing—stepping through your source
code under a debugger during normal service execution.

If you cannot reproduce your problem using either customized or full service replay debugging, try
debugging your service using live service debugging.

Live service debugging
Live service debugging allows you to debug your service instance as it is running live.

This mode gives you an exact picture of the runtime environment, not just a simulated environment.

If you still cannot reproduce your service problem using this mode, try debugging your service using ad
hoc service debugging.

Ad hoc service debugging
If none of the above methods helps you resolve a service problem, try logging, experimentation, or other
techniques you are familiar with.

Debugging a Service

174 Application Development Guide

Feature: Service replay debugging
The service replay debugging feature allows you to replay actual service events that occurred in your
service instance when your application ran in Symphony. You use service replay debugging when you
want to debug without making changes to your application.

About service replay debugging
In the Symphony environment, the SIM starts a service instance and drives all of the service events that
occur. The service replay debugging feature can capture those service events in a file, along with the
original data that was passed to the service at each stage. The service replay debugging feature allows you
to run your service from this file, no longer requiring a SIM to drive the service actions. Service replay
debugging can drive the service instance in complete isolation, independent of Symphony or Symphony
DE.

With service replay debugging, you can run your service binary directly from a command line, debugger,
or integrated development environment (IDE) and step through the service code to find any errors in
your service logic or in the service environment.

The service replay debugging feature makes it easy to debug a number of different scenarios:

To handle ... The service replay debugging feature allows you to ...

Environment issues Set the runtime environment for the service and run your service binary. In many cases,
you will be able to see which dynamic libraries failed to load, which environment
variables are not set as expected, and which other dependencies are missing.

Startup issues Capture service startup and initialization issues without modifying your service code.

Miscellaneous issues Capture every service event. For example, you could use the debugger to step through
your service code to make sure everything works as expected.

Unexpected issues Capture unexpected problems so that you can replay and debug them later on. For
example, you could use service replay debugging to trace and resolve any new issues
found in your service.

Without service replay debugging
The following is an example demonstrating debugging an error that occurs in the onCreateService()
method when service replay debugging is not enabled.

Debugging a Service

Application Development Guide 175

Without service replay debugging enabled, the session manager and service instance manager logs indicate
that a process exited while creating the service. You do not know why.

To debug, you use live service debugging (debugging while the service is running), and you modify the
onCreateService code to:

• Add an infinite while loop at the top of onCreateService
• Attach to the live service instance process with a debugger, and set breakpoints
• Modify the values of variables to exit the while loop
• Debug the live process
• Once resolved, remove the infinite while loop

With service replay debugging
The following is an example of debugging an error that occurs in the onCreateService() method when
service replay debugging is enabled.

Debugging a Service

176 Application Development Guide

To debug, you:

• Run the environment script in a command prompt or shell
• Run the service binary from the same command prompt or shell, as the environment script. Either

run it directly or from a debugger IDE. The environment script tells the service to run from the SERL
file.

Debugging a Service

Application Development Guide 177

Service event replay log (SERL)
This file contains the data required to replay actual service events that occurred on your service instance
when your application ran in Symphony.

Note:
More than one set (a SERL file and an environment script) may exist,
depending on the number of service instances that encountered errors.
You can use any set to replay the service events that occurred.

Environment script
Environment scripts are used to simulate a service environment when you replay your service. When you
run the environment script, the script sets the environment variables that were used when your service
ran through Symphony.

An environment script is found together with its SERL file. The environment script is named as follows:

• Windows:
appName.serviceName.hostname.pid.timestamp.env.bat

• UNIX bash:
appName.serviceName.hostname.pid.timestamp.env.profile

• UNIX csh:
appName.serviceName.hostname.pid.timestamp.env.cshrc

Symphony adds a single reserved environment variable in the environment script called
SOAM_SERVICE_EVENT_REPLAY_LOG, which specifies the SERL file that can be used to run your
service. When the SOAM_SERVICE_EVENT_REPLAY_LOG variable is defined by the environment
script, your service is driven by the service events logged in the SERL file that this variable references. If
you do not run the environment script, this environment variable is not defined, and your service is driven
by the service instance manager.

Location of SERLs and environment scripts
The SERLs and environment scripts are located as follows:

• On Windows: %SOAM_HOME%\work\serl\appName\serviceName
• On UNIX: $SOAM_HOME/work/serl/appName/serviceName

Scope
Service replay debugging can be used in both Symphony DE and Symphony on the grid,

Service replay debugging can be used on all platforms supported by Symphony.

Configuration to enable service replay debugging
Service replay debugging is enabled by setting the debugSetting attribute in the Service section of the
application profile.

Debugging a Service

178 Application Development Guide

When you set
debugSetting to ...

The behavior is ... Use this ...

none Disables service replay debugging. No
environment script or service event replay log
is created.

This is the default setting.

When you do not want to enable service
replay debugging.

customized Enables service replay debugging upon
detection of specific, customizable error-
handling events. Upon detection of a
customized event, the environment in which the
service is running is captured in one or more
environment scripts, depending on the
platform, and a service event replay log is
created. You can configure the specific error-
handling events that you would like Symphony
to detect by specifying the
customizedDebugAction for each of these
events.

When you are developing and testing your
service, to allow Symphony to detect
common service problems, or when you are
moving a clean service into production, and
want to detect any unexpected problems
that did not occur during testing.

full Enables service replay debugging. For every
service instance, the environment in which the
service is running is captured in one or more
environment scripts, depending on the
platform, and a service event replay log is
created capturing all service events.

When you cannot capture your problems
using the customized debug setting, or
when problems are cumulative.

Events captured when debugSetting is customized
For each method, the service events that are captured are listed below:

Method Captured Service Events Notes

Register • Register “Register” means “All code that executes before calling the
ServiceContainer’s run method”.

CreateService • Register
• CreateService

SessionEnter • Register
• CreateService
• SessionEnter

SessionUpdate • Register
• CreateService
• SessionEnter
• SessionUpdate

It is better to record all SessionUpdate events that had occurred
between SessionEnter and SessionLeave. If invokes are
interleaved between SessionUpdates, those Invoke events that
occurred are discarded.

Debugging a Service

Application Development Guide 179

Method Captured Service Events Notes

Invoke • Register
• CreateService
• SessionEnter
• SessionUpdate
• Invoke

If there were tasks that preceded the current task, they are not
replayed. This assumes that the execution of those tasks did not
contribute to the failure of the current task (i.e. the tasks do not
alter the state of the service). Therefore, the omission of the other
service events should not change the behavior of the Invoke when
replayed.

All SessionUpdate events that had occurred for this session are
retained.

SessionLeave • Register
• CreateService
• SessionEnter
• SessionUpdate
• SessionLeave

If there were tasks that preceded the SessionLeave, they are not
replayed. This assumes that the execution of tasks do not
contribute to the failure of the SessionLeave method (i.e. the tasks
do not alter the state of the service). This also assumes that the
SessionEnter is used correctly (user’s intention for that function is
correct, but the functionality may not be correct) to perform any
session-specific initialization and that SessionLeave is used
correctly to do the corresponding session-specific uninitialization.
Therefore, the omission of the other service events should not
change the behavior of the SessionLeave when replayed.

All SessionUpdate events that had occurred for this session are
retained.

DestroyService • Register
• CreateService
• DestroyService

If there were sessions bound to this SI, tasks executed on this SI,
and sessions unbound from this SI before the DestroyService,
these service events are not replayed. This assumes that the
CreateService is used correctly to perform any initialization
common to the whole service and that the DestroyService is used
correctly to do the corresponding service-specific uninitialization.
Therefore, the omission of the other service events should not
change the behavior of the DestroyService when replayed.

ServiceInterrupt An interrupt event follows a “normal” service event (those listed
above this one in this table). InterruptEvents are preserved only if
the service event that precedes it is preserved for replay.

Under service replay debugging, you have to control the
interrupting thread and the thread that is performing the “normal”
service event yourself to re-create whatever the scenarios you are
experiencing.

Symphony preserves service events but cannot preserve the
timing.

Configuration to modify service replay debugging behavior
Service replay debugging behavior can be modified as follows:

• Customize the error-handling events you want to detect and capture when debugSetting is set to
customized.

• Set the environment script execution mode to control the environment the service will replay in

Customize error-handling events for detection and capture
In the application profile, you can configure service replay debugging upon detection of the following
error-handling events in a specific method:

Debugging a Service

180 Application Development Guide

• Timeout—A method executes for longer than its configured duration
• Exit—The service process exits while executing a method
• Exception—The service throws an exception while executing a method
• Return—The service returns from a method normally, possibly with a return code

You configure service replay debugging for an error-handling event by setting the
customizedDebugAction attribute for the event.

Table 1: Effect of Setting customizedDebugAction

Event in Application Profile customizedDebugAction
Value

Behavior

Service > Control > Method >
Timeout

writeServiceEventReplayFiles Default. When Symphony detects that the specified
method has timed out, it generates service event
replay files to capture the relevant service events
that led up to the timeout. This is the recommended
setting if method timeout is an unexpected problem
for your service.

none When Symphony detects that the specified method
has timed out, it does not generate service event
replay files. This is the recommended setting if your
service hangs as a normal occurrence.

Service > Control > Method >
Exit

writeServiceEventReplayFiles Default. When Symphony detects that the service
process has exited (or crashed) while executing the
specified method, it generates service event replay
files to capture the relevant service events that led
up to the exit. This is the recommended setting if the
service process exiting or crashing in the specified
method is an unexpected problem for your service.

none When Symphony detects that the service process
has exited (or crashed) during execution of the
specified method, it does not generate service event
replay files. This is the recommended setting if your
service exits as a normal occurrence.

Service > Control > Method >
Exception

writeServiceEventReplayFiles Default. When Symphony detects that the specified
method has thrown a particular exception (Fatal or
Failure), as specified, it generates service event
replay files to capture the relevant service events
that lead up to the exception.

none When Symphony detects that the specified method
has thrown a particular exception (Fatal or Failure),
as specified, it does not generate service event
replay files.

Debugging a Service

Application Development Guide 181

Event in Application Profile customizedDebugAction
Value

Behavior

Service > Control > Method >
Return

writeServiceEventReplayFiles When Symphony detects that the specified method
has returned normally with or without a specific
control code, it generates service event replay files.

none Default. When Symphony detects that the specified
method has returned normally with or without a
specific control code, it does not generate service
event replay files. This is the recommended setting,
as this is typically a normal, successful occurrence.

Environment script execution mode
The environment under which the service replays is captured in the environment scripts. Depending on
the command-line arguments used when running the script, the environment is different.

If the run the script
with ...

The behavior is ... Use this mode when ...

No command-line
arguments

The script appends the value of the current
shell’s environment to the service’s
environment for the following environment
variables:

• PATH
• LD_LIBRARY_PATH (UNIX only)
• LD_PRELOAD (UNIX only)

Any other environment variables set in the
service overwrite the values set in the shell.

You want to retain your development
environment while debugging your service.

-pure-env (Windows)

--pure-env (UNIX)

All environment variables set in the service
overwrite the values set in the shell.

You cannot reproduce the problem using
the default service environment, typically
when you are trying to replicate the exact
environment for the service to debug a
possible environment problem.

Debugging a Service

182 Application Development Guide

Debug using customized service replay debugging
The following diagram provides an overview of the process you follow to debug a service.

Debugging a Service

Application Development Guide 183

Use customized service replay debugging
Enable customized service replay debugging.

1. In the console, click Symphony Workload > Configure Applications.

The Applications page displays.
2. Click on your application in the table.

The application profile editor displays.
3. Select Advanced Configuration. (The option may be currently set to Basic Configuration.)
4. Click Error Handling to expand the Error Handling section.
5. Select Customize event-driven - Write upon detection of events specified in table

This causes the generation of a service event replay log file when any of the error-handling events in
the table occur, provided the event is configured with Write as the customized debug action.

The default configuration for customized debug actions generates a service event replay log file upon
detection of any of the following error-handling events during the execution of a service handler
method (for example CreateService, SessionEnter, Invoke, and so on):

• The service throws FailureException or FatalException
• The service exits or crashes
• The method times out

6. Click Save to apply your changes.

Determine the problem
1. In the console, navigate to Symphony Workload > Monitor Workload. There are three types of errors

to look for to quickly narrow down which compute host experienced service problems:

• Service instance startup failures

1. Look for your application in the application list.
2. Look for service instance hostname and process ID pairs in the SI Startup Failures column for

your application. If there are any service instance hostname and process pairs, the service
application experienced problems in either the Register or CreateService method on each of
the service instances listed in the column.

If none of your service instances can start successfully, no service instance is available to run
any of your tasks. If your client is hung waiting for task results, this may be the reason.

• Binding failures

1. Click on your application name to drill into more details about your workload.
2. Look for service instance hostname and process ID pairs in the Binding Failures column for

your session. If there are any service instance hostname and process ID pairs, the service
application experienced problems in the SessionEnter method.

• Task failures

1. Navigate to the Sessions page. You can see whether any tasks ended in the ERROR state. It is
possible your service experienced an error, but was unable to rerun and finish successfully.

2. Click on a session to drill into more details about that session. Look for comments in the Failure
Reason column of your Tasks table.

Debugging a Service

184 Application Development Guide

3. Find out the host and process ID for the service instance on which the task ran. By default, the
hostname is displayed in the Tasks table. You can configure the process ID to be displayed by
modifying the Instance ID in Preferences at the bottom of the Tasks table.

Make note of one hostname and process ID to troubleshoot a particular service instance to see what
happened in the next steps.

2. Narrow down the detailed reason why service startup failed.

In Symphony DE, look at the service instance manager logs for the application on the host for more
information. For example:

%SOAM_HOME%\logs\sim.hostname.appName.log_file_number.log

In Symphony, if you trap SNMP events, you receive event notifications for the service errors that
occur.

You can also use log retrieval to retrieve the service instance manager logs on the host where your
service failed to start, as follows:
a) Navigate to the Resources > Hosts (List View) tab in the console.
b) Click on the host where service startup failures occurred.

A dialog displays.
c) Click on the Host Logs tab in the dialog.
d) Check sim.log.
e) Optional. Check User specified log or file if your service generates its own log files and you want

to retrieve them.

A text box appears.

In the text box, type the file pattern to retrieve service logs for your application.
f) Click on Retrieve Log List.

From the log information, you can determine the following:

• Which method caused the error (i.e. CreateService, Invoke, and so on)
• Roughly what caused the error (process exit, FatalException, FailureException, unexpected

exception, method timeout)
• Where the service event replay log file is located

The service instance manager reports something similar to the following example:
2007-11-14 12:30:43.843 Eastern Standard Time ERROR [3100:5188] sim.backend.ServiceBroker - Code
[S20070]: e:\symphonyde\de40\4.0\src\soamservicecontainer.cpp : 137 IException Domain
<Application>: Unexpected service exception in method onCreateService(). If the additional details
attached do not provide enough information, change your code to use SoamException. Additional
Details: Unexpected Exception Caught in onCreateService()..
2007-11-14 12:30:43.843 Eastern Standard Time ERROR [3100:5188] soam.common.EventAgent - Code
[S75052]: Application <ServiceReplayDebuggerCPP>, service <DebugService>: Failure exception
thrown on method <createService>, control code <0>. Action on service instance: action <blockHost>
taken on service instance process <5672>, host <achin2>, service <DebugService>.
2007-11-14 12:30:43.890 Eastern Standard Time WARN [3100:5188] soam.common.EventAgent - Code
[S75064]: Application <FailureException with control code 0>: SIM detected <FailureException with
control code 0> for method <createService>. Debug action is <writeServiceEventReplayFiles>. Serl
file is <E:\SymphonyDE\DE40\work\serl\ServiceReplayDebuggerCPP\DebugService
\ServiceReplayDebuggerCPP.DebugService.achin2.5672.2007-11-14.12h.30m.43s.859ms.serl>.

Debug your problem using service replay debugging
1. Open a command prompt or shell.

Debugging a Service

Application Development Guide 185

Tip:
On Windows, one way to open a command prompt is to select Start >
Run. . . Type cmd and click OK.

2. Run the service replay debugging environment script in the command prompt to set the runtime
environment for the service in the command prompt, as follows:

• Windows: script_name.bat
• UNIX csh: source script_name.cshrc
• UNIX bash: . script_name.profile

The environment scripts are located with the SERL files. For example, on Windows, in %
SOAM_HOME%\work\serl\appName\serviceName.

Tip:
An easy way to set the environment is to copy the base file name from
the service instance manager log that you were viewing in "Determining
the problem". Change .serl in the file name
to .env.bat, .env.profile, or .env.cshrc as required.

On Windows, another easy way is to first navigate to the %
SOAM_HOME%\work\serl\appName\serviceName directory using
Windows Explorer, then drag the icon of the environment script into the
command prompt, and press Enter.

3. Launch the debugger or IDE from the same command prompt or shell. The following examples
demonstrate how:

GDB:
/usr/bin/gdb

Visual Studio:
devenv C:\mydirectory\mysolution_vc71.sln

or, if your Visual Studio environment is not set in the command prompt:
"C:\Program Files\Microsoft Visual Studio.NET 2003\Common7\IDE\devenv.com"
\mydirectory\mysolution_vc71.sln

Eclipse:
C:\eclipse\eclipse.exe
/usr/bin/eclipse/eclipse

4. Set breakpoints as appropriate.

For example, if you already know that the problem is in CreateService, put a breakpoint at the
beginning of the CreateService method. Otherwise, if you do not know where the problem is, put
breakpoints at the beginning of each method.

5. Run your service application from the debugger or IDE and step through the code to find the problem.

Tip:
On Windows, remember to set the Service project as the Startup
Project or Active Project before running your service application.

Note:
If there are multiple problems in a particular method, you should be able
to catch them using one iteration of service replay debugging. If,
however, there are problems in other methods that were not yet invoked

Debugging a Service

186 Application Development Guide

when the service was run, no replay data exists for these methods.
Actions cannot be replayed until they are played once through
Symphony or Symphony DE.

Analyze the problem
1. Follow the process in the following diagram to help you analyze the problem.

Note:
To configure a customizedDebugAction, do the following:

1. Navigate to Symphony Workload > Configure Applications, and
select your application from the list. The application profile editor
displays.

Debugging a Service

Application Development Guide 187

2. Select Advanced Configuration from the drop-down menu at the
top.

3. Under Service Definition, click on Error Handling to expand the
section.

4. Select the method you want to modify, then select the customized
debug action for the error-handling event you want to configure, and
click Save.

The following diagram expands on the "Analyze and refine your exception"process in the diagram
above.

Debugging a Service

188 Application Development Guide

For information on the applyCustomized DebugAction, see the API Reference.

Debugging a Service

Application Development Guide 189

Fix and redeploy the service
1. Make any necessary changes to your service code.
2. Rebuild the service.
3. Repackage the service.
4. Redeploy the service package.

a) Navigate to Symphony Workload > Manage Service Packages in the console.
b) Select Global Actions > Add package to repository.

A dialog displays.
c) Browse and select the updated service package.
d) From the Select Application list, select your application (for this example,

ServiceReplayDebuggerCPP).
e) Click Add.

Clean up the logs
You clean up the service replay debugging environment scripts and SERL files at your discretion. You
can remove individual files or the serl directory.

In production, depending on the frequency of error events, the number of SERL files may become
unmanageable, requiring periodic cleanup.

1. Do one of the following:

• For a small cluster, navigate to %SOAM_HOME%\work\serl\appName\serviceName directory,
where the log files to clean up reside, and remove the desired files.

Windows:

%SOAM_HOME%\work\serl\<appName>\<serviceName>

UNIX:

$SOAM_HOME/work/serl/<appName>/<serviceName>
• For a large Symphony cluster, you can use the rfa command to remove the distributed SERL

directory for your application on a host-by-host basis. We recommend that you create a script to
do this removal to save yourself manual work every time you want to remove the SERL files.

For example, your script would contain the same command for each compute host in your cluster.

Windows:

rfa remove -t hostA -s %SOAM_HOME%\work\serl\MyApp -p /MyConsumer -d
rfa remove -t hostB -s %SOAM_HOME%\work\serl\MyApp -p /MyConsumer -d
rfa remove -t hostC -s %SOAM_HOME%\work\serl\MyApp -p /MyConsumer -d

Linux:

rfa remove -t hostA -s $SOAM_HOME/work/serl/MyApp -p /MyConsumer -d
rfa remove -t hostB -s $SOAM_HOME/work/serl/MyApp -p /MyConsumer -d
rfa remove -t hostC -s $SOAM_HOME/work/serl/MyApp -p /MyConsumer -d

The options mean the following:

-t

The host on which to remove the file.

Debugging a Service

190 Application Development Guide

-s

The name of the file to remove.
-p

The consumer under which to execute the file removal. For the multi-user install,
there is an OS execution user associated with each consumer.

-d

Flag that indicates that the specified file is a directory.

Run the client application
1. Run the client application to test the service.

Debugging a Service

Application Development Guide 191

Debug using full service replay debugging
Full service replay debugging generates service event replay logs for every service instance in your cluster,
capturing all service events.

Use full service replay debugging
Enable full service replay debugging

1. In the console, click Symphony Workload > Configure Applications.

The Application page displays.

Debugging a Service

192 Application Development Guide

2. Click on your application in the table.

The application profile editor displays.
3. From the drop-down menu at the top of the editor, select Advanced Configuration. (It may be

currently set to Basic Configuration.)
4. Click Error Handling to expand the Error Handling section.
5. From the drop-down menu, select Enable - Always write to debug file.

This causes a service event replay log file to be generated for every service instance in this application
with this service type.

6. Click Save to apply your changes.

Debug your problem using service replay debugging
1. Open a command prompt or shell.

Tip:
On Windows, one way to open a command prompt is to select Start >
Run. . . Type cmd and click OK.

2. Set the run-time environment for the service in the command prompt by running the service replay
debugging environment script in the command prompt. The environment script is named as follows:

• Windows:
appName.serviceName.hostname.pid.timestamp.env.bat

• UNIX bash:
appName.serviceName.hostname.pid.timestamp.env.profile

• UNIX csh:
appName.serviceName.hostname.pid.timestamp.env.cshrc

3. Launch the debugger or IDE from the same command prompt or shell. The following examples
demonstrate how:

GDB:
/usr/bin/gdb

Visual Studio:
devenv.com mysolution_vc71.sln

or, if your Visual Studio environment is not set in the command prompt:
"C:\Program Files\Microsoft Visual Studio.NET 2003\Common7\IDE\devenv.com"
mysolution_vc71.sln

Eclipse:
C:\eclipse\eclipse.exe
/usr/bin/eclipse/eclipse

4. Set breakpoints as appropriate.

For example, if you already know that the problem is in CreateService, put a breakpoint at the
beginning of the CreateService method.Otherwise, if you do not know where the problem is, put
breakpoints at the beginning of each method.

5. Run your service application from the debugger or IDE and step through the code to find the problem.

Tip:

Debugging a Service

Application Development Guide 193

On Windows, remember to set the Service project as the Startup
Project or Active Project before running your service application.

Note:
If there are multiple problems in a particular method, you should be able
to catch them using one iteration of service replay debugging. If,
however, there are problems in other methods that were not yet invoked
when the service was run, no replay data exists for these methods.
Actions cannot be replayed until they are played once through
Symphony or Symphony DE.

Fix and redeploy the service
1. Make any necessary changes to your service code.
2. Rebuild the service.
3. Repackage the service.
4. Redeploy the service package.

a) Navigate to Symphony Workload > Manage Service Packages in the console.
b) Select Global Actions > Add package to repository.

A dialog displays.
c) Browse and select the updated service package.
d) From the Select Application list, select your application (for this example,

ServiceReplayDebuggerCPP).
e) Click Add.

Clean up the logs
You clean up the service replay debugging environment scripts and SERL files at your discretion. You
can remove individual files or the serl directory.

In production, depending on the frequency of error events, the number of SERL files may become
unmanageable, requiring periodic cleanup.

1. Do one of the following:

• For a small cluster, navigate to %SOAM_HOME%\work\serl\appName\serviceName directory,
where the log files to clean up reside, and remove the desired files.

Windows:

%SOAM_HOME%\work\serl\<appName>\<serviceName>

UNIX:

$SOAM_HOME/work/serl/<appName>/<serviceName>
• For a large Symphony cluster, you can use the rfa command to remove the distributed SERL

directory for your application on a host-by-host basis. We recommend that you create a script to
do this removal to save yourself manual work every time you want to remove the SERL files.

For example, your script would contain the same command for each compute host in your cluster.

Windows:

rfa remove -t hostA -s %SOAM_HOME%\work\serl\MyApp -p /MyConsumer -d
rfa remove -t hostB -s %SOAM_HOME%\work\serl\MyApp -p /MyConsumer -d
rfa remove -t hostC -s %SOAM_HOME%\work\serl\MyApp -p /MyConsumer -d

Debugging a Service

194 Application Development Guide

Linux:

rfa remove -t hostA -s $SOAM_HOME/work/serl/MyApp -p /MyConsumer -d
rfa remove -t hostB -s $SOAM_HOME/work/serl/MyApp -p /MyConsumer -d
rfa remove -t hostC -s $SOAM_HOME/work/serl/MyApp -p /MyConsumer -d

The options mean the following:

-t

The host on which to remove the file.
-s

The name of the file to remove.
-p

The consumer under which to execute the file removal. For the multi-user install,
there is an OS execution user associated with each consumer.

-d

Flag that indicates that the specified file is a directory.

Run the client application
1. Run the client application to test the service.

Debugging a Service

Application Development Guide 195

Live service debugging
Live service debugging refers to debugging a service while it is running in its test or production
environment in Symphony or in Symphony DE.

Use live service debugging if you have strict control over the environment:

• You can limit the number of service instances (slots) available to your application,
• You can control whether the application can be prestarted, and
• You can control when the workload is submitted.

Debug a service onSessionEnter(), onSessionUpdate(), onInvoke
(), and onSessionLeave()

1. Modify your existing application so that it creates and uses only a single session and sends only a single
input to your service. If you want to debug the OnSessionUpdate() method, your client must submit
an update to the service.

The intent here is to remove all unnecessary interactions with the middleware so that you can isolate
the problem and debug a single service instance without interference.

Note:
The system only calls onSessionEnter() and onSessionLeave()
if common data is provided by the client. The system only calls
OnSessionUpdate() if the client sends an update.

The system invokes the onSessionLeave(…) method to unbind the current binding session when
there is no more work for that session. Sending only one task ensures that the onSessionLeave
(…) method is invoked shortly after the task completes.

2. Edit your application profile and change parameters as follows:
a) Set the preStartApplication attribute to true.
b) Set the numOfSlotsForPreloadedServices attribute to 1.

<Consumer applicationName="MyApplication" consumerId="/consumer" taskHighWaterMark="1.0"
taskLowWaterMark="0.0" preStartApplication="true" numOfSlotsForPreloadedServices="1" />

3. Use the soamreg command or the Console to update your application with your new application
profile.

Your update causes the session director to immediately start a session manager to service your
application (preStartApplication="true").

Your application's session manager requests a single slot and preloads a service instance even before
you send it any workload (numOfSlotsForPreloadedServices="1"). The running service instance is not
yet bound to a particular session.

4. Your service instance is a running instance of the executable that was produced by compiling your
custom implementation of ServiceContainer. Attach a debugger to your service instance.

5. Now that you have attached to your service instance, set appropriate breakpoints in the
onSessionEnter(…), onSessionUpdate(…), onInvoke(…), and onSessionLeave(…)
methods.

6. Run your client application.

Provided that you modeled your client using the instructions in step 1, the middleware invokes the
following methods on the service instance:

Debugging a Service

196 Application Development Guide

• onSessionEnter(…) once after the service is bound to your session, if there is common data
• onSessionUpdate(…) once per update after you have submitted the update from the client
• onInvoke(…) once (once per input sent to the service)
• onSessionLeave(…)once just before the service is unbound from your session

Debug a service onCreateService()
If you simply put a breakpoint at the beginning of the CreateService method and then try to quickly attach
a debugger to your service instance process, you will likely miss the opportunity to debug the code you
were hoping to debug— the service instance manager initiates the invocation of the CreateService method
almost immediately after it starts the service instance process, and the CreateService method may already
execute before you attach your debugger to the service instance process.

To prevent the CreateService logic from executing before you are ready to debug it, add an infinite while
loop to the beginning of the CreateService method. Make sure the infinite condition is not hard coded—
you must be able to change the value of the variable to exit the while loop, so the execution flow can reach
the true CreateService logic.

1. Modify your service to add the following loop to the beginning of your onCreateService(…)
method:

// This is pseudo-code
boolean stall = true;
while (stall == true)
{
// Stall so machine is not bogged down by high CPU usage
 Sleep(1);
}
// Your original onCreateService(…) code

2. Compile and deploy your modified service.
3. Edit your application profile and change parameters as follows:

a) Set the preStartApplication attribute to true.
b) Set the numOfSlotsForPreloadedServices attribute to 1.

<Consumer applicationName="MyApplication" consumerId="/consumer" taskHighWaterMark="1.0"
taskLowWaterMark="0.0" preStartApplication="true" numOfSlotsForPreloadedServices="1" />

4. Use the soamreg command or the Console to update your application with your new application
profile.

Your update causes the session director to immediately start a session manager to service your
application (preStartApplication="true").

Your application's session manager preloads a service instance even before you send it any workload
(numOfSlotsForPreloadedServices="1"). However, because of the loop introduced in step 1, your
onCreateService(…) method does not complete.

5. Your service instance is a running instance of the executable that was produced when you compiled
your custom implementation of ServiceContainer. Attach a debugger to your service instance.

6. Set your breakpoints:
a) Add breakpoints that correspond to line 3 and line 8 in the pseudo-code above. When the debugger

breaks at line 3, set the stall variable to false. This allows you to exit the infinite loop and step into
your own code.

b) Continue. Your debugger breaks at line 8 to debug your original onCreateService(…) code.

Debugging a Service

Application Development Guide 197

Debug a service onDestroyService()
If you simply put a breakpoint at the beginning of the DestroyService method and then try to quickly
attach a debugger to your service instance process, you may miss the opportunity to debug the code you
were hoping to debug. The DestroyService method may have already executed by the time you can attach
your debugger to the service instance process. This is particularly likely if your workload completes very
quickly, or if the service instance you want to debug starts up and shuts down very quickly if there is no
workload to run.

To prevent the DestroyService logic from executing before you are ready to debug it, add an infinite while
loop to the beginning of the DestroyService method. Make sure the infinite condition is not hard coded.
You must be able to change the value of the variable to exit the while loop, so the execution flow can reach
the true DestroyService logic.

1. Modify your service to add the following loop to the beginning of your onDestroyService(…)
method:

// This is pseudo-code
boolean stall = true;
while (stall == true)
{
// Stall so machine is not bogged down by high CPU usage
Sleep(1);
}
// Your original onDestroyService(…) code

2. Compile and deploy your modified service.
3. Edit your application profile and change parameters as follows:

a) Set the preStartApplication attribute to false.
b) Set the taskLowWaterMark attribute to 1.0.

<Consumer applicationName="MyApplication" consumerId="/consumer" taskHighWaterMark="1.0"
taskLowWaterMark="1.0" preStartApplication="false" numOfSlotsForPreloadedServices="1"/>

4. Use the soamreg command or the Console to update your application with your new application
profile.

Your update does not cause a session manager to be started because preStartApplication is set to
false.

5. Run the client application.

This causes a session manager and at least one service instance to be started.
6. Attach a debugger to the service instance:

a) Your service instance is a running instance of the executable that was produced by compiling your
custom implementation of ServiceContainer. Attach a debugger to your service instance.

b) Add breakpoints that correspond to line 3 and line 8 in the pseudo-code above. When the debugger
breaks at line 2, set the stall variable to false. This allows you to exit the infinite loop and step into
your own code.

c) Run your client application.
d) Continue. Your debugger breaks at line 8 to debug your original onDestroyService(…) code.

Debugging a Service

198 Application Development Guide

Retrieve application logs from the console
This is not applicable to Symphony DE.

Goal
You want to configure the system to be able to retrieve application logs that are written on all compute
hosts on the grid from one central location, through the Console.

Note:
This feature is only available in Symphony, not Symphony DE.

Log location and naming
To retrieve logs through the Platform Management Console, you need to configure the location on which
logs are stored on compute hosts.

For our example, this is what we want to configure:

• Services write logs in the following directory structure on compute hosts:
ConsumerName/ApplicationName/SessionID

• Log files are named according to task ID, for example, sampleService_task1.log,
sampleService_task2.log.

• The consumer name is /SampleApplications/SOASamples.
• The application name is sampleApp

Configure log location and naming using the command line
1. Open your application profile with an XML editor.

Note:
You can also use the Platform Management Console to change your
application profile to configure parameters to log retrieval.

2. In the service section, define the logDirectory, subDirectory, and fileNamePattern
parameters for each operating system type.

<Consumer applicationName="myApp"
...
<Service description="My own service" name="myService" deploymentTimeout="300"
packageName="myService">
 <osTypes>
 <osType name="NTX86" startCmd="${SOAM_DEPLOY_DIR}\myService.exe" logDirectory="$
{SOAM_HOME}\SampleApplications\SOASamples\myApp" subDirectory="%sessionId%" fileNamePattern="_
%taskId%">
 </osType>
 <osType name="LINUX86" startCmd="${SOAM_DEPLOY_DIR}/myService" logDirectory="$
{SOAM_HOME}/SampleApplications/SOASamples/myApp" subDirectory="%sessionId%" fileNamePattern="_
%taskId%">
 </osType>
 </osTypes>
</Service>

• logDirectory—Directory in which service log files for the application are to be logged. For our
example, specify SampleApplications/SOASamples/myApp as the log directory.

Important:

Debugging a Service

Application Development Guide 199

The path can be any desired path but, the path must be the same on
all compute hosts.

• subDirectory—Specify any subdirectory structure within the logging directory. For our example,
the subdirectory is according to session ID. Since session IDs change depending on session, use
the variable %sessionId%. Other supported variables in this parameter are %taskId%.

• fileNamePattern—Specify how your files are named. The system matches part of the file name.
In our example, the file name is sampleservice_taskID.log, so specify: %taskId% and the
system will match the file names. Other supported variables in this parameter are %sessionId%.

3. Save your application profile.
4. Re-register your application profile to update your application profile in the system using the

soamreg command or the console.
5. Run your client application so that the service can create logs in the log directories.

Configure log location and naming using the console
1. Navigate to Symphony Workload > Configure Applications.

A list of applications displays.
2. Select your application from the list.

The application profile editor dialog displays.
3. Select Advanced Configuration from the drop-down menu at the top of the dialog.
4. Click on Logging under the Service section to expand the Logging section.
5. Specify the Log directory.

For our example, specify SampleApplications/SOASamples/myApp as the log directory.
6. Specify the subdirectory naming convention (if used).

For our example, the subdirectory is according to session ID. Since session IDs change depending on
session, use the variable %sessionId%. Other supported variables are %taskId%.

7. Specify the log file naming convention (if used).

In our example, the file name is sampleservice_taskID.log, so specify: %taskId% and the system
will match the file names. Other supported variables are %sessionId%.

8. Click Save to save your changes.

Ensure your service code writes to the configured location
1. Check your service code and ensure that services for your application write to the configured location

and following the file name naming convention.

Retrieve application logs with the Platform Management Console
Download logs for an application

You can retrieve logs for an application that are created by the session manager of the application.

1. Find the application you want to retrieve logs for.

Click Symphony Workload > Monitor Workload > Applications. Expand the consumer tree on the
left and click the leaf consumer that runs the application.

The application list displays with the Actions drop-down list on the right side.

Debugging a Service

200 Application Development Guide

2. Click Actions > Retrieve application system logs for the application you want.

The log properties and log retrieval parameters display.
3. Select the logs you want from this host.Click Retrieve Log List.

A list of logs displays.
4. Specify the volume of data:

• Complete log
• Number of lines

5. If you selected number of lines, enter the number of lines you want retrieved.

The number of lines is counted from the latest event back through the log to the limit you specify.
6. Click the log file name.
7. Save the log file locally and open with any text editor.

Download logs for a task
You can retrieve the logs for a task that are created by your service application.

1. Click Symphony Workload > Monitor Workload.

A list of applications displays.
2. Click the name of the application.

A list of open sessions displays.
3. Click the session.

A list of tasks displays.
4. Locate the task in the list.
5. For that task, select Actions > Retrieve Task Log.
6. Specify whether you want the log to be compressed or not.
7. Click the log file name.
8. Save the log file locally, uncompress if necessary, and open with any text editor.

Download logs for a service
Binding failures

You can retrieve the logs for a service in the event of a session binding failure in the service. The SSM lists
up to five of the last binding failures.

1. Click Symphony Workload > Monitor Workload.

A list of applications displays.
2. Click the name of the application.

A list of sessions displays.
3. Consult the Binding Failures column for your session.
4. Click the SI host name that has logged the session binding failure.

Host Logs page displays.
5. Select User specified log or file. Enter the pre-configured log file path.

Debugging a Service

Application Development Guide 201

6. Click Retrieve Log List.

A list of log files displays.
7. Click the filename with the matching host name and pid of the service instance.
8. Save the log file locally, uncompress if necessary, and open with any text editor.

SI start-up failures
You can retrieve the logs for a service in the event of a service instance start-up failure. The SSM lists up
to five of the last service start-up failures.

Note:
If a task fails (where a control code for task failure is set) or a session
aborts, the SSM will list the host name and pid of the service instance.

1. Click Symphony Workload > Monitor Workload.

A list of applications displays.
2. Consult the SI Startup Failures column for your application.
3. Click the SI host name that has logged the SI start-up failure.

Host Logs page displays.
4. Select User specified log or file. Enter the pre-configured log file path.
5. Click Retrieve Log List.

A list of log files displays.
6. Click the filename with the matching host name and pid of the service instance.
7. Save the log file locally, uncompress if necessary, and open with any text editor.

Debugging a Service

202 Application Development Guide

11
Troubleshooting

C H A P T E R

Application Development Guide 203

Troubleshooting overview
When problems occur in the system, you see them in the following ways:

• Error messages
• Events
• API exceptions

If the text in the error message does not provide enough information, check the Error Message
Reference. This reference is installed with Symphony DE, and with Platform Symphony, and can be
accessed from the knowledge centers.

Here is a flow chart illustrating how you can diagnose a problem:

Troubleshooting

204 Application Development Guide

Symphony events
Platform Symphony events can be monitored for and used to trigger actions automatically.

In Symphony DE, events are logged in the Symphony log files in the logs directory. There is no event
framework.

In Symphony grid, you need to enable the event framework to be notified about events. In Symphony
grid, EGO includes an SNMP plug-in that is integrated with SNMP, and uses SNMP traps as the
notification mechanism. Only cluster administrators can enable the event framework. For more details,
refer to the Cluster and Application Management Guide.

Platform Symphony events are categorized as follows:

• EGO system events, which identify host- and service-related occurrences within the cluster. Not
available in Symphony DE.

• SOAM system events, which identify session-manager related occurrences within the cluster.
• Application events, which identify occurrences that affect workload.
• Platform Management Console events, which identify occurrences that affect the web server or the

Platform Management Console itself.

SOAM system events
Event Name Default level Triggered when …

SYS_BM_BOUNDARY_BREACHED Warning The session manager memory usage exceeds
threshold (%).

SYS_DS_READFAIL_SESSION

SYS_DS_READFAIL_TASKINPUT

SYS_DS_READFAIL_TASKOUTPUT

Error The session manager failed to read from data
storage.

SYS_DS_WRITEFAIL_SESSION

SYS_DS_WRITEFAIL_TASKINPUT

SYS_DS_WRITEFAIL_TASKOUTPUT

SYS_DS_WRITEFAIL_SESSION_OBJEC
T

SYS_DS_WRITEFAIL_TASK_OBJECT

Warning The session manager failed to write to data storage.

SYS_FAILOVER_RETRIED Info Trying to restart the session manager or service
instance manager.

SYS_SSM_DOWN Info The session manager goes down abnormally.

SYS_SSM_UP Info The session manager comes up.

Application events
Event Name Default level Triggered when …

SOA_SERVICE_BLOCKED Error A service instance is blocked from a host.

SOA_SERVICE_CUSTOM_ACTION Error A service instance returns a particular code.

Troubleshooting

Application Development Guide 205

Event Name Default level Triggered when …

SOA_SERVICE_DEPLOYMENT_FAILED Error A service failed to deploy.

SOA_SERVICE_EXITED Error A service instance exited.

SOA_SERVICE_FAILURE Error A service instance threw a failure exception.

SOA_SERVICE_FATAL_ERROR Error A service instance threw a fatal exception.

SOA_SERVICE_INIT_FAILED Error A service instance creation failed.

SOA_SERVICE_RUNAWAY Error A service instance takes longer than expected to
complete.

SOA_SESSION_ABORTED Error A session is aborted.

SOA_SESSION_LOST Error A lost connection from the session is detected.

SOA_SESSION_PRI_CHANGED Info The priority of a session is changed and the session
is resumed.

SOA_SESSION_RESUMED Info A session is resumed.

SOA_SESSION_SUSPENDED Warning A session is suspended.

SOA_TASK_EXIT Error A task exited, such as when a service instance
crashes.

SOA_TASK_FAILURE Error A service instance threw a failure exception during
the invoke call.

SOA_TASK_FATAL_ERROR Error A service instance threw a fatal exception during the
invoke call.

SOA_TASK_RUNAWAY Error A task runs longer than expected and a timeout is
invoked.

Platform Management Console events
Event name Default level Triggered when …

SYS_GUI_CPU_HI_WATER_MARK

• Component name: GUI

• Returned integer: 3

Warning The web server host utilization exceeds the
threshold set for CPU_HIGH_MARK in wsm.conf

SYS_GUI_MEMORY_HI_WATER_MARK

• Component name: GUI

• Returned integer: 2

Warning The web server memory usage exceeds the
threshold set for MEM_HIGH_MARK in wsm.conf

Troubleshooting

206 Application Development Guide

API exceptions
If your application code catches an exception, you can inspect the exception message to gain insight into
the problem and decide possible actions to take.

If an exception is returned for a failed task result and if it contains an embedded exception, i.e., an exception
from the service, you can inspect the error code and error message for the embedded exception to see
what went wrong in the service; refer to Error codes and embedded service exceptions on page 99 for an
example of how to retrieve an embedded exception. If there is no embedded exception, you can inspect
the error message to determine the system reason for the failure. This information can be used to
determine what the problem is and what actions to take.

Troubleshooting

Application Development Guide 207

About log files and levels
Use the Symphony log files to troubleshoot workload related components such as session director, session
manager, and service instance manager.

Log files
The Symphony log files provide information on the general well-being of workload-related daemons and
services.

Default log file locations
Symphony component log files

• Windows—%SOAM_HOME%\logs
• Linux/UNIX—$SOAM_HOME/logs

Symphony API log files
The Symphony API log file is written to the directory where the client executable resides.

Log file names
Log files are named according to the component they are logging and the host name where the component
runs. For example, a log file for the session director running on hostA is named sd.hostA.log.

The following table lists possible log files and on which hosts they can be found.

Log file Description Host on which you can find the log
file

sd.host_name.log Messages, events, and errors for
session director.

The host on which session director
is running.

ssm.host_name.application_name.log Messages, events, and errors
related to workload scheduling for
the specified application.

The host on which session
manager is running.

sim.host_name.application_name.log Messages, events, and errors
related to tasks that ran for the
specified application.

Each compute host running tasks
for the application.

api.host_name.log Messages, events, and errors for the
client application that submits work
to the system.

The host on which the client
application runs.

agent.host_name.log Only in Symphony DE. Messages,
events, and errors related to startup
and shut down of Symphony DE
processes.

Only in Symphony DE. Found on
every host on which Symphony DE
runs.

Troubleshooting

208 Application Development Guide

Log file Description Host on which you can find the log
file

cli.log Messages, events, and errors
related to the command line.

When enabled, found on the host
from which the command was
issued, in the directory from which
the command was issued. By
default, no cli.log files exist.

Logging configuration files
Default properties file location

The default locations of the logging configuration (properties) files are:

• Windows—%SOAM_HOME%\conf
• Linux/UNIX—$SOAM_HOME/conf

Available properties files
The following properties files are available:

• agent.log4j.properties
• api.log4j.properties
• cli.log4j.properties
• rs.log4j.properties
• sd.log4j.properties
• sim.log4j.properties
• ssm.log4j.properties

Log file formats
Log file entries follow a format that depends on the log level in which the message was logged.

File format customization
The format of the log-file entries can be changed. For more details, see the log4cxx documentation:
http://logging.apache.org/log4cxx/manual/classlog4cxx_1_1PatternLayout.html

Synopsis for INFO log level
time_stamp log_level [process_ID:thread_ID] logger_name - info_message

Synopsis for WARN, ERROR, and FATAL log level messages
time_stamp log_level [process_ID:thread_ID] logger_name - Code[Internal_Code]:
file_name:line_number message

Log file attributes
The following information is included for all messages recorded at the INFO, WARN, ERROR, and
FATAL log levels:
time_stamp log_level [process_ID:thread_ID] logger_name

The following information is included for some errors:
Code[Internal_Code]: file_name:line_number

Troubleshooting

Application Development Guide 209

The remainder is the main body of the message. It can include information such as error domain,
consumer ID, command, workDir, and hostname, along with the message.

Attributes of INFO, WARN, DEBUG, ERROR, and FATAL log level messages
time_stamp

Displays the time when the exception was thrown. The format for the time stamp is:
Year-month-day hour:minute:second.millisecond

Note:
For Linux/UNIX users only—By default, the time displayed in the
logger files is GMT. The format of the timestamp can be changed
by editing the related time zone settings in each
log4j.properties file in $SOAM_HOME/conf. The properties
files contain instructions on how to implement this change.

log_level

Displays the log level of the logger that logged the message.

Level Description

FATAL Logs only those messages in which the system is unusable.

ERROR Logs only those messages that indicate error conditions or more serious messages.

WARN Logs only those messages that are warnings or more serious messages. This is the default
level of debug information.

INFO Logs all informational messages and more serious messages.

DEBUG Logs all debug-level and INFO messages.

ALL Logs all available messages.

process_ID

Displays the ID of the Symphony component. The process ID is used to differentiate
between daemons when more than one daemon of the same type runs on the host, such
as when multiple session managers run on the same host.

Note:
The soamview app command displays the process ID of the
session manager and soamview task displays the process ID of
the service instance. The identity of the process that generated the
message can be determined by comparing the process ID in the
message with the process IDs displayed by soamview app and
soamview task.

thread_ID

Displays the thread of the program that triggered the message.
logger_name

Troubleshooting

210 Application Development Guide

Displays the name of the logger component used to set the log level of the component
that generated the message. The log4j logger components are listed in the properties
files. These loggers are used to set the logging levels of specific components such as
session director, session manager, service instance manager, repository service, and the
CLI.

error_message

Displays the error message generated by the Symphony API.
error_code

Displays the error code that uniquely identifies the error. Error codes and their
corresponding messages are listed in the Error Message Reference.

file_name

Displays the name of the source code file that triggered the message.
line_number

Displays the number of the line in the file that triggered the message.
domain

Displays the domain in which the message was triggered. Domains are virtual groups
that categorize messages to precisely identify the component the message applies to.

Possible domains are:

• Application—Application configuration and deployment
• SOAM—Any Symphony component such as session manager and session director
• VEM—Resource management performed by EGO (not available in Symphony DE)
• OS—Operating system resource management of resources such as memory and disk

capacity

Troubleshooting

Application Development Guide 211

Troubleshooting

212 Application Development Guide

III
Application Deployment and Management

P A R T

Application Development Guide 213

Application Deployment and Management

214 Application Development Guide

12
Service Package Deployment

C H A P T E R

Application Development Guide 215

Service package deployment and removal process
The package deployment process has two phases: First, service packages are copied to the central
repository on the repository server, the host on which the rs service is running. Then, when workload
comes in, the service package is copied to compute hosts and uncompressed.

Package removal also has two phases: When a request to remove a package is made, service packages are
removed from the central repository. Then, when a new application is deployed and existing packages on
the compute hosts are no longer needed, packages are removed from compute hosts. For existing
applications, when an existing package is updated, the packages that exist on compute hosts are
overwritten when workload comes in.

The package deployment process
1. You deploy the service package using the Platform Management Console or the soamdeploy add

command. With the Platform Management Console, you use the Add/Remove Applications wizard
or the global action Add package to repository in Manage Service Packages.

2. The package is copied to the repository server host.

3. As workload comes in, the specified service in the application profile is requested for tasks. Platform
Symphony checks whether the required service is already on the compute host.

If the service is not already on the compute host, the Repository Service copies the service package
from the repository server to the compute host, and uncompresses it, ready to be used.

Service Package Deployment

216 Application Development Guide

The package removal process
1. You request to remove the service package using the Platform Management Console or the

soamdeploy remove command, or you update an existing package through the Management
Console or the soamdeploy add command.

2. The package is removed from the repository server host.

3. Whenever a new package is deployed on to the host, the removed package is deleted. Whenever an
updated package is deployed on to the host, the existing package is overwritten with the updated
package.

Service Package Deployment

Application Development Guide 217

Deploying a new application
Goal

You developed a new service, compiled it, and are now ready to use it in your cluster. To use the new
service, you need to deploy it to compute hosts and associate it with an application.

At a glance
1. Create the service package
2. Create the application
3. Configure the client to run with the new application

Create the service package
Before you can deploy a service, you need to create a service package.

Packaging a Symphony application for deployment involves putting all service files and any dependent
files associated with the service in a package.

Important:
Verify that all dependencies are either pre-installed or deployed with the
service. For example, if your application is .NET, ensure that the .NET
Framework is installed and that it is the correct version for your
application.

Compress into a package:

• Service executables
• Additional files required for the services to work.

It is not required to use gzip as indicated in the example to package a service. You can use any supported
format. If using a utility other than gzip, ensure the compression and uncompression utility is in your
Path environment variable when using soamdeploy.

Supported package formats:

• .zip
• .tar
• .taz
• .tar.zip
• .tar.Z
• .tar.gz
• .tgz
• .jar
• .gz

On Windows
1. Go to the directory in which the service is located.

For example, %SOAM_HOME%\5.1\win32-vc7\samples
2. Create an application package by compressing the service executable into a zip file:

gzip SampleServiceCPP.exe

Service Package Deployment

218 Application Development Guide

You have now created your first service package SampleServiceCPP.exe.gz. Next, create the
application.

On Linux
1. Go to the directory in which the service is located.

For example, $SOAM_HOME/5.1/linux2.4-glibc2.2-x86/samples
2. Create an application package by compressing the service executable into a tar file:

tar -cvf SampleServiceCPP.tar SampleServiceCPP

gzip SampleServiceCPP.tar

You have now created your first service package SampleServiceCPP.tar.gz. Next, create the
application.

Create the application
Add the application with the Add Application Wizard. After completing the Wizard, your application
should be ready to use.

In Symphony DE, the Wizard deploys your service package and registers your application. In Symphony
grid, the Wizard in addition creates a consumer with your application name and allocates resources,

You can also use commands to deploy a service package and register an application. See soamdeploy
and soamreg in the Symphony Reference for more details.

1. In the Platform Management Console, click Configure Applications.

The Applications page displays.
2. Select Global Actions > Add/Remove Applications.

The Add/Remove Application page displays.
3. Select Add an application, then click Continue.

The Adding an Application page displays.
4. Select Create new profile and add application wizard.
5. Enter your application name, then click Continue.

The Define the Service window displays.
6. Enter service information, then click Continue.

a) Change the Service name to the name you want to assign to your new service.
b) In command to start this service, enter the command to run your service executable.

For example, if in your service package you have the directory structure \myservice
\myservice.exe, indicate: ${SOAM_DEPLOY_DIR}/myservice/myservice

The Define session type window displays.
7. If you have defined session types in your client application, select Define a custom session type, fill

in the desired information, then select Continue.

The Confirm application profile details window displays.
8. Review your selections, then click Confirm.

The window displays indicating progress. Your application is ready to use.

Service Package Deployment

Application Development Guide 219

9. Click Close.

The window closes and you are now back in the Platform Management Console. Your new application
is displayed as enabled.

Configure the client to run with a new application
Ensure client parameters match application profile parameters.

You created an application profile, indicated a service in the profile, and deployed the service package.
You now want to use your new application with a client.

1. Check the client code to ensure the application name specified in the connection is the same as that
specified in the application profile.

For example, if your application name is myapp, your client code must also contain myapp:
...
// set up application specific information to be supplied to the System
char * appName = "myapp";...
...

2. Ensure the session type in the client code matches that specified in the application profile.

For example, if in your application profile you have the session type ShortRunningTasks, your client
code must also specify the same session type:

...
// Create a synchronous Session SessionPtr sesPtr = conPtr->createSession("mySession",
"ShortRunningTasks",SF_RECEIVE_SYNC);
...

Note:
If you have not selected to create a custom session type and used the
default session type, specify DefaultSession as the type.

3. Compile your client and run it on any host in the cluster.

Service Package Deployment

220 Application Development Guide

Deploy a service package
To use a new application, you must deploy the service binary to your cluster. Using the soamdeploy
add command to update an existing package will not terminate the current running workload. You can
also deploy the service package to a non-leaf consumer, so that all applications registered to child leaf
consumers are able to share the same service package.

Deploy a Windows service package
Verify that all dependencies are either pre-installed or deployed with the service. For example, if your
application is .NET, ensure that the .NET Framework is installed and that it is the correct version for your
application.

To use a new application, you must deploy the binary to hosts in your cluster.

1. Deploy the service package with the soamdeploy command:

soamdeploy add SampleService -p SampleService.exe.gz -c /SampleApplications/SOASamples

The service package is deployed.
2. Check the list of deployed services with the soamdeploy view command:

soamdeploy view -c /SampleApplications/SOASamples

Deploy a Linux/UNIX service package
1. Deploy the service package with the soamdeploy command.

soamdeploy add SampleService -p SampleService.tar.gz -c /SampleApplications/SOASamples

The service package is deployed.
2. Check the list of deployed services with the soamdeploy view command:

soamdeploy view -c /SampleApplications/SOASamples

Service Package Deployment

Application Development Guide 221

Register a new application
You have to register a new application to start using it.

Tip:
As an alternative, you can use the Add/Remove Application wizard, a tool
that walks you through all the steps required to successfully add an
application to your cluster. Access the wizard from the Symphony
Workload page, Configure Applications > Add/Remove Application or
from the Start menu on Windows.

1. Click Symphony Workload > Configure Applications.

A list of enabled and disabled applications displays.
2. Select Global Actions > Add Application using the profile editor.

The Register a new application window displays.
3. From the drop down list, select Basic Configuration or Advanced Configuration.
4. Fill in the values.
5. Click Register.

Service Package Deployment

222 Application Development Guide

Remove an application
You want to remove application binaries from the system.

When you remove an application through the Platform Management Console, the application is
unregistered, the associated service package removed from the repository, and in Symphony grid, the
associated consumer deleted.

Unregistering the application:

• Terminates existing sessions and tasks
• Releases all resources allocated to the application
• Unregisters the application
• Removes the service package from the repository if it is not shared with any other application(s)

Note:
You can also use the soamunreg command to unregister an application,
and soamdeploy remove to remove the service package. For example:

soamunreg SampleAppCPP
soamdeploy remove SampleService -c /SampleApplications/
SOASamples

1. In the Platform Management Console, select Symphony Workload > Configure Applications.

The Applications page displays.
2. Select Global Actions > Add/Remove Applications.

The Add/Remove Application page displays.
3. Select Remove an existing application, then Continue.

The Remove an application page displays.
4. Follow the prompts.

Service Package Deployment

Application Development Guide 223

Deploy a service package with your own deployment
tool

You do not want to use the deployment tool distributed with Symphony to deploy your service packages.
You have your own tool but want it to work with Symphony. You do not need to create a service package
to use your own deployment tool.

• If the service binaries are in a shared location, service binaries and any other additional files required
by the service must be accessible to all compute hosts

• If service executables are locally installed on compute hosts, the service executables must be in the
same location on all compute hosts

• Symphony grid only. The OS user account assigned to the consumer for the application must have
permissions to execute the service binaries on compute hosts

1. In the Platform Management Console, create an application with the Add/Remove Application
wizard.

2. Click Configure Applications and select the application to modify.

The Application Profile window displays.
3. Click Export and save it to a file.
4. In an XML editor, open the application profile and edit the Service section:

a) For PreExecCmd , specify the command to run for your deployment tool to deploy your service
on to the compute hosts.

b) For StartCmd , specify the location of the service binary on the compute host after the deployment
command has run. This location must be the same on all compute hosts.

c) In workDir, specify the working directory for your service.

On Windows:

For example, if your deployment command is called deploy:
<Service name="myservice" description="My Sample Service">
...
<osType name="all" preExecCmd="C:\mydeploytool\bin\deploy.exe download -a myservice" startCmd="C:
\myservices\myservice\myservice.exe"
workDir="C:\myservices\myservice\work">
</osType>
...
</Service>

If working directory is not specified, by default, %SOAM_HOME%\work is used for service instances.

On Linux/UNIX:
<Service name="myservice" description="My Sample Service">
...
<osType name="all" preExecCmd="/mydeploytool/bin/deploy download -a myService" startCmd="/
myservices/myservice/myservice" workDir="/myservices/myservice/work">
</osType>
...
</Service>

5. Click Configure Applications and select the application to modify.

The Application Profile window displays.
6. Click Import and browse to select the changed application profile, then click Import.

Note:

Service Package Deployment

224 Application Development Guide

You can also use the soamreg command to register your new
application profile.

7. Click Save to save your changes.

Service Package Deployment

Application Development Guide 225

Deploy a service package without a deployment tool
You do not need to use the deployment tool distributed with Symphony to deploy your service packages.
You want to skip the deployment step altogether, and still be able to tell Symphony where the service
binaries are located on each machine.You may need to do this because you image your compute hosts
with the service binaries already on the machines, or service binaries are in a shared location, so
deployment is not necessary.

• You do not need to create a service package—you can copy the service binaries and any additional
required files to the desired location

• If the service binaries are in a shared location, service binaries and any other additional files required
by the service must be accessible to all compute hosts

• If the service binaries are locally installed on compute hosts, the service binaries must be in the same
location on all compute hosts

• Symphony grid only. The operating system user account assigned to the consumer for the application
must have permissions to execute the service binaries on compute hosts

1. Copy the service binaries to the desired location.
2. In the Platform Management Console, create an application with the Add Application Wizard.
3. Click Configure Applications and select the application to modify.

The Application Profile window displays.
4. Under Service Definition, Operating System Definition, change the Start Command and Work

Directory.
a) Start Command—Specify the path to your service binary.

On Windows:

For example, if the service1 binary is located locally on each machine in c:\myservice
\service1.exe, specify
C:\myservice\service1.exe
.

On Linux/UNIX:

For example, if the service1 binary is located locally on each machine in /share/myservice/
service1, specify: /share/myservice/service1

b) Work Directory—Specify the absolute path on the compute host to the directory in which the
service creates files.

On Windows, for example: C:\myservice\work.

On Linux/UNIX, for example: /share/myservice/work.
5. Click Save to save your changes and update your application profile.

Service Package Deployment

226 Application Development Guide

Automatically run a command when deploying a
service package

Suppose your service uses a third-party tool and it needs to be installed on the compute host, or you want
to run a script to perform some actions for proper functioning of the service program. You can configure
this in a package-specific deployment.xml configuration file.

Windows service package
1. Create a file for your service package with the name deployment.xml.

The file must be called deployment.xml.

For example:

<Deployment xmlns="http://www.platform.com/Symphony/Deployment>
 <install>
 <osTypes>
 <osType name="NTX86" startCmd="setup" timeout="600" successCodes="0,1,2"/>
 </osTypes>
 </install>
 <uninstall>
 <osTypes>
 <osType name="NTX86" startCmd="setup -u" timeout="30" successCodes="0"/>
 </osTypes>
 </uninstall>
</Deployment>

Note:

To run a Windows .bat script, you need to specify a special syntax.

For example:
<osType name="NTX86" startCmd="cmd /c cmd /c install.bat"
timeout="600" successCodes="0,1,2"/>

2. Use the install section to configure the command to run after the package is uncompressed on a
compute host.

3. For startCmd, specify a path relative to the service package installation directory.

For example, if your package contained a subdirectory called scripts with the command you want to
invoke called myscript, specify:
startCmd="scripts\myscript"

4. Use the uninstall section to configure the command to run if the startCmd specified in the install
section fails, or before the package is removed from a compute host.

5. Add deployment.xml to your service package with the executables for the commands you specified
in StartCmd.

Important:
There can only be one deployment.xml file per service package. The
file must be at the top level of the service package—it cannot be in a
subdirectory.

6. Deploy the service package.
a) In the Platform Management Console, select Manage Service Packages > Global Actions > Add

Package to Repository.

Service Package Deployment

Application Development Guide 227

The Add Package to respository page displays.
b) Browse to your service package and select it.
c) Select the application associated with your service package, then Add.

Your service package should now be displayed in the list.

Note:
You can also use the following commands:

soamdeploy add SampleService -p SampleService.exe.gz -c /
SampleApplications/SOASamples

soamdeploy view -c /SampleApplications/SOASamples

Linux/UNIX service package
1. Create a file for your service package with the name deployment.xml.

The file must be called deployment.xml.

For example:

<Deployment xmlns="http://www.platform.com/Symphony/Deployment>
 <install>
 <osTypes>
 <osType name="LINUX86" startCmd="setup" timeout="600" successCodes="0,1,2"/>
 </osTypes>
 </install>
 <uninstall>
 <osTypes>
 <osType name="LINUX86" startCmd="setup -u" timeout="30" successCodes="0"/>
 </osTypes>
 </uninstall>
</Deployment>

Note:
All values in deployment.xml are case-sensitive when the service is
deployed on Linux/UNIX.

2. Use the install section to configure the command to run after the package is uncompressed on a
compute host.

3. For startCmd, specify a path relative to the service package installation directory.

For example, if your package contained a subdirectory called scripts with the command you want to
invoke called myscript, specify:
startCmd="scripts/myscript"

4. Use the uninstall section to configure the command to run if the startCmd specified in the install
section fails, or before the package is removed from a compute host.

5. Add deployment.xml to your service package with the executables for the command you specified
in StartCmd.

Important:
There can only be one deployment.xml file per service package. The
file must be at the top level of the service package—it cannot be in a
subdirectory.

6. Deploy the service package.

Service Package Deployment

228 Application Development Guide

a) In the Platform Management Console, select Manage Service Packages > Global Actions > Add
Package to Repository.

The Add Package to respository page displays.
b) Browse to your service package and select it.
c) Select the application associated with your service package, then Add.

Your service package should now be displayed in the list.

Note:
You can also use the following commands:

soamdeploy add SampleService -p SampleService.tar.gz -c /
SampleApplications/SOASamples

soamdeploy view -c /SampleApplications/SOASamples

Service Package Deployment

Application Development Guide 229

Run multiple services in an application
Goal

In your application, different sessions may need different services to perform computations.

You want to be able to specify that an application can run several services.

Assumptions
For the procedures in this document, it is assumed you want your application to use two different services,
ServiceA, and ServiceB. The application is registered under the consumer /SampleApplications/
SOASamples.

Package and deploy your services
Different services can use separate service packages or the same service package. Ensure each service
definition in an application profile has a unique service name. Note that only one of your services can be
set as the default service.

This example assumes you will create a separate package for each service used by your application.

For example, to use ServiceA and ServiceB in your application:

• Create ServiceApkg.gz and include all related binaries for ServiceA in this package.
• Create ServiceBpkg.gz and include all related binaries for ServiceB in this package.

1. Go to the directory that contains your service binaries and compress the service binaries into two files:
ServiceApkg.gz, and ServiceBpkg.gz.

2. Deploy the service packages in the consumer with the soamdeploy command. (If you prefer, you
may use the Wizard for this task.)

soamdeploy add ServiceApkg -p ServiceApkg.gz -c /SampleApplications/SOASamples

soamdeploy add ServiceBpkg -p ServiceBpkg.gz -c /SampleApplications/SOASamples

The service packages are deployed.
3. Check the list of deployed services with the soamdeploy view command.

For example:

soamdeploy view -c /SampleApplications/SOASamples

You should be able to see your service packages deployed. Notice that the Application field has a dash
(-), indicating that there are no applications associated with the package you deployed.

Associate your application with the service packages
To associate your application with the different service packages, edit your application profile.

Important:
By configuring more than one service in your application, a host blocked
because of an error in one of the services is also blocked for all other
services of the same application.

1. Open your application profile.
2. In the session type definition, under SessionTypes, specify the session type name and add the

serviceName parameter.

Service Package Deployment

230 Application Development Guide

The serviceName parameter can be any name you want. It is used to link the session type definition
with the service definition. If serviceName is not defined, the session uses the default service.

For example:
...
<SessionTypes>
 <Type name="MysessiontypeA" serviceName="ServiceA" priority="1"
recoverable="false" sessionRetryLimit="3" taskRetryLimit="3"
abortSessionIfTaskFail="false" suspendGracePeriod="100"
taskCleanupPeriod="100"persistSessionHistory="all" persistTaskHistory="all"/>
 <Type name="MysessiontypeB" priority="1" recoverable="false"
serviceName="ServiceB" sessionRetryLimit="3" taskRetryLimit="3"
abortSessionIfTaskFail="false" suspendGracePeriod="100" taskCleanupPeriod="100"
persistSessionHistory="all" persistTaskHistory="all"/>
</SessionTypes>

3. In the service definition, under Service, specify the service name, service package name, and start
command for the service. All services specified in SessionTypes should be configured in the Service
section.
a) For Service name, specify the same value that you specified for serviceName in the session type.
b) Specify the packageName parameter and specify the name of the package you deployed.

You can find out the package name with the command soamdeploy view.
a) Change startCmd to point to your service executable.

Leave the ${SOAM_DEPLOY_DIR} in your path as this is the deployment directory in the system.
If your service is located under a subdirectory, indicate the subdirectory after $
{SOAM_DEPLOY_DIR} in the path.

On Windows:
<Service name="ServiceA" description="My Sample Service A"
packageName="ServiceApkg" deploymentTimeout="300">
 <osTypes>
 <osType name="all" startCmd="${SOAM_DEPLOY_DIR}\ServiceA.exe">
 </osType>
 </osTypes>
 </Service>

On Linux:
<Service name="ServiceB" description="My Sample Service B"
packageName="ServiceBpkg" deploymentTimeout="300">
 <osTypes>
 <osType name="all" startCmd="${SOAM_DEPLOY_DIR}/ServiceB">
 </osType>
 </osTypes>
 </Service>

4. Repeat steps 2-3 for every service that you want to refer to in your application.
5. Add a default attribute for the service that you want to designate as the default so that it is started

when the service instance manager starts.

When specifying multiple services, you must designate one service as the default.

For example, for ServiceA and ServiceB, your application profile should look similar to the following.
Note that in this example, ServiceA is the default service.

<?xml version="1.0" encoding="UTF-8"?>
<Profile xmlns="http://www.platform.com/Symphony/Profile/Application" xmlns:xsi="http://
www.w3.org/2001/XMLSchema-instance" name="">
<Consumer applicationName="SampleApplicationCPP"
consumerId="/SampleApplications/SOASamples" policy="R_Proportion"
taskHighWaterMark="1.0" taskLowWaterMark="1.0" resourceBalanceInterval="5"
sessionSchedulingInterval="500" resourceGroupName="ComputeHosts"/>
...

Service Package Deployment

Application Development Guide 231

<SessionTypes>
 <Type name="MysessiontypeA" priority="1" recoverable="false"
serviceName="ServiceA" sessionRetryLimit="3" taskRetryLimit="3"
abortSessionIfTaskFail="false" suspendGracePeriod="100" taskCleanupPeriod="100"
persistSessionHistory="all" persistTaskHistory="all"/>
 <Type name="MysessiontypeB" priority="1" recoverable="false"
serviceName="ServiceB" sessionRetryLimit="3" taskRetryLimit="3"
abortSessionIfTaskFail="false" suspendGracePeriod="100" taskCleanupPeriod="100"
persistSessionHistory="all" persistTaskHistory="all"/>
</SessionTypes>

<Service name="ServiceA" description="The Sample Service A"
packageName="ServiceApkg" default="true" deploymentTimeout="300">
 <osTypes>
 <osType name="NTX86" startCmd="${SOAM_DEPLOY_DIR}\ServiceA.exe">
 </osType>
 </osTypes>
 </Service>

<Service name="ServiceB" description="The Sample Service B"
packageName="ServiceBpkg" deploymentTimeout="300">
 <osTypes>
 <osType name="LINUX86"startCmd="${SOAM_DEPLOY_DIR}/ServiceB">
 </osType>
 </osTypes>
 </Service>
</Profile>

6. Register the application profile with the soamreg command. (If you prefer, you may use the Wizard
for this task.)

For example:
soamreg SampleApp.xml

The application is registered and enabled.
7. Check that the application is associated with the package with the soamdeploy view command.

soamdeploy view -c /SampleApplications/SOASamples

You should be able to see package names and the associated application names.

Check your client application code and run your client
Check your client application code to ensure:

• The application name specified when connecting to the application is the same as that specified in the
application profile

• The session types you specified to create the session must exist in your application profile unless you
specified " " for the session types, which means to use the default session type.

If you want to specify the service name directly to override the service configured in the session type,
the service must be configured in your application profile.

1. Check client code to ensure the application name specified in connect() is the same as that specified
in the application profile.

For example, if, in your application profile you have applicationName="SampleAppCPP",

your client code must also contain SampleAppCPP:

...
// set up application specific information to be supplied to the System
ConnectionPtr conPtr = SoamFactory::connect("SampleAppCPP",&securityCB);
...

Service Package Deployment

232 Application Development Guide

2. Check client code to ensure the session type name specified when creating the session is configured
in your application profile.

For example, create sessions with the session types for ServiceA and ServiceB:

...
// Set up session creation attributes for ServiceA
SessionCreationAttributes attributesA;
attributesA.setSessionName("mySessionA");
attributesA.setSessionType("MysessiontypeA");
attributesA.setSessionFlags(SF_RECEIVE_SYNC);
// Set up session creation attributes for ServiceB
SessionCreationAttributes attributesB;
attributesB.setSessionName("mySessionB");
attributesB.setSessionType("MysessiontypeB");
attributesB.setSessionFlags(SF_RECEIVE_SYNC);
// Create synchronous sessions
SessionPtr sesPtrA = conPtr->createSession(attributesA);
SessionPtr sesPtrB = conPtr->createSession(attributesB);
...

3. Save your client code and recompile.
4. Run your client to submit work to your application.

Service Package Deployment

Application Development Guide 233

Service Package Deployment

234 Application Development Guide

13
Application configuration

C H A P T E R

Application Development Guide 235

How configuration affects applications and services
In your client code
Specify Where Notes

Application name When connecting to Symphony The application name you specify must match the
application name indicated in the application
profile.

Session type When creating the session If you specify a session type when creating the
session, the session type must match the session
type defined in the application profile.

In the application profile
Specify Where Notes

Service package name In the Service definition If you are using the Symphony service package deployment
tool, you specify the service package name in the service
section. The package must be deployed on the repository
server. The system uses the operating system to identify the
service start command.

Operating system In the Service definition You specify the operating system name for the service in the
service section. The corresponding service start command will
be used for the operating system. The binary is contained in the
service package.

Application configuration

236 Application Development Guide

Application lifecycle
An application can be used when it is registered with the middleware. It can no longer be used when it is
unregistered. There can only be one enabled application per consumer at any one time. You can only
submit workload for an application that is enabled.

You register an application by registering the application profile with the Platform Management Console
or the soamreg command.

If there is already an enabled application in the same consumer, the application is registered but it is
disabled.

If there are no enabled applications in the consumer, the application is registered and enabled.

Once you have registered an application, you can modify its parameters or update service packages
through the Platform Management Console or the command-line.

You disable an application with the Platform Management Console or the soamcontrol app
disable command. When you disable an application, any workload for the application is terminated
unless you choose to save workload when disabling it.

You remove an application from the system with the Platform Management Console or the soamunreg
command. When you remove an application, existing sessions and tasks (running and suspended) are
terminated, the application profile is deleted from the system, and all resources allocated to the application
are released.

Application configuration

Application Development Guide 237

Change the application profile to only log error
historical data

By default, the system displays all data so that you can analyze which tasks have completed when
developing client and services.

For performance reasons, you may want to configure your production environment to only enable
historical data for tasks in the error state.

Note:
If you are manually editing the application profile outside the Platform
Management Console, the parameters that you need to change are in the
session type and are called persistTaskHistory,
persistSessionHistory. Valid values are all, error, none.

1. In the Platform Management Console, click Symphony Workload > Configure Applications.

The Applications page displays.
2. Select the application to modify.

The Application Profile is displayed.
3. Under Session Type Definition, select a value for Logging History

Setting Behavior

Log all sessions, error tasks only Save all session history. Save task history only for those tasks that have
completed in error.

Log all sessions, all tasks Save all session history. Save task history for tasks in all states.

Log all sessions, no tasks Save all session history. Do not save any task history.

Log no sessions, no tasks Save no history at all.

4. Click Save to apply your changes.

Application configuration

238 Application Development Guide

Specify a different Java location for your application
If your default environment does not point to the correct JRE, add the directory that contains the Java
binary to the PATH environment variable in the Service section of the application profile. This adds
the directory you specify to the beginning of your existing PATH environment variable.

In cases where you cannot guarantee that the PATH environment variable on a compute host:

• Includes a Java bin directory
• Has the path to the Java bin directory for the Java version you want to use

You can configure your System PATH to point to the correct Java version, or set the path to the correct
version of Java in the application profile.

Note:
If you change the configuration of your system path environment, you
must restart Symphony or Symphony DE.

If you set it in your application profile, the directory you specify is added to the beginning of your existing
PATH environment variable.

Note:
If you set the Java bin path in your application profile, all compute hosts
must have Java installed in the same location. If Java is not installed at
that location, the system uses the next Java location in the Path, if any.

1. Open the application profile for your application.

For example, on Linux:

$SOAM_HOME/5.1/samples/Java/SampleApp/SampleAppJava.xml

For example, on Windows:

%SOAM_HOME%\5.1\samples\Java\SampleApp\SampleAppJava.xml

2. In the Service, osTypes, osType section, change the PATH environment variable to point to the
correct Java version.

 <Service description="The Sample Service" name="sampleService">
 <osTypes>
 <osType name="LINUX86" startCmd="${SOAM_DEPLOY_DIR}/
Runcom.platform.symphony.samples.SampleApp.service.MyService.sh" workDir="${SOAM_HOME}/work">
 <env name="PATH">/usr/bin/jdk1.5.0_04_x86/bin</env>
 </osType>
 <osType name="NTX86" startCmd="cmd.exe /c cmd.exe /c ${SOAM_DEPLOY_DIR}/
Runcom.platform.symphony.samples.SampleApp.service.MyService.bat" workDir="${SOAM_HOME}/work"5.1>
 <env name="PATH">c:\java\jdk1.5.0_04_x86\bin</env>
 </osType>
 </osTypes>
</Service>

3. Save the file.
4. Update your application profile with the Platform Management Console or the soamreg command.

For example, on Linux:

soamreg $SOAM_HOME/5.1/samples/Java/SampleApp/SampleAppJava.xml

For example, on Windows:
soamreg %SOAM_HOME%\5.1\samples\Java\SampleApp\SampleAppJava.xml

Application configuration

Application Development Guide 239

Feature: Automatic failure recovery
The automatic failure recovery feature ensures maximum resource availability to run your workload when
a system component fails or becomes unavailable due to a power outage, network failure, application
deficiency, or other cause.

This feature is not applicable in Symphony DE.

About automatic failure recovery
Purpose of automatic failure recovery

Automatic failure recovery provides a way for the system to automatically restart critical system services
and enables you to customize application (service) error handling for each of your applications. Symphony
handles a number of failure recovery scenarios.

Benefits of automatic failure recovery
Automatic failure recovery provides a number of benefits, including:

• Application isolation—failure of one application does not affect any other applications, and failure or
unavailability of a resource management (EGO) component has no impact on running workload.

• Fault tolerant tasks—with recoverable workload configured, automated failover and data persistence
ensures that running workload submitted by an application client continues to run without user
intervention when system processes or hosts fail.

• Cluster reliability—master host failover and automatic restart of critical system services ensures high
resource availability.

The following illustration shows the benefits of the automatic failure recovery feature once all workload
management (SOAM) and resource management (EGO) components have started successfully. In this
example, the application profile defines a recoverable session (workload) and the cluster administrator
has defined a list of master candidates.

Application configuration

240 Application Development Guide

Scope
Applicability Details

Operating system • All host types supported by the Symphony system.

Dependencies • For master host failover, you must specify one or more master host candidates.
• Files required for failover must be on a shared file system.
• Cluster administrator and consumer user accounts must have operating system

permissions to access directories on the shared file system.

Limitation • Symphony does not provide automatic failure recovery of the shared file system if
the shared file system becomes unavailable.

Application configuration

Application Development Guide 241

Configuration to enable automatic failure recovery
Automatic failure recovery is enabled for automatic process restart for critical system services and for
restart of Symphony workload management (SOAM) components. Automatic failure recovery for
applications is enabled by default in the application profile. You can also enable

• Session manager failover
• Session recovery, which makes workload recoverable
• Master host failover

Configuration to enable session manager failover
Session manager failover is enabled by default when you use a shared file system and do not change the
default values for any of the following attributes:

• SOAM > SSM > resourceGroupName
• SOAM > SSM > workDir
• SOAM > DataHistory > path
• SOAM > PagingTasksInput > path
• SOAM > PagingTasksOutput > path
• SOAM > PagingCommonData > path
• SOAM > PagingCommonDataUpdates > path
• SOAM > JournalingTasks > path
• SOAM > JournalingSessions > path
• SOAM > JournalingSessionTagConfig > path

Changing any of these attributes could affect session manager failover. For detailed descriptions of these
attributes, see the Platform Symphony Reference.

Configuration to enable session recovery
Defining a recoverable session makes workload recoverable after session manager failover or restart.

Application configuration

242 Application Development Guide

Section Attribute name and syntax Behavior

SessionTypes > Type recoverable=true | false • Specifies whether the session can be
recovered after session manager failover or
restart. If true, Symphony persists the
common data and its update (if any) for the
session, task data for tasks that have not yet
been returned to the client, and data
required to reconstruct those objects. If
false (default), the system does not persist
session and task data, and tasks must be
rerun.

Important:
If the file system that is used by
the SSM for paging and
recovery purposes is not stable,
you need to configure
flushDataAsap=”true” in the
application profile. This causes
the SSM to write data to disk
directly, rather than using
system cache, before
continuing with the next
operation. This guarantees the
data is actually stored on the
disk and not in system cache
after the SSM finishes the disk
write operation. The SSM will
be able to read the data back in
case of recovery. Refer to the
application profile reference for
details about this parameter.

It is strongly recommended to
use a stable and reliable file
system in your Symphony
cluster to avoid losing any data.

Configuration to enable master host failover
The master candidate list defines which hosts are master candidates. By default, the list includes just one
host, the master host, and there is no failover. If you configure additional candidates to enable failover,
the master host is first in the list. If the master host becomes unavailable, the next host becomes the master,
and so on down the list.

For master candidate failover to work properly, the master candidates must share a file system that must
always be available.

Important:
The shared file system should not reside on a master host or any of the
master candidates. If the shared file system resides on a master host and

Application configuration

Application Development Guide 243

the master host fails, the next candidate cannot access the necessary
files.

If you have configured at least one management host for your cluster in addition to the master host but
have not selected any failover candidates, the Platform Management Console dashboard displays a
reminder message in red with a link to the page from which you define the master candidate list.

Configuration source Setting Behavior

Platform Management Console:
Cluster > Summary >Master
Candidates

• Add available hosts to the
Master Candidates list,
or Remove hosts from the
Master Candidates list.

• Rearrange the order of
master candidates:
host_name > Up | Down

• The master candidates are now set in the
order you want them to fail over. The cluster
automatically restarts when you click
Apply, making the changes take effect.

• All master candidates must be selected from
the available management hosts. A
compute host cannot be a master
candidate.

• The default configuration of the
EGOManagementServices consumer
provides for master candidate failover; do
not change the number of slots owned by
this consumer.

Alternatively, you can use the command line interface to specify a list of master candidates.

Command Description

egoconfig masterlist
host_name[,host_name, …]

• Specifies the list of master candidates, starting with the master host, and
including all of the candidates in the order of failover priority.

• host_name specifies the name of the master host and each of the master
candidates. Do not specify compute hosts in this list.

Caution:
Include all master candidates in the list when you
issue this command; egoconfig masterlist
overwrites the existing list.

Automatic failure recovery behavior
Automatic failure recovery behavior depends on which process fails or becomes unavailable, and on the
type of host on which the process runs.

Recovery when individual processes fail or become unavailable
The following description provides details about what happens when a workload management (SOAM),
Platform Management Console, reporting, or resource management (EGO) process fails or becomes
unavailable independently of other processes.

Important:
Recovery of any workload management (SOAM), Platform Management
Console, Reporting, or resource management (EGO) process usually

Application configuration

244 Application Development Guide

takes less than one or two minutes, and can take as little as one or two
seconds, provided that the host remains available.

When this process is in
failure recovery…

The effects are…

Workload Resource allocation Lifecycle or other
processes

Workload management
(SOAM) processes

Service instance (si) You can define the actions
retry or fail for the
SessionEnter,
SessionUpdate, and Invoke
methods.

If blockHost is defined as
the actionOnSI for a service
instance exit, timeout,
exception, or control code,
the system terminates the
running service instance on
this host and does not use
this host to start any other
service instance for the
application. If restart is
defined as the actionOnSI,
the service instance tries to
restart on the original host.

You can define the
following actions for service
instances based on specific
states of the service
lifecycle: keepAlive,
restartService or
blockHost. The session
manager will continue to
run the service, restart the
service on the same host,
or—through
communications with the
Virtual Execution Machine
Kernel Daemon (vemkd)—
block the host for use by the
application associated with
the service.

Service instance manager
(sim)

The session manager
requeues and reruns tasks
for the session that was
running on the service
instance manager; no
workload is lost.

If blockHostOnTimeout=
"true" in the SOAM > SIM
section of the application
profile and if, after a service
instance manager is
started, the service
instance manager process
cannot contact the session
manager within the
startUpTimeout, the system
does not use this host to
start any other service
instance managers for the
application. If
blockHostOnTimeout=
"false", the system tries
again to start the service
instance manager on the
original host.

If the service instance
manager dies after starting
successfully, the
associated service instance
exits. The session manager
then restarts the service
instance manager.

Application configuration

Application Development Guide 245

When this process is in
failure recovery…

The effects are…

Workload Resource allocation Lifecycle or other
processes

Session manager (ssm) For recoverable sessions,
the session manager
persists the information
needed to resume the
workload without loss of
data, and session manager
failover or recovery is
transparent to the client
application. For non-
recoverable sessions, the
workload is lost and the
client must resubmit the
workload.

When it restarts, the
session manager re-
registers with the resource
management component
(EGO) and obtains a list of
resources that were
previously allocated to the
session manager. The
session manager stops and
restarts all running service
instance managers on
those resources.

The service instance
managers associated with
the failed session manager
also die, and requests from
the Platform Management
Console and command line
interface fail. The session
director restarts the session
manager. On restart, the
session manager reads
only the task and session
control objects, not the
input/output messages; the
session manager reads
those messages as
required when dispatching
a task. Session manager
monitoring information
resets; the following
statistical values apply to
the time period that begins
with session manager
restart.

• Closed sessions since
SSM started

• Aborted sessions since
SSM started

• Time of the last session
aborted

• Done tasks since SSM
started

• Error tasks since SSM
started

• Time of the last error
task

When the session manager
is unavailable, clients
cannot create new SDK
connections.

• If the client is already
connected and the
session manager
becomes unavailable,
the Symphony APIs
retry the connection.

• If the client has not yet
connected and the
session manager is
unavailable, the client
receives an exception
and must wait for the
session manager to
become available.

Application configuration

246 Application Development Guide

When this process is in
failure recovery…

The effects are…

Workload Resource allocation Lifecycle or other
processes

Session director (sd) Session director failure has
no impact on running
workload; the session
manager handles workload
execution. For new
workload, clients submitting
workload wait momentarily
for the EGO service
controller to restart the
session director.

Session director failure has
no impact on resource
allocation. The session
director saves information
about the resources it uses
and, after restart, uses the
same resources.

While the session director
is down momentarily,
requests from the Platform
Management Console and
command line interface fail.
If you set view preferences
for the dashboard to
automatically refresh, the
request succeeds once the
session director has
restarted. When the
session director is
unavailable, clients cannot
create new SDK
connections.

• If the client is already
connected and the
session director
becomes unavailable,
the Symphony APIs
retry the connection.

• If the client has not yet
connected and the
session director is
unavailable, the client
receives an exception
and must wait for the
session director to
become available.

The EGO service controller
usually restarts the session
director within a few
seconds on the original
host or on a new host if the
original host has no
available resources. The
EGO service controller tries
up to 10 times to restart the
session director before
setting the status to
ERROR.

Application configuration

Application Development Guide 247

When this process is in
failure recovery…

The effects are…

Workload Resource allocation Lifecycle or other
processes

Repository service (rs) Repository service failure
has no effect on running
workload. New workload
that needs to download a
service package must wait
until the repository service
becomes available.

Repository service failure
has no effect on resource
allocation.

The EGO service controller
restarts the repository
service on the original host
or on a new host if the
original host has no
available resources. The
EGO service controller tries
up to 10 times to restart the
repository service before
setting the status to
ERROR.

Platform Management
Console processes

Web service manager
(wsm)

Web service manager
failure has no effect on
workload.

Web service manager
failure has no effect on
resource allocation.

The EGO service controller
restarts the Web service
manager on the original
host or on a new host if the
original host has no
available resources. The
EGO service controller tries
up to 10 times to restart the
Web service manager
before setting the status to
ERROR.

The web service manager
monitors the java process
of TOMCAT—a key
component of the Platform
Management Console—
and restarts the java
process if it goes down.

Reporting processes

Application configuration

248 Application Development Guide

When this process is in
failure recovery…

The effects are…

Workload Resource allocation Lifecycle or other
processes

Platform loader controller
(plc)

Loader controller failure
has no effect on workload.

Loader controller failure
has no effect on resource
allocation.

If the loader controller
becomes unavailable, the
Platform Enterprise
Reporting Framework
cannot collect sampling
data for reporting purposes.
The EGO service controller
restarts the loader
controller on the original
host or on a new host if the
original host has no
available resources.The
EGO service controller tries
up to 10 times to restart the
loader controller before
setting the status to
ERROR.

Data purger (purger) Data purger failure has no
effect on workload.

Data purger failure has no
effect on resource
allocation.

If the data purger becomes
unavailable, the database
could temporarily grow until
the data purger recovers
and can once again purge
the data. The time it takes
for the database to run out
of space depends on the
size of your system. The
EGO service controller
restarts the data purger on
the original host or on a new
host if the original host has
no available resources.The
EGO service controller tries
up to 10 times to restart the
data purger before setting
the status to ERROR.

Resource management
(EGO) processes

Master load information
manager (master lim)

Master load information
manager failure has no
effect on running workload.
Clients submitting new
workload receive an
exception.

The system considers the
master host unavailable
and a master candidate
takes over as master host.
During failover to the
master candidate, the
system does not respond to
resource allocation
requests.

If no master candidate is
available, the cluster is
down. The system cannot
restart the master load
information manager; you
can manually restart it,
however, using the egosh
ego start all
command.

Application configuration

Application Development Guide 249

When this process is in
failure recovery…

The effects are…

Workload Resource allocation Lifecycle or other
processes

Virtual Execution Machine
Kernel Daemon (vemkd)

Virtual Execution Machine
Kernel Daemon failure has
no effect on running
workload. Clients
submitting new workload
receive an exception.

During failure recovery, the
system does not respond to
resource allocation
requests.

The master load
information manager
restarts the Virtual
Execution Machine Kernel
Daemon.

Process execution monitor
(pem)

Process execution monitor
failure has no effect on
running workload.

Process execution monitor
failure has no effect on
resource allocation.

The load information
manager restarts the
process execution monitor
on a compute or
management host. The
master load information
manager restarts the
process execution monitor
on the master host.

EGO service controller
(egosc)

EGO service controller
failure has no effect on
running workload.

EGO service controller
failure has no effect on
resource allocation.

The Virtual Execution
Machine Kernel Daemon
restarts the EGO service
controller.

Load information manager
(lim)

The system considers the
host unavailable and
terminates workload on the
unavailable host. EGO
notifies the SOAM
component (session
director or session
manager) that has been
allocated to the unavailable
host. The session director
or session manager stops
the service (service
instance and service
instance manager) on that
host and requests another
resource.

The system does not
allocate any resources on
the unavailable host.

The master load
information manager
restarts the load
information manager on the
compute or management
host.

Recovery when hosts fail
When processes become unavailable in combination because of a hardware failure, you see the following
behavior.

Note:
The majority of the time required for failover of compute, management,
and master hosts is used to confirm that the host is actually unavailable.

Application configuration

250 Application Development Guide

This prevents temporary network delays or instability from triggering
frequent and unnecessary host switches.

When this host is
down…

The effects are…

Compute host • The following processes become unavailable during failure recovery:

• Load information manager
• Process execution monitor
• Service instance manager
• Service instance

• When the session manager-service instance manager connection breaks, the session
manager requeues the affected tasks. If the session manager does not recognize the
broken connection, the resource manager (EGO) notifies the session manager within
three minutes that the host is down.

• The session manager requests a new resource.
• Workload runs on the new compute host.

Management host • The following processes become unavailable during failure recovery:

• Load information manager
• Process execution monitor
• Session director
• Session manager
• Repository service
• Web service manager
• Loader controller
• Data purger

• In less than three minutes, a new management host takes over and gets configuration
information from the shared configuration directory.

Application configuration

Application Development Guide 251

When this host is
down…

The effects are…

Master host • The following processes become unavailable during failure recovery:

• Master load information manager
• Virtual Execution Machine Kernel Daemon
• Process execution monitor
• EGO service controller
• Session director
• Repository service

Note:
The session director and repository service can run on any
management host; they will become unavailable during
failure recovery only if they are running on the master host.

• By default, in less than two minutes, a management host from the master candidates list
takes over and gets configuration information from the configuration directory on the
shared file system.

When the primary master host recovers, it takes over from the master candidate. The load
information manager on the primary master becomes the master load information
manager, and the Virtual Execution Machine Kernel Daemon and EGO service controller
processes on the master candidate host are terminated and restarted on the primary
master host. All other EGO services, including SOAM processes remain running on their
current host.

Configuration to modify automatic failure recovery
You can modify

• Automatic failure recovery behavior for an application
• Service instance error handling—actions for unexpected exits, timeouts, exceptions, or control codes
• Actions for a timeout between the service instance manager and the session manager

Configuration to modify automatic failure recovery for an application
The following attributes and environment variables can be configured to change the way that automatic
failure recovery works once it is enabled for an application.

Application configuration

252 Application Development Guide

Configuration source Setting Behavior

Application profile:

Consumer

flushDataAsap=true | false • Used for recoverable sessions. Specifies
whether or not the session manager
caches data before writing to disk.

• When set to true, data is not cached, it is
immediately written to disk. When set to
false (default), data is cached before it is
written to disk.

Important:
Setting this parameter to
true could substantially
degrade performance.

transientDisconnectionTimeout= seconds • Specifies the number of seconds the
session manager waits for the client to
reconnect before it aborts the session
when the connection between the client
and session manager is broken.

• Specify an integer equal to or greater than
1. The default value is 30 seconds.

• Note that if in a new connection a session
that was previously disconnected is
opened within the
transientDisconnectionTimeout period
after the original client exited abnormally,
the session is not aborted even if
abortSessionIfClientDisconnect is set to
true.

ioRetryDelay=seconds • Specifies the number of seconds to wait
before retrying an I/O operation after a
previous failure.

• Specify an integer equal to or greater than
1. The default value is 1.

Application profile:

SOAM > SSM

resReq="select(select_string)" "select
(select_string) order(order_string)"

• Describes the criteria for defining a set of
resources to run session managers.
Session managers should run on
management hosts. When specifying a
resource requirement string, you must
indicate the select string "select(mg)"
so that only management hosts are
selected to run session managers.

• The default value is "", which specifies any
host in the ManagementHosts resource
group.

Application configuration

Application Development Guide 253

Configuration source Setting Behavior

Application profile:

SessionTypes > Type

abortSessionIfClientDisconnect=true |
false

• Specifies whether the session is aborted if
the session manager detects that the
connection between the client and the
session manager is broken. The default
value is true.

• Used with the
transientDisconnectionTimeout attribute.

Configuration to modify service instance error handling behavior
Section Method Attribute name and syntax Behavior

Service >
Control >
Method >
Timeout

• Register
• CreateService
• SessionEnter
• SessionUpdate

actionOnSI=restartService|
blockHost

• Specifies whether to restart the
service or block the host on
timeout.

• The default for Register,
CreateService, and
SessionEnter, SessionUpdate
is blockHost.

• Invoke
• SessionLeave

• The default for Invoke and
SessionLeave is
restartService.

• SessionEnter
• SessionUpdate
• Invoke

actionOnWorkload=retry | fail • Specifies whether to retry the
method (default) up to the
number of times configured by
the session and task retry limits
or abort the session
(SessionEnter or
SessionUpdate)/fail the task
(Invoke).

Note:
The retry count for
both SessionEnter
and SessionUpdate
methods are
considered
together. For
example, if
SessionEnter fails
once and
SessionUpdate fails
twice, then the
session rerun count
is equal to 3.

Application configuration

254 Application Development Guide

Section Method Attribute name and syntax Behavior

Service >
Control >
Method >
Exception

• CreateService actionOnSI=restartService|
blockHost

• Specifies whether to restart the
service or block the host
(default) when the specified
exception (failure or fatal
exception) occurs.

• Invoke
• SessionEnter
• SessionUpdate
• SessionLeave

actionOnSI=keepAlive |
restartService | blockHost

• Specifies whether to continue
running the service (default),
restart the service, or block the
host when the specified
exception (failure or fatal
exception) occurs.

• SessionEnter
• SessionUpdate
• Invoke

actionOnWorkload=retry | fail • Specifies whether to retry the
method up to the number of
times configured by the
session and task retry limits or
abort the session
(SessionEnter or
SessionUpdate)/fail the task
(Invoke).

Note:
The retry count for
both SessionEnter
and SessionUpdate
methods are
considered
together. For
example, if
SessionEnter fails
once and
SessionUpdate fails
twice, then the
session rerun count
is equal to 3.

Application configuration

Application Development Guide 255

Section Method Attribute name and syntax Behavior

Service >
Control >
Method > Exit

• Register
• CreateService
• SessionEnter
• SessionUpdate

actionOnSI=restartService|
blockHost

• Specifies whether to restart the
service or block the host on if
the service process exits
during the execution of the
method.

• The default for Register,
CreateService, and
SessionEnter, SessionUpdate,
is blockHost.

• Invoke
• SessionLeave

• The default for Invoke and
SessionLeave is
restartService.

• SessionEnter
• SessionUpdate
• Invoke

actionOnWorkload=retry | fail • Specifies whether to retry the
method (default) up to the
number of times configured by
the session and task retry limits
or abort the session
(SessionEnter or
SessionUpdate)/fail the task
(Invoke).

Note:
The retry count for
both SessionEnter
and SessionUpdate
methods are
considered
together. For
example, if
SessionEnter fails
once and
SessionUpdate fails
twice, then the
session rerun count
is equal to 3.

Application configuration

256 Application Development Guide

Section Method Attribute name and syntax Behavior

Service >
Control >
Method >
Return

• CreateService
• SessionEnter
• SessionUpdate
• Invoke
• SessionLeave

actionOnSI=keepAlive |
restartService | blockHost

• Specifies whether to continue
running the service (default),
restart the service, or block the
host when the method returns
normally and specified code is
returned.

• SessionEnter
• SessionUpdate
• Invoke

actionOnWorkload=retry | fail |
succeed

• Specifies whether to consider
the method task as having
reached completion based on
a normal return (default), retry
the method up to the number of
times configured by the
session and task retry limits, or
abort the session
(SessionEnter or
SessionUpdate)/fail the task
(Invoke).

Note:
The retry count for
both SessionEnter
and SessionUpdate
methods are
considered
together. For
example, if
SessionEnter fails
once and
SessionUpdate fails
twice, then the
session rerun count
is equal to 3.

Application configuration

Application Development Guide 257

Section Method Attribute name and syntax Behavior

SessionTypes >
Type

• Invoke taskRetryLimit=integer • Specifies the number of
attempts to retry a task before
the system fails the task.

• The value can be 0 or greater.
If you specify a value of 3
(default), the system makes 1
attempt to run the task followed
by 3 retries before the task
fails.

• SessionEnter
• SessionUpdate

sessionRetryLimit=integer • Specifies the number of times
the session can retry binding to
the service before the session
is aborted.

• The value can be 0 or greater.
If you specify a value of 3
(default), the system makes 1
initial attempt to run the
SessionEnter or
SessionUpdate methods
followed by 3 retries before the
system aborts the session.

Configuration to modify service instance manager-session manager timeout
actions

You can change how the system handles a timeout between the service instance manager and the session
manager.

Section Attribute name and syntax Behavior

SOAM > SIM blockHostOnTimeout="true" |
"false"

• If "true" (default), blocks the host for the application
when the service instance manager times out while
trying to communicate with the session manager.
This means that the services associated with the
application run on a different host than the one on
which the timeout occurred. If "false", the service
tries to restart on the original host.

• Used with the startUpTimeout attribute.

startUpTimeout="seconds" • Number of seconds to wait for the service instance
manager to communicate with the session manager.
The default is 60 seconds. This parameter works in
conjunction with blockHostOnTimeout.

• After a service instance manager is started, if the
service instance manager cannot contact the
session manager within the startUpTimeout and if
blockHostOnTimeout="true", the session manager
requests a new host from EGO and tries to start a
new service instance manager on the new host.

Application configuration

258 Application Development Guide

Automatic failure recovery interface
Actions to submit workload

No actions required. For recoverable sessions, session manager failover or recovery is transparent to the
application client.

Actions to monitor
You can monitor automatic failure recovery through the Platform Management Console and from the
command line. You can also set up SNMP traps to capture system events.

User Command Description

• Cluster
administrator

From the Platform Management
Console Dashboard

• Displays the overall health and drill-down details of
the cluster, services, and workload. When a process
restarts, the process ID changes.

• Cluster
administrator

From the command line:

egosh resource list -m

• Displays the list of failover candidate hosts in the
cluster and identifies which host is currently the
master.

• Cluster
administrator

From the SNMP trap notifications:

• SYS_FAILOVER_RETRIED

• The system is trying to restart the session manager or
service instance manager.

• SYS_SSM_DOWN • The session manager goes down abnormally.

• SYS_SSM_UP • The session manager comes up.

• Cluster
administrator

From the SNMP trap notifications:

• SYS_VEMKD_UP

• To receive this notification, you must first configure
EGO_EVENT_PLUGIN=plugin_name and
EGO_EVENT_MASK=LOG_INFO in ego.conf.

• Indicates that the master host has failed over to a new
master host, or that the cluster has been reconfigured.

You can also check the progress of failure recovery as follows:

Application configuration

Application Development Guide 259

Process User Command Description

• Service instance
manager

• Service instance

• Cluster
administrator

• Consumer
administrator

• Consumer user

From the Platform Management
Console Dashboard:

Symphony Workload > Monitor
Workload >application_name

• The presence of a running task
indicates that the service
instance manager and service
instance processes are
available.

• If tasks are pending but no
tasks are running, the service
instance manager and service
instance processes might be
unavailable.

From the command line:

soamview app app_name -l

• Displays the number of running
and pending tasks for all
sessions of an application. The
presence of a running task
indicates that the service
instance manager and service
instance processes are
available.

• If tasks are pending but no
tasks are running, the service
instance manager and service
instance processes might be
unavailable.

• Session
manager

• Cluster
administrator

• Consumer
administrator

• Consumer user

From the command line:

soamview app app_name

• The presence of a session
manager process ID indicates
that the session manager is
available.

• Session director
• Repository

service
• Data purger
• Loader controller
• Web service

manager

• Cluster
administrator

From the command line:

egosh service list

• If the process appears in the
STARTED state, the process is
available.

• Master load
information
manager

• Virtual Execution
Machine Kernel
Daemon

• EGO service
controller

• Cluster
administrator

From the command line:

egosh service list

• If the command responds,
these processes are available.

• If the command does not
respond, one of these
processes might be
unavailable.

Application configuration

260 Application Development Guide

Process User Command Description

• Load information
manager (non-
master)

• Process
execution
monitor

• Cluster
administrator

From the command line:

egosh resource list

• If a host has a status of ok, the
load information manager and
process execution monitor on
that host are available.

Actions to control
Not applicable. Automatic failure recovery does not require user intervention.

Actions to display configuration

User Command Behavior

• Cluster
administrator

• Consumer
administrator

• Consumer user

From the Platform Management
Console Dashboard:

Symphony Workload > Monitor
Workload > application_name >
Application Profile

• Displays settings for all of the application-level
automatic failure recovery configuration.

• Cluster
administrator

• Consumer
administrator

• Consumer user

From the command line:

soamview app app_name -p

• Displays application profile settings for the selected
application.

• Cluster
administrator

Cluster > Summary > Master
Candidates

• Displays a list of master candidates and the order in
which failover occurs.

• Cluster
administrator

From the command line:

egosh resource list -m

• Displays the list of failover candidate hosts in the
cluster and identifies which host is currently the
master.

Application configuration

Application Development Guide 261

Feature: Resource reclaim
Resource reclaim—a feature of Platform Symphony’s borrowing, lending, and sharing functionality—
ensures that consumers can take back their deserved shared or lent resources as needed to meet workload
demand.

This is not applicable to Symphony DE.

Scope
Applicability Details

Operating system • All host types supported by the Symphony system

Exclusions • Does not apply to Symphony DE, which does not have resource lending, borrowing,
and reclamation

About resource reclaim
Purpose of resource reclaim

Resource reclaim provides a way for the system to reallocate borrowed or shared resources to a consumer
when the consumer has workload demand under any of the following conditions:

• A lending consumer has workload demand that requires slots owned by the lending consumer
• Share ratios are configured, and an under-allocated consumer (a consumer that is not currently using

its deserved number of shared slots) has workload demand that requires the use of more slots
• A time based resource plan has time intervals that change the number of owned resources, share ratios

and limits, borrowing and lending policies, and borrowing and lending limits for one or more
consumers

The system does not always return the same resource that the consumer originally lent. If workload is
running on a borrowed resource, the system could reclaim a different physical resource (that meets the
resource requirements) from the borrower and allocate that resource to the lending consumer in place of
the original resource.

Benefits of resource reclaim
The following illustrations show how the resource reclaim feature works when borrowing, lending, or
sharing are enabled.

Important:
Resource reclaim is enabled by default whenever borrowing and lending
are enabled. You cannot disable resource reclaim for borrowed or lent
resources.

How resource reclaim works for borrowing and lending
You can choose to enable borrowing and lending for owned resources. When you enable borrowing and
lending, resource reclaim is always enabled.

Application configuration

262 Application Development Guide

Without resource reclaim for sharing (feature not enabled)
In this example, the share ratio is 3:1. Consumer A deserves 3 times the number of slots as Consumer B.

Application configuration

Application Development Guide 263

With resource reclaim for sharing (feature enabled)
In this example, the share ratio is 3:1. Consumer A deserves 3 times the number of slots as Consumer B.

Service instance interrupt handling
Resource reclaim is enabled whenever you enable lending or borrowing for leaf consumers that own
resources. By default, the system:

• Immediately sends an interrupt event to the service to notify it of the pending reclaim.
• Allows the service the number of seconds specified in the reclaim grace period to complete processing

before terminating the service instance. Tasks that were running on the service instance before it was
killed are requeued to their respective sessions. The default grace period is 0 seconds.

• After the reclaim grace period expires, EGO allows 120 seconds leeway time for the return of any
reclaimed resources. This is to account for network overhead and other considerations.

The onServiceInterrupt service handler method provides the most effective way to manage an interruption
caused by resource reclaim. Use of this method ensures that the service instance receives immediate
notification of a pending interruption.

During a reclaim, the service interrupt indicates how much time the service instance takes to complete
current running service method and the service instance to clean up. If the service method and cleanup
does not complete within the set time, then Symphony will terminate the instance. If the timeout has not
expired, Symphony will initiate cleanup after the current running service method completes.

If a task is running and the Invoke method completes during the applied reclaim grace period, the result
of that method is treated as it would be treated under normal circumstances.

If a task is running and the Invoke method does not complete before the applied reclaim grace period
expires, the service instance on which the task is running is terminated and the task is requeued.

Application configuration

264 Application Development Guide

Another but less effective way to manage an interruption is for the service instance to periodically call the
getLastInterruptEvent method for interrupt events. With this method, the service instance polls and will
not immediately detect the interrupt. While the service instance is polling, the reclaim grace period is
expiring, and the service instance will have less time to return a result or shut down gracefully.

Configuration to enable resource reclaim
Borrowing and lending with respect to reclaim

Resource reclaim of borrowed resources is always enabled if you configure borrowing and lending at the
consumer level. Borrowing and lending can only be configured at the leaf consumer.

Configuration source Setting Behavior

Platform Management Console:
Consumers > Consumers & Plans
> Resource Plan > Show Advanced
Settings > Expand All

Owned Slots=integer • Specifies a number of slots
owned by a leaf consumer. The
leaf consumer is guaranteed to
receive this number of slots,
provided that the consumer has
enough demand. If a consumer’s
owned slots are lent to a
borrowing consumer, and the
lending consumer has workload
demand, the system initiates a
reclaim of the owned slots.

For the lending consumer:

• Lend checkbox selected
• Details:

• Lend checkbox selected for
the consumer to lend to

• Enables the consumer to lend
resources to the specified
consumer(s)

• The specified consumer(s) must
have borrowing enabled and
specify the lending consumer.

For the borrowing consumer:

• Borrow checkbox selected
• Details:

• Borrow selected for the
consumer to borrow from

• Enables the consumer to borrow
resources from the specified
consumer(s)

• The specified consumer(s) must
have lending enabled and specify
the borrowing consumer.

Share pool and share ratio
Resource reclaim for shared resources is enabled by default once you configure a share pool and share
ratios for at least one consumer branch.

Application configuration

Application Development Guide 265

Configuration source Setting Behavior

Platform Management Console:
Consumers > Consumers & Plans
> Resource Plan > Show
Advanced Settings > Expand All

Owned Slots=integer • Specifies a number of slots
owned by a leaf consumer. The
leaf consumer is guaranteed to
receive this number of slots,
provided that the consumer has
enough demand. If a consumer’s
owned slots are lent to a
borrowing consumer, and the
lending consumer has workload
demand, the system initiates a
reclaim of the owned slots.

• Any unowned slots constitute a
“share pool” for allocation to leaf
consumers with unsatisfied
demand.

Share Ratio selected and integer
specified as a value

• Sets the relative share ratios
within a share pool.

• If you specify 0 for a consumer,
that consumer gives up its share
of the share pool when a sibling
has demand. A consumer with a
share ratio of 0 does not receive
any resources from the share
pool.

Platform Management Console:
Cluster > Summary > Cluster
Properties > Specify resource
allocation behavior

Reclaim shared resources selected • When selected (the default
setting), the share pool reclaims
resources from a consumer that
is using more slots than it
deserves based on its share ratio
to meet the demands of a
competing consumer with a
higher share ratio.

Resource reclaim behavior
Order of resource reclaim (consumer level)

Consumers reclaim resources in the following order, regardless of a consumer’s history of resource usage:

When the system
reclaims …

Then reclaim occurs in the order of… Example

Borrowed
resources

Resource requirements, determined by the
resource group associated with the consumer.

If the lending consumer needs a Windows slot
with a certain amount of available memory, the
system looks first for an analogous resource to
reclaim.

Application configuration

266 Application Development Guide

When the system
reclaims …

Then reclaim occurs in the order of… Example

Shared resources Relative consumer rank, configured in the
Resource Plan. Consumer rank is an optional
setting. A rank of 0 is the highest rank and
larger numbers indicate a lower rank. The
system reclaims resources from the lowest
ranking consumer first.

The system first reclaims resources from a
consumer with rank 50, and then reclaims
resources from a consumer with rank 25.

• By default, the system enforces share
ratios at the level of the leaf (child)
consumers. If your system is configured to
enforce share ratios at the parent level, the
system reclaims resources from the parent
consumer.

Consumer A is a child consumer of Parent A.
Parent A and Parent B are siblings. With share
ratio enforced at the parent level, Parent A
shares 10 slots with Parent B. Parent B is
running workload on 5 slots obtained from
Parent A’s share. If Consumer A has
unsatisfied demand for 2 slots and all of Parent
A’s slots are allocated, the system reclaims 2
slots from Parent B to allocate to Parent A.

Order of resource reclaim (resource level)
When the system must reclaim a resource from a consumer, and there are multiple possibilities for which
resource could be reclaimed, these steps describe how your configuration choices help to determine exactly
which task will be interrupted and which resource will be reclaimed.

Session importance (preemption rank or session priority) and preemption criteria are always potential
influences, but the selective reclaim configuration is the most important parameter because it determines
whether the other parameters can influence host selection or not. Note that selective reclaim can only be
enabled if "Optimized for application specified conditions" (default setting) is configured through the
PMC. If selective reclaim is disabled, the system will still select the "best" slot on a host, but it may appear
that resource selection happens at random because there is no effort to select the "best" host among
multiple candidates.

The system chooses the resource using the following logic.

1. Consider selective reclaim configuration.

1. If selective reclaim is disabled, reclaim resources as quickly as possible, with minimum overhead.
This is the default.

EXAMPLE: if multiple hosts in the consumer could meet the resource requirement, the system
selects any one at random.

2. If selective reclaim is enabled, reclaim resources from the less important sessions first. This option
has greater overhead.

EXAMPLE: if multiple hosts in the consumer could meet the resource requirement, the system
selects all candidate hosts.

2. For proportional or minimum services scheduling, consider preemption rank. For priority scheduling,
consider session priority instead of preemption rank.

1. With proportional or minimum services scheduling:

From the host or hosts selected, select the least important session, according to preemption rank.

If multiple sessions have equal low rank, select all candidate sessions.

Application configuration

Application Development Guide 267

If the resource requirement is for an exclusive host, treat all sessions on a host as if they had the
same rank as the most important session using the host.

2. With priority scheduling:

From the host or hosts selected, select the least important session, according to session priority.

If multiple sessions have equal low priority, select the most recently started session.

If the resource requirement is for an exclusive host, treat all sessions on a host as if they had the
same priority as the most important session using the host.

3. Consider preemption criteria.

1. If the criteria is MostRecentTask, reclaim resources from the most recently submitted tasks first.

EXAMPLE: from one or more sessions, the system selects the most most recently started task and
reclaims the resource it is using.

If multiple tasks have the same run time, the system selects any one at random.

If multiple tasks run on a slot, consider the cumulative run time of all tasks using the slot.
2. If the criteria is PolicyDefault, the behavior changes depending on the scheduling policy. This is

the default setting for the parameter.

• With proportional or minimum services scheduling:

The default is to reclaim resources from the most over-allocated sessions first. This is the option
with minimum overhead.

EXAMPLE: from multiple sessions, the system selects the most over-allocated session, and
reclaims a resource it is using (task selection is random).

If multiple sessions are equally over-allocated, the system selects any one at random.

If no session is over-allocated, select the least under-allocated instead.
• With priority scheduling:

The default is to selects a task from a session with the lowest priority, followed by tasks from
the last started session. This is the option with minimum overhead.

Selective reclaim considerations
An application may be a candidate for selective reclaim when it may need to borrow slots from other
consumers and has critical or long running tasks that you do not want interrupted.

Important:
Selective reclaim will not take effect if Reclaim optimization is configured
as Optimized for standby service in the PMC.

Here are some considerations when using selective reclaim.

• Are there any critical tasks in the application? If the answer is yes, configure a high preemption rank
for critical sessions to protect critical tasks from being interrupted. Otherwise, leave all preemption
ranks at the same level. (This only applies to proportional or minimum service policies. For the priority
scheduling policy, the session priority is used.)

• If there are long running tasks (not critical ones), set preemption criteria to MostRecentTask so that
when reclaim happens, the CPU time of long running tasks is not lost.

• If all the tasks are short running, set preemption criteria to default for better SSM performance.

Application configuration

268 Application Development Guide

Consumer demand
Consumers with workload demand can have lent resources reclaimed for them. When the system reclaims
a resource, the system interrupts the borrower’s tasks running on the reclaimed resource. The reclaim
grace period allows time for a task running on a borrowed slot to complete before the resource returns
to its owner. To avoid being requeued, tasks must exit within the reclaim grace period.

By default, the system reclaims owned resources only after attempting to satisfy demand by borrowing
resources from other lending consumers or from the share pool. You can change this behavior so that the
system reclaims owned resources before allocating borrowed or shared resources.

Time interval transitions
With a time based resource plan that specifies different values for ownership, lend and borrow limits,
share ratios and limits, or total slots in the share pool, a transition from one time interval to the next can
trigger resource reclaim. By default, the system enforces ownership and limits when the new time interval
takes effect. The following examples illustrate how time interval changes trigger resource reclaim:

When… The behavior is… Example

A consumer’s ownership
increases for the new time interval,
lending and borrowing are not
configured, and another consumer
is using more than its deserved
resources

The system reclaims slots whether
or not consumers have unsatisfied
demand.

1. Consumer A owns 10 slots between
8:00 a.m. and 5:00 p.m. and 25 slots
between 5:01 and 11:49 p.m.

2. At 5:01 p.m., Consumer B is using more
than its deserved slots.

3. At 5:01 p.m., the system reclaims 15
slots to allocate to Consumer A.

A consumer’s ownership
decreases for the new time
interval, and lending and
borrowing are not configured

The system reclaims the number
of slots required to conform to the
ownership values configured for
the new time interval, whether or
not other consumers have
unsatisfied demand.

1. Consumer A owns 10 slots between
8:00 a.m. and 5:00 p.m. and 5 slots
between 5:01 and 11:49 p.m.

2. Consumer B owns 5 slots between 8:00
a.m. and 5:00 p.m. and 10 slots
between 5:01 and 11:49 p.m.

3. At 5:01 p.m., the system reclaims 5
slots from Consumer A, even if
Consumer A has unsatisfied demand,
and allocates 5 slots to Consumer B.

Application configuration

Application Development Guide 269

When… The behavior is… Example

A consumer’s ownership
decreases for the new time
interval, borrowing and lending for
the consumer are configured, and
a lending consumer has slots
available

The system reclaims the number
of slots required to conform to the
ownership values configured for
the new time interval, and then the
consumer borrows available
resources; the resource status
changes from owned to borrowed.

1. Consumer A owns 10 slots between
8:00 a.m. and 5:00 p.m. and 5 slots
between 5:01 and 11:49 p.m.

2. Consumer B owns 5 slots between 8:00
a.m. and 5:00 p.m. and 10 slots
between 5:01 and 11:49 p.m.

3. At 5:00 p.m., Consumer A has workload
running on 10 slots and Consumer B
has workload running on 5 slots.

4. At 5:01 p.m., the system reclaims 5
slots from Consumer A, even if
Consumer A has unsatisfied demand,
and allocates 5 slots to Consumer B.

5. Consumer A is configured to borrow
from Consumer B, and Consumer B is
configured to lend to Consumer A.

6. Consumer B has no demand for the 5
reclaimed slots. Consumer A borrows 5
slots from Consumer B.

A consumer’s lend limit decreases
for the new time interval

The system reclaims the number
of slots required to conform to the
new lend limit whether or not the
consumer has unsatisfied
demand.

1. Consumer A has a lend limit of 10 slots
between 8:00 a.m. and 5:00 p.m. and 5
slots between 5:01 and 11:49 p.m.

2. Consumer B borrows 10 slots from
Consumer A.

3. At 5:01 p.m., the system reclaims 5
slots from Consumer B and allocates
them to Consumer A.

A consumer’s borrow limit
decreases for the new time interval

The system reclaims the number
of slots required to conform to the
new borrow limit, whether or not
the lending consumer has
unsatisfied demand.

1. Consumer A has a borrow limit of 10
slots between 8:00 a.m. and 5:00 p.m.
and 5 slots between 5:01 and 11:49
p.m.

2. Consumer A borrows 10 slots from
Consumer B.

3. At 5:01 p.m., the system reclaims 5
slots from Consumer A to return to
Consumer B.

A consumer’s share limit
decreases

The system reclaims the number
of slots required to conform to the
new share limit, whether or not a
competing consumer has
unsatisfied demand.

1. Consumer A has a share limit of 10 slots
between 8:00 a.m. and 5:00 p.m. and 5
slots between 5:01 and 11:49 p.m.

2. A share pool is configured for the
consumer branch (the parent consumer
and its children).

3. At 5:01 p.m., the system reclaims 5
slots from Consumer A to return to the
share pool.

Application configuration

270 Application Development Guide

When… The behavior is… Example

The total number of slots in the
share pool decreases

The system reclaims the number
of slots needed to maintain share
ratios whether or not a competing
consumer has unsatisfied
demand.

1. Consumers A and B each have a share
ratio of 1.

2. The consumer branch owns 10 slots
between 8:00 a.m. and 5:00 p.m. and 4
slots between 5:01 and 11:49 p.m.

3. At 5:00 p.m., Consumer A runs
workload on 5 slots, and Consumer B
runs workload on 5 slots.

4. At 5:01 p.m., consumers A and B each
return 3 slots to the share pool.

5. During the new time interval, Consumer
A runs workload on 2 slots and
Consumer B runs workload on 2 slots.

Configuration to modify resource reclaim behavior
Configuration to modify the reclaim grace period

You can configure a different reclaim grace period behavior for each consumer.

Important:
The borrowing consumer determines the reclaim grace period. When you
configure borrowing and lending, ensure that the lending consumer can
wait for the maximum reclaim grace period configured for all of its
borrowing consumers.

Configuration source Setting Behavior

Platform Management
Console: Consumers >
Consumers & Plans >
consumer_name >
Consumer Properties >
Reclaim behavior

Reclaim grace period= integer

Seconds | Minutes | Hours
• Specifies the wait time before the system

interrupts workload running on a borrowed or
shared host to reclaim the resource.

• To reclaim resources almost immediately, specify
0 seconds.

• If you leave the reclaim grace period blank or
specify 0, the system uses a default grace period
of 0 seconds.

• As a best practice, you should specify a realistic
value that allows tasks from all of your
applications enough execution time and time to
clean up to avoid unnecessary interruption.

Consider both the typical length of a workload unit
run by a borrowing consumer and the urgency of
workload demand from the lending consumer.

Configuration to modify system rebalancing behavior
You can configure system rebalancing behavior for each consumer.

Note:

Application configuration

Application Development Guide 271

Child consumers do not inherit the value set for the parent consumer.

Configuration source Setting Behavior

Platform Management
Console: Consumers >
Consumers & Plans >
consumer_name >
Consumer Properties >
Reclaim behavior

Rebalance when resource plan
changes or time interval
changes selected

• (Default setting) Enforces ownership, share
ratios, and borrowing, lending, and share limits
for this consumer when the resource plan is
changed or the new time interval takes effect,
regardless of consumer demand.

• If corresponding lending and borrowing
consumers have different rebalancing settings
(one is selected and the other is deselected), the
consumer with an over-allocation determines
which setting the system uses, which determines
whether rebalancing occurs.

Rebalance when resource plan
changes or time interval
changes deselected

• When deselected, the system waits until
borrowed resources are returned before
enforcing new ownership, share ratios, and
borrowing, lending, and share limits for this
consumer. Note that due to potential
interrelationships of consumers, this setting can
impact the enforcement of new ownership, share
ratios, and borrowing, lending and share limits for
other consumers that must wait for resources to
be returned. It is recommended that all
consumers in a resource group have the same
rebalancing setting.

Configuration to modify reclaim behavior for shared resources
You can configure whether the system reclaims shared resources or waits until consumers release shared
resources after completing workload tasks, and whether to enforce share ratios at the parent level.

Configuration source Setting Behavior

Platform Management
Console: Cluster >
Summary > Cluster
Properties > Specify
resource allocation
behavior

Reclaim shared resources
selected

• (Default setting) Enables the system to reclaim
resources from an over-allocated consumer
when a consumer with a higher share ratio has
unsatisfied demand.

Reclaim shared resources
deselected

• When deselected, the system does not reclaim
shared resources.

ego.conf EGO_PARENT_QUOTA=Y • Enforces share ratios at the parent level, which
allows a leaf (child) consumer to have resources
reclaimed from another consumer branch, based
on the parent consumers’ share ratios.

By default EGO_PARENT_QUOTA is set to N.
• You must restart EGO on the master and all

master candidates after modifying ego.conf.

Application configuration

272 Application Development Guide

Configuration to modify reclaim behavior for owned resources
By default, consumers borrow resources before their owned resources are reclaimed. You can modify this
behavior so that lent resources are reclaimed before borrowing resources from another consumer. This
is useful when a consumer’s owned resources have specific characteristics required to run the consumer’s
workload, or when borrowing from a different consumer branch incurs costs based on charge-back
policies at your site.

Configuration source Setting Behavior

Platform Management
Console: Cluster >
Summary > Cluster
Properties > Specify
resource allocation
behavior

Reclaim lent resources before
borrowing selected

• Enables reclaim of owned resources before
borrowing resources from other consumers.

Reclaim lent resources before
borrowing deselected

• (Default setting) When deselected, consumers
with unsatisfied demand borrow resources from
other consumers before having their owned
resources reclaimed.

Configuration to enable selective reclaim
By default, the system will reclaim resources as quickly as possible, with minimum overhead. You can
modify this behavior so that the system considers the relative importance of running work and reclaims
resources from less important sessions first.

Configuration source Setting Behavior

Platform Management
Console: Symphony
Workload > Configure
Applications

Open the application
profile and edit the
General Settings
section.

Enable Selective Reclaim = true • From all the suitable hosts in the consumer,
consider session importance (preemption rank or
session priority) and preemption criteria to
determine which resource to reclaim.

Enable Selective Reclaim = false • (Default setting) From all the suitable hosts in the
consumer, pick a host at random and reclaim a
resource from that host. Session importance
(preemption rank or session priority) and
preemption criteria determine which slot on the
host is chosen.

Configuration to modify preemption rank
This parameter is ignored if priority scheduling is used.

By default, all sessions are considered to be of equal importance when the system is reclaiming resources.
You can modify this behavior by ranking sessions in order of importance when you create a new session.
When sessions have different ranks, the system may reclaim resources from the low-ranking sessions first.

Preemption rank is similar to session priority but it cannot be changed after the session has started, and
it is not used when the system has to allocate resources, only when it has to reclaim them.

Application configuration

Application Development Guide 273

Configuration source Setting Behavior

Platform Management
Console: Symphony
Workload > Configure
Applications

Open the application
profile and edit the
Session Type Definition
section.

Preemption Rank = n • Specifies the preemption rank, a numerical value
from 1 -10000.

• The default preemption rank is the lowest
possible value,1.

• To help protect an important session from losing
a resource, specify a higher rank for the session.
When there are multiple resources that could be
reclaimed, the system may reclaim resources
used by lower-ranking sessions first.

• If you do not enable selective reclaim, setting the
preemption rank may not have a significant effect.

Configuration to modify preemption criteria
By default, the preemption criteria depends on the scheduling policy, and minimizes system overhead.

If you do not have selective reclaim enabled, changing the preemption criteria may not have a significant
effect on reclaim behavior.

You can modify this behavior so that the system reclaims resources from recently started tasks first.

Configuration source Setting Behavior

Platform Management
Console: Symphony
Workload > Configure
Applications

Open the application
profile and edit the
General Settings
section.

Preemption Criteria =
MostRecentTask

• From all the candidate sessions, find the task with
the least run time, and reclaim the resource it is
using.

• If multiple tasks have the same run time, choose
one at random.

• If multiple tasks run on a slot, consider the
cumulative run time of all tasks on that slot.

Preemption Criteria = Default

and

Scheduling Policy = Proportional
Scheduling or Minimum Services

• (Default setting) Reclaim resources from the most
over-allocated session first.

• If multiple sessions are equally over-allocated,
pick one at random.

• If no sessions are over-allocated, pick the least
under-allocated.

Preemption Criteria = Default

and

Scheduling Policy = Priority
Scheduling

• (Default setting) If multiple resources are
available, pick one at random.

Resource reclaim interface
Actions to monitor

You can monitor resource reclaim through the Platform Management Console.

Application configuration

274 Application Development Guide

Platform Management Console option Description

Resources > Monitor Resource Allocation • Displays a list of consumers along with each consumer’s
current allocation of owned, shared, and borrowed slots and
the consumer’s current demand

Actions to control
Once you have configured borrowing, lending, and sharing for your cluster, you cannot directly control
or release reclaimed resources. When you modify the resource plan and click Apply, changes take effect
immediately and could trigger resource reclaim.

User Interface Behavior

• Cluster
administrator
(EGO)

From the command line:

egosh resource close -reclaim
resource_name

• Closes a resource, preventing further
allocation. The system reclaims the host
before it closes; running workload units are re-
queued after the configured grace period.

• Application
developer

Using the API:

onServiceInterrupt

• Notifies the service that the service instance
manager has sent an interrupt signal.

Actions to display configuration

User Command Behavior

• Cluster
administrator

• Consumer
administrator

From the Platform Management Console:

• Consumers > Consumers & Plans
> consumer_name > Consumer
Properties > Reclaim behavior

• Displays the settings for Reclaim grace
period and Rebalance when resource plan
changes or time interval changes

• Cluster
administrator

• Consumer
administrator

From the Platform Management Console:

• Consumers > Consumers & Plans
> Resource Plan> Show Advanced
Settings > Expand All

• Displays the ownership, rank, lend, borrow,
and share settings for all consumers

• Cluster
administrator

From the Platform Management Console:

• Cluster > Summary > Cluster
Properties > Specify resource
allocation behavior

• Displays the settings for Reclaim shared
resources and Reclaim lent resources
before borrowing

• Cluster
administrator

• Consumer
administrator

From the Platform Management Console
Dashboard:

• Symphony Workload > Monitor
Workload > Application Properties

From the command line:

• soamview app app_name -l

• Displays the setting for Selective Reclaim

Application configuration

Application Development Guide 275

User Command Behavior

• Cluster
administrator

• Consumer
administrator

From the Platform Management Console
Dashboard:

• Symphony Workload > Monitor
Workload > Application Properties

From the command line:

• soamview app app_name -l

• Displays the setting for Preemption Criteria

• Cluster
administrator

• Consumer
administrator

From the Platform Management Console
Dashboard:

• Symphony Workload > Monitor
Workload > application_name >
Session ID > Session Properties

From the command line:

• soamview session
application_name:session_ID -l

• Displays the setting for Preemption Rank

Application configuration

276 Application Development Guide

Updating applications
This section describes how to update a Symphony application. There are two approaches to updating
applications: static configuration and dynamic configuration. The one you choose depends on the scope
of your changes.

Static configuration updates allow you to modify any parameter within the application profile. It offers a
wider range of possible changes to application profile parameters than the dynamic configuration update
but requires that the application be reregistered after the changes. This results in the termination of
running workload associated with the application.

Dynamic configuration updates allow you to update an application without impacting existing clients or
workload. Using this method, only changes to the service and session type sections of an application
profile can be made. For other changes, the application must be disabled and unregistered, which results
in the termination of running workload for that application.

Static configuration update
Use this method of updating an application when you want to change some application parameters and
the changes are beyond the scope of a dynamic configuration update.

Updating the application profile does the following:

• Terminates existing sessions and tasks
• In Symphony grid, releases all resources allocated to the application and shuts down session manager.

In Symphony DE, there is no resource allocation.
• Re-registers the application profile

Note:
You can also update application parameters through the command-line.
Use soamview app appname -p >filename to send your current
profile to a file. Edit it and use soamreg to re-register the application.

1. In the Platform Management Console, select Symphony Workload > Configure Applications.
2. Click the application name.

The application profile displays.
3. From the drop-down list, select Basic Configuration or Advanced Configuration.
4. Modify desired parameters.

Note:
If parameters you want to modify are not visible through the Console,
export the application profile and modify it with an XML editor, then
reimport the updated profile.

5. Click Save to apply your changes and restart the application.

About dynamic application updates
This section provides an overview of the dynamic application update feature.

Symphony’s dynamic application update feature facilitates the administration of service packages and
their associations with applications. The Symphony application update features allow you to:

Updating applications

Application Development Guide 277

• Deploy an updated service package without stopping the current workload.
• Dynamically update or remove session type and service sections from the application profile without

stopping the current workload. Only sessions using the removed sections are affected.
• Dynamically add session type and service sections to the application profile without stopping the

current workload.
• Deploy a service package to any level of the consumer tree allowing the service to be shared with all

consumers below this level. This enables service packages to be shared among multiple applications
linked by the downward path of the consumer hierarchy.

The following table offers guidelines for choosing the right method to perform typical application updates.
Within this table, the term workload is defined as existing running tasks and sessions associated with the
application that is being updated.

Option What you want to do Result

1 1. You have an updated service package for an enabled
application.

2. You want current and future workload to use the
updated service package.

3. You want to overwrite the original service package.

Note:
You will not be able to switch back to
the original service package.

Refer to Using the PMC to deploy service packages for
consumers with short names on page 279

• Workload continues to run with the next
scheduled task using the updated service
package.

• The updated service package has the
same name as the original service
package.

• Once updated, the original service
package is no longer available in the
repository.

• Clients do not need modification.

2 1. You have an updated service package for an enabled
application.

2. You want current and future workload to use the
updated service package.

3. You want to be able to easily switch back to the original
service package, if necessary.

Note:
You must use a new name for the
updated service package so that the
repository can store both the original
and updated packages.

Refer to Change a service package for an existing
service on page 280

• Workload continues to run with the next
scheduled task using the updated service
package.

• The updated service package has a
different name than the original serivce
package.

• Once it is replaced, the original service
package is still available in the repository.

• Clients do not need modification.

3 1. You have a new service package for an enabled
application.

2. You only want clients that have been notified to use the
new service.

Refer to Add a new service and session type on page
281

• Workload continues to run using the
existing service.

• Clients that are aware of the new session
type can use the new service.

• Clients may need modification.

Updating applications

278 Application Development Guide

Option What you want to do Result

4 1. You have a new service package for an enabled
application.

2. You want to use the new service when you create a
new session.

Refer to Assign a new service to an existing session type
on page 284

• Workload continues to run using the
existing service.

• New sessions with the updated session
type use the new service.

• Clients do not need modification.

5 You no longer need a service or session type and want to
remove it from an application.

Refer to Remove a service/session type on page 286

Any session that uses the removed service or
session type is aborted.

Using the PMC to deploy service packages for
consumers with short names

.

1. From the PMC, select Symphony Workload > Manage Service Packages.
2. Select the relevant consumer (applicable to Symphony grid version only).
3. Select Global Actions > Add package to repository.
4. Click in the deploy use short consumer name checkbox.

Update an existing service package using the CLI
Perform this task when you want to overwrite an existing service package in the repository. For example,
you made a modification to a service binary and would like to replace the existing serivce binary with the
new one without disrupting existing clients or workload. In this case, when you redeploy a service package
that is being used by an enabled application, workload continues to run with the next scheduled task using
the updated service package.

1. Compile your new service binaries and add them to the service package.
2. At the command prompt, change your current directory to the directory where the service package is

located.

Note:
For the following step, ensure that the package name matches the
original package name in the repository.

3. Deploy the service package:

For example:

soamdeploy add SampleService -p SampleService.zip -c /SampleApplications/SOASamples
4. Verify that the workload is still running (applicable to long-running tasks):

For example:

soamview session SampleApp

Updating applications

Application Development Guide 279

Change a service package for an existing service
Perform this task when you want to replace a service package but you also want to be able to easily switch
back to the original service package. Workload continues to run with the next scheduled task using the
updated service package.

1. Compile your new service binaries and add them to the service package.
2. Associate the new service package with a service:

a) From the PMC, select Symphony Workload > Configure Applications.
b) Select the relevant consumer (applicable to Symphony grid version only).
c) Click the application name.

The application profile displays.
d) From the drop-down list, select Dynamic Configuration Update.

A sub menu displays.
e) Select Change Service Package/Attributes.
f) From the Service Package drop-down list, select the new service package.

If the new service package is not in the list:

1. Select Add Package to repository.
2. Click Browse and navigate to the new service package. Select the package and click Open.
3. Choose whether to use the file name as the package name or enter a new name. In either case,

ensure that the package name is different than the package name you are replacing.
4. Click Add.

An information dialog displays. Click Close.

The new service package displays in the drop-down list.
g) Update the Start Command, if necessary.
h) Click Apply.

A confirmation dialog displays. Click OK.

An information dialog displays. Click OK.
i) Click Close.

3. Verify that the workload is still running (applicable to long-running tasks):
a) Select Symphony Workload > Monitor Workload.
b) Click the application name.
c) Click the session ID.
d) Verify that the tasks are still running. The update takes effect with the start of the next scheduled

task.

Note:
If you need to switch back to the original service package, simply
associate the service with the original service package, as described
above.

Change a service package using the CLI
Perform this task when you want to replace a service package but you also want to be able to easily switch
back to the original service package. Workload continues to run with the next scheduled task using the
updated service package.

Updating applications

280 Application Development Guide

1. Compile your new service binaries and add them to the service package.
2. At the command prompt, change your current directory to the directory where the service package is

located.

Note:
For the following step, ensure that the package name is different than
the original package name in the repository.

3. Deploy the service package:

For example:

soamdeploy add SampleApp_pkg2 -p SampleApp_pkg2.zip -c /SampleApplications/
SOASamples

4. Associate the new service package with the service:
a) Open the application profile with an editor.
b) Update the service package name. For example:

<Profile ...>
 <Service name="ServiceA" description="My Sample Service A"
 packageName="SampleApp_pkg2" deploymentTimeout="300">
 </Service>
...
</Profile>

c) Save the file.
5. Register the application dynamically:

For example:

soamreg SampleApp.xml -d
6. Verify that the workload is still running (applicable to long-running tasks):

For example:

soamview session SampleApp

Note:
If you need to switch back to the original service package, simply
associate the service with the original service package, as described
above.

Add a new service and session type
Perform this task when you want to add a new service and session type to your application. For example,
you want to restrict the use of a new service only to clients that have been notified about the new session
type in your existing application. You want to add this new service and session type to the application
without affecting existing clients or workload. New sessions created after this update can use the new
service and session type.

This procedure assumes that you have already created a new service package.

1. Add a new service to the application:
a) From the PMC, select Symphony Workload > Configure Applications.
b) Select the relevant consumer (applicable to Symphony grid version only).
c) Click the application name.

Updating applications

Application Development Guide 281

The application profile displays.
d) From the drop-down list, select Dynamic Configuration Update.

A sub menu displays.
e) Select Add Service/Session Type.
f) In the Service Definition group, click Add.
g) Enter the service name. Click Add.
h) Enter a description for the service.
i) From the Service Package drop-down list, select the new service package.

If the new service package is not in the list:

1. Select Add Package to repository.
2. Click Browse and navigate to the new service package. Select the package and click Open. Click

Add.

An information dialog displays. Click Close.
j) Update the start command.

For example:

${SOAM_DEPLOY_DIR}/SampleService
2. Add a new session type to the application:

a) In the Session Type Definition group, click Add.
b) Enter the new session type. Click Add.
c) From the Service Definition drop-down list, select the new service that you just added to the

application.
d) Click Apply.

A confirmation dialog displays. Click OK.

An information dialog displays. Click OK.
e) Click Close.

3. Verify that the workload is still running (applicable to long-running tasks):
a) Select Symphony Workload > Monitor Workload.
b) Click the application name.
c) Click the session ID.
d) Verify that the tasks are still running. (Existing clients and workload are not affected.)

You can use the new service and session type when you create a new session.

Add a new service and session type using the CLI
Perform this task when you want to add a new service and session type to your application. For example,
you want to restrict the use of a new service only to clients that have been notified about the new session
type in your existing application. You want to add this new service and session type to the application
without affecting existing clients or workload. New sessions created after this update can use the new
service and session type.

This procedure assumes that you have already created a new service package.

1. Add the new session type and service to the application:
a) Open the application profile with an editor.

Updating applications

282 Application Development Guide

b) Add the new session type definition to the application by creating a new Type element.
c) Set the session type name and service name attributes.

The service name can be any name you want and is used to link the session type definition with
the service definition.

For example:

...
<Profile ...>
 ...
 <SessionTypes>
 <Type name="MysessiontypeA" serviceName="SampleServiceA" priority="1"
 recoverable="false" sessionRetryLimit="3" taskRetryLimit="3"
 abortSessionIfTaskFail="false" suspendGracePeriod="100"
 taskCleanupPeriod="100"persistSessionHistory="all"
 persistTaskHistory="all"/>
 </SessionTypes>

d) Add the new service definition to the application by creating a new Service element.
e) Set the service name and package name attributes.

The service name must match the service name that you specified in the Type element.
f) Change startCmd to point to your service executable.

Leave the ${SOAM_DEPLOY_DIR} in your path as this is the deployment directory in the system.
If your service is located under a subdirectory, indicate the subdirectory after $
{SOAM_DEPLOY_DIR} in the path.

On Windows:

 <Service name="SampleServiceA" description="My Sample Service A"
 packageName="ServiceApkg" deploymentTimeout="300">
 <osTypes>
 <osType name="all" startCmd="${SOAM_DEPLOY_DIR}\SampleServiceA.exe">
 </osType>
 </osTypes>
 </Service>
...
</Profile>

On Linux:

 <Service name="SampleServiceA" description="My Sample Service A"
 packageName="ServiceApkg" deploymentTimeout="300">
 <osTypes>
 <osType name="all" startCmd="${SOAM_DEPLOY_DIR}/SampleServiceA">
 </osType>
 </osTypes>
 </Service>
...
</Profile>

g) Save the application profile.
2. Register the application profile dynamically with the soamreg command.

For example:
soamreg SampleApp.xml -d

The application is updated, registered, and enabled. Existing clients and workload are not affected by
the update. You can use the new service and session type when you create a new session.

3. Verify that the workload is still running (applicable to long-running tasks):

Updating applications

Application Development Guide 283

For example:

soamview session SampleApp

Assign a new service to an existing session type
Perform this task when you want to assign another service to an existing session type. For example, you
have a new service and want to associate it with an existing session type. You want to use the new service
starting with the next session.

Updating the session type in the application profile results in the following:

• Open sessions having the updated session type will continue to use the old service until the sessions
are closed

• New sessions created after the update will use the new service

This procedure assumes that you have already created a new service package.

1. Add a new service to the application:
a) From the PMC, select Symphony Workload > Configure Applications.
b) Click the application name.

The application profile displays.
c) From the drop-down list, select Dynamic Configuration Update.

A sub menu displays.
d) Select Add Service/Session Type.
e) In the Service Definition group, click Add.
f) Enter the new service name. Click Add.
g) From the Service Package drop-down list, select the new service package.

If the new service package is not in the list:

1. Select Add Package to repository.
2. Click Browse and navigate to the new service package. Select the package and click Open. Click

Add.
h) Click Apply.

2. Associate the new service with an existing session type:
a) Select Symphony Workload > Configure Applications.
b) Click the application name.

The application profile displays.
c) From the drop-down list, select Dynamic Configuration Update.

A sub menu displays.
d) Select Change Service For Session Type.
e) From the drop-down list in the Session Type Definition group, select the relevant session type.
f) From the Service Definition drop-down list, select the new service you want to assign to the

selected session type.
g) Click Apply.

A confirmation dialog displays. Click OK.

An information dialog displays. Click OK.

Updating applications

284 Application Development Guide

h) Click Close.
3. Verify that the workload is still running (applicable to long-running tasks):

a) Select Symphony Workload > Monitor Workload.
b) Click the application name.
c) Click the session ID.
d) Verify that the tasks are still running.

The new service will take effect when you create a new session. Existing clients and workload will
not be affected.

Assign a new service to an existing session type using
the CLI

Perform this task when you want to assign another service to an existing session type. For example, you
have a new service and want to associate it with an existing session type. You want to use the new service
starting with the next session.

Updating the session type in the application profile results in the following:

• Open sessions having the updated session type will continue to use the old service until the sessions
are closed

• New sessions created after the update will use the new service

This procedure assumes that you have already created a new service package.

1. Add the new service to the application and assign it to an existing session type:
a) Open the application profile with an editor.
b) Add the new service definition to the application by creating a new Service element.
c) Set the service name and package name attributes.
d) Change startCmd to point to your service executable.

Leave the ${SOAM_DEPLOY_DIR} in your path as this is the deployment directory in the system.
If your service is located under a subdirectory, indicate the subdirectory after $
{SOAM_DEPLOY_DIR} in the path.

On Windows:

 <Service name="ServiceA" description="My Sample Service A"
 packageName="ServiceApkg" deploymentTimeout="300">
 <osTypes>
 <osType name="all" startCmd="${SOAM_DEPLOY_DIR}\ServiceA.exe">
 </osType>
 </osTypes>
 </Service>
...
</Profile>

On Linux:

Updating applications

Application Development Guide 285

 <Service name="ServiceA" description="My Sample Service A"
 packageName="ServiceApkg" deploymentTimeout="300">
 <osTypes>
 <osType name="all" startCmd="${SOAM_DEPLOY_DIR}/ServiceA">
 </osType>
 </osTypes>
 </Service>
...
</Profile>

e) Assign the new service to a session type by setting the serviceName attribute in the Type element
to the service name that you specified in the Service element.

For example:

...
<Profile ...>
 ...
 <SessionTypes>
 <Type name="MysessiontypeA" serviceName="ServiceA" priority="1"
 recoverable="false" sessionRetryLimit="3" taskRetryLimit="3"
 abortSessionIfTaskFail="false" suspendGracePeriod="100"
 taskCleanupPeriod="100"persistSessionHistory="all"
 persistTaskHistory="all"/>
 </SessionTypes>

f) Save the application profile.
2. Register the application profile dynamically with the soamreg command.

For example:
soamreg SampleApp.xml -d

The application is updated, registered, and enabled. Existing clients and workload are not affected by
the update. You can use the new service when you create a new session.

3. Verify that the workload is still running (applicable to long-running tasks):

For example:

soamview session SampleApp

Remove a service/session type
Perform this task when you want to remove a service or session type and your application is already
enabled.

All open sessions having the removed session type or service will be aborted.

1. Select Symphony Workload > Configure Applications.
2. Click the application name.

The application profile displays.
3. From the drop-down list, select Dynamic Configuration Update.

A sub menu displays.
4. Select Remove Service/Session Type.
5. From th relevant drop-down list, select the service name or session type you want to remove.
6. Click Remove.

A confirmation dialog displays. Click OK.

Updating applications

286 Application Development Guide

7. Click Apply.

A confirmation dialog displays. Click OK.

An information dialog displays. Click OK.
8. Click Close.

The service or session type, as applicable, is removed from the application profile.

Remove a service/session type using the CLI
Perform this task when you want to remove a service or session type and your application is already
enabled.

All open sessions having the removed session type or service will be aborted.

1. Remove a service or session type from the application:
a) Open the application profile with an editor.
b) Delete the relevant session type or service definition.
c) Save the application profile.

2. Register the application profile dynamically with the soamreg command.

For example:
soamreg SampleApp.xml -d

The application is updated, registered, and enabled.

Updating applications

Application Development Guide 287

14
Recovery and Performance Tuning

Recovery and Performance Tuning

288 Application Development Guide

Configure a recoverable session
A recoverable session can be used to preserve your workload under exceptional circumstances such as a
power failure or host failure.

Recoverable sessions can incur additional overhead because the workload must be journaled. Specifying
your sessions as recoverable may not be appropriate for all types of workload, since it can take less time
to rerun all the tasks in the session rather than to recover and resume them. The time it takes to rerun or
recover and resume tasks in a session varies with the data size and number of tasks.

Note:
If you are editing the application profile outside the Platform Management
Console, set the parameter recoverable="true" in the session types
section and re-register the application with the soamreg command.

1. In the Platform Management Console,
2. In the Platform Management Console, click Symphony Workload > Configure Applications.

The Applications page displays.
3. Select the application to modify.

The Application Profile page displays.
4. In the Session Type Definition section, in Recoverability, select Recoverable.
5. Click Save to apply your changes.

Recovery and Performance Tuning

Application Development Guide 289

Optimizing session manager performance
Flow control

Flow control prevents session manager from exhausting critical system resources, which may occur under
extreme workload.

Flow control does the following:

• Monitors the status of system resources for session manager:

• Available virtual memory (physical plus swap memory available on the host)
• Available virtual address space
• Process memory (physical memory available for each process)

• Raises events when a certain threshold has been reached:

• NORMAL - Operate in default mode for any new input
• PROACTIVE - Gives early warning to system components that can make memory available when

required
• SEVERE - Starts to scavenge as much memory as possible, current clients work fine
• CRITICAL -Starts to slow data inflow to the session manager and raise the priority of getting data

out of the session manager. Rejects new connections, suspends new sessions from currently
attached clients, and pends new tasks in those suspended sessions—current sessions and tasks
work fine.

• HALT - Session manager enters into lockdown mode, no further processing is allowed until an
administrative action is performed, or the system enters a safer state.

1. Edit your application profile. In the SOAM SSM section, configure values for memory and virtual
address space for each threshold.

In the example below, when available memory on the session manager host is down to 50% of total
memory, the event BEV_PROACTIVE is triggered.

When available memory is down to 40%, the event BEV_SEVERE is triggered.

For available virtual address space, when there is only 50% available virtual address space for the
session manager process, BEV_PROACTIVE event is triggered.

Similarly, for process memory, when there is only 40% available memory for the session manager
process, BEV_PROACTIVE event is triggered. When available process memory is down to 30%, the
event BEV_SEVERE is triggered, and so on.
 <boundaryManagerConfig>
 <boundaries>
 <boundary elementName="AvailableMemory">
 <event name="BEV_PROACTIVE" value="50"/>
 <event name="BEV_SEVERE" value="40"/>
 <event name="BEV_CRITICAL" value="25"/>
 <event name="BEV_HALT" value="15"/>
 </boundary>
 <boundary elementName="ProcessMemory">
 <!-- MaxSizeReference will be capped at
 "2048" by ssm when it runs on 32 bit OS
 -->
 <param name="MaxSizeReference"
 value="8388608"/>
 <event name="BEV_PROACTIVE" value="40"/>
 <event name="BEV_SEVERE" value="30"/>
 <event name="BEV_CRITICAL" value="20"/>
 <event name="BEV_HALT" value="10"/>
 </boundary>

Recovery and Performance Tuning

290 Application Development Guide

 <boundary elementName=
 "AvailableVirtualAddressSpace">
 <!-- MaxSizeReference will be capped at
 "2048" by ssm when it runs on 32 bit OS
 -->
 <param name="MaxSizeReference"
 value="8388608"/>
 <event name="BEV_PROACTIVE" value="50"/>
 <event name="BEV_SEVERE" value="40"/>
 <event name="BEV_CRITICAL" value="25"/>
 <event name="BEV_HALT" value="15"/>
 </boundary>
 </boundaries>
 </boundaryManagerConfig>

2. Save your application profile.
3. Update your application with the new profile with the soamreg command. (If you prefer, you may

do these steps using the Platform Management Console to export and import the application profile.)

Memory allocation parameters
If the SSM on Linux remains at a critical memory level when there is enough available memory and not
much unfinished workload, the SSM may not be detecting correct memory usage. This can cause the
boundary event not to be triggered properly. If this situation occurs, try setting the following environment
variables for the SSM in your application profile:

• <env name="MMAP_THRESHOLD">131072</env>
• <env name="MMAP_MAX">65536</env>

Note:
The MMAP_THRESHOLD value should be smaller than the average task
input/output size.

Optimizing data paging for non-recoverable sessions
To speed up paging and session manager recovery, the specified directory can be on the local drive since
the paged data of non-recoverable sessions does not need to be persisted at a shared location.

The following elements and attributes in the SOAM section of the application profile are related to task
message data and common data paging for non-recoverable sessions:

• SOAM > PagingTasksInputNonRec > path
• SOAM > PagingTasksOutputNonRec > path
• SOAM > PagingCommonDataNonRec > path
• SOAM > PagingCommonDataUpdatesNonRec > path

For detailed descriptions of these attributes, see the Platform Symphony Reference.

Recovery and Performance Tuning

Application Development Guide 291

Recovery and Performance Tuning

292 Application Development Guide

15
Scheduling Configuration

C H A P T E R

Application Development Guide 293

Change the session scheduling interval
The frequency at which the scheduler reassesses resource assignments between sessions is called the
scheduling interval.

1. Change the interval in the application profile, by setting the sessionSchedulingInterval
attribute in the Consumer section. The attribute is in milliseconds, default 500 milliseconds.

For example:
<Consumer applicationName="MyApplication" consumerId="/consumer" taskHighWaterMark="1.0"
taskLowWaterMark="0.0" preStartApplication="false" numOfSlotsForPreloadedServices="1"
sessionSchedulingInterval="500" />

2. Re-register your application with the soamreg command. (If you prefer, do this procedure using the
Platform Management Console to export and import the application profile.)

Scheduling Configuration

294 Application Development Guide

Specify criteria for resource selection
When you put your application on the grid in Symphony, you specify a resource requirement string in
the application profile to set criteria for selecting a resource or restricting which resources are available
to the application.

Note that if you set a resource requirement string, and no hosts match your criteria, no hosts will be
available for your application.

Note:
(Not applicable to Symphony DE) To find out the ostype to put into the
resource requirement string, use the command egosh resource view with
the host name.

1. For example, if you have heterogeneous machines and your service can only run on one type of
machine, such as Windows or Linux, set the resource requirement in the Consumer section

For example:
 <Consumer applicationName="MyApplication" consumerId="/consumer" taskHighWaterMark="1.0"
taskLowWaterMark="0.0" preStartApplication="false" numOfSlotsForPreloadedServices="1"
resReq="select(NTX86)" resourceGroupName="ComputeHosts"/>

2. Re-register the application with the soamreg command. (If you prefer, you can use the Platform
Management Console to export and import the application profile.)

Scheduling Configuration

Application Development Guide 295

Control when applications request or release
resources through high- and low-water marks

You can tune your resource requests by specifying a low-water mark in the application profile. The high-
water mark is a fixed value.

Both high-water mark and low-water mark are expressed as the ratio of the number of unprocessed tasks
to the number of service instances. Unprocessed tasks include both running and pending tasks.

Together, the high-water mark and low-water mark define a range of satisfactory slot allocation, in which
the application does not need to request additional resources or release excess resources; refer to the
Reference guide for more information about watermark configuration.

• High-water mark

High-water mark defines the threshold for the application as a whole, to request more resources in
order to meet its service level requirement. It defines a ratio of unprocessed tasks of open sessions to
service instances. The value of the high-water mark is fixed at 1. The SSM requests enough resources
to satisfy this demand.

For example, a session with a service-to-slot ratio of 1:1, requests at least one CPU slot for every
unprocessed task. If the service-to-slot ratio is set to 1:4, i.e., a task requires 4 slots to run, at least 4
slots for every unprocessed task is requested.

• Low-water mark allows you to define the threshold for the application as a whole, to return resources
that are no longer needed.

Once the ratio of unprocessed tasks to service instances falls below the taskLowWaterMark, resources
are released and made available for other applications to use.

The following table summarizes the effects of taskLowWaterMark settings.

Setting Result

0 SSM does not release any slots

1 SSM releases idle slots when there is no pending workload

Here is an example that illustrates the behavior of taskLowWaterMark for the specified conditions.

taskLowWaterMark: 1

serviceToSlotRatio: 1:1

numUnfinishedTasks: 100

This means that with 100 unprocessed tasks and a taskLowWaterMark of 1, the SSM will keep 100
slots.

If the serviceToSlotRatio is set to 1:4, i.e., each service requires 4 slots, the SSM will keep 400 slots.

1. The low-water mark is configured in the application profile, Consumer section.

For example:
<Consumer applicationName="MyApplication" consumerId="/consumer" taskHighWaterMark="1.0"
taskLowWaterMark="0.0" preStartApplication="false" numOfSlotsForPreloadedServices="1"/>

2. Re-register the application with the soamreg command. (If you prefer, you may perform these steps
using the Platform Management Console to export and import the application profile.)

Scheduling Configuration

296 Application Development Guide

How resources are scheduled by the session
manager

Platform Symphony supports the following session scheduling policies:

• Proportional scheduling

Proportional scheduling allows each session to make some progress, i.e., each session is assigned a
number of resources based on its relative priority to other sessions. As the number of pending tasks
for a session decreases, the surplus resources are distributed proportionally to deserving sessions.

• Minimum services

Minimum services ensure that service instances that have loaded and processed the initial data
(common data) from a particular session maintains affinity to the session; these service instances can
then be used for other similar tasks rather than sending them randomly to a different service instance
and reloading the data each time. Refer to Maintaining data affinity between a session and service
instances on page 298

• Priority scheduling

Priority scheduling ensures that high-priority sessions with time-critical tasks receive as many
available resources as they can use in order to finish as soon as possible. Tasks from lower priority
sessions may be preempted. Refer to Prioritizing sessions for time-critical workload on page 300

For more information about configuring session scheduling policies in the application profile, refer to
the policy topic in the Platform Symphony Reference.

Scheduling Configuration

Application Development Guide 297

Scenario: Maintaining data affinity between a session
and service instances
Goal

You have services that cache market data for calculations on compute hosts. Each service loads data into
memory and this operation is time-consuming compared to the calculation. Once the data is loaded, it
does not change, and it can be used for all calculations that are requested.

Use the minimum services (R_MinimumServices) scheduling policy when you are using common data
so that service instances will be reused for tasks in the same session, eliminating the need to reload data
for each task.

Change your application profile for data affinity
With this scheduling policy, you define a minimum number of service instances to be allocated to a session,
regardless of workload or priority of other sessions, and they continue to serve the session until the session
is suspended, killed or closed.

Service instances additional to the minimum service instances are proportionally shared among sessions
with pending tasks based on session priority. These service instances are allocated and reallocated to
sessions based on priority. Sessions that do not have workload are not allocated additional service
instances.

Note:
When configuring the R_MinimumServices policy with multiple session
types for an application, each resource group name in the resource group
filters should be unique among all of the session types; otherwise you may
get one less than the configured number of minimum services running.

Note:
If you are editing the application profile outside the Platform Management
Console, in the Consumer section, add the parameter
policy="R_MinimumServices". In the session types section, add the
parameters priority, and minServices and register the application
with the soamreg command.

1. In the Platform Management Console, click Symphony Workload > Configure Applications.

The Applications page displays.
2. Select the application you want to modify.

The Application profile page displays.
3. Select SSM scheduling policy to expand it, then under Policy Name, select R_Minimum Services.
4. In the Session Type definition, define the Priority for sessions of this type and the Minimum

Services (minimum number of CPU slots required for sessions of this type).

The minimum number of slots remains allocated to the session regardless of workload or priority of
other sessions.

The priority value is used to allocate service instances other than the minimum number of service
instances.

Scheduling Configuration

298 Application Development Guide

For example, you have 66 service instances and three session types, and you defined the minimum
number of instances to be two per session type.

Two instances are allocated to each session to meet the minimum instance requirement. Then,
additional instances are allocated proportionally based on priority.

Session and
Session Type

Minimum service
instances configured

Priority Allocated intances

Allocated instances

(minimum)

Allocated instances

(additional)

Session1,
SessionA

2 10 2 10

Session2,
SessionB

2 20 2 20

Session3,
SessionC

2 30 2 30

The sessions receive two service instances each. The remaining 60 service instances are distributed to
the sessions proportionally based on priority of the session type.

Session 1 gets 12 service instances in total, 2 gets 22 service instances, and session 3 gets 32 service
instances.

5. Click Save to apply your changes.

Scheduling Configuration

Application Development Guide 299

Prioritizing sessions for time-critical workload
The session manager provides a priority scheduling policy where all resources are assigned to the highest
priority session before lower priority sessions. If the highest priority session cannot make use of all of the
resources, any unused resources are assigned to the next highest priority session. This cycle repeats to the
next highest priority session, and so on. If there are still some slots left after all the sessions are satisfied,
these slots are not assigned to any session.

If two sessions have the same priority, the session that is created earlier is treated as though it has higher
priority.

Note:
A client application can update the session priority via a Symphony API
after the session is created. The priority can also be updated by an
administrator using the CLI or PMC.

Tasks within a session are dispatched in first come, first served (FCFS) order.

The following example demonstrates the behavior of the Priority Scheduling policy for sessions with
different priorities. The higher priority session gets resources before lower priority sessions.

Preconditions:

• The cluster only has one slot.
• t1: a session starts with default session type, priority set to 1, and 100000 short tasks (one second task

runtime).
• t2: a second session starts with default session type, priority set to 10, and 10 long tasks (10 seconds

task runtime) while the first session is still running.
• t3: a third session starts with default session type, priority set to 100, and one long task (10 seconds

tasks runtime) while the second session is still running.

Post conditions:

1. When the first session is created and has outstanding workload at t1, the one resource is assigned to
the first session. The first session continues to use it to run its tasks until a higher priority session
requires the resource.

2. When the second session is created and has outstanding workload at t2, the resource is assigned to
the second session (since it has higher priority) after the current running task from the first session is
done.

3. When the third session is created and has outstanding workload at t3, the resource is assigned to the
third session (since it has higher priority) after the current running task from the second session is
done.

4. The third session uses the slot to finish all of its tasks. Afterward, the second session receives the slot,
since it now has the highest priority, and continues to use it until it finishes all of its tasks. Finally, the
first session receives the slot and uses it to finish all of its tasks.

Preemption
If preemption is configured, Symphony takes back resources from lower priority sessions and gives them
to higher priority sessions by terminating the currently running tasks of the lower priority sessions. If
preemption is not configured, the highest priority session receives resources only after the currently
running tasks finish in lower priority sessions.

Scheduling Configuration

300 Application Development Guide

You can specify session preemption via the PMC when you configure the application. Alternatively, a
client application can specify session preemption via a Symphony API when the session is created. Session
preemption cannot be updated once the session is created.

You can specify the preemptive option for each SessionType in the application profile. If not specified,
the default is the session is not preemptive.

• Any high priority session that is configured as preemptive preempts lower priority session(s) (from
lowest to highest priority) if the high priority session has any unsatisfied workload. Note that the
service instances assigned to lower priority sessions are terminated and restarted before they can be
assigned to the next session.

• Resources released as a result of preemption are distributed to the highest priority session before lower
priority sessions. This could mean that the session that triggers preemption may not get the resources
in the case that there are even higher priority sessions with unsatisfied workload.

The following example demonstrates the behavior of the R_PriorityScheduling policy when there is a
mixture of preemptive and non-preemptive sessions with different priorities in the system.

Preconditions:

• The cluster has five slots.
• Sessions:

Session Priority Preemptive flag

First session 100 false

Second session 10 true

Third session 1 false

• The application is already running.
• There is no current workload for the first and second sessions. At this point, the third session has all

five resources since the higher priority sessions do not need them.

The client application submits one task to the first session and four tasks to the second session before the
next scheduling cycle.

Post conditions:

1. At the next scheduling cycle:

• The policy will not preempt on behalf of the first session, since the first session is configured as
non-preemptive.

• The policy will preempt four running tasks from the third session, to satisfy the second session's
four pending tasks.

2. After preemption occurs, one resource will go to the first session and three resources will go to the
second session.

Note:
Even though the first session was not the trigger for preemption, it will
be assigned the resource first, according to policy. It will benefit from
the second session's preemptive behavior.

Although the second session is not the recipient of those resources,
the preemptive behavior is still helping the second session to get
ahead. It allows higher priority sessions to get resources faster, which

Scheduling Configuration

Application Development Guide 301

means that the higher priority sessions will finish using the resources
faster, and the preemptive session's turn to receive those resources
will come faster as well.

3. At the next scheduling cycle, the policy will preempt the last running task from the third session to
satisfy the second session, which still has unmet demand.

4. After preemption occurs, the last resource will go to the second session.
5. The third session will receive resources when the first and second session no longer need them.

Configure your application profile for priority scheduling
With this scheduling policy, you assign a priority to a session type relative to the priority of other sessions
types; this establishes a rank of importance among the session types. The priority scheduling policy is
configured in the application profile.

Note:
If you are editing the application profile outside the Platform Management
Console, in the Consumer section, add the parameter
policy="R_PriorityScheduling". In the session types section, add
the parameter priority and register the application with the soamreg
command.

1. In the Platform Management Console, click Symphony Workload > Configure Applications.

The Applications page displays.
2. Select the application you want to modify.

The Application profile page displays.
3. Select SSM scheduling policy to expand it, then under Policy Name, select R_PriorityScheduling.
4. Select Session Type Definition to expand it.
5. Click Add to add a new session type or modify an existing session type.
6. Define the Priority.
7. Choose whether sessions of this type are preemptive, or not.
8. Add new session type definitions or modify existing ones with different priorities, if necessary.
9. Click Save to apply your changes.

Scheduling Configuration

302 Application Development Guide

16
Client Configuration

C H A P T E R

Application Development Guide 303

Setting your environment on Windows
We assume you are not already using Symphony DE.

Symphony provides batch files and the soamswitch command to facilitate the setup of either your current
working environment or your global system environment. The environment setup method you choose
depends on how you plan to run your client. If you only want to run your client from your current working
command prompt window, use the batch files. If you want to run your client from the Windows desktop
or you want to change the system environment permanently, use the soamswitch command.

Change your current working environment
If you want to change your current working environment to connect to a Symphony DE or a Symphony
Cluster, run the appropriate batch file:

• symclientenv.bat—resets your current command prompt session to connect to the Symphony
cluster.

• symdeenv.bat—resets your current command prompt session to connect to the DE cluster.

Tip:
When you open the Symphony DE command prompt, the environment is
automatically set to DE in the window. You can run
symclientenv.bat to change the environment to connect to a
Symphony cluster from DE. Afterwards, you can run symdeenv.bat to
change the environment back so that you can connect to a DE cluster.

Change your system environment
Connect to a Symphony DE cluster from the DE environment

This section describes how to set up your Symphony DE system environment so that you can connect to
a Symphony DE cluster.

Client Configuration

304 Application Development Guide

Note:
You must have local administrator privileges on the host to set the global
environment.

Note:
soamswitch does NOT change the environment settings of the command
prompt window from which you run soamswitch. The new environment
settings only take effect when you open a new Windows command prompt
window.

1. At the command prompt, enter:

soamswitch symde SymphonyDE_dir

For example, soamswitch symde C:\SymphonyDE\DE40
2. Open a new Windows command prompt window and run your client from there.
3. Ensure that vem_resource.conf is configured properly in the %SOAM_HOME%\conf directory.

Connect to a Symphony cluster from the DE environment
This section describes how to set up your Symphony DE system environment so that you can connect to
a Symphony cluster.

Note:
You must have local administrator privileges on the host to set the global
environment.

Note:
soamswitch does NOT change the environment settings of the command
prompt window from which you run soamswitch. The new environment

Client Configuration

Application Development Guide 305

settings will only take effect when you open a new Windows command
prompt window.

1. At the command prompt, enter:

soamswitch sym SymphonyDE_dir

For example, soamswitch sym C:\SymphonyDE\DE40
2. Open a new Windows command prompt window and run your client from there.

Note:
Do not use the DE command prompt window to run your client since it
will reset the environment to Symphony DE.

Ensure that ego.conf is configured properly in%EGO_CONFDIR%, in other words, the %
SOAM_HOME%\conf directory. Specify the master candidate host list and the EGO vemkd daemon
port number.

Client Configuration

306 Application Development Guide

IV
Application Monitoring

P A R T

Application Development Guide 307

Application Monitoring

308 Application Development Guide

17
Monitoring and Controlling Applications

C H A P T E R

Application Development Guide 309

Log on to the Platform Management Console
This procedure applies to Symphony grid only.

In Symphony DE, a Management Console is installed locally on each host.

The Platform Management Console allows you to monitor, administer, and configure your cluster.

1. If you do not already know the web server URL, run egosh client view.
a) Look for the client name preceded by “GUIURL”.

For example, GUIURL_Host_W (Host_W is the fully qualified host name).
b) Look for the DESCRIPTION line beneath the client name to find the web server URL, and then

copy it.

For example:
http://Host_W:8080/platform
.

2. Launch any web browser and enter the address of the web server URL.

For example:
http://Host_W:8080/platform.

The format of the URL is always
http://host_name:port_number/platform
.

3. Log on to the Platform Management Console for the first time by specifying

• User Name: Admin
• Password: Admin

For security in a production environment, we strongly recommend that you change the password of
the Admin account.

Monitoring and Controlling Applications

310 Application Development Guide

Application monitoring with the dashboard
You can use the Platform Management Console to monitor your applications.

The dashboard is only visible to cluster and consumer administrators. If you are not logged in as a cluster
or consumer administrator, you cannot see the dashboard.

Note:
If you installed Symphony DE, the dashboard is not available.

The summary dashboard is your window into the cluster. Use the dashboard to see an overall picture of
the health of your cluster and to receive warning for any systemic problems that may be occurring. The
dashboard gives you vital, real-time information about the health of your work and your hosts.

Note:
Your dashboard is dynamic and can change depending on what
components you have integrated. For information about integration,
contact Platform Support.

You can customize your tables on the dashboard and elsewhere by clicking Preferences.

Monitoring and Controlling Applications

Application Development Guide 311

Symphony command summary
Platform Symphony provides commands for various purposes.

Development environment commands
The following commands are available in Symphony DE.

Command Description

soamcontrol Controls applications, sessions, and tasks.

soamdeploy Deploys, removes, and displays information about service packages for
consumers.

soamlog Dynamically changes the log level for Symphony components.

soammod Modifies session priority to enable high priority workload to finish faster.

soamreg Registers an application or updates the application profile of a registered
application.

soamunreg Unregisters an application and deletes the application profile preventing
more sessions from being started for this application.

soamstartup In Symphony DE only, starts Symphony processes on the local host.

soamshutdown In Symphony DE only, immediately shuts down Symphony processes on
the local host.

soamswitch Windows only. Resets the system environment for the application client:
connecting to a DE cluster from the DE installation environment;
connecting to a Symphony cluster from the DE installation environment; or
connecting to a Symphony cluster using the Symphony installation
environment.

soamview Displays information about applications, sessions, and tasks, and displays
the application profile.

symexec Run executables as Symphony applications.

symping Sends workload to a cluster to test and verify that Symphony components
are working and responsive.

Cluster management and control commands
The following commands are available in Symphony grid.

Command Description

egosh Launches the administrative command interface to EGO.

egostartup (script) Starts all EGO components of a cluster.

egoshutdown (script) Shuts down a cluster.

pversions Displays the version information for Platform products installed on a
Windows host. This is a Windows command only; this command is not
recognized on UNIX systems.

Monitoring and Controlling Applications

312 Application Development Guide

Command Description

rfa Transfers files between hosts.

rsdeploy Deploys and removes middleware packages. You must be a cluster
administrator to run this command.

soamlog Dynamically changes the log level for Symphony components.

Cluster configuration commands
The following commands are available in Symphony grid.

Command Description

egoconfig Configures hosts.

egosetrc Configures automatic startup of EGO on a UNIX host.

egoremoverc Prevents automatic startup of EGO on a UNIX host.

egosetsudoers Creates an etc/ego/sudoers file to determine accounts with root privileges
on the UNIX host within a cluster.

Workload management commands
The following commands are available in Symphony grid.

Command Description

soamcontrol Controls applications, sessions, and tasks.

soamdeploy Deploys, removes, and displays information about service packages for
consumers.

soamlogon Logs the user on to Platform Symphony for a specific time period.

soamlogoff Ends the login session with Platform Symphony.

soammod Modifies session priority to enable high priority workload to finish faster.

soamreg Registers an application or updates the application profile of a registered
application.

soamunreg Unregisters an application and deletes the application profile preventing
more sessions from being started for this application.

soamswitch Windows only. Resets the system environment for the application client:
connecting to a DE cluster from the DE installation environment;
connecting to a Symphony cluster from the DE installation environment; or
connecting to a Symphony cluster using the Symphony installation
environment.

soamview Displays information about applications, sessions, and tasks, and displays
the application profile.

symexec Run executables as Symphony applications.

Monitoring and Controlling Applications

Application Development Guide 313

Command Description

symping Sends workload to a cluster to test and verify that Symphony components
are working and responsive.

Monitoring and Controlling Applications

314 Application Development Guide

V
Developer Edition Administration

P A R T

Application Development Guide 315

Developer Edition Administration

316 Application Development Guide

18
Managing Symphony DE

C H A P T E R

Application Development Guide 317

Symphony DE quick summary (Windows)
The following section provides a quick summary to start using Symphony DE.

Installation location
The Symphony DE installation directory is %SOAM_HOME%. By default, the installation directory is C:
\SymphonyDE\DE51.

Where to find configuration files
Symphony DE uses the vem_resource.conf configuration file to define the type of work that will run
on hosts, such as management or compute workload, and the processes that run on hosts such as session
manager, session director, GUI service, repository service, and port numbers.

You can find the vem_resource.conf configuration file in:

%SOAM_HOME%\conf\

Where to find code samples
Samples are installed with Symphony DE and located in %SOAM_HOME%\5.1\samples\.

Where to find documentation and API References
All documentation is installed with Symphony DE. You can access it from the Start menu: Platform
Computing > Symphony Developer Edition 5.1.0 > Developer Knowledge Center.

For details on all Symphony APIs, refer to the API References.

Managing Symphony DE

318 Application Development Guide

Symphony DE quick summary (Linux)
The following section provides a quick summary to start using Symphony DE.

Installation location
The default Symphony DE installation directory is /opt/symphonyDE/DE51. When you source the
environment, you can access the directory with the $SOAM_HOME environment variable.

Where to find configuration files
Symphony DE uses the vem_resource.conf configuration file to define the type of work that will run
on hosts, such as management or compute workload, and the processes that run on hosts such as session
manager, session director, GUI service, repository service, and port numbers.

You can find the vem_resource.conf configuration file in:

$SOAM_HOME/conf/

Where to find code samples
Samples are installed with Symphony DE and located in $SOAM_HOME/5.1/samples/.

Where to find documentation and API References
All documentation is installed with Symphony DE. You can access it from $SOAM_HOME/docs/
symphonyde/5.1/index.html.

For details on all Symphony APIs, refer to the API references.

Managing Symphony DE

Application Development Guide 319

Start Symphony DE (Windows)
1. Log on to the host on which you want to start Symphony DE.
2. From a Windows command prompt, run soamstartup.

Note that if you installed Symphony DE without a local administrator account, the command prompt
holds the console window. Do not close the window.

Note:
If you installed Symphony DE with a local administrator account on all
hosts, you can start or stop Symphony DE processes on the local host
or on all hosts in your cluster with the Symphony DE Windows tray
menus. Right-click on the Symphony DE icon in the Windows tray to
display menus. A green color indicates Symphony DE processes are
running locally on the host. A blue color indicates Symphony DE
processes are not started on the host.

Managing Symphony DE

320 Application Development Guide

Start Symphony DE (Linux)
1. Got to the directory where you instaledl Symphony DE.

For example, /opt/symphonyDE/DE51

setenv SOAM_HOME /opt/symphonyDE/DE51
2. Set the environment:

• For csh, enter

source /conf/cshrc.soam
• For bash, enter

. conf/profile.soam
3. Run soamstartup &

Managing Symphony DE

Application Development Guide 321

Shut down Symphony DE
When you use the soamshutdown command, you stop Symphony DE processes on the local host.

1. On the host on which you want to shut down Symphony DE, run soamshutdown.

When you expand your single-host installation to a cluster with multiple hosts, you can use
soamshutdown -all to shut down Symphony DE on all hosts in your cluster.

Windows

Note:
If you installed Symphony DE with a local administrator account
on all hosts, you can start or stop Symphony DE processes on
the local host or on all hosts in your cluster with the Symphony
DE Windows tray menus. Right-click on the Symphony DE icon
in the Windows tray to display menus. A green color indicates
Symphony DE processes are running locally on the host. A blue
color indicates Symphony DE processes are not started on the
host.

Managing Symphony DE

322 Application Development Guide

Expand a single host installation to a cluster
When you first install Symphony DE, you install on a single host. Before you can add a second host to
create a test cluster, you need to convert your single host to a management host. This topic guides you
through the process of converting your host to a management host, and then adding another compute
host to create the test cluster. Note that a Symphony DE cluster can support a maximum of two hosts.

Convert your single host to a management host
A management host is a host that runs processes to schedule and manage workload: the session director
process, repository service, GUI service, and the session manager process run on a management host.

1. Log on to the single host on which you installed Symphony DE.
2. If Symphony DE processes are running on the host, shut down Symphony DE:

soamshutdown
3. Edit the vem_resource.conf configuration file (located in the conf directory under

SOAM_HOME).
4. Look for the following lines and replace localhost with the actual name of your host. For example:

...

SD_SDK:15051:myhost:sd
SD_ADMIN:15050:myhost:sd
...
RS_DEPLOY:15052:myhost:rs
...
WEBGUI:18080:myhost:startguiservice

5. Look for the AGENT line and replace localhost with the actual name of your host. For example,
on Windows:
AGENT:8000:myhost:5:0:NTX86:1

Note that the number of slots for SIMs is set to 0 to prevent application workload from running on
the management host. In this example, the management host runs the session director process, the
repository service, the GUI service, and up to 5 session manager processes.

6. Save the file.

Install Symphony DE on a compute host
A compute host is a host that runs services and performs computations.

The first host in your cluster must be configured as a management host.

Note:

1. Install Symphony DE on the host that you want to add to your cluster.

Configure management host to recognize compute host
1. Log on to the management host.
2. If Symphony DE is running on the management host, shut down the processes on the management

host:

soamshutdown
3. Edit vem_resource.conf (located in the conf directory under SOAM_HOME) and add one AGENT

line for the compute host:
...

Managing Symphony DE

Application Development Guide 323

AGENT:8000:myhost:5:0:NTX86:1
AGENT:8000:mysecondhost:0:5:NTX86:1

4. For each AGENT line, ensure the maximum session managers and maximum service instance
manager values are set correctly:
a) In the first AGENT line (the management host), set the values to 5:0, indicating that up to five

session managers and no application workload can run on the management host.
b) For the compute host, set the values to 0:5, indicating that no session managers, and up to five

service instance managers per application can run on the compute host.
5. Save vem_resource.conf.
6. Start up Symphony DE processes on the management host.

On Windows:

soamstartup

On Linux:

soamstartup &

Synchronize configuration files
1. Both hosts in the cluster should use the same configuration. To synchronize the files, you may copy

the vem_resource.conf file from the management host to the shared location on the compute host,
overriding the existing configuration on the compute host.

If you make any changes to vem_resource.conf in the future, such as changing ports, you must
synchronize the configuration on the compute host again.

2. Start up Symphony DE processes on the compute host.

soamstartup

Note:
On a Windows host, if you installed Symphony DE with an account that
is not a local administrator, soamstartup holds the window. Closing the
window shuts down Symphony DE.

Note:
On a Windows host, if you installed Symphony DE with a local
administrator account on both hosts, you can start or stop Symphony
DE processes on the local host or on the other host in your cluster using
the menus on the Symphony DE Windows tray. Right-click on the
Symphony DE icon in the Windows tray to display menus. A green color
indicates Symphony DE processes are running locally on the host. A
blue color indicates Symphony DE processes are not started on the
host.

Managing Symphony DE

324 Application Development Guide

Remove a Windows compute host
You want to remove a compute host from the Symphony DE cluster. This topic guides you through the
process of uninstalling the software and removing the host from the cluster.

Uninstall Symphony DE
1. Shut down Symphony DE processes on the local host:

soamshutdown

Note that soamshutdown all shuts down Symphony DE processes on all hosts in your cluster.
2. To uninstall Symphony Developer Edition , use the Windows Add/Remove Programs application.
3. Manually remove any directories in %SOAM_HOME%.

For example, manually remove C:\SymphonyDE\DE40, the Symphony DE installation directory.

Uninstalling does not remove any added or changed files.

Remove the compute host from the cluster
To remove a compute host from the cluster, you need to remove the configuration entry for the host from
the vem_resource.conf file of the management host.

1. Log on to the management host.
2. Shut down Symphony DE processes on the management host:

soamshutdown

Note that soamshutdown shuts Symphony DE processes on all hosts in the cluster.
3. Edit %SOAM_HOME%\conf\vem_resource.conf and remove the AGENT line that indicates the

compute host.
4. Save the file.
5. Start up Symphony DE processes on the management host:

soamstartup
6. Log on to each compute host and start up Symphony DE:

soamstartup

Managing Symphony DE

Application Development Guide 325

Remove a Linux compute host
You want to remove a compute host from the Symphony DE cluster. This topic guides you through the
process of uninstalling the software and removing the host from the cluster.

Uninstall Symphony DE
There are two ways to uninstall Symphony DE, depending on which installation files and procedure you
installed with.

If you installed using .tar.gz package
1. Shut down Symphony DE processes:

soamshutdown
2. Delete the Symphony DE installation directory and all subdirectories.

rm -r $SOAM_HOME

If you installed using RPM
1. Shut down Symphony DE processes on the local host:

soamshutdown
2. Uninstall:

• For example, for Red Hat Enterprise Linux 4 or SuSE Linux Enterprise Server 9, enter (on one
line)
rpm -e symphonyDE-linux2.6-glibc2.3-x86-5.1.0.build_number

• For example, for Red Hat Enterprise Linux 3, enter
rpm -e symphonyDE-linux2.4-glibc2.3-x86-5.1.0.build_number

• For Red Hat Linux Advanced Server 2.1 or SuSE Linux Enterprise Server 8, enter
rpm -e symphonyDE-linux2.4-glibc2.2-x86-5.1.0.build_number

Note:
If you used --dbpath during installation, to uninstall specify --dbpath.
Also, if you use RPM Version 4.1.1, and have installed other software
packages using the default dbpath, to uninstall specify --nodeps.

3. Manually remove any directories left over in $SOAM_HOME.

For example, manually delete /opt/symphonyDE/DE51, the Symphony DE installation directory.

Uninstalling does not remove any added or changed files.

Remove the compute host
To remove a compute host from the cluster, you need to remove the configuration entry for the host.

1. Log on to the management host.
2. Shut down Symphony DE processes on the management host:

soamshutdown
3. Edit $SOAM_HOME/conf/vem_resource.conf and remove the AGENT line that indicates your

host.

Managing Symphony DE

326 Application Development Guide

4. Save the file.
5. Start up Symphony DE processes on the management host:

soamstartup &
6. Log on to each compute host and start up Symphony DE:

soamstartup &

Managing Symphony DE

Application Development Guide 327

Managing Symphony DE

328 Application Development Guide

Index
A

abortSessionIfTaskFail attribute
in task lifecycle 59

API
classes 8

documentation
location, Linux 319
location, Windows 318

SessionCreationAttributes 56
application events 206

SOA_SERVICE_BLOCKED 205
SOA_SERVICE_CUSTOM_ACTION 205
SOA_SERVICE_DEPLOYMENT_FAILED 206
SOA_SERVICE_EXITED 206
SOA_SERVICE_FAILURE 206
SOA_SERVICE_FATAL_ERROR 206
SOA_SERVICE_INIT_FAILED 206
SOA_SERVICE_RUNAWAY 206
SOA_SESSION_LOST 206
SOA_SESSION_PRI_CHANGED 206
SOA_SESSION_RESUMED 206
SOA_SESSION_SUSPENDED 206
SOA_TASK_EXIT 206
SOA_TASK_FAILURE 206
SOA_TASK_FATAL_ERROR 206
SOA_TASK_RUNAWAY 206

application profile
recoverable attribute 289

applications
checkpointing 156
deploying new 218
events 206
lifecycle 237
registering 222
update profile parameters 277, 284–287
updating 277
using the dashboard to monitor 311

asynchronous client

flow description 42
tutorial 23

Asynchronous Programming Model 124
automatic failure recovery

applications
configuring 252
service instance error handling 254
timeout actions 258

configuring 242
description 240
displaying configuration 261
host failure 250
monitoring 259
Platform Management Console processes 248
reporting processes 248
resource management (EGO) processes 249
scope 241

session manager
configuring 242

workload management (SOAM) processes 245

C

checkpointing
applications 156

client
API classes 8

asynchronous
flow description 42

calling different service methods 152
configuring code to run with a new application 220
connections 52
logs, permissions 152
message objects in 62
multithreading 152

samples
asynchronous client 23
asynchronous client for linux 23
asynchronous client for Windows 23

Application Development Guide 329

synchronous client for linux 14, 32
synchronous client for Windows 14, 32

synchronous client
flow description 40

cluster
adding hosts to 323

removing compute hosts
Linux 326
Windows 325

ClusterInfoRequestDocument (Java) 135
ClusterInfoResponseDocument (Java) 135
clusters

connecting to multiple clusters 85
code samples

asynchronous client 23
Symphony DE

location, Linux 319
Windows 318

synchronous client 16, 26, 34
common data optimization 79
configuration files

Symphony DE
location, Linux 319
Windows 318

Connection API
description 8

connections
connecting to multiple clusters 85
in clients 52
length of time maintained to client 52
setting timeout for 52

ConnectionSecurityCallback API class 10
Console

logging in 310
Console events (see "Platform Management Console events")
constructor role 129
control codes

setting for services 104
customizedDebugAction

service replay debugging 181

D

dashboard 311
data

common data
when to use 77

lifetime of 77

limits on message size 154
pass-by-reference 155
pass-by-value 155
service instance affinity 77

debug techniques
for services 172

DefaultBinaryMessage API class
description 9

DefaultSecurityCallback
description 10

definitions
Platform Management Console events 206

deployment
how deployment works 216
remove a deployed package 223
run a command after 227, 228

deserialization
of messages 62

disposal method 129
Dispose() method 131

E

Eclipse project wizard 120
enableCommonDataOptimization attribute 80
EnumItems API class

description 9
events

Platform Management Console 206
events used for

service replay debugger 179
exceptions

API classes 10
external authentication

scope 101

F

failure recovery
automatic

applications
configuring 252
service instance error

handling 254
timeout actions 258

configuring 242
description 240
displaying configuration 261

330 Application Development Guide

host failure 250
monitoring 259
Platform Management Console processes

248
reporting processes 248
resource management (EGO) processes 249
scope 241

session manager
configuring 242

workload management (SOAM) processes
245

FailureException
API class relationship 11

FatalException
API class relationship 11

FetchTaskOutput method 45
file descriptors

number opened per client connection 52
files

log file formats 209
flow control

setting for performance 290

G

getLastInterruptEvent() method, use 156
grid-enabled library 127

H

host blocking
configuration

blockHostOnTimeout attribute 110
method exception 111
method exit 111
method return 111
method timeout 110
startUpTimeout attribute 110

default settings 107
definition 107
description 111
monitoring 112
scope 110
triggers 109

hosts
adding to single host cluster 323
converting single host to management host 323

removing compute hosts

Linux 326
Windows 325

I

input and output
API classes 9

input message
description 62
lifetime of 62

InputStream API class
description 9

installation
Symphony DE

location, Linux 319
Windows 318

L

lifecycles
application 237
services 95
session 53

limits
on message size 154

live service debugging
overview 174

log file format 209
log files

description 208
permissions for client logs 152

M

Management Console
logging on 310

master host failover
configuring 243

memory
controlling memory leaks 158
when to free 158

message
serialization and deserialization 62

Message API class
description 9

message object
tutorial

declare 17

Application Development Guide 331

messages
in clients 62
limit on size 154

multithreading
considerations 152

O
on-boarded applications

application details 126
trace workload 130

on-boarding
existing applications 123

on-boarding wizard 123
onCreateService() method 93

debugging 197
onDestroyService() method

debugging 198
description 93

onInvoke() method
debugging 196
description 94

onSessionEnter() method
debugging 196
description 93

onSessionLeave() method
debugging 196
description 94

output message
lifetime of 62

output messages 62
output parameters 125
OutputStream API class

description 9

P
parameters

passing to a Web Service 87
performance

setting flow control 290
Platform Management Console events 206
plug-in for Eclipse

about 118
property role 129
proxy class for on-boarding applications 123

R
recoverable attribute

in application profile 289
session 66

recoverable sessions
configuring 156

reference parameters 125
resource reclaim

configuring
borrowing and lending 265
for owned resources 273
for reclaim policy 274
for selective reclaim 273
for session value 273
for shared resources 272
onServiceInterrupt method 264
reclaim grace period 271
service instance interruption handling 264
sharing resources 265
system rebalancing 271

description 262
displaying configuration 275
monitoring 274
order in which resources are reclaimed 266
scope 262
time based resource plan 269

triggered by
consumer demand 269
time interval transitions 269

resources
controlling when request or release 296

result cache
client 44, 46

return values
from a Web Service 88

S

samples
asynchronous client 23
service 32

scheduling
controlling when request or release resources 296
session scheduling interval, configuring 294

security
API classes 10

in Symphony
custom security plugins 51
default security implementation 51

in Symphony DE 51
SecurityCallBack

developing with 51

332 Application Development Guide

serialization
of messages 62

service
API classes 11
API methods 92
calling different service methods in a client 152
code flow 92
debugging 196
deploying new on Windows 218
error handling 101

samples
asynchronous client for linux 23
asynchronous client for Windows 23
synchronous client for linux 14, 32
synchronous client for Windows 14, 32

service container 92
service instance 92
service package

remove a deployed package 223
run a command after deployment 227, 228

service replay debugger
events 179

service replay debugger feature 175
service replay debugging

customized mode 173
full mode 174
overview 173, 174

ServiceContainer API class 11
ServiceContext API class 11
services

data affinity 77
debug process 172
debugging 172
lifecycle, description 95

Session API Class
description 8

session description
in client code 20, 30

session manager
and data 155

failure recovery
configuring 242

setting flow control for performance 290
session type

in client code 20, 30
SessionCallback

description 9
developing with 43

SessionContext API class 11
SessionCreationAttributes

Preemptive 56
ReclaimRank 56
ResourceGroupFilter 56
ServiceName 56
ServiceToSlotRatio 56
SessionFlags 56
SessionName 57
SessionPriority 57
SessionTag 57
SessionType 57

SessionCreationAttributes API 56
SessionCreationAttributes class 45, 67, 69
sessions

configuring recoverable 156, 242
creating new types 220
developing 53
how many to create 153
lifecycle 53

sessionSchedulingInterval attribute in application profile
294

smart pointers
use of 154

SOA_SERVICE_BLOCKED application event 205
SOA_SERVICE_CUSTOM_ACTION application event 205
SOA_SERVICE_DEPLOYMENT_FAILED application event 206
SOA_SERVICE_EXITED application event 206
SOA_SERVICE_FAILURE application event 206
SOA_SERVICE_FATAL_ERROR application event 206
SOA_SERVICE_INIT_FAILED application event 206
SOA_SERVICE_RUNAWAY application event 206
SOA_SESSION_ABORTED application event 206
SOA_SESSION_LOST application event 206
SOA_SESSION_PRI_CHANGED application event 206
SOA_SESSION_RESUMED application event 206
SOA_SESSION_SUSPENDED application event 206
SOA_TASK_EXIT application event 206
SOA_TASK_FAILURE application event 206
SOA_TASK_FATAL_ERROR application event 206
SOA_TASK_RUNAWAY application event 206
SOAM_HOME/logs/api.host_name.log 208
SOAM_HOME/logs/sd.host_name.log 208
SOAM_HOME/logs/sim.host_name.log 208
SOAM_HOME/logs/ssm.host_name.log 208
SoamException

API class relationship 10
SoamFactory API class

Application Development Guide 333

description 8
SOAP

about 86
binding style 87

stateful method 129
stateless role 129
summary dashboard 311
Symphony DE

shutting down 322
start

Linux 321
starting 320

Symphony DE PMC
configuring port for Eclipse 121

synchronous client
flow description 40

SYS_BM_BOUNDARY_BREACHED 205
SYS_DS_READFAIL_SESSION 205
SYS_DS_READFAIL_TASKINPUT 205
SYS_DS_READFAIL_TASKOUTPUT 205
SYS_DS_WRITEFAIL_SESSION 205
SYS_DS_WRITEFAIL_SESSION_OBJECT 205
SYS_DS_WRITEFAIL_TASK_OBJECT 205
SYS_DS_WRITEFAIL_TASKINPUT 205
SYS_DS_WRITEFAIL_TASKOUTPUT 205
SYS_FAILOVER_RETRIED 205
SYS_SSM_DOWN 205
SYS_SSM_UP 205

T
task ID

retrieval when aggregating messages 66
Task Input Handle 65
TaskContext API class 11
taskHighWaterMark attribute

in application profile 296
TaskInputHandle API class

description 9
taskLowWaterMark attribute

in application profile 296
in debugging 198

TaskOutputHandle API class
description 9

taskRetryLimit attribute
in task lifecycle 59

tasks
configuring ratio per CPU slot 296
developing 59

TCP connection attributes
message aggregation 68
setting 84

troubleshooting
log files, description 208

tutorial
asynchronous client 23
basic service 14, 32
synchronous client 14

V

Visual Studio
menu extensions 126

Visual Studio add-in 123

W

Web Service client
develop with Axis2 89

workload
monitoring with the dashboard 311

WSDL
about 86

X

XML
about 86

XML schema
about 86

334 Application Development Guide

	Contents
	Copyright
	Application Development
	Overview of API Classes
	Symphony API classes
	Client classes
	Common classes
	Service classes

	Getting Started: SampleApp
	Tutorial: Synchronous Symphony C++ client tutorial
	Build the sample client and service
	On Windows
	On Linux

	Package the sample service
	On Windows
	On Linux

	Add the application
	Run the sample client and service
	On Windows
	On Linux

	Review and understand the samples
	Review the sample code

	Tutorial: SampleApp: Developing an asynchronous Symphony C++ client
	Build the sample client and service
	On Windows
	On Linux

	Package the sample service
	On Windows
	On Linux

	Add the application
	Run the sample client and service
	On Windows
	On Linux

	Walk through the code
	Code differences between synchronous and asynchronous clients
	Declare the message object and implement
	Declare and implement your callback object
	Create a session to group tasks
	Synchronize the controlling and callback threads

	Tutorial: SampleApp: Your first Symphony C++ service
	Build the sample client and service
	On Windows
	On Linux

	Package the sample service
	On Windows
	On Linux

	Add the application
	Run the sample client and service
	On Windows
	On Linux

	Walk through the code
	Input and output: declare and implement the Message object:
	Define a service container:
	Process the input:
	Run the container:
	Catch exceptions:

	Developing Clients
	Synchronous client structure
	Asynchronous client structure
	SessionCallback
	Feature: On-demand results retrieval
	Scope
	About on-demand results retrieval
	Client API

	Feature: Selectively Retrieving Task Results
	Scope
	About selective task result retrieval
	Client API

	Security
	Middleware security
	SecurityCallback

	Connections
	About connections

	Sessions
	About sessions
	Session lifecycle
	Using tags for related sessions
	Overview
	Session tag APIs
	Querying and controlling related sessions

	Feature: Session-creation attributes
	Scope
	About client-side session creation workload attributes
	Example: Set workload session attributes with SessionCreationAttributes API

	Tasks and messages
	Tasks
	Task lifecycle
	Task tags: Using tags for related tasks
	Overview
	Task tag APIs
	Querying and displaying related tasks

	Priority tasks

	Messages
	Input and output messages
	Input messages
	Output messages

	Data passing: serialization and deserialization
	Feature: Default message API
	Scope
	About default message classes

	Modifying your client for performance
	Feature: Improving throughput in high-latency networks
	Scope
	About message aggregation
	Client API

	Feature: Data compression
	Scope
	About data compression
	Client API
	Enabling data compression for sessions
	Setting the data compression threshold
	Setting the data compression flag

	Feature: Direct Data Transfer
	Scope
	About direct data transfer
	When to use direct data transfer
	Client API
	Enabling direct data transfer for sessions
	Setting direct data transfer flags

	Port configuration
	Client memory management
	Multiple network interfaces

	Common data: using data in your application
	Data: the issue
	Common data

	Optimizing common data for multi-slot hosts
	Scope
	About common data and multi-slot hosts
	Common data optimization
	When to use common data optimization
	Configuring common data optimization

	Client recovery
	Disconnect and reconnect to a session
	Explicitly disconnect and reconnect to a session
	Reconnect to a session after client recovery

	Remote clients
	Configuration of TCP connections
	Connect to different clusters with the same client

	Web Service clients
	Web Service components
	Web Service security
	A closer look at a Symphony WSDL and schema
	Building a Web Service client

	Developing Services
	About services
	Service lifecycle
	Service instance lifecycle
	Timeouts that affect service instance life cycle

	Feature: Access to application attributes in a service
	Scope
	About application attributes for services
	Example: Get application attributes with service API

	Error codes and embedded service exceptions
	Service error handling and host blocking
	Feature: Service error handling control
	Scope
	About service error handling control
	Configuration to modify service error handling
	Commands

	Feature: Host blocking
	About host blocking
	Configuration to enable host blocking
	Host blocking behavior
	Configuration to modify host blocking behavior
	Host blocking actions

	Feature: Service interrupt handler
	Scope
	About service interrupt handling
	Service interrupt handling API

	Using Eclipse as Your Development Environment
	Feature: Symphony plug-in for Eclipse
	Scope
	About the Symphony plug-in for Eclipse
	Installing the Symphony plug-in
	On Windows
	On Linux

	Project wizard
	Symphony operations

	Using Visual Studio as Your Development Environment
	Feature: Simplified application on-boarding with Visual Studio
	Scope
	About the Symphony add-in for Visual Studio
	On-boarding overview
	Prerequisites for application on-boarding
	Considerations for on-boarding an application
	Consideration for mixed-mode assemblies
	Installing the Symphony add-in
	Symphony menu extensions for Visual Studio
	Creating a new project
	How to access a library that has been grid-enabled
	Exception handling for failed method calls
	Method roles
	How to trace workload submitted by an on-boarded application
	Best practices

	Developing Admin Clients
	Tutorial: Admin Web Service client tutorial
	Prerequisites
	About client - server interactions
	Steps for developing Symphony Web Service clients
	Review and understand the example

	Running Executables
	Feature: Execution tasks integration
	Scope
	About the Symphony execution task feature
	Application execution flow
	Execution service
	Interfaces
	Configuration

	Deploy executables
	Create a deployment package
	Edit an application profile
	Add an execution application to Symphony

	Retrieving results from execution tasks

	Development Guidelines and Best Practices
	Client development guidelines
	Type of program
	Uninitialization
	Serialization and deserialization
	A client can call different service methods
	Ensure permissions when writing logs
	Threads and multithreading
	Memory management in the client for Java and .NET
	Recoverable clients
	Large number of tasks
	How many sessions to create
	Smart pointers
	Data
	Limits on message size
	Distributing data among tasks: by value or by reference
	Using external data sources
	Data loss prevention
	Add recovery with recoverable sessions
	Implement application-level checkpointing for sessions

	Service development guidelines
	Library dependencies in clients and services
	C++
	Compiling your client and service
	Linking

	Java
	Building your client and service

	C# .NET
	Building your client and service

	COM
	Building your client

	Symphony 64-bit Application Support
	General considerations for porting existing applications to 64-bit
	Considerations for porting existing C++ applications to 64-bit
	Considerations for porting existing Java applications to 64-bit
	Considerations for porting existing .NET(C#) applications to 64-bit
	Compiling with Visual Studio

	Debugging and Troubleshooting
	Debugging a Service
	About debugging a service
	Feature: Service replay debugging
	Configuration to enable service replay debugging
	Configuration to modify service replay debugging behavior

	Debug using customized service replay debugging
	Use customized service replay debugging
	Enable customized service replay debugging.
	Determine the problem
	Debug your problem using service replay debugging
	Analyze the problem
	Fix and redeploy the service
	Clean up the logs
	Run the client application

	Debug using full service replay debugging
	Use full service replay debugging
	Enable full service replay debugging
	Debug your problem using service replay debugging
	Fix and redeploy the service
	Clean up the logs
	Run the client application

	Live service debugging
	Debug a service onSessionEnter(), onSessionUpdate(), onInvoke(), and onSessionLeave()
	Debug a service onCreateService()
	Debug a service onDestroyService()

	Retrieve application logs from the console
	Log location and naming
	Configure log location and naming using the command line
	Configure log location and naming using the console
	Ensure your service code writes to the configured location
	Retrieve application logs with the Platform Management Console
	Download logs for an application
	Download logs for a task
	Download logs for a service
	Binding failures
	SI start-up failures

	Troubleshooting
	Troubleshooting overview
	Symphony events
	API exceptions
	About log files and levels
	Log files
	Default log file locations
	Log file names
	Logging configuration files
	Log file formats
	Log file attributes

	Application Deployment and Management
	Service Package Deployment
	Service package deployment and removal process
	Deploying a new application
	Create the service package
	On Windows
	On Linux

	Create the application
	Configure the client to run with a new application

	Deploy a service package
	Deploy a Windows service package
	Deploy a Linux/UNIX service package

	Register a new application
	Remove an application
	Deploy a service package with your own deployment tool
	Deploy a service package without a deployment tool
	Automatically run a command when deploying a service package
	Windows service package
	Linux/UNIX service package

	Run multiple services in an application
	Package and deploy your services
	Associate your application with the service packages
	Check your client application code and run your client

	Application configuration
	How configuration affects applications and services
	Application lifecycle
	Change the application profile to only log error historical data
	Specify a different Java location for your application
	Feature: Automatic failure recovery
	About automatic failure recovery
	Configuration to enable automatic failure recovery
	Automatic failure recovery behavior
	Configuration to modify automatic failure recovery
	Automatic failure recovery interface

	Feature: Resource reclaim
	About resource reclaim
	Service instance interrupt handling
	Configuration to enable resource reclaim
	Resource reclaim behavior
	Configuration to modify resource reclaim behavior
	Resource reclaim interface

	Updating applications
	Static configuration update
	About dynamic application updates
	Using the PMC to deploy service packages for consumers with short names
	Update an existing service package using the CLI
	Change a service package for an existing service
	Change a service package using the CLI
	Add a new service and session type
	Add a new service and session type using the CLI
	Assign a new service to an existing session type
	Assign a new service to an existing session type using the CLI
	Remove a service/session type
	Remove a service/session type using the CLI

	Recovery and Performance Tuning
	Configure a recoverable session
	Optimizing session manager performance
	Flow control
	Memory allocation parameters
	Optimizing data paging for non-recoverable sessions

	Scheduling Configuration
	Change the session scheduling interval
	Specify criteria for resource selection
	Control when applications request or release resources through high- and low-water marks
	How resources are scheduled by the session manager
	Scenario: Maintaining data affinity between a session and service instances
	Change your application profile for data affinity

	Prioritizing sessions for time-critical workload
	Configure your application profile for priority scheduling

	Client Configuration
	Setting your environment on Windows
	Change your current working environment
	Change your system environment
	Connect to a Symphony DE cluster from the DE environment
	Connect to a Symphony cluster from the DE environment

	Application Monitoring
	Monitoring and Controlling Applications
	Log on to the Platform Management Console
	Application monitoring with the dashboard
	Symphony command summary

	Developer Edition Administration
	Managing Symphony DE
	Symphony DE quick summary (Windows)
	Symphony DE quick summary (Linux)
	Start Symphony DE (Windows)
	Start Symphony DE (Linux)
	Shut down Symphony DE
	Expand a single host installation to a cluster
	Convert your single host to a management host
	Install Symphony DE on a compute host
	Configure management host to recognize compute host
	Synchronize configuration files

	Remove a Windows compute host
	Uninstall Symphony DE
	Remove the compute host from the cluster

	Remove a Linux compute host
	Uninstall Symphony DE
	If you installed using .tar.gz package
	If you installed using RPM

	Remove the compute host

	Index

