
Platform LSF Programmer's Guide

Platform LSF
Version 8.0

January 2011

Copyright © 1994-2011 Platform Computing Corporation.

Although the information in this document has been carefully reviewed, Platform Computing Corporation (“Platform”)
does not warrant it to be free of errors or omissions. Platform reserves the right to make corrections, updates, revisions
or changes to the information in this document.

UNLESS OTHERWISE EXPRESSLY STATED BY PLATFORM, THE PROGRAM DESCRIBED IN THIS
DOCUMENT IS PROVIDED “AS IS” AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL PLATFORM COMPUTING BE LIABLE TO
ANYONE FOR SPECIAL, COLLATERAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING
WITHOUT LIMITATION ANY LOST PROFITS, DATA, OR SAVINGS, ARISING OUT OF THE USE OF OR
INABILITY TO USE THIS PROGRAM.

We’d like to hear
from you

You can help us make this document better by telling us what you think of the content, organization, and usefulness of
the information. If you find an error, or just want to make a suggestion for improving this document, please address
your comments to doc@platform.com.

Your comments should pertain only to Platform documentation. For product support, contact support@platform.com.

Document
redistribution
and translation

This document is protected by copyright and you may not redistribute or translate it into another language, in part or
in whole.

Internal
redistribution

You may only redistribute this document internally within your organization (for example, on an intranet) provided
that you continue to check the Platform Web site for updates and update your version of the documentation. You may
not make it available to your organization over the Internet.

Trademarks LSF is a registered trademark of Platform Computing Corporation in the United States and in other jurisdictions.

ACCELERATING INTELLIGENCE, PLATFORM COMPUTING, PLATFORM SYMPHONY, PLATFORM JOB
SCHEDULER, PLATFORM ISF, PLATFORM ENTERPRISE GRID ORCHESTRATOR, PLATFORM EGO, and the
PLATFORM and PLATFORM LSF logos are trademarks of Platform Computing Corporation in the United States and
in other jurisdictions.

UNIX is a registered trademark of The Open Group in the United States and in other jurisdictions.

Linux is the registered trademark of Linus Torvalds in the U.S. and other countries.

Microsoft is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other
countries.

Windows is a registered trademark of Microsoft Corporation in the United States and other countries.

Intel, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the
United States and other countries.

Other products or services mentioned in this document are identified by the trademarks or service marks of their
respective owners.

Third-party
license
agreements

http://www.platform.com/Company/third.part.license.htm

Contents
1 Introduction ... 5

Platform LSF architecture ... 6
Platform LSF API services .. 13
Platform LSF programs ... 16
Example applications .. 21
Authentication ... 22

2 Programming with LSLIB .. 23
Configuration information .. 24
Default resource requirements .. 34
Dynamic load information ... 36
Placement decisions ... 43
Task resource requirements ... 45
Remote execution services ... 47

3 Programming wth LSBLIB .. 51
About LSBLIB ... 52
Platform LSF batch applications ... 53
Platform LSF batch queues .. 54
Platform LSF batch hosts .. 58
Job submission and modification .. 62
Batch job information .. 69
Job manipulation ... 74
Platform LSF batch event files .. 78

4 Advanced Programming Topics ... 85
Load information for selected load indices .. 86
Parallel applications .. 88
Determine why job is suspended ... 91
Determine why job is pending ... 92
Read lsf.conf parameters .. 93
Signal handling in Windows .. 95

5 User-Level Checkpointing .. 99
User-level checkpointing ... 100
User-level checkpointable jobs ... 101
Re-Link user-level applications ... 102
Troubleshoot user-level re-linking ... 103

Platform LSF Programmer's Guide 3

Resolve re-linking errors ... 104
Re-Link C++ applications .. 106

6 External Scheduler Plugins .. 107
About external scheduler plugins .. 108
Write an external scheduler plugin .. 109
Build the external scheduler plugin. .. 113
Enable and use the external scheduler plugin .. 114
Scheduler API reference summary ... 115
Debug the external scheduling plugin ... 116

Appendix A: Tutorials ... 117
Simple batch job ... 117
Batch job with error checking .. 118
Batch Job with lsb_submit() .. 119
Batch job for a specific queue ... 119
Supplementary files .. 120

Appendix B: Common Platform LSF Functions .. 123
Job related functions ... 123
User and host related functions .. 124

4 Platform LSF Programmer's Guide

1
Introduction

C H A P T E R

Platform LSF Programmer's Guide 5

Platform LSF architecture
Platform LSF is a layer of software services on top of UNIX and Windows operating systems. Platform LSF
creates a single system image on a network of different computer systems so all the computing resources
on a network can be managed and used. Throughout the LSF Programmer’s Guide, Platform LSF refers
to the Platform LSF suite, which contains the following products:

Platform LSF base
LSF base provides basic load-sharing services to a network of different computer systems. All LSF
products use LSF base. Some of the services it provides are:

• Resource information
• Host selection
• Job placement advice
• Transparent remote execution of jobs
• Remote file option

To provide services, LSF base includes:

• Load Information Manager (LIM)
• Process Information Manager (PIM)
• Remote Execution Server (RES)
• LSF base API
• lstools
• lstcsh
• lsmake

Platform LSF batch
The services provided by LSF batch are extensions of the LSF base services. LSF batch makes a computer
network a network batch computer. It has all the features of a mainframe batch job processing system
while doing load balancing and policy-driven resource allocation control.

LSF batch relies on services provided by LSF base. LSF batch uses:

• Resource and load information from LIM to do load balancing
• Cluster configuration information from LIM
• The master LIM election service provided by LIM
• RES for interactive batch job execution
• Remote file operation service provided by RES for file transfer

LSF batch includes a master batch daemon (mbatchd) running on the master host and a slave batch
daemon (sbatchd) running on each batch server host.

Platform LSF libraries
Platform LSF consists of a number of servers running as root on each participating host in an Platform LSF
cluster and a comprehensive set of utilities built on top of the Platform LSF API. The Platform LSF API
consist of two libraries:

• LSLIB, the Platform LSF base library, provides Platform LSF base services to applications across a
heterogeneous network of computers.

Introduction

6 Platform LSF Programmer's Guide

• LSBLIB, the LSF batch library, provides batch services to submit, control, manipulate, and queue jobs.
LSBLIB also provides access to the services of other LSF products.

LSF base system
The diagram below shows the components of the Platform LSF base and their relationship:

LSF base consists of the Platform LSF base library (LSLIB) and two servers daemons, the Load Information
Manager (LIM) and the Remote Execution Server (RES).

LSLIB

The LSF API LSLIB is the direct user interface to the LSF base system. Platform LSF
APIs provide easy access to the services of Platform LSF servers. An Platform LSF server
host runs load-shared jobs. A LIM and a RES run on every Platform LSF server host.
They interface with the host’s operating system to give users a uniform, host-
independent environment.

Cluster

A cluster is a collection of hosts running LSF. A LIM on one of the hosts in a cluster acts
as the master LIM for the cluster. The master LIM is chosen among all the LIMs running
in the cluster based on configuration file settings. If the master LIM becomes
unavailable, the LIM on the next configured host will automatically become the new
master LIM.

LIM

The LIM on each host monitors its host's load and reports load information to the master
LIM. The master LIM collects information from all hosts and provides that information
to the applications.

RES

The RES on each server host accepts remote execution requests and provides fast,
transparent, and secure remote execution of tasks.

Application and Platform LSF base interactions
The following diagram shows how an application interacts with Platform LSF base. All of the transactions
take place transparently to the programmer:

Introduction

Platform LSF Programmer's Guide 7

LSF base executes tasks by sending user requests between the submission, master, and execution hosts.
From the submission host send a task into the LSF base system. The master host determines the best
execution host to run the task. The execution host runs the task.

1. lsrun submits a task to LSF for execution.
2. The submitted task proceeds through the Platform LSF base library (LSLIB).
3. The LIM communicates the task’s information to the cluster’s master LIM. Periodically, the LIM on

individual machines gathers its 12 built-in load indices and forwards this information to the master
LIM.

Introduction

8 Platform LSF Programmer's Guide

4. The master LIM determines the best host to run the task and sends this information back to the
submission host’s LIM.

5. Information about the chosen execution host is passed through the LSF base library.
6. Information about the host to execute the task is passed back to lsrun.

7. lsrun creates NIOS (network input output server) which is the communication pipe that talks to the
RES on the execution host.

8. Task execution information is passed from the NIOS to the RES on the execution host.
9. The RES creates a child RES and passes the task execution information to the child RES.
10. The child RES creates the execution environment and runs the task.
11. The child RES receives completed task information.
12. The child RES sends the completed task information to the RES.
13. The output is sent from the RES to the NIOS. The child RES and the execution environment is

destroyed by the RES.
14. The NIOS sends the output to standard out

To run a task remotely or to perform a file operation remotely, an application calls the remote execution
or remote file operation service functions in LSLIB, which then contact the RES to get the services.

The same NIOS is shared by all remote tasks running on different hosts started by the same instance of
LSLIB. The LSLIB contacts multiple Remote Execution Servers (RES) and they all call back to the same
NIOS. The sharing of the NIOS is restricted to within the same application.

Remotely executed tasks behave as if they were executing locally. The local execution environment passed
to the RES is re-established on the remote host, and the task’s status and resource usage are passed back
to the client. Terminal I/O is transparent, so even applications such as vi that do complicated terminal
manipulation run transparently on remote hosts. UNIX signals are supported across machines, so remote
tasks get signals as if they were running locally. Job control also is done transparently. This level of
transparency is maintained between heterogeneous hosts.

Platform LSF batch system
LSF batch is a layered distributed load sharing batch system built on top of Platform LSF base. The services
provided by LSF batch are extensions to the Platform LSF base services. Application programmers can

Introduction

Platform LSF Programmer's Guide 9

access batch services through the LSF batch Library (LSBLIB). The diagram below shows the components
of LSF batch and their relationship:

LSF batch accepts user jobs and holds them in queues until suitable hosts are available. LSF batch runs
user jobs on LSF batch execution hosts, those hosts that a site deems suitable for running batch jobs.

LSBLIB consists of LSF API, the direct user interface to the rest of the LSF batch system. Platform LSF
APIs provide easy access to the services of Platform LSF servers. The API routines hide the interaction
details between the application and Platform LSF servers in a way that is platform independent.

LSF batch services are provided by two daemons, one mbatchd (master batch daemon) running in each
Platform LSF cluster, and one sbatchd (slave batch daemon) running on each batch server host.

Application and Platform LSF batch interactions
LSF batch operation relies on the services provided by Platform LSF base. LSF batch contacts the master
LIM to get load and resource information about every batch server host. The diagram below shows the
typical operation of LSF batch:

LSF batch executes jobs by sending user requests from the submission host to the master host. The master
host puts the job in a queue and dispatches the job to an execution host. The job is run and the results are
emailed to the user.

Introduction

10 Platform LSF Programmer's Guide

Unlike LSF base, the submission host does not directly interact with the execution host.

1. bsub or lsb_submit()submits a job to LSF for execution.
2. To access LSF base services, the submitted job proceeds through the Platform LSF batch library

(LSBLIB) that contains LSF base library information.
3. The LIM communicates the job’s information to the cluster’s master LIM. Periodically, the LIM on

individual machines gathers its 12 built-in load indices and forwards this information to the master
LIM.

4. The master LIM determines the best host to run the job and sends this information back to the
submission host’s LIM.

5. Information about the chosen execution host is passed through the LSF batch library.
6. Information about the host to execute the job is passed back to bsub or lsb_submit().
7. To enter the batch system, bsub or lsb_submit()sends the job to LSBLIB.
8. Using LSBLIB services, the job is sent to the mbatchd running on the cluster’s master host.
9. The mbatchd puts the job in an appropriate queue and waits for the appropriate time to dispatch the

job. User jobs are held in batch queues by mbatchd, which checks the load information on all candidate
hosts periodically.

Introduction

Platform LSF Programmer's Guide 11

10. The mbatchd dispatches the job when an execution host with the necessary resources becomes
available where it is received by the host’s sbatchd. When more than one host is available, the best
host is chosen.

11. Once a job is sent to an sbatchd, that sbatchd controls the execution of the job and reports the job’s
status to mbatchd. The sbatchd creates a child sbatchd to handle job execution.

12. The child sbatchd sends the job to the RES.
13. The RES creates the execution environment to run the job.
14. The job is run in the execution environment.
15. The results of the job are sent to the email system.
16. The email system sends the job’s results to the user.

The mbatchd always runs on the host where the master LIM runs. The sbatchd on the master host
automatically starts the mbatchd. If the master LIM moves to a different host, the current mbatchd will
automatically resign and a new mbatchd will be automatically started on the new master host.

The log files store important system and job information so that a newly started mbatchd can restore the
status of the previous mbatchd. The log files also provide historic information about jobs, queues, hosts,
and LSF batch servers.

Introduction

12 Platform LSF Programmer's Guide

Platform LSF API services
Platform LSF services are natural extensions of operating system services. Platform LSF services glue
heterogeneous operating systems into a single, integrated computing system.

Platform LSF APIs provide easy access to the services of Platform LSF servers.

Platform LSF APIs have been used to build numerous load sharing applications and utilities. Some
examples of applications built on top of the Platform LSF APIs are lsmake, lstcsh, lsrun, and the LSF
batch user interface.

Platform LSF base API services
The Platform LSF base API (LSLIB) allows application programmers to get services provided by LIM and
RES. The services include:

• Configuration information service
• Dynamic load information service
• Placement advice service
• Task list information service
• Master Selection service
• Remote execution service
• Remote file operation service
• Administration service

Configuration information service
This set of function calls provide information about the Platform LSF cluster configuration, such as hosts
belonging to the cluster, total amount of installed resources on each host (e.g., number of CPUs, amount
of physical memory, and swap space), special resources associated with individual hosts, and types and
models of individual hosts.

Such information is static and is collected by LIMs on individual hosts. By calling these routines, an
application gets a global view of the distributed system. This information can be used for various purposes.
For example, the Platform LSF command lshosts displays such information on the screen. LSF batch
also uses such information to know how many CPUs are on each host.

Flexible options are available for an application to select the information that is of interest to it.

Dynamic load information service
This set of function calls provide comprehensive dynamic load information collected from individual
hosts periodically. The load information is provided in the form of load indices detailing the load on
various resources of each host, such as CPU, memory, I/O, disk space, and interactive activities. Since a
site-installed External LIM (ELIM) can be optionally plugged into the LIM to collect additional
information that is not already collected by the LIM, this set of services can be used to collect virtually
any type of dynamic information about individual hosts.

Example applications that use such information include lsload and lsmon. This information is also
valuable to an application making intelligent job scheduling decisions. For example, LSF batch uses such
information to decide whether or not a job should be sent to a host for execution.

These service routines provide powerful mechanism for selecting the information that is of interest to the
application.

Introduction

Platform LSF Programmer's Guide 13

Placement advice service
Platform LSF base API provides functions to select the best host among all the hosts. The selected host
can then be used to run a job or to login. Platform LSF provides flexible syntax for an application to specify
the resource requirements or criteria for host selection and sorting.

Many Platform LSF utilities use these functions for placement decisions, such as lsrun, lsmake, and
lslogin. It is also possible for an application to get the detailed load information about the candidate
hosts together with a preference order of the hosts.

A parallel application can ask for multiple hosts in one LSLIB call for the placement of a multi-component
job.

The performance differences between different models of machines as well as the number of CPUs on
each host are taken into consideration when placement advice is made, with the goal of selecting qualified
hosts that will provide the best performance.

Task list manipulation service
Task lists are used to store default resource requirements for users. Platform LSF provides functions to
manipulate the task lists and retrieve resource requirements for a task. This is important for applications
that need to automatically pick up the resource requirements from user’s task list. The Platform LSF
command lsrtasks uses these functions to manipulate user’s task list. Platform LSF utilities such as
lstcsh, lsrun, and bsub automatically pick up the resource requirements of the submitted command
line by calling these LSLIB functions.

Master selection service
If your application needs some kind of fault tolerance, you can make use of the master selection service
provided by the LIM. For example, you can run one copy of your application on every host and only allow
the copy on the master host to be the primary copy and others to be backup copies. LSLIB provides a
function that tells you the name of the current master host.

LSF batch uses this service to achieve improved availability. As long as one host in the Platform LSF cluster
is up, LSF batch service will continue.

Remote execution service
The remote execution service provides a transparent and efficient mechanism for running sequential as
well as parallel jobs on remote hosts. The services are provided by the RES on the remote host in
cooperation with the Network I/O Server (NIOS) on the local host. The NIOS is a per application stub
process that handles the details of the terminal I/O and signals on the local side. NIOS is always
automatically started by the LSLIB as needed.

RES runs as root and runs tasks on behalf of all users in the Platform LSF cluster. Proper authentication
is handled by RES before running a user task.

Platform LSF utilities such as lsrun, lsgrun, ch, lsmake, and lstcsh use the remote execution service.

Remote file operation service
The remote file operation service allows load sharing applications to operate on files stored on remote
machines. Such services extend the UNIX and Windows file operation services so that files that are not
shared among hosts can also be accessed by distributed applications transparently.

LSLIB provides routines that are extensions to the UNIX and Windows file operations such as open
(2), close(2), read(2), write(2), fseek(3), stat(2), etc.

Introduction

14 Platform LSF Programmer's Guide

The Platform LSF utility lsrcp is implemented with the remote file operation service functions.

Administration service
This set of function calls allow application programmers to write tools for administrating the Platform LSF
servers. The operations include reconfiguring the Platform LSF clusters, shutting down a particular
Platform LSF server on some host, restarting an Platform LSF server on some host, turning logging on or
off, locking/unlocking a LIM on a host, etc.

The lsadmin utility uses the administration services.

Platform LSF batch API services
The LSF batch API, LSBLIB, gives application programmers access to the job queueing processing services
provided by the LSF batch servers. All LSF batch user interface utilities are built on top of LSBLIB. The
services that are available through LSBLIB include:

• LSF batch system information service
• Job manipulation service
• Log file processing service
• LSF batch administration service

Platform LSF batch system information service
This set of function calls allow applications to get information about LSF batch system configuration and
status. These include host, queue, and user configurations and status.

The batch configuration information determines the resource sharing policies that dictate the behavior
of the LSF batch scheduling.

The system status information reflects the current status of hosts, queues, and users of the LSF batch
system.

Example utilities that use the LSF batch configuration information services are bhosts, bqueues,
busers, and bparams.

Job manipulation service
The job manipulation service allows LSF batch application programmers to write utilities that operate on
user jobs. The operations include job submission, signaling, status checking, checkpointing, migration,
queue switching, and parameter modification.

Log file processing service
Log file events can be used to produce historical information about the LSF batch system and user jobs.
Such information can be used to produce accounting or statistic reports.

Examples of utilities that use log file processing are bacct and bhist.

Platform LSF batch administration service
This set of function calls are useful for writing LSF batch administration tools.

The LSF batch command badmin is implemented with these library calls.

Introduction

Platform LSF Programmer's Guide 15

Platform LSF programs
Platform LSF programming is like any other system programming. You are assumed to have UNIX and/
or Windows operating system and C programming knowledge to understand the concepts involved in
this section.

lsf.conf file
This guide frequently refers to the file, lsf.conf, for the definition of some parameters. lsf.conf is a
generic reference file containing definitions of directories and parameters. It is by default installed in /
etc. If it is not installed in /etc, all users of Platform LSF must set the environment variable LSF_ENVDIR
to point to the directory in which lsf.conf is installed. See the Platform LSF Reference for more details
about the lsf.conf file.

Platform LSF header files
All Platform LSF header files are installed in the directory LSF_INCLUDEDIR/lsf, where
LSF_INCLUDEDIR is defined in the file lsf.conf. You should include LSF_INCLUDEDIR in the include
file search path, such as that specified by the ‘-Idir’ option of some compilers or pre-processors.

There is one header file for LSLIB, the Platform LSF base API, and one header file for LSBLIB, the LSF
batch API.

lsf.h

An Platform LSF application must include <lsf/lsf.h> before any of the Platform LSF
base API services are called. lsf.h contains definitions of constants, data structures,
error codes, LSLIB function prototypes, macros, etc., that are used by all Platform LSF
applications.

lsbatch.h

An LSF batch application must include <lsf/lsbatch.h> before any of the LSF batch
API services are called. lsbatch.h contains definitions of constants, data structures,
error codes, LSBLIB function prototypes, macros, etc., that are used by all LSF batch
applications.

Tip:
There is no need to explicitly include <lsf/lsf.h> in an LSF
batch application because lsbatch.h includes <lsf/lsf.h>.

Link applications with Platform LSF APIs
For all UNIX platforms, Platform LSF API functions are contained in two libraries, liblsf.a (LSLIB)
and libbat.a (LSBLIB). For Windows, the file names of these libraries are: liblsf.lib (LSLIB) and
libbat.lib (LSBLIB). These files are installed in LSF_LIBDIR, where LSF_LIBDIR is defined in the
file lsf.conf.

Note:

Introduction

16 Platform LSF Programmer's Guide

LSBLIB is not independent. It must always be linked together with LSLIB
because LSBLIB services are built on top of LSLIB services.

Platform LSF uses BSD sockets for communication across a network. On systems that have both System
V and BSD programming interfaces, LSLIB and LSBLIB typically use the BSD programming interface.
On System V-based versions of UNIX such as Solaris, it is necessary to link applications using LSLIB or
LSBLIB with the BSD compatibility library. On Windows, a number of libraries need to be linked together
with LSF API. Details of these additional linkage specifications (libraries and link flags) are shown in the
table below.

Platform Additional Linkage Specifications

ULTRIX 4 None

Digital UNIX -lmach -lmld

HP-UX -lBSD

AIX -lbsd

IRIX 5 -lsun -lc_s

IRIX 6 None

SunOS 4 None

Solaris 2 -lnsl -lelf -lsocket -lrpcsvc -lgen -ldl

Solaris 7 32-bit -lnsl -lefl -lsocket -lrpcsvc -lgen -ldl -DSVR4 -lresolv -lm

Solaris 7 64-bit -lnsl -lefl -lsocket -lrpcsvc -lgen -ldl -Xarch=v9 -lresolv -lm

NEC -lnsl -lelf -lsocket -lrpcsvc -lgen

Sony NEWSs -lc -lnsl -lelf -lsocket -lrpcsvc -lgen -lucb

ConvexOS None

Cray Unicos None

Linux libnsl.a

Windows 2000 -MT -DWIN32 libcmt.lib oldnames.lib kernel32.lib advapi32.lib
user32.lib wsock32.lib mpr.lib netapi32.lib userenv.lib oleaut32.lib
uuid.lib activeds.lib adsiid.lib ole32.lib liblsf.lib libbat.lib

Windows XP -MT -DWIN32 libcmt.lib oldnames.lib kernel32.lib advapi32.lib
user32.lib wsock32.lib mpr.lib netapi32.lib userenv.lib oleaut32.lib
uuid.lib activeds.lib adsiid.lib ole32.lib liblsf.lib libbat.lib

Note:
On Windows, you need to add paths specified by LSF_LIBDIR and
LSF_INCLUDEDIR in lsf.conf to the environment variables LIB and
INCLUDE.

Recall that the GNU C compiler on Solaris only supports 32 bit application development (not 64 bit).
Link your 32 bit applications on Solaris with the 32 bit LSF sparc-sol7-32 distribution file.

Introduction

Platform LSF Programmer's Guide 17

The $LSF_MISC/examples directory contains a makefile for making all the example programs in that
directory. You can modify this file and the example programs for your own use.

All LSLIB function call names start with ls_.

All LSBLIB function call names start with lsb_.

Compile Platform LSF API programs
Compile an LSF API program without using the makefile.

1. Include the LSF API libraries and the link flags for the appropriate architecture on the command line.

This establishes the compilation environment.

For example, to compile an LSF API program on a Solaris 2.x 32 bit machine, you will have a
compilation statement similar to the following:
% cc -o simbhosts simbhosts.c -I$LSF_ENVDIR/../include $LSF_LIBDIR/libbat.a
$LSF_LIBDIR/liblsf.a -lnsl -lelf -lsocket -lrpcsvc -lgen -ldl -lresolv -lm

• The flag -I$LSF_ENVDIR/../include specifies the location of the LSF include directory.
• $LSF_LIBDIR/libbat.a and $LSF_LIBDIR/liblsf.a are the locations of the LSLIB

and LSBLIB.
• We include the following extra compilation flags as given from the above chart:

-lnsl -lelf -lsocket -lrpcsvc -lgen -ldl -lresolv -lm
• The resulting executable of the program simbhosts.c is called simbhosts.

Compile a Platform LSF API program on a 64 bit Solaris 2.x
1. Add the xarch setting as follows:

% cc -xarch=v9 -o simbhosts simbhosts.c -I$LSF_ENVDIR/../include $LSF_LIBDIR/
libbat.a $LSF_LIBDIR/liblsf.a -lnsl -lelf -lsocket -lrpcsvc -lgen -ldl -lresolv -lm

Compile on Linux
1. Include the libnsl.a library.

This library is located in /usr/lib/.

For example, when compiling a program on redhat6.2-intel, use the following:
gcc program.c -I$LSF_ENVDIR/../include $LSF_LIBDIR/libbat.a $LSF_LIBDIR/
liblsf.a $LSF_LIBDIR/libnsl.a -lm -lnsl -ldl

where program.c is the name of the program you want to compile.

Compile on Solaris x86-64-sol10
1. Use the following library and link flags:

/opt/SUNWspro/bin/cc obj.c -R/usr/dt/lib:/usr/openwin/lib -DSVR4 -DSOLARIS
-DSOLARIS64 -xs -xarch=amd64 -D_TS_ERRNO -Dx86_64 -DSOLARIS2_5 -DSOLARIS2_7
-DI18N_COMPILE -DSOLARIS2_8 -DSOLARIS2_10 -DSTD_SHARED_OBJ -lbat -llsf -lnsl
-lelf -lsocket -lrpcsvc -lgen -ldl -lresolv -o obj_name

Introduction

18 Platform LSF Programmer's Guide

where obj.c is the name of the program you want to compile and obj_name is the name of the binary
you can run after compiling the program.

Set up Visual Studio
You can use Visual Studio 2005 or 2008 to build the application with LSF APIs.

1. Create a Win32 Console project.
2. Add a test program as the source file test.c .

Test Program:

#include <stdio.h>
#include <lsf/lsf.h>
void main()
{
 char *clustername;
 clustername = ls_getclustername();
 if (clustername == NULL) {
 ls_perror("ls_getclustername");
 exit(-1);
 }
 printf("My cluster name is: <%s>\n", clustername);
 exit(0);
}

3. Add the LSF 8.0 include and lib directories as additional include and library directories.
4. Add the following lib files as additional dependencies:

• oldnames.lib
• mpr.lib
• netapi32.lib
• userenv.lib
• activeds.lib
• adsiid.lib
• liblsf.lib
• libbat.lib
• WSOCK32.lib
• WS2_32.lib
• MSWSOCK.lib

5. Include any special build options, as required.

For example, in Visual C++ 2005, the size of the time_t data type was changed from 32 bits to 64 bits.
However, the LSF package is built with VC60 (in which size of time_t data type is 32 bits). To solve,
choose one of the two following solutions:

• In Visual Studio, change the C/C++ command line additional options to include -D
"_USE_32BIT_TIME_T".

• Add one line to the beginning of stdafx.h.
#define _USE_32BIT_TIME_T

To change the build environment from 32 to 64 bits, add the build option -D"WIN32".

Introduction

Platform LSF Programmer's Guide 19

Error handling
Platform LSF API uses error numbers to indicate an error. There are two global variables that are accessible
from the application. These variables are used in exactly the same way UNIX system call error number
variable errno is used. The error number should only be tested when an LSLIB or LSBLIB call fails.

lserrno

An Platform LSF program should test whether an LSLIB call is successful or not by
checking the return value of the call instead of lserrno.

When any LSLIB function call fails, it sets the global variable lserrno to indicate the
cause of the error. The programmer can either call ls_perror() to print the error
message explicitly to the stderr, or call ls_sysmsg() to get the error message string
corresponding to the current value of lserrno.

Possible values of lserrno are defined in lsf.h.
lsberrno

This variable is very similar to lserrno except that it is set by LSBLIB whenever an
LSBLIB call fails. Programmers can either call lsb_perror() to find out why an LSBLIB
call failed or use lsb_sysmsg() to get the error message corresponding to the current
value of lsberrno.

Possible values of lsberrno are defined in lsbatch.h.

Tip:
lserrno should be checked only if an LSLIB call fails. If an LSBLIB
call fails, then lsberrno should be checked .

Introduction

20 Platform LSF Programmer's Guide

Example applications

Example application using LSLIB
#include <stdio.h>
#include <lsf/lsf.h>
void main()
{
 char *clustername;
 clustername = ls_getclustername();
 if (clustername == NULL) {
 ls_perror("ls_getclustername");
 exit(-1);
 }
 printf("My cluster name is: <%s>\n", clustername);
 exit(0);
}

This simple example gets the name of the Platform LSF cluster and prints it on the screen. The LSLIB
function call ls_getclustername() returns the name of the local cluster. If this call fails, it returns a
NULL pointer. ls_perror() prints the error message corresponding to the most recently failed LSLIB
function call.

The above program would produce output similar to the following:
% a.out
My cluster name is: <test_cluster>

Example application using LSBLIB
#include <stdio.h>
#include<lsf/lsbatch.h>
int main()
{
 struct parameterInfo *parameters;
 if (lsb_init(NULL) < 0) {
 lsb_perror("lsb_init");
 exit(-1);
 }
 parameters = lsb_parameterinfo(NULL, NULL, 0);
 if (parameters == NULL) {
 lsb_perror("lsb_parameterinfo");
 exit(-1);
 }
 /* Got parameters from mbatchd successfully. Now print out the fields */
 printf("Job acceptance interval: every %d dispatch turns\n",parameters-
>jobAcceptInterval);
 /* Code that prints other parameters goes here */
 /* ... */
 exit(0);
}

This example gets the LSF batch parameters and prints them on the screen. The function lsb_init()
must be called before any other LSBLIB function is called.

The data structure parameterInfo is defined in lsbatch.h.

Introduction

Platform LSF Programmer's Guide 21

Authentication
Platform LSF programming is distributed programming. Since Platform LSF services are provided
network-wide, it is important for Platform LSF to deliver the service without compromising the system
security.

Platform LSF supports several user authentication protocols. Support for these protocols are described
in Administering Platform LSF. Your Platform LSF administrator can configure the Platform LSF cluster
to use any of the supported protocols.

Only those Platform LSF API function calls that operate on user jobs, user data, or Platform LSF servers
require authentication. Function calls that return information about the system do not need to be
authenticated.

The most commonly used authentication protocol, the privileged port protocol, requires that load sharing
applications be installed as setuid programs. This means that your application has to be owned by root
with the setuid bit set. .

If you need to frequently change and re-link your applications with Platform LSF API, you can consider
using the ident protocol which does not require applications to be setuid programs.

Introduction

22 Platform LSF Programmer's Guide

2
Programming with LSLIB

C H A P T E R

Platform LSF Programmer's Guide 23

Configuration information
One of the services that LSF provides to applications is cluster configuration information. This section
describes how to get this service with a C program using LSLIB.

General cluster configuration information
In the previous chapter, a very simple application was introduced that prints the name of the LSF cluster.
This section extends that example by printing the current master host name and the defined resource
names in the cluster. It uses the following additional LSLIB function calls:
struct lsInfo *ls_info(void)
char *ls_getclustername(void)
char *ls_getmastername(void)

All of these functions return NULL on failure and set lserrno to indicate the error.

lsinfo structure
The function ls_info() returns a pointer to the lsinfo data structure

(defined in <lsf/lsf.h>):
struct lsInfo {
 int nRes; Number of resources in the system
 struct resItem *resTable; A resItem for each resource in the system
 int nTypes; Number of host types
 char hostTypes[MAXTYPES][MAXLSFNAMELEN]; Host types
 int nModels; Number of host models
 char hostModels[MAXMODELS][AXLSFNAMELEN]; Host models
 char hostArchs[MAXMODELS][MAXLSFNAMELEN]; Architecture name
 int modelRefs[MAXMODELS]; Number of hosts of this architecture
 float cpuFactor[MAXMODELS]; CPU factors of each host model
 int numIndx; Total number of load indices in resItem
 int numUsrIndix; Number of user-defined load indices
};

resItem structure
Within struct lsinfo, the resItem data structure describes the valid resources defined in the LSF cluster:
struct resItem {
 char name[MAXLSFNAMELEN]; The name of the resource
 char des[MAXRESDESLEN]; The description of the resorce
 enum valueType valueType; Type of value: BOOLEAN, NUMERIC,
STRING, EXTERNAL
 enum orderType orderType; Order: INCR, DECR, NA
 int flags; Resource attribute flags
#define RESF_BUILTIN 0x01 Built-in vs configured resource
#define RESF_DYNAMIC 0x02 Dynamic vs static value
#define RESF_GLOBAL 0x04 Resource defined in all clusters
#define RESF_SHARED 0x08 Shared resource for some hosts
#define RESF_LIC 0x10 License static value
#define RESF_EXTERNAL 0x20 External resource defined
#define RESF_RELEASE 0x40 Resource can be released when job is
 suspended
 int interval; The update interval for a load index, in seconds
};

The constants MAXTYPES, MAXMODELS, and MAXLSFNAMELEN are defined in <lsf/lsf.h>.
MAXLSFNAMELEN is the maximum length of a name in LSF.

Programming with LSLIB

24 Platform LSF Programmer's Guide

A host type in LSF refers to a class of hosts that are considered to be compatible from an application point
of view. This is entirely configurable, although normally hosts with the same architecture (binary
compatible hosts) should be configured to have the same host type.

A host model in LSF refers to a class of hosts with the same CPU performance. The CPU factor of a host
model should be configured to reflect the CPU speed of the model relative to other host models in the
LSF cluster.

ls_getmastername() returns a string containing the name of the current master host.

ls_getclustername() returns a string containing the name of the local load sharing cluster defined
in the configuration files.

The returned data structure of every LSLIB function is dynamically allocated inside LSLIB. This storage
space is automatically freed by LSLIB and re-allocated next time the same LSLIB function is called. An
application should never attempt to free the storage returned by LSLIB. If you need to keep this
information across calls, make your own copy of the data structure. This applies to all LSLIB function
calls.

Example
The following program displays LSF cluster information using the above LSLIB function calls.
#include <stdio.h>
#include <lsf/lsf.h>

main()
{
 struct lsInfo *lsInfo;
 char *cluster, *master;
 int i;
/* get the name of the local load sharing cluster */
 cluster = ls_getclustername();
 if (cluster == NULL) {
 ls_perror("ls_getclustername");
 exit(-1);
 }
 printf("My cluster name is <%s>\n", cluster);
/* get the name of the current master host */
 master = ls_getmastername();
 if (master == NULL) {
 ls_perror("ls_getmastername");
 exit(-1);
 }
 printf("Master host is <%s>\n", master);
/* get the load sharing configuration information */
 lsInfo = ls_info();
 if (lsInfo == NULL) {
 ls_perror("ls_info");
 exit(-1);
 }
 printf("\n%-15.15s %s\n", "RESOURCE_NAME", "DESCRIPTION");
 for (i=0; i<lsInfo->nRes; i++)
 printf("%-15.15s %s\n",
 lsInfo->resTable[i].name, lsInfo->resTable[i].des);

 exit(0);
}

The above program will produce output similar to the following:
% a.out
My cluster name is <test_cluster>
Master host is <hostA>

RESOURCE_NAME DESCRIPTION
r15s 15-second CPU run queue length
r1m 1-minute CPU run queue length (alias: cpu)

Programming with LSLIB

Platform LSF Programmer's Guide 25

r15m 15-minute CPU run queue length
ut 1-minute CPU utilization (0.0 to 1.0)
pg Paging rate (pages/second)
io Disk IO rate (Kbytes/second)
ls Number of login sessions (alias: login)
it Idle time (minutes) (alias: idle)
tmp Disk space in /tmp (Mbytes)
swp Available swap space (Mbytes) (alias: swap)
mem Available memory (Mbytes)
ncpus Number of CPUs
ndisks Number of local disks
maxmem Maximum memory (Mbytes)
maxswp Maximum swap space (Mbytes)
maxtmp Maximum /tmp space (Mbytes)
cpuf CPU factor
rexpri Remote execution priority
server LSF server host
LSF_Base Base product
lsf_base Base product
LSF_Manager Standard product
lsf_manager Standard product
LSF_JobSchedule JobScheduler product
lsf_js JobScheduler product
LSF_Make Make product
lsf_make Make product
LSF_Parallel Parallel product
lsf_parallel Parallel product
LSF_Analyzer Analyzer product
lsf_analyzer Analyzer product
mips MIPS architecture
dec DECStation system
sparc SUN SPARC
bsd BSD unix
sysv System V UNIX
hpux HP-UX UNIX
aix AIX UNIX
irix IRIX UNIX
ultrix Ultrix UNIX
solaris SUN SOLARIS
sun41 SunOS4.1
convex ConvexOS
osf1 OSF/1
fs File server
cs Compute server
frame Hosts with FrameMaker license
bigmem Hosts with very big memory
diskless Diskless hosts
alpha DEC alpha
linux LINUX UNIX
type Host type
model Host model
status Host status
hname Host name

Host configuration information
Host configuration information describes the static attributes of individual hosts in the LSF cluster.
Examples of such attributes are host type, host model, number of CPUs, total physical memory, and the
special resources associated with the host. These attributes are either read from the LSF configuration file,
or determined by the host’s LIM on start up.

ls_gethostinfo()
Host configuration information can be obtained by calling ls_gethostinfo():
struct hostInfo *ls_gethostinfo(resreq, numhosts, hostlist,
 listsize, options)

Programming with LSLIB

26 Platform LSF Programmer's Guide

ls_gethostinfo() has these parameters:
char *resreq; Resource requirements that a host must satisfy
int *numhosts; The number of hosts
char **hostlist; An array of candidate hosts
int listsize; Number of candidate hosts
int options; Options, currently only DFT_FROMTYPE

On success, ls_gethostinfo() returns an array containing a hostInfo structure for each host. On
failure, it returns NULL and sets lserrno to indicate the error.

hostInfo structure
The hostInfo structure is defined in lsf.h as
struct hostInfo {
 char hostName[MAXHOSTNAMELEN];
 char *hostType;
 char *hostModel;
 float cpuFactor;
 int maxCpus;
 int maxMem;
 int maxSwap;
 int maxTmp;
 int nDisks;
 int nRes;
 char **resources;
 int nDRes;
 char **DResources;
 char *windows;
 int numIndx;
 float *busyThreshold;
 char isServer;
 char licensed;
 int rexPriority;
 int licFeaturesNeeded;
#define LSF_BASE_LIC 0
#define LSF_BATCH_LIC_OBSOLETE 1
#define LSF_JS_SCHEDULER_LIC 2
#define LSF_JS_LIC 3
#define LSF_CLIENT_LIC 4
#define LSF_MC_LIC 5
#define LSF_ANALYZER_SERVER_LIC 6
#define LSF_MAKE_LIC 7
#define LSF_PARALLEL_LIC 8
#define LSF_FLOAT_CLIENT_LIC 9
#define LSF_FTA_LIC 10
#define LSF_AFTER_HOURS_LIC 11
#define LSF_RESOURCE_PREEMPT_LIC 12
#define LSF_BACCT_LIC 13
#define LSF_SCHED_FAIRSHARE_LIC 14
#define LSF_SCHED_RESERVE_LIC 15
#define LSF_SCHED_PREEMPTION_LIC 16
#define LSF_SCHED_PARALLEL_LIC 17
#define LSF_SCHED_ADVRSV_LIC 18
#define LSF_API_CLIENT_LIC 19
#define CLUSTERWARE_MANAGER_LIC 20
#define LSF_MANAGER_LIC 21
#define LSF_PCC_HPC_LIC 22 /*"platform_hpc" feature*/
#define sCLUSTERWARE_LIC 23 /*"s-Clusterware" OEM for S&C */
#define OTTAWA_MANAGER_LIC 24
#define SYMPHONY_MANAGER_ONLINE_LIC 25
#define SYMPHONY_MANAGER_BATCH_LIC 26
#define SYMPHONY_SCHED_JOB_PRIORITY_LIC 27
#define LSF_DUALCORE_X86_LIC 28
#define LSF_TSCHED_LIC 29
#define LSF_NUM_LIC_TYPE 30
#define LSF_NO_NEED_LIC 32
 int licClass; /*license class needed */
 int cores; /* number of cores per physical CPU */
#ifndef INET6_ADDRSTRLEN
define INET6_ADDRSTRLEN 46

Programming with LSLIB

Platform LSF Programmer's Guide 27

#endif
 char hostAddr[INET6_ADDRSTRLEN]; /* IP address of this host */
 int pprocs; /* 82185 - Num physical processors. */
 /* cores_per_proc and cores are both needed for backwards compatibility.
 * cores is used for licencing enforcement and cores_per_proc is needed
 * for ncpus computation. */
 int cores_per_proc; /* 82185 - Num cores per processor. */
 int threads_per_core; /* 82185 - Num threads per core. */
};

Tip:
On Solaris, when referencing MAXHOSTNAMELEN, netdb.h must be
included before lsf.h or lsbatch.h.

NULL and 0 were supplied for the hostlist and listsize parameters of the ls_gethostinfo() call. This
causes all LSF hosts meeting resreq to be returned. If a host list parameter is supplied with this call, the
selection of hosts will be limited to those belonging to the list.

If resreq is NULL, then the default resource requirements will be used.

The values of maxMem and maxCpus (along with maxSwap, maxTmp, and nDisks) are determined when
LIM starts on a host. If the host is unavailable, the master LIM supplies a negative value.

Example
The following example shows how to use ls_gethostinfo() in a C program. It displays the name, host
type, total memory, number of CPUs and special resources for each host that has more than 50MB of
total memory.
#include <netdb.h> /* Required for Solaris to reference
 MAXHOSTNAMELEN */
#include <lsf/lsf.h>
#include <stdio.h>

main()
{
 struct hostInfo *hostinfo;
 char *resreq;
 int numhosts = 0;
 int options = 0;
 int i, j;
/* only hosts with maximum memory larger than 50 Mbytes are of interest */
 resreq="maxmem>50";
/* get information on interested hosts */
 hostinfo = ls_gethostinfo(resreq, &numhosts, NULL, 0, options);
 if (hostinfo == NULL) {
 ls_perror("ls_gethostinfo");
 exit(-1);
 }
/* print out the host names, host types, maximum memory, number of CPUs and number of
resources */
 printf("There are %d hosts with more than 50MB total memory \n\n",
numhosts);
 printf("%-11.11s %8.8s %6.6s %6.6s %9.9s\n",
 "HOST_NAME", "type", "maxMem", "ncpus", "RESOURCES");

 for (i = 0; i < numhosts; i++) {
 printf("%-11.11s %8.8s", hostinfo[i].hostName,
 hostinfo[i].hostType);

 if (hostinfo[i].maxMem > 0)
 printf("%6dM ", hostinfo[i].maxMem);
 else /* maxMem info not available for this host*/
 printf("%6.6s ", "-");

 if (hostinfo[i].maxCpus > 0)
 printf("%6d ", hostinfo[i].maxCpus);
 else /* ncpus is not known for this host*/

Programming with LSLIB

28 Platform LSF Programmer's Guide

 printf("%6.6s", "-");

 for (j = 0; j < hostinfo[i].nRes; j++)
 printf(" %s", hostinfo[i].resources[j]);

 printf("\n");
 }
 exit(0);
}

In the above example, resreq defines the resource requirements used to select the hosts. The variables you
can use for resource requirements must be the resource names returned from ls_info(). You can run
the lsinfo command to obtain a list of valid resource names in your LSF cluster.

The above example program produces output similar to the following:
% a.out
There are 4 hosts with more than 50MB total memory

HOST_NAME type maxMem ncpus RESOURCES
hostA HPPA10 128M 1 hppa hpux cs
hostB ALPHA 58M 2 alpha cs
hostD ALPHA 72M 4 alpha fddi
hostC SUNSOL 54M 1 solaris fddi

To get specific host information use:

• char *ls_gethosttype(hostname)
• Returns the type of a specific host
• char *ls_gethostmodel(hostname)
• Returns the model of a specific host
• float *ls_gethostfactor(hostname)
• Returns the CPU factor of the specified host

Manage hosts
Using LSF base APIs you can manage hosts in your cluster by:

• Removing hosts from a cluster
• Adding hosts to a cluster
• Locking a host in a cluster
• Unlocking a host in a cluster

To manage the hosts in your cluster you need to be root or the LSF administrator as defined in the file:

LSF_CONFDIR/lsf.cluster.<clustername>

By managing your hosts you can control the placement of jobs and manage your resources more
effectively.

Remove hosts from a cluster
Before you remove a host from a cluster, you need to shut down the host’s LIM.

1. Shut down the host’s LIM, using ls_limcontrol():

int ls_limcontrol (char *hostname, int opCode)

ls_limcontrol()has the following parameters:

• char *hostname: the host’s name

Programming with LSLIB

Platform LSF Programmer's Guide 29

• int opCode: operation code

where opCode describes the ls_limcontrol()operation. To shut down a host’s LIM, choose the
following operation code:

LIM_CMD_SHUTDOWN

Example
The following code example demonstrates how to shut down a host’s LIM using
ls_limcontrol():
/**
* LSLIB -- Examples
*
* ls_limcontrol()
* Shuts down or reboots a host’s LIM.
**/
#include <lsf/lsf.h>
#include <io.h>
#include <stdlib.h>
#include <stdio.h>
int main(int argc, char ** argv)
{
 int result; /* returned value from ls_limcontrol*/
 int opCode; /*option*/
 char* host; /*host*/
 /* Checking for the correct format */
 if (argc !=2)
{
 fprintf(stderr, "usage: sudo %s <host>\n", argv[0]);
 exit(-1);
}
host = argv[1];
/* To shut down a host, assign LIM_CMD_SHUTDOWN to the opCode */
opCode = LIM_CMD_SHUTDOWN;
printf("Shutting down LIM on host <%s>\n", host);
result =ls_limcontrol(host, opCode);
/* If there is an Error in execution, the program exits */
if (result == -1)
{
 ls_perror("ls_limcontrol");
 exit(-1);
}
/* Otherwise, indicate successful program execution */
else
{
 printf("host <%s> shutdown successful.\n", host);
 exit (0);
}

To use the above example, at the command line type:

sudo ./a.out hostname

where hostname is the name of the host you want to move to another cluster.

Add hosts to a cluster
When you return a removed host to a cluster, you need to reboot the host’s LIM. When you reboot the
LIM, the configuration files are read again and the previous LIM status of the host is lost.

1. To reboot a host’s LIM, use ls_limcontrol():

int ls_limcontrol (char *hostname, int opCode)

Programming with LSLIB

30 Platform LSF Programmer's Guide

2. Choose the following operation code (opCode):

LIM_CMD_REBOOT

Example
The following code example demonstrates how to reboot a host’s LIM using ls_limcontrol
():
/**
* LSLIB -- Examples
*
* ls_limcontrol()
* Shuts down or reboots a host’s LIM.
**/
#include <lsf/lsf.h>
#include <io.h>
#include <stdlib.h>
#include <stdio.h>
int main(int argc, char ** argv)
{
 int result; /* returned value from ls_limcontrol*/
 int opCode; /*option*/
 char* host; /*host*/
 /* Checking for the correct format */
 if (argc !=2)
{
 fprintf(stderr, "usage: sudo %s <host>\n", argv[0]);
 exit(-1);
}
host = argv[1];
/* To reboot a host, assign LIM_CMD_REBOOT to the opCode */
opCode = LIM_CMD_REBOOT;
printf("Restarting LIMon host <%s>\n", host);
result =ls_limcontrol(host, opCode);
/* If there is an Error in execution, the program exits */
if (result == -1)
{
 ls_perror("ls_limcontrol");
 exit(-1);
}
/* Otherwise, indicate successful program execution */
else
{
 printf("host <%s> has been rebooted. \n", host);
}
/*Reboot is successful and the program exits */
 exit (0);
}

To use the above example, at the command line type:

sudo ./a.out hostname

where hostname is the name of the host you want to return to a cluster.

Lock a host in a cluster
Locking a host prevents a host from being selected by the master LIM for task or job placement.

Locking a host is useful for managing your resources:

• You can isolate machines in your cluster and apply their resources to particular work.
• If machine owners want private control over their machines, you can allow this indefinitely or for a

period of time that you choose.

Programming with LSLIB

Platform LSF Programmer's Guide 31

• Hosts can be unlocked automatically or unlocked manually.

1. To lock a host, use ls_lockhost():

int ls_lockhost(time_t duration)

ls_lockhost()has the following parameter:

• time_t duration: The number of seconds the host is locked

a) To lock a host indefinitely, assign 0 seconds to duration.
b) To automatically unlock a host, assign a value greater than 0 to duration and the host will

automatically unlock when time has expired.

Note:
If you try to lock a host that is already locked, ls_lockhost()sets
lserrno to LSE_LIM_ALOCKED.

Example
The following code example demonstrates how to use ls_lockhost() to lock a host:
/**
* LSLIB -- Examples
*
* ls_lockhost()
* Locks the local host for a specified time.
**/
#include <lsf/lsf.h>
#include <time.h>
int main(int argc, char ** argv)
{
/* Declaring variables*/
 u_long duration;
/* Checking for the correct format */
 if (argc !=2)
{
 fprintf(stderr, "usage: sudo %s <duration>\n", argv[0]);
 exit(-1);
}
/* assigning the duration of the lockage*/
 duration = atoi(argv[1]);
/* If an error occurs, exit with an error msg*/
 if (ls_lockhost(duration) !=0)
{
 ls_perror("ls_lockhost");
 exit(-1);
}
/* If ls_lockhost() is successful, then check to see if duration is > 0.
Indicate how long the host is locked if duration is >0 */
 if (duration > 0)
{
 printf("Host is locked for %i seconds \n", (int) duration);
}
 else /* Indicate indefinite lock on host */
{
 printf("Host is locked\n");
}
/* successful exit */
exit(0);
}

Programming with LSLIB

32 Platform LSF Programmer's Guide

Unlock a host in a cluster
Hosts that have been indefinitely locked by assigning the value 0 to the duration parameter of
ls_lockhost() can only be manually unlocked.

1. To manually unlock a host, use ls_unlockhost():

int ls_unlockhost(void)

Note:
By unlocking a host, the master LIM can choose the host for task or job
placement.

Example
The following code example demonstrates how to use ls_unlockhost() to manually unlock
a host:
/**
* LSLIB -- Examples
*
* ls_unlockhost()
* Unlocks an indefinitely locked local host.
**/
#include <lsf/lsf.h>
#include <stdlib.h>
#include <stdio.h>
int main(int argc, char ** argv)
{
/* Checking for the correct format*/
 if (argc !=1)
{
 fprintf(stderr, "usage: sudo %s\n", argv[0]);
 exit(-1);
}
/* Call ls_unlockhost(). If an error occurs, print an error msg and exit.*/
 if (ls_unlockhost() <0)
{
 ls_perror("ls_lockhost");
 exit(-1);
}
/* Indicate a successful ls_unlockhost() call and exit.*/
 printf("Host is unlocked\n");
 exit(0);
}

Programming with LSLIB

Platform LSF Programmer's Guide 33

Default resource requirements
Some LSLIB functions require a resource requirement parameter. This parameter is passed to the master
LIM for host selection. It is important to understand how LSF handles default resource requirements. See
Administering Platform LSF for further information about resource requirements.

It is desirable for LSF to automatically assume default values for some key requirements if they are not
specified by the user.

The default resource requirements depend on the specific application context. For example, the
lsload command assumes ‘type==any order[r15s:pg]’ as the default resource requirements, while
lsrun assumes ‘type==local order[r15s:pg]’ as the default resource requirements. This is because the user
usually expects lsload to show the load on all hosts. With lsrun, a task using run on the same host type
as the local host, causes the task to be run on the correct host type.

LSLIB provides the flexibility for the application programmer to set the default behavior.

LSF default resource requirements contain two parts, a type requirement and an order requirement. A
type requirement ensures that the correct type of host is selected. Use an order requirement to order the
selected hosts according to some reasonable criteria.

LSF appends a type requirement to the resource requirement string supplied by an application in the
following situations:

• resreq is NULL or an empty string.
• resreq does not contain a boolean reasource, for example, ‘hppa’, and does not contain a type or model

resource, for example, ‘type==solaris’, ‘model==HP715’.

The default type requirement can be either ‘type==any’ or ‘type==$fromtype’ depending on whether or
not the flag DFT_FROMTYPE is set in the options parameter of the function call. DFT_FROMTYPE is
defined in lsf.h.

If DFT_FROMTYPE is set in the options parameter, the default type requirement is ‘type==$fromtype’.
If DFT_FROMTYPE is not set, then the default type requirement is ‘type==any’.

The value of fromtype depends on the function call. If the function has a fromhost parameter, then
fromtype is the host type of the fromhost. fromhost is the host that submits the task. Otherwise, fromtype
is local.

LSF also appends an order requirement, order[r15s:pg], to the resource requirement string if an order
requirement is not already specified.

The table below lists some examples of how LSF appends the default resource requirements.

User’s Resource
Requirement

Resource Requirement After Appending
the Default

DFT_FROMTYPE set DFT_FROMTYPE not set

NULL type==$fromtype order[r15s:pg] type==any order[r15s:pg]

hpux hpux order[r15s:pg] hpux order[r15s:pg]

order[r1m] type==$fromtype order[r1m] type==any order[r1m]

model==hp735 model==hp735 order[r15s:pg] model==hp735 order[r15s:pg]

sparc order[ls] sparc order[ls] sparc order[ls]

Programming with LSLIB

34 Platform LSF Programmer's Guide

User’s Resource
Requirement

Resource Requirement After Appending
the Default

DFT_FROMTYPE set DFT_FROMTYPE not set

swp>25 && it>10 swp>25 && it>10 && type==$fromtype
order[r15s:pg]

swp>25 && it>10 && type==any order
[r15s:pg]

ncpus>1 order[ut] ncpus>1 && type==$fromtype order[ut] ncpus>1 && type==any order[ut]

Programming with LSLIB

Platform LSF Programmer's Guide 35

Dynamic load information
LSLIB provides several functions to obtain dynamic load information about hosts. dynamic load
information is updated periodically by the LIM. The lsInfo data structure returned by the ls_info(3)
API call stores the definition of all resources. LSF resources are classified into two groups, host-based
resources and shared resources. See Administering Platform LSF for more information on host-based
and shared resources.

Dynamic host-based resource information
Dynamic host-based resources are frequently referred to as load indices, consisting of 12 built-in load
indices and 256 external load indices which can be collected using an ELIM (see Administering
Platform LSF for more information). The built-in load indices report load information about the CPU,
memory, disk subsystem, interactive activities, etc. on each host. The external load indices are optionally
defined by your LSF administrator to collect additional host-based dynamic load information for your
site.

ls_load()
ls_load() reports information about load indices:
struct hostLoad *ls_load(resreq, numhosts, options, fromhost)

On success, ls_load() returns an array containing a hostLoad structure for each host. On failure, it
returns NULL and sets lserrno to indicate the error.

ls_load() has the following parameters:
char *resreq; Resource requirements that each host must satisfy
int *numhosts; Initially contains the number of hosts requested
int options; Option flags that affect the selection of hosts
char *fromhost; Used in conjunction with the DFT_FROMTYPE option

numhosts parameter

*numhosts determines how many hosts should be returned. If *numhosts is 0,
information is requested on all hosts satisfying resreq. If numhosts is NULL, load
information is requested on one host. If numhosts is not NULL, the number of hostLoad
structures returned.

options parameter

The options parameter is constructed from the bitwise inclusive OR of zero or more of
the option flags defined in <lsf/lsf.h>. The most commonly used flags are:

EXACT

Exactly *numhosts hosts are desired. If EXACT is set, either exactly *numhosts hosts are
returned, or the call returns an error. If EXACT is not set, then up to *numhosts hosts are
returned. If *numhosts is 0, then the EXACT flag is ignored and as many eligible hosts in
the load sharing system (that is, those that satisfy the resource requirement) are
returned.

OK_ONLY

Return only those hosts that are currently in the ok state. If OK_ONLY is set, hosts that
are busy, locked, unlicensed, or unavail are not returned. If OK_ONLY is not set, then

Programming with LSLIB

36 Platform LSF Programmer's Guide

some or all of the hosts whose status are not ok may also be returned, depending on the
value of *numhosts and whether the EXACT flag is set.

NORMALIZE

Normalize CPU load indices. If NORMALIZE is set, then the CPU run queue length load
indices r15s, r1m, and r15m of each returned host are normalized. See Administering
Platform LSF for different types of run queue lengths. The default is to return the raw
run queue length.

EFFECTIVE

If EFFECTIVE is set, then the CPU run queue length load indices of each host returned
are the effective load. The default is to return the raw run queue length. The options
EFFECTIVE and NORMALIZE are mutually exclusive.

IGNORE_RES

Ignore the status of RES when determining the hosts that are considered to be “ok”. If
IGNORE_RES is specified, then hosts with RES not running are also considered to be
“ok” during host selection.

DFT_FROMTYPE

This flag determines the default resource requirements.

Returns hosts with the same type as the fromhost which satisfy the resource
requirements.

fromhost parameter

The fromhost parameter is used when DFT_FROMTYPE is set in options. If fromhost is
NULL, the local host is assumed. ls_load() returns an array of the following data
structure as defined in <lsf/lsf.h>:

struct hostLoad {
 char hostName[MAXHOSTNAMELEN]; Name of the host
 int status[2]; The operational and load status of the host
 float *li; Values for all load indices of this host
};

The returned hostLoad array is ordered according to the order requirement in the resource requirements.
For details about the ordering of hosts, see Administering Platform LSF.

Example
The following example takes no options, and periodically displays the host name, host status, and 1-
minute effective CPU run queue length for each Sun SPARC host in the LSF cluster.
/**
* LSLIB -- Examples
*
* simload
* Displays load information about all Solaris hosts in * the cluster.
**/
#include <stdio.h>
#include <lsf/lsf.h>
#include <string.h>
#include <stdlib.h>

int main()
{
 int i;

Programming with LSLIB

Platform LSF Programmer's Guide 37

 struct hostLoad *hosts;
 char *resreq="type==SUNSOL";
 int numhosts = 0;
 int options = 0;
 char *fromhost = NULL;
 char field[20]="*";
/* get load information on specified hosts */
 hosts = ls_load(resreq, &numhosts, options, fromhost);
 if (hosts == NULL) {
 ls_perror("ls_load");
 exit(-1);
 }
/* print out the host name, host status and the 1-minute CPU run queue length */
 printf("%-15.15s %6.6s%6.6s\n", "HOST_NAME", "status", "r1m");
 for (i = 0; i < numhosts; i++) {
 printf("%-15.15s ", hosts[i].hostName);
 if (LS_ISUNAVAIL(hosts[i].status))
 printf("%6s", "unavail");
 else if (LS_ISBUSY(hosts[i].status))
 printf("%6.6s", "busy");
 else if (LS_ISLOCKED(hosts[i].status))
 printf("%6.6s", "locked");
 else
 printf("%6.6s", "ok");

 if (hosts[i].li[R1M] >= INFINIT_LOAD)
 printf("%6.6s\n", "-");
 else {
 sprintf(field + 1, "%5.1f", hosts[i].li[R1M]);
 if (LS_ISBUSYON(hosts[i].status, R1M))
 printf("%6.6s\n", field);
 else
 printf("%6.6s\n", field + 1);
 }
 }
 exit(0);
}

The output of the above program is similar to the following:
% a.out
HOST_NAME status r1m
hostB ok 0.0
hostC ok 1.2
hostA busy 0.6
hostD busy *4.3
hostF unavail

If the host status is busy because of r1m, then an asterisk (*) is printed in front of the value of the r1m
load index.

In the above example, the returned data structure hostLoad never needs to be freed by the program even
if ls_load() is called repeatedly.

Each element of the li array is a floating point number between 0.0 and INFINIT_LOAD (defined in
lsf.h). The index value is set to INFINIT_LOAD by LSF to indicate an invalid or unknown value for an
index.

The li array can be indexed using different ways. The constants defined in lsf.h (see the ls_load(3)
man page) can be used to index any built-in load indices as shown in the above example. If external load
indices are to be used, the order in which load indices are returned will be the same as that of the resources
returned by ls_info(). The variables numUsrIndx and numIndx in structure lsInfo can be used to
determine which resources are load indices.

Tip:

Programming with LSLIB

38 Platform LSF Programmer's Guide

There are more flexible ways to map load index names to values.

LSF defines a set of macros in lsf.h to test the status field. The most commonly used macros include:

Macro Name Macro Description

LS_ISUNAVAIL(status) Returns 1 if the LIM on the host is unavailable.

LS_ISBUSYON(status, index) Returns 1 if the host is busy on the given index.

LS_ISBUSY(status) Returns 1 if the host is busy.

LS_ISLOCKEDU(status) Returns 1 if the host is locked by user.

LS_ISLOCKEDW(status) Returns 1 if the host is locked by a time window.

LS_ISLOCKED(status) Returns 1 if the host is locked.

LS_ISRESDOWN(status) Returns 1 if the RES is down.

LS_ISSBDDOWN(status) Returns 1 if the SBATCH is down.

LS_ISUNLICENSED(status) Returns 1 if the host has no software license.

LS_ISOK(status) Returns 1 if none of the above is true.

LS_ISOKNRES(status) Returns 1 if the host is ok except that no RES or SBATCHD is
running.

Dynamic shared resource information
Unlike host-based resources which are inherent properties contributing to the making of each host, shared
resources are shared among a set of hosts. The availability of a shared resource is characterized by having
multiple instances, with each instance being shared among a set of hosts.

ls_sharedresource-info()
ls_sharedresourceinfo() can be used to access shared resource information:
struct lsSharedResourceInfo *ls_sharedresourceinfo(resources, numResources, hostname,
options)

On success, ls_sharedresourceinfo() returns an array containing a shared resource information
structure (struct lsSharedResourceInfo) for each shared resource. On failure,
ls_sharedresourceinfo() returns NULL and sets lserrno to indicate the error.

ls_sharedresourceinfo() has the following parameters:
char **resources; NULL terminated array of resource names
int *numresources; Number of shared resources
int hostName; Host name
int options; Options (Currently set to 0)

resources Parameter

resources is a list (NULL terminated array) of shared resource names whose resource
information is to be returned. Specify NULL to return resource information for all shared
resources defined in the cluster.

numresources Parameter

Programming with LSLIB

Platform LSF Programmer's Guide 39

numresources is an integer specifying the number of resource information structures
(LS_SHARED_RESOURCE_INFO_T) to return. Specify 0 to return resource
information for all shared resources in the cluster. On success, numresources is assigned
the number of LS_SHARED_RESOURCE_INFO_T structures returned.

hostName Parameter

hostName is the integer name of a host. Specifying hostName indicates that only the
shared resource information for the named host is to be returned. Specify NULL to return
resource information for all shared resources defined in the cluster.

options Parameter

options is reserved for future use. Currently, it should be set to 0.
lsSharedResource-Info structure

ls_sharedresourceinfo() returns an array of the following data structure as defined
in <lsf/lsf.h> :

typedef struct lsSharedResourceInfo {
 char *resourceName; Resource name
 int nInstances; Number of instances
 LS_SHARED_RESOURCE_INST_T *instances; Pointer to the next instance
} LS_SHARED_RESOURCE_INFO_T

For each shared resource, LS_SHARED_RESOURCE_INFO_T encapsulates an array of instances in the
instances field. Each instance is represented by the data type LS_SHARED_RESOURCE_INST_T defined
in <lsf/lsf.h>:
typedef struct lsSharedResourceInstance {
 char *value; Value associated with the instance
 int nHosts; Number of hosts sharing the instance
 char **hostList; Hosts associated with the instance
} LS_SHARED_RESOURCE_INST_T;

The value field of the LS_SHARED_RESOURCE_INST_T structure contains the ASCII representation
of the actual value of the resource. The interpretation of the value requires the knowledge of the resource
(Boolean, Numeric or String), which can be obtained from the resItem structure accessible through the
lsLoad structure returned by ls_load().

Example
The following example shows how to use ls_sharedresourceinfo() to collect dynamic shared
resource information in an LSF cluster. This example displays information from all the dynamic shared
resources in the cluster. For each resource, the resource name, instance number, value and locations are
displayed.
#include <stdio.h>
#include <lsf/lsf.h>
static struct resItem * getResourceDef(char *);
static struct lsInfo * lsInfo;

void
int main()
{
 struct lsSharedResourceInfo *resLocInfo;
 int numRes = 0;
 int i, j, k;

 lsInfo = ls_info();
 if (lsInfo == NULL) {
 ls_perror("ls_info");
 exit(-1);

Programming with LSLIB

40 Platform LSF Programmer's Guide

 }

 resLocInfo = ls_sharedresourceinfo (NULL, &numRes, NULL, 0);

 if (resLocInfo == NULL) {
 ls_perror("ls_sharedresourceinfo");
 exit(-1);
 }

 printf("%-11.11s %8.8s %6.6s %14.14s\n", "NAME",
 "INSTANCE", "VALUE", "LOCATIONS");

 for (k = 0; k < numRes; k++) {
 struct resItem *resDef;
 resDef = getResourceDef(resLocInfo[k].resourceName);
 if (! (resDef->flags & RESF_DYNAMIC))
 continue;

 printf("%-11.11s", resLocInfo[k].resourceName);
 for (i = 0; i < resLocInfo[k].nInstances; i++) {
 struct lsSharedResourceInstance *instance;

 if (i == 0)
 printf(" %8.1d", i+1);
 else
 printf(" %19.1d", i+1);

 instance = &resLocInfo[k].instances[i];
 printf(" %6.6s", instance->value);

 for (j = 0; j < instance->nHosts; j++)
 if (j == 0)
 printf(" %14.14s\n", instance->hostList[j]);
 else
 printf(" %41.41s\n", instance->hostList[j]);

 } /* for */
 } /* for */
} /* main */
static struct resItem *
getResourceDef(char *resourceName)
{
 int i;

 for (i = 0; i < lsInfo->nRes; i++) {
 if (strcmp(resourceName, lsInfo->resTable[i].name) == 0)
 return &lsInfo->resTable[i];
 }

 /* Fail to find the matching resource */
 fprintf(stderr, "Cannot find resource definition for <%s>\n",
resourceName);

 exit (-1);

}

The output of the above program is similar to the following:
% a.out
NAME INSTANCE VALUE LOCATIONS
dynamic1 1 2 hostA
 hostC
 hostD
 2 4 hostB
 hostE
dynamic2 1 3 hostA
 hostE

The resource dynamic1 has two instances, one contains two resource units shared by hostA, hostC and
hostD and the other contains four resource units shared by hostB and hostE. The dynamic2 resource
has only one instance with three resource units shared by hostA and hostE.

Programming with LSLIB

Platform LSF Programmer's Guide 41

For configuration of shared resources, see the ResourceMap section of lsf.cluster.cluster_name
file in the Platform LSF Reference.

Programming with LSLIB

42 Platform LSF Programmer's Guide

Placement decisions
If you are writing an application that needs to run tasks on the best available hosts, you need to make a
placement decision as to which task each host should run.

Placement decisions take the resource requirements of the task into consideration. Every task has a set of
resource requirements. These may be static, such as a particular hardware architecture or operating
system, or dynamic, such as an amount of swap space for virtual memory.

LSLIB provides services for placement advice. All you have to do is to call the appropriate LSLIB function
with appropriate resource requirements.

A placement advice can be obtained by calling either the ls_load() function or the ls_placereq()
function. ls_load() returns a placement advice together with load index values. ls_placereq()
returns only the qualified host names. The result list of hosts are ordered by preference, with the first
being the best. ls_placereq() is useful when a simple placement decision would suffice. ls_load()
can be used if the placement advice from LSF must be adjusted by your additional criteria. The LSF utilities
lsrun, lsmake, lslogin, and lstcsh all use ls_placereq() for placement decision. lsbatch, on the
other hand, uses ls_load() to get an ordered list of qualified hosts, and then makes placement decisions
by considering lsbatch-specific policies.

In order to make optimal placement decisions, it is important that your resource requirements best
describe the resource needs of the application. For example, if your task is memory intensive, then your
resource requirement string should have ‘mem’ in the order segment, ‘fddi order[mem:r1m]’.

ls_placereq()
ls_placereq() takes the form of:
char **ls_placereq(resreq, num, options, fromhost)

On success, ls_placereq() returns an array of host names that best meet the resource requirements.
Hosts listings may be duplicated for hosts that have sufficient resources to accept multiple tasks (for
example, multiprocessors).

On failure, ls_placereq() returns NULL and sets lserrno to indicate the error.

The parameters for ls_placereq() are very similar to those of the ls_load() function described in
the previous section.

LSLIB will append default resource requirement to resreq according to the rules described in “Handling
Default Resource Requirements”.

Preference is given to fromhost over remote hosts that do not have a significantly lighter load or greater
resources. This preference avoids unnecessary task transfer and reduces overhead. If fromhost is NULL,
then the local host is assumed.

Example
The following example takes a resource requirement string as an argument and displays the host in the
LSF cluster that best satisfies the resource requirement.
#include <stdio.h>
#include <lsf/lsf.h>

main(argc, argv)
 int argc;
 char *argv[];
{

Programming with LSLIB

Platform LSF Programmer's Guide 43

 char *resreq = argv[1];
 char **best;
 int num = 1;
 int options = 0;
 char *fromhost = NULL;

/* check the input format */

 if (argc != 2) {
 fprintf(stderr, "Usage: %s resreq\n", argv[0]);
 exit(-2);
 }

/* find the best host with the given condition (e.g. resource requirement) */

 best = ls_placereq(resreq, &num, options, fromhost);
 if (best == NULL) {
 ls_perror("ls_placereq()");
 exit(-1);
 }
 printf("The best host is <%s>\n", best[0]);

 exit(0);
}

The above program will produce output similar to the following:
% a.out "type==local order[r1m:ls]"
The best host is <hostD>

LSLIB also provides a variant of ls_placereq(). ls_placeofhosts() lets you provide a list of
candidate hosts. See the ls_policy(3) man page for details.

Programming with LSLIB

44 Platform LSF Programmer's Guide

Task resource requirements
Host selection relies on resource requirements. To avoid the need to specify resource requirements each
time you execute a task, LSF maintains a list of task names together with their default resource
requirements for each user. This information is kept in three task list files: the system-wide defaults, the
per-cluster defaults, and the per-user defaults.

A user can put a task name together with its resource requirements into his/her remote task list by
running the lsrtasks command. The lsrtasks command can be used to add, delete, modify, or display
a task entry in the task list. For more information on remote task list and an explanation of resource
requirement strings, see Administering Platform LSF.

ls_resreq()
ls_resreq() gets the resource requirements associated with a task name. With ls_resreq(), LSF
applications or utilities can automatically retrieve the resource requirements of a given task if the user
does not explicitly specify it. For example, the LSF utility lsrun tries to find the resource requirements
of the user-typed command automatically if ‘-R’ option is not specified by the user on the command line.

The syntax of ls_resreq() is:
char *ls_resreq(taskname)

If taskname does not appear in the remote task list, ls_resreq() returns NULL.

Typically the resource requirements of a task are then used for host selection purpose. The following
program takes the input argument as a task name, get the associated resource requirements from the
remote task list, and then supply the resource requirements to a ls_placereq() call to get the best host
for running this task.

Example
#include <stdio.h>
#include <lsf/lsf.h>

int main(int argc, char *argv[])

{
 char *taskname = argv[1];
 char *resreq;
 char **best;

/* check the input format */

 if (argc != 2) {
 fprintf(stderr, "Usage: %s taskname\n", argv[0]);
 exit(-1);
 }

 resreq = ls_resreq(taskname);

/* get the resource requirement for the given command */

 if (resreq)
 printf("Resource requirement for %s is \"%s\".\n",
 taskname, resreq);
 else
 printf("Resource requirement for %s is NULL.\n", taskname);

/* select the best host with the given resource requirement to run the job */

 best = ls_placereq(resreq, NULL, 0, NULL);
 if (best == NULL) {

Programming with LSLIB

Platform LSF Programmer's Guide 45

 ls_perror("ls_placereq");
 exit(-1);
 }
 printf("Best host for %s is <%s>\n", taskname, best[0]);

 exit(0);
}

The above program will produce output similar to the following:
% a.out myjob
Resource requirement for myjob is "swp>50 order[cpu:mem]"
Best host for myjob is <hostD>

Programming with LSLIB

46 Platform LSF Programmer's Guide

Remote execution services
Remote execution of interactive tasks in LSF is supported through the Remote Execution Server (RES).
The RES listens on a well-known port for service requests. Applications initiate remote execution by
making an LSLIB call.

Initialize an application for remote execution
Before executing a task remotely, an application must call the ls_initrex():
int ls_initrex(numports, options)

ls_initrex()
On success, ls_initrex() initializes the LSLIB for remote execution. If your application is installed as
a setuid program, ls_initrex() returns the number of socket descriptors bound to privileged ports. If
your program is not installed as a setuid to root program, ls_initrex() returns numports on success.

On failure, ls_initrex() returns -1 and sets the global variable lserrno to indicate the error.

Tip:
ls_initrex() must be called before any other remote execution
function (see ls_rex(3)) or any remote file operation function (see
ls_rfs(3)) in LSLIB can be called.

ls_initrex() has the following parameters:
int numports; The number of priviliged ports to create
int options; Either KEEPUID or 0

If your program is installed as a setuid to root program, numports file descriptors, starting from
FIRST_RES_SOCK (defined in <lsf/lsf.h>), are bound to privileged ports by ls_initrex(). These
sockets are used only for remote connections to RES. If numports is 0, then the system will use the default
value LSF_DEFAULT_SOCKS defined in lsf.h.

By default, ls_initrex() restores the effective user ID to real user ID if the program is installed as a
setuid to root program. If options is set to KEEPUID (defined in lsf.h), ls_initrex() preserves the
current effective user ID. This option is useful if the application needs to be a setuid to root program for
some other purpose as well and does not want to go back to real user ID immediately after ls_initrex
().

Caution:
If KEEPUID flag is set in options, you must make sure that your application
restores back to the real user ID at a proper time of the program execution.

ls_initrex() function selects the security option according to the following rule: if the application
program invoking it has an effective uid of root, then privileged ports are created. If there are no privileged
port created and, at remote task start-up time, RES will use the authentication protocol defined by
LSF_AUTH in the lsf.conf file.

Run a task remotely
The example program below runs a command on one of the best available hosts. It makes use of:

• ls_resreq()

Programming with LSLIB

Platform LSF Programmer's Guide 47

• ls_placereq()
• ls_initrex()
• ls_rexecv():
int ls_rexecv(host, argv, options)

ls_rexecv() executes a program on the specified host. It does not return if successful. It returns -1 on
failure.

ls_rexecv() is like a remote execvp. If a connection with the RES on a host has not been established,
ls_rexecv() sets one up. The remote execution environment is set up to be exactly the same as the local
one and is cached by the remote RES server. ls_rexecv() has the following parameters:
char *host; The execution host
char *argv[]; The command and its arguments
int options; See below

The options argument is constructed from the bitwise inclusive OR of zero or more or the option flags
defined in <lsf/lsf.h> with names starting with ‘REXF_’. the group of flags are as follows:

REXF_USEPTY

Use a remote pseudo terminal as the stdin, stdout, and stderr of the remote task. This
option provides a higher degree of terminal I/O transparency. This is needed only when
executing interactive screen applications such as vi. The use of a pseudo-terminal incurs
more overhead and should be used only if necessary. This is the most commonly used
flag.

REXF_CLNTDIR

Use the local client’s current working directory as the current working directory for
remote execution.

REXF_TASKPORT

Request the remote RES to create a task port and return its number to the LSLIB.
REXF_SHMODE

Enable shell mode support if the REXF_USEPTY flag is also given. This flag is ignored
if REXF_USEPTY is not given. This flag should be specified for submitting interactive
shells, or applications which redefine, or applications which redefine the ctrl-C and ctrl-
Z keys (e.g. jove).

LSLIB also provides ls_rexecve() to specify the environment to be set up on the remote host.

Example
The program follows:
#include <stdio.h>
#include <lsf/lsf.h>

main(argc, argv)
 int argc;
 char *argv[];
{
 char *command;
 char *resreq;
 char **best;
 int num = 1;

/* check the input format */
 if (argc < 2) {

Programming with LSLIB

48 Platform LSF Programmer's Guide

 fprintf(stderr, "Usage: %s command [argument ...]\n",
 argv[0]);
 exit(-1);
 }

command = argv[1];

/* initialize the remote execution */
 if (ls_initrex(1, 0) < 0) {
 ls_perror("ls_initrex");
 exit(-1);
 }

/* get resource requirement for the given command */
 resreq = ls_resreq(command);

 best = ls_placereq(resreq, &num, 0, NULL);
 if (best == NULL) {
 ls_perror("ls_placereq()");
 exit(-1);
 }

/* start remote execution on the selected host for the job */
 printf("<<Execute %s on %s>>\n", command, best[0]);
 ls_rexecv(best[0], argv + 1, 0);

 /* if the remote execution is successful, the following lines will not be executed
*/
 ls_perror("ls_rexecv()");
 exit(-1);
}

The output of the above program would be something like:
% a.out myjob
<<Execute myjob on hostD>>
(output from myjob goes here)

Tip:
Any application that uses LSF’s remote execution service must be
installed for proper authentication.

The LSF command lsrun is implemented using the ls_rexecv() function. After remote task is
initiated, lsrun calls the ls_rexecv() function, which then executes NIOS to handle all input/output
to and from the remote task and exits with the same status when remote task exits.

Programming with LSLIB

Platform LSF Programmer's Guide 49

Programming with LSLIB

50 Platform LSF Programmer's Guide

3
Programming wth LSBLIB

C H A P T E R

Platform LSF Programmer's Guide 51

About LSBLIB
Since LSF batch is built on top of LSF base, LSBLIB relies on services provided by LSLIB. However, you
only need to link your program with LSBLIB to use LSBLIB functions because the header file of LSBLIB
(lsbatch.h) already includes the LSLIB (lsf.h). All other LSF products (such as Platform Parallel and
Platform Make) relies on services provided by LSBLIB.

LSF batch and Platform JobScheduler services are provided by mbatchd. Services for processing event
and job log files which do not involve any daemons. LSBLIB is shared by both LSF batch and Platform
JobScheduler. The functions described for LSF batch in this chapter also apply to other LSF products,
unless explicitly indicated otherwise.

Programming wth LSBLIB

52 Platform LSF Programmer's Guide

Platform LSF batch applications
Before accessing any of the LSF batch services, an application must initialize LSBLIB. An application does
this by calling lsb_init().

lsb_init() function
lsb_init() has the following parameter:
char *appName

On success, lsb_init() returns 0. On failure, it returns -1 and sets lsberrno to indicate the error.

The parameter appName is the name of the application. Use appName to log detailed messages about the
transactions inside LSLIB for debugging purpose. If LSB_CMD_LOG_MASK is defined as LOG_DEBUG1, the
messages will be logged.

Messages are logged in LSF_LOGDIR/appname. If appname is NULL, the log file is LSF_LOGDIR/bcmd.

Example
Here is an example of code showing the usage of this function:
/* Include <lsf/lsbatch.h> when using this function */
if (lsb_init(argv[0]) < 0) {
 lsb_perror("simbsub: lsb_init() failed");
 exit(-1);
}

lsb_perror()

The function lsb_perror(char *usrMsg) prints a batch LSF error message on
stderr. The user message usrMsg is printed, followed by a colon (:) and the batch error
message corresponding to lsberrno.

Programming wth LSBLIB

Platform LSF Programmer's Guide 53

Platform LSF batch queues
LSF batch queues hold jobs in LSF batch and according to scheduling policies and limits on resource
usage.

lsb_queueinfo()
lsb_queueinfo() gets information about the queues in LSF batch. This includes:
• Queue name
• Parameters
• Statistics
• Status
• Resource limits
• Scheduling policies and parameters
• Users and hosts associated with the queue.

The example program in this section uses lsb_queueinfo() to get the queue information:
struct queueInfoEnt *lsb_queueinfo(queues,numQueues,
 hostname,username,options)

lsb_queueinfo() has the following parameters:
char **queues; Array containing names of queues of interest
int *numQueues; Number of queues
char *hostname; Specified queues using hostname
char *username; Specified queues enabled for user
int options; Reserved for future use; supply 0

To get information on all queues, set *numQueues to 0. If *numQueues is 1 and queue is NULL, information
on the default system queue is returned.

If hostname is not NULL, then all queues using host hostname as a batch server host will be returned. If
username is not NULL, then all queues allowing user username to submit jobs to will be returned.

On success, lsb_queueinfo() returns an array containing a queueInfoEnt structure (see below) for
each queue of interest and sets *numQueues to the size of the array. On failure, lsb_queueinfo()
returns NULL and sets lsberrno to indicate the error.

The queueInfoEnt structure is defined in lsbatch.h as
struct queueInfoEnt {
 char *queue; Name of the queue
 char *description; Description of the queue
 int priority; Priority of the queue
 short nice; Value that runs jobs in the queue
 char *userList; Users allowed to submit jobs to the queue
 char *hostList; Hosts that can run jobs in the queue
 int nIdx; Size of the loadSched and loadStop arrays
 float *loadSched; Load thresholds that control scheduling of job
 from the queue
 float *loadStop; Load thresholds that control suspension of
 jobs from the queue
 int userJobLimit; Number of unfinished jobs a user can dispatch
 from the queue
 int procJobLimit; Number of unfinished jobs the queue can
 dispatch to a processor
 char *windows; Queue run window
 int rLimits[LSF_RLIM_NLIMITS]; Per-process resource limits for
 jobs
 char *hostSpec; Obsolete. Use defaultHostSpec instead
 int qAttrib; Attributes of the queue
 int qStatus; Status of the queue

Programming wth LSBLIB

54 Platform LSF Programmer's Guide

 int maxJobs; Job slot limit of the queue.
 int numJobs; Total number of job slots required by all jobs
 int numPEND; Number of job slots needed by pending jobs
 int numRUN; Number of jobs slots used by running jobs
 int numSSUSP; Number of job slots used by system
 suspended jobs
 int numUSUSP; Number of jobs slots used by user
 suspended jobs
 int mig; Queue migration threshold in minutes
 int schedDelay; Schedule delay for new jobs
 int acceptIntvl; Minimum interval between two jobs dispatched
 to the same host
 char *windowsD; Queue dispatch window
 char *nqsQueues; Blank-separated list of NQS queue specifiers
 char *userShares; Blank-separated list of user shares
 char *defaultHostSpec; Value of DEFAULT_HOST_SPEC for the
 queue in lsb.queues
 int procLimit; Maximum number of job slots a job can take
 char *admins; Queue level administrators
 char *preCmd; Queue level pre-exec command
 char *postCmd; Queue’s post-exec command
 char *requeueEValues; Queue’s requeue exit status
 int hostJobLimit; Per host job slot limit
 char *resReq; Queue level resource requirement
 int numRESERVE; Reserved job slots for pending jobs
 int slotHoldTime; Time period for reserving job slots
 char *sndJobsTo; Remote queues to forward jobs to
 char *rcvJobsFrom; Remote queues which can forward to me
 char *resumeCond; Conditions to resume jobs
 char *stopCond; Conditions to suspend jobs
 char *jobStarter; Queue level job starter
 char *suspendActCmd; Action commands for SUSPEND
 char *resumeActCmd; Action commands for RESUME
 char *terminateActCmd; Action commands for TERMINATE
 int sigMap[LSB_SIG_NUM]; Configurable signal mapping
 char *preemption; Preemption policy
 int maxRschedTime; Time period for remote cluster to schedule job
 struct shareAcctInfoEnt *shareAccts; Array of shareAcctInfoEnt
 char *chkpntDir; chkpnt directory
 int chkpntPeriod; chkpnt period
 int imptJobBklg; Number of important jobs kept in the queue
 int defLimits[LSF_RLIM_NLIMITS]; LSF resource limits (soft)
 int chunkJobSize; Maximum number of jobs in one chunk
 int minProcLimit; Minimum processor limit
 int defProcLimit; Default processor limit
 char *fairshareQueues;
 char *defExtSched; Default external scheduling
 char *mandExtSched; Mandatory external scheduling
 int slotShare; The share of cpus to use in the pool
 char *slotPool; The cpu pool name
 int underRCond;
 int overRCond;
 float idleCond;
 int underRJobs;
 int overRJobs;
 int idleJobs;
 int warningTimePeriod; Warning time period in seconds
 char *warningAction; Warning action, SIGNAL | CHKPNT | command */
 char *qCtrlMsg; AdminAction - queue control message*/
 char *acResReq;
 int symJobLimit; Limit of running service job/symphony job*/
 char *cpuReq; cpu_req for service partition of symphony */
 int proAttr; Indicates willingness to donate/borrow
 int lendLimit; Grace period to lend/return idle hosts
 int hostReallocInterval; Grace period to lend/return idle hosts
 int numCPURequired; Number of cpus required by CPU provision
 int numCPUAllocated; Number of cpus actually allocated
 int numCPUBorrowed; Number of cpus borrowed
 int numCPULent; Number of cpus lent
 /* the number of reserved cpu(numCPUReserved) = numCPUAllocated - numCPUBorrowed +
numCPULent */
/* the following fields are for real-time app(ex. murex) of symphony */
 int schGranularity; Scheduling granularity in milliseconds

Programming wth LSBLIB

Platform LSF Programmer's Guide 55

 int symTaskGracePeriod; Grace period for stopping symphony tasks
 int minOfSsm; Minimum number of ssm
 int maxOfSsm; Maximum number of ssm
 int numOfAllocSlots; Number of allocated slots
 char *servicePreemption; Service preemptin policy
 int provisionStatus; Dynamic cpu provision status
 int minTimeSlice; Minimal time for preemt. backfill (sec)
 char *queueGroup; List of queues defined in QUEUE_GROUP
 int numApsFactors;
 struct apsFactorInfo *apsFactorInfoList;
 struct apsFactorMap *apsFactorMaps; Mapping from factors to subfactors
 struct apsLongNameMap *apsLongNames; Mapping from factors to their long names
 int maxJobPreempt; Maximum number of job preempted times
 int maxPreExecRetry; Maximum number of pre-exec retry times
 int localMaxPreExecRetry; Maximum number of pre-exec retry times for local
cluster
 int maxJobRequeue; Maximum number of job re-queue times
 int usePam; Use Linux-PAM
 int cu_type_exclusive; Compute unit type
 char *cu_str_exclusive; String specified in EXCLUSIVE=CU[<string>]
};

The variable nIdx is the number of load threshold values for job scheduling. This is the total number of
load indices returned by LIM. The parameters sndJobsTo, rcvJobsFrom, and maxRschedTime are used
with LSF MultiCluster. The variable chunkJobSize must be larger than 1.

For a complete description of the fields in the queueInfoEnt structure, see the lsb_queueinfo() man
page.

Include lsbatch.h in every application that uses LSBLIB functions. lsf.h does not have to be explicitly
included in your program because lsbatch.h includes lsf.h.

Like the data structures returned by LSLIB functions, the data structures returned by an LSBLIB function
are dynamically allocated inside LSBLIB and are automatically freed next time the same function is called.
Do not attempt to free the space allocated by LSBLIB. To keep this information across calls, make your
own copy of the data structure.

Example
The program below takes a queue name as the first argument and displays information about the named
queue.
/**
* LSBLIB -- Examples
*
* simbqueues
* Display information about a specific queue in the
* cluster.
* (Queue name is given on the command line argument)
* It is similar to the command "bqueues QUEUE_NAME".
**/
include <lsf/lsbatch.h>
int main (int argc, char *argv[])
{
 struct queueInfoEnt *qInfo;
 char *queues;
 /* take the command line argument as the queue name */
 int numQueues = 1;
 /* only 1 queue name in the array queue */
 char *host = NULL;/* all queues are of interest */
 char *user = NULL;/* all queues are of interest */
 int options = 0;
 /* check if input is in the right format: "./simbqueues
 QUEUENAME" */
 if (argc != 2) {
 printf("Usage: %s queue_name\n", argv[0]);
 exit(-1);
 }
 queues = argv[1];

Programming wth LSBLIB

56 Platform LSF Programmer's Guide

/* initialize LSBLIB and get the configuration environment */
 if (lsb_init(argv[0]) < 0) {
 lsb_perror("simbqueues: lsb_init() failed");
 exit(-1);
 }
 /* get queue information about the specified queue */
 qInfo = lsb_queueinfo(&queues, &numQueues, host, user,
 options);
 if (qInfo == NULL) {
 lsb_perror("simbqueues: lsb_queueinfo() failed");
 exit(-1);
 }
 /* display the queue information (name, descriptions,
 priority, nice value, max num of jobs, num of PEND, RUN,
 SUSP and TOTAL jobs) */
 printf("Information about %s queue:\n", queues);
 printf("Description: %s\n", qInfo[0].description);
 printf("Priority: %d Nice: %d \n", qInfo[0].priority, qInfo
[0].nice);
 printf("Maximum number of job slots:");
 if (qInfo->maxJobs < INFINIT_INT)
 printf("%5d\n", qInfo[0].maxJobs);
 else
 printf("%5s\n", "unlimited");
 printf("Job slot statistics: PEND(%d) RUN(%d) SUSP(%d) TOTAL(%d).\n",
qInfo[0].numPEND, qInfo[0].numRUN, qInfo[0].numSSUSP + qInfo
[0].numUSUSP, qInfo[0].numJobs);
 exit(0);
} /* main */

In the above program, INFINIT_INT is defined in lsf.h and is used to indicate that there is no limit set
for maxJobs. This applies to all Platform LSF API function calls. Platform LSF will supply
INFINIT_INT automatically whenever the value for the variable is either invalid (not available) or infinity.
This value should be checked for all variables that are optional. For example, if you display the loadSched/
loadStop values, an INFINIT_INT indicates that the threshold is not configured and is ignored.

Similarly, lsb_perror() prints error messages regarding function call failure. You can check
lsberrno if you want to take different actions for different errors.

The above program will produce output similar to the following:
Information about normal queue:
Description: For normal low priority jobs
Priority: 25 Nice: 20
Maximum number of job slots : 40
Job slot statistics: PEND(5) RUN(12) SUSP(1) TOTAL(18)

Programming wth LSBLIB

Platform LSF Programmer's Guide 57

Platform LSF batch hosts
LSF batch execution hosts execute jobs in the LSF batch system.

lsb_hostinfo()
LSBLIB provides lsb_hostinfo() to get information about the server hosts in LSF batch. This includes
configured static and dynamic information. Examples of host information include: host name, status, job
limits and statistics, dispatch windows, and scheduling parameters.

The example program in this section uses lsb_hostinfo():
struct hostInfoEnt *lsb_hostinfo(hosts, numHosts)

lsb_hostinfo() gets information about LSF batch server hosts. On success, it returns an array of
hostInfoEnt structures which hold the host information and sets *numHosts to the size of the array. On
failure, lsb_hostinfo() returns NULL and sets lsberrno to indicate the error.

lsb_hostinfo() has the following parameters:
char **hosts; Array of names of hosts of interest
int *numHosts; Number of names in hosts

To get information on all hosts, set *numHosts to 0. This sets *numHosts to the actual number of
hostInfoEnt structures when lsb_hostinfo() returns successfully.

If *numHosts is 1 and hosts is NULL, lsb_hostinfo()returns information on the local host.

hostInfoEnt structure
The hostInfoEnt structure is defined in lsbatch.h as
struct hostInfoEnt {
 char *host;
 int hStatus; Host status
 int *busySched; Host loadSched busy reason
 int *busyStop; Host loadStop busy reason
 float cpuFactor;
 int nIdx; Number of load index
 float *load; Load for scheduling batch jobs
 float *loadSched; Stop scheduling new jobs if over
 float *loadStop; Stop jobs if over this load
 char *windows; ASCII desp of run windows
 int userJobLimit; Number of jobs per user allowed to run
 int maxJobs; Maximum number of jobs allowed to run
 int numJobs; Number of total jobs
 int numRUN; Number of running jobs
 int numSSUSP; Number of system suspended jobs
 int numUSUSP; Number of user suspended jobs
 int mig; Number of minutes suspended before migration
 int attr; Host attributes
#define H_ATTR_CHKPNTABLE 0x1
#define H_ATTR_CHKPNT_COPY 0x2
 float *realLoad; Effective load of the host
 int numRESERVE; Number of slots reserved for pending jobs
 int chkSig; If attr has an H_ATTR_CHKPNT_COPY attribute. chkSig is set
to the signal which triggers checkpoint and copy operation. Otherwise, chkSig is set
to the signal which triggers checkpoint operation on the host
 float cnsmrUsage; Number of resources used by consumer
 float prvdrUsage; Number of resource used by provider
 float cnsmrAvail; Number of resources available for consumer
 float prvdrAvail; Number of resources available for provider
 float maxAvail; Maximum number of resources available
 float maxExitRate; Job exit rate threshold on the host
 float numExitRate; Number of job exit rate on the host
 char *hCtrlMsg; AdminAction - host control message

Programming wth LSBLIB

58 Platform LSF Programmer's Guide

};

There are differences between the host information returned by ls_gethostinfo() and the host
information returned by the lsb_hostinfo(). ls_gethostinfo() returns general information about
the hosts whereas lsb_hostinfo()returns LSF batch specific information about hosts.

For a complete description of the fields in the hostInfoEnt structure, see the lsb_hostinfo(3) man
page.

Example
The following example takes a host name as an argument and displays information about the named host.
It is a simplified version of the LSF batch bhosts command.
/**
* LSBLIB -- Examples
*
* simbhosts
* Display information about the batch server host with
* the given name in the cluster.
**/
#include <lsf/lsbatch.h>
int main (int argc, char *argv[])
{
 struct hostInfoEnt *hInfo;
 /* array holding all job info entries */
 char *hostname = argv[1]; /* given host name */
 int numHosts = 1;/* number of interested host */
 /* check if input is in the right format: "./simbhosts
 HOSTNAME" */
 if (argc!=2) {
 printf("Usage: %s hostname\n", argv[1]);
 exit(-1);
 }
 /* initialize LSBLIB and get the configuration environment */
 if (lsb_init(argv[0]) < 0) {
 lsb_perror("simbhosts: lsb_init() failed");
 exit(-1);
 }
 hInfo = lsb_hostinfo(&hostname, &numHosts);
 /* get host info */
 if (hInfo == NULL) {
 lsb_perror("simbhosts: lsb_hostinfo() failed");
 exit (-1);
 }
 /* display the host information (name,status, job limit,
 num of RUN/SSUSP/USUSP jobs)*/
 printf("HOST_NAME STATUS JL/U NJOBS RUN
 SSUSP USUSP\n");
 printf ("%-18.18s", hInfo->host);
 if (hInfo->hStatus & HOST_STAT_UNLICENSED)
 printf(" %-9s\n", "unlicensed");
 else if (hInfo->hStatus & HOST_STAT_UNAVAIL)
 printf(" %-9s", "unavail");
 else if (hInfo->hStatus & HOST_STAT_UNREACH)
 printf(" %-9s", "unreach");
 else if (hInfo->hStatus & (HOST_STAT_BUSY | HOST_STAT_WIND
| HOST_STAT_DISABLED |
 HOST_STAT_LOCKED |
 HOST_STAT_FULL |
 HOST_STAT_NO_LIM))
 printf(" %-9s", "closed");
 else
 printf(" %-9s", "ok");
 if (hInfo->userJobLimit < INFINIT_INT)
 printf("%4d", hInfo->userJobLimit);
 else
 printf("%4s", "-");
 printf("%7d %4d %4d %4d\n", hInfo->numJobs, hInfo-> numRUN, hInfo-
>numSSUSP, hInfo->numUSUSP);

Programming wth LSBLIB

Platform LSF Programmer's Guide 59

exit(0);
} /* main */

The example output from the above program follows:
% a.out hostB
HOST_NAME STATUS JL/U NJOBS RUN SSUSP USUSP
hostB ok - 2 1 1 0

hStatus is the status of the host. It is the bitwise inclusive OR of some of the following constants defined
in lsbatch.h:

Host Status Name Host Status Description

HOST_STAT_BUSY The host load is greater than a scheduling threshold. In this status,
no new batch job is scheduled to run on this host.

HOST_STAT_WIND The host dispatch window is closed. In this status, no new batch job
is accepted.

HOST_STAT_DISABLED The host has been disabled by the Platform LSF administrator and
will not accept jobs. In this status, no new batch job will be scheduled
to run on this host.

HOST_STAT_LOCKED The host is locked by the LSF administrator. In this status, no new
batch job is scheduled to run on this host.

HOST_STAT_FULL The host has reached its job limit. In this status, no new batch job is
scheduled to run on this host.

HOST_STAT_UNREACH The sbatchd on this host is unreachable.

HOST_STAT_UNAVAIL The LIM and sbatchd on this host are unreachable.

HOST_STAT_UNLICENSED The host does not have an LSF license.

HOST_STAT_NO_LIM The host is running an sbatchd but not a LIM.

HOST_STAT_EXCLUSIVE The host is locked by an exclusive job. In this status, no new batch
job is scheduled to run on this host.

HOST_STAT_LOCKED_MASTER The host is locked by the master LIM.

HOST_STAT_REMOTE_DISABLED The remote leased host is disabled by the Platform LSF
administrator and will not accept new jobs. This status is used with
HOST_STATUS_LOCKED.

HOST_STAT_LEASE_INACTIVE The remote host is closed while the lease is renewed or terminated.

HOST_STAT_DISABLED_RES The host is closed because RES is unavailable. This status occurs
only when LSF_HPC_EXTENSIONS="LSB_HCLOSE_BY_RES" is
set in lsf.conf.

HOST_STAT_DISABLED_RMS The host is closed because RES is unavailable.

HOST_STAT_LOCKED_BY_EGO The host is locked by EGO.

HOST_STAT_CLOSED_BY_ADMIN The host is closed by the Platform_LSF administrator.

HOST_STAT_CU_EXCLUSIVE The host is locked by a compute unit exclusive job. In this status, no
new batch job is scheduled to run on this host.

Programming wth LSBLIB

60 Platform LSF Programmer's Guide

If none of the above holds, hStatus is set to HOST_STAT_OK to indicate that the host is ready to accept
and run jobs.

The constant INFINIT_INT defined in lsf.h is used to indicate that there is no limit set for
userJobLimit.

Programming wth LSBLIB

Platform LSF Programmer's Guide 61

Job submission and modification
Job submission and modification are the most common operations in LSF batch. A user can submit jobs
to the system and then modify them if the job has not been started.

lsb_submit()
LSBLIB provides lsb_submit() for job submission and lsb_modify() for job modification.
LS_LONG_INT lsb_submit(jobSubReq, jobSubReply)
LS_LONG_INT lsb_modify(jobSubReq, jobSubReply, jobId)

On success, these calls return the job ID. On failure, it returns -1, and lsberrno set to indicate the error.
lsb_submit() is similar to lsb_modify(), except lsb_modify() modifies the parameters of an
already submitted job.

Both of these functions use the same data structure:
struct submit *jobSubReq; Job specifications
struct submitReply *jobSubReply; Results of job submission
LS_LONG_INT jobId; ID of the job to modify (lsb_modify()
 only)

submit structure
The submit structure is defined in lsbatch.h as:
struct submit {
 int options; Indicates which optional fields are present
 int options2; Indicates which additional fields are present
 char *jobName; Job name (optional)
 char *queue; Submit the job to this queue (optional)
 int numAskedHosts; Size of askedHosts (optional)
 char **askedHosts; Array of names of candidate hosts (optional)
 char *resReq; Resource requirements of the job (optional)
 int rlimits[LSF_RLIM_NLIMITS];
 Limits on system resource use by all of the
 job’s processes
 char *hostSpec; Host model used for scaling rlimits (optional)
 int numProcessors; Initial number of processors needed by the job
 char *dependCond; Job dependency condition (optional)
 char *timeEvent Time event string for scheduled repetitive jobs
 (optional)
 time_t beginTime; Dispatch the job on or after beginTime
 time_t termTime; Job termination deadline
 int sigValue; This variable is obsolete)
 char *inFile; Path name of the job’s standard input file
 (optional)
 char *outFile; Path name of the job’s standard output file
 (optional)
 char *errFile; Path name of the job’s standard error output file
 (optional)
 char *command; Command line of the job
 char *newCommand New command for bmod (optional)
 time_t chkpntPeriod; Job is checkpointable with this period (optional)
 char *chkpntDir; Directory for this job’s chk directory (optional)
 int nxf; Size of xf (optional)
 struct xFile *xf; Array of file transfer specifications (optional)
 char *preExecCmd; Job’s pre-execution command (optional)
 char *mailUser; User E-mail address to which the job’s output
 are mailed (optional)
 int delOptions; Bits to be removed from options
 (lsb_modify() only)
 char *projectName; Name of the job’s project (optional)
 int maxNumProcessors; Requested maximum num of job slots for the
 job
 char *loginShell; Login shell to be used to re-initialize

Programming wth LSBLIB

62 Platform LSF Programmer's Guide

 environment
 char *userGroup; User group
 char *exceptList; List of exception handlers
 int userPriority; User priority
 char *rsvId; Use hosts reserved in advance
 char *jobGroup; Job group under which the job runs
 char *sla; SLA under which the job runs
 char *extsched; extsched options
 int warningTimePeriod; Warning time period (seconds), -1 if unspecified
 char *warningAction; Warning action, SIGNAL | CHKPNT | command, NULL if
unspecified
 char *licenseProject; The license scheduler project
 int options3; Extend options again
 int delOptions3; Delete options in options3 field
 char *app; Application profile
 int jsdlFlag; -1 if no -jsdl, and -jsdl_strict options
 * 0 -jsdl_strict option
 * 1 -jsdl option*/
 char *jsdlDoc; jsdl filename*/
 void *correlator; ARM correlator */
 char *apsString; aps string set by admin to denote system value
 * or admin factor value
 char *postExecCmd; Post-execution commands specified by -Ep
 char *cwd; CWD specified by -cwd
 int runtimeEstimation; Runtime estimation specified by -We
 char *requeueEValues; /* -Q: Job level requeue exit values */
 int initChkpntPeriod; Initial checkpoint period */
 int migThreshold; Migration threshold */
 char *notifyCmd; Script or command invoked when resize request satisfied
};

For a complete description of the fields in the submit structure, see the lsb_submit(3) man page.

submitReply structure
The submitReply structure is defined in lsbatch.h as
struct submitReply {
 char *queue; Queue name the job was submitted to
 LS_LONG_INT badJobId; dependCond contains badJobId but there is
 no such job
 char *badJobName; dependCond contains badJobName but
 there is no such job
 int badReqIndx; Index of a host or resource limit that caused
 an error
};

The last three variables in the structure submitReply are only used when the lsb_submit() or
lsb_modify() fail.

For a complete description of the fields in the submitReply structure, see the lsb_submit(3) man page.

To submit a new job, fill out this data structure and then call lsb_submit(). The delOptions variable
is ignored by LSF batch for lsb_submit().

Example
The example job submission program below takes the job command line as an argument and submits the
job to LSF batch. For simplicity, it is assumed that the job command does not have arguments.
/**
* LSBLIB -- Examples
*
* simple bsub
* This program submits a batch job to LSF
* It is the equivalent of using the "bsub" command without
* any options.
**/
#include <stdio.h>
#include <stdlib.h>

Programming wth LSBLIB

Platform LSF Programmer's Guide 63

#include <lsf/lsbatch.h>
#include "combine_arg.h"
 /* To use the function "combine_arg" to combine arguments on the command
line include its header file "combine_arg.h". */
int main(int argc, char **argv)
{
 struct submit req; /* job specifications */
 memset(&req, 0, sizeof(req)); /* initializes req */
 struct submitReply reply; /* results of job submission */
 int jobId; /* job ID of submitted job */
 int i;
 /* initialize LSBLIB and get the configuration
 environment */
 if (lsb_init(argv[0]) < 0) {
 lsb_perror("simbsub: lsb_init() failed");
 exit(-1);
 }
 /* check if input is in the right format: "./simbsub
 COMMAND ARGUMENTS" */
 if (argc < 2) {
 fprintf(stderr, "Usage: simbsub command\n");
 exit(-1);
 }
 /* options and options2 are bitwise inclusive OR of some of
 the SUB_* flags */
 req.options = 0;
 req.options2 = 0;
 for (i = 0; i < LSF_RLIM_NLIMITS; i++) /* resource
 limits are
 initialized to
 default */
 req.rLimits[i] = DEFAULT_RLIMIT;
 req.beginTime = 0;
 /* specific date and time to dispatch the job */
 req.termTime = 0;
 /* specifies job termination deadline */
 req.numProcessors = 1;
/* initial number of processors needed by a (parallel) job */
 req.maxNumProcessors = 1;
/* max num of processors required to run the (parallel) job */
 req.command = combine_arg(argc,argv);
 /* command line of job */
printf("--\n");
 jobId = lsb_submit(&req, &reply);
 /* submit the job with specifications */
 if (jobId < 0)
 /* if job submission fails, lsb_submit returns -1 */
 switch (lsberrno) {
 /* and sets lsberrno to indicate the error */
 case LSBE_QUEUE_USE:
 case LSBE_QUEUE_CLOSED:
 lsb_perror(reply.queue);
 exit(-1);
 default:
 lsb_perror(NULL);
 exit(-1);
 }
 exit(0);
}
/* main */

The above program will produce output similar to the following:
Job <5602> is submitted to default queue <default>.

Sample program explanations
Options and options2

req.options = 0;

req.options2 = 0;

Programming wth LSBLIB

64 Platform LSF Programmer's Guide

The options and options2 fields of the submit structure are the bitwise inclusive OR of
some of the SUB_* flags defined in lsbatch.h. These flags serve two purposes.

Some flags indicate which of the optional fields of the submit structure are present.
Those that are not present have default values.

Other flags indicate submission options. For a description of these flags, see lsb_submit
(3).

Since options indicate which of the optional fields are meaningful, the programmer does
not need to initialize the fields that are not chosen by options. All parameters that are
not optional must be initialized properly.

numProcessors and maxNumProcessors

req.numProcessors = 1;

/* initial number of processors needed by a (parallel) job */
 req.maxNumProcessors = 1;
/* max number of processors required to run the (parallel) job */

numProcessors and maxNumProcessors are initialized to ensure only one processor is
requested. They are defined in order to synchronize the job specification in lsb_submit
() to the default used by bsub.

If the resReq field of the submit structure is NULL, then LSBLIB will try to obtain resource
requirements for a command from the remote task list. If the task does not appear in
the remote task list, then NULL is passed to LSF batch. mbatchd uses the default resource
requirements with option DFT_FROMTYPE bit set when making a LSLIB call for host
selection from LIM.

rLimits[LSF_RLIM_NLIMITS] and hostSpec

for (i = 0; i < LSF_RLIM_NLIMITS; i++)

 /* resource limits are initialized to default */
 req.rLimits[i] = DEFAULT_RLIMIT;

The default resource limit (DEFAULT_RLIMIT) defined in lsf.h are for no resource
limits.

The constants used to index the rlimits array of the submit structure is defined in
lsf.h. The resource limits currently supported by LSF batch are listed below.

Resource Limit Index in rlimits Array

CPU time limit (in seconds) LSF_RLIMIT_CPU

File size limit (in kilobytes) LSF_RLIMIT_FSIZE

Data size limit (in kilobytes) LSF_RLIMIT_DATA

Stack size limit LSF_RLIMIT_STACK

Core file size limit (in kilobytes) LSF_RLIMIT_CORE

Resident memory size limit (in kilobytes) LSF_RLIMIT_RSS

Number of open files limit LSF_RLIMIT_NOFILE

Programming wth LSBLIB

Platform LSF Programmer's Guide 65

Resource Limit Index in rlimits Array

Number of open files limit (for HP-UX) LSF_RLIMIT_OPEN_MAX

Virtual memory limit (same as max swap memory) LSF_RLIMIT_SWAP

Wall-clock time run limit LSF_RLIMIT_RUN

Maximum num of processes a job can fork LSF_RLIMIT_PROCESS

Thread number limit LSF_RLIMIT_THREAD

The hostSpec field of the submit structure specifies the host model to use for scaling
rlimits[LSF_RLIMIT_CPU] and rlimits[LSF_RLIMIT_RUN] (See lsb_queueinfo
(3)). If hostSpec is NULL, the local host’s model is assumed.

beginTime and termTime

req.beginTime = 0;/* specific date and time to dispatch the job */

 req.termTime = 0;/* specifies job termination deadline */

If the beginTime field of the submit structure is 0, start the job as soon as possible.

A USR2 signal is sent if the job is running at termTime. If the job does not terminate
within 10 minutes after being sent this signal, it is killed. If the termTime field of the
submit structure is 0, the job is allowed to run until it reaches a resource limit.

lsberrno

The example below checks the value of lsberrno when lsb_submit() fails:
 if (jobId < 0)
 /* if job submission fails, lsb_submit returns -1 */
 switch (lsberrno) {
 /* and sets lsberrno to indicate the error */
 case LSBE_QUEUE_USE:
 case LSBE_QUEUE_CLOSED:
 lsb_perror(reply.queue);
 exit(-1);
 default:
 lsb_perror(NULL);
 exit(-1);
}

Different actions are taken depending on the type of the error. All possible error
numbers are defined in lsbatch.h. For example, error number LSBE_QUEUE_USE
indicates that the user is not authorized to use the queue. The error number
LSBE_QUEUE_CLOSED indicates that the queue is closed.

Since a queue name was not specified for the job, the job is submitted to the default
queue. The queue field of the submitReply structure contains the name of the queue to
which the job was submitted.

The above program will produce output similar to the following:
Job <5602> is submitted to default queue <default>.

The output from the job is mailed to the user because the program did not specify a file name for the
outFile parameter in the submit structure.

Programming wth LSBLIB

66 Platform LSF Programmer's Guide

The program assumes that uniform user names and user ID spaces exist among all the hosts in the cluster.
That is, a job submitted by a given user will run under the same user's account on the execution host. For
situations where non-uniform user names and user ID spaces exist, account mapping must be used to
determine the account used to run a job.

If you are familiar with the bsub command, it may help to know how the fields in the submit structure
relate to the bsub command options. This is provided in the following table.

bsub Option submit Field options

-J job_name_spec jobName SUB_JOB_NAME

-q queue_name queue SUB_QUEUE

-m host_name[+[pref_level]] askedHosts SUB_HOST

-n min_proc[,max_proc] numProcessors,

maxNumProcessors

-R res_req resReq SUB_RES_REQ

-c cpu_limit[/host_spec] rlimits[LSF_RLIMIT_

CPU] / hostSpec **

SUB_HOST_SPEC (if
host_spec is
specified)

-W run_limit[/host_spec] rlimits[LSF_RLIMIT_

RUN] / hostSpec**

SUB_HOST_SPEC (if
host_spec is
specified)

-F file_limit rlimits[LSF_RLIMIT_

FSIZE]**

-M mem_limit rlimits[LSF_RLIMIT_

RSS]**

-D data_limit rlimits[LSF_RLIMIT_

DATA]**

-S stack_limit rlimits[LSF_RLIMIT_

STACK**

-C core_limit rlimits[LSF_RLIMIT_

CORE]**

-k "chkpnt_dir [chkpnt_period]" chkpntDir, chkpntPeriod SUB_CHKPNT_DIR,
SUB_CHKPNT_DIR (if
chkpntPeriod is
specified)

-w depend_cond dependCond SUB_DEPEND_COND

-b begin_time beginTime

-t term_time TermTime

-i in_file inFile SUB_IN_FILE

Programming wth LSBLIB

Platform LSF Programmer's Guide 67

bsub Option submit Field options

-o out_file outFile SUB_OUT_FILE

-e err_file errFile SUB_ERR_FILE

-u mail_user mailUser SUB_MAIL_USER

-f "lfile op [rfile]" xf

-E "pre_exec_cmd [arg]" preExecCmd SUB_PRE_EXEC

-L login_shell loginShell SUB_LOGIN_SHELL

-P project_name projectName SUB_PROJECT_NAME

-G user_group userGroup SUB_USER_GROUP

-H SUB2_HOLD*

-x SUB_EXCLUSIVE

-r SUB_RERUNNABLE

-N SUB_NOTIFY_END

-B SUB_NOTIFY_

BEGIN

-I SUB_INTERACTIVE

-Ip SUB_PTY

-Is SUB_PTY_SHELL

-K SUB2_BSUB_BLOCK*

- X "except_cond::action" exceptList SUB_EXCEPT

-T time_event timeEvent SUB_TIME_EVENT

* indicates a bitwise OR mask for options2.

** indicates -1 means undefined

Even if all the options are not used, all optional string fields must be initialized to the empty string. For
a complete description of the fields in the submit structure, see the lsb_submit(3) man page.

To modify an already submitted job, fill out a new submit structure to override existing parameters, and
use delOptions to remove option bits that were previously specified for the job. Modifying a submitted
job is like re-submitting the job. Thus a similar program can be used to modify an existing job with minor
changes. One additional parameter that must be specified for job modification is the job Id. The parameter
delOptions can also be set if you want to clear some option bits that were previously set.

All applications that call lsb_submit() and lsb_modify() are subject to authentication constraints
described in .

Programming wth LSBLIB

68 Platform LSF Programmer's Guide

Batch job information
LSBLIB provides functions to get status information about batch jobs. Since there could be many
thousands of jobs in the LSF batch system, getting all of this information in one message could use a lot
of memory space. LSBLIB allows the application to open a stream connection and then read the job records
one by one. This insures the memory space needed is always the size of one job record.

Platform LSF batch job ID
LSF APIs supports 64-bit batch job ID. The LSF batch job ID will store in a 64-bit integer. It consists of
two parts:

• Base ID
• Array index

The base ID is stored in the lower 32 bits. The array index is shared in the top 32 bits. The top 32 bits are
only used when the underlying job is an array job.

LSBLIB provides the following C macros (defined in lsbatch.h) for manipulating job IDs:
LSB_JOBID(base_ID, array_index) Yield an LSF batch job ID
LSB_ARRAY_IDX(job_ID) Yield array index part of the job ID
LSB_ARRAY_JOBID(job_ID) Yield the base ID part of the job ID

The function calls used to get job information are:

• int lsb_openjobinfo(job_ID, jobName, user, queue, host, options);
• struct jobInfoEnt *lsb_readjobinfo(more);
• void lsb_closejobinfo(void);

These functions are used to open a job information connection with mbatchd, read job records, and then
close the job information connection.

lsb_openjobinfo()
lsb_openjobinfo() takes the following arguments:
LS_LONG_INT jobId; Select job with the given job Id
char *jobName; Select job(s) with the given job name
char *user; Select job(s) submitted by the named user
 or user group
char *queue; Select job(s) submitted to the named queue
char *host; Select job(s) that are dispatched to the
 named host
int options; Selection flags constructed from the bits
 defined in lsbatch.h

options parameter

The options parameter contains additional job selection flags defined in lsbatch.h.
These are:

Programming wth LSBLIB

Platform LSF Programmer's Guide 69

Flag Name Flag Description

ALL_JOB Select jobs matching any status, including unfinished jobs and recently finished
jobs. LSF batch remembers finished jobs within the CLEAN_PERIOD, as defined
in the lsb.params file.

CUR_JOB Return jobs that have not finished yet

DONE_JOB Return jobs that have finished recently.

PEND_JOB Return jobs that are in the pending status.

SUSP_JOB Return jobs that are in the suspended status.

LAST_JOB Return jobs that are submitted most recently.

JGRP_ARRAY_INFO Return job array information.

If options is 0, then the default is CUR_JOB.

lsb_openjobinfo() returns the total number of matching job records in the connection. On failure,
it returns -1 and sets lsberrno to indicate the error.

lsb_readjobinfo()
lsb_readjobinfo() takes one argument:
int *more; If not NULL, contains the remaining number of
 jobs unread

Either this parameter or the return value from the lsb_openjobinfo() can be used to keep track of
the number of job records that can be returned from the connection. This parameter is updated each time
lsb_readjobinfo() is called.

jobInfoEnt structure
The jobInfoEnt structure returned by lsb_readjobinfo() is defined in lsbatch.h as:
struct jobInfoEnt {
 LS_LONG_INT jobId; job ID
 char *user; submission user
 int status; job status
 /* possible values for the status field */
#define JOB_STAT_PEND 0x01 job is pending
#define JOB_STAT_PSUSP 0x02 job is held
#define JOB_STAT_RUN 0x04 job is running
#define JOB_STAT_SSUSP 0x08 job is suspended by LSF batch system
#define JOB_STAT_USUSP 0x10 job is suspended by user
#define JOB_STAT_EXIT 0x20 job exited
#define JOB_STAT_DONE 0x40 job is completed successfully
#define JOB_STAT_PDONE 0x80 post job process done successfully
#define JOB_STAT_PERROR 0x100 post job process error
#define JOB_STAT_WAIT 0x200 chunk job waiting its execution turn
#define JOB_STAT_UNKWN 0x1000 unknown status
 int *reasonTb; pending or suspending reasons
 int numReasons; length of reasonTb vector
 int reasons; reserved for future use
 int subreasons; reserved for future use
 int jobPid; process Id of the job
 time_t submitTime; time when the job is submitted
 time_t reserveTime; time when job slots are reserved
 time_t startTime; time when job is actually started
 time_t predictedStartTime; job's predicted start time
 time_t endTime; time when the job finishes
 time_t lastEvent; last time event

Programming wth LSBLIB

70 Platform LSF Programmer's Guide

 time_t nextEvent; next time event
 int duration; duration time (minutes)
 float cpuTime; CPU time consumed by the job
 int umask; file mode creation mask for the job
 char *cwd; current working directory where job is
 submitted
 char *subHomeDir; submitting user’s home directory
 char *fromHost; host from which the job is submitted
 char **exHosts; host(s) on which the job executes
 int numExHosts; number of execution hosts
 float cpuFactor; CPU factor of the first execution host
 int nIdx; number of load indices in the loadSched and
 loadStop vector
 float *loadSched; stop scheduling new jobs if this threshold is
 exceeded
 float *loadStop; stop jobs if this threshold is exceeded
 struct submit submit; job submission parameters
 int exitStatus; exit status
 int execUid; user ID under which the job is running
 char *execHome; home directory of the user denoted by
 execUid
 char *execCwd; current working directory where job is
 running
 char *execUsername; user name corresponds to execUid
 time_t jRusageUpdateTime; last time job's resource usage is updated
 struct jRusage runRusage; last updated job's resource usage
 int jType; job type
 /* Possible values for the jType field */
#define JGRP_NODE_JOB 1 this structure stores a normal batch job
#define JGRP_NODE_GROUP 2 this structure stores a job group
#define JGRP_NODE_ARRAY 3 this structure stores a job array
 char *parentGroup; for job group use
 char *jName; if jType is JGRP_NODE_GROUP, then it is
 job group name. Otherwise, it is the job's
 name
 int counter[NUM_JGRP_COUNTERS];
 /* index into the counter array, only used for job array */
#define JGRP_COUNT_NJOBS 0 total jobs in the array
#define JGRP_COUNT_PEND 1 number of pending jobs in the array
#define JGRP_COUNT_NPSUSP 2 number of held jobs in the array
#define JGRP_COUNT_NRUN 3 number of running jobs in the array
#define JGRP_COUNT_NSSUSP 4 number of jobs suspended by the
 system in the array
#define JGRP_COUNT_NUSUSP 5 number of jobs suspended by the
 user in the array
#define JGRP_COUNT_NEXIT 6 number of exited jobs in the array
#define JGRP_COUNT_NDONE 7 number of successfully completed jobs
 int counter[NUM_JGRP_COUNTERS];
 u_short port; service port of the job
 int jobPriority; job dynamic priority
 int numExternalMsg; number of external messages in the job
 struct jobExternalMsgReply **externalMsg;
 int clusterId;
 char *detailReason; Detail reason field
 float idleFactor;
 int exceptMask; Job exception mask
 char *additionalInfo; Arbitrary job information string
 currently used by rms_rid and rms_alloc
 int exitInfo; Termination reason
 int warningTimePeriod; Warning time in seconds, -1 if
 unspecified
 char *warningAction; Warning action, SIGNAL | CHKPNT |
 command, NULL if unspecified
 char *chargedSAAP; SAAP charged for job
 char *execRusage; The rusage satisfied at job runtime
 time_t rsvInActive; Time when AR was expired or deleted
 int numLicense; Number of licenses reported from LS
 char **licenseNames; LS license names
 float aps; Absolute priority value
 float adminAps; Static aps value set by admin
 int runTime; Job's real runtime
 int reserveCnt; Number of resource types reserved by this job
 struct reserveItem *items; Detail reservation information for

Programming wth LSBLIB

Platform LSF Programmer's Guide 71

 each kind of resource
 float adminFactorVal; Admin factor value
 int resizeMin; Pending resize min. 0, if no resize pending
 int resizeMax; Pending resize max. 0, if no resize pending
 time_t resizeReqTime; Time when pending request was issued
 int jStartNumExHosts; Number of hosts when job starts
 char **jStartExHosts; Host list when job starts
 time_t lastResizeTime; Last time job allocation changed
};

jobInfoEnt can store a job array as well as a non-array batch job, depending on the value of jType field,
which can be either JGRP_NODE_JOB or JGRP_NODE_ARRAY.

lsb_closejobinfo()
Call lsb_closejobinfo()after receiving all job records in the connection.

Example
Below is an example of a simplified bjobs command. This program displays all pending jobs belonging
to all users.

/**

* LSBLIB -- Examples

*

* simple bjobs

* Submit command as an lsbatch job with no options set

* and retrieve the job info

* It is similar to the "bjobs" command with no options.

**/

#include <stdio.h>
#include <lsf/lsbatch.h>
#include "submit_cmd.h"
int main(int argc, char **argv)
{
 /* variables for simulating submission */
 struct submit req; /* job specifications */
 memset(&req, 0, sizeof(req)); /* initializes req */
 struct submitReply reply; /* results of job submission */
 int jobId; /* job ID of submitted job */
 /* variables for simulating bjobs command */
 int options = PEND_JOB; /* the status of the jobs
 whose info is returned */
 char *user="all"; /* match jobs for all users */
 struct jobInfoEnt *job; /* detailed job info */
 int more; /* number of remaining jobs
 unread */
 /* initialize LSBLIB and get the configuration
 environment */
 if (lsb_init(argv[0]) < 0) {
 lsb_perror("simbjobs: lsb_init() failed");
 exit(-1);
 }
 /* check if input is in the right format:
 * "./simbjobs COMMAND ARGUMENTS" */
 if (argc < 2) {
 fprintf(stderr, "Usage: simbjobs command\n");
 exit(-1);
 }
 jobId = submit_cmd(&req, &reply, argc, argv);
 /* submit a job */

Programming wth LSBLIB

72 Platform LSF Programmer's Guide

 if (jobId < 0) /* if job submission
 fails, lsb_submit
 returns -1 */
 switch (lsberrno) {
 /* and sets lsberrno to indicate the error */
 case LSBE_QUEUE_USE:
 case LSBE_QUEUE_CLOSED:
 lsb_perror(reply.queue);
 exit(-1);
 default:
 lsb_perror(NULL);
 exit(-1);
}
 /* gets the total number of pending job. Exits if failure */
 if (lsb_openjobinfo(0, NULL, user, NULL, NULL, options)<0) {
 lsb_perror("lsb_openjobinfo");
 exit(-1);
 }
 /* display all pending jobs */
 printf("All pending jobs submitted by all users:\n");
 for (;;) {
 job = lsb_readjobinfo(&more); /* get the job details */
 if (job == NULL) {
 lsb_perror("lsb_readjobinfo");
 exit(-1);
 }
 printf("%s",ctime(&job->submitTime));
 /* submission time of job */
 printf("Job <%s> ", lsb_jobid2str(job->jobId));
 /* job ID */
 printf("of user <%s>, ", job->user);
 /* user that submits the job */
 printf("submitted from host <%s>\n", job->fromHost); /* name of
sumbission host */
 /* continue to display if there is remaining job */
 if (!more)
 /* if there are no remaining jobs undisplayed,
 exits */
 break;
 }
 /* when finished to display the job info, close the
 connection to the mbatchd */
 lsb_closejobinfo();
 exit(0);
}

The above program will produce output similar to the following:
All pending jobs submitted by all users:
Mon Mar 1 10:34:04 EST 1996
Job <123> of user <john>, submitted from host <orange>
Mon Mar 1 11:12:11 EST 1996
Job <126> of user <john>, submitted from host <orange>
Mon Mar 1 14:11:34 EST 1996
Job <163> of user <ken>, submitted from host <apple>
Mon Mar 1 15:00:56 EST 1996
Job <199> of user <tim>, submitted from host <pear>

Use lsb_pendreason(), to print out the reasons why the job is still pending See lsb_pendreason
(3) for details.

Programming wth LSBLIB

Platform LSF Programmer's Guide 73

Job manipulation
Users manipulate jobs in different ways, after a job has been submitted. It can be suspended, resumed,
killed, or sent arbitrary signal jobs.

All applications that manipulate jobs are subject to authentication provisions.

Send a signal to a job
Users can send signals to submitted jobs. If the job has not been started, you can send KILL, TERM, INT,
and STOP signals. These signals cause the job to be cancelled (KILL, TERM, INT) or suspended (STOP). If
the job has already started, then any signal can be sent to the job.

lsb_signaljob()
lsb_signaljob() sends a signal to a job:
int lsb_signaljob(jobId, sigValue);
LS_LONG_INT jobId; Select job with the given job Id
int sigValue; Signal sent to the job

The jobId and sigValue parameters are self-explanatory.

Example
The following example takes a job ID as the argument and sends a SIGSTOP signal to the job.

/**

* LSBLIB -- Examples

*

* simple bstop

* The program takes a job ID as the argument and sends a * SIGSTOP signal to
the job

**/

#include <stdio.h>
#include <lsf/lsbatch.h>
#include <stdlib.h>
#include <signal.h>
int main(int argc, char **argv)
{
 /* check if input is in the right format: "simbstop JOBID" */
 if (argc != 2) {
 printf("Usage: %s jobId\n", argv[0]);
 exit(-1);
 }
 /* initialize LSBLIB and get the configuration environment */
 if (lsb_init(argv[0]) < 0) {
 lsb_perror("lsb_init");
 exit(-1);
 }
 /* send the SIGSTOP signal and check if lsb_signaljob()
 runs successfully */
 if (lsb_signaljob(atoi(argv[1]), SIGSTOP) <0) {
 lsb_perror("lsb_signaljob");
 exit(-1);
 }
 printf("Job %s is signaled\n", argv[1]);
 exit(0);

Programming wth LSBLIB

74 Platform LSF Programmer's Guide

 }

On success, the function returns 0. On failure, it returns -1 and sets lsberrno to indicate the error.

Switch a job to a different queue
A job can be switched to a different queue after submission. This can be done even after the job has already
started.

lsb_switchjob()
Use lsb_switchjob() to switch a job from one queue to another:
int lsb_switchjob(jobId, queue);
LS_LONG_INT jobId; Select job with the given job Id
char *queue Name of the queue for the new job

Example
Below is an example program that switches a specified job to a new queue.
/**
* LSBLIB -- Examples
*
* simple bstop
* The program switches a specified job to a new queue.
**/
#include <stdio.h>
#include <lsf/lsbatch.h>
#include <stdlib.h>
int main(int argc, char **argv)
{
 /* check if the input is in the right format: "./simbstop
 JOBID QUEUENAME" */
 if (argc != 3) {
 printf("Usage: %s jobId new_queue\n", argv[1]);
 exit(-1);
 }
 /* initialize LSBLIB and get the configuration environment */
 if (lsb_init(argv[0]) <0) {
 lsb_perror("lsb_init");
 exit(-1);
 }
 /* switch the job to the new queue and check for success */
 if (lsb_switchjob(atoi(argv[1]), argv[2]) < 0) {
 lsb_perror("lsb_switchjob");
 exit(-1);
 }
 printf("Job %s is switched to new queue <%s>\n", argv[1], argv[2]);
 exit(0);
}

On success, lsb_switchjob() returns 0. On failure, it returns -1 and sets lsberrno to indicate the
error.

Force a job to run
After a job is submitted to the LSF batch system, it remains pending until LSF batch runs it (for details
on the factors that govern when and where a job starts to run, see Administering Platform LSF).

lsb_runjob()
A job can be forced to run on a specified list of hosts immediately using the following LSBLIB function:
int lsb_runjob (struct runJobRequest *runReq)

Programming wth LSBLIB

Platform LSF Programmer's Guide 75

runJobReq Structure
lsb_runjob() takes the runJobRequest structure, which is defined in lsbatch.h:
struct runJobRequest {
 LS_LONG_INT jobId; Job ID of the job to start
 int numHosts; Number of hosts to run the job on
 char **hostname; Host names where jobs run
#define RUNJOB_OPT_NORMAL 0x01
#define RUNJOB_OPT_NOSTOP 0x02
#define RUNJOB_OPT_PENDONLY 0x04 Pending jobs only, no finished jobs
#define RUNJOB_OPT_FROM_BEGIN 0x08 Checkpoint jobs only, from beginning
#define RUNJOB_OPT_FREE 0x10 brun to use free CPUs only
 int options; Run job request options
 int *slots; Number of slots per host
}

To force a job to run, the job must have been submitted and in either PEND or FINISHED state. Only
the LSF administrator or the owner of the job can start the job. lsb_runjob() restarts a job in FINISHED
status.

A job can be run without any scheduling constraints such as job slot limits. If the job is started with the
options field being 0 or RUNJOB_OPT_NORMAL, then the job is subject to the:

• Run windows in the default queue
• Queue threshold
• Execution hosts for the job

To override a started, use RUNJOB_OPT_NOSTOP and the job will not be stopped due to the above
mentioned load conditions. However, all LSBLIB's job manipulation APIs can still be applied to the job.

Example
The following is an example program that runs a specified job on a host that has no batch job running.

/**

* LSBLIB -- Examples

*

* simple brun

* The program takes a job ID as the argument and runs that

* job on a vacant hosts

**/

#include <stdio.h>
#include <lsf/lsbatch.h>
#include <stdlib.h>
int main(int argc, char **argv)
{
 struct hostInfoEnt *hInfo; /* host information */
 int numHosts = 0; /* number of hosts */
 int i;
 struct runJobRequest runJobReq;
 /* specification for the job to be run */
 /* check if the input is in the right format: "./simbrun
 JOBID" */
 if (argc != 2) {
 printf("Usage: %s jobId\n", argv[0]);
 exit(-1);
 }
 /* initialize LSBLIB and get the configuration environment */
 if (lsb_init(argv[0]) < 0) {
 lsb_perror("lsb_init");

Programming wth LSBLIB

76 Platform LSF Programmer's Guide

 exit(-1);
 }
 /* get host information */
 hInfo = lsb_hostinfo(NULL, &numHosts);
 if (hInfo == NULL) {
 lsb_perror("lsb_hostinfo");
 exit(-1);
 }
 /* find a vacant host */
 for (i = 0; i < numHosts; i++) {
 if (hInfo[i].hStatus & (HOST_STAT_BUSY |
 HOST_STAT_WIND |
 HOST_STAT_DISABLED |
 HOST_STAT_LOCKED |
 HOST_STAT_FULL |
 HOST_STAT_NO_LIM |
 HOST_STAT_UNLICENSED |
 HOST_STAT_UNAVAIL |
 HOST_STAT_UNREACH))
 continue;
 /* found a vacant host */
 if (hInfo[i].numJobs == 0)
 break;
 }
 /* return error message when there is no vacant host found */
 if (i == numHosts) {
 fprintf(stderr, "Cannot find vacate host to run job
 < %s >\n", argv[1]);
 exit(-1);
 }
 /* define the specifications for the job to be run (The job
 can be stopped due to load conditions) */
 runJobReq.jobId = atoi(argv[1]);
 runJobReq.options = 0;
 runJobReq.numHosts = 1;
 runJobReq.hostname = (char **)malloc(sizeof(char*));
 runJobReq.hostname[0] = hInfo[i].host;
 /* run the job and check for the success */
 if (lsb_runjob(&runJobReq) < 0) {
 lsb_perror("lsb_runjob");
 exit(-1);
 }
 exit (0);
}

On success, lsb_runjob() returns 0. On failure, returns -1 and sets lsberrno to indicate the error.

Programming wth LSBLIB

Platform LSF Programmer's Guide 77

Platform LSF batch event files
LSF batch saves a lot of valuable information about the system and jobs. Such information is logged by
mbatchd in the files lsb.events and lsb.acct under the directory $LSB_SHAREDIR/
your_cluster/logdir, where LSB_SHAREDIR is defined in the lsf.conf file and your_cluster is
the name of your Platform LSF cluster.

mbatchd logs such information for several purposes.

• Some of the events serve as the backup of mbatchd’s memory. In case mbatchd crashes, all critical
information from the event file can then be used by the newly started mbatchd to restore the current
state of LSF batch.

• The events can be used to produce historical information about the LSF batch system and user jobs.
• Such information can be used to produce accounting or statistic reports.

Caution:
The lsb.events file contains critical user job information. Never use
your program to modify lsb.events. Writing into this file may cause the
loss of user jobs.

lsb_geteventrec()
LSBLIB provides a function to read information from these files into a well-defined data structure:
struct eventRec *lsb_geteventrec(log_fp, lineNum)
FILE *log_fp; File handle for either an event log
 file or job log file
int *lineNum; Line number of the next event
 record

The parameter log_fp is returned by a successful fopen() call. The content in lineNum is modified to
indicate the line number of the next event record in the log file on a successful return. This value can then
be used to report the line number when an error occurs while reading the log file. This value should be
initiated to 0 before lsb_geteventrec() is called for the first time.

eventRec Structure
lsb_geteventrec() returns the following data structure:
struct eventRec {
 char version[MAX_VERSION_LEN]; Version number of the mbatchd
 int type; Type of the event
 time_t eventTime; Event time stamp
 union eventLog eventLog; Event data
};

The event type is used to determine the structure of the data in eventLog. LSBLIB remembers the storage
allocated for the previously returned data structure and automatically frees it before returning the next
event record.

lsb_geteventrec() returns NULL and sets lsberrno to LSBE_EOF when there are no more records
in the event file.

Events are logged by mbatchd for different purposes. There are job-related events and system-related
events. Applications can choose to process certain events and ignore other events. For example, the
bhist command processes job-related events only. The currently available event types are listed below.

Programming wth LSBLIB

78 Platform LSF Programmer's Guide

Event Type Description

EVENT_JOB_NEW Submit new job

EVENT_JOB_START mbatchd is trying to start a job

EVENT_JOB_STATUS Job status change event

EVENT_JOB_SWITCH Job switched to another queue

EVENT_JOB_MOVE Move a pending job’s position within a queue

EVENT_QUEUE_CTRL Queue status changed by Platform LSF administrator (bqc operation)

EVENT_HOST_CTRL Host status changed by Platform LSF administrator (bhc operation)

EVENT_MBD_START New mbatchd start event

EVENT_MBD_DIE Log parameters before mbatchd die

EVENT_MBD_UNFULFILL mbatchd has an action to be fulfilled

EVENT_JOB_FINISH Job has finished (logged in lsb.acct only)

EVENT_LOAD_INDEX Complete list of load index names

EVENT_MIG Job has migrated

EVENT_PRE_EXEC_START The pre-execution command started

EVENT_JOB_ROUTE The job has been routed to NQS

EVENT_JOB_MODIFY The job’s parameters have been modified

EVENT_JOB_SIGNAL Signal/delete a job

EVENT_CAL_NEW Add new calendar to the system *

EVENT_CAL_MODIFY Calendar modified *

EVENT_CAL_DELETE Calendar deleted *

EVENT_JOB_FORCE Forcing a job to start on specified hosts (brun operation)

EVENT_JOB_FORWARD Job forwarded to another cluster

EVENT_JOB_ACCEPT Job from a remote cluster dispatched

EVENT_STATUS_ACK Job status successfully sent to submission cluster

EVENT_JOB_EXECUTE Job started successfully on the execution host

EVENT_JOB_MSG Send a message to a job

EVENT_JOB_MSG_ACK The message has been delivered.

EVENT_JOB_REQUEUE Job is requeued

EVENT_JOB_OCCUPY_REQ Submission mbatchd logs this after sending an occupy request to
execution mbatchd

Programming wth LSBLIB

Platform LSF Programmer's Guide 79

Event Type Description

EVENT_JOB_VACATED Submission mbatchd logs this event after all execution mbatchds have
vacated the occupied hosts for the job.

EVENT_JOB_SIGACT An signal action on a job has been initiated or finished

EVENT_JOB_START_ACCEPT Job accepted by sbatchd

EVENT_SBD_JOB_STATUS sbatchd’s new job status

EVENT_CAL_UNDELETE Undeleted a calendar in the system

EVENT_JOB_CLEAN Job is cleaned out of the core

EVENT_JOB_EXCEPTION Job exception was detected

EVENT_JGRP_ADD Adding a new job group

EVENT_JGRP_MOD Modifying a job group

EVENT_JGRP_CNT Controlling a job group

EVENT_LOG_SWITCH Switching the event file lsb.events

EVENT_JOB_MODIFY2 Job modification request

EVENT_JGRP_STATUS Log job group status

EVENT_JOB_ATTR_SET Job attributes have been set

EVENT_JOB_EXT_MSG Send an external message to a job

EVENT_JOB_ATTA_DATA Update data status of a message for a job

EVENT_JOB_CHUNK Insert one job to a chunk

EVENT_SBD_UNREPORTED_

STATUS

Save unreported sbatchd status

EVENT_ADRSV_FINISH An advanced reservation expired.

EVENT_HGHOST_CTRL Dynamic host group control changes.

EVENT_CPUPROFILE_STATUS Save current CPU allocation on service partition.

EVENT_DATA_LOGGING Write a data logging file.

EVENT_JOB_RUN_RUSAGE Write job ruasage to lsb.stream.

EVENT_END_OF_STREAM Close stream and open new stream.

EVENT_SLA_RECOMPUTE Re-evaluate SLA goal.

EVENT_METRIC_LOG Write performance metrics to lsb.stream.

EVENT_TASK_FINISH Write a task finish log to ssched.acct.

EVENT_JOB_RESIZE_NOTIFY_START Job resize allocation made.

Programming wth LSBLIB

80 Platform LSF Programmer's Guide

Event Type Description

EVENT_JOB_RESIZE_NOTIFY_ACCEP
T

Job resize notification action initialized.

EVENT_JOB_RESIZE_NOTIFY_DONE Job resize notification action completed.

EVENT_JOB_RESIZE_RELEASE Job resize release request received.

EVENT_JOB_RESIZE_CANCEL Job resize cancel request received.

EVENT_JOB_RESIZE Job resize event for lsb.acct.

* Available only if the Platform JobScheduler component is enabled.

Tip:
The lsb.acct file uses only EVENT_JOB_FINISH. lsb.events file
uses all other event types. For detailed formats of these log files, see
lsb.events(5) and lsb.acct(5).

eventLog Union
Each event type corresponds to a different data structure in the union:
union eventLog {
 struct jobNewLog jobNewLog; EVENT_JOB_NEW
 struct jobStartLog jobStartLog; EVENT_JOB_START
 struct jobStatusLog jobStatusLog; EVENT_JOB_STATUS
 struct jobSwitchLog jobSwitchLog; EVENT_JOB_SWITCH
 struct jobMoveLog jobMoveLog; EVENT_JOB_MOVE
 struct queueCtrlLog queueCtrlLog; EVENT_QUEUE_CTRL
 struct hostCtrlLog hostCtrlLog; EVENT_HOST_CTRL
 struct mbdStartLog mbdStartLog; EVENT_MBD_START
 struct mbdDieLog mbdDieLog; EVENT_MBD_DIE
 struct unfulfillLog unfulfillLog; EVENT_MBD_UNFULFILL
 struct jobFinishLog jobFinishLog; EVENT_JOB_FINISH
 struct loadIndexLog loadIndexLog; EVENT_LOAD_INDEX
 struct migLog migLog; EVENT_MIG
 struct calendarLog calendarLog; Shared by all calendar events
 struct jobForceRequestLog jobForceRequestLog
 EVENT_JOB_FORCE
 struct jobForwardLog jobForwardLog; EVENT_JOB_FORWARD
 struct jobAcceptLog jobAcceptLog; EVENT_JOB_ACCEPT
 struct statusAckLog statusAckLog; EVENT_STATUS_ACK
 struct signalLog signalLog; EVENT_JOB_SIGNAL
 struct jobExecuteLog jobExecuteLog; EVENT_JOB_EXECUTE
 struct jobRequeueLog jobRequeueLog; EVENT_JOB_REQUEUE
 struct sigactLog sigactLog; EVENT_JOB_SIGACT
 struct jobStartAcceptLog jobStartAcceptLog
 EVENT_JOB_START_ACCEPT
 struct jobMsgLog jobMsgLOg; EVENT_JOB_MSG
 struct jobMsgAckLog jobMsgAckLog; EVENT_JOB_MSG_ACK
 struct chkpntLog chkpntLog; EVENT_CHKPNT
 struct jobOccupyReqLog jobOccupyReqLog;
 EVENT_JOB_OCCUPY_REQ
 struct jobVacatedLog jobVacatedLog; EVENT_JOB_VACATED
 struct jobCleanLog jobCleanLog; EVENT_JOB_CLEAN
 struct jobExceptionLog jobExceptionLog;
 EVENT_JOB_EXCEPTION
 struct jgrpNewLog jgrpNewLog; EVENT_JGRP_ADD
 struct jgrpCtrlLog jgrpCtrlLog; EVENT_JGRP_CTR
 struct logSwitchLog logSwitchLog; EVENT_LOG_SWITCH
 struct jobModLog jobModLog; EVENT_JOB_MODIFY
 struct jgrpStatusLog jgrpStatusLog; EVENT_JGRP_STATUS
 struct jobAttrSetLog jobAttrSetLog; EVENT_JOB_ATTR_SET
 struct jobExternalMsgLog jobExternalMsgLog;

Programming wth LSBLIB

Platform LSF Programmer's Guide 81

 EVENT_JOB_EXT_MSG
 struct jobChunkLog jobChunkLog; EVENT_JOB_CHUNK
 struct sbdUnreportedStatusLog sbdUnreportedStatusLog;
 EVENT_SBD_UNREPORTED_STATUS
 struct rsvFinishLog rsvFinishLog;
 struct hgCtrlLog hgCtrlLog;
 struct cpuProfileLog cpuProfileLog;
 struct dataLoggingLog dataLoggingLog;
 struct jobRunRusageLog jobRunRusageLog;
 struct eventEOSLog eventEOSLog;
 struct slaLog slaLog;
 struct perfmonLog perfmonLog;
 struct taskFinishLog taskFinishLog;
 struct jobResizeNotifyStartLog jobResizeNotifyStartLog;
 struct jobResizeNotifyAcceptLog jobResizeNotifyAcceptLog;
 struct jobResizeNotifyDoneLog jobResizeNotifyDoneLog;
 struct jobResizeReleaseLog jobResizeReleaseLog;
 struct jobResizeCancelLog jobResizeCancelLog;
 struct jobResizeLog jobResizeLog;
};

The detailed data structures in the above union are defined in lsbatch.h and described in
lsb_geteventrec(3).

Example
Below is an example program that takes an argument as job name and displays a chronological history
about all jobs matching the job name. This program assumes that the lsb.events file is in /local/
lsf/work/cluster1/logdir.

/**

* LSBLIB -- Examples

*

* get event record

* The program takes a job name as the argument and returns

* the information of the job with this given name

**/

#include <stdio.h>
#include <string.h>
#include <time.h>
#include <lsf/lsbatch.h>
int main(int argc, char **argv)
{
 char *eventFile = "/local/lsf/mnt/work/cluster1/logdir/lsb.events";
 /*location of lsb.events*/
 FILE *fp;/* file handler for lsb.events */
 struct eventRec *record;
 /* pointer to the return struct of lsb_geteventrec() */
 int lineNum = 0;/* line number of next event */
 char *jobName = argv[1];/* specified job name */
 int i;
 struct jobNewLog *newJob;/* new job event record */
 struct jobStartLog *startJob;/* start job event record */
 struct jobStatusLog *statusJob;
 /* job status change event record */
 /* check if the input is in the right format: "./geteventrec JOBNAME" */
 if (argc != 2) {
 printf("Usage: %s job name\n", argv[0]);
 exit(-1);
 }
 /* initialize LSBLIB and get the configuration environment */
 if (lsb_init(argv[0]) < 0) {
 lsb_perror("lsb_init");

Programming wth LSBLIB

82 Platform LSF Programmer's Guide

 exit(-1);
 }
 /* open the file for read */
 fp = fopen(eventFile, "r");
 if (fp == NULL) {
 perror(eventFile);
 exit(-1);
 }
 /* get events and print out the information of the event
 records with the given job name in different format */
 for (;;) {
 record = lsb_geteventrec(fp, &lineNum);
 if (record == NULL) {
 if (lsberrno == LSBE_EOF)
 exit(0);
 lsb_perror("lsb_geteventrec");
 exit(-1);
 }
 /* find the record with the given job name */
 if (record->eventLog.jobNewLog.jobName==NULL)
 continue;
 if (strcmp(record->eventLog.jobNewLog.jobName, jobName) != 0)
 continue;
 else
 switch (record->type) {
 case EVENT_JOB_NEW:
 newJob = &(record->eventLog.jobNewLog);
 printf("%sJob <%d> submitted by <%s> from <%s>
to <%s> queue\n", ctime(&record-> eventTime), newJob->jobId,
newJob-> userName, newJob->fromHost, newJob->
queue);
 continue;
 case EVENT_JOB_START:
 startJob = &(record->eventLog.jobStartLog);
 printf("%sJob <%d> started on ", ctime(&record->
eventTime), newJob->jobId);
 for (i=0; i<startJob->numExHosts; i++)
 printf("<%s> ", startJob->execHosts[i]);
 printf("\n");
 continue;
 case EVENT_JOB_STATUS:
 statusJob = &(record->eventLog.jobStatusLog);
 printf("%sJob <%d> status changed to: ", ctime
(&record->eventTime), statusJob-> jobId);
 switch(statusJob->jStatus) {
 case JOB_STAT_PEND:
 printf("pending\n");
 continue;
 case JOB_STAT_RUN:
 printf("running\n");
 continue;
 case JOB_STAT_SSUSP:
 case JOB_STAT_USUSP:
 case JOB_STAT_PSUSP:
 printf("suspended\n");
 continue;
 case JOB_STAT_UNKWN:
 printf("unknown (sbatchd unreachable)\n");
 continue;
 case JOB_STAT_EXIT:
 printf("exited\n");
 continue;
 case JOB_STAT_DONE:
 printf("done\n");
 continue;
 default:
 printf("\nError: unknown job status %d\n", statusJob-
>jStatus);
 continue;
 }
 default:
 /* Only display a few selected event types */
 continue;

Programming wth LSBLIB

Platform LSF Programmer's Guide 83

 }
 }
 exit(0);
}

Tip:
In the above program, events that are of no interest are skipped. The job
status codes are defined in lsbatch.h. The lsb.acct file stores job
accounting information, which allows lsb.acct to be processed
similarly. Since currently there is only one event type
(EVENT_JOB_FINISH) in lsb.acct, processing is simpler than in the
above example.

Programming wth LSBLIB

84 Platform LSF Programmer's Guide

4
Advanced Programming Topics

C H A P T E R

Platform LSF Programmer's Guide 85

Load information for selected load indices
To get load information from the LIM: Depending on the size of your LSF cluster and the frequency at
which the ls_load() function is called, returning load information of all the hosts can produce
unnecessary overhead.

LSLIB provides ls_loadinfo() call that allows an application to specify a selected number of load
indices and get only those load indices that are of interest to the application.

List all load index names
Since LSF allows a site to install an ELIM to collect additional load indices, the names and the total number
of load indices are often dynamic and have to be found out at run time unless the application is only using
the built-in load indices.

Example
Below is an example routine that returns a list of all available load index names and the total number of
load indices.
#include <lsf/lsf.h>
char **getIndexList(int *listsize)
{
 struct lsInfo *lsInfo = (struct lsInfo *) malloc (sizeof
 (struct lsInfo));
 static char *nameList[268];
 static int first = 1;
 int i;
 if (first) {
 /* only need to do so when called for the first time */
 lsInfo = ls_info();
 if (lsInfo == NULL)
 return (NULL);
 first = 0;
 }
 if (listsize != NULL)
 *listsize = lsInfo->numIndx;
 for (i=0; i<lsInfo->numIndx; i++)
 nameList[i] = lsInfo->resTable[i].name;
 return (nameList);
}

The above code fragment returns a list of load index names currently installed in the LSF cluster. The
content of listSize will be modified to the total number of load indices. If ls_info() fails, then the
program returns NULL. The data structure returned by ls_info()contains all the load index names
before any other resource names. The load index names start with the 11 built-in load indices followed
by site external load indices (through ELIM).

Display selected load indices
By providing a list of load index names to an LSLIB function, you can get the load information about the
specified load indices.

ls_loadinfo()
The following example shows how you can display the values of the external load indices. This program
uses ls_loadinfo():
struct hostLoad *ls_loadinfo(resreq, numhosts, options,
fromhost, hostlist, listsize,
 namelist)

Advanced Programming Topics

86 Platform LSF Programmer's Guide

The parameters for this routine are:
char *resreq; Resource requirement
int *numhosts; Return parameter, number of hosts returned
int options; Host and load selection options
char *fromhost; Used only if DFT_FROMTYPE is set in options
char **hostlist; A list of candidate hosts for selection
int listsize; Number of hosts in hostlist
char ***namelist; Input/output parameter -- load index name list

ls_loadinfo() is similar to ls_load() except that ls_loadinfo() allows an application to supply
both a list of load indices and a list of candidate hosts. If both of namelist and hostlist are NULL, then it
operates in the same way as ls_load() function.

The parameter namelist allows an application to specify a list of load indices of interest. The function then
returns only the specified load indices. On return, this parameter is modified to point to another name
list that contains the same set of load index names. This load index is in a different order to reflect the
mapping of index names and the actual load values returned in the hostLoad array:

Example
#include <stdio.h>
#include <lsf/lsf.h>
/*include the header file with the getIndexList function here*/
main()
{
 struct hostLoad *load;
 char **loadNames;
 int numIndx;
 int numUsrIndx;
 int nHosts;
 int i;
 int j;
 loadNames = getIndexList(&numIndx);
 if (loadNames == NULL) {
 ls_perror("Unable to get load index names\n");
 exit(-1);
 }
 numUsrIndx = numIndx - 11; /* this is the total num of
 site defined indices*/
 if (numUsrIndx == 0) {
 printf("No external load indices defined\n");
 exit(-1);
 }
 loadNames += 11; /* skip the 11 built-in load index names */

 load = ls_loadinfo(NULL, &nHosts, 0, NULL, NULL, 0, &loadNames);
 if (load == NULL) {
 ls_perror("ls_loadinfo");
 exit(-1);
 }
 printf("Report on external load indices\n");
 for (i=0; i<nHosts; i++) {
 printf("Host %s:\n", load[i].hostName);
 for (j=0; j<numUsrIndx; j++)
 printf("index name: %s, value %5.0f\n",
 loadNames[j], load[i].li[j]);
 }
}

The above program uses the getIndexList() function described in the previous example program to
get a list of all available load index names. Sample output from the above program follows:
Report on external load indices
Host hostA:
 index name: usr_tmp, value 87
 index name: num_licenses, value 1
Host hostD:
 index name: usr_tmp, value 18
 index name: num_licenses, value 2

Advanced Programming Topics

Platform LSF Programmer's Guide 87

Parallel applications
LSF provides job placement and remote execution support for parallel applications. A master LIM’s host
selection or placement service can return an array of good hosts for an application. The application can
then use remote execution service provided by RES to run tasks on these hosts concurrently.

This section contains samples of how to write a parallel application using LSLIB.

ls_rtask() function
You can use of ls_rexecv() for remote execution. You can also use ls_rtask() for remote execution.
ls_rtask()and ls_rexecv() differ in how the server host behaves.

ls_rexecv() is useful when the server host does not need to do anything but wait for the remote task
to finish. After initiating the remote task, ls_rexecv() replaces the current program with the Network
I/O Server (NIOS) by calling execv(). The NIOS then handles the rest of the work on the server host:
delivering input/output between local terminal and remote task and exiting with the same status as the
remote task. ls_rexecv() is considered to be the remote execution version of the UNIX execv() system
call.

ls_rtask()
ls_rtask() provides more flexibility if the server host has to do other things after the remote task is
initiated. For example, the application may want to start more than one task on several hosts. Unlike
ls_rexecv(), ls_rtask() returns immediately after the remote task is started. The syntax of
ls_rtask() is:
int ls_rtask(host, argv, options)

The parameters are:
char *host; Name of the remote host to start task on
char **argv; Program name and arguments
int options; Remote execution options

options parameter
The options parameter is similar to that of the ls_rexecv() function. ls_rtask() returns the task ID
of the remote task which is used by the application to differentiate multiple outstanding remote tasks.
When a remote task finishes, the status of the remote task is sent back to the NIOS running on the local
host, which then notifies the application by issuing a SIGUSR1 signal. The application can then call
ls_rwait() to collect the status of the remote task. The ls_rwait() behaves in much the same way
as the wait(2) system call. Consider ls_rtask() as a combination of remote fork() and execv().

Tip:
Applications calling ls_rtask() must set up a signal handler for the
SIGUSR1 signal, or the application could be killed by SIGUSR1.

You need to be careful if your application handles SIGTSTP, SIGTTIN, or SIGTTOU. If handlers for these
signals are SIG_DFL, the ls_rtask() function automatically installs a handler for them to properly
coordinate with the NIOS when these signals are received. If you intend to handle these signals by yourself
instead of using the default set by LSLIB, you need to use the low level LSLIB function ls_stoprex()
before the end of your signal handler.

Advanced Programming Topics

88 Platform LSF Programmer's Guide

Example: Run tasks on many machines
This example program uses ls_rtask() to run rm -f /tmp/core on user specified hosts.
#include <stdio.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <lsf/lsf.h>
int main (int argc, char **argv)
{
 char *command[4];
 int numHosts;
 int i;
 int tid;
 if (argc <= 1) {
 printf("Usage: %s host1 [host2 ...]\n",argv[0]);
 exit(-1);
 }
 numHosts = argc - 1;
 command[0]="rm";
 command[1]="-f";
 command[2]="/tmp/core";
 command[3] = NULL;
 if (ls_initrex(numHosts, 0) < 0) {
 ls_perror("ls_initrex");
 exit(-1);
 }
 signal(SIGUSR1, SIG_IGN);
 /* Run command on the specified hosts */
 for (i=1; i<=numHosts; i++) {
 if ((tid = ls_rtask(argv[i], command, 0)) < 0) {
 fprintf(stderr, "lsrtask failed for host %s: %s\n",
 argv[i], ls_sysmsg());
 exit(-1);
 }
 printf("Task %d started on %s\n", tid, argv[i]);
 }
 while (numHosts) {
 LS_WAIT_T status;
 tid = ls_rwait(&status, 0, NULL);
 if (tid < 0) {
 ls_perror("ls_rwait");
 exit(-1);
 }

 printf("task %d finished\n", tid);
 numHosts--;
 }
 exit(0);
}

The above program sets the signal handler for SIGUSR1 to SIG_IGN. This causes the signal to be ignored.
It uses ls_rwait() to poll the status of remote tasks. You could set a signal handler so that it calls
ls_rwait() inside the signal handler.

Use the task ID to preform an operation on the task. For example, you can send a signal to a remote task
explicitly by calling ls_rkill().

To run the task on remote hosts one after another instead of concurrently, call ls_rwait() right after
ls_rtask().

Also note the use of ls_sysmsg() instead of ls_perror(), which does not allow flexible printing
format.

The above example program produces output similar to the following:
% a.out hostD hostA hostB
Task 1 started on hostD
Task 2 started on hostA

Advanced Programming Topics

Platform LSF Programmer's Guide 89

Task 3 started on hostB
Task 1 finished
Task 3 finished
Task 2 finished

Remote tasks are run concurrently, so the order in which tasks finish is not necessarily the same as the
order in which tasks are started.

Advanced Programming Topics

90 Platform LSF Programmer's Guide

Determine why job is suspended
It is frequently desirable to know the reasons why jobs are in a certain status. LSBLIB provides a function
to print such information. This section describes a routine that prints out why a job is in suspending
status.

lsb_suspreason()
When lsb_readjobinfo() reads a record of a pending job, the variables reasons and subreasons
contained in the returned struct jobInfoEnt call lsb_suspreason(). This gets the reason text
explaining why the job is still in pending state:
char *lsb_suspreason(reasons, subReasons, ld);

where reasons and subReasons are integer reason flags as returned by a lsb_readjobinfo() function
while ld is a pointer to the following data structure:
struct loadIndexLog {
 int nIdx; Number of load indices configured for the
 LSF cluster
 char **name; List of the load index names
};

Call the below initialization and code fragment after lsb_readjobinfo() is called.
/* initialization */
struct loadIndexLog *indices =(struct loadIndexLog *)malloc
(sizeof(struct loadIndexLog));
char *suspreason;
/* get the list of all load index names */
indices->name = getindexlist(&indices->nIdx);
/* get and print out the suspended reason */
suspreason = lsb_suspreason(job->reasons,job-> subreasons,indices);
printf("%s\n",suspreason);

Advanced Programming Topics

Platform LSF Programmer's Guide 91

Determine why job is pending
Use lsb_pendreason() to write a program to print out the reason why a job is in pending status.

lsb_pendreason()
char *lsb_pendreason (int numReasons, int *rsTb,
 struct jobInfoHead *jInfoH,
 struct loadIndexLog *ld, int clusterId)

• rsTb is a reason table in which each entry contains one pending reason.
• numReasons is an integer representing the number of reasons in the table.

jobInfoHead structure
struct jobInfoHead is returned by the lsb_openjobinfo_a() function. It is defined as follow:
struct jobInfoHead {
 int numJobs;
 LS_LONG_INT *jobIds;
 int numHosts; char **hostNames;
 int numClusters;
 char **clusterNames;
 int *numRemoteHosts;
 char ***remoteHosts;};

ld is the same struct as used in the above lsb_suspreason() function call.

This program is similar but different from the above program for displaying the suspending reason. Use
lsb_openjobinfo_a() to open the job information connection, instead of lsb_openjobinfo().
Because the struct jobInfoHead is needed as one of the arguments when calling the function
lsb_pendreason().
struct jobInfoHead *lsb_openjobinfo(jobId, jobName, user, queue, host, options);

The following initialization and code fragment show how to display the pending reason using
lsb_pendreason():
/* initialization */
char *pendreason;
struct loadIndexLog *indices =(struct loadIndexLog *) malloc(sizeof(struct
loadIndexLog));
struct jobInfoHead *jInfoH = (struct jobInfoHead *) malloc(sizeof(struct jobInfoHead));
/* open the job information connection with mbatchd */
jInfoH = lsb_openjobinfo_a(0, NULL, user, NULL, NULL, options);
/* gets the total number of pending job, exits if failure */
if (jInfoH==NULL) {
 lsb_perror("lsb_openjobinfo");
 exit(-1);
}
/* get the list of all load index names */
indices->name = getindexlist(&indices->nIdx);
/* get and print out the pending reasons */
pendreason = lsb_pendreason(job->numReasons,job-> reasonTb,jInfoH,indices,clusterId);
printf("%s\n",pendreason);

Tip:
Use ls_loadinfo() to get the list of all load index names.

Advanced Programming Topics

92 Platform LSF Programmer's Guide

Read lsf.conf parameters
You can refer to the contents of the lsf.conf file or even define your own site specific variables in the
lsf.conf file.

The lsf.conf file follows the Bourne shell syntax. It can be sourced by a shell script and set into your
environment before starting your C program. Use these variables as environment variables in your
program.

ls_readconfenv()
ls_readconfenv() reads the lsf.conf variables in your C program:
int ls_readconfenv(paramList, confPath)

where confPath is the directory in which the lsf.conf file is stored. paramList is an array of the
following data structure:
struct config_param {
 char *paramName; Name of the parameter, input
 char *paramValue; Value of the parameter, output
}

ls_readconfenv() reads the values of the parameters defined in lsf.conf and matches the names
described in the paramList array. Each resulting value is saved into the paramValue variable of the array
element matching paramName. If a particular parameter mentioned in the paramList is not defined in
lsf.conf, then on return its value is left NULL.

Example
The following example program reads the variables LSF_CONFDIR, MY_PARAM1, and MY_PARAM2 in
lsf.conf file and displays them on screen. Note that LSF_CONFDIR is a standard LSF parameter, while
the other two parameters are user site specific. The example program below assumes lsf.conf is in /
etc directory.
#include <stdio.h>
#include <lsf/lsf.h>
struct config_param myParams[] =
{
#define LSF_CONFDIR 0
 {"LSF_CONFDIR", NULL},
#define MY_PARAM1 1
 {"MY_PARAM1", NULL},
#define MY_PARAM2 2
 {"MY_PARAM2", NULL},
 {NULL, NULL}
};
main()
{
 if (ls_readconfenv(myParams, "/etc") < 0) {
 ls_perror("ls_readconfenv");
 exit(-1);
 }
 if (myParams[LSF_CONFDIR].paramValue == NULL)
 printf("LSF_CONFDIR is not defined in
 /etc/lsf.conf\n");
 else
 printf("LSF_CONFDIR=%s\n",myParams[LSF_CONFDIR].paramValue);
 if (myParams[MY_PARAM1].paramValue == NULL)
 printf("MY_PARAM1 is not defined in /etc/lsf.conf\n");
 else
 printf("MY_PARAM1=%s\n", myParams[MY_PARAM1].paramValue);
 if (myParams[MY_PARAM2].paramValue == NULL)
 printf("MY_PARAM2 is not defined\n");

Advanced Programming Topics

Platform LSF Programmer's Guide 93

 else
 printf("MY_PARAM2=%s\n", myParams[MY_PARAM2].paramValue);
 exit(0);
}

Initialize the paramValue parameter in the config_param data structure must be initialized to NULL. Next,
modify the paramValue to point to a result string if a matching paramName is found in the lsf.conf
file. End the array with a NULL paramName.

Advanced Programming Topics

94 Platform LSF Programmer's Guide

Signal handling in Windows
LSF uses the UNIX signal mechanism to perform job control. For example, the bkill command in UNIX
normally results in the signals SIGINT, SIGTERM, and SIGKILL being sent to the target job. Signal
handling code that exists in UNIX applications allows processes to shut down in stages. In the past, the
Windows equivalent to the bkill command was TerminateProcess(). It terminates the process
immediately and does not allow the process to release shared resources the way bkill does.

LSF version 3.2 has been modified to provide signal notification through the Windows message queue.
LSF now includes messages corresponding to common UNIX signals. This means that a customized
Windows application can process these messages.

For example, the bkill command now sends the SIGINT and SIGTERM signals to Windows applications
as job control messages. An LSF-aware Windows application can interpret these messages and shut down
neatly.

To write a Windows application that takes advantage of this feature, register the specific signal messages
that the application handles. Then modify the message loop to check each message before dispatching it.
Take the appropriate action if the message is a job control message.

The following examples show sample code that might help you to write your own applications.

Example: Job control in a Windows application
This example program shows how a Windows application can receive a Windows job control notification
from the LSF system.

Catching the notification messages involves:
• Registering the windows messages for the signals that you want to receive (in this case, SIGTERM).
• Look for the messages you want to catch in your GetMessage loop.

Tip:
Do not use DispatchMessage() to dispatch the message, since it is
addressed to the thread, not the window. This program displays
information in its main window, and waits for SIGTERM. Once SIGTERM
is received, it posts a quit message and exits. A real program could do
some cleanup when the SIGTERM message is received.

/* WINJCNTL.C */
#include <windows.h>
#include <stdio.h>
#define BUFSIZE 512
static UINT msgSigTerm;
static int xpos;
static int pid_ypos;
static int tid_ypos;
static int msg_ypos;
static int pid_buf_len;
static int tid_buf_len;
static int msg_buf_len;
static char pid_buf[BUFSIZE];
static char tid_buf[BUFSIZE];
static char msg_buf[BUFSIZE];
LRESULT WINAPI MainWndProc(HWND hWnd, UINT msg, WPARAM wParam, LPARAM lParam)
{
 HDC hDC;
 PAINTSTRUCT ps;
 TEXTMETRIC tm;
 switch (msg) {

Advanced Programming Topics

Platform LSF Programmer's Guide 95

 case WM_CREATE:
 hDC = GetDC(hWnd);
 GetTextMetrics(hDC, &tm);
 ReleaseDC(hWnd, hDC);
 xpos = 0;
 pid_ypos = 0;
 tid_ypos = pid_ypos + tm.tmHeight;
 msg_ypos = tid_ypos + tm.tmHeight;
 break;
 case WM_PAINT:
 hDC = BeginPaint(hWnd, &ps);
 TextOut(hDC, xpos, pid_ypos, pid_buf, pid_buf_len);
 TextOut(hDC, xpos, tid_ypos, tid_buf, tid_buf_len);
 TextOut(hDC, xpos, msg_ypos, msg_buf, msg_buf_len);
 EndPaint(hWnd, &ps);
 break;
 case WM_DESTROY:
 PostQuitMessage(0);
 break;
 default:
 return DefWindowProc(hWnd, msg, wParam, lParam);
 }
 return 0;
}
int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
LPSTR lpCmdLine, int nCmdShow)
{
 ATOM rc;
 WNDCLASS wc;
 HWND hWnd;
 MSG msg;
/* Create and register a windows class */
 if (hPrevInstance == NULL) {
 wc.style = CS_OWNDC | CS_VREDRAW | CS_HREDRAW;
 wc.lpfnWndProc = MainWndProc;
 wc.cbClsExtra = 0;
 wc.cbWndExtra = 0;
 wc.hInstance = hInstance;
 wc.hIcon = LoadIcon(NULL, IDI_APPLICATION);
 wc.hCursor = LoadCursor(NULL, IDC_ARROW);
 wc.hbrBackground = (HBRUSH) (COLOR_WINDOW + 1);
 rc = RegisterClass(&wc);
 }
/* Register the message we want to catch */
 msgSigTerm = RegisterWindowMessage("SIGTERM");
/* Format some output for the main window */
sprintf(pid_buf, "My process ID is: %d", GetCurrentProcessId());
pid_buf_len = strlen(pid_buf);
sprintf(tid_buf, "My thread ID is: %d", GetCurrentThreadId());
tid_buf_len = strlen(tid_buf);
sprintf(msg_buf, "Message ID is: %u", msgSigTerm);
msg_buf_len = strlen(msg_buf);
/* Create the main window */
 hWnd = CreateWindow("WinJCntlClass",
 "Windows Job Control Demo App",
 WS_OVERLAPPEDWINDOW,
 0,
 0,
 CW_USEDEFAULT,
 CW_USEDEFAULT,
 NULL,
 NULL,
 hInstance,
 NULL);
 ShowWindow(hWnd, nCmdShow);
/* Enter the message loop, waiting for msgSigTerm. When we get
it, just post a quit message */
 while (GetMessage(&msg, NULL, 0, 0)) {
 if (msg.message == msgSigTerm) {
 PostQuitMessage(0);
 } else {
 TranslateMessage(&msg);
 DispatchMessage(&msg);

Advanced Programming Topics

96 Platform LSF Programmer's Guide

 }
 }
 return msg.wParam;
}

Job control in a console application
Example

This example program shows how a console application can receive a Windows job control notification
from the LSF system.

Catching the notification messages involves:

• Registering the windows messages for the signals that you want to receive (in this case, SIGINT and
SIGTERM).

• Creating a message queue by calling PeekMessage (this is how Microsoft suggests console applications
should create message queues).

• Look for the message you want to catch enter a GetMessage loop.

Tip:
Do not DispatchMessage here, since you do not have a window to
dispatch to.

This program sits in the message loop. It is waiting for SIGINT and SIGTERM, and displays messages
when those signals are received. A real application would do clean-up and exit if it received either of these
signals.
/* CONJCNTL.C */
#include <windows.h>
#include <stdio.h>
#include <stdlib.h>
int main(void)
{
 DWORD pid = GetCurrentProcessId();
 DWORD tid = GetCurrentThreadId();
 UINT msgSigInt = RegisterWindowMessage("SIGINT");
 UINT msgSigTerm = RegisterWindowMessage("SIGTERM");
 MSG msg;
/* Make a message queue -- this is the method suggested by MS */
 PeekMessage(&msg, NULL, WM_USER, WM_USER, PM_NOREMOVE);
 printf("My process id: %d\n", pid);
 printf("My thread id: %d\n", tid);
 printf("SIGINT message id: %d\n", msgSigInt);
 printf("SIGTERM message id: %d\n", msgSigTerm);
 printf("Entering loop...\n");
 fflush(stdout);
 while (GetMessage(&msg, NULL, 0, 0)) {
 printf("Received message: %d\n", msg.message);
 if (msg.message == msgSigInt) {
 printf("SIGINT received, continuing.\n");
 } else if (msg.message == msgSigTerm) {
 printf("SIGTERM received, continuing.\n");
 }
 fflush(stdout);
 }
 printf("Exiting.\n");
 fflush(stdout);
 return EXIT_SUCCESS;
}

Advanced Programming Topics

Platform LSF Programmer's Guide 97

Advanced Programming Topics

98 Platform LSF Programmer's Guide

5
User-Level Checkpointing

C H A P T E R

Platform LSF Programmer's Guide 99

User-level checkpointing
LSF provides a method to checkpoint jobs on systems that do not support kernel-level checkpointing
called user-level checkpointing. To implement user-level checkpointing, you must have access to your
applications object files (.o files), and they must be re-linked with a set of libraries provided by LSF. This
approach is transparent to your application, its code does not have to be changed and the application does
not know that a checkpoint and restart has occurred.

By default, the checkpoint libraries are installed in LSF_LIBDIR and echkpnt and erestart are installed
in the LSF_SERVERDIR.

Optionally, third party checkpoint and restart implementations can be used with LSF. You must use the
echkpnt and erestart supplied with the implementations. To avoid overwriting the echkpnt and
erestart supplied by LSF, install any third party implementations in a separate directory by defining
LSB_ECHKPNT_METHOD and LSB_ECHKPNT_METHOD_DIR as environment variables or in
lsf.conf.

Limitations
There are restrictions to the use of the current implementation of the checkpoint library for user-level
checkpointing. These are:

• The checkpointed process can only be restarted on hosts of the same architecture and with the same
operating system as the host on which the checkpoint was created.

• Only single process jobs can be checkpointed.
• Processes with open pipes and sockets can be checkpointed but may not properly restart as the pipes

and sockets are not re-opened on restart.
• If a process has stdin, stdout, or stderr as open pipes, all data in the pipes is lost on restart.
• The checkpointed process cannot be operating on a private stack when the checkpoint happens.
• The checkpointed process cannot use internal timers.
• The checkpointed program must be statically linked.

SIGHUP is used internally to implement checkpointing. Do not use this signal in programs to be
checkpointed.

User-Level Checkpointing

100 Platform LSF Programmer's Guide

User-level checkpointable jobs
Building a user-level checkpointable job involves re-linking your application object files (.o files) with the
LSF checkpoint startup routine and library. LSF also provides a set of replacement linkers that call the
standard linkers on your platform with the correct options to build a checkpointable application. LSF
provides:

• libckpt.a, the checkpoint library
• ckpt_crt0.o, the checkpoint startup routine
• ckpt_ld the checkpoint linker for C language applications
• ckpt_ld_f the checkpoint linker for Fortran applications

Library
The checkpoint library replaces low-level system calls such as open(), close(), and dup(), and contains
signal handlers and routines to internally implement checkpointing.

Startup routine
The startup routine replaces the language-level module that calls main(), sets the checkpoint signal
handler, and initializes internal data structures used to record job information.

Linkers
The checkpoint linkers are used to re-link your application with the checkpoint library and startup routine.
They are shell scripts that call the standard linkers on your operating system with the correct options. The
scripts are designed to use the native compilers on most platforms. Use ckpt_ld for C language
applications and ckpt_ld_f for Fortran applications. The following compilers are supported by the
ckpt_ld replacement linker:

Operating System Compiler

AIX cc

HP-UX c89

IRIX 6.2 For IRIX 6.2 you need to use cc with the -non_shared -mips2 -32 compiler options,
and ckpt_ld with -mips2 -32 linker options. For example, to compile and link
my_job.c:

% cc -c my_job.c -non_shared -mips2 -32

% ckpt_ld -o my_job my_job.o -mips2 -32

OSF1 cc

Solaris cc (SUN C compiler) and gcc

SunOS gcc

User-Level Checkpointing

Platform LSF Programmer's Guide 101

Re-Link user-level applications
To re-link your application, you must have access to the object files (.o files) for your application.

1. If you are using third party applications, the vendor must supply you with the object files.
2. If you are building your own applications you need to first compile them without linking.

C++ applications need to be modified before re-linking.

C Language applications
• To compile a C language application without linking, run the compiler with the -c option instead of

the -o option. For example, to compile an object file for my_job:
% cc -c my_job.c

• To re-link a C language object file use the supplied LSF replacement linker ckpt_ld. For example, to
re-link an object file for an application called my_job:
% ckpt_ld -o my_job my_job.o

Fortran applications
• To compile a Fortran application without linking, run the compiler with the -c option instead of the

-o option. For example, to compile an object file for my_job:
% f77 -c my_job.f

• To re-link a Fortran object file use the supplied LSF replacement linker ckpt_ld_f. For example, to
re-link an object file for an application called my_job:
% ckpt_ld_f -o my_job my_job.o

User-Level Checkpointing

102 Platform LSF Programmer's Guide

Troubleshoot user-level re-linking
If an error is reported when using ckpt_ld to link your application with the checkpoint libraries:

1. Follow the troubleshooting steps to isolate the problem.
2. If you cannot resolve your errors, call Platform Customer Support.

Note:
The ckpt_ld replacement linker is designed for C language
applications, if your application was created using C++, you need to
modify your files before re-linking.

Replacement linkers
The replacement linkers are shell scripts designed to use the standard compilers on your OS with the
correct options to build a checkpointable executable.

The linkers do the following:

• Include the startup routine by replacing the module that calls main() with ckpt_crt0.o
• Include the checkpoint library by adding libckpt.a
• Force as much static linking as possible

User-Level Checkpointing

Platform LSF Programmer's Guide 103

Resolve re-linking errors
To resolve linking errors, you need to step through the linking process performed by the linker. To do
this, perform the following procedures:

1. View the linking script
2. Include the startup library
3. Include the checkpoint library
4. Force static linking

View the linking script
• View the low-level linking script by running your linker in verbose mode.

This will display the libraries called by your linker. Use this information to help determine which files
need to be replaced.

Refer to the man page supplied with your compiler to determine the verbose mode switch. The
following table lists the verbose mode switch for some operating systems.

Operating System Verbose Mode Switch

SUNOS/Solaris -#

AIX -v

IRIX -show -non_shared

HP-UX -v

OSF1 -v -non_shared

For example, running the Sparc C Compiler 3.0 with the verbose switch, -#, for my_job.o:
% cc -o -# my_job my_job.o

/usr/ccs/bin/ld /opt/SUNWspro/SC3.0/lib/crti.o /opt/SUNWspro/SC3.0/lib/crt1.o /opt/
SUNWspro/SC3.0/lib/__fstd.o /opt/SUNWspro/SC3.0/lib/values-xt.o -o my_job my_job.o
-Y P,/opt/SUNWspro/SC3.0/lib:/usr/ccs/lib:/usr/lib -Qy -lc /opt/SUNWspro/SC3.0/lib/
crtn.o

Include the startup library
Add the startup library:

• Replace the library that calls main() with ckp_crt0.o. To determine which library calls main(),
run nm for all libraries listed in the low-level linking script. For example:
% nm /opt/SUNWspro/SC3.0/lib/crt1.o | grep -i main

Replace /opt/SUNWspro/SC3.0/lib/crt1.o with /usr/share/lsf/lib/ckpt_crt0.o:
/usr/ccs/bin/ld /opt/SUNWspro/SC3.0/lib/crti.o /usr/share/lsf/lib/ckpt_crt0.o /opt/
SUNWspro/SC3.0/lib/__fstd.o /opt/SUNWspro/SC3.0/lib/values-xt.o -o my_job my_job.o
-Y P,/opt/SUNWspro/SC3.0/lib:/usr/ccs/lib:/usr/lib -Qy -lc /opt/SUNWspro/SC3.0/lib/
crtn.o

User-Level Checkpointing

104 Platform LSF Programmer's Guide

Include the checkpoint library
• Add libckpt.a after language-specific libraries and before system-specific libraries. For example:

/usr/ccs/bin/ld /opt/SUNWspro/SC3.0/lib/crti.o /usr/share/lsf/lib/ckpt_crt0.o /opt/
SUNWspro/SC3.0/lib/__fstd.o /opt/SUNWspro/SC3.0/lib/values-xt.o -o my_job my_job.o /
usr/share/lsf/lib/libckpt.a -Y P,/opt/SUNWspro/SC3.0/lib:/usr/ccs/lib:/usr/lib -Qy
-lc /opt/SUNWspro/SC3.0/lib/crtn.o

Force static linking
• Force your application to link statically to as many libraries as possible.

Refer to the documentation supplied with your compiler for more information about static linking.
For example, on Solaris the -Bstatic and -Bdynamic compiler switches are used to force modules
to statically link wherever possible:
/usr/ccs/bin/ld -Bstatic /opt/SUNWspro/SC3.0/lib/crti.o /usr/share/lsf/lib/
ckpt_crt0.o /opt/SUNWspro/SC3.0/lib/__fstd.o /opt/SUNWspro/SC3.0/lib/values-xt.o
-o my_job my_job.o /usr/share/lsf/lib/libckpt.a -Y P,/opt/SUNWspro/SC3.0/lib:/usr/
ccs/lib:/usr/lib -Qy -lc -Bdynamic -ldl -Bstatic /opt/SUNWspro/SC3.0/lib/crtn.o

User-Level Checkpointing

Platform LSF Programmer's Guide 105

Re-Link C++ applications
To use the replacement linker on C++ applications, the module that calls main() must be extracted from
its library file and included in the linking script.

The following example Verilog application is written in C++ and being re-linked on Solaris. It reports
an undefined symbol main in libckpt.a:
/usr/ccs/bin/ld /opt/SUNWspro/SC3.0.1/lib/crti.o /opt/SUNWspro/SC3.0.1/lib/crt1.o /
opt/SUNWspro/SC3.0.1/lib/cg89/__fstd.o /opt/SUNWspro/SC3.0.1/lib/values-xt.o -Y P,lxx/
lib:opt/SUNWspro/SC3.0.1/lib:/usr/ccs/lib:/usr/lib -o verilog verilog.o verilog/lib/
*.o lib/libcman.a -L/usr/openwin/lib -lXt -X11 lib/libvoids.a -lm -lgen lxx/lib/
_main.o -lC -lC_mtstubs -lsocket -lnsl -lintl -w -c -ldl /opt/SUNWspro/lib/crtn.o

1. To determine which library contains main(), run nm for all libraries listed in the low-level linking
script. For example:
% nm lib/libvoids.a | grep main

2. This module must be extracted using:
% ar x lib/libvoids.a main.o

3. The main.o object file must be included in the re-linking script to generate a checkpointable
executable:
/usr/ccs/bin/ld /opt/SUNWspro/SC3.0.1/lib/crti.o /opt/SUNWspro/SC3.0.1/lib/crt1.o /
opt/SUNWspro/SC3.0.1/lib/cg89/__fstd.o /opt/SUNWspro/SC3.0.1/lib/values-xt.o -Y
P,lxx/lib:opt/SUNWspro/SC3.0.1/lib:/usr/ccs/lib:/usr/lib -o verilog main.o
verilog.o verilog/lib/*.o lib/libcman.a -L/usr/openwin/lib -lXt -X11 lib/libvoids.a
-lm -lgen lxx/lib/_main.o -lC -lC_mtstubs -lsocket -lnsl -lintl -w -c -ldl /opt/
SUNWspro/lib/crtn.o

User-Level Checkpointing

106 Platform LSF Programmer's Guide

6
External Scheduler Plugins

C H A P T E R

Platform LSF Programmer's Guide 107

About external scheduler plugins
The default scheduler plugin modules provided by LSF may not satisfy all the particular scheduling policies
you need. You can use the LSF scheduler plugin API to customize existing scheduling policies or
implement new ones that can operate with existing LSF scheduler plugin modules.

• Certain scheduling policies can be implemented based on the specific requirements of your site.
• Customized policies can be incorporated with other LSF features to provide seamless behavior. Your

custom scheduling policy can influence, modify, or override LSF scheduling decisions.
• Your plugin can take advantage of the load and host information already maintained by LSF.
• The scheduler plugin architecture is fully external and modular; new scheduling policies can be

prototyped and deployed without having to change the compiled code of LSF.

Sample plugin code
Sample code for an example external scheduler plugin, and information about writing, building, and
configuring your own custom scheduler plugin is located in:
LSF_TOP/8.0/misc/examples/external_plugin/

External Scheduler Plugins

108 Platform LSF Programmer's Guide

Write an external scheduler plugin
Scheduling policies can be applied into two phases of a scheduling cycle: match phase and allocation
phase.

Match/sort phase
In match phase, scheduler prepares candidate hosts for jobs. All jobs with the same resource requirements
share the same candidate hosts. The plugin at this phase can decide which host is eligible for future
consideration. If the host is not eligible for the job, it is removed from the candidate host list. At the same
time, the plugin associates a pending reason with the removed host, which will be shown by the bjobs
command.

Finally, the plugin can decide which candidate host should be considered first in future.

The plugin in this phase provides two functions:

Match():

Doing filtering on candidate hosts
Sort():

Doing ordering on candidate hosts

Input and output of match phase
The input/output of this phase are candHostGroupList and PendingReasonTable. Candidate hosts are
divided into several groups. Jobs can only use hosts from one of candHostGroup in the
candHostGroupList.

The plugin filters the candHostGroups in candHostGroupList, removes the ineligible hosts from the
group, and sets the pending reason in the PendingReasonTable.

Plugin Invocation
Since each plugin does match/sort based on certain resource requirements, it decides which host is
qualified and which should be first based on certain kinds of resource requirements. The scheduler
organizes the Match() and Sort() into the handler of each resource requirement.

After the handler is created, all that plugin needs to do is to register it to scheduler framework. Then it is
the scheduler framework's responsibility to call each handler doing match and sort and handling each
specific resource requirement.

When the plugin registers the handler, a resource criteria type is associated with the handler. The Criteria
Type indicates which kind of resource requirement the handler is handling.

Handler functions
Together with Match() and Sort(), there are other two handler functions:

New()

Gets the user-specific resource requirements string, parses it, creates the handler-
specific data, and finally attaches the data to related resource requirement.

Free()

External Scheduler Plugins

Platform LSF Programmer's Guide 109

Frees the handler-specific data when not needed.
See sched_api.h for details.

Implement match phase
See sch.mod.matchexample.c for details.

1. Define resource criteria type, handler-specific data, and user specific pending reason, as required.
2. Implement handler functions.
3. Implement initialization functions.

Step 1.
• Define resource criteria type, handler-specific data, and user specific pending reason.

The criteria type indicates the kind of resource requirement the handler is handling. Usually, the
external plugin handler only handles external resource requirement (string) which is specified through
bsub command using the -extsched option.

In order to use -extsched, you must set LSF_ENABLE_EXTSCHEDULER=y in lsf.conf.

New() function parses the external resource requirement string, and stores the parsed resource to
handler-specific data.

handler-specific data is a container used to store any data which is needed by the handler.

If the plugin needs to set a user specific pending reason, a pending reason ID needs to be defined. See
lsb_reason_set() in sched_api.h for more information.

Step 2.
Implement handler functions: New(), Free(), Match(), and Sort().

1. New():
a) Get external resource requirement message (lsb_resreq_getextresreq()).
b) Find my message, and parse it.
c) Create handler-specific data, and store parsing result in it.
d) Create a key, (in example, just use external message as a key).
e) Attach the handler-specific data (lsb_resreq_setobject()).

2. Free():

Free whatever in handler-specific data.
3. Match(): (handler-specific data is passed in)

a) Go through all candidate host groups.(lsb_cand_getnextgroup())
b) Look at candidate host in each group. If a host is not eligible, remove it from group and set pending

reason (lsb_cand_removehost(), lsb_reason_set()).
4. Sort(): (handler-specific data is passed in)

a) Go through all candidate host groups (lsb_cand_getnextgroup()).
b) Sort the candidate hosts in the group.

External Scheduler Plugins

110 Platform LSF Programmer's Guide

Step 3.
1. Implement sched_init().

This function is the plugin initialization function, which is called when the plugin is loaded.
2. Create handler, and register it to scheduler framework (lsb_resreq_registerhandler).

Allocation phase
In allocation phase, the scheduler makes allocation decisions for each job. It assigns host slot, memory,
and other resources to the job. It also checks if the allocation satisfies all constrains defined in
configuration, such as queue slot limit, deadline for the job, etc.

Your plugin at this phase can modify allocation decisions made by another LSF module.

Limitations or allocation modifications

1. External plugin is only allowed to change the host slot distribution, i.e., reduce/
increase the slot usage on certain host, add more hosts to the allocation. Other
resource usage modification is not supported now.

2. External plugin is not allowed to remove a host from an allocation.
3. External plugin cannot change reservation in an allocation.

Input and output of allocation phase
INPUT:

job: current job we are making allocation for.

candHostGroupList: (see section 2.1.1)

pendingReasonTable: (see section 2.1.1)
INPUT/OUTPUT:

alloc: LSF allocation decision is passed in, and plugin will modify it, and make its own
allocation decision on top of it.

Invocation
At allocation phase, the plugin needs to provide a callback function, AllocatorFn, which adjusts allocation
decisions made by LSF. This function must be registered to the scheduler framework. The scheduler
framework calls it after LSF makes a decision for the job.

In addition to AllocatorFn(), the plugin may also need to provide a New() function in the handler for the
user-specific resource criteria, if there are any. If there is no such user-specific resource requirement,
AllocatorFn() is applied to all jobs.

Allocation phase
See sch.mod.allocexample.c for details..

1. Optional.

Define criteria type for external resource requirements.
2. Optional.

External Scheduler Plugins

Platform LSF Programmer's Guide 111

Implement New() function in the handler for the resource criteria type.
3. Implement callback AllocatorFn():

a) Check if the allocation has the type of SCH_MOD_DECISION_DISPATCH. If not, just return
(lsb_alloc_type()).

b) Optional. Get external message, and decide whether to continue (lsb_job_getextresreq()).
c) Get current slot distribution in allocation and availability information for all candidate hosts

(lsb_alloc_gethostslot()).
d) Modify the allocation (lsb_alloc_modify()).

Use lsb_alloc_modify() gradually, not for big changes, because lsb_alloc_modify() may return
FALSE due to conflict with other scheduling policies, such as user slot limits on host.

In sch.mod.allocexample.c, slots are adjusted in small steps.
4. Implement sched_init(). This function is the plugin initialization function, which is called when the

plugin is loaded.
a) Optional. Create a handler for resource requirement processing, and register it to the scheduler

framework (lsb_resreq_registerhandler()).
b) Register the allocation callback AllocatorFn() (lsb_alloc_registerallocator()).

External Scheduler Plugins

112 Platform LSF Programmer's Guide

Build the external scheduler plugin.
1. Set INCDIR and LIBDIR in the makefile to point to the appropriate directories for the LSF include

files and libraries.
2. Create a Make.def for the platform on which you want to build the plugin. The Make.def should

be located in the LSF_MISC directory at the same level of Make.misc.

All Make.def templates for each platform are in config directory. For example, if you want run
examples on Solaris2.6, use following command to create Make.def:

ln -s config/Make.def.sparc-sol2 Make.def

You can also change the file, if necessary.
3. Run make in current directory.

External Scheduler Plugins

Platform LSF Programmer's Guide 113

Enable and use the external scheduler plugin
Use sch.mod.matchexample.c as an example.

1. Copy schmod_matchexample.so to LSF_LIBDIR (defined in lsf.conf).
2. Configure the plugin in lsb.modules; add following line after all LSF modules:

schmod_matchexample () ()

3. badmin mbdrestart

4. Use bsub to submit a job.

If external message is needed, use the option -extsched.

For example:
bsub -n 2 -extsched "EXAMPLE_MATCH_OPTIONS=goedel" -R "type==any" sleep 1000

In order to use -extsched, you must set LSF_ENABLE_EXTSCHEDULER=y in lsf.conf.
5. Use bjobs to look at external message, and customized pending reason.

--
./bjobs -lp
Job <224>, User <yhu>, Project <default>, Status <PEND>, Queue <short>, Job Pri
 ority <500>, Command <sleep 1000>
Thu Nov 29 15:08:05 2009: Submitted from host <goedel> with hold, CWD <$HOME/LSF4_1/
 utopia/lsbatch/cmd>, Requested Resources <type==any>;
 PENDING REASONS:
 Load information unavailable: pauli, varley, peano, bongo;
 Closed by LSF administrator: curie, togni;
 Customized pending reason number 20002: goedel;
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 SCHEDULING PARAMETERS:
           r15s   r1m  r15m   ut      pg    io   ls    it    tmp    swp    mem
 loadSched   -     -     -     -       -     -    -     -     -      -      -  
 loadStop    -     -     -     -       -     -    -     -     -      -      -  
          total_jobs mbd_size 
 loadSched        -        -  
 loadStop         -        -  
 EXTERNAL MESSAGES:
 MSG_ID FROM       POST_TIME      MESSAGE                             ATTACHMENT 
 0          -             -                        -                      -     
 1      yhu        Nov 29 15:08   EXAMPLE_MATCH_OPTIONS=goedel            N     
                                 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

External Scheduler Plugins

114 Platform LSF Programmer's Guide

Scheduler API reference summary
See the following API man pages for details:

• AllocatorFn.3
• RsrcReqHandler_FreeFn.3
• RsrcReqHandler_MatchFn.3
• RsrcReqHandler_NewFn.3
• RsrcReqHandler_SortFn.3
• _RsrcReqHandlerType.3
• candHost.3
• candHostGroup.3
• hostSlot.3
• lsb_alloc_gethostslot.3
• lsb_alloc_modify.3
• lsb_alloc_registerallocator.3
• lsb_alloc_type.3
• lsb_cand_getavailslot.3
• lsb_cand_getnextgroup.3
• lsb_cand_removehost.3
• lsb_job_getaskedslot.3
• lsb_job_getextresreq.3
• lsb_job_getrsrcreqobject.3
• lsb_reason_set.3
• lsb_resreq_getextresreq.3
• lsb_resreq_registerhandler.3
• lsb_resreq_setobject.3

External Scheduler Plugins

Platform LSF Programmer's Guide 115

Debug the external scheduling plugin
1. mbschd.log.goedel will show which plugins are successfully loaded. If loading fails, the error

message is also logged.
2. Use debug tool to debug plugins, such gdb, dbx, etc. Attach to mbschd, and set breakpoint in the

functions of plugin.

External Scheduler Plugins

116 Platform LSF Programmer's Guide

A
Tutorials

Simple batch job

/**
* LSBLIB -- Examples
*
* lsb_submit()
* Submit command as an lsbatch job using the simplest
* version of lsb_submit()
* Note: there is no error checking in this program.
**/
#include <lsf/lsbatch.h>
/* Use the header file lsbatch.h when writing programs that use the LSF API. */
#include "combine_arg.h"
/* To use the function "combine_arg" to combine arguments on the command line include
its header file "combine_arg.h". */
int main(int argc, char **argv)
{
int i;
struct submit req;
/* req holds the job specification. */
memset(&req, 0, sizeof(req));
/* initializes req to avoid core dump */
struct submitReply reply;
/* reply holds the result of submission. */
lsb_init(argv[0]);
/* Before using any batch library function, call lsb_init(). lsb_init() initializes
the configuration environment. */
/* Set up the job’s specifications by initializing some of the flags in lsb_submit
(). */
req.options = 0;
req.options2 = 0;
/* Set options and options2 to 0 to indicate that no options are selected. options are
used by lsb_submit() to indicate modifications to the job submission action to be
taken.*/
for (i = 0; i < LSF_RLIM_NLIMITS; i++)
 req.rLimits[i] = DEFAULT_RLIMIT;
/* Initialize resource limits to default limits (no limit).*/
req.numProcessors = 1;
req.maxNumProcessors = 1;
/* Initialize the initial number and the maximum number of processors needed by a
(parallel) job.*/
req.beginTime = 0;
/* To dispatch a job without delay assign 0 to beginTime..
req.termTime = 0;

A P P E N D I X

Platform LSF Programmer's Guide 117

To have no terminating deadlines, assign 0 to termTime. */
req.command = combine_arg(argc,argv);
/* Initialize the command line by assigning combine_arg to command. */
lsb_submit(&req, &reply);
/*Call lsb_submit() to submit the job with specifications. */
 exit(0);
} /* main */

Batch job with error checking

/**
* LSBLIB -- Examples
*
* lsb_submit()
* Use lsb_submit() in the simplest way with error
* checking
***/
#include <stdlib.h>
#include <stdio.h>
#include <lsf/lsbatch.h>
#include "combine_arg.h"
 /* To use the function "combine_arg" to combine arguments on the command
line include its header file "combine_arg.h". */
int main(int argc, char **argv)
{
 int i;
 struct submit req; /* job specifications */
 memset(&req, 0, sizeof(req)); /* initializes req */
 struct submitReply reply; /* results of job submission */
 int jobId; /* job ID of submitted job
*/
/* Check the return value of lsb_init() to ensure that the initialization of LSBLIB
is successful. */
if (lsb_init(argv[0]) < 0) {
sb_perror("simbsub: lsb_init() failed");
 l exit(-1);
 }
/* Check if the input is in the correct format: "./simbsub COMMAND [ARGUMENTS]"
(simbsub is the name of this executable program). */
if (argc < 2) {
 fprintf(stderr, "Usage: simbsub command\n");
 exit(-1);
 }
 req.options = 0; /* Set options and options2 to 0 */
 req.options2 = 0; /* to indicate no options are selected */
 req.beginTime = 0; /* Set beginTime to 0 to dispatch job
without delay */
 req.termTime = 0; /* Set termTime to 0 to indicate no
terminating deadline */
/* Set Resource limits to default*/
for (i = 0; i < LSF_RLIM_NLIMITS; i++)
 req.rLimits[i] = DEFAULT_RLIMIT;
/*Initialize the initial number and maximum number of processors needed by a (parallel)
job*/
req.numProcessors = 1;
req.maxNumProcessors = 1;
 req.command = combine_arg(argc,argv); /*
Initialize command line
of job */
printf("--\n");
 jobId = lsb_submit(&req, &reply); /*submit the
job with
specifications */
 exit(0);
} /* main */

Tutorials

118 Platform LSF Programmer's Guide

Batch Job with lsb_submit()

/**
* LSBLIB -- Examples
*
* lsb_submit() usage that is equivalent to "bsub" command * with no options
**/
#include <stdlib.h>
#include <stdio.h>
#include <lsf/lsbatch.h>
#include "combine_arg.h"
 /* To use the function "combine_arg" to combine arguments on the command
line include its header file "combine_arg.h". */
int main(int argc, char **argv)
{
 int i;
 struct submit req; /* job specifications */
 memset(&req, 0, sizeof(req)); /* initializes req */
 struct submitReply reply; /* results of job submission */
 int jobId; /* job ID of submitted job */
 /* initialize LSBLIB and get the configuration environment */
 if (lsb_init(argv[0]) < 0) {
 lsb_perror("simbsub: lsb_init() failed");
 exit(-1);
 }
 /* check if input is in the right format: "./simbsub COMMAND ARGUMENTS" */
 if (argc < 2) {
 fprintf(stderr, "Usage: simbsub command\n");
 exit(-1);
 }
/ * In order to synchronize the job specification in lsb_submit() to the default used
by bsub, the following variables are defined. (By default, bsub runs the job in 1
processor with no resource limit.) */
/*Resource limits are initialized to default limits (no limit).*/
for (i = 0; i < LSF_RLIM_NLIMITS; i++)
 req.rLimits[i] = DEFAULT_RLIMIT;
/* Initialize the initial number and maximum number of processors needed by a
(parallel) job. */
req.numProcessors = 1;
req.maxNumProcessors = 1;
 req.options = 0; /* Set options and options2 to 0 */
 req.options2 = 0; /* Select no options is selected */
 req.beginTime = 0; /* Dispatch job without delay */
 req.termTime = 0; /* Use no terminating deadline */
 req.command = combine_arg(argc,argv); /* job command line */
 printf("---\n");
 jobId = lsb_submit(&req, &reply); /* submit the job
with specifications */
 if (jobId < 0) /* if job submission fails, lsb_submit returns
-1 */
switch (lsberrno) { /* and sets lsberrno to indicate the error */
 case LSBE_QUEUE_USE:
 case LSBE_QUEUE_CLOSED:
 lsb_perror(reply.queue);
 exit(-1);
 default:
 lsb_perror(NULL);
 exit(-1);
 }
 exit(0);
} /* main */

Batch job for a specific queue

Tutorials

Platform LSF Programmer's Guide 119

/**
* LSBLIB -- Examples
*
* bsub -q
* This program is equivalent to using the "bsub -q queue_name" * command
**/
#include <stdio.h>
#include <stdlib.h>
#include <lsf/lsbatch.h>
#include "combine_arg.h"
 /* To use the function "combine_arg" to combine arguments on the command
line include its header file "combine_arg.h". */
int main(int argc, char **argv)
{
 int i;
 struct submit req; /* job specifications */
 memset(&req, 0, sizeof(req)); /* initializes req */
 struct submitReply reply; /* results of job submission */
 int jobId; /* job ID of submitted job */
/* Initialize LSBLIB and get the configuration environment */
 if (lsb_init(argv[0]) < 0) {
 lsb_perror("simbsub: lsb_init() failed");
 exit(-1);
 }
/*Check if input is in the right format: "./simbsub COMMAND ARGUMENTS" */
 if (argc < 2) {
 fprintf(stderr, "Usage: simbsub command\n");
exit(-1);
 }
req.options |= SUB_QUEUE;
/* SUB_QUEUE indicates that the job is dispatched to a specific queue. */
req.queue="normal";
/* Queue name is given by user (e.g. "normal")
The queue name has to be valid (check the queue using bqueues) */
 req.options2 = 0;
 for (i = 0; i < LSF_RLIM_NLIMITS; i++) /* resources limits */
 req.rLimits[i] = DEFAULT_RLIMIT;
 req.beginTime = 0; /* specific dispatch date and time */
 req.termTime = 0; /* specifies job termination deadline */
 req.numProcessors = 1; /* initial num of processors needed by a (parallel) job */
 req.maxNumProcessors = 1; /*max num of processors required to run the parallel job
*/
 req.command = combine_arg(argc,argv); /* command line of job */
 jobId = lsb_submit(&req, &reply); /* submit the job with specifications */
 if (jobId < 0) /* if job submission fails, lsb_submit returns -1 */
switch (lsberrno) { /* and sets lsberrno to indicate the error */
case LSBE_QUEUE_USE:
case LSBE_QUEUE_CLOSED:
 lsb_perror(reply.queue);
 exit(-1);
default:
 lsb_perror(NULL);
 exit(-1);}
 exit(0);
}
 /* main */

Supplementary files

/* combine_arg.h */
#include <stdlib.h>
#include <string.h>
/* combine_arg.h */
char *combine_arg(int c,char **arg); /* combine the arguments on command line */
/* combine_arg.c */
/* combine the arguments on command line */
#include "combine_arg.h"

Tutorials

120 Platform LSF Programmer's Guide

char *combine_arg(int c,char **arg)
{
 int i,j=0;
 char *s;
 /* counts the number of characters in the arguments */
 for (i=1;i<c;i++)
 j+=strlen(arg[i])+1;
 /* paste the arguments */
 s = (char *)malloc(j*sizeof(char));
 memset (s, "\0", sizeof(s));
 strcat(s,arg[1]);
 for (i=2;i<c;i++)
 {
 strcat(s," ");
 strcat(s,arg[i]);
 }
 return s;
}
/* submit_cmd.h */
#include <lsf/lsbatch.h>
#include "combine_arg.h"
int submit_cmd(struct submit *req, struct submitReply *reply, int c, char **arg);
/* submit_cmd.c */
/* submit a job with specifications (without error checking) */
#include "submit_cmd.h"
int submit_cmd(struct submit *req, struct submitReply *reply, int c, char **arg)
{
 int i;
 lsb_init(arg[0]);
 for (i = 0; i < LSF_RLIM_NLIMITS; i++)
 req->rLimits[i] = DEFAULT_RLIMIT;
 req->numProcessors = 1;
 req->maxNumProcessors = 1;
 req->options = 0;
 req->options2 = 0;
 req->command = combine_arg(c,arg);
 req->beginTime = 0;
 req->termTime = 0;
 return lsb_submit(req, reply);
}

Tutorials

Platform LSF Programmer's Guide 121

Tutorials

122 Platform LSF Programmer's Guide

B
Common Platform LSF Functions

Job related functions

Delete a job
To delete a job, send a KILL signal to the job by using lsb_signaljob() or use lsb_deletejob() to
kill the job.
int lsb_deletejob(jobId, times, options)
LS_LONG_INT jobId;
int times;
int options;Set to 0

lsb_deletejob() deletes the job after a specific number of runs. The variable times represents the
number of runs .

View job output
The output from an LSF job is normally not available until the job is finished. However, LSBLIB provides
lsb_peekjob() to retrieve the name of a job file for the job specified by jobId.

To get the job output and job error files, append .out or .err to the end of the base job file name from
lsb_peekjob().

Only the job owner can use lsb_peekjob() to see job output.
char *lsb_peekjob(jobId)
LS_LONG_INT jobId; Job ID

On success, the job file name is returned. On failure, it returns NULL and sets lsberrno to indicate the
error.

The next call reuses the storage for the file name.

Move jobs from one host to another
Use lsb_mig() to migrate a job from one host to another.
int lsb_mig(mig, badHostIdx);
struct submig *mig; Job to be migrated
int *badHostIdx;

A P P E N D I X

Platform LSF Programmer's Guide 123

If the call fails, (**askedHosts)[*badHostIdx] is not a host known to the LSF system.

lsf.batch.h defines the struct submig to hold the details of the job to be migrated. It has the following
fields:
struct submig {
 LS_LONG_INT jobId; Job ID to be migrated
 int options;
 int numAskedHosts; Number of hosts supplied for migration
 char **askedHosts; Array of pointers to the hosts
};

For the values of options, see the options field of struct submit used in lsb_submit() function call.

On success, lsb_mig() returns 0. On failure, it returns -1 and sets lsberrno to the usual error.

External job message and data exchange
lsb_postjobmsg() sends an external message/status to a job. It can also transfer an attached data file
through a TCP connection. The posted messages and attached data files can be read from mbatchd by
invoking lsb_readjobmsg().
int lsb_postjobmsg(jobExternalMsgReq, fileName)
struct jobExternalMsgReq *jobExternalMsgReq;
 char *fileName; Data file to be attached
int lsb_readjobmsg(jobExternalMsgReq, jobExternalMsgReply)
struct jobExternalMsgReq *jobExternalMsgReq;
struct jobExternalMsgReply *jobExternalMsgReply;

Use struct jobExternalMsgReq as a parameter in both lsb_postjobmsg() and lsb_readjobmsg().
It contains all the details on the external message or status to be read or posted.
struct jobExternalMsgReq {
 int options; Indicated which operation to be performed
#define EXT_MSG_POST 0x01 Post external message
#define EXT_ATTA_POST 0x02 Post external data file
#define EXT_MSG_READ 0x04 Read external message
#define EXT_ATTA_READ 0x08 Read external data file
#define EXT_MSG_REPLAY 0x10 Replay external message
 LS_LONG_INT jobId; Message of the job to be posted/read
 char *jobName; Name of the job if jobId is undefined (<=0)
 int msgIdx; Index in the list
 char *desc; Text description of the message
 int userId; Author of the message
 long dataSize; Size of the data file
 time_t postTime; Message sending time
};

The struct jobExternalMsgReply holds information on external message/status requested by the user. It
is defined in lsbatch.h as follows:
struct jobExternalMsgReply {
 LS_LONG_INT jobId; Message of the job to be read
 int msgIdx; Index in the message list
 char *desc; Text description of the message
 int userId; Author of the message
 long dataSize; Size of the data file
 time_t postTime; Message sending time
 int dataStatus; Status of the attached data
#define EXT_DATA_UNKNOWN 0 Data transferring of the message is processing
#define EXT_DATA_NOEXIST 1 Message without data attached
#define EXT_DATA_AVAIL 2 Data of the message is available
#define EXT_DATA_UNAVAIL 3 Data of the message is corrupt
};

User and host related functions

Common Platform LSF Functions

124 Platform LSF Programmer's Guide

User information
Use lsb.users to:

• Configure user groups, hierarchical fairshare for users and user groups, and job slot limits for users
and user groups.

• Configure account mappings in a MultiCluster environment.

LSBLIB provides the function lsb_userinfo() for getting information on LSF user and user groups.
struct userInfoEnt *lsb_userinfo(users, numUsers)
 char **users; User names
 int *numUsers; Number of user names

To get information about all users, set *numUsers = 0; *numUsers is updated to the actual number of
users when lsb_userinfo() returns. To get information on the invoker, set users = NULL and
*numUsers = 1.

The function returns an array of userInfoEnt structure containing user information. The structure is
defined in lsbatch.h as followed:
struct userInfoEnt {
 char *user; Name of the user or user group
 float procJobLimit; Max number of started jobs on each processor
 int maxJobs; Max number of started or running jobs allowed
 int numStartJobs; Number of started jobs of the user/group
 int numJobs; Number of jobs the user/group submitted
 int numPEND; Number of pending jobs of the user/group
 int numRUN; Number of running jobs of the user/group
 int numSSUSP; Number of system-suspended jobs
 int numUSUSP; Number of user-suspended jobs
 int numRESERVE; Number of job slots reserved for pending jobs
};

lsb_userinfo() gets:

• The maximum number of job slots that a user can use simultaneously on any host
• The maximum number of job slots that a user can use simultaneously in the whole local LSF cluster
• The current number of job slots used by running and suspended jobs
• The current number of job slots reserved for pending jobs

The maximum number of job slots are defined in the lsb.users LSF configuration file. The reserved
user name default, also defined in lsb.users, matches users not already listed in lsb.users who have
no jobs started in the system.

On success, returns an array of userInfoEnt structures and sets *numUsers to the number of userInfoEnt
structures returned. The next call writes over the returned array.

On failure, lsb_userinfo() returns NULL and sets lsberrno to indicate the error. If lsberrno is
LSBE_BAD_USER, (*users)[*numUsers] is not a user known to the LSF system. Otherwise, if *numUsers
is less than its original value, *numUsers is the actual number of users found.

Information in host group or user group
lsb_hostgrpinfo() and lsb_usergrpinfo() get membership of LSF host or user groups.
struct groupInfoEnt *lsb_hostgrpinfo (groups,
numGroups, options)
struct groupInfoEnt *lsb_usergrpinfo (groups,
numGroups, options)
 char **groups; Array of group names
 int *numGroups; Number of group names
 int options;
struct groupInfoEnt {

Common Platform LSF Functions

Platform LSF Programmer's Guide 125

 char *group; Group name
 char *memberList; ASCII list of member names
 int numUserShares; Number of users with shares
 struct userShares *userShares; User shares representation
};
struct userShares {
 char *user; User name
 int shares; Number of shares assigned to the user
};
 options The bitwise inclusive OR of some of the
 following flags:

USER_GRP

Get the information of user group.
HOST_GRP

Get the information of host.
GRP_RECURSIVE

Expand the group membership recursively. That is, if a member of a group is itself a
group, give the names of its members recursively, rather than its name, which is the
default.

GRP_ALL

Get membership of all groups.
GRP_SHARES

Display the information in the long format.

lsb_hostgrpinfo() gets LSF host group membership, lsb_usergrpinfo() gets LSF
user group membership.

lsb.users(5) and lsb.hosts(5) define LSF user and host groups, respectively.

On success, lsb_hostgrpinfo() and lsb_usergrpinfo() return an array of groupInfoEnt
structures which hold the group name and the list of names of its members. If a member of a group is
itself a group (i.e., a subgroup), then a '/' is appended to the name to indicate this. *numGroups is the
number of groupInfoEnt structures returned.

On failure, lsb_hostgrpinfo() and lsb_usergrpinfo() returns NULL and sets lsberrno to
indicate the error. If lsberrno is LSBE_BAD_GROUP, (*groups)[*numGroups] is not a group known to
the LSF system. Otherwise, if *numGroups is less than its original value, *numGroups is the actual number
of groups found.

Host partition in fairshare scheduling
To configure host partition fairshare, define a host partition in lsb.hosts. lsb_hostpartinfo() to
gets the information on defined host partitions.
struct hostPartInfoEnt *lsb_hostpartinfo
(hostParts, numHostParts)
 char **hostParts; Host partition names
 int *numHostParts; Number of host partition names

To get information on all host partitions, set hostParts to NULL; *numHostParts is the actual number
of host partitions when this lsb_hostpartinfo() returns.

The next call reuses the storage for the array of hostPartInfoEnt structures.

Common Platform LSF Functions

126 Platform LSF Programmer's Guide

lsb_hostpartinfo() returns a struct hostPartInfoEnt describing the host partitions:
struct hostPartInfoEnt {
 char hostPart[MAX_LSB_NAME_LEN]; Name of the host partition
 char *hostList; Names of hosts in the partition
 int numUsers; Number of users sharing the partition
 struct hostPartUserInfo *users; Description of user in the partition
};

The string variable hostList contains the names of the host in the partition and each of the names has a
foward slash character (/) appended. (See lsb_groupinfo(3).)

The struct hostPartUserInfo holds information on a specific user in the host partition.
struct hostPartUserInfo {
 char user[MAX_LSB_NAME_LEN]; User Name
 int shares; Number of shares assigned to the user
 float priority; Priority of user to use the host partition
 int numStartJobs; Number of started jobs on host partition
 float histCpuTime; Normalized CPU time of finished jobs
 int numReserveJobs; Number of reserved job slots for pending
 jobs
 int runTime; Time unfinished jobs spend in RUN state
};

For priority, the bigger values represent higher priorities. Jobs belonging to the user or user group with
the highest priority are considered first for dispatch when resources in the host partition are being
contended for. In general, a user or user group with more shares, fewer numStartJobs and less
histCpuTime has higher priority.

On success, returns an array of hostPartInfoEnt structures which hold information on the host
partitions, and sets *numHostParts to the number of hostPartInfoEnt structures.

On failure, lsb_hostpartinfo() returns NULL and sets lsberrno to indicate the error. If lsberrno
is LSBE_BAD_HPART, (*hostParts)[*numHostParts] is not a host partition known to the LSF
system. Otherwise, if *numHostParts is less than its original value, *numHostParts is the actual
number of host partitions found.

Control hosts and daemons
The user can control the hosts and daemons through lsb_hostcontrol() and lsb_reconfig().

lsb_hostcontrol() opens or closes a host and restarts or shutdowns the slave batch daemon.
int lsb_hostcontrol (struct hostCtrlReq *);
struct hostCtrlReq { char *host; Host to be controlled int
opCode; Option for host control char *message; Message attached
by the admin
};

If host is NULL, the local host is assumed.

lsbatch.h defines the opCode parameter containing the following control selection flags:

HOST_CLOSE

Closes the host so that no jobs can dispatched to it.
HOST_OPEN

Opens the host to accept jobs.
HOST_REBOOT

Common Platform LSF Functions

Platform LSF Programmer's Guide 127

Restart the sbatchd on the host. The sbatchd will receive a request from the mbatchd
and re-execute itself. This permits the sbatchd binary to be updated. This operation
will fail if no sbatchd is running on the specified host.

HOST_SHUTDOWN

The sbatchd on the host will exit.
HOST_CLOSE_REMOTE

MultiCluster — Closes a leased host on the submission cluster

In order to use updated batch LSF configuration files, the user can use lsb_reconfig
() to restart the master batch daemon, mbatchd.
int lsb_reconfig (struct mbdCtrlReq *);
struct mbdCtrlReq { int opCode; Options for configuration
char *name; Reserved for future use char *message; Message
attached by the admin };

The parameter opCode is defined in lsbatch.h and should be one of the following:
MBD_RESTART

Restarts a new mbatchd
MBD_RECONFIG

Reread the configuration files
MBD_CKCONFIG

Check validity of the mbatchd configuration files

lsb_reconfig() provides the following functionality to:

• Dynamically reconfigure an LSF batch system to pick up new configuration parameters
• Change to the job queue setup since system startup or the last reconfiguration
• Restart a new master batch daemon
• Check the validity of the configuration files.

On success, both lsb_hostcontrol() and lsb_reconfig(). On failure, they return -1 and set
lsberrno to indicate the error.

Common Platform LSF Functions

128 Platform LSF Programmer's Guide

Index
A

adding hosts to a cluster 30
Application and LSF batch interactions 10
authentication

LSF API 22
privileged port 22
setuid 22

B

batch job
ID 69
information 69
submitting to a specific queue 120
submitting using lsb_submit() 119
submitting with error checking 118
supplementary information 120

batch server host 10, 54
bhist 78
BSD compatibility library 17
built-in load indices 86

C

C applications, user-level checkpointing 102
C++ applications, user-level checkpointing 102, 106
checkpoint library 101, 105
checkpoints

in Fortran applications 102
startup library 104
troubleshooting user-level 103
user-level limitations 100

ckpt_crt0.o 101
ckpt_ld 101
ckpt_ld_f 101
cluster

configuration information 24
definition 7

console application

example program 97
notification messages 97
Windows job control notification 97

CPU factor 25

D

default queue 54
default resource requirements 28
DEFAULT_RLIMIT 65
Dynamic Host-Based Resource

defined by your LSF administrator 36
definition 36
ELIM 36
ls_load() reports information 36

dynamic load information 36

E

effective user ID 47
ELIM

definition 36
load indices collected at run tim 86
site installed, optionally plugged into LIM 13

erestart executable
user-level checkpointing 100

error handling 20
event record 78
external load indices 86

F

forcing a job 75
Fortran applications, user-level checkpointing 102
function

lsb_reconfig() 127
functions

ls_getclustername() 21
ls_gethostinfo() 26

Platform LSF Programmer's Guide 129

ls_info() 24, 86
ls_initrex() 47
ls_limcontrol() 29
ls_load() 36, 86
ls_loadinfo() 86
ls_lockhost() 32
ls_perror() 20, 89
ls_placeofhosts() 44
ls_placereq() 43
ls_readconfenv() 93
ls_resreq() 45, 48
ls_rexecv() 48, 88
ls_rexecve() 48
ls_rkill() 89
ls_rtask() 88
ls_rwait() 88
ls_sharedresourceinfo() 39
ls_stoprex() 88
ls_sysmsg() 20, 89
ls_unlockhost() 33
lsb_closejobinfo() 72
lsb_deletejob() 123
lsb_geteventrec() 78
lsb_groupinfo() 127
lsb_hostcontrol() 127
lsb_hostgrpinfo() 125
lsb_hostinfo() 58
lsb_hostpartinfo() 126
lsb_init() 21
lsb_mig() 123
lsb_modify() 62
lsb_openjobinfo() 69
lsb_parameterinfo() 21
lsb_peekjob() 123
lsb_perror() 20, 57
lsb_postjobmsg() 124
lsb_queueinfo() 54
lsb_readjobinfo() 70
lsb_readjobmsg() 124
lsb_runjob() 76
lsb_signaljob() 74, 123
lsb_submit() 62, 68
lsb_switchjob() 75
lsb_usergrpinfo() 125
lsb_userinfo() 125

H

header files
lsbatch.h 16
lsf.h 16

host configuration information 26
host dispatch window 60
host model 25
host type 25

I

ID
batch job 69

J

job
forcing 75
ID 69, 74
records 69

job control
catching the notification messages 95
windowed application 95
Windows example program 95

job ID 69, 74
job information connection 69
job modification 62
job records 69
Job Related Functions

Deleting a Job 123
External Job Message and Data Exchange 124
Moving job from one host to another 123
Viewing Job Output 123

job submission 62
job-related events 78
jobInfoEnt 72

L

libckpt.a 101
libraries, checkpointing 101, 105
LIM (Load Information Manager) 7
linking applications with LSF APIs 16
load index names 39, 86
load threshold values 56
locking a host in a cluster 31
ls_getclustername() 21
ls_gethostinfo() 26
ls_info() 24, 86
ls_initrex() 47

130 Platform LSF Programmer's Guide

ls_limcontrol() 29
ls_load() 36, 86
ls_loadinfo() 86
ls_lockhost() 32
ls_perror() 20, 89
ls_placeofhosts() 44
ls_placereq() 43
ls_readconfenv() 93
ls_resreq() 45, 48
ls_rexecv() 48, 88
ls_rexecve() 48
ls_rkill() 89
ls_rtask() 88
ls_rwait() 88
ls_sharedresourceinfo() 39
ls_stoprex() 88
ls_sysmsg() 20, 89
ls_unlockhost() 33
LSB_ARRAY_IDX 69
LSB_ARRAY_JOBID 69
lsb_closejobinfo() 72
lsb_deletejob 123
lsb_groupinfo() 127
lsb_hostcontrol() 127
lsb_hostgrpinfo() 125
lsb_hostinfo() 58
lsb_hostpartinfo() 126
lsb_init() 21
LSB_JOBID 69
lsb_mig() 123
lsb_modify() 62
lsb_openjobinfo() 69
lsb_parameterinfo() 21
lsb_peekjob() 123
lsb_perror() 20, 57
lsb_postjobmsg() 124
lsb_queueinfo() 54
lsb_readjobinfo() 70
lsb_readjobmsg() 124
lsb_runjob() 76
lsb_signaljob() 74, 123
lsb_submit() 62, 68
lsb_switchjob() 75
lsb_usergrpinfo() 125
lsb_userinfo() 125
lsb.acct 78, 81
lsb.events 78
lsbatch.h

ALL_JOB 70
CUR_JOB 70
DONE_JOB 70
HOST_EXCLUSIVE 60
HOST_STAT_BUSY 60
HOST_STAT_DISABLED 60
HOST_STAT_FULL 60, 70
HOST_STAT_LOCKED 60
HOST_STAT_NO_LIM 60
HOST_STAT_OK 61
HOST_STAT_UNAVAIL 60
HOST_STAT_UNLICENSED 60
HOST_STAT_UNREACH 60
HOST_STAT_WIND 60
JGRP_ARRAY_INFO 70
LAST_JOB 70
PEND_JOB 70
SUSP_JOB 70

lsberrno
LSBE_EOF 78
LSBE_QUEUE_CLOSED 66
LSBE_QUEUE_USE 66

lsbreconfig() 127
lserrno

ls_sysmsg() 20
test LSLIB call success 20

LSF administrator 60
LSF base

administrative service 15
API services 13
configuration information service 13
definition 6
dynamic load information service 13
master selection service 14
placement advice service 14
remote execution service 14
remote file operation service 14
server host 7
task list manipulation service 14

LSF base API Services 13
LSF base system 7
LSF batch

administration service 15
API Services 15
definition 6
job manipulation service 15
library 7
server hosts 10

Platform LSF Programmer's Guide 131

structure of 10
System 9
System Information Service 15

LSF Header Files 16
LSF Libraries 6
lsf.conf

define your own variables 93
definition 16
LSF_CONFDIR 93

lsf.conf,LSF_AUTH 47
lsf.h

DEFAULT_RLIMIT 65
DFT_FROMTYPE 37
EXACT 36
FIRST_RES_SOCK 47
INFINIT_INT 57
INFINIT_LOAD 38
KEEPUID 47
LSF_DEFAULT_SOCKS 47
NORMALIZE 37
OK_ONLY 36
REXF_USEPTY 48

LSLIB 6
lsrtasks 45
lsrun 49

M
macros

LS_ISBUSY(status) 39
LS_ISBUSYON(status, index) 39
LS_ISLOCKED(status 39
LS_ISLOCKEDU(status) 39
LS_ISLOCKEDW(status) 39
LS_ISOK(status) 39
LS_ISOKNRES(status) 39
LS_ISRESDOWN(status 39
LS_ISSBDDOWN(status) 39
LS_ISUNAVAIL() 39
LS_ISUNLICENSED(status) 39

managing hosts 29
adding hosts to a cluster 30
locking a host in a cluster 31
removing hosts from a cluster 29
unlocking a host in a cluster 33

master LIM 7
mbatchd 10
modify submitted job 68

N

NIOS (Network I/O Server) 14, 88
number of load indices 86

P

parallel applications 88
placement decision 43
privileged port protocol 22

R

raw run queue length 37
real user ID 47
remote task list 45, 65
removing hosts from a cluster 29
replacement linkers 103
RES (Remote Execution Server) 7, 47
resource information

Getting Dynamic Shared Information 39
host-based resource 39
ls_sharedresourceinfo() 39
shared resources 39

resource names 29

S

sbatchd 10
send signals to submitted jobs 74
setuid programs 22
SIGINT 95
signal handler 88, 89
signal handling

bkill 95
SIGINT 95
SIGTERM 95
UNIX signal mechanism 95
Windows 95

SIGTERM 95
SIGUSR1 88
startup library 104
structure

config_param 93
eventRec 78
hosLoad 86
hostInfo 27
hostInfoEnt 58
hostLoad 36
jobInfoEnt 70

132 Platform LSF Programmer's Guide

jobInfoHead 92
loadIndexLog 91
lsInfo 24
queueInfoEnt 54
resItem 24
runJobReq 76
submit 62
submitReply 63

Submitting a Batch Job 117
to a Specific Queue 120
with Error Checking 118

Submitting a Batch Job Using lsb_submit() To Emulate the
bsub Command 119

switch a job 75
system-related events 78

T

task ID 88

task list 14
type requirement 34

U

unlocking a host in a cluster 33
user-level checkpointing

building jobs 101
C++ applications 106
limitations 100

link errors
troubleshooting 103

overview 100
re-linking 102
resolving link errors 104

W

Windows 17

Platform LSF Programmer's Guide 133

	Contents
	Copyright
	Introduction
	Platform LSF architecture
	LSF base system
	Platform LSF batch system

	Platform LSF API services
	Platform LSF base API services
	Platform LSF batch API services

	Platform LSF programs
	lsf.conf file
	Platform LSF header files
	Link applications with Platform LSF APIs
	Compile Platform LSF API programs
	Compile a Platform LSF API program on a 64 bit Solaris 2.x
	Compile on Linux
	Compile on Solaris x86-64-sol10

	Set up Visual Studio
	Error handling

	Example applications
	Authentication

	Programming with LSLIB
	Configuration information
	General cluster configuration information
	Host configuration information
	Manage hosts
	Remove hosts from a cluster
	Add hosts to a cluster
	Lock a host in a cluster
	Unlock a host in a cluster

	Default resource requirements
	Dynamic load information
	Dynamic host-based resource information
	Dynamic shared resource information

	Placement decisions
	ls_placereq()

	Task resource requirements
	ls_resreq()

	Remote execution services
	Initialize an application for remote execution
	Run a task remotely

	Programming wth LSBLIB
	About LSBLIB
	Platform LSF batch applications
	Platform LSF batch queues
	Platform LSF batch hosts
	Job submission and modification
	lsb_submit()

	Batch job information
	Platform LSF batch job ID
	lsb_openjobinfo()
	lsb_readjobinfo()
	lsb_closejobinfo()

	Job manipulation
	Switch a job to a different queue
	Force a job to run

	Platform LSF batch event files

	Advanced Programming Topics
	Load information for selected load indices
	List all load index names
	Display selected load indices

	Parallel applications
	ls_rtask() function
	Example: Run tasks on many machines

	Determine why job is suspended
	Determine why job is pending
	Read lsf.conf parameters
	Signal handling in Windows
	Example: Job control in a Windows application
	Job control in a console application

	User-Level Checkpointing
	User-level checkpointing
	User-level checkpointable jobs
	Re-Link user-level applications
	C Language applications
	Fortran applications

	Troubleshoot user-level re-linking
	Replacement linkers

	Resolve re-linking errors
	View the linking script
	Include the startup library
	Include the checkpoint library
	Force static linking

	Re-Link C++ applications

	External Scheduler Plugins
	About external scheduler plugins
	Write an external scheduler plugin
	Implement match phase
	Step 1.
	Step 2.
	Step 3.

	Allocation phase
	Input and output of allocation phase
	Invocation
	Allocation phase

	Build the external scheduler plugin.
	Enable and use the external scheduler plugin
	Scheduler API reference summary
	Debug the external scheduling plugin

	Tutorials
	Simple batch job
	Batch job with error checking
	Batch Job with lsb_submit()
	Batch job for a specific queue
	Supplementary files

	Common Platform LSF Functions
	Job related functions
	Delete a job
	View job output
	Move jobs from one host to another
	External job message and data exchange

	User and host related functions
	User information
	Information in host group or user group
	Host partition in fairshare scheduling
	Control hosts and daemons

	Index

