
Platform Symphony™ Foundations

Platform Symphony™
Version 4.1

November 2008

Copyright © 1994-2008 Platform Computing Corporation

All rights reserved.

Although the information in this document has been carefully reviewed, Platform Computing Corporation (“Platform”) does not
warrant it to be free of errors or omissions. Platform reserves the right to make corrections, updates, revisions or changes to the
information in this document.

UNLESS OTHERWISE EXPRESSLY STATED BY PLATFORM, THE PROGRAM DESCRIBED IN THIS DOCUMENT IS
PROVIDED “AS IS” AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
IN NO EVENT WILL PLATFORM COMPUTING BE LIABLE TO ANYONE FOR SPECIAL, COLLATERAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION ANY LOST PROFITS, DATA, OR SAVINGS, ARISING
OUT OF THE USE OF OR INABILITY TO USE THIS PROGRAM.

We’d like to hear
from you

You can help us make this document better by telling us what you think of the content, organization, and usefulness of the information.
If you find an error, or just want to make a suggestion for improving this document, please address your comments to
doc@platform.com.

Your comments should pertain only to Platform documentation. For product support, contact support@platform.com.

Document
redistribution and
translation

This document is protected by copyright and you may not redistribute or translate it into another language, in part or in whole.

Internal
redistribution

You may only redistribute this document internally within your organization (for example, on an intranet) provided that you continue
to check the Platform Web site for updates and update your version of the documentation. You may not make it available to your
organization over the Internet.

Trademarks ® LSF is a registered trademark of Platform Computing Corporation in the United States and in other jurisdictions.
™ ACCELERATING INTELLIGENCE, PLATFORM COMPUTING, PLATFORM SYMPHONY, PLATFORM JOBSCHEDULER,
PLATFORM ENTERPRISE GRID ORCHESTRATOR, PLATFORM EGO, and the PLATFORM and PLATFORM LSF logos are
trademarks of Platform Computing Corporation in the United States and in other jurisdictions.
® UNIX is a registered trademark of The Open Group in the United States and in other jurisdictions.

Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.

Microsoft is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other countries.
® Windows is a registered trademark of Microsoft Corporation in the United States and other countries.

Intel®, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and
other countries.

Other products or services mentioned in this document are identified by the trademarks or service marks of their respective owners.

Third-party license
agreements

http://www.platform.com/Company/third.part.license.htm

Third-party
copyright notices

http://www.platform.com/Company/Third.Party.Copyright.htm

Contents
1 Platform Symphony: An Overview .. 5

Introduction to Platform Symphony ... 6
Symphony cluster components ... 8
Introducing the consumer ... 10
Platform Symphony Developer Edition ... 11
Platform Management Console .. 12
Knowledge Center .. 14
Reporting .. 15
Security ... 16

2 Inside Workload Management .. 19
SOA Middleware components .. 20
Service-oriented application objects ... 22
Application profile .. 23
Consumers, applications, services, and service binaries ... 25
Service package deployment .. 26
Running executables in Symphony ... 27

3 Inside Resource Management .. 29
EGO component overview .. 30
Resources ... 32
Consumers .. 34
Resource sharing models ... 36
Sharing of Symphony resources ... 38

4 Inside the Symphony Cluster .. 41
Symphony processes .. 42
Symphony cluster startup process .. 45
Symphony fault tolerance ... 46
Inside PERF .. 49

Platform Symphony™ Foundations 3

4 Platform Symphony™ Foundations

1
Platform Symphony: An Overview

C H A P T E R

Platform Symphony™ Foundations 5

Introduction to Platform Symphony
The Platform Symphony ("Symphony") software is leading enterprise-class software that distributes and virtualizes
compute-intensive application services and processes across existing heterogeneous IT resources creating a shared,
scalable, and fault-tolerant infrastructure, delivering faster, more reliable application performance while reducing cost.

Symphony provides an application framework that allows you to run distributed or parallel applications in a scaled-
out grid environment.

Cluster
A cluster is a logical grouping of hosts that provides a distributed environment in which to run applications.

Symphony
Symphony manages the resources and the workload in the cluster. Using Symphony, resources are virtualized:
Symphony dynamically and flexibly assigns resources, provisioning them and making them available for applications
to use.

Symphony can assign resources to an application on demand when the work is submitted, or assignment can be
predetermined and preconfigured.

Application
A Symphony service-oriented application uses a client/service architecture. It consists of two programs: the client,
which provides the client logic to submit work, retrieve and process results, and the service, which comprises the
business logic (the computation). The service-oriented application uses parallel processing to accelerate computations.

Symphony receives requests to run applications from a client. Symphony manages the scheduling and running of the
work—the client need not be concerned with where the application runs.

Platform Symphony: An Overview

6 Platform Symphony™ Foundations

Client
The client sends compute requests and collects results using the Symphony client APIs. The client may run on a machine
that is part of the cluster, or it may run on a machine that is outside of the cluster.

The client can use a service without knowledge of what programming language was used to create the service.

The client submits an input data request to Symphony. Symphony initiates the service that processes the client requests,
receives results from the service, and passes the results back to the client.

Service
The service is a self-contained business function that accepts requests from a client, performs a computation, and
returns responses to the client.

The service uses computing resources, and must be deployed to the cluster. Multiple instances of a service can run
concurrently in the cluster.

The service is initiated and run by Symphony, upon receipt of a client request. The service runs on a machine that is
part of the Symphony cluster. The service runs on the cluster resources dynamically provisioned by Symphony.
Symphony monitors the running of the service, and passes the results back to the client.

Platform Symphony: An Overview

Platform Symphony™ Foundations 7

Symphony cluster components
A Symphony cluster manages both workload and resources. Symphony maintains historical data, includes a web
interface for administration and configuration, and also has a command-line interface for administration.

Workload management versus resource management
A workload manager interfaces directly with the application, receiving work, processing it, and returning the results.
A workload manager provides a set of APIs, or may interface with additional run-time components to enable the
application components to communicate and perform work. The workload manager is aware of the nature of the
applications it supports using terminology and models consistent with a given class of workload. In a service-oriented
application environment, workload is expressed in terms of messages, sessions, and services.

A resource manager provides the underlying system infrastructure to enable multiple applications to operate within a
shared resource infrastructure. A resource manager manages the computing resources for all types of workload.

EGO--resource manager
Enterprise Grid Orchestrator ("EGO") manages the supply and distribution of resources, making them available to
applications. EGO provides resource provisioning, remote execution, high availability, and business continuity.

EGO provides high availability, cluster management tools and the ability to manage supply versus demand to meet
service-level agreements.

Platform Symphony: An Overview

8 Platform Symphony™ Foundations

SOAM--workload manager
SOAM (SOA middleware) manages service-oriented application workload within the cluster, creating a demand for
cluster resources.

When a client submits an application request, the request is received by SOAM. SOAM manages the scheduling of the
workload to its assigned resources, requesting additional resources as required to meet service-level agreements. SOAM
transfers input from the client to the service, then returns results to the client. SOAM releases excess resources to the
resource manager.

Platform Management Console
The Platform Management Console (PMC) is your window to Symphony, providing resource monitoring capability,
application service-level monitoring and control, and configuration tools.

Historical data for reporting
Symphony stores a wide variety of historical data for reporting and diagnostic purposes. Multiple reports capture and
summarize the data.

Knowledge Center
The Knowledge Center is your gateway to product documentation, FAQs, and other sources of Symphony information.

Platform Symphony: An Overview

Platform Symphony™ Foundations 9

Introducing the consumer
To understand how Symphony supplies resources to meet workload requests, consider this analogy: A bank customer
does not withdraw funds directly from the bank vaults—the customer accesses an account, and requests a withdrawal
from that account. The bank recognizes the customer by the account number, and determines whether the customer
has sufficient funds to make a withdrawal. See Figure 1.

As shown in Figure 2, when a Symphony application requires resources, it does not communicate directly with EGO,
and has no direct access to resources. The application is associated with a consumer, and requests resources through
it. EGO recognizes the consumer, and through it, allocates resources to the application.

Platform Symphony: An Overview

10 Platform Symphony™ Foundations

Platform Symphony Developer Edition
Platform Symphony Developer Edition (DE) provides an environment for application developers to grid-enable, test,
and run their service-oriented applications. The Symphony DE provides a cluster environment without requiring a full
Symphony cluster.

Symphony DE provides a complete test environment, simulating the grid environment provided by Platform
Symphony. Developers can test their client and service in their own cluster of machines before deploying to the grid.

Symphony DE provides easy-to-use APIs and rich design patterns to seamlessly grid-enable all types of service-oriented
applications with minimal changes. The DE also includes a web interface for monitoring and controlling your test
environment, and a knowledge center for easy access to documentation.

To run Symphony workload on the grid, the application developer creates a service package and adds the service
executable into the package: no additional code changes are required.

The Symphony DE does not include the EGO resource management component. It does include an EGO stub to
simulate basic EGO resource distribution.

Platform Symphony: An Overview

Platform Symphony™ Foundations 11

Platform Management Console
The Platform Management Console (PMC) is your web interface to Symphony and other Platform products. The PMC
provides a single point of access to the key system components, for cluster and workload monitoring and control,
configuration, and troubleshooting.

Platform Cluster Health Dashboard

The dashboard is the first window you see when you log in to the Platform Management Console. You can access the
PMC pages from the dashboard.

The dashboard provides a quick overview of the health of your cluster. It shows a summary of the workload in the
cluster, a summary of hosts utilization and status, and links to key pages in the Platform Management Console.

Out of the box, the dashboard looks like the picture above. The dashboard only displays when the console is used to
access the grid. It does not appear in Symphony DE.

Platform Symphony: An Overview

12 Platform Symphony™ Foundations

SOA Workload page

The SOA Workload page provides information about any service-oriented workload running in the cluster.

Quick Links page
The Quick Links page provides links to the key pages in the PMC, such as Resources, Consumers, System Logs, Reports
and others.

Additional links
The Service View page provides summary information about the services running in the cluster.

In the Symphony DE, the Platform Management Console also provides a link to the Eclipse Development Environment.

Platform Symphony: An Overview

Platform Symphony™ Foundations 13

Knowledge Center
The Knowledge Center is your access point to Symphony documentation. It is installed with Symphony, and can be
accessed from the start menu on a Windows machine, or from a URL in any web browser. It can also be linked to
directly from the Platform Management Console.

The Knowledge Center provides an overview of the organization of the product documentation. It also provides quick
access to each document and links to some key resources, such as a FAQs, tutorials, and my.Platform.com, your eSupport
site.

In addition to links to all documents, the Knowledge Center provides full search capabilities within the documentation.
You can perform keyword searches within a document, or across the full documentation set.

Platform Symphony: An Overview

14 Platform Symphony™ Foundations

Reporting
An efficient cluster maximizes the usage of resources while minimizing the average wait time of workload. To ensure
your cluster is running efficiently at all times, you can analyze the activity within your cluster to find areas for
improvement.

The reporting feature collects data from the cluster and maintains this data in a relational database system. The reporting
feature extracts the cluster data from the database and displays this data in reports either graphically or in tables. You
can use these reports to analyze and improve the performance of your cluster, to perform capacity planning, and for
troubleshooting.

The reporting feature is built on top of the Platform Enterprise Reporting Framework (PERF) architecture. This
architecture defines the communication between your cluster, relational database, and data sources.

Symphony collects various types of data, which can be reported on using the standard, out-of-the box reports. In
addition, Symphony can be configured to collect customer-specific data, which can be reported on by using custom
reports.

Platform Symphony: An Overview

Platform Symphony™ Foundations 15

Security
Authentication versus authorization
Authentication is the process of verifying identity. This identity can be a user account used by a person, a host ID used
by a machine, a server certificate used by a server software component, or a client certificate used by a client software
component. Authentication is usually performed by proving the identity bearer has a secret that is known only to the
bearer.

After an identity is authenticated, authorization is the process of determining who is allowed to do what. Authorization
is accomplished by assigning privileges or roles to an identity that accesses system objects.

A privilege is an access right to one or more system objects. A role is a collection of privileges. A role can be assigned
to one or more users. A user may have multiple roles. Unlike hierarchical users, a role does not contain another role.

Symphony security model

Out of the box, the Symphony security model uses Symphony’s own user account database. A user account defined in
the database includes a password to provide authentication, and assigned role, which provides authorization.

Platform Symphony: An Overview

16 Platform Symphony™ Foundations

Symphony also provides a security plug in for sites that prefer to use a third-party security mechanism, such as Kerberos,
LDAP, or ActiveDirectory, and so on.

Symphony user roles
Regardless of the authentication method you use, Symphony uses role-based authorization to control access to system
objects. Symphony supports the following roles:

• The Cluster Administrator role can administer any objects and workload in the cluster
• The Consumer Administrator role can administer any objects and workload in consumers to which they have access
• The Consumer User role can run workload in consumers to which they have access

User accounts are created and managed in EGO. EGO authorizes users from its user database.

Each consumer is associated with a list of user accounts that are allowed to access the consumer. Different user accounts
can submit or control workload. However, each consumer is associated with only one user account for running workload
—all workload that runs under one consumer runs under one operating system account.

Impersonation
Sometimes service instances require user-specific privileges to access certain resources. Sometimes due to a security
policy at an organization, it is necessary to isolate the user under which a process runs. Symphony provides flexible
ways to configure the user account under which workload runs, allowing you to isolate users and applications.

Impersonation means that the system runs executables under a designated operating system account.

Platform Symphony: An Overview

Platform Symphony™ Foundations 17

Security across communication channels
Symphony uses open Secure Socket Layer (SSL) to secure communications between components. SSL is a protocol that
uses encryption and authentication techniques to secure connections between clients and servers.

Platform Symphony: An Overview

18 Platform Symphony™ Foundations

2
Inside Workload Management

C H A P T E R

Platform Symphony™ Foundations 19

SOA Middleware components
The Symphony service-oriented middleware components consist of the Session Director, session manager(s), service
instance managers, and service instances.

The following diagram shows the components and interactions between them.

Session Director
There is one Session Director in a Symphony cluster. It is started as an EGO system service.

The Session Director provides a single entry point to the SOA middleware, and does the following:

• Authenticates the connecting client
• Manages the session manager lifetimes, and acquires and provisions resources for the session managers, as required
• Provides a web services interface for administrative operations

Session manager
There may be a single session manager, or multiple session managers in a Symphony cluster. The number of session
managers depends on the number of running applications. A session manager is created upon the first user connection
to an application for which no session manager exists, or it may be configured to prestart even if there is no workload.

A session manager does the following:

• Routes task input and output messages between the client application and compute hosts
• Obtains resources from EGO to service its sessions
• Schedules sessions based on various scheduling policies (proportional, minimum service, and so on)
• Provides administration and control operations

Inside Workload Management

20 Platform Symphony™ Foundations

• Logs status and progress of sessions and tasks
• Provides fault-tolerant message handling as specified by the application profile
• Manages the life cycle of service instance managers, and manages the interaction with the resource manager

Service instance manager
There is one service instance manager for every instantiation of a service. A service instance manager is created and
destroyed by the session manager.

A service instance manager (sometimes referred to as a SIM), is responsible for the following:

• Starting and managing the life cycle of a service instance, including monitoring the health of the service instance
• Routing messages between the session manager and a service instance

Service instance
A service instance is a single instantiation of the service that executes when the application runs. There can be many
instances of the same service running at any given time.

Data flow

Inside Workload Management

Platform Symphony™ Foundations 21

Service-oriented application objects
Symphony service-oriented applications consist of a client application, and a service. When the application runs, a
session is created, containing a group of tasks. The application profile provides information about the application.

Application profile
The application profile defines characteristics of the application, and defines the behavior of the middleware and the
service. There is one application profile per application.

Session
A session is created via the Symphony client API. A session consists of a group of tasks that share common
characteristics, such as data required for computations. Each session has a session ID that is generated by the system.
Session IDs are unique within an application.

Task
A task is an autonomic computation unit, and is the basic unit of work in a service-oriented application. Tasks perform
computations in parallel. Each task has a task ID, unique within the session.

Each task can have an input message and an output message. The input message is the input to the computation, the
output message is the result of the computation.

Inside Workload Management

22 Platform Symphony™ Foundations

Application profile
The application profile defines the characteristics of an application and the environment in which the application runs.

The application profile provides the following information:

• The information required to run the application
• The scheduling policies that apply to the application
• Configuration information for the session manager and the service instance managers
• Configuration information for sessions and services

Relationship to the client, service package, and service
The application profile provides the linkage between the application, the client, the service package, and the service.
The following illustrates how parameters in the application profile relate to the client, service and service package, and
which values must match.

Inside Workload Management

Platform Symphony™ Foundations 23

Inside Workload Management

24 Platform Symphony™ Foundations

Consumers, applications, services, and
service binaries
The following illustrates the relationships among consumers, applications, services, and service binaries.

For every consumer, there is one enabled application. One or more service packages can be deployed for an application.
A service package contains the binary program that performs computations. A service package can contain more than
one service binary, for example, Linux and Windows versions of a service.

Inside Workload Management

Platform Symphony™ Foundations 25

Service package deployment
Symphony services are deployed to the cluster and made available in either of the following ways:

• Using the Symphony repository service
• Using a third-party deployment tool

Deployment using the repository service
An administrator or developer deploys a service package to the repository service. When a compute host needs the
package, it requests the package from the repository service.

Inside Workload Management

26 Platform Symphony™ Foundations

Running executables in Symphony
Symphony provides the ability to run existing executables as Symphony workload without code changes. Executables
are handled much the same as SOA workload, with the exception of the following:

• A specialized service instance runs the executable
• The specialized service instance starts, runs the executable and exits when the executable finishes

Inside Workload Management

Platform Symphony™ Foundations 27

Inside Workload Management

28 Platform Symphony™ Foundations

3
Inside Resource Management

C H A P T E R

Platform Symphony™ Foundations 29

EGO component overview
EGO provides the underlying system infrastructure to control and manage cluster resources.

EGO provides the underlying system infrastructure to enable multiple applications to operate within a shared resource
infrastructure in Symphony.

Just as an operating system running on a single machine aggregates and virtualizes physical resources and allocates
them to applications, EGO performs similar functions, but across a distributed environment.

EGO manages both logical and physical resources and supports all forms of applications. EGO manages the supply of
resources, making them available to applications.

Hosts can be divided into two groups: management hosts and compute hosts. Management hosts provide specialized
services to the cluster, while compute hosts run user workload.

Management hosts
Management hosts provide both cluster and workload management services within the cluster, and are not expected
to run workload for users. The master host, all master candidate hosts, and session manager hosts must be management
hosts. Other management hosts include the Web server host and the host running data loaders and data purger for the
reporting feature.

Management hosts all run on the same operating system: all Windows or all Linux.

Master host The master host is the first host installed in the cluster. The resource manager (vemkd) for the
cluster resides on this host. The master host controls the rest of the hosts in the cluster and is the
interface to the clients of the cluster.

Master
candidates

There is only one master host at a time. If the master host should fail, another host automatically
takes over the master host role. Hosts that can act as the master are called master candidates.

Session manager
host

One or more management hosts run session managers. There is one session manager per available
slot on a management host. There is one session manager per application.

Inside Resource Management

30 Platform Symphony™ Foundations

Web server host The Web server host runs the Platform Management Console. Only one management host is
elected as the Web server host.

Compute hosts
Compute hosts are those hosts in the cluster that provide computing resources to consumers. A cluster may contain
any number of compute hosts, but must have at least one compute host.

CPU slots A CPU slot is the unit used to measure compute resources. A single CPU slot can run one service instance
on a compute host, or one session manager on a management host.

Resource distribution plan
The resource distribution plan implements a resource sharing model for the cluster. The resource sharing model defines
how cluster resources are distributed among applications. The resource sharing model specifies whether resources are
reserved for exclusive use by an application, shared between specific applications, or pooled together and shared based
on a ratio. There are several models to choose from.

Inside Resource Management

Platform Symphony™ Foundations 31

Resources
Resources are physical and logical entities that are used by applications in order to run. While resource is a generic
term, and can include low-level things such as shared memory segments or semaphores, in Symphony, EGO manages
CPU slots.

A resource of a particular type has attributes. For example, a compute host has the attributes of memory, CPU utilization,
operating system type, and so on.

Resource groups
Resources may be grouped together into logical groups to simplify identification, resource allocation, or for
administration and monitoring purposes. These resource groups are used to provide a consumer with a like group of
hosts to run workload—any host in a resource group should be able to run the same workload.

As shown in Figure 1, there are two resource groups out of the box, :

• ManagementHosts
• ComputeHosts

Inside Resource Management

32 Platform Symphony™ Foundations

If all of your hosts are identical, these resource groups may suffice. If your application requires a specific type of hosts
(for example, with a minimum processor speed), and not all hosts meet these criteria, you likely need to create resource
groups to group like hosts together.

For example, as shown in Figure 2, a simple way to group resources may be to group your hosts by operating system
type.

EGO provides a common grouping mechanism for resources. Resources may come and go from the system, so EGO
supports the dynamic membership in a resource group. Hosts can be placed explicitly into individual resource groups,
or the resource groups can be defined to have a dynamic membership based on specific criteria. These criteria include
operating system type, CPU speed, total memory, or swap configuration, or custom attributes.

Inside Resource Management

Platform Symphony™ Foundations 33

Consumers
A consumer is a unit within the representation of an organizational structure. The structure creates the association
between the workload demand and the resource supply.

Consumer structure
The consumer structure is hierarchical, and represents some logical, organizational structure. The consumer structure
may mirror the organizational structure of a business unit, where each consumer represents a department. The
consumer structure can represent any type of organization, provided that the structure represents the organizations
that want to access compute resources.

A consumer can be an individual user, a project, a department, or an entire company.

Inside Resource Management

34 Platform Symphony™ Foundations

A consumer can be divided into lower-level consumers, which may also be subdivided. The lowest-level consumer is
the level at which an application is associated.

In the above example, both Dept-1 and Team-1 are consumers. Team-1 is a child consumer of Dept-1. However, Team-1
is a leaf consumer—the lowest level consumer in its hierarchy.

A consumer is identified by a string that represents a path in the hierarchy. Each element of the path represents a
consumer. The administrator at each level in the consumer hierarchy can define its child consumers, and the policies
that determine how the consumer’s resources are shared between the child consumers.

Inside Resource Management

Platform Symphony™ Foundations 35

Resource sharing models
Resources are distributed in the cluster as defined in the resource distribution plan. The resource distribution plan may
implement one or more resource sharing models.

There are three key resource sharing models:

• Siloed model
• Directed share model
• Brokered share or utility model

Siloed model
The siloed model guarantees resource availability to all consumers. It is strictly a 'siloed' ownership model: consumers
do not share resources, nor are the cluster resources pooled. Each application brings its designated resources to the
cluster, and continues to use them exclusively.

In the above example, in a cluster with 1000 slots available, application A has exclusive use of 150 CPU slots, and
application B has exclusive use of 850 slots.

Inside Resource Management

36 Platform Symphony™ Foundations

Directed share model
The directed share model is based on the siloed model: consumers own a specified number of resources, and are still
guaranteed that number when they have demand. The directed share model allows a consumer to lend its unused
resources to sibling consumers when their demand exceeds their owned slots.

In the above example, applications A and B each own 500 slots. If application A is not using all of its slots, and application
B has a requirement for more than its owned slots, application B can borrow a limited number of slots from application
A.

Brokered share or utility model
The brokered share or utility model is based entirely on sharing of the cluster resources. Each consumer is assigned a
proportional quantity of the slots in the cluster. The proportion is specified as a ratio.

In the above example, application A is guaranteed two of every five slots, and application B is guaranteed three. Slots
are only allocated when the demand exists. If application A has no demand, application B may use all slots until
application A requires some.

Inside Resource Management

Platform Symphony™ Foundations 37

Sharing of Symphony resources
Symphony resources are shared as defined in the resource distribution plan.

A client makes a request of the session manager, which requests a certain number (n) slots of the resource manager.
Based on the values specified in the resource distribution plan, the resource manager returns the number of available
slots (m) and the names of the hosts on which the slots reside.

Resource distribution plan
Resources are distributed based on the relationships and values specified in the resource distribution plan.

A policy is a set of rules that defines a behavior for scheduling or resource distribution.

The resource distribution plan is a collection of distribution policies that describes how EGO supplies resources to satisfy
the workload demand.

Resource distribution policies
Resource distribution policies define how many resources each application may use, whether the consumer has sole
ownership of the resources, or shares them with other consumers. If resources are shared, resource distribution policies
define how they are shared, who they are shared with, and when. The resource distribution policies also define how
resources are reclaimed when lent, and how they are disbursed when there is contention for the resources.

The following resource distribution policies may apply:

• Ownership policy
• Sharing policy
• Borrowing/lending policy
• Reclamation policy
• Rank

Inside Resource Management

38 Platform Symphony™ Foundations

Ownership
policy

Defines guaranteed access to a set number of resources. The consumer receives the guaranteed
number of resources regardless of its outstanding demand.

Sharing policy Defines how unowned resources are shared amongst consumers. Any resource that is not explicitly
owned is placed in a shared pool. These resources are shared based on a ratio specified in the sharing
policy. Shared resources are allocated as follows:

1. Consumers receive resources based on their share ratio (a ratio defining a relative portion of
the resources), up to a maximum value, their deserved value.

2. Any free resources remaining in the shared pool are distributed among consumers based on
their share ratio. Share ratio allows more important sibling consumers to borrow more resources
than less important siblings.

Borrowing/
lending policy

Defines a relationship between consumers such that unused resources belonging to a consumer
may be lent to a sibling consumer. The policy defines limits on the borrowing: a policy may limit
borrowing to specific consumers, and limits may be applied to the number of resources that a
consumer may borrow. Borrowing order is configurable, to allow borrowers with the highest rank
to be processed first.

Reclamation
policy

Defines the criteria under which the lender reclaims its owned resources from borrowers. The policy
can specify to allow a grace period before initiating the resource reclaim, or the policy can specify
to kill any running workload and reclaim the resources immediately.

Rank Rank applies to the order in which other policies are applied to consumers. Rank determines the
order in which the distribution of resources is processed—the highest ranking consumer receives
its resources first, borrows resources first, and returns borrowed resources last.

Inside Resource Management

Platform Symphony™ Foundations 39

Inside Resource Management

40 Platform Symphony™ Foundations

4
Inside the Symphony Cluster

C H A P T E R

Platform Symphony™ Foundations 41

Symphony processes
There are multiple Symphony processes running on each host in the cluster. The type and number of processes running
depends on whether the host is a management host or a compute host.

Management host processes
Symphony management hosts run various processes, depending on their role in the cluster.

On the master host
master
lim

The master lim starts vemkd and pem on the master host. There is one master
lim per cluster.

vemkd The vemkd (EGO kernel) does the following:

• Starts the service controller egosc
• Maintains security policies, allowing only authorized access
• Maintains resource allocation policies, distributing resources accordingly
• Serves as an information center where clients can query information about

the cluster

There is one vemkd per cluster, and it runs on the master host.

Inside the Symphony Cluster

42 Platform Symphony™ Foundations

pem The pem (process execution monitor) monitors vemkd, and notifies the master
lim if vemkd fails.

egosc The egosc (EGO service controller) is the first service that runs on top of the
EGO kernel. It functions as a bootstrap mechanism for starting the other services
in the cluster. It also monitors and recovers the other services. It is somewhat
analogous to init on UNIX systems or Service Control Manager on Windows
systems. After the kernel boots, it reads a configuration file to retrieve the list of
services to be started. There is one egosc per cluster, and it runs on the master
host.

sd The sd (session director) acts as a liaison between the client application and the
session manager. There is one session director process per cluster, and it runs on
the master or a management host.

This process could also run on other management hosts.

rs The rs (repository service) provides a deployment mechanism for service
packages to the compute hosts in the cluster. There is one repository service per
cluster, and it runs on the master or a management host.

This process could also run on other management hosts.

On other management hosts
lim The lim (load information manager) monitors the load on the management host,

and starts pem.

pem The pem (process execution manager) starts Symphony processes on the host.

ssm The ssm (session manager) is the primary workload scheduler for an application.
There is one session manager per application.

wsm The wsm (web interface service) runs the Platform Management Console.

plc The plc (PERF loader controller) loads data into the reporting database.

purger The purger (PERF data purger) purges reporting database records.

On the master candidate hosts
lim The lim (load information manager)monitors the load on the master candidate host.

lim also monitors the status of the master lim. If the master host fails, lim also elects
a new master host.

pem The pem (process execution manager) starts Symphony processes on the host.

Compute host processes
lim The lim (load information manager) monitors the load on a compute host, and passes

the load information to the master lim on the master host.

The lim does the following for the host on which it runs:

• Starts pem on that host

Inside the Symphony Cluster

Platform Symphony™ Foundations 43

• Provides system configuration information to the master lim
• Monitors load and provides load information statistics to vemkd and users

pem The pem (process execution manager) monitors the lim process.

sim The sim (service instance manager) is started on the compute host when workload is
to be submitted to the host if the application is preconfigured. The sim then starts the
service instance running. There is one service instance manager per service instance.

Inside the Symphony Cluster

44 Platform Symphony™ Foundations

Symphony cluster startup process
When the administrator starts the cluster using the egosh ego start all command, the processes in the cluster
are started as shown below:

1. The lim is started on the master host.
2. The master lim starts both pem and vemkd on the master host, and lim on all compute hosts.
3. vemkd starts egosc.
4. egosc starts sd (session director), rs. plc, purger, and wsm using pem.
5. sd starts ssm.
6. lim on each compute host starts pem on the same host, and reports information to the master lim.
7. ssm starts sim on a compute host (upon a request for resources from a client).
8. sim starts si.

Inside the Symphony Cluster

Platform Symphony™ Foundations 45

Symphony fault tolerance
Symphony has no single point of failure. Every component in the system has a recovery operation—every component
is monitored by another component, and can automatically recover from a failure.

Fault tolerance for resources
All services managed by EGO (master lim, session director, repository service, PERF loader controller, and others)
can be configured to fail over to another management host.

Inside the Symphony Cluster

46 Platform Symphony™ Foundations

Fault tolerance for workload
Symphony provides the following fault tolerance for workload:

• The service instance is monitored and recovered by its service instance manager
• The service instance manager is monitored and recovered by its session manager together with EGO
• The session manager is monitored and recovered by session director together with EGO
• Workload (sessions and tasks) can be specified as recoverable or not
• Task delivery is guaranteed

Fault tolerance among applications
Symphony provides the following fault tolerance for applications:

• All service-oriented application properties are defined in application profiles throughout the cluster
• Administrators are in full control of Symphony applications for their assigned profiles
• If EGO encounters an issue, it does not affect running Symphony applications
• If one service instance fails, it does not affect any others
• Persistence, history logging, and data cache are managed per application

Inside the Symphony Cluster

Platform Symphony™ Foundations 47

Inside the Symphony Cluster

48 Platform Symphony™ Foundations

Inside PERF
Platform Enterprise Reporting Framework (PERF) provides the infrastructure for the reporting feature.

Note:
Reporting is only available if you have Platform Symphony or Platform LSF
installed.

Database
Platform Symphony includes the Apache Derby database, a JDBC-based relational database system, for use with the
reporting feature. The Derby database is a small-footprint, open-source database, and is only appropriate for demo
clusters. If you want to use the reporting feature to produce regular reports for a production cluster, you must use a
supported commercial database.

Data sources
Data sources are files that store cluster operation and workload information such as host status changes, session, and
task status, and so on. Symphony uses several files as data sources. These include daemon status files, and event files.

Data loaders
Data loaders collect the operational data from the data sources and load the data into tables in a relational database.
The data loaders connect to the database using a JDBC driver. The data loaders handle daylight savings automatically
by using GMT time when collecting data.

Loader controller
The loader controller service (plc) controls the data loaders that collect data from the system and writes the data into
the database.

Inside the Symphony Cluster

Platform Symphony™ Foundations 49

Data purger
The data purger service (purger) maintains the size of the database by purging old records from the database and
archiving them. By default, the data purger purges all data that is older than 14 days, and purges data every day at
12:30am.

Reports
Platform provides a set of out-of-box report templates, called standard reports. These report templates allow you to
produce a report to analyze your cluster. The standard reports capture the most common and useful data to analyze
your cluster.

You may also create custom reports to perform advanced queries and reports beyond the data produced in the standard
reports.

Inside the Symphony Cluster

50 Platform Symphony™ Foundations

Index
A

application profile
description 23
overview 22

relationship
to client 23
to service 23
to service package 23

applications
relationship to service packages 25

authentication
definition of 16

authorization
definition of 16

B

binaries
running on Symphony 27

borrowing policy 39
brokered share resource model 37

C

client
description of 7

cluster
components of 8
description of 6
startup process 45

compute hosts 30
processes running on 43

consumer
purpose of 10

consumers
structure 34

CPU slots 31

D

daemons
egosc 43

dashboard
description of 12

data loaders 49
data purger 50
data sources 49
database

for reports 49
DE

description of 11
Developer Edition

overview 11
directed share resource model 37

E

EGO
components 30
description of 8
overview 30

egosc 43
executable integration with Symphony 27
executables

running 27

F

failover 46
failover hosts 30
fault tolerance

and resource management 46
and workload management 47
in applications 47
overview 46

H

hierarchy of consumers 34

Platform Symphony™ Foundations 51

hosts
compute 30
compute host processes 43
failover 30
master 30
master candidates 30
processes running on 42
session manager 30
Web server 30

I

impersonation
definition of 17

K

knowledge center
introduction to 14
overview 9

L

lending policy 39
lim

on management host 43
loader controller 49

M

management hosts
overview 30

ManagementHosts resource group 32
master candidates 30
master host 30
master lim 42
models

for resource sharing 36

O

ownership policy 39

P

pem
on master host 43

PERF 15
data loaders 49

data sources 49
overview 49

Platform Management Console
description of 9

plc 43, 49
PMC

description of 9, 12
policies

borrowing 39
for sharing resources 38
lending 39
ownership 39
rank 39
sharing 39

privilege
definition of 16

processes
compute hosts 42
management hosts 42
master host 42
on compute hosts 43
on management hosts 43
on master candidate hosts 43

purger 43

R

rank policy 39
redundancy 46
reports 15

data purger 50
database 49
introduction to 15
loader controller 49
overview 9

repository service
overview 26

resource distribution plan
overview 31

resource groups
ComputeHosts 32
introduction to 32
ManagementHosts 32

resource management 8
resources

brokered share model 37
CPU slots 31
directed share model 37

52 Platform Symphony™ Foundations

distributing 31
introduction to 32
policies 38
sharing models 36
sharing of 38
siloed 36
utility model 37

role
definition of 16

rs 43
overview 26

S

sd 43
security

in Symphony 17
model 16
user accounts 17

service
description of 7

service controller 43
service instance

overview 20
service instance manager

overview 20
services

and applications 25
and service binaries 25

deployment of
overview 26

starting 43
session

overview 22
session director

overview 20
session manager

overview 20, 30
session manager host 30
share ratio 39
sharing policy 39
sim 43
soa applications 22
SOA middleware

components 20
SOAM

components of 20
description of 9

ssm 43
start process flow 45
Symphony

description of 6
Symphony DE

overview 11

T

task
overview 22

U

user roles 16

V

vemkd 42

W

Web server
overview 30

Web server host 30
workload management 8
wsm 43

Platform Symphony™ Foundations 53

	Contents
	Copyright
	Platform Symphony: An Overview
	Introduction to Platform Symphony
	Symphony cluster components
	Introducing the consumer
	Platform Symphony Developer Edition
	Platform Management Console
	Knowledge Center
	Reporting
	Security

	Inside Workload Management
	SOA Middleware components
	Service-oriented application objects
	Application profile
	Consumers, applications, services, and service binaries
	Service package deployment
	Running executables in Symphony

	Inside Resource Management
	EGO component overview
	Resources
	Consumers
	Resource sharing models
	Sharing of Symphony resources

	Inside the Symphony Cluster
	Symphony processes
	Management host processes
	Compute host processes

	Symphony cluster startup process
	Symphony fault tolerance
	Inside PERF

	Index

