
Administering Platform LSF Process Manager

Platform LSF Process Manager
Version 7

March 2008

Copyright © 1994-2008 Platform Computing Inc.

Although the information in this document has been carefully reviewed, Platform Computing Corporation (“Platform”) does not
warrant it to be free of errors or omissions. Platform reserves the right to make corrections, updates, revisions or changes to the
information in this document.

UNLESS OTHERWISE EXPRESSLY STATED BY PLATFORM, THE PROGRAM DESCRIBED IN THIS DOCUMENT IS
PROVIDED “AS IS” AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
IN NO EVENT WILL PLATFORM COMPUTING BE LIABLE TO ANYONE FOR SPECIAL, COLLATERAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION ANY LOST PROFITS, DATA, OR SAVINGS, ARISING
OUT OF THE USE OF OR INABILITY TO USE THIS PROGRAM.

We’d like to hear
from you

You can help us make this document better by telling us what you think of the content, organization, and usefulness of the information.
If you find an error, or just want to make a suggestion for improving this document, please address your comments to
doc@platform.com.

Your comments should pertain only to Platform documentation. For product support, contact support@platform.com.

Document
redistribution and
translation

This document is protected by copyright and you may not redistribute or translate it into another language, in part or in whole.

Internal
redistribution

You may only redistribute this document internally within your organization (for example, on an intranet) provided that you continue
to check the Platform Web site for updates and update your version of the documentation. You may not make it available to your
organization over the Internet.

Trademarks LSF is a registered trademark of Platform Computing Corporation in the United States and in other jurisdictions.

ACCELERATING INTELLIGENCE, PLATFORM COMPUTING, PLATFORM SYMPHONY, PLATFORM JOBSCHEDULER,
PLATFORM ENTERPRISE GRID ORCHESTRATOR, PLATFORM EGO, and the PLATFORM and PLATFORM LSF logos are
trademarks of Platform Computing Corporation in the United States and in other jurisdictions.

UNIX is a registered trademark of The Open Group in the United States and in other jurisdictions.

Linux is the registered trademark of Linus Torvalds in the U.S. and other countries.

Microsoft is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other countries.

Windows is a registered trademark of Microsoft Corporation in the United States and other countries.

Intel, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and
other countries.

Other products or services mentioned in this document are identified by the trademarks or service marks of their respective owners.

Third-party license
agreements

http://www.platform.com/Company/third.part.license.htm

Third-party
copyright notices

http://www.platform.com/Company/Third.Party.Copyright.htm

Contents
1 About Process Manager ... 7

Components .. 8
Data flow ... 10
Security ... 11
About Failover ... 12
About Calendars ... 13
About Exceptions .. 16
User-specified conditions .. 17
Behavior when an exception occurs ... 18
About Exception Handling ... 20
New features ... 24

2 Maintaining Process Manager .. 25
Configure a failover host (managed by EGO) ... 26
Install and configure a failover host on UNIX (managed by failover daemon) 27
Add a UNIX client .. 29
Add a Windows client .. 30
Run the Process Manager server on system startup .. 31
About Process Manager variables .. 32
Types of variables .. 33
Scope of variables .. 34
How variables are set ... 35
Dedicate the Process Manager Server Host ... 36
Configure an alarm ... 37
Configure to support user variables .. 38
Configure variables for UNIX hosts ... 39
Configure variables for Windows hosts ... 40
Configure variables for both UNIX and Windows hosts .. 41
Configure a queue to support setting user variables .. 42
Increase the number of variables that can be substituted .. 43
Control the Process Manager Server .. 44
Start and stop the Server on Windows ... 45
Forcing a system snapshot ... 46
Change the Configuration ... 47
Add an administrator ... 48
Sign on as a guest .. 49

Administering Platform LSF Process Manager 3

Create system calendars .. 50
Calendar names .. 51
Update the Holidays@Sys calendar ... 52
Delete a calendar .. 53
Maintain User Passwords ... 54
Specify the mail host ... 55
Change the job start retry value .. 56
Change the history setting .. 57
View History .. 58
View the history of a flow definition ... 59
View the history of a flow .. 60
View the history of a job or job array ... 61
Troubleshooting .. 62

3 Mainframe support .. 65
Configure for Mainframe ... 66

4 Daemons .. 67
jfd .. 68
fod ... 69

5 Commands ... 71
caleditor .. 73
floweditor ... 74
flowmanager ... 75
jadmin ... 76
jalarms .. 77
jcadd ... 80
jcals ... 85
jcdel ... 86
jcmod .. 87
jcomplete ... 91
jdefs .. 93
jflows ... 95
jhist .. 97
jhold .. 102
jid .. 103
jjob .. 104
jkill ... 106
jmanuals .. 108
jreconfigalarm ... 109
jrelease ... 110
jremove ... 111
jrerun ... 113
jresume ... 114
jrun .. 116

4 Administering Platform LSF Process Manager

jsetvars .. 117
jsinstall .. 119
jstop .. 120
jsub ... 122
jtrigger ... 128

6 Files .. 131
File Structure ... 132
history.log .. 134
install.config .. 135
js.conf .. 141
name.alarm ... 159

Administering Platform LSF Process Manager 5

6 Administering Platform LSF Process Manager

1
About Process Manager

This chapter introduces Process Manager concepts and contains an overview of the Process Manager architecture. It
also briefly describes the Process Manager Client components and their use.

Overview
Process Manager is a workload management tool that allows users to automate their business processes in UNIX and
Windows environments. Process Manager provides flexible scheduling capabilities and load balancing in an extensible,
robust execution environment.

Using the Process Manager Client, users can create and submit complex flow definitions to Process Manager Server,
which manages the dependencies within a flow and controls the submission of jobs to LSF master host. LSF provides
resource management and load balancing, and runs the jobs and returns job status to the Process Manager Server.
From Process Manager Client, users can also monitor and control their workflows within Process Manager.

An optional failover host provides Process Manager Server redundancy in the event that it experiences an outage.

C H A P T E R

Administering Platform LSF Process Manager 7

Components

The system is made up of the following components:

• The Process Manager (Server) host
• The Process Manager (Server) failover host
• The Master host
• Process Manager Client, which consists of

• The Flow Editor
• The Calendar Editor
• The Flow Manager
• The Command Line Interface (CLI)

Process Manager Server
The Process Manager Server consists of a single daemon, jfd. The Process Manager Server controls the submission of
jobs to LSF, managing any dependencies between work items.

The Process Manager Server failover host
An optional failover daemon (fod) is available for UNIX servers. The failover daemon starts the Process Manager
Server and monitors its health. If required, the failover daemon starts the Process Manager Server on the failover
machine.

Master host
The master host receives jobs from the Process Manager Server, manages any resource dependencies the job may have,
and dispatches the job to an appropriate LSF host.

LSF master host
LSF dispatches all jobs submitted to it by the Process Manager Server, and returns the status of each job to the Process
Manager Server. It also manages any resource requirements and load balancing within the compute cluster.

About Process Manager

8 Administering Platform LSF Process Manager

Process Manager Client
The Process Manager Client contains the graphical client applications that work with Process Manager: Flow Editor,
Calendar Editor, and Flow Manager.

The Flow Editor
Users use the Flow Editor to create flow definitions: the jobs and their relationships with other jobs in the flow, any
dependencies they have on files, and any time dependencies they may have. Users also use the Flow Editor to submit
their flow definitions, which places them under the control of Process Manager.

The Calendar Editor
Users use the Calendar Editor to define calendars, which Process Manager uses to calculate the days on which a job or
flow should run. Calendars contain either specific dates or expressions that resolve to a series of dates. Process Manager
calendars are independent of jobs, flow definitions and flows, so that they can be reused.

Users can create and modify their own calendars. These are referred to as user calendars. The Process Manager
administrator can create calendars that can be used by any user of Process Manager. These are referred to as system
calendars. Process Manager includes a number of built-in system calendars so you do not need to define some of the
more commonly used expressions.

The Flow Manager
Users use the Flow Manager to trigger, monitor and control running flows, and to obtain history information about
completed flows.

The command line interface
Users use the command line interface to submit predefined flows to the Process Manager Server, to trigger, monitor
and control running flows, and to obtain history information about completed flows.

About Process Manager

Administering Platform LSF Process Manager 9

Data flow
The following describes how Process Manager Server interacts with LSF master host to process flows:

1. The user uses the Flow Editor to create a flow definition and submits it to the Process Manager Server.
2. Process Manager Server stores the flow definition in its working directory.
3. When the flow is triggered, Process Manager Server manages the dependencies within the flow. When a job is ready

to be run, Process Manager Server submits it to LSF master host.
4. The LSF master host manages any resource dependencies the job may have, and dispatches the job to an appropriate

compute host.
5. When the job runs, the compute host sends the status of the job to the LSF master host, which writes the job status

to lsb.events.
6. Process Manager Server reads lsb.events periodically to obtain the status of the jobs it submitted.
7. Process Manager Server uses the status of the job to determine the next appropriate action in the flow.
8. On request from the user, Process Manager Server presents flow status to the Flow Manager.

About Process Manager

10 Administering Platform LSF Process Manager

Security
Process Manager, in its default configuration, provides security through the following methods:

• User authentication
• Role-based access control

User authentication
We support two models for user authentication. In js.conf, specify JS_LOGIN_REQUIRED=true|false, which
indicates whether a user is asked to log in when they start Process Manager Clients or not.

If JS_LOGIN_REQUIRED=false , no log in is required.

If JS_LOGIN_REQUIRED=true, when the user starts Calendar Editor or Flow Manager they are prompted for a user
name and password which is verified by the Process Manager Server. If the user name is a Windows user name, it must
also include the domain name. The domain name and user name are passed to the server for verification. The Process
Manager Server tries to verify the user name from the domain.

Communications are encrypted using a CAST Cipher with a 64-bit private key.

LDAP
Process Manager supports LDAP authentication through PAM (Pluggable Authentication Modules, a 3rd-party tool)
if JS_LOGIN_REQUIRED=true.

To enable LDAP authentication, you need to configure your PAM policy to add a service name eauth_userpass for
the module type: auth.

For example, in a Solaris system, you may add the following entry in the /etc/pam.conf file:
eauth_userpass auth required pam_ldap.so.1

Role-based access control
In addition to authentication, Process Manager uses role-based access control to secure certain types of objects. Any
user of Process Manager can create and submit their own flow definitions, and monitor and control their own flows
within the Process Manager system, provided that their user ID is recognized by LSF. In addition, all users can view
calendars and flows submitted by another user. However, special permissions are required to install and configure
Process Manager, or to modify Process Manager items on behalf of another user.

Process Manager recognizes the following roles:

• Primary Process Manager administrator—required to install a Process Manager server and change permissions. It
is also the user under which the Process Manager server runs, and is the minimum authority required to stop the
Process Manager server.

• Process Manager administrator—can create, delete, modify flows on behalf of another user.
• Process Manager control administrator—can control existing Process Manager items on behalf of another user.

This user cannot submit or remove flows belonging to another user.
• Process Manager user—can view calendars and flows owned by another user, but cannot modify them.

Encrypted communications
You can enable encrypted communications between Process Manager Server and its clients, to further secure the Process
Manager network by installing the strong encryption package for your platform. If you want to use this feature,
encryption must be enabled on all clients, as well as on the server.

About Process Manager

Administering Platform LSF Process Manager 11

About Failover
Process Manager supports an optional failover feature, which provides redundancy for the Process Manager Server.
The failover feature allows you to configure a second Process Manager Server host to take over the responsibilities of
the primary Process Manager Server host if it should fail. The failover feature includes the Platform EGO or failover
daemon (fod, in case of UNIX), which starts the Process Manager Server on the primary Process Manager Server host.
The failover daemon monitors the health of the primary Process Manager Server, starting Process Manager Server on
the failover host if the primary fails to respond within a certain time period.

The failover feature relies on a shared file system for access to the working directory of the Process Manager Server.

1. Process Manager Server updates flow status in its working directory based on data it reads from lsb.events.
2. The fod or EGO on the failover host monitors the primary host. If it receives no response from the heartbeat, it

assumes the primary host is down, and starts jfd on the failover host. Process Manager Server is now running on
the failover host.

3. The fod or EGO on the failover host continues to monitor for a response from the primary host. When it receives
a response, it stops jfd on the failover host, returning control to the primary host.

The failover host requires access to both the Process Manager working directory JS_TOP/work, and the events file
lsb.events.

About Process Manager

12 Administering Platform LSF Process Manager

About Calendars
Process Manager uses calendars to define the dates in a time event, which is used to determine when a flow triggers or
a job runs. Calendars are defined independently of flows and jobs so that they can be associated with multiple time
events.

A time event consists of the date and time to trigger the event, and the duration in which the event is valid. The calendar
provides the date specification for the time event.

Process Manager has two types of calendars:

• User calendars
• System calendars

You create both types of calendars using the Calendar Editor.

Users can only manipulate their own calendars, but they can use system calendars and calendars belonging to other
users when combining calendars.

About user calendars
User calendars are created by individual users. Users create a new calendar when they have a requirement for a unique
time event, and no calendar in the current list of calendars resolves to the correct date or set of dates. Users can create
simple calendars, or calendars that combine multiple calendars, both user and system, to create complex schedule
criteria.

These calendars are owned by the user who created them and can be used by any user. Only the owner can modify or
delete these calendars.

About system calendars
System calendars are built-in or created by a Process Manager administrator. These calendars are owned by the virtual
user Sys and can be used by any user. Only the Process Manager administrator can modify system calendars.

Process Manager comes with a set of pre-defined system calendars that you can use as is or modify to suit the needs of
your site. In addition to these built-in calendars, the Process Manager administrator may define other system calendars.

About changing or deleting calendars
Once created, calendars can be changed or deleted. However, you cannot change or delete a calendar when it is in use
—when a flow definition is triggered by an event that uses the calendar, when a flow is running and contains a time
event that uses that calendar, or when the calendar is referenced by another calendar.

Time zones
It is possible for users to run their Process Manager Clients from a different geographic time zone than the Process
Manager Server. Therefore it is important to note that all time events specified in a flow definition are based on the
time zone set in JS_TIME_ZONE. For example, Joe is in Los Angeles and is connected to a Process Manager server in
New York. He has set JS_TIME_ZONE=server. When Joe defines a flow to trigger at 5 p.m, it triggers at 5 p.m. New
York time, not Los Angeles time.

If you change the time zone, you must restart Process Manager.

All start times displayed for a work item in Flow Manager are in GMT (Universal Time).

Tip:

About Process Manager

Administering Platform LSF Process Manager 13

Note that the time used with the calendars is based on the time zone set in
JS_TIME_ZONE. The time zone can be set as server, client (default), or Universal
Time (UTC also known as GMT).

Default change
In Process Manager 3.0, the default for JS_TIME_ZONE was server. The default is now client.

Built-in system calendars
Types of Calendars Calendar Names

Weekly calendars Mondays@Sys

Tuesdays@Sys

Wednesdays@Sys

Thursdays@Sys

Fridays@Sys

Saturdays@Sys

Sundays@Sys

Daily@Sys

Weekdays@Sys

Weekends@Sys

Businessdays@Sys

Monthly calendars First_monday_of_month@Sys

First_tuesday_of_month@Sys

First_wednesday_of_month@Sys

First_thursday_of_month@Sys

First_friday_of_month@Sys

First_saturday_of_month@Sys

First_sunday_of_month@Sys

First_weekday_of_month@Sys

Last_weekday_of_month@Sys

First_businessday_of_month@Sys

Last_businessday_of_month@Sys

Biweekly_pay_days@Sys

About Process Manager

14 Administering Platform LSF Process Manager

Types of Calendars Calendar Names

Yearly calendars Holidays@Sys

First_day_of_year@Sys

Last_day_of_year@Sys

First_businessday_of_year@Sys

Last_businessday_of_year@Sys

First_weekday_of_year@Sys

Last_weekday_of_year@Sys

The Holidays@Sys calendar
When you receive Process Manager, it comes with some predefined system calendars. Most of these calendars are ready
to be used. The calendar Holidays@Sys can be a particularly important calendar for use in creating schedules, but it
should be edited to reflect your company holidays, before users begin creating schedules. It should also be updated
annually, to reflect the current year’s statutory holidays, company-specific holidays, and so on.

Some of the other built-in calendars rely on the accuracy of Holidays@Sys, including any calendar that defines business
days, since a business day is a weekday that is not a holiday.

The Biweekly_pay_days@Sys calendar
The Biweekly_pay_days@Sys calendar assumes a Friday pay day. If biweekly pay days are a different day of the week,
edit this calendar to specify the correct day of the week for pay days.

About Process Manager

Administering Platform LSF Process Manager 15

About Exceptions
Process Manager provides flexible ways to handle certain job processing failures so that you can define what to do when
these failures occur. A failure of a job to process is indicated by an exception. Process Manager provides some built-in
exception handlers you can use to automate the recovery process, and an alarm facility you can use to notify people of
particular failures.

Process Manager monitors for the following exceptions:

• Misschedule
• Overrun
• Underrun
• Start Failed
• Cannot Run

Misschedule
A Misschedule exception occurs when a work item depends on a time event, but is unable to start during the duration
of that event. There are many reasons why your job can miss its schedule. For example, you may have specified a
dependency that was not satisfied while the time event was active.

Overrun
An Overrun exception occurs when a work item exceeds its maximum allowable run time. You use this exception to
detect run away or hung jobs.

Underrun
An Underrun exception occurs when a work item finishes sooner than its minimum expected run time. You use this
exception to detect when a job finishes prematurely.

Start Failed
A Start Failed exception occurs when a job or job array is unable to run because its execution environment could not
be set up properly. Typical reasons for this exception include lack of system resources such as a process table was full
on the compute host, or a file system was not mounted properly.

Cannot Run
A Cannot Run exception occurs when a job or job array cannot proceed because of an error in submission. A typical
reason for this exception might be an invalid job parameter.

About Process Manager

16 Administering Platform LSF Process Manager

User-specified conditions
In addition to the exceptions, you can specify and handle other conditions, depending on the type of work item you
are defining. For example, when you are defining a job, you can monitor the job for a particular exit code, and
automatically rerun the job if the exit code occurs. The behavior when one of these conditions occurs depends on what
you specify in the flow definition.

You can monitor for the following conditions:

Work Item Condition

Flow An exit code of n (sum of all exit codes)

n unsuccessful jobs

A work item has exit code of n

Subflow An exit code of n

n unsuccessful jobs

A work item has exit code of n

Job An exit code of n

Job array An exit code of n

n unsuccessful jobs

About Process Manager

Administering Platform LSF Process Manager 17

Behavior when an exception occurs
The following describes the behavior when an exception occurs, and no automatic exception handling is specified:

When a… Experiences this exception… This happens…

Flow definition Misschedule The flow is not triggered.

Flow Overrun The flow continues to run after the exception occurs. The run
time is calculated from when the flow is first triggered until its
status changes from Running to Exit or Done, or until the
Overrun time is reached, whichever comes first.

Underrun The time is calculated from when the flow is first triggered until
its status changes from Running to Exit or Done.

Subflow Misschedule The subflow is not run.

Overrun The subflow continues to run after the exception occurs. The
run time is calculated from when the subflow is first triggered
until its status changes from Running to Exit or Done, or until
the Overrun time is reached, whichever comes first.

Underrun The time is calculated from when the subflow first starts
running until its status changes from running to Exit or Done.

Job Misschedule The job is not run.

Cannot Run The job is not run.

Start Failed The job is still waiting. Submission of the job is retried until the
configured number of retry times. If the job still cannot run, a
Cannot Run exception is raised. The default number of retry
times is 20.

Overrun The job continues to run after the exception occurs. The run
time is calculated from when the job is successfully submitted
until it reaches Exit or Done state, or until the Overrun time is
reached, whichever comes first.

Underrun The time is calculated from when the job is successfully
submitted until it reaches Exit or Done state.

About Process Manager

18 Administering Platform LSF Process Manager

When a… Experiences this exception… This happens…

Job array Misschedule The job array is not run.

Cannot Run The job array is not run.

Start Failed The job array is still waiting. Submission of the job array is
retried the configured number of retry times. If the job array still
cannot be started, a Cannot Run exception is raised. The
default number of retry times is 20.

Overrun The job array continues to run after the exception occurs. The
run time is calculated from when the job array is successfully
submitted until its status changes from Running to Exit or
Done, or until the Overrun time is reached, whichever comes
first.

Underrun The time is calculated from when the job array is successfully
submitted until each element in the array reaches Exit or Done
state.

About Process Manager

Administering Platform LSF Process Manager 19

About Exception Handling
Process Manager provides built-in exception handlers you can use to automatically take
corrective action when certain exceptions occur, minimizing the human intervention
required. You can also define your own exception handlers for certain conditions.

Built-in exception handlers
The built-in exception handlers are:

• Rerun
• Kill
• Opening an alarm

Rerun
The Rerun exception handler reruns the entire work item. Use this exception handler in
situations where rerunning the work item can fix the problem. The Rerun exception handler
can be used with Underrun, Exit and Start Failed exceptions. Work items that have a
dependency on a work item that is being rerun cannot have their dependency met until the
work item has rerun the last time.

Kill
The Kill exception handler kills the work item. Use this exception handler when a work item
has overrun its time limits. The Kill exception handler can be used with the Overrun exception,
and when you are monitoring for the number of jobs done or exited in a flow or subflow.

If you are running z/OS mainframe jobs on Windows, you need to configure a special queue
and submit jobs to that queue to be able kill them.

Alarm
An alarm provides both a visual cue that an exception has occurred, and sends an email
notification to one or more email addresses. You use an alarm to notify key personnel, such
as database administrators, of problems that require attention. An alarm has no effect on the
flow itself.

You can use an alarm as an automated exception handler for many types of exceptions.

For other types of exceptions where alarms are not available as exception handlers, you can
create an alarm directly in the Flow Editor.

An opened alarm appears in the list of open alarms in the Flow Manager until the history log
file containing the alarm is deleted or archived.

Alarms are configured by the Process Manager administrator.

Behavior when built-in exception handlers are used
The following describes the behavior when an exception handler is used:

About Process Manager

20 Administering Platform LSF Process Manager

When a… Experiences
this
Exception…

and the Handler
Used is…

This Happens…

Flow Overrun Kill The flow is killed. All incomplete jobs in the flow are killed. The
flow status is ‘Killed’.

Alarm The alarm is opened. The flow continues execution as
designed.

Underrun Rerun Flows that have a dependency on the success of this flow may
not be triggered, depending on the type of dependency. The
flow is recreated with the same flow ID. The flow is rerun from
the first job, as many times as required until the execution time
exceeds the underrun time specified.

Alarm The alarm is opened.

Flow has exit
code of n

Rerun Flows that have a dependency on this flow may not be
triggered, depending on the type of dependency. The flow is
recreated with the same flow ID. The flow is rerun from the
first job, as many times as required until an exit code other
than n is reached.

Alarm The alarm is opened. Flows that have a dependency on this
flow may not be triggered, depending on the type of
dependency.

n unsuccessful
jobs

Kill The flow is killed. All incomplete jobs in the flow are killed. The
flow status is ‘Killed’.

Alarm The alarm is opened. Flows that have a dependency on this
flow may not be triggered, depending on the type of
dependency. The flow continues execution as designed.

Work item has
exit code of n

Rerun Flows that have a dependency on this flow may not be
triggered, depending on the type of dependency. The flow is
rerun from the first job, as many times as required until the
work item has a different exit code.

About Process Manager

Administering Platform LSF Process Manager 21

When a… Experiences
this
Exception…

and the Handler
Used is…

This Happens…

Subflow Overrun Kill The subflow is killed. The flow behaves as designed.

Alarm The alarm is opened. Both the flow and subflow continue
execution as designed.

Underrun Rerun Work items that have a dependency on this subflow may not
be triggered, depending on the type of dependency. The
subflow is rerun from the first job, as many times as required
until the execution time exceeds the underrun time specified.

Alarm The alarm is opened. The flow continues execution as
designed.

Subflow has exit
code of n

Rerun Work items that have a dependency on this subflow may not
be triggered, depending on the type of dependency. The
subflow is rerun from the first job, as many times as required
until an exit code other than n is reached.

Alarm The alarm is opened. The flow continues execution as
designed.

n unsuccessful
jobs

Kill The subflow is killed. The flow behaves as designed.

Alarm The alarm is opened. The flow and subflow continue
execution as designed.

A work item has
exit code of n

Rerun Work items that have a dependency on this flow may not be
triggered, depending on the type of dependency. The flow is
rerun from the first job, as many times as required until the
work item has a different exit code.

Job or job array Overrun Kill The job or job array is killed. The flow behaves as designed.
The job or job array status is determined by its exit value.

Alarm The alarm is opened. Both the flow and job or job array
continue to execute as designed.

Underrun Rerun Objects that have a dependency on this job or job array may
not be triggered, depending on the type of dependency. The
job or job array is rerun as many times as required until the
execution time exceeds the underrun time specified.

Alarm The alarm is opened. The flow continues execution as
designed.

An exit code of
n

Rerun The job or job array is rerun as many times as required until
it ends successfully.

Alarm The alarm is opened. The flow behaves as designed.

n unsuccessful
jobs

Kill The job array is killed. The flow behaves as designed. The job
array status is determined by its exit value.

Alarm The alarm is opened. The flow continues execution as
designed.

About Process Manager

22 Administering Platform LSF Process Manager

User-defined exception handlers
In addition to the built-in exception handlers, you can create your flow definitions to handle
exceptions by:

• Running a recovery job
• Triggering another flow

Recovery job
You can use a job dependency in a flow definition to run a job that performs some recovery
function when an exception occurs.

Recovery flow
You can create a flow that performs some recovery function for another flow. When you submit
the recovery flow, specify the name of the flow and exception as an event to trigger the recovery
flow.

About Process Manager

Administering Platform LSF Process Manager 23

New features

Native encoding
• Additional support for native encoding in many job and flow fields such as job name, alarm type, and command

line.

Job/job array submission script
• You can define and submit customized job / job array submission script with bsub command and options. You

can also monitor and control the jobs and job arrays that have been submitted through the customized job
submission scripts. The customized job submission script can be in the form of a shell script or a batch file, depending
on the host that runs JFD.

Upgrade
• Platform LSF Process Manager 7 now runs on Platform LSF Version 7 Update 2.

Extended bsub options
• You can define jobs and job arrays in Flow Editor that use a configured LSF application profile and service level

agreement.

Environment variables
• Now you can set environment variables on a per-flow basis, which allows multiple jobs/sub-flows within a flow to

use the same variables.

Flow statistics
• You can now view relevant flow instance information summary in Flow Manager.

Global Variables
• You can add, edit, and remove global variables dynamically from the command line or Flow Manager.

History clean up
• From now on any history log files older than the specified time period is cleaned up by the Process Manager.

About Process Manager

24 Administering Platform LSF Process Manager

2
Maintaining Process Manager

This chapter describes how to add components to the Process Manager system, how to maintain the system, how to
obtain historical information, and some troubleshooting techniques.

C H A P T E R

Administering Platform LSF Process Manager 25

Configure a failover host (managed by EGO)
When you install Process Manager as an EGO service, manage Process Manager through the Platform Management
Console. If the server fails, it is relocated and restarted on another host by Platform EGO.

1. In js.conf, set JS_FAILOVER=true and define JS_FAILOVER_HOST. Both JS_HOST and
JS_FAILOVER_HOST must belong to EGO ManagementHosts resource group.

2. Log on to the Platform Management Console and navigate to Cluster > Monitoring Services > Services. For the
processmanager service, select Actions > Open Profile.

3. Change sc:ControlPolicy > sc:Start Type from MANUAL to AUTOMATIC.
4. Under sc:ResourceSpecification > ego:ResourceRequirement, add the value: select('JS_HOST' ||

'JS_FAILOVER_HOST')
5. Save and close the profile.

The Process Manager service is started automatically and failed over when required by the EGO service controller.

Maintaining Process Manager

26 Administering Platform LSF Process Manager

Install and configure a failover host on UNIX
(managed by failover daemon)
Note:

Follow this procedure only if you have not installed Process Manager as EGO
service.

When you install Process Manager Server, the failover daemon fod is automatically installed. You only need to license
and configure the failover host. It is recommended that you do this prior to installing a large number of Process Manager
clients, because each client needs to be configured to connect to the failover host automatically if the primary host is
unavailable.

Procedure overview:

1. Configure the primary host to recognize the failover host.
2. Prepare the installation files on the failover host.
3. Prepare the configuration on the failover host.
4. Install Process Manager Server on the failover host, and start the failover host.

Configure the primary host
1. Log on to the Process Manager Server host as root or as the primary Process Manager

administrator.
2. Run jadmin stop.
3. Edit JS_TOP/conf/js.conf.
4. For the JS_FAILOVER parameter, specify true. Be sure to remove the comment character

#.
5. For the JS_FAILOVER_HOST parameter, specify the fully-qualified name of the failover

host.
6. Optional. Add JS_FOD_PORT parameter and specify the port number of the failover

daemon. If you do not specify a port number, it defaults to 1999.
7. Save js.conf.
8. Run jadmin start to start Process Manager Server and make your changes take effect.

Prepare the installation files on the failover host
1. Make sure that you have access to the Process Manager distribution files.

a) Copy the installer to the Process Manager directory.
b) Untar the package (for example, ppm7_pinstall.tar.Z).

% zcat ppm7_pinstall.tar.Z|tar xvf -

This creates a directory called ppm7_pinstall. For example:
% ls /usr/share/pmanager/ppm7_pinstall/

c) Copy the Process Manager Server and Process Manager Client distribution files for
your operating system to the Process Manager directory. Do not untar these files.

Maintaining Process Manager

Administering Platform LSF Process Manager 27

Prepare the configuration on the failover host
1. Log on to the failover host as root or as the primary Process Manager administrator.
2. Make the Process Manager directory current. For example:

cd /usr/share/pmanager/ppm7_pinstall

3. Copy install.config from the Process Manager Server host to the failover host,
replacing the one in the installation package.

4. Edit install.config as follows:
a) Add JS_FAILOVER parameter and specify true.
b) Optional. For the JS_FOD_PORT parameter, specify the port number of the failover

daemon. If you do not specify a port number, it defaults to 1999. Be sure to remove the
comment character #.

5. Save install.config.

Install the software on the failover host
1. Run jsinstall to start the installation:

./jsinstall -f install.config

Logging installation sequence in /usr/share/pmanager/ppm7_pinstall/
ppm7_pinstall/Install.log

2. Select the Process Manager Server. For example:
Searching for Process Manager tar files in /usr/share/pmanager/
ppm7_pinstall please wait ...
1) Linux 2.6-glibc2.3-x86 Server
2) Linux 2.6-glibc2.3-x86 Flow Editor and Calendar Editor Client
3) Linux 2.6-glibc2.3-x86 Flow Manager Client
List the numbers separated by spaces that you want to install. (E.g. 1 3
7, or press Enter for all): 1 2

3. After the installation is complete, set the Process Manager environment:

• On csh or tcsh:
source JS_TOP/conf/cshrc.js

• On sh, ksh or bash:
. JS_TOP/conf/profile.js

Where JS_TOP is the top-level Process Manager installation directory, the value specified
in the install.config file.

4. Run jadmin start to start the Process Manager daemon on the failover host:
jadmin start

Maintaining Process Manager

28 Administering Platform LSF Process Manager

Add a UNIX client
1. Copy the client tar file for the operating system Process Manager Client will run on to the UNIX host on which you

want to install Process Manager. For example, ppm7_pinstall.tar.Z.
2. Untar ppm7_pinstall.tar.Z as follows:

% zcat ppm7_pinstall.tar.Z|tar xvf -

This creates a directory called ppm7_pinstall.
3. In ppm7_pinstall, edit section 1 of the file install.config to define your configuration.

Remove the comment symbol (#) and set values for the following parameters:

• For JS_TOP, specify the full path to the top-level Process Manager installation directory. The installation script
will create the directory you specify.

• For JS_HOST, specify the fully qualified hostname of the host on which the Process Manager daemon will run.
You can specify only one host, as each host requires its own configuration files.

• For JS_PORT, specify the port number through which the clients will access the Process Manager Server. The
default is 1966.

• For JS_TARDIR, specify the full path to the directory containing the Process Manager distribution tar files.
The default is the parent directory of the current working directory where jsinstall is running.

Maintaining Process Manager

Administering Platform LSF Process Manager 29

Add a Windows client
1. Copy ppm7_pinstall_win.exe to the desktop or a shared file location from which you can run it.
2. Run ppm7_pinstall_win.exe to start the installation.
3. In the Welcome dialog, click Next
4. In the Choose Destination Location dialog, click Next to use to the default location; or click Browse... to select a

different directory. Click Next.
5. In the Select Components dialog, select the components to install and click Next.

• Flow Editor and Calendar Editor
• Flow Manager

Click Next to continue.
6. In the Client Configuration dialog:

a) In the Host name field, specify the name of the Process Manager host the desktop will connect to.
b) In the Port field, specify the port number of the Process Manager host. If you used the default port number for

the Server, leave the value at 1966.
c) Click Next.

7. Verify that the settings are correct, and click Next to complete the installation.
8. Click Finish.
9. When the installation is complete, from the Start menu, select Platform Computing and Process Manager, and

the appropriate application: Flow Editor, Flow Manager, or Calendar Editor.

Both the Flow Manager and the Calendar Editor require a connection to the Server to be able to start. If you are
unable to start either of these applications, there is an error in the configuration, or the Server is not yet started.

Maintaining Process Manager

30 Administering Platform LSF Process Manager

Run the Process Manager server on system
startup
On UNIX, the Process Manager Server can be configured to start and stop at system startup or shutdown. On Windows,
the Process Manager Server runs as a service, and by default, starts and stops automatically with the system.

1. Ensure installation of the Process Manager daemon is complete, and that you have sourced the correct environment.
2. Log on as root to the host where the Process Manager daemon is installed.
3. Run the following script:

#./bootsetup

This script picks up your environment information and enables the daemon to start and stop at system boot time.

Maintaining Process Manager

Administering Platform LSF Process Manager 31

About Process Manager variables
Process Manager provides substitution capabilities through the use of variables. When Process Manager encounters a
variable, it substitutes the current value of that variable.

Process Manager users can use variables as part or all of a file name to make file names flexible, or use them to pass
arguments to any job, or from scripts. They can export the value of a variable to one or more jobs in a flow, or to other
flows that are currently running on the same Process Manager Server.

Process Manager users can set a value for a single variable within a script, or set values for a list of variables, and make
all of the values available to the flow or to the Process Manager Server. They can use a single variable or a list of variables
within a job, job array or file event definition.

Maintaining Process Manager

32 Administering Platform LSF Process Manager

Types of variables
Process Manager supports three types of variables:

• Built-in variables
• User variables
• Environment variables

Built-in variables
Built-in variables are those defined by Process Manager, where the value is obtained automatically by Process Manager
and made available for use by a flow. No special setup is required to use Process Manager built-in variables. You can
use these variables in many of the job definition fields in Flow Editor.

User variables
User variables are those created by a user, where the value is set at runtime within a UNIX script or Windows .bat
file, and made available to Process Manager. To use a user variable, you must first create a job that sets a runtime value
for the variable and exports it to Process Manager. You submit that job to a special queue that is configured to set
variables. See your Process Manager administrator for the queue name. Once a value has been set for the variable, you
can use the variable in many of the job definition fields in Flow Editor.

There are two types of user variables Process Manager users can set:

• Local variables—those whose values are available only to jobs, job arrays, subflows or events within the current
flow. These variables are set in JS_FLOW_VARIABLE_LIST.

• Global variables—those whose values are available to all the flows within the Process Manager Server. These variables
are set in JS_GLOBAL_VARIABLE_LIST.

User variables can also be used inside environment variables.

Environment variables
You can submit a job that has environment variables that are used when the job runs. Environment variables can contain
user variables.

Maintaining Process Manager

Administering Platform LSF Process Manager 33

Scope of variables
The variables set by the job have similar scope to variables in any programming language (C for example). If the job
sets the variable in JS_FLOW_VARIABLE_LIST within a subflow, the scope of the variable is limited to the jobs and
events within the subflow. If the same variable is overwritten by another job within the subflow, the new value is used
for all subsequent jobs or events inside that subflow.

Local variable values override global variable values. Similarly, a value set within a subflow overrides any value set at
the flow level, only within the subflow itself.

Environment variables are set in the job definition and the job runs with the variables that are set.

Maintaining Process Manager

34 Administering Platform LSF Process Manager

How variables are set
Process Manager uses a job starter as a wrapper to a job to export any user variables that are set within the job. The job
starter actually runs the executable the job is defined to run. When the executable finishes, the job starter obtains any
variables and values that were set by the job from JS_FLOW_VARIABLE_LIST and JS_GLOBAL_VARIABLE_LIST.
The variables are written to the shared directory under JS_TOP/work/var_comm, where they are stored temporarily.
The Process Manager Server retrieves the variables and their values and saves them in permanent storage under
JS_TOP/work/variable.

For environment variables, a new job attribute is created to store the environment variables. In a Linux environment,
a script file is written to a temporary directory to run the bsub command. In a Windows environment, a temporary
directory is used to create and run batch files. The system tries the following directories until it finds one that is writable:

• %TEMP%
• %TMP%
• C:\

Maintaining Process Manager

Administering Platform LSF Process Manager 35

Dedicate the Process Manager Server Host
If you are running large flows or a large number of flows, it is recommended that you designate
your Process Manager Server host as an LSF client host, rather than an LSF server host.

1. Edit the LSF cluster file lsf.cluster.cluster_name.
2. In the Host section of the file, locate the name of the host on which the Process Manager Server.
3. In the Server column for the primary Process Manager host, enter 0, which specifies that this is a client host and

does not run LSF jobs. For example:
Begin Host HOSTNAME model type server r1m pg tmp RESOURCES RUNWINDOW
hostA SparcIPC Sparc 1 3.5 15 0 (sunos frame) ()
hostD Sparc10 Sparc 1 3.5 15 0 (sunos) (5:18:30-1:8:30)
jshost ! ! 0 2.0 10 0 () () End Host

4. Save the file.
5. Run lsadmin reconfig and badmin reconfig to reconfigure the LSF cluster.

Maintaining Process Manager

36 Administering Platform LSF Process Manager

Configure an alarm
An alarm is used to send a notification when an exception occurs. The alarm definition specifies how a notification
should be sent if an exception occurs. When a user defines a flow to schedule work, they can select an alarm to open if
an exception occurs. They select an alarm from a configured list of alarms. Alarms are configured by the Process Manager
administrator. Each alarm must have a name and an email address.

Alarms are stored in JS_TOP/work/alarms. Each alarm is in a separate file named alarm_name.alarm. The file name
and its contents are case-sensitive. Each alarm can notify one or more email addresses.

The contents of an alarm file are as shown:
DESCRIPTION=<description>
NOTIFICATION=Email[user1 user2 user3]

1. As the Process Manager administrator, create a new file in JS_TOP/work/alarms. Specify a name for the file that
is a meaningful name for the alarm, with a file suffix of alarm. For example:
DBError.alarm

The name you specify will appear in the Flow Editor in the list of available alarms.
2. Optional. Specify a meaningful description for the alarm. For example:

DESCRIPTION=Send DBA a message indicating DBMS failure

3. Required. Specify one or more email addresses to notify regarding the exception. Separate the addresses with a
space. Specify the complete email address, or just specify the user name, if JS_MAILHOST was defined in
js.conf. For example:
NOTIFICATION=Email[bsmith ajones]

You must specify a valid notification statement with at least one email address, or the alarm is not valid.
4. To enable the alarm, reload the alarm list using the following command:

jreconfigalarm

Maintaining Process Manager

Administering Platform LSF Process Manager 37

Configure to support user variables
If users in your Process Manager system will be setting and using user variables, you need to configure the system to
support this.

1. If the Process Manager Server runs on UNIX, and users will be setting variables in jobs that run on UNIX hosts, go
to Configure variables for UNIX hosts on page 39.

2. If the Process Manager Server runs on Windows, and users will be setting variables in jobs that run on Windows
hosts, go to Configure variables for Windows hosts on page 40.

3. If the Process Manager Server runs on UNIX and users will be setting variables from both UNIX and Windows
hosts, go to you need to follow both sets of instructions.

4. If your users will be using many variables in any job definition field, you may need to increase the number of variables
that can be substituted at a time per field. Go to Increase the number of variables that can be substituted on page
43 for instructions.

Maintaining Process Manager

38 Administering Platform LSF Process Manager

Configure variables for UNIX hosts
1. Configure one or more UNIX-specific queues to accept jobs that set variables. See Configure a queue to support

setting user variables on page 42 for instructions.
2. Ensure that the korn shell (ksh) is available on the host, as the korn shell is required to export variables on UNIX.
3. Ensure that the JS_TOP directory is accessible by all LSF hosts that will run jobs that set variables—on a shared file

system.

Maintaining Process Manager

Administering Platform LSF Process Manager 39

Configure variables for Windows hosts
1. Configure one or more Windows-specific queues to accept jobs that set variables. See Configure a queue to support

setting user variables on page 42 for instructions.
2. Ensure that the JS_TOP directory is accessible by all LSF hosts that will run jobs that set variables—on a shared file

system.

Maintaining Process Manager

40 Administering Platform LSF Process Manager

Configure variables for both UNIX and
Windows hosts
1. Configure at least one Windows-specific queue and at least one Linux-specific queue to accept jobs that set variables.

See Configure a queue to support setting user variables on page 42 for instructions.
2. On the UNIX LSF hosts, ensure that the korn shell (ksh) is available, as the korn shell is required to export variables

on UNIX.
3. Log on to the Process Manager Server host as root or as the primary Process Manager administrator.
4. Configure the Server host as follows:

a) Copy ppm7_writevar_w2k.tar.Z to the directory containing the Process Manager distribution files.
b) Run jsinstall to start the installation:

./jsinstall -f install.config
c) Select Windows 2000 Variables from the list of components to install.
d) Press Enter to complete the installation.

5. Edit jsstarter.bat
6. Set a value for JS_TOP. For example:

set JS_TOP=\\user\share\js

7. Save jsstarter.bat.
8. Ensure that the JS_TOP directory is accessible by all LSF hosts that will run jobs that set variables—on a shared file

system.
9. Restart LSF.

Maintaining Process Manager

Administering Platform LSF Process Manager 41

Configure a queue to support setting user
variables
Any jobs submitted to the queues for setting variables must be wrapped in a script. It is recommended that you create
these queues exclusively for setting variables to avoid confusion.

1. Create a new queue in the LSF queues file lsb.queues. If users will be setting variables in both UNIX and Windows
jobs, you will need a separate queue for each.

2. Add the variable JOB_STARTER in the queue configuration to point to the starter script shipped with Process
Manager. Starter scripts are available in JS_TOP/7/bin.

For example, for a UNIX queue:
JOB_STARTER=JS_TOP/7/bin/jsstarter

For example, for a Windows queue:
JOB_STARTER=JS_TOP\7\bin\jsstarter.bat

Ensure that the value you specify for JS_TOP is a fully-qualified UNC (Universal Naming Convention) name on a
shared file system.

3. Run badmin reconfig to reconfigure LSF.

Maintaining Process Manager

42 Administering Platform LSF Process Manager

Increase the number of variables that can be
substituted
1. Stop the Process Manager Server and edit js.conf.
2. Add a line that specifies the maximum number of variable substitutions that can be performed in a single job

definition field by specifying a value for JS_MAX_VAR_SUBSTITUTIONS For example:
JS_MAX_VAR_SUBSTITUTIONS=20

The default is 10 substitutions.
3. Complete the instructions for changing your configuration, saving js.conf, and starting Process Manager Server.

Maintaining Process Manager

Administering Platform LSF Process Manager 43

Control the Process Manager Server
Starting and stopping the Server on UNIX

On UNIX, the Process Manager Server has a single daemon, jfd. You control jfd with the
jadmin command.

Start the Process Manager daemon
1. Log on to the Process Manager Server host as root.
2. Run jadmin start. This command starts jfd.

Stop the Process Manager daemon
1. Log on to the Process Manager Server host as root or as the primary Process Manager

administrator.
2. Run jadmin stop. This command stops jfd.

Maintaining Process Manager

44 Administering Platform LSF Process Manager

Start and stop the Server on Windows
On Windows, the Process Manager Server runs as a service. By default, it is configured to start
and stop automatically when the host is started and stopped.

Start the Process Manager service
1. Click Start, select Settings,and select Control Panel.
2. Double-click Administrative Tools.
3. Double-click Services.
4. Right-click on the service Process Manager and select Start.

Stop the Process Manager service
1. Click Start, select Settings,and select Control Panel.
2. Double-click Administrative Tools.
3. Double-click Services.
4. Right-click on the service Process Manager and select Stop.

Maintaining Process Manager

Administering Platform LSF Process Manager 45

Forcing a system snapshot
Periodically, Process Manager automatically takes a snapshot of the workload in the system and the current status of
each work item. The time period between automatic snapshots is determined by the value set in
JS_DATACAPTURE_TIME in js.conf. A snapshot is also taken automatically when Process Manager Server is shut
down normally. The information captured is stored in JS_HOME/work/system. The information captured in the
snapshot is used for recovery purposes, to reconcile job and flow status. The more current the data in the snapshot, the
faster the recovery time. When a snapshot is being performed, Process Manager Server pauses its processing—jobs that
are running continue to run, but no new work is submitted.

When considering snapshots, you need to balance the time it takes to process the snapshot versus the time it may take
to recover from a failure.

It is recommended that you force a snapshot at a time when Process Manager Server is least busy—if that time occurs
at a regular interval, schedule it then using the JS_DATACAPTURE_TIME parameter in js.conf.

1. Log on to the Process Manager Server host as root or as the primary Process Manager administrator.
2. Run jadmin snapshot. The following text appears in the log file:

Starting Data Capture. This may take a while depending upon system workload. When the snapshot
is completed, the following text appears in the log file:
Data Capture Complete.

Maintaining Process Manager

46 Administering Platform LSF Process Manager

Change the Configuration
After you have installed the basic Process Manager configuration, you may need to change a
configuration value, such as adding administrators.

Change a configuration value on UNIX
1. Log on to the Process Manager Server host as root or as the primary Process Manager

administrator.
2. Run jadmin stop.
3. Edit JS_TOP/conf/js.conf.
4. Make your changes.
5. Save js.conf.
6. Run jadmin start to start the Process Manager Server and make your changes take effect.

Change a configuration value on Windows
1. Stop the Process Manager Server service.
2. Edit JS_TOP/conf/js.conf.
3. Make your changes.
4. Save js.conf.
5. Start the Process Manager Server service to make your changes take effect.

Maintaining Process Manager

Administering Platform LSF Process Manager 47

Add an administrator
Process Manager uses role-based access control to secure certain types of objects. Special permissions are required to
install and configure Process Manager, or to modify Process Manager items on behalf of another user.

Process Manager recognizes the following kinds of administrators:

• Primary Process Manager administrator—required to install a Process Manager Server and change permissions. It
is also the user under which the Process Manager Server runs, and is the minimum authority required to stop the
Process Manager Server. This is the first administrator defined in the list of administrators for the JS_ADMINS
parameter in js.conf—there can be only one.

• Process Manager administrator—can create, delete, modify flows on behalf of another user. You can specify as many
of these as required. You can also specify UNIX user group names as administrators. These are the administrators
specified after the primary administrator for the JS_ADMINS parameter in js.conf.

• Process Manager control administrator—can control existing Process Manager items on behalf of another user.
This user cannot submit or remove flows belonging to another user. You can specify as many of these as required.
You can also specify UNIX user group names as control administrators. These are the administrators specified in
the JS_CONTROL_ADMINS parameter in js.conf.

1. Stop the Process Manager Server and edit js.conf.
2. To add a Process Manager administrator, for the JS_ADMINS parameter, specify one or more user IDs after the

primary administrator name. Separate the names with a comma.
3. For JS_CONTROL_ADMINS, specify one or more user IDs or UNIX user group names. To specify a list, separate

the names with a comma.
4. Complete the instructions for changing your configuration, saving js.conf and starting the Process Manager

Server.

Maintaining Process Manager

48 Administering Platform LSF Process Manager

Sign on as a guest
A guest account allows you to have view access to flows and jobs.

As a guest, you have access to the view-only functionality of Flow Manager and Calendar Editor. You can view but not
operate on flow definitions, flows, and jobs. You can view but not create, modify, or delete calendars.

Guest accounts also have access to the following commands:

• jid
• jalarms
• jflows
• jdefs
• jmanuals
• jcals

Guest accounts do not have access to the Flow Editor or to any other commands.

JS_LOGIN_REQUIRED must be set to true. You can only sign on to the Calendar Editor or Flow Manager. You cannot
log on to the Flow Editor.

1. Start Calendar Editor or Flow Manager.
2. Login user name: guest

The user name is case-sensitive.
3. Leave the password blank.
4. Click OK.

Limit the guest account
Administrators can limit the guest account so that it cannot view any flows or calendars.

1. Open js.conf for editing.
2. Set the parameter JS_LIMIT_USER_VIEW=true.

Maintaining Process Manager

Administering Platform LSF Process Manager 49

Create system calendars
Process Manager uses system calendars to share scheduling expressions that are commonly
used. System calendars are created by the Process Manager administrator, and are owned by
the virtual user Sys. They can be viewed and referenced by everyone. Each system calendar
is stored as an individual file in JS_TOP/work/calendars—one calendar per file. You create
a calendar using the Calendar Editor, and change the owner name to Sys.

Maintaining Process Manager

50 Administering Platform LSF Process Manager

Calendar names
When you create a calendar, you need to save it with a unique name. Some rules apply:

• Calendar names can contain the digits 0 to 9, the characters a to z and A to Z, and underscore (_)
• Calendar names cannot begin with a number
• System calendars are named as follows:

calendar_name@Sys

1. Using the Calendar Editor, create the calendar and save it. The calendar will be saved with your own user ID as the
owner. For instructions on using the Calendar Editor, see Using Platform LSF Process Manager, or the Calendar
Editor online help.

2. In JS_TOP/work/calendars, locate the calendar you created. Change the owner of the calendar by editing the
file and changing the owner from your user ID to Sys. Refer to the following example, where the owner is highlighted:

3. Rename the file or save the file with a new name. Ensure the suffix of the calendar is Sys.
4. If applicable, delete the original calendar you created.

Maintaining Process Manager

Administering Platform LSF Process Manager 51

Update the Holidays@Sys calendar
1. Open the Holidays@Sys calendar.
2. Save the calendar with a new name.
3. Edit the list of dates to include all those dates that are company-wide holidays.
4. In JS_TOP/work/calendars, locate the calendar you created. Change the owner of the calendar by editing the

file and changing the owner from your user ID to Sys. Refer to the following example, where the owner is highlighted:

5. Delete the original Holidays@Sys calendar.
6. Rename the file to Holidays@Sys. Ensure the suffix of the calendar is Sys.

Maintaining Process Manager

52 Administering Platform LSF Process Manager

Delete a calendar
Periodically, you or a user may need to delete a calendar. This can be done from the Calendar Editor, or by using the
jcdel command.

You cannot delete a calendar that is currently in use by a flow definition, flow, or another calendar. A calendar is in use
under the following conditions:

• If a flow definition is triggered by a time event that uses the calendar, or uses a calendar that references this calendar
• If a flow is running, and contains a time event that uses the calendar or uses a calendar that references this calendar
• If another calendar references this calendar to build a schedule statement

You can temporarily delete a system calendar—installing a new version of Process Manager Server reinstalls the
system calendars that come with Process Manager.

1. Stop Process Manager Server.
2. In JS_TOP/work/calendars, locate the calendar you want to delete.
3. Delete the file from the calendars directory.
4. Restart the Process Manager to have the change take effect.

Maintaining Process Manager

Administering Platform LSF Process Manager 53

Maintain User Passwords
Every job has a user ID associated with it. That user ID must always have a current password in the LSF password file,
or the job is unable to run.

If user passwords at your site never expire, you simply need to ensure that all user IDs under which jobs might run
initially have a password entered for them in the LSF password file. After that, maintenance is only required to add
passwords for new users.

If user passwords at your site expire on a regular basis, you and your users need to be aware that a user’s jobs cannot
run if their passwords change and the LSF password file is not updated.

Update the LSF password file
There are two ways that a user’s password can be updated:

• Automatically
• By running the lspasswd command

Automatic updates
Every time a user logs into either the Flow Manager or the Calendar Editor, the user’s password
is updated in the LSF password file.

Run lspasswd
A user can update their own password without logging into the Flow Manager or Calendar
Editor by running the lspasswd command. Simply run lspasswd and enter the current
password when prompted.

Run a job as another user
If you, as the administrator, define a flow that runs a job on behalf of another user, you need
to ensure that user’s password is in the LSF password file. If the user logs on to either the Flow
Manager or Calendar Editor regularly, the password is probably up to date. If not, either you
or the user needs to run lspasswd to update the user’s password so the job can run. Obviously,
if you run lspasswd on behalf of the user, you need to know the user’s password.

Maintaining Process Manager

54 Administering Platform LSF Process Manager

Specify the mail host
The mail host parameter in js.conf defines the type of email server used and the name of the email host. This
information is important for receiving email notifications from the Process Manager Server.

1. Stop the Process Manager Server and edit js.conf.
2. If the parameter JS_MAILHOST is already defined, change the value to specify the new email host. Otherwise, add

a line that specifies the type of mail host and the name of the mail server host. For an SMTP mail host, specify
SMTP:hostname as shown:
JS_MAILHOST=SMTP:barney

For an Exchange mail host, specify Exchange:hostname, as shown:
JS_MAILHOST=Exchange:fred

The default is SMTP on the local host.
3. Complete the instructions for changing your configuration, saving js.conf and starting the Process Manager

Server.

Maintaining Process Manager

Administering Platform LSF Process Manager 55

Change the job start retry value
The job start retry value controls the number of times that the Process Manager Server tries to start a job or job array
before it raises a Start Failed exception.

1. Stop the Process Manager Server and edit js.conf.
2. If the parameter JS_START_RETRY is already defined, change the value to specify the new number of retry times.

Otherwise, add a line like the following to the file:

JS_START_RETRY=n

where n is the number of times to retry starting a job or job array before raising a Start Failed exception.
3. Complete the instructions for changing your configuration, saving js.conf and starting the Process Manager Server.

Maintaining Process Manager

56 Administering Platform LSF Process Manager

Change the history setting
History information is stored in a history log file. Data is added to this file for either a set period of time after a flow
has completed, or when the history log file reaches a certain size. By default, these values are set to 24 hours or 500 KB,
whichever occurs first. You can change these values after installation. After the set amount of time has elapsed, or the
file reaches the specified size, a new history log file is created. The previous file remains in the log directory until you
archive it or delete it.

1. Follow the instructions in “Changing the Configuration” to stop the Process Manager Server and edit js.conf.
2. Locate the following parameters in the file:

JS_HISTORY_LIFETIME=24 # JS_HISTORY_SIZE=500000

and change them as follows:
a) Delete the comment symbol (#) from the lines you want to change.
b) Change the JS_HISTORY_LIFETIME value to the maximum number of hours of data you want to keep in each

file.
c) Change the JS_HISTORY_SIZE value to the maximum number of bytes of data you want to keep before creating

a new file.

Historical data will be kept in the current log file until either the size limit or the time limit is reached, whichever
is reached first.

3. Complete the instructions for changing your configuration, saving js.conf and starting the Process Manager
Server.

Maintaining Process Manager

Administering Platform LSF Process Manager 57

View History
You can see the history of a work item, which shows details about when and how the item was run.

When you view history using the Flow Manager, or when you use the jhist command with no time interval specified,
you see data for the past seven days.

Maintaining Process Manager

58 Administering Platform LSF Process Manager

View the history of a flow definition
For a flow definition, you can see the following information:

• If and when it was submitted
• If and when it was submitted to run immediately
• If and when it was removed from Process Manager
• If and when it was placed on hold or released
• If and when it was triggered by an event
• If and when a flow was created, and any IDs of those flows
• Time zone information for Process Manager Client

From the command line
From the command line, run:

%jhist -C flowdef -f flow_definition_name

where flow_name is the name of the flow definition whose history you want to display.

Maintaining Process Manager

Administering Platform LSF Process Manager 59

View the history of a flow
For a flow, you can see the following information:

• When it started
• If and when it was killed
• If and when it was suspended
• If and when it was resumed
• When it completed
• Time zone information for Process Manager Client

From the command line
From the command line, run:

%jhist -C flow -i flow_id

where flow_id is the unique ID of the flow whose history you want to display.

Maintaining Process Manager

60 Administering Platform LSF Process Manager

View the history of a job or job array
For a job or job array, you can see the following information:

• The user name
• The ID of the flow in which it ran
• The job name
• The job ID
• The state of the job
• The status of the job
• When the job started
• When the job completed
• The CPU usage of the job
• The memory usage of the job
• Time zone information for Process Manager Client

From the command line
From the command line, run:

%jhist -C job -j job_name

where job_name is the name of the job or job array.

Maintaining Process Manager

Administering Platform LSF Process Manager 61

Troubleshooting
Process Manager daemon cannot restart—port is in use

The problem:
If LSF is down, and the Process Manager daemon is killed or goes down before LSF comes
back up, it is possible that one or more jobs were in the process of being submitted before the
Process Manager Server went down. The processes for these jobs may be using the port the
Process Manager daemon used before it went down.

The solution:
Search for the bsub process of any job that Process Manager was trying to submit and kill it.
The job will be resubmitted when the Process Manager Server restarts.

Overrun exception triggers at incorrect time

The problem
An overrun exception is to trigger if a job runs longer than a specified number of minutes, for
example 10 minutes. The overrun exception is flagged when the job runs for 9 minutes.

The solution
The clock on the machine used to determine the start time of the job, and the clock on the
machine on which the job is running are out of synchronization. Either adjust the overrun
time to account for clock discrepancies, or synchronize the clocks on all machines.

After deleting a calendar, user cannot find flow

The problem
The user deleted a calendar that was used, either to trigger a flow or to trigger a job within a
flow. Then the Process Manager Server was restarted. After the Server restarts, the user cannot
find the flow in the Flow Manager.

The solution
Upon restart of the Process Manager Server, the flow is no longer associated with its flow
definition in the Flow Manager. This is because the flow definition has an error. The flow now
resides in the JS_TOP/work/storage/error directory.

Unable to run GUI on linux 2.2 through XTERM

The problem
This problem is related to JRE defect #4466587. If the stack size is less than a certain limit on
some linux platforms, a segmentation fault occurs.

The solution
Increase the stack size to at least 2048. For tcsh or csh:

limit stacksize 2048

Maintaining Process Manager

62 Administering Platform LSF Process Manager

For bash:

ulimit -s 2048

Not all user variables are replaced

The problem
The user specified more than the configured maximum number of user variables that can be
substituted in a single field.

The solution
Increase the value for JS_MAX_VAR_SUBSTITUTIONS in js.conf.

User is unable to trigger their own flow

The problem
On Windows, if a user submits a flow under a user ID that is specified in one case, but logs in
to Flow Manager with the same user ID typed in a different case, the Process Manager Server
does not recognize the two user IDs as the same. The user cannot trigger the flow.

For example, when John creates a flow, he is logged in as jdoe. When he logs into Flow Manager
to trigger the flow, he logs in as JDOE. To the Process Manager Server, he is not authorized
to trigger this flow because it is not his.

The solution
A Windows user must always log in using the same case. The following are seen as different
users:

• jdoe
• Jdoe
• JDOE

Maintaining Process Manager

Administering Platform LSF Process Manager 63

Maintaining Process Manager

64 Administering Platform LSF Process Manager

3
Mainframe support

Platform LSF Process Manager with IBM® z/OS® mainframe support allows you to dispatch jobs to a mainframe and
monitor their progress using FTP (file transfer protocol) technology on Microsoft® Windows® or UNIX.

z/OS is an operating system for IBM’s zSeries mainframes.

For more information about z/OS, see IBM’s z/OS website: http://www-03.ibm.com/servers/eserver/zseries/zos/.

How does it work?
The Process Manager daemon (the jfd) supports mainframe by submitting an LSF proxy job which controls the FTP
to the mainframe host. The LSF proxy job (through FTP) submits, monitors, and retrieves the output of the mainframe
job. This means that mainframe jobs specify both mainframe and LSF details.

Requirements
• A valid z/OS mainframe user ID

Limitations
• z/OS does not support suspending or resuming jobs
• Job arrays for mainframe jobs are not supported
• On Windows, if you want to be able to kill a mainframe job, you must submit the job to a queue set up specifically

for that purpose.

C H A P T E R

Administering Platform LSF Process Manager 65

Configure for Mainframe
To use the mainframe support, you must:

1. Copy the template file z/OS_Template.xml from JS_TOP/7/examples to JS_TOP/work/templates.
2. Edit zos.conf with your customized settings. The zos.conf file contains all the information you need to configure

your settings for the FTP environment you are using.

The status of mainframe jobs is displayed in Flow Manager.

Killing a job (Windows only)
For a user to be able to kill a job in a Windows environment, the Administrator must create a
queue. For jobs to be eligible to be killed, they must be submitted by the user to that queue.

In lsb.queues in your z/OS-specific queue section, add a job control and the path to the script
that kills the job.

For example,
Begin Queue
QUEUE_NAME= zos_queue
DESCRIPTION= Bkill for zos jobs.
JOB_CONTROLS= TERMINATE[C:\ppm\7\etc\zos -k]
End Queue

Mainframe support

66 Administering Platform LSF Process Manager

4
Daemons

• jfd
• fod

C H A P T E R

Administering Platform LSF Process Manager 67

jfd
Process Manager Server daemon.

Synopsis
jfd [-2|-3]

jfd [-V]

Description
jfd is responsible for managing flow definitions and flows. When a flow definition is submitted to Process Manager
Server, jfd ensures that it is run according to its schedule or based on any triggering events, and manages any
dependency conditions for each job in the flow before submitting the job to LSF master host for processing.

Options
-2

Specifies to run jfd as not daemonized, and log debug information to the log file
specified in JS_LOGDIR. This option is used by failover. You cannot use it manually.

-3

Specifies to run jfd as not daemonized, and log debug information to stderr
(normally the terminal). This option may be used for debugging purposes. Use only
under the direction of Platform Technical Support.

-V

Prints the Process Manager release version to stderr and exits.

See also
fod, jadmin

Daemons

68 Administering Platform LSF Process Manager

fod
Process Manager Server failover daemon.

Synopsis
fod

Description
When used, fod is responsible for starting the Process Manager Server daemon jfd, and ensuring that it continues to
run. fod monitors jfd and restarts it on the failover host if jfd fails.

See also
jfd, jadmin

Daemons

Administering Platform LSF Process Manager 69

Daemons

70 Administering Platform LSF Process Manager

5
Commands

Process Manager includes a command line interface you can use to issue commands to Process Manager. You can use
commands to submit flow definitions to Process Manager, trigger flows to run, monitor and control running flows,
and obtain history information about many Process Manager work items.

Process Manager provides commands for various purposes: creating and editing calendars, manipulating flow
definitions, monitoring and controlling active flows, and obtaining history about various work items.

You cannot use commands to create a flow definition.

Calendar commands
You can use the following commands to work with Process Manager calendars:

• caleditor—to start the Calendar Editor graphical user interface
• jcadd—to create a calendar
• jcals—to display a list of calendars
• jcdel—to delete a calendar
• jcmod—to edit a calendar

Flow definition commands
You can use the following commands to work with flow definitions:

• floweditor—to start the Flow Editor graphical user interface
• jrun—to submit and run a flow immediately, without storing the flow definition in Process Manager
• jsub—to submit a flow definition to Process Manager
• jtrigger—to trigger the creation of a flow
• jhold—to place a flow definition on hold, preventing automatic triggering of the flow
• jrelease—to release a flow definition from hold, enabling automatic triggering of the flow
• jdefs—to display information about flow definitions
• jremove—to remove a flow definition from Process Manager

Flow monitor and control commands
You can use the following commands to monitor and control flows that are in the process of running or have recently
completed:

C H A P T E R

Administering Platform LSF Process Manager 71

• flowmanager—to start the Flow Manager graphical user interface
• jalarms—to list open alarms
• jcomplete—to complete a manual job
• jflows—to display information about a flow
• jjob—to kill or run a job, or to mark a job complete
• jkill—to kill a flow
• jmanuals—to list all manual jobs waiting for completion
• jrerun—to rerun an exited flow
• jsetvars—to change the value of a local or global variable while a flow is running
• jstop—to suspend a flow
• jresume—to resume a suspended flow

Other commands
• jid—to verify the connection between the Process Manager Client and the Process Manager Server
• jadmin—to control the Process Manager daemon on Unix
• jhist—to view the historic information about server, flow definitions, flows, and jobs.
• jreconfigalarm—to reload the alarm definitions.

Commands

72 Administering Platform LSF Process Manager

caleditor
starts the Calendar Editor.

Synopsis
caleditor

You use the caleditor command to start the Calendar Editor, where you can create new calendars, edit or delete
existing calendars.

Examples
% caleditor

opens the Calendar Editor.

Commands

Administering Platform LSF Process Manager 73

floweditor
starts the Flow Editor.

Synopsis
floweditor [file_name[file_name ...]]

Description
You use the floweditor command to start the Flow Editor. You can specify one or more flow definition file names
to open automatically when the Flow Editor starts. You can use this as a shortcut to quickly open a flow definition for
editing.

Options
file_name

Specifies the name of the file to be opened when the Flow Editor starts. If you do not
specify a file name, the Flow Editor starts with no files opened. You can specify a list
of files by separating the file names with a space.

Examples
% floweditor /tmp/myflow.xml /flows/payupdt.xml

opens the Flow Editor, and opens myflow.xml and payupdt.xml at the same time.
% floweditor

opens the Flow Editor with no files opened.

Commands

74 Administering Platform LSF Process Manager

flowmanager
starts the Flow Manager.

Synopsis
flowmanager

Description
You use the flowmanager command to start the Flow Manager, which allows you to monitor and control existing
flows.

Example
% flowmanager

opens the Flow Manager.

Commands

Administering Platform LSF Process Manager 75

jadmin
controls the Process Manager daemon jfd on UNIX.

Synopsis
jadmin start|stop

jadmin [-h|-V]

Description
You use the jadmin command to start and stop the Process Manager daemon. You must be root to start the Process
Manager daemon, and either root or the primary Process Manager administrator to stop the Process Manager
daemon.

Options
start

Starts the Process Manager daemon on UNIX. Ensure Process Manager is up and
running before you start the Process Manager daemon. You must be root to use this
option.

stop

Stops the Process Manager daemon on UNIX. You must be root or the primary
Process Manager administrator to use this option.

-h

Prints the command usage to stderr and exits.
-V

Prints the Process Manager release version to stderr and exits.

Examples
#jadmin start

Starts the Process Manager daemon.

#jadmin stop

Stops the Process Manager daemon.

See also
jfd, js.conf

Commands

76 Administering Platform LSF Process Manager

jalarms
lists the open alarms in Process Manager.

Synopsis
jalarms [-u user_name|-u all] [-f flow_name|-i flow_id] [-t start_time,end_time]

jalarms [-h]|[-V]

Description
You use the jalarms command to display an open alarm or a list of the open alarms. The following information is
displayed:

• alarm name
• user who owns the flow
• the date and time the alarm occurred
• alarm type
• Description of the problem that caused the alarm, if it was specified by the creator of the flow

Options
-u user_name

Specifies the name of the user who owns the alarm. If you do not specify a user name,
user name defaults to the user who invoked this command. If you specify -u all,
information is displayed about alarms owned by all users.

-f flow_name

Specifies the name of the flow definition for which to display alarm information.
Displays alarm information for flow definitions with the specified name.

-i flow_ID

Specifies the ID of the flow for which to display alarm information. Displays alarm
information for flows with the specified ID.

-t start_time,end_time

Specifies the span of time for which you want to display the alarms. If you do not
specify a start time, the start time is assumed to be the time the first alarm was opened.
If you do not specify an end time, the end time is assumed to be now.

Specify the times in the format "yyyy/mm/dd/HH:MM". Do not specify spaces in the
time interval string.

The time interval can be specified in many ways.
-h

Prints the command usage to stderr and exits.
-V

Prints the Process Manager release version to stderr and exits.

Commands

Administering Platform LSF Process Manager 77

Time interval format
You use the time interval to define a start and end time for collecting the data to be retrieved and displayed. While you
can specify both a start and an end time, you can also let one of the values default. You can specify either of the times
as an absolute time, by specifying the date or time, or you can specify them relative to the current time.

Specify the time interval is follows:

start_time,end_time|start_time,|,end_time|start_time

Specify start_time or end_time in the following format:

[year/][month/][day][/hour:minute|/hour:]|.|.-relative_int

Where:

• year is a four-digit number representing the calendar year.
• month is a number from 1 to 12, where 1 is January and 12 is December.
• day is a number from 1 to 31, representing the day of the month.
• hour is an integer from 0 to 23, representing the hour of the day on a 24-hour clock.
• minute is an integer from 0 to 59, representing the minute of the hour.
• . (period) represents the current month/day/hour:minute.
• .-relative_int is a number, from 1 to 31, specifying a relative start or end time prior to now.

start_time,end_time

Specifies both the start and end times of the interval.
start_time,

Specifies a start time, and lets the end time default to now.
,end_time

Specifies to start with the first logged occurrence, and end at the time specified.
start_time

Starts at the beginning of the most specific time period specified, and ends at the
maximum value of the time period specified. For example, 3/ specifies the month of
March—start March 1 at 00:00 a.m. and end at the last possible minute in March:
March 31st at midnight.

Absolute time examples
Assume the current time is May 9 17:06 2002:

1,8 = May 1 00:00 2002 to May 8 23:59 2002

,4 = the time of the first occurrence to May 4 23:59 2002

6 = May 6 00:00 2002 to May 6 23:59 2002

3/ = Mar 1 00:00 2002 to Mar 31 23:59 2002

/12: = May 9 12:00 2002 to May 9 12:59 2002

2/1 = Feb 1 00:00 2002 to Feb 1 23:59 2002

2/1, = Feb 1 00:00 to the current time

,. = the time of the first occurrence to the current time

Commands

78 Administering Platform LSF Process Manager

,2/10: = the time of the first occurrence to May 2 10:59 2002

2001/12/31,2002/5/1 = from Dec 31, 2001 00:00:00 to May 1st 2002 23:59:59

Relative time examples
.-9, = April 30 17:06 2002 to the current time

,.-2/ = the time of the first occurrence to Mar 9 17:06 2002

.-9,.-2 = nine days ago to two days ago (April 30, 2002 17:06 to May 7, 2002 17:06)

Example
% jalarms -u all -t ".-7,."

displays all of the opened alarms for the last seven days.

Commands

Administering Platform LSF Process Manager 79

jcadd
creates a calendar and adds it to the set of Process Manager calendars for the user.

Synopsis
jcadd [-d description] -t "cal_expression" "cal_name"

jcadd [-h]|[-V]

Description
You use the jcadd command when you need to define a new time expression for use in scheduling either a flow or a
work item within a flow. You define a new time expression by creating a calendar with that expression. The calendar
is owned by the user who runs this command. You must define a calendar expression when you use this command.

Options
-d description

Specifies a description for the calendar. Specify a meaningful description for the
calendar that summarizes the expression.

-t cal_expression

Specifies the dates on which you want some action to take place. You can enter specific
dates, a range of dates, or a more complex expression that resolves to a series of dates.

Note:

If you want the calendars you create to be viewable in the
Calendar Editor, specify abbreviated month and day names
in all uppercase. For example: MON for Monday, MAR for
March.

cal_name

Specifies the name of the calendar you are creating. Specify a unique name for the
calendar. The first character cannot be a number. You can also use an underscore (_)
in the calendar name.

-h

Prints the command usage to stderr and exits.
-V

Prints the Process Manager release version to stderr and exits.

Limitations
Note that only merged calendars or calendar expressions with the following format can be viewed through the Calendar
Editor graphical user interface:
RANGE(startdate[, enddate]):PERIOD(1,*,step):occurrence

Commands

80 Administering Platform LSF Process Manager

Some examples that follow this format are:
RANGE(2001/1/1,2002/1/1):day(1,*,3) RANGE(2001/1/1,2002/1/1):week(1,*,3):MON,TUE RANGE
(2001/1/1,2002/1/1):week(1,*,3):ABC(1) RANGE(2001/1/1,2002/1/1):month(1,*,3):1,3,5 RANGE
(2001/1/1,2002/1/1):month(1,*,3):MON(1),TUE(1) RANGE(2001/1/1,2002/1/1):month(1,*,3):ABC(1) RANGE
(2001/1/1,2002/1/1):JAN:1||RANGE(2001/1/1,2002/1/1):JAN:2 ABC && DEF || HIJ

where ABC, DEF, HIJ are predefined calendars.

Creating calendar expressions
You can create several types of calendar expressions when you are creating or modifying a
calendar. You use these expressions within system calendar definitions or calendars defined
or modified using the jcadd or jcmod commands:

• Absolute dates
• Schedules that recur daily
• Schedules that recur weekly
• Schedules that recur monthly
• Schedules that recur yearly
• Combined calendars

To create absolute dates:
Specify the date in the following standard format:
(yyyy/mm/dd)

For example:
(2001/12/31)

Specify multiple dates separated by commas. For example:
(2001/12/31,2002/12/31)

To create schedules that recur daily:
Specify the expression in the following format:
RANGE(startdate[,enddate]):day(1,*,step)

The ending date is optional. If it is not specified, the calendar is valid indefinitely. For example:
RANGE(2003/2/1,2003/12/31):day(1,*,2)

In the above example, the expression is true every other day, beginning February 1, 2003, until
December 31, 2003.

To create schedules that recur weekly:
Specify the expression in one of the following formats:
RANGE(startdate[,enddate]):week(1,*,step):day_of_week

where step is the interval between weeks and day_of_week is one or more days of the week,
separated by commas. For example:
RANGE(2002/12/31):week(1,*,2):MON,FRI,SAT

or
RANGE(startdate[,enddate]):week(1,*,step):abc(ii)

Commands

Administering Platform LSF Process Manager 81

where step is the interval between weeks, abc is a previously defined calendar name and ii is
an integer indicating a specific occurrence of a day within that calendar. For example:
RANGE(2002/01/01):week(1,*,3):MON(-1)

In the above example, MON(-1) refers to last Monday.

To create schedules that recur monthly:
Specify the expression in one of the following formats:
RANGE(startdate[,enddate]):month(1,*,step):day_of_month

where step is the interval between months and day_of_month is one or more days of the month
by number, separated by commas. For example:
RANGE(2002/12/31):month(1,*,2):1,15,30

or
RANGE(startdate[,enddate]):month(1,*,step):abc(ii)

where step is the interval between months, abc is a previously defined calendar name or built-
in keyword and ii is an integer indicating a specific occurrence of a day within that calendar.
For example:
RANGE(2002/01/01):month(1,*,3):MON(-1)

In the above example, MON(-1) refers to last Monday.

or
RANGE(startdate[,enddate]):month(1,*,step):day_of_week(ii)

where step is the interval between months, day_of_week is one or more days of the week
separated by commas, and ii is an integer indicating a specific occurrence of a day within that
calendar. For example:
RANGE(2002/01/01):month(1,*,3):MON(-1)

In the above example, MON(-1) refers to last Monday.

To create schedules that recur yearly:
Specify the expression in the following format:
RANGE(startdate[,enddate]):month:day

where month is the name of the month (JAN, FEB, MAR...DEC) and day is the day of the
month (1,2,3...29,30,31). For example:
RANGE(2002/1/1,2004/12/31):JAN:1

To merge calendar expressions:
You can use Boolean logic to further qualify your schedule expressions. For example:
Mondays@Sys||Fridays@Sys && !Holidays@Sys

where Mondays@Sys, Fridays@Sys and Holidays@Sys are all predefined system calendars.

Built-in keywords-reserved words
Process Manager reserves words that are used as building blocks to create calendars. You
cannot use these reserved words in a calendar name. However, you can use them within

Commands

82 Administering Platform LSF Process Manager

calendar expressions, and they are recognized by Process Manager. The following are the
reserved words:

• apr, april, APR
• aug, august, AUG
• dates, DATES
• day, DAY
• dec, december, DEC
• feb, february, FEB
• fri, friday, FRI
• fy, FY
• h, HH
• jan, january, JAN
• jul, july, JUL
• jun, june, JUN
• m, MM
• mar, march, MAR
• may, MAY
• mon, monday, MON
• month, MONTH
• nov, november, NOV
• oct, october, OCT
• quarter, QUARTER
• range, RANGE
• sat, saturday, SAT
• sep, september, SEP
• sun, sunday, SUN
• thu, thursday, THU
• tue, tuesday, TUE
• wed, wednesday, WED
• yy, YY
• zzz, ZZZZ

Examples
% jcadd -d "Mondays but not holidays" -t "Mondays@Sys && !
Holidays@Sys" Mon_Not_Holiday

Creates a calendar called Mon_Not_Holiday. This calendar resolves to
any Monday that is not a holiday, as defined in the Holidays system
calendar.
% jcadd -d "Mondays, Wednesdays and Fridays" -t "Mondays@Sys
|| Wednesdays@Sys || Fridays@Sys" Everyotherday

Creates a calendar called Everyotherday that resolves to Mondays,
Wednesdays and Fridays.
% jcadd -d "Monday to Thursday" -t "*:*:MON-THU" Shortweek

Commands

Administering Platform LSF Process Manager 83

Creates a calendar called Shortweek that resolves to Mondays, Tuesdays,
Wednesdays and Thursdays, every month.
% jcadd -d "Db report dates" -t "*:JAN,JUN,DEC:day(1)" dbrpt

Creates a calendar called dbrpt that resolves to the first day of January,
June and December, every year.

See also
jcdel, jcals

Commands

84 Administering Platform LSF Process Manager

jcals
displays the list of calendars in Process Manager. The calendars are listed by owning user ID.

Synopsis
jcals [-l] [-u user_name|-u all] [cal_name]

jcals [-h]|[-V]

Description
You use the jcals command to display information about one or more calendars. When using the default display
option, the following information is displayed:

• user name
• calendar name
• the expression

Options
-l

Specifies to display the information in long format. In addition to the information
listed above, this option displays the status of calendar (whether it is true today or not),
the last date the calendar resolved to, the next date the calendar resolves to, and the
calendar description.

-u user_name

Specifies the name of the user who owns the calendar. If you do not specify a user
name, user name defaults to the user who invoked this command. If you specify -u all,
information is displayed about calendars owned by all users.

cal_name

Specifies the name of the calendar. If you do not specify a calendar name, all calendars
meeting the other criteria are displayed.

-h

Prints the command usage to stderr and exits.
-V

Prints the Process Manager release version to stderr and exits.

Examples
% jcals -u all

Displays all calendars in Process Manager.

Commands

Administering Platform LSF Process Manager 85

jcdel
deletes an existing calendar. You cannot delete a calendar that is currently in use by a flow
definition or flow, or another calendar.

Synopsis
jcdel [-f][-u user_name] cal_name[cal_name...]

jcdel [-h]|[-V]

Description
You use the jcdel command to delete one or more calendars from Process Manager. You must be the owner of a
calendar to delete it.

Options
-f

Specifies to force the deletion of the calendar.
-u user_name

Specifies the name of the user who owns the calendar. If you do not specify a user
name, the user name defaults to the user who invoked this command.

cal_name

Specifies the name of the calendar you are deleting. You can specify multiple calendar
names by separating the names with a space.

-h

Prints the command usage to stderr and exits.
-V

Prints the Process Manager release version to stderr and exits.

Examples
% jcdel -u "barneyt" Rundays2001

Deletes the calendar Rundays2001 owned by the user barneyt.

See also
jcadd, jcals

Commands

86 Administering Platform LSF Process Manager

jcmod
edits an existing calendar. Using this command, you can change the calendar expression and
the description of the calendar. You cannot modify a calendar that is in use by a flow definition
or flow, or another calendar.

Synopsis
jcmod [-d description] [-u user_name] [-t cal_expression] cal_name

jcmod [-h]|[-V]

Description
You use the jcmod command when you need to change either the calendar expression or the description of an existing
calendar. You must be the owner of the calendar or be a Process Manager administrator to change a calendar.

Options
-d description

Specifies a description for the calendar. Specify a meaningful description for the
calendar that summarizes the expression.

-u user_name

Specifies the name of the user who owns the calendar. If you do not specify a user
name, the user name defaults to the user who invoked this command.

-t cal_expression

Specifies the dates on which you want some action to take place. You can enter specific
dates, a range of dates, or a more complex expression that resolves to a series of dates.

cal_name

Specifies the name of the calendar you are changing. You cannot change the name of
the calendar.

-h

Prints the command usage to stderr and exits.
-V

Prints the Process Manager release version to stderr and exits.

Creating calendar expressions
You can create several types of calendar expressions when you are creating or modifying a
calendar. You use these expressions within system calendar definitions or calendars defined
or modified using the jcadd or jcmod commands:

• Absolute dates
• Schedules that recur daily
• Schedules that recur weekly
• Schedules that recur monthly

Commands

Administering Platform LSF Process Manager 87

• Schedules that recur yearly
• Combined calendars

To create absolute dates:
Specify the date in the following standard format:
(yyyy/mm/dd)

For example:
(2001/12/31)

Specify multiple dates separated by commas. For example:
(2001/12/31,2002/12/31)

To create schedules that recur daily:
Specify the expression in the following format:
RANGE(startdate[,enddate]):day(1,*,step)

The ending date is optional. If it is not specified, the calendar is valid indefinitely. For example:
RANGE(2003/2/1,2003/12/31):day(1,*,2)

In the above example, the expression is true every other day, beginning February 1, 2003, until
December 31, 2003.

To create schedules that recur weekly:
Specify the expression in one of the following formats:
RANGE(startdate[,enddate]):week(1,*,step):day_of_week

where step is the interval between weeks and day_of_week is one or more days of the week,
separated by commas. For example:
RANGE(2002/12/31):week(1,*,2):MON,FRI,SAT

or
RANGE(startdate[,enddate]):week(1,*,step):abc(ii)

where step is the interval between weeks, abc is a previously defined calendar name and ii is
an integer indicating a specific occurrence of a day within that calendar. For example:
RANGE(2002/01/01):week(1,*,3):MON(-1)

In the above example, MON(-1) refers to last Monday.

To create schedules that recur monthly:
Specify the expression in one of the following formats:
RANGE(startdate[,enddate]):month(1,*,step):day_of_month

where step is the interval between months and day_of_month is one or more days of the month
by number, separated by commas. For example:
RANGE(2002/12/31):month(1,*,2):1,15,30

or
RANGE(startdate[,enddate]):month(1,*,step):abc(ii)

Commands

88 Administering Platform LSF Process Manager

where step is the interval between months, abc is a previously defined calendar name or built-
in keyword and ii is an integer indicating a specific occurrence of a day within that calendar.
For example:
RANGE(2002/01/01):month(1,*,3):MON(-1)

In the above example, MON(-1) refers to last Monday.

or
RANGE(startdate[,enddate]):month(1,*,step):day_of_week(ii)

where step is the interval between months, day_of_week is one or more days of the week
separated by commas, and ii is an integer indicating a specific occurrence of a day within that
calendar. For example:
RANGE(2002/01/01):month(1,*,3):MON(-1)

In the above example, MON(-1) refers to last Monday.

To create schedules that recur yearly:
Specify the expression in the following format:
RANGE(startdate[,enddate]):month:day

where month is the name of the month (JAN, FEB, MAR...DEC) and day is the day of the
month (1,2,3...29,30,31). For example:
RANGE(2002/1/1,2004/12/31):JAN:1

To merge calendar expressions:
You can use Boolean logic to further qualify your schedule expressions. For example:
Mondays@Sys||Fridays@Sys && !Holidays@Sys

where Mondays@Sys, Fridays@Sys and Holidays@Sys are all predefined calendars.

Built-in keywords—reserved words
Process Manager reserves words that are used as building blocks to create calendars. You
cannot use these reserved words in a calendar name. However, you can use them within
calendar expressions, and they are recognized by Process Manager. The following are the
reserved words:

• apr, april, APR
• aug, august, AUG
• dates, DATES
• day, DAY
• dec, december, DEC
• feb, february, FEB
• fri, friday, FRI
• fy, FY
• h, HH
• jan, january, JAN
• jul, july, JUL
• jun, june, JUN
• m, MM
• mar, march, MAR

Commands

Administering Platform LSF Process Manager 89

• may, MAY
• mon, monday, MON
• month, MONTH
• nov, november, NOV
• oct, october, OCT
• quarter, QUARTER
• range, RANGE
• sat, saturday, SAT
• sep, september, SEP
• sun, sunday, SUN
• thu, thursday, THU
• tue, tuesday, TUE
• wed, wednesday, WED
• yy, YY
• zzz, ZZZZ

EXAMPLES
% jcmod -d "Valentines Day" -u "barneyt" -t "*:Feb:14"
SpecialDays

Modifies a calendar called SpecialDays. This calendar resolves to
February 14th every year.

Commands

90 Administering Platform LSF Process Manager

jcomplete
acknowledges that a manual job is complete and specifies to continue processing the flow.

Synopsis
jcomplete [-d description] [-u user_name] -i flow_id flow_name[:subflow_name]:manual_job_name

jcomplete [-h]|[-V]

Description
You use the jcomplete command to mark a manual job complete, to tell Process Manager to continue processing
that part of the flow. Only the branch of the flow that contains the manual job is affected by the manual job—other
branches continue to process as designed. You must be the owner of the manual job or a Process Manager administrator
to complete a manual job.

Options
-d description

Describes the manual process completed. You can use this field to describe results of
the process, or any pertinent comments.

-i flow_id

Specifies the ID of the flow in which the manual job is to be completed. This option is
required to differentiate between multiple occurrences of the flow, ensuring the correct
job is completed.

flow_name:subflow_name:manual_job_name

Specifies the name of the manual job to complete. Specify the fully-qualified manual
job name, which is the flow name followed by the subflow name, if applicable, followed
by the name of the manual job. For example:
myflow:prtcheck:prtpage

Specify the manual job name in the same format as it is displayed by the jmanuals
command.

-u user_name

Specifies the name of the user who owns the manual job you are completing. If you do
not specify a user name, user name defaults to the user who invoked this command.

-h

Prints the command usage to stderr and exits.
-V

Prints the Process Manager release version to stderr and exits.

Examples
% jcomplete -d "printed check numbers 4002 to 4532" -i 42 payprt:checkprinter

Commands

Administering Platform LSF Process Manager 91

completes the manual job checkprinter in the flow payprt with flow ID 42, and adds the
comment "printed check numbers 4002 to 4532".

See also
jmanuals jjob

Commands

92 Administering Platform LSF Process Manager

jdefs
displays information about the flow definitions stored in Process Manager for the specified
user.

Synopsis
jdefs [-l] [-u user_name|-u all] [-s status] [definition_name[definition_name ...]]

jdefs [-h]|[-V]

Description
You use the jdefs command to display information about flow definitions and any associated flows. When using the
default display option, the following information is displayed:
• user name
• flow name
• the status of the flow definition
• flow IDs of any associated flows
• the state of each flow

Options
-l

Specifies to display the information in long format. In addition to the information
listed above, this option displays the following information:

• any events defined to trigger the flow
• any exit conditions specified in the flow definition

-u user_name

Specifies the name of the user who owns the flow definitions. If you do not specify a
user name, user name defaults to the user who invoked this command. If you specify
-u all, information is displayed about flow definitions owned by all users.

-s status

Specifies to display information about only the flow definitions that have the specified
status. The default is to display all flow definitions regardless of status. Specify one of
the following values for status:

ONHOLD

Displays information about flow definitions that are on hold: these are definitions that
are not currently eligible to trigger automatically.

RELEASE

Displays information about flow definitions that are not on hold. This includes any
flow definitions that were submitted with events and flow definitions that were
submitted to be triggered manually. This does not include flows that were submitted
on an adhoc basis, to be run once, immediately.

definition_name

Commands

Administering Platform LSF Process Manager 93

Specifies the name of the flow definition. If you do not specify a flow name, all flow
definitions meeting the criteria are displayed. To specify a list of flow definitions,
separate the flow definition names with a space.

-h

Prints the command usage to stderr and exits.
-V

Prints the Process Manager release version to stderr and exits.

Examples
% jdefs -u barneyt -s RELEASE

Displays all flow definitions owned by barneyt that are not on hold.

Commands

94 Administering Platform LSF Process Manager

jflows
displays information about the flows in Process Manager for the specified user. The
information listed includes the current state of the flow.

Synopsis
jflows [-l] [-u user_name|-u all] [-f flow_name] [-s state]

jflows [-l] [flow_id[flow_id ...]|0]

jflows [-h]|[-V]

Description
You use the jflows command to display information about one or more flows. When using the default display option,
the following information is displayed:
• user name
• flow name
• flow ID
• the state of the flow
• start and end time for each flow

Options
-l

Specifies to display the information in long format. In addition to the information
listed above, this option displays the states of all jobs, job arrays and subflows in the
flow.

-u user_name

Specifies the name of the user who owns the flow. If you do not specify a user name,
user name defaults to the user who invoked this command. If you specify -u all,
information is displayed about flows owned by all users.

-f flow_name

Specifies the name of the flow definition. If you do not specify a flow definition name,
all flow definitions meeting the other criteria you specify are displayed. This option is
mutually exclusive with the other options—if you specify a flow name, you cannot
specify a flow ID.

-s state

Specifies to display information about only the flows that have the specified state. If
you do not specify a state, flows of all states that meet the other criteria you specify are
displayed. Specify one of the following values for state:

Done

Displays information about flows that completed successfully.
Exit

Displays information about flows that failed.

Commands

Administering Platform LSF Process Manager 95

Killed

Displays information about flows that were killed.
Running

Displays information about flows that are running.
Suspended

Displays information about flows that were suspended.
Waiting

Displays information about flows that are waiting.
flow_id

Specify the ID number of the flow. If you do not specify a flow ID, all flows meeting
the other criteria you specify are displayed. This option is mutually exclusive with the
other options—if you specify a flow ID, you cannot specify a flow name. To specify a
list of flows, separate the flow IDs with a space.

0

Specifies to display all flows.
-h

Prints the command usage to stderr and exits.
-V

Prints the Process Manager release version to stderr and exits.

Examples
% jflows -f myflow

Displays all flows associated with the flow definition myflow.

Commands

96 Administering Platform LSF Process Manager

jhist
displays historical information about Process Manager Server, calendars, flow definitions,
flows, and jobs.

Synopsis
jhist -C category[,category,...] [-u user_name|-u all] [-c calendar_name] [-f flow_name] [-i flow_ID] [-j
job_name] [-t start_time,end_time]

jhist [-h|-V]

Description
You use the jhist command to display historical information about the specified object, such as a calendar, job, or
flow. You can display information about a single type of work item or multiple types of work items, for a single user
or for all users.

If you do not specify a user name, jhist displays information for the user who invoked the command. If you do not
specify a time interval, jhist displays information for the past 7 days, starting at the time the jhist command was
invoked.

If your Process Manager Client and Process Manager Server are on separate hosts, the number of history records
retrieved is limited to 1500 records by default. If the limit is reached, only the first (oldest) 1500 are retrieved. This limit
is configurable with the variable JS_HISTORY_LIMIT in js.conf.

Options
-C category

Specifies the type of object for which you want to see history. Choose from the following
values:

• alarm-displays historical information about one or more alarms
• calendar-displays historical information about one or more calendars
• daemon-displays historical information about Process Manager Server
• flowdef-displays historical information about one or more flow definitions
• flow-displays historical information about one or more flows
• job-displays historical information about one or more jobs or job arrays

You can specify more than one category by separating categories with a comma (,).

-u user_name

Displays information about categories owned by the specified user. If you do not
specify a user name, user name defaults to the user who invoked this command. If you
specify -u all, information is displayed about flows owned by all users.

-t start_time,end_time

Specifies the span of time for which you want to display the history. If you do not
specify a start time, the start time is assumed to be 7 days prior to the time the jhist
command is issued. If you do not specify an end time, the end time is assumed to be
now.

Commands

Administering Platform LSF Process Manager 97

Specify the times in the format "yyyy/mm/dd/HH:MM". Do not specify spaces in the
time interval string.

The time interval can be specified in many ways.
-c calendar_name

Specifies the name of the calendar for which to display historical information. If you
do not specify a calendar name when displaying calendars, information is displayed
for all calendars owned by the specified user.

Valid only when used with the calendar category.
-f flow_name

Specifies the name of the flow definition for which to display historical information.
Displays flow definition, flow, or job information for flow definitions with the specified
name.

Valid only with the flowdef, flow, and job categories.
-i flow_ID

Specifies the ID of the flow for which to display historical information. Displays flow
and job information for flows with the specified ID.

Valid only with the flow and job categories.
-j job_name

Specifies the name of the job, job array or alarm to display historical information about.
Displays information about the job, job array or alarm with the specified name.

Valid with the job or alarm categories.
-h

Prints the command usage to stderr and exits.
-V

Prints the Process Manager release version to stderr and exits.

Usage
-C alarm

Displays the time when the alarm was raised and the type and description of the alarm.
-C calendar

Displays the times when calendars are added or deleted.
-C daemon

Displays the server startup and shutdown times. These values are only displayed when
root invokes jhist or the -u root option is used.

-C flowdef

Displays information about when a flow definition state is:

Commands

98 Administering Platform LSF Process Manager

• Submit-When a flow definition is submitted
• SubmitAndRun-When a flow runs immediately
• Remove-When a flow definition is removed from the system
• Release-When a flow definition is released from on hold
• Hold-When a flow definition is placed on hold
• Trigger-When a flow definition is triggered manually or by an event
• Instantiate-When a flow is created

-C flow

Displays information about when a flow state is:
• Start-When a flow is started
• Kill-When a flow is killed
• Suspend-When a flow is suspended
• Resume-When a flow is resumed from the Suspended state
• Finished-When a flow is completed

-C job

Displays information about when a job or job array is:
• Started
• Killed
• Suspended
• Resumed
• Finished

Time interval format
You use the time interval to define a start and end time for collecting the data to be retrieved and displayed. Although
you can specify both a start and an end time, you can also let one of the values default. You can specify either of the
times as an absolute time, by specifying the date or time, or you can specify them relative to the current time.

Specify the time interval is follows:

start_time,end_time|start_time,|,end_time|start_time

Specify start_time or end_time in the following format:

[year/][month/][day][/hour:minute|/hour:]|.|.-relative_int

Where:
• year is a four-digit number representing the calendar year.
• month is a number from 1 to 12, where 1 is January and 12 is December.
• day is a number from 1 to 31, representing the day of the month.
• hour is an integer from 0 to 23, representing the hour of the day on a 24-hour clock.
• minute is an integer from 0 to 59, representing the minute of the hour.
• . (period) represents the current month/day/hour:minute.
• .-relative_int is a number, from 1 to 31, specifying a relative start or end time prior to now.

start_time,end_time

Specifies both the start and end times of the interval.
start_time,

Specifies a start time, and lets the end time default to now.

Commands

Administering Platform LSF Process Manager 99

,end_time

Specifies to start with the first logged occurrence, and end at the time specified.
start_time

Starts at the beginning of the most specific time period specified, and ends at the
maximum value of the time period specified. For example, 3/ specifies the month of
March-start March 1 at 00:00 a.m. and end at the last possible minute in March: March
31st at midnight.

Absolute time examples
Assume the current time is May 9 17:06 2005:

1,8 = May 1 00:00 2005 to May 8 23:59 2005

,4 = the time of the first occurrence to May 4 23:59 2005

6 = May 6 00:00 2005 to May 6 23:59 2005

3/ = Mar 1 00:00 2005 to Mar 31 23:59 2005

/12: = May 9 12:00 2005 to May 9 12:59 2005

2/1 = Feb 1 00:00 2005 to Feb 1 23:59 2005

2/1, = Feb 1 00:00 to the current time

,. = the time of the first occurrence to the current time

,2/10: = the time of the first occurrence to May 2 10:59 2005

2001/12/31,2005/5/1 = from Dec 31, 2001 00:00:00 to May 1st 2005 23:59:59

Relative time examples
.-9, = April 30 17:06 2005 to the current time

,.-2/ = the time of the first occurrence to Mar 7 17:06 2005

.-9,.-2 = nine days ago to two days ago (April 30, 2005 17:06 to May 7, 2005 17:06)

Examples
Display information about the calendar mycalendar and all flows for user1:
jhist -C calendar,flow -u user1 -c mycalendar

Display information about the daemon and calendar for the past 30 days:
jhist -C calendar,daemon -t .-30,. -u all

Display information for all flows with the name flow1, for user1 in the past week (counting 7 days
back from today):
jhist -C flow -u user1 -f flow1 -t .-7,.

Display information for all flows with the ID 231 for the past 3 days:
jhist -C flow -i 231 -t .-3,.

Commands

100 Administering Platform LSF Process Manager

Display information for all flows with the ID 231 and all related jobs from March 25, 2005 to March
31, 2005:
jhist -C flow,job -i 231 -t 2005/3/25,2005/3/31

Display information for all flows with the ID 101 and all related jobs with the name myjob:
jhist -C flow,job -i 101 -j myjob

Display information for all flows associated with the flow definition myflow and flows dated later
than January 31, 2005
jhist -C flowdef,flow -f myflow 2005/1/31,.

Commands

Administering Platform LSF Process Manager 101

jhold
places a previously submitted flow definition on hold. No automatic events can trigger this definition until it has been
explicitly released. Use this command when you want to temporarily interrupt automatic triggering of a flow. When a
flow is on hold, it can still be triggered manually, such as for testing purposes.

Synopsis
jhold [-u user_name] flow_name[flow_name...]

jhold [-h]|[-V]

Description
You use the jhold command to place a submitted flow definition on hold. This prevents it from being triggered
automatically by any events. You must be the owner of a flow definition or the Process Manager administrator to place
a flow definition on hold.

Options
-u user_name

Specifies the name of the user who owns the flow. Use this option if you have
administrator authority and you are holding the flow on behalf of another user. If you
do not specify a user name, user name defaults to the user who invoked this command.

flow_name

Specifies the name of the flow definition. To specify a list of flow definitions, separate
the flow definition names with a space.

-h

Prints the command usage to stderr and exits.
-V

Prints the Process Manager release version to stderr and exits.

Examples
% jhold myflow

Places the flow definition myflow, which is owned by the current user, on hold.
% jhold -u "user01" payupdt

Places the flow definition payupdt, which is owned by user01, on hold.

See also
jrelease

Commands

102 Administering Platform LSF Process Manager

jid
displays the host name, version number and copyright date of the current Process Manager
Server.

Synopsis
jid [-h | -V]

Description
You use the jid command to verify the connection between Process Manager Client and Process Manager Server. If
the command returns the host name of Process Manager Server, you have successfully connected to the server. If server
failover is enabled, the jid command displays the host where the server is currently running.

Options
-h

Prints command usage to stderr and exits.
-V

Prints Process Manager release version to stderr and exits.

Commands

Administering Platform LSF Process Manager 103

jjob
controls a job in a running flow.

Synopsis
jjob [-u user_name] -i flow_id -c | -k | -r flow_name[:subflow_name]:job_name

jjob [-h]|[-V]

Description
You use the jjob command to kill or run a job, or mark a job complete. You must be the owner of the job or a Process
Manager administrator or control administrator to control it.

Options
-u user_name

Specifies the name of the user who owns the job you are controlling. If you do not
specify a user name, user name defaults to the user who invoked this command.

-c

Specifies to mark the job complete. You can only complete a job in a flow that has
exited. you use this option before rerunning a flow, to continue processing the
remainder of the flow.

-k

Specifies to kill the job.
-r

Specifies to run or rerun the job.
-i flow_id

Specifies the ID of the flow containing the job to be controlled. This option is required
to differentiate between multiple occurrences of the flow, ensuring the correct job is
selected.

flow_name:subflow_name:manual_job_name

Specifies the name of the job to control. Specify the fully-qualified job name, which is
the flow name followed by the subflow name, if applicable, followed by the name of
the job. For example:
myflow:print:prtreport

-h

Prints the command usage to stderr and exits.
-V

Prints the Process Manager release version to stderr and exits.

Commands

104 Administering Platform LSF Process Manager

Examples
% jjob -i 42 -k payprt:report

kill the job report in the flow payprt with flow ID 42.

See Also
jmanuals

Commands

Administering Platform LSF Process Manager 105

jkill
kills a flow.

Synopsis
jkill [-u user_name|-u all] [-f flow_name]

jkill flow_id[flow_id ...]|0

jkill [-h]|[-V]

Description
You use the jkill command to kill all flows, all flows belonging to a particular user, all flows associated with a flow
definition, or a single flow. Any incomplete jobs in the flow are killed. Any work items that depend on the successful
completion of this flow do not run. Only users with administrator authority can kill flows belonging to another user.

Options
-u user_name

Specifies the name of the user who owns the flow. Use this option if you have
administrator authority and you are killing the flow on behalf of another user. If you
do not specify a user name, user name defaults to the user who invoked this command.
If you specify -u all, and you have administrator authority, you can kill flows belonging
to all users.

-f flow_name

Specifies the name of the flow definition. Use this option if you want to kill all flows
associated with the same flow definition. This option is mutually exclusive with the
other options, if you specify a flow name, you cannot specify a flow ID.

flow_id

Specifies the ID of the flow you want to kill. Use this option if you want to kill one or
more specific flow IDs. This option is mutually exclusive with the other options—if
you specify a flow ID, you cannot specify a flow name. To specify a list of flow IDs,
separate the flow IDs with a space.

0

Specifies to kill all flows.
-h

Prints the command usage to stderr and exits.
-V

Prints the Process Manager release version to stderr and exits.

Examples
% jkill -f myflow

Commands

106 Administering Platform LSF Process Manager

Kills all flows associated with the flow definition myflow. Does not affect the flow definition.

Commands

Administering Platform LSF Process Manager 107

jmanuals
displays all manual jobs that have not yet been completed.

Synopsis
jmanuals [-i flow_ID] [-u username |-u all] [-f flow_definition] [-r yes |-r no]

jmanuals [-h]|[-V]

Description
You use the jmanuals command to list the flows that contain manual jobs that have not yet been completed.

Options
-i flow_ID

Specifies the ID of the flow for which to display manual jobs.
-u user_name

Displays manual jobs in flows owned by the specified user. If you do not specify a user
name, user name defaults to the user who invoked this command. If you specify -u all,
manual jobs are displayed for flows owned by all users.

-f flow_definition

Specifies the name of the flow definition for which to display manual jobs. Manual
jobs are displayed for all flows associated with this flow definition.

-r yes

Specifies to display only those manual jobs that require completion at this time.
-r no

Specifies to display only those manual jobs that do not require completion at this time.
-h

Prints the command usage to stderr and exits.
-V

Prints the Process Manager release version to stderr and exits.

See also
jcomplete

Commands

108 Administering Platform LSF Process Manager

jreconfigalarm
reloads the alarm definitions.

Synopsis
jreconfigalarm [-h| -V]

Description
You use the jreconfigalarm command to reload the alarm definitions. You use this command to add or change
alarm definitions without restarting Process Manager Server. You must be a Process Manager administrator to use this
command.

Options
-h

Prints the command usage to stderr and exits.
-V

Prints the PrimePorduct release version to stderr and exits.

Examples
% jreconfigalarm

Loads the updated list of Process Manager alarms.

See also
jadmin

Commands

Administering Platform LSF Process Manager 109

jrelease
releases a previously held flow definition.

Synopsis
jrelease [-u user_name] flow_name[flow_name...]

jrelease [-h]|[-V]

Description
You use the jrelease command to release a submitted flow definition from hold. The flow definition is now eligible
to be triggered automatically by any of its triggering events. Use this command when you want to resume automatic
triggering of a flow.

Options
-u user_name

Specifies the name of the user who owns the flow. Use this option if you have
administrator authority and you are releasing the flow on behalf of another user. If
you do not specify a user name, user name defaults to the user who invoked this
command.

flow_name

Specifies the name of the flow definition. To specify a list of flow definitions, separate
the flow definition names with a space.

-h

Prints the command usage to stderr and exits.
-V

Prints the Process Manager release version to stderr and exits.

Examples
% jrelease myflow

Releases the flow definition myflow, which is owned by the current user, from hold.
% jrelease -u "user01" payupdt

Releases the flow definition payupdt, which is owned by user01, from hold.

See also
jhold

Commands

110 Administering Platform LSF Process Manager

jremove
removes a previously submitted flow definition from Process Manager.

Synopsis
jremove [-u user_name] -f flow_name[flow_name...]

jremove [-h]|[-V]

Description
You use the jremove command to remove a submitted flow definition from Process Manager. Issuing this command
has no impact on any flows associated with the definition, but no further flows can be triggered from it. Use this
command when you no longer require this definition, or when you want to replace a definition that was created by a
user ID that no longer exists. If you want to temporarily interrupt the automatic triggering of a flow, use the jhold
command.

Options
-u user_name

Specifies the name of the user who owns the flow. Use this option if you have
administrator authority and you are removing the flow on behalf of another user. If
you do not specify a user name, user name defaults to the user who invoked this
command.

-f

Forces the removal of a flow definition that other flows have dependencies upon.
flow_name

Specifies the name of the flow definition. To specify a list of flow definitions, separate
the flow definition names with a space.

-h

Prints the command usage to stderr and exits.
-V

Prints the Process Manager release version to stderr and exits.

Examples
% jremove myflow

Removes the definition myflow from Process Manager. In this example, myflow is owned by the
current user.
% jremove -u "user01" payupdt

Removes the definition payupdt from Process Manager. In this example, payupdt is owned by
user01.

Commands

Administering Platform LSF Process Manager 111

See also
jsub, jhold

Commands

112 Administering Platform LSF Process Manager

jrerun
reruns an exited flow.

Synopsis
jrerun [-v "var=value[;var1=value1;...]"] flow_id[flow_id...]

jrerun [-h]|[-V]

Description
You use the jrerun command to rerun a flow that has exited. The flow must have a state of Exit, and all jobs in the
flow must be finished running before you can use this command. The flow is rerun from the first exited job, or jobs if
the flow contains multiple branches that failed, and continues to process as designed. You must be the owner of a flow
or a Process Manager administrator to use this command.

You cannot use this command to rerun a flow that was killed—you must trigger the flow again.

Options
-v var=value

Specifies to pass variables and their values to the flow when rerunning it. To specify a
list of variables, separate the variable and value pairs with a semi-colon (;). The value
of the variable is available only within the scope of the flow itself—local variables only.

flow_id

Specifies the ID of the flow to rerun. To specify a list of flows, separate the flow IDs
with a space.

-h

Prints the command usage to stderr and exits.
-V

Prints the Process Manager release version to stderr and exits.

Examples
% jrerun 1234

reruns the flow with the flow ID 1234.
% jrerun -v "USER=jdoe" 277

reruns the flow with the flow ID 277 and passes it a value of jdoe for the USER variable.

Commands

Administering Platform LSF Process Manager 113

jresume
resumes a suspended flow.

Synopsis
jresume [-u user_name|-u all] [-f flow_name]

jresume flow_id[flow_id...]|0

jresume [-h]|[-V]

Description
You use the jresume command to resume all flows, all flows belonging to a particular user, all flows associated with
a particular flow definition, or a single flow. Only users with administrator authority can resume flows belonging to
another user.

Options
-u user_name

Specifies the name of the user who owns the flow. Use this option if you have
administrator authority and you are resuming the flow on behalf of another user. If
you do not specify a user name, user name defaults to the user who invoked this
command. If you specify -u all, and you have administrator authority, you can resume
flows belonging to all users.

-f flow_name

Specifies the name of the flow definition. Use this option if you want to resume all
suspended flows associated with the same definition. This option is mutually exclusive
with the other options—if you specify a flow name, you cannot specify a flow ID.

flow_id

Specifies the ID of the flow you want to resume. Use this option if you want to resume
one or more specific flow IDs. This option is mutually exclusive with the other options
—if you specify a flow ID, you cannot specify a flow name. To specify a list of flow IDs,
separate the flow IDs with spaces.

0

Specifies to resume all suspended flows.
-h

Prints the command usage to stderr and exits.
-V

Prints the Process Manager release version to stderr and exits.

Examples
% jresume 14 17 22

Commands

114 Administering Platform LSF Process Manager

Resumes the flows with IDs 14, 17 and 22.
% jresume 0

Resumes all suspended flows owned by the user invoking the command.
% jresume -u all

Resumes all suspended flows owned by all users.

See also
jstop

Commands

Administering Platform LSF Process Manager 115

jrun
triggers a flow definition from a file and runs the flow immediately without storing the flow
definition in Process Manager.

Synopsis
jrun [-v "var=value[;var1=value1;...]"] flow_file_name

jrun [-h]|[-V]

Description
You use the jrun command when you want to trigger and run a flow immediately, without storing the flow definition
within Process Manager. A flow ID is displayed when the flow is successfully submitted. This command is most useful
for flows that run only once, or for testing a flow definition prior to putting it into production. You must be the owner
of a flow definition or have Process Manager administrative authority to use this command.

Options
-v var=value

Specifies to pass variables and their values to the flow when running it. To specify a
list of variables, separate the variable and value pairs with a semi-colon (;). The value
of the variable is available only within the scope of the flow itself—local variables only.

flow_file_name

Specifies the name of the file containing the flow definition.
-h

Prints the command usage to stderr and exits.
-V

Prints the Process Manager release version to stderr and exits.

Examples
% jrun /flows/backup.xml

Runs the flow defined in /flows/backup.xml. It does not store the definition of the flow in
Process Manager.
% jrun -v "USER=bsmith;YEAR=2003" /flows/payupdt.xml

Runs the flow defined in /flows/payupdt.xml, and passes it a value of bsmith and 2003 for the
USER and YEAR variables respectively. It does not store the definition of the flow in Process
Manager.

Commands

116 Administering Platform LSF Process Manager

jsetvars
sets values for local and global variables during the runtime of a flow.

Synopsis
jsetvars -i flow_ID variable=value [variable2=value2...]

jsetvars -g -s variable=value [variable2=value2...]

jsetvars -g -r variable [variable2]

jsetvars -l

jsetvars [-h]|[-V]

Description
You use the jsetvars command to change the value of one or more local variables in a flow at runtime or change the
value of one or more global variables at runtime.

Options
-i flow_ID

Specifies the ID of the flow in which to change the local variable.
variable=value

Specifies the name of the variable and the value you are setting.
-h

Prints the command usage to stderr and exits.
-g

Sets to global variable
-s

Adds new or edits existing global variables
-r

Removes existing global variables
-l

Lists all global variables
-V

Prints the Process Manager release version to stderr and exits.

Examples
% jsetvars -i 1234 priority=10

Commands

Administering Platform LSF Process Manager 117

Changes the value of the priority variable to 10 for the flow with the ID 1234.
% jsetvars -g -s date=05-09-2007

Changes or adds the value of date to 05-09-2007.

Commands

118 Administering Platform LSF Process Manager

jsinstall
runs jsinstall, the Platform LSF Process Manager installation and configuration script

Synopsis
jsinstall -f install.config

jsinstall -h

Description
jsinstall runs the Platform LSF Process Manager installation scripts and configuration utilities to install a new
Process Manager component. You should install as root.

Before installing and configuring Process Manager, jsinstall checks the installation prerequisites, outputs the results
to prechk.rpt, writes any unrecoverable errors to the Install.err file and exits. You must correct these errors
before continuing to install and configure Process Manager.

During installation, jsinstall logs installation progress in the Install.log file, uncompresses, extracts and copies
Process Manager files, installs a Process Manager license, and configures Process Manager Server.

Commands

Administering Platform LSF Process Manager 119

jstop
suspends a running flow.

Synopsis
jstop [-u user_name|-u all] [-f flow_name]

jstop flow_id[flow_id...]|0

jstop [-h]|[-V]

Description
You use the jstop command to suspend all flows, all flows belonging to a user, all flows associated with a flow definition,
or a single flow. All incomplete jobs within the flow are suspended. Only users with administrator authority can suspend
flows belonging to another user.

Options
-u user_name

Specifies the name of the user who owns the flows. Use this option if you have
administrator authority and you are suspending the flow on behalf of another user. If
you do not specify a user name, user name defaults to the user who invoked this
command. If you specify -u all, and you have administrator authority, you can suspend
flows belonging to all users.

-f flow_name

Specifies the name of the flow definition. Use this option if you want to suspend all
flows associated with a particular flow definition. This option is mutually exclusive
with the other options—if you specify a flow name, you cannot specify a flow ID.

flow_id

Specifies the ID of the flow you want to suspend. Use this option if you want to suspend
one or more specific flow IDs. This option is mutually exclusive with the other options
—if you specify a flow ID, you cannot specify a flow name. To specify a list of flow IDs,
separate the flow IDs with a space.

0

Specifies to suspend all flows.
-h

Prints the command usage to stderr and exits.
-V

Prints the Process Manager release version to stderr and exits.

Examples
% jstop -f "myflow"

Commands

120 Administering Platform LSF Process Manager

Suspends all flows associated with the definition myflow. Does not affect the flow definition.
% jstop 14

Suspends flow ID 14.
% jstop 0

Suspends all flows.

See also
jresume

Commands

Administering Platform LSF Process Manager 121

jsub
submits a flow definition to Process Manager.

Synopsis
jsub [-H] [-r|-d] [[[-T time_event]...] [[-F "file_event"]...] [[-p "proxy_event"]...] [-C combination_type]]
flow_file_name

jsub [-h]|[-V]

Description
You use the jsub command to submit a flow definition to Process Manager. When you submit the flow definition,
you may specify the event that triggers the flow, if applicable. If you do not specify an event to trigger the flow, it requires
a manual trigger. You must be the owner of the flow definition, or have Process Manager administrator authority to
submit a flow definition.

Note: The flow definition you are submitting may contain pre-defined events that trigger the flow. When you submit
this flow using the jsub command, those events are overwritten by any specified in the command. If the flow definition
contains triggering events, and you submit the flow definition without specifying a triggering event, those events are
deleted from the definition that is submitted, and the flow definition requires a manual trigger.

Options
-H

Submits the flow definition on hold. No automatic events can trigger this definition
until it has been explicitly released. Use this option when the flow definition is
complete, but you are not yet ready to start running flows on its defined schedule.
When a definition is on hold, it can still be triggered manually, such as for testing
purposes.

-r

Replace. Specifies that, if a flow definition with the same name already exists in Process
Manager, it is replaced with the definition being submitted. If you do not specify -r
and the flow definition already exists, the submission fails.

-d

Duplicate. Specifies that, if a flow definition with the same name already exists in
Process Manager, a unique number is appended to the flow definition name to make
it unique. The new name of the flow definition is displayed in the confirmation message
when the flow definition is successfully submitted.

-T time_event

Specifies to automatically trigger a flow when the specified time events are true. Specify
the time event in the following format:

[cal_name[@user_name]:]hour:minute[%duration]
cal_name

Commands

122 Administering Platform LSF Process Manager

Specify the name of an existing calendar, which is used to calculate the days on which
the flow runs. If you do not specify a calendar name, it defaults to Daily@Sys. If you
do not specify a user name, the submitter’s user name is assumed. Therefore, the
calendar must exist under that user name.

hour:minute

Specify the time within each calendar day that the time event begins. You can specify
the time in the following formats:

• hour:minutes, for example, 13:30 for 1:30 p.m. You can also specify the wildcard character * in the hour or minutes
fields to indicate every hour or every minute, respectively.

• A list of hours, separated by commas, for example, 5,12,23 for 5:00 a.m., noon and 11:00 p.m.
• A range of numbers—for example, 14-17 for on the hour, every hour from 2:00 p.m. to 5:00 p.m.

The value you specify for hour must be a number between 0 and 23. The value for minute must be a number between
0 and 59. All numbers are values in the 24-hour clock.

%duration

Specify the number of minutes for which the time event should remain valid after it
becomes true. After the duration expires, the event can no longer trigger any activity.
The default duration is 1 minute. The minimum duration you can specify is also 1
minute.

-F "file_event"

Specifies to automatically trigger a flow when the specified file events are true.

When specifying the file name, you can also specify wildcard characters: * to represent
a string or ? to represent a single character. For example, a*.dat* matches abc.dat,
another.dat and abc.dat23. S??day* matches Satdays.tar and Sundays.dat. *e
matches smile.

Note:

There are some differences between UNIX and Windows when using wildcard
characters. Because UNIX is case-sensitive and Windows is not, if you specify
A*, on UNIX it matches only files beginning with A. On Windows, it matches files
beginning with A and a. Also, on UNIX, if you specify ??, it matches exactly two
characters. On Windows, it matches one or two characters. These behaviors are
consistent with UNIX ls command behavior, and Windows dir command behavior.

Specify the file event in one of the following formats:

arrival(file_location)

Trigger a flow when the specified file arrives in the specified location, and subsequently only if the file is deleted and
arrives again. This option looks for a transition from nonexistence of the file to existence. When the file is on a shared
file system, specify the file location in the following format:
absolute_directory/filename

exist(file_location)

Commands

Administering Platform LSF Process Manager 123

Trigger a flow if the specified file exists in the specified location, and continue to trigger the flow every time the test for
the file is performed, as long as the file continues to exist. When the file is on a shared file system, specify the file location
in the following format:
absolute_directory/filename

! exist(file_location)

Trigger a flow if the specified file does not exist in the specified location, and continue to trigger the flow every time
the test for the file is performed, as long as the file does not exist. When the file is on a shared file system, specify the
file location in the following format:
absolute_directory/filename

size(file_location) operator size

Trigger a flow when the size of the file meets the criteria specified with operator and size. When the file is on a shared
file system, specify the file location in the following format:
absolute_directory/filename

Valid values for operator are: >, <, >=, <=, == and !=.

Note:

For csh, if you specify != (not equal), you need to precede the operator with a
backslash escape character

Specify the size in bytes.

age(file_location) operator age

Trigger a flow when the age of the file meets the criteria specified with operator and age.

When the file is on a shared file system, specify the file location in the following format:
absolute_directory/filename

Valid values for operator are: >, <, >=, <=, == and !=.

Note:

For csh, if you specify != (not equal), you need to precede the operator with a
backslash escape character.

Specify the age in minutes.

-p "proxy_event"

Specifies to automatically trigger a flow when the specified proxy event is true.

Specify the proxy event in one the following formats:
job(exit|done|start|end(user_name:flow_name:[subflow_name:]job_name) [operator value])

Trigger a flow when the specified job meets the specified condition. You must specify the user name to fully qualify the
flow containing the job. You only specify a subflow name if the job is contained within a subflow.

Valid operators are >=, >, <=, <, != and ==.

Note:

For csh, if you specify != (not equal), you need to precede the operator with a
backslash escape character.

Commands

124 Administering Platform LSF Process Manager

Example: on successful completion of J1:

-p "job(done(jdoe:myflow:J1))"

Example: if payjob exits with an exit code greater than 5:

-p "job(exit(jdoe:myflow:testflow:payjob)>5)"

jobarray(exit|done|end|numdone|numexit|numend|numstart(user_name:flow_name:[subflow_name:]
job_array_name)[operator value])

Trigger a flow when the specified job array meets the specified condition. You must specify the user name to fully
qualify the flow containing the job array. You only specify a subflow name if the job array is contained within a subflow.

Valid operators are >=, >, <=, <, != and ==.

Example: on successful completion of all jobs in Array1:

-p "jobarray(done(jdoe:myflow:Array1))"

Example: if arrayjob exits with an exit code greater than 5:

-p "jobarray(exit(jdoe:myflow:testflow:arrayjob)>5)"

Example: if more than 3 jobs in A1 exit:

-p "jobarray(numexit(jdoe:myflow:testflow:arrayjob)>3)"

flow(exit|done|end|numdone|numexit|numstart(user_name: flow_name:[subflow_name])[operator value])

Trigger a flow when the specified flow or subflow meets the specified condition. You must specify the user name to
fully qualify the flow. Specify a subflow name if applicable.

Valid operators are >=, >, <=, <, !=, ==.

Example: on successful completion of all jobs in myflow:

-p "flow(done(jdoe:myflow))"

Example: if myflow exits with an exit code greater than 5:

-p "flow(exit(jdoe:myflow)>5)"

Example: if more than 3 jobs in the subflow testflow exit:

-p "flow(numexit(jdoe:myflow:testflow)>3)"

Note: When Process Manager calculates the number of jobs in a flow, for successful jobs, failed jobs, and so on, it does
not count the jobs in a subflow, and it counts a job array as a single job. It also does not count other objects in the flow,
such as events or alarms.

-f "flow_event"

Specifies to automatically trigger a flow when the specified flow event(s) are true.

Specify the flow event in one of the following formats:
done(flow_definition_name)

Trigger a flow when the specified flow completes successfully. Specify the flow
definition name as follows:

user_name:flow_definition

If you do not specify a user name, it defaults to your own.

Commands

Administering Platform LSF Process Manager 125

end(flow_definition_name)

Trigger a flow when the specified flow ends, regardless of exit code. Specify the flow
definition name as follows:

user_name:flow_definition

If you do not specify a user name, it defaults to your own.
numdone(flow_definition_name) operator nn

Trigger a flow when the specified number of jobs in the specified flow complete
successfully. Specify the flow definition name as follows:

user_name:flow_definition

If you do not specify a user name, it defaults to your own.
Valid operators are >=, >, <=, <, !=, ==.

For example:

numdone(jdoe:payflow)>=5

will trigger the flow you are submitting when 5 jobs complete successfully in payflow.

numstart(flow_definition_name) operator nn

Trigger a flow when the specified number of jobs in the specified flow have started.
Specify the flow definition name as follows:

user_name:flow_definition

If you do not specify a user name, it defaults to your own.
Valid operators are >=, >, <=, <, !=, ==.

numexit(flow_definition_name) operator nn

Trigger a flow when the specified number of jobs in the specified flow exit. Specify the
flow definition name as follows:

user_name:flow_definition
If you do not specify a user name, it defaults to your own.

Valid operators are >=, >, <=, <, !=, ==.

For example:

numexit(jdoe:payflow)>=3

will trigger the flow you are submitting if more than 3 jobs in payflow exit.

exit(flow_definition_name) operator nn

Trigger a flow when the specified flow ends with the specified exit code. Specify the
flow definition name as follows:

user_name:flow_definition

If you do not specify a user name, it defaults to your own.
Valid operators are >=, >, <=, <, !=, ==.

Commands

126 Administering Platform LSF Process Manager

For example:

exit(jdoe:payflow)>=2

will trigger the flow you are submitting if payflow has an exit code greater than or equal to 2.

Note: When Process Manager calculates the number of jobs in a flow, for successful jobs, failed jobs, and so on, it does
not count the jobs in a subflow, and it counts a job array as a single job. It also does not count other objects in the flow,
such as events or alarms.

-C combination_type

When multiple events are specified, the combination type specifies whether one event
is sufficient to trigger a flow, or if all of the events must be true to trigger it. The default
is all.

AND

Specifies that all events must be true before a flow is triggered. This is the default.
OR

Specifies that a flow will trigger when any event is true.
flow_file_name

Specifies the name of the file containing the flow definition.
-h

Prints the command usage to stderr and exits.
-V

Prints the Process Manager release version to stderr and exits.

Examples
% jsub -r -T "Weekends@Sys:0-8:30%30" -F "exists(/tmp/1.dat)" -C AND myflow.xml

Submits the flow definition in myflow.xml, to be triggered when both of the following are true:

• Saturdays and Sundays every hour on the half hour, beginning at midnight until 8:00 a.m.
• The file /tmp/1.dat exists

Any triggering information defined within the flow definition is overwritten. If this flow
definition already exists, replace it.
% jsub -d -F "size(/data/tmp.log) >3500000" -F "arrival(/tmp/1.dat)" -C OR
backup.xml

Submits the flow definition in backup.xml, to be triggered when one of the following is true:
• The size of /data/tmp.log exceeds 3.5 MB
• The file /tmp/1.dat arrives

Any triggering information defined within the flow definition is overwritten. If this flow
definition already exists, create a duplicate.

Commands

Administering Platform LSF Process Manager 127

jtrigger
manually triggers a previously submitted flow definition.

Synopsis
jtrigger [-u user_name] [-v "var=value[;var1=value1;...]"] flow_name[flow_name...]

jtrigger [-h]|[-V]

Description
You use the jtrigger command to trigger a submitted flow definition, which creates a flow associated with that
definition. Any events normally used to trigger this definition are ignored at this time.

If the flow definition is on hold, you can use this command to trigger a flow. If the flow definition is not on hold, this
command triggers an additional execution of the flow. If you want to trigger a flow whose definition is not yet stored
in Process Manager, use the jrun command.

Options
-u user_name

Specifies the name of the user who owns the flow definition. Use this option if you
have administrator authority and you are triggering the flow on behalf of another user.

-v var=value

Specifies to pass variables and their values to the flow when triggering it. To specify a
list of variables, separate the variable and value pairs with a semi-colon (;). The value
of the variable is available only within the scope of the flow itself (local variables only).

flow_name

Specifies the name of the flow definition. To specify a list of flow definitions, separate
the flow definition names with a space.

-h

Prints the command usage to stderr and exits.
-V

Prints the Process Manager release version to stderr and exits.

Examples
% jtrigger myflow

Triggers the flow definition myflow, which is owned by the current user.
% jtrigger -u "user01" payupdt

Triggers the flow definition payupdt, which is owned by user01.
% jtrigger -v "PMONTH=October" payflow

Commands

128 Administering Platform LSF Process Manager

Triggers the flow definition payflow, which is owned by the current user, and passes it a value of
October for the variable PMONTH.

See also
jrun

Commands

Administering Platform LSF Process Manager 129

Commands

130 Administering Platform LSF Process Manager

6
Files

This chapter describes the Process Manager file structure, and provides descriptions and formats of those files you may
be required to change while administering Process Manager.

C H A P T E R

Administering Platform LSF Process Manager 131

File Structure
When Process Manager is installed, it creates several directories under its top directory. Some of these directories
contain scheduling data, others contain working files, or historical data. Some directories are created when the Process
Manager server is started, rather than immediately after installation.

Files created on the server host
The directories on the left are those that exist on UNIX after the Process Manager server has been started. The directories
on the right are those that exist on a Windows server after installation is complete:

The following describes what each directory contains:

Directory Contents

<version>/app Contains the files required to run Process Manager Client.

<version>/bin Contains the executables for all of the Process Manager commands and the Process Manager
Client applications.

<version>/etc Contains the Process Manager messages and the data specification used by the Process
Manager software when creating flows.

<version>/
examples

Contains example flows you can use and customize.

<version>/jre On Windows only, contains the Java runtime environment files for the client applications.

<version>/install On UNIX only, contains the Process Manager README file and install.config and other
installation-specific information.

<version>/lib Contains the Process Manager Java files.

<version>/
resources

Contains the properties files used by Process Manager.

<version>/man On UNIX only, contains the man pages for each of the Process Manager commands.

<version>/platform Contains files specifically for running the Process Manager software on each platform. In the
above example, the files are for running the Process Manager software on Solaris 7 and 8.

conf Contains the configuration files used by the install script to define the Process Manager
environment, including js.conf and fod.conf, (if failover is installed) cshrc.js and
profile.js.

log Contains the log files created by Process Manager to store Process Manager Server and
failover error logs. Process Manager creates a log file called jfd.log.hostname, which
contains the error logs.

Files

132 Administering Platform LSF Process Manager

Directory Contents

work Contains working information required by Process Manager to complete its processing,
including the following directories:

• alarms—contains all alarm definitions
• calendar—contains all system calendar definitions
• events—contains persisted flow events and manual jobs
• history—contains all historical data
• lock—contains lock files to prevent multiple Process Manager Servers from accessing

the same working files
• storage—contains copies of active and completed flows
• system—contains system status data used byProcess Manager Server during recovery
• templates—contains templates for inserting custom applications in a flow
• var_comm—contains temporary values for user variables
• variable—contains the current values of any global or local user variables
• proxy_storage—contains persisted proxy event definitions

Process Manager history files
The log files containing Process Manager audit data are located in JS_TOP/work/history. Process Manager writes
audit data to a history file called history.log.1. When the file reaches the maximum size specified in the
configuration file js.conf (the default is 500 KB), a new file is created, and the suffix is incremented by 1. Periodically,
you may want to manually archive or delete these files.

Process Manager log files
Process Manager creates a log file called jfd.log.hostname, which contains the error logs. The file is located within
the directory defined by the JS_LOGDIR configuration setting in js.conf. By default, this directory is JS_TOP/
log. However, after installation, you can change the value in js.conf to use a different directory.

Files

Administering Platform LSF Process Manager 133

history.log
Process Manager Server stores audit data in a history log file. This log file contains a record
of all of the work items that run in the system. It tracks each work item as it enters the Process
Manager system, is submitted to LSF master host, and tracks its state as it completes. It records
the CPU usage of each job in the system, start time, finish time, and other pertinent
information.

When the history log file reaches the maximum size specified in JS_HISTORY_SIZE or the maximum number of hours
of data, as specified in JS_HISTORY_LIFETIME in the js.conf file, a new history log file is created. The numeric
suffix of the file increases as each new file is created.

Example
The following is an excerpt from a history log file:

"JOB" "bhorner" "1035277212" "5:bhorner:daily:J1" "Started job" "JobId=1360"
"JOB" "bhorner" "1035277222" "5:bhorner:daily:J1" "Execute job" "JobId=1360|Host=curie"
"JOB" "bhorner" "1035277242" "5:bhorner:daily:J1" "Finished job" "JobId=1360|State=Done|
Status=0|StartTime=1035277208|FinishTime=1035277237|CPUUsage=0.170000 sec"
"FLOW" "bhorner" "1035277242" "5:bhorner:daily" "Finished flow" "State=Done|Status=0|
StartTime=1035277202|FinishTime=1035277242"
"FLOWDEF" "bhorner" "1035309105" "bhorner:untitled1" "Remove flow definition" ""
"FLOWDEF" "bhorner" "1035309105" "bhorner:untitled1" "Submit flow definition" ""
"FLOWDEF" "bhorner" "1035309127" "bhorner:untitled1" "Instantiated flow definition"
"FlowId=6"
"FLOWDEF" "bhorner" "1035309127" "bhorner:untitled1" "Trigger flow definition" ""
"FLOW" "bhorner" "1035309127" "6:bhorner:untitled1" "Start flow" ""

Description
Data in the file is listed from top (earliest events) to bottom (latest events).

In the above example, the first line shows when J1 in the flow daily was submitted to LSF master host. The second
line indicates when LSF master host dispatched the job, and the name of the host to which it was dispatched. When the
job completes, the job ID and its resulting state and CPU usage are listed, as shown in the third line.

Files

134 Administering Platform LSF Process Manager

install.config
Process Manager configuration file for installation on UNIX or Linux. Run jsinstall -f
install.config to install Process Manager using the options specified in
install.config.

Template location
A template install.config is located in the installation script directory created when extracting the Process Manager
installation script tar file. Edit the file to specify the options for your Process Manager installation.

Format
Each entry in install.config has one of the following formats:
NAME=VALUE
NAME=
NAME="STRING1 STRING2 ..."

The equal sign (=) must follow each NAME even if no value follows and there should be no space beside the equal sign.

Lines starting with a pound sign (#) are comments and are ignored. Do not use #if as this is reserved syntax.

JS_ADMINS

Syntax
JS_ADMINS=primary_admin[admin2 admin3 ...]

Description
REQUIRED.

Specifies the administrators who run Process Manager. The first entry is the primary Process
Manager administrator, and must be a valid user ID. This name is set at installation time. Any
additional administrators specified can be user IDs or UNIX user group names. To specify a
list, separate the names with a space.

Default
There is no default for this parameter. A value for the primary Process Manager administrator
is set at installation time.

JS_CONTROL_ADMINS

Syntax
JS_CONTROL_ADMINS=cadmin[cadmin1 cadmin2 ...]

Description
OPTIONAL.

Specifies one or more control administrators who can control any flows or jobs in the Process
Manager system, regardless of who the owner is. These administrators cannot submit or
remove flows belonging to other users.

Any administrators specified can be user IDs or UNIX user group names.

Files

Administering Platform LSF Process Manager 135

To specify a list, separate the names with a space.

Default
There is no default for this parameter.

See also
JS_ADMINS

JS_FAILOVER

Syntax
JS_FAILOVER=false|true

Description
OPTIONAL if failover is not used. REQUIRED if failover is used.

Specifies that the failover feature is to be enabled. The failover feature provides automatic
failover in the event the Process Manager Server host becomes unavailable.

Default
The default is false—no failover.

See also
JS_FAILOVER_HOST, JS_FOD_PORT

JS_FAILOVER_HOST

Syntax
JS_FAILOVER_HOST=hostname

Description
OPTIONAL if failover is not used. REQUIRED if failover is used.

Specifies the fully-qualified hostname of the failover host.

If you specified JS_FAILOVER=true, specify the name of the host where Process Manager
Server will run if the primary Process Manager Server host is unavailable.

Default
The default is the same hostname as that specified for Process Manager Server.

See also
JS_FAILOVER, JS_FOD_PORT

JS_FOD_PORT

Syntax
JS_FOD_PORT=number

Files

136 Administering Platform LSF Process Manager

Description
OPTIONAL if failover is not used. REQUIRED if failover is used.

Specifies the port number of the failover daemon fod.

If you specified JS_FAILOVER=true, specify the port number to be used for communication
between the failover daemon and the Process Manager Server daemon.

Default
The default is 1999.

See also
JS_FAILOVER, JS_FAILOVER_HOST

JS_TOP

Syntax
JS_TOP=/path

Description
REQUIRED.

Specifies the full path to the top-level installation directory.

Corresponds to JS_HOME in js.conf.

Default
There is no default for this parameter.

JS_HOST

Syntax
JS_HOST=hostname

Description
REQUIRED.

Specifies the fully-qualified domain name of the host on which Process Manager Server runs
—the name of the host to which the clients connect under normal operations. You cannot
specify more than one host.

Default
There is no default for this parameter.

See also
JS_PORT

Files

Administering Platform LSF Process Manager 137

JS_LICENSE

Syntax
JS_LICENSE=/path/filename

Description
Specifies the location of the copy that Process Manager makes of the license.dat file.

Default
The default is the parent directory of the current working directory where jsinstall is run.

JS_MAILHOST

Syntax
JS_MAILHOST=hostname

Description
OPTIONAL.

Specifies the name of the mail server host.

On Windows, specify the protocol and name of the mail server host. For an SMTP mail host,
specify SMTP:hostname. For an exchange mail host, specify Exchange:hostname.

On UNIX, specify just the name of the mail server host.

Default
If Process Manager Server is installed on Windows, the default is Exchange:localhostname. If
Process Manager Server is installed on UNIX, the default is localhostname.

JS_PORT

Syntax
JS_PORT=number

Description
REQUIRED.

Specifies the port number to be used by Process Manager Client to connect with Process
Manager Server.

Default
The default port number is 1966.

See also
JS_HOST

Files

138 Administering Platform LSF Process Manager

JS_TARDIR

Syntax
JS_TARDIR=/path

Description
OPTIONAL.

Specifies the full path to the directory containing the Process Manager distribution files to be
installed.

Default
The default is the parent directory of the current working directory where jsinstall is run.

LSF_ENVDIR

Syntax
LSF_ENVDIR=/path

Description
REQUIRED.

Default
Specifies the directory where LSF master host configuration files are stored. There is no default
for this value.

EGO_DAEMON_CONTROL

Syntax
EGO_DAEMON_CONTROL=false|true

Description
OPTIONAL

Specifies whether or not to install Process Manager as an EGO service and enable to control
JFD.

Default
The default is EGO_DAEMON_CONTROL=false.

EGO_CONFDIR

Syntax
EGO_CONFDIR=/path

Description
REQUIRED if EGO_DAEMON_CONTROL=true

Files

Administering Platform LSF Process Manager 139

Specifies the directory containing the path to the EGO configuration file ego.conf.

Default
Specifies the directory where EGO configuration files are stored. There is no default for this
value.

Files

140 Administering Platform LSF Process Manager

js.conf
configuration file for Process Manager. Process Manager Server receives its configuration information on startup from
its configuration file js.conf. The file js.conf is created automatically during the installation of Process Manager.
The values in js.conf are set automatically when you install Process Manager Server as follows:

• On UNIX, from the values you specify in install.config before running jsinstall
• On Windows, from the values you specify when prompted by the installation program
• Some values default during installation

If, for example, when you installed the failover daemon, the default port was already in use, you can change that
value directly in js.conf. The next time Process Manager Server is started, the new values take effect.

Some values in js.conf are generated and cannot be changed without causing problems. This is indicated in the
parameter description.

Format
Each entry in js.conf has one of the following formats:
NAME=VALUE
NAME=
NAME="STRING1,STRING2,..."

The equal sign (=) must follow each NAME even if no value follows and there should be no space beside the equal sign.

Lines starting with a pound sign (#) are comments and are ignored. Do not use #if as this is reserved syntax.

Parameters

JS_ADMINS

Syntax
JS_ADMINS=primary_admin[,admin2,admin3,...]

Description
REQUIRED.

Specifies the administrators who run Process Manager. The first entry is the primary Process
Manager administrator, and must be a valid user ID. This name is set at installation time. Any
additional administrators specified can be user IDs or UNIX user group names. To specify a
list, separate the names with a comma without any space.

Default
There is no default for this parameter. A value for the primary Process Manager administrator
is set at installation time.

JS_ALARMS_DIR

Syntax
JS_ALARMS_DIR=/path

Files

Administering Platform LSF Process Manager 141

Description
Specifies the directory where the configured alarms are stored.

Default
The default is JS_HOME/work/alarms.

JS_CALENDAR_DIR

Syntax
JS_CALENDAR_DIR=/path

Description
Specifies the directory where the calendars are stored.

Default
The default is JS_HOME/work/calendar.

JS_CONN_TIMEOUT

Syntax
JS_CONN_TIMEOUT=seconds

Description
Specifies the maximum number of seconds a Process Manager Client waits for a response from
Process Manager Server.

Default
The default is 1024 seconds.

JS_CONTROL_ADMINS

Syntax
JS_CONTROL_ADMINS=cadmin[,cadmin1,cadmin2,...]

Description
OPTIONAL.

Specifies one or more control administrators who can control any flows or jobs in Process
Manager, regardless of who the owner is. These administrators cannot submit or remove flows
belonging to other users.

Any administrators specified can be user IDs or UNIX user group names.

To specify a list, separate the names with a comma without any space.

Default
There is no default for this parameter.

Files

142 Administering Platform LSF Process Manager

See also
JS_ADMINS

JS_DATACAPTURE_TIME

Syntax
JS_DATACAPTURE_TIME=“cal_name@user_name:hour[:minute]”

Description
Periodically, Process Manager Server interrupts its processing to take an image of the workload
in Process Manager, and saves it for recovery purposes. Depending on the amount of workload
that passes through your server, recovery of Process Manager following an outage may take
some time. The more recent the system image, the shorter the recovery time.

JS_DATACAPTURE_TIME specifies the schedule that determines when an image of the
workload in the system is saved for recovery purposes. The schedule is specified in the form
of a calendar name and owner and time, and is enclosed in double quotes. You can specify
one or more schedules in a comma-separated list.

During data capture, Process Manager Server does not submit new work. Ideally, schedule
this activity at a time when Process Manager is least busy. You may need to adjust this schedule
to find the balance between frequency and duration of the process, to ensure server
productivity.

Default
The default is Daily@Sys:0:0 (daily at midnight).

JS_DTD_DIR

Syntax
JS_DTD_DIR=JS_HOME/7/etc

Description
DO NOT CHANGE THIS VALUE.

Specifies the directory containing the DTD files required by Process Manager.

Default
The default is JS_HOME/7/etc

JS_ENCRYPTION

Syntax
JS_ENCRYPTION=true|false

Files

Administering Platform LSF Process Manager 143

Description
Specifies whether to encrypt communication between Process Manager Server and Process
Manager Client. If you set this value to true, ensure that the strong encryption package is
installed.

Default
The default is false—do not encrypt communication.

JS_EVENTS_LIFETIME

Syntax
JS_EVENTS_LIFETIME=hours

Description
Specifies the time period in hours for which event data is collected before a new event log file
is created. If the size of the log file exceeds the file size specified in JS_EVENTS_SIZE, a new
log file is created, regardless of how many hours of data it contains.

Default
The default is 168 hours (7 days).

See also
JS_EVENTS_DEFAULT_SIZE

JS_EVENTS_DEFAULT_SIZE

Syntax
JS_EVENTS_DEFAULT_SIZE=bytes

Description
Specifies the maximum number of bytes an event log file can grow to before a new log file is
created. If the number of hours of data exceeds the time period specified in
JS_EVENTS_LIFETIME, a new log file is created, regardless of its size.

Default
The default is 1000000 bytes (1 MB).

See also
JS_EVENTS_LIFETIME

JS_FAILOVER

Syntax
JS_FAILOVER=false|true

Files

144 Administering Platform LSF Process Manager

Description
OPTIONAL if failover is not used. REQUIRED if failover is used.

Specifies that the failover feature is to be enabled. The failover feature provides automatic
failover in the event the Process Manager Server host becomes unavailable.

Default
The default is JS_FAILOVER=false.

See also
JS_FAILOVER_HOST, JS_FOD_PORT

JS_FAILOVER_HOST

Syntax
JS_FAILOVER_HOST=hostname

Description
OPTIONAL if failover is not used. REQUIRED if failover is used.

Specifies the fully-qualified hostname of the failover host.

If you specified JS_FAILOVER=true, specify the name of the host where Process Manager
Server will run if the primary Process Manager Server host is unavailable.

Default
The default is the same hostname as that specified for Process Manager Server.

See also
JS_FAILOVER, JS_FOD_PORT

JS_FILEAGENT_SENSITIVITY

Syntax
JS_FILEAGENT_SENSITIVITY=seconds

Description
Specifies the time interval in seconds at which Process Manager checks for changes in the file
system. This value is used when testing file events.

Default
The default is 30 seconds.

JS_FLOW_STATE_MAIL

Syntax
JS_FLOW_STATE_MAIL=true | false

Files

Administering Platform LSF Process Manager 145

Description
Specifies whether or not to allow flow email notifications. When set to true, flow email
notification occurs as specified by the user in each flow. When set to false, flow email
notification does not occur. This setting has no effect on individual job email notifications or
alarm email notifications.

Default
The default is true—enable flow email notification.

See also
JS_MAIL_SIZE

JS_FOD_PORT

Syntax
JS_FOD_PORT=number

Description
OPTIONAL if failover is not used. REQUIRED if failover is used.

Specifies the port number of the failover daemon fod.

If you specified JS_FAILOVER=true, specify the port number to be used for communication
between the failover daemon and the Process Manager Server daemon.

Default
The default is 1999.

See also
JS_FAILOVER, JS_FAILOVER_HOST

JS_FY_MONTH

Syntax
JS_FY_MONTH=n

Description
OPTIONAL.

Specifies the number that corresponds to the starting month of the fiscal year. This value is
used in certain system calendars. Specify a value from 1 (January) to 12 (December). For
example, to specify March, specify JS_FY_MONTH=3.

Default
The default is 7 (July).

Files

146 Administering Platform LSF Process Manager

JS_HISTORY_DIR

Syntax
JS_HISTORY_DIR=/path/work/history

Description
Specifies the directory where the history log files are stored.

Default
The default is JS_HOME/work/history.

JS_HISTORY_CLEAN_PERIOD

Syntax
JS_HISTORY_CLEAN_PERIOD=days

Description
Specifies the time period in days for which history log files are stored. Any history log files
older than the specified time period is cleaned up by Process Manager.

Default
The default is 15 days.

JS_HISTORY_LIFETIME

Syntax
JS_HISTORY_LIFETIME=hours

Description
Specifies the time period in hours for which history data is collected before a new history log
file is created. If the size of the log file exceeds the file size specified in JS_HISTORY_SIZE, a
new log file is created, regardless of how many hours of data it contains.

Default
The default is 24 hours.

See also
JS_HISTORY_SIZE

JS_HISTORY_LIMIT

Syntax
JS_HISTORY_LIMIT=number of records

Files

Administering Platform LSF Process Manager 147

Description
Specifies the maximum number of history records retrieved when the jhist command is
used and your Process Manager Client and Process Manager Server are on different hosts. If
more than the maximum number of records are available, only the oldest number of records
you specify in this parameter are retrieved.

Default
The default is 1500 history records.

JS_HISTORY_SIZE

Syntax
JS_HISTORY_SIZE=bytes

Description
Specifies the maximum number of bytes a history log file can grow to before a new log file is
created. If the number of hours of data exceeds the time period specified in
JS_HISTORY_LIFETIME, a new log file is created, regardless of its size.

Default
The default is 500000 bytes (500 KB).

See also
JS_HISTORY_LIFETIME

JS_HOME

Syntax
JS_HOME=/path

Description
Specifies the full path to the top-level installation directory.

Corresponds to JS_TOP in install.config.

Default
There is no default for this parameter. A value is set at installation time.

JS_HOST

Syntax
JS_HOST=hostname

Description
REQUIRED.

Files

148 Administering Platform LSF Process Manager

Specifies the fully-qualified domain name of the host on which Process Manager Server runs
—the name of the host to which the clients connect under normal operations. You cannot
specify more than one host.

Default
There is no default for this parameter. A value is set at installation time.

See also
JS_PORT

JS_IM_ACTIVEPOLICY

Syntax
JS_IM_ACTIVEPOLICY=JF_IM_IPolicy |JF_IM_TPolicy

Description
Specifies the criteria used by Process Manager to determine when to delete a copy of a
completed flow from the working set. Also controls the amount of information saved to the
cache file.

Specify JF_IM_IPolicy if you want to use the number of occurrences of the flow as the criteria
to delete the flow. The oldest occurrence is deleted first.

Specify JF_IM_TPolicy if you want to use the length of time since the flow completed as the
criteria to delete the flow. The oldest occurrence is deleted first.

Default
The default policy is JF_IM_IPolicy.

See also
JS_IM_POLICY_CHECKING_INTERVAL

JS_IM_POLICY_CHECKING_INTERVAL

Syntax
JS_IM_POLICY_CHECKING_INTERVAL=minutes

Description
Specifies the time interval in minutes at which Process Manager applies the policy specified
in JS_IM_ACTIVEPOLICY.

Default
The default interval is 12 minutes.

See also
JS_IM_ACTIVEPOLICY, JS_IM_POLICY_LIFETIME, JS_IM_POLICY_NOOFFLOWS

Files

Administering Platform LSF Process Manager 149

JS_IM_POLICY_LIFETIME

Syntax
JS_IM_POLICY_LIFETIME=days

Description
Specifies the time interval in days after which completed flows are deleted from the Process
Manager working set.

This value takes effect when JS_IM_ACTIVEPOLICY = JF_IM_TPolicy. The oldest
occurrence is deleted first.

Default
The default is 5 days.

See also
JS_IM_ACTIVEPOLICY, JS_IM_POLICY_CHECKING_INTERVAL,
JS_IM_POLICY_NOOFFLOWS

JS_IM_POLICY_NOOFFLOWS

Syntax
JS_IM_POLICY_NOOFFLOWS=number

Description
Specifies the number of copies of a completed flow that are retained within the Process
Manager working set. Specify a number greater than 0.

This value takes effect when JS_IM_ACTIVEPOLICY = JF_IM_IPolicy. The oldest occurrence
is deleted first.

Default
The default is 36 copies.

See also
JS_IM_ACTIVEPOLICY, JS_IM_POLICY_LIFETIME,
JS_IM_POLICY_CHECKING_INTERVAL

JS_JOB_SUBMISSION_SCRIPT_TIME_OUT

Syntax
JS_JOB_SUBMISSION_SCRIPT_TIME_OUT=seconds

Description
Specifies the length of time for which the job submission script can run before the
Process Manager daemon (jfd) kills the script.

Files

150 Administering Platform LSF Process Manager

Default
The default is 300 seconds.

JS_JOB_SUBMIT_NOTICE_THRESHOLD

Syntax
JS_JOB_SUBMIT_NOTICE_THRESHOLD=number

Description
Specifies when job queue size is logged. When the job queue reaches the size specified by
JS_JOB_SUBMIT_NOTICE_THRESHOLD and every multiple of that number, the job queue
size is logged in $JS_TOP/log/jfd.log.host_name. It is logged at LOG_NOTICE level.

Default
100 entries

JS_LICENSE_FILE

Syntax
JS_LICENSE_FILE=/path/filename

Description
DO NOT CHANGE THIS VALUE.

Specifies the location of the copy that Process Manager makes of the license.dat file.

Default
The default is JS_HOME/conf.

JS_LIMIT_USER_VIEW

Syntax
JS_LIMIT_USER_VIEW=true | false

Description
Specifies whether a user’s view of flows is limited to their own flows, or includes all flows in
Process Manager. For a guest user, limits the access so that no flows are viewable.

Default
The default is false.

JS_LIMIT_MODIFY_GLOBALVAR

Syntax
JS_LIMIT_MODIFY_GLOBALVAR=true | false

Files

Administering Platform LSF Process Manager 151

Description
Specifies whether to allow or deny users the privilege of controlling global variables through
jsetvars or flow manager. When set to true, only administrators can modify global variables.
When set to false, users and administratos can modify global variables.

Default
The default is true.

JS_LOGDIR

Syntax
JS_LOGDIR=/path

Description
Specifies the name of the directory containing the jfd.log file, the error log file for the Process
Manager Server daemon.

Default
The default is JS_HOME/log.

JS_LOGIN_REQUIRED

Syntax
JS_LOGIN_REQUIRED=true | false

Description
Specifies if a user login is required to access Process Manager. Set as true if you want to require
users to log in before using Process Manager.

Default
The default is false; users do not have to log in to use Process Manager.

JS_LOGON_RETRY

Syntax
JS_LOGON_RETRY=number

Description
Specifies the number of times Process Manager should resubmit the same job to LSF when
logon fails.

Default
The default is 0.

Files

152 Administering Platform LSF Process Manager

JS_LOGON_RETRY_DELAY

Syntax
JS_LOGON_RETRY_DELAY=seconds

Description
Specifies the number of seconds to wait in between each try to resubmit the same job to LSF
when logon fails.

Default
The default is 10 seconds.

JS_LOG_MASK

Syntax
JS_LOG_MASK=value

Description
Specifies the error logging level used. Change this value only as directed by Platform Technical
Support. Valid values from highest to lowest are:
• LOG_EMERG
• LOG_ALERT
• LOG_CRIT
• LOG_ERR
• LOG_WARNING
• LOG_NOTICE
• LOG_INFO
• LOG_DEBUG
• LOG_DEBUG1
• LOG_DEBUG2
• LOG_DEBUG3

The level specified by the log mask determines which messages are recorded and which
are discarded. All messages logged at the specified level or higher are recorded, while lower
level messages are discarded.

For debugging purposes, the level LOG_DEBUG contains the fewest number of debugging
messages and is used for basic debugging. The level LOG_DEBUG3 records all debugging
messages, and can cause log files to grow very large; it is not often used. Most debugging
is done at the level LOG_DEBUG2.

Default
The default is JS_LOG_MASK=LOG_NOTICE.

JS_MAILHOST

Syntax
JS_MAILHOST=[SMTP|Exchange:]hostname

Files

Administering Platform LSF Process Manager 153

Description
OPTIONAL.

Specifies the name of the mail server host.

On Windows, specify the protocol and name of the mail server host. For an SMTP mail host,
specify SMTP:hostname. For an exchange mail host, specify Exchange:hostname.

On UNIX, specify just the name of the mail server host.

Default
If Process Manager Server is installed on Windows, the default is Exchange:localhostname. If
Process Manager Server is installed on UNIX, the default is localhostname.

JS_MAIL_SIZE

Syntax
JS_MAILSIZE=bytes

Description
OPTIONAL.

Specifies the maximum size allowed for a flow email notifications. An email larger than the
maximum size specified is truncated.

Default
The default is 1000000 (1MB).

JS_MAX_VAR_SUBSTITUTIONS

Syntax
JS_MAX_VAR_SUBSTITUTIONS=number

Description
OPTIONAL.

Specifies the maximum number of variable substitutions that can be performed in a single job
definition field.

Default
10 substitutions

JS_PORT

Syntax
JS_PORT=number

Description
REQUIRED.

Files

154 Administering Platform LSF Process Manager

Specifies the port number to be used by the Process Manager Client to connect with Process
Manager Server.

Default
The default port number is 1966.

See also
JS_HOST

JS_PROXY_DURATION

Syntax
JS_PROXY_DURATION=minutes

Description
Specifies the length of time for which to publish events that occur in Process Manager, keeping
the event information available for flows that contain proxies looking for that event. This is
required if the event can occur before the flow looking for it requires it.

Default
The default is 0.

JS_REALTIME_UPDATE

Syntax
JS_REALTIME_UPDATE=true | false

Description
Specifies whether or not to enable real-time updates to the data displayed in the Flow Manager.
When enabled, the status of work items in the Flow Manager updates automatically as a change
occurs. Users can choose real-time updates, automatic refreshes at a specified time interval,
or manual refreshes. If you disable this option, and a user has selected real-time updates, the
client updates automatically at the specified refresh interval instead.

Default
The default is false.

JS_REALTIME_OBJECT_URL

Syntax
JS_REALTIME_OBJECT_URL=url

Description
Required when JS_REALTIME_UPDATE is set to true. Specifies the url to the JMS (Java
Message Service), used by Process Manager Server when obtaining status updates. This url
must match the url specified when configuring the JMS broker—IMQ_JNDI_URL.

Files

Administering Platform LSF Process Manager 155

Default
There is no default for this parameter.

JS_RERUN_RETRY

Syntax
JS_RERUN_RETRY=tries

Description
Specifies the maximum number of times (including the first time) Process Manager tries to
run a work item that has a rerun exception.

Default
The default is 30 times.

JS_START_RETRY

Syntax
JS_START_RETRY=retries

Description
Specifies the maximum number of times Process Manager tries again to start a job or job array
before raising a Start Failed exception.

Default
The default is 20 times.

JS_STORAGE_DIR

Syntax
JS_STORAGE_DIR=/path/work/storage

Description
Specifies the directory where the flow definitions and flows are stored for use by the Process
Manager Server.

Default
The default is JS_HOME/work/storage.

JS_SU_NEW_LOGIN

Syntax
JS_SU_NEW_LOGIN=true | false

Files

156 Administering Platform LSF Process Manager

Description
Specifies whether or not to start a new login shell when Process Manager server submits jobs
to LSF.. When this parameter is set to true, a new login shell is started when a job is submitted
to LSF.

Default
The default is true.

JS_TIME_ZONE

Syntax
JS_TIME_ZONE=client | server | UTC

Description
Specifies the time zone displayed by the client. The time zone is displayed and used to define
and schedule flows.

Server time zone is the time at the server.

Client time zone is the time at the client.

UTC time zone is Coordinated Universal Time (also known as Greenwich Mean Time or
GMT).

Note: If you are scheduling a future event that takes place after a seasonal time change (such
as Daylight Savings Time) and you have configured either server or client time zones, the time
displayed at submission is the time at which the job runs.

When the server and the client are in the same time zone, the server time zone is displayed.

Default
The default is client.

JS_VARIABLE_COMM_DIR

Syntax
JS_VARIABLE_COMM_DIR=/path

Description
Specifies the shared directory to which jobs communicate variable information.

Default
The default is JS_HOME/work/var_comm.

JS_VARIABLE_DIR

Syntax
JS_VARIABLE_DIR=/path

Files

Administering Platform LSF Process Manager 157

Description
Specifies the directory where variable data is stored.

Default
The default is JS_HOME/work/variable.

LSF_ENVDIR

Syntax
LSF_ENVDIR=/path

Description
REQUIRED.

Default
Specifies the directory where the LSF configuration files are stored. There is no default for this
value. A value is set at installation time.

Files

158 Administering Platform LSF Process Manager

name.alarm
When you define an alarm, you create an individual file for each alarm. The file name is the
name of the alarm and the file type is alarm.

Format
Each alarm file has the following format:
DESCRIPTION=<description>
NOTIFICATION=Email[user1 user2 user3]

Example
The following example shows a database failure alarm definition. The alarm is called
DBMSfail.alarm. It’s contents are:
DESCRIPTION=Send DBA a message indicating DBMS failure
NOTIFICATION=Email[bsmith ajones]

Files

Administering Platform LSF Process Manager 159

Files

160 Administering Platform LSF Process Manager

Index
A

access control
role-based 11

administrators
adding 48

app directory
on UNIX 132

architecture 7
authority levels 11

B

bin directory
on UNIX 132

built-in variables
description 33

C

caleditor command 73
Calendar Editor

description 9
calendars

built-in 13
deleting when in use 86
forcing deletion of 86
how used 13
monthly, built-in 14

naming
system 51

weekly, built-in 13
yearly, built-in 15

command line interface
description 9

commands
caleditor 73
floweditor 74
jhold 102
jremove 111

jtrigger 128
list of calendar 71

configuration parameters
JS_MAILHOST 55
JS_MAX_VAR_SUBSTITUTIONS 43
JS_START_RETRY 56

control administrator 11

D

dependencies
on rerunning work items 20

directory structure 132

E

encryption
about 11

environment variables 33
etc directory

on UNIX 132
examples directory

on UNIX 132
exceptions

Misschedule 16
Overrun 16
Start Failed 16
Underrun 16

F

failover daemon
description 8

failover host
description 8

files
names

wildcard characters 123
flow definitions

Administering Platform LSF Process Manager 161

holding 102
preventing from running 102
removing from Process Manager 111
triggering 128
viewing history 58

Flow Editor
description 9

Flow Manager
description 9

floweditor command 74
flows

forcing job complete 104
rerunning killed 128
triggering 128
viewing history 58

fod 8

G
global variables 33
GMT 157
guest account 49

H
history

of a flow
viewing 58

I
install directory

on UNIX 132

J
jfd

description 8
jhold command 102
jobs

completing 104
dependent on rerunning work items 20
forcing complete 104
marking complete 104
setting start retry times 56
viewing history 58

jre directory
on Windows 132

jremove command 111
JS_MAILHOST 55

JS_MAX_VAR_SUBSTITUTIONS 43
JS_START_RETRY 56
jtrigger command 128

L

lib directory
on UNIX 132

local variables 33
log directory

on UNIX 132
lspasswd command 54

M

man directory 132
Misschedule exception

description 16

N

notification
specifying the email host 55

O

Overrun exception
description 16

overview 7

P

passwords
updating 54

permission levels 11
primary administrator 11
Process Manager administrator 11

R

resources directory
on UNIX 132

roles 11
user 11

S

security
default configuration 11

162 Administering Platform LSF Process Manager

server
description 8

Start Failed exception
description 16

subflows
viewing history 58

U
Underrun exception

description 16
user variables

description 33
global 33
local 33
multiple 32
removing limitations 43

users
control administrators 11
primary administrator 11
Process Manager administrator 11

roles 11
UTC 157

V

variables
built-in

description 33
environment 33

user
description 33
global 33
local 33
multiples 32

W

wildcard characters 123
work directory

on UNIX 133

Administering Platform LSF Process Manager 163

	Contents
	About Process Manager
	Components
	Data flow
	Security
	About Failover
	About Calendars
	About Exceptions
	User-specified conditions
	Behavior when an exception occurs
	About Exception Handling
	Built-in exception handlers
	Behavior when built-in exception handlers are used
	User-defined exception handlers

	New features

	Maintaining Process Manager
	Configure a failover host (managed by EGO)
	Install and configure a failover host on UNIX (managed by failover daemon)
	Configure the primary host
	Prepare the installation files on the failover host
	Prepare the configuration on the failover host
	Install the software on the failover host

	Add a UNIX client
	Add a Windows client
	Run the Process Manager server on system startup
	About Process Manager variables
	Types of variables
	Scope of variables
	How variables are set
	Dedicate the Process Manager Server Host
	Configure an alarm
	Configure to support user variables
	Configure variables for UNIX hosts
	Configure variables for Windows hosts
	Configure variables for both UNIX and Windows hosts
	Configure a queue to support setting user variables
	Increase the number of variables that can be substituted
	Control the Process Manager Server
	Starting and stopping the Server on UNIX
	Start the Process Manager daemon
	Stop the Process Manager daemon

	Start and stop the Server on Windows
	Start the Process Manager service
	Stop the Process Manager service

	Forcing a system snapshot
	Change the Configuration
	Change a configuration value on UNIX
	Change a configuration value on Windows

	Add an administrator
	Sign on as a guest
	Limit the guest account

	Create system calendars
	Calendar names
	Update the Holidays@Sys calendar
	Delete a calendar
	Maintain User Passwords
	Update the LSF password file

	Specify the mail host
	Change the job start retry value
	Change the history setting
	View History
	View the history of a flow definition
	View the history of a flow
	View the history of a job or job array
	Troubleshooting
	Process Manager daemon cannot restart—port is in use
	Overrun exception triggers at incorrect time
	After deleting a calendar, user cannot find flow
	Unable to run GUI on linux 2.2 through XTERM
	Not all user variables are replaced
	User is unable to trigger their own flow

	Mainframe support
	Configure for Mainframe

	Daemons
	jfd
	fod

	Commands
	caleditor
	floweditor
	flowmanager
	jadmin
	jalarms
	Absolute time examples
	Relative time examples

	jcadd
	Creating calendar expressions
	Built-in keywords-reserved words

	jcals
	jcdel
	jcmod
	Creating calendar expressions
	Built-in keywords—reserved words

	jcomplete
	jdefs
	jflows
	jhist
	jhold
	jid
	jjob
	jkill
	jmanuals
	jreconfigalarm
	jrelease
	jremove
	jrerun
	jresume
	jrun
	jsetvars
	jsinstall
	jstop
	jsub
	jtrigger

	Files
	File Structure
	history.log
	install.config
	JS_ADMINS
	JS_CONTROL_ADMINS
	JS_FAILOVER
	JS_FAILOVER_HOST
	JS_FOD_PORT
	JS_TOP
	JS_HOST
	JS_LICENSE
	JS_MAILHOST
	JS_PORT
	JS_TARDIR
	LSF_ENVDIR
	EGO_DAEMON_CONTROL
	EGO_CONFDIR

	js.conf
	JS_ADMINS
	JS_ALARMS_DIR
	JS_CALENDAR_DIR
	JS_CONN_TIMEOUT
	JS_CONTROL_ADMINS
	JS_DATACAPTURE_TIME
	JS_DTD_DIR
	JS_ENCRYPTION
	JS_EVENTS_LIFETIME
	JS_EVENTS_DEFAULT_SIZE
	JS_FAILOVER
	JS_FAILOVER_HOST
	JS_FILEAGENT_SENSITIVITY
	JS_FLOW_STATE_MAIL
	JS_FOD_PORT
	JS_FY_MONTH
	JS_HISTORY_DIR
	JS_HISTORY_CLEAN_PERIOD
	JS_HISTORY_LIFETIME
	JS_HISTORY_LIMIT
	JS_HISTORY_SIZE
	JS_HOME
	JS_HOST
	JS_IM_ACTIVEPOLICY
	JS_IM_POLICY_CHECKING_INTERVAL
	JS_IM_POLICY_LIFETIME
	JS_IM_POLICY_NOOFFLOWS
	JS_JOB_SUBMISSION_SCRIPT_TIME_OUT
	JS_JOB_SUBMIT_NOTICE_THRESHOLD
	JS_LICENSE_FILE
	JS_LIMIT_USER_VIEW
	JS_LIMIT_MODIFY_GLOBALVAR
	JS_LOGDIR
	JS_LOGIN_REQUIRED
	JS_LOGON_RETRY
	JS_LOGON_RETRY_DELAY
	JS_LOG_MASK
	JS_MAILHOST
	JS_MAIL_SIZE
	JS_MAX_VAR_SUBSTITUTIONS
	JS_PORT
	JS_PROXY_DURATION
	JS_REALTIME_UPDATE
	JS_REALTIME_OBJECT_URL
	JS_RERUN_RETRY
	JS_START_RETRY
	JS_STORAGE_DIR
	JS_SU_NEW_LOGIN
	JS_TIME_ZONE
	JS_VARIABLE_COMM_DIR
	JS_VARIABLE_DIR
	LSF_ENVDIR

	name.alarm

	Index

