
Using Platform Process Manager

Platform Process Manager
Version 8.0.2

November 2011

Copyright © 1994-2011 Platform Computing Corporation.

Although the information in this document has been carefully reviewed, Platform Computing Corporation (“Platform”)
does not warrant it to be free of errors or omissions. Platform reserves the right to make corrections, updates, revisions
or changes to the information in this document.

UNLESS OTHERWISE EXPRESSLY STATED BY PLATFORM, THE PROGRAM DESCRIBED IN THIS
DOCUMENT IS PROVIDED “AS IS” AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL PLATFORM COMPUTING BE LIABLE TO
ANYONE FOR SPECIAL, COLLATERAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING
WITHOUT LIMITATION ANY LOST PROFITS, DATA, OR SAVINGS, ARISING OUT OF THE USE OF OR
INABILITY TO USE THIS PROGRAM.

We’d like to hear
from you

You can help us make this document better by telling us what you think of the content, organization, and usefulness of
the information. If you find an error, or just want to make a suggestion for improving this document, please address
your comments to doc@platform.com.

Your comments should pertain only to Platform documentation. For product support, contact support@platform.com.

Document
redistribution
and translation

This document is protected by copyright and you may not redistribute or translate it into another language, in part or
in whole.

Internal
redistribution

You may only redistribute this document internally within your organization (for example, on an intranet) provided
that you continue to check the Platform Web site for updates and update your version of the documentation. You may
not make it available to your organization over the Internet.

Trademarks LSF is a registered trademark of Platform Computing Corporation in the United States and in other jurisdictions.

ACCELERATING INTELLIGENCE, PLATFORM COMPUTING, PLATFORM SYMPHONY, PLATFORM JOB
SCHEDULER, PLATFORM ISF, PLATFORM ENTERPRISE GRID ORCHESTRATOR, PLATFORM EGO, and the
PLATFORM and PLATFORM LSF logos are trademarks of Platform Computing Corporation in the United States and
in other jurisdictions.

UNIX is a registered trademark of The Open Group in the United States and in other jurisdictions.

Linux is the registered trademark of Linus Torvalds in the U.S. and other countries.

Microsoft is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other
countries.

Windows is a registered trademark of Microsoft Corporation in the United States and other countries.

Intel, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the
United States and other countries.

Other products or services mentioned in this document are identified by the trademarks or service marks of their
respective owners.

Third-party
license
agreements

http://www.platform.com/Company/third.part.license.htm

Contents
1 New Features in Platform Process Manager 8.0.2 ... 7

General new features .. 8
New features in Flow Manager ... 10
New features in Flow Editor .. 12
Flow-related new features available only in Platform Application Center 16

2 Introduction to Platform Process Manager ... 19
About Platform Process Manager ... 20
About Platform Process Manager terms ... 22
Change your server .. 27
About flow definitions and flows .. 29

3 Platform Process Manager Calendars .. 33
About the calendar editor .. 35
Create a calendar with specific dates ... 37
Create a calendar using an expression .. 38
Create a calendar with a complex expression .. 41
Calendar examples ... 43
Edit an existing calendar ... 45
Delete a calendar .. 46

4 Define your flow .. 47
Ways to create a flow definition .. 48
Using the example flows ... 49
Create a flow diagram ... 50
Include a job array in the flow diagram ... 52
Include a job submission script in the flow diagram .. 55
Include a job array submission script in the flow diagram ... 56
Include a static subflow in the flow diagram .. 58
Include a static flow array in the flow diagram .. 59
Include a dynamic subflow in the flow diagram ... 61
Include a dynamic flow array in the flow diagram ... 62
Include a manual job in the flow diagram .. 64
Specifying custom exit codes for successful job completion .. 66
Include a local job in the flow diagram .. 67
Variables in Platform Process Manager .. 69
Job dependencies ... 83
Specify dependency on the start or submission of specific jobs 86

Using Platform Process Manager 3

Specify a dependency on a file ... 90
Change the label displayed for an event ... 93
Dependency on a date and time ... 94
Specify dependencies on a job array .. 96
Specify dependencies on a subflow .. 98
Specify dependencies on an unconnected work item ... 100
Specifying multiple dependencies ... 105
Details of a job .. 106
About flow completion attributes ... 120
Specify flow completion attributes ... 122
Configuring flow exit codes ... 126
Specify exception handling for a flow .. 128
Flow attributes ... 129
Specify flow attributes ... 130
Save the flow definition ... 132
Loop a flow or subflow .. 133

5 About Platform Process Manager exceptions .. 135
About exception handling .. 139
Handling exceptions .. 143
Alarms ... 148

6 Run your flow .. 153
Create a flow definition to be triggered manually .. 155
Schedule your flow .. 157
Run a flow when another flow... .. 162
Run your flow once ... 166
Submit your flow definition .. 167

7 Control a Flow ... 169
About the Flow Manager ... 170
Real-time data ... 173
Print data ... 174
Filter the data displayed in the tree view ... 175
Trigger a flow .. 178
View a flow definition and specify versioning options ... 179
View inter-flow relationships ... 181
Determine the status of jobs in a flow ... 185
Manually complete a dependency .. 187
Kill a running job ... 188
Stop a flow at a specific point by putting a job on hold ... 189
Run or rerun a single job ... 190
Mark a job complete .. 191
Work with manual jobs .. 192
Completing manual jobs with exit codes ... 194
Work with proxies .. 195

4 Using Platform Process Manager

Kill a running flow .. 197
Suspend a running flow .. 198
Resume a suspended flow .. 199
Rerun an exited flow ... 200
Rerun a flow while a job is still running ... 202
Rerun an exited job array .. 203
Hold a flow definition ... 204
Releasing a flow definition from hold .. 205
Remove a flow definition ... 206

8 Mainframe support .. 207
Using mainframe ... 208
Exit codes ... 211

9 Commands ... 213
caleditor .. 215
floweditor ... 216
flowmanager ... 217
jadmin ... 218
jalarms .. 220
jcadd ... 223
jcals ... 228
jcdel ... 229
jcmod .. 230
jcomplete ... 234
jdefs .. 236
jflows ... 238
jhist .. 240
jhold .. 245
jid .. 246
jjob .. 247
jkill ... 250
jmanuals .. 252
jpublish .. 253
jreconfigalarm ... 254
jrelease ... 255
jremove ... 256
jrerun ... 258
jresume ... 259
jrun .. 261
jsetvars .. 262
jsetversion ... 264
jsinstall .. 265
jstop .. 266
jsub ... 268
jtrigger ... 275

Using Platform Process Manager 5

junpublish .. 277

6 Using Platform Process Manager

1
New Features in Platform Process Manager

8.0.2

This chapter provides a summary of new features available in this version. Some new features available
in Process Manager are also available or visible in Platform Application Center.

C H A P T E R

Using Platform Process Manager 7

General new features
Enhancements to local jobs on Linux and UNIX

This feature is available in:

• Platform Process Manager

Description:

These enhancements to local jobs only apply to Linux and UNIX.

A local job is a job that will execute immediately on the Platform Process Manager host without going
through LSF. A local job is usually a short and small job.

Enhancements that have been made:

• Local jobs are now non-blocking. This means that multiple local jobs can run at the same time.
• You can now kill a local job. If a local job is killed outside of Process Manager, Process Manager can

identify the local job’s exit status and resource usage.
• Local jobs are now suspended and resumed when you suspend or resume the flow that contains them.
• In the job’s runtime attributes, you can now view the exit status and CPU usage of a local job after the

job completes. The process ID identifies the local job and you can view CPU usage for the job. You
can also view the process ID of the job and CPU usage information with jflows -l flow_id and
jhist -C job.

• To avoid overloading the Platform Process Manager host with too many local jobs, there is a new
parameter JS_LOCAL_JOBS_LIMIT in js.conf to control the maximum number of local jobs that
can simultaneously run on the Process Manager host.

• By default, local jobs now have no timeout. The default value of
JS_LOCAL_EXECUTION_TIMEOUT in js.conf has been changed to unlimited.

• The parameter JS_LOCAL_EXECUTION_THREADS in js.conf is now obsolete. Its value is now
fixed at 1 and cannot be changed, as local jobs are now non-blocking.

• Should jfd terminate abnormally, when it restarts it can recover running and finished local jobs and
determine their status and resource usage.

• A new binary is installed in JS_SERVERDIR: eem.local. It is started by jfd and handles job
submission, control, and status checking for local jobs and reports back to jfd.

• Two additional port numbers are now used by jfd and eem.local: JS_PORT + 1 and JS_PORT +
2 .

New built-in user variable JS_FLOW_FULL_NAME
This feature is available in: Platform Process Manager and Platform Application Center.

Description:

You use the built-in user variable JS_FLOW_FULL_NAME when you need to use the long version of a
subflow name.

For example:

• For a subflow named 11:usr1:F1:SF1:SSF1, this variable is set to 11:usr1:F1:SF1:SSF1.
• For a main flow named 11:usr1:F1, this variable is set to 11:usr1:F1.

New Features in Platform Process Manager 8.0.2

8 Using Platform Process Manager

Use a custom mail program to send email
This feature is available in:

• Platform Process Manager: Set JS_MAILPROG in js.conf to your custom mail program. After
setting your custom mail program, you will need to restart jfd with the commands jadmin
start and jadmin stop to make changes take effect.

Description:

By default, Process Manager sends email through /usr/lib/sendmail on UNIX or lsmail.exe on
Windows.

You can now specify a custom mail program to send emails. Your custom mail program can be a shell
script, a binary executable, or, a .bat file on Windows. Your custom mail program must follow the same
protocol as sendmail.

Restrict who can see the flow chart view
This feature is available in:

• Platform Process Manager: You set the parameter JS_LIMIT_FLOW_CHART_VIEW in js.conf and
affects display of the flow chart and associated actions in Flow Manager and Platform Application
Center.

• Platform Application Center: Flow Chart view is restricted along with associated actions based on the
parameter set in Platform Process Manager.

Description:

There is a new parameter in js.conf, JS_LIMIT_FLOW_CHART_VIEW. This parameter allows you
to restrict viewing the chart view of a flow and flow definition to only the Process Manager administrator
and users who are both the flow definition owner and flow owner.

When this parameter is set to false, users who can view a flow or flow definition, can see everything about
the flow: flow chart, general information, subflows and jobs, flow data, and flow history. These users can
also perform job and subflow-specific actions.

When this parameter is set to true, there are restrictions on which users can see the flow chart of a flow
and flow definition and associated actions the user can take on components of the flow.

New Features in Platform Process Manager 8.0.2

Using Platform Process Manager 9

New features in Flow Manager

Hold and release for jobs
This feature is available in:
• Flow Manager: You can hold and release jobs through Flow Manager By State tab, display a flow, and

select the job in the Waiting state, right-click and choose Hold, or the new options in the jjob
command, -p for hold, and -g for release.

• Platform Application Center: Go to Jobs > Jobs > By State > Running, select the flow, select the Flow
Chart tab, select the job in the Waiting state, right-click, and choose Hold.

Description:

In some cases, you may want to stop a flow at a specific point so that you can fix problems. You can do
this by putting a job in the Waiting state in the flow on hold.

Only the branch of the flow that contains the job that is On Hold pauses. Other branches of the flow
continue to run.

You can put on hold LSF jobs, job submission scripts, local jobs and job arrays.

Allow users to trigger other users’ flows
This feature is available in:
• Platform Process Manager: Set JS_CHANGE_FLOW_OWNER in js.conf. There is also now one more

tab in Flow Manager, the By Definition tab. This tab displays flow definitions organized by the user
who submitted them. In addition, what is displayed in the tree view has been enhanced for all tabs to
indicate the flow owner and flow submitter.

• Platform Application Center: The parameter setting in Process Manager also controls who can trigger
other users’ flows in Platform Application Center. Select Jobs > Flow Definitions > By User to trigger
flows.

Description:

By default, only Process Manager administrators and Process Manager control administrators can trigger
flows created by other users.

This feature only applies to flow definitions that have the status Published.

With the new parameter JS_CHANGE_FLOW_OWNER=true in js.conf, non-administrator users can
trigger other users’ flows. In this way, one user can submit flow definitions, and another user can trigger
the flow from the flow definition, own the flow, and control it. The user who submitted the flow definition
is the owner of the flow definition, the user who triggered the flow is the owner of the flow.

Rerun a flow while a job is still running
This feature is available in:
• Platform Process Manager: In Flow Manager, the Rerun Now and Rerun with variables menu items

have been replaced with Rerun, and a window is displayed in which you can choose what to rerun in
the flow.

• Platform Application Center: Select Jobs > Jobs > By State, select the flow, and click the Rerun button
to display a window in which you can choose what to rerun in the flow.

Description:

New Features in Platform Process Manager 8.0.2

10 Using Platform Process Manager

In previous versions, you could only rerun flows that were in an Exited state. You can now rerun flows
when the flow state is Running, Exited, or Done.

This is useful for flows that have several branches. When one branch fails, you can rerun the branch
without waiting for other branches of the flow to complete.

You can:

• Set or unset starting points when there are still jobs running in the flow.
• Choose whether to rerun the flow from:
• • Starting points and exited jobs. The flow will rerun from any starting points, exited jobs, and, from

the item following any manually completed jobs provided dependencies are met.
• Starting points only. The flow will rerun only from starting points.

Note that you can only rerun a running flow if the part of the flow to be rerun does not overlap with items
that are currently running.

Exit codes for manual jobs
This feature is available in:

• Platform Process Manager: In Flow Manager, you can now specify exit codes when completing a
manual job, or by using the new option in the jcomplete command, -e exit_code. Manual jobs can
now fail. In Flow Editor, you can now specify in the manual Job Event Definition the dependencies
Fails, Ends with any exit code, and Ends with exit code....

• Platform Application Center: You can complete a manual job and specify an exit code through Jobs
> Jobs > By State > Pending User Input, select the manual job, click the Complete Manual Job
button.

New Features in Platform Process Manager 8.0.2

Using Platform Process Manager 11

New features in Flow Editor

New Other Options field for additional LSF job
submission options

This feature is available in:

• Flow Editor: Job Definition or Job Array Definition dialog, Advanced tab, Other Options field.
• Platform Application Center: In the Job Definition or Job Array Definition dialog, Advanced tab,

Other Options field. To access the Job Definition, in the Jobs tab, select Jobs, select a Flow, select the
Flow Chart tab, right-click a job to display the Job Definition.

Description:

This allows you to use options that are not available from the job definition dialog. The options you specify
are added to the bsub command when you submit the job or job array.

For example:
-w "done('#{JS_FLOW_FULL_NAME}:JobArray1')"

You can also specify user variables in the Other Options field.

Configure custom exit codes for successful jobs
This feature is available in:

• Platform Process Manager: In Flow Editor, open the Job Definition dialog, Job Script Definition dialog,
Manual Job Definition dialog, or Local Job Definition dialog, and configure the new field Non-zero
success exit codes.

• Platform Application Center: You can view settings for the field Non-zero success exit codes in the
Job Definition, but you cannot change them.

Description:

By default, for a job to complete successfully, the exit code must be 0. Any other exit code indicates the
job failed.

In some cases, however, you may want to use exit codes to pass information to subsequent work items
and may want to use numbers other than 0 to indicate success.

You can now do so by specifying a space-separated list of exit codes in the Job Definition dialog, Job Script
Definition dialog, Manual Job Definition dialog, or Local Job Definition dialog, with the new Non-zero
success exit codes field.

Configure how to calculate flow exit codes
This feature is available in:

• Platform Process Manager: In Flow Editor, select Action > Specify Flow Completion Attributes, new
section Determine the flow exit code from

• Platform Application Center: You can view Flow Completion Attributes but you cannot change them.

Description:

By default, a Done flow or subflow has an exit code of 0, since the default way that Process Manager
determines the flow exit code is through the sum of all exit codes of all work items in the flow.

New Features in Platform Process Manager 8.0.2

12 Using Platform Process Manager

However, it is possible to specify custom success exit codes for LSF jobs, job scripts, local jobs, and manual
jobs. For this case, you can configure the flow to inherit the exit code of the last item that was successfully
completed or that failed in the Flow Completion Attributes dialog.

New dependencies
This feature is available in:

• Platform Process Manager: In Flow Editor, new dependencies have been added for subflows, flow
arrays, and jobs.

Flow Event Definition, for subflows:

• The flow completes successfully with exit code...
• The flow fails with exit code...
• The flow fails

Flow Array Event Definition:

• Any flow fails

Job Event Definition:

• Fails
• Is Submitted

Job Array Event Definition:

• Any job fails
• Platform Application Center: You can view dependency settings but you cannot change them.

User variables in more fields when defining jobs and
job arrays

This feature is available in:

• Platform Process Manager: In Flow Editor, Job Definition and Job Array Definition dialogs.
• Platform Application Center: User variables are displayed, but cannot be specified.

Description:

You can now use user variables in more fields in the Job Definition and Job Array Definition dialogs.
When you select a field and hover, the help that displays indicates whether you can use a user variable or
not in the field.

User variables for job parameters are resolved at runtime, just before the job is submitted.

The following fields now support user variables:

Tab Field

Processing tab Number of Processors for Parallel Jobs, Minimum

Number of Processors for Parallel Jobs, Maximum

Before Execution, Run command

User Group, Associate job with user group

New Features in Platform Process Manager 8.0.2

Using Platform Process Manager 13

Tab Field

Limits tab All fields under Job Limits

Host Limits, Maximum run time

Host Limits, Maximum CPU time

Submit a dependent job after selected jobs start
running or are submitted

This feature is available in:

• Platform Process Manager

Description:

• In Flow Editor, Advanced tab, Pre-submit section, you can now select jobs upon the current job
depends. This now applies not only to jobs and job scripts, but also to job arrays, job array scripts, and
template jobs.

• You can now specify either Starts or Submitted as the dependency. In this way, you can identify that
the current job is to be submitted right after the selected jobs have started to run in LSF, or that the
current job is to be submitted right after the selected jobs have been submitted to LSF.

• Create proxy events for jobs with the new Starts or Is Submitted events
• Create proxy events for job arrays with the new Number of jobs started is..., and The job array is

submitted events.

Static and dynamic flow arrays can now run
sequentially

This feature is available in:

• Platform Process Manager: In Flow Editor, Flow Array Attributes dialog.

Description:

In Flow Editor, there is now an option in the Flow Array Attributes to run in parallel or sequentially. As
a result, you now have the choice of running static or dynamic flow array elements in parallel, or
sequentially. In previous versions, flow arrays always ran in parallel.

Determining success or failure based on specific exit
codes in the dependency condition

This feature is available in:

• Platform Process Manager: In Flow Editor, Job Event Definition, Proxy Event Definition, and
Exception Handler Definition with the events Ends with exit code equal to and Ends with Exit
code not equal to.

Description:

You can now define dependencies to take action if any of the specified exit codes are encountered.

You can specify a list of exit codes in:

• Dependencies between jobs, job scripts, template jobs, local jobs, and manual jobs.

New Features in Platform Process Manager 8.0.2

14 Using Platform Process Manager

• Proxy event definitions for a proxy job, proxy template job, proxy job script, and proxy local job. For
proxy dependencies, you can also use jsub -p and specify a list of exit codes.

• Exception Handler Definition for a job, job script, template job.

Command to run field can now display multiple lines
This feature is available in:

• Platform Process Manager: Flow Editor, in the definition of a job, job array, or local job.
• Platform Application Center: You can enter the command to run in Jobs > Submission Forms >

Flow Forms. You can view a command that spans multiple lines in Jobs > By State, by selecting the
state, selecting a flow, selecting the Flow Chart tab, right-clicking and selecting Open Definition for
a job, job array, or local job.

New Features in Platform Process Manager 8.0.2

Using Platform Process Manager 15

Flow-related new features available only in
Platform Application Center
Jobs and Flows can now be monitored in the same
window

This feature is available in: Platform Application Center.

Description:

Jobs and flows are now in the same window, accessible through Jobs > Jobs > By State. There is now a
Type column by which you can sort.

Possible types are:

• Job
• Flow
• Array

Completion attributes now visible for subflows and
flow arrays in Flow Chart tab

This feature is available in: Platform Application Center.

Description:

You can now view completion attributes for static and dynamic subflows, and flow attributes and
completion attributes for static and dynamic flow arrays.

For subflows, select Jobs > Submission Forms > Flow Forms, select a flow, select the Flow Chart tab,
select a subflow, right-click and choose Completion Attributes.

For flow arrays, select Jobs > Submission Forms > Flow Forms, select a flow, select the Flow Chart tab,
select the flow array, right-click and select Expand. When the new page is displayed, right-click on the
page, and select the Attributes or Completion Attributes menu items.

Reorganization of pages for flow definitions
This feature is available in:

• Platform Application Center: Pages related to flow definitions have been reorganized.

Description:

• Resources > Submission Templates > Flow Definitions: view flow definitions as a list or graphically
and perform actions on the flow definitions: Hold, Release, Remove, Publish, Unpublish.

• Settings > System Services > Flow Manager Service: View the Process Manager server name, port,
and statistics about the number of flows and flow definitions in each state, and set global variables for
all flows.

• Jobs > Submission Forms > Flow Forms by User: Trigger a flow from a flow definition. Non-
administrator users can see their own submitted flow definitions and all published flow definitions.

New Features in Platform Process Manager 8.0.2

16 Using Platform Process Manager

Process Manager administrators and control administrators can see all submitted flow definitions and
flows.

• Jobs > By State > Pending User Input: View and complete manual jobs.
• Jobs > Job Alerts: View open alarms in the system.

New Features in Platform Process Manager 8.0.2

Using Platform Process Manager 17

New Features in Platform Process Manager 8.0.2

18 Using Platform Process Manager

2
Introduction to Platform Process Manager

This section describes each of the component applications that make up the Platform Process Manager
software, and introduces each of the work items used to define and schedule your workload.

C H A P T E R

Using Platform Process Manager 19

About Platform Process Manager
Platform Process Manager comprises three client applications and a server application. The client
applications are:
• Platform Process Manager Designer:

• The Flow Editor
• The Calendar Editor

• The Flow Manager

The Platform Process Manager Server is the scheduling interface between the client applications and
the execution agent, Platform Process Manager.

The Flow Editor
You use the Flow Editor to define your flow definitions: the jobs and their relationships with other jobs
in the flow, any dependencies they have on files, and any time dependencies they may have. You also use
the Flow Editor to submit your flow definitions—this places them under the control of Platform Process
Manager.

You can submit a flow definition in three ways:
• By submitting it to be triggered when one or more events occur
• By submitting it to be triggered manually
• By running it immediately

After a flow definition is submitted, a copy of the definition resides in Platform Process Manager. If
the flow definition is to be triggered by an event, Platform Process Manager triggers it automatically
when that event occurs, creating a flow. If the flow definition is to be triggered manually, the flow
definition waits in Platform Process Manager until you trigger it, creating a flow. If the flow definition
is run immediately, Platform Process Manager does not store a copy of the definition—just the flow.

Using the Flow Editor, you can work with existing flow definitions, easily modifying them to create
new ones. You can also create reusable flow definitions that can be shared by many users, or reused
over and over again. These flow definitions can be easily incorporated into a new definition as subflows.
These techniques allow you to create intricate work flows quickly, with fewer errors.

You start the Flow Editor from the Windows start menu, by selecting Platform Computing >
Platform Process Manager > Flow Editor, or by running floweditor on UNIX.

The Calendar Editor
You use the Calendar Editor to define calendars, which Platform Process Manager uses to calculate the
dates on which a job or flow should run. Calendars contain either specific dates or expressions that resolve
to a series of dates.

Platform Process Manager calendars are independent of jobs, flow definitions and flows, so that they can
be reused. The Platform Process Manager administrator can create calendars that can be used by any user
of Platform Process Manager. These are referred to as system calendars. Platform Process Manager
includes a number of built-in system calendars so you do not need to define some of the more commonly
used expressions.

Once a calendar is defined, you associate a job or a flow definition with the calendar using a time event.

You start the Calendar Editor from the Windows start menu, by selecting Platform Computing > Platform
Process Manager > Calendar Editor, or by running caleditor on UNIX.

Introduction to Platform Process Manager

20 Using Platform Process Manager

The Flow Manager
You use the Flow Manager to trigger, monitor and control running flows, and to obtain history
information about completed flows.

Using the Flow Manager, you can view the status of, suspend, or kill a flow. While working within the
Flow Manager, you can review the flow definition, while comparing it to the running flow.

You start the Flow Manager from the Windows start menu, by selecting Platform Computing > Platform
Process Manager > Flow Manager, or by running flowmanager on UNIX.

Introduction to Platform Process Manager

Using Platform Process Manager 21

About Platform Process Manager terms

Jobs

A job is a program or command that is scheduled to run in a specific environment. A job can have many
attributes specifying its scheduling and execution requirements. You specify the attributes of the job when
you define the job in the Flow Editor. Platform Process Manager schedules and manages jobs that run on
Platform Process Manager hosts. Platform Process Manager uses job attributes, system resource
information, and configuration settings to decide when, where, and how to run jobs. While each job is
assigned a unique job name by the system, you can associate your own job names to make referencing
easier.

Dependencies

A dependency describes the order in which something happens within a flow: a job (or job array or subflow)
can depend on the completion of a job, job array, subflow, or event before it can run.

A dependency is shown in the Flow Editor and Flow Manager as a line with an arrow. The job at the tip
of the arrow cannot run until the work item at the other end of the arrow reaches a particular condition.

A dependency is used to indicate relationships between jobs, events, alarms, and so on.

Job dependencies
A job dependency is a dependency that a job (or job array or subflow) has on the completion of a
predecessor job. You can define a dependency that controls a job’s execution upon the completion, failure,
or startup of other jobs. You can also start a job when the predecessor fails with a specific exit code, or
experiences a specific exception.

Job dependencies are shown in the Flow Editor and Flow Manager as a line with an arrow. The job at the
tip of the arrow cannot run until its predecessor at the other end of the arrow reaches a particular condition.
The default type of job dependency is on the successful completion of the predecessor.

Job arrays

A job array is a group of homogeneous jobs—jobs that share the same executable and resource
requirements, but have different input files, for example input1, input2, input3 and so on. You can
use a job array to submit, control and monitor all of the jobs as a single unit. Each job submitted from a
job array shares the same job ID as the job array and is uniquely referenced using an array index. The
dimension and structure of a job array is defined when the job array is created.

Introduction to Platform Process Manager

22 Using Platform Process Manager

Job submission script

A job submission script is a shell script or a batch file, which you can define to submit a job. You can define
and submit customized job array submission script with bsub command and options. You can monitor
and control the jobs that have been submitted through the customized job submission scripts. You specify
the attributes of the script when you define the job submission script in the Flow Editor. Platform Process
Manager schedules and manages job submission scripts that run on the Platform Process Manager hosts.

Job array submission script

A job array submission script is a group of submission scripts— that share the same executable and resource
requirements, but have different input files, for example script1, script2, script3, and so on. You
can use a customized job array submission script to control and monitor all the jobs and job arrays. Each
job submitted from a job array submission script shares the same job ID as the job array submission script
and is uniquely referenced using an array index. The dimension and structure of a job array submission
script is defined when the job array submission script is created.

Manual jobs

A manual job is a place-holder in a flow—it marks the place in a process where some manual activity must
take place before the flow can continue. Successors of a manual job cannot run until the manual job is
explicitly completed.

Flow definitions
A flow definition is a container for a group of related jobs. The flow definition describes both the jobs and
their relationships to each other, as well as any dependencies the jobs have on files or dates and times.
Using a flow definition, you can create a complex schedule involving many jobs, and manipulate it as a
single entity. You can also use a flow definition to group jobs together that form a particular function,
and imbed the flow definition as a subflow within a larger flow definition. This allows you to share and
reuse common functions.

Flow definitions can be stored locally on your own machine, or within a shared file system. You can see
and import flow definitions created by another user, but you cannot control running flows owned by
another user unless you have administrative authority.

Flows
A flow is the particular occurrence of a flow definition that is created when the flow definition is triggered.
When Platform Process Manager creates a flow from the flow definition, it assigns each occurrence of the
flow a unique ID called the flow ID.

Adhoc flows
An adhoc flow is a flow that is run directly by the Platform Process Manager Server without the server
saving a copy of the flow definition. An adhoc flow is run directly from the Flow Editor.

Introduction to Platform Process Manager

Using Platform Process Manager 23

An adhoc flow is displayed in the tree view of the Flow Manager in each of the following ways:

• In the By Flow User view, under the user ID of the user who runs it, in a folder called adhoc
• In the By Event view, in a folder called adhoc

Subflows

A subflow is simply a flow definition that has been imbedded within another flow definition. Using
subflows within a flow is a simple method to share and reuse common routines.

Events
An event is a change or occurrence in the system (such as the creation of a specific file, a prior job
completing with a particular exit code, or simply the arrival of a file at a particular date and time) that
can be used to trigger a flow or one or more jobs within a flow. Platform Process Manager responds to
the following types of events:

• Time events—points of time (defined by calendars and time expressions) that can be used to trigger
the scheduling of jobs

• File events—changes in a file’s status
• Proxy events—events used to represent another flow or a work item that runs within another flow
• Link events—events used to consolidate the output of other events

Time events

You use time events in Platform Process Manager to make something happen at a specific time. You can
use a time event to specify the frequency at which a repetitive job repeats, to prevent a job from running
until a particular time, or to specify when to start running a flow.

You cannot create a time event without referencing a calendar, which provides the date or dates on which
the time event is valid, allowing it to trigger.

You create time events using the Flow Editor.

File events

You use file events to make something happen when a file reaches a particular state. You can use a file
event to trigger a flow, job or subflow: when a file arrives; when a file reaches a certain size; if a certain
file exists; or any combination of these conditions.

You create file events using the Flow Editor.

Proxy events

Introduction to Platform Process Manager

24 Using Platform Process Manager

You use proxy events to represent work items that run within another flow, or to represent another flow.
You can create a dependency on the success or failure of a proxy event. You can use a proxy event to
trigger a flow, or to trigger a work item within a flow.

Link events

You use link events to combine multiple dependencies into a single point in a flow diagram. You can use
link events to run a job when multiple jobs complete, or you can use them to run a subflow when one of
a group of jobs complete. For example, you can use an AND link event to trigger a job when all of a group
of conditions are met, or you can use an OR link event to trigger a job when any one or more of a group
of conditions is met.

You create link events using the Flow Editor.

Calendars
A calendar consists of a sequence of days on which the calendar is considered valid. A job is scheduled
when the calendar is valid and a time of day specification is met. Calendars are defined and manipulated
independently of jobs so that multiple jobs and flows can share the same calendar. Each user can maintain
a private set of calendars, or use the calendars defined as system calendars. If a calendar is changed, any
jobs associated with the calendar will automatically run according to the new definition. Calendars are
stored within Platform Process Manager’s private storage, and cannot be stored locally or edited outside
of the Calendar Editor.

Exceptions
An exception is a specific error condition that is detected when a job does not process as expected. Platform
Process Manager detects several of these conditions.

Exception Handlers
An exception handler is a function used to respond when an exception occurs. You can use jobs or flows
as exception handlers, or you can use Platform Process Manager’s built-in exception handlers:

• Kill
• Rerun
• Alarms

Kill
You can automatically kill a job, flow, or subflow if it experiences the specified exception.

Rerun
You can automatically rerun a job, flow, or subflow if it experiences the specified exception.

Introduction to Platform Process Manager

Using Platform Process Manager 25

Alarms

An alarm is a type of built-in exception handler, used to send an email notification to key personnel or
execute a script to show that an error has occurred that requires intervention.

Variables
You can use Platform Process Manager to pass variables to and from scripts. Platform Process Manager
supports three kinds of variables:

• Local variables, that allow you to set a value of a variable and have the value available within a flow;
• Global variables, that allow you to set a value of a variable and have the value available anywhere within

the Platform Process Manager Server.
• Environment variables, that allow you to submit a job with an environment variable, including a user

or local variable.

File naming conventions
This guide uses UNIX file naming conventions to illustrate file names. However, if the file you are
referencing is on a Windows file system, use Windows file naming conventions where applicable.

Introduction to Platform Process Manager

26 Using Platform Process Manager

Change your server
You can change the server you are using in any of the three client applications (Flow Editor, Flow Manager,
and Calendar Editor).

Changing the server affects only the current session of the client application. The next time you open the
client application, the server defined in js.conf is still used.
1. In any of the client applications, select File > Change Server.

The Change Server dialog opens.

2. Specify the host name and port for the new server. Use the drop down list to select from any host
names or ports that you have specified before.

3. Click OK.

The client application connects to the new server. You may be asked for your username and password.
If the connection fails, the previous server is used instead.

4. Check you server host name and port number in the lower left hand corner of your client application.
In Flow Manager, status is also available.

Introduction to Platform Process Manager

Using Platform Process Manager 27

You have changed your server.

Introduction to Platform Process Manager

28 Using Platform Process Manager

About flow definitions and flows
A flow definition is a collection of Platform Process Manager work items (jobs, job arrays and subflows)
and their relationships. These Platform Process Manager work items are defined graphically in the Flow
Editor, where the relationships between the work items—any dependencies they may have on each other
—are also represented graphically. The following picture illustrates a flow definition that consists of two
jobs (J1 and J2) a job array (A1) and an imbedded subflow (recovery):

In the above flow definition, J1 must complete before J2 and A1 can run. If J2 fails, the subflow
recovery runs.

Actions you can perform against flow definitions
The following terms have specific meanings within the Platform Process Manager context:

Publish
The term publish is used to describe the act of enabling a target flow to become available to dynamic
subflows and flow arrays.

Unpublish
The term unpublish is used to describe the act of removing a target flow from the list of target flows
available to dynamic subflows and flow arrays. The target flow is no longer available to dynamic subflows
and flow arrays.

Introduction to Platform Process Manager

Using Platform Process Manager 29

Hold
The term hold is used to describe the act of preventing Platform Process Manager from running a flow,
even though the flow definition has been submitted to Platform Process Manager and is recognized by
Platform Process Manager. Holding a flow definition essentially causes Platform Process Manager to
ignore that definition until such time as it is released or explicitly triggered.

Release
The term release is used to describe the act of requesting that Platform Process Manager once again
manage a flow definition—to release a flow definition that is on hold.

Trigger
The term trigger is used to describe the act of initiating the running of a flow. When a flow definition is
triggered, a flow is created.

Remove
The term remove is used to describe the act of removing a flow definition from the Platform Process
Manager system. After a flow definition is removed, Platform Process Manager no longer knows about
it and cannot schedule any new occurrences of the flow.

What can I do with a flow definition?
• Submit and run the flow immediately, where the definition of the flow is not stored in the Platform

Process Manager system. Platform Process Manager is only aware of the specific, adhoc occurrence
of the flow.

• Submit a flow definition to be triggered manually at a later time.
• Submit a flow definition to run on a recurring basis, on a particular schedule.
• Submit a flow definition to run when a file reaches a particular state.
• Define specific routines as individual flow definitions, so that each can be reused like a subroutine

within other flow definitions.
• Set exit conditions on a flow definition that contains multiple branches, so that completion of any

single branch constitutes completion of the flow, or require that all branches complete before the flow
is complete.

• Imbed a flow definition as a subflow within another flow definition.
• Use a flow to handle an exception in another flow.

What can I do with a flow?
• Kill, suspend, or resume an entire flow
• Rerun a failed flow, starting at the first job that failed in each path through the flow or from any rerun

starting points that you set in the flow
• Rerun a flow while a job is still running, or rerun a flow that is done, starting at the first job that failed

in each path through the flow or from any rerun starting points that you set in the flow

What can I do with a job?
• Kill a running job
• Hold a waiting job in a running flow
• Rerun a job in a completed flow

Introduction to Platform Process Manager

30 Using Platform Process Manager

• Force a job complete in a completed flow

Where do I store my flow definitions?
You can store your flow definitions locally on your own computer, or you can store them on a shared file
system. If other users will be creating similar flow definitions, you can create flow definitions that perform
common routines so that you can share them with other users.

What makes a flow Done?
Unless you specify otherwise by defining an exit condition for the flow, Platform Process Manager follows
this default behavior:

• A flow is considered successful with a status of Done only when all jobs in the flow complete
successfully.

• A flow is considered to have failed with a status of Exit if any job in the flow fails.

What happens if a job exits?
Under the default behavior, if a job in a flow exits, no additional jobs in the flow are dispatched, although
any currently running jobs will continue running until they complete. If you do not want the flow to exit
if a job fails, you must specify an exit condition for the flow and handle the exit condition explicitly.

How does Platform Process Manager know when my
flow is complete?

A large flow may diverge into multiple branches, depending on the design of your workflow. For example,
job 1 may release multiple jobs, each of which has a string of successors. In some cases, you may want
every work item in the flow to complete successfully before the flow is considered complete, and each
branch of the flow must complete. This is the default behavior.

In other cases, your flow may include error recovery routines that only run under certain conditions. In
those cases, you do not expect every job or path in the flow to complete. Platform Process Manager allows
you to specify a completion attribute, which defines what constitutes completion of the flow. For example,
you can specify that only one of many paths must complete.

Introduction to Platform Process Manager

Using Platform Process Manager 31

Introduction to Platform Process Manager

32 Using Platform Process Manager

3
Platform Process Manager Calendars

Platform Process Manager uses calendars to define the dates in a time event, which can be used to
determine when a job runs or a flow triggers. Calendars are defined independently of jobs and flows so
that they can be associated with multiple events.

Platform Process Manager uses calendars to create time events to initiate an action at a particular date
and time. The time event consists of the date and time to trigger the event, and the duration in which the
event is valid. The calendar provides the date specification for the time event.

You create Platform Process Manager calendars using the Calendar Editor.

About calendars
Platform Process Manager uses three types of calendars:

• Those that consist of one or more specific dates
• Those that consist of an expression that resolves to a series of dates
• Those that combine other calendars to create complex expressions that resolve to a series of dates.

These calendars can use logical operations within the calendar definition.

Each type of calendar definition can resolve to one or more dates.

About system calendars
System calendars are calendars that are predefined or created by your Platform Process Manager
administrator. These calendars are owned by the virtual user “Sys” and can be referenced by any user.
Only the Platform Process Manager administrator can create or delete system calendars.

Platform Process Manager includes a number of predefined system calendars that you can use without
having to define them. In addition to the following list, your Platform Process Manager administrator
may define other system calendars for your use. The following is a list of the system calendars that are
ready for your use:

C H A P T E R

Using Platform Process Manager 33

Types of Calendars Calendar Names

Weekly calendars Mondays

Tuesdays

Wednesdays

Thursdays

Fridays

Saturdays

Sundays

Daily

Weekdays

Weekends

Businessdays

Monthly calendars First_monday_of_month

First_tuesday_of_month

First_wednesday_of_month

First_thursday_of_month

First_friday_of_month

First_saturday_of_month

First_sunday_of_month

First_weekday_of_month

Last_weekday_of_month

First_businessday_of_month

Last_businessday_of_month

Biweekly_pay_days

Yearly calendars Holidays *

First_day_of_year

Last_day_of_year

First_businessday_of_year

Last_businessday_of_year

First_weekday_of_year

Last_weekday_of_year

*The Holidays calendar is predefined with
Platform Process Manager. However, it must
be edited by a Platform Process Manager
administrator to update the holidays for your
company for each year.

Platform Process Manager Calendars

34 Using Platform Process Manager

About the calendar editor
You use the Calendar Editor to create calendars that define the dates on which you want some action to
take place. Calendars are required to create time events to trigger flows or dispatch jobs at a particular
time. The 6 Server must be running before you can use the Calendar Editor.

About the Calendar Editor user interface
The Calendar Editor is divided into two panes:
• The list of calendars in the left-hand pane
• The calendar definition in the right-hand pane

When you create a new calendar, you define the calendar in the right-hand pane. When you save the
calendar, it appears in the list of calendars, under your user ID in the left-hand pane.

About the toolbar
The Calendar Editor toolbar looks like this:

Platform Process Manager Calendars

Using Platform Process Manager 35

About calendar names
When you create a calendar, you need to save it with a unique name. Some rules apply:

• Calendar names can contain the digits 0 to 9, the characters a to z and A to Z, and underscore (_)
• Calendar names cannot begin with a number

Platform Process Manager Calendars

36 Using Platform Process Manager

Create a calendar with specific dates
Use this method to create a calendar when:

• The calendar needs to be valid for only one or two dates
• The calendar needs to be valid for specific, random dates that do not repeat with any pattern

1. Ensure that Platform Process Manager is running, and open the Calendar Editor.
2. From the Calendar menu, select New Calendar, and select Clicking on Date(s). The date selection

dialog box appears. The dialog box is shown here with the list of calendars expanded on the left.

3. In the Description field, specify a description for the calendar that makes it obvious when this calendar
is valid. This description is very useful: it is displayed in the fly-over text when you point to a calendar
name in the list, and helps you quickly determine which calendar you want to use.

4. Select the dates on which you want this calendar to be valid by left-clicking on each date. You cannot
select dates in the past.

5. When you have finished selecting dates, save the calendar: from the Calendar menu, select Save
Calendar. When prompted, specify a meaningful name for the calendar. Click Save. The calendar is
added to the list of centrally stored calendars, under your user name.

Platform Process Manager Calendars

Using Platform Process Manager 37

Create a calendar using an expression
Use this method to create a calendar when:

• The calendar needs to be valid every nth day, week, month or year
• The calendar needs to be valid for the same dates every year
• The calendar needs to be valid for the same dates every month
• The calendar needs to be valid for the same days of the week every week

1. Open the Calendar Editor.
2. From the Calendar menu, select New Calendar and select Specify Pattern. The calendar expression

dialog box appears. The dialog box is shown here with the list of calendars expanded on the left.

3. In the Description field, specify a description for the calendar that makes it obvious when this calendar
is valid. This description is very useful: it is displayed in the fly-over text when you point to a calendar
name in the list, and helps you quickly determine which calendar you want to use.

4. Choose one of the following options:

• If the expression should be true every n days, in the This Happens … field, select Daily. Then, in
the Daily field, specify the number of days between occurrences. For example, if the expression
should be true every day, leave the selections at Daily and Every 1 day(s).

Platform Process Manager Calendars

38 Using Platform Process Manager

If the expression should be true every other day, specify Every 2 day(s).
• If the expression should be true on specific days every week, or every n weeks, in the This Happens

… field, select Weekly. Then specify how frequently this occurs, in the Every n week(s) field. Then
click on the appropriate days of the week. For example, if the expression should be true on
Mondays, Wednesdays and Fridays, click the MON button, then click the WED button, then click
the FRI button.

• If the expression should be true on specific days every month or every n months, in the This
Happens … field, select Monthly. Then specify how frequently this occurs, in the Every n month
(s) field. Then click on the appropriate dates or days of the week. For example, if the expression
should be true on the 6th day of every month, leave the frequency at every 1 month and click 6.

• If the expression should be true on specific days every year or every n years, in the This Happens
… field, select Yearly. Then specify each date by selecting the month and date and clicking Add.
For example, if you want to specify the last date of each month, in the month field, select Jan, and
in the date field, select 31. Continue to select the remaining dates.

Platform Process Manager Calendars

Using Platform Process Manager 39

Tip:
To quickly get to the later dates in the month, click down from 1 to
get to 31.

5. Optional. In the Duration field, specify the time in which this calendar should be valid. If you want
this calendar to be valid for an indefinite period of time, do not specify any end date for the duration.
The beginning of the time period defaults to today’s date.

6. Optional. Verify that the expression yields the correct results: from the View menu, select View
Occurrences. A calendar is displayed with all of the resulting dates highlighted.

7. Save the calendar: from the Calendar menu, select Save Calendar. When prompted, specify a
meaningful name for the calendar. Click Save. The calendar is added to the list of centrally stored
calendars, under your user name.

Platform Process Manager Calendars

40 Using Platform Process Manager

Create a calendar with a complex expression
Use this method to create a calendar when:

• The calendar needs to be valid on certain days, but must exclude other days, such as holidays
• The calendar needs to be valid on dates that are already defined in one calendar, and also on dates

already defined in another calendar

1. Open the Calendar Editor.
2. From the Calendar menu, select New Calendar and select Combine Calendars. The combine

calendars dialog box appears.

The dialog box is shown here with the list of calendars expanded on the left.

3. In the Description field, specify a description for the calendar that makes it obvious when this calendar
is valid. This description is very useful: it is displayed in the fly-over text when you point to a calendar
name in the list, and helps you quickly determine which calendar you want to use.

4. Create an expression that combines the calendars as required: double-click on calendar names and
operators to create the desired expression. See “Operators and their meanings” for a description of
the operators.

Tip:

Platform Process Manager Calendars

Using Platform Process Manager 41

To see the operators, you may need to drag the operator window over
from the very right-hand side of the main window.

For example, if you want to create a calendar that is true on Mondays and Tuesdays, double-click on
the calendar Mondays. Then double-click on Plus, then double-click on the calendar Tuesdays. The
new calendar will be valid every day that Mondays is valid plus every day that Tuesdays is valid.

5. Optional. Verify that the expression yields the correct results: from the View menu, select View
Occurrences. A calendar is displayed with all of the resulting dates highlighted.

6. Save the calendar: from the Calendar menu, select Save Calendar. When prompted, specify a
meaningful name for the calendar. Click Save. The calendar is added to the list of centrally stored
calendars, under your user name. For information on naming calendars, see “About calendar names”
section.

Operators and their meanings
When creating a calendar expression, you can choose from the following operators:

Operator Description

In common with Use this operator to resolve to the intersection of two sets
of dates—only those dates in common between two
calendars

Plus Use this operator to combine two sets of dates—any of the
dates specified in the two calendars

Not Use this operator to exclude the dates in a calendar—use
only those dates that are not included in the calendar.

(Use this operator to begin an expression nested within the
expression

) Use this operator to end an expression nested within the
expression.

Not in common with Use this operator to exclude dates. First specify the
expression that resolves to the dates you do want to
include, then use this operator followed by those dates you
do not want to include.

Platform Process Manager Calendars

42 Using Platform Process Manager

Calendar examples
Each of the these examples assumes that the Calendar Editor is up and running.

Example: Mondays, except on holidays
1. Ensure you have a calendar that repeats every Monday. Typically, that is the system calendar

Mondays@Sys.
2. Ensure you have a calendar called ‘Holidays’ that defines all of the non-working holidays for your

company. Typically, that is the system calendar Holidays@Sys.
3. From the Calendar menu, select New Calendar, then choose Combine Calendars.
4. Define a combining expression that specifies ‘mondays’ but not ‘holidays’ as follows:

Mondays@Sys Not in common with Holidays@Sys

Do this by double-clicking on Mondays@Sys, then double-click on Not in common with, and then
Holidays@Sys.

Tip:
To see the operators, you may need to drag the operator window over
from the very right-hand side of the main window.

5. Provide a meaningful description for the calendar, and save it with a unique name, such as
‘workingmondays’.

Example: every second Friday
1. From the Calendar menu, select New Calendar, then choose Specify Pattern.
2. Click Weekly.
3. In the Every n weeks field, specify 2.
4. Ensure The following days is selected, and click FRI, as follows:

5. Provide a meaningful description for the calendar, and save it with a unique name, such as ‘oddfridays’.

Example: last working Friday of month
1. Ensure you have a calendar that defines working days. Typically, that is the system calendar

businessdays@Sys.
2. Create a calendar called last_friday_of_month, similar to the system calendar

first_friday_of_month@Sys.
3. From the Calendar menu, select New Calendar, then choose Combine Calendars.
4. Define a combining expression that specifies last_friday_of_month and the days it has in common

with businessdays@Sys as follows:

last_friday_of_month@user In common with businessdays@Sys

Platform Process Manager Calendars

Using Platform Process Manager 43

Do this by double-clicking on last_friday_of_month, then double-click on In common with, and
then businessdays@Sys.

Tip:
To see the operators, you may need to drag the operator window over
from the very right-hand side of the main window.

5. Provide a meaningful description for the calendar, and save it with a unique name, such as
‘lastworkingfriday’.

Platform Process Manager Calendars

44 Using Platform Process Manager

Edit an existing calendar
You can edit an existing calendar to change the dates on which it is valid, or you can edit a calendar and
save it using another name. You can use this method to create a new calendar that is similar to an existing
one.

You can edit only those calendars owned by your user ID.

What you are able to change in a calendar depends on the method used to create the calendar. For example,
if the calendar was created using an expression, you must change the expression to change the resulting
dates.

You cannot change a calendar from one type to another. For example, if the calendar was created by
clicking on dates, you cannot change it to contain an expression.

You use this option to change the dates on a calendar that was created by clicking on dates:

1. In the tree view on the left, double-click on the calendar you want to edit.
2. Deselect any previously selected dates you want to delete from the calendar by clicking on them.
3. Click on any new dates that you want to add to the calendar.
4. From the Calendar menu, select Save Calendar, or close the calendar, at which time you will be

prompted to save it.

Edit a calendar to change the pattern
You use this option to change the dates on a calendar that was created by specifying a pattern:

1. In the tree view on the left, double-click on the calendar you want to edit.
2. Ensure you remove any previously selected dates you no longer want selected. For example, if the

current pattern includes Mondays and Tuesdays, but the new pattern will be Tuesdays and Fridays,
you need to click on Mondays to remove the selection.

3. Specify the new pattern.
4. From the Calendar menu, select Save Calendar, or close the calendar, at which time you will be

prompted to save it.

Edit a calendar to change calendar combinations
You use this option to change the dates on a calendar that was created by combining calendars:

1. In the tree view on the left, double-click on the calendar you want to edit.
2. Edit the combining expression: you can delete terms in the expression by highlighting them and

clicking the Delete button. However, if you want to insert terms from the list by double-clicking on
them, they will be inserted at the end of the expression.

3. From the Calendar menu, select Save Calendar, or close the calendar, at which time you will be
prompted to save it.

Platform Process Manager Calendars

Using Platform Process Manager 45

Delete a calendar
Periodically, you may want to delete unused calendars from Platform Process Manager. You can only
delete those calendars owned by your user ID.

1. In the tree view on the left, right-click on the calendar you want to delete.
2. Select Delete Calendar.
3. Confirm that you want to delete the calendar by clicking Yes.

Platform Process Manager Calendars

46 Using Platform Process Manager

4
Define your flow

You use the Flow Editor to create or edit flow definitions that group related jobs, job arrays and subflows,
so that they can be triggered, run, and controlled as a unit.

About the Flow Editor user interface
The Flow Editor user interface consists of a workspace and a design palette to define work items in the
flow definition: jobs, job arrays, manual jobs, subflows, time events, file events, proxy events, link events,
and alarms.

About the toolbar
The Flow Editor toolbar looks like this:

About the design palette
The Flow Editor design palette can be separated from the toolbar, and moved to a convenient location in
the work space. It looks like this:

C H A P T E R

Using Platform Process Manager 47

Ways to create a flow definition
There are many ways to create a flow definition. These are three of them:

1. Completely define one job at a time
2. Draw all of the work items in the flow and then fill in the details
3. A combination of the above methods—draw some of the work items and define them, then draw more

work items and define them, and so on

Note:
To support multiple Platform Process Manager servers in a single LSF
cluster, you must ensure that each combination of user name and flow
name is unique within the cluster. This avoids conflicts and ensures that
each job is unique among the multiple Process Manager servers.

1. One job at a time

1. Draw the first job on the workspace
2. Define the details of the job
3. Draw the next job
4. Define the details of that job
5. Draw the dependency line between the two jobs
6. Continue with the next job in the flow, and repeat

2. Draw the flow, then fill in the details

1. Draw all of the jobs, flows and events on the workspace
2. Draw the dependency lines between the work items, establishing the relationships between them
3. Define the details for each job and job array, one at a time

3. Combine methods 1 and 2

1. Draw a group of jobs, job arrays and flows on the workspace
2. Draw the dependency lines between those work items
3. Define the details for each job and job array, one at a time
4. Create another section of the flow

There is no right or wrong way. Only you can decide which method works best for you

How do I know if a job or job array is undefined?
There are two ways in which Platform Process Manager informs you if you have drawn a job or job array
but not yet defined it:

1. The system-assigned job name is displayed in red text
2. When you save a flow that contains undefined jobs or job arrays, you receive a message that lists all

of the undefined work items in the flow

Define your flow

48 Using Platform Process Manager

Using the example flows
The Platform Process Manager Client package includes sample flow definitions that you can use, to test
your Platform Process Manager installation, or to learn from or to modify for your own use. These
examples are located in the examples directory of the Client installation. Each example is a simple flow
that illustrates a particular type of activity:

The flow definition named... Illustrates...

Example_1 • A simple job dependency, where one job runs when its predecessor
completes successfully

Example_2 • The use of a recovery job

Example_3 • The use of a manual task and a job array

Example_4 • The use of a file event to trigger some processing

Example_5 • The use of a time event to run a job array, which raises an alarm if it misses
its schedule*

*To successfully use this flow
definition, your administrator
must first define an alarm called
Critical_Job_Failed

You can open these flows to view them from the Flow Editor, but if you want to run them or use them to
create a new flow, unless you have Platform Process Manager administrator authority, you must change
the owner of each work item in the flow before you can successfully run any of the sample flows.

View the sample flow definition
1. In the Flow Editor, from the File menu, select Open.
2. Locate the examples directory within the Client installation.
3. Select a flow definition and click OK.

Use a sample flow definition
1. Open the flow definition as described above.
2. Double-click on a job or job array in the flow definition.
3. On the General tab, locate the Run as... field at the bottom of the dialog.
4. Change the user name to your user ID, and click OK.

Define your flow

Using Platform Process Manager 49

Create a flow diagram
For purposes of clarity, this topic assumes you will drag and drop all of the jobs onto the workspace,
creating a visual representation of the work flow, and then define each job in the workspace.

Create a simple flow diagram
1. Click the Insert Job button to put the Flow Editor in job placement mode—when you left-click in the

workspace, a job icon appears.
2. Drop the appropriate number of job icons in the workspace, placing them in the order in which you

want the jobs to run, typically with the first job to run at the left and the last job to run at the right.
Unique job names are assigned automatically to the jobs in the workspace. You can change these later
if you like.

3. Change to job dependency mode by clicking the Insert Dependency button.
4. Draw job dependencies by left-clicking on the job that must run first, then left-clicking on the job that

runs next. The job at the arrow end of the line cannot run until the job at the originating end of the
arrow completes.

Refer to the following example:

Job J2 cannot run until job J1 completes.
5. Double-click on each job in the flow definition. The Edit Job dialog appears.
6. In the Command to run field, specify the command that this job is to run. For example, on Windows:

or on UNIX:

7. In the remaining input fields and tabs, specify any other details required to define the job.

Define your flow

50 Using Platform Process Manager

8. Save the flow definition. You can save it in your local file system or in a shared file location.

Other things you can do
You can also do the following:

• Copy a job
• Print the flow definition

Copy a job
1. Right-click on the job you want to copy, and select Copy.
2. Right-click in the workspace where you want to place the new job, and select Paste.
3. Optional: double-click on the new job and change the name of the job.

Print the flow definition
1. From the File menu, select Print Preview to see how your flow definition looks on paper. You can

adjust the spacing in your flow to avoid breaking icons at a page boundary.
2. From the File menu, select Print... and click OK.

Define your flow

Using Platform Process Manager 51

Include a job array in the flow diagram
You can include a job array in the flow diagram. Using a job array is a convenient way to specify a group
of jobs that share the same executable and resource requirements, but use different input data, with a
single definition. All jobs in a job array have the same name and same job ID. Each job runs the same
executable. Any parameters you specify apply to all jobs in the array. All jobs use an input file from the
same location, and write to the same output file location. However, each element of a job array is
distinguished by its array index. Before you can use a job array, you need to prepare your input files. See
“Job Arrays” chapter in Administering Platform LSF for more information.

Insert a job array
1. Click the Insert Job Array button to change to job array placement mode—when you left-click in the

workspace, a job array icon appears.
2. Left-click in the workspace in the location where you want to insert the job array. A job array icon

appears in the workspace.
3. Draw the lines describing any dependencies the job array has on other work items in the flow.

Define job array details
1. Double-click on the job array. The Edit Job Array dialog appears.

2. In the Name field, specify a name for the job array. You can use alphabetic characters, numerals 0 to
9, period (.), dash (-) and underscore (_) in the job array name. A unique name is automatically
assigned to the job array, but you can change it to make it more meaningful.

3. Create an index expression using one of the following methods.
a) Freeform expression: In the Index expression field, specify an expression that defines the index

for the array. The index expression can be a simple range of positive integers, such as

1-5

or a series of comma-separated numbers, such as

1,4,5,6,8

In this example, the job array will consist of five jobs.

The index expression can also be in the format

start-end[:step]

where start is used to specify the start of a range of indices, and end specifies the end of the range.
step specifies the value to increment the indices in the range. The index begins at start, increments
by the value of step, and does not increment past the value of end. For example:

1-10:2

Define your flow

52 Using Platform Process Manager

specifies a range of 1 to 10 with a step value of 2, creating indices of 1,3,5,7 and 9. This creates 5
jobs in the job array, whose input files will have suffixes of .1, .3, .5, .7 and .9 respectively.

You can also specify a user variable for any of the values in the index expression—start, end or
step. For example:

1-#{COUNT}

where the value of COUNT might be set within a job that runs prior to this job array in this flow.
b) Using the Job Array Index Expression Builder dialog.

1. Click the ... button next to the Index expression field. The Job Array Index Expression Builder
dialog appears.

2. In the Start field, specify the start of the range of indices, which will be the first job name suffix.
For example: 1. Or specify a variable. For example: #{beginix}

3. In the End field, specify the end of the range of indices. For example: 10. Or specify a variable.
For example: #{endix}

4. Optional. In the Step field, specify the value to increment the indices in the range. The default
is a step of 1. For example: 2. Or specify a variable. For example: #{stepix}

5. Click Add to add the expression to the list.
6. Repeat steps ii through v until you have completed specifying all the index ranges.
7. Click OK. The expression you created is inserted in the Index expression field.

4. In the Command to run field, specify the command that each of the jobs in the array will run. Include
any arguments the command requires.

5. Ensure that all the input files for the jobs in your job array are in the same directory. By default, the
current working directory is assumed. If the files are not in the current working directory, specify an
absolute path as seen by the Process Manager Server.

Also ensure that all the input files have the same name, with a numerical suffix that corresponds to
the index of the job array element that will use it.

6. In the Input file field, specify the name of the input file, as follows:

input_file_name.%I

Define your flow

Using Platform Process Manager 53

which specifies to use the input file that corresponds to the index for each element in the array. For
example:

input.1

7. In the Output file field, specify the name of the output file, as follows:

output_file_name.%I.%J

which specifies to create an output file that corresponds to the index, followed by the job ID for each
element in the array. For example:

output.1.3993

8. Optional: In the Max. concurrent jobs field, specify the maximum number of jobs in the array that
can run at the same time.

9. Specify any additional options on this tab and the other definition tabs.
10. Click OK.

Preparing job array input files
Platform Process Manager provides methods for coordinating individual input and output files for the
multiple jobs created when submitting a job array. These methods require your input files to be prepared
uniformly. To accommodate an executable that uses standard input and standard output, Platform
Process Manager provides variables that are resolved at runtime: %I (job array index) and %J (job ID).

All input files for your job array must be located in the same directory. Specify an absolute path to the
directory containing the input files when defining your job array.

Each file consists of two parts: a consistent name string and a variable integer that corresponds directly
to an array index. For example, the following file names are valid input file names for a job array. They
are made up of the consistent name input and integers that correspond to job array indices from 1 to
1000:

input.1, input.2, input.3, ..., input.1000

Define your flow

54 Using Platform Process Manager

Include a job submission script in the flow
diagram

You can define and submit customized job submission scripts to control and monitor jobs.

1. Click the Insert Job Submission Script button to change it to placement mode—when you left-click
in the workspace, a job submission script icon appears.

2. Left-click in the workspace in the location where you want to insert the job submission script. A job
submission script icon appears in the workspace.

3. Draw the lines describing any dependencies the job submission script has on other work items in the
flow.

Define job details
1. Double-click on the job submission script. The Edit Job dialog appears.
2. In the Name field, specify a name for the job submission script. You can use alphabetic characters,

numerals 0 to 9, period (.), dash (-) and underscore (_) in the job submission script name.
3. In the File field, specify the absolute pate of the job submission script. Ensure that this path is accessed

and executed by Platform Process Manager Daemon jfd. Make sure that your script meets the
conditions as explained in Content of the job/job array submission script on page 56.

4. Specify any additional options on this tab and the other definition tabs. For detailed information about
each of the options, see Details of a job on page 106.

5. Click OK.

Define your flow

Using Platform Process Manager 55

Include a job array submission script in the flow
diagram

Using a job array submission script is a convenient way to specify a group of job submision scripts that
share the same executable and resource requirements, but use different input data, with a single definition.
Any parameters you specify apply to all job submission scripts in the array. All jobs use a file from the
same location. However, each element of a job array submission script is distinguished by its array index.
Before you can use a job array submission script, you need to prepare your input files.

1. Click the Insert Job Array Submission Script button to change it to placement mode—when you
left-click in the workspace, a job array submission script icon appears.

2. Left-click in the workspace in the location where you want to insert the job array submission script.
A job array submission script icon appears in the workspace.

3. Draw the lines describing any dependencies the job array submission script has on other work items
in the flow.

Define job array details
1. Double-click on the job array submission script. The Edit Job Array dialog appears.
2. In the Name field, specify a name for the job array submission script. You can use alphabetic characters,

numerals 0 to 9, period (.), dash (-) and underscore (_) in the job array submission script name.
3. Create an index expression as explained in the job array details section.
4. Ensure that all the script files for the jobs in your job array are in the same directory. By default, the

current working directory is assumed. If the files are not in the current working directory, specify an
absolute path as seen by the Platform Process Manager Server.

Also ensure that all the input files have the same name, with a numerical suffix that corresponds to
the index of the job array element that will use it.

5. In the File field, specify the job array submission script directory. This directory should be easily
accessible for Platform Process Manager Daemon jfd. Make sure that your script meets the conditions
as explained in Content of the job/job array submission script on page 56.

6. Specify any additional options on this tab and the other definition tabs. For detailed information about
each of the options, see Details of a job on page 106.

7. Click OK.

Content of the job/job array submission script
Platform Process Manager can successfully track the job/job arrays submitted through the customized
scripts only if these conditions are met:

1. Specify job name (JS_JOB_NAME) and job array index (JS_INDEX_LIST) in the job/job array
submission script.

For example,

bsub -q short -R "mem>1000" -J JS_JOB_NAMEJS_INDEX_LIST my_command
2. Submit only one job or job array through the job/job array submission script.
3. Do not use the following bsub options in the script:

Define your flow

56 Using Platform Process Manager

a) -I/-Ip/-Is — interactive jobs
b) -K — submit a job and wait for the job to complete

4. The script must exit zero upon successful submission, or non-zero otherwise.

Define your flow

Using Platform Process Manager 57

Include a static subflow in the flow diagram
At any time, you can include an existing flow definition as a static subflow within a flow diagram. This is
especially useful for standardized flow definitions that you would like to reuse, such as backup and
recovery routines, database update routines, and so on.

1. Click the Insert Static Subflow button to put the Flow Editor in static subflow placement mode. The
Open dialog appears.

2. Locate the flow definition file you want to include and click Open.
3. Left-click in the workspace in the location where you want to insert the static subflow. The static

subflow icon is added to the flow diagram.
4. Draw the lines describing any dependencies the static subflow has on other work items in the flow

definition.
5. Optional. Specify additional attributes for the static subflow.

a) Right-click the static subflow and select Attributes.
b) To specify a working directory at the subflow level, use the Working directory field.

Tip:
You can use user variables when specifying the working directory.

All valid inner work items (subflows, jobs, and job arrays) in the static subflow will use this directory
as the working directory unless you further specify a working directory for the inner work item.
In this case, the working directory setting for the inner work item will override the setting for this
static subflow.

c) To add input variables to the static subflow, click Modify, which is beside the Input Variables
field.

From the Input Variables window, specify variables in the form of Name=Value. You can also
specify user v ariables as input values.

When Platform Process Manager expands static subflows, these input variables are set at the
subflow level.

Note:
If you set default values (by enabling Specify a Default Value), this
creates both environment variables and user variables.

d) To specify a description or instructions regarding the subflow, use the Description field.
e) To monitor this subflow for a particular exception and handle it automatically, click the Exception

Handling tab and specify the exceptions and handlers.

For more detailed information about exceptions and handlers, see Handling exceptions on page
143.

f) Click OK to save the subflow settings.

Tip:
You can view (and edit) the jobs in a subflow by double-clicking on the
subflow, or by right-clicking the subflow and selecting Open
Definition. Any changes you make apply only to the imbedded subflow.

Define your flow

58 Using Platform Process Manager

Include a static flow array in the flow diagram
You can include a static flow array as a subflow within a flow diagram. A static flow array works in a
similar fashion to a job array, but at a subflow level.

When the static flow array is instantiated, a specific number of flow elements start to run either in parallel,
or sequentially, depending on what you selected in the flow array attributes. By default, flow elements run
in parallel.

Within a flow array element, the #{JS_FLOW_INDEX} scoped variable specifies the array index of the
static flow array element.

1. Click the Insert Static Flow Array button to put the Flow Editor in static flow array placement mode.
The Open dialog appears.

2. Locate the flow definition file you want to include and click Open.
3. Left-click in the workspace in the location where you want to insert the static flow array. The static

flow array icon is added to the flow diagram.
4. Draw the lines describing any dependencies the static flow array has on other work items in the flow

definition.
5. Define the static flow array.

a) Right-click the static flow array and select Attributes.

The Flow Array Attributes dialog displays.
b) Specify the name of the static flow array in the Name field.

The default name assigned to the static flow array is the name of the subflow you selected.
c) Optional. To specify the description of the static flow array, use the Description field.
d) Define the size of the array by specifying the First Element and Last Element fields.

If you do not specify a value for First Element, it defaults to 1. You must specify a value for Last
Element that is larger than First Element.

Tip:
You can use user variables in the element fields to specify the flow
array index, thus allowing static flow arrays with dynamic element
fields. At runtime, before the static flow array is started, Platform
Process Manager replaces the variables with values, which is
usually set be a predecessor job.

e) Optional. Specify Run flow array elements: whether flow array elements run in parallel or
sequentially. By default, flow array elements run in parallel, as checked.

6. Optional. To specify a working directory at the static flow array level, expand the static flow array and
use the Working directory field in the Flow Attributes of the flow array.

Tip:
You can use user variables when specifying the working directory.

All valid inner work items (subflows, jobs, and job arrays) in the static flow array will use this directory
as the working directory unless you further specify a working directory for the inner work item. In
this case, the working directory setting for the inner work item will override the setting for this static
flow array.

7. Optional. Monitor this static flow array for a particular exception, and handle it automatically.

Define your flow

Using Platform Process Manager 59

For more detailed information about exceptions and handlers, see Handling exceptions on page
143.

1. Right-click the static flow array and select Expand to enter the subflow level.
2. Right-click on the workspace and select Flow Attribute.
3. Click the Exception Handling tab and specify the exceptions and handlers.

Tip:
You can view (and edit) the jobs in a subflow by double-clicking on the
subflow, or by right-clicking on the subflow and selecting Expand. Any
changes you make apply only to the imbedded subflow.

8. Click OK to save your static flow array definition.

Flow array element names
When a static flow array is run, each element takes a unique name in the form of flow_array_name
(array_index).

For example, if the name of the static flow array instance is 1:usr1:FA, and its index is 1 to 3, the three
elements have the name of 1:usr1:FA(1), 1:usr1:FA(2), and 1:usr1:FA(3).

Viewing a static flow array
1. Right-click the static flow array in the instance diagram and select View Elements.

A list of flow array elements displays.
2. Select one of the flow array elements and click View Flow.

The diagram for the selected flow array element displays.

Define your flow

60 Using Platform Process Manager

Include a dynamic subflow in the flow diagram
You can include a dynamic flow array as a subflow within a flow diagram. A dynamic flow array works
in a similar fashion to a job array, but at a subflow level.

When the dynamic flow array is instantiated, a specific number of flow elements start to run either in
parallel, or sequentially, depending on what you selected in the flow array attributes. By default, flow
elements run in parallel.

A dynamic flow array, also called a flow array by reference, refers to a target flow that has already been
submitted to Process Manager. Only flows that have been submitted to Process Manager and published
are eligible target flows for dynamic flow arrays. The target flow is essentially converted into a dynamic
flow array in which each array element is equivalent to the target flow.

Within a dynamic flow array element, the #{JS_FLOW_INDEX} scoped variable specifies the array
indexof the dynamic flow array element.

1. Click the Insert Dynamic Subflow button to put the Flow Editor in subflow placement mode.

The Dynamic Subflow - Insert dynamic subflow window displays.
2. Specify the attributes for the dynamic subflow.

a) In the Name field, specify a name for the dynamic subflow.
b) In the Choose a flow to insert field, select a target flow for the dynamic subflow.

The eligible target flows are shown in the form of user_name:flow_name. Only flows that have
been submitted to Platform Process Manager and published are shown in this field.

c) To add input variables to the dynamic subflow in the Specify input variable values field, click
Modify. The Input Variables window displays.

The variables are set in the form of Name=Value. You can specify user variables as input variable
values. When Platform Process Manager expands dynamic subflows, these input variables are set
at the subflow level.

Note:
If you set default values (by enabling Specify a default value), this
creates both environment variables and user variables.

d) Select how you want Platform Process Manager to update the dynamic subflow when the main
flow is instantiated.

• Use the default setting in main flow
• Automatically update to the default version
• Manually update to the default version

e) Optional. Specify Execution order: whether flow array elements run in parallel or sequentially.
f) Click OK to save your dynamic flow definition.

3. Left-click in the workspace in the location where you want to insert the dynamic subflow. The dynamic
subflow icon is added to the flow diagram.

4. Draw the lines describing any dependencies the dynamic subflow has on other work items in the flow
definition.

Define your flow

Using Platform Process Manager 61

Include a dynamic flow array in the flow diagram
You can include a dynamic flow array as a subflow within a flow diagram. A dynamic flow array works
in a similar fashion to a job array, but at a subflow level.

When the dynamic flow array is instantiated, a specific number of flow elements start to run either in
parallel, or sequentially, depending on what you selected in the flow array attributes. By default, flow
elements run in parallel.

A dynamic flow array, also called a flow array by reference, refers to a target flow that has already been
submitted to Platform Process Manager. Only flows that have been submitted to Platform Process
Manager and published are eligible target flows for dynamic flow arrays. The target flow is essentially
converted into a dynamic flow array in which each array element is equivalent to the target flow.

Within a dynamic flow array element, the #{JS_FLOW_INDEX} scoped variable specifies the array index
of the dynamic flow array element.

1. Click the Insert Dynamic Flow Array button to put the Flow Editor in dynamic flow array placement
mode.

The Dynamic Flow Array - Insert dynamic flow array window displays.
2. Specify the attributes for the dynamic flow array.

a) In the Name field, specify a name for the dynamic flow array.
b) In the Choose a flow to insert field, select a target flow for the dynamic flow array.

The eligible target flows are shown in the form of user_name:flow_array_name. Only flows that
have been submitted to Platform Process Manager and published are shown in this field.

c) Define the size of the array by specifying the First Element and Last Element fields.

If you do not specify a value for First Element, it defaults to 1. You must specify a value for Last
Element that is larger than First Element.

Tip:
You can use user variables in the element fields to specify the flow
array index, thus allowing flow arrays with dynamic element fields.
At runtime, before the dynamic flow array is started, Platform
Process Manager replaces the variables with values, which is
usually set be a predecessor job.

d) To add input variables to the dynamic flow array in the Specify input variable values field, click
Modify. The Input Variables window displays.

The variables are set in the form of Name=Value. You can specify user variables as input variable
values. When Platform Process Manager expands dynamic flow arrays, these input variables are
set at the subflow level.

e) Select how you want Platform Process Manager to update the dynamic flow array when the main
flow is instantiated.

• Use the default setting specified in main flow
• Automatically update to the default version
• Manually update to the default version

f) Optional. Specify Run flow array elements: whether flow array elements run in parallel or
sequentially.

g) Click OK to save your dynamic flow array definition.

Define your flow

62 Using Platform Process Manager

3. Left-click in the workspace in the location where you want to insert the dynamic flow array. The
dynamic flow array icon is added to the flow diagram.

4. Draw the lines describing any dependencies the dynamic flow array has on other work items in the
flow definition.

Dynamic flow array element names
When a dynamic flow array is run, each element takes a unique name in the form of flow_array_name
(array_index).

For example, if the name of the dynamic flow array instance is 1:usr1:FA, and its index is 1 to 3, the
three elements have the name of 1:usr1:FA(1), 1:usr1:FA(2), and 1:usr1:FA(3).

Viewing a dynamic flow array
1. Right-click the dynamic flow array in the instance diagram and select View Elements.

A list of dynamic flow array elements displays.
2. Select one of the dynamic flow array elements and click View Flow.

The diagram for the selected dynamic flow array element displays.

Define your flow

Using Platform Process Manager 63

Include a manual job in the flow diagram
You can include a manual job in the flow diagram wherever you want to indicate a manual process that
must take place before the flow can continue. Successors of the manual job cannot run until the manual
job is explicitly completed.

When the flow is ready for the manual job to be completed, an email is sent to the owner of the flow or
job. When you define the manual job, you specify the email address and the text to be included in the
email.

Including a manual job in a flow does not stop the entire flow from processing: only the specific path
containing the manual job is halted until the job is completed.

1. Click the Insert Manual Job button to put the Flow Editor in manual job placement mode—when
you left-click in the workspace, a manual job icon appears.

2. Left-click in the workspace in the location where you want to insert the manual job.
3. Draw the lines describing any dependencies the manual job has on other work items in the flow

definition.

Define manual job details
1. Double-click on the manual job. The Manual Job dialog appears.

2. In the Job name field, specify a unique, meaningful name for the manual job. You will use this name
when completing the job as the flow runs. You can use alphabetic characters, numerals 0 to 9, period
(.), dash (-) and underscore (_) in the manual job name. The Flow Editor assigns a unique name to

Define your flow

64 Using Platform Process Manager

each manual job when you draw it on the workspace, so you are not required to change the name.
However, if you want to change the name, you can. The name itself is required.

3. In the Email address field, specify the email address to notify when the job is ready for completion.
If you do not change the email address, it defaults to your user ID. If you delete the email address, no
notification is sent when the job requires completion.

4. In the Message field, specify the message text that should appear in the email notification. For example,
if the manual job will be used to verify a report, you might include the following as the message text:
Verify the output of report paylist.

You can also specify a variable in the message. For example:
Check output from printer #{PRINT}.

5. In the Description field, add any descriptive text that may be used for managing this job within the
flow. For example, if this job requires special instructions for operations staff, place those instructions
here.

6. Click OK. The manual job appears in the workspace, and you can draw the appropriate dependency
lines to any work items.

Define your flow

Using Platform Process Manager 65

Specifying custom exit codes for successful job
completion

By default, for a job to complete successfully, the exit code must be 0. Any other exit code indicates the
job failed.

In some cases, however, you may want to use exit codes to pass information to subsequent work items
and may want to use numbers other than 0 to indicate success.

You can do so by specifying these exit codes in the Job Definition dialog, Job Script Definition dialog,
Manual Job Definition dialog, or Local Job Definition dialog, Non-zero success exit codes field.

This feature applies to LSF jobs, job scripts, local jobs, and manual jobs.

When you define custom success exit codes:

• 0 is always a success exit code, and is the default success exit code. You do not need to specify it.
• You can specify one number or a list of numbers separated by spaces, from 1 to 255.
• You can use user variables in the Non-zero success exit codes field. If the user variable cannot be

resolved at runtime, it is ignored.
• When a job exits with 0 or any other specified success exit code, the job is considered successful and

receives the Done state.
• When a job exits with an exit code other than 0 or the specified success exit codes, the job is considered

to have failed and receives the status Exited.
• If you specify an application profile and SUCCESS_EXIT_VALUES is defined in

lsb.applications for the application, SUCCESS_EXIT_VALUES is ignored.
• If a job is killed by a user in Process Manager or in LSF, custom success exit codes are ignored.

From Flow Editor
1. In Flow Editor, right-click on a job, job script, manual job, or local job, select Open Definition.
2. In the Non-success exit codes field, enter the exit codes that represent successful completion of the

job.

Define your flow

66 Using Platform Process Manager

Include a local job in the flow diagram
You can include a local job in the flow diagram.

A local job is a job that will execute immediately on the Process Manager host without going through LSF.
A local job is usually a short and small job. It is not recommended to run long, computational-intensive
or data-intensive local jobs as it can overload the Process Manager host.

There are several differences between local jobs that run on Windows, and local jobs that run on Linux
and UNIX:

Item Windows Linux/UNIX

Behavior The local job is blocking: when a local job
is running, another local job will not be able
to run until the local job that is running
completes.

The local job is non-blocking: that is, several
local jobs can be run in parallel.

Killing a local job You cannot directly kill a local job in the
same way as you kill any other job.

The local job can only be killed as a result
of the flow being killed, or if it runs for longer
than the configured timeout value.

You can kill a local job in the same way as you
kill any other job. The local job may also be killed
as a result of the flow being killed, or because it
ran for longer than the configured timeout value.

Suspending and
resuming a local job

If you suspend or resume a flow that
contains local jobs, the local jobs will be
killed and rerun.

If you suspend or resume a flow that contains
local jobs, the local jobs will also be suspended
or resumed.

Viewing runtime
attributes

You can view a local job’s runtime
attributes in Flow Manager. Note, however,
that no resource usage is available for the
local job.

You can view the exit status and CPU usage of
a local job after the job completes. The process
ID identifies the local job and you can view CPU
usage for the job. You can also view the process
ID of the job and CPU usage information with
jflows -l flow_id and jhist -C job.

Timeout for local
jobs

By default, a local job has a timeout so it
will be killed if it was running for too long.

By default, a local job can run indefinitely; it does
not have a timeout. The Process Manager
administrator can, however, define a timeout
value for a local job and it will be killed if it the
job was running for too long.

1. Click the Insert Local Job button to put the Flow Editor in local job placement mode—when you left-
click in the workspace, a local job icon appears.

2. Left-click in the workspace in the location where you want to insert the local job.
3. Draw the lines describing any dependencies the manual job has on other work items in the flow

definition.

Define local job details
After placing a local job in the flow diagram, you can open and edit its definition as you would for other
jobs.

1. Double-click on the local job. The Job Definition dialog appears.

Define your flow

Using Platform Process Manager 67

2. Specify the local job details.

The following fields are mandatory

• In the Name field, specify a unique, meaningful name for the local job. The default value is
LJnumber (where number is the total number of local jobs inserted into the same flow) and is
automatically specified when you first define the local job. You can use alphabetic characters,
numerals 0 to 9, period (.), dash (-) and underscore (_) in the local job name.

• In the Command to run field, specify the actual command to run, including the file path to the
command and its arguments.

• In the User name field, specify the user name under which the command is run. If you are not one
of the Platform Process Manager administrators, you must specify your own user name. The default
is your own user name.

The following fields are optional. If undefined, Platform Process Manager uses the default values:

• In the Working Directory field, specify the directory in which the command is run. The default
is the home directory of the user under which the command is run.

• In the Environment Variables field, specify a list of extra key-value pairs to be set up in the
environment for use by the command. This field cannot be edited manually — you must click
Modify and use the dialogs to specify the key-value pair. The default is undefined.

• In the Non-zero success exit codes field, specify a list of space-separated numbers from 1 to 255.
Use this field to indicate which numbers in addition to 0 represent success for the job.

• In the Enter Description field, add any descriptive text that may be used for managing this job
within the flow. The default is undefined.

You can specify user variables in all fields except the Name and Description fields. For the
Environment Variables field, you can only specify user variables in the value section of the key-value
pair.

3. Click OK to save your changes.

Running a local job
When Platform Process Manager triggers a flow containing a local job and the local job’s dependencies
are met, the local job will start to run.

The local job can be depended upon based on the following types of conditions:

• Completes successfully: The job completes with exit code 0, or any other number specified in the
Non-zero success exit codes field.

• Fails: The job fails.
• Ends with any exit code: The job exits with any exit code, including 0.
• Ends with exit code: The job exits with a particular exit code pattern. For example, not-equal-to,

equal-to.

Define your flow

68 Using Platform Process Manager

Variables in Platform Process Manager
Platform Process Manager provides substitution capabilities through the use of variables. When Platform
Process Manager encounters a variable, it substitutes the current value of that variable.

You can use variables as part or all of a file name to make file names flexible, or you can use them to pass
arguments to and from scripts. You can export the value of a variable to one or more jobs in a flow, or to
other flows that are currently running on the same Platform Process Manager Server. You can also use
variables in the index expression of a job array definition, in the message sent when a manual job requires
completion, or when a job runs.

Types of variables
Platform Process Manager supports three types of variables:

• User variables
• Built-in variables
• Environment variables

User variables
User variables are those defined by the user, where the value is set within a job, job array, flow, or subflow,
and made available to Platform Process Manager. User variables can be defined inside environment
variables.

Built-in variables
Built-in variables are those defined by the Platform Process Manager system, where the value is obtained
by Platform Process Manager and made available for use by a flow.

Environment variables
You can submit a job that has environment variables that are used when the job runs.

Platform Process Manager built-in variables
Currently, Platform Process Manager provides the following built-in variables:

%I
You use the built-in variable %I to obtain the index of a job array element. You can use %I in the following
fields:

• On the Job Array Definition—Edit Job dialog, General tab, in the following fields:

• Input file
• Output file
• Error file

Usage
Specify the variable as follows when you want to use its current value:

file_name.%I

Do not specify brace brackets and # sign.

Define your flow

Using Platform Process Manager 69

%J
You use the built-in variable %J to obtain the job ID of a job array. You can use %J in the following fields:

• On the Job Array Definition—Edit Job dialog, General tab, in the following fields:

• Output file
• Error file

Usage
Specify the variable as follows when you want to use its current value:

file_name.%J

Do not specify # sign and brace brackets.

JS_EVENT[n]_FILENAME
You use the built-in variable JS_EVENT[n]_FILENAME when you need to use the name of the file that
triggered this particular flow. If a flow is triggered by multiple files, multiple variables are created, each
with a different value for n. The value of n is determined by the position of the triggering event in the list
of possible flow-triggering events, including all types of events.

Consider the following examples, where a flow definition is submitted with multiple events that can trigger
the flow.

Usage
Specify the variable as follows when you want to use its current value:

#{JS_EVENT[n]_FILENAME}

where n is the position of the triggering event in the list of possible events.

Example: one event at a time
In this example, myflow is triggered to run under either of the following conditions:

• At 5:00 p.m. on the first Thursday of the month (a time event)
• If a file called payupdt arrives in the tmp directory

Define your flow

70 Using Platform Process Manager

When the file /tmp/payupdt arrives, the name and value of the built-in variable are as follows:

JS_EVENT[2]_FILENAME=/tmp/payupdt

If the flow is triggered by the time event, no value is set for JS_EVENT[2]_FILENAME.

Note that the value of n in the name of the variable corresponds to the position of the file event in the
list of events.

Example: multiple events
In this example, myflow is triggered to run when all of the following are met:

• A file called payupdt arrives in the tmp directory
• Today is Wednesday
• The file /tmp/dbupdt exists

Define your flow

Using Platform Process Manager 71

In this example, all of the conditions must be met before the flow is triggered. When the flow triggers,
the names and values of the built-in variables are as follows:

JS_EVENT[1]_FILENAME=/tmp/payupdt

JS_EVENT[3]_FILENAME=/tmp/dbupdt

Note that the value of n in the name of the variable corresponds to the position of the file event in the
list of events.

JS_EVENT_n_FILENAME_BASE
The built-in variable JS_EVENT_n_FILENAME_BASE is the base file name, which is part of JS_EVENT
[n]_FILENAME.

Usage
Specify the variable as follows when you want to use its current value:

#{JS_EVENT_n_FILENAME_BASE}

JS_FLOW_ID
You use the built-in variable JS_FLOW_ID when you need to use the unique ID number of a flow.

Usage
Specify the variable as follows when you want to use its current value:

#{JS_FLOW_ID}

Define your flow

72 Using Platform Process Manager

JS_FLOW_NAME
You use the built-in variable JS_FLOW_NAME when you need to use the complete, unique name of a
flow. The flow name is returned in the following format:

flow_ID:username:flowname

Usage
Specify the variable as follows when you want to use its current value:

#{JS_FLOW_NAME}

JS_FLOW_FULL_NAME
You use the built-in user variable JS_FLOW_FULL_NAME when you need to use the long version of a
subflow name.

For example,

• For a subflow named 11:usr1:F1:SF1:SSF1, this variable is set to 11:usr1:F1:SF1:SSF1.
• For a main flow named 11:usr1:F1, this variable is set to 11:usr1:F1.
• For a flow array element named 11:usr1:F1:FA(1), this variable is set to 11:usr1:F1:FA. Note

that this does not include the array index. If you need to differentiate between array elements, you
must use the JS_FLOW_INDEX built-in user variable.

Usage
#{JS_FLOW_FULL_NAME}

#{JS_FLOW_FULL_NAME}(#{JS_FLOW_INDEX})

JS_FLOW_SHORT_NAME
You use the built-in variable JS_FLOW_SHORT_NAME when you need to use the shortened version of
the flow name to avoid a potential name conflict issue when using
JS_PARENT_FLOW_VARIABLE_FILE to set parent flow variables.

For example, there are two dynamic subflows (DSF1 and DSF2) in a main flow (11:usr1:F1), that both
refer to the same target flow (TF). If the target flow sets a parent flow variable myvar, both dynamic
subflows will overwrite each other’s value of the myvar variable.

To prevent this issue, for all subflows and flow arrays in a flow instance, use the
JS_FLOW_SHORT_NAME variable to indicate the name of the subflow.

For example,

• For a subflow named 11:usr1:F1:SF1:SSF1, this variable is set to SSF1.
• For a main flow named 11:usr1:F1, this variable is set to F1.
• For a flow array element named 11:usr1:F1:FA(1), this variable is set to FA. Note that this does

not include the array index. If you need to differentiate between array elements, you must use the
JS_FLOW_INDEX built-in user variable.

Usage
Set the parent flow variable to variable_name_#{JS_FLOW_SHORT_NAME} in the job.

Define your flow

Using Platform Process Manager 73

For example, for the myvar variable name, the DSF1 dynamic subflow will set #{myvar_DSF1} and the
DSF2 dynamic subflow will set #{myvar_DSF2}. This allows both dynamic subflows to avoid variable
name conflicts even though both dynamic subflows use the same target flow.

If you want to use an environment variable (such as myvar_$JS_FLOW_SHORT_NAME, you must list
JS_FLOW_SHORT_NAME as an input variable for the flow or job).

JS_ITERATION_COUNTER
You use the built-in variable JS_ITERATION_COUNTER when you have specified a rerun exception
handler for a flow or subflow, and you need to know how many times the flow or subflow has been rerun.
The first time the flow or subflow is run, the value of JS_ITERATION_COUNTER is 0. If the flow or
subflow is rerun, the counter is incremented. For example, if the value of JS_ITERATION_COUNTER
is 3, the flow or subflow has been rerun three times—it is running for the fourth time.

Usage
Specify the variable as follows when you want to use its current value:

#{JS_ITERATION_COUNTER}

Variable override order
Variables of the same name specified at different scope levels may override one another. Variables set at
an inner subflow scope override those set at an outer subflow scope. This variable override order also
applies to default values of input variables.

For example, consider the following flow and job scope levels:

• If the J0 job sets a flow variable A=100, the variable is visible to the MF scope and all subflow scopes
(including SF). Therefore, J1, J2, and J3 will all use A=100.

• If J1 sets A=50, J2 will use A=50 because the variable set at the MF_SF subflow scope overrides the
variable set at the MF outer scope. However, J3 still uses A=100 because the value at the MF scope is
still A=100. J2 uses A=50 even if J0 sets A=100 after J1 sets A=50.

This variable override order also applies to default values of input variables. For example,

• If MF has an input variable IV with a default value of 200, and SF does not have input variables, J0,
J1, J2, and J3 will all use IV=200.

• If SF now has the same input variable IV with a default value of 20, J0 and J3 will use IV=200, while
J1 and J2 will now use IV=20.

• If J0 sets IV=30, it overrides the default value at the MF scope, but not at the MF:SF subflow scope.
Therefore, J1 and J2 will use IV=20, while J3 will use IV=30.

• If J1 sets IV=5, J2 will use IV=5, while J3 still uses IV=30.

Define your flow

74 Using Platform Process Manager

Similarly, if you trigger a flow with variables, the variables will only override the default values at the main
flow level, but not the default values at subflows. However, if you specified no default values in the subflow,
then the specified values are also visible to the subflow.

Dynamic subflows
When specifying input variable values for dynamic subflows, the same rules apply because the specified
values are effectively treated as default values of the input variables.

Include the variable evaluator to run jobs based on
decision branches

The variable evaluator (VE) is a work item in the flow editor that allows jobs to depend on the evaluation
of variable expressions instead of the traditional job exit status, time events, and file events. This work
item contains no actual jobs to run, and therefore you cannot kill, suspend, or resume it. In addition, since
the work item does not perform any actual work, you cannot use the variable evaluator as a triggering
event, a proxy event to start the next work item, or as a flow completion criterion.

The variable evaluator serves as an intermediate step between jobs and the validation of variable decision
branches. Typically, the predecessors of a variable evaluator assign values to various user variables. When
all the variables are set, the variable evaluator will evaluate all of its variable expression branches and
determine which successors to start executing. If there is no predecessor to the variable evaluator, the
variable evaluator will start and run to completion immediately.

When you specify the variable expressions for each branch, you can use a combination of variables,
operators, and constants. The variable evaluator supports the following operators: <, >, =, >=, <=, !=

The basic variable expression consists of one variable, one operator, and one constant:
variable operator constant. For example, #{A} > 1.

You can also create larger and more complect expressions by joining smaller expressions using the
following boolean operators:

&& (AND), || (OR), ! (NOT), () (parentheses). However, you can only apply ! (NOT) to variable expressions
and not to literals. That is, !({#A} > {#B}) is valid while !({#A}) >{#B} is not.

For example, the following at all valid combinations of variable expressions:

#{A} < 4 && #{B} > 3
!(#{A} < 4 || #{B} > 4)
!(#{A} > 2 && #{B} > 3) || #{C} > 5

You can also specify an else branch decision. The variable evaluator only evaluates else branches to TRUE
if all other non-else branches evaluate to FALSE.

1. Click the Variable Evaluator button to put the Flow Editor in variable evaluator placement mode.
2. Left-click in the workspace in the location where you want to insert the variable evaluator.

The variable evaluator icon is added to the flow diagram.
3. If you want to include a name or description of the variable evaluator, double-click the variable

evaluator icon that you added and specify these fields.
4. Draw the lines linking any predecessors (dependencies) the variable evaluator has on other work items

in the flow definition.

The predecessors will likely have variable definitions on which the variable evaluator will make
decisions.

Define your flow

Using Platform Process Manager 75

If you do not define any dependencies for the variable evaluator, the variable evaluator will be triggered
immediately when the flow runs.

5. Draw the lines linking the variable evaluator to the decision branching jobs that depend on the variable
evaluator.

In the flow editor, the decision branching can be drawn as a link object from the variable evaluator to
any successive jobs. The link dependencies definition has the following options:

• Specify a variable expression

The variable evaluator branches to this job if the variable expression that you specify is TRUE.
Specify a variable expression or a combination of variable expressions.

If you specify multiple branches that evaluate to TRUE in a workflow, they will all run their next
jobs.

Note:
If, at runtime, a variable is undefined and thus cannot be resolved to
a value, the variable evaluator evaluates the corresponding sub-
expression to FALSE; however, the whole expression might not be
evaluated to FALSE.

• else

The variable evaluator branches to this job if all the other variable expressions are FALSE.

If you specified multiple else statements in a workflow, they will all run their next jobs if the all of
the other (non-else) variable expressions are FALSE.

6. Click OK.

Use global variables
1. In the Flow Manager, from the View menu, select Global Variables. The list of global variables and

their values is displayed.

Add a global variable
1. In the Flow Manager, from the View menu, select Global Variables.
2. Click Add in the Global Variables window. The Add Variable window is displayed.
3. In the Name field, specify a unique variable name. You can use alphabetic characters, numerals 0 to

9, space, and underscore (_) in the variable name.

Note:
Name cannot start with a numeric character.

4. Set a value to the variable.

Note:
Do not include equal or semicolon characters in the value.

5. Click OK to add the global variable. The added variable can be referenced in a flow instance.

Remove a global variable
1. In the Flow Manager, from the View menu, select Global Variables.

Define your flow

76 Using Platform Process Manager

2. Select a variable and click Remove in the Global Variables window.

Edit a global variable
1. In the Flow Manager, from the View menu, select Global Variables.
2. Click Edit in the Global Variables window. The Edit Variable window is displayed.
3. Set another value to the existing variable.

Note:
Do not include equal or semicolon characters in the value.

4. Click OK. The edited variable can be referenced in a flow instance.

Use a user variable
1. Define a job that sets a runtime value for the variable, ensuring that the value will be available to

Platform Process Manager before the job that needs the value runs.
2. Submit the job to a queue that has been configured for setting user variables. See your Platform Process

Manager administrator for queue names.
3. Define the flow or work item that needs the value of the variable. In the appropriate input field, specify

the variable in the following format:

#{variable}

For example:

Value of a variable
You can use a variable in the following places in the Flow Editor:

• On the Job/Job Array Definition—Edit Job dialogs, General tab, in the following fields:

• Name—applies only to jobs, not job arrays

Note:
If you used a user variable to describe the job name, and your job is
not in a flow array, you must ensure that your flow is arranged such
that the user variable is resolved before triggering the flow.

This is because if the user variable is not resolved when the flow is
triggered, the flow will fail to be triggered unless the job is in a flow
array. Once the job name is resolved with the user variable, the job
name will not change later even if the value of the user variable
changes.

• Command to run

Define your flow

Using Platform Process Manager 77

• Index expression—applies only to job arrays
• Queue name
• Project name
• Input file
• Output file
• Error file
• Email address
• Run as user name

• On the Job Definition—Edit Job dialog, Processing tab, in the following fields:

• Host name
• Priority

• On the Job Definition—Edit Job dialog, Resources tab, in the following field:

• Expression
• On the Job Definition—Edit Job dialog, File Transfer tab, in the following fields:

• Local path including name
• File on execution host

• On the File Event Definition dialog, in the following field:

• File name
• On the Manual Job Definition dialog, in the following field:

• Message
• On the Alarm Definition dialog, in the following field:

• Description
• On the Flow Attribute dialog, in the following field:

• Email address

Set a user variable in a Windows bat file
Within the batch file, set the values and scopes of multiple variables by specifying the files containing
these variables. The jobs write to the files in the following format, with each line containing a variable-
value pair:
VARIABLE1=VALUE1
VARIABLE2=VALUE2
...

Platform Process Manager will not initially create these files — the files need to be created by the job.

For job arrays, you must append the LSB_JOBINDEX environment variable to the file names to indicate
the index of each job array element.

1. Define a job that runs a batch file, or wraps the command to run within a batch file.
2. Within the batch file, set the scope of the variable by specifying the variable-value pair in the scope-

specific file, as follows:
a) To set local variables, whose values are not available outside the scope of this flow (or subflow),

from a file, use the JS_FLOW_VARIABLE_FILE environment variable to access the file.

• To set a local variable-value pair for a job, append to the %JS_FLOW_VARIABLE_FILE% file:

echo variable=value > %JS_FLOW_VARIABLE_FILE%

Define your flow

78 Using Platform Process Manager

• To set a local variable-value pair for a job array, append to the %JS_FLOW_VARIABLE_FILE%
[%LSB_JOBINDEX%] file:

echo variable=value > %JS_FLOW_VARIABLE_FILE%[%LSB_JOBINDEX%]
b) To set global variables, whose values are available to all flows within the Platform Process Manager

Server, from a file, use the JS_GLOBAL_VARIABLE_FILE environment variable to access the file.

• To set a global variable-value pair for a job, append to the %JS_GLOBAL_VARIABLE_FILE%
file:

echo variable=value > %JS_GLOBAL_VARIABLE_FILE%
• To set a global variable-value pair for a job array, append to the %

JS_GLOBAL_VARIABLE_FILE%[%LSB_JOBINDEX%] file:

echo variable=value > %JS_GLOBAL_VARIABLE_FILE%[%LSB_JOBINDEX%]
c) To set parent flow variables, whose values are available to the scope of the parent flow for this flow

(or subflow), from a file, use the JS_PARENT_FLOW_VARIABLE_FILE environment variable to
access the file. If this flow is the main flow, the parent flow is also the main flow.

• To set a parent variable-value pair for a job, append to the %
JS_PARENT_FLOW_VARIABLE_FILE% file:

echo variable=value > %JS_PARENT_FLOW_VARIABLE_FILE%
• To set a parent variable-value pair for a job array, append to the %

JS_PARENT_FLOW_VARIABLE_FILE%[%LSB_JOBINDEX%] file:

echo variable=value > %JS_PARENT_FLOW_VARIABLE_FILE%[%LSB_JOBINDEX%]

Platform Process Manager sets the file environment variables as follows:

• Platform Process Manager sets %JS_FLOW_VARIABLE_FILE% to JS_HOME\work\var_comm
\flowvar.job_name.

• Platform Process Manager sets %JS_GLOBAL_VARIABLE_FILE% to JS_HOME\work\var_comm
\globalvar.job_name.

• Platform Process Manager sets %JS_PARENT_FLOW_VARIABLE_FILE% to JS_HOME\work
\var_comm\parentflowvar.job_name.

Within the appropriate scope, Platform Process Manager reads these files and records the variable-value
pairs to the corresponding variable list environment variable (for example, %JS_FLOW_VARIABLE_LIST
% for local variables or %JS_GLOBAL_VARIABLE_LIST% for global variables)

Set a user variable in a UNIX script
Within the script, set the values and scopes of multiple variables by specifying the files containing these
variables. The jobs write to the files in the following format, with each line containing a variable-value
pair:
VARIABLE1=VALUE1
VARIABLE2=VALUE2
...

Platform Process Manager will not initially create these files — the files need to be created by the job.

For job arrays, you must append the LSB_JOBINDEX environment variable to the file names to indicate
the index of each job array element.

1. Define a job that runs a script, or wraps the command to run within a script.
2. Within the script, set the scope of the variable by specifying which list of variables to create, as follows:

Define your flow

Using Platform Process Manager 79

a) To set local variables, whose values are not available outside the scope of this flow (or subflow),
from a file, use the JS_FLOW_VARIABLE_FILE environment variable to access the file.

• To set a local variable-value pair for a job, append to the $JS_FLOW_VARIABLE_FILE file:

echo variable=value > $JS_FLOW_VARIABLE_FILE
• To set a local variable-value pair for a job array, append to the $JS_FLOW_VARIABLE_FILE\

[$LSB_JOBINDEX\] file:
echo variable=value > $JS_FLOW_VARIABLE_FILE\[$LSB_JOBINDEX\]

The following is a sample perl script for jobs to set flow variables:
#!/bin/perl
$flowVarFile = $ENV{JS_FLOW_VARIABLE_FILE};
open (OUT, ">$flowVarFile") || die "Can't open $flowVarFile: $!\n";
print OUT "LocalVar1=value1\n";
print OUT "LocalVar2=\"value2 with value\"\n";
close(OUT);

b) To set global variables, whose values are available to all flows within the Platform Process Manager
Server, from a file, use the JS_GLOBAL_VARIABLE_FILE environment variable to access the file.

• To set a global variable-value pair for a job, append to the $JS_GLOBAL_VARIABLE_FILE file:

echo variable=value > $JS_GLOBAL_VARIABLE_FILE
• To set a global variable-value pair for a job array, append to the

$JS_GLOBAL_VARIABLE_FILE\[$LSB_JOBINDEX\] file:
echo variable=value > $JS_GLOBAL_VARIABLE_FILE\[$LSB_JOBINDEX\]

The following is a sample perl script for jobs to set global variables:
#!/bin/perl
$globalVarFile=$ENV{JS_GLOBAL_VARIABLE_FILE};
open (APP, ">$globalVarFile") || die "Can't open $globalVarFile: $!\n";
print APP "GlobalVar1=Gvalue1\n";
print APP "GlobalVar2=\"Gvalue2 with space\"\n";
close(APP);

Platform Process Manager sets the $JS_GLOBAL_VARIABLE_FILE environment variable to
JS_HOME/work/var_comm/globalvar.job_name.

c) To set parent flow variables, whose values are available to the scope of the parent flow for this flow
(or subflow), from a file, use the JS_PARENT_FLOW_VARIABLE_FILE environment variable to
access the file. If this flow is the main flow, the parent flow is also the main flow.

• To set a parent flow variable-value pair for a job, append to the
$JS_PARENT_FLOW_VARIABLE_FILE file:

echo variable=value > $JS_PARENT_FLOW_VARIABLE_FILE
• To set a parent flow variable-value pair for a job array, append to the

$JS_GLOBAL_VARIABLE_FILE\[$LSB_JOBINDEX\] file:
echo variable=value > $JS_PARENT_FLOW_VARIABLE_FILE\[$LSB_JOBINDEX\]

Platform Process Manager sets the file environment variables as follows:

• Platform Process Manager sets $JS_FLOW_VARIABLE_FILE to JS_HOME/work/var_comm/
flowvar.job_name.

• Platform Process Manager sets $JS_GLOBAL_VARIABLE_FILE to JS_HOME/work/var_comm/
globalvar.job_name.

• Platform Process Manager sets $JS_PARENT_FLOW_VARIABLE_FILE to JS_HOME/work/
var_comm/parentflowvar.job_name.

Define your flow

80 Using Platform Process Manager

Within the appropriate scope, Platform Process Manager reads these files and records the variable-value
pairs to the corresponding variable list environment variable (for example,
$JS_FLOW_VARIABLE_LIST for local variables or $JS_GLOBAL_VARIABLE_LIST for global variables)

Set a flow variable using the flow manager
View and set flow variables in flows, subflows, and flow arrays from the flow manager. In order to view
and set flow variables for these items, the main flow must be either in a Running, Pending, Exit, Waiting,
or Suspended state, and the flow item itself (the flow, subflow, or flow array) must be in an Exit state.

1. From the flow manager, right-click on an Exited flow, subflow, or a flow array, and select Set Flow
Variables.

The Flow Variables dialog displays. This dialog shows a list of the flow variable names and values for
the selected flow item.

2. Modify the flow variables in the selected flow item.

• To add a new flow variable, click Add.
• To delete a flow variable, select the flow variable and click Remove.
• To modify an existing flow variable, select the flow variable and click Edit.

Note:
Platform Process Manager does not currently support editing flow
variables for a flow, subflow, or flow array if the corresponding main
flow that is in a Done or Killed state.

3. Save or discard your changes.

• To save the flow variable changes and close the Flow Variables dialog, click OK.
• To discard the flow variable changes and close the Flow Variables dialog, click Cancel.
• To save the flow variable changes and continue editing variables, click Apply.

User variables within a flow definition
When defining a job that sets one or more variables, ensure that you specify a queue that is configured to
support user variables.

Tip:
Before you can set or use user variables in a flow, your Platform Process
Manager system needs to have one or more queues configured to accept
them. Check with your Platform Process Manager administrator to see
which queues are configured to support variables.

Types of user variables you can set
There are two types of variables you can set:

• Local variables—those whose values are available only to jobs, job arrays, subflows or events within
the current flow

• Global variables—those whose values are available to all the flows within the Platform Process Manager
Server

Setting the value of a user variable
You can set the value of one or more variables as follows:

Define your flow

Using Platform Process Manager 81

• On UNIX, by setting the value within a script
• On Windows, by setting the value within a bat file

Multiple variables in a list
You can set a value for a single variable within a script, or set values for a list of variables, and make all of
the values available to the flow or to the Platform Process Manager Server. You can use a single variable
or a list of variables within a job, job array or file event definition.

When the value of a variable is evaluated
The value of a variable is resolved just before the job or job array is dispatched for execution. If the variable
is used in a file event, the value is resolved periodically, when the condition of the event is evaluated.

When a variable is used for a manual job message, the value of the variable is resolved just before the email
is sent.

Define your flow

82 Using Platform Process Manager

Job dependencies
When you draw a line between two work items in the flow diagram, you are establishing dependencies
between the two jobs. The default type of dependency is assigned, which is a dependency on the first job
to complete successfully. However, you may want a job to run only after a predecessor job has failed, or
when a job completes with a particular exit code. In these cases, you need to edit the job dependency.

You can choose from the following criteria:

• Run a job when the predecessor completes successfully
• Run a job when the predecessor job starts
• Run a job when the predecessor is submitted
• Run a job when the predecessor job fails
• Run a job when the predecessor job ends, regardless of success or failure
• Run a job when the predecessor job overruns
• Run a job when the predecessor underruns
• Run a job if the predecessor fails to start
• Run a job when the predecessor cannot run
• Run a job if the predecessor misses its scheduled start time

1. Draw both the predecessor job and the job that succeeds it.
2. Change to job dependency mode by clicking the Insert Dependency button.
3. Draw job dependencies by left-clicking on the job that must run first, then left-clicking on the job that

runs next.

Job J2 cannot run until job J1 completes successfully. J2 cannot run until the dependency condition
is met.

4. To change the type of dependency, right-click on the dependency line and select Open Definition.
The Event Definition dialog box appears.

Define your flow

Using Platform Process Manager 83

5. In the Event Type field, select the type of dependency you want to use to trigger the successor job,
and the appropriate operator and values. See the examples that follow for job dependencies you can
use.

6. In the Description field, add any descriptive text that may be used for understanding this event. For
example, if this event requires special instructions for operations staff, place those instructions here.

7. Click OK.

Examples
Run a job when predecessor starts

Run when predecessor has exit code greater than 2

Run when the predecessor’s exit code is 10, 15, or 22

You can specify multiple exit codes to indicate to run when any of these exit codes are
encountered. You specify a space-separated list of exit codes in numbers from 0 to 255.

Define your flow

84 Using Platform Process Manager

Run when the predecessor’s exit code is not 9 or 11

You can specify multiple exit codes to indicate to run when any of these exit codes are not
encountered. You specify a space-separated list of exit codes in numbers from 0 to 255.

Define your flow

Using Platform Process Manager 85

Specify dependency on the start or submission
of specific jobs

By default, when you establish a dependency on a job to complete successfully, dependent jobs are not
submitted until dependencies are satisfied. For example, job124 depends on job 123. Job 123 is submitted,
and job 124 is not submitted until job 123 completes.

In some cases, you may have a data preparation job that takes a long time, followed by a computation job.
If you have a busy cluster, if your second job gets submitted after the first job has completed, your second
job may be waiting a long time in the queue to be scheduled. For these kinds of cases, you can specify to
Process Manager to pre-submit dependent jobs, reducing the time a job waits in the queue to be scheduled.

Examples:

• You want your job to be started as early as possible

For example, you have job 123 followed by job 124. You want job 124 to be submitted as early as possible.
In this case, you pre-submit job 124 and specify the Is Submitted dependency. Job 124 will be submitted
right after job 123 has been submitted to LSF.

• The next job cannot start until the execution host is known for the previous job

For example, job124 needs to run on the same host as the preceding job. You pre-submit job 124 and
specify the Starts dependency. Job 124 will be submitted right after job 123 has started to run in LSF.

Requirements to pre-submit dependent jobs
• Only LSF jobs, job arrays, job scripts, job array scripts, and template jobs can be pre-submitted.
• Only jobs, job scripts, job arrays, job array scripts, and template jobs can be preceding jobs to the

dependent job to be pre-submitted.
• The jobs to be pre-submitted must be direct links. They cannot be more than one link away.
• The dependencies of all predecessors must be logically connected with AND.
• In Flow Editor, the Event type in the Job Event Definition for the preceding jobs to the other job

must be set to Starts or Is Submitted.
• If you specify dependent jobs to be pre-submitted, and the condition is never met, it is possible for

the flow to be “stuck”. To handle this, define an overrun exception handler to kill the last job if it runs
or pends for more than a certain period of time.

Examples

Example: Simple flow, pre-submission with "Starts"
dependency

In this flow, you can only specify J2 and J4 to pre-submit J5. As a result, J5 will be submitted
right after J2 and J4 start to run in LSF.

J1 and J3 cannot be considered because they are more than one link away from J5.

Define your flow

86 Using Platform Process Manager

Example: Simple flow, pre-submission with "Is submitted"
dependency

In this flow, you can only specify J2 and J4 to pre-submit J5. As a result, J5 will be submitted
right after J2 and J4 are submitted to LSF.

J1 and J3 cannot be considered because they are more than one link away from J5.

Example: Pre-submission not possible
In this flow, you cannot specify any pre-submission. This is because jobs must be logically
connected with AND.

Define your flow

Using Platform Process Manager 87

Example: Complex flow with "Starts" dependency
In this flow, you can only specify J1 to pre-submit J5. As a result, J5 will be submitted right after
J1 starts to run in LSF.

J3 and J4 cannot be considered because they are more than one link away from J5, and there is
also a logical OR.

How to submit a dependent job after selected jobs
start running

1. Draw both the predecessor job and the job that succeeds it.
2. Change to job dependency mode by clicking the Insert Dependency button.
3. Draw job dependencies by left-clicking on the job that must run first, then left-clicking on the job that

runs next.
4. To change the type of dependency, right-click on the dependency line and select Open Definition.

The Event Definition dialog box is displayed.
5. In the Event Type field, select Starts.
6. Click OK.
7. Double-click the dependent job that depends on other jobs to start.

Define your flow

88 Using Platform Process Manager

The Job Definition dialog is displayed.
8. Select the Advanced tab.
9. In the Pre-submit section, select jobs from the Available column and click the Add button to put

them in the Selected column.

The current job will be submitted right after the selected jobs start running in LSF.

How to submit a dependent job after selected jobs are
submitted

1. Draw both the predecessor job and the job that succeeds it.
2. Change to job dependency mode by clicking the Insert Dependency button.
3. Draw job dependencies by left-clicking on the job that must run first, then left-clicking on the job that

runs next.
4. To change the type of dependency, right-click on the dependency line and select Open Definition.

The Event Definition dialog box is displayed.
5. In the Event Type field, select Is Submitted.
6. Click OK.
7. Double-click the dependent job that depends on other jobs to start.

The Job Definition dialog is displayed.
8. Select the Advanced tab.
9. In the Pre-submit section, select jobs from the Available column and click the Add button to put

them in the Selected column.

The current job will be submitted right after the selected jobs are submitted to LSF.

Define your flow

Using Platform Process Manager 89

Specify a dependency on a file
Sometimes you do not want a work item within a flow to run until something happens to a particular file.
You can specify the following circumstances:

• The file arrives
• The file exists (includes is created)
• The file does not exist (includes is deleted)
• The file size meets a certain criteria
• The file is updated within a certain time period

When you specify a file event for a job within a flow, that job will run once, when the file meets the
specified condition. Even if the flow is still active the next time that file meets the specified condition,
the file event triggers the job only once.

1. Change to file event mode by clicking the Insert File Event button.
2. Click in the workspace where you want to insert the file event. The file event icon does not yet appear

in the workspace. The Event Definition dialog box appears.
3. In the File name field, specify the full path name of the file as the Platform Process Manager Server

sees it, or click the Browse button to point to the file on which this event depends.

When specifying the file name, you can also specify wildcard characters: * to represent a string or ?
to represent a single character. For example, a*.dat* matches abc.dat, another.dat and
abc.dat23. S??day* matches Satdays.tar and Sundays.dat. *e matches smile.

Note: There are some differences between UNIX and Windows when using wildcard characters.
Because UNIX is case-sensitive and Windows is not, if you specify A*, on UNIX it matches only files
beginning with A. On Windows, it matches files beginning with A and a. Also, on UNIX, if you
specify ??, it matches exactly two characters. On Windows, it matches one or two characters. These
behaviors are consistent with UNIX ls command behavior, and Windows dir command behavior.

You can also specify a variable for the file name, provided your system is configured to support them.
4. In the Condition field, choose the appropriate condition from the list, and specify the number of bytes

if applicable. See the examples that follow this topic.
5. In the Description field, add any descriptive text that may be used for understanding this event. For

example, if this event requires special instructions for operations staff, place those instructions here.

Define your flow

90 Using Platform Process Manager

6. Click OK. The file event appears in the workspace, and you can draw the appropriate dependency
lines to any jobs that are awaiting its arrival.

Note:
You can change the text of the label that appears above the file event
in the workspace if the label text is too long.

Example
Run a job when a file arrives

Run a job if file is updated within a certain time period

Define your flow

Using Platform Process Manager 91

Define your flow

92 Using Platform Process Manager

Change the label displayed for an event
Sometimes when you define an event, the label that appears in the workspace for the event is long and
cumbersome, and interferes with the readability of the flow. This is because the label used is derived from
the expression that defines the event. In a time event, for example, the label displays the calendar name
and all the times the event will trigger. For example:

You can change the label for a file or time event by creating a customized label. That way, you can control
the text that appears in the workspace for each event.

1. In the Flow Editor, right-click on the event whose label you want to change.
2. From the menu, select Edit Label. The Edit Event Label dialog appears.
3. Select Display customized label, and type the text you want to appear in the input field provided.

4. Click OK. The new label is now displayed.

Define your flow

Using Platform Process Manager 93

Dependency on a date and time
While a flow may trigger at a particular time each day, or each week, you may want a work item within
the flow to wait until after a specific time before it can run. For example, the flow Backup may run every
night at midnight. However, within that flow, the job Report cannot be submitted until after 6:00 a.m.
You can create a time event that tells Report to wait until 6:00 a.m. before it runs.

When you specify a time event for a job within a flow, that job will run once, when the combination of
the date and time is true. Even if the flow is still active the next time that date and time combination is
true, the time event triggers the job only once.

You can create the following types of dependencies using time events:

• You can specify a date and time when you want the job to run
• You can specify a particular frequency, such as daily, weekly or monthly, or at every nth interval, such

as every 2 days, every 3 weeks or every 6 months
• You can specify a particular day of the week or month of the year
• You can combine calendar expressions to create complex scheduling criteria

When you create a time event, you point to a particular calendar, which defines the date component
of the time event. To use a calendar, that calendar must first be defined.

1. Change to time dependency mode by clicking the Insert Time Event button.
2. Click in the workspace where you want to insert the time event. The Event Definition dialog box

appears.
3. In the Calendar name field, specify the calendar that resolves to the dates on which you want this job

to run.
4. In the Time zone section, specify the time zone for this time event.
5. In the Hours and Minutes fields, specify an expression that resolves to the time or times when you

want the job to start running. Be sure to specify the time as it appears on a 24-hour clock, where valid
values for hours are from 0 to 23.

Note:
Do not a time between 2:00 a.m. and 3:00 a.m. on the day that daylight
savings time begins (the second Sunday in March), as the flow will not
run and any subflows that are scheduled to start after this flow will also
not run.

This is because the 2:00 a.m. to 3:00 a.m. hour is removed to start
daylight savings time in North America.

6. In the Duration of event field, specify the length of time in minutes for which you want this event to
be valid. This value, when added to the trigger time of the event, is the time by which this job must be
submitted. After this time expires, the job will not be submitted. For example, if a job must run after
5 p.m. but cannot be submitted after 6 p.m., specify 17: 00 in the Time field, and 60 minutes in the
Duration of event field.

Tip:
If you want to prevent a job from running after a particular time, and the
job has a dependency on another event, ensure you use an AND link
to combine the two events, not an OR link.

Define your flow

94 Using Platform Process Manager

7. Optional. In the End after ... occurrences field, specify the maximum number of occurrences of this
time event before you want it to end.

8. In the Description field, add any descriptive text that may be helpful for understanding this event.
For example, if this event requires special instructions for operations staff, place those instructions
here.

9. Click OK. The time event appears in the workspace, and you can draw the appropriate dependency
lines to the job or jobs that are depending on this time.

Note:
You can change the text of the label that appears above the file event
in the workspace if the label text is too long.

Define your flow

Using Platform Process Manager 95

Specify dependencies on a job array
When you draw a dependency line from a job array to another work item in the flow definition, the
dependency you create is the default: the work item cannot run until all of the jobs in the job array complete
successfully.

You can specify the type of dependency to be one of the following:

• All jobs in the job array complete successfully—this is the default
• All jobs in the job array end, regardless of success or failure
• The sum of the exit codes of all the jobs in the job array has a value
• A specified number of jobs in the job array complete successfully
• A specified number of jobs in the job array fail
• A specified number of jobs in the job array end regardless of success or failure
• A specified number of jobs in the job array have started
• The job array runs longer than it should
• The job array runs an abnormally short length of time
• The job array fails to start
• The job array cannot run
• The job array misses its scheduled start time

1. Draw both the predecessor job array and the work item that succeeds it.
2. Change to job dependency mode by clicking the Insert Dependency button.
3. Draw a dependency line from the job array to the work item that depends on the array.
4. To change the type of dependency, right-click on the dependency line and select Open Definition.

The Event Definition dialog box appears.

5. In the Event type field, select the type of dependency you want to use to trigger the successor job, and
the appropriate operator and value if applicable. See the examples that follow for some of the job array
dependencies you can use.

Define your flow

96 Using Platform Process Manager

6. In the Description field, add any descriptive text that may be helpful for understanding this event.
For example, if this event requires special instructions for operations staff, place those instructions
here.

7. Click OK.

Examples
All jobs in the array end, regardless of success or failure

Sum of the exit codes is...

Number of successful jobs is...

Number of unsuccessful jobs is...

Example: number of jobs started is...

Define your flow

Using Platform Process Manager 97

Specify dependencies on a subflow
When you draw a dependency line from a subflow to another work item in the flow definition, provided
that the subflow does not have a pre-defined exit condition, the dependency you create is the default: the
work item cannot run until all of the jobs in the subflow complete successfully.

You can specify the type of dependency to be one of the following:

• All jobs in the subflow complete successfully—the default
• All jobs in the subflow end, regardless of the exit code
• The sum of the exit codes of all the jobs in the subflow has a value
• A specified number of jobs in the subflow complete successfully
• A specified number of jobs in the subflow fail
• A specified number of jobs in the subflow end regardless of success or failure
• A specified number of jobs in the subflow have started
• The subflow runs longer than it should
• The subflow runs for an abnormally short length of time
• The subflow misses its schedule

1. Draw both the predecessor subflow and the work item that succeeds it.
2. Change to job dependency mode by clicking the Insert Dependency button.
3. Draw a dependency line from the subflow to the work item that depends on the subflow.
4. To change the type of dependency, right-click on the dependency line and select Open Definition.

The Event Definition dialog box appears.

Define your flow

98 Using Platform Process Manager

5. In the Event type field, select the type of dependency you want to use to trigger the successor job, and
the appropriate operator and values. See the examples that follow for subflow dependencies you can
use.

6. In the Description field, add any descriptive text that may be helpful for understanding this event.
For example, if this event requires special instructions for operations staff, place those instructions
here.

7. Click OK.

Examples
Sum of the exit codes has a specific value

Specified number of jobs complete successfully

Specified number of jobs fails

Use this case when you want to run a job if the subflow fails. If you want to trigger the event
when a certain number of jobs fail, specify the number of jobs that must complete successfully.
This trigger occurs in real time—as soon as the specified number is met, the event triggers. It
does not wait until the flow completes to test the condition.

Specified number of jobs have started

Define your flow

Using Platform Process Manager 99

Specify dependencies on an unconnected work
item
Specify a dependency on a proxy job

You can specify a dependency on another flow, or a work item that is running within another flow, or on
a work item elsewhere in the current flow by creating a proxy event. You can specify the following types
of dependencies:

• When the work item is submitted
• When the work item starts
• When the work item ends successfully
• When the work item exits with any exit code
• When the work item exits with a specific exit code
• When the work item exits with any of the specified exit codes. You can specify a list of space-separated

exit codes with the event type Ends with exit code... and Equal to and Not equal to. You can specify a
list of exit codes for a proxy job, proxy template job, proxy job script, and proxy local job.

• When a specific number of jobs in a job array or subflow starts
• When a specific number of jobs in a job array or subflow ends
• When a specific number of jobs in a job array or subflow exits

1. Change to proxy event mode by clicking the Insert Proxy Event button.
2. Click in the workspace where you want to insert the proxy event. The proxy event icon does not yet

appear in the workspace. The Proxy Event Definition dialog box appears.
3. In the Create proxy for... box, leave the default at Job.
4. In the Job name field, specify the fully qualified name of the job, in the following format:

flow_name:subflow_name:job_name

If the job is not defined within a subflow, simply specify the flow name and the job name, separated
by a colon.

Note: You cannot specify a proxy for a manual job.
5. If the flow containing the job is not owned by your user ID, in the Owner field, specify the user ID

that owns the flow containing the proxy job.
6. In the Duration field, specify the number of minutes in the past to detect the proxy event.
7. In the Event type field, select the type of dependency you want to use to trigger the successor job, job

array, subflow or flow, and the appropriate operator and values.
8. In the Description field, add any descriptive text that may be used for understanding this event.

Define your flow

100 Using Platform Process Manager

9. Click OK. The proxy event appears in the workspace, and you can draw the appropriate dependency
lines to any work items.

Specify a dependency on a proxy job array
1. Change to proxy event mode by clicking the Insert Proxy Event button.
2. Click in the workspace where you want to insert the proxy event. The proxy event icon does not yet

appear in the workspace. The Proxy Event Definition dialog box appears.
3. In the Create proxy for... box, select Job Array.
4. In the Job array name field, specify the fully qualified name of the job array, in the following format:

flow_name:subflow_name:job_array_name

If the job array is not defined within a subflow, simply specify the flow name and the job array name,
separated by a colon.

5. If the flow containing the job array is not owned by your user ID, in the Owner field, specify the user
ID that owns the flow containing the proxy job array.

6. In the Duration field, specify the number of minutes in the past to detect the proxy event.
7. In the Event type field, select the type of dependency you want to use to trigger the successor job, job

array, subflow or flow, and the appropriate operator and values.
8. In the Description field, add any descriptive text that may be used for understanding this event.

Define your flow

Using Platform Process Manager 101

9. Click OK. The proxy event appears in the workspace, and you can draw the appropriate dependency
lines to any work items.

Specify a dependency on a proxy subflow
1. Change to proxy event mode by clicking the Insert Proxy Event button.
2. Click in the workspace where you want to insert the proxy event. The proxy event icon does not yet

appear in the workspace. The Proxy Event Definition dialog box appears.
3. In the Create proxy for... box, select Subflow.
4. In the Subflow name field, specify the fully qualified name of the subflow, in the following format:

flow_name:subflow_name
5. If the flow containing the subflow is not owned by your user ID, in the Owner field, specify the user

ID that owns the flow containing the proxy subflow.
6. 7In the Duration field, specify the number of minutes in the past to detect the proxy event.
7. In the Event type field, select the type of dependency you want to use to trigger the successor job, job

array, subflow or flow, and the appropriate operator and values.
8. In the Description field, add any descriptive text that may be used for understanding this event.

Define your flow

102 Using Platform Process Manager

9. Click OK. The proxy event appears in the workspace, and you can draw the appropriate dependency
lines to any work items.

Specify a dependency on a proxy flow
1. Change to proxy event mode by clicking the Insert Proxy Event button.
2. Click in the workspace where you want to insert the proxy event. The proxy event icon does not yet

appear in the workspace. The Proxy Event Definition dialog box appears.
3. In the Create proxy for... box, select Flow.
4. In the Flow name field, specify the name of the flow.
5. If the flow is not owned by your user ID, in the Owner field, specify the user ID that owns the flow.
6. In the Duration field, specify the number of minutes in the past to detect the proxy event.
7. In the Event type field, select the type of dependency you want to use to trigger the successor job, job

array, subflow or flow, and the appropriate operator and values.
8. In the Description field, add any descriptive text that may be used for understanding this event.

Define your flow

Using Platform Process Manager 103

9. Click OK. The proxy event appears in the workspace, and you can draw the appropriate dependency
lines to any work items.

Note:
You can change the text of the label that appears above the proxy event
in the workspace if the label text is too long.

Define your flow

104 Using Platform Process Manager

Specifying multiple dependencies
A job (or job array or subflow) can have dependencies on other jobs, job arrays, subflows, files or dates
and times. You can define these dependencies so that all of them must be met before the job can run, or
you can define these dependencies so that only one of them needs to be met before the job can run.

Specify that all dependencies must be met
1. Change to AND link mode by clicking the Insert LinkEvent - ’AND’ button.
2. Click in the workspace where you want to insert the AND link.
3. Change to job dependency mode by clicking the Insert Dependency button.
4. Draw a dependency line from the AND link to the work item it triggers.
5. Draw a dependency line from each work item that must precede the AND link to the AND link.

Note:
If you draw a second dependency line to any work item in the flow, an
AND link is automatically created for you. Also, you can change an OR
link into an AND link by double-clicking on the OR icon.

Specify that at least one dependency must be met
1. Change to OR link mode by clicking the Insert LinkEvent - ’OR’ button.
2. Click in the workspace where you want to insert the OR link.
3. Change to job dependency mode by clicking the Insert Dependency button.
4. Draw a dependency line from the OR link to the work item it triggers.
5. Draw a dependency line from each work item that must precede the OR link to the OR link.
6. Consider specifying an exit condition for the flow: when you specify an OR link, it is possible for some

predecessor jobs to the OR link to still be running when the remainder of the flow is finished.

Tip:
You can change an AND link into an OR link by double-clicking on the
AND icon.

Define your flow

Using Platform Process Manager 105

Details of a job
When you double-click on a job icon, the Edit Job dialog appears. You use this dialog to specify any
information required to define the job itself, such as the command it runs, and to specify any requirements
the job has, such as resources it needs to run.

The General tab

Name the job
Every job in a flow definition requires a unique name—it cannot be the same name as any other work
item within the flow. The Flow Editor assigns a unique name to each job when you draw it on the
workspace, so you are not required to change the name. However, if you want to change the name, you
can.

In the Name field, specify a unique name using alphanumeric characters, periods (.), underscores (_) or
dashes (-). You cannot use a colon (:), semicolon (;) or pound sign (#) in a job name.

Specify the command the job runs
The purpose of a job is to run a command, so a command name is mandatory. In the Command to
run field, specify the name of the command this job runs, and any arguments required by the command,
ensuring the syntax of the command is correct, or specify the script to run. Because the job will run under

Define your flow

106 Using Platform Process Manager

your user ID, ensure the path to the script is specified in your path environment variable, or specify the
full path to the script.

If running this command or script requires access to a file or application, ensure the files are in a shared
location that is accessible to the Platform Process Manager Server. If applicable, specify any files that need
to be transferred to where the job will run on the File Transfer tab.

If running this command requires access to specific resources, ensure you specify the appropriate resource
requirements on the Resources tab.

Specify a login shell to initialize the execution environment
If the execution environment needs to be initialized using a specific login shell, in the Login shell to
use field, select the login shell to be used from the list provided. This is not necessarily the shell under
which the job runs.

The value specified for the login shell must be the absolute path to the login shell.

Run the job as part of a project
If you are using project codes to collect accounting information, and you want to associate this job with
a project, in the Part of project field, select or specify the name of the project.

Specify a job working directory
Specify the directory where the job should run. To specify it, use an absolute path rather than a relative
path. When no working directory is specified, the default working directory is used (this is the user's home
directory, for example, C:\Documents and Settings\user_name on Windows or /home/
user_name/ on Unix). When working directory does not exist, then the working directory used is %
LSF_TOP%\tmp.

Submit the job with environment variables
You can submit a job that has environment variables that are used when the job runs. Environment
variables can only contain alphanumeric characters, underscores, and user variable definitions. No
semicolons can be part of the name or value.

User variables can be used in the environment variable name or value. A user variable definition must be
in the form #{user_variable_name} and must be defined.

To add an environment variable, click New and then fill in the environment variable name and value,
and click OK.

To modify an environment variable, select the one you want to modify and click Edit.

To remove an environment variable, select the one you want to remove and click Remove.

Specify input, output and error files
You can use standard input, output and error files when submitting a job.

To get the standard input for the job from a file, in the Input file field, specify an absolute path to the file
or a path relative to the current working directory.

To append the standard output of the job to a file, in the Output file field, specify a path to the file. If the
current working directory is not accessible to the execution host, the standard output file is written to /
tmp/.

Define your flow

Using Platform Process Manager 107

To append the standard error output of the job to a file, in the Error file field, specify a path to the file.
If the current working directory is not accessible to the execution host, the standard error output file is
written to /tmp/.

Notify a user when the job …
You can instruct the system to send an email to you or another user when the job ends, when it starts, or
once when it starts, and again when it ends. By default, you will not receive an email, except when the
flow completes. To specify an email notification, check the notification box, and in the Notify when job
field, select when you want the email sent. Then in the Email address field, specify the email address you
want to notify.

Run the job under another user name
If you have administrator authority, you can specify a different user name under which to run the job. In
the User name field, specify the user ID under which to run the job.

The Submit tab

Submit the job to a queue
Job queues represent different job scheduling and control policies. All jobs submitted to the same queue
share the same scheduling and control policy. Platform Process Manager administrators configure queues
to control resource access by different users and application types. You can select the queues that best fit
the job.

If you want to submit your job to a particular queue, in the Submit to queue(s) field, select or specify the
queue name. If you want to specify a list of queues, specify the queue names separated by a space.

When you specify a list of queues, the most appropriate queue in the list is selected, based on any limitations
or resource requirements you specify, and the job submitted to that queue.

This field is optional. If you do not specify a queue name, the configured default queue is used.

Define your flow

108 Using Platform Process Manager

Application Profile
Use application profiles to map common execution requirements to application-specific job containers.
For example, you can define different job types according to the properties of the applications that you
use; your FLUENT jobs can have different execution requirements from your CATIA jobs, but they can
all be submitted to the same queue.

In the Application Profile drop-down list, select an Application Profile name. The drop-down lists all
the Application Profile names that are configured in LSF.

Service Level Agreement
Goal-oriented Service Level Agreement (SLA) scheduling policies help you configure your workload so
that your jobs are completed on time and reduce the risk of missed deadlines. They enable you to focus
on the "what and when" of your projects, not the low-level details of "how" resources need to be allocated
to satisfy various workloads.

In the Service level agreement drop-down list, select a goal. The drop-down lists all the SLAs that are
configured in LSF.

Submit the job on hold
If you are creating a flow definition that contains a job whose definition you want to include in the flow,
but you do not yet want the job to run for multiple iterations of this flow, you can submit the job on hold.
At a later time, you can edit the flow definition, deselect this option, and resubmit the flow. At that time,
the job will run as part of the flow.

In the Flow Manager, when you look at a job that has been submitted on hold, the job is grayed out.

To submit a job on hold, check On hold.

Define your flow

Using Platform Process Manager 109

The Processing tab

Run on a specific host
When you define a job, you can specify a host or series of hosts on which the job is to be run. If you specify
a single host name, you force your job to wait until that host is available before it can run. Click Run on
host(s), and select or specify the hosts on which to run this job.

Run with exclusive use of host
When you define a job, you can specify that the job must have exclusive use of the host while running—
no other LSF jobs can run on that host at the same time. Check Must have exclusive use of host. The job
is dispatched to a host that has no other jobs running, and no other jobs are dispatched to that host until
this job is finished.

Rerun on another host if this one becomes unavailable
When you define a job, you can specify that if the host the job is running on becomes unavailable, the job
should be dispatched to another host. Under the default behavior, the job exits, unless your Platform
Process Manager administrator specified automatic rerun at the queue level. Check Rerun if host becomes
unavailable.

Define your flow

110 Using Platform Process Manager

Run on the same host as another job
When you define a job, you can specify to run it on the same host that another job runs on. This is useful
when a job generates a large amount of data—you do not need to transfer the data to run the next job.
Click Same host as: and select the job on whose host this job should run. The other job must have at least
started to run when this job is submitted, so the Platform Process Manager can determine the correct
host.

Specify number of processors for parallel jobs
If you are running a parallel job, you can specify a minimum and maximum number of processors that
can be used to run the job. The maximum number is optional—if you specify only a minimum number,
that is the number of processors used.

In the Minimum field, specify the minimum number of processors required to run the job. When this
number of processors is available, and all of its other dependencies are met, the job can be dispatched.

Assign the job a priority
You can assign your jobs a priority, which allows you to order your jobs in a queue.

In the Priority field, specify a number from 1 to the maximum user priority value allowed at your site.
See your Platform Process Manager administrator for this value.

Run a command before running the job
You can run a command on the execution host prior to running the job. Typically, you use this to set up
the execution environment.

In the Run command field, specify the command to be run on the execution host before running the
actual job. If the command runs successfully, the job can run. Otherwise the command and job are
rescheduled. Be sure the command is capable of being run multiple times on the target host.

Assign the job to a fairshare group
You can assign the job to a fairshare group. You must be a member of the group you specify.

In the Associate job with user group field, specify the name of the group.

Define your flow

Using Platform Process Manager 111

The Resources tab

Specify resources required to run the job
You can specify a string that defines the resource requirements for a job. There are many types of resources
you can specify. For complete information on specifying resource requirements, see the Administering
Platform LSF. However, some typical resource requirements are illustrated here. Some of the more
common resource requirements are:
• I want to run the job on a particular type of host
• The job requires a specific number of software licenses
• The job requires a certain amount of swap space and memory available
You can use user variables when specifying resource requirements.

Run on host type
The following example specifies that the job must be run on a Solaris 7, 32-bit host:

select[type==sol732]

Float software licenses
The following example specifies that the job requires 3 Verilog licenses. The rusage statement reserves
the licenses for 10 minutes, which gives the job time to check out the licenses:

select[verilog==3] rusage[verilog=3:duration=10]

Define your flow

112 Using Platform Process Manager

In the above example, verilog must first be defined as a shared resource in LSF.

Swap space and memory
The following example specifies that the job requires at least 50 MB of swap space and more than 500 MB
of memory to run:

select[swp>=50 && mem>500]

The Limits tab

Specify host limits
You can specify criteria that ensure that the job is run on a particular host, or specific model of host. You
can also limit the normalized CPU hours and minutes a job can use, or the number of hours and minutes
a job can run. If the job exceeds these limits, it is killed automatically.

You can specify a host name or model in the Host name or model field.

To limit the job’s usage of CPU time, in the Maximum CPU time fields, specify the number of hours and
minutes the job can use before it should be killed.

To limit the job’s run time, in the Maximum run time fields, specify the number of hours and minutes
the job can run before it should be killed.

Define your flow

Using Platform Process Manager 113

Specify job limitations
You can specify job limits, that restrict the following:

• The file size per job process, in kilobytes
• The core file size, in kilobytes
• The memory size per job process, in kilobytes
• The data size per job process, in kilobytes
• The stack size per job process, in kilobytes

The File Transfer tab

You use this tab to transfer required files to the host where the job runs, and to transfer output files after
the job has completed. You can transfer multiple files, and perform any or all of the operations available
on this tab. Simply create a list of each required file transfer in the Expression(s) field.

Transfer a local file
If the job you are defining requires one or more applications or data files to run, and those files do not
exist on the host on which the job runs, you need to transfer the files to the host when the job is dispatched.

1. In the Local path including name field, specify the full path name of the file to be transferred.
2. If the location on the host where the job will run is different from the local path, in the File on execution

host field, specify the full path where the file should be located when the job runs.

Define your flow

114 Using Platform Process Manager

3. Select Copy file to remote host before running job.
4. Click Add to add this operation to the list of operations to perform.
5. Repeat as required.

Transfer an output file locally after the job runs
If the job you are defining produces output files that must be transferred to another location after the job
completes, you need to copy the output files locally after the job runs.

1. In the Local path including name field, specify the full path name where the output file is to be stored
locally.

2. In the File on execution host field, specify the full path where the output file will be located when the
job completes.

3. Select Copy file to local location after running job.
4. Click Add to add this operation to the list of operations to perform.
5. Repeat as required.

Append output to a local file after the job runs
If the job you are defining produces output files that must be transferred to another location after the job
completes, and you want the output appended to a file that already exists, do the following:

1. In the Local path including name field, specify the full path name where the output file is to be
appended.

2. In the File on execution host field, specify the full path where the output file will be located when the
job completes.

3. Select Append file to local location after running job.
4. Click Add to add this operation to the list of operations to perform.
5. Repeat as required.

Define your flow

Using Platform Process Manager 115

The Advanced tab

You use this tab to specify additional bsub submission options that are not available from the Definition
dialog, and to select jobs upon which this job depends.

Other Options
You can specify additional bsub submission options for a job.

This allows you to use options that are not available from the job definition dialog. The options you specify
are added to the bsub command when you submit the job or job array.

You can also specify user variables in the Other Options field.

Note:
The following options are not supported in the Other Options field: -I, -Ip,
-Is for interactive jobs, and -K for submitting a job and waiting for it to
complete.

• Example: Specify License Scheduler options:

For example, if you use the esub feature and you want to display accounting statistics for jobs
belonging to specific License Scheduler projects, specify in the Other Options field:

-a myesubapp -Lp mylsproject
• Example: Specify complex job dependencies

Define your flow

116 Using Platform Process Manager

If you have complex dependencies between jobs, you can use the Other Options field with the built-
in user variable JS_FLOW_FULL_NAME.

Note that you are limited to what the LSF bsub -w option supports. For more details, refer to the
LSF Command Reference.

• To specify jobB depends on the completion of jobA, regardless of its exit code:

In jobB’s job definition dialog, Advanced tab, Other Options field, specify:

-w "ended(#{JS_FLOW_FULL_NAME}:jobA)"

In this example, JS_FLOW_FULL_NAME is the full name of the subflow containing jobA and
jobB.

• To specify jobB depends on a combination of dependencies, specify in Other Options:

-w "ended(#{JS_FLOW_FULL_NAME}:JobA) && done(#{JS_FLOW_FULL_NAME}:JobC)"

• To specify dependencies for jobs in flow array elements:

A job in a flow array element has a name in the format "11:usr1:F1:FA(1):J1".

Make sure you single quote the name. For example:
-w "exit('11:usr1:F1:FA(1):J1', > 2)"

Using the JS_FLOW_FULL_NAME variable:
-w "exit('#{JS_FLOW_FULL_NAME}(#{JS_FLOW_INDEX}):J1', > 2)"

Pre-submit
Select jobs upon the current job depends.

• Only LSF jobs, job arrays, job scripts, job array scripts, and template jobs can be pre-submitted.
• Only jobs, job scripts, job arrays, job array scripts, and template jobs can be preceding jobs to the

dependent job to be pre-submitted.
• The jobs to be pre-submitted must be direct links. They cannot be more than one link away.
• The dependencies of all predecessors must be logically connected with AND.
• In Flow Editor, the Event type in the Job Event Definition for the preceding jobs to the other job

must be set to Starts or Is Submitted.
• If you specify dependent jobs to be pre-submitted, and the condition is never met, it is possible for

the flow to be “stuck”. To handle this, define an overrun exception handler to kill the last job if it runs
or pends for more than a certain period of time.

Define your flow

Using Platform Process Manager 117

The Exception Handling tab

You use this tab to specify what action to take if a specific exception occurs while running this job or job
array.

Exceptions and applicable handlers
In a... If this exception occurs... You can use this handler...

Job Overrun Kill

Underrun Rerun

Specified exit code Rerun

Job array Overrun Kill

Underrun Rerun

Sum of exit codes Rerun

Number of unsuccessful jobs Kill

Define your flow

118 Using Platform Process Manager

The Description tab
In the input field, add any descriptive text that may be used for managing this job or job array within the
flow. For example, if this job requires special instructions for operations staff, place those instructions
here.

Define your flow

Using Platform Process Manager 119

About flow completion attributes
Because flows can be as individual as their creators, and may contain recovery jobs that run when another
job fails, Platform Process Manager provides many options to choose from when defining your flow.

For example, you may require that every job in a flow complete successfully, and if any job fails, you may
want to stop processing the flow immediately. In another case, you may want to process as many jobs as
possible in a flow, and handle any exceptions on an individual basis. The first example is handled by the
default behavior of Platform Process Manager, the latter by defining flow completion attributes.

You define flow completion attributes to a flow to describe the criteria the Platform Process Manager
Server should use to determine when to assign a state to the flow—when it should be considered complete.
You can also specify what the Platform Process Manager Server should do with any jobs that are running
when it determines a flow is complete.

Default completion criteria of a flow
By default, Platform Process Manager considers a flow to be complete (Done or Exited) when:

• All work items in the flow have completed successfully. The flow is Done.

or
• Any work item in the flow fails or is killed. The flow is Exited.

Alternative completion criteria
You can specify two alternatives to the default completion criteria for a flow:

1. Specify a list of work items that must end before the flow is considered to be complete, and ignore the
other work items in the flow when determining the state of the flow

2. Specify a list of work items, any one of which must end before the flow is considered to be complete,
and ignore the other work items in the flow when determining the state of the flow

Default completion behavior of a flow
By default, when a flow is considered complete and has been assigned a state, no new work is dispatched,
unless it is within a subflow or job array that is still in progress. Any work that is currently processing
completes, and the flow is stopped.

If, however, you have selected a list of work items, and specified that all must end before the flow is
considered complete, even if a work item in the flow exits, the flow continues processing until all of the
selected items have completed. At that time, any work that is currently processing completes, and the flow
is stopped.

Conversely, if you have selected a list of work items, and specified that the flow is complete when any of
the selected work items ends, the flow continues processing until one of the selected items ends, even if
other work items exit. At that time, any work that is currently processing completes, and the flow is
stopped.

Alternative completion behavior
You can direct Platform Process Manager to continue processing work in a flow even after it is considered
complete and has been assigned a state. In this case, Platform Process Manager continues to process the
flow until it cannot run any more work, or until the remaining work is dependent on events or has
dependencies that cannot be met, and then the flow is stopped.

Define your flow

120 Using Platform Process Manager

If you use error recovery routines
You may choose to include error recovery routines within a flow that only run when a particular work
item in the flow fails. Not only will you not want the flow to wait indefinitely for work that can never
complete, you will also not want the flow to stop, preventing the error recovery routine from running.

In this case, you can select particular work items that must end before the flow should be considered
complete. You can specify that all of the selected work items must end, or to consider the flow complete
when any one or more of the selected work items end. In the case of the following flow with an error
recovery routine, you want the flow to be considered complete when either success or recovery complete:

If you use multiple branches in a flow
You may define a flow that contains multiple branches. In this flow, if one branch fails, you may not want
the flow to stop processing. Perhaps you want to let the flow to run as much as it can, and then you will
perform some manual recovery and rerun the failed branch.

Define your flow

Using Platform Process Manager 121

Specify flow completion attributes
You can specify the following flow completion criteria to specify when Platform Process Manager should
consider the flow complete and assign it a state:

• All work completes successfully or any work item fails. This is the default.
• All selected work items end.
• Any selected work items end. You can also specify what Platform Process Manager should do when

the state of the flow is determined
• Complete any work in progress and stop running the flow. This is the default.
• Change the flow state immediately but continue running the flow until any remaining work items that

can complete, complete.
• Continue running the flow and only change the state when any remaining work items that can

complete, complete.

Assign a state to a flow when all work items are done
1. From the Action menu, select Specify Flow Completion Attributes, or right-click in a blank section

of the flow definition, and select Completion Attributes. The Flow Completion Attributes dialog box
appears.

Define your flow

122 Using Platform Process Manager

2. Leave the first option set to the default All work completes successfully or any work item fails.
3. If you want the flow to stop running if any work item exits, leave the option as the default Complete

any work in progress and stop running the flow. If you want the work item to continue to run but
change the flow state, select Change the flow state immediately and continue running the flow. This
allows you to immediately trigger the next work item if there is one that is dependent on this flow or
subflow. If you want to continue to process as many jobs in the flow as possible Continue running
the flow, change the flow state only after the flow is complete.

4. Click OK. The flow will be assigned a state when all of the work items complete successfully or any
work item fails or is killed.

Define your flow

Using Platform Process Manager 123

Assign a state to a flow when all selected work items
end

1. From the Action menu, select Specify Flow Completion Attributes, or right-click in a blank section
of the flow definition, and select Completion Attributes. The Flow Completion Attributes dialog box
appears.

2. Select All selected work items end.
3. From the list of available work items, select those that must process before the flow can be assigned a

state. Select each item and click Add> to move it to the list of selected items, or double-click on an
item to move it to the other list.

4. If you want the flow to stop running when the specified jobs end, leave the option as the default
Complete any work in progress and stop running the flow. If you want the work item to continue
to run but change the flow state, select Change the flow state immediately and continue running
the flow. This allows you to immediately trigger the next work item if there is one that is dependent
on this flow or subflow. If you want to continue to process as many jobs in the flow as possible Continue
running the flow, change the flow state only after the flow is complete.

5. Click OK. The flow will be assigned a state when all of the selected work items end.

Assign a state to a flow when any selected work item
ends

1. From the Action menu, select Specify Flow Completion Attributes, or right-click in a blank section
of the flow definition, and select Completion Attributes. The Flow Completion Attributes dialog box
appears.

2. Select Any selected work items end.
3. From the list of available work items, select those that may process before the flow can be assigned a

state. Select each item and click Add> to move it to the list of selected items, or double-click on an
item to move it to the other list. When one item in this list ends, the flow will be assigned a state.

4. If you want the flow to stop running when the specified jobs end, leave the option as the default
Complete any work in progress and stop running the flow. If you want the work item to continue
to run but change the flow state, select Change the flow state immediately and continue running
the flow. This allows you to immediately trigger the next work item if there is one that is dependent
on this flow or subflow. If you want to continue to process as many jobs in the flow as possible Continue
running the flow, change the flow state only after the flow is complete.

5. Click OK. The flow will be considered complete when one of the selected work items ends.

Continue processing when the state of the flow is
determined

1. From the Action menu, select Specify Flow Completion Attributes, or right-click in a blank section
of the flow definition, and select Completion Attributes. The Flow Completion Attributes dialog box
appears.

2. If you want the work item to continue to run but change the flow state, select Change the flow state
immediately and continue running the flow. This allows you to immediately trigger the next work
item if there is one that is dependent on this flow or subflow.

Define your flow

124 Using Platform Process Manager

3. Click OK. When the flow is considered complete and assigned a state, any eligible work items in the
flow will continue to process until Platform Process Manager cannot run any more work, or until the
remaining work is dependent on events or has dependencies that cannot be met. The flow is then
stopped.

Continue processing and only change the state after
the flow is complete

1. From the Action menu, select Specify Flow Completion Attributes, or right-click in a blank section
of the flow definition, and select Completion Attributes. The Flow Completion Attributes dialog box
appears.

2. If you want to continue to process as many jobs in the flow as possible Continue running the flow,
change the flow state only after the flow is complete.

3. Click OK. The flow will continue to run and only change state once Platform Process Manager cannot
run any more work, or until the remaining work is dependent on events or has dependencies that
cannot be met.

Define your flow

Using Platform Process Manager 125

Configuring flow exit codes
By default, a Done job has an exit code of 0. As a result, a Done flow or subflow has an exit code of 0, since
the default way that Process Manager determines the flow exit code is through the sum of all exit codes
of all work items in the flow.

However, it is possible to specify custom success exit codes for LSF jobs, job scripts, local jobs, and manual
jobs. As a result, if you specify custom success exit codes for these types of jobs, a Done flow can have an
exit code other than 0.

If there is more than one Done job with an exit code other than 0 in a Done flow, or there are some jobs
with Done or Exited states with codes other than 0 in a failed flow, the sum of all exit codes may not be
meaningful to you.

For such cases, you can configure the flow to inherit the exit code of the last item that was successfully
completed or that failed. You can do this in the Flow completion Attributes dialog, with the option
Determine the flow exit code from the last finished work item in a successful flow, or the last failed
work item in a failed flow.

How the system selects the last finished or failed work item:

• If more than one work item finishes or fails last and at the exact same time, the system picks an item
at random to get the exit code.

• If you select Change the flow state immediately and continue running the flow the system does not
consider jobs that finish or fail after the flow state was changed.

In combination with the other options in the Flow Attributes dialog, you can configure your flow to have
an exit code that makes sense to you.

Configure flow exit code calculation
1. In Flow Editor, select Action > Specify Flow Completion Attributes.

The Flow Completion Attributes dialog is displayed.
2. Select all desired behavior for flow completion:

• Determine the state of the flow when...
• After the state of the flow is determined
• Determine the flow exit code from

• Select The last finished work item in a successful flow, or the last failed work item in a failed
flow.

3. Click OK.

Configure dependencies for subflows
If your flow has subflows, when creating your flow, you want to establish a dependency between the
subflow and other work items to track when flow completes successfully with a specific exit code, or when
a flow fails with a specific exit code.

1. In Flow Editor, draw a dependency from the subflow to the next work item.
2. Select the dependency, right-click and select Open Definition.

The Flow Definition is displayed.

Define your flow

126 Using Platform Process Manager

3. Select the event type The flow completes successfully with exit code..., The flow fails with exit
code...., or The flow fails.

4. Click OK.

Define your flow

Using Platform Process Manager 127

Specify exception handling for a flow
You can use Platform Process Manager to monitor for specific exception conditions when a flow is run,
and specify handlers to run automatically if those exceptions occur.

You can monitor a flow for the following exceptions:

• Overrun—the flow runs longer than it should
• Underrun—the flow runs for an abnormally short time
• The flow has exit code—the flow ends with a particular exit code
• Number of unsuccessful jobs—a particular number of jobs in the flow are unsuccessful

1. From the Action menu, select Add Flow Attribute, or right-click in a blank section of the flow
definition and select Flow Attribute, and select the Exception Handlers tab. The Flow Attribute dialog
box appears.

2. On the Exception Handling tab, click Add.
3. In the Exception type field, select the exception you want to handle.
4. If you chose Runs more than..., in the Expected run time field, specify the maximum time, in minutes,

the flow can run before it should be killed.

If you chose Runs less than..., in the Expected run time field, specify the minimum time, in minutes,
the flow can run before it should be rerun.

If you chose the flow has exit code, in the Value field, choose the operator and value that best define
the exit code requirement. For example, greater than 5.

If you chose number of unsuccessful jobs, in the Value field, choose the operator and value that best
define the requirement. For example, greater than 3.

5. In the Action field, select the appropriate exception handler. In most cases, however, the appropriate
exception handler is selected for you, as follows:

If you monitor for this exception... This handler is used...

Overrun Kill

Underrun Rerun

Exit code Rerun

Number of unsuccessful jobs Kill

6. Click OK. The exception handling specification is added to the list.
7. Repeat steps 2 through 6 until you have finished specifying exceptions to handle. Click OK.

Define your flow

128 Using Platform Process Manager

Flow attributes
You can specify the following flow attributes:

• A description of the flow
• Email notification about the flow
• Preventing concurrent versions of the same flow
• Automatic exception handling of the flow

Flow description
You can use the description field of a flow to include any instructions regarding the flow, or to include
general descriptions about what this flow does. This is especially useful if your site uses shared flows, that
might be reused by another user.

Flow working directory
You can specify the working directory for the flow. All valid inner work items (subflows, jobs, and job
arrays) in the flow will use this directory as the working directory unless you further specify a working
directory for the inner work item. In this case, the working directory setting for the inner work item will
override the setting for this flow.

You can use user variables when specifying the working directory.

Email notification for a flow
By default, Platform Process Manager notifies you by email only if your flow exits. You can set the
notification options to send an email to you or another user when:

• The flow exits
• The flow ends, regardless of its success
• The flow starts
• The flow starts and exits
• The flow starts and ends, regardless of its success

If the flow exits, the email provides information about the jobs that caused the flow to exit. If you are
using the default flow completion criteria, this is information about the job or job array that exited.
If you specified flow completion criteria, this includes on the jobs specified in the flow completion
criteria that exited.

You can also turn off flow email notification entirely.

At the system level, your Platform Process Manager administrator can turn off flow email notification,
or limit the size of the emails you receive. If you are not receiving email notifications you requested,
or if your email notifications are truncated, check with your administrator.

Prevent concurrent flows
When you create a flow definition, you can prevent multiple copies of the flow from running at the same
time. This is useful when you need to run a flow repeatedly, but any occurrence of the flow must have
exclusive access to a database, for example.

Define your flow

Using Platform Process Manager 129

Specify flow attributes
1. From the Action menu, select Add Flow Attribute or right-click in a blank section of the flow

definition and select Flow Attribute.

The Flow Attribute dialog box appears.
2. On the General tab, enter the description text in the field provided. When you have finished typing

the description, click OK.
3. To specify user variables and environment variables, click Modify, which is located to the right of the

Input Variables field.

The Flow Input Variables dialog displays a list of input variables that are currently defined in the
flow, and the order in which they are defined.

You can specify variables on a per-flow basis, which allows multiple jobs or sub-flows within a flow
to use the same variable; you can specify variables from the job definition dialog, which overrides these
flow-level input variables; and you can specify built-in variables.

Input variables can only contain alphanumeric characters, underscores, and user variable definitions.
No semicolons can be part of the value.

Important:
The order in which you define the variables is important. You must
define one variable before you can use it in the next. For example, if
you have an input variable named MyVar_#{Var1}, you must have
defined the Var1 variable first. Var1 can either be defined in the
current flow level (if it was defined before MyVar_#{Var1}) or at a
parent or other upper level flow.

• To add an input variable, click New.

Specify a name for the variable. Unless you are explicitly specifying a built-in variable, do not use
a variable name beginning with JS_.

To define a default value, select the Specify a Default Value field, then specifying a default value
for the variable. You can include user variables when specifying a default value.

Important:
Do not specify a default value for a built-in variable.

• To modify an input variable, select the variable you want to edit and click Edit.
• To remove an input variable, select the variable you want to remove and click Remove.

The environment variables defined in the list can only be used in the current flow or sub-flow, though
any environment variables listed at the parent flow level are propagated to its subflows. Variables
defined in sub-flows will overwrite variables defined in the main flow or parent flows if they have the
same name.

Changing environment variables in a job cannot affect other jobs. Therefore, if one job changes the
value of an environment variable, the same environment variable is unaffected in the next job, even
if it runs after the first job.

The names and values of local and environment variables that a job uses appear in the Runtime
Attributes of that job.

Define your flow

130 Using Platform Process Manager

4. Optional. To specify a working directory at the flow level, use the Working directory field.

Tip:
You can use user variables when specifying the working directory.

All valid inner work items (subflows, jobs, and job arrays) in the flow will use this directory as the
working directory unless you further specify a working directory for the inner work item. In this case,
the working directory setting for the inner work item will override the setting for this flow.

5. In the Notify when flow field, select the appropriate notification option. To receive a notification only
if a flow exits, leave the default at Notify when flow exits. Otherwise, leave Notify when flow checked,
and select the desired option.

6. In the Email address field, specify the email address to be notified. The default email address is your
user name.

Tip:
You can use user variables when specifying the email address.

7. To prevent concurrent versions of the same flow, in the Options box, check Allow only one flow to
run at a time.

8. Click OK.

Turn off email notification for a flow
1. On the General tab, uncheck Notify when flow. This does not affect email notifications regarding job

completion.
2. Click OK.

Define your flow

Using Platform Process Manager 131

Save the flow definition
You can save a flow definition at any time, whether it is complete or not. You can save the flow definition
locally or on a shared-file system.

When saving the flow definition, specify a unique file name using alphanumeric characters, periods (.),
underscores (_) or dashes (-). You cannot use a colon (:), semicolon (;) or pound sign (#) in a job name.

The file name you assign is concatenated with your user ID to become the flow name.

If you plan to use this flow definition as a subflow within another flow definition, ensure you give it a
meaningful name that will make it unique within the other flow definition.

Once you submit a flow definition, a copy of the flow definition is stored within the Platform Process
Manager system. If you make a change to the flow definition, you need to submit the flow definition again
before the changes take effect in Platform Process Manager.

Define your flow

132 Using Platform Process Manager

Loop a flow or subflow
You can define a flow or subflow that loops a specific number of times or loops until a specific condition
is met. This is useful if you need to rerun a group of jobs until you achieve specific results.

In this example, John needs to run a series of three jobs that need to be repeated until the correct data
results—an undetermined number of times. John created the following flow called DataRefine:

Platform Process Manager allows you to automatically rerun a flow or subflow whenever a particular
work item in the flow has a specific exit code. This allows John to loop DataRefine as many times as
required to complete refining the data results. In the script run by the job Examine_data, John sets the
exit code of the job to be a particular value, such as 77, until such time as the data refinement is complete.
Then the exit code of Examine_data is set to 0. John used the exception handling at the flow level to
loop the flow, as follows:

If John requires it, he can use the number of times the flow is rerun in his job. This information is available
through the built-in variable
JS_ITERATION_COUNTER
[flow_name], where flowname is the name of the flow, without the user name. For example:
JS_ITERATION_COUNTER
[myflow:subflow]

To loop a flow:

1. Define the jobs in the flow.
2. Ensure that one job in the flow sets a specific exit code in the circumstances under which you want to

rerun the flow. Ensure that it sets a different value when the flow should stop rerunning.
3. Set the automatic rerun exception handler to rerun the flow under the correct circumstances:

a) Right-click in an empty space in the flow definition, and select Flow Attribute.

Define your flow

Using Platform Process Manager 133

b) Click Exception Handling.
c) Click Add. The Exception Handler Definition dialog appears.
d) In the Exception type field, select A work item has exit code...
e) In the Work item field, ensure the correct work item is selected.
f) In the Has exit code field, specify the exit code conditions required to loop the flow.
g) In the Action field, ensure Rerun is specified.
h) If applicable, in the After field, specify the number of minutes to delay the rerunning of the flow.
i) In the Maximum number of reruns field, specify the maximum number of times you want the

exception handler to rerun the flow.
j) Click OK. The exception handling specification is added to the list. Click OK again.

The flow you define here will always loop under the specified circumstances, even when embedded
in another flow as a subflow.

Loop a subflow that does not contain a loop definition
1. Add the subflow at the appropriate location in your flow.

Note: You still need to ensure that one job in the subflow sets a specific exit code in the circumstances
under which you want to rerun the flow. Ensure that it sets a different value when the subflow should
stop rerunning.

2. Right-click on the subflow icon, and select Attributes.
3. Click Exception Handling.
4. Click Add. The Exception Handler Definition dialog appears.
5. In the Exception type field, select A work item has exit code...
6. In the Work item field, ensure the correct work item is selected. By default, it is the last work item in

the flow.
7. In the Has exit code field, specify the exit code conditions required to loop the flow.
8. In the Action field, ensure Rerun is specified.
9. If applicable, in the After field, specify the specify the number of minutes to delay the rerunning of

the flow.
10. In the Maximum number of reruns field, specify the maximum number of times you want the

exception handler to rerun the flow.
11. Click OK. The exception handling specification is added to the list. Click OK again. The subflow icon

changes to indicate that this subflow will loop, as follows:

Note:
Any work item that depends on DataRefine cannot run until the looping
completes.

Define your flow

134 Using Platform Process Manager

5
About Platform Process Manager exceptions

Platform Process Manager provides flexible ways to handle certain job processing failures so that you can
define what to do when these failures occur. A failure of a job to process is indicated by an exception.
Platform Process Manager provides some built-in exception handlers you can use to automate the
recovery process, and an alarm facility you can use to notify people of particular failures.

Platform Process Manager exceptions
Platform Process Manager monitors for the following exceptions:

• Misschedule
• Overrun
• Underrun
• Start Failed
• Cannot Run

Misschedule
A Misschedule exception occurs when a job, job array, flow or subflow depends on a time event, but is
unable to start during the duration of that event. There are many reasons why your job can miss its
schedule. For example, you may have specified a dependency that was not satisfied while the time event
was active.

Note:
When a job depends on a time event, and you want to monitor for a
misschedule of the job, ensure that the time event either directly precedes
the job in the flow diagram, or precedes no more than one link (AND or
OR) prior to the job in the flow diagram. Platform Process Manager is
unable to process the misschedule exception if multiple links are used
between the time event and the job depending on it.

Overrun
An Overrun exception occurs when a job, job array, flow or subflow exceeds its maximum allowable run
time. You use this exception to detect run away or hung jobs. The time is calculated using wall-clock time,

C H A P T E R

Using Platform Process Manager 135

from when the work item is first submitted to LSF until its status changes from Running to Exit or Done,
or until the Overrun time is reached, whichever comes first.

Underrun
An Underrun exception occurs when a job, job array, flow or subflow finishes sooner than its minimum
expected run time. You use this exception to detect when a job finishes prematurely. This exception is
not raised when a job is killed by Platform Process Manager. The time is calculated using wall-clock time,
from when the work item is first submitted to LSF until its status changes from Running to Exit or Done.

Start Failed
A Start Failed exception occurs when a job or job array is unable to run because its execution environment
could not be set up properly. Typical reasons for this exception include lack of system resources such as
a process table was full on the execution host, or a file system was not mounted properly.

Cannot Run
A Cannot Run exception occurs when a job or job array cannot proceed because of an error in submission.
A typical reason for this exception might be an invalid job parameter.

Behavior when an exception occurs
The following describes Platform Process Manager behavior when an exception occurs, and no automatic
exception handling is used:

When a … Experiences this exception
…

This happens …

Flow definition Misschedule The flow is not triggered.

Flow Overrun The flow continues to run after the exception occurs. The run
time is calculated from when the flow is first triggered until its
status changes from Running to Exit or Done, or until the
Overrun time is reached, whichever comes first.

Underrun The time is calculated from when the flow is first triggered until
its status changes from Running to Exit or Done.

Subflow Misschedule The subflow is not run.

Overrun The subflow continues to run after the exception occurs. The
run time is calculated from when the subflow is first triggered
until its status changes from Running to Exit or Done, or until
the Overrun time is reached, whichever comes first.

Underrun The time is calculated from when the subflow first starts
running until its status changes from Running to Exit or Done.

About Platform Process Manager exceptions

136 Using Platform Process Manager

When a … Experiences this exception
…

This happens …

Job Misschedule The job is not run.

Cannot Run The job is not run.

Start Failed The job is still waiting. Submission of the job is retried until the
configured number of retry times. If the job still cannot run, a
Cannot Run exception is raised.

Overrun The job continues to run after the exception occurs. The run
time is calculated from when the job is successfully submitted
until it reaches Exit or Done state, or until the Overrun time is
reached, whichever comes first.

Underrun The time is calculated from the when the job is successfully
submitted until it reaches Exit or Done state.

Job array Misschedule The job array is not run.

Cannot Run The job array is not run.

Start Failed The job array is still waiting. Submission of the job array is
retried until it runs.

Overrun The job array continues to run after the exception occurs. The
run time is calculated from when the job array is successfully
submitted until its status changes from Running to Exit or
Done, or until the Overrun time is reached, whichever comes
first.

Underrun The time is calculated from when the job array is successfully
submitted until all elements in the array reach Exit or Done
state.

User-specified conditions
In addition to the Platform Process Manager exceptions, you can specify and handle other conditions,
depending on the type of work item you are defining. For example, when you are defining a job, you can
monitor the job for a particular exit code, and automatically rerun the job if the exit code occurs. The
behavior when one of these conditions occurs depends on what you specify in the flow definition.

You can monitor for the following conditions in addition to the Platform Process Manager exceptions:

Work Item Condition

Flow An exit code of n (sum of all exit codes)

n unsuccessful jobs

Subflow An exit code of n

n unsuccessful jobs

Job An exit code of n

About Platform Process Manager exceptions

Using Platform Process Manager 137

Work Item Condition

Job array An exit code of n

n unsuccessful jobs

About Platform Process Manager exceptions

138 Using Platform Process Manager

About exception handling
Platform Process Manager provides built-in exception handlers you can use to automatically take
corrective action when certain exceptions occur, minimizing human intervention required. You can also
define your own exception handlers for certain conditions.

Platform Process Manager built-in exception handlers
The built-in exception handlers are:

• Rerun
• Kill

Rerun
The Rerun exception handler reruns the entire job, job array, subflow or flow. Use this exception handler
in situations where rerunning the work item can fix the problem. The Rerun exception handler can be
used with Underrun, Exit and Start Failed exceptions.

Kill
The Kill exception handler kills the job, job array, subflow or flow. Use this exception handler when a
work item has overrun its time limits. The Kill exception handler can be used with the Overrun exception,
and when you are monitoring for the number of jobs done or exited in a flow or subflow.

User-defined exception handlers
In addition to the built-in exception handlers, you can create your flow definitions to handle exceptions
by:

• Opening an alarm
• Running a recovery job
• Triggering another flow

Alarm
An alarm provides a visual, graphical cue that an exception has occurred, and either an email notification
to one or more addresses, or the execution of a script. You use an alarm to notify key personnel, such as
database administrators, of problems that require attention. An alarm has no effect on the flow itself.

When you are creating your flow definition, you can add a predefined alarm to the flow diagram, as you
would another job. You create a dependency from the work item to the alarm, which can be opened by
any of the exceptions available in the dependency definition. The alarm cannot precede another work
item in the diagram—you cannot draw a dependency from an alarm to another work item in the flow.

An opened alarm appears in the list of open alarms in the Flow Manager until the history log file containing
the alarm is deleted or archived.

Valid alarm names are configured by the Platform Process Manager administrator.

Recovery job
You can use a job dependency in a flow diagram to run a job that performs some recovery function when
an exception occurs.

About Platform Process Manager exceptions

Using Platform Process Manager 139

Recovery flow
You can create a flow that performs some recovery function for another flow. When you submit the
recovery flow, specify the name of the flow and exception as an event to trigger the recovery flow.

Behavior when exception handlers are used
The following describes Platform Process Manager behavior when an exception handler is used:

When a … Experiences this
Exception …

and the Handler
Used is …

This Happens …

Flow Overrun Kill The flow is killed. All incomplete jobs in the flow
are killed. The flow status is ‘Killed’

Underrun Rerun Flows that have a dependency on this flow may
not be triggered, depending on the type of
dependency. The flow is recreated with the
same flow ID. The flow is rerun from the first job,
or from any rerun starting points, as many times
as required until the execution time exceeds the
underrun time specified.

An exit code of n Rerun Flows that have a dependency on this flow may
not be triggered, depending on the type of
dependency. The flow is recreated with the
same flow ID. The flow is rerun from the first job,
or from any rerun starting points, as many times
as required until an exit code other than n is
reached.

n unsuccessful
jobs

Kill The flow is killed. All incomplete jobs in the flow
are killed. The flow status is ‘Killed’

About Platform Process Manager exceptions

140 Using Platform Process Manager

When a … Experiences this
Exception …

and the Handler
Used is …

This Happens …

Subflow Misschedule Alarm The alarm is opened. The subflow is not run.
The flow continues execution as designed.

Recovery job or flow The subflow is not run. The flow continues
execution as designed. The recovery job or flow
is triggered.

Overrun Alarm The alarm is opened. Both the flow and subflow
continue execution as designed.

Recovery job or flow Both the flow and subflow continue execution as
designed. The recovery job or flow is triggered.

Kill The subflow is killed. The flow behaves as
designed.

Underrun Alarm The alarm is opened. The flow continues
execution as designed.

Recovery job or flow The subflow continues execution as designed.
The recovery job or flow is triggered.

Rerun Work items that have a dependency on this
subflow may not be triggered, depending on the
type of dependency. The subflow is rerun from
the first job as many times as required until the
execution time exceeds the underrun time
specified.

An exit code of n Rerun Work items that have a dependency on this
subflow may not be triggered, depending on the
type of dependency. The subflow is rerun from
the first job as many times as required until an
exit code other than n is reached.

n unsuccessful
jobs

Kill The subflow is killed. The flow behaves as
designed.

About Platform Process Manager exceptions

Using Platform Process Manager 141

When a … Experiences this
Exception …

and the Handler
Used is …

This Happens …

Job or job array Misschedule Alarm The alarm is opened. The job or job array is not
run. The flow continues execution as designed.

Recovery job or flow The job or job array is not run. The flow
continues execution as designed. The recovery
job or flow is triggered.

Overrun Alarm The alarm is opened. Both the flow and job or
job array continue to execute as designed.

Recovery job or flow Both the flow and job or job array continue to
execute as designed. The recovery job or flow
is triggered.

Kill The job or job array is killed. The flow behaves
as designed. The job or job array status is
determined by its exit value.

Underrun Alarm The alarm is opened. The flow continues
execution as designed.

Recovery job or flow The flow continues execution as designed. The
recovery job or flow is triggered.

Rerun Work items that have a dependency on this job
or job array are not triggered. The job or job
array is rerun as many times as required until
the execution time exceeds the underrun time
specified.

Start Failed Alarm The alarm is opened. The flow continues
execution as designed.

Recovery job or flow The recovery job or flow is triggered.

Rerun The job or job array is rerun as many times as
required until it starts successfully.

Cannot Run Alarm The alarm is opened. The flow continues
execution as designed.

Recovery job or flow The recovery job or flow is triggered.

An exit code of n Rerun The job or job array is rerun as many times as
required until it starts successfully.

n unsuccessful
jobs

Kill The job array is killed. The flow behaves as
designed. The job array status is determined by
its exit value.

About Platform Process Manager exceptions

142 Using Platform Process Manager

Handling exceptions
When you define a job, job array, flow or subflow, you can specify what exceptions you want Platform
Process Manager to watch for, and how you want to handle the exceptions if they happen. You can specify
as many exceptions and handlers as you want for any job, job array, flow or subflow. You can handle an
exception automatically using the following:

• Handle exceptions of a job or job array using built-in handlers on page 143
• Handle exceptions of a subflow using built-in handlers on page 144
• Handle exceptions with a recovery job on page 145
• Handle exceptions with a recovery flow on page 146

Handle exceptions of a job or job array using built-in
handlers

1. Within the flow definition in the Flow Editor, open the job or job array definition.
2. Click on the Exception Handling tab.
3. Click Add. The Exception Handler Definition dialog appears.

4. In the Exception type field, select the exception you want to handle.
5. If you chose Runs more than..., specify the maximum time, in minutes, the job or job array can run

before it should be killed.

If you chose Runs less than..., specify the minimum time, in minutes, the job or job array can run
before it should be rerun.

If you chose Has exit code, choose the operator and value that best define the exit code requirement.
For example, greater than 5.

If you chose Number of unsuccessful jobs is …choose the operator and value that best define the exit
code requirement. For example, greater than 3.

6. In the Action field, select the appropriate exception handler. In most cases, however, the appropriate
exception handler is selected for you, as follows:

About Platform Process Manager exceptions

Using Platform Process Manager 143

If you monitor for this exception... This handler is used...

Overrun Kill

Underrun Rerun

Exit code Rerun

Number of unsuccessful jobs is … Kill

If you specify a rerun exception, you can specify a number of minutes to delay before rerunning the
subflow and the maximum number of times you want the exception handler to rerun the subflow.

7. Click OK. The exception handling specification is added to the list.
8. Repeat steps 3 through 7 until you have finished specifying exceptions to handle then click OK.

Handle exceptions of a subflow using built-in handlers
1. Within the flow definition in the Flow Editor, right-click on the subflow.
2. Select Attributes. The Subflow Attributes dialog appears.
3. Click on the Exception Handling tab.
4. Click Add. The Exception Handler Definition dialog appears.

5. In the Exception type field, select the exception you want to handle.
6. Select the corresponding criteria for the Exception type that you specified.

• If you chose Runs more than..., specify the maximum time, in minutes, the subflow can run before
it should be killed or should trigger an alarm.

• If you chose Runs less than..., specify the minimum time, in minutes, the subflow can run before
it should be rerun or should trigger an alarm.

• If you chose the Flow has exit code, choose the operator and value that best defines the exit code
requirements before the subflow is rerun or triggers an alarm. For example, greater than 5.

• If you chose Number of unsuccessful jobs, choose the operator and value that best defines the
requirements before the subflow is killed or triggers an alarm. For example, greater than 3.

• If you chose The work item has an exit code, choose the operator and value that best defines the
exit code requirement before the subflow is rerun. For example, greater than 5.

About Platform Process Manager exceptions

144 Using Platform Process Manager

7. In the Action field, select the appropriate exception handler. In most cases, however, the appropriate
exception handler is selected for you, as follows:

If you monitor for this exception... This handler is used...

Overrun Kill or Alarm

Underrun Rerun or Alarm

Exit code Rerun or Alarm

Number of unsuccessful jobs Rerun or Alarm

The work item has an exit code Rerun

If you choose to rerun the subflow when an exception occurs, you can delay the rerunning of the
subflow by a specified number of minutes and specify the maximum number of times you want the
exception handler to rerun the subflow, as shown:

8. Click OK. The exception handling specification is added to the list.
9. Repeat steps 3 through 6 until you have finished specifying exceptions to handle, then click OK.

Handle exceptions with a recovery job
1. Within the flow definition in the Flow Editor, draw both the predecessor and recovery jobs (or job

arrays or subflows).
2. Change to job dependency mode by clicking the Insert Dependency button.
3. Draw job dependencies by left-clicking on the job that must run first, then left-clicking on the recovery

job.
4. Right-click on the dependency line and select Open Definition. The Event Definition dialog box

appears.
5. In the Event Type field, select the appropriate exception.
6. Click OK.

About Platform Process Manager exceptions

Using Platform Process Manager 145

Handle exceptions with a recovery flow
1. In the Flow Editor, define the recovery flow such that it performs the required functions.
2. When the recovery flow definition is complete, from the Action menu, select Add Flow Attribute...
3. Click the Triggering Events tab.

4. Click Add to define an event to trigger this flow. The Trigger Flow with Events dialog box appears.

About Platform Process Manager exceptions

146 Using Platform Process Manager

5. In the Select type of event field, select Proxy Event.
6. In the Create Proxy for... field, select Flow.
7. Optional. In the Owner field, specify the name of the user who owns the flow. If you own the flow,

you do not need to specify a name—the user name will default to your own.
8. In the Flow name field, specify the name of the flow definition whose condition will trigger this flow.

Ensure you specify the name of the flow definition, not its file name. The next occurrence of this flow
will trigger the flow you are presently creating.

9. In the Event type field, select the exception condition under which you want this flow to trigger.
10. In the Description field, add any descriptive text that may be used for understanding this event. For

example, if this event requires special instructions for operations staff, place those instructions here.
11. Click OK. The Flow-Triggering Event(s) dialog reappears, and the proxy event you defined appears

in the list.
12. Click OK. The flow definition is submitted to the Platform Process Manager system, where it will

await the appropriate conditions to be run.

About Platform Process Manager exceptions

Using Platform Process Manager 147

Alarms
An alarm is used to send a notification when an exception occurs. The alarm definition specifies how a
notification should be sent if an exception occurs. An alarm is opened as a result of the Alarm exception
handler. Alarms are configured for your site by your Platform Process Manager administrator. Each alarm
has a name and an email address to be notified.

Raise an alarm when an exception occurs within a flow
1. In the Flow Editor, with the flow definition opened, change to alarm mode by clicking the Insert

Alarm button.
2. Drop the alarm icon in the appropriate place in the workspace.
3. Right-click on the alarm icon in the workspace, and select Open Definition. The Alarm Definition

dialog box appears.

4. In the Name field, specify a unique name for the alarm. You can use alphabetic characters, numerals
0 to 9, period (.), dash (-) and underscore (_) in the job array name. A unique name is automatically
assigned to the alarm, but you can change it to make it more meaningful.

5. In the Alarm type field, select the type of alarm you want to use from the list of configured types.
Alarms are configured by your Platform Process Manager administrator. To see an updated list of
alarms, click Refresh.

6. Optional. In the Description field, add any descriptive text that may be helpful for understanding this
alarm. For example, if this alarm requires special instructions for operations staff, place those
instructions here.

7. Click OK.
8. Draw the dependency line from the job or other work item whose exception opens this alarm to the

alarm itself.
9. Right-click on the dependency line and select Open Definition. The Event Definition dialog box

appears.
10. In the Event Type field, select the exception for which you want to open the alarm.
11. Click OK.

About Platform Process Manager exceptions

148 Using Platform Process Manager

View the opened alarms
1. In the Flow Manager, from the View menu, select Alarms. The View Alarms dialog box appears. It

lists all of the open alarms.

Alarms stay in the list of open alarms until the history log file for that time period is archived or deleted.
They do not disappear from the list when the problem is fixed.

Insert an alarm in a flow definition
You can use an alarm to send a notification when an exception occurs, or to notify a user when a particular
condition is met. The alarm definition specifies how a notification should be sent if the alarm is opened.

Alarms are configured for your site by your Platform Process Manager administrator. Each alarm has a
name and an email address to be notified.

There are two ways to specify an alarm in a flow:

• By inserting an alarm as a successor to a work item in the flow, and specifying a dependency on the
work item that opens the alarm when the dependency is met. This method is recommended when it
is important to have a visual cue in the flow definition that an alarm is defined in a particular place.
You can use this method when you want to notify a user of the successful completion of a work item.

• By specifying an alarm as an exception handler when a particular exception occurs. This method is
recommended when you want to maintain an uncluttered view of the work items in your flow, and
you are monitoring specifically for a particular exception.

To insert an alarm as a successor to a work item in a flow:

1. Click the Insert Alarm button in the design palette to change to alarm mode.
2. Drop the alarm icon in the appropriate place in the workspace.
3. Right-click on the alarm icon in the workspace, and select Open Definition. The Alarm Definition

dialog box appears.

About Platform Process Manager exceptions

Using Platform Process Manager 149

4. In the Name field, specify a unique name for the alarm. You can use alphabetic characters, numerals
0 to 9, period (.), dash (-) and underscore (_) in the alarm name. A unique name is automatically
assigned to the alarm, but you can change it to make it more meaningful.

5. In the Alarm type field, select the type of alarm you want to use from the list of configured types.
Alarms are configured by your Platform Process Manager administrator. To see an updated list of
alarms, click Refresh.

6. Optional. In the Description field, add any descriptive text that may be helpful for understanding this
alarm. For example, if this alarm requires special instructions for operations staff, place those
instructions here. You can specify a user variable in this field.

7. Click OK.
8. Draw the dependency line from the job or other work item whose exception opens this alarm to the

alarm itself.
9. Right-click on the dependency line and select Open Definition. The Event Definition dialog box

appears.
10. In the Event Type field, select the exception for which you want to open the alarm.
11. Click OK.

Use an alarm as an exception handler
You can use an alarm as an exception handler, when it is not important to see that an alarm is opened at
a particular point in a flow. If the visual cue is important, insert an alarm directly into the flow definition.

1. Open the definition for the work item you want to monitor for the exception.
2. Click on the Exception Handling tab.
3. Click Add. The Exception Handler Definition dialog appears.

4. In the Exception type field, select the exception you want to handle.
5. If you chose Runs more than..., specify the maximum time, in minutes, the work item can run before

an action should be taken.

If you chose Runs less than..., specify the minimum time, in minutes, the work item can run before an
action should be taken.

If you chose the Flow has exit code, choose the operator and value that best define the exit code
requirement. For example, greater than 5.

About Platform Process Manager exceptions

150 Using Platform Process Manager

If you chose Number of unsuccessful jobs, choose the operator and value that best define the
requirement. For example, greater than 3.

6. In the Action field, select Alarm.
7. In the Alarm type field, select the type of alarm you want to use from the list of configured types.

Alarms are configured by your Platform Process Manager administrator. To see an updated list of
alarms, click Refresh.

8. Click OK. The exception handling specification is added to the list.

About Platform Process Manager exceptions

Using Platform Process Manager 151

About Platform Process Manager exceptions

152 Using Platform Process Manager

6
Run your flow

The attributes of a flow include what, if any, events trigger the flow to run, what constitutes successful
completion of the flow, the type of email notification to implement regarding the flow, which flow
exceptions to monitor for, and what to do if they occur.

When you create your flow definition, you need to know how and when you want the flow to run—will
it run on a recurring basis, at a particular time? Or will it run when a file arrives in a particular location?
Or a combination of the two? Provided that you want the flow to run under some specific conditions, you
need to schedule the flow before you submit it to Platform Process Manager.

The first decision you need to make is how the flow will be triggered. (Triggering a flow is the act of telling
Platform Process Manager to take a flow definition and create a flow from it.) A flow can be triggered
manually or automatically by an event.

If you want to create a flow that can be run more than once, but want it to trigger it manually, see Create
a flow definition to be triggered manually on page 155 for instructions.

If you can specify a recurring schedule for the flow, see Run a flow at a specific time on page 157 for
instructions.

If you want to run a flow whenever something happens to a particular file, see Run a flow based on file
activity on page 159 for instructions.

If the flow is to be triggered by one or more events, you need to specify each of the events that should
trigger the flow, and then determine if the flow should trigger only when all events occur, or if any one
of the events occurs.

If you want to run the flow only once, see Run your flow once on page 166 for instructions.

About manual triggers
When you want to create a flow that can be run more than once, but there is no schedule by which the
flow should be run, you submit the flow to be triggered manually, and then trigger it manually as required.

You can explicitly trigger any submitted flow from within the Flow Manager at any time, even if the flow
definition is on hold. By manually triggering a flow definition that is normally triggered by an event, you
create an extra occurrence of the flow.

When you manually trigger a flow, you can pass values to the flow for user variables that are used within
the flow.

C H A P T E R

Using Platform Process Manager 153

A flow is also triggered implicitly when you run a flow immediately from the Flow Editor. However, in
this case, the flow definition is not stored within Platform Process Manager, and you cannot trigger the
flow later from the Flow Manager.

About automatic triggers
There are many ways to automatically trigger a flow:

• Using a time event, which triggers it at a certain time on the specified dates
• Using a file event, which triggers it when a certain file condition occurs
• Using a proxy event, which triggers it when another flow, or work item within another flow reaches

a certain state
• Using an exception event, which triggers it when another flow generates a specific exception

Running a flow periodically
You can create a flow that runs on a recurring schedule, by specifying a time event to trigger the flow.
The schedule can be as simple as running the flow daily at 9:00 a.m. or it can be as complex as running
the flow on the second and fourth Mondays of the month, but not on a holiday. You use calendars to
define the schedule criteria.

Running a flow multiple times on a date
You can define a flow to run on multiple dates by using a time event that references a calendar that resolves
to multiple dates. However, if you want to run a flow multiple times on any of those dates, you need to
define a time expression in the time event. You can do this with a calendar that resolves to one date or
with a calendar that resolves to multiple dates.

Running a flow when a file…
You can define a flow that runs when something happens to a specified file by defining a file event to
trigger the flow.

Running a flow when another flow...
You can define a flow that runs when another flow or work item in another flow completes or reaches a
certain condition.

Run your flow

154 Using Platform Process Manager

Create a flow definition to be triggered manually
When you want to create a flow that can be run more than once, but there is no repeating schedule by
which the flow should be run, you define the flow to be triggered manually. You can trigger it manually
from the Flow Manager when it needs to be run. By default, unless you explicitly define an event to trigger
a flow, a flow is designed to be triggered manually.

In the flow definition
1. When you have completed defining the flow, right-click in an empty space in the flow definition and

select Flow Attribute. The Flow Attributes dialog box appears.
2. Click the Triggering Events tab. Ensure that the list of triggering events is blank.

3. Click OK.
4. From the Action menu, select Submit to submit the flow. The flow will be submitted on hold—you

will have to manually trigger it. When you are ready to trigger the flow, open the Flow Manager and
expand the tree until you see the flow definition you want to trigger.

From the command line
1. On the command line, type the following:

jsub flow_file_name

where flow_file_name is the full path name of the file containing the flow definition.

Run your flow

Using Platform Process Manager 155

2. Press Enter.

Run your flow

156 Using Platform Process Manager

Schedule your flow
You can schedule a flow to run at a particular date and time, when a file arrives, or a combination of these.
You schedule a flow using an event.

Run a flow at a specific time
In the flow definition

1. In the Flow Editor, open the flow definition.
2. Right-click in an empty space in the flow definition and select Flow Attribute. The Flow Attributes

dialog box displays.
3. Click the Triggering Events tab.
4. Click Add to define an event to trigger the flow. The Trigger Flow with Events dialog box displays.
5. In the Select type of event field, select Time Event.
6. In the Calendar name field, select the calendar that resolves to the dates on which you want this flow

to run.
7. In the Time zone section, specify the time zone for this time event.
8. In the Hours and Minutes fields, specify the time when you want the flow to start running.

Note:
Do not schedule your flow to start between 2:00 a.m. and 3:00 a.m. on
the day that daylight savings time begins (the second Sunday in
March), as the flow will not run and any subflows that are scheduled to
start after this flow will also not run.

This is because the 2:00 a.m. to 3:00 a.m. hour is removed to start
daylight savings time in North America.

9. In the Duration of event field, specify the number of minutes after the specified time that the flow
can start. This is useful if there is a time window in which the flow can start. If the flow must start
exactly at the specified time, leave the duration at 1 minute.

10. Optional. In the End after ... occurrences field, specify the maximum number of occurrences of this
time event before you want it to end.

11. Click OK. The Triggering Event(s) tab reappears, and the time event you defined appears in the list.
12. Click OK.
13. From the Action menu, select Submit to submit the flow. The flow definition is submitted to Platform

Process Manager, where it will be scheduled at the specified time, on each day that the specified
calendar is true.

From the command line
1. On the command line, type the following:

jsub -T time_event flow_file_name

where time_event is the definition of the time event that triggers this flow and flow_file_name is the
full path name of the file containing the flow definition.

2. Press Enter.

Run your flow

Using Platform Process Manager 157

Run a flow at multiple times on a single date
1. In the Flow Editor, open the flow definition.
2. Right-click in an empty space in the flow definition and select Flow Attribute. The Flow Attributes

dialog box displays.
3. Click the Triggering Events tab.
4. Click Add to define an event to trigger the flow. The Trigger Flow with Events dialog box displays.
5. In the Select type of event field, select Time Event.
6. In the Calendar name field, select the calendar that resolves to the dates on which you want this flow

to run.
7. In the Time zone section, specify the time zone for this time event.
8. In the Hours and Minutes fields, specify an expression that resolves to the times when you want the

flow to start running. Be sure to specify the times as they appear on a 24-hour clock, where valid values
for hours are from 0 to 23. For the syntax of the time expression, see Specifying time expressions on
page 158.

9. In the Duration of event field, specify the number of minutes after the specified times that the flow
can start. This is especially useful if the flow is triggered by multiple events, requiring that you define
a time window in which the flow can start. If the flow must start exactly at the specified time, leave
the duration at 1 minute.

10. Optional. In the End after ... occurrences field, specify the maximum number of occurrences of this
time event before you want it to end.

11. Click OK. The Triggering Event(s) tab reappears, and the time event you defined appears in the list.
12. Click OK.
13. From the Action menu, select Submit to submit the flow. The flow definition is submitted to Platform

Process Manager, where it will be scheduled at the specified times, each day the calendar is true.

Specifying time expressions
You can specify several times for the event to trigger. You can:

• Specify a list of times separated by commas. For example, to run the flow at 2:00 p.m., 3:00 p.m. and
5:00 p.m., specify the following in the Hours field:
14,15,17

• Specify a range of hours. For example, to run the flow every hour from 1:00 a.m. to 5:00 a.m., specify
the following in the Hours field:
1-5

• Specify a combination of the above. For example, to run the flow at 2:00 p.m., 3:00 p.m., and every
hour from 7:00 p.m. to 10:00 p.m., specify the following in the Hours field:
14,15,19-22

• Use the Minutes field to modify the value in the Hours field. For example, specify the following in the
Hours field:
7,9,11-13

and the following in the Minutes field:
15,30

to run the flow at 7:15, 7:30, 9:15, 9:30, 11:15, 11:30, 12:15, 12:30, 13:15 and 13:30.

Run your flow

158 Using Platform Process Manager

• Use an asterisk (*) in the Hours field to specify every hour, or in the Minutes field to specify every
minute. For example, to run a flow every hour, in the Hours field, specify an asterisk (*).

Run a flow based on file activity
In the flow definition

1. In the Flow Editor, open the flow definition.
2. Right-click in an empty space in the flow definition and select Flow Attribute. The Flow Attributes

dialog box displays.
3. Click the Triggering Events tab.
4. Click Add to define an event to trigger the flow. The Trigger Flow with Events dialog box displays.
5. In the Select type of event field, select File Event.
6. In the File name field, specify the specify the full path name of the file as the Platform Process Manager

Server sees it, that is to be monitored for the activity, or click Browse to locate the file in the file system.

When specifying the file name, you can also specify wildcard characters: * to represent a string or ? to
represent a single character. For example, a*.dat* matches abc.dat, another.dat and
abc.dat23. S??day* matches Satdays.tar and Sundays.dat. *e matches smile.

For arrival/exist/size/age events, every matched file triggers the event. For example, if you specify a
dependency on the arrival of *.tar, the dependency is met when 1.tar arrives, and again when
2.tar arrives.

Note: There are some differences between UNIX and Windows when using wildcard characters.
Because UNIX is case-sensitive and Windows is not, if you specify A*, on UNIX it matches only files
beginning with A. On Windows, it matches files beginning with A and a. Also, on UNIX, if you
specify ??, it matches exactly two characters. On Windows, it matches one or two characters. These
behaviors are consistent with UNIX ls command behavior, and Windows dir command behavior.

You can also specify a variable for the file name, provided your system is configured to support them.
See User variables within a flow definition on page 81 for more information about user variables.

7. In the Condition field, specify the condition that matches the activity you want to monitor the file
for. Choose from the following:

• exists
• does not exist
• age
• arrival
• size

8. Depending on the condition you choose, you may need to further qualify the condition with the input
fields that follow the condition. For example, when you choose size, you need to specify an operator
(greater than, and so on) and the size, in bytes.

Run your flow

Using Platform Process Manager 159

9. Click OK. The Triggering Event(s) tab reappears, and the file event you defined appears in the list.
10. Click OK.
11. From the Action menu, select Submit to submit the flow. The flow definition is submitted to Platform

Process Manager, where it is triggered when the specified file event is true.

Examples
• Triggering when a file exists

The following file event triggers the flow when the file /tmp/core exists:

When triggering a flow when a file exists, keep the following in mind:
• Platform Process Manager polls periodically to see if the file exists. When it does, the

flow is triggered. The default polling interval is 30 seconds. Check with your Platform
Process Manager administrator to see what your polling interval is set to.

• Unless the file is deleted, after the flow is triggered, it will trigger again each time Platform
Process Manager polls and finds the file exists, unless you combine this event with
another such as a time event.

• Triggering when a file is deleted

The following file event triggers the flow when the file tmp/update is deleted:

Run your flow

160 Using Platform Process Manager

After the flow is triggered, it will trigger again each time Platform Process Manager polls
and finds the file does not exist, unless you combine this event with another such as a time
event.

• Triggering when a file is more than 15 minutes old

The following file event triggers the flow when the file /tmp/data is more than 15 minutes
old:

• Triggering whenever a file arrives

The following file event triggers the flow every time a tar file arrives in the tmp directory:

From the command line
1. On the command line, enter the following command:

jsub -F “file_event” flow_file_name

where file_event is the definition of the file event that triggers this flow and flow_file_name is the full
path name of the file containing the flow definition. For example:

jsub -F "arrival(/tmp/*.tar)" testflow.xml

Run your flow

Using Platform Process Manager 161

Run a flow when another flow...
You can run a flow when another flow reaches a certain condition, or you can run a flow when a work
item in another flow reaches a certain condition. In either case, you use a proxy event to trigger the flow.
As its name indicates, the proxy event acts as a proxy in the current flow for another flow or a work item
that runs within another flow

Run a flow when another flow completes
1. In the Flow Editor, open the flow definition.
2. Right-click in an empty space in the flow definition and select Flow Attribute. The Flow Attributes

dialog box displays.
3. Click the Triggering Events tab.
4. Click Add to define an event to trigger the flow. The Trigger Flow with Events dialog box displays.
5. In the Select type of event field, select Proxy Event.
6. In the Create proxy for... field, select Flow.
7. In the Flow name field, specify the name of the flow definition whose condition will trigger this flow.

Ensure you specify the name of the flow definition, not its file name. The next occurrence of this flow
will trigger the flow you are presently creating.

8. Optional. In the Owner field, specify the name of the user who owns the flow. If you own the flow,
you do not need to specify a name—the name will default to your own.

9. In the Duration field, specify the number of minutes in the past to detect the proxy event.
10. In the Event type field, select The flow completes successfully.
11. In the Description field, add any descriptive text that may be used for understanding this event. For

example, if this event requires special instructions for operations staff, place those instructions here.

Run your flow

162 Using Platform Process Manager

12. Click OK. The Triggering Event(s) tab reappears, and the proxy event you defined appears in the list.
13. Click OK.
14. From the Action menu, select Submit to submit the flow. The flow definition is submitted to Platform

Process Manager, where it is triggered when the specified file event is true.

Examples
• Triggering when a flow has exit code greater than 3:

The following proxy event triggers the flow when the flow testflow exits with an exit code
greater than 3:

• Triggering when 5 or more jobs in a flow fail

Run your flow

Using Platform Process Manager 163

The following proxy event triggers the flow when 5 or more jobs in the flow testflow fail:

From the command line

1. On the command line, to achieve the same results, type the following:

jsub -p “flow(numexit(bhorner:testflow)>=5)”
2. Press Enter.

Calculation of number of jobs in a flow
When Platform Process Manager calculates the number of jobs in a flow, for successful jobs, failed jobs,
and so on, it does not count the jobs in a subflow, and it counts a job array as a single job. It also does not
count other work items in the flow, such as events or alarms.

Run a flow when a proxy job completes
1. In the Flow Editor, open the flow definition.
2. Right-click in an empty space in the flow definition and select Flow Attribute. The Flow Attributes

dialog box displays.
3. Click the Triggering Events tab.
4. Click Add to define an event to trigger the flow. The Trigger Flow with Events dialog box displays.
5. In the Select type of event field, select Proxy Event.
6. In the Create proxy for... box, leave the default at Job.
7. In the Job name field, specify the fully qualified name of the job, in the following format:

flow_name:subflow_name:job_name

If the job is not defined within a subflow, simply specify the flow name and the job name, separated
by a colon.

Note:
You cannot specify a proxy for a manual job.

8. If the flow containing the job is not owned by your user ID, in the Owner field, specify the user ID
that owns the flow containing the proxy job.

9. In the Duration field, specify the number of minutes in the past to detect the proxy event.
10. In the Event type field, select the type of dependency you want to use to trigger the flow, and the

appropriate operator and values.
11. In the Description field, add any descriptive text that may be used for understanding this event.

Run your flow

164 Using Platform Process Manager

12. Click OK. The Triggering Event(s) tab reappears, and the proxy event you defined appears in the list.
13. Click OK.
14. From the Action menu, select Submit to submit the flow. The flow definition is submitted to Platform

Process Manager, where it is triggered when the specified file event is true.

From the command line—trigger when job fails
1. On the command line, to trigger when the job fails, type the following:

jsub -p “job(exit(bhorner:testflow:J2))”
2. Press Enter.

Run your flow

Using Platform Process Manager 165

Run your flow once
When you have finished creating a flow definition, you can run the flow immediately from the Flow
Editor. You may want to do this to test the job sequence in a flow, or when the flow is to be run only once,
and not on a recurring schedule. If you plan to run a flow again, or on a recurring basis, ensure that you
submit the flow definition.

From the Flow Editor
1. Ensure that the Platform Process Manager Server is up and running.
2. When you have completed the flow definition, from the Action menu, select Run Now.
3. In the Run Flow Confirmation dialog, click Yes. The flow will run once. A copy of the flow definition

is not retained in the Flow Manager. You can view the flow from your adhoc folder in the Flow
Manager.

From the command line
1. On the command line, type the following:

jrun flow_file_name

where flow_file_name is the full path name of the file containing the flow definition.
2. Press Enter.

Run your flow

166 Using Platform Process Manager

Submit your flow definition
Until you submit a flow definition, Platform Process Manager is not aware of it. Submitting a flow
definition places it under the control of Platform Process Manager. Once a flow definition is submitted,
Platform Process Manager determines when the flow is to run, and triggers it as appropriate.

When you have completed defining your flow, it is recommended that you save the flow before you submit
it.

You can optionally submit your flow with versioning comments, which makes it easier to track different
versions of the flow.

• Submit your flow without version comments on page 167.
• Submit your flow with version comments on page 167.

When the flow is submitted successfully, you will receive a confirmation message with the version number
of the flow. New flows are submitted as version 1.0.

After submitting the flow to Platform Process Manager, it is not published by default. To publish a flow,
run the Flow Manager as an administrator, right-click the flow, and select Publish. To unpublish the flow,
right-click the published flow and select Unpublish.

Submit your flow without version comments
1. In the flow editor, select the flow definition that you want to submit.
2. From the Action menu, select Submit.
3. If the flow editor displays a Flow exists dialog, specify the method of flow submission.

• To assign the flow as a new version, click Update.

The new flow exists as a new version of the existing flow.
• To assign the flow as a duplicate, click Duplicate.

The new flow exists as a separate, independent flow.

Note:
If you delete a flow, then later add a flow with the same name as the
deleted flow, the new flow is treated as a new flow rather than a new
version of the previous flow.

Submit your flow with version comments
1. In the flow editor, select the flow definition that you want to submit.
2. From the Action menu, select Submit with comment....

The Set Comments window displays.
3. In the Comments for the flow field, specify the comments for the flow version.
4. Click OK to submit the flow.

If there is a flow with the same name, the flow editor displays a Flow exists dialog.
5. If the flow editor displays a Flow exists dialog, specify the method of flow submission.

Run your flow

Using Platform Process Manager 167

• To assign the flow as a new version, click Update.

The new flow exists as a new version of the existing flow.
• To assign the flow as a duplicate, click Duplicate.

The new flow exists as a separate, independent flow.

Note:
If you delete a flow, then later add a flow with the same name as the
deleted flow, the new flow is treated as a new flow rather than a new
version of the previous flow.

Run your flow

168 Using Platform Process Manager

7
Control a Flow

When you have created a flow definition and scheduled it, or submitted it to be triggered manually, a
copy of the flow definition is stored within the Process Manager system. You can trigger a flow at any
time once its definition is known to Process Manager. You trigger the flow using Flow Manager or the
command line interface.

When you trigger a flow definition manually, when you run a flow definition immediately, or when a
flow definition is triggered automatically via an event, a flow is created. You can view and control these
flows from within the Flow Manager.

C H A P T E R

Using Platform Process Manager 169

About the Flow Manager
You use the Flow Manager to view the status of flows, jobs, job arrays and subflows that are currently in
the system, or have run recently. You also use the Flow Manager to:

• Trigger a flow
• Place a flow definition on hold, or release it from hold
• Kill, suspend, resume or rerun a flow
• Kill, run or rerun a job
• Force a job complete

The Platform Process Manager Server must be running before you can open the Flow Manager.

About Flow Manager views
The Flow Manager user interface consists of two panes:

The left-hand pane controls the flow data that is displayed in the right-hand pane. You can look at the
data in the following views:

• By Definition—Displays flow definitions organized by the user who submitted them.

You can see flow definitions in the tree in the form:

• flow_definition_submitter:flow_name [(On Hold)][(Published)]

• flow_id (flow_owner)(flow_state)
• By Flow User—flow definitions and flows are sorted by user who owns them: the user who triggered

the flow.

When the By Flow User view is selected, the left-hand pane lists all the flow definitions known to the
Platform Process Manager Server, and any running flows. They are grouped by user, in an expandable
tree structure, similar to Windows Explorer.

You can see flows in the tree in the form:

• flow_owner

• flow_id (flow_definition_submitter:flow_name)(flow_state)
• By State—flows are sorted by their current state.

When the By State view is selected, the left-hand pane lists all the flows in the system, grouped by state.
This allows you to look only at Exited flows, for example. The states are listed in a tree structure, similar
to Windows Explorer.

You can see flows in the tree in the form:

flow_state

• flow_owner
• • flow_id (flow_definition_submitter:flow_name)

• By Event—flows are sorted by their triggering events.

When the By Event view is selected, the left-hand pane lists all the flows in the system, grouped by
triggering event. This allows you to see all flows that are triggered at a particular time, or all flows that
are waiting for a particular file to arrive. The events are listed in a tree structure, similar to Windows
Explorer.

Control a Flow

170 Using Platform Process Manager

You can see flows in the tree in the form:

event_name

• flow_definition_submitter:flow_name [(On Hold)] [(Published)]
• • flow_id (flow_owner) (flow_state)

When a view is selected, the right-hand pane shows the graphical illustration of the currently selected
flow definition or flow.

The left-hand pane also contains an optional legend, which displays the meaning of each of the states you
may see in the left pane.

• You can also view the following information by selecting it in the left-hand pane:

• Alarms—the current list of alarms that have been opened
• Manual jobs—the list of manual jobs requiring acknowledgement

System status
You can view the current status of the Platform Process Manager system from the View menu, by selecting
System Status. The System Status view displays the status of the Platform Process Manager agents—the
hosts that run the jobs.

List of alarms
When you choose to view the alarms (from the View menu, select Alarms), a window shows all of the
open alarms in the system. Open alarms remain in the list until the history log file containing the alarm
is archived or deleted.

List of manual jobs
When you choose to view manual jobs (from the View menu, select Manual Jobs), a window displays all
of the manual jobs in the Platform Process Manager system. Those that are waiting for acknowledgement
now have a check mark in the Completion Required field.

About the toolbar
The Flow Manager toolbar looks like this:

Control a Flow

Using Platform Process Manager 171

Control a Flow

172 Using Platform Process Manager

Real-time data
The data displayed in the Flow Manager is intended to reflect real-time status of the flows in the system.
The Flow Manager display is set to refresh automatically every 5 minutes. Depending on the number of
flows in the system, you may want to change that value, or turn off the automatic refresh entirely.

Refresh the data displayed manually
1. Click the refresh button or from the View menu, select Refresh.

Change the automatic refresh option
1. From the File menu, select Properties. The Set Refresh Rate dialog appears.

2. If you want the data to refresh automatically, leave Refresh automatically checked.
3. Specify the number of seconds between refreshes of the data.
4. Click OK.

Control a Flow

Using Platform Process Manager 173

Print data
From any view in the Flow Manager, you can print the data displayed. Particularly when viewing a flow
or flow definition, you may want to preview the data to be printed.

1. From the File menu, select Print Preview to see how your flow will look on paper.

You can adjust the spacing in your flow to avoid breaking icons at a page boundary.
2. From the File menu, select Print and click OK.

Control a Flow

174 Using Platform Process Manager

Filter the data displayed in the tree view
You can filter the data displayed in the tree view, to limit the data to that which meets your needs. This
is especially useful when your Platform Process Manager system runs many hundreds of flows and you
do not want to download unnecessary amounts of data to your client machine. The following are some
of the ways you may want to filter the data: When viewing flows by state, and you want to limit the flows
displayed to those owned by a particular user, when you want to limit the flows displayed to those that
ran during the last hour or two, or when you want to limit the flows displayed to those that ran within a
particular time window.

Limit the flows displayed to those owned by a user
1. In the Flow Manager, select the view of the data you want—by state or by event by clicking the

appropriate tab at the top of the left pane.
2. From the View menu, select Set Filter....
3. In the User field, specify the name of the user whose flows you want to see.

4. Click OK. The view of the flows is refreshed with the new filter applied.

Limit the flows displayed to last x hours
1. In the Flow Manager, select the view of the data you want—by state or by event by clicking the

appropriate tab at the top of the left pane.
2. From the View menu, select Set Filter....
3. Click Specify the time range.
4. In the Within the last field, specify the number of hours of flow data to include.

Control a Flow

Using Platform Process Manager 175

5. Click OK. The view of the flows is refreshed with the new filter applied.

Limit the flows displayed to a time period
1. In the Flow Manager, select the view of the data you want—by state or by event by clicking the

appropriate tab at the top of the left pane.
2. From the View menu, select Set Filter....
3. Click Specify the time range.
4. Select From.
5. In the first input field, specify the starting date and time of the time period for which you want to

display flows.
6. In the second input field, specify the ending date and time of the time period for which you want to

display flows.

Control a Flow

176 Using Platform Process Manager

7. Click OK. The view of the flows is refreshed with the new filter applied.

Control a Flow

Using Platform Process Manager 177

Trigger a flow
When you create a flow definition that is not triggered automatically by an event, it needs to be triggered
explicitly before it can run. You can trigger it manually from the Flow Editor by specifying Run Now.
However, the flow runs only once, and the definition is not stored in the Platform Process Manager system
where it can be run again. If you want to be able to run a flow more than once, but to trigger it manually
as required, you submit the flow definition, specifying that it will be triggered manually. The flow
definition is submitted to Platform Process Manager, where it awaits a manual trigger.When you trigger
a flow, you can pass parameters to the flow using user variable and value pairs. The values are available
to any job in the flow, for the life of the flow. For example, you can use this to specify the path to the data
files to be processed.

Trigger a flow
From the Flow Manager

1. In the Flow Manager, select By User.
2. In the tree view of the Flow Manager, expand the tree until you see the flow definition you want to

trigger.
3. Right-click on the flow definition, and select Trigger. A flow is created and run.

From the command line
1. On the command line, type the following:

jtrigger flow_definition_name

where flow_definition_name is the name of the flow definition you want to trigger.
2. Press Enter.

Trigger a flow, passing it values for variables
From the Flow Manager

1. In the tree view of the Flow Manager, expand the tree until you see the flow definition you want to
trigger.

2. Right-click on the flow definition, and select Trigger, then select With Variables. The Pass Variables
to Flow dialog box appears.

3. Specify the parameters to pass in the following format:

variable=value;variable=value...
4. Click OK. A flow is created and run.

Control a Flow

178 Using Platform Process Manager

View a flow definition and specify versioning
options

When working within the Flow Manager, you are not limited to working with flows—you can also view
the definition of a flow.

1. In the Flow Manager, select By Flow User.
2. Under the appropriate user ID in the tree view, locate the flow definition you want to view. It is listed

by name, above every occurrence of the flow that is in the system:

In the above example, pay1 is the flow definition. Below it is 1, the ID of the flow that just completed.
3. Right-click on the definition name, and select View Flow. The flow definition is displayed in the right-

hand pane. You cannot edit the definition here—you can only change the definition in the Flow Editor.

View Version
You can view the version history of the flow to see the different versions of the flow that are submitted.

You may also set any eligible flows to be the default version. The default version of the flow is the version
set to be effective at the current time. If you trigger this flow, Platform Process Manager will instantiate
the flow instance with the default version.

In a dynamic subflow that is automatically updated, the currently-used version is the same as the default
version. In a dynamic subflow that is manually updated, the currently-used version is the default version
of the target flow at the main flow submission time, or the default version at the time that you last manually
updated the dynamic subflow.

1. In the Flow Manager, select By User.
2. Under the appropriate user ID in the tree view, locate the flow definition you want to view.
3. Right-click on the definition name, and select View Version.

The Flow Version window displays. This window initially displays the version of the corresponding
flow definition when the flow instance is instantiated (Current Version), and the latest version of the
corresponding flow definition (Latest Version).

4. Click View history to expand the version history list.

A scroll panel with the flow version, submission time, and comments is displayed. The comments
shows any comments made with the Submit with comments... option for submitting a flow.

5. Optional. Specify the default version options.

• In a static subflow, to set a flow version to be the default version, select a version in the expanded
version history list and click Set Default Version.

Control a Flow

Using Platform Process Manager 179

Note:
The Set Default Version might not be available under certain
circumstances. For example, you will not be able to set a default
version when viewing the history of a flow instance from the tree
view.

• In a dynamic subflow, specify the default version update options in Update to default version.

You can select automatic or manual updates, and you can choose to manually update the dynamic
subflow now.

View Statistics
You can view relevant flow instance information summary:

1. In the Flow Manager, select By User.
2. Under the appropriate user ID in the tree view, locate the flow definition you want to view.
3. Right-click on the definition name, and select View Statistics.

Control a Flow

180 Using Platform Process Manager

View inter-flow relationships
You can view all of your flow definitions in Platform Process Manager using the Global View option in
the Flow Manager. This allows you to see proxy dependencies between flows.

The global view displays inter-flow relationships in a graphical format: it shows a graphical representation
of each of the events that trigger a flow, it shows dependency lines between flows, and it shows curved,
dotted dependency lines that represent dependencies on proxies within a flow.

You use the global view to see how your flow definitions relate to each other, and to see what triggers each
flow. From the global view, you can:

• See the entire business process
• See what events are used to trigger each flow
• See proxy dependencies between flows
• Manually complete an inter-flow dependency
• See flows that other flows are dependent upon that have not yet been submitted to Platform Process

Manager, or are on hold, waiting for a manual trigger

The following is an example of a global view:

View the events that trigger a flow:

Control a Flow

Using Platform Process Manager 181

1. Open the Flow Manager.
2. From the View menu, select Global View. The Global Definition View appears, where the flow

definitions are shown graphically. An event that triggers a flow is displayed to the left of the flow, with
a dependency arrow drawn between them. In the following example, the flow is triggered by a time
event:

View proxy dependencies that trigger flows
1. Open the Flow Manager.
2. From the View menu, select Global View. The flow definitions are shown graphically in the right-

hand pane. An event that triggers a flow is displayed to the left of the flow, with a dependency arrow
drawn between them, as shown:

A proxy event that triggers a flow is displayed to the left of the flow, with a dependency arrow drawn
between them. In the following example, both Example_1 and myflow are dependent on the
completion of recovery. These dependencies were defined as proxy events on the flow recovery.

In the following example, myflow triggers when J1 in recovery completes. This dependency was
defined as a proxy event on recovery:J1.

View proxy dependencies within a flow
1. Open the Flow Manager.
2. From the View menu, select Global View. The flow definitions are shown graphically in the right-

hand pane. A proxy dependency on a work item within a flow is represented by a curved, dotted line
running from the flow containing the actual work item to another flow containing the proxy to the
work item. Refer to the following example:

Control a Flow

182 Using Platform Process Manager

In the above example, flowd has a dependency on a work item in flowc.
3. To see a description of the proxy dependency, double-click on the curved arrow. The Proxy Summary

dialog appears, displaying information about the proxy event:

Manually complete an inter-flow dependency
1. Open the Flow Manager.
2. From the View menu, select Global View. The flow definitions are shown graphically in the right-

hand pane. An event that triggers a flow is displayed to the left of the flow, with a dependency arrow
drawn between them.

3. Right-click on the dependency line representing the dependency you want to complete.
4. Select Complete Dependency. The dependency is completed, removing the dependency only for this

occurrence of the flow. Completing a dependency has no impact on the flow definition.

Note:
Removing a dependency does not automatically make a flow eligible
to run—if it has other dependencies, it will wait for those to be met,
unless you complete them also.

View dependencies on flows that do not exist or are
on hold

1. Open the Flow Manager.

Control a Flow

Using Platform Process Manager 183

2. From the View menu, select Global View. The flow definitions are shown graphically in the right-
hand pane. An event that triggers a flow is displayed to the left of the flow, with a dependency arrow
drawn between them.

When a flow has a dependency on another flow whose definition does not yet exist in Platform Process
Manager, the global view looks like this example, where recovery has been submitted, but
payupdt has not:

When a flow has a dependency on another flow that is on hold, awaiting a manual trigger, the global
view looks like this example, where payprt depends on Example_1, which must be triggered manually:

Control a Flow

184 Using Platform Process Manager

Determine the status of jobs in a flow
When you view a running flow, you can see the progress as a job runs. There are multiple ways to determine
the current status of a job:

• By the color of the box around the work item icon
• By the text displayed when you place your mouse over the work item icon
• By the state shown in the Runtime Attributes dialog

Colored border around the icon
The Flow Manager uses a colored border around the job, job array, subflow and manual job icons to
indicate their current state.

When the Color is … The State is … Which means the Work Item …

Blue Done Completed successfully

Red Exit Failed

Killed Was killed when the flow was killed

Green Running Is currently running

Waiting for
completion

Manual Job completion required

Brown Pending in LSF Is pending in LSF—the job is waiting in a queue for
scheduling and dispatch.

Platform Process Manager considers these jobs to be the
same as Running. Unless otherwise specified, anything
that applies to Running jobs also applies to jobs that are
Pending in LSF.

Yellow/orange Waiting Is waiting to be dispatched, or was suspended while it
was waiting

Initializing Is still initializing

Black Suspended Was suspended after the flow started to run

Initializing
Suspended

Was suspended while the flow was initializing

Waiting Suspended Was suspended while the job was waiting to be
dispatched

Gray On hold Is held in the flow definition—it cannot be run

In the following example, the flow testflow was running. J1 with a blue border completed successfully. J2
with a green border is currently running. J3 has a yellow border—it is waiting.

Control a Flow

Using Platform Process Manager 185

Fly-over mouse text
When you place your mouse over a work item within a flow, a popup window appears for a short period
of time that describes the state of the work item. For example:

Runtime attributes
When you view the runtime attributes of a work item, its state is displayed, with other information about
the work item. For example:

Control a Flow

186 Using Platform Process Manager

Manually complete a dependency
You can manually complete a dependency, so that a work item no longer needs to wait for that dependency
to be met. You can select any dependency within a flow and complete it. This is useful if the duration on
a file event has expired, and the file is now available, or if you determine that the dependency can never
be met, and there is a case for running the work item anyway.You can also manually complete a
dependency that triggers a flow.

1. To manually complete a dependency within a flow, open the flow in the Flow Manager. To manually
complete a dependency that triggers a flow, from the View menu, select Global View to display all of
the flows.

2. Right-click on the dependency line representing the dependency you want to complete.
3. Select Complete Dependency. The dependency is completed, removing the dependency only for this

occurrence of the flow. Completing a dependency has no impact on the flow definition.

Note:
Removing a dependency does not automatically make a work item
eligible to run—if it has other dependencies, it will wait for those to be
met, unless you complete them also.

Control a Flow

Using Platform Process Manager 187

Kill a running job
You can kill an individual job that is running, without killing the entire flow.

From the Flow Manager
1. In the Flow Manager, locate the flow containing the job you want to kill, and open the flow.
2. Locate the job you want to kill, and right click on it.
3. From the menu, select Kill.

From the command line
1. On the command line, specify the following:

jjob -i flow_id -k flow_name[:subflow_name]:job_name

where flow_ID is the unique flow ID containing the job you want to kill, flow_name is the name of
your flow, subflow_name is the name of your subflow (if you have one), and job_name is the name of
your job.

2. Press Enter.

Control a Flow

188 Using Platform Process Manager

Stop a flow at a specific point by putting a job on
hold

In some cases, you may want to stop a flow at a specific point so that you can fix problems. You can do
this by putting a job in the flow on hold.

When you put a job in the flow on hold:

• The job receives the status On Hold. The status of the flow is not affected.
• The flow pauses at that specific job.

Only the branch of the flow that contains the job that is On Hold pauses. Other branches of the flow
continue to run.

Only jobs in the Waiting state can be put on hold. When desired, you can then release the job that you
have put on hold. The flow instance continues to run and the job receives the status Waiting.

You can put on hold LSF jobs, job submission scripts, local jobs, job arrays, and job array scripts.

If the selected job is in a flow array, by default the hold applies to the job in the element the job is in. You
can, alternatively, apply the hold to jobs in all elements in the flow array.

Only users who own the flow, the Process Manager administrator, or Process Manager control
administrator can hold and release LSF jobs, job submission scripts, local jobs, job arrays, and job array
scripts.

1. Select the By State tab, and double-click a flow to display it.
2. Select the desired job in the Waiting state in the flow, right-click and choose Hold.

From the command line
1. On the command line, specify the following for a job in the Waiting state:

jjob -i flow_id -p flow_name[:subflow_name]:job_name

where flow_ID is the unique flow ID containing the job you want to put on hold, flow_name is the
name of your flow, subflow_name is the name of your subflow (if you have one), and job_name is the
name of your job.

2. Press Enter.

The job will be put on hold.

Note:
To release the job at a later time, use the -g option on the command
line.

Control a Flow

Using Platform Process Manager 189

Run or rerun a single job
You can run or rerun a single job directly from the Flow Manager. You may want to use this option to
debug a flow, or to run a single job to fix a flow. You can use this option to rerun a job, regardless of
whether the job failed or completed successfully.

You can run or rerun a job in a suspended flow, but the state of the flow does not change. If you specify
a rerun exception handler to rerun a job, and the flow is suspended, the job does not run until the flow
has been resumed.

When you rerun a job in a flow that is running, successor work items run as designed.

When you rerun a job in a flow that is Exited or Killed, only the job runs—its successors do not. If you
want to rerun more than one job, you must wait until one job completes before rerunning the next—you
rerun them one at a time. If you want to rerun multiple jobs, or if you want the successor jobs to run, you
need to rerun the flow.

1. Locate the flow containing the job you want to run, and open the flow.
2. Locate the job you want to run, and right click on it.
3. From the menu, select Run. The job will be run, but its successors may not, depending on the state of

the flow.

From the command line
1. On the command line, specify the following:

jjob -i flow_id -r flow_name[:subflow_name]:job_name

where flow_ID is the unique flow ID containing the job you want to run, flow_name is the name of
your flow, subflow_name is the name of your subflow (if you have one), and job_name is the name of
your job.

2. Press Enter.

Control a Flow

190 Using Platform Process Manager

Mark a job complete
You can mark a job complete without actually running the job. Use this option when you want a flow to
continue running, even though the job failed or did not run. Marking a job complete does not actually
run the job—it just changes its state. You mark a job complete so that its successor jobs can run when
you rerun the flow.You can only complete a job in a flow that has exited.

1. Locate the flow containing the job you want to mark complete, and open the flow.
2. Locate the job you want to mark complete, and right click on it.
3. From the menu, select Complete Job.

From the command line
1. On the command line, specify the following:

jjob -i flow_ID -c flow_name[:subflow_name]:job_name

where flow_ID is the unique flow ID containing the job you want to mark complete, flow_name is the
name of your flow, .subflow_name is the name of your subflow (if you have one) and job_name is the
name of your job.

2. Press Enter.

Control a Flow

Using Platform Process Manager 191

Work with manual jobs
A flow containing a manual job cannot complete its processing until the manual job has been explicitly
completed. When a flow progresses to the point where the manual job is next in the work flow, that branch
of the flow (or the entire flow) halts. A notification is sent to a specified email address, indicating that the
manual job is awaiting completion. Generally, this requires completing the actual task associated with the
manual job and then completing the manual job to indicate that the task is complete.You can complete
a manual job using the Flow Manager or using the command line interface.

View the manual jobs awaiting for completion
1. In the Flow Manager, from the View menu, select Manual Jobs. The Manual Jobs window appears,

listing the manual jobs that are not yet completed.

Note that not all manual jobs in this list are ready to be completed. Those manual jobs that are awaiting
completion have a check mark in the Completion Required column.

From the command line
1. On the command line, type the following:

jmanuals
2. Press Enter.

Complete a manual job
1. In the Flow Manager, from the View menu, select Manual Jobs. The Manual Jobs window appears.
2. Locate the manual job in the list—it will have a check mark in the Completion Required column.
3. Ensure that the manual task associated with this manual job has been completed, and complete the

manual job. Left-click or right-click on the job to select it.
4. Click Complete Manual Job or click the Complete the Manual Job button. The Complete manual

job dialog appears.
5. If applicable, in the Description field, specify any comments required to describe what happened. For

example:

Control a Flow

192 Using Platform Process Manager

The description you enter here appears in the Runtime Attributes of the manual job.
6. Click Complete Manual Job.

From the command line
1. On the command line, type the following:

jcomplete -i flow_id flow_name[:subflow_name]:job_name

where flow_id is the unique ID of the flow containing the manual job, and flow_name
[:subflow_name]:job_name is the fully qualified name of the manual job to complete.

2. Press Enter.

Control a Flow

Using Platform Process Manager 193

Completing manual jobs with exit codes
You can specify exit codes when completing manual jobs. The exit code you specify determines the state
of the manual job. Exit codes can be any number from 0 to 255.

If you did not define custom success exit codes in the Manual Job Definition, an exit code of 0 indicates
the manual job was successful and the state is set to Done. Any other exit code indicates the manual job
failed and its state is set to Exited.

If you defined custom success exit codes in the Manual Job Definition, an exit code of 0 and any of the
numbers you specified in the Non-zero success exit codes field indicates the manual job was successful
and the state is set to Done. Any other exit code indicates the manual job failed and its state is set to Exited.

Complete a manual job with an exit code
1. In Flow Manager, select the manual job, right-click and select Complete Manual Job.
2. In the Exit code field, enter the exit code for the job.
3. Click the Complete Manual Job button.

You can view the exit code you entered by selecting the manual job, right-clicking and choosing View
Runtime Attributes.

From the command-line
Use the jcomplete command with the -e option.

Example: Complete a manual job with exit code 4
jcomplete -d "printed check numbers 4002 to 4532" -e 4 -i 42 payprt:checkprinter

completes the manual job checkprinter with exit code 4 in the flow payprt with flow ID 42, and adds
the comment "printed check numbers 4002 to 4532".

Control a Flow

194 Using Platform Process Manager

Work with proxies
Proxies are used to represent work items that run within another flow, or to represent another flow.
Another work item can depend on the success or failure of a proxy. A proxy event can be used to trigger
a flow, or to trigger a work item within a flow.

Using the Flow Manager, you can do the following with proxies:

• See if any proxies of a work item exist.
• If proxies to a work item exist, see a list of those work items that depend on them. This allows you to

determine the impact that a work item has on other flows.
• Locate a proxy dependant
• Manually complete a proxy dependency
• View the inter-flow relationships established by defining proxies, using the global view.

Proxy dependants—those work items that depend on a proxy— are listed in the Show Proxy Dependants
dialog. The list of proxy dependants includes every location where dependants to the proxy are defined,
including both flow definitions and flow instances. If no flow ID is listed in the Flow ID column, the item
listed is a flow definition.

The Show Proxy Dependants dialog shows the flow ID where the dependant runs, if applicable, the name
of the dependant, including flow and subflow names, if applicable, the owner of the flow and the condition
under which the dependant runs.

If you double-click on a work item listed in the Show Proxy Dependants dialog, the flow definition or
flow containing that work item is opened. However, you cannot change the definition here—you need to
change it in the Flow Editor and resubmit it.

To see if any proxies of a work item in a flow exist:

1. Open the flow containing the work item.
2. Right-click on the work item for which you want to check for proxies.
3. Select Show Proxy Dependants. The Show Proxy Dependants dialog appears. If any proxies to this

work item exist, the work items that depend on them are listed here.

See if any proxies of a flow exist
1. In the tree view, right-click on the flow definition name.
2. Select Show Proxy Dependants. The Show Proxy Dependants dialog appears.If any proxies to this

flow exist, the work items that depend on them are listed here.

Control a Flow

Using Platform Process Manager 195

Navigate to a proxy dependant
1. Open the flow containing the work item.
2. Right-click on the work item for which you want to check for proxies.
3. Select Show Proxy Dependants. The Show Proxy Dependants dialog appears. If any proxies to this

work item exist, the work items that depend on them are listed here.
4. In the list of proxy dependants, double-click on the work item you want to locate. The flow or flow

definition containing the work item is opened in the right-hand pane.

Manually complete a proxy dependency
1. Open the flow containing the work item.
2. Right-click on the work item for which you want to check for proxies.
3. Select Show Proxy Dependants. The Show Proxy Dependants dialog appears. If any proxies to this

work item exist, the work items that depend on them are listed here.
4. In the list of proxy dependants, double-click on the work item you want to locate. The flow containing

the work item is opened in the right-hand pane.
5. Right-click on the dependency line running from the proxy to the proxy dependant.
6. Select Complete Dependency. The dependency is completed, removing the dependency only for this

occurrence of the flow. Completing a dependency has no impact on the flow definition.

Note:
Removing a dependency does not automatically make a work item
eligible to run—if it has other dependencies, it will wait for those to be
met, unless you complete them also.

Control a Flow

196 Using Platform Process Manager

Kill a running flow
You can kill a flow any time after it has started running. Killing a flow kills any work items within the
flow that have not yet completed.

1. In the Flow Manager, select the most appropriate view for finding the flow.
2. In the tree view, locate the flow you want to kill.
3. Right-click on the flow and select Kill. All incomplete or waiting jobs in the flow are killed.

From the command line
1. On the command line, type the following:

jkill flow_id

where flow_id is the unique ID of the flow you want to kill.
2. Press Enter.

Control a Flow

Using Platform Process Manager 197

Suspend a running flow
You can suspend a flow after it has started running. Suspending a flow suspends all jobs, job arrays and
subflows within the flow that have not yet completed. Any jobs that were already completed before the
flow was suspended are not affected by either suspending or resuming the flow.

1. In the Flow Manager, select the most appropriate view for finding the flow.
2. In the tree view, locate the flow you want to suspend.
3. Right-click on the flow and select Suspend. All incomplete and waiting jobs in the flow are suspended

until they are explicitly resumed.

From the command line
1. On the command line, specify the following:

jstop flow_id

where flow_id is the unique ID of the flow you want to suspend.
2. Press Enter.

Control a Flow

198 Using Platform Process Manager

Resume a suspended flow
You can resume a flow after it has been suspended. Resuming a flow resumes all suspended jobs, job arrays
and subflows within the flow. Any jobs that were already completed before the flow was suspended are
not affected by either suspending or resuming the flow.

1. In the Flow Manager, select the most appropriate view for finding the flow.
2. In the tree view, locate the flow you want to resume.
3. Right-click on the flow and select Resume. All suspended jobs in the flow are now resumed.

From the command line
1. On the command line, specify the following:

jresume flow_id

where flow_id is the unique ID of the flow you want to resume.
2. Press Enter.

Control a Flow

Using Platform Process Manager 199

Rerun an exited flow
You can rerun a flow that has exited, provided that the flow was not killed.

When you rerun a flow, jobs are rerun as follows:

• If the flow uses the default completion criteria (the flow exits when a job exits), the flow runs again,
beginning with the job that exited. Only exited jobs are rerun.

• If the flow uses completion criteria (the flow is complete when one or more specified jobs in the flow
complete), the flow runs again, beginning with the jobs that exited amd any jobs set as rerun starting
points, but all successor jobs are also rerun, even if they are Done.

If you need to rerun a flow that was killed, retrigger the flow.

Note:
Rerunning a flow that contains an alarm will not reopen a previously
opened alarm. Similarly, rerunning a flow that contains a manual job
that was already marked complete will not reset the state of the manual
job. If the flow contains a manual job that was already marked complete,
the state of the manual job is reset to waiting, but the manual job will
not require completion again—the remainder of the flow may not run
as designed.

1. In the Flow Manager, select the most appropriate view for finding the flow.
2. In the tree view, locate the flow you want to rerun.
3. Ensure that no jobs are still running within the flow—sometimes elements of a job array or jobs in a

subflow may continue to run after a flow exits.
4. Right-click on the flow and select Rerun.

The Rerun Flow dialog is displayed.
5. Select whether to rerun the flow from exited items and starting points, or from starting points

only and click OK.

The flow is rerun, beginning with any jobs that exited, were killed, or were set as rerun starting points.

From the command line
1. On the command line, specify the following:

jrerun flow_id

where flow_id is the unique ID of the flow you want to rerun.
2. Press Enter.

Set a starting point to rerun a flow
By default, when you rerun a flow, the flow continues from exited jobs. Under certain situations, the root
cause of a job failing may be from conditions set by a previous job, in which case, you will need to rerun
the flow from a job that is before the exited job. To address this situation, you can use the flow manager
to set specific work items in the flow from which to rerun the flow. This allows you to have more flexibility
in correcting errors in a flow by rerunning jobs other than the last exited job in the flow.

Control a Flow

200 Using Platform Process Manager

You can only set a rerun starting point for flows that are in an Exited state. In order to be set as a rerun
starting point, the item in the flow must meet the following requirements:

• The item must be in a Done or Exited state.
• The item must be one of the following types of work items:

• Job
• Job array
• Job submission script
• Job array submission script
• Local job
• Template job

Tip:
You can set multiple work items as rerun starting points. In addition, all
exited jobs in a flow automatically become rerun starting points. This is
the default behavior and remains unchanged even when you set other
work items as rerun starting points.

1. In the Flow Manager, select the most appropriate view for finding the points to rerun the flow.
2. Right-click the work item and select Set as starting point to rerun flow.

When you set a work item to be the starting point to rerun a flow, the work item will have a green circle
in the top-right corner to indicate that it is the rerun starting point.

Remove the starting point to rerun a flow
To remove a work item as a rerun starting point, use the flow manager to unset a work item as the rerun
starting flow.

1. In the Flow Manager, select the appropriate work item to find the points to rerun the flow.
2. Right-click the work item and select Unset as starting point to rerun flow.

Control a Flow

Using Platform Process Manager 201

Rerun a flow while a job is still running
You can rerun a flow that has the Running, Exited, or Done state.

This is useful for flows that have several branches. When one branch fails, you can rerun the branch
without waiting for other branches of the flow to complete.

You can:

• Set or unset starting points when there are still jobs running in the flow.
• Choose whether to rerun the flow from:
• • Exited items and starting points. The flow will rerun from any starting points, exited work items,

and, from the item following any manually completed jobs provided dependencies are met.
• Starting points only. The flow will rerun only from starting points.

Note that you can only rerun a running flow if the part of the flow to be rerun does not overlap with items
that are currently running.

1. In the Flow Manager, select the most appropriate view for finding the flow.
2. In the tree view, locate the flow you want to rerun.
3. Right-click on the flow and select Rerun.

The Rerun Flow dialog is displayed.
4. Select whether to rerun the flow from exited items and starting points, or from starting points

only and click OK.

The flow is rerun, beginning with any jobs that exited, were killed, or were set as rerun starting points.

Control a Flow

202 Using Platform Process Manager

Rerun an exited job array
You can rerun a job array that has exited. You can rerun the entire job array, or only those elements of
the array that exited. When you rerun a job array, the job array has a new ID.

Note:
Rerunning a job array that triggers an alarm will not reopen a previously
opened alarm.

1. In the Flow Manager, locate the job array you want to rerun.
2. Right-click on the job array and select Rerun.

Control a Flow

Using Platform Process Manager 203

Hold a flow definition
You can hold a flow definition that has been submitted to the Platform Process Manager system. You do
this when it has been scheduled to trigger automatically, but you do not want that automatic trigger to
happen for some period of time. For example, you may do this when you first submit the flow definition
but are not quite ready to put it into production, or when you require a maintenance window. The flow
definition remains on hold until it is explicitly released.

When a flow definition is on hold, it cannot be triggered automatically, but can still be triggered manually.

1. In the Flow Manager, select By Definition.
2. Expand the tree view until you see the flow definition you want to hold.
3. Right-click on the flow definition and select Hold. The status of the flow definition changes to On

Hold.

From the command line
1. On the command line, type the following:

jhold flow_definition_name

where flow_definition_name is the name of the flow definition you want to place on hold.
2. Press Enter.

Control a Flow

204 Using Platform Process Manager

Releasing a flow definition from hold
When a flow definition is placed on hold, it cannot be triggered automatically until it has been explicitly
released.

1. In the Flow Manager, select By Definition.
2. Expand the tree view until you see the flow you want to release.
3. Right-click on the flow definition and select Release. The status of the flow definition changes to

Released.

From the command line
1. On the command line, type the following:

jrelease flow_name

where flow_name is the name of the flow definition you want to release.
2. Press Enter.

Control a Flow

Using Platform Process Manager 205

Remove a flow definition
When you no longer require a flow definition, you can remove it from the list of flows the Platform Process
Manager system knows about.If you remove a flow definition, and some flows belonging to the flow
definition are still in the Platform Process Manager system, they appear in the Flow Manager in the
adhoc folder.

1. In the Flow Manager, select By Definition.
2. In the tree view, locate the flow definition you want to remove.
3. Right-click on the flow definition and select Remove.
4. Confirm that you want to remove this definition. The flow definition is removed from the system.

From the command line
1. On the command line, type the following:

jremove flow_name

where flow_name is the name of the flow definition you want to remove.
2. Press Enter.

Control a Flow

206 Using Platform Process Manager

8
Mainframe support

Platform Process Manager with IBM® z/OS® mainframe support allows you to dispatch jobs to a mainframe
and monitor their progress using FTP (file transfer protocol) technology on Microsoft® Windows® or
UNIX.

z/OS is an operating system for IBM’s zSeries mainframes.

For more information about z/OS, see IBM’s z/OS website: http://www-03.ibm.com/servers/eserver/
zseries/zos/.

How does it work?
The Platform Process Manager daemon (the jfd) supports mainframe by submitting an LSF proxy job
which controls the FTP to the mainframe host. The LSF proxy job (through FTP) submits, monitors, and
retrieves the output of the mainframe job. This means that mainframe jobs specify both mainframe and
LSF details.

Requirements
• A valid z/OS mainframe user ID

Limitations
• z/OS does not support suspending or resuming jobs
• Job arrays for mainframe jobs are not supported
• On Windows, if you want to be able to kill a mainframe job, you must submit the job to a queue set

up specifically for that purpose.

C H A P T E R

Using Platform Process Manager 207

Using mainframe
To use the mainframe support, you must:

1. Copy the template file z/OS_Template.xml from JS_TOP/8.1/examples to JS_TOP/work/
templates.

2. Define your template job in Flow Editor.

Define your job
Use the template job feature to define your mainframe job.

1. Make sure you have copied the zOS_Template.xml file from JS_TOP/8.1/examples to
JS_TOP/work/templates.

2. Select the Insert Application button from the design palette.

The Insert Application window displays.
3. Select zOS Job from the list and click OK.
4. Click anywhere on your flow page.

A zOS job is added to your flow.
5. Right-click your zOS job and select Open Definition.

The Application Definition window displays:

Mainframe support

208 Using Platform Process Manager

On the General tab
Field Description

z/OS host name The full host name where the mainframe job is submitted to.

Login User ID The mainframe log in ID.

Password The mainframe log in password.

Is JCL file located on z/OS host? Location of the JCL file (either on the z/OS host or LSF execution host).

JCL File Full path to the JCL file to submit with the job.

Output file Full path to the file to receive the mainframe job output. Note: Any existing
output file will be overwritten without a warning.

Estimated run time (in minutes) (Optional) The estimated run time of the job. This value informs the system
when to begin checking the job status. Specifying this value reduces system
overhead for long jobs.

Check interval (in minutes) (Optional) How often the status of the job is checked by the system.

Mainframe support

Using Platform Process Manager 209

Field Description

Time out (in minutes) (Optional) The number of minutes before the job times out. If the job times out,
the job exits with exit status 237. A time out period of 0 means no time out (the
job runs until it finishes).

On the Execution Environment tab
Field Description

Submit to queue/
partition

(Required for Windows only) Specify a queue created by the Administrator to be able to kill
the job if necessary. Contact your Administrator for the mainframe queue name.

Run on host (Optional) Specify the LSF host name where the proxy job will run.

Run as user (Optional) Specify an LSF user name.

File Transfer (Optional) Specify file transfers between Platform Process Manager Server and LSF
execution host.

Log File (Optional) Full path to the log file that contains the stdout of the LSF job. Includes FTP
messages. Use for troubleshooting.

Status of jobs
The status of your mainframe jobs is displayed in Flow Manager just like any other job.

Killing a job (Windows)
To kill a job in a Windows environment, the Administrator must create a queue specifically for mainframe
jobs. For jobs to be eligible to be killed, you must submit the mainframe job to that special queue. Contact
your Administrator for more information.

Killing a job (UNIX)
You can kill a mainframe job regularly if you are on a UNIX platform.

Mainframe support

210 Using Platform Process Manager

Exit codes
The following exit codes may occur if there is a problem between your LSF proxy job and the mainframe
job:

Exit Code Failure Reason

230 Failed to connect to mainframe via FTP.

231 Failed to log in to mainframe.

232 Command site filetype=jes or site filetype=seq failed.

233 Failed to retrieve job ID. put or get command failed.

234 Failed to retrieve job output.

235 Failed to match Dir Header. Dir command failed.

236 Failed to get job status. Dir command failed.

237 Timeout checking mainframe job status.

238 Failed to delete a mainframe job.

239 Encryption error.

240 Environment variable not found.

241 Script error.

242 Platform Process Manager configuration file not found.

243 FTP configuration file not found.

244 Incomplete system output file: IEF142I and IEF472I not found.

245 System output file not found.

246 bpost command failed.

247 bread command failed.

248 Failed to get mainframe job ID from bread output.

249 Failed to transfer JCL file from z/OS host to LSF host.

250 Failed to modify job name in JCL file.

255 Mainframe job has an ABEND status.

Mainframe support

Using Platform Process Manager 211

Mainframe support

212 Using Platform Process Manager

9
Commands

Platform Process Manager includes a command line interface you can use to issue commands to Platform
Process Manager. You can use commands to submit flow definitions to Platform Process Manager, trigger
flows to run, monitor and control running flows, and obtain history information about many Platform
Process Manager work items.

Platform Process Manager provides commands for various purposes: creating and editing calendars,
manipulating flow definitions, monitoring and controlling active flows, and obtaining history about
various work items.

You cannot use commands to create a flow definition.

Calendar commands
You can use the following commands to work with Platform Process Manager calendars:

• caleditor—to start the Calendar Editor graphical user interface
• jcadd—to create a calendar
• jcals—to display a list of calendars
• jcdel—to delete a calendar
• jcmod—to edit a calendar

Flow definition commands
You can use the following commands to work with flow definitions:

• floweditor—to start the Flow Editor graphical user interface
• jrun—to submit and run a flow immediately, without storing the flow definition in Platform Process

Manager
• jsub—to submit a flow definition to Platform Process Manager
• jtrigger—to trigger the creation of a flow
• jhold—to place a flow definition on hold, preventing automatic triggering of the flow
• jrelease—to release a flow definition from hold, enabling automatic triggering of the flow
• jdefs—to display information about flow definitions
• jremove—to remove a flow definition from Platform Process Manager

C H A P T E R

Using Platform Process Manager 213

Flow monitor and control commands
You can use the following commands to monitor and control flows that are in the process of running or
have recently completed:

• flowmanager—to start the Flow Manager graphical user interface
• jalarms—to list open alarms
• jcomplete—to complete a manual job
• jflows—to display information about a flow
• jjob—to kill or run a job, or to mark a job complete
• jkill—to kill a flow
• jmanuals—to list all manual jobs waiting for completion
• jpublish—to publish target flows for use by dynamic flows and flow arrays
• jrerun—to rerun an exited flow
• jresume—to resume a suspended flow
• jsetvars—to change the value of a local or global variable while a flow is running
• jstop—to suspend a flow
• junpublish—to unpublish target flows and remove them from the list for use by dynamic flows and

flow arrays

Other commands
• jid—to verify the connection between the Platform Process Manager Client and the Platform Process

Manager Server
• jadmin—to control the Platform Process Manager daemon on Unix
• jhist—to view the historic information about server, flow definitions, flows, and jobs.
• jreconfigalarm—to reload the alarm definitions.

Commands

214 Using Platform Process Manager

caleditor
starts the Calendar Editor.

Synopsis
caleditor

You use the caleditor command to start the Calendar Editor, where you can create new calendars, edit
or delete existing calendars.

Examples
caleditor

opens the Calendar Editor.

Commands

Using Platform Process Manager 215

floweditor
starts the Flow Editor.

Synopsis
floweditor [file_name [file_name ...]]

Description
You use the floweditor command to start the Flow Editor. You can specify one or more flow definition
file names to open automatically when the Flow Editor starts. You can use this as a shortcut to quickly
open a flow definition for editing.

Options
file_name

Specifies the name of the file to be opened when the Flow Editor starts. If you do not
specify a file name, the Flow Editor starts with no files opened. You can specify a list of
files by separating the file names with a space.

Examples
floweditor /tmp/myflow.xml /flows/payupdt.xml

opens the Flow Editor, and opens myflow.xml and payupdt.xml at the same time.

floweditor

opens the Flow Editor with no files opened.

Commands

216 Using Platform Process Manager

flowmanager
starts the Flow Manager.

Synopsis
flowmanager

Description
You use the flowmanager command to start the Flow Manager, which allows you to monitor and control
existing flows.

Example
flowmanager

opens the Flow Manager.

Commands

Using Platform Process Manager 217

jadmin
controls the Platform Process Manager daemon jfd on UNIX.

Synopsis
jadmin [-s] start

jadmin stop

jadmin [-h|-V]

Description
You use the jadmin command to start and stop the Platform Process Manager daemon. You must be
either root or the primary Platform Process Manager administrator to stop the Platform Process Manager
daemon.

Options
start

Starts the Platform Process Manager daemon on UNIX. Ensure Platform Process
Manager is up and running before you start the Platform Process Manager daemon.
You must be root to use this option.

-s start

Starts the Platform Process Manager daemon on UNIX in single-user mode. Ensure
Platform Process Manager is up and running before you start the Platform Process
Manager daemon. You must be the primary Platform Process Manager administrator
to use this option.

stop

Stops the Platform Process Manager daemon on UNIX. You must be root or the
primary Platform Process Manager administrator to use this option.

-h

Prints the command usage to stderr and exits.
-V

Prints the Platform Process Manager release version to stderr and exits.

Examples
jadmin start

Starts the Platform Process Manager daemon.

jadmin -s start

Starts the Platform Process Manager daemon in single-user mode.

jadmin stop

Commands

218 Using Platform Process Manager

Stops the Platform Process Manager daemon.

See also
jfd, js.conf

Commands

Using Platform Process Manager 219

jalarms
lists the open alarms in Platform Process Manager.

Synopsis
jalarms [-u user_name|-u all] [-f flow_name|-i flow_id] [-t start_time,end_time]

jalarms [-h]|[-V]

Description
You use the jalarms command to display an open alarm or a list of the open alarms. The following
information is displayed:

• alarm name
• user who owns the flow
• the date and time the alarm occurred
• alarm type
• Description of the problem that caused the alarm, if it was specified by the creator of the flow

Options
-u user_name

Specifies the name of the user who owns the alarm. If you do not specify a user name,
user name defaults to the user who invoked this command. If you specify -u all,
information is displayed about alarms owned by all users.

-f flow_name

Specifies the name of the flow definition for which to display alarm information.
Displays alarm information for flow definitions with the specified name.

-i flow_ID

Specifies the ID of the flow for which to display alarm information. Displays alarm
information for flows with the specified ID.

-t start_time,end_time

Specifies the span of time for which you want to display the alarms. If you do not specify
a start time, the start time is assumed to be the time the first alarm was opened. If you
do not specify an end time, the end time is assumed to be now.

Specify the times in the format "yyyy/mm/dd/HH:MM". Do not specify spaces in the
time interval string.

The time interval can be specified in many ways.
-h

Prints the command usage to stderr and exits.
-V

Prints the Platform Process Manager release version to stderr and exits.

Commands

220 Using Platform Process Manager

Time interval format
You use the time interval to define a start and end time for collecting the data to be retrieved and displayed.
While you can specify both a start and an end time, you can also let one of the values default. You can
specify either of the times as an absolute time, by specifying the date or time, or you can specify them
relative to the current time.

Specify the time interval is follows:

start_time,end_time|start_time,|,end_time|start_time

Specify start_time or end_time in the following format:

[year/][month/][day][/hour:minute|/hour:]|.|.-relative_int

Where:

• year is a four-digit number representing the calendar year.
• month is a number from 1 to 12, where 1 is January and 12 is December.
• day is a number from 1 to 31, representing the day of the month.
• hour is an integer from 0 to 23, representing the hour of the day on a 24-hour clock.
• minute is an integer from 0 to 59, representing the minute of the hour.
• . (period) represents the current month/day/hour:minute.
• .-relative_int is a number, from 1 to 31, specifying a relative start or end time prior to now.

start_time,end_time

Specifies both the start and end times of the interval.
start_time,

Specifies a start time, and lets the end time default to now.
,end_time

Specifies to start with the first logged occurrence, and end at the time specified.
start_time

Starts at the beginning of the most specific time period specified, and ends at the
maximum value of the time period specified. For example, 3/ specifies the month
of March—start March 1 at 00:00 a.m. and end at the last possible minute in March:
March 31st at midnight.

Absolute time examples
Assume the current time is May 9 17:06 2002:

1,8 = May 1 00:00 2002 to May 8 23:59 2002

,4 = the time of the first occurrence to May 4 23:59 2002

6 = May 6 00:00 2002 to May 6 23:59 2002

3/ = Mar 1 00:00 2002 to Mar 31 23:59 2002

/12: = May 9 12:00 2002 to May 9 12:59 2002

2/1 = Feb 1 00:00 2002 to Feb 1 23:59 2002

2/1, = Feb 1 00:00 to the current time

Commands

Using Platform Process Manager 221

,. = the time of the first occurrence to the current time

,2/10: = the time of the first occurrence to May 2 10:59 2002

2001/12/31,2002/5/1 = from Dec 31, 2001 00:00:00 to May 1st 2002 23:59:59

Relative time examples
.-9, = April 30 17:06 2002 to the current time

,.-2/ = the time of the first occurrence to Mar 9 17:06 2002

.-9,.-2 = nine days ago to two days ago (April 30, 2002 17:06 to May 7, 2002 17:06)

Example
jalarms -u all -t ".-7,."

displays all of the opened alarms for the last seven days.

Commands

222 Using Platform Process Manager

jcadd
creates a calendar and adds it to the set of Platform Process Manager calendars for the user.

Synopsis
jcadd [-d description] [-s] -t "cal_expression" "cal_name"

jcadd [-h]|[-V]

Description
You use the jcadd command when you need to define a new time expression for use in scheduling either
a flow or a work item within a flow. You define a new time expression by creating a calendar with that
expression. The calendar is owned by the user who runs this command. You must define a calendar
expression when you use this command.

Options
-d description

Specifies a description for the calendar. Specify a meaningful description for the
calendar that summarizes the expression.

-s

Specifies that you are creating a system calendar. You must be a Platform Process
Manager administrator to create system calendars.

-t cal_expression

Specifies the dates on which you want some action to take place. You can enter specific
dates, a range of dates, or a more complex expression that resolves to a series of dates.

Note:
If you want the calendars you create to be viewable in the Calendar
Editor, specify abbreviated month and day names in all uppercase.
For example: MON for Monday, MAR for March.

cal_name

Specifies the name of the calendar you are creating. Specify a unique name for the
calendar. The first character cannot be a number. You can also use an underscore (_)
in the calendar name.

-h

Prints the command usage to stderr and exits.
-V

Prints the Platform Process Manager release version to stderr and exits.

Commands

Using Platform Process Manager 223

Limitations
Note that only merged calendars or calendar expressions with the following format can be viewed through
the Calendar Editor graphical user interface:
RANGE(startdate[, enddate]):PERIOD(1,*,step):occurrence

Some examples that follow this format are:
RANGE(2001/1/1,2002/1/1):day(1,*,3) RANGE(2001/1/1,2002/1/1):week(1,*,3):MON,TUE RANGE
(2001/1/1,2002/1/1):week(1,*,3):ABC(1) RANGE(2001/1/1,2002/1/1):month(1,*,3):1,3,5
RANGE(2001/1/1,2002/1/1):month(1,*,3):MON(1),TUE(1) RANGE(2001/1/1,2002/1/1):month
(1,*,3):ABC(1) RANGE(2001/1/1,2002/1/1):JAN:1||RANGE(2001/1/1,2002/1/1):JAN:2 ABC &&
DEF || HIJ

where ABC, DEF, HIJ are predefined calendars.

Creating calendar expressions
You can create several types of calendar expressions when you are creating or modifying a calendar. You
use these expressions within system calendar definitions or calendars defined or modified using the
jcadd or jcmod commands:

• Absolute dates
• Schedules that recur daily
• Schedules that recur weekly
• Schedules that recur monthly
• Schedules that recur yearly
• Combined calendars

To create absolute dates:
Specify the date in the following standard format:
(yyyy/mm/dd)

For example:
(2001/12/31)

Specify multiple dates separated by commas. For example:
(2001/12/31,2002/12/31)

To create schedules that recur daily:
Specify the expression in the following format:
RANGE(startdate[,enddate]):day(1,*,step)

The ending date is optional. If it is not specified, the calendar is valid indefinitely. For example:
RANGE(2003/2/1,2003/12/31):day(1,*,2)

In the above example, the expression is true every other day, beginning February 1, 2003, until December
31, 2003.

To create schedules that recur weekly:
Specify the expression in one of the following formats:
RANGE(startdate[,enddate]):week(1,*,step):day_of_week

Commands

224 Using Platform Process Manager

where step is the interval between weeks and day_of_week is one or more days of the week, separated by
commas. For example:
RANGE(2002/12/31):week(1,*,2):MON,FRI,SAT

or
RANGE(startdate[,enddate]):week(1,*,step):abc(ii)

where step is the interval between weeks, abc is a previously defined calendar name and ii is an integer
indicating a specific occurrence of a day within that calendar. For example:
RANGE(2002/01/01):week(1,*,3):MON(-1)

In the above example, MON(-1) refers to last Monday.

To create schedules that recur monthly:
Specify the expression in one of the following formats:
RANGE(startdate[,enddate]):month(1,*,step):day_of_month

where step is the interval between months and day_of_month is one or more days of the month by number,
separated by commas. For example:
RANGE(2002/12/31):month(1,*,2):1,15,30

or
RANGE(startdate[,enddate]):month(1,*,step):abc(ii)

where step is the interval between months, abc is a previously defined calendar name or built-in keyword
and ii is an integer indicating a specific occurrence of a day within that calendar. For example:
RANGE(2002/01/01):month(1,*,3):MON(-1)

In the above example, MON(-1) refers to last Monday.

or
RANGE(startdate[,enddate]):month(1,*,step):day_of_week(ii)

where step is the interval between months, day_of_week is one or more days of the week separated by
commas, and ii is an integer indicating a specific occurrence of a day within that calendar. For example:
RANGE(2002/01/01):month(1,*,3):MON(-1)

In the above example, MON(-1) refers to last Monday.

To create schedules that recur yearly:
Specify the expression in the following format:
RANGE(startdate[,enddate]):month:day

where month is the name of the month (JAN, FEB, MAR...DEC) and day is the day of the month
(1,2,3...29,30,31). For example:
RANGE(2002/1/1,2004/12/31):JAN:1

To merge calendar expressions:
You can use Boolean logic to further qualify your schedule expressions. For example:
Mondays@Sys||Fridays@Sys && !Holidays@Sys

where Mondays@Sys, Fridays@Sys and Holidays@Sys are all predefined system calendars.

Commands

Using Platform Process Manager 225

Built-in keywords-reserved words
Platform Process Manager reserves words that are used as building blocks to create calendars. You cannot
use these reserved words in a calendar name. However, you can use them within calendar expressions,
and they are recognized by Platform Process Manager. The following are the reserved words:

• apr, april, APR
• aug, august, AUG
• dates, DATES
• day, DAY
• dec, december, DEC
• feb, february, FEB
• fri, friday, FRI
• fy, FY
• h, HH
• jan, january, JAN
• jul, july, JUL
• jun, june, JUN
• m, MM
• mar, march, MAR
• may, MAY
• mon, monday, MON
• month, MONTH
• nov, november, NOV
• oct, october, OCT
• quarter, QUARTER
• range, RANGE
• sat, saturday, SAT
• sep, september, SEP
• sun, sunday, SUN
• thu, thursday, THU
• tue, tuesday, TUE
• wed, wednesday, WED
• yy, YY
• zzz, ZZZZ

Examples
jcadd -d "Mondays but not holidays" -t "Mondays@Sys && ! Holidays@Sys"
Mon_Not_Holiday

Creates a calendar called Mon_Not_Holiday. This calendar resolves to any Monday that is not
a holiday, as defined in the Holidays system calendar.
jcadd -d "Mondays, Wednesdays and Fridays" -t "Mondays@Sys || Wednesdays@Sys ||
Fridays@Sys" Everyotherday

Creates a calendar called Everyotherday that resolves to Mondays, Wednesdays and Fridays.
jcadd -d "Monday to Thursday" -t "*:*:MON-THU" Shortweek

Commands

226 Using Platform Process Manager

Creates a calendar called Shortweek that resolves to Mondays, Tuesdays, Wednesdays and
Thursdays, every month.
jcadd -d "Db report dates" -t "*:JAN,JUN,DEC:day(1)" dbrpt

Creates a calendar called dbrpt that resolves to the first day of January, June and December,
every year.

See also
jcdel, jcals

Commands

Using Platform Process Manager 227

jcals
displays the list of calendars in Platform Process Manager. The calendars are listed by owning user ID.

Synopsis
jcals [-l] [-u user_name|-u all] [cal_name]

jcals [-h]|[-V]

Description
You use the jcals command to display information about one or more calendars. When using the default
display option, the following information is displayed:

• user name
• calendar name
• the expression

Options
-l

Specifies to display the information in long format. In addition to the information listed
above, this option displays the status of calendar (whether it is true today or not), the
last date the calendar resolved to, the next date the calendar resolves to, and the calendar
description.

-u user_name

Specifies the name of the user who owns the calendar. If you do not specify a user name,
user name defaults to the user who invoked this command. If you specify -u all,
information is displayed about calendars owned by all users.

cal_name

Specifies the name of the calendar. If you do not specify a calendar name, all calendars
meeting the other criteria are displayed.

-h

Prints the command usage to stderr and exits.
-V

Prints the Platform Process Manager release version to stderr and exits.

Examples
jcals -u all

Displays all calendars in Platform Process Manager.

Commands

228 Using Platform Process Manager

jcdel
deletes an existing calendar.

Synopsis
jcdel [-f][-u user_name] cal_name [cal_name ...]

jcdel [-h]|[-V]

Description
You use the jcdel command to delete one or more calendars from Platform Process Manager. You must
be the owner of a calendar to delete it.

If you delete a calendar that is currently in use by a flow definition or flow, or another calendar, the deleted
calendar will continue to be available to these existing instances, but will no longer be available to new
instances.

Options
-f

Specifies to force the deletion of the calendar.
-u user_name

Specifies the name of the user who owns the calendar. If you do not specify a user name,
the user name defaults to the user who invoked this command.

cal_name

Specifies the name of the calendar you are deleting. You can specify multiple calendar
names by separating the names with a space.

-h

Prints the command usage to stderr and exits.
-V

Prints the Platform Process Manager release version to stderr and exits.

Examples
jcdel -u "barneyt" Rundays2001

Deletes the calendar Rundays2001 owned by the user barneyt.

See also
jcadd, jcals

Commands

Using Platform Process Manager 229

jcmod
edits an existing calendar. Using this command, you can change the calendar expression and the
description of the calendar.

Synopsis
jcmod [-d description] [-u user_name] [-t cal_expression] cal_name

jcmod [-h]|[-V]

Description
You use the jcmod command when you need to change either the calendar expression or the description
of an existing calendar. You must be the owner of the calendar or be a Platform Process Manager
administrator to change a calendar.

If you modify a calendar that is in use by a flow definition or flow, or another calendar, your changes will
only take effect on any new instances; current instances will continue to use the previous calendar
definition.

Options
-d description

Specifies a description for the calendar. Specify a meaningful description for the
calendar that summarizes the expression.

-u user_name

Specifies the name of the user who owns the calendar. If you do not specify a user name,
the user name defaults to the user who invoked this command.

-t cal_expression

Specifies the dates on which you want some action to take place. You can enter specific
dates, a range of dates, or a more complex expression that resolves to a series of dates.

cal_name

Specifies the name of the calendar you are changing. You cannot change the name of
the calendar.

-h

Prints the command usage to stderr and exits.
-V

Prints the Platform Process Manager release version to stderr and exits.

Creating calendar expressions
You can create several types of calendar expressions when you are creating or modifying a calendar. You
use these expressions within system calendar definitions or calendars defined or modified using the
jcadd or jcmod commands:

• Absolute dates

Commands

230 Using Platform Process Manager

• Schedules that recur daily
• Schedules that recur weekly
• Schedules that recur monthly
• Schedules that recur yearly
• Combined calendars

To create absolute dates:
Specify the date in the following standard format:
(yyyy/mm/dd)

For example:
(2001/12/31)

Specify multiple dates separated by commas. For example:
(2001/12/31,2002/12/31)

To create schedules that recur daily:
Specify the expression in the following format:
RANGE(startdate[,enddate]):day(1,*,step)

The ending date is optional. If it is not specified, the calendar is valid indefinitely. For example:
RANGE(2003/2/1,2003/12/31):day(1,*,2)

In the above example, the expression is true every other day, beginning February 1, 2003, until December
31, 2003.

To create schedules that recur weekly:
Specify the expression in one of the following formats:
RANGE(startdate[,enddate]):week(1,*,step):day_of_week

where step is the interval between weeks and day_of_week is one or more days of the week, separated by
commas. For example:
RANGE(2002/12/31):week(1,*,2):MON,FRI,SAT

or
RANGE(startdate[,enddate]):week(1,*,step):abc(ii)

where step is the interval between weeks, abc is a previously defined calendar name and ii is an integer
indicating a specific occurrence of a day within that calendar. For example:
RANGE(2002/01/01):week(1,*,3):MON(-1)

In the above example, MON(-1) refers to last Monday.

To create schedules that recur monthly:
Specify the expression in one of the following formats:
RANGE(startdate[,enddate]):month(1,*,step):day_of_month

where step is the interval between months and day_of_month is one or more days of the month by number,
separated by commas. For example:
RANGE(2002/12/31):month(1,*,2):1,15,30

Commands

Using Platform Process Manager 231

or
RANGE(startdate[,enddate]):month(1,*,step):abc(ii)

where step is the interval between months, abc is a previously defined calendar name or built-in keyword
and ii is an integer indicating a specific occurrence of a day within that calendar. For example:
RANGE(2002/01/01):month(1,*,3):MON(-1)

In the above example, MON(-1) refers to last Monday.

or
RANGE(startdate[,enddate]):month(1,*,step):day_of_week(ii)

where step is the interval between months, day_of_week is one or more days of the week separated by
commas, and ii is an integer indicating a specific occurrence of a day within that calendar. For example:
RANGE(2002/01/01):month(1,*,3):MON(-1)

In the above example, MON(-1) refers to last Monday.

To create schedules that recur yearly:
Specify the expression in the following format:
RANGE(startdate[,enddate]):month:day

where month is the name of the month (JAN, FEB, MAR...DEC) and day is the day of the month
(1,2,3...29,30,31). For example:
RANGE(2002/1/1,2004/12/31):JAN:1

To merge calendar expressions:
You can use Boolean logic to further qualify your schedule expressions. For example:
Mondays@Sys||Fridays@Sys && !Holidays@Sys

where Mondays@Sys, Fridays@Sys and Holidays@Sys are all predefined calendars.

Built-in keywords—reserved words
Platform Process Manager reserves words that are used as building blocks to create calendars. You cannot
use these reserved words in a calendar name. However, you can use them within calendar expressions,
and they are recognized by Platform Process Manager. The following are the reserved words:

• apr, april, APR
• aug, august, AUG
• dates, DATES
• day, DAY
• dec, december, DEC
• feb, february, FEB
• fri, friday, FRI
• fy, FY
• h, HH
• jan, january, JAN
• jul, july, JUL
• jun, june, JUN
• m, MM

Commands

232 Using Platform Process Manager

• mar, march, MAR
• may, MAY
• mon, monday, MON
• month, MONTH
• nov, november, NOV
• oct, october, OCT
• quarter, QUARTER
• range, RANGE
• sat, saturday, SAT
• sep, september, SEP
• sun, sunday, SUN
• thu, thursday, THU
• tue, tuesday, TUE
• wed, wednesday, WED
• yy, YY
• zzz, ZZZZ

EXAMPLES
jcmod -d "Valentines Day" -u "barneyt" -t "*:Feb:14" SpecialDays

Modifies a calendar called SpecialDays. This calendar resolves to February 14th every year.

Commands

Using Platform Process Manager 233

jcomplete
acknowledges that a manual job is complete and specifies to continue processing the flow.

Synopsis
jcomplete [-d description] [-u user_name] [-e exit_code]-i flow_id flow_name
[:subflow_name]:manual_job_name

jcomplete [-h]|[-V]

Description
You use the jcomplete command to mark a manual job complete, to tell Platform Process Manager to
continue processing that part of the flow. Only the branch of the flow that contains the manual job is
affected by the manual job—other branches continue to process as designed. You must be the owner of
the manual job or a Platform Process Manager administrator to complete a manual job.

Options
-d description

Describes the manual process completed. You can use this field to describe results of
the process, or any pertinent comments.

-e exit_code

Specifies the exit code with which to complete the manual job.

The exit code you specify determines the state of the manual job. Exit codes can be any
number from 0 to 255.

If you did not define custom success exit codes in the Manual Job Definition, an exit
code of 0 indicates the manual job was successful and the state is set to Done. Any other
exit code indicates the manual job failed and its state is set to Exited.

If you defined custom success exit codes in the Manual Job Definition, an exit code of
0 and any of the numbers you specified in the Non-zero success exit codes field indicates
the manual job was successful and the state is set to Done. Any other exit code indicates
the manual job failed and its state is set to Exited.

-i flow_id

Specifies the ID of the flow in which the manual job is to be completed. This option is
required to differentiate between multiple occurrences of the flow, ensuring the correct
job is completed.

flow_name:subflow_name:manual_job_name

Specifies the name of the manual job to complete. Specify the fully-qualified manual
job name, which is the flow name followed by the subflow name, if applicable, followed
by the name of the manual job. For example:
myflow:prtcheck:prtpage

Specify the manual job name in the same format as it is displayed by the jmanuals
command.

Commands

234 Using Platform Process Manager

-u user_name

Specifies the name of the user who owns the manual job you are completing. If you do
not specify a user name, user name defaults to the user who invoked this command.

-h

Prints the command usage to stderr and exits.
-V

Prints the Platform Process Manager release version to stderr and exits.

Examples
jcomplete -d "printed check numbers 4002 to 4532" -i 42 payprt:checkprinter

completes the manual job checkprinter in the flow payprt with flow ID 42, and adds the
comment "printed check numbers 4002 to 4532".

See also
jmanuals jjob

Commands

Using Platform Process Manager 235

jdefs
displays information about the flow definitions stored in Platform Process Manager for the specified user.

Synopsis
jdefs [-l] [-u user_name|-u all] [-s status] [definition_name [definition_name ...]] [-v]

jdefs [-h]|[-V]

Description
You use the jdefs command to display information about flow definitions and any associated flows.
When using the default display option, the following information is displayed:

• user name
• flow name
• the status of the flow definition
• flow IDs of any associated flows
• the state of each flow
• flow version history and details

Options
-l

Specifies to display the information in long format. In addition to the information listed
above, this option displays the following information:

• any events defined to trigger the flow
• any exit conditions specified in the flow definition
• the default version and the latest version of the flow

-u user_name

Specifies the name of the user who owns the flow definitions. If you do not specify a
user name, user name defaults to the user who invoked this command. If you specify -
u all, information is displayed about flow definitions owned by all users.

-s status

Specifies to display information about only the flow definitions that have the specified
status. The default is to display all flow definitions regardless of status. Specify one of
the following values for status:

ONHOLD

Displays information about flow definitions that are on hold: these are
definitions that are not currently eligible to trigger automatically.

RELEASE

Displays information about flow definitions that are not on hold. This includes
any flow definitions that were submitted with events and flow definitions that
were submitted to be triggered manually. This does not include flows that were
submitted on an adhoc basis, to be run once, immediately.

Commands

236 Using Platform Process Manager

definition_name

Specifies the name of the flow definition. If you do not specify a flow name, all flow
definitions meeting the criteria are displayed. To specify a list of flow definitions,
separate the flow definition names with a space.

-v

Displays the version history of the flow.
-h

Prints the command usage to stderr and exits.
-V

Prints the Platform Process Manager release version to stderr and exits.

Examples
jdefs -u barneyt -s RELEASE

Displays all flow definitions owned by barneyt that are not on hold.

Commands

Using Platform Process Manager 237

jflows
displays information about the flows in Platform Process Manager for the specified user. The information
listed includes the current state and version of the flow.

Synopsis
jflows [-l] [-u user_name|-u all] [-f flow_name] [-s state]

jflows [-l] [flow_id [flow_id ...] | 0]

jflows [-h]|[-V]

Description
You use the jflows command to display information about one or more flows. When using the default
display option, the following information is displayed:
• user name
• flow name
• flow ID
• the state of the flow
• start and end time for each flow

Options
-l

Specifies to display the information in long format. In addition to the information listed
above, this option displays the states of all jobs, job arrays, subflows, and flow arrays in
the flow, and displays the currently-used version in the flow.

-u user_name

Specifies the name of the user who owns the flow. If you do not specify a user name,
user name defaults to the user who invoked this command. If you specify -u all,
information is displayed about flows owned by all users.

-f flow_name

Specifies the name of the flow definition. If you do not specify a flow definition name,
all flow definitions meeting the other criteria you specify are displayed. This option is
mutually exclusive with the other options—if you specify a flow name, you cannot
specify a flow ID.

-s state

Specifies to display information about only the flows that have the specified state. If you
do not specify a state, flows of all states that meet the other criteria you specify are
displayed. Specify one of the following values for state:

Done

Displays information about flows that completed successfully.
Exit

Displays information about flows that failed.

Commands

238 Using Platform Process Manager

Killed

Displays information about flows that were killed.
Running

Displays information about flows that are running.
Suspended

Displays information about flows that were suspended.
Waiting

Displays information about flows that are waiting.
flow_id

Specify the ID number of the flow. If you do not specify a flow ID, all flows meeting the
other criteria you specify are displayed. This option is mutually exclusive with the other
options—if you specify a flow ID, you cannot specify a flow name. To specify a list of
flows, separate the flow IDs with a space.

0

Specifies to display all flows.
-h

Prints the command usage to stderr and exits.
-V

Prints the Platform Process Manager release version to stderr and exits.

Examples
jflows -f myflow

Displays all flows associated with the flow definition myflow.

Commands

Using Platform Process Manager 239

jhist
displays historical information about Platform Process Manager Server, calendars, flow definitions, flows,
and jobs.

Synopsis
jhist -C category[,category,...] [-u user_name|-u all] [-c calendar_name] [-f flow_name] [-i flow_ID] [-j
job_name] [-t start_time,end_time]

jhist [-h|-V]

Description
You use the jhist command to display historical information about the specified object, such as a
calendar, job, or flow. You can display information about a single type of work item or multiple types of
work items, for a single user or for all users.

If you do not specify a user name, jhist displays information for the user who invoked the command.
If you do not specify a time interval, jhist displays information for the past 7 days, starting at the time
the jhist command was invoked.

If your Platform Process Manager Client and Platform Process Manager Server are on separate hosts, the
number of history records retrieved is limited to 1500 records by default. If the limit is reached, only the
first (oldest) 1500 are retrieved. This limit is configurable with the variable JS_HISTORY_LIMIT in
js.conf.

Options
-C category

Specifies the type of object for which you want to see history. Choose from the following
values:

• alarm-displays historical information about one or more alarms
• calendar-displays historical information about one or more calendars
• daemon-displays historical information about Platform Process Manager Server
• flowdef-displays historical information about one or more flow definitions
• flow-displays historical information about one or more flows
• job-displays historical information about one or more jobs or job arrays

You can specify more than one category by separating categories with a comma (,).

-u user_name

Displays information about categories owned by the specified user. If you do not
specify a user name, user name defaults to the user who invoked this command. If
you specify -u all, information is displayed about flows owned by all users.

-t start_time,end_time

Specifies the span of time for which you want to display the history. If you do not
specify a start time, the start time is assumed to be 7 days prior to the time the
jhist command is issued. If you do not specify an end time, the end time is assumed
to be now.

Commands

240 Using Platform Process Manager

Specify the times in the format "yyyy/mm/dd/HH:MM". Do not specify spaces in the
time interval string.

The time interval can be specified in many ways.
-c calendar_name

Specifies the name of the calendar for which to display historical information. If you
do not specify a calendar name when displaying calendars, information is displayed
for all calendars owned by the specified user.

Valid only when used with the calendar category.
-f flow_name

Specifies the name of the flow definition for which to display historical information.
Displays flow definition, flow, or job information for flow definitions with the
specified name.

Valid only with the flowdef, flow, and job categories.
-i flow_ID

Specifies the ID of the flow for which to display historical information. Displays flow
and job information for flows with the specified ID.

Valid only with the flow and job categories.
-j job_name

Specifies the name of the job, job array or alarm to display historical information
about. Displays information about the job, job array or alarm with the specified
name.

Valid with the job or alarm categories.
-h

Prints the command usage to stderr and exits.
-V

Prints the Platform Process Manager release version to stderr and exits.

Usage
-C alarm

Displays the time when the alarm was raised and the type and description of the alarm.
-C calendar

Displays the times when calendars are added or deleted.
-C daemon

Displays the server startup and shutdown times. These values are only displayed when
root invokes jhist or the -u root option is used.

-C flowdef

Commands

Using Platform Process Manager 241

Displays information about when a flow definition state is:
• Submit-When a flow definition is submitted
• SubmitAndRun-When a flow runs immediately
• Remove-When a flow definition is removed from the system
• Release-When a flow definition is released from on hold
• Hold-When a flow definition is placed on hold
• Trigger-When a flow definition is triggered manually or by an event
• Instantiate-When a flow is created

-C flow

Displays information about when a flow state is:
• Start-When a flow is started
• Kill-When a flow is killed
• Suspend-When a flow is suspended
• Resume-When a flow is resumed from the Suspended state
• Finished-When a flow is completed

-C job

Displays information about when a job or job array is:
• Started
• Killed
• Suspended
• Resumed
• Finished

Time interval format
You use the time interval to define a start and end time for collecting the data to be retrieved and displayed.
Although you can specify both a start and an end time, you can also let one of the values default. You can
specify either of the times as an absolute time, by specifying the date or time, or you can specify them
relative to the current time.

Specify the time interval is follows:

start_time,end_time|start_time,|,end_time|start_time

Specify start_time or end_time in the following format:

[year/][month/][day][/hour:minute|/hour:]|.|.-relative_int

Where:

• year is a four-digit number representing the calendar year.
• month is a number from 1 to 12, where 1 is January and 12 is December.
• day is a number from 1 to 31, representing the day of the month.
• hour is an integer from 0 to 23, representing the hour of the day on a 24-hour clock.
• minute is an integer from 0 to 59, representing the minute of the hour.
• . (period) represents the current month/day/hour:minute.
• .-relative_int is a number, from 1 to 31, specifying a relative start or end time prior to now.

start_time,end_time

Specifies both the start and end times of the interval.

Commands

242 Using Platform Process Manager

start_time,

Specifies a start time, and lets the end time default to now.
,end_time

Specifies to start with the first logged occurrence, and end at the time specified.
start_time

Starts at the beginning of the most specific time period specified, and ends at the
maximum value of the time period specified. For example, 3/ specifies the month
of March-start March 1 at 00:00 a.m. and end at the last possible minute in March:
March 31st at midnight.

Absolute time examples
Assume the current time is May 9 17:06 2005:

1,8 = May 1 00:00 2005 to May 8 23:59 2005

,4 = the time of the first occurrence to May 4 23:59 2005

6 = May 6 00:00 2005 to May 6 23:59 2005

3/ = Mar 1 00:00 2005 to Mar 31 23:59 2005

/12: = May 9 12:00 2005 to May 9 12:59 2005

2/1 = Feb 1 00:00 2005 to Feb 1 23:59 2005

2/1, = Feb 1 00:00 to the current time

,. = the time of the first occurrence to the current time

,2/10: = the time of the first occurrence to May 2 10:59 2005

2001/12/31,2005/5/1 = from Dec 31, 2001 00:00:00 to May 1st 2005 23:59:59

Relative time examples
.-9, = April 30 17:06 2005 to the current time

,.-2/ = the time of the first occurrence to Mar 7 17:06 2005

.-9,.-2 = nine days ago to two days ago (April 30, 2005 17:06 to May 7, 2005 17:06)

Examples
Display information about the calendar mycalendar and all flows for user1:
jhist -C calendar,flow -u user1 -c mycalendar

Display information about the daemon and calendar for the past 30 days:
jhist -C calendar,daemon -t .-30,. -u all

Display information for all flows with the name flow1, for user1 in the past week (counting 7
days back from today):
jhist -C flow -u user1 -f flow1 -t .-7,.

Commands

Using Platform Process Manager 243

Display information for all flows with the ID 231 for the past 3 days:
jhist -C flow -i 231 -t .-3,.

Display information for all flows with the ID 231 and all related jobs from March 25, 2005 to
March 31, 2005:
jhist -C flow,job -i 231 -t 2005/3/25,2005/3/31

Display information for all flows with the ID 101 and all related jobs with the name myjob:
jhist -C flow,job -i 101 -j myjob

Display information for all flows associated with the flow definition myflow and flows dated
later than January 31, 2005
jhist -C flowdef,flow -f myflow 2005/1/31,.

Commands

244 Using Platform Process Manager

jhold
places a previously submitted flow definition on hold. No automatic events can trigger this definition
until it has been explicitly released. Use this command when you want to temporarily interrupt automatic
triggering of a flow. When a flow is on hold, it can still be triggered manually, such as for testing purposes.

Synopsis
jhold [-u user_name] flow_name [flow_name ...]

jhold [-h]|[-V]

Description
You use the jhold command to place a submitted flow definition on hold. This prevents it from being
triggered automatically by any events. You must be the owner of a flow definition or the Platform Process
Manager administrator to place a flow definition on hold.

Options
-u user_name

Specifies the name of the user who owns the flow. Use this option if you have
administrator authority and you are holding the flow on behalf of another user. If you
do not specify a user name, user name defaults to the user who invoked this command.

flow_name

Specifies the name of the flow definition. To specify a list of flow definitions, separate
the flow definition names with a space.

-h

Prints the command usage to stderr and exits.
-V

Prints the Platform Process Manager release version to stderr and exits.

Examples
jhold myflow

Places the flow definition myflow, which is owned by the current user, on hold.
jhold -u "user01" payupdt

Places the flow definition payupdt, which is owned by user01, on hold.

See also
jrelease

Commands

Using Platform Process Manager 245

jid
displays the host name, version number and copyright date of the current Platform Process Manager
Server.

Synopsis
jid [-h|-V]

Description
You use the jid command to verify the connection between Platform Process Manager Client and
Platform Process Manager Server. If the command returns the host name of Platform Process Manager
Server, you have successfully connected to the server. If server failover is enabled, the jid command
displays the host where the server is currently running.

Options
-h

Prints command usage to stderr and exits.
-V

Prints Platform Process Manager release version to stderr and exits.

Commands

246 Using Platform Process Manager

jjob
controls a job in a running flow.

Synopsis
jjob [-u user_name] -i flow_id -c | -k | -r | -p | -g | -l flow_name[:subflow_name]:job_name

Flow arrays in UNIX:

jjob [-u user_name] -i flow_id -c | -k | -r | -p | -g | -l "flow_name[:subflow_name]:job_name"

jjob [-h]|[-V]

Description
You use the jjob command to kill or run a job, or mark a job complete. You must be the owner of the
job or a Platform Process Manager administrator or control administrator to control it.

Options
-u user_name

Specifies the name of the user who owns the job you are controlling. If you do not specify
a user name, user name defaults to the user who invoked this command.

-i flow_id

Specifies the ID of the flow containing the job to be controlled. This option is required
to differentiate between multiple occurrences of the flow, ensuring the correct job is
selected.

-c

Specifies to mark the job complete. You can only complete a job in a flow that has exited.
you use this option before rerunning a flow, to continue processing the remainder of
the flow.

-k

Specifies to kill the job.
-r

Specifies to run or rerun the job.
-p

Specifies to put the job on hold. Only jobs in the Waiting state can be put on hold. You
can put on hold LSF jobs, job submission scripts, local jobs, and job arrays.

If the selected job is in a flow array, by default the hold applies to the job in the element
the job is in. You can, alternatively, apply the hold to jobs in all elements in the flow
array.

When you put a job in the flow on hold, the flow pauses at that specific job. Only the
branch of the flow that contains the job that is On Hold pauses. Other branches of the
flow continue to run. The status of the flow is not affected.

Commands

Using Platform Process Manager 247

When desired, you can then release the job that you have put on hold.
-g

Specifies to release a job that has been put on hold. You can release LSF jobs, job
submission scripts, local jobs, and job arrays that have been put on hold.

When you release a job that has been put on hold, the flow instance continues to run
and the job receives the status Waiting.

-l

Specifies to view the detailed history of local and input variables that the job uses. This
does not show global variables.

flow_name:subflow_name:manual_job_name

Specifies the name of the job to control. Specify the fully-qualified job name, which is
the flow name followed by the subflow name, if applicable, followed by the name of the
job. For example:
myflow:print:prtreport

Note:
When specifying the job name for a flow array, you must enclose
the name in quotation marks ("). This is because the Linux
command line does not process parentheses characters ((or))
properly unless you use quotation marks.

For example:

"myflow:print(5):prtreport"

-h

Prints the command usage to stderr and exits.
-V

Prints the Platform Process Manager release version to stderr and exits.

Examples

Kill a specific flow
jjob -i 42 -k payprt:report

kill the job report in the flow payprt with flow ID 42.

Hold and release a job
• Hold a job

jjob -i 42 -p "myflow:myjob"

Commands

248 Using Platform Process Manager

In flow with ID 42, flow name myflow, put the job named myjob on hold. The job receives
the status On Hold and the flow stops running when it reaches that specific job.

• Release the job
jjob -i 42 -g "myflow:myjob"

In flow with ID 42, flow name myflow, release the job named myjob. The flow will resume
running from that point onward in the flow.

Hold and release a job array
• Hold a job array

jjob -i 42 -p -a "myflow:myarray"

In flow with ID 42, flow name myflow, put the job array named myarray on hold. The job
array receives the status On Hold and the flow stops running when it reaches that specific
job array.

• Release the job array
jjob -i 42 -g -a "myflow:myarray"

In flow with ID 42, flow name myflow, release the job array named myarray. The flow will
resume running from that point onward in the flow.

Hold and release a job in a flow array
• Hold a job in a flow array

jjob -i 45 -p "mymainflow:myflowarray(1):myjob"

In flow with ID 45, flow name mymainflow, flow array myflowarray hold the job named
myjob in the first element only. The job receives the status On Hold and the subflow stops
running when it reaches that specific job in the flow array.

• Release the job in the flow array
jjob -i 45 -g "mymainflow:myflowarray(1):myjob"

In flow with ID 45, flow name mymainflow, flow array named myflowarray, release the
job named myjob in the first element only. The job receives the status Waiting and the
subflow will continue running once it reaches that job in the flow.

• Hold all jobs in all elements in the flow array
jjob -i 45 -p "mymainflow:myflowarray:myjob"

• Release all jobs in all elements in the flow array
jjob -i 45 -g "mymainflow:myflowarray:myjob"

See Also
jmanuals

Commands

Using Platform Process Manager 249

jkill
kills a flow.

Synopsis
jkill [-u user_name|-u all] [-f flow_name]

jkill flow_id [flow_id ...] | 0

jkill [-h]|[-V]

Description
You use the jkill command to kill all flows, all flows belonging to a particular user, all flows associated
with a flow definition, or a single flow. Any incomplete jobs in the flow are killed. Any work items that
depend on the successful completion of this flow do not run. Only users with administrator authority can
kill flows belonging to another user.

Options
-u user_name

Specifies the name of the user who owns the flow. Use this option if you have
administrator authority and you are killing the flow on behalf of another user. If you
do not specify a user name, user name defaults to the user who invoked this command.
If you specify -u all, and you have administrator authority, you can kill flows belonging
to all users.

-f flow_name

Specifies the name of the flow definition. Use this option if you want to kill all flows
associated with the same flow definition. This option is mutually exclusive with the
other options, if you specify a flow name, you cannot specify a flow ID.

flow_id

Specifies the ID of the flow you want to kill. Use this option if you want to kill one or
more specific flow IDs. This option is mutually exclusive with the other options—if you
specify a flow ID, you cannot specify a flow name. To specify a list of flow IDs, separate
the flow IDs with a space.

0

Specifies to kill all flows.
-h

Prints the command usage to stderr and exits.
-V

Prints the Platform Process Manager release version to stderr and exits.

Commands

250 Using Platform Process Manager

Examples
jkill -f myflow

Kills all flows associated with the flow definition myflow. Does not affect the flow definition.

Commands

Using Platform Process Manager 251

jmanuals
displays all manual jobs that have not yet been completed.

Synopsis
jmanuals [-i flow_ID] [-u username |-u all] [-f flow_definition] [-r yes | -r no]

jmanuals [-h]|[-V]

Description
You use the jmanuals command to list the flows that contain manual jobs that have not yet been
completed.

Options
-i flow_ID

Specifies the ID of the flow for which to display manual jobs.
-u user_name

Displays manual jobs in flows owned by the specified user. If you do not specify a user
name, user name defaults to the user who invoked this command. If you specify -u all,
manual jobs are displayed for flows owned by all users.

-f flow_definition

Specifies the name of the flow definition for which to display manual jobs. Manual jobs
are displayed for all flows associated with this flow definition.

-r yes

Specifies to display only those manual jobs that require completion at this time.
-r no

Specifies to display only those manual jobs that do not require completion at this time.
-h

Prints the command usage to stderr and exits.
-V

Prints the Platform Process Manager release version to stderr and exits.

See also
jcomplete

Commands

252 Using Platform Process Manager

jpublish
publishes a target flow to Platform Process Manager.

Synopsis
jpublish [-u user_name] [-f flow_name] jpublish [-h]|[-V]

Description
You use the jpublish command to publish a target flow to Platform Process Manager. Dynamic subflows
and flow arrays can only refer to published target flows.

Only Platform Process Manager administrators and control administrators can publish target flows.

Options
-u user_name

Specifies the name of the user who owns the flow.
-f flow_name

Specifies the name of the flow. If you do not specify a flow name, all flows meeting the
other criteria are published.

-h

Prints the command usage to stderr and exits.
-V

Prints the Platform Process Manager release version to stderr and exits.

Examples
jpublish -u userA -f flow1

Publishes the flow1 flow belonging to user A.

See also
junpublish

Commands

Using Platform Process Manager 253

jreconfigalarm
reloads the alarm definitions.

Synopsis
jreconfigalarm [-h|-V]

Description
You use the jreconfigalarm command to reload the alarm definitions. You use this command to add
or change alarm definitions without restarting Platform Process Manager Server. You must be a Platform
Process Manager administrator to use this command.

Options
-h

Prints the command usage to stderr and exits.
-V

Prints the Platform Process Manager release version to stderr and exits.

Commands

254 Using Platform Process Manager

jrelease
releases a previously held flow definition.

Synopsis
jrelease [-u user_name] flow_name [flow_name ...]

jrelease [-h]|[-V]

Description
You use the jrelease command to release a submitted flow definition from hold. The flow definition
is now eligible to be triggered automatically by any of its triggering events. Use this command when you
want to resume automatic triggering of a flow.

Options
-u user_name

Specifies the name of the user who owns the flow. Use this option if you have
administrator authority and you are releasing the flow on behalf of another user. If you
do not specify a user name, user name defaults to the user who invoked this command.

flow_name

Specifies the name of the flow definition. To specify a list of flow definitions, separate
the flow definition names with a space.

-h

Prints the command usage to stderr and exits.
-V

Prints the Platform Process Manager release version to stderr and exits.

Examples
jrelease myflow

Releases the flow definition myflow, which is owned by the current user, from hold.
jrelease -u "user01" payupdt

Releases the flow definition payupdt, which is owned by user01, from hold.

See also
jhold

Commands

Using Platform Process Manager 255

jremove
removes a previously submitted flow definition from Platform Process Manager.

Synopsis
jremove [-u user_name] -f flow_name [flow_name ...]

jremove [-h]|[-V]

Description
You use the jremove command to remove a submitted flow definition from Platform Process Manager.
Issuing this command has no impact on any flows associated with the definition, but no further flows can
be triggered from it. Use this command when you no longer require this definition, or when you want to
replace a definition that was created by a user ID that no longer exists. If you want to temporarily interrupt
the automatic triggering of a flow, use the jhold command.

Options
-u user_name

Specifies the name of the user who owns the flow. Use this option if you have
administrator authority and you are removing the flow on behalf of another user. If you
do not specify a user name, user name defaults to the user who invoked this command.

-f

Forces the removal of a flow definition that other flows have dependencies upon.
flow_name

Specifies the name of the flow definition. To specify a list of flow definitions, separate
the flow definition names with a space.

-h

Prints the command usage to stderr and exits.
-V

Prints the Platform Process Manager release version to stderr and exits.

Examples
jremove myflow

Removes the definition myflow from Platform Process Manager. In this example, myflow is
owned by the current user.
jremove -u "user01" payupdt

Removes the definition payupdt from Platform Process Manager. In this example, payupdt
is owned by user01.

Commands

256 Using Platform Process Manager

See also
jsub, jhold

Commands

Using Platform Process Manager 257

jrerun
reruns an exited, done, or running flow.

Synopsis
jrerun [-v "var=value[;var1=value1;...]"] flow_id [flow_id ...]

jrerun [-h]|[-V]

Description
You use the jrerun command to rerun a flow. The flow must have a state of Exit, Done, or Running.

The flow is rerun from the first exited job or starting point, and the flow continues to process as designed.

If the flow contains multiple branches, the flow is rerun from the first exited jobs or starting points in
each branch and continues to process as designed.

You must be the owner of a flow or a Platform Process Manager administrator to use this command.

You cannot use this command to rerun a flow that was killed—you must trigger the flow again.

Options
-v var=value

Specifies to pass variables and their values to the flow when rerunning it. To specify a
list of variables, separate the variable and value pairs with a semi-colon (;). The value of
the variable is available only within the scope of the flow itself—local variables only.

flow_id

Specifies the ID of the flow to rerun. To specify a list of flows, separate the flow IDs with
a space.

-h

Prints the command usage to stderr and exits.
-V

Prints the Platform Process Manager release version to stderr and exits.

Examples
jrerun 1234

reruns the flow with the flow ID 1234.
jrerun -v "USER=jdoe" 277

reruns the flow with the flow ID 277 and passes it a value of jdoe for the USER variable.

Commands

258 Using Platform Process Manager

jresume
resumes a suspended flow.

Synopsis
jresume [-u user_name|-u all] [-f flow_name]

jresume flow_id [flow_id ...] | 0

jresume [-h]|[-V]

Description
You use the jresume command to resume all flows, all flows belonging to a particular user, all flows
associated with a particular flow definition, or a single flow. Only users with administrator authority can
resume flows belonging to another user.

Options
-u user_name

Specifies the name of the user who owns the flow. Use this option if you have
administrator authority and you are resuming the flow on behalf of another user. If you
do not specify a user name, user name defaults to the user who invoked this command.
If you specify -u all, and you have administrator authority, you can resume flows
belonging to all users.

-f flow_name

Specifies the name of the flow definition. Use this option if you want to resume all
suspended flows associated with the same definition. This option is mutually exclusive
with the other options—if you specify a flow name, you cannot specify a flow ID.

flow_id

Specifies the ID of the flow you want to resume. Use this option if you want to resume
one or more specific flow IDs. This option is mutually exclusive with the other options
—if you specify a flow ID, you cannot specify a flow name. To specify a list of flow IDs,
separate the flow IDs with spaces.

0

Specifies to resume all suspended flows.
-h

Prints the command usage to stderr and exits.
-V

Prints the Platform Process Manager release version to stderr and exits.

Examples
jresume 14 17 22

Commands

Using Platform Process Manager 259

Resumes the flows with IDs 14, 17 and 22.
jresume 0

Resumes all suspended flows owned by the user invoking the command.
jresume -u all

Resumes all suspended flows owned by all users.

See also
jstop

Commands

260 Using Platform Process Manager

jrun
triggers a flow definition from a file and runs the flow immediately without storing the flow definition in
Platform Process Manager.

Synopsis
jrun [-v "var=value[;var1=value1;...]"] flow_file_name

jrun [-h]|[-V]

Description
You use the jrun command when you want to trigger and run a flow immediately, without storing the
flow definition within Platform Process Manager. A flow ID is displayed when the flow is successfully
submitted. This command is most useful for flows that run only once, or for testing a flow definition prior
to putting it into production. You must be the owner of a flow definition or have Platform Process Manager
administrative authority to use this command.

Options
-v var=value

Specifies to pass variables and their values to the flow when running it. To specify a list
of variables, separate the variable and value pairs with a semi-colon (;). The value of the
variable is available only within the scope of the flow itself—local variables only.

flow_file_name

Specifies the name of the file containing the flow definition.
-h

Prints the command usage to stderr and exits.
-V

Prints the Platform Process Manager release version to stderr and exits.

Examples
jrun /flows/backup.xml

Runs the flow defined in /flows/backup.xml. It does not store the definition of the flow in
Platform Process Manager.
jrun -v "USER=bsmith;YEAR=2003" /flows/payupdt.xml

Runs the flow defined in /flows/payupdt.xml, and passes it a value of bsmith and 2003 for
the USER and YEAR variables respectively. It does not store the definition of the flow in Platform
Process Manager.

Commands

Using Platform Process Manager 261

jsetvars
sets values for variables during the runtime of a flow.

Synopsis
jsetvars -i flow_ID -s [scope_1]:variable_1a=value_1a [;variable_1b=value_1b ...]
[[scope_2]:variable_2a=value_2a [;variable_2b=value_2b ...] ...] jsetvars -i flow_ID -r
[scope_1]:variable_1a [variable_1b ...] [[scope_2]:variable_2a [variable_2b ...] ...] jsetvars -i flow_ID -l
[scope_1[;scope_2 ...]] jsetvars [-g] -s [scope_1]:variable_1a=value_1a [;variable_1b=value_1b ...]
[[scope_2]:variable_2a=value_2a [;variable_2b=value_2b ...] ...] jsetvars [-g] -r [scope_1]:variable_1a
[variable_1b ...] [[scope_2]:variable_2a [variable_2b ...] ...] jsetvars [-g] -l [scope_1[;scope_2 ...]]
jsetvars [-h]|[-V]

Description
You use the jsetvars command to change the value of one or more local variables in a flow at runtime
or to change the value of one or more global variables at runtime.

Options
-i flow_ID

Specifies the ID of the flow in which to take action.
-g

Specifies that the action is to take place on global variables. The -g option is assumed
if -i flow_ID is not specified,

scope_n

Specifies the name of the flow indicating the scope for the following variables. If
unspecified, this defaults to the main flow scope. You can combine variables of the same
scope together and specify multiple scope levels.

variable_nx

Specifies the name of the variable you are setting.
value_nx

Specifies the value to which you will set the specified variable.
-s

Adds new or edits existing variables
-r

Removes existing variables
-l

Lists all variables.
-h

Prints the command usage to stderr and exits.

Commands

262 Using Platform Process Manager

-V

Prints the Platform Process Manager release version to stderr and exits.

Examples
jsetvars -i 1234 priority=10

Changes the value of the priority variable to 10 for the flow with the ID 1234.

jsetvars -g -s date=05-09-2007

Sets the date global variable value to 05-09-2007. If the date variable already exists, this
changes the value of the date variable, otherwise, this adds a new variable called date).

jsetvars -i 1234 -r time

Deletes the time variable from the flow with the ID 1234.

jsetvars -i 21 -s mainvar1=123;mainvar2=456 mainvarX=zzz MF:SF1:myvar1=abc;myvar2=xyz
MF:SF2:svar1=333 MF:SF2:svar2=555

For the flow with the ID 21, this command sets the mainvar1 and mainvar2 variables at the
main flow scope level, sets the myvar1 and myvar2 variables at the subflow level (specifically,
the MF:SF1 subflow), and sets the svar2 variable at the subflow level (specifically, the
MF:SF2 subflow). If these variables already exist, this command changes the value of these
variables, otherwise, this command adds any new variables that do not already exist.

jsetvars -i 212 -s MF:FA:myarrayvar=abc#{JS_FLOW_INDEX}

For the flow with the ID 212 and assuming MF:FA is a flow array, this command sets the
myarrayvar variable to abc1, abc2, abcX, for all the different flow array elements (for
example, for 212:MF:FA(1), 212:MF:FA(2), and the remaining flow array elements to
212:MF:FA(X)).

jsetvars -i 21 -l MF:SF1

For the flow with the ID 21, lists all variables at the MF:SF1 subflow scope.

jsetvars -i 21 -r mainvar MF:SF1:myvar1;myvar2 MF:SF2:myvar3

For the flow with the ID 21, removes the mainvar variable at the main flow scope, removes
myvar1 and myvar2 variables at the MF:SF1 subflow scope, and removes the myvar3 variable
at the MF:SF2 subflow scope.

Commands

Using Platform Process Manager 263

jsetversion
sets the default version of a flow.

Synopsis
jsetversion -v default_version [-u user_name] flow_name ...

jsetversion [-h]|[-V]

Description
You use the jsetversion command to set the default version of the specified flow. The default version
of the flow is the version set to be effective at the current time. If you trigger this flow, Process Manager
will instantiate the flow instance with the default version.

Options
-v default_version

Specifies the version of the flow that you are setting as the default version.
-u user_name

Specifies the name of the user who owns the flow. If you do not specify a user name,
user name defaults to the user who invoked thjis command.

flow_name

Specifies the name of the flow for which you are setting the default version.
-h

Prints the command usage to stderr and exits.
-V

Prints the Platform Process Manager release version to stderr and exits.

Examples
jsetversion -v 1.3 flow1

Sets version 1.3 as the default version for the flow named flow1.

Commands

264 Using Platform Process Manager

jsinstall
runs jsinstall, the Platform Process Manager installation and configuration script

Synopsis
jsinstall -f install.config

jsinstall -h

Description
jsinstall runs the Platform Process Manager installation scripts and configuration utilities to install
a new Process Manager component. You should install as root.

Before installing and configuring Platform Process Manager, jsinstall checks the installation
prerequisites, outputs the results to prechk.rpt, writes any unrecoverable errors to the Install.err
file and exits. You must correct these errors before continuing to install and configure Platform Process
Manager.

During installation, jsinstall logs installation progress in the Install.log file, uncompresses,
extracts and copies Platform Process Manager files, installs a Platform Process Manager license, and
configures Platform Process Manager Server.

Commands

Using Platform Process Manager 265

jstop
suspends a running flow.

Synopsis
jstop [-u user_name|-u all] [-f flow_name]

jstop flow_id [flow_id ...] | 0

jstop [-h]|[-V]

Description
You use the jstop command to suspend all flows, all flows belonging to a user, all flows associated with
a flow definition, or a single flow. All incomplete jobs within the flow are suspended. Only users with
administrator authority can suspend flows belonging to another user.

Options
-u user_name

Specifies the name of the user who owns the flows. Use this option if you have
administrator authority and you are suspending the flow on behalf of another user. If
you do not specify a user name, user name defaults to the user who invoked this
command. If you specify -u all, and you have administrator authority, you can suspend
flows belonging to all users.

-f flow_name

Specifies the name of the flow definition. Use this option if you want to suspend all flows
associated with a particular flow definition. This option is mutually exclusive with the
other options—if you specify a flow name, you cannot specify a flow ID.

flow_id

Specifies the ID of the flow you want to suspend. Use this option if you want to suspend
one or more specific flow IDs. This option is mutually exclusive with the other options
—if you specify a flow ID, you cannot specify a flow name. To specify a list of flow IDs,
separate the flow IDs with a space.

0

Specifies to suspend all flows.
-h

Prints the command usage to stderr and exits.
-V

Prints the Platform Process Manager release version to stderr and exits.

Examples
jstop -f "myflow"

Commands

266 Using Platform Process Manager

Suspends all flows associated with the definition myflow. Does not affect the flow definition.
jstop 14

Suspends flow ID 14.
jstop 0

Suspends all flows.

See also
jresume

Commands

Using Platform Process Manager 267

jsub
submits a flow definition to Platform Process Manager.

Synopsis
jsub [-H] [-r|-d] [-m "ver_comment"] [[[-T time_event] ...] [[-F "file_event"] ...] [[-p "proxy_event"] ...] [-
C combination_type]] flow_file_name

jsub [-h]|[-V]

Description
You use the jsub command to submit a flow definition to Platform Process Manager. When you submit
the flow definition, you may specify the event that triggers the flow, if applicable. If you do not specify an
event to trigger the flow, it requires a manual trigger. You must be the owner of the flow definition, or
have Platform Process Manager administrator authority to submit a flow definition.

Note: The flow definition you are submitting may contain pre-defined events that trigger the flow. When
you submit this flow using the jsub command, those events are overwritten by any specified in the
command. If the flow definition contains triggering events, and you submit the flow definition without
specifying a triggering event, those events are deleted from the definition that is submitted, and the flow
definition requires a manual trigger.

Options
-H

Submits the flow definition on hold. No automatic events can trigger this definition
until it has been explicitly released. Use this option when the flow definition is complete,
but you are not yet ready to start running flows on its defined schedule. When a
definition is on hold, it can still be triggered manually, such as for testing purposes.

-r

Replace. Specifies that, if a flow definition with the same name already exists in Platform
Process Manager, it is replaced with the definition being submitted. If you do not specify
-r and the flow definition already exists, the submission fails.

-d

Duplicate. Specifies that, if a flow definition with the same name already exists in
Platform Process Manager, a unique number is appended to the flow definition name
to make it unique. The new name of the flow definition is displayed in the confirmation
message when the flow definition is successfully submitted.

-m "ver_comment"

Submit the flow with version comments. jsub returns a flow version number after each
successful submission.

-T time_event

Specifies to automatically trigger a flow when the specified time events are true. Specify
the time event in the following format:

Commands

268 Using Platform Process Manager

[cal_name[@username]:]hour:minute[%duration]][#occurences][+time_zone_id]
cal_name

Specify the name of an existing calendar, which is used to calculate the days on which
the flow runs. If you do not specify a calendar name, it defaults to Daily@Sys. If you do
not specify a user name, the submitter’s user name is assumed. Therefore, the calendar
must exist under that user name.

hour:minute

Specify the time within each calendar day that the time event begins. You can specify
the time in the following formats:

• hour:minutes, for example, 13:30 for 1:30 p.m. You can also specify the wildcard character * in the
hour or minutes fields to indicate every hour or every minute, respectively.

• A list of hours, separated by commas, for example, 5,12,23 for 5:00 a.m., noon and 11:00 p.m.
• A range of numbers—for example, 14-17 for on the hour, every hour from 2:00 p.m. to 5:00 p.m.

The value you specify for hour must be a number between 0 and 23. The value for minute must be a
number between 0 and 59. All numbers are values in the 24-hour clock.

%duration

Specify the number of minutes for which the time event should remain valid after it
becomes true. After the duration expires, the event can no longer trigger any activity.
The default duration is 1 minute. The minimum duration you can specify is also 1
minute.

-F "file_event"

Specifies to automatically trigger a flow when the specified file events are true.

When specifying the file name, you can also specify wildcard characters: * to represent
a string or ? to represent a single character. For example, a*.dat* matches abc.dat,
another.dat and abc.dat23. S??day* matches Satdays.tar and Sundays.dat. *e
matches smile.

Note:
There are some differences between UNIX and Windows when using
wildcard characters. Because UNIX is case-sensitive and Windows is not,
if you specify A*, on UNIX it matches only files beginning with A. On
Windows, it matches files beginning with A and a. Also, on UNIX, if you
specify ??, it matches exactly two characters. On Windows, it matches
one or two characters. These behaviors are consistent with UNIX ls
command behavior, and Windows dir command behavior.

Specify the file event in one of the following formats:

arrival(file_location)

Trigger a flow when the specified file arrives in the specified location, and subsequently only if the file is
deleted and arrives again. This option looks for a transition from nonexistence of the file to existence.
When the file is on a shared file system, specify the file location in the following format:
absolute_directory/filename

exist(file_location)

Commands

Using Platform Process Manager 269

Trigger a flow if the specified file exists in the specified location, and continue to trigger the flow every
time the test for the file is performed, as long as the file continues to exist. When the file is on a shared
file system, specify the file location in the following format:
absolute_directory/filename

! exist(file_location)

Trigger a flow if the specified file does not exist in the specified location, and continue to trigger the flow
every time the test for the file is performed, as long as the file does not exist. When the file is on a shared
file system, specify the file location in the following format:
absolute_directory/filename

size(file_location) operator size

Trigger a flow when the size of the file meets the criteria specified with operator and size. When the file
is on a shared file system, specify the file location in the following format:
absolute_directory/filename

Valid values for operator are: >, <, >=, <=, == and !=.

Note:
For csh, if you specify != (not equal), you need to precede the operator
with a backslash escape character

Specify the size in bytes.

age(file_location) operator age

Trigger a flow when the age of the file meets the criteria specified with operator and age.

When the file is on a shared file system, specify the file location in the following format:
absolute_directory/filename

Valid values for operator are: >, <, >=, <=, == and !=.

Note:
For csh, if you specify != (not equal), you need to precede the operator
with a backslash escape character.

Specify the age in minutes.

-p "proxy_event"

Specifies to automatically trigger a flow when the specified proxy event is true.

Specify the proxy event in one the following formats:
job(exit|done|start|end(user_name:flow_name:[subflow_name:]job_name) [operator value])

Trigger a flow when the specified job meets the specified condition. You must specify the user name to
fully qualify the flow containing the job. You only specify a subflow name if the job is contained within
a subflow.

Valid operators are >=, >, <=, <, != and ==.

If you are specifying exit codes, you can specify multiple exit codes when using the operators != and ==.
Separate the exit codes with spaces, and specify a number from 0 to 255.

Commands

270 Using Platform Process Manager

Note:
For csh, if you specify != (not equal), you need to precede the operator
with a backslash escape character.

• Example: on successful completion of J1:

-p "job(done(jdoe:myflow:J1))"
• Example: if payjob exits with an exit code greater than 5:

-p "job(exit(jdoe:myflow:testflow:payjob)>5)"
• Example: if payjob ends with any of the following exit codes: 5, 10, 12, or 14:

-p "job(exit(jdoe:myflow:testflow:payjob)==5 10 12 14)"
• Example: if payjob does NOT end with any of the following exit codes: 7, 9, 11:

-p "job(exit(jdoe:myflow:testflow:payjob)!=7 9 11)"
jobarray(exit|done|end|numdone|numexit|numend|numstart(user_name:flow_name:[subflow_name:]
job_array_name)[operator value])

Trigger a flow when the specified job array meets the specified condition. You must specify the user name
to fully qualify the flow containing the job array. You only specify a subflow name if the job array is
contained within a subflow.

Valid operators are >=, >, <=, <, != and ==.
• Example: on successful completion of all jobs in Array1:

-p "jobarray(done(jdoe:myflow:Array1))"
• Example: if arrayjob exits with an exit code greater than 5:

-p "jobarray(exit(jdoe:myflow:testflow:arrayjob)>5)"
• Example: if more than 3 jobs in A1 exit:

-p "jobarray(numexit(jdoe:myflow:testflow:arrayjob)>3)"
flow(exit|done|end|numdone|numexit|numstart(user_name: flow_name:[subflow_name])[operator
value])

Trigger a flow when the specified flow or subflow meets the specified condition. You must specify the
user name to fully qualify the flow. Specify a subflow name if applicable.

Valid operators are >=, >, <=, <, !=, ==.

Example: on successful completion of all jobs in myflow:

-p "flow(done(jdoe:myflow))"

Example: if myflow exits with an exit code greater than 5:

-p "flow(exit(jdoe:myflow)>5)"

Example: if more than 3 jobs in the subflow testflow exit:

-p "flow(numexit(jdoe:myflow:testflow)>3)"

Note: When Platform Process Manager calculates the number of jobs in a flow, for successful jobs, failed
jobs, and so on, it does not count the jobs in a subflow, and it counts a job array as a single job. It also
does not count other objects in the flow, such as events or alarms.

-f "flow_event"

Specifies to automatically trigger a flow when the specified flow event(s) are true.

Commands

Using Platform Process Manager 271

Specify the flow event in one of the following formats:
done(flow_definition_name)

Trigger a flow when the specified flow completes successfully. Specify the flow
definition name as follows:

user_name:flow_definition

If you do not specify a user name, it defaults to your own.
end(flow_definition_name)

Trigger a flow when the specified flow ends, regardless of exit code. Specify the
flow definition name as follows:

user_name:flow_definition

If you do not specify a user name, it defaults to your own.
numdone(flow_definition_name) operator nn

Trigger a flow when the specified number of jobs in the specified flow complete
successfully. Specify the flow definition name as follows:

user_name:flow_definition

If you do not specify a user name, it defaults to your own.
Valid operators are >=, >, <=, <, !=, ==.

For example:

numdone(jdoe:payflow)>=5

will trigger the flow you are submitting when 5 jobs complete successfully in payflow.

numstart(flow_definition_name) operator nn

Trigger a flow when the specified number of jobs in the specified flow have started.
Specify the flow definition name as follows:

user_name:flow_definition

If you do not specify a user name, it defaults to your own.
Valid operators are >=, >, <=, <, !=, ==.

numexit(flow_definition_name) operator nn

Trigger a flow when the specified number of jobs in the specified flow exit. Specify the
flow definition name as follows:

user_name:flow_definition
If you do not specify a user name, it defaults to your own.

Valid operators are >=, >, <=, <, !=, ==.

For example:

numexit(jdoe:payflow)>=3

will trigger the flow you are submitting if more than 3 jobs in payflow exit.

Commands

272 Using Platform Process Manager

exit(flow_definition_name) operator nn

Trigger a flow when the specified flow ends with the specified exit code. Specify the flow
definition name as follows:

user_name:flow_definition

If you do not specify a user name, it defaults to your own.
Valid operators are >=, >, <=, <, !=, ==.

For example:

exit(jdoe:payflow)>=2

will trigger the flow you are submitting if payflow has an exit code greater than or equal to 2.

Note: When Platform Process Manager calculates the number of jobs in a flow, for successful jobs, failed
jobs, and so on, it does not count the jobs in a subflow, and it counts a job array as a single job. It also
does not count other objects in the flow, such as events or alarms.

-C combination_type

When multiple events are specified, the combination type specifies whether one event
is sufficient to trigger a flow, or if all of the events must be true to trigger it. The default
is all.

AND

Specifies that all events must be true before a flow is triggered. This is the default.
OR

Specifies that a flow will trigger when any event is true.
flow_file_name

Specifies the name of the file containing the flow definition.
-h

Prints the command usage to stderr and exits.
-V

Prints the Platform Process Manager release version to stderr and exits.

Examples
jsub -r -T "Weekends@Sys:0-8:30%30" -F "exists(/tmp/1.dat)" -C AND myflow.xml

Submits the flow definition in myflow.xml, to be triggered when both of the following are
true:

• Saturdays and Sundays every hour on the half hour, beginning at midnight until 8:00 a.m.
• The file /tmp/1.dat exists

Any triggering information defined within the flow definition is overwritten. If this flow
definition already exists, replace it.
% jsub -d -F "size(/data/tmp.log) >3500000" -F "arrival(/tmp/1.dat)" -C OR
backup.xml

Commands

Using Platform Process Manager 273

Submits the flow definition in backup.xml, to be triggered when one of the following is
true:

• The size of /data/tmp.log exceeds 3.5 MB
• The file /tmp/1.dat arrives

Any triggering information defined within the flow definition is overwritten. If this flow
definition already exists, create a duplicate.

Commands

274 Using Platform Process Manager

jtrigger
manually triggers a previously submitted flow definition.

Synopsis
jtrigger [-u user_name] [-v "var=value[;var1=value1;...]"] flow_name low_name... [f]

jtrigger [-h]|[-V]

Description
You use the jtrigger command to trigger a submitted flow definition, which creates a flow associated
with that definition. Any events normally used to trigger this definition are ignored at this time.

If the flow definition is on hold, you can use this command to trigger a flow. If the flow definition is not
on hold, this command triggers an additional execution of the flow. If you want to trigger a flow whose
definition is not yet stored in Platform Process Manager, use the jrun command.

Options
-u user_name

Specifies the name of the user who owns the flow definition. Use this option if you have
administrator authority and you are triggering the flow on behalf of another user.

-v var=value

Specifies to pass variables and their values to the flow when triggering it. To specify a
list of variables, separate the variable and value pairs with a semi-colon (;). The value of
the variable is available only within the scope of the flow itself (local variables only).

flow_name

Specifies the name of the flow definition. To specify a list of flow definitions, separate
the flow definition names with a space.

-h

Prints the command usage to stderr and exits.
-V

Prints the Platform Process Manager release version to stderr and exits.

Examples
jtrigger myflow

Triggers the flow definition myflow, which is owned by the current user.
jtrigger -u "user01" payupdt

Triggers the flow definition payupdt, which is owned by user01.
jtrigger -v "PMONTH=October" payflow

Commands

Using Platform Process Manager 275

Triggers the flow definition payflow, which is owned by the current user, and passes it a value
of October for the variable PMONTH.

See also
jrun

Commands

276 Using Platform Process Manager

junpublish
unpublishes a target flow from Platform Process Manager.

Synopsis
junpublish [-u user_name] [-f flow_name]

junpublish [-h]|[-V]

Description
You use the jpublish command to unpublish a target flow from Platform Process Manager.
Unplublished target flows can no longer be referred to by dynamic subflows and flow arrays.

Only Platform Process Manager administrators and control administrators can unpublish target flows.

Options
-u user_name

Specifies the name of the user who owns the flow. In Windows, the user name must
include the domain in the form of domain_name\user_name.

-f flow_name

Specifies the name of the flow. If you do not specify a flow name, all flows meeting the
other criteria are unpublished.

-h

Prints the command usage to stderr and exits.
-V

Prints the Platform Process Manager release version to stderr and exits.

Examples
junpublish -u userA -f flow2

Unpublishes the flow2 flow belonging to userA.
junpublish -u domainA\userA -f flow2

In Windows, unpublishes the flow2 flow belonging to userA, which belongs to the domainA
domain.

See also
jpublish

Commands

Using Platform Process Manager 277

Commands

278 Using Platform Process Manager

	Contents
	Copyright
	New Features in Platform Process Manager 8.0.2
	General new features
	Enhancements to local jobs on Linux and UNIX
	New built-in user variable JS_FLOW_FULL_NAME
	Use a custom mail program to send email
	Restrict who can see the flow chart view

	New features in Flow Manager
	New features in Flow Editor
	Flow-related new features available only in Platform Application Center
	Jobs and Flows can now be monitored in the same window
	Completion attributes now visible for subflows and flow arrays in Flow Chart tab
	Reorganization of pages for flow definitions

	Introduction to Platform Process Manager
	About Platform Process Manager
	About Platform Process Manager terms
	Change your server
	About flow definitions and flows
	Actions you can perform against flow definitions
	What can I do with a flow definition?
	What can I do with a flow?
	What can I do with a job?
	Where do I store my flow definitions?
	What makes a flow Done?
	What happens if a job exits?
	How does Platform Process Manager know when my flow is complete?

	Platform Process Manager Calendars
	About the calendar editor
	Create a calendar with specific dates
	Create a calendar using an expression
	Create a calendar with a complex expression
	Calendar examples
	Edit an existing calendar
	Edit a calendar to change the pattern
	Edit a calendar to change calendar combinations

	Delete a calendar

	Define your flow
	Ways to create a flow definition
	How do I know if a job or job array is undefined?

	Using the example flows
	View the sample flow definition
	Use a sample flow definition

	Create a flow diagram
	Create a simple flow diagram
	Other things you can do
	Copy a job
	Print the flow definition

	Include a job array in the flow diagram
	Insert a job array
	Define job array details
	Preparing job array input files

	Include a job submission script in the flow diagram
	Define job details

	Include a job array submission script in the flow diagram
	Define job array details
	Content of the job/job array submission script

	Include a static subflow in the flow diagram
	Include a static flow array in the flow diagram
	Flow array element names
	Viewing a static flow array

	Include a dynamic subflow in the flow diagram
	Include a dynamic flow array in the flow diagram
	Dynamic flow array element names
	Viewing a dynamic flow array

	Include a manual job in the flow diagram
	Define manual job details

	Specifying custom exit codes for successful job completion
	From Flow Editor

	Include a local job in the flow diagram
	Define local job details
	Running a local job

	Variables in Platform Process Manager
	Types of variables
	Platform Process Manager built-in variables
	%I
	%J
	JS_EVENT[n]_FILENAME
	JS_EVENT_n_FILENAME_BASE
	JS_FLOW_ID
	JS_FLOW_NAME
	JS_FLOW_FULL_NAME
	JS_FLOW_SHORT_NAME
	JS_ITERATION_COUNTER

	Variable override order
	Include the variable evaluator to run jobs based on decision branches
	Use global variables
	Add a global variable
	Remove a global variable
	Edit a global variable

	Use a user variable
	Value of a variable
	Set a user variable in a Windows bat file
	Set a user variable in a UNIX script
	Set a flow variable using the flow manager
	User variables within a flow definition
	When the value of a variable is evaluated

	Job dependencies
	Specify dependency on the start or submission of specific jobs
	Requirements to pre-submit dependent jobs
	Examples
	How to submit a dependent job after selected jobs start running
	How to submit a dependent job after selected jobs are submitted

	Specify a dependency on a file
	Change the label displayed for an event
	Dependency on a date and time
	Specify dependencies on a job array
	Specify dependencies on a subflow
	Specify dependencies on an unconnected work item
	Specify a dependency on a proxy job
	Specify a dependency on a proxy job array
	Specify a dependency on a proxy subflow
	Specify a dependency on a proxy flow

	Specifying multiple dependencies
	Specify that all dependencies must be met
	Specify that at least one dependency must be met

	Details of a job
	The General tab
	The Submit tab
	The Processing tab
	The Resources tab
	The Limits tab
	The File Transfer tab
	Transfer a local file
	Transfer an output file locally after the job runs
	Append output to a local file after the job runs

	The Advanced tab
	The Exception Handling tab
	The Description tab

	About flow completion attributes
	Specify flow completion attributes
	Assign a state to a flow when all work items are done
	Assign a state to a flow when all selected work items end
	Assign a state to a flow when any selected work item ends
	Continue processing when the state of the flow is determined
	Continue processing and only change the state after the flow is complete

	Configuring flow exit codes
	Configure flow exit code calculation
	Configure dependencies for subflows

	Specify exception handling for a flow
	Flow attributes
	Specify flow attributes
	Turn off email notification for a flow

	Save the flow definition
	Loop a flow or subflow
	Loop a subflow that does not contain a loop definition

	About Platform Process Manager exceptions
	About exception handling
	Platform Process Manager built-in exception handlers
	User-defined exception handlers
	Behavior when exception handlers are used

	Handling exceptions
	Handle exceptions of a job or job array using built-in handlers
	Handle exceptions of a subflow using built-in handlers
	Handle exceptions with a recovery job
	Handle exceptions with a recovery flow

	Alarms
	Raise an alarm when an exception occurs within a flow
	View the opened alarms
	Insert an alarm in a flow definition
	Use an alarm as an exception handler

	Run your flow
	Create a flow definition to be triggered manually
	In the flow definition
	From the command line

	Schedule your flow
	Run a flow at a specific time
	In the flow definition
	From the command line

	Run a flow at multiple times on a single date
	Specifying time expressions
	Run a flow based on file activity
	In the flow definition
	From the command line

	Run a flow when another flow...
	Run a flow when another flow completes
	Calculation of number of jobs in a flow

	Run a flow when a proxy job completes
	From the command line—trigger when job fails

	Run your flow once
	From the Flow Editor
	From the command line

	Submit your flow definition
	Submit your flow without version comments
	Submit your flow with version comments

	Control a Flow
	About the Flow Manager
	Real-time data
	Refresh the data displayed manually
	Change the automatic refresh option

	Print data
	Filter the data displayed in the tree view
	Limit the flows displayed to those owned by a user
	Limit the flows displayed to last x hours
	Limit the flows displayed to a time period

	Trigger a flow
	Trigger a flow
	From the Flow Manager
	From the command line

	Trigger a flow, passing it values for variables
	From the Flow Manager

	View a flow definition and specify versioning options
	View Version
	View Statistics

	View inter-flow relationships
	View proxy dependencies that trigger flows
	View proxy dependencies within a flow
	Manually complete an inter-flow dependency
	View dependencies on flows that do not exist or are on hold

	Determine the status of jobs in a flow
	Manually complete a dependency
	Kill a running job
	From the Flow Manager
	From the command line

	Stop a flow at a specific point by putting a job on hold
	From the command line

	Run or rerun a single job
	From the command line

	Mark a job complete
	From the command line

	Work with manual jobs
	View the manual jobs awaiting for completion
	From the command line

	Complete a manual job
	From the command line

	Completing manual jobs with exit codes
	Complete a manual job with an exit code
	From the command-line

	Work with proxies
	See if any proxies of a flow exist
	Navigate to a proxy dependant
	Manually complete a proxy dependency

	Kill a running flow
	From the command line

	Suspend a running flow
	From the command line

	Resume a suspended flow
	From the command line

	Rerun an exited flow
	From the command line
	Set a starting point to rerun a flow
	Remove the starting point to rerun a flow

	Rerun a flow while a job is still running
	Rerun an exited job array
	Hold a flow definition
	From the command line

	Releasing a flow definition from hold
	From the command line

	Remove a flow definition
	From the command line

	Mainframe support
	Using mainframe
	Exit codes

	Commands
	caleditor
	floweditor
	flowmanager
	jadmin
	jalarms
	Absolute time examples
	Relative time examples

	jcadd
	Creating calendar expressions
	Built-in keywords-reserved words

	jcals
	jcdel
	jcmod
	Creating calendar expressions
	Built-in keywords—reserved words

	jcomplete
	jdefs
	jflows
	jhist
	jhold
	jid
	jjob
	Synopsis
	Description
	Options
	Examples
	See Also

	jkill
	jmanuals
	jpublish
	jreconfigalarm
	jrelease
	jremove
	jrerun
	jresume
	jrun
	jsetvars
	jsetversion
	jsinstall
	jstop
	jsub
	jtrigger
	junpublish

