
 Administering Platform™ LSF™

Version 7 Update 6
Release date: August 2009

Last modified: August 31, 2009
Comments to: doc@platform.com

Support: support@platform.com

Copyright © 1994-2009, Platform Computing Inc.
Although the information in this document has been carefully reviewed, Platform Computing Inc.
(“Platform”) does not warrant it to be free of errors or omissions. Platform reserves the right to make
corrections, updates, revisions or changes to the information in this document.
UNLESS OTHERWISE EXPRESSLY STATED BY PLATFORM, THE PROGRAM DESCRIBED IN
THIS DOCUMENT IS PROVIDED “AS IS” AND WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO
EVENT WILL PLATFORM COMPUTING BE LIABLE TO ANYONE FOR SPECIAL,
COLLATERAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT
LIMITATION ANY LOST PROFITS, DATA, OR SAVINGS, ARISING OUT OF THE USE OF OR
INABILITY TO USE THIS PROGRAM.

We’d like to hear from you You can help us make this document better by telling us what you think of the content, organization,
and usefulness of the information. If you find an error, or just want to make a suggestion for improving
this document, please address your comments to doc@platform.com.
Your comments should pertain only to Platform documentation. For product support, contact
support@platform.com.

Document redistribution
and translation

This document is protected by copyright and you may not redistribute or translate it into another
language, in part or in whole.

Internal redistribution You may only redistribute this document internally within your organization (for example, on an
intranet) provided that you continue to check the Platform Web site for updates and update your
version of the documentation. You may not make it available to your organization over the Internet.

Trademarks LSF is a registered trademark of Platform Computing Inc. in the United States and in other
jurisdictions.
POWERING HIGH PERFORMANCE, PLATFORM COMPUTING, PLATFORM SYMPHONY,
PLATFORM JOBSCHEDULER, PLATFORM ENTERPRISE GRID ORCHESTRATOR, PLATFORM
EGO, and the PLATFORM and PLATFORM LSF logos are trademarks of Platform Computing Inc. in
the United States and in other jurisdictions.
UNIX is a registered trademark of The Open Group in the United States and in other jurisdictions.
Microsoft is either a registered trademark or a trademark of Microsoft Corporation in the United
States and/or other countries.
Windows is a registered trademark of Microsoft Corporation in the United States and other countries.
Other products or services mentioned in this document are identified by the trademarks or service
marks of their respective owners.

Third-party license
agreements

http://www.platform.com/legal-notices/third-party-license-agreements

Administering Platform LSF 3

Contents

Contents
1 About Platform LSF . 15

Contents . 15
Learn about Platform LSF . 16
Cluster Concepts . 16
Job Life Cycle . 28

2 How the System Works . 31
Contents . 31
Job Submission . 32
Job Scheduling and Dispatch . 34
Host Selection . 36
Job Execution Environment . 37
Fault Tolerance . 38

Part I: Managing Your Cluster
3 Working with Your Cluster . 43

Contents . 43
Viewing cluster information . 44
Example directory structures . 49
Cluster administrators . 51
Controlling daemons . 52
Controlling mbatchd . 54
Customize batch command messages . 56
Reconfiguring your cluster . 57

4 Working with Hosts . 59
Contents . 59
Host status . 60
How LIM Determines Host Models and Types . 62
Viewing Host Information . 64
Controlling Hosts . 70
Adding a Host . 73
Remove a Host . 75
Remove a Host from Master Candidate List . 76
Adding Hosts Dynamically . 77
Automatically Detect Operating System Types and Versions 84
Add Host Types and Host Models to lsf.shared . 86
Registering Service Ports . 87

Contents

4 Administering Platform LSF

Host Naming . 89
Hosts with Multiple Addresses . 91
Using IPv6 Addresses . 93
Specify host names with condensed notation . 95
Host Groups . 96
Compute Units . 100
Tuning CPU Factors . 103
Handling Host-level Job Exceptions . 105

5 Working with Queues . 107
Contents . 107
Queue States . 107
Viewing Queue Information . 108
Control Queues . 110
Add and Remove Queues . 113
Manage Queues . 115
Handling Job Exceptions in Queues . 116

6 Managing Jobs . 119
Contents . 119
Understanding Job States . 120
View Job Information . 123
Changing Job Order Within Queues . 126
Switch Jobs from One Queue to Another . 127
Forcing Job Execution . 128
Suspending and Resuming Jobs . 129
Killing Jobs . 130
Sending a Signal to a Job . 132
Using Job Groups . 133
Handling Job Exceptions . 144

7 Managing Users and User Groups . 149
Contents . 149
Viewing User and User Group Information . 149
About User Groups . 151
Existing User Groups as LSF User Groups . 151
LSF User Groups . 152

8 Platform LSF Licensing . 155
Contents . 155
The LSF License File . 156
How LSF Permanent Licensing Works . 160
Installing a Demo License . 162
Installing a Permanent License . 164
Updating a License . 170
FLEXnet Basics . 172
Multiple FLEXnet License Server Hosts . 175
Partial Licensing . 177
Floating Client Licenses . 180
Troubleshooting License Issues . 186

Administering Platform LSF 5

Contents

9 Managing LSF on Platform EGO . 191
Contents . 191
About LSF on Platform EGO . 192
LSF and EGO directory structure . 196
Configuring LSF and EGO . 200
Managing LSF daemons through EGO . 203
EGO control of HPC Portal and PERF services . 205
Administrative Basics . 206
Logging and troubleshooting . 207
Frequently asked questions . 214

10 The HPC Portal . 217
Contents . 217
Log on to the HPC Portal . 217
Set the command-line environment . 218
Manage services . 218
Manage hosts . 220

11 Cluster Version Management and Patching on UNIX and Linux . 223
Contents . 223
Scope . 224
Patch installation interaction diagram . 225
Patch rollback interaction diagram . 226
Version management components . 227
Version management concepts . 229
Cluster patching behavior table . 231
Cluster rollback behavior table . 232
Version management files . 232
Version management commands . 233
Installing update releases on UNIX and Linux . 234
Installing fixes on UNIX and Linux . 235
Rolling back patches on UNIX and Linux . 235
Patching the Oracle database . 236
Patching the Derby database . 237

12 Upgrading Platform LSF HPC . 239
Contents . 239
Upgrade Platform LSF HPC . 239
What lsfinstall does . 239

Part II: Working with Resources
13 Understanding Resources . 247

Contents . 247
About LSF Resources . 248
How Resources are Classified . 250
How LSF Uses Resources . 253
Load Indices . 255

Contents

6 Administering Platform LSF

Static Resources . 259
Automatic Detection of Hardware Reconfiguration . 266
Set the external static LIM . 267

14 Adding Resources . 269
Contents . 269
About Configured Resources . 270
Add New Resources to Your Cluster . 271
Configuring lsf.shared Resource Section . 272
Configuring lsf.cluster.cluster_name Host Section . 274
Configuring lsf.cluster.cluster_name ResourceMap Section 275
Static Shared Resource Reservation . 277
External Load Indices . 278
Modifying a Built-In Load Index . 278

15 Managing Software Licenses with LSF . 279
Contents . 279
Using Licensed Software with LSF . 279
Host-locked Licenses . 279
Counted Host-Locked Licenses . 279
Network Floating Licenses . 280

Part III: Job Scheduling Policies
16 Time Syntax and Configuration . 287

Contents . 287
Specifying Time Values . 287
Specifying Time Windows . 287
Specifying Time Expressions . 288
Using Automatic Time-based Configuration . 289

17 Deadline Constraint and Exclusive Scheduling . 293
Contents . 293
Using Deadline Constraint Scheduling . 293
Using Exclusive Scheduling . 294

18 Preemptive Scheduling . 297
Contents . 297
About Preemptive Scheduling . 297

19 Specifying Resource Requirements . 299
Contents . 299
About Resource Requirements . 300
Queue-level Resource Requirements . 302
Job-level Resource Requirements . 304
About Resource Requirement Strings . 306
Selection String . 312
Order String . 320
Usage String . 322
Span String . 330

Administering Platform LSF 7

Contents

Same String . 332
Compute Unit String . 334

20 Fairshare Scheduling . 337
Contents . 337
Understanding Fairshare Scheduling . 338
User Share Assignments . 339
Dynamic User Priority . 340
How Fairshare Affects Job Dispatch Order . 342
Host Partition User-based Fairshare . 343
Queue-level User-based Fairshare . 345
Cross-queue User-based Fairshare . 345
Hierarchical User-based Fairshare . 349
Queue-based Fairshare . 352
Configuring Slot Allocation per Queue . 354
View Queue-based Fairshare Allocations . 356
Typical Slot Allocation Scenarios . 357
Using Historical and Committed Run Time . 362
Users Affected by Multiple Fairshare Policies . 365
Ways to Configure Fairshare . 366
Resizable jobs and fairshare . 369

21 Resource Preemption . 371
Contents . 371
About Resource Preemption . 372
Requirements for Resource Preemption . 373
Custom Job Controls for Resource Preemption . 373
Resource Preemption Steps . 375
Configure Resource Preemption . 377
License Preemption Example . 379
Memory Preemption Example . 381

22 Goal-Oriented SLA-Driven Scheduling . 385
Contents . 385
Using Goal-Oriented SLA Scheduling . 385
Configuring Service Classes for SLA Scheduling . 388
View Information about SLAs and Service Classes . 390
Understanding Service Class Behavior . 394

Part IV: Job Scheduling and Dispatch
23 Working with Application Profiles . 403

Contents . 403
Manage application profiles . 404
Use application profiles . 407
View application profile information . 409
How application profiles interact with queue and job parameters 413

24 Resource Allocation Limits . 421

Contents

8 Administering Platform LSF

Contents . 421
About Resource Allocation Limits . 422
Configuring Resource Allocation Limits . 427
Viewing Information about Resource Allocation Limits 436

25 Reserving Resources . 439
Contents . 439
About Resource Reservation . 439
Using Resource Reservation . 440
Memory Reservation for Pending Jobs . 442
Time-based Slot Reservation . 445
Viewing Resource Reservation Information . 452

26 Advance Reservation . 455
Contents . 455
Understanding Advance Reservations . 456
Configure Advance Reservation . 458
Using Advance Reservation . 460

27 Dispatch and Run Windows . 479
Contents . 479
Dispatch and Run Windows . 479
Run Windows . 479
Dispatch Windows . 480

28 Job Dependencies . 483
Contents . 483
Job Dependency Terminology . 483
Job Dependency Scheduling . 484
Dependency Conditions . 486
View Job Dependencies . 488

29 Job Priorities . 491
Contents . 491
User-Assigned Job Priority . 492
Automatic Job Priority Escalation . 494
Absolute Job Priority Scheduling . 495

30 Job Requeue and Job Rerun . 505
Contents . 505
About Job Requeue . 506
Automatic Job Requeue . 507
Job-level automatic requeue . 509
Reverse Requeue . 510
Exclusive Job Requeue . 511
User-Specified Job Requeue . 512
Automatic Job Rerun . 513

31 Job Checkpoint, Restart, and Migration . 515
Contents . 515
Checkpoint and restart options . 516
Checkpoint directory and files . 516

Administering Platform LSF 9

Contents

Checkpoint and restart executables . 518
Job restart . 518
Job migration . 519

32 Chunk Job Dispatch . 521
Contents . 521
About Job Chunking . 521
Configure Chunk Job Dispatch . 522
Submitting and Controlling Chunk Jobs . 524

33 Job Arrays . 527
Contents . 527
Create a Job Array . 527
Handling Input and Output Files . 529
Redirecting Standard Input and Output . 529
Passing Arguments on the Command Line . 530
Job Array Dependencies . 531
Monitoring Job Arrays . 531
Individual job status . 532
Specific job status . 533
Controlling Job Arrays . 533
Job Array Chunking . 534
Requeuing a Job Array . 536
Job Array Job Slot Limit . 537

34 Running Parallel Jobs . 539
Contents . 539
How LSF Runs Parallel Jobs . 540
Preparing Your Environment to Submit Parallel Jobs to LSF 541
Submitting Parallel Jobs . 542
Starting Parallel Tasks with LSF Utilities . 543
Job Slot Limits For Parallel Jobs . 545
Specifying a Minimum and Maximum Number of Processors 546
Specifying a First Execution Host . 547
Controlling Job Locality using Compute Units . 549
Controlling Processor Allocation Across Hosts . 556
Running Parallel Processes on Homogeneous Hosts . 559
Limiting the Number of Processors Allocated . 561
Reserving Processors . 564
Reserving Memory for Pending Parallel Jobs . 566
Backfill Scheduling: Allowing Jobs to Use Reserved Job Slots 567
Parallel Fairshare . 576
How Deadline Constraint Scheduling Works For Parallel Jobs 577
Optimized Preemption of Parallel Jobs . 578
Processor Binding for Parallel Jobs . 578
Job Allocations that Grow and Shrink (Resizable) . 580
Resizable job management . 581
Autoresizable job management . 583
Specify a resize notification command manually . 584

Contents

10 Administering Platform LSF

Script for resizing . 584
Feature interactions . 585

35 Submitting Jobs Using JSDL . 587
Contents . 587
Why Use JSDL? . 587
Using JSDL Files with LSF . 587
Collecting resource values using elim.jsdl . 596

Part V: Controlling Job Execution
36 Runtime Resource Usage Limits . 601

Contents . 601
About Resource Usage Limits . 601
Specifying Resource Usage Limits . 605
Supported Resource Usage Limits and Syntax . 607
Examples . 612
CPU Time and Run Time Normalization . 613
PAM resource limits . 614

37 Load Thresholds . 615
Contents . 615
Automatic Job Suspension . 616
Suspending Conditions . 618

38 Pre-Execution and Post-Execution Commands . 621
Contents . 621
About Pre-Execution and Post-Execution Commands . 622
Configuring Pre- and Post-Execution Commands . 624

39 Job Starters . 631
Contents . 631
About Job Starters . 631
Command-Level Job Starters . 632
Queue-Level Job Starters . 634
Controlling Execution Environment Using Job Starters 635

40 External Job Submission and Execution Controls . 637
Contents . 637
Understanding External Executables . 637
Using esub . 638
Existing esub . 646
Working with eexec . 647

41 Configuring Job Controls . 649
Contents . 649
Default Job Control Actions . 649
Configuring Job Control Actions . 651
Customizing Cross-Platform Signal Conversion . 654

Administering Platform LSF 11

Contents

Part VI: Interactive Jobs
42 Interactive Jobs with bsub . 657

Contents . 657
About Interactive Jobs . 657
Submitting Interactive Jobs . 658
Performance Tuning for Interactive Batch Jobs . 660
Interactive Batch Job Messaging . 663
Running X Applications with bsub . 664
Configure SSH X11 forwarding for jobs . 665
Writing Job Scripts . 666
Registering utmp File Entries for Interactive Batch Jobs 668

43 Running Interactive and Remote Tasks . 669
Contents . 669
Running Remote Tasks . 669
Interactive Tasks . 672
Load Sharing Interactive Sessions . 674
Load Sharing X Applications . 674

Part VII: Monitoring Your Cluster
44 Achieving Performance and Scalability . 679

Contents . 679
Optimizing Performance in Large Sites . 679
Tuning UNIX for Large Clusters . 680
Tuning LSF for Large Clusters . 681
Monitoring Performance Metrics in Real Time . 692

45 Reporting . 697
Contents . 697
Introduction to Reporting . 697
Getting Started with Standard Reports . 698
Custom Reports . 700
System Description . 704
Reports Administration . 706
Test the Reporting Feature . 718
Disable the Reporting Feature . 719
Move to a Production Database . 720

46 Event Generation . 725
Contents . 725
Event Generation . 725
Enabling event generation . 725
Events list . 726
Arguments passed to the LSF event program . 726

47 Tuning the Cluster . 729

Contents

12 Administering Platform LSF

Contents . 729
Tuning LIM . 730
Improving performance of mbatchd query requests on UNIX 736

48 Authentication and Authorization . 743
Contents . 743
Authentication options . 743
Authorization options . 746

49 Job Email and Job File Spooling . 751
Contents . 751
Mail Notification When a Job Starts . 751
File Spooling for Job Input, Output, and Command Files 754
Specifying a job command file (bsub -Zs) . 755
About the job spooling directory (JOB_SPOOL_DIR) . 755
Modifying the job input file . 756
Modifying the job command file . 756
For more information . 756

50 Non-Shared File Systems . 757
Contents . 757
About Directories and Files . 757
Using LSF with Non-Shared File Systems . 758
Remote File Access . 758
File Transfer Mechanism (lsrcp) . 760

51 Error and Event Logging . 763
Contents . 763
System Directories and Log Files . 763
Managing Error Logs . 764
System Event Log . 766
Duplicate Logging of Event Logs . 767
LSF Job Termination Reason Logging . 768
Understanding LSF job exit codes . 773

52 Troubleshooting and Error Messages . 775
Contents . 775
Shared File Access . 776
Common LSF Problems . 777
Error Messages . 784
Setting Daemon Message Log to Debug Level . 791
Setting Daemon Timing Levels . 794

Part VIII: LSF Utilities
53 Using lstcsh . 799

Contents . 799
About lstcsh . 799
Differences from Other Shells . 801
Limitations . 801

Administering Platform LSF 13

Contents

Starting lstcsh . 802
Using lstcsh as Your Login Shell . 802
Host Redirection . 803
Task Control . 804
Built-in Commands . 804
Writing Shell Scripts in lstcsh . 806

Index . 809

Contents

14 Administering Platform LSF

Administering Platform LSF 15

C H A P T E R

1
About Platform LSF

Contents
◆ Learn about Platform LSF on page 16
◆ Cluster Concepts on page 16
◆ Job Life Cycle on page 28

Learn about Platform LSF

16 Administering Platform LSF

Learn about Platform LSF
Before using Platform LSF for the first time, you should download and read LSF
Version 7 Release Notes for the latest information about what’s new in the current
release and other important information.

Cluster Concepts

Clusters, jobs, and queues

Cluster A group of computers (hosts) running LSF that work together as a single unit,
combining computing power and sharing workload and resources. A cluster
provides a single-system image for disparate computing resources.
Hosts can be grouped into clusters in a number of ways. A cluster could contain:
◆ All the hosts in a single administrative group
◆ All the hosts on one file server or sub-network
◆ Hosts that perform similar functions
Commands:
◆ lshosts—View static resource information about hosts in the cluster
◆ bhosts—View resource and job information about server hosts in the cluster
◆ lsid—View the cluster name
◆ lsclusters—View cluster status and size
Configuration:
◆ Define hosts in your cluster in lsf.cluster.cluster_name

TIP: The name of your cluster should be unique. It should not be the same as any host or queue.

Administering Platform LSF 17

About Platform LSF

Job A unit of work run in the LSF system. A job is a command submitted to LSF for
execution. LSF schedules, controls, and tracks the job according to configured
policies.
Jobs can be complex problems, simulation scenarios, extensive calculations,
anything that needs compute power.
Commands:
◆ bjobs—View jobs in the system
◆ bsub—Submit jobs

Job slot A job slot is a bucket into which a single unit of work is assigned in the LSF system.
If hosts are configured with a number of job slots, you can dispatch jobs from
queues until all the job slots are filled.
Commands:
◆ bhosts—View job slot limits for hosts and host groups
◆ bqueues—View job slot limits for queues
◆ busers—View job slot limits for users and user groups
Configuration:
◆ Define job slot limits in lsb.resources.

Job states LSF jobs have the following states:
◆ PEND—Waiting in a queue for scheduling and dispatch
◆ RUN—Dispatched to a host and running
◆ DONE—Finished normally with zero exit value
◆ EXIT—Finished with non-zero exit value
◆ PSUSP—Suspended while pending
◆ USUSP—Suspended by user
◆ SSUSP—Suspended by the LSF system
◆ POST_DONE—Post-processing completed without errors
◆ POST_ERR—Post-processing completed with errors
◆ UNKWN —mbatchd has lost contact with sbatchd on the host on which the

job runs
◆ WAIT—For jobs submitted to a chunk job queue, members of a chunk job that

are waiting to run
◆ ZOMBI—A job becomes ZOMBI if the execution host is unreachable when a

non-rerunnable job is killed or a rerunnable job is requeued

Queue A clusterwide container for jobs. All jobs wait in queues until they are scheduled
and dispatched to hosts.
Queues do not correspond to individual hosts; each queue can use all server hosts
in the cluster, or a configured subset of the server hosts.

Cluster Concepts

18 Administering Platform LSF

When you submit a job to a queue, you do not need to specify an execution host.
LSF dispatches the job to the best available execution host in the cluster to run that
job.
Queues implement different job scheduling and control policies.
Commands:
◆ bqueues—View available queues
◆ bsub -q—Submit a job to a specific queue
◆ bparams—View default queues
Configuration:
◆ Define queues in lsb.queues

TIP: The names of your queues should be unique. They should not be the same as the cluster
name or any host in the cluster.

First-come,
first-served (FCFS)
scheduling

The default type of scheduling in LSF. Jobs are considered for dispatch based on
their order in the queue.

Hosts

Host An individual computer in the cluster.
Each host may have more than 1 processor. Multiprocessor hosts are used to run
parallel jobs. A multiprocessor host with a single process queue is considered a
single machine, while a box full of processors that each have their own process
queue is treated as a group of separate machines.
Commands:
◆ lsload—View load on hosts
◆ lshosts—View configuration information about hosts in the cluster including

number of CPUS, model, type, and whether the host is a client or server
◆ bhosts—View batch server hosts in the cluster

TIP: The names of your hosts should be unique. They should not be the same as the cluster name
or any queue defined for the cluster.

Submission host The host where jobs are submitted to the cluster.
Jobs are submitted using the bsub command or from an application that uses the
LSF API.
Client hosts and server hosts can act as submission hosts.
Commands:
◆ bsub—Submit a job
◆ bjobs—View jobs that are submitted

Execution host The host where a job runs. Can be the same as the submission host. All execution
hosts are server hosts.

Administering Platform LSF 19

About Platform LSF

Commands:
◆ bjobs—View where a job runs

Server host Hosts that are capable of submitting and executing jobs. A server host runs sbatchd
to execute server requests and apply local policies.
An LSF cluster may consist of static and dynamic hosts. Dynamic host
configuration allows you to add and remove hosts without manual reconfiguration.
By default, all configuration changes made to LSF are static. To add or remove hosts
within the cluster, you must manually change the configuration and restart all
master candidates.
Commands:
◆ lshosts—View hosts that are servers (server=Yes)
Configuration:
◆ Server hosts are defined in the lsf.cluster.cluster_name file by setting the

value of server to 1

Client host Hosts that are only capable of submitting jobs to the cluster. Client hosts run LSF
commands and act only as submission hosts. Client hosts do not execute jobs or run
LSF daemons.
Commands:
◆ lshosts—View hosts that are clients (server=No)
Configuration:
◆ Client hosts are defined in the lsf.cluster.cluster_name file by setting the

value of server to 0

Floating client host In LSF, you can have both client hosts and floating client hosts. The difference is in
the type of license purchased.
If you purchased a regular (fixed) client license, LSF client hosts are static. The
client hosts must be listed in lsf.cluster.cluster_name. The license is fixed to the
hosts specified in lsf.cluster.cluster_name and whenever client hosts change,
you must update it with the new host list.
If you purchased a floating client license, LSF floating client hosts are dynamic.
They are not listed in lsf.cluster.cluster_name. Since LSF does not take into
account the host name but the number of floating licenses, clients can change
dynamically and licenses will be distributed to clients that request to use LSF.
When you submit a job from any unlicensed host, and if there are any floating
licenses free, the host will check out a license and submit your job to LSF. However,
once a host checks out a floating client license, it keeps that license for the rest of
the day, until midnight. A host that becomes a floating client behaves like a fixed
client all day, then at 12 midnight it releases the license. At that time, the host turns
back into a normal, unlicensed host, and the floating client license becomes
available to any other host that needs it.

Cluster Concepts

20 Administering Platform LSF

Master host Where the master LIM and mbatchd run. An LSF server host that acts as the overall
coordinator for that cluster. Each cluster has one master host to do all job
scheduling and dispatch. If the master host goes down, another master candidate
LSF server in the cluster becomes the master host.
All LSF daemons run on the master host. The LIM on the master host is the master
LIM.
Commands:
◆ lsid—View the master host name
Configuration:
◆ The master host is defined along with other candidate master hosts by

LSF_MASTER_LIST in lsf.conf.

LSF daemons

mbatchd Master Batch Daemon running on the master host. Started by sbatchd.
Responsible for the overall state of jobs in the system.
Receives job submission, and information query requests. Manages jobs held in
queues. Dispatches jobs to hosts as determined by mbschd.
Commands:
◆ badmin mbdrestart—Starts sbatchd
Configuration:
◆ Port number defined in lsf.conf.

mbschd Master Batch Scheduler Daemon running on the master host. Works with mbatchd.
Started by mbatchd.
Makes scheduling decisions based on job requirements and policies.

sbatchd Slave Batch Daemon running on each server host. Receives the request to run the
job from mbatchd and manages local execution of the job. Responsible for
enforcing local policies and maintaining the state of jobs on the host.
sbatchd forks a child sbatchd for every job. The child sbatchd runs an instance of
res to create the execution environment in which the job runs. The child sbatchd
exits when the job is complete.
Commands:
◆ badmin hstartup—Starts sbatchd

LSF daemon Role

mbatchd Job requests and dispatch

mbschd Job scheduling

sbatchd
res

Job execution

lim Host information

pim Job process information

elim Collect and track custom dynamic load indices

Administering Platform LSF 21

About Platform LSF

◆ badmin hshutdown—Shuts down sbatchd
◆ badmin hrestart—Restarts sbatchd
Configuration:
◆ Port number defined in lsf.conf

res Remote Execution Server (RES) running on each server host. Accepts remote
execution requests to provide transparent and secure remote execution of jobs and
tasks.
Commands:
◆ lsadmin resstartup—Starts res
◆ lsadmin resshutdown—Shuts down res
◆ lsadmin resrestart—Restarts res
Configuration:
◆ Port number defined in lsf.conf

lim Load Information Manager (LIM) running on each server host. Collects host load
and configuration information and forwards it to the master LIM running on the
master host. Reports the information displayed by lsload and lshosts.
Static indices are reported when the LIM starts up or when the number of CPUs
(ncpus) change. Static indices are:
◆ Number of CPUs (ncpus)
◆ Number of disks (ndisks)
◆ Total available memory (maxmem)
◆ Total available swap (maxswp)
◆ Total available temp (maxtmp)
◆ The number of physical processors per CPU configured on a host (nprocs).
◆ The number of cores per processor configured on a host (ncores).
◆ The number of threads per core configured on a host (nthreads).
Dynamic indices for host load collected at regular intervals are:
◆ Hosts status (status)
◆ 15 second, 1 minute, and 15 minute run queue lengths (r15s, r1m, and r15m)
◆ CPU utilization (ut)
◆ Paging rate (pg)
◆ Number of login sessions (ls)
◆ Interactive idle time (it)
◆ Available swap space (swp)
◆ Available memory (mem)
◆ Available temp space (tmp)
◆ Disk IO rate (io)
Commands:

Cluster Concepts

22 Administering Platform LSF

◆ lsadmin limstartup—Starts LIM
◆ lsadmin limshutdown—Shuts down LIM
◆ lsadmin limrestart—Restarts LIM
◆ lsload—View dynamic load values
◆ lshosts—View static host load values
Configuration:
◆ Port number defined in lsf.conf.

Master LIM The LIM running on the master host. Receives load information from the LIMs
running on hosts in the cluster.
Forwards load information to mbatchd, which forwards this information to mbschd
to support scheduling decisions. If the master LIM becomes unavailable, a LIM on
another host automatically takes over.
Commands:
◆ lsadmin limstartup—Starts LIM
◆ lsadmin limshutdown—Shuts down LIM
◆ lsadmin limrestart—Restarts LIM
◆ lsload—View dynamic load values
◆ lshosts—View static host load values
Configuration:
◆ Port number defined in lsf.conf.

ELIM External LIM (ELIM) is a site-definable executable that collects and tracks custom
dynamic load indices. An ELIM can be a shell script or a compiled binary program,
which returns the values of the dynamic resources you define. The ELIM executable
must be named elim.anything and located in LSF_SERVERDIR.

pim Process Information Manager (PIM) running on each server host. Started by LIM,
which periodically checks on PIM and restarts it if it dies.
Collects information about job processes running on the host such as CPU and
memory used by the job, and reports the information to sbatchd.
Commands:
◆ bjobs—View job information

Batch jobs and tasks
You can either run jobs through the batch system where jobs are held in queues, or
you can interactively run tasks without going through the batch system, such as
tests for example.

Job A unit of work run in the LSF system. A job is a command submitted to LSF for
execution, using the bsub command. LSF schedules, controls, and tracks the job
according to configured policies.
Jobs can be complex problems, simulation scenarios, extensive calculations,
anything that needs compute power.

Administering Platform LSF 23

About Platform LSF

Commands:
◆ bjobs—View jobs in the system
◆ bsub—Submit jobs

Interactive batch
job

A batch job that allows you to interact with the application and still take advantage
of LSF scheduling policies and fault tolerance. All input and output are through the
terminal that you used to type the job submission command.
When you submit an interactive job, a message is displayed while the job is awaiting
scheduling. A new job cannot be submitted until the interactive job is completed or
terminated.
The bsub command stops display of output from the shell until the job completes,
and no mail is sent to you by default. Use Ctrl-C at any time to terminate the job.
Commands:
◆ bsub -I—Submit an interactive job

Interactive task A command that is not submitted to a batch queue and scheduled by LSF, but is
dispatched immediately. LSF locates the resources needed by the task and chooses
the best host among the candidate hosts that has the required resources and is
lightly loaded. Each command can be a single process, or it can be a group of
cooperating processes.
Tasks are run without using the batch processing features of LSF but still with the
advantage of resource requirements and selection of the best host to run the task
based on load.
Commands:
◆ lsrun—Submit an interactive task
◆ lsgrun—Submit an interactive task to a group of hosts
◆ See also LSF utilities such as ch, lsacct, lsacctmrg, lslogin, lsplace,

lsload, lsloadadj, lseligible, lsmon, lstcsh

Local task An application or command that does not make sense to run remotely. For example,
the ls command on UNIX.
Commands:
◆ lsltasks—View and add tasks
Configuration:
◆ lsf.task—Configure systemwide resource requirements for tasks
◆ lsf.task.cluster—Configure clusterwide resource requirements for tasks
◆ .lsftask—Configure user-specific tasks

Remote task An application or command that can be run on another machine in the cluster.
Commands:
◆ lsrtasks—View and add tasks
Configuration:
◆ lsf.task—Configure systemwide resource requirements for tasks

Cluster Concepts

24 Administering Platform LSF

◆ lsf.task.cluster—Configure clusterwide resource requirements for tasks

◆ .lsftask—Configure user-specific tasks

Host types and host models
Hosts in LSF are characterized by host type and host model.
The following example host type X86_64, with host models Opteron240,
Opteron840, Intel_EM64T, Intel_IA64, etc.

Host type The combination of operating system and host CPU architecture.
All computers that run the same operating system on the same computer
architecture are of the same type—in other words, binary-compatible with each
other.
Each host type usually requires a different set of LSF binary files.
Commands:
◆ lsinfo -t—View all host types defined in lsf.shared
Configuration:
◆ Defined in lsf.shared
◆ Mapped to hosts in lsf.cluster.cluster_name

Host model The host type of the computer, which determines the CPU speed scaling factor
applied in load and placement calculations.
The CPU factor is taken into consideration when jobs are being dispatched.
Commands:
◆ lsinfo -m—View a list of currently running models
◆ lsinfo -M—View all models defined in lsf.shared
Configuration:
◆ Defined in lsf.shared
◆ Mapped to hosts in lsf.cluster.cluster_name

Users and administrators

LSF user A user account that has permission to submit jobs to the LSF cluster.

LSF administrator In general, you must be an LSF administrator to perform operations that will affect
other LSF users. Each cluster has one primary LSF administrator, specified during
LSF installation. You can also configure additional administrators at the cluster
level and at the queue level.

Administering Platform LSF 25

About Platform LSF

Primary LSF
administrator

The first cluster administrator specified during installation and first administrator
listed in lsf.cluster.cluster_name. The primary LSF administrator account owns
the configuration and log files. The primary LSF administrator has permission to
perform clusterwide operations, change configuration files, reconfigure the cluster,
and control jobs submitted by all users.

Cluster
administrator

May be specified during LSF installation or configured after installation. Cluster
administrators can perform administrative operations on all jobs and queues in the
cluster. Cluster administrators have the same cluster-wide operational privileges as
the primary LSF administrator except that they do not necessarily have permission
to change LSF configuration files.
For example, a cluster administrator can create an LSF host group, submit a job to
any queue, or terminate another user’s job.

Queue
administrator

An LSF administrator user account that has administrative permissions limited to
a specified queue. For example, an LSF queue administrator can perform
administrative operations on the specified queue, or on jobs running in the
specified queue, but cannot change LSF configuration or operate on LSF daemons.

Resources

Resource usage The LSF system uses built-in and configured resources to track resource availability
and usage. Jobs are scheduled according to the resources available on individual
hosts.
Jobs submitted through the LSF system will have the resources they use monitored
while they are running. This information is used to enforce resource limits and load
thresholds as well as fairshare scheduling.
LSF collects information such as:
◆ Total CPU time consumed by all processes in the job
◆ Total resident memory usage in KB of all currently running processes in a job
◆ Total virtual memory usage in KB of all currently running processes in a job
◆ Currently active process group ID in a job
◆ Currently active processes in a job
On UNIX, job-level resource usage is collected through PIM.
Commands:
◆ lsinfo: View the resources available in your cluster
◆ bjobs -l : View current resource usage of a job
Configuration:
◆ SBD_SLEEP_TIME in lsb.params : Configures how often resource usage

information is sampled by PIM, collected by sbatchd, and sent to mbatchd

Load indices Load indices measure the availability of dynamic, non-shared resources on hosts in
the cluster. Load indices built into the LIM are updated at fixed time intervals.
Commands:
◆ lsload -l—View all load indices

Cluster Concepts

26 Administering Platform LSF

◆ bhosts -l—View load levels on a host

External load
indices

Defined and configured by the LSF administrator and collected by an External
Load Information Manager (ELIM) program. The ELIM also updates LIM when
new values are received.
Commands:
◆ lsinfo—View external load indices

Static resources Built-in resources that represent host information that does not change over time,
such as the maximum RAM available to user processes or the number of processors
in a machine. Most static resources are determined by the LIM at start-up time.
Static resources can be used to select appropriate hosts for particular jobs based on
binary architecture, relative CPU speed, and system configuration.

Load thresholds Two types of load thresholds can be configured by your LSF administrator to
schedule jobs in queues. Each load threshold specifies a load index value:
◆ loadSched determines the load condition for dispatching pending jobs. If a

host’s load is beyond any defined loadSched, a job will not be started on the
host. This threshold is also used as the condition for resuming suspended jobs.

◆ loadStop determines when running jobs should be suspended.
To schedule a job on a host, the load levels on that host must satisfy both the
thresholds configured for that host and the thresholds for the queue from which the
job is being dispatched.
The value of a load index may either increase or decrease with load, depending on
the meaning of the specific load index. Therefore, when comparing the host load
conditions with the threshold values, you need to use either greater than (>) or less
than (<), depending on the load index.
Commands:
◆ bhosts-l—View suspending conditions for hosts
◆ bqueues -l—View suspending conditions for queues
◆ bjobs -l—View suspending conditions for a particular job and the

scheduling thresholds that control when a job is resumed
Configuration:
◆ lsb.hosts—Configure thresholds for hosts
◆ lsb.queues—Configure thresholds for queues

Runtime resource
usage limits

Limit the use of resources while a job is running. Jobs that consume more than the
specified amount of a resource are signalled.
Configuration:
◆ lsb.queues—Configure resource usage limits for queues

Hard and soft limits Resource limits specified at the queue level are hard limits while those specified
with job submission are soft limits. See setrlimit(2) man page for concepts of
hard and soft limits.

Administering Platform LSF 27

About Platform LSF

Resource allocation
limits

Restrict the amount of a given resource that must be available during job scheduling
for different classes of jobs to start, and which resource consumers the limits apply
to. If all of the resource has been consumed, no more jobs can be started until some
of the resource is released.
Configuration:
◆ lsb.resources—Configure queue-level resource allocation limits for hosts,

users, queues, and projects

Resource
requirements (bsub
-R)

Restrict which hosts the job can run on. Hosts that match the resource
requirements are the candidate hosts. When LSF schedules a job, it collects the load
index values of all the candidate hosts and compares them to the scheduling
conditions. Jobs are only dispatched to a host if all load values are within the
scheduling thresholds.
Commands:
◆ bsub-R—Specify resource requirement string for a job
Configuration:

◆ lsb.queues—Configure resource requirements for queues

Job Life Cycle

28 Administering Platform LSF

Job Life Cycle

1 Submit a job
You submit a job from an LSF client or server with the bsub command.
If you do not specify a queue when submitting the job, the job is submitted to the
default queue.
Jobs are held in a queue waiting to be scheduled and have the PEND state. The job
is held in a job file in the LSF_SHAREDIR/cluster_name/logdir/info/ directory, or
in one of its subdirectories if MAX_INFO_DIRS is defined in lsb.params.

Job ID LSF assigns each job a unique job ID when you submit the job.

Job name You can also assign a name to the job with the -J option of bsub. Unlike the job ID,
the job name is not necessarily unique.

2 Schedule job
1 mbatchd looks at jobs in the queue and sends the jobs for scheduling to mbschd

at a preset time interval (defined by the parameter
JOB_SCHEDULING_INTERVAL in lsb.params).

2 mbschd evaluates jobs and makes scheduling decisions based on:
❖ Job priority
❖ Scheduling policies
❖ Available resources

3 mbschd selects the best hosts where the job can run and sends its decisions back
to mbatchd.
Resource information is collected at preset time intervals by the master LIM
from LIMs on server hosts. The master LIM communicates this information to
mbatchd, which in turn communicates it to mbschd to support scheduling
decisions.

3 Dispatch job
As soon as mbatchd receives scheduling decisions, it immediately dispatches the
jobs to hosts.

Administering Platform LSF 29

About Platform LSF

4 Run job
sbatchd handles job execution. It:
1 Receives the request from mbatchd
2 Creates a child sbatchd for the job
3 Creates the execution environment
4 Starts the job using res

The execution environment is copied from the submission host to the
execution host and includes the following:
❖ Environment variables needed by the job
❖ Working directory where the job begins running
❖ Other system-dependent environment settings, for example:

✧ On UNIX, resource limits and umask
✧ On Windows, desktop and Windows root directory

The job runs under the user account that submitted the job and has the
status RUN.

5 Return output
When a job is completed, it is assigned the DONE status if the job was completed
without any problems. The job is assigned the EXIT status if errors prevented the
job from completing.

sbatchd communicates job information including errors and output to mbatchd.

6 Send email to client
mbatchd returns the job output, job error, and job information to the submission
host through email. Use the -o and -e options of bsub to send job output and errors
to a file.

Job report A job report is sent by email to the LSF job owner and includes:
◆ Job information such as:

❖ CPU use
❖ Memory use
❖ Name of the account that submitted the job

◆ Job output
◆ Errors

Job Life Cycle

30 Administering Platform LSF

Administering Platform LSF 31

C H A P T E R

2
How the System Works

LSF can be configured in different ways that affect the scheduling of jobs. By
default, this is how LSF handles a new job:
1 Receive the job. Create a job file. Return the job ID to the user.
2 Schedule the job and select the best available host.
3 Dispatch the job to a selected host.
4 Set the environment on the host.
5 Start the job.

Contents
◆ Job Submission on page 32
◆ Job Scheduling and Dispatch on page 34
◆ Host Selection on page 36
◆ Job Execution Environment on page 37
◆ Fault Tolerance on page 38

Job Submission

32 Administering Platform LSF

Job Submission
The life cycle of a job starts when you submit the job to LSF. On the command line,
bsub is used to submit jobs, and you can specify many options to bsub to modify
the default behavior, including the use of a JSDL file. Jobs must be submitted to a
queue.

Queues
Queues represent a set of pending jobs, lined up in a defined order and waiting for
their opportunity to use resources. Queues implement different job scheduling and
control policies. All jobs submitted to the same queue share the same scheduling
and control policy. Queues do not correspond to individual hosts; each queue can
use all server hosts in the cluster, or a configured subset of the server hosts.
A queue is a network-wide holding place for jobs. Jobs enter the queue via the bsub
command. LSF can be configured to have one or more default queues. Jobs that are
not submitted to a specific queue will be assigned to the first default queue that
accepts them. Queues have the following attributes associated with them:
◆ Priority, where a larger integer is a higher priority
◆ Name, which uniquely identifies the queue
◆ Queue limits, that restrict hosts, number of jobs, users, groups, processors, etc.
◆ Standard UNIX limits: memory, swap, process, CPU, etc.
◆ Scheduling policies: FCFS, fairshare, preemptive, exclusive
◆ Administrators
◆ Run conditions
◆ Load-sharing threshold conditions, which apply load sharing to the queue
◆ UNIX nice(1) value, which sets the UNIX scheduler priority

Example queue Begin Queue
QUEUE_NAME = normal
PRIORITY = 30
STACKLIMIT= 2048
DESCRIPTION = For normal low priority jobs, running only if hosts
are lightly loaded.
QJOB_LIMIT = 60 # job limit of the queue
PJOB_LIMIT = 2 # job limit per processor
ut = 0.2
io = 50/240
USERS = all
HOSTS = all
NICE = 20
End Queue

Queue priority Defines the order in which queues are searched to determine which job will be
processed. Queues are assigned a priority by the LSF administrator, where a higher
number has a higher priority. Queues are serviced by LSF in order of priority from
the highest to the lowest. If multiple queues have the same priority, LSF schedules
all the jobs from these queues in first-come, first-served order.

Administering Platform LSF 33

How the System Works

Automatic queue selection
Typically, a cluster has multiple queues. When you submit a job to LSF you might
define which queue the job will enter. If you submit a job without specifying a queue
name, LSF considers the requirements of the job and automatically chooses a
suitable queue from a list of candidate default queues. If you did not define any
candidate default queues, LSF will create a new queue using all the default settings,
and submit the job to that queue.

Viewing default
queues

Use bparams to display default queues:
bparams
Default Queues: normal
...

The user can override this list by defining the environment variable
LSB_DEFAULTQUEUE.

How automatic
queue selection
works

LSF selects a suitable queue according to:
◆ User access restriction—Queues that do not allow this user to submit jobs are

not considered.
◆ Host restriction—If the job explicitly specifies a list of hosts on which the job

can be run, then the selected queue must be configured to send jobs to all hosts
in the list.

◆ Queue status—Closed queues are not considered.
◆ Exclusive execution restriction—If the job requires exclusive execution, then

queues that are not configured to accept exclusive jobs are not considered.
◆ Job’s requested resources—These must be within the resource allocation limits

of the selected queue.
If multiple queues satisfy the above requirements, then the first queue listed in the
candidate queues (as defined by the DEFAULT_QUEUE parameter or the
LSB_DEFAULTQUEUE environment variable) that satisfies the requirements is
selected.

Job files
When a batch job is submitted to a queue, LSF Batch holds it in a job file until
conditions are right for it to be executed. Then the job file is used to execute the job.

UNIX The job file is a Bourne shell script run at execution time.

Windows The job file is a batch file processed at execution time.

Job Scheduling and Dispatch

34 Administering Platform LSF

Job Scheduling and Dispatch
Submitted jobs sit in queues until they are scheduled and dispatched to a host for
execution. When a job is submitted to LSF, many factors control when and where
the job starts to run:
◆ Active time window of the queue or hosts
◆ Resource requirements of the job
◆ Availability of eligible hosts
◆ Various job slot limits
◆ Job dependency conditions
◆ Fairshare constraints
◆ Load conditions

Scheduling policies

First-Come,
First-Served (FCFS)
scheduling

By default, jobs in a queue are dispatched in first-come, first-served (FCFS) order.
This means that jobs are dispatched according to their order in the queue. Since
jobs are ordered according to job priority, this does not necessarily mean that jobs
will be dispatched in the order of submission. The order of jobs in the queue can
also be modified by the user or administrator.

Service level
agreement (SLA)
scheduling

An SLA in LSF is a “just-in-time” scheduling policy that defines an agreement
between LSF administrators and LSF users. The SLA scheduling policy defines how
many jobs should be run from each SLA to meet the configured goals.

Fairshare
scheduling and
other policies

If a fairshare scheduling policy has been specified for the queue or if host partitions
have been configured, jobs are dispatched in accordance with these policies instead.
To solve diverse problems, LSF allows multiple scheduling policies in the same
cluster. LSF has several queue scheduling policies such as exclusive, preemptive,
fairshare, and hierarchical fairshare.

Scheduling and dispatch
Jobs are scheduled at regular intervals (5 seconds by default, configured by the
parameter JOB_SCHEDULING_INTERVAL in lsb.params). Once jobs are
scheduled, they can be immediately dispatched to hosts.
To prevent overloading any host, LSF waits a short time between dispatching jobs
to the same host. The delay is configured by the JOB_ACCEPT_INTERVAL
parameter in lsb.params or lsb.queues. JOB_ACCEPT_INTERVAL controls the
number of seconds to wait after dispatching a job to a host before dispatching a
second job to the same host. The default is 60 seconds. If
JOB_ACCEPT_INTERVAL is set to zero, more than one job can be started on a
host at a time. A host running a short job which finishes before
JOB_ACCEPT_INTERVAL has elapsed is free to accept a new job without waiting.
Some operating systems, such as Linux and AIX, let you increase the number of file
descriptors that can be allocated to the master host. You do not need to limit the
number of file descriptors to 1024 if you want fast job dispatching. To take
advantage of the greater number of file descriptors, you must set the parameter

Administering Platform LSF 35

How the System Works

LSB_MAX_JOB_DISPATCH_PER_SESSION in lsf.conf to a value greater than
300 and less than or equal to one-half the value of MAX_SBD_CONNS defined in
lsb.params. LSB_MAX_JOB_DISPATCH_PER_SESSION defines the maximum
number of jobs that mbatchd can dispatch during one job scheduling session. You
must restart mbatchd and sbatchd when you change the value of this parameter for
the change to take effect.

Dispatch order
Jobs are not necessarily dispatched in order of submission.
Each queue has a priority number set by an LSF Administrator when the queue is
defined. LSF tries to start jobs from the highest priority queue first.
By default, LSF considers jobs for dispatch in the following order:
◆ For each queue, from highest to lowest priority. If multiple queues have the

same priority, LSF schedules all the jobs from these queues in first-come,
first-served order.

◆ For each job in the queue, according to FCFS order
◆ If any host is eligible to run this job, start the job on the best eligible host, and

mark that host ineligible to start any other job until JOB_ACCEPT_INTERVAL
has passed

Jobs can be dispatched out of turn if pre-execution conditions are not met, specific
hosts or resources are busy or unavailable, or a user has reached the user job slot
limit.

Viewing job order in queue

Use bjobs to see the order in which jobs in a queue will actually be dispatched for
the FCFS policy.

Changing job order in queue (btop and bbot)

Use the btop and bbot commands to change the job order in the queue.
See Changing Job Order Within Queues on page 126 for more information.

Host Selection

36 Administering Platform LSF

Host Selection
Each time LSF attempts to dispatch a job, it checks to see which hosts are eligible to
run the job. A number of conditions determine whether a host is eligible:
◆ Host dispatch windows
◆ Resource requirements of the job
◆ Resource requirements of the queue
◆ Host list of the queue
◆ Host load levels
◆ Job slot limits of the host
A host is only eligible to run a job if all the conditions are met. If a job is queued and
there is an eligible host for that job, the job is placed on that host. If more than one
host is eligible, the job is started on the best host based on both the job and the
queue resource requirements.

Host load levels
A host is available if the values of the load indices (such as r1m, pg, mem) of the host
are within the configured scheduling thresholds. There are two sets of scheduling
thresholds: host and queue. If any load index on the host exceeds the corresponding
host threshold or queue threshold, the host is not eligible to run any job.

Viewing host load
levels

◆ Use the bhosts -l command to display the host thresholds.
◆ Use the bqueues -l command to display the queue thresholds.

Eligible hosts
When LSF tries to place a job, it obtains current load information for all hosts.
The load levels on each host are compared to the scheduling thresholds configured
for that host in the Host section of lsb.hosts, as well as the per-queue scheduling
thresholds configured in lsb.queues.
If any load index exceeds either its per-queue or its per-host scheduling threshold,
no new job is started on that host.

Viewing eligible
hosts

The bjobs -lp command displays the names of hosts that cannot accept a job at
the moment together with the reasons the job cannot be accepted.

Resource requirements
Resource requirements at the queue level can also be used to specify scheduling
conditions (for example, r1m<0.4 && pg<3).
A higher priority or earlier batch job is only bypassed if no hosts are available that
meet the requirements of that job.
If a host is available but is not eligible to run a particular job, LSF looks for a later
job to start on that host. LSF starts the first job found for which that host is eligible.

Administering Platform LSF 37

How the System Works

Job Execution Environment
When LSF runs your jobs, it tries to make it as transparent to the user as possible.
By default, the execution environment is maintained to be as close to the
submission environment as possible. LSF will copy the environment from the
submission host to the execution host. The execution environment includes the
following:
◆ Environment variables needed by the job
◆ Working directory where the job begins running
◆ Other system-dependent environment settings; for example, resource usage

limits and umask:
Since a network can be heterogeneous, it is often impossible or undesirable to
reproduce the submission host’s execution environment on the execution host. For
example, if home directory is not shared between submission and execution host,
LSF runs the job in the /tmp on the execution host. If the DISPLAY environment
variable is something like Unix:0.0, or :0.0, then it must be processed before
using on the execution host. These are automatically handled by LSF.
To change the default execution environment, use:
◆ A job starter
◆ bsub -L

For resource control, LSF also changes some of the execution environment of jobs.
These include nice values, resource usage limits, or any other environment by
configuring a job starter.

Shared user directories
LSF works best when user home directories are shared across all hosts in the cluster.
To provide transparent remote execution, you should share user home directories
on all LSF hosts.
To provide transparent remote execution, LSF commands determine the user’s
current working directory and use that directory on the remote host.
For example, if the command cc file.c is executed remotely, cc only finds the
correct file.c if the remote command runs in the same directory.
LSF automatically creates an .lsbatch subdirectory in the user’s home directory on
the execution host. This directory is used to store temporary input and output files
for jobs.

Executables and the PATH environment variable
Search paths for executables (the PATH environment variable) are passed to the
remote execution host unchanged. In mixed clusters, LSF works best when the user
binary directories (for example, /usr/bin, /usr/local/bin) have the same path
names on different host types. This makes the PATH variable valid on all hosts.
LSF configuration files are normally stored in a shared directory. This makes
administration easier. There is little performance penalty for this, because the
configuration files are not frequently read.

Fault Tolerance

38 Administering Platform LSF

Fault Tolerance
LSF is designed to continue operating even if some of the hosts in the cluster are
unavailable. One host in the cluster acts as the master, but if the master host
becomes unavailable another host takes over. LSF is available as long as there is one
available host in the cluster.
LSF can tolerate the failure of any host or group of hosts in the cluster. When a host
crashes, all jobs running on that host are lost. No other pending or running jobs are
affected. Important jobs can be submitted to LSF with an option to automatically
restart if the job is lost because of a host failure.

Dynamic master host
The LSF master host is chosen dynamically. If the current master host becomes
unavailable, another host takes over automatically. The failover master host is
selected from the list defined in LSF_MASTER_LIST in lsf.conf (specified in
install.config at installation). The first available host in the list acts as the
master. LSF might be unavailable for a few minutes while hosts are waiting to be
contacted by the new master.
Running jobs are managed by sbatchd on each server host. When the new mbatchd
starts, it polls the sbatchd on each host and finds the current status of its jobs. If
sbatchd fails but the host is still running, jobs running on the host are not lost.
When sbatchd is restarted it regains control of all jobs running on the host.

Network failure
If the cluster is partitioned by a network failure, a master LIM takes over on each
side of the partition. Interactive load-sharing remains available, as long as each host
still has access to the LSF executables.

Event log file (lsb.events)
Fault tolerance in LSF depends on the event log file, lsb.events, which is kept on
the primary file server. Every event in the system is logged in this file, including all
job submissions and job and host status changes. If the master host becomes
unavailable, a new master is chosen by lim. sbatchd on the new master starts a new
mbatchd. The new mbatchd reads the lsb.events file to recover the state of the
system.
For sites not wanting to rely solely on a central file server for recovery information,
LSF can be configured to maintain a duplicate event log by keeping a replica of
lsb.events. The replica is stored on the file server, and used if the primary copy is
unavailable. When using LSF’s duplicate event log function, the primary event log
is stored on the first master host, and re-synchronized with the replicated copy
when the host recovers.

Partitioned network
If the network is partitioned, only one of the partitions can access lsb.events, so
batch services are only available on one side of the partition. A lock file is used to
make sure that only one mbatchd is running in the cluster.

Administering Platform LSF 39

How the System Works

Host failure
If an LSF server host fails, jobs running on that host are lost. No other jobs are
affected. Jobs can be submitted as rerunnable, so that they automatically run again
from the beginning or as checkpointable, so that they start again from a checkpoint
on another host if they are lost because of a host failure.
If all of the hosts in a cluster go down, all running jobs are lost. When a host comes
back up and takes over as master, it reads the lsb.events file to get the state of all
batch jobs. Jobs that were running when the systems went down are assumed to
have exited, and email is sent to the submitting user. Pending jobs remain in their
queues, and are scheduled as hosts become available.

Job exception handling
You can configure hosts and queues so that LSF detects exceptional conditions
while jobs are running, and take appropriate action automatically. You can
customize what exceptions are detected, and the corresponding actions. By default,
LSF does not detect any exceptions.
See Handling Host-level Job Exceptions on page 105 and Handling Job Exceptions
in Queues on page 116 for more information about job-level exception
management.

Fault Tolerance

40 Administering Platform LSF

Administering Platform LSF 41

P A R T

I
Managing Your Cluster

◆ Working with Your Cluster on page 43
◆ Working with Hosts on page 59
◆ Working with Queues on page 107
◆ Managing Jobs on page 119
◆ Managing Users and User Groups on page 149
◆ Platform LSF Licensing on page 155
◆ Managing LSF on Platform EGO on page 191
◆ Cluster Version Management and Patching on UNIX and Linux on page 223
◆ Upgrading Platform LSF HPC on page 239

42 Administering Platform LSF

Administering Platform LSF 43

C H A P T E R

3
Working with Your Cluster

Contents
◆ Viewing cluster information on page 44
◆ Example directory structures on page 49
◆ Cluster administrators on page 51
◆ Controlling daemons on page 52
◆ Controlling mbatchd on page 54
◆ Reconfiguring your cluster on page 57

Viewing cluster information

44 Administering Platform LSF

Viewing cluster information
LSF provides commands for users to access information about the cluster. Cluster
information includes the cluster master host, cluster name, cluster resource
definitions, cluster administrator, and so on.

View LSF version, cluster name, and current master host

1 Run lsid to display the version of LSF, the name of your cluster, and the
current master host:
lsid
Platform LSF 7 Update 6 May 6 2009
Copyright 1992-2009 Platform Computing Corporation

My cluster name is cluster1
My master name is hostA

View cluster administrators

1 Run lsclusters to find out who your cluster administrator is and see a
summary of your cluster:

lsclusters
CLUSTER_NAME STATUS MASTER_HOST ADMIN HOSTS SERVERS
cluster1 ok hostA lsfadmin 6 6

If you are using the LSF MultiCluster product, you will see one line for each of
the clusters that your local cluster is connected to in the output of lsclusters.

View configuration parameters

1 Run bparams to display the generic configuration parameters of LSF. These
include default queues, job dispatch interval, job checking interval, and job
accepting interval.
bparams
Default Queues: normal idle
Job Dispatch Interval: 20 seconds
Job Checking Interval: 15 seconds
Job Accepting Interval: 20 seconds

To view the ... Run ...

Version of LSF lsid

Cluster name lsid

Current master host lsid

Cluster administrators lsclusters

Configuration parameters bparams

Administering Platform LSF 45

Working with Your Cluster

2 Run bparams -l to display the information in long format, which gives a brief
description of each parameter and the name of the parameter as it appears in
lsb.params.

bparams -l

System default queues for automatic queue selection:
DEFAULT_QUEUE = normal idle

The interval for dispatching jobs by master batch daemon:
MBD_SLEEP_TIME = 20 (seconds)

The interval for checking jobs by slave batch daemon:
SBD_SLEEP_TIME = 15 (seconds)

The interval for a host to accept two batch jobs subsequently:
JOB_ACCEPT_INTERVAL = 1 (* MBD_SLEEP_TIME)

The idle time of a host for resuming pg suspended jobs:
PG_SUSP_IT = 180 (seconds)

The amount of time during which finished jobs are kept in core:
CLEAN_PERIOD = 3600 (seconds)

The maximum number of finished jobs that are logged in current event file:
MAX_JOB_NUM = 2000

The maximum number of retries for reaching a slave batch daemon:
MAX_SBD_FAIL = 3

The number of hours of resource consumption history:
HIST_HOURS = 5

The default project assigned to jobs.
DEFAULT_PROJECT = default

Sync up host status with master LIM is enabled:
LSB_SYNC_HOST_STAT_LIM = Y

MBD child query processes will only run on the following CPUs:
MBD_QUERY_CPUS=1 2 3

3 Run bparams -a to display all configuration parameters and their values in
lsb.params.
For example:
bparams -a

lsb.params configuration at Fri Jun 8 10:27:52 CST 2007

 MBD_SLEEP_TIME = 20

 SBD_SLEEP_TIME = 15

 JOB_ACCEPT_INTERVAL = 1

 SUB_TRY_INTERVAL = 60

 LSB_SYNC_HOST_STAT_LIM = N

 MAX_JOBINFO_QUERY_PERIOD = 2147483647

 PEND_REASON_UPDATE_INTERVAL = 30

Viewing cluster information

46 Administering Platform LSF

Viewing daemon parameter configuration

1 Display all configuration settings for running LSF daemons.
❖ Use lsadmin showconf to display all configured parameters and their

values in lsf.conf or ego.conf for LIM.
❖ Use badmin showconf to display all configured parameters and their

values in lsf.conf or ego.conf for mbatchd and sbatchd.
In a MultiCluster environment, lsadmin showconf and badmin showconf
only display the parameters of daemons on the local cluster.
Running lsadmin showconf and badmin showconf from a master candidate
host will reach all server hosts in the cluster. Running lsadmin showconf and
badmin showconf from a slave-only host may not be able to reach other
slave-only hosts.
You cannot run lsadmin showconf and badmin showconf from client hosts.
lsadmin shows only server host configuration, not client host configuration.
lsadmin showconf and badmin showconf only displays the values used by
LSF.
lsadmin showconf and badmin showconf display EGO_MASTER_LIST
from wherever it is defined. You can define either LSF_MASTER_LIST in
lsf.conf or or EGO_MASTER_LIST in ego.conf. LIM reads lsf.conf first,
and ego.conf if EGO is enabled in the LSF cluster. LIM only takes the value of
LSF_MASTER_LIST if EGO_MASTER_LIST is not defined at all in lsf.conf.
For example, if EGO is enabled in the LSF cluster, and you define
LSF_MASTER_LIST in lsf.conf, and EGO_MASTER_LIST in ego.conf,
lsadmin showconf and badmin showconf display the value of
EGO_MASTER_LIST in ego.conf.
If EGO is disabled, ego.conf not loaded, so whatever is defined in lsf.conf is
displayed.

2 Display mbatchd and root sbatchd configuration.
❖ Use badmin showconf mbd to display the parameters configured in

lsf.conf or ego.conf that apply to mbatchd.
❖ Use badmin showconf sbd to display the parameters configured in

lsf.conf or ego.conf that apply to root sbatchd.
3 Display LIM configuration.

Use lsadmin showconf lim to display the parameters configured in lsf.conf
or ego.conf that apply to root LIM.
By default, lsadmin displays the local LIM parameters. You can specify the host
to display the LIM parameters.

Examples ◆ Show mbatchd configuration:
badmin showconf mbd

MBD configuration at Fri Jun 8 10:27:52 CST 2007

 LSB_SHAREDIR=/scratch/dev/lsf/user1/0604/work

Administering Platform LSF 47

Working with Your Cluster

 LSF_CONFDIR=/scratch/dev/lsf/user1/0604/conf

 LSF_LOG_MASK=LOG_WARNING

 LSF_ENVDIR=/scratch/dev/lsf/user1/0604/conf

 LSF_EGO_DAEMON_CONTROL=N

 …

◆ Show sbatchd configuration on a specific host:
badmin showconf sbd hosta

SBD configuration for host <hosta> at Fri Jun 8 10:27:52 CST 2007

 LSB_SHAREDIR=/scratch/dev/lsf/user1/0604/work

 LSF_CONFDIR=/scratch/dev/lsf/user1/0604/conf

 LSF_LOG_MASK=LOG_WARNING

 LSF_ENVDIR=/scratch/dev/lsf/user1/0604/conf

 LSF_EGO_DAEMON_CONTROL=N

 …

◆ Show sbatchd configuration for all hosts:
badmin showconf sbd all

SBD configuration for host <hosta> at Fri Jun 8 10:27:52 CST 2007

 LSB_SHAREDIR=/scratch/dev/lsf/user1/0604/work

 LSF_CONFDIR=/scratch/dev/lsf/user1/0604/conf

 LSF_LOG_MASK=LOG_WARNING

 LSF_ENVDIR=/scratch/dev/lsf/user1/0604/conf

 LSF_EGO_DAEMON_CONTROL=N

 …

SBD configuration for host <hostb> at Fri Jun 8 10:27:52 CST 2007

 LSB_SHAREDIR=/scratch/dev/lsf/user1/0604/work

 LSF_CONFDIR=/scratch/dev/lsf/user1/0604/conf

 LSF_LOG_MASK=LOG_WARNING

 LSF_ENVDIR=/scratch/dev/lsf/user1/0604/conf

 LSF_EGO_DAEMON_CONTROL=N

 …

◆ Show lim configuration:
lsadmin showconf lim

LIM configuration for host <hosta> at Fri Jun 8 10:27:52 CST 2007

 LSB_SHAREDIR=/scratch/dev/lsf/user1/0604/work

 LSF_CONFDIR=/scratch/dev/lsf/user1/0604/conf

 LSF_LOG_MASK=LOG_WARNING

 LSF_ENVDIR=/scratch/dev/lsf/user1/0604/conf

 LSF_EGO_DAEMON_CONTROL=N

 …

◆ Show lim configuration for a specific host:
lsadmin showconf lim hosta

LIM configuration for host <hosta> at Fri Jun 8 10:27:52 CST 2007

 LSB_SHAREDIR=/scratch/dev/lsf/user1/0604/work

Viewing cluster information

48 Administering Platform LSF

 LSF_CONFDIR=/scratch/dev/lsf/user1/0604/conf

 LSF_LOG_MASK=LOG_WARNING

 LSF_ENVDIR=/scratch/dev/lsf/user1/0604/conf

 LSF_EGO_DAEMON_CONTROL=N

 …

◆ Show lim configuration for all hosts:
lsadmin showconf lim all

LIM configuration for host <hosta> at Fri Jun 8 10:27:52 CST 2007

 LSB_SHAREDIR=/scratch/dev/lsf/user1/0604/work

 LSF_CONFDIR=/scratch/dev/lsf/user1/0604/conf

 LSF_LOG_MASK=LOG_WARNING

 LSF_ENVDIR=/scratch/dev/lsf/user1/0604/conf

 LSF_EGO_DAEMON_CONTROL=N

 …

LIM configuration for host <hostb> at Fri Jun 8 10:27:52 CST 2007

 LSB_SHAREDIR=/scratch/dev/lsf/user1/0604/work

 LSF_CONFDIR=/scratch/dev/lsf/user1/0604/conf

 LSF_LOG_MASK=LOG_WARNING

 LSF_ENVDIR=/scratch/dev/lsf/user1/0604/conf

 LSF_EGO_DAEMON_CONTROL=N

 …

Administering Platform LSF 49

Working with Your Cluster

Example directory structures

UNIX and Linux
The following figures show typical directory structures for a new UNIX or Linux
installation with lsfinstall. Depending on which products you have installed
and platforms you have selected, your directory structure may vary.

Example directory structures

50 Administering Platform LSF

Microsoft Windows
The following diagram shows an example directory structure for a Windows
installation.

Administering Platform LSF 51

Working with Your Cluster

Cluster administrators

Primary cluster administrator
Required. The first cluster administrator, specified during installation. The primary
LSF administrator account owns the configuration and log files. The primary LSF
administrator has permission to perform clusterwide operations, change
configuration files, reconfigure the cluster, and control jobs submitted by all users.

Other cluster administrators
Optional. May be configured during or after installation.
Cluster administrators can perform administrative operations on all jobs and
queues in the cluster. Cluster administrators have the same cluster-wide operational
privileges as the primary LSF administrator except that they do not have permission
to change LSF configuration files.

Add cluster administrators

1 In the ClusterAdmins section of lsf.cluster.cluster_name, specify the list of
cluster administrators following ADMINISTRATORS, separated by spaces.
You can specify user names and group names.
The first administrator in the list is the primary LSF administrator. All others
are cluster administrators.
For example:
Begin ClusterAdmins
ADMINISTRATORS = lsfadmin admin1 admin2
End ClusterAdmins

2 Save your changes.
3 Run lsadmin reconfig to reconfigure LIM.
4 Run badmin mbdrestart to restart mbatchd.

Controlling daemons

52 Administering Platform LSF

Controlling daemons

Permissions required
To control all daemons in the cluster, you must
◆ Be logged on as root or as a user listed in the /etc/lsf.sudoers file. See the

Platform LSF Configuration Reference for configuration details of
lsf.sudoers.

◆ Be able to run the rsh or ssh commands across all LSF hosts without having to
enter a password. See your operating system documentation for information
about configuring the rsh and ssh commands. The shell command specified
by LSF_RSH in lsf.conf is used before rsh is tried.

Daemon commands
The following is an overview of commands you use to control LSF daemons.

Daemon Action Command Permissions

All in cluster Start lsfstartup Must be root or a user listed in
lsf.sudoers for all these
commands

Shut down lsfshutdown
sbatchd Start badmin hstartup [host_name ...|all] Must be root or a user listed in

lsf.sudoers for the startup
command

Restart badmin hrestart [host_name ...|all] Must be root or the LSF
administrator for other
commands

Shut down badmin hshutdown [host_name ...|all]

mbatchd
mbschd

Restart badmin mbdrestart Must be root or the LSF
administrator for these
commands

Shut down 1 badmin hshutdown
2 badmin mbdrestart

Reconfigure badmin reconfig
RES Start lsadmin resstartup [host_name ...|all] Must be root or a user listed in

lsf.sudoers for the startup
command

Shut down lsadmin resshutdown [host_name ...|all] Must be the LSF administrator for
other commandsRestart lsadmin resrestart [host_name ...|all]

LIM Start lsadmin limstartup [host_name ...|all] Must be root or a user listed in
lsf.sudoers for the startup
command

Shut down lsadmin limshutdown [host_name ...|all] Must be the LSF administrator for
other commandsRestart lsadmin limrestart [host_name ...|all]

Restartall
in cluster

lsadmin reconfig

Administering Platform LSF 53

Working with Your Cluster

sbatchd
Restarting sbatchd on a host does not affect jobs that are running on that host.
If sbatchd is shut down, the host is not available to run new jobs. Existing jobs
running on that host continue, but the results are not sent to the user until sbatchd
is restarted.

LIM and RES
Jobs running on the host are not affected by restarting the daemons.
If a daemon is not responding to network connections, lsadmin displays an error
message with the host name. In this case you must kill and restart the daemon
manually.
If the LIM and the other daemons on the current master host shut down, another
host automatically takes over as master.
If the RES is shut down while remote interactive tasks are running on the host, the
running tasks continue but no new tasks are accepted.

Controlling mbatchd

54 Administering Platform LSF

Controlling mbatchd
You use the badmin command to control mbatchd.

Reconfigure mbatchd
If you add a host to a host group, a host to a queue, or change resource configuration
in the Hosts section of lsf.cluster.cluster_name, the change is not recognized by
jobs that were submitted before you reconfigured. If you want the new host to be
recognized, you must restart mbatchd.

1 Run badmin reconfig.

When you reconfigure the cluster, mbatchd is not restarted. Only configuration
files are reloaded.

Restart mbatchd

1 Run badmin mbdrestart.
 LSF checks configuration files for errors and prints the results to stderr. If no
errors are found, the following occurs:
◆ Configuration files are reloaded
◆ mbatchd is restarted
◆ Events in lsb.events are reread and replayed to recover the running state

of the last mbatchd

TIP: Whenever mbatchd is restarted, it is unavailable to service requests. In large clusters where
there are many events in lsb.events, restarting mbatchd can take some time. To avoid
replaying events in lsb.events, use the command badmin reconfig.

Log a comment when restarting mbatchd

1 Use the -C option of badmin mbdrestart to log an administrator comment in
lsb.events.
For example:
badmin mbdrestart -C "Configuration change"

The comment text Configuration change is recorded in lsb.events.
2 Run badmin hist or badmin mbdhist to display administrator comments for

mbatchd restart.

Administering Platform LSF 55

Working with Your Cluster

Shut down mbatchd

1 Run badmin hshutdown to shut down sbatchd on the master host.
For example:
badmin hshutdown hostD
Shut down slave batch daemon on <hostD> done

2 Run badmin mbdrestart:
badmin mbdrestart
Checking configuration files ...
No errors found.

This causes mbatchd and mbschd to exit. mbatchd cannot be restarted, because
sbatchd is shut down. All LSF services are temporarily unavailable, but existing
jobs are not affected. When mbatchd is later started by sbatchd, its previous
status is restored from the event log file and job scheduling continues.

Customize batch command messages

56 Administering Platform LSF

Customize batch command messages
LSF displays error messages when a batch command cannot communicate with
mbatchd. Users see these messages when the batch command retries the connection
to mbatchd.
You can customize three of these messages to provide LSF users with more detailed
information and instructions.

1 In the file lsf.conf, identify the parameter for the message that you want to
customize.
The following lists the parameters you can use to customize messages when a
batch command does not receive a response from mbatchd.

2 Specify a message string, or specify an empty string:
❖ To specify a message string, enclose the message text in quotation marks (")

as shown in the following example:
LSB_MBD_BUSY_MSG="The mbatchd daemon is busy. Your command
will retry every 5 minutes. No action required."

❖ To specify an empty string, type quotation marks (") as shown in the
following example:
LSB_MBD_BUSY_MSG=""

Whether you specify a message string or an empty string, or leave the
parameter undefined, the batch command retries the connection to mbatchd at
the intervals specified by the parameters LSB_API_CONNTIMEOUT and
LSB_API_RECVTIMEOUT.

NOTE: Before Version 7.0, LSF displayed the following message for all three message types:
"batch daemon not responding…still trying." To display the previous default message, you
must define each of the three message parameters and specify "batch daemon not
responding…still trying" as the message string.

3 Save and close the lsf.conf file.

Reason for no response from mbatchd Default message Parameter used to customize the message

mbatchd is too busy to accept new
connections or respond to client
requests

LSF is processing your
request. Please wait...

LSB_MBD_BUSY_MSG

internal system connections to
mbatchd fail

Cannot connect to LSF.
Please wait...

LSB_MBD_CONNECT_FAIL_MSG

mbatchd is down or there is no process
listening at either the LSB_MBD_PORT
or the LSB_QUERY_PORT

LSF is down. Please
wait...

LSB_MBD_DOWN_MSG

Administering Platform LSF 57

Working with Your Cluster

Reconfiguring your cluster
After changing LSF configuration files, you must tell LSF to reread the files to
update the configuration. Use the following commands to reconfigure a cluster:
◆ lsadmin reconfig

◆ badmin reconfig

◆ badmin mbdrestart

The reconfiguration commands you use depend on which files you change in LSF.
The following table is a quick reference.

Reconfigure the cluster with lsadmin and badmin
To make a configuration change take effect, use this method to reconfigure the
cluster.

1 Log on to the host as root or the LSF administrator.
2 Run lsadmin reconfig to reconfigure LIM:

lsadmin reconfig

The lsadmin reconfig command checks for configuration errors.

After making changes to ... Use ... Which ...

hosts badmin reconfig reloads configuration files
license.dat lsadmin reconfig AND

badmin mbdrestart
restarts LIM, reloads configuration files, and
restarts mbatchd

lsb.applications badmin reconfig reloads configuration files
Pending jobs use new application profile
definition. Running jobs are not affected.

lsb.hosts badmin reconfig reloads configuration files
lsb.modules badmin reconfig reloads configuration files
lsb.nqsmaps badmin reconfig reloads configuration files
lsb.params badmin reconfig reloads configuration files
lsb.queues badmin reconfig reloads configuration files
lsb.resources badmin reconfig reloads configuration files
lsb.serviceclasses badmin reconfig reloads configuration files
lsb.users badmin reconfig reloads configuration files
lsf.cluster.cluster_name lsadmin reconfig AND

badmin mbdrestart
restarts LIM, reloads configuration files, and
restarts mbatchd

lsf.conf lsadmin reconfig AND
badmin mbdrestart

reconfigures LIM, reloads configuration files, and
restarts mbatchd

lsf.licensescheduler bladmin reconfig
lsadmin reconfig
badmin mbdrestart

reconfigures bld, reconfigures LIM, reloads
configuration files, and restarts mbatchd

lsf.shared lsadmin reconfig AND
badmin mbdrestart

restarts LIM, reloads configuration files, and
restarts mbatchd

lsf.sudoers badmin reconfig reloads configuration files
lsf.task lsadmin reconfig AND

badmin reconfig
restarts LIM and reloads configuration files

Reconfiguring your cluster

58 Administering Platform LSF

If no errors are found, you are prompted to either restart lim on master host
candidates only, or to confirm that you want to restart lim on all hosts. If fatal
errors are found, reconfiguration is aborted.

3 Run badmin reconfig to reconfigure mbatchd:
badmin reconfig

The badmin reconfig command checks for configuration errors.
If fatal errors are found, reconfiguration is aborted.

Reconfigure the cluster by restarting mbatchd
To replay and recover the running state of the cluster, use this method to
reconfigure the cluster.

1 Run badmin mbdrestart to restart mbatchd:
badmin mbdrestart

The badmin mbdrestart command checks for configuration errors.
If no fatal errors are found, you are asked to confirm mbatchd restart. If fatal
errors are found, the command exits without taking any action.

TIP: If the lsb.events file is large, or many jobs are running, restarting mbatchd can take
some time. In addition, mbatchd is not available to service requests while it is restarted.

View configuration errors

1 Run lsadmin ckconfig -v.
2 Run badmin ckconfig -v.

This reports all errors to your terminal.

How reconfiguring the cluster affects licenses
If the license server goes down, LSF can continue to operate for a period of time
until it attempts to renew licenses.
Reconfiguring causes LSF to renew licenses. If no license server is available, LSF
does not reconfigure the system because the system would lose all its licenses and
stop working.
If you have multiple license servers, reconfiguration proceeds provided LSF can
contact at least one license server. In this case, LSF still loses the licenses on servers
that are down, so LSF may have fewer licenses available after reconfiguration.

Administering Platform LSF 59

C H A P T E R

4
Working with Hosts

Contents
◆ Host status on page 60
◆ How LIM Determines Host Models and Types on page 62
◆ Viewing Host Information on page 64
◆ Controlling Hosts on page 70
◆ Adding a Host on page 73
◆ Remove a Host on page 75
◆ Adding Hosts Dynamically on page 77
◆ Automatically Detect Operating System Types and Versions on page 84
◆ Add Host Types and Host Models to lsf.shared on page 86
◆ Registering Service Ports on page 87
◆ Host Naming on page 89
◆ Hosts with Multiple Addresses on page 91
◆ Using IPv6 Addresses on page 93
◆ Specify host names with condensed notation on page 95
◆ Host Groups on page 96
◆ Compute Units on page 100
◆ Tuning CPU Factors on page 103
◆ Handling Host-level Job Exceptions on page 105

Host status

60 Administering Platform LSF

Host status
Host status describes the ability of a host to accept and run batch jobs in terms of
daemon states, load levels, and administrative controls. The bhosts and lsload
commands display host status.

bhosts
Displays the current status of the host:

bhosts -l Displays the closed reasons. A closed host does not accept new batch jobs:

bhosts
HOST_NAME STATUS JL/U MAX NJOBS RUN SSUSP USUSP RSV
hostA ok - 55 2 2 0 0 0
hostB closed - 20 16 16 0 0 0
...

bhosts -l hostB
HOST hostB
STATUS CPUF JL/U MAX NJOBS RUN SSUSP USUSP RSV DISPATCH_WINDOW
closed_Adm 23.10 - 55 2 2 0 0 0 -
CURRENT LOAD USED FOR SCHEDULING:

r15s r1m r15m ut pg io ls it tmp swp mem
Total 1.0 -0.0 -0.0 4% 9.4 148 2 3 4231M 698M 233M
Reserved 0.0 0.0 0.0 0% 0.0 0 0 0 0M 0M 0M
LOAD THRESHOLD USED FOR SCHEDULING:

STATUS Description

ok Host is available to accept and run new batch jobs.
unavail Host is down, or LIM and sbatchd are unreachable.
unreach LIM is running but sbatchd is unreachable.
closed Host will not accept new jobs. Use bhosts -l to display the reasons.
unlicensed Host does not have a valid license.

Closed reason Description

closed_Adm An LSF administrator or root explicitly closed the host using
badmin hclose. Running jobs are not affected.

closed_Busy The value of a load index exceeded a threshold (configured in
lsb.hosts, displayed by bhosts -l). Running jobs are not affected.
Indices that exceed thresholds are identified with an asterisk (*).

closed_Excl An exclusive batch job (i.e., bsub -x) is running on the host.
closed_cu_Excl An exclusive compute unit job (i.e., bsub -R "cu[excl]") is running

within the compute unit containing this host.
closed_Full The configured maximum number of running jobs has been

reached. Running jobs will not be affected.
closed_LIM sbatchd is running but LIM is unavailable.
closed_Lock An LSF administrator or root explicitly locked the host using

lsadmin limlock. Running jobs are suspended (SSUSP). Use
lsadmin limunlock to unlock LIM on the local host.

closed_Wind Host is closed by a dispatch window defined in lsb.hosts.
Running jobs are not affected.

closed_EGO For EGO-enabled SLA scheduling, closed_EGO indicates that
the host is closed because it has not been allocated by EGO to
run LSF jobs. Hosts allocated from EGO display status ok.

Administering Platform LSF 61

Working with Hosts

r15s r1m r15m ut pg io ls it tmp swp mem
loadSched - - - - - - - - - - -
loadStop - - - - - - - - - - -

 cpuspeed bandwidth

 loadSched - -

 loadStop - -

lsload
Displays the current state of the host:

lsload
HOST_NAME status r15s r1m r15m ut pg ls it tmp swp mem
hostA ok 0.0 0.0 0.0 4% 0.4 0 4316 10G 302M 252M
hostB ok 1.0 0.0 0.0 4% 8.2 2 14 4231M 698M 232M
...

Status Description

ok Host is available to accept and run batch jobs and remote tasks.
-ok LIM is running but RES is unreachable.
busy Does not affect batch jobs, only used for remote task placement (i.e.,

lsrun). The value of a load index exceeded a threshold (configured in
lsf.cluster.cluster_name, displayed by lshosts -l). Indices that exceed
thresholds are identified with an asterisk (*).

lockW Does not affect batch jobs, only used for remote task placement (i.e.,
lsrun). Host is locked by a run window (configured in
lsf.cluster.cluster_name, displayed by lshosts -l).

lockU Will not accept new batch jobs or remote tasks. An LSF administrator
or root explicitly locked the host using lsadmin limlock, or an
exclusive batch job (bsub -x) is running on the host. Running jobs are
not affected. Use lsadmin limunlock to unlock LIM on the local host.

unavail Host is down, or LIM is unavailable.
unlicensed The host does not have a valid license.

How LIM Determines Host Models and Types

62 Administering Platform LSF

How LIM Determines Host Models and Types
The LIM (load information manager) daemon/service automatically collects
information about hosts in an LSF cluster, and accurately determines running host
models and types. At most, 1024 model types can be manually defined in
lsf.shared.
If lsf.shared is not fully defined with all known host models and types found in
the cluster, LIM attempts to match an unrecognized running host to one of the
models and types that is defined.
LIM supports both exact matching of host models and types, and "fuzzy" matching,
where an entered host model name or type is slightly different from what is defined
in lsf.shared (or in ego.shared if EGO is enabled in the LSF cluster).

How does "fuzzy" matching work?
LIM reads host models and types that have been manually configured in
lsf.shared. The format for entering host models and types is
model_bogomips_architecture (for example, x15_4604_OpterontmProcessor142,
IA64_2793, or SUNWUltra510_360_sparc). Names can be up to 64 characters long.
When LIM attempts to match running host model with what is entered in
lsf.shared, it first attempts an exact match, then proceeds to make a fuzzy match.

How LIM attempts to make matches

Architecture name of running host What the lim reports Additional information about the lim process

Same as definition in
lsf.shared (exact match)

Reports the reference index
of exact match

LIM detects an exact match between model and
input architecture string

Administering Platform LSF 63

Working with Hosts

Similar to what is defined in
lsf.shared (fuzzy match)

Reports fuzzy match based
on detection of 1or 2 fields
in the input architecture
string

◆ For input architecture strings with only one
field, if LIM cannot detect an exact match for
the input string, then it reports the best
match. A best match is a model field with the
most characters shared by the input string.

◆ For input architecture strings with two fields:
a If LIM cannot detect an exact match, it

attempts to find a best match by
identifying the model field with the most
characters that match the input string

b LIM then attempts to find the best match
on the bogomips field

◆ For architecture strings with three fields:
a If LIM cannot detect an exact match, it

attempts to find a best match by
identifying the model field with the most
characters that match the input string

b After finding the best match for the
model field, LIM attempts to find the best
match on the architecture field

c LIM then attempts to find the closest
match on the bogomips field, with
wildcards supported (where the
bogomips field is a wildcard)

Has an illegal name Reports default host model An illegal name is one that does not follow the
permitted format for entering an architecture
string where the first character of the string is not
an English-language character.

Architecture name of running host What the lim reports Additional information about the lim process

Viewing Host Information

64 Administering Platform LSF

Viewing Host Information
LSF uses some or all of the hosts in a cluster as execution hosts. The host list is
configured by the LSF administrator. Use the bhosts command to view host
information. Use the lsload command to view host load information.

View all hosts in the cluster and their status

1 Run bhosts to display information about all hosts and their status.
bhosts displays condensed information for hosts that belong to condensed
host groups. When displaying members of a condensed host group, bhosts lists
the host group name instead of the name of the individual host. For example,
in a cluster with a condensed host group (groupA), an uncondensed host group
(groupB containing hostC and hostE), and a host that is not in any host group
(hostF), bhosts displays the following:

bhosts

HOST_NAME STATUS JL/U MAX NJOBS RUN SSUSP USUSP RSV

groupA ok 5 8 4 2 0 1 1

hostC ok - 3 0 0 0 0 0

hostE ok 2 4 2 1 0 0 1

hostF ok - 2 2 1 0 1 0

Define condensed host groups in the HostGroups section of lsb.hosts. To
find out more about condensed host groups and to see the configuration for the
above example, see Defining condensed host groups on page 98.

View uncondensed host information

1 Run bhosts -X to display all hosts in an uncondensed format, including those
belonging to condensed host groups:

bhosts -X

HOST_NAME STATUS JL/U MAX NJOBS RUN SSUSP USUSP RSV

hostA ok 2 2 0 0 0 0 0

hostD ok 2 4 2 1 0 0 1

To view... Run...

All hosts in the cluster and their status bhosts

Condensed host groups in an uncondensed
format

bhosts -X

Detailed server host information bhosts -l and lshosts -l
Host load by host lsload

Host architecture information lshosts

Host history badmin hhist

Host model and type information lsinfo

Job exit rate and load for hosts bhosts -l and bhosts -x
Dynamic host information lshosts

Administering Platform LSF 65

Working with Hosts

hostB ok 1 2 2 1 0 1 0

hostC ok - 3 0 0 0 0 0

hostE ok 2 4 2 1 0 0 1

hostF ok - 2 2 1 0 1 0

View detailed server host information

1 Run bhosts -l host_name and lshosts -l host_name to display all
information about each server host such as the CPU factor and the load
thresholds to start, suspend, and resume jobs:

bhosts -l hostB

HOST hostB

STATUS CPUF JL/U MAX NJOBS RUN SSUSP USUSP RSV DISPATCH_WINDOWS

ok 20.20 - - 0 0 0 0 0 -

CURRENT LOAD USED FOR SCHEDULING:

r15s r1m r15m ut pg io ls it tmp swp mem

Total 0.1 0.1 0.1 9% 0.7 24 17 0 394M 396M 12M

Reserved 0.0 0.0 0.0 0% 0.0 0 0 0 0M 0M 0M

LOAD THRESHOLD USED FOR SCHEDULING:

r15s r1m r15m ut pg io ls it tmp swp mem

loadSched - - - - - - - - - - -

loadStop - - - - - - - - - - -

 cpuspeed bandwidth

 loadSched - -

 loadStop - -

lshosts -l hostB

HOST_NAME: hostB

type model cpuf ncpus ndisks maxmem maxswp maxtmp rexpri server nprocs ncores nthreads

LINUX86 PC6000 116.1 2 1 2016M 1983M 72917M 0 Yes 1 2 2

RESOURCES: Not defined

RUN_WINDOWS: (always open)

LICENSES_ENABLED: (LSF_Base LSF_Manager LSF_MultiCluster)

LICENSE_NEEDED: Class(E)

LOAD_THRESHOLDS:

r15s r1m r15m ut pg io ls it tmp swp mem

- 1.0 - - - - - - - - 4M

Viewing Host Information

66 Administering Platform LSF

View host load by host
The lsload command reports the current status and load levels of hosts in a cluster.
The lshosts -l command shows the load thresholds.
The lsmon command provides a dynamic display of the load information. The LSF
administrator can find unavailable or overloaded hosts with these tools.

1 Run lsload to see load levels for each host:
lsload

HOST_NAME status r15s r1m r15m ut pg ls it tmp swp mem

hostD ok 1.3 1.2 0.9 92% 0.0 2 20 5M 148M 88M

hostB -ok 0.1 0.3 0.7 0% 0.0 1 67 45M 25M 34M

hostA busy 8.0 *7.0 4.9 84% 4.6 6 17 1M 81M 27M

The first line lists the load index names, and each following line gives the load
levels for one host.

Viewing host architecture (type and model) information
An LSF cluster may consist of hosts of differing architectures and speeds. The
lshosts command displays configuration information about hosts. All these
parameters are defined by the LSF administrator in the LSF configuration files, or
determined by the LIM directly from the system.
Host types represent binary compatible hosts; all hosts of the same type can run the
same executable. Host models give the relative CPU performance of different
processors. For example:

lshosts

HOST_NAME type model cpuf ncpus maxmem maxswp server RESOURCES

hostD SUNSOL SunSparc 6.0 1 64M 112M Yes (solaris cserver)

hostM RS6K IBM350 7.0 1 64M 124M Yes (cserver aix)

hostC SGI6 R10K 14.0 16 1024M 1896M Yes (irix cserver)

hostA HPPA HP715 6.0 1 98M 200M Yes (hpux fserver)

In the above example, the host type SUNSOL represents Sun SPARC systems
running Solaris, and SGI6 represents an SGI server running IRIX 6. The lshosts
command also displays the resources available on each host.

type The host CPU architecture. Hosts that can run the same binary programs should
have the same type.
An UNKNOWN type or model indicates the host is down, or LIM on the host is down.
See UNKNOWN host type or model on page 781 for instructions on measures to
take.
When automatic detection of host type or model fails (the host type configured in
lsf.shared cannot be found), the type or model is set to DEFAULT. LSF will work
on the host, but a DEFAULT model may be inefficient because of incorrect CPU
factors. A DEFAULT type may also cause binary incompatibility because a job from

Administering Platform LSF 67

Working with Hosts

a DEFAULT host type can be migrated to another DEFAULT host type. automatic
detection of host type or model has failed, and the host type configured in
lsf.shared cannot be found.

View host history

1 Run badmin hhist to view the history of a host such as when it is opened or
closed:
badmin hhist hostB

Wed Nov 20 14:41:58: Host <hostB> closed by administrator <lsf>.

Wed Nov 20 15:23:39: Host <hostB> opened by administrator <lsf>.

View host model and type information

1 Run lsinfo -m to display information about host models that exist in the
cluster:
lsinfo -m

MODEL_NAME CPU_FACTOR ARCHITECTURE

PC1133 23.10 x6_1189_PentiumIIICoppermine

HP9K735 4.50 HP9000735_125

HP9K778 5.50 HP9000778

Ultra5S 10.30 SUNWUltra510_270_sparcv9

Ultra2 20.20 SUNWUltra2_300_sparc

Enterprise3000 20.00 SUNWUltraEnterprise_167_sparc

2 Run lsinfo -M to display all host models defined in lsf.shared:
lsinfo -M

MODEL_NAME CPU_FACTOR ARCHITECTURE

UNKNOWN_AUTO_DETECT 1.00 UNKNOWN_AUTO_DETECT

DEFAULT 1.00

LINUX133 2.50 x586_53_Pentium75

PC200 4.50 i86pc_200

Intel_IA64 12.00 ia64

Ultra5S 10.30 SUNWUltra5_270_sparcv9

PowerPC_G4 12.00 x7400G4

HP300 1.00

SunSparc 12.00

3 Run lim -t to display the type, model, and matched type of the current host.
You must be the LSF administrator to use this command:
lim -t

Host Type : NTX64

Host Architecture : EM64T_1596

Physical Processors : 2

Cores per Processor : 4

Viewing Host Information

68 Administering Platform LSF

Threads per Core : 2

License Needed : Class(B),Multi-cores

Matched Type : NTX64

Matched Architecture : EM64T_3000

Matched Model : Intel_EM64T

CPU Factor : 60.0

View job exit rate and load for hosts

1 Run bhosts to display the exception threshold for job exit rate and the current
load value for hosts.:
In the following example, EXIT_RATE for hostA is configured as 4 jobs per
minute. hostA does not currently exceed this rate

bhosts -l hostA

HOST hostA

STATUS CPUF JL/U MAX NJOBS RUN SSUSP USUSP RSV DISPATCH_WINDOW

ok 18.60 - 1 0 0 0 0 0 -

 CURRENT LOAD USED FOR SCHEDULING:

 r15s r1m r15m ut pg io ls it tmp swp mem

 Total 0.0 0.0 0.0 0% 0.0 0 1 2 646M 648M 115M

 Reserved 0.0 0.0 0.0 0% 0.0 0 0 0 0M 0M 0M

 share_rsrc host_rsrc

 Total 3.0 2.0

 Reserved 0.0 0.0

 LOAD THRESHOLD USED FOR SCHEDULING:

 r15s r1m r15m ut pg io ls it tmp swp mem

 loadSched - - - - - - - - - - -

 loadStop - - - - - - - - - - -

 cpuspeed bandwidth

 loadSched - -

 loadStop - -

 THRESHOLD AND LOAD USED FOR EXCEPTIONS:

 JOB_EXIT_RATE

 Threshold 4.00

 Load 0.00

Administering Platform LSF 69

Working with Hosts

2 Use bhosts -x to see hosts whose job exit rate has exceeded the threshold for
longer than JOB_EXIT_RATE_DURATION, and are still high. By default,
these hosts are closed the next time LSF checks host exceptions and invokes
eadmin.
If no hosts exceed the job exit rate, bhosts -x displays:
There is no exceptional host found

View dynamic host information

1 Use lshosts to display information on dynamically added hosts.
An LSF cluster may consist of static and dynamic hosts. The lshosts command
displays configuration information about hosts. All these parameters are
defined by the LSF administrator in the LSF configuration files, or determined
by the LIM directly from the system.
Host types represent binary compatible hosts; all hosts of the same type can run
the same executable. Host models give the relative CPU performance of
different processors. Server represents the type of host in the cluster. “Yes” is
displayed for LSF servers, “No” is displayed for LSF clients, and “Dyn” is
displayed for dynamic hosts.
For example:

lshosts

HOST_NAME type model cpuf ncpus maxmem maxswp server RESOURCES

hostA SOL64 Ultra60F 23.5 1 64M 112M Yes ()

hostB LINUX86 Opteron8 60.0 1 94M 168M Dyn ()

In the above example, hostA is a static host while hostB is a dynamic host.

Controlling Hosts

70 Administering Platform LSF

Controlling Hosts
Hosts are opened and closed by an LSF Administrator or root issuing a command
or through configured dispatch windows.

Close a host

1 Run badmin hclose:
badmin hclose hostB

Close <hostB> done

If the command fails, it may be because the host is unreachable through
network problems, or because the daemons on the host are not running.

Open a host

1 Run badmin hopen:
badmin hopen hostB

Open <hostB> done

Configure Dispatch Windows
A dispatch window specifies one or more time periods during which a host will
receive new jobs. The host will not receive jobs outside of the configured windows.
Dispatch windows do not affect job submission and running jobs (they are allowed
to run until completion). By default, dispatch windows are not configured.
To configure dispatch windows:

1 Edit lsb.hosts.
2 Specify one or more time windows in the DISPATCH_WINDOW column:

Begin Host

HOST_NAME r1m pg ls tmp DISPATCH_WINDOW

...

hostB 3.5/4.5 15/ 12/15 0 (4:30-12:00)

...

End Host

3 Reconfigure the cluster:
a Run lsadmin reconfig to reconfigure LIM.
b Run badmin reconfig to reconfigure mbatchd.

4 Run bhosts -l to display the dispatch windows.

Administering Platform LSF 71

Working with Hosts

Log a comment when closing or opening a host

1 Use the -C option of badmin hclose and badmin hopen to log an
administrator comment in lsb.events:
badmin hclose -C "Weekly backup" hostB

The comment text Weekly backup is recorded in lsb.events. If you close or
open a host group, each host group member displays with the same comment
string.
A new event record is recorded for each host open or host close event. For
example:
badmin hclose -C "backup" hostA

followed by
badmin hclose -C "Weekly backup" hostA

generates the following records in lsb.events:
"HOST_CTRL" "7.0 1050082346 1 "hostA" 32185 "lsfadmin" "backup"

"HOST_CTRL" "7.0 1050082373 1 "hostA" 32185 "lsfadmin" "Weekly backup"

2 Use badmin hist or badmin hhist to display administrator comments for
closing and opening hosts:
badmin hhist

Fri Apr 4 10:35:31: Host <hostB> closed by administrator

<lsfadmin> Weekly backup.

bhosts -l also displays the comment text:
bhosts -l

HOST hostA

STATUS CPUF JL/U MAX NJOBS RUN SSUSP USUSP RSV DISPATCH_WINDOW

closed_Adm 1.00 - - 0 0 0 0 0 -

 CURRENT LOAD USED FOR SCHEDULING:

 r15s r1m r15m ut pg io ls it tmp swp mem

 Total 0.0 0.0 0.0 2% 0.0 64 2 11 7117M 512M 432M

 Reserved 0.0 0.0 0.0 0% 0.0 0 0 0 0M 0M 0M

 LOAD THRESHOLD USED FOR SCHEDULING:

 r15s r1m r15m ut pg io ls it tmp swp mem

 loadSched - - - - - - - - - - -

 loadStop - - - - - - - - - - -

 cpuspeed bandwidth

 loadSched - -

 loadStop - -

Controlling Hosts

72 Administering Platform LSF

 THRESHOLD AND LOAD USED FOR EXCEPTIONS:

 JOB_EXIT_RATE

 Threshold 2.00

 Load 0.00

 ADMIN ACTION COMMENT: "Weekly backup"

Administering Platform LSF 73

Working with Hosts

How events are displayed and recorded in MultiCluster lease model
In the MultiCluster resource lease model, host control administrator comments are
recorded only in the lsb.events file on the local cluster. badmin hist and
badmin hhist display only events that are recorded locally. Host control messages
are not passed between clusters in the MultiCluster lease model. For example. if you
close an exported host in both the consumer and the provider cluster, the host close
events are recorded separately in their local lsb.events.

Adding a Host
You use the lsfinstallcommand to add a host to an LSF cluster.

Contents
◆ Add a host of an existing type using lsfinstall on page 73
◆ Add a host of a new type using lsfinstall on page 74

Add a host of an existing type using lsfinstall

RESTRICTION: lsfinstall is not compatible with clusters installed with lsfsetup. To add a host to a
cluster originally installed with lsfsetup, you must upgrade your cluster.

1 Verify that the host type already exists in your cluster:
a Log on to any host in the cluster. You do not need to be root.
b List the contents of the LSF_TOP/7.0 directory. The default is

/usr/share/lsf/7.0. If the host type currently exists, there is a
subdirectory with the name of the host type. If it does not exist, go to Add
a host of a new type using lsfinstall on page 74.

2 Add the host information to lsf.cluster.cluster_name:
a Log on to the LSF master host as root.
b Edit LSF_CONFDIR/lsf.cluster.cluster_name, and specify the

following in the Host section:
◆ The name of the host.
◆ The model and type, or specify ! to automatically detect the type or

model.
◆ Specify 1 for LSF server or 0 for LSF client.

Begin Host

HOSTNAME model type server r1m mem RESOURCES REXPRI

hosta ! SUNSOL6 1 1.0 4 () 0

hostb ! SUNSOL6 0 1.0 4 () 0

hostc ! HPPA1132 1 1.0 4 () 0

hostd ! HPPA1164 1 1.0 4 () 0

End Host

c Save your changes.
3 Run lsadmin reconfig to reconfigure LIM.

Adding a Host

74 Administering Platform LSF

4 Run badmin mbdrestart to restart mbatchd.
5 Run hostsetup to set up the new host and configure the daemons to start

automatically at boot from /usr/share/lsf/7.0/install:
./hostsetup --top="/usr/share/lsf" --boot="y"

6 Start LSF on the new host:
lsadmin limstartup

lsadmin resstartup

badmin hstartup

7 Run bhosts and lshosts to verify your changes.
◆ If any host type or host model is UNKNOWN, follow the steps in

UNKNOWN host type or model on page 781 to fix the problem.
◆ If any host type or host model is DEFAULT, follow the steps in DEFAULT

host type or model on page 782 to fix the problem.

Add a host of a new type using lsfinstall

RESTRICTION: lsfinstall is not compatible with clusters installed with lsfsetup. To add a host to a
cluster originally installed with lsfsetup, you must upgrade your cluster.

1 Verify that the host type does not already exist in your cluster:
a Log on to any host in the cluster. You do not need to be root.
b List the contents of the LSF_TOP/7.0 directory. The default is

/usr/share/lsf/7.0. If the host type currently exists, there will be a
subdirectory with the name of the host type. If the host type already exists,
go to Add a host of an existing type using lsfinstall on page 73.

2 Get the LSF distribution tar file for the host type you want to add.
3 Log on as root to any host that can access the LSF install directory.
4 Change to the LSF install directory. The default is

/usr/share/lsf/7.0/install

5 Edit install.config:
a For LSF_TARDIR, specify the path to the tar file. For example:

LSF_TARDIR="/usr/share/lsf_distrib/7.0"

b For LSF_ADD_SERVERS, list the new host names enclosed in quotes and
separated by spaces. For example:
LSF_ADD_SERVERS="hosta hostb"

c Run ./lsfinstall -f install.config. This automatically creates the
host information in lsf.cluster.cluster_name.

6 Run lsadmin reconfig to reconfigure LIM.
7 Run badmin reconfig to reconfigure mbatchd.

Administering Platform LSF 75

Working with Hosts

8 Run hostsetup to set up the new host and configure the daemons to start
automatically at boot from /usr/share/lsf/7.0/install:
./hostsetup --top="/usr/share/lsf" --boot="y"

9 Start LSF on the new host:
lsadmin limstartup

lsadmin resstartup

badmin hstartup

10 Run bhosts and lshosts to verify your changes.
◆ If any host type or host model is UNKNOWN, follow the steps in

UNKNOWN host type or model on page 781 to fix the problem.
◆ If any host type or host model is DEFAULT, follow the steps in DEFAULT

host type or model on page 782 to fix the problem.

Remove a Host
Removing a host from LSF involves preventing any additional jobs from running
on the host, removing the host from LSF, and removing the host from the cluster.

CAUTION: Never remove the master host from LSF. If you want to remove your current default
master from LSF, change lsf.cluster.cluster_name to assign a different default master host.
Then remove the host that was once the master host.

1 Log on to the LSF host as root.
2 Run badmin hclose to close the host. This prevents jobs from being dispatched

to the host and allows running jobs to finish.
3 Stop all running daemons manually.
4 Remove any references to the host in the Host section of

LSF_CONFDIR/lsf.cluster.cluster_name.
5 Remove any other references to the host, if applicable, from the following LSF

configuration files:
◆ LSF_CONFDIR/lsf.shared

◆ LSB_CONFDIR/cluster_name/configdir/lsb.hosts

◆ LSB_CONFDIR/cluster_name/configdir/lsb.queues
◆ LSB_CONFDIR/cluster_name/configdir/lsb.resources

6 Log off the host to be removed, and log on as root or the primary LSF
administrator to any other host in the cluster.

7 Run lsadmin reconfig to reconfigure LIM.
8 Run badmin mbdrestart to restart mbatchd.
9 If you configured LSF daemons to start automatically at system startup, remove

the LSF section from the host’s system startup files.

Remove a Host from Master Candidate List

76 Administering Platform LSF

10 If any users of the host use lstcsh as their login shell, change their login shell
to tcsh or csh. Remove lstcsh from the /etc/shells file.

Remove a Host from Master Candidate List
You can remove a host from the master candidate list so that it can no longer be the
master should failover occur. You can choose to either keep it as part of the cluster
or remove it.

1 Shut down the current LIM:
limshutdown host_name
If the host was the current master, failover occurs.

2 In lsf.conf, remove the host name from LSF_MASTER_LIST.
3 Run lsadmin reconfig for the remaining master candidates.
4 If the host you removed as a master candidate still belongs to the cluster, start

up the LIM again:
limstartup host_name

Administering Platform LSF 77

Working with Hosts

Adding Hosts Dynamically
By default, all configuration changes made to LSF are static. To add or remove hosts
within the cluster, you must manually change the configuration and restart all
master candidates.
Dynamic host configuration allows you to add and remove hosts without manual
reconfiguration. To enable dynamic host configuration, all of the parameters
described in the following table must be defined.

IMPORTANT: If you choose to enable dynamic hosts when you install LSF, the installer adds the
parameter LSF_HOST_ADDR_RANGE to lsf.cluster.cluster_name using a default value
that allows any host to join the cluster. To enable security, configure LSF_HOST_ADDR_RANGE in
lsf.cluster.cluster_name after installation to restrict the hosts that can join your cluster.

How dynamic host configuration works
Master LIM The master LIM runs on the master host for the cluster. The master LIM receives

requests to add hosts, and tells the master host candidates defined by the parameter
LSF_MASTER_LIST to update their configuration information when a host is
dynamically added or removed.
Upon startup, both static and dynamic hosts wait to receive an acknowledgement
from the master LIM. This acknowledgement indicates that the master LIM has
added the host to the cluster. Static hosts normally receive an acknowledgement
because the master LIM has access to static host information in the LSF
configuration files. Dynamic hosts do not receive an acknowledgement, however,
until they announce themselves to the master LIM. The parameter
LSF_DYNAMIC_HOST_WAIT_TIME in lsf.conf determines how long a
dynamic host waits before sending a request to the master LIM to add the host to
the cluster.

Master candidate LIMs The parameter LSF_MASTER_LIST defines the list of master host candidates.
These hosts receive updated host information from the master LIM so that any
master host candidate can take over as master host for the cluster.

IMPORTANT: Master candidate hosts should share LSF configuration and binaries.

Parameter Defined in … Description

LSF_MASTER_LIST lsf.conf Defines a list of master host candidates.
These hosts receive information when a
dynamic host is added to or removed
from the cluster. Do not add dynamic
hosts to this list, because dynamic hosts
cannot be master hosts.

LSF_DYNAMIC_HOST_WAIT_TIME lsf.conf Defines the length of time a dynamic
host waits before sending a request to
the master LIM to add the host to the
cluster.

LSF_HOST_ADDR_RANGE lsf.cluster.cluster_name Identifies the range of IP addresses for
hosts that can dynamically join or leave
the cluster.

Adding Hosts Dynamically

78 Administering Platform LSF

Dynamic hosts cannot be master host candidates. By defining the parameter
LSF_MASTER_LIST, you ensure that LSF limits the list of master host candidates
to specific, static hosts.

mbatchd mbatchd gets host information from the master LIM; when it detects the addition
or removal of a dynamic host within the cluster, mbatchd automatically
reconfigures itself.

TIP: After adding a host dynamically, you might have to wait for mbatchd to detect the host and
reconfigure. Depending on system load, mbatchd might wait up to a maximum of 10 minutes
before reconfiguring.

lsadmin command Use the command lsadmin limstartup to start the LIM on a newly added
dynamic host.

Allowing only certain hosts to join the cluster

By default, any host can be dynamically added to the cluster. To enable security,
define LSF_HOST_ADDR_RANGE in lsf.cluster.cluster_name to identify a
range of IP addresses for hosts that are allowed to dynamically join the cluster as
LSF hosts. IP addresses can have either a dotted quad notation (IPv4) or IP Next
Generation (IPv6) format. You can use IPv6 addresses if you define the parameter
LSF_ENABLE_SUPPORT_IPV6 in lsf.conf; you do not have to map IPv4
addresses to an IPv6 format.

Configure LSF to run batch jobs on dynamic hosts

Before you run batch jobs on a dynamic host, complete any or all of the following
steps, depending on your cluster configuration.

1 Configure queues to accept all hosts by defining the HOSTS parameter in
lsb.queues using the keyword all.

2 Define host groups that will accept wild cards in the HostGroup section of
lsb.hosts.
For example, define linuxrack* as a GROUP_MEMBER within a host group
definition.

3 Add a dynamic host to a host group using the command badmin hghostadd.

Changing a dynamic host to a static host

If you want to change a dynamic host to a static host, first use the command
badmin hghostdel to remove the dynamic host from any host group that it belongs
to, and then configure the host as a static host in lsf.cluster.cluster_name.

Administering Platform LSF 79

Working with Hosts

Adding dynamic hosts

Add a dynamic host in a shared file system environment

In a shared file system environment, you do not need to install LSF on each
dynamic host. The master host will recognize a dynamic host as an LSF host when
you start the daemons on the dynamic host.

1 In lsf.conf on the master host, define the parameter
LSF_DYNAMIC_HOST_WAIT_TIME, in seconds, and assign a value greater
than zero.
LSF_DYNAMIC_HOST_WAIT_TIME specifies the length of time a dynamic
host waits before sending a request to the master LIM to add the host to the
cluster.
For example:
LSF_DYNAMIC_HOST_WAIT_TIME=60

2 In lsf.conf on the master host, define the parameter
LSF_DYNAMIC_HOST_TIMEOUT.
LSF_DYNAMIC_HOST_TIMEOUT specifies the length of time (minimum 10
minutes) a dynamic host is unavailable before the master host removes it from
the cluster. Each time LSF removes a dynamic host, mbatchd automatically
reconfigures itself.

NOTE: For very large clusters, defining this parameter could decrease system performance.

For example:
LSF_DYNAMIC_HOST_TIMEOUT=60m

3 In lsf.cluster.cluster_name on the master host, define the parameter
LSF_HOST_ADDR_RANGE.
LSF_HOST_ADDR_RANGE enables security by defining a list of hosts that
can join the cluster. Specify IP addresses or address ranges for hosts that you
want to allow in the cluster.

TIP: If you define the parameter LSF_ENABLE_SUPPORT_IPV6 in lsf.conf, IP addresses
can have either a dotted quad notation (IPv4) or IP Next Generation (IPv6) format; you do not
have to map IPv4 addresses to an IPv6 format.

For example:
LSF_HOST_ADDR_RANGE=100-110.34.1-10.4-56

All hosts belonging to a domain with an address having the first number
between 100 and 110, then 34, then a number between 1 and 10, then, a number
between 4 and 56 will be allowed access. In this example, no IPv6 hosts are
allowed.

4 Log on as root to each host you want to join the cluster.
5 Source the LSF environment:

Adding Hosts Dynamically

80 Administering Platform LSF

❖ For csh or tcsh:
source LSF_TOP/conf/cshrc.lsf

❖ For sh, ksh, or bash:
. LSF_TOP/conf/profile.lsf

6 Do you want LSF to start automatically when the host reboots?
❖ If no, go to step 7.
❖ If yes, run the hostsetup command. For example:

cd /usr/share/lsf/7.0/install

./hostsetup --top="/usr/share/lsf" --boot="y"

For complete hostsetup usage, enter hostsetup -h.
7 Use the following commands to start LSF:

lsadmin limstartup

lsadmin resstartup

badmin hstartup

Add a dynamic host in a non-shared file system environment

In a non-shared file system environment, you must install LSF binaries, a localized
lsf.conf file, and shell environment scripts (cshrc.lsf and profile.lsf) on
each dynamic host.

Specify installation options in the slave.config file
All dynamic hosts are slave hosts, because they cannot serve as master host
candidates. The slave.config file contains parameters for configuring all slave
hosts.

1 Define the required parameters.
LSF_SERVER_HOSTS="host_name [host_name ...]"
LSF_ADMINS="user_name [user_name ...]"
LSF_TOP="/path"

2 Define the optional parameters.
LSF_LIM_PORT=port_number

IMPORTANT: If the master host does not use the default LSF_LIM_PORT, you must specify the
same LSF_LIM_PORT defined in lsf.conf on the master host.

Administering Platform LSF 81

Working with Hosts

Add local resources on a dynamic host to the cluster
Prerequisites: Ensure that the resource name and type are defined in lsf.shared,
and that the ResourceMap section of lsf.cluster.cluster_name contains at least one
resource mapped to at least one static host. LSF can add local resources as long as
the ResourceMap section is defined; you do not need to map the local resources.

1 In the slave.config file, define the parameter LSF_LOCAL_RESOURCES.
For numeric resources, define name-value pairs:
"[resourcemap value*resource_name]"

For Boolean resources, the value is the resource name in the following format:
"[resource resource_name]"

For example:
LSF_LOCAL_RESOURCES="[resourcemap 1*verilog] [resource linux]"

TIP: If LSF_LOCAL_RESOURCES are already defined in a local lsf.conf on the dynamic
host, lsfinstall does not add resources you define in LSF_LOCAL_RESOURCES in
slave.config.

When the dynamic host sends a request to the master host to add it to the
cluster, the dynamic host also reports its local resources. If the local resource is
already defined in lsf.cluster.cluster_name as default or all, it cannot be
added as a local resource.

Install LSF on a dynamic host

1 Run lsfinstall -s -f slave.config.
lsfinstall creates a local lsf.conf for the dynamic host, which sets the
following parameters:
LSF_CONFDIR="/path"
LSF_GET_CONF=lim
LSF_LIM_PORT=port_number (same as the master LIM port number)
LSF_LOCAL_RESOURCES="resource ..."

TIP: Do not duplicate LSF_LOCAL_RESOURCES entries in lsf.conf. If local resources are
defined more than once, only the last definition is valid.

LSF_SERVER_HOSTS="host_name [host_name ...]"
LSF_VERSION=7.0

IMPORTANT: If LSF_STRICT_CHECKING is defined in lsf.conf to protect your cluster in
untrusted environments, and your cluster has dynamic hosts, LSF_STRICT_CHECKING must
be configured in the local lsf.conf on all dynamic hosts.

Adding Hosts Dynamically

82 Administering Platform LSF

Configure dynamic host parameters

1 In lsf.conf on the master host, define the parameter
LSF_DYNAMIC_HOST_WAIT_TIME, in seconds, and assign a value greater
than zero.
LSF_DYNAMIC_HOST_WAIT_TIME specifies the length of time a dynamic
host waits before sending a request to the master LIM to add the host to the
cluster.
For example:
LSF_DYNAMIC_HOST_WAIT_TIME=60

2 In lsf.conf on the master host, define the parameter
LSF_DYNAMIC_HOST_TIMEOUT.
LSF_DYNAMIC_HOST_TIMEOUT specifies the length of time (minimum 10
minutes) a dynamic host is unavailable before the master host removes it from
the cluster. Each time LSF removes a dynamic host, mbatchd automatically
reconfigures itself.

NOTE: For very large clusters, defining this parameter could decrease system performance.

For example:
LSF_DYNAMIC_HOST_TIMEOUT=60m

3 In lsf.cluster.cluster_name on the master host, define the parameter
LSF_HOST_ADDR_RANGE.
LSF_HOST_ADDR_RANGE enables security by defining a list of hosts that
can join the cluster. Specify IP addresses or address ranges for hosts that you
want to allow in the cluster.

TIP: If you define the parameter LSF_ENABLE_SUPPORT_IPV6 in lsf.conf, IP addresses
can have either a dotted quad notation (IPv4) or IP Next Generation (IPv6) format; you do not
have to map IPv4 addresses to an IPv6 format.

For example:
LSF_HOST_ADDR_RANGE=100-110.34.1-10.4-56

All hosts belonging to a domain with an address having the first number
between 100 and 110, then 34, then a number between 1 and 10, then, a number
between 4 and 56 will be allowed access. No IPv6 hosts are allowed.

Start LSF daemons

1 Log on as root to each host you want to join the cluster.
2 Source the LSF environment:

❖ For csh or tcsh:
source LSF_TOP/conf/cshrc.lsf

❖ For sh, ksh, or bash:
. LSF_TOP/conf/profile.lsf

Administering Platform LSF 83

Working with Hosts

3 Do you want LSF to start automatically when the host reboots?
❖ If no, go to step 4.
❖ If yes, run the hostsetup command. For example:
cd /usr/share/lsf/7.0/install

./hostsetup --top="/usr/share/lsf" --boot="y"

For complete hostsetup usage, enter hostsetup -h.
4 Is this the first time the host is joining the cluster?

❖ If no, use the following commands to start LSF:
lsadmin limstartup

lsadmin resstartup

badmin hstartup

❖ If yes, you must start the daemons from the local host. For example, if you
want to start the daemons on hostB from hostA, use the following
commands:

rsh hostB lsadmin limstartup

rsh hostB lsadmin resstartup

rsh hostB badmin hstartup

Removing dynamic hosts
To remove a dynamic host from the cluster, you can either set a timeout value, or
you can edit the hostcache file.

Remove a host by setting a timeout value

LSF_DYNAMIC_HOST_TIMEOUT specifies the length of time (minimum 10
minutes) a dynamic host is unavailable before the master host removes it from the
cluster. Each time LSF removes a dynamic host, mbatchd automatically
reconfigures itself.

NOTE: For very large clusters, defining this parameter could decrease system performance. If you
want to use this parameter to remove dynamic hosts from a very large cluster, disable the
parameter after LSF has removed the unwanted hosts.

1 In lsf.conf on the master host, define the parameter
LSF_DYNAMIC_HOST_TIMEOUT.
To specify minutes rather than hours, append m or M to the value.
For example:
LSF_DYNAMIC_HOST_TIMEOUT=60m

Automatically Detect Operating System Types and Versions

84 Administering Platform LSF

Remove a host by editing the hostcache file

Dynamic hosts remain in the cluster unless you intentionally remove them. Only
the cluster administrator can modify the hostcache file.

1 Shut down the cluster.
lsfshutdown

This shuts down LSF on all hosts in the cluster and prevents LIMs from trying
to write to the hostcache file while you edit it.

2 In the hostcache file $EGO_WORKDIR/lim/hostcache, delete the line for the
dynamic host that you want to remove.
◆ If EGO is enabled, the hostcache file is in $EGO_WORKDIR/lim/hostcache.
◆ If EGO is not enabled, the hostcache file is in $LSB_SHAREDIR.

3 Close the hostcache file, and then start up the cluster.
lsfrestart

Automatically Detect Operating System Types and Versions
LSF can automatically detect most operating system types and versions so that you
do not need to add them to the lsf.shared file manually. The list of automatically
detected operating systems is updated regularly.

1 Edit lsf.shared.
2 In the Resource section, remove the comment from the following line:

ostype String () () () (Operating system and version)

3 In $LSF_SERVERDIR, rename tmp.eslim.ostype to eslim.ostype.
4 Run the following commands to restart the LIM and master batch daemon:

1 lsadmin reconfig

2 badmin mbdrestart

5 To view operating system types and versions, run lshosts -l or lshosts -s.
LSF displays the operating system types and versions in your cluster, including
any that LSF automatically detects as well as those you have defined manually
in the HostType section of lsf.shared.

You can specify ostype in your resource requirement strings. For example, when
submitting a job you can specify the following resource requirement: -R
"select[ostype=RHEL2.6]".

Modify how long LSF waits for new operating system types and versions
Prerequisites: You must enable LSF to automatically detect operating system types
and versions.

Administering Platform LSF 85

Working with Hosts

You can configure how long LSF waits for OS type and version detection.

1 In lsf.conf, modify the value for EGO_ESLIM_TIMEOUT.
The value is time in seconds.

Add Host Types and Host Models to lsf.shared

86 Administering Platform LSF

Add Host Types and Host Models to lsf.shared
The lsf.shared file contains a list of host type and host model names for most
operating systems. You can add to this list or customize the host type and host
model names. A host type and host model name can be any alphanumeric string up
to 39 characters long.

Add a custom host type or model

1 Log on as the LSF administrator on any host in the cluster.
2 Edit lsf.shared:

a For a new host type, modify the HostType section:
Begin HostType

TYPENAME # Keyword

DEFAULT

IBMAIX564

LINUX86

LINUX64

NTX64

NTIA64

SUNSOL

SOL732

SOL64

SGI658

SOLX86

HPPA11

HPUXIA64

MACOSX

End HostType

b For a new host model, modify the HostModel section:
Add the new model and its CPU speed factor relative to other models. For
more details on tuning CPU factors, see Tuning CPU Factors on page 103.

Begin HostModel

MODELNAME CPUFACTOR ARCHITECTURE # keyword

x86 (Solaris, Windows, Linux): approximate values, based on SpecBench results

for Intel processors (Sparc/Win) and BogoMIPS results (Linux).

PC75 1.5 (i86pc_75 i586_75 x586_30)

PC90 1.7 (i86pc_90 i586_90 x586_34 x586_35 x586_36)

HP9K715 4.2 (HP9000715_100)

SunSparc 12.0 ()

CRAYJ90 18.0 ()

IBM350 18.0 ()

End HostModel

3 Save the changes to lsf.shared.

Administering Platform LSF 87

Working with Hosts

4 Run lsadmin reconfig to reconfigure LIM.
5 Run badmin reconfig to reconfigure mbatchd.

Registering Service Ports
LSF uses dedicated UDP and TCP ports for communication. All hosts in the cluster
must use the same port numbers to communicate with each other.
The service port numbers can be any numbers ranging from 1024 to 65535 that are
not already used by other services. To make sure that the port numbers you supply
are not already used by applications registered in your service database check
/etc/services or use the command ypcat services
By default, port numbers for LSF services are defined in the lsf.conf file. You can
also configure ports by modifying /etc/services or the NIS or NIS+ database. If
you define port numbers lsf.conf, port numbers defined in the service database
are ignored.

lsf.conf

1 Log on to any host as root.
2 Edit lsf.conf and add the following lines:

LSF_RES_PORT=3878

LSB_MBD_PORT=3881

LSB_SBD_PORT=3882

3 Add the same entries to lsf.conf on every host.
4 Save lsf.conf.
5 Run lsadmin reconfig to reconfigure LIM.
6 Run badmin mbdrestart to restart mbatchd.
7 Run lsfstartup to restart all daemons in the cluster.

/etc/services

Configure services manually

TIP: During installation, use the hostsetup --boot="y" option to set up the LSF port
numbers in the service database.

1 Use the file LSF_TOP/version/install/instlib/example.services file as a
guide for adding LSF entries to the services database.
If any other service listed in your services database has the same port number
as one of the LSF services, you must change the port number for the LSF
service. You must use the same port numbers on every LSF host.

2 Log on to any host as root.

Registering Service Ports

88 Administering Platform LSF

3 Edit the /etc/services file by adding the contents of the
LSF_TOP/version/install/instlib/example.services file:
/etc/services entries for LSF daemons

#

res 3878/tcp # remote execution server

lim 3879/udp # load information manager

mbatchd 3881/tcp # master lsbatch daemon

sbatchd 3882/tcp # slave lsbatch daemon

#

Add this if ident is not already defined

in your /etc/services file

ident 113/tcp auth tap # identd

4 Run lsadmin reconfig to reconfigure LIM.
5 Run badmin reconfig to reconfigure mbatchd.
6 Run lsfstartup to restart all daemons in the cluster.

NIS or NIS+ database

If you are running NIS, you only need to modify the services database once per NIS
master. On some hosts the NIS database and commands are in the /var/yp
directory; on others, NIS is found in /etc/yp.

1 Log on to any host as root.
2 Run lsfshutdown to shut down all the daemons in the cluster
3 To find the name of the NIS master host, use the command:

ypwhich -m services

4 Log on to the NIS master host as root.
5 Edit the /var/yp/src/services or /etc/yp/src/services file on the NIS

master host adding the contents of the
LSF_TOP/version/install/instlib/example.services file:
/etc/services entries for LSF daemons.

#

res 3878/tcp # remote execution server

lim 3879/udp # load information manager

mbatchd 3881/tcp # master lsbatch daemon

sbatchd 3882/tcp # slave lsbatch daemon

#

Add this if ident is not already defined

in your /etc/services file

ident 113/tcp auth tap # identd

Make sure that all the lines you add either contain valid service entries or begin
with a comment character (#). Blank lines are not allowed.

6 Change the directory to /var/yp or /etc/yp.

Administering Platform LSF 89

Working with Hosts

7 Use the following command:
ypmake services

On some hosts the master copy of the services database is stored in a different
location.
On systems running NIS+ the procedure is similar. Refer to your system
documentation for more information.

8 Run lsadmin reconfig to reconfigure LIM.
9 Run badmin reconfig to reconfigure mbatchd.
10 Run lsfstartup to restart all daemons in the cluster.

Host Naming
LSF needs to match host names with the corresponding Internet host addresses.
LSF looks up host names and addresses the following ways:
◆ In the /etc/hosts file
◆ Sun Network Information Service/Yellow Pages (NIS or YP)
◆ Internet Domain Name Service (DNS).

DNS is also known as the Berkeley Internet Name Domain (BIND) or named,
which is the name of the BIND daemon.

Each host is configured to use one or more of these mechanisms.

Network addresses
Each host has one or more network addresses; usually one for each network to
which the host is directly connected. Each host can also have more than one name.

Official host name The first name configured for each address is called the official name.
Host name aliases Other names for the same host are called aliases.

LSF uses the configured host naming system on each host to look up the official
host name for any alias or host address. This means that you can use aliases as input
to LSF, but LSF always displays the official name.

Using host name ranges as aliases
The default host file syntax
ip_address official_name [alias [alias ...]]

is powerful and flexible, but it is difficult to configure in systems where a single host
name has many aliases, and in multihomed host environments.
In these cases, the hosts file can become very large and unmanageable, and
configuration is prone to error.
The syntax of the LSF hosts file supports host name ranges as aliases for an IP
address. This simplifies the host name alias specification.
To use host name ranges as aliases, the host names must consist of a fixed node
group name prefix and node indices, specified in a form like:
host_name[index_x-index_y, index_m, index_a-index_b]

Host Naming

90 Administering Platform LSF

For example:
atlasD0[0-3,4,5-6, ...]

is equivalent to:
atlasD0[0-6, ...]

The node list does not need to be a continuous range (some nodes can be
configured out). Node indices can be numbers or letters (both upper case and lower
case).

Example Some systems map internal compute nodes to single LSF host names. A host file
might contains 64 lines, each specifying an LSF host name and 32 node names that
correspond to each LSF host:

...

177.16.1.1 atlasD0 atlas0 atlas1 atlas2 atlas3 atlas4 ... atlas31

177.16.1.2 atlasD1 atlas32 atlas33 atlas34 atlas35 atlas36 ... atlas63

...

In the new format, you still map the nodes to the LSF hosts, so the number of lines
remains the same, but the format is simplified because you only have to specify
ranges for the nodes, not each node individually as an alias:
...

177.16.1.1 atlasD0 atlas[0-31]

177.16.1.2 atlasD1 atlas[32-63]

...

You can use either an IPv4 or an IPv6 format for the IP address (if you define the
parameter LSF_ENABLE_SUPPORT_IPV6 in lsf.conf).

Host name services

Solaris On Solaris systems, the /etc/nsswitch.conf file controls the name service.

Other UNIX
platforms

On other UNIX platforms, the following rules apply:
◆ If your host has an /etc/resolv.conf file, your host is using DNS for name

lookups
◆ If the command ypcat hosts prints out a list of host addresses and names,

your system is looking up names in NIS
◆ Otherwise, host names are looked up in the /etc/hosts file

For more information
The man pages for the gethostbyname function, the ypbind and named daemons,
the resolver functions, and the hosts, svc.conf, nsswitch.conf, and
resolv.conf files explain host name lookups in more detail.

Administering Platform LSF 91

Working with Hosts

Hosts with Multiple Addresses

Multi-homed hosts
Hosts that have more than one network interface usually have one Internet address
for each interface. Such hosts are called multi-homed hosts. For example, dual-stack
hosts are multi-homed because they have both an IPv4 and an IPv6 network
address.
LSF identifies hosts by name, so it needs to match each of these addresses with a
single host name. To do this, the host name information must be configured so that
all of the Internet addresses for a host resolve to the same name.
There are two ways to do it:
◆ Modify the system hosts file (/etc/hosts) and the changes will affect the

whole system
◆ Create an LSF hosts file (LSF_CONFDIR/hosts) and LSF will be the only

application that resolves the addresses to the same host

Multiple network interfaces
Some system manufacturers recommend that each network interface, and
therefore, each Internet address, be assigned a different host name. Each interface
can then be directly accessed by name. This setup is often used to make sure NFS
requests go to the nearest network interface on the file server, rather than going
through a router to some other interface. Configuring this way can confuse LSF,
because there is no way to determine that the two different names (or addresses)
mean the same host. LSF provides a workaround for this problem.
All host naming systems can be configured so that host address lookups always
return the same name, while still allowing access to network interfaces by different
names. Each host has an official name and a number of aliases, which are other
names for the same host. By configuring all interfaces with the same official name
but different aliases, you can refer to each interface by a different alias name while
still providing a single official name for the host.

Configuring the LSF hosts file
If your LSF clusters include hosts that have more than one interface and are
configured with more than one official host name, you must either modify the host
name configuration, or create a private hosts file for LSF to use.
The LSF hosts file is stored in LSF_CONFDIR. The format of LSF_CONFDIR/hosts
is the same as for /etc/hosts.
In the LSF hosts file, duplicate the system hosts database information, except
make all entries for the host use the same official name. Configure all the other
names for the host as aliases so that you can still refer to the host by any name.

Example For example, if your /etc/hosts file contains:
AA.AA.AA.AA host-AA host # first interface

BB.BB.BB.BB host-BB # second interface

then the LSF_CONFDIR/hosts file should contain:
AA.AA.AA.AA host host-AA # first interface

Hosts with Multiple Addresses

92 Administering Platform LSF

BB.BB.BB.BB host host-BB # second interface

Example /etc/hosts entries

No unique official name

The following example is for a host with two interfaces, where the host does not
have a unique official name.
Address Official name Aliases

Interface on network A

AA.AA.AA.AA host-AA.domain host.domain host-AA host

Interface on network B

BB.BB.BB.BB host-BB.domain host-BB host

Looking up the address AA.AA.AA.AA finds the official name host-AA.domain.
Looking up address BB.BB.BB.BB finds the name host-BB.domain. No
information connects the two names, so there is no way for LSF to determine that
both names, and both addresses, refer to the same host.
To resolve this case, you must configure these addresses using a unique host name.
If you cannot make this change to the system file, you must create an LSF hosts file
and configure these addresses using a unique host name in that file.

Both addresses have the same official name

Here is the same example, with both addresses configured for the same official
name.

Address Official name Aliases

Interface on network A

AA.AA.AA.AA host.domain host-AA.domain host-AA host

Interface on network B

BB.BB.BB.BB host.domain host-BB.domain host-BB host

With this configuration, looking up either address returns host.domain as the
official name for the host. LSF (and all other applications) can determine that all the
addresses and host names refer to the same host. Individual interfaces can still be
specified by using the host-AA and host-BB aliases.

Example for a dual-stack host

Dual-stack hosts have more than one IP address. You must associate the host name
with both addresses, as shown in the following example:

Address Official name Aliases

Interface IPv4

AA.AA.AA.AA host.domain host-AA.domain

Interface IPv6

BBBB:BBBB:BBBB:BBBB:BBBB:BBBB::BBBB host.domain host-BB.domain

With this configuration, looking up either address returns host.domain as the
official name for the host. LSF (and all other applications) can determine that all the
addresses and host names refer to the same host. Individual interfaces can still be
specified by using the host-AA and host-BB aliases.

Administering Platform LSF 93

Working with Hosts

Sun Solaris
example

For example, Sun NIS uses the /etc/hosts file on the NIS master host as input, so
the format for NIS entries is the same as for the /etc/hosts file. Since LSF can
resolve this case, you do not need to create an LSF hosts file.

DNS configuration
The configuration format is different for DNS. The same result can be produced by
configuring two address (A) records for each Internet address. Following the
previous example:
name class type address
host.domain IN A AA.AA.AA.AA
host.domain IN A BB.BB.BB.BB
host-AA.domain IN A AA.AA.AA.AA
host-BB.domain IN A BB.BB.BB.BB

Looking up the official host name can return either address. Looking up the
interface-specific names returns the correct address for each interface.
For a dual-stack host:

name class type address
host.domain IN A AA.AA.AA.AA
host.domain IN A BBBB:BBBB:BBBB:BBBB:BBBB:BBBB::BBBB
host-AA.domain IN A AA.AA.AA.AA
host-BB.domain IN A BBBB:BBBB:BBBB:BBBB:BBBB:BBBB::BBBB

PTR records in DNS Address-to-name lookups in DNS are handled using PTR records. The PTR records
for both addresses should be configured to return the official name:
address class type name
AA.AA.AA.AA.in-addr.arpa IN PTR host.domain
BB.BB.BB.BB.in-addr.arpa IN PTR host.domain

For a dual-stack host:
address class type name
AA.AA.AA.AA.in-addr.arpa IN PTR host.domain
BBBB:BBBB:BBBB:BBBB:BBBB:BBBB::BBBB.in-addr.arpa IN PTR host.domain

If it is not possible to change the system host name database, create the hosts file
local to the LSF system, and configure entries for the multi-homed hosts only. Host
names and addresses not found in the hosts file are looked up in the standard name
system on your host.

Using IPv6 Addresses
IP addresses can have either a dotted quad notation (IPv4) or IP Next Generation
(IPv6) format. You can use IPv6 addresses if you define the parameter
LSF_ENABLE_SUPPORT_IPV6 in lsf.conf; you do not have to map IPv4
addresses to an IPv6 format.
LSF supports IPv6 addresses for the following platforms:
◆ Linux 2.4
◆ Linux 2.6
◆ Solaris 10
◆ Windows

❖ XP

Using IPv6 Addresses

94 Administering Platform LSF

❖ 2003
❖ 2000 with Service Pack 1 or higher

◆ AIX 5
◆ HP-UX

❖ 11i
❖ 11iv1
❖ 11iv2
❖ 11.11

◆ SGI Altix ProPack 3, 4, and 5
◆ IRIX 6.5.19 and higher, Trusted IRIX 6.5.19 and higher
◆ Mac OS 10.2 and higher
◆ Cray XT3
◆ IBM Power 5 Series

Enable both IPv4 and IPv6 support

1 Configure the parameter LSF_ENABLE_SUPPORT_IPV6=Y in lsf.conf.

Configure hosts for IPv6
Follow the steps in this procedure if you do not have an IPv6-enabled DNS server
or an IPv6-enabled router. IPv6 is supported on some linux2.4 kernels and on all
linux2.6 kernels.

1 Configure the kernel.
a Does the entry /proc/net/if_inet6 exist?

◆ If yes, the kernel is already configured for IPv6. Go to step 2.
◆ If no, go to step b.

b To load the IPv6 module into the kernel, execute the following command
as root:
modprobe ipv6

c To check that the module loaded correctly, execute the command
lsmod | grep -w ’ipv6’

2 Add an IPv6 address to the host by executing the following command as root:
/sbin/ifconfig eth0 inet6 add 3ffe:ffff:0:f101::2/64

3 Display the IPv6 address using ifconfig.
4 Repeat step 1 through step 3 for other hosts in the cluster.
5 To configure IPv6 networking, add the addresses for all IPv6 hosts to

/etc/hosts on each host.

NOTE: For IPv6 networking, hosts must be on the same subnet.

Administering Platform LSF 95

Working with Hosts

6 Test IPv6 communication between hosts using the command ping6.

Specify host names with condensed notation
A number of commands often require you to specify host names. You can now
specify host name ranges instead. You can use condensed notation with the
following commands:
◆ bacct

◆ bhist

◆ bjobs

◆ bmig

◆ bmod

◆ bpeek

◆ brestart

◆ brsvadd

◆ brsvmod

◆ brsvs

◆ brun

◆ bsub

◆ bswitch

You must specify a valid range of hosts, where the start number is smaller than the
end number.

◆ Run the command you want and specify the host names as a range.
For example:
bsub -m "host[1-100].corp.com"

The job is submitted to host1.corp.com, host2.corp.com, host3.corp.com,
all the way to host100.corp.com.

◆ Run the command you want and specify host names as a combination of ranges
and individuals.
For example:
bsub -m "host[1-10,12,20-25].corp.com"
The job is submitted to host.1.corp.com, host2.corp.com,
host3.corp.com, up to and including host10.corp.com. It is also submitted
to host12.corp.com and the hosts between and including host20.corp.com
and host25.corp.com.

Host Groups

96 Administering Platform LSF

Host Groups
You can define a host group within LSF or use an external executable to retrieve
host group members.
Use bhosts to view a list of existing hosts. Use bmgroup to view host group
membership.

Where to use host groups
LSF host groups can be used in defining the following parameters in LSF
configuration files:
◆ HOSTS in lsb.queues for authorized hosts for the queue
◆ HOSTS in lsb.hosts in the HostPartition section to list host groups that are

members of the host partition

Configure host groups

1 Log in as the LSF administrator to any host in the cluster.
2 Open lsb.hosts.
3 Add the HostGroup section if it does not exist.

Begin HostGroup

GROUP_NAME GROUP_MEMBER

groupA (all)

groupB (groupA ~hostA ~hostB)

groupC (hostX hostY hostZ)

groupD (groupC ~hostX)

groupE (all ~groupC ~hostB)

groupF (hostF groupC hostK)

desk_tops (hostD hostE hostF hostG)

Big_servers (!)

End HostGroup

4 Enter a group name under the GROUP_NAME column.
External host groups must be defined in the egroup executable.

5 Specify hosts in the GROUP_MEMBER column.
(Optional) To tell LSF that the group members should be retrieved using
egroup, put an exclamation mark (!) in the GROUP_MEMBER column.

6 Save your changes.
7 Run badmin ckconfig to check the group definition. If any errors are

reported, fix the problem and check the configuration again.
8 Run badmin mbdrestart to apply the new configuration.

Administering Platform LSF 97

Working with Hosts

Using wildcards and special characters to define host names
You can use special characters when defining host group members under the
GROUP_MEMBER column to specify hosts. These are useful to define several
hosts in a single entry, such as for a range of hosts, or for all host names with a
certain text string.
If a host matches more than one host group, that host is a member of all groups. If
any host group is a condensed host group, the status and other details of the hosts
are counted towards all of the matching host groups.
When defining host group members, you can use string literals and the following
special characters:
◆ Use a tilde (~) to exclude specified hosts or host groups from the list. The tilde

can be used in conjunction with the other special characters listed below. The
following example matches all hosts in the cluster except for hostA, hostB, and
all members of the groupA host group:

... (all ~hostA ~hostB ~groupA)

◆ Use an asterisk (*) as a wildcard character to represent any number of
characters. The following example matches all hosts beginning with the text
string “hostC” (such as hostCa, hostC1, or hostCZ1):

... (hostC*)

◆ Use square brackets with a hyphen ([integer1 - integer2]) to define a range of
non-negative integers at the end of a host name. The first integer must be less
than the second integer. The following example matches all hosts from hostD51
to hostD100:

... (hostD[51-100])

◆ Use square brackets with commas ([integer1, integer2 ...]) to define individual
non-negative integers at the end of a host name. The following example
matches hostD101, hostD123, and hostD321:

... (hostD[101,123,321])

◆ Use square brackets with commas and hyphens (such as [integer1 - integer2,
integer3, integer4 - integer5]) to define different ranges of non-negative
integers at the end of a host name. The following example matches all hosts
from hostD1 to hostD100, hostD102, all hosts from hostD201 to hostD300,
and hostD320):

... (hostD[1-100,102,201-300,320])

Restrictions You cannot use more than one set of square brackets in a single host group
definition.
The following example is not correct:
... (hostA[1-10]B[1-20] hostC[101-120])

The following example is correct:
... (hostA[1-20] hostC[101-120])

You cannot define subgroups that contain wildcards and special characters. The
following definition for groupB is not correct because groupA defines hosts with a
wildcard:
Begin HostGroup

Host Groups

98 Administering Platform LSF

GROUP_NAME GROUP_MEMBER

groupA (hostA*)

groupB (groupA)

End HostGroup

Defining condensed host groups
You can define condensed host groups to display information for its hosts as a
summary for the entire group. This is useful because it allows you to see the total
statistics of the host group as a whole instead of having to add up the data yourself.
This allows you to better plan the distribution of jobs submitted to the hosts and
host groups in your cluster.
To define condensed host groups, add a CONDENSE column to the HostGroup
section. Under this column, enter Y to define a condensed host group or N to define
an uncondensed host group, as shown in the following:
Begin HostGroup

GROUP_NAME CONDENSE GROUP_MEMBER

groupA Y (hostA hostB hostD)

groupB N (hostC hostE)

End HostGroup

The following commands display condensed host group information:
◆ bhosts
◆ bhosts -w
◆ bjobs
◆ bjobs -w
For the bhosts output of this configuration, see Viewing Host Information on page
64.
Use bmgroup -l to see whether host groups are condensed or not.

Hosts belonging to multiple condensed host groups

If you configure a host to belong to more than one condensed host group using
wildcards, bjobs can display any of the host groups as execution host name.
For example, host groups hg1 and hg2 include the same hosts:
Begin HostGroup

GROUP_NAME CONDENSE GROUP_MEMBER # Key words

hg1 Y (host*)

hg2 Y (hos*)

End HostGroup

Submit jobs using bsub -m:
bsub -m "hg2" sleep 1001

bjobs displays hg1 as the execution host instead of hg2:
bjobs

JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME

520 user1 RUN normal host5 hg1 sleep 1001 Apr 15 13:50

Administering Platform LSF 99

Working with Hosts

521 user1 RUN normal host5 hg1 sleep 1001 Apr 15 13:50

522 user1 PEND normal host5 sleep 1001 Apr 15 13:51

Importing external host groups (egroup)
When the membership of a host group changes frequently, or when the group
contains a large number of members, you can use an external executable called
egroup to retrieve a list of members rather than having to configure the group
membership manually. You can write a site-specific egroup executable that
retrieves host group names and the hosts that belong to each group. For
information about how to use the external host and user groups feature, see the
Platform LSF Configuration Reference.

Compute Units

100 Administering Platform LSF

Compute Units
Compute units are similar to host groups, with the added feature of granularity
allowing the construction of clusterwide structures that mimic network
architecture. Job scheduling using compute unit resource requirements optimizes
job placement based on the underlying system architecture, minimizing
communications bottlenecks. Compute units are especially useful when running
communication-intensive parallel jobs spanning several hosts.
Resource requirement strings can specify compute units requirements such as
running a job exclusively (excl), spreading a job evenly over multiple compute
units (balance), or choosing compute units based on other criteria.
For a complete description of compute units see Controlling Job Locality using
Compute Units on page 549 in Chapter 34, “Running Parallel Jobs”.

Compute unit configuration
To enforce consistency, compute unit configuration has the following requirements:
◆ Hosts and host groups appear in the finest granularity compute unit type, and

nowhere else.
◆ Hosts appear in the membership list of at most one compute unit of the finest

granularity.
◆ All compute units of the same type have the same type of compute units (or

hosts) as members.

TIP: Configure each individual host as a compute unit to use the compute unit features for host
level job allocation.

Where to use compute units
LSF compute units can be used in defining the following parameters in LSF
configuration files:
◆ EXCLUSIVE in lsb.queues for the compute unit type allowed for the queue.
◆ HOSTS in lsb.queues for the hosts on which jobs from this queue can be run.
◆ RES_REQ in lsb.queues for queue compute unit resource requirements.
◆ RES_REQ in lsb.applications for application profile compute unit resource

requirements.

Configure compute units

1 Log in as the LSF administrator to any host in the cluster.
2 Open lsb.params.
3 Add the COMPUTE_UNIT_TYPES parameter if it does not already exist and list

your compute unit types in order of granularity (finest first).
COMPUTE_UNIT_TYPES=enclosure rack cabinet

4 Save your changes.
5 Open lsb.hosts.

Administering Platform LSF 101

Working with Hosts

6 Add the ComputeUnit section if it does not exist.
Begin ComputeUnit

NAME MEMBER TYPE

encl1 (hostA hg1) enclosure

encl2 (hostC hostD) enclosure

encl3 (hostE hostF) enclosure

encl4 (hostG hg2) enclosure

rack1 (encl1 encl2) rack

rack2 (encl3 encl4) rack

cab1 (rack1 rack2) cabinet

End ComputeUnit

7 Enter a compute unit name under the NAME column.
External compute units must be defined in the egroup executable.

8 Specify hosts or host groups in the MEMBER column of the finest granularity
compute unit type. Specify compute units in the MEMBER column of coarser
compute unit types.
(Optional) To tell LSF that the compute unit members of a finest granularity
compute unit should be retrieved using egroup, put an exclamation mark (!)
in the MEMBER column.

9 Specify the type of compute unit in the TYPE column.
10 Save your changes.
11 Run badmin ckconfig to check the compute unit definition. If any errors are

reported, fix the problem and check the configuration again.
12 Run badmin mbdrestart to apply the new configuration.

To view configured compute units, run bmgroup -cu.

Using wildcards and special characters to define names in compute units
You can use special characters when defining compute unit members under the
MEMBER column to specify hosts, host groups, and compute units. These are
useful to define several names in a single entry such as a range of hosts, or for all
names with a certain text string.
When defining host, host group, and compute unit members of compute units, you
can use string literals and the following special characters:
◆ Use a tilde (~) to exclude specified hosts, host groups, or compute units from

the list. The tilde can be used in conjunction with the other special characters
listed below. The following example matches all hosts in group12 except for
hostA, and hostB:

... (group12 ~hostA ~hostB)

◆ Use an asterisk (*) as a wildcard character to represent any number of
characters. The following example matches all hosts beginning with the text
string “hostC” (such as hostCa, hostC1, or hostCZ1):

... (hostC*)

Compute Units

102 Administering Platform LSF

◆ Use square brackets with a hyphen ([integer1 - integer2]) to define a range of
non-negative integers at the end of a name. The first integer must be less than
the second integer. The following example matches all hosts from hostD51 to
hostD100:

... (hostD[51-100])

◆ Use square brackets with commas ([integer1, integer2 ...]) to define individual
non-negative integers at the end of a name. The following example matches
hostD101, hostD123, and hostD321:

... (hostD[101,123,321])

◆ Use square brackets with commas and hyphens (such as [integer1 - integer2,
integer3, integer4 - integer5]) to define different ranges of non-negative
integers at the end of a name. The following example matches all hosts from
hostD1 to hostD100, hostD102, all hosts from hostD201 to hostD300, and
hostD320):

... (hostD[1-100,102,201-300,320])

Restrictions You cannot use more than one set of square brackets in a single compute unit
definition.
The following example is not correct:
... (hostA[1-10]B[1-20] hostC[101-120])

The following example is correct:
... (hostA[1-20] hostC[101-120])

The keywords all, allremote, all@cluster, other and default cannot be used
when defining compute units.

Defining condensed compute units
You can define condensed compute units to display information for its hosts as a
summary for the entire group, including the slot usage for each compute unit. This
is useful because it allows you to see statistics of the compute unit as a whole instead
of having to add up the data yourself. This allows you to better plan the distribution
of jobs submitted to the hosts and compute units in your cluster.
To define condensed compute units, add a CONDENSE column to the
ComputeUnit section. Under this column, enter Y to define a condensed host group
or N to define an uncondensed host group, as shown in the following:
Begin ComputeUnit

NAME CONDENSE MEMBER TYPE

enclA Y (hostA hostB hostD) enclosure

enclB N (hostC hostE) enclosure

End HostGroup

The following commands display condensed host information:
◆ bhosts
◆ bhosts -w
◆ bjobs
◆ bjobs -w

Administering Platform LSF 103

Working with Hosts

For the bhosts output of this configuration, see Viewing Host Information on page
64.
Use bmgroup -l to see whether host groups are condensed or not.

Importing external host groups (egroup)
When the membership of a compute unit changes frequently, or when the compute
unit contains a large number of members, you can use an external executable called
egroup to retrieve a list of members rather than having to configure the
membership manually. You can write a site-specific egroup executable that
retrieves compute unit names and the hosts that belong to each group, and compute
units of the finest granularity can contain egroups as members. For information
about how to use the external host and user groups feature, see the Platform LSF
Configuration Reference.

Using compute units with advance reservation
When running exclusive compute unit jobs (with the resource requirement
cu[excl]), the advance reservation can affect hosts outside the advance reservation
but in the same compute unit as follows:
◆ An exclusive compute unit job dispatched to a host inside the advance

reservation will lock the entire compute unit, including any hosts outside the
advance reservation.

◆ An exclusive compute unit job dispatched to a host outside the advance
reservation will lock the entire compute unit, including any hosts inside the
advance reservation.

Ideally all hosts belonging to a compute unit should be inside or outside of an
advance reservation.

Tuning CPU Factors
CPU factors are used to differentiate the relative speed of different machines. LSF
runs jobs on the best possible machines so that response time is minimized.
To achieve this, it is important that you define correct CPU factors for each
machine model in your cluster.

How CPU factors affect performance
Incorrect CPU factors can reduce performance the following ways.
◆ If the CPU factor for a host is too low, that host may not be selected for job

placement when a slower host is available. This means that jobs would not
always run on the fastest available host.

◆ If the CPU factor is too high, jobs are run on the fast host even when they would
finish sooner on a slower but lightly loaded host. This causes the faster host to
be overused while the slower hosts are underused.

Both of these conditions are somewhat self-correcting. If the CPU factor for a host
is too high, jobs are sent to that host until the CPU load threshold is reached. LSF
then marks that host as busy, and no further jobs will be sent there. If the CPU
factor is too low, jobs may be sent to slower hosts. This increases the load on the
slower hosts, making LSF more likely to schedule future jobs on the faster host.

Tuning CPU Factors

104 Administering Platform LSF

Guidelines for setting CPU factors
CPU factors should be set based on a benchmark that reflects your workload. If
there is no such benchmark, CPU factors can be set based on raw CPU power.
The CPU factor of the slowest hosts should be set to 1, and faster hosts should be
proportional to the slowest.

Example Consider a cluster with two hosts: hostA and hostB. In this cluster, hostA takes 30
seconds to run a benchmark and hostB takes 15 seconds to run the same test. The
CPU factor for hostA should be 1, and the CPU factor of hostB should be 2 because
it is twice as fast as hostA.

View normalized ratings

1 Run lsload -N to display normalized ratings.
 LSF uses a normalized CPU performance rating to decide which host has the
most available CPU power. Hosts in your cluster are displayed in order from
best to worst. Normalized CPU run queue length values are based on an
estimate of the time it would take each host to run one additional unit of work,
given that an unloaded host with CPU factor 1 runs one unit of work in one
unit of time.

Tune CPU factors

1 Log in as the LSF administrator on any host in the cluster.
2 Edit lsf.shared, and change the HostModel section:

Begin HostModel

MODELNAME CPUFACTOR ARCHITECTURE # keyword

#HPUX (HPPA)

HP9K712S 2.5 (HP9000712_60)

HP9K712M 2.5 (HP9000712_80)

HP9K712F 4.0 (HP9000712_100)

See the Platform LSF Configuration Reference for information about the
lsf.shared file.

3 Save the changes to lsf.shared.
4 Run lsadmin reconfig to reconfigure LIM.
5 Run badmin reconfig to reconfigure mbatchd.

Administering Platform LSF 105

Working with Hosts

Handling Host-level Job Exceptions
You can configure hosts so that LSF detects exceptional conditions while jobs are
running, and take appropriate action automatically. You can customize what
exceptions are detected, and the corresponding actions. By default, LSF does not
detect any exceptions.

Host exceptions LSF can detect
If you configure host exception handling, LSF can detect jobs that exit repeatedly
on a host. The host can still be available to accept jobs, but some other problem
prevents the jobs from running. Typically jobs dispatched to such “black hole”, or
“job-eating” hosts exit abnormally. LSF monitors the job exit rate for hosts, and
closes the host if the rate exceeds a threshold you configure (EXIT_RATE in
lsb.hosts).
If EXIT_RATE is specified for the host, LSF invokes eadmin if the job exit rate for
a host remains above the configured threshold for longer than 5 minutes. Use
JOB_EXIT_RATE_DURATION in lsb.params to change how frequently LSF
checks the job exit rate.
Use GLOBAL_EXIT_RATE in lsb.params to set a cluster-wide threshold in
minutes for exited jobs. If EXIT_RATE is not specified for the host in lsb.hosts,
GLOBAL_EXIT_RATE defines a default exit rate for all hosts in the cluster.
Host-level EXIT_RATE overrides the GLOBAL_EXIT_RATE value.

Configuring host exception handling (lsb.hosts)

EXIT_RATE Specify a threshold for exited jobs. If the job exit rate is exceeded for 5 minutes or
the period specified by JOB_EXIT_RATE_DURATION in lsb.params, LSF
invokes eadmin to trigger a host exception.

Example The following Host section defines a job exit rate of 20 jobs for all hosts, and an exit
rate of 10 jobs on hostA.
Begin Host

HOST_NAME MXJ EXIT_RATE # Keywords

Default ! 20

hostA ! 10

End Host

Configuring thresholds for host exception handling
By default, LSF checks the number of exited jobs every 5 minutes. Use
JOB_EXIT_RATE_DURATION in lsb.params to change this default.

Tuning TIP: Tune JOB_EXIT_RATE_DURATION carefully. Shorter values may raise false alarms, longer
values may not trigger exceptions frequently enough.

Handling Host-level Job Exceptions

106 Administering Platform LSF

Example In the following diagram, the job exit rate of hostA exceeds the configured
threshold (EXIT_RATE for hostA in lsb.hosts) LSF monitors hostA from time t1
to time t2 (t2=t1 + JOB_EXIT_RATE_DURATION in lsb.params). At t2, the exit
rate is still high, and a host exception is detected. At t3
(EADMIN_TRIGGER_DURATION in lsb.params), LSF invokes eadmin and the
host exception is handled. By default, LSF closes hostA and sends email to the LSF
administrator. Since hostA is closed and cannot accept any new jobs, the exit rate
drops quickly.

Administering Platform LSF 107

C H A P T E R

5
Working with Queues

Contents
◆ Queue States on page 107
◆ Viewing Queue Information on page 108
◆ Control Queues on page 110
◆ Add and Remove Queues on page 113
◆ Manage Queues on page 115
◆ Handling Job Exceptions in Queues on page 116

Queue States
Queue states, displayed by bqueues, describe the ability of a queue to accept and
start batch jobs using a combination of the following states:
◆ Open: queues accept new jobs
◆ Closed: queues do not accept new jobs
◆ Active: queues start jobs on available hosts
◆ Inactive: queues hold all jobs

Queue state can be changed by an LSF administrator or root.
Queues can also be activated and inactivated by run windows and dispatch
windows (configured in lsb.queues, displayed by bqueues -l).
bqueues -l displays Inact_Adm when explicitly inactivated by an Administrator
(badmin qinact), and Inact_Win when inactivated by a run or dispatch window.

State Description

Open:Active Accepts and starts new jobs—normal processing
Open:Inact Accepts and holds new jobs—collecting
Closed:Active Does not accept new jobs, but continues to start

jobs— draining
Closed:Inact Does not accept new jobs and does not start jobs—all activity is

stopped

Viewing Queue Information

108 Administering Platform LSF

Viewing Queue Information
The bqueues command displays information about queues. The bqueues -l option
also gives current statistics about the jobs in a particular queue, such as the total
number of jobs in the queue, the number of jobs running, suspended, and so on.

In addition to the procedures listed here, see the bqueues(1) man page for more
details.

View available queues and queue status

1 Run bqueues. You can view the current status of a particular queue or all
queues. The bqueues command also displays available queues in the cluster.

bqueues
QUEUE_NAME PRIO STATUS MAX JL/U JL/P JL/H NJOBS PEND RUN SUSP
interactive 400 Open:Active - - - - 2 0 2 0
priority 43 Open:Active - - - - 16 4 11 1
night 40 Open:Inactive - - - - 4 4 0 0
short 35 Open:Active - - - - 6 1 5 0
license 33 Open:Active - - - - 0 0 0 0
normal 30 Open:Active - - - - 0 0 0 0
idle 20 Open:Active - - - - 6 3 1 2

A dash (-) in any entry means that the column does not apply to the row. In this
example no queues have per-queue, per-user, per-processor, or per host job
limits configured, so the MAX, JL/U, JL/P, and JL/H entries are shown as a dash.

Job slots required
by parallel jobs

IMPORTANT: A parallel job with N components requires N job slots.

View detailed queue information

1 To see the complete status and configuration for each queue, run bqueues -l.
Specify queue names to select specific queues. The following example displays
details for the queue normal.

bqueues -l normal
QUEUE: normal

--For normal low priority jobs, running only if hosts are lightly loaded. This is
the default queue.
PARAMETERS/STATISTICS
PRIO NICE STATUS MAX JL/U JL/P NJOBS PEND RUN SSUSP USUSP
40 20 Open:Active 100 50 11 1 1 0 0 0
Migration threshold is 30 min.

To view the... Run...

Available queues bqueues

Queue status bqueues

Detailed queue information bqueues -l

State change history of a queue badmin qhist

Queue administrators bqueues -l for queue

Administering Platform LSF 109

Working with Queues

CPULIMIT RUNLIMIT
20 min of IBM350 342800 min of IBM350

FILELIMIT DATALIMIT STACKLIMIT CORELIMIT MEMLIMIT PROCLIMIT
20000 K 20000 K 2048 K 20000 K 5000 K 3

SCHEDULING PARAMETERS
r15s r1m r15m ut pg io ls it tmp swp mem

loadSched - 0.7 1.0 0.2 4.0 50 - - - - -
loadStop - 1.5 2.5 - 8.0 240 - - - - -

 cpuspeed bandwidth

 loadSched - -

 loadStop - -

SCHEDULING POLICIES: FAIRSHARE PREEMPTIVE PREEMPTABLE EXCLUSIVE
USER_SHARES: [groupA, 70] [groupB, 15] [default, 1]

DEFAULT HOST SPECIFICATION : IBM350

RUN_WINDOWS: 2:40-23:00 23:30-1:30
DISPATCH_WINDOWS: 1:00-23:50

USERS: groupA/ groupB/ user5
HOSTS: hostA, hostD, hostB
ADMINISTRATORS: user7
PRE_EXEC: /tmp/apex_pre.x > /tmp/preexec.log 2>&1
POST_EXEC: /tmp/apex_post.x > /tmp/postexec.log 2>&1
REQUEUE_EXIT_VALUES: 45

View the state change history of a queue

1 Run badmin qhist to display the times when queues are opened, closed,
activated, and inactivated.
badmin qhist
Wed Mar 31 09:03:14: Queue <normal> closed by user or
administrator <root>.

Wed Mar 31 09:03:29: Queue <normal> opened by user or
administrator <root>.

Control Queues

110 Administering Platform LSF

View queue administrators

1 Run bqueues -l for the queue.

View exception status for queues (bqueues)

1 Use bqueues to display the configured threshold for job exceptions and the
current number of jobs in the queue in each exception state.
For example, queue normal configures JOB_IDLE threshold of 0.10,
JOB_OVERRUN threshold of 5 minutes, and JOB_UNDERRUN threshold of
2 minutes. The following bqueues command shows no overrun jobs, one job
that finished in less than 2 minutes (underrun) and one job that triggered an
idle exception (less than idle factor of 0.10):

bqueues -l normal

QUEUE: normal
 -- For normal low priority jobs, running only if hosts are lightly loaded. This
is the default queue.

PARAMETERS/STATISTICS
PRIO NICE STATUS MAX JL/U JL/P JL/H NJOBS PEND RUN SSUSP USUSP RSV
 30 20 Open:Active - - - - 0 0 0 0 0 0

 STACKLIMIT MEMLIMIT
 2048 K 5000 K

SCHEDULING PARAMETERS
 r15s r1m r15m ut pg io ls it tmp swp mem
 loadSched - - - - - - - - - - -
 loadStop - - - - - - - - - - -

 cpuspeed bandwidth

 loadSched - -

 loadStop - -

JOB EXCEPTION PARAMETERS
 OVERRUN(min) UNDERRUN(min) IDLE(cputime/runtime)
 Threshold 5 2 0.10
 Jobs 0 1 1

USERS: all users
HOSTS: all allremote
CHUNK_JOB_SIZE: 3

Control Queues
Queues are controlled by an LSF Administrator or root issuing a command or
through configured dispatch and run windows.

Administering Platform LSF 111

Working with Queues

Close a queue

1 Run badmin qclose:
badmin qclose normal
Queue <normal> is closed

When a user tries to submit a job to a closed queue the following message is
displayed:
bsub -q normal ...
normal: Queue has been closed

Open a queue

1 Run badmin qopen:
badmin qopen normal
Queue <normal> is opened

Inactivate a queue

1 Run badmin qinact:
badmin qinact normal
Queue <normal> is inactivated

Activate a queue

1 Run badmin qact:
badmin qact normal
Queue <normal> is activated

Log a comment when controlling a queue

1 Use the -C option of badmin queue commands qclose, qopen, qact, and
qinact to log an administrator comment in lsb.events.
badmin qclose -C "change configuration" normal

The comment text change configuration is recorded in lsb.events.
A new event record is recorded for each queue event. For example:
badmin qclose -C "add user" normal

followed by
badmin qclose -C "add user user1" normal

will generate records in lsb.events:
"QUEUE_CTRL" "7.0 1050082373 1 "normal" 32185 "lsfadmin" "add user"
"QUEUE_CTRL" "7.0 1050082380 1 "normal" 32185 "lsfadmin" "add user user1"

Control Queues

112 Administering Platform LSF

2 Use badmin hist or badmin qhist to display administrator comments for
closing and opening hosts.
badmin qhist
Fri Apr 4 10:50:36: Queue <normal> closed by administrator
<lsfadmin> change configuration.

bqueues -l also displays the comment text:
bqueues -l normal

QUEUE: normal
 -- For normal low priority jobs, running only if hosts are lightly loaded. Th
is is the default queue.

PARAMETERS/STATISTICS
PRIO NICE STATUS MAX JL/U JL/P JL/H NJOBS PEND RUN SSUSP USUSP RSV
 30 20 Closed:Active - - - - 0 0 0 0 0 0
Interval for a host to accept two jobs is 0 seconds

 THREADLIMIT
 7

SCHEDULING PARAMETERS
 r15s r1m r15m ut pg io ls it tmp swp mem
 loadSched - - - - - - - - - - -
 loadStop - - - - - - - - - - -

 cpuspeed bandwidth
loadSched - -
loadStop - -

JOB EXCEPTION PARAMETERS
 OVERRUN(min) UNDERRUN(min) IDLE(cputime/runtime)
 Threshold - 2 -
 Jobs - 0 -

USERS: all users
HOSTS: all
RES_REQ: select[type==any]

ADMIN ACTION COMMENT: "change configuration"

Configure Dispatch Windows
A dispatch window specifies one or more time periods during which batch jobs are
dispatched to run on hosts. Jobs are not dispatched outside of configured windows.
Dispatch windows do not affect job submission and running jobs (they are allowed
to run until completion). By default, queues are always Active; you must explicitly
configure dispatch windows in the queue to specify a time when the queue is
Inactive.

Administering Platform LSF 113

Working with Queues

To configure a dispatch window:

1 Edit lsb.queues
2 Create a DISPATCH_WINDOW keyword for the queue and specify one or

more time windows.
Begin Queue
QUEUE_NAME = queue1
PRIORITY = 45
DISPATCH_WINDOW = 4:30-12:00
End Queue

3 Reconfigure the cluster:
a Run lsadmin reconfig.
b Run badmin reconfig.

4 Run bqueues -l to display the dispatch windows.

Configure Run Windows
A run window specifies one or more time periods during which jobs dispatched
from a queue are allowed to run. When a run window closes, running jobs are
suspended, and pending jobs remain pending. The suspended jobs are resumed
when the window opens again. By default, queues are always Active and jobs can
run until completion. You must explicitly configure run windows in the queue to
specify a time when the queue is Inactive.
To configure a run window:

1 Edit lsb.queues.
2 Create a RUN_WINDOW keyword for the queue and specify one or more time

windows.
Begin Queue
QUEUE_NAME = queue1
PRIORITY = 45
RUN_WINDOW = 4:30-12:00
End Queue

3 Reconfigure the cluster:
a Run lsadmin reconfig.
b Run badmin reconfig.

4 Run bqueues -l to display the run windows.

Add and Remove Queues

Add a queue

1 Log in as the LSF administrator on any host in the cluster.
2 Edit lsb.queues to add the new queue definition.

Add and Remove Queues

114 Administering Platform LSF

You can copy another queue definition from this file as a starting point;
remember to change the QUEUE_NAME of the copied queue.

3 Save the changes to lsb.queues.
4 Run badmin reconfig to reconfigure mbatchd.

Adding a queue does not affect pending or running jobs.

Remove a queue

IMPORTANT: Before removing a queue, make sure there are no jobs in that queue.

If there are jobs in the queue, move pending and running jobs to another queue,
then remove the queue. If you remove a queue that has jobs in it, the jobs are
temporarily moved to a queue named lost_and_found. Jobs in the
lost_and_found queue remain pending until the user or the LSF administrator
uses the bswitch command to switch the jobs into an existing queue. Jobs in other
queues are not affected.

1 Log in as the LSF administrator on any host in the cluster.
2 Close the queue to prevent any new jobs from being submitted.

badmin qclose night
Queue <night> is closed

3 Move all pending and running jobs into another queue.
Below, the bswitch -q night argument chooses jobs from the night queue,
and the job ID number 0 specifies that all jobs should be switched:
bjobs -u all -q night
JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBM
IT_TIME
5308 user5 RUN night hostA hostD job5 Nov 2
1 18:16
5310 user5 PEND night hostA hostC job10 Nov 2
1 18:17

bswitch -q night idle 0
Job <5308> is switched to queue <idle>
Job <5310> is switched to queue <idle>

4 Edit lsb.queues and remove or comment out the definition for the queue
being removed.

5 Save the changes to lsb.queues.
6 Run badmin reconfig to reconfigure mbatchd.

Administering Platform LSF 115

Working with Queues

Manage Queues

Restrict host use by queues
You may want a host to be used only to run jobs submitted to specific queues. For
example, if you just added a host for a specific department such as engineering, you
may only want jobs submitted to the queues engineering1 and engineering2 to
be able to run on the host.

1 Log on as root or the LSF administrator on any host in the cluster.
2 Edit lsb.queues, and add the host to the HOSTS parameter of specific queues.

Begin Queue
QUEUE_NAME = queue1
...
HOSTS=mynewhost hostA hostB
...
End Queue

3 Save the changes to lsb.queues.
4 Use badmin ckconfig to check the new queue definition. If any errors are

reported, fix the problem and check the configuration again.
5 Run badmin reconfig to reconfigure mbatchd.
6 If you add a host to a queue, the new host will not be recognized by jobs that

were submitted before you reconfigured. If you want the new host to be
recognized, you must use the command badmin mbdrestart.

 Add queue administrators
Queue administrators are optionally configured after installation. They have
limited privileges; they can perform administrative operations (open, close,
activate, inactivate) on the specified queue, or on jobs running in the specified
queue. Queue administrators cannot modify configuration files, or operate on LSF
daemons or on queues they are not configured to administer.
To switch a job from one queue to another, you must have administrator privileges
for both queues.

1 In the lsb.queues file, between Begin Queue and End Queue for the
appropriate queue, specify the ADMINISTRATORS parameter, followed by the
list of administrators for that queue. Separate the administrator names with a
space. You can specify user names and group names.
Begin Queue
ADMINISTRATORS = User1 GroupA
End Queue

Handling Job Exceptions in Queues

116 Administering Platform LSF

Handling Job Exceptions in Queues
You can configure queues so that LSF detects exceptional conditions while jobs are
running, and take appropriate action automatically. You can customize what
exceptions are detected, and the corresponding actions. By default, LSF does not
detect any exceptions.

Job exceptions LSF can detect
If you configure job exception handling in your queues, LSF detects the following
job exceptions:
◆ Job underrun—jobs end too soon (run time is less than expected). Underrun

jobs are detected when a job exits abnormally
◆ Job overrun—job runs too long (run time is longer than expected). By default,

LSF checks for overrun jobs every 1 minute. Use
EADMIN_TRIGGER_DURATION in lsb.params to change how frequently
LSF checks for job overrun.

◆ Idle job—running job consumes less CPU time than expected (in terms of
CPU time/runtime). By default, LSF checks for idle jobs every 1 minute. Use
EADMIN_TRIGGER_DURATION in lsb.params to change how frequently
LSF checks for idle jobs.

Configuring job exception handling (lsb.queues)
You can configure your queues to detect job exceptions. Use the following
parameters:

JOB_IDLE Specify a threshold for idle jobs. The value should be a number between 0.0 and 1.0
representing CPU time/runtime. If the job idle factor is less than the specified
threshold, LSF invokes eadmin to trigger the action for a job idle exception.

JOB_OVERRUN Specify a threshold for job overrun. If a job runs longer than the specified run time,
LSF invokes eadmin to trigger the action for a job overrun exception.

JOB_UNDERRUN Specify a threshold for job underrun. If a job exits before the specified number of
minutes, LSF invokes eadmin to trigger the action for a job underrun exception.

Example The following queue defines thresholds for all types job exceptions:
Begin Queue
...
JOB_UNDERRUN = 2
JOB_OVERRUN = 5
JOB_IDLE = 0.10
...
End Queue

For this queue:
◆ A job underrun exception is triggered for jobs running less than 2 minutes
◆ A job overrun exception is triggered for jobs running longer than 5 minutes
◆ A job idle exception is triggered for jobs with an idle factor

(CPU time/runtime) less than 0.10

Administering Platform LSF 117

Working with Queues

Configuring thresholds for job exception handling
By default, LSF checks for job exceptions every 1 minute. Use
EADMIN_TRIGGER_DURATION in lsb.params to change how frequently LSF
checks for overrun, underrun, and idle jobs.

Tuning TIP: Tune EADMIN_TRIGGER_DURATION carefully. Shorter values may raise false alarms, longer
values may not trigger exceptions frequently enough.

Handling Job Exceptions in Queues

118 Administering Platform LSF

Administering Platform LSF 119

C H A P T E R

6
Managing Jobs

Contents
◆ Understanding Job States on page 120
◆ View Job Information on page 123
◆ Changing Job Order Within Queues on page 126
◆ Switch Jobs from One Queue to Another on page 127
◆ Forcing Job Execution on page 128
◆ Suspending and Resuming Jobs on page 129
◆ Killing Jobs on page 130
◆ Sending a Signal to a Job on page 132
◆ Using Job Groups on page 133
◆ Handling Job Exceptions on page 144

Understanding Job States

120 Administering Platform LSF

Understanding Job States
The bjobs command displays the current state of the job.

Normal job states
Most jobs enter only three states:

Suspended job states
If a job is suspended, it has three states:

State transitions
A job goes through a series of state transitions until it eventually completes its task,
fails, or is terminated. The possible states of a job during its life cycle are shown in
the diagram.

Pending jobs
A job remains pending until all conditions for its execution are met. Some of the
conditions are:
◆ Start time specified by the user when the job is submitted
◆ Load conditions on qualified hosts
◆ Dispatch windows during which the queue can dispatch and qualified hosts can

accept jobs

Job state Description

PEND Waiting in a queue for scheduling and dispatch
RUN Dispatched to a host and running
DONE Finished normally with a zero exit value

Job state Description

PSUSP Suspended by its owner or the LSF administrator while in PEND state
USUSP Suspended by its owner or the LSF administrator after being

dispatched
SSUSP Suspended by the LSF system after being dispatched

Administering Platform LSF 121

Managing Jobs

◆ Run windows during which jobs from the queue can run
◆ Limits on the number of job slots configured for a queue, a host, or a user
◆ Relative priority to other users and jobs
◆ Availability of the specified resources
◆ Job dependency and pre-execution conditions

Maximum pending
job threshold

If the user or user group submitting the job has reached the pending job threshold
as specified by MAX_PEND_JOBS (either in the User section of lsb.users, or
cluster-wide in lsb.params), LSF will reject any further job submission requests
sent by that user or user group. The system will continue to send the job submission
requests with the interval specified by SUB_TRY_INTERVAL in lsb.params until it
has made a number of attempts equal to the LSB_NTRIES environment variable. If
LSB_NTRIES is undefined and LSF rejects the job submission request, the system
will continue to send the job submission requests indefinitely as the default
behavior.

Suspended jobs
A job can be suspended at any time. A job can be suspended by its owner, by the
LSF administrator, by the root user (superuser), or by LSF.
After a job has been dispatched and started on a host, it can be suspended by LSF.
When a job is running, LSF periodically checks the load level on the execution host.
If any load index is beyond either its per-host or its per-queue suspending
conditions, the lowest priority batch job on that host is suspended.
If the load on the execution host or hosts becomes too high, batch jobs could be
interfering among themselves or could be interfering with interactive jobs. In either
case, some jobs should be suspended to maximize host performance or to guarantee
interactive response time.
LSF suspends jobs according to the priority of the job’s queue. When a host is busy,
LSF suspends lower priority jobs first unless the scheduling policy associated with
the job dictates otherwise.
Jobs are also suspended by the system if the job queue has a run window and the
current time goes outside the run window.
A system-suspended job can later be resumed by LSF if the load condition on the
execution hosts falls low enough or when the closed run window of the queue opens
again.

WAIT state (chunk jobs)
If you have configured chunk job queues, members of a chunk job that are waiting
to run are displayed as WAIT by bjobs. Any jobs in WAIT status are included in the
count of pending jobs by bqueues and busers, even though the entire chunk job
has been dispatched and occupies a job slot. The bhosts command shows the single
job slot occupied by the entire chunk job in the number of jobs shown in the NJOBS
column.
You can switch (bswitch) or migrate (bmig) a chunk job member in WAIT state to
another queue.
See Chapter 32, “Chunk Job Dispatch” for more information about chunk jobs.

Understanding Job States

122 Administering Platform LSF

Exited jobs
An exited job ended with a non-zero exit status.
A job might terminate abnormally for various reasons. Job termination can happen
from any state. An abnormally terminated job goes into EXIT state. The situations
where a job terminates abnormally include:
◆ The job is cancelled by its owner or the LSF administrator while pending, or

after being dispatched to a host.
◆ The job is not able to be dispatched before it reaches its termination deadline

set by bsub -t, and thus is terminated by LSF.
◆ The job fails to start successfully. For example, the wrong executable is specified

by the user when the job is submitted.
◆ The application exits with a non-zero exit code.
You can configure hosts so that LSF detects an abnormally high rate of job exit from
a host. See Handling Host-level Job Exceptions on page 105 for more information.

Post-execution states
Some jobs may not be considered complete until some post-job processing is
performed. For example, a job may need to exit from a post-execution job script,
clean up job files, or transfer job output after the job completes.
The DONE or EXIT job states do not indicate whether post-processing is complete,
so jobs that depend on processing may start prematurely. Use the post_done and
post_err keywords on the bsub -w command to specify job dependency
conditions for job post-processing. The corresponding job states POST_DONE
and POST_ERR indicate the state of the post-processing.
After the job completes, you cannot perform any job control on the
post-processing. Post-processing exit codes are not reported to LSF.
See Chapter 38, “Pre-Execution and Post-Execution Commands” for more
information.

Administering Platform LSF 123

Managing Jobs

View Job Information
The bjobs command is used to display job information. By default, bjobs displays
information for the user who invoked the command. For more information about
bjobs, see the LSF Reference and the bjobs(1) man page.

View all jobs for all users

1 Run bjobs -u all to display all jobs for all users.
Job information is displayed in the following order:
◆ Running jobs
◆ Pending jobs in the order in which they are scheduled
◆ Jobs in high-priority queues are listed before those in lower-priority queues
For example:

bjobs -u all

JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME

1004 user1 RUN short hostA hostA job0 Dec 16 09:23

1235 user3 PEND priority hostM job1 Dec 11 13:55

1234 user2 SSUSP normal hostD hostM job3 Dec 11 10:09

1250 user1 PEND short hostA job4 Dec 11 13:59

View jobs for specific users

1 Run bjobs -u user_name to display jobs for a specific user:
bjobs -u user1

JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME

2225 user1 USUSP normal hostA job1 Nov 16 11:55

2226 user1 PSUSP normal hostA job2 Nov 16 12:30

2227 user1 PSUSP normal hostA job3 Nov 16 12:31

View Job Information

124 Administering Platform LSF

View running jobs

1 Run bjobs -r to display running jobs.

View done jobs

1 Run bjobs -d to display recently completed jobs.

View pending job information

1 Run bjobs -p to display the reason why a job is pending.
2 Run busers -w all to see the maximum pending job threshold for all users.

View suspension reasons

1 Run bjobs -s to display the reason why a job was suspended.

View chunk job wait status and wait reason

1 Run bhist -l to display jobs in WAIT status. Jobs are shown as Waiting ...
The bjobs -l command does not display a WAIT reason in the list of pending
jobs.

View post-execution states

1 Run bhist to display the POST_DONE and POST_ERR states.
The resource usage of post-processing is not included in the job resource usage.

View exception status for jobs (bjobs)

1 Run bjobs to display job exceptions. bjobs -l shows exception information
for unfinished jobs, and bjobs -x -l shows finished as well as unfinished
jobs.
For example, the following bjobs command shows that job 2 is running longer
than the configured JOB_OVERRUN threshold, and is consuming no CPU
time. bjobs displays the job idle factor, and both job overrun and job idle
exceptions. Job 1 finished before the configured JOB_UNDERRUN threshold,
so bjobs shows exception status of underrun:

bjobs -x -l -a

Job <2>, User <user1>, Project <default>, Status <RUN>, Queue <normal>, Command

Administering Platform LSF 125

Managing Jobs

 <sleep 600>

Wed Aug 13 14:23:35: Submitted from host <hostA>, CWD <$HOME>, Output File

 </dev/null>, Specified Hosts <hostB>;

Wed Aug 13 14:23:43: Started on <hostB>, Execution Home </home/user1>, Execution

 CWD </home/user1>;

Resource usage collected.

 IDLE_FACTOR(cputime/runtime): 0.00

 MEM: 3 Mbytes; SWAP: 4 Mbytes; NTHREAD: 3

 PGID: 5027; PIDs: 5027 5028 5029

 SCHEDULING PARAMETERS:

 r15s r1m r15m ut pg io ls it tmp swp mem

 loadSched - - - - - - - - - - -

 loadStop - - - - - - - - - - -

 cpuspeed bandwidth

 loadSched - -

 loadStop - -

 EXCEPTION STATUS: overrun idle

--

Job <1>, User <user1>, Project <default>, Status <DONE>, Queue <normal>, Command

 <sleep 20>

Wed Aug 13 14:18:00: Submitted from host <hostA>, CWD <$HOME>,

 Output File </dev/null>, Specified Hosts <

 hostB>;

Wed Aug 13 14:18:10: Started on <hostB>, Execution Home </home/user1>, Execution

 CWD </home/user1>;

Wed Aug 13 14:18:50: Done successfully. The CPU time used is 0.2 seconds.

 SCHEDULING PARAMETERS:

 r15s r1m r15m ut pg io ls it tmp swp mem

 loadSched - - - - - - - - - - -

 loadStop - - - - - - - - - - -

 cpuspeed bandwidth

 loadSched - -

 loadStop - -

 EXCEPTION STATUS: underrun

Use bacct -l -x to trace the history of job exceptions.

Changing Job Order Within Queues

126 Administering Platform LSF

Changing Job Order Within Queues
By default, LSF dispatches jobs in a queue in the order of arrival (that is, first-come,
first-served), subject to availability of suitable server hosts.
Use the btop and bbot commands to change the position of pending jobs, or of
pending job array elements, to affect the order in which jobs are considered for
dispatch. Users can only change the relative position of their own jobs, and LSF
administrators can change the position of any users’ jobs.

bbot
Moves jobs relative to your last job in the queue.
If invoked by a regular user, bbot moves the selected job after the last job with the
same priority submitted by the user to the queue.
If invoked by the LSF administrator, bbot moves the selected job after the last job
with the same priority submitted to the queue.

btop
Moves jobs relative to your first job in the queue.
If invoked by a regular user, btop moves the selected job before the first job with the
same priority submitted by the user to the queue.
If invoked by the LSF administrator, btop moves the selected job before the first job
with the same priority submitted to the queue.

Moving a job to the top of the queue
In the following example, job 5311 is moved to the top of the queue. Since job 5308
is already running, job 5311 is placed in the queue after job 5308.
Note that user1’s job is still in the same position on the queue. user2 cannot use
btop to get extra jobs at the top of the queue; when one of his jobs moves up the
queue, the rest of his jobs move down.

bjobs -u all

JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME

5308 user2 RUN normal hostA hostD /s500 Oct 23 10:16

5309 user2 PEND night hostA /s200 Oct 23 11:04

5310 user1 PEND night hostB /myjob Oct 23 13:45

5311 user2 PEND night hostA /s700 Oct 23 18:17

btop 5311

Job <5311> has been moved to position 1 from top.

bjobs -u all

JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME

5308 user2 RUN normal hostA hostD /s500 Oct 23 10:16

5311 user2 PEND night hostA /s200 Oct 23 18:17

5310 user1 PEND night hostB /myjob Oct 23 13:45

5309 user2 PEND night hostA /s700 Oct 23 11:04

Administering Platform LSF 127

Managing Jobs

Switch Jobs from One Queue to Another
You can use the command bswitch to change jobs from one queue to another. This
is useful if you submit a job to the wrong queue, or if the job is suspended because
of queue thresholds or run windows and you would like to resume the job.

Switch a single job to a different queue

1 Run bswitch to move pending and running jobs from queue to queue.
In the following example, job 5309 is switched to the priority queue:

bswitch priority 5309
Job <5309> is switched to queue <priority>

bjobs -u all
JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME
5308 user2 RUN normal hostA hostD /job500 Oct 23 10:16
5309 user2 RUN priority hostA hostB /job200 Oct 23 11:04
5311 user2 PEND night hostA /job700 Oct 23 18:17
5310 user1 PEND night hostB /myjob Oct 23 13:45

Switch all jobs to a different queue

1 Run bswitch -q from_queue to_queue 0 to switch all the jobs in a queue to
another queue.
The -q option is used to operate on all jobs in a queue. The job ID number 0
specifies that all jobs from the night queue should be switched to the idle queue:
The example below selects jobs from the night queue and switches them to the
idle queue.
bswitch -q night idle 0
Job <5308> is switched to queue <idle>
Job <5310> is switched to queue <idle>

Forcing Job Execution

128 Administering Platform LSF

Forcing Job Execution
A pending job can be forced to run with the brun command. This operation can
only be performed by an LSF administrator.
You can force a job to run on a particular host, to run until completion, and other
restrictions. For more information, see the brun command.
When a job is forced to run, any other constraints associated with the job such as
resource requirements or dependency conditions are ignored.
In this situation you may see some job slot limits, such as the maximum number of
jobs that can run on a host, being violated. A job that is forced to run cannot be
preempted.

Force a pending job to run

1 Run brun -m hostname job_ID to force a pending job to run.
You must specify the host on which the job will run.
For example, the following command will force the sequential job 104 to run
on hostA:
brun -m hostA 104

Administering Platform LSF 129

Managing Jobs

Suspending and Resuming Jobs
A job can be suspended by its owner or the LSF administrator. These jobs are
considered user-suspended and are displayed by bjobs as USUSP.
If a user suspends a high priority job from a non-preemptive queue, the load may
become low enough for LSF to start a lower priority job in its place. The load created
by the low priority job can prevent the high priority job from resuming. This can be
avoided by configuring preemptive queues.

Suspend a job

1 Run bstop job_ID.

Your job goes into USUSP state if the job is already started, or into PSUSP state if
it is pending.
bstop 3421
Job <3421> is being stopped

The above example suspends job 3421.

UNIX bstop sends the following signals to the job:
◆ SIGTSTP for parallel or interactive jobs—SIGTSTP is caught by the master

process and passed to all the slave processes running on other hosts.
◆ SIGSTOP for sequential jobs—SIGSTOP cannot be caught by user programs. The

SIGSTOP signal can be configured with the LSB_SIGSTOP parameter in
lsf.conf.

Windows bstop causes the job to be suspended.

Resume a job

1 Run bresume job_ID:
bresume 3421
Job <3421> is being resumed

resumes job 3421.
Resuming a user-suspended job does not put your job into RUN state
immediately. If your job was running before the suspension, bresume first puts
your job into SSUSP state and then waits for sbatchd to schedule it according
to the load conditions.

Killing Jobs

130 Administering Platform LSF

Killing Jobs
The bkill command cancels pending batch jobs and sends signals to running jobs.
By default, on UNIX, bkill sends the SIGKILL signal to running jobs.
Before SIGKILL is sent, SIGINT and SIGTERM are sent to give the job a chance to
catch the signals and clean up. The signals are forwarded from mbatchd to sbatchd.
sbatchd waits for the job to exit before reporting the status. Because of these delays,
for a short period of time after the bkill command has been issued, bjobs may still
report that the job is running.
On Windows, job control messages replace the SIGINT and SIGTERM signals, and
termination is implemented by the TerminateProcess() system call.

Kill a job

1 Run bkill job_ID. For example, the following command kills job 3421:
bkill 3421
Job <3421> is being terminated

Kill multiple jobs

1 Run bkill 0 to kill all pending jobs in the cluster or use bkill 0 with the -g,
-J, -m, -q, or -u options to kill all jobs that satisfy these options.
The following command kills all jobs dispatched to the hostA host:
bkill -m hostA 0

Job <267> is being terminated

Job <268> is being terminated

Job <271> is being terminated

The following command kills all jobs in the groupA job group:
bkill -g groupA 0

Job <2083> is being terminated

Job <2085> is being terminated

Kill a large number of jobs rapidly

Killing multiple jobs with bkill 0 and other commands is usually sufficient for
moderate numbers of jobs. However, killing a large number of jobs (approximately
greater than 1000 jobs) can take a long time to finish.

1 Run bkill -b to kill a large number of jobs faster than with normal means.
However, jobs killed in this manner are not logged to lsb.acct.
Local pending jobs are killed immediately and cleaned up as soon as possible,
ignoring the time interval specified by CLEAN_PERIOD in lsb.params.
Other jobs are killed as soon as possible but cleaned up normally (after the
CLEAN_PERIOD time interval).

Administering Platform LSF 131

Managing Jobs

If the -b option is used with bkill 0, it kills all applicable jobs and silently
skips the jobs that cannot be killed.
The -b option is ignored if used with -r or -s.

Force removal of a job from LSF

1 Run bkill -r to force the removal of the job from LSF. Use this option when
a job cannot be killed in the operating system.
The bkill -r command removes a job from the LSF system without waiting
for the job to terminate in the operating system. This sends the same series of
signals as bkill without -r, except that the job is removed from the system
immediately, the job is marked as EXIT, and job resources that LSF monitors
are released as soon as LSF receives the first signal.

Sending a Signal to a Job

132 Administering Platform LSF

Sending a Signal to a Job
LSF uses signals to control jobs, to enforce scheduling policies, or in response to
user requests. The principal signals LSF uses are SIGSTOP to suspend a job, SIGCONT
to resume a job, and SIGKILL to terminate a job.
Occasionally, you may want to override the default actions. For example, instead of
suspending a job, you might want to kill or checkpoint it. You can override the
default job control actions by defining the JOB_CONTROLS parameter in your
queue configuration. Each queue can have its separate job control actions.
You can also send a signal directly to a job. You cannot send arbitrary signals to a
pending job; most signals are only valid for running jobs. However, LSF does allow
you to kill, suspend and resume pending jobs.
You must be the owner of a job or an LSF administrator to send signals to a job.
You use the bkill -s command to send a signal to a job. If you issue bkill without
the -s option, a SIGKILL signal is sent to the specified jobs to kill them. Twenty
seconds before SIGKILL is sent, SIGTERM and SIGINT are sent to give the job a
chance to catch the signals and clean up.
On Windows, job control messages replace the SIGINT and SIGTERM signals, but
only customized applications are able to process them. Termination is implemented
by the TerminateProcess() system call.

Signals on different platforms
LSF translates signal numbers across different platforms because different host
types may have different signal numbering. The real meaning of a specific signal is
interpreted by the machine from which the bkill command is issued.
For example, if you send signal 18 from a SunOS 4.x host, it means SIGTSTP. If the
job is running on HP-UX and SIGTSTP is defined as signal number 25, LSF sends
signal 25 to the job.

Send a signal to a job
On most versions of UNIX, signal names and numbers are listed in the kill(1) or
signal(2) man pages. On Windows, only customized applications are able to
process job control messages specified with the -s option.

1 Run bkill -s signal job_id, where signal is either the signal name or the signal
number:
bkill -s TSTP 3421
Job <3421> is being signaled

The above example sends the TSTP signal to job 3421.

Administering Platform LSF 133

Managing Jobs

Using Job Groups
A collection of jobs can be organized into job groups for easy management. A job
group is a container for jobs in much the same way that a directory in a file system
is a container for files. For example, a payroll application may have one group of
jobs that calculates weekly payments, another job group for calculating monthly
salaries, and a third job group that handles the salaries of part-time or contract
employees. Users can submit, view, and control jobs according to their groups
rather than looking at individual jobs.

How job groups are created
Job groups can be created explicitly or implicitly:
◆ A job group is created explicitly with the bgadd command.
◆ A job group is created implicitly by the bsub -g or bmod -g command when

the specified group does not exist. Job groups are also created implicitly when
a default job group is configured (DEFAULT_JOBGROUP in lsb.params or
LSB_DEFAULT_JOBGROUP environment variable).

Job groups created when jobs are attached to an SLA service class at submission are
implicit job groups (bsub -sla service_class_name -g job_group_name). Job
groups attached to an SLA service class with bgadd are explicit job groups
(bgadd -sla service_class_name job_group_name).
The GRP_ADD event in lsb.events indicates how the job group was created:
◆ 0x01 - job group was created explicitly
◆ 0x02 - job group was created implicitly
For example:

GRP_ADD" "7.02" 1193032735 1285 1193032735 0 "/Z" "" "user1" "" "" 2 0 "" -1 1

means job group /Z is an explicitly created job group.
Child groups can be created explicitly or implicitly under any job group.
Only an implicitly created job group which has no job group limit (bgadd -L) and
is not attached to any SLA can be automatically deleted once it becomes empty. An
empty job group is a job group that has no jobs associated with it (including
finished jobs). NJOBS displayed by bjgroup is 0.

Job group hierarchy
Jobs in job groups are organized into a hierarchical tree similar to the directory
structure of a file system. Like a file system, the tree contains groups (which are like
directories) and jobs (which are like files). Each group can contain other groups or
individual jobs. Job groups are created independently of jobs, and can have
dependency conditions which control when jobs within the group are considered
for scheduling.

Job group path
The job group path is the name and location of a job group within the job group
hierarchy. Multiple levels of job groups can be defined to form a hierarchical tree.
A job group can contain jobs and sub-groups.

Using Job Groups

134 Administering Platform LSF

Root job group
LSF maintains a single tree under which all jobs in the system are organized. The
top-most level of the tree is represented by a top-level “root” job group, named “/”.
The root group is owned by the primary LSF Administrator and cannot be
removed. Users and administrators create new groups under the root group. By
default, if you do not specify a job group path name when submitting a job, the job
is created under the top-level “root” job group, named “/”.
The root job group is not displayed by job group query commands, and you cannot
specify the root job in commands.

Job group owner
Each group is owned by the user who created it. The login name of the user who
creates the job group is the job group owner. Users can add job groups into a groups
that are owned by other users, and they can submit jobs to groups owned by other
users. Child job groups are owned by the creator of the job group and the creators
of any parent groups.

Job control under job groups
Job owners can control their own jobs attached to job groups as usual. Job group
owners can also control any job under the groups they own and below.
For example:
◆ Job group /A is created by user1
◆ Job group /A/B is created by user2
◆ Job group /A/B/C is created by user3
All users can submit jobs to any job group, and control the jobs they own in all job
groups. For jobs submitted by other users:
◆ user1 can control jobs submitted by other users in all 3 job groups: /A, /A/B,

and /A/B/C
◆ user2 can control jobs submitted by other users only in 2 job groups: /A/B and

/A/B/C

◆ user3 can control jobs submitted by other users only in job group /A/B/C
The LSF administrator can control jobs in any job group.

Default job group
You can specify a default job group for jobs submitted without explicitly specifying
a job group. LSF associates the job with the job group specified with
DEFAULT_JOBGROUP in lsb.params. The LSB_DEFAULT_JOBGROUP
environment variable overrides the setting of DEFAULT_JOBGROUP. The
bsub -g job_group_name option overrides both LSB_DEFAULT_JOBGROUP and
DEFAULT_JOBGROUP.
Default job group specification supports macro substitution for project name (%p)
and user name (%u). When you specify bsub -P project_name, the value of %p is the
specified project name. If you do not specify a project name at job submission, %p
is the project name defined by setting the environment variable
LSB_DEFAULTPROJECT, or the project name specified by DEFAULT_PROJECT
in lsb.params. the default project name is default.

Administering Platform LSF 135

Managing Jobs

For example, a default job group name specified by
DEFAULT_JOBGROUP=/canada/%p/%u is expanded to the value for the LSF project
name and the user name of the job submission user (for example,
/canada/projects/user1).
Job group names must follow this format:
◆ Job group names must start with a slash character (/). For example,

DEFAULT_JOBGROUP=/A/B/C is correct, but DEFAULT_JOBGROUP=A/B/C is not
correct.

◆ Job group names cannot end with a slash character (/). For example,
DEFAULT_JOBGROUP=/A/ is not correct.

◆ Job group names cannot contain more than one slash character (/) in a row. For
example, job group names like DEFAULT_JOBGROUP=/A//B or
DEFAULT_JOBGROUP=A////B are not correct.

◆ Job group names cannot contain spaces. For example,
DEFAULT_JOBGROUP=/A/B C/D is not correct.

◆ Project names and user names used for macro substitution with %p and %u
cannot start or end with slash character (/).

◆ Project names and user names used for macro substitution with %p and %u
cannot contain spaces or more than one slash character (/) in a row.

◆ Project names or user names containing slash character (/) will create separate
job groups. For example, if the project name is canada/projects,
DEFAULT_JOBGROUP=/%p results in a job group hierarchy /canada/projects.

Job group limits
Job group limits specified with bgadd -L apply to the job group hierarchy. The job
group limit is a positive number greater than or equal to zero (0), specifying the
maximum number of running and suspended jobs under the job group (including
child groups). If limit is zero (0), no jobs under the job group can run.
By default, a job group has no limit. Limits persist across mbatchd restart and
reconfiguration.
You cannot specify a limit for the root job group. The root job group has no job
limit. Job groups added with no limits specified inherit any limits of existing parent
job groups. The -L option only limits the lowest level job group created.
The maximum number of running and suspended jobs (including USUSP and
SSUSP) in a job group cannot exceed the limit defined on the job group and its
parent job group.
The job group limit is based on the number of running and suspended jobs in the
job group. If you specify a job group limit as 2, at most 2 jobs can run under the
group at any time, regardless of how many jobs or job slots are used. If the currently
available job slots is zero (0), even if the job group job limit is not exceeded, LSF
cannot dispatch a job to the job group.
If a parallel job requests 2 CPUs (bsub -n 2), the job group limit is per job, not per
slots used by the job.
A job array may also be under a job group, so job arrays also support job group
limits.

Using Job Groups

136 Administering Platform LSF

Job group limits are not supported at job submission for job groups created
automatically with bsub -g. Use bgadd -L before job submission.
Jobs forwarded to the execution cluster in a MultiCluster environment are not
counted towards the job group limit.

Examples bgadd -L 6 /canada/projects/test

If /canada is existing job group, and /canada/projects and
/canada/projects/test are new groups, only the job group
/canada/projects/test is limited to 6 running and suspended jobs. Job group
/canada/projects will have whatever limit is specified for its parent job group
/canada. The limit of /canada does not change.
The limits on child job groups cannot exceed the parent job group limit. For
example, if /canada/projects has a limit of 5:
bgadd -L 6 /canada/projects/test

is rejected because /canada/projects/test attempts to increase the limit of its
parent /canada/projects from 5 to 6.

Example job group hierarchy with limits

In this configuration:
◆ Every node is a job group, including the root (/) job group
◆ The root (/) job group cannot have any limit definition
◆ By default, child groups have the same limit definition as their direct parent

group, so /asia, /asia/projects, and /asia/projects/test all have no
limit

◆ The number of running and suspended jobs in a job group (including all of its
child groups) cannot exceed the defined limit

◆ If there are 7 running or suspended jobs in job group
/canada/projects/test1, even though the job limit of group
/canada/qa/auto is 6, /canada/qa/auto can only have a maximum of 5
running and suspended (12-7=5)

Administering Platform LSF 137

Managing Jobs

◆ When a job is submitted to a job group, LSF checks the limits for the entire job
group. For example, for a job is submitted to job group /canada/qa/auto, LSF
checks the limits on groups /canada/qa/auto, /canada/qa and /canada. If
any one limit in the branch of the hierarchy is exceeded, the job remains
pending

◆ The zero (0) job limit for job group /canada/qa/manual means no job in the
job group can enter running status

Create a job group

1 Use the bgadd command to create a new job group.
You must provide full group path name for the new job group. The last
component of the path is the name of the new group to be created:
bgadd /risk_group

The above example creates a job group named risk_group under the root
group /.
bgadd /risk_group/portfolio1

The above example creates a job group named portfolio1 under job group
/risk_group.
bgadd /risk_group/portfolio1/current

The above example creates a job group named current under job group
/risk_group/portfolio1.
If the group hierarchy /risk_group/portfolio1/current does not exist, LSF
checks its parent recursively, and if no groups in the hierarchy exist, all three job
groups are created with the specified hierarchy.

Add a job group
limit (bgadd)

1 Run bgadd -L limit /job_group_name to specify a job limit for a job group.
Where limit is a positive number greater than or equal to zero (0), specifying
the maximum the number of running and suspended jobs under the job group
(including child groups) If limit is zero (0), no jobs under the job group can
run.
For example:
bgadd -L 6 /canada/projects/test

If /canada is existing job group, and /canada/projects and
/canada/projects/test are new groups, only the job group
/canada/projects/test is limited to 6 running and suspended jobs. Job
group /canada/projects will have whatever limit is specified for its parent job
group /canada. The limit of /canada does not change.

Using Job Groups

138 Administering Platform LSF

Submit jobs under a job group

1 Use the -g option of bsub to submit a job into a job group.
The job group does not have to exist before submitting the job.
bsub -g /risk_group/portfolio1/current myjob

Job <105> is submitted to default queue.

Submits myjob to the job group /risk_group/portfolio1/current.
If group /risk_group/portfolio1/current exists, job 105 is attached to the
job group.
If group /risk_group/portfolio1/current does not exist, LSF checks its
parent recursively, and if no groups in the hierarchy exist, all three job groups
are created with the specified hierarchy and the job is attached to group.

-g and -sla options TIP: Use -sla with -g to attach all jobs in a job group to a service class and have them scheduled
as SLA jobs. Multiple job groups can be created under the same SLA. You can submit additional
jobs to the job group without specifying the service class name again.

MultiCluster In a MultiCluster job forwarding mode, job groups only apply on the submission
cluster, not on the execution cluster. LSF treats the execution cluster as execution
engine, and only enforces job group policies at the submission cluster.
Jobs forwarded to the execution cluster in a MultiCluster environment are not
counted towards job group limits.

View jobs in job groups
View job group information, and jobs running in specific job groups.

View information about job groups (bjgroup)

1 Use the bjgroup command to see information about jobs in job groups.
bjgroup

GROUP_NAME NJOBS PEND RUN SSUSP USUSP FINISH SLA JLIMIT OWNER

/A 0 0 0 0 0 0 () 0/10 user1

/X 0 0 0 0 0 0 () 0/- user2

/A/B 0 0 0 0 0 0 () 0/5 user1

/X/Y 0 0 0 0 0 0 () 0/5 user2

2 Use bjgroup -s to sort job groups by group hierarchy.
For example, for job groups named /A, /A/B, /X and /X/Y, bjgroup -s
displays:

bjgroup -s

GROUP_NAME NJOBS PEND RUN SSUSP USUSP FINISH SLA JLIMIT OWNER

/A 0 0 0 0 0 0 () 0/10 user1

/A/B 0 0 0 0 0 0 () 0/5 user1

/X 0 0 0 0 0 0 () 0/- user2

Administering Platform LSF 139

Managing Jobs

/X/Y 0 0 0 0 0 0 () 0/5 user2

3 Specify a job group name to show the hierarchy of a single job group:
bjgroup -s /X

GROUP_NAME NJOBS PEND RUN SSUSP USUSP FINISH SLA JLIMIT OWNER

/X 25 0 25 0 0 0 puccini 25/100 user1

/X/Y 20 0 20 0 0 0 puccini 20/30 user1

/X/Z 5 0 5 0 0 0 puccini 5/10 user2

4 Specify a job group name with a trailing slash character (/) to show only the
root job group:

bjgroup -s /X/

GROUP_NAME NJOBS PEND RUN SSUSP USUSP FINISH SLA JLIMIT OWNER

/X 25 0 25 0 0 0 puccini 25/100 user1

5 Use bjgroup -N to display job group information by job slots instead of
number of jobs. NSLOTS, PEND, RUN, SSUSP, USUSP, RSV are all counted in
slots rather than number of jobs:

bjgroup -N

GROUP_NAME NSLOTS PEND RUN SSUSP USUSP RSV SLA OWNER

/X 25 0 25 0 0 0 puccini user1

/A/B 20 0 20 0 0 0 wagner batch

-N by itself shows job slot info for all job groups, and can combine with -s to
sort the job groups by hierarchy:

bjgroup -N -s

GROUP_NAME NSLOTS PEND RUN SSUSP USUSP RSV SLA OWNER

/A 0 0 0 0 0 0 wagner batch

/A/B 0 0 0 0 0 0 wagner user1

/X 25 0 25 0 0 0 puccini user1

/X/Y 20 0 20 0 0 0 puccini batch

/X/Z 5 0 5 0 0 0 puccini batch

View jobs for a specific job group (bjobs)

1 Run bjobs -g and specify a job group path to view jobs attached to the
specified group.

bjobs -g /risk_group
JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME
113 user1 PEND normal hostA myjob Jun 17 16:15
111 user2 RUN normal hostA hostA myjob Jun 14 15:13
110 user1 RUN normal hostB hostA myjob Jun 12 05:03
104 user3 RUN normal hostA hostC myjob Jun 11 13:18

bjobs -l displays the full path to the group to which a job is attached:
bjobs -l -g /risk_group

Job <101>, User <user1>, Project <default>, Job Group
</risk_group>, Status <RUN>, Queue <normal>, Command <myjob>
Tue Jun 17 16:21:49: Submitted from host <hostA>, CWD

Using Job Groups

140 Administering Platform LSF

</home/user1;
Tue Jun 17 16:22:01: Started on <hostA>;
...

Control jobs in job groups
Suspend and resume jobs in job groups, move jobs to different job groups,
terminate jobs in job groups, and delete job groups.

Suspend jobs (bstop)

1 Use the -g option of bstop and specify a job group path to suspend jobs in a
job group
bstop -g /risk_group 106
Job <106> is being stopped

2 Use job ID 0 (zero) to suspend all jobs in a job group:
bstop -g /risk_group/consolidate 0
Job <107> is being stopped
Job <108> is being stopped
Job <109> is being stopped

Resume suspended jobs (bresume)

1 Use the -g option of bresume and specify a job group path to resume suspended
jobs in a job group:
bresume -g /risk_group 106
Job <106> is being resumed

2 Use job ID 0 (zero) to resume all jobs in a job group:
bresume -g /risk_group 0
Job <109> is being resumed
Job <110> is being resumed
Job <112> is being resumed

Move jobs to a different job group (bmod)

1 Use the -g option of bmod and specify a job group path to move a job or a job
array from one job group to another.
bmod -g /risk_group/portfolio2/monthly 105

moves job 105 to job group /risk_group/portfolio2/monthly.
Like bsub -g, if the job group does not exist, LSF creates it.
bmod -g cannot be combined with other bmod options. It can only operate on
pending jobs. It cannot operate on running or finished jobs.
You can modify your own job groups and job groups that other users create
under your job groups. The LSF administrator can modify job groups of all
users.

Administering Platform LSF 141

Managing Jobs

You cannot move job array elements from one job group to another, only entire
job arrays. If any job array elements in a job array are running, you cannot move
the job array to another group. A job array can only belong to one job group at
a time.
You cannot modify the job group of a job attached to a service class.
bhist -l shows job group modification information:

bhist -l 105

Job <105>, User <user1>, Project <default>, Job Group </risk_group>, Command <myjob>

Wed May 14 15:24:07: Submitted from host <hostA>, to Queue <normal>, CWD
<$HOME/lsf51/5.1/sparc-sol7-64/bin>;
Wed May 14 15:24:10: Parameters of Job are changed:
 Job group changes to: /risk_group/portfolio2/monthly;
Wed May 14 15:24:17: Dispatched to <hostA>;
Wed May 14 15:24:17: Starting (Pid 8602);
...

Terminate jobs (bkill)

1 Use the -g option of bkill and specify a job group path to terminate jobs in a
job group.
bkill -g /risk_group 106
Job <106> is being terminated

2 Use job ID 0 (zero) to terminate all jobs in a job group:
bkill -g /risk_group 0
Job <1413> is being terminated
Job <1414> is being terminated
Job <1415> is being terminated
Job <1416> is being terminated

bkill only kills jobs in the job group you specify. It does not kill jobs in lower
level job groups in the path. For example, jobs are attached to job groups
/risk_group and /risk_group/consolidate:
bsub -g /risk_group myjob
Job <115> is submitted to default queue <normal>.

bsub -g /risk_group/consolidate myjob2
Job <116> is submitted to default queue <normal>.

The following bkill command only kills jobs in /risk_group, not the
subgroup /risk_group/consolidate:
bkill -g /risk_group 0
Job <115> is being terminated

To kill jobs in /risk_group/consolidate, specify the path to the
consolidate job group explicitly:
bkill -g /risk_group/consolidate 0
Job <116> is being terminated

Using Job Groups

142 Administering Platform LSF

Delete a job groups manually (bgdel)

1 Use the bgdel command to manually remove a job group. The job group
cannot contain any jobs.
bgdel /risk_group
Job group /risk_group is deleted.

deletes the job group /risk_group and all its subgroups.
Normal users can only delete the empty groups they own that are specified by
the requested job_group_name. These groups can be explicit or implicit.

2 Run bgdel 0 to delete all empty job groups you own. Theses groups can be
explicit or implicit.

3 LSF administrators can use bgdel -u user_name 0 to delete all empty job
groups created by specific users. These groups can be explicit or implicit.
Run bgdel -u all 0 to delete all the users' empty job groups and their sub
groups. LSF administrators can delete empty job groups created by any user.
These groups can be explicit or implicit.

4 Run bgdel -c job_group_name to delete all empty groups below the requested
job_group_name including job_group_name itself.

Modify a job group
limit (bgmod)

1 Run bgmod to change a job group limit.
bgmod [-L limit | -Ln] /job_group_name

-L limit changes the limit of job_group_name to the specified value. If the job
group has parent job groups, the new limit cannot exceed the limits of any
higher level job groups. Similarly, if the job group has child job groups, the new
value must be greater than any limits on the lower level job groups.
-Ln removes the existing job limit for the job group. If the the job group has
parent job groups, the job modified group automatically inherits any limits
from its direct parent job group.
You must provide full group path name for the modified job group. The last
component of the path is the name of the job group to be modified.
Only root, LSF administrators, or the job group creator, or the creator of the
parent job groups can use bgmod to modify a job group limit.
The following command only modifies the limit of group
/canada/projects/test1. It does not modify limits of /canada
or/canada/projects.
bgmod -L 6 /canada/projects/test1

To modify limits of /canada or/canada/projects, you must specify the exact
group name:
bgmod -L 6 /canada

or
bgmod -L 6 /canada/projects

Administering Platform LSF 143

Managing Jobs

Automatic job group cleanup
When an implicitly created job group becomes empty, it can be automatically
deleted by LSF. Job groups that can be automatically deleted cannot:
◆ Have limits specified including their child groups
◆ Have explicitly created child job groups
◆ Be attached to any SLA
Configure JOB_GROUP_CLEAN=Y in lsb.params to enable automatic job group
deletion.
For example, for the following job groups:

When automatic job group deletion is enabled, LSF only deletes job groups
/X/Y/Z/W and /X/Y/Z. Job group /X/Y is not deleted because it is an explicitly
created job group, Job group /X is also not deleted because it has an explicitly
created child job group /X/Y.
Automatic job group deletion does not delete job groups attached to SLA service
classes. Use bgdel to manually delete job groups attached to SLAs.

Handling Job Exceptions

144 Administering Platform LSF

Handling Job Exceptions
You can configure hosts and queues so that LSF detects exceptional conditions
while jobs are running, and take appropriate action automatically. You can
customize what exceptions are detected and their corresponding actions. By
default, LSF does not detect any exceptions.
Run bjobs -d -m host_name to see exited jobs for a particular host.

Job exceptions LSF can detect
If you configure job exception handling in your queues, LSF detects the following
job exceptions:
◆ Job underrun—jobs end too soon (run time is less than expected). Underrun

jobs are detected when a job exits abnormally
◆ Job overrun—job runs too long (run time is longer than expected). By default,

LSF checks for overrun jobs every 1 minute. Use
EADMIN_TRIGGER_DURATION in lsb.params to change how frequently
LSF checks for job overrun.

◆ Job estimated run time exceeded—the job’s actual run time has exceeded the
estimated run time.

◆ Idle job—running job consumes less CPU time than expected (in terms of
CPU time/runtime). By default, LSF checks for idle jobs every 1 minute. Use
EADMIN_TRIGGER_DURATION in lsb.params to change how frequently
LSF checks for idle jobs.

Host exceptions LSF can detect
If you configure host exception handling, LSF can detect jobs that exit repeatedly
on a host. The host can still be available to accept jobs, but some other problem
prevents the jobs from running. Typically jobs dispatched to such “black hole”, or
“job-eating” hosts exit abnormally. By default, LSF monitors the job exit rate for
hosts, and closes the host if the rate exceeds a threshold you configure (EXIT_RATE
in lsb.hosts).
If EXIT_RATE is not specified for the host, LSF invokes eadmin if the job exit rate
for a host remains above the configured threshold for longer than 5 minutes. Use
JOB_EXIT_RATE_DURATION in lsb.params to change how frequently LSF
checks the job exit rate.
Use GLOBAL_EXIT_RATE in lsb.params to set a cluster-wide threshold in
minutes for exited jobs. If EXIT_RATE is not specified for the host in lsb.hosts,
GLOBAL_EXIT_RATE defines a default exit rate for all hosts in the cluster.
Host-level EXIT_RATE overrides the GLOBAL_EXIT_RATE value.

Customize job exception actions with the eadmin script
When an exception is detected, LSF takes appropriate action by running the script
LSF_SERVERDIR/eadmin on the master host.
You can customize eadmin to suit the requirements of your site. For example,
eadmin could find out the owner of the problem jobs and use bstop -u to stop all
jobs that belong to the user.

Administering Platform LSF 145

Managing Jobs

In some environments, a job running 1 hour would be an overrun job, while this
may be a normal job in other environments. If your configuration considers jobs
running longer than 1 hour to be overrun jobs, you may want to close the queue
when LSF detects a job that has run longer than 1 hour and invokes eadmin.

Email job exception
details

Set LSF to send you an email about job exceptions that includes details including
JOB_ID, RUN_TIME, IDLE_FACTOR (if job has been idle), USER, QUEUE,
EXEC_HOST, and JOB_NAME.

1 In lsb.params, set EXTEND_JOB_EXCEPTION_NOTIFY=Y.
2 Set the format option in the eadmin script (LSF_SERVERDIR/eadmin on the

master host).
a Uncomment the JOB_EXCEPTION_EMAIL_FORMAT line and add a value for

the format:
◆ JOB_EXCEPTION_EMAIL_FORMAT=fixed: The eadmin shell generates an

exception email with a fixed length for the job exception information. For
any given field, the characters truncate when the maximum is reached
(between 10-19).

◆ JOB_EXCEPTION_EMAIL_FORMAT=full: The eadmin shell generates an
exception email without a fixed length for the job exception information.

Default eadmin
actions

For host-level exceptions, LSF closes the host and sends email to the LSF
administrator. The email contains the host name, job exit rate for the host, and
other host information. The message eadmin: JOB EXIT THRESHOLD EXCEEDED is
attached to the closed host event in lsb.events, and displayed by badmin hist
and badmin hhist.
For job exceptions. LSF sends email to the LSF administrator. The email contains
the job ID, exception type (overrun, underrun, idle job), and other job information.
An email is sent for all detected job exceptions according to the frequency
configured by EADMIN_TRIGGER_DURATION in lsb.params. For example, if
EADMIN_TRIGGER_DURATION is set to 5 minutes, and 1 overrun job and 2 idle
jobs are detected, after 5 minutes, eadmin is invoked and only one email is sent. If
another overrun job is detected in the next 5 minutes, another email is sent.

Handling job initialization failures
By default, LSF handles job exceptions for jobs that exit after they have started
running. You can also configure LSF to handle jobs that exit during initialization
because of an execution environment problem, or because of a user action or LSF
policy.
LSF detects that the jobs are exiting before they actually start running, and takes
appropriate action when the job exit rate exceeds the threshold for specific hosts
(EXIT_RATE in lsb.hosts) or for all hosts (GLOBAL_EXIT_RATE in
lsb.params).
Use EXIT_RATE_TYPE in lsb.params to include job initialization failures in the
exit rate calculation. The following table summarizes the exit rate types you can
configure:

Handling Job Exceptions

146 Administering Platform LSF

Table 1: Exit rate types you can configure

Job exits excluded
from exit rate
calculation

By default, jobs that are exited for non-host related reasons (user actions and LSF
policies) are not counted in the exit rate calculation. Only jobs that are exited for
what LSF considers host-related problems and are used to calculate a host exit rate.
The following cases are not included in the exit rate calculations:
◆ bkill, bkill -r
◆ brequeue

◆ RERUNNABLE jobs killed when a host is unavailable
◆ Resource usage limit exceeded (for example, PROCESSLIMIT, CPULIMIT,

etc.)
◆ Queue-level job control action TERMINATE and TERMINATE_WHEN
◆ Checkpointing a job with the kill option (bchkpnt -k)
◆ Rerunnable job migration
◆ Job killed when an advance reservation has expired
◆ Remote lease job start fails
◆ Any jobs with an exit code found in SUCCESS_EXIT_VALUES, where a

particular exit value is deemed as successful.

Excluding LSF and
user-related job
exits

To explicitly exclude jobs exited because of user actions or LSF-related policies from
the job exit calculation, set EXIT_RATE_TYPE = JOBEXIT_NONLSF in
lsb.params. JOBEXIT_NONLSF tells LSF to include all job exits except those that
are related to user action or LSF policy. This is the default value for
EXIT_RATE_TYPE .
To include all job exit cases in the exit rate count, you must set EXIT_RATE_TYPE
= JOBEXIT in lsb.params. JOBEXIT considers all job exits.
Jobs killed by signal external to LSF will still be counted towards exit rate

Exit rate type ... Includes ...

JOBEXIT Local exited jobs
Remote job initialization failures
Parallel job initialization failures on hosts other
than the first execution host
Jobs exited by user action (e.g., bkill, bstop,
etc.) or LSF policy (e.g., load threshold
exceeded, job control action, advance
reservation expired, etc.)

JOBEXIT_NONLSF
This is the default when
EXIT_RATE_TYPE is not set

Local exited jobs
Remote job initialization failures
Parallel job initialization failures on hosts other
than the first execution host

JOBINIT Local job initialization failures
Parallel job initialization failures on the first
execution host

HPCINIT Job initialization failures for Platform LSF HPC
jobs

Administering Platform LSF 147

Managing Jobs

Jobs killed because of job control SUSPEND action and RESUME action are still
counted towards the exit rate. This because LSF cannot distinguish between jobs
killed from SUSPEND action and jobs killed by external signals.
If both JOBEXIT and JOBEXIT_NONLSF are defined, JOBEXIT_NONLSF is used.

Local jobs When EXIT_RATE_TYPE=JOBINIT, various job initialization failures are
included in the exit rate calculation, including:
◆ Host-related failures; for example, incorrect user account, user permissions,

incorrect directories for checkpointable jobs, host name resolution failed, or
other execution environment problems

◆ Job-related failures; for example, pre-execution or setup problem, job file not
created, etc.

Parallel jobs By default, or when EXIT_RATE_TYPE=JOBEXIT_NONLSF, job initialization
failure on the first execution host does not count in the job exit rate calculation. Job
initialization failure for hosts other than the first execution host are counted in the
exit rate calculation.
When EXIT_RATE_TYPE=JOBINIT, job initialization failure happens on the first
execution host are counted in the job exit rate calculation. Job initialization failures
for hosts other than the first execution host are not counted in the exit rate
calculation.

TIP: For parallel job exit exceptions to be counted for all hosts, specify EXIT_RATE_TYPE=HPCINIT
or EXIT_RATE_TYPE=JOBEXIT_NONLSF JOBINIT.

Remote jobs By default, or when EXIT_RATE_TYPE=JOBEXIT_NONLSF, job initialization
failures are counted as exited jobs on the remote execution host and are included in
the exit rate calculation for that host. To include only local job initialization failures
on the execution cluster from the exit rate calculation, set EXIT_RATE_TYPE to
include only JOBINIT or HPCINIT.

Scaling and tuning job exit rate by number of slots
On large, multiprocessor hosts, use to ENABLE_EXIT_RATE_PER_SLOT=Y in
lsb.params to scale the job exit rate so that the host is only closed when the job exit
rate is high enough in proportion to the number of processors on the host. This
avoids having a relatively low exit rate close a host inappropriately.
Use a float value for GLOBAL_EXIT_RATE in lsb.params to tune the exit rate on
multislot hosts. The actual calculated exit rate value is never less than 1.

Example: exit rate of 5 on single processor and multiprocessor hosts

On a single-processor host, a job exit rate of 5 is much more severe than on a
20-processor host. If a stream of jobs to a single-processor host is consistently
failing, it is reasonable to close the host or take some other action after 5 failures.
On the other hand, for the same stream of jobs on a 20-processor host, it is possible
that 19 of the processors are busy doing other work that is running fine. To close
this host after only 5 failures would be wrong because effectively less than 5% of the
jobs on that host are actually failing.

Handling Job Exceptions

148 Administering Platform LSF

Example: float value for GLOBAL_EXIT_RATE on multislot hosts

Using a float value for GLOBAL_EXIT_RATE allows the exit rate to be less than the
number of slots on the host. For example, on a host with 4 slots,
GLOBAL_EXIT_RATE=0.25 gives an exit rate of 1. The same value on an 8 slot
machine would be 2 and so on. On a single-slot host, the value is never less than 1.

For more information
◆ See Handling Host-level Job Exceptions on page 105 for information about

configuring host-level job exceptions.
◆ See Handling Job Exceptions in Queues on page 116 for information about

configuring job exceptions. in queues

Administering Platform LSF 149

C H A P T E R

7
Managing Users and User Groups

Contents
◆ Viewing User and User Group Information on page 149
◆ About User Groups on page 151
◆ Existing User Groups as LSF User Groups on page 151
◆ LSF User Groups on page 152

Viewing User and User Group Information
You can display information about LSF users and user groups using the busers and
bugroup commands.
The busers command displays information about users and user groups. The
default is to display information about the user who invokes the command. The
busers command displays:
◆ Maximum number of jobs a user or group may execute on a single processor
◆ Maximum number of job slots a user or group may use in the cluster
◆ Maximum number of pending jobs a user or group may have in the system.
◆ Total number of job slots required by all submitted jobs of the user
◆ Number of job slots in the PEND, RUN, SSUSP, and USUSP states
The bugroup command displays information about user groups and which users
belong to each group.
The busers and bugroup commands have additional options. See the busers(1)
and bugroup(1) man pages for more details.

RESTRICTION: The keyword all is reserved by LSF. Ensure that no actual users are assigned the
user name "all."

Viewing User and User Group Information

150 Administering Platform LSF

View user information

1 Run busers all.
busers all
USER/GROUP JL/P MAX NJOBS PEND RUN SSUSP USUSP RSV
default 12 - - - - - - -
user9 1 12 34 22 10 2 0 0
groupA - 100 20 7 11 1 1 0

View user pending job threshold information

1 Run busers -w, which displays the pending job threshold column at the end
of the busers all output.

busers -w
USER/GROUP JL/P MAX NJOBS PEND RUN SSUSP USUSP RSV MPEND
default 12 - - - - - - - 10
user9 1 12 34 22 10 2 0 0 500
groupA - 100 20 7 11 1 1 0 200000

View user group information

1 Run bugroup.
bugroup
GROUP_NAME USERS
testers user1 user2
engineers user3 user4 user10 user9
develop user4 user10 user11 user34 engineers/
system all users

View user share information

1 Run bugroup -l, which displays user share group membership information in
long format.
bugroup -l
GROUP_NAME: testers
USERS: user1 user2
SHARES: [user1, 4] [others, 10]

GROUP_NAME: engineers
USERS: user3 user4 user10 user9
SHARES: [others, 10] [user9, 4]

GROUP_NAME: system
USERS: all users
SHARES: [user9, 10] [others, 15]

GROUP_NAME: develop

Administering Platform LSF 151

Managing Users and User Groups

USERS: user4 user10 user11 engineers/
SHARES: [engineers, 40] [user4, 15] [user10, 34] [user11,
16]

About User Groups
User groups act as aliases for lists of users. The administrator can also limit the total
number of running jobs belonging to a user or a group of users.
You can define user groups in LSF in several ways:
◆ Use existing user groups in the configuration files
◆ Create LSF-specific user groups
◆ Use an external executable to retrieve user group members
If desired, you can use all three methods, provided the user and group names are
different.

Existing User Groups as LSF User Groups
User groups already defined in your operating system often reflect existing
organizational relationships among users. It is natural to control computer resource
access using these existing groups.
You can specify existing UNIX user groups anywhere an LSF user group can be
specified.

How LSF recognizes UNIX user groups
Only group members listed in the /etc/group file or the file group.byname NIS
map are accepted. The user’s primary group as defined in the /etc/passwd file is
ignored.
The first time you specify a UNIX user group, LSF automatically creates an LSF user
group with that name, and the group membership is retrieved by getgrnam(3) on
the master host at the time mbatchd starts. The membership of the group might be
different from the one on another host. Once the LSF user group is created, the
corresponding UNIX user group might change, but the membership of the LSF user
group is not updated until you reconfigure LSF (badmin). To specify a UNIX user
group that has the same name as a user, use a slash (/) immediately after the group
name: group_name/.

Requirements UNIX group definitions referenced by LSF configuration files must be uniform
across all hosts in the cluster. Unexpected results can occur if the UNIX group
definitions are not homogeneous across machines.

How LSF resolves users and user groups with the same name
If an individual user and a user group have the same name, LSF assumes that the
name refers to the individual user. To specify the group name, append a slash (/) to
the group name.
For example, if you have both a user and a group named admin on your system, LSF
interprets admin as the name of the user, and admin/ as the name of the group.

LSF User Groups

152 Administering Platform LSF

Where to use existing user groups
Existing user groups can be used in defining the following parameters in LSF
configuration files:
◆ USERS in lsb.queues for authorized queue users
◆ USER_NAME in lsb.users for user job slot limits
◆ USER_SHARES (optional) in lsb.hosts for host partitions or in lsb.queues or

lsb.users for queue fairshare policies

LSF User Groups
You can define an LSF user group within LSF or use an external executable to
retrieve user group members.
Use bugroup to view user groups and members, use busers to view all users in the
cluster.

Where to use LSF user groups
LSF user groups can be used in defining the following parameters in LSF
configuration files:
◆ USERS in lsb.queues for authorized queue users
◆ USER_NAME in lsb.users for user job slot limits
◆ USER_SHARES (optional) in lsb.hosts for host partitions or in lsb.queues for

queue fairshare policies
If you are using existing OS-level user groups instead of LSF-specific user groups,
you can also specify the names of these groups in the files mentioned above.

Configure user groups

1 Log in as the LSF administrator to any host in the cluster.
2 Open lsb.users.
3 If the UserGroup section does not exist, add it:

Begin UserGroup
GROUP_NAME GROUP_MEMBER USER_SHARES
financial (user1 user2 user3) ([user1, 4] [others,
10])
system (all) ([user2, 10] [others,
15])
regular_users (user1 user2 user3 user4) -
part_time_users (!) -
End UserGroup

4 Specify the group name under the GROUP_NAME column.
External user groups must also be defined in the egroup executable.

5 Specify users in the GROUP_MEMBER column.
For external user groups, put an exclamation mark (!) in the GROUP_MEMBER
column to tell LSF that the group members should be retrieved using egroup.

6 Optional: To enable hierarchical fairshare, specify share assignments in the
USER_SHARES column.

Administering Platform LSF 153

Managing Users and User Groups

7 Save your changes.
8 Run badmin ckconfig to check the new user group definition. If any errors are

reported, fix the problem and check the configuration again.
9 Run badmin reconfig to reconfigure the cluster.

Importing external user groups (egroup)
When the membership of a user group changes frequently, or when the group
contains a large number of members, you can use an external executable called
egroup to retrieve a list of members rather than having to configure the group
membership manually. You can write a site-specific egroup executable that
retrieves user group names and the users that belong to each group. For
information about how to use the external host and user groups feature, see the
Platform LSF Configuration Reference.

LSF User Groups

154 Administering Platform LSF

Administering Platform LSF 155

C H A P T E R

8
Platform LSF Licensing

Contents
◆ The LSF License File on page 156
◆ How LSF Permanent Licensing Works on page 160
◆ Installing a Demo License on page 162
◆ Installing a Permanent License on page 164
◆ Updating a License on page 170
◆ FLEXnet Basics on page 172
◆ Multiple FLEXnet License Server Hosts on page 175
◆ Partial Licensing on page 177
◆ Floating Client Licenses on page 180
◆ Troubleshooting License Issues on page 186

The LSF License File

156 Administering Platform LSF

The LSF License File
You must have a valid license to run LSF. This section helps you to understand the
types of LSF licenses and the contents of the LSF license file. It does not contain
information required to install your license.

TIP: To learn about licensing a cluster that includes Windows hosts, see Using Platform LSF on
Windows.

Evaluation (demo) license
You can use a demo license to install Platform LSF and get it running temporarily,
then switch to the permanent license before the evaluation period expires with no
interruption in service, as described in Installing a Permanent License on page 164.
Although there may be exceptions, a typical demo license:
◆ Is used during your free evaluation of LSF
◆ Expires on a preset calendar date (30 days after the license was generated)
◆ Is file-based (does not require Acresso® FLEXnet™ software)
◆ Licenses all LSF products
◆ Allows an unlimited number of hosts to be LSF servers

Permanent license
Although there may be exceptions, a typical permanent license:
◆ Is granted when you purchase LSF
◆ Licenses specific LSF products that you have purchased
◆ Limits the number of hosts allowed to be LSF servers
◆ Requires FLEXnet™ 7.2 or later
◆ Is keyed to one or more specific FLEXnet license server hosts
◆ Does not expire

Enforcement of multicore processor licenses on Linux and Windows
Multicore hosts running Linux or Windows must be licensed by the
lsf_dualcore_x86 license feature. Each physical processor requires one standard
LSF license and num_cores-1 lsf_dualcore_x86 licenses. For example, a processor
with 4 cores requires 3 lsf_dualcore_x86 licenses.
Use lshosts -l to see the number of multicore licenses enabled and needed. For
example:

lshosts -l hostB

HOST_NAME: hostB

type model cpuf ncpus ndisks maxmem maxswp maxtmp rexpri server nprocs ncores nthreads

LINUX86 PC6000 116.1 2 1 2016M 1983M 72917M 0 Yes 1 4 2

LICENSES_ENABLED: (LSF_Base LSF_Manager LSF_MultiCluster LSF_DualCore_x86)

LICENSE_NEEDED: Class(B), Multi-cores

...

Administering Platform LSF 157

Platform LSF Licensing

Enforcement of grid license managment plugin licenses
The new license optimization features enabled by the grid license management
plugin require the lsf_mv_grid_filter license feature.
The number of lsf_mv_grid_filter licenses should be at least the number of LSF
License Scheduler licenses.

Banded licensing
You can use permanent licenses with restrictions in operating system and hardware
configurations. These banded licenses have three classes, with the E-class licenses
having no restrictions. Banded licenses support the following operating systems
and hardware configurations:

In the LSF license file:
FEATURE lsf_manager lsf_ld 7.000 8-may-2009 2 ADE2C12C1A81E5E8F29C \
VENDOR_STRING=Platform NOTICE=Class(S)

FEATURE lsf_manager lsf_ld 7.000 8-may-2009 10 1DC2C1CCEF193E42B6DC \
VENDOR_STRING=Platform NOTICE=Class(E)

Determining what licenses a host needs

Use lim -t and lshosts -l to see the license requirements for a host. For example:
lim -t

Host Type : NTX64

Host Architecture : EM64T_1596

Physical Processors : 2

Cores per Processor : 4

Threads per Core : 2

License Needed : Class(B), Multi-core

Matched Type : NTX64

Matched Architecture : EM64T_3000

Matched Model : Intel_EM64T

CPU Factor : 60.0

License type Supported operating
systems

Processor Physical memory Physical processors/sockets

B-Class Linux, Windows,
MacOS

Intel X86/AMD64/EM64T Up to and including 4
GB physical memory on
a node

Up to and including 2
processors

S-Class Linux, Windows,
MacOS

Intel X86/AMD64/EM64T Up to and including 16
GB physical memory on
a node

Up to and including 4
processors

E-Class Linux, Windows,
MacOS

Intel X86/AMD64/EM64T More than 16 GB
physical memory on a
node

More than 4 processors

All other
LSF-supported
operating systems

Intel X86/AMD64/EM64T N/A N/A

N/A All other supported
processors

N/A N/A

The LSF License File

158 Administering Platform LSF

lshosts -l hostA

HOST_NAME: hostA

type model cpuf ncpus ndisks maxmem maxswp maxtmp rexpri server nprocs ncores nthreads

LINUX86 PC6000 116.1 2 1 2016M 1983M 72917M 0 Yes 2 4 2

...

LICENSE_NEEDED: Class(B), Multi-cores

...

Format of the demo license file
This is intended to familiarize you with the demo license file. You do not need to
read this section if you are only interested in installing the license.
LSF licenses are stored in a text file. The default name of the license file is
license.dat.
The license.dat file for an LSF license normally contains the same products
defined in lsf.cluster.cluster_name.
The license.dat file for a demo license contains a FEATURE line for each LSF
product. Each feature contains an expiry date and ends with the string DEMO.
For example:

FEATURE lsf_base lsf_ld 7.000 24-Oct-2009 100 DCF7C3D92A5471A12345 "Platform" DEMO

The FEATURE line contains an encrypted key to prevent tampering.
A demo license does not require a server daemon or vendor daemon, so it does not
contain SERVER or DAEMON lines, only FEATURE lines.

Administering Platform LSF 159

Platform LSF Licensing

Example demo
license file

The following is an example of a demo license file. This file licenses LSF 7, advance
reservation, and Platform LSF Make. The license is valid until October 24, 2009.

Format of the permanent license file
A permanent license file has the same format as other products licensed with
FLEXnet. If you are already familiar with FLEXnet license files, you can skip this
section.
In addition to the information presented in the demo license file (see Format of the
demo license file on page 158), the permanent license file includes the following:
◆ A SERVER line for each FLEXnet server host. The SERVER line contains the

following server information:
❖ Host name
❖ Hardware host ID
❖ TCP port number used by the FLEXnet license server daemon (lmgrd)
SERVER hostA 880a0748a 1700

◆ A DAEMON line for each software vendor, which gives the file path name of the
LSF license vendor daemon (lsf_ld, normally installed in
LSF_SERVERDIR).
DAEMON lsf_ld /usr/local/lsf/etc/lsf_ld

◆ Each FEATURE line in the license ends with Platform, instead of DEMO.
FEATURE lsf_base lsf_ld 7.000 1-jan-0000 100 DCF7C3D92A5471A12345 "Platform"

For permanent licenses, the licenses granted by the FEATURE line can be
accessed only through license server hosts listed on the SERVER lines.

How LSF Permanent Licensing Works

160 Administering Platform LSF

Example permanent license file

The following is an example of a permanent license file.

The license server daemon is configured to run on hosta, using TCP port 1700. It
allows 10 single-processor hosts to run Platform LSF 7 and Platform LSF Make,
with no expiry date.

How LSF Permanent Licensing Works
This section is intended to give you a better understanding of how LSF licensing
works in a production environment with a permanent license. It does not contain
information required to install your license.
Platform LSF uses the FLEXnet license management product from Acresso
Software to control its licenses. LSF licenses are controlled centrally through the
LSF master LIM.

FLEXnet license server
Permanent LSF licenses are managed by the FLEXnet license server daemon
(lmgrd). The FLEXnet license server daemon runs on a license server host you
choose (for failover purposes, the daemon can run on multiple hosts).
The lmgrd daemon starts the LSF vendor license daemon lsf_ld, which
periodically keeps track of how many LSF licenses are checked out and who has
them. Only one lsf_ld can run on a host. If lsf_ld stops running, lmgrd
immediately stops serving LSF licenses to all LSF hosts.
The LIM on the LSF master hosts contacts the license server host to get the
necessary LSF licenses. It then propagates licenses to all LSF server hosts and client
hosts. Multiple LSF clusters can get licenses from the same license server host.
The TIMEOUT ALL parameter in the FLEXnet license option file changes timeout
values, including how quickly the master host releases licenses during failover. LSF
supports a minimum timeout value of 15 minutes. For information about how to
configure the TIMEOUT ALL parameter, see the FLEXnet documentation.

Administering Platform LSF 161

Platform LSF Licensing

LSF license checkout
Only the master LIM can check out licenses. No other part of LSF has any contact
with the FLEXnet license server daemon. Once LIM on the master host identifies
itself as the master, it reads the LSF_CONFDIR/lsf.cluster.cluster_name file to
get the host information to calculate the total number of licenses needed. Most LSF
software is licensed per CPU, not per host or per cluster, so multi-processor hosts
require multiple LSF licenses.
After the cluster is properly licensed, the master LIM contacts the license server
daemon periodically to confirm the availability of checked out LSF licenses.
LIM distributes the licenses needed this way:
1 Calculate the total number of licenses needed for the master LIM.
2 Before slave LIMs contact the master, calculate the total number of licenses

needed for all LSF server hosts and check them out. When the slave LIMs start,
they contact the master host to get the licenses they need.

3 Check out licenses needed for client hosts listed in
LSF_CONFDIR/lsf.cluster.cluster_name. If the license checkout fails for
any host, that host is unlicensed. The master LIM tries to check out the license
later.

LSF license grace period
If the master LIM finds the license server daemon has gone down or is unreachable,
LSF has a grace period before the whole cluster is unlicensed. As long as the master
LIM that originally received the licenses is not restarted or shut down, the LSF
cluster can run up to 60 hours without licenses. If you reconfigure LSF after the
license server daemon becomes unavailable, you lose the grace period and the
cluster is unlicensed because the original LIM that carries the correct license
information is killed and restarted during reconfiguration. This prevents LSF from
becoming a single point of failure and enables LSF to function reliably over an
extended period of time (for example, over a long weekend) should the license
server daemon fail.

Unlicensed cluster
While LSF cannot contact a license server daemon, LSF commands are
automatically resubmitted, not aborted.

Installing a Demo License

162 Administering Platform LSF

Installing a Demo License
This section includes instructions for licensing LSF with a new demo license.
Most new users should follow the procedure under Install and license LSF for the
first time on page 162.
If you already have LSF installed, see Install a demo license manually on page 162.

Install and license LSF for the first time
If LSF has never been installed before, you should install and license LSF in one step,
using a demo license and the LSF installation program for UNIX, lsfinstall.

1 Acquire your demo license before you install LSF.
See Get a demo license on page 163.

2 When you receive your license file, save it as license.dat.
See Viewing and editing the license file on page 165.

3 Install LSF using lsfinstall as described in Installing Platform LSF on UNIX
and Linux. lsfinstall automatically sets up the LSF demo license.

Install a demo license manually
If you just need to update or replace an existing LSF license, see Updating a License
on page 170.
If LSF is installed without a license file, or the license file is not properly installed,
you can install a demo license manually.

1 Acquire your demo license.
See Get a demo license on page 163.

2 When you receive your license file, save it as license.dat.
See Viewing and editing the license file on page 165.

3 Move the license file to a location where it can be shared.
See Location of the LSF license file for a demo license on page 163.

4 Set the LSF_LICENSE_FILE parameter to point to your license file.
See LSF_LICENSE_FILE parameter on page 166.

5 Start or restart LSF. This causes the license file to be read and the changes
accepted by LSF:
❖ If LSF daemons are already running, reconfigure LSF using the following

LSF commands:
lsadmin reconfig

badmin mbdrestart

❖ If this is a new installation, start LSF using one of the following two
methods:

a On the LSF master host, run the following LSF commands:
lsadmin limstartup all

Administering Platform LSF 163

Platform LSF Licensing

lsadmin resstartup all

badmin hstartup all

b On any LSF host, run the script:
LSF_BINDIR/lsfstartup

Get a demo license
To get a demo license from Platform Computing or your Platform LSF vendor.

Location of the LSF license file for a demo license
For a demo license, each LSF host must be able to read the license file.
The installation program lsfinstall puts the LSF license file in a shared directory
where it is available to all LSF hosts.
If you install the license manually, use either of the following methods to ensure that
a license is available to all hosts:
◆ Share the same license file between all the hosts using NFS
◆ Install a separate copy of the license file on each host

Installing a Permanent License

164 Administering Platform LSF

Installing a Permanent License
This section includes instructions for licensing LSF with a new permanent license.
If you have not yet installed LSF, you can use a demo license to get started. See
Installing a Demo License on page 162.
If you already have LSF, see Install a permanent license for the first time on page
164.

Install a permanent license for the first time
If you are switching from a demo license to a permanent license, follow these
instructions to set up the permanent license. You can discard the old demo license;
LSF cannot use both licenses at the same time.
If you just need to update an existing permanent license, see Updating a License on
page 170.

1 Acquire your permanent license.
See Getting a permanent license on page 165.

2 When you receive your license file, save it as license.dat.
See Viewing and editing the license file on page 165.

3 Edit the DAEMON line in the license file to point to the LSF vendor license
daemon lsf_ld.
The LSF vendor license daemon is installed in LSF_SERVERDIR (defined
lsf.conf or set in your environment). For example:
DAEMON lsf_ld /usr/share/lsf/lsf_62/7.0/sparc-sol2/etc/lsf_ld

The lsf_ld binary should be available to the FLEXnet server using this path.
4 Verify that the LSF products enabled by the PRODUCTS line in

LSF_CONFDIR/lsf.cluster.cluster_name are licensed by features in the
license file.
For example, if the PRODUCTS line contains:
PRODUCTS=LSF_Make LSF_MultiCluster

then your license must include FEATURE lines such as:
FEATURE lsf_make lsf_ld 7.000 1-jun-0000 10 DCF7C3D92A5471A12345 "Platform"
FEATURE lsf_multicluster lsf_ld 7.000 1-jun-0000 10 4CF7D37944B023A12345 "Platform"

If you do not have licenses for some products in the PRODUCTS line, contact
Platform Computing or your Platform LSF vendor. To continue installing your
permanent license, remove the unlicensed products from the PRODUCTS line.
See Licensing LSF products and features on page 168.

5 Make sure the file is in a location where it can be accessed by the license server
daemons.
See Location of the LSF license file for a permanent license on page 166.

6 Set the LSF_LICENSE_FILE parameter to point to your license file.
See LSF_LICENSE_FILE parameter on page 166.

7 Start the license server daemon.

Administering Platform LSF 165

Platform LSF Licensing

See Start the license daemons on page 172.
8 To allow the new permanent license to take effect, reconfigure the cluster:

lsadmin reconfig

badmin mbdrestart

9 After the cluster starts, use the following commands to make sure LSF is up and
running:
lsid

bhosts

Getting a permanent license
To install Platform LSF for production use, you must get a permanent license from
Platform or your LSF vendor.
Platform creates a permanent license that is keyed to the license server host or
hosts. Some host types have a built-in hardware host ID; on others, the hardware
address of the primary LAN interface is used. For a permanent license to be created,
you must supply a server host name and the hardware host identifier for each
license server host at your site.
Send the following information to Platform Computing or your Platform LSF
vendor.
◆ Host name of the license server host (see FLEXnet license server host on page

168)
◆ Host identifier of the license server host (see Getting the FLEXnet license

server host identifier on page 165)
◆ Products required (see Licensing LSF products and features on page 168)
◆ Number of licenses required for your cluster (see LSF license checkout on page

161)

Getting the FLEXnet license server host identifier
When an LSF license is managed by FLEXnet, you must provide a hardware host
name and host identifier for the FLEXnet license server host at your site.
If you do not already use FLEXnet to manage other applications, you must choose
a host as the FLEXnet license server host before you request your license. See
Selecting a license server host on page 168.
Use the lmhostid command (normally located in LSF_SERVERDIR) to get the
hardware identifier of your FLEXnet license server host. For example, run this
command on the FLEXnet server host:
lmhostid
lmhostid - Copyright (C) 1989-1997 Globetrotter Software, Inc.
The FLEXlm host ID of this machine is "68044d20"

In this example, send the code “68044d20” to Platform.

Viewing and editing the license file
Your LSF license should be a text file (normally named license.dat). Use any text
editor such as vi or emacs to open a copy of your license file for viewing or editing.

Installing a Permanent License

166 Administering Platform LSF

For example,
◆ If you receive your license from Platform as text, you must create a new file and

copy the text into the file.
◆ You might have to modify lines in the license, such as the path in the DAEMON

line when you install a new permanent license.
◆ You might want to check that the license includes the correct features before

you install it.
◆ You might want to merge the contents of the LSF license into a single file that

includes licenses for all applications that use FLEXnet.
If you can, make carriage returns visible, or view the text without word wrap.
Although the lines might wrap when displayed on a screen, make sure each line in
the text file has no extra characters. You can accidentally corrupt your license file if
you view it or copy it from email, and then save it with hidden line breaks.
Do not try to modify lines or fields unless instructed to do so by Platform. You
could corrupt the license. Do not combine demo license lines with permanent
license lines. For more information about LSF license files, see Format of the demo
license file on page 158 and Format of the permanent license file on page 159.

Location of the LSF license file for a permanent license
For a permanent license, the FLEXnet license daemon lmgrd and the LSF vendor
daemon lsf_ld must be able to read the LSF license file. You can put the license file
on the license server host, or in a shared directory.
Daemons on the LSF master host do not need any access to the permanent license
file.

LSF_LICENSE_FILE parameter
The LSF_LICENSE_FILE parameter in LSF_CONFDIR/lsf.conf points to the LSF
license file.
The installation program lsfinstall configures the LSF_LICENSE_FILE
parameter automatically for demo licenses only. You must set LSF_LICENSE_FILE
manually if you do either of the following:
◆ Install a permanent license
◆ Install a DEMO or permanent license manually and change the location of the

license file
To configure LSF_LICENSE_FILE, specify the full path name to the license file. A
permanent license file should also be visible to the FLEXnet license server host
using the same path.
The value for LSF_LICENSE_FILE can be either of the following:
◆ The full path name to the license file.

❖ UNIX example:
LSF_LICENSE_FILE=/usr/share/lsf/cluster1/conf/license.dat

❖ Windows examples:
LSF_LICENSE_FILE= C:\licenses\license.dat

LSF_LICENSE_FILE=\\HostA\licenses\license.dat

Administering Platform LSF 167

Platform LSF Licensing

◆ For a permanent license, the name of the license server host and TCP port
number used by the lmgrd daemon, in the format port@host_name. For
example:
LSF_LICENSE_FILE="1700@hostD"

◆ For a license with redundant servers, use a colon (:) on UNIX and Linux, and
a semicolon (;) on Windows to separate the port@host_names. The port
number must be the same as that specified in the SERVER line of the license file.
For example:
UNIX:
LSF_LICENSE_FILE="port@hostA:port@hostB:port@hostC"

Windows:
LSF_LICENSE_FILE="port@hostA;port@hostB;port@hostC"

◆ For a license with distributed servers, use a pipe (|) to separate the
port@host_names on UNIX, Linux and Windows. The port number must be
the same as that specified in the SERVER line of the license file. For example:
LSF_LICENSE_FILE="port@hostA|port@hostB|port@hostC"

For example, after you run lsfinstall, the default setting is:
◆ If you installed LSF with a default installation, the license file is installed in the

LSF configuration directory (LSF_CONFDIR/license.dat).
◆ If you installed LSF with a custom installation, you specify the license

installation directory. The default is the LSF configuration directory
(LSF_SERVERDIR for the custom installation).

◆ If you installed FLEXnet separately from LSF to manage other software
licenses, the default FLEXnet installation puts the license file a location you
specify, usually:
❖ UNIX: /usr/share/flexlm/licenses/license.dat
❖ Windows: C:\flexlm\license.dat

LSF_LICENSE_FILE can also be the name of the license server host and the port
number used by lmgrd in the form port_number@host_name. For example, if your
license file contains the line:
SERVER hosta 68044d20 1700

LSF_LICENSE_FILE would be:
LSF_LICENSE_FILE="1700@hosta"

Troubleshooting If this parameter points to an older or incorrect license key, correct the problem
using one of these two methods:
◆ Change the path to point to the location of the new key.
◆ Put the new key in the location specified by the path (make a backup copy of

your old license key before you overwrite it).

Installing a Permanent License

168 Administering Platform LSF

Licensing LSF products and features
All LSF software requires a license. Some LSF features are enabled by the license file
alone, but other products must also be included in the cluster configuration file, or
the FEATURE line in the license file is ignored. However, if you already have the
FEATURE line in your license file, you can install or enable the corresponding
products later on.
The following strings are examples of what can be listed in the PRODUCTS line in the
Parameters section of the lsf.cluster.cluster_name file, to indicate which LSF
products that the cluster should run. This is not a comprehensive list of Platform
product license names. Any valid Platform LSF license product name can be on the
PRODUCTS line, according to which Platform products you've purchased:
◆ LSF_Base

◆ LSF_Manager

◆ LSF_MultiCluster

If these products are listed in the cluster configuration, the LSF license must also
include FEATURE lines for these products.
In addition, there are some “extra” licensed features that do not have a matching
item in the PRODUCTS line. Do not remove features from your license unless
instructed to do so by Platform. For example, the following strings are valid in the
license file, but should not be used in the PRODUCTS line:
◆ LSF_Client

◆ LSF_Float_Client

LSF client hosts are licensed per host, not per CPU, so there is no difference
between licensing a single-processor host and a multi-processor host.
See Floating Client Licenses on page 180 for information about configuring LSF
floating clients.

FLEXnet license server host
A permanent LSF license is tied to the host ID of a particular license server host and
cannot be used on another host.
If you are already running FLEXnet to support other software licenses, you can use
the existing license server host to manage LSF also. In this case, you will add your
Platform LSF license key to the existing FLEXnet license file.
If you are not already using FLEXnet, or prefer to administer LSF license
management separately, you must choose a host to run the license daemons. See
Selecting a license server host on page 168.
It is possible to run multiple license server hosts for failover purposes. See Multiple
FLEXnet License Server Hosts on page 175.

Selecting a license server host
By reading this, you will gain the information needed to make an educated decision
when selecting a license server host.
The FLEXnet license server daemon normally runs on one host. LSF tolerates
failure of the license server daemon for up to 60 hours, as long as the master LIM is
not restarted or shut down.

Administering Platform LSF 169

Platform LSF Licensing

If you are installing a permanent license, choose a reliable host as the license server
host to ensure that the LSF licenses are always available. LSF cannot run if it cannot
contact the license server daemon. Although the license server host can be an LSF
host, it is usually a host outside of the cluster. The license daemons create very little
load, so they can be run on the host that is the dedicated file server for the
Platform LSF software. This permits the licenses to be available whenever the LSF
software is available.
You should not make the license server host the same as the master host for the
cluster. If you do this, and the master host goes down, the backup master that takes
over will not be able to check license tokens out from the license server daemon on
the original master which has failed.

FLEXnet software for the license server host
Permanent (server-based) LSF licenses work with FLEXnet version 7.2 or later.
If your FLEXnet license server host is of the same host type as one or more LSF
hosts, the FLEXnet software is included in the LSF distribution and automatically
installed under LSF_SERVERDIR, which is a shared directory (so there is no
requirement to copy any software to your FLEXnet license server host; just include
LSF_SERVERDIR in your PATH environment variable on the license server host so
that you can access the files and start the daemons).
If your FLEXnet license server host is a different host type, you do not need the
complete LSF distribution. You can download just the FLEXnet software from
Platform’s FTP site, and copy it to any convenient location.

Updating a License

170 Administering Platform LSF

Updating a License
This section is intended for those who are updating an existing LSF license file.
To switch your demo license to a permanent license, see Installing a Permanent
License on page 164.
To update a license:
1 Contact Platform to get the license. See Requesting a new license on page 170.
2 Update the license using one of the following procedures

❖ Updating a license with FEATURE lines on page 170
❖ Update a license with INCREMENT lines on page 171

REMEMBER: After updating an existing LSF license file or adding FLEXnet licenses, you must use
lsadmin limrestart on the master LIM or lsadmin reconfig from any LIM to use the new licenses. You
must also use lmreread, or restart the lmgrd daemon.

Requesting a new license
To update your license, contact Platform Computing or your Platform LSF vendor.
Since you already have a license, you will only receive new lines to put into your
existing file.

FEATURE LINES To update your license file, LSF licenses are sent to you in the form of FEATURE
license lines when you:
◆ Already have some LSF products, but purchase a new product for the first time
◆ Upgrade LSF to a newer version
◆ Already have LSF, but time-limited licenses have expired

INCREMENT LINES If you add hosts to your cluster and you already have an LSF product, licenses for
the additional hosts are normally sent to you in the form of INCREMENT license
lines.

Updating a license with FEATURE lines
FLEXnet only accepts one license key for each feature listed in a license file. If there
is more than one FEATURE line for the same feature, only the first FEATURE line is
used.
If you received one or more FEATURE lines, update your license by adding the lines
to your existing license file.

1 Edit your license.dat file using a text editor like vi or emacs.
 See Viewing and editing the license file on page 165.

2 You should always have just one FEATURE line for each LSF product:
❖ If this is the first time you have installed the product, append the FEATURE

line to your existing license file (if you wish, you can insert it anywhere
after the SERVER line).

❖ If you already have a license for the product, replace the old FEATURE line
with the new line.

Administering Platform LSF 171

Platform LSF Licensing

3 If you want LSF 4.x and LSF 5.x clusters to share a license file, make sure your
license includes the FEATURE line for lsf_batch version 4.x.

4 Reconfigure LSF using either of the following LSF commands:
❖ lsadmin reconfig

❖ lsadmin limrestart on the master LIM
The license file is re-read and the changes accepted by LSF. At this point, the
LSF license has been updated. However, some products may also require
installation or upgrade of LSF software before you can use the new
functionality.

Update a license with INCREMENT lines

1 If you received one or more INCREMENT lines, update your license by adding the
lines to your existing license file.

2 Edit your license.dat file using a text editor like vi or emacs.
 See Viewing and editing the license file on page 165.

3 Always append an INCREMENT line, do not overwrite or delete existing license
lines in the process.
❖ If this is the first increment, add the INCREMENT line for each product after

the FEATURE line for that product.
❖ If you already have an INCREMENT line for the product, add the second

INCREMENT line after the first, and so on.
4 Reconfigure LSF using either of the following LSF commands:

❖ lsadmin reconfig

❖ lsadmin limrestart on the master LIM
The license file is re-read and the changes accepted by LSF.

FLEXnet Basics

172 Administering Platform LSF

FLEXnet Basics
This section is for users installing a permanent license, as FLEXnet is not used with
demo licenses. Users who already know how to use FLEXnet will not need to read
this section.
FLEXnet is used by many UNIX software packages because it provides a simple and
flexible method for controlling access to licensed software. A single FLEXnet
license server daemon can handle licenses for many software packages, even if
those packages come from different vendors. This reduces the system’s
administration load, since you do not need to install a new license manager every
time you get a new package.

Start the license daemons
FLEXnet uses license daemons to manage permanent licenses. For a brief
description of FLEXnet and its license daemons, see FLEXnet license server on page
160.
This is a procedure that describes how to start the FLEXnet license daemons.

1 Log on to the license server host as LSF administrator.

IMPORTANT: Do not run lmgrd as root.

2 If you have an old lsf_ld running, run lmdown to kill it.
 You can only have one lsf_ld daemon running on a host.

3 Run the lmgrd command in LSF_SERVERDIR to start the license server
daemon:
lmgrd -c /usr/share/lsf/lsf_62/conf/license.dat -l
/usr/share/lsf/lsf_62/log/license.log

The -c option specifies the license file (or license file list, if you have multiple
license server hosts). For more information, see LSF_LICENSE_FILE
parameter on page 166.
The -l option specifies the debug log path. For more information, see FLEXnet
log file on page 173.

TIP: You should include LSF_SERVERDIR in your PATH environment variable. You may want
to include the full command line in your system startup files on the license server host, so that
lmgrd starts automatically during system reboot.

See Checking the license server status on page 172 to check the status of lmgrd.

Checking the license server status
If you are using a permanent LSF license, use the lmstat command to check the
status of the license server daemon. This check can tell you whether or not your
attempt to start your license server daemon succeeded. If your attempt failed, see
lmgrd fails with message "Port already in use" on page 188.

Administering Platform LSF 173

Platform LSF Licensing

The lmstat command is in LSF_SERVERDIR. For example:
/usr/share/lsf/lsf_62/7.0/sparc-sol2/etc/lmstat

Run lmstat -a -c LSF_LICENSE_FILE from the FLEXnet license server and also
from the LSF master host. You must use the -c option of lmstat to specify the path
to the LSF license file.
The output of lmstat gives the status of:
◆ The license server daemon (lmgrd)
◆ The LSF vendor daemon (lsf_ld)
◆ The number of available licenses for each product in the license file
For example, depending on the LSF features installed, the output of the command
should look something like the following:

lmstat -a -c $LSF_ENVDIR/license.dat
lmstat - Copyright (C) 1989-1997 Globetrotter Software, Inc.
Flexible License Manager status on Fri 10/15/1999 13:23

License server status: 1711@hostA
 License file(s) on hostA: /usr/local/cluster1/mnt/conf/license.dat:

 hostA: license server UP (MASTER) v5.12

Vendor daemon status (on hostA):

 lsf_ld: UP v5.12

Feature usage info:
Users of lsf_base: (Total of 50 licenses available)

 "lsf_base" v4.100, vendor: lsf_ld
 floating license

root hostB /dev/tty (v3.0) (hostA/1711 401), start Thu 10/14 12:32, 20 licenses
...

FLEXnet log file
Read this to familiarize yourself with the FLEXnet log file.
The FLEXnet license server daemons log messages about the state of the license
server hosts, and when licenses are checked in or out. This log helps to resolve
problems with the license server hosts and to track license use. The log file grows
over time. You can remove or rename the existing FLEXnet log file at any time.
You must choose a location for the log file when you start the license daemon. If you
already have FLEXnet server running for other products and Platform LSF licenses
are added to the existing license file, then the log messages for FLEXnet should go
to the same log file you set up for other products. If FLEXnet is dedicated to
managing LSF licenses, you can put the FLEXnet log in the same directory as your
other system logs, or in the /tmp directory.

FLEXnet Basics

174 Administering Platform LSF

License management utilities
FLEXnet provides several utility programs for managing software licenses. These
utilities and their man pages are included in the Platform LSF software distribution.
Because these utilities can be used to shut down the FLEXnet license server
daemon, and can prevent licensed software from running, they are installed in the
LSF_SERVERDIR directory. For security reasons, this directory should only be
accessible to LSF administrators. Set the file permissions so that only root and
members of group 0 can use them.
LSF installs the following FLEXnet utilities in LSF_SERVERDIR:

lmcksum Calculate check sums of the license key information

lmdown Shut down the FLEXnet server

lmhostid Display the hardware host ID

lmremove Remove a feature from the list of checked out features

lmreread Tell the license daemons to re-read the license file

lmstat Display the status of the license server daemons and checked out licenses

lmver Display the FLEXnet version information for a program or library
For complete details on these commands, see the FLEXnet man pages.

Administering Platform LSF 175

Platform LSF Licensing

Multiple FLEXnet License Server Hosts
This section applies to permanent licenses only. Read this section if you are
interested in the various ways you can distribute your licenses. This is valuable if
you are interested in having some form of backup in case of failure. Compare with
Selecting a license server host on page 168 to make an educated decision.
Although it is not necessary, you may want to understand how the FLEXnet license
server behaves prior to setting up your license server hosts. For a brief description
on how FLEXnet works, see FLEXnet license server on page 160.
If you are concerned about the reliability of your license server host, you can
distribute the LSF licenses across multiple FLEXnet license server hosts. If one
license server host goes down, LSF will not lose all of the available licenses. There
are two ways to configure multiple license server hosts:
◆ Multiple license files with multiple license server hosts. For more information,

see Distributed license server hosts on page 175.
◆ Single license file with three redundant license server hosts. For more

information, see Redundant license server hosts on page 176.

Distributed license server hosts
Configuring multiple license server hosts is optional. It provides a way to keep LSF
running if a license server host goes down. There are two ways to configure multiple
license servers. This section describes distributed license server hosts. See
Redundant license server hosts on page 176 for information on the other
configuration.
Distributing licenses over multiple server hosts provides a fallback, in case your
license server daemons fail.
With this method, you run multiple license server daemons, each with its own
license file. Each license file has a SERVER line keyed to the license server host it is
assigned to. The cluster is partially licensed as long as any one license server
daemon is running, and fully licensed when all license server daemons are running.
When a license server host is unavailable, the licenses managed by that host are
unavailable. You decide how many LSF licenses to put on each license server host.

Enable multiple
license server hosts

See the procedures for installing and configuring a permanent license. There are a
few differences when you use distributed license server hosts:
1 See Getting a permanent license on page 165. You must obtain multiple license

files, with your total number of licenses divided appropriately among the
license server hosts. You must provide the following information for each
license server host:
❖ Host name and FLEXnet host ID
❖ The products and number of licenses you want to be managed by this host

2 See LSF_LICENSE_FILE parameter on page 166. Specify the location of all the
licenses in LSF_LICENSE_FILE, not just one. Use a use a pipe (|) to separate
the port@host_names distributed license servers on UNIX, Linux and
Windows. List the primary license server host first (the one you want LSF to
contact first).

Multiple FLEXnet License Server Hosts

176 Administering Platform LSF

3 See Start the license daemons on page 172. Start lmgrd on all license server
hosts, not just one.

4 To allow the new permanent licenses to take effect, reconfigure the cluster with
the commands:
lsadmin reconfig

badmin mbdrestart

Redundant license server hosts
Configuring multiple license server hosts is optional. It provides a way to keep LSF
running if a license server host goes down. There are two ways to configure multiple
license servers. This section describes redundant license server hosts. See
Distributed license server hosts on page 175 for information on the second
configuration.
A permanent license key is tied to a particular license server host with a specific
host ID. If that host is down, the license service is not available and LSF becomes
unlicensed if the master LIM is shut down or restarted.
To prevent down time, you can configure three hosts as license server hosts. The
license server daemon (lmgrd) and LSF vendor license daemon (lsf_ld) run on
each license server host. With three redundant server hosts, if any one host is down,
the other two continue to serve licenses. If any two hosts are down, the license
service stops.

Enable multiple
license server hosts

See the procedures for installing and configuring a permanent license. There are a
few differences when you use redundant license server hosts:
1 See Getting a permanent license on page 165. You must obtain a license file that

contains three SERVER lines. You must provide the following information for
each license server host:
❖ Host name and FLEXnet host ID

2 See LSF_LICENSE_FILE parameter on page 166. Specify the location of all the
licenses in LSF_LICENSE_FILE, not just one. Use a colon (:) on UNIX and
Linux or a semicolon (;) on Windows to separate each location. List the
primary license server host first (the one you want LSF to contact first).

3 See Start the license daemons on page 172. Start lmgrd on all license server
hosts, not just one.

4 To allow the new permanent licenses to take effect, reconfigure the cluster with
the commands:
lsadmin reconfig

badmin mbdrestart

Administering Platform LSF 177

Platform LSF Licensing

Partial Licensing
This section applies to permanent licenses. You can use partial licensing if you have
a cluster in which not all of the hosts require licenses for the same LSF products. You
can save money by distributing your licenses efficiently.
Not all hosts in the cluster need to be licensed for the same set of LSF products. For
example, some hosts might be licensed only for Platform LSF Make. All hosts in the
cluster remain licensed regardless of the license configuration of the rest of the
cluster. If hosts become unavailable or new hosts are added, licenses are
redistributed according to the new configuration.
This allows you to purchase only as many licenses as you need, rather than enabling
the entire cluster for products that are only needed by a few hosts.
However, many LSF products do not support partial licensing. They must be
enabled for the entire cluster, or not at all.

Setting priority for license distribution
This describes how to define the order your licenses are given out to hosts.
To enable LSF server hosts to run partially licensed LSF products, edit the Host
section of LSF_CONFDIR/lsf.cluster.cluster_name and include the product
names in the RESOURCES column for specific hosts. When the LSF cluster starts,
the master LIM reads the lsf.cluster.cluster_name file and determines the LSF
products that each host is licensed to use.
For a permanent license, the license manager retrieves the appropriate licenses for
the cluster, and distributes the licenses to the hosts in the order they are listed in
lsf.cluster.cluster_name. You can see the order in which licenses are
distributed with the command lshosts.

Displaying licensed products
This describes how to view what products are licensed for any host in the cluster.
Use the lshosts -l command.

lshosts -l hostA
HOST_NAME: hostA
type model cpuf ncpus ndisks maxmem maxswp maxtmp rexpri server nprocs ncores nthreads
LINUX86 PC6000 116.1 2 1 2016M 1983M 72917M 0 Yes 1 1 2

RESOURCES: Not defined
RUN_WINDOWS: (always open)

Licenses enabled: (LSF_Base LSF_Manager)

LOAD_THRESHOLDS:
 r15s r1m r15m ut pg io ls it tmp swp mem tmp2 nio console
 - 3.5 - - - - - - - - - - - 0.0

Example of partial licensing
Here is an example that will allow you to better visualize the concept of partial
licensing. Through this example, you can learn how to configure your hosts to use
partial licensing.

Partial Licensing

178 Administering Platform LSF

Scenario In the following configuration, the license file contains licenses for LSF, and
Platform LSF Make. The licenses have the following distribution:
◆ 3 LSF
◆ 1 Platform LSF Make
All three single-CPU hosts in the cluster are licensed for LSF, while hostB is
explicitly licensed for Platform LSF Make. The RESOURCES field in the Host section
of lsf.cluster.cluster_name must contain the LSF products LSF_Base and
LSF_Manager, in addition to LSF_Make.

Configuration The lsf.cluster.cluster_name file contains the following configuration:
Begin Parameters
PRODUCTS=LSF_Base LSF_Manager LSF_Make
End Parameters

Begin Host
HOSTNAME model type server r1m mem swp RESOURCES
hostA DEFAULT LINUX86 1 - () () ()
hostB DEFAULT LINUX86 1 - () () (LSF_Base LSF_Manager LSF_Make)
hostC DEFAULT LINUX86 1 - () () ()
End Host

Cluster startup At cluster startup, all hosts are running, and the lshosts -l command displays the
following license distribution:

lshosts -l

HOST_NAME: hostB
type model cpuf ncpus ndisks maxmem maxswp maxtmp rexpri server nprocs ncores nthreads
LINUX86 DEFAULT 116.1 2 1 2016M 1983M 72917M 0 Yes 1 1 2

RESOURCES: (LSF_Base LSF_Manager LSF_Make)
RUN_WINDOWS: (always open)

: (LSF_Base LSF_Manager LSF_Make)

LOAD_THRESHOLDS:
 r15s r1m r15m ut pg io ls it tmp swp mem
 - - - - - - - - - - -

HOST_NAME: hostA
type model cpuf ncpus ndisks maxmem maxswp maxtmp rexpri server nprocs ncores nthreads
LINUX86 DEFAULT 116.1 2 1 2016M 1983M 72917M 0 Yes 1 1 2

RESOURCES: Not defined
RUN_WINDOWS: (always open)

LICENSES_ENABLED: (LSF_Base LSF_Manager)

LOAD_THRESHOLDS:
 r15s r1m r15m ut pg io ls it tmp swp mem
 - - - - - - - - - - -

HOST_NAME: hostC
type model cpuf ncpus ndisks maxmem maxswp maxtmp rexpri server nprocs ncores nthreads
LINUX86 DEFAULT 116.1 2 1 2016M 1983M 72917M 0 Yes 1 1 2

Administering Platform LSF 179

Platform LSF Licensing

RESOURCES: Not defined
RUN_WINDOWS: (always open)

LICENSES_ENABLED: (LSF_Base LSF_Manager)

LOAD_THRESHOLDS:
 r15s r1m r15m ut pg io ls it tmp swp mem
 - - - - - - - - - - -

All hosts are licensed for the appropriate products except hostC, which does not
have Platform LSF Make because its license is already being used by hostA.
However, hostC is still available to run LSF jobs.

Master host failover If HostA becomes unavailable, HostB becomes master host. Now the lshosts -l
command displays the following license distribution:

lshosts -l

HOST_NAME: hostA
type model cpuf ncpus ndisks maxmem maxswp maxtmp rexpri server nprocs ncores nthreads
LINUX86 DEFAULT 116.1 2 1 2016M 1983M 72917M 0 Yes 1 1 2

RESOURCES: Not defined
RUN_WINDOWS: (always open)

LICENSES_ENABLED: (LSF_Client)

LOAD_THRESHOLDS:
 r15s r1m r15m ut pg io ls it tmp swp mem
 - - - - - - - - - - -

HOST_NAME: hostB
type model cpuf ncpus ndisks maxmem maxswp maxtmp rexpri server nprocs ncores nthreads
LINUX86 DEFAULT 116.1 2 1 2016M 1983M 72917M 0 Yes 1 1 2

RESOURCES: (LSF_Base LSF_Manager)
RUN_WINDOWS: (always open)

LICENSES_ENABLED: (LSF_Base LSF_Manager)

LOAD_THRESHOLDS:
 r15s r1m r15m ut pg io ls it tmp swp mem
 - - - - - - - - - - -

HOST_NAME: hostC
type model cpuf ncpus ndisks maxmem maxswp maxtmp rexpri server nprocs ncores nthreads
LINUX86 DEFAULT 116.1 2 1 2016M 1983M 72917M 0 Yes 1 1 2

RESOURCES: Not defined
RUN_WINDOWS: (always open)

LICENSES_ENABLED: (LSF_Base LSF_Manager LSF_Make)

LOAD_THRESHOLDS:
 r15s r1m r15m ut pg io ls it tmp swp mem
 - - - - - - - - - - -

Note that hostC has now picked up the available Platform LSF Make license that
was originally held by hostA.

Floating Client Licenses

180 Administering Platform LSF

Floating Client Licenses
LSF floating client is valuable if you have a cluster in which not all of the hosts will
be active at the same time. In this section, you will learn how to save money through
distributing your licenses efficiently.
An LSF floating client license is a type of LSF license to be shared among several
client hosts at different times. Floating client licenses are not tied to specific hosts.
They are assigned dynamically to any host that submits a request to LSF. The
number of licenses acts as a license pool for the cluster from which LSF clients can
draw required licenses. Although floating client licenses are supported, LSF does
not support floating server licenses.

Client hosts and floating client hosts
In LSF, you can have both client hosts and floating client hosts. The difference is in
the type of license purchased.
If you purchased a regular (fixed) client license, LSF client hosts are static. The
client hosts must be listed in lsf.cluster.cluster_name. The license is fixed to the
hosts specified in lsf.cluster.cluster_name and whenever client hosts change,
you must update it with the new host list.
If you purchased a floating client license, LSF floating client hosts are dynamic.
They are not listed in lsf.cluster.cluster_name. Since LSF does not take into
account the host name but the number of floating licenses, clients can change
dynamically and licenses will be distributed to clients that request to use LSF. When
you submit a job from any unlicensed host, and if there are any floating licenses
free, the host will check out a license and submit your job to LSF. However, once a
host checks out a floating client license, it keeps that license for the rest of the day,
until midnight. A host that becomes a floating client behaves like a fixed client all
day, then at 12 midnight it releases the license. At that time, the host turns back into
a normal, unlicensed host, and the floating client license becomes available to any
other host that needs it.

How floating licenses work in LSF
Read this to understand how floating licenses work. You will want to read this
before configuring your cluster to use this distribution technique.
When the master LIM starts up, it verifies how many floating licenses there are for
the cluster as specified in lsf.cluster.cluster_name with the parameter
FLOAT_CLIENTS. The master LIM checks out the licenses and keeps track of
license information—how many floating licenses have been assigned, and which
client hosts are using the licenses.
Floating client licenses expire at midnight (local time) on the day the license was
issued. The master LIM checks the host list and removes any floating client hosts
whose license has expired.

License reset Whenever the master LIM is restarted, all LSF floating client licenses are released
and checked out again.

Administering Platform LSF 181

Platform LSF Licensing

Administration
commands

Since LSF floating client hosts are not listed in lsf.cluster.cluster_name, some
administration commands will not work if issued from LSF floating client hosts.
Always run administration commands from server hosts.

Floating client hosts and host types/models
This differentiates between client hosts and floating client hosts in terms of the
restrictions on host types or models.
For LSF client hosts, you can list the host type and model in
lsf.cluster.cluster_name and by default, restrict running applications on
different host types.
For floating client hosts, host types and models are not included in the client
information. By default, any job submissions made from floating client hosts are
allowed dispatch to any host type or model.
In the same way as client and server hosts, you can specify a specific model or type
when you submit a job from a floating client host.
For example:
bsub sleep

The command above is interpreted as:
◆ -R "type==local" on a client host

◆ -R "type==any" on a floating client host

Install LSF floating client licenses
If you believe that the use of floating client licenses is appropriate for your needs,
follow this procedure to install LSF floating client licenses.

1 Obtain the floating client license.
This is similar to getting any other license. See Getting a permanent license on
page 165.

2 Update your license file. Add the appropriate license line in the license file
license.dat. The LSF license must contain FEATURE lines for
LSF_Float_Client.

Although LSF Floating Client requires a license, LSF_Float_Client does not
appear in the PRODUCTS line. LSF_Float_Client also cannot be added as a
resource for specific hosts already defined in lsf.cluster.cluster_name.
Should these lines be present, they are ignored by LSF.

3 Define server hosts in lsf.conf.
As with any client host, specify the parameter LSF_SERVER_HOSTS in
lsf.conf to define LSF server hosts for the LSF client hosts to contact.

4 Edit lsf.cluster.cluster_name by adding or uncommenting the
FLOAT_CLIENTS parameter in the Parameters section:
...
Begin Parameters
PRODUCTS=LSF_Base LSF_Manager LSF_Make

Floating Client Licenses

182 Administering Platform LSF

FLOAT_CLIENTS= 25
End Parameters
...

The FLOAT_CLIENTS parameter sets the size of your license pool in the
cluster. When the master LIM starts up, the number of licenses specified in
FLOAT_CLIENTS (or fewer) can be checked out for use as floating client
licenses.
If the parameter FLOAT_CLIENTS is not specified in
lsf.cluster.cluster_name, or there is an error in either license.dat or in
lsf.cluster.cluster_name, the floating LSF client license feature is disabled.

5 Start the license server daemon.
See Start the license daemons on page 172.

6 To allow your changes to take effect, reconfigure the cluster with the
commands:
lsadmin reconfig

badmin mbdrestart

CAUTION: When the LSF floating client license feature is enabled, any host can submit jobs
to the cluster. You can limit which hosts can be LSF floating clients. See Security issues with
floating client licenses on page 182.

Security issues with floating client licenses
If you want to install or have installed floating client licenses, it is important that
you read this section to inform yourself of the security issues. There are measures
to compensate for these security issues (see Configuring security for LSF floating
client licenses on page 182).
With LSF client licenses, when you list client hosts in lsf.cluster.cluster_name,
there is a level of security defined since you specify the exact hosts that will be used
by the LSF system. Host authentication is done in this way.
With LSF floating client licenses, you should be aware of the security issues:
◆ Hosts that are not specified in lsf.cluster.cluster_name can submit requests.

This means any host can submit requests.
◆ Remote machines make it easier for users to submit commands with a fake user

ID. As a result, if an authorized user uses the user ID lsfadmin, the user will be
able to run commands that affect the entire cluster or shut it down and cause
problems in the LSF system.

Configuring security for LSF floating client licenses
Read this section to learn how to configure security against the issues presented in
Security issues with floating client licenses on page 182.
To resolve these security issues, the LSF administrator can limit which client hosts
submit requests in the cluster by adding a domain or a range of domains in
lsf.cluster.cluster_name with the parameter
FLOAT_CLIENTS_ADDR_RANGE.

Administering Platform LSF 183

Platform LSF Licensing

FLOAT_CLIENTS_ADDR_RANGE parameter

This optional parameter specifies an IP address or range of addresses of domains
from which floating client hosts can submit requests. Multiple ranges can be
defined, separated by spaces. The IP address can have either a dotted quad notation
(IPv4) or IP Next Generation (IPv6) format. LSF supports both formats; you do not
have to map IPv4 addresses to an IPv6 format.

NOTE: You must uncomment FLOAT_CLIENTS_ADDR_RANGE (remove the # symbol before the
parameter) to have it take effect.

If the value of this parameter is undefined, there is no security and any host can be
an LSF floating client.
If a value is defined, security is enabled. When this parameter is defined, client hosts
that do not belong to the domain will be denied access. However, if there is an error
in the configuration of this variable, by default, no host will be allowed to be an LSF
floating client.
If a requesting host belongs to an IP address that falls in the specified range, the host
will be accepted to become an LSF floating client.
Address ranges are validated at configuration time so they must conform to the
required format. If any address range is not in the correct format, no host will be
accepted as an LSF floating client and a error message will be logged in the LIM log.

Conventions ◆ IP addresses are separated by spaces, and considered "OR" alternatives.
◆ The * character indicates any value is allowed.
◆ The - character indicates an explicit range of values. For example 1-4 indicates

1,2,3,4 are allowed.
◆ Open ranges such as *-30, or 10-*, are allowed.
◆ If a range is specified with less fields than an IP address such as 10.161, it is

considered as 10.161.*.*.
◆ This parameter is limited to 2048 characters.

Examples FLOAT_CLIENTS_ADDR_RANGE=100

All IPv4 and IPv6 hosts with a domain address starting with 100 will be allowed
access.
◆ To specify only IPv4 hosts, set the value to 100.*
◆ To specify only IPv6 hosts, set the value to 100:*
FLOAT_CLIENTS_ADDR_RANGE=100-110.34.1-10.4-56

All client hosts belonging to a domain with an address having the first number
between 100 and 110, then 34, then a number between 1 and 10, then, a number
between 4 and 56 will be allowed access.
Example: 100.34.9.45, 100.34.1.4, 102.34.3.20, etc. No IPv6 hosts are allowed.
FLOAT_CLIENTS_ADDR_RANGE=100.172.1.13 100.*.30-54 124.24-*.1.*-34

Floating Client Licenses

184 Administering Platform LSF

All client hosts belonging to a domain with the address 100.172.1.13 will be allowed
access. All client hosts belonging to domains starting with 100, then any number,
then a range of 30 to 54 will be allowed access. All client hosts belonging to domains
starting with 124, then from 24 onward, then 1, then from 0 to 34 will be allowed
access. No IPv6 hosts are allowed.
FLOAT_CLIENTS_ADDR_RANGE=12.23.45.*

All client hosts belonging to domains starting with 12.23.45 are allowed. No IPv6
hosts are allowed.
FLOAT_CLIENTS_ADDR_RANGE=100.*43

The * character can only be used to indicate any value. In this example, an error will
be inserted in the LIM log and no hosts will be accepted to become LSF floating
clients. No IPv6 hosts are allowed.
FLOAT_CLIENTS_ADDR_RANGE=100.*43 100.172.1.13

Although one correct address range is specified, because *43 is not correct format,
the entire line is considered not valid. An error will be inserted in the LIM log and
no hosts will be accepted to become LSF floating clients. No IPv6 hosts are allowed.
FLOAT_CLIENTS_ADDR_RANGE = 3ffe

All client IPv6 hosts with a domain address starting with 3ffe will be allowed access.
No IPv4 hosts are allowed.
FLOAT_CLIENTS_ADDR_RANGE = 3ffe:fffe::88bb:*

Expands to 3ffe:fffe:0:0:0:0:88bb:*. All IPv6 client hosts belonging to domains
starting with 3ffe:fffe::88bb:* are allowed. No IPv4 hosts are allowed.
FLOAT_CLIENTS_ADDR_RANGE = 3ffe-4fff:fffe::88bb:aa-ff 12.23.45.*

All IPv6 client hosts belonging to domains starting with 3ffe up to 4fff, then
fffe::88bb, and ending with aa up to ff are allowed. All IPv4 client hosts belonging
to domains starting with 12.23.45 are allowed.
FLOAT_CLIENTS_ADDR_RANGE = 3ffe-*:fffe::88bb:*-ff

All IPv6 client hosts belonging to domains starting with 3ffe up to ffff and ending
with 0 up to ff are allowed. No IPv4 hosts are allowed.

Checking that security is enabled
Take this step after you have configured security. You are shown how to check that
security has been configured properly.
After you configure FLOAT_CLIENTS_ADDR_RANGE, check the master LIM
log file on the LSF master host (LSF_LOGDIR/lim.log.master_host_name) to
make sure this parameter is correctly set. If this parameter is not set or is wrong, this
will be indicated in the log file.

Verify LSF floating client license is working
Perform this procedure after setting up your floating client license to verify that
your floating client license is enabled.

1 Start a cluster.
2 Run the lshosts command from a host listed in lsf.cluster.cluster_name:

Administering Platform LSF 185

Platform LSF Licensing

lshosts

In the following example, only hostA and hostB are defined in
lsf.cluster.cluster_name. HostA is a server and master host, and hostB is a
static client. If you type the command from hostA or hostB, you will get the
following output:

lshosts
HOST_NAME type model cpuf ncpus maxmem maxswp server RESOURCES
hostA SUNSOL DEFAULT 1.0 1 128M 602M Yes ()
hostB SUNSOL DEFAULT 1.0 - - - No ()

3 Submit a job from a host not listed in lsf.cluster.cluster_name.
For example, if you submitted the following job from hostC:
bsub sleep 1000

You would get the following response:
Job <104> is submitted to default queue <normal>.

4 From any LSF host, with LSF_ENVDIR set to this cluster, run the lshosts
command:

lshosts
HOST_NAME type model cpuf ncpus maxmem maxswp server RESOURCES
hostA SUNSOL DEFAULT 1.0 1 128M 602M Yes ()
hostB SUNSOL DEFAULT 1.0 - - - No ()
hostC UNKNOWN UNKNOWN 1.0 - - - No ()

In the above example, although hostC shows the type UNKNOWN and hostA and
hostB are of type SUNSOL (Sun Solaris), the job will be allowed to be executed
on any host type because hostC is a floating client host without any model or
type restrictions specified at job submission.

5 From any host, run the lshosts -l command:
lshosts -l hostC

where hostC is a floating client host.
HOST_NAME: hostC
type model cpuf ncpus ndisks maxmem maxswp maxtmp rexpri server
UNKNOWN UNKNOWN 1.0 - - - - - - No

RESOURCES: Not defined
RUN_WINDOWS: Not applicable for client-only host

LICENSES_ENABLED: (LSF_Float_Client)

Troubleshooting License Issues

186 Administering Platform LSF

Troubleshooting License Issues
◆ "lsadmin reconfig" gives "User permission denied" message on page 186
◆ Primary cluster administrator receives email “Your cluster has experienced

license overuse” message on page 186
◆ lsadmin command fails with "ls_gethostinfo: Host does not have a software

license" on page 186
◆ LSF commands give "Host does not have a software license" on page 187
◆ LSF commands fail with "ls_initdebug: Unable to open file lsf.conf " on page 187
◆ lmgrd fails with message "Port already in use" on page 188

"lsadmin reconfig" gives "User permission denied" message
If you ran lsfinstall as a non-root user to install a multi-user cluster, the LSF
administration commands lsadmin and badmin might give the error message
“User permission denied”.
Use the following commands to change the ownership for lsadmin and badmin to
root and the file permission mode to -rwsr-xr-x:
chown root lsadmin badmin

chmod 4755 lsadmin badmin

Now the user ID bit for the owner is setuid. If lsadmin and badmin are in a directory
shared through NFS, the directory must be shared and mounted with setuid
enabled. Do not mount with the nosuid flag. If your site does not permit this, copy
lsadmin and badmin to /usr/bin or /bin.

Primary cluster administrator receives email “Your cluster has experienced
license overuse” message

This occurs when your cluster is using more licenses than you have purchased. LSF
allows for some overuse due to the peak usage of the cluster.
See the lsf.cluster_name.license.acct file for details of the peak license usage
of your cluster:

OK Peak usage is less than the maximum license availability
OVERUSE Peak usage is more than the maximum license availability

If your cluster experiences frequent license violations or overuse, contact Platform
Computing or your Platform LSF vendor to get more licenses, or plan your cluster
to reduce the license usage during peak periods.

lsadmin command fails with "ls_gethostinfo: Host does not have a software
license"

This may occur when you have installed the new key but have an old (unlicensed)
LIM running on the LSF master.

1 On the LSF master, enter the command:
ps -ef | grep lim

Administering Platform LSF 187

Platform LSF Licensing

2 Kill the LIM, using one of the following commands:
kill lim_PID

kill -9 lim_PID

3 After the old LIM has died, start the new LIM on the master host using one of
the following methods:
❖ lsadmin limstartup

❖ LSF_SERVERDIR/lim as root.

LSF commands give "Host does not have a software license"
You may see this message after running lsid, lshosts, or other ls* commands.
Typical problems and their solutions:

LSF commands fail with "ls_initdebug: Unable to open file lsf.conf"
You might see this message after running lsid. This message indicates that the LSF
commands cannot access the lsf.conf file or lsf.conf does not exist in
LSF_ENVDIR.
Solution:
◆ Use LSF_CONFDIR/csrhc.lsf or LSF_CONFDIR/profile.lsf to set up your

LSF environment, or
◆ If you know the location of lsf.conf, set the LSF_ENVDIR environment

variable to point to the directory containing the lsf.conf file.

If you experience this problem ... Do the following:

Your demo license (not tied to
FLEXnet server) has expired.

Check the license.dat file to check the expiry date.
If your license has expired, contact your account
manager to obtain a new demo key or a permanent
license.

Your license file may be
formatted incorrectly. One of
the following things may be
responsible:
The license file may have more
than one FEATURE on a line.
The license file was edited in
Windows and incorrect line
ending characters (^M) exist in
the file.

Each FEATURE must be on its own line, and should
only have UNIX line breaks. On UNIX or Linux, run
dos2unix to temove the Windows line breaks (^M
characters) from the license file.
If the license key is tied to a FLEXnet server, restart
lmgrd.
Restart the master LIM.

The LSF master host is unable
to communicate with the
FLEXnet server.

Check the network communication by entering the
command:
ping FLEXnet_server

License daemons (lmgrd and
lsf_ld) are not running on
the FLEXnet server.

Check if lmgrd and lsf_ld are running by typing:
ps -ef | egrep 'lmgrd|lsf_ld'
on the FLEXnet server. If not:
Check the license.log file for error messages.
Start lmgrd.
Restart the master LIM.

Troubleshooting License Issues

188 Administering Platform LSF

lmgrd fails with message "Port already in use"
The port number defined in LSF_LICENSE_FILE and license.dat is being used
by another application (by default, LSF uses port number 1700).
Possible causes:

If you experience this problem ... Do the following:

lmgrd is already running for
this license

Use ps -ef and make sure that lmgrd and lsf_ld
are not running.

lmgrd has been stopped and
the operating system has not
cleared the port

Wait a few minutes for the OS to clear this port.

Another process is using the
same port (this is not likely)

If the port number is being used by another
application, execute the following to change the port
number used by LSF:
1 Edit license.dat and change the port number

in the line:
SERVER FLEXnet_server 3f8b6a3 1700
The fourth field on the SERVER line of
license.dat specifies the TCP port number that
the FLEXnet server uses. Choose an unused port
number. The default port set by FLEXnet is 1700.
Platform LSF usually uses port numbers in the
range 3879 to 3882, so the numbers from 3883
forward are good alternate choices.

2 In lsf.conf:
❖ If LSF_LICENSE_FILE is defined as follows:

LSF_LICENSE_FILE=port_number@FLEXnet
_server (for example: 1700@hostA), the port
number must be changed accordingly.

❖ If LSF_LICENSE_FILE points to the license file
path (for example:
LSF_LICENSE_FILE=/usr/local/lsf/co
nf/license.dat), no changes are required.

a Restart lmgrd.

Administering Platform LSF 189

Platform LSF Licensing

Troubleshooting License Issues

190 Administering Platform LSF

Administering Platform LSF 191

C H A P T E R

9
Managing LSF on Platform EGO

Contents
◆ About LSF on Platform EGO on page 192
◆ LSF and EGO directory structure on page 196
◆ Configuring LSF and EGO on page 200
◆ Managing LSF daemons through EGO on page 203
◆ Administrative Basics on page 206
◆ Logging and troubleshooting on page 207
◆ Frequently asked questions on page 214

About LSF on Platform EGO

192 Administering Platform LSF

About LSF on Platform EGO
LSF on Platform EGO allows EGO to serve as the central resource broker, enabling
enterprise applications to benefit from sharing of resources across the enterprise
grid.
◆ Scalability—EGO enhances LSF scalability. Currently, the LSF scheduler has to

deal with a large number of jobs. EGO provides management functionality for
multiple schedulers that co-exist in one EGO environment. In LSF Version 7,
although only a single instance of LSF is available on EGO, the foundation is
established for greater scalability in follow-on releases that will allow multiple
instances of LSF on EGO.

◆ Robustness—In previous releases, LSF functioned as both scheduler and
resource manager. EGO decouples these functions, making the entire system
more robust. EGO reduces or eliminates downtime for LSF users while
resources are added or removed.

◆ Reliability—In situations where service is degraded due to noncritical failures
such as sbatchd or RES, by default, LSF does not automatically restart the
daemons. The EGO Service Controller can monitor all LSF daemons and
automatically restart them if they fail. Similarly, the EGO Service Controller
can also monitor and restart other critical processes such as FLEXnet and
lmgrd.

◆ Additional scheduling functionality—EGO provides the foundation for
EGO-enabled SLA, which provides LSF with additional and important
scheduling functionality.

◆ Centralized management and administration framework.
◆ Single reporting framework—across various application heads built around

EGO.

What is Platform EGO?
Platform Enterprise Grid Orchestrator (EGO) allows developers, administrators,
and users to treat a collection of distributed software and hardware resources on a
shared computing infrastructure (cluster) as parts of a single virtual computer.
EGO assesses the demands of competing business services (consumers) operating
within a cluster and dynamically allocates resources so as to best meet a company's
overriding business objectives. These objectives might include
◆ Reducing the time or the cost of providing key business services
◆ Maximizing the revenue generated by existing computing infrastructure
◆ Configuring, enforcing, and auditing service plans for multiple consumers
◆ Ensuring high availability and business continuity through disaster scenarios
◆ Simplifying IT management and reducing management costs
◆ Consolidating divergent and mixed computing resources into a single virtual

infrastructure that can be shared transparently between many business users

Administering Platform LSF 193

Managing LSF on Platform EGO

Platform EGO also provides a full suite of services to support and manage resource
orchestration. These include cluster management, configuration and auditing of
service-level plans, resource facilitation to provide fail-over if a master host goes
down, monitoring and data distribution.
EGO is only sensitive to the resource requirements of business services; EGO has no
knowledge of any run-time dynamic parameters that exist for them. This means
that EGO does not interfere with how a business service chooses to use the
resources it has been allocated.

How does Platform EGO work?
Platform products work in various ways to match business service (consumer)
demands for resources with an available supply of resources. While a specific
clustered application manager or consumer (for example, an LSF cluster) identifies
what its resource demands are, Platform EGO is responsible for supplying those
resources. Platform EGO determines the number of resources each consumer is
entitled to, takes into account a consumer’s priority and overall objectives, and then
allocates the number of required resources (for example, the number of slots,
virtual machines, or physical machines).
Once the consumer receives its allotted resources from Platform EGO, the
consumer applies its own rules and policies. How the consumer decides to balance
its workload across the fixed resources allotted to it is not the responsibility of EGO.
So how does Platform EGO know the demand? Administrators or developers use
various EGO interfaces (such as the SDK or CLI) to tell EGO what constitutes a
demand for more resources. When Platform LSF identifies that there is a demand,
it then distributes the required resources based on the resource plans given to it by
the administrator or developer.
For all of this to happen smoothly, various components are built into
Platform EGO. Each EGO component performs a specific job.

Platform EGO
components

Platform EGO comprises a collection of cluster orchestration software
components. The following figure shows overall architecture and how these
components fit within a larger system installation and interact with each other:

About LSF on Platform EGO

194 Administering Platform LSF

Key EGO concepts
Consumers A consumer represents an entity that can demand resources from the cluster. A

consumer might be a business service, a business process that is a complex
collection of business services, an individual user, or an entire line of business.

EGO resources Resources are physical and logical entities that can be requested by a client. For
example, an application (client) requests a processor (resource) in order to run.
Resources also have attributes. For example, a host has attributes of memory,
processor utilization, operating systems type, etc.

Resource distribution
tree

The resource distribution tree identifies consumers of the cluster resources, and
organizes them into a manageable structure.

Resource groups Resource groups are logical groups of hosts. Resource groups provide a simple way
of organizing and grouping resources (hosts) for convenience; instead of creating
policies for individual resources, you can create and apply them to an entire group.
Groups can be made of resources that satisfy a specific requirement in terms of OS,
memory, swap space, CPU factor and so on, or that are explicitly listed by name.

Resource distribution
plans

The resource distribution plan, or resource plan, defines how cluster resources are
distributed among consumers. The plan takes into account the differences between
consumers and their needs, resource properties, and various other policies
concerning consumer rank and the allocation of resources.
The distribution priority is to satisfy each consumer's reserved ownership, then
distribute remaining resources to consumers that have demand.

Services A service is a self-contained, continuously running process that accepts one or
more requests and returns one or more responses. Services may have multiple
concurrent service instances running on multiple hosts. All Platform EGO services
are automatically enabled by default at installation.

Administering Platform LSF 195

Managing LSF on Platform EGO

Run egosh to check service status.
If EGO is disabled, the egosh command cannot find ego.conf or cannot contact
vemkd (not started), and the following message is displayed:
You cannot run the egosh command because the administrator has chosen
not to enable EGO in lsf.conf: LSF_ENABLE_EGO=N.

EGO user accounts A user account is a Platform system user who can be assigned to any role for any
consumer in the tree. User accounts include optional contact information, a name,
and a password.

LSF and EGO directory structure

196 Administering Platform LSF

LSF and EGO directory structure
The following tables describe the purpose of each sub-directory and whether they
are writable or non-writable by LSF.

LSF_TOP

Directory Path Description Attribute

LSF_TOP/7.0 LSF 7.0 binaries and other machine
dependent files

Non-writable

LSF_TOP/conf LSF 7.0 configuration files
You must be LSF administrator or root to
edit files in this directory

Writable by the LSF administrator, master
host, and master candidate hosts

LSF_TOP/log LSF 7.0 log files Writable by all hosts in the cluster

LSF_TOP/work LSF 7.0 working directory Writable by the master host and master
candidate hosts, and is accessible to slave
hosts

Administering Platform LSF 197

Managing LSF on Platform EGO

EGO, GUI, and PERF directories

NOTE: Several directories under LSF_TOP/gui/1.2/tomcat are writable by Tomcat servers. You
should install the whole Tomcat directory on a writable file system.

Directory Path Description Attribute

LSF_BINDIR EGO binaries and other machine dependent
files

Non-writable

LSF_CONFDIR/ego/cluster_name/eservice
(EGO_ESRVDIR)

EGO services configuration and log files. Writable

LSF_CONFDIR/ego/cluster_name/kernel
(EGO_CONFDIR, LSF_EGO_ENVDIR)

EGO kernel configuration, log files and
working directory, including conf/log/work

Writable

LSB_SHAREDIR/cluster_name/ego
(EGO_WORKDIR)

EGO working directory Writable

LSF_TOP/perf/1.2 PERF commands, library and schema Non-writable

LSF_CONFDIR/perf/cluster_name/conf
(PERF_CONFDIR)

PERF configuration Writable

LSB_SHAREDIR/cluster_name/perf/data
(PERF_DATADIR)

PERF embedded data files for derby Writable

LSF_TOP/perf/1.2/etc PERF script command for services Non-writable

LSF_TOP/log/perf
(PERF_LOGDIR)

PERF log files Writable

LSB_SHAREDIR/cluster_name/perf
(PERF_WORKDIR)

PERF working directory Writable

LSF_TOP/jre Java Runtime Environment Non-writable

LSF_TOP/gui GUI Non-writable

LSF_CONFDIR/gui/cluster_name/conf
(GUI_CONFDIR)

GUI configuration Writable

LSB_SHAREDIR/cluster_name/gui
(CATALINA_WORKDIR,
CATALINA_TMPDIR)

GUI working directory Writable

LSF_TOP/log/gui
(GUI_LOGDIR)

GUI log files Writable

LSF_TOP/gui/2.0/ GUI binaries and tomcat Non-writable

LSF_TOP/gui/2.0/tomcat Tomcat web server Writable

LSF and EGO directory structure

198 Administering Platform LSF

Example directory structures

UNIX and Linux The following figures show typical directory structures for a new UNIX or Linux
installation with lsfinstall. Depending on which products you have installed
and platforms you have selected, your directory structure may vary.

Administering Platform LSF 199

Managing LSF on Platform EGO

Microsoft Windows The following diagram shows an example directory structure for a Windows
installation.

Configuring LSF and EGO

200 Administering Platform LSF

Configuring LSF and EGO

EGO configuration files for LSF daemon management (res.xml and sbatchd.xml)
The following files are located in EGO_ESRVDIR/esc/conf/services/:
◆ res.xml—EGO service configuration file for res.
◆ sbatchd.xml—EGO service configuration file for sbatchd.
When LSF daemon control through EGO Service Controller is configured,
lsadmin uses the reserved EGO service name res to control the LSF res daemon,
and badmin uses the reserved EGO service name sbatchd to control the LSF
sbatchd daemon.

How to handle parameters in lsf.conf with corresponding parameters in ego.conf
When EGO is enabled, existing LSF parameters (parameter names beginning with
LSB_ or LSF_) that are set only in lsf.conf operate as usual because LSF daemons
and commands read both lsf.conf and ego.conf.
Some existing LSF parameters have corresponding EGO parameter names in
ego.conf (LSF_CONFDIR/lsf.conf is a separate file from
LSF_CONFDIR/ego/cluster_name/kernel/ego.conf). You can keep your
existing LSF parameters in lsf.conf, or your can set the corresponding EGO
parameters in ego.conf that have not already been set in lsf.conf.
You cannot set LSF parameters in ego.conf, but you can set the following EGO
parameters related to LIM, PIM, and ELIM in either lsf.conf or ego.conf:
◆ EGO_DAEMONS_CPUS
◆ EGO_DEFINE_NCPUS
◆ EGO_SLAVE_CTRL_REMOTE_HOST
◆ EGO_WORKDIR
◆ EGO_PIM_SWAP_REPORT
You cannot set any other EGO parameters (parameter names beginning with EGO_)
in lsf.conf. If EGO is not enabled, you can only set these parameters in lsf.conf.

NOTE: If you specify a parameter in lsf.conf and you also specify the corresponding parameter in
ego.conf, the parameter value in ego.conf takes precedence over the conflicting parameter in
lsf.conf.

If the parameter is not set in either lsf.conf or ego.conf, the default takes effect depends on
whether EGO is enabled. If EGO is not enabled, then the LSF default takes effect. If EGO is enabled,
the EGO default takes effect. In most cases, the default is the same.

Some parameters in lsf.conf do not have exactly the same behavior, valid values, syntax, or default
value as the corresponding parameter in ego.conf, so in general, you should not set them in both
files. If you need LSF parameters for backwards compatibility, you should set them only in lsf.conf.

If you have LSF 6.2 hosts in your cluster, they can only read lsf.conf, so you must
set LSF parameters only in lsf.conf.

LSF and EGO
corresponding
parameters

The following table summarizes existing LSF parameters that have corresponding
EGO parameter names. You must continue to set other LSF parameters in
lsf.conf.

Administering Platform LSF 201

Managing LSF on Platform EGO

Parameters that have changed in LSF 7
The default for LSF_LIM_PORT has changed to accommodate EGO default port
configura6tion. On EGO, default ports start with lim at 7869, and are numbered
consecutively for pem, vemkd, and egosc.
This is different from previous LSF releases where the default LSF_LIM_PORT was
6879. res, sbatchd, and mbatchd continue to use the default pre-version 7 ports
6878, 6881, and 6882.
Upgrade installation preserves any existing port settings for lim, res, sbatchd, and
mbatchd. EGO pem, vemkd, and egosc use default EGO ports starting at 7870, if
they do not conflict with existing lim, res, sbatchd, and mbatchd ports.

EGO connection
ports and base port

On every host, a set of connection ports must be free for use by LSF and EGO
components.
LSF and EGO require exclusive use of certain ports for communication. EGO uses
the same four consecutive ports on every host in the cluster. The first of these is
called the base port.

lsf.conf parameter ego.conf parameter

LSF_API_CONNTIMEOUT EGO_LIM_CONNTIMEOUT

LSF_API_RECVTIMEOUT EGO_LIM_RECVTIMEOUT

LSF_CLUSTER_ID (Windows) EGO_CLUSTER_ID (Windows)

LSF_CONF_RETRY_INT EGO_CONF_RETRY_INT

LSF_CONF_RETRY_MAX EGO_CONF_RETRY_MAX

LSF_DEBUG_LIM EGO_DEBUG_LIM

LSF_DHPC_ENV EGO_DHPC_ENV

LSF_DYNAMIC_HOST_TIMEOUT EGO_DYNAMIC_HOST_TIMEOUT

LSF_DYNAMIC_HOST_WAIT_TIME EGO_DYNAMIC_HOST_WAIT_TIME

LSF_ENABLE_DUALCORE EGO_ENABLE_DUALCORE

LSF_GET_CONF EGO_GET_CONF

LSF_GETCONF_MAX EGO_GETCONF_MAX

LSF_LIM_DEBUG EGO_LIM_DEBUG

LSF_LIM_PORT EGO_LIM_PORT

LSF_LOCAL_RESOURCES EGO_LOCAL_RESOURCES

LSF_LOG_MASK EGO_LOG_MASK

LSF_MASTER_LIST EGO_MASTER_LIST

LSF_PIM_INFODIR EGO_PIM_INFODIR

LSF_PIM_SLEEPTIME EGO_PIM_SLEEPTIME

LSF_PIM_SLEEPTIME_UPDATE EGO_PIM_SLEEPTIME_UPDATE

LSF_RSH EGO_RSH

LSF_STRIP_DOMAIN EGO_STRIP_DOMAIN

LSF_TIME_LIM EGO_TIME_LIM

Configuring LSF and EGO

202 Administering Platform LSF

The default EGO base connection port is 7869. By default, EGO uses four
consecutive ports starting from the base port. By default, EGO uses ports
7869-7872.
The ports can be customized by customizing the base port. For example, if the base
port is 6880, EGO uses ports 6880-6883.
LSF and EGO needs the same ports on every host, so you must specify the same
base port on every host.

Special resource groups for LSF master hosts
By default, Platform LSF installation defines a special resource group named
ManagementHosts for the Platform LSF master host. (In general, Platform LSF
master hosts are dedicated hosts; the ManagementHosts EGO resource group
serves this purpose.)
Platform LSF master hosts must not be subject to any lend, borrow, or reclaim
policies. They must be exclusively owned by the Platform LSF consumer.
The default Platform EGO configuration is such that the LSF_MASTER_LIST
hosts and the execution hosts are in different resource groups so that different
resource plans can be applied to each group.

Administering Platform LSF 203

Managing LSF on Platform EGO

Managing LSF daemons through EGO

EGO daemons

LSF daemons

Operating System daemon control
Opertaing system startup mode is the same as previous releases:
◆ On UNIX, administrators configure the autostart of sbatchd and res in the

operating system (/etc/rc file or inittab) and use lsadmin and badmin to
start LSF daemons manually through rsh or ssh.

◆ On Windows, sbatchd and res are started as Windows services.

EGO Service Controller daemon control
Under EGO Service Control mode, administrators configure the EGO Service
Controller to start res and sbatchd, and restart them if they fail.
You can still run lsadmin and badmin to start LSF manually, but internally, lsadmin
and badmin communicates with the EGO Service Controller, which actually starts
sbatchd and res as EGO services.

Daemons in LSF_SERVERDIR Description

vemkd Started by lim on master host

pem Started by lim on every host

egosc Started by vemkd on master host

Daemons in LSF_SERVERDIR Description

lim lim runs on every host. On UNIX, lim is either
started by lsadmin through rsh/ssh or started
through rc file. On Windows, lim is started as a
Windows service.

pim Started by lim on every host

mbatchd Started by sbatchd on master host

mbschd Started by mbatchd on master host

sbatchd Under OS startup mode, sbatchd is either
started by lsadmin through rsh/ssh or started
through rc file on UNIX. On Windows, sbatchd
is started as a Windows service.
Under EGO Service Controller mode, sbatchd
is started by pem as an EGO service on every
host.

res Under OS startup mode, res is either started by
lsadmin through rsh/ssh or started through rc
file on UNIX. On Windows, res is started as a
Windows service.
Under EGO Service Controller mode, res is
started by pem as an EGO service on every
host.

Managing LSF daemons through EGO

204 Administering Platform LSF

If EGO Service Controller management is configured and you run
badmin hshutdown and lsadmin resshutdown to manually shut down LSF, the
LSF daemons are not restarted automatically by EGO. You must run
lsadmin resstartup and badmin hstartup to start the LSF daemons manually.

Permissions required for daemon control
To control all daemons in the cluster, you must
◆ Be logged on as root or as a user listed in the /etc/lsf.sudoers file. See the

Platform LSF Configuration Reference for configuration details of
lsf.sudoers.

◆ Be able to run the rsh or ssh commands across all LSF hosts without having to
enter a password. See your operating system documentation for information
about configuring the rsh and ssh commands. The shell command specified
by LSF_RSH in lsf.conf is used before rsh is tried.

Bypass EGO login at startup (lsf.sudoers)
Prerequisites: You must be the LSF administrator (lsfadmin) or root to configure
lsf.sudoers.

When LSF daemons control through EGO Service Controller is configured, users
must have EGO credentials for EGO to start res and sbatchd services. By default,
lsadmin and badmin invoke the egosh user logon command to prompt for the user
name and password of the EGO administrator to get EGO credentials.

1 Configure lsf.sudoers to bypass EGO login to start res and sbatchd
automatically.
Set the following parameters:
◆ LSF_EGO_ADMIN_USER—User name of the EGO administrator. The

default administrator name is Admin.
◆ LSF_EGO_ADMIN_PASSWD—Password of the EGO administrator.

Administering Platform LSF 205

Managing LSF on Platform EGO

EGO control of HPC Portal and PERF services
When EGO is enabled in the cluster, EGO may control services for components
such as the HPC Portal or LSF Reports (PERF). This is recommended. It allows
failover among multiple management hosts, and allows EGO cluster commands to
start, stop, and restart the services.

HPC Portal not controlled by EGO
For HPC Portal, if it is not controlled by EGO, you must specify the host to run
HPC Portal. Use the pmcadmin command to start and stop HPC Portal. Use the
pmcsetrc.sh command to enable automatic startup on the host (the daemon will
restart if the host is restarted).

PERF services not controlled by EGO
For PERF, if the services are not controlled by EGO, you must specify the host to
run PERF services plc, jobdt, and purger. Use the perfadmin command to start
and stop these services on the host. Use the perfsetrc.sh command to enable
automatic startup of these services on the host (the daemons will restart if the host
is restarted). If the PERF host is not the same as the Derby database host, run the
same commands on the Derby database host to control derbydb.

Administrative Basics

206 Administering Platform LSF

Administrative Basics
See Administering and Using Platform EGO for detailed information about EGO
administration.

Set the command-line environment
On Linux hosts, set the environment before you run any LSF or EGO commands.
You need to do this once for each session you open. root, lsfadmin, and egoadmin
accounts use LSF and EGO commands to configure and start the cluster.
You need to reset the environment if the environment changes during your session,
for example, if you run egoconfig mghost, which changes the location of some
configuration files.

◆ For csh or tcsh, use cshrc.lsf.
source LSF_TOP/conf/cshrc.lsf

◆ For sh, ksh, or bash, use profile.lsf:
. LSF_TOP/conf/profile.lsf

If Platform EGO is enabled in the LSF cluster (LSF_ENABLE_EGO=Y and
LSF_EGO_ENVDIR are defined in lsf.conf), cshrc.lsf and profile.lsf, set the
following environment variables:
◆ EGO_BINDIR
◆ EGO_CONFDIR
◆ EGO_ESRVDIR
◆ EGO_LIBDIR
◆ EGO_LOCAL_CONFDIR
◆ EGO_SERVERDIR
◆ EGO_TOP
See the Platform EGO Reference for more information about these variables.
See the Platform LSF Configuration Reference for more information about
cshrc.lsf and profile.lsf.

Administering Platform LSF 207

Managing LSF on Platform EGO

Logging and troubleshooting

LSF log files

LSF event and
account log
location

LSF uses directories for temporary work files, log files and transaction files and
spooling.
LSF keeps track of all jobs in the system by maintaining a transaction log in the
work subtree. The LSF log files are found in the directory
LSB_SHAREDIR/cluster_name/logdir.
The following files maintain the state of the LSF system:

lsb.events LSF uses the lsb.events file to keep track of the state of all jobs. Each job is a
transaction from job submission to job completion. LSF system keeps track of
everything associated with the job in the lsb.events file.

lsb.events.n The events file is automatically trimmed and old job events are stored in
lsb.event.n files. When mbatchd starts, it refers only to the lsb.events file, not
the lsb.events.n files. The bhist command can refer to these files.

LSF error log
location

If the optional LSF_LOGDIR parameter is defined in lsf.conf, error messages
from LSF servers are logged to files in this directory.
If LSF_LOGDIR is defined, but the daemons cannot write to files there, the error
log files are created in /tmp.
If LSF_LOGDIR is not defined, errors are logged to the system error logs (syslog)
using the LOG_DAEMON facility. syslog messages are highly configurable, and
the default configuration varies widely from system to system. Start by looking for
the file /etc/syslog.conf, and read the man pages for syslog(3) and
syslogd(1).
If the error log is managed by syslog, it is probably already being automatically
cleared.
If LSF daemons cannot find lsf.conf when they start, they will not find the
definition of LSF_LOGDIR. In this case, error messages go to syslog. If you cannot
find any error messages in the log files, they are likely in the syslog.

LSF daemon error
logs

LSF log files are reopened each time a message is logged, so if you rename or remove
a daemon log file, the daemons will automatically create a new log file.
The LSF daemons log messages when they detect problems or unusual situations.
The daemons can be configured to put these messages into files.
The error log file names for the LSF system daemons are:
◆ res.log.host_name
◆ sbatchd.log.host_name
◆ mbatchd.log.host_name
◆ mbschd.log.host_name
LSF daemons log error messages in different levels so that you can choose to log all
messages, or only log messages that are deemed critical. Message logging for LSF
daemons is controlled by the parameter LSF_LOG_MASK in lsf.conf. Possible

Logging and troubleshooting

208 Administering Platform LSF

values for this parameter can be any log priority symbol that is defined in
/usr/include/sys/syslog.h. The default value for LSF_LOG_MASK is
LOG_WARNING.

LSF log directory
permissions and
ownership

Ensure that the permissions on the LSF_LOGDIR directory to be writable by root.
The LSF administrator must own LSF_LOGDIR.

EGO log files
Log files contain important run-time information about the general health of EGO
daemons, workload submissions, and other EGO system events. Log files are an
essential troubleshooting tool during production and testing.
The naming convention for most EGO log files is the name of the daemon plus the
host name the daemon is running on.
The following table outlines the daemons and their associated log file names. Log
files on Windows hosts have a .txt extension.

Most log entries are informational in nature. It is not uncommon to have a large
(and growing) log file and still have a healthy cluster.

EGO log file
locations

By default, most Platform LSF log files are found in LSF_LOGDIR .
◆ The service controller log files are found in

LSF_LOGDIR/ego/cluster_name/eservice/esc/log (Linux) or
LSF_LOGDIR\ego\cluster_name\eservice\esc\log (Windows).

◆ HPC Portal log files (WSM and Catalina) are found in LSF_LOGDIR/gui
(Linux) or LSF_LOGDIR\gui (Windows).

◆ Web service gateway log files are found in
LSF_LOGDIR/ego/cluster_name/eservice/wsg/log (Linux)
LSF_LOGDIR\ego\cluster_name\eservice\wsg\log (Windows)

◆ The service directory log files, logged by BIND, are found in
LSF_LOGDIR/ego/cluster_name/eservice/esd/conf/named/namedb/name
d.log.hostname (Linux)
LSF_LOGDIR\ego\cluster_name\eservice\esd\conf\named\namedb\
named.log.hostname (Windows)

EGO log entry
format

Log file entries follow the format
date time_zone log_level [process_id:thread_id] action:description/message

Daemon Log file name

ESC (EGO Service Controller) esc.log.hostname

named named.log.hostname

PEM (Process Execution Manager) pem.log.hostname

VEMKD (Platform LSF Kernel Daemon) vemkd.log.hostname

WSM (HPC Portal/WEBGUI) wsm.log.hostname

WSG (Web Service Gateway) wsg.log

Administering Platform LSF 209

Managing LSF on Platform EGO

where the date is expressed in YYYY-MM-DD hh-mm-ss.sss.
For example, 2006-03-14 11:02:44.000 Eastern Standard Time ERROR
[2488:1036] vemkdexit: vemkd is halting.

EGO log classes Every log entry belongs to a log class. You can use log class as a mechanism to filter
log entries by area. Log classes in combination with log levels allow you to
troubleshoot using log entries that only address, for example, configuration.
Log classes are adjusted at run time using egosh debug.
Valid logging classes are as follows:

EGO log levels There are nine log levels that allow administrators to control the level of event
information that is logged.
When you are troubleshooting, increase the log level to obtain as much detailed
information as you can. When you are finished troubleshooting, decrease the log
level to prevent the log files from becoming too large.
Valid logging levels are as follows:

Class Description

LC_ALLOC Logs messages related to the resource allocation engine

LC_AUTH Logs messages related to users and authentication

LC_CLIENT Logs messages related to clients

LC_COMM Logs messages related to communications

LC_CONF Logs messages related to configuration

LC_CONTAINER Logs messages related to activities

LC_EVENT Logs messages related to the event notification service

LC_MEM Logs messages related to memory allocation

LC_PEM Logs messages related to the process execution manager (pem)

LC_PERF Logs messages related to performance

LC_QUERY Logs messages related to client queries

LC_RECOVER Logs messages related to recovery and data persistence

LC_RSRC Logs messages related to resources, including host status changes

LC_SYS Logs messages related to system calls

LC_TRACE Logs the steps of the program

Number Level Description

0 LOG_EMERG Log only those messages in which the system is unusable.

1 LOG_ALERT Log only those messages for which action must be taken immediately.

2 LOG_CRIT Log only those messages that are critical.

3 LOG_ERR Log only those messages that indicate error conditions.

4 LOG_WARNING Log only those messages that are warnings or more serious messages. This is
the default level of debug information.

5 LOG_NOTICE Log those messages that indicate normal but significant conditions or
warnings and more serious messages.

Logging and troubleshooting

210 Administering Platform LSF

EGO log level and class information retrieved from configuration files

When EGO is enabled, the pem and vemkd daemons read ego.conf to retrieve the
following information (as corresponds to the particular daemon):
◆ EGO_LOG_MASK: The log level used to determine the amount of detail

logged.
◆ EGO_DEBUG_PEM: The log class setting for pem.
◆ EGO_DEBUG_VEMKD: The log class setting for vemkd.
The wsm daemon reads wsm.conf to retrieve the following information:
◆ LOG_LEVEL: The configured log classcontrolling the level of event

information that is logged (INFO, ERROR, WARNING, or DEBUG)
The wsg daemon reads wsg.conf to retrieve the following information:
◆ WSG_PORT: The port on which the Web service gateway

(WebServiceGateway) should run
◆ WSG_SSL: Whether the daemon should use Secure Socket Layer (SSL) for

communication.
◆ WSG_DEBUG_DETAIL: The log level used to determine the amount of detail

logged for debugging purposes.
◆ WSG_LOGDIR: The directory location where wsg.log files are written.
The service director daemon (named) reads named.conf to retrieve the following
information:
◆ logging, severity: The configured severity log class controlling the level of event

information that is logged (critical, error, warning, notice, info, debug,
or dynamic). In the case of a log class set to debug, a log level is required to
determine the amount of detail logged for debugging purposes.

Why do log files
grow so quickly?

Every time an EGO system event occurs, a log file entry is added to a log file. Most
entries are informational in nature, except when there is an error condition. If your
log levels provide entries for all information (for example, if you have set them to
LOG_DEBUG), the files will grow quickly.
Suggested settings:
◆ During regular EGO operation, set your log levels to LOG_WARNING. With

this setting, critical errors are logged but informational entries are not, keeping
the log file size to a minimum.

6 LOG_INFO Log all informational messages and more serious messages.

7 LOG_DEBUG Log all debug-level messages.

8 LOG_TRACE Log all available messages.

Number Level Description

Administering Platform LSF 211

Managing LSF on Platform EGO

◆ For troubleshooting purposes, set your log level to LOG_DEBUG. Because of
the quantity of messages you will receive when subscribed to this log level,
change the level back to LOG_WARNING as soon as you are finished
troubleshooting.

TIP: If your log files are too long, you can always rename them for archive purposes. New, fresh log
files will then be created and will log all new events.

How often should I
maintain log files?

The growth rate of the log files is dependent on the log level and the complexity of
your cluster. If you have a large cluster, daily log file maintenance may be required.
We recommend using a log file rotation utility to do unattended maintenance of
your log files. Failure to do timely maintenance could result in a full file system
which hinders system performance and operation.

Troubleshoot using multiple EGO log files

EGO log file
locations and
content

If a service does not start as expected, open the appropriate service log file and
review the run-time information contained within it to discover the problem. Look
for relevant entries such as insufficient disk space, lack of memory, or network
problems that result in unavailable hosts.

Log file Default location What it contains

catalina.out Linux: LSF_LOGDIR/gui/catalina.out
Windows: LSF_LOGDIR\gui\catalina.out

Logs system errors and
debug information from
Tomcat web server startup.

esc.log Linux:
LSF_LOGDIR/ego/cluster_name/eservice/esc/l
og/esc.log.hostname
Windows: LSF_LOGDIR\ego\cluster_name\
eservice\esc\log\esc.log.hostname

Logs service failures and
service instance restarts
based on availability plans.
Errors surrounding HPC
Portal startup are logged
here.

named.log Linux:
LSF_LOGDIR/ego/cluster_name/eservice/esd/c
onf/named/namedb/named.log.hostname
Windows: LSF_LOGDIR\ego\cluster_name\
eservice\esd\conf\named\namedb\
named.log.hostname

Logs information gathered
during the updating and
querying of service instance
location; logged by BIND, a
DNS server.

pem.log Linux: LSF_LOGDIR/pem.log.hostname
Windows: LSF_LOGDIR\pem.log.hostname

Logs remote operations
(start, stop, control activities,
failures). Logs tracked results
for resource utilization of all
processes associated with
the host, and information for
accounting or chargeback.

Logging and troubleshooting

212 Administering Platform LSF

vemkd.log Linux: LSF_LOGDIR/vemkd.log.hostname
Windows: LSF_LOGDIR\vemkd.log.hostname

Logs aggregated host
information about the state
of individual resources,
status of allocation requests,
consumer hierarchy,
resources assignment to
consumers, and started
operating system-level
process.

wsg.log Linux:
LSF_LOGDIR/ego/cluster_name/eservice/wsg/l
og/wsg.log.hostname
Windows: LSF_LOGDIR\ego\cluster_name\
eservice\wsg\log\wsg.log.hostname

Logs service failures
surrounding web services
interfaces for web service
clients (applications).

wsm.log Linux: LSF_LOGDIR/gui/wsm.log.hostname
Windows: LSF_LOGDIR\gui\wsm.log.hostname

Logs information collected
by the web server monitor
daemon. Failures of the
WEBGUI service that runs the
HPC Portal are logged here.

Log file Default location What it contains

Administering Platform LSF 213

Managing LSF on Platform EGO

Matching service error messages and corresponding log files

For more information
◆ About Platform LSF logging and troubleshooting, see Error and Event Logging

on page 763 and Troubleshooting and Error Messages on page 775
◆ About Platform EGO loggings and troubleshooting, see Administering and

Using Platform EGO

If you receive this message… This may be the problem… Review this log file

failed to create vem working directory Cannot create work directory during
startup

vemkd

failed to open lock file Cannot get lock file during startup vemkd

failed to open host event file Cannot recover during startup
because cannot open event file

vemkd

lim port is not defined EGO_LIM_PORT in ego.conf is not
defined

lim

master candidate can not set GET_CONF=lim Wrong parameter defined for master
candidate host (for example,
EGO_GET_CONF=LIM)

lim

there is no valid host in EGO_MASTER_LIST No valid host in master list lim

ls_getmyhostname fails Cannot get local host name during
startup

pem

temp directory (%s) not exist or not
accessible, exit

Tmp directory does not exist pem

incorrect EGO_PEM_PORT value %s, exit EGO_PEM_PORT is a negative
number

pem

chdir(%s) fails Tmp directory does not exist esc

cannot initialize the listening TCP port %d Socket error esc

cannot log on Log on to vemkd failed esc

JAVA_HOME is not defined, exit WEBGUI service profile is wrong wsm

failed to get hostname: %s Host name configuration problem wsm

event_init () failed EGO event plugin configuration
problem in ego.conf file

wsm

ego.conf_loadeventplug () failed Event library problem wsm

cannot write to child Web server is down or there is no
response

wsm

child no reply Web server is down or there is no
response

wsm

vem_register: error in invoking
vem_register function

VEM service registration failed wsg

you are not authorized to unregister a
service

Either you are not authorized to
unregister a service, or there is no
registry client

wsg

request has invalid signature: TSIG
service.ego: tsig verify failure (BADTIME)

Resource record updating failed named

Frequently asked questions

214 Administering Platform LSF

Frequently asked questions
Question Does LSF 7 on EGO support a grace period when reclamation is configured in the

resource plan?
Answer No. Resources are immediately reclaimed even if you set a resource reclaim grace

period.
Question Does LSF 7 on EGO support upgrade of the master host only?

Answer Yes
Question Under EGO Service Controller daemon management mode on Windows, does PEM

start sbatchd and res directly or does it ask Windows to start sbatchd and res as
Windows Services?

Answer On Windows, LSF still installs sbatchd and res as Windows services. If EGO Service
Controller daemon control is selected during installation, the Windows service will
be set up as Manual. PEM will start up the sbatchd and res directly, not as Windows
Services.

Question What's the benefit of LSF daemon management through the EGO Service Controller?
Answer EGO Service Controller provides High Availability services to sbatchd and res, and

faster cluster startup than startup with lsadmin and badmin.
Question How does the hostsetup script work in LSF 7?

Answer LSF 7 hostsetup script functions essentially the same as previous versions. It sets
up a host to use the LSF cluster and configures LSF daemons to start automatically.
In LSF 7, running hostsetup --top=/path --boot="y" will check the EGO
service defination files sbatchd.xml and res.xml. If res and sbatchd startup is set
to "Automatic", the host rc setting will only start lim. If set to "Manual", the host rc
setting will start lim, sbatchd, and res as in previous versions.

Question Is non-shared mixed cluster installation supported, for example, adding UNIX hosts
to a Windows cluster, or adding Windows hosts to a UNIX cluster?

Answer In LSF 7, non-shared installation is supported. For example, to add a UNIX host to
a Windows cluster, set up the Windows cluster first, then run lsfinstall -s -f
slave.config. In slave.config, put the Windows hosts in LSF_MASTER_LIST.
After startup, the UNIX host will become an LSF host. Adding a Windows host is
even simpler. Run the Windows installer, enter the current UNIX master host
name. After installation, all daemons will automatically start and the host will join
the cluster.

Question As EGO and LSF share base configuration files, how are other resources handled in
EGO in addition to hosts and slots?

Answer Same as previous releases. LSF 7 mbatchd still communicates with LIM to get
available resources. By default, LSF can schedule jobs to make use of all resources
started in cluster. If EGO-enabled SLA scheduling is configured, LSF only schedules
jobs to use resources on hosts allocated by EGO.

Question How about compatibility for external scripts and resources like elim, melim, esub and
others?

Administering Platform LSF 215

Managing LSF on Platform EGO

Answer LSF 7 supports full compatibility for these external executables. elim.xxx is started
under LSF_SERVERDIR as usual. By default, LIM is located under
LSF_SERVERDIR.

Question Can Platform LSF MultiCluster share one EGO base?
Answer No, each LSF cluster must run on top of one EGO cluster.

Question Can EGO consumer policies replace MultiCluster lease mode?
Answer Conceptually, both define resource borrowing and lending policies. However,

current EGO consumer policies can only work with slot resources within one EGO
cluster. MultiCluster lease mode supports other load indices and external resources
between multiple clusters. If you are using MultiCluster lease mode to share only
slot resources between clusters, and you are able to merge those clusters into a single
cluster, you should be able to use EGO consumer policy and submit jobs to
EGO-enabled SLA scheduling to achieve the same goal.

Frequently asked questions

216 Administering Platform LSF

Administering Platform LSF 217

C H A P T E R

10
The HPC Portal

Contents
◆ Log on to the HPC Portal on page 217
◆ Set the command-line environment on page 218
◆ Manage services on page 218
◆ Manage hosts on page 220

Log on to the HPC Portal
With root (UNIX) or administrative (Windows) privileges, you can use the
pmcadmin command to administer the HPC Portal. For more information, see the
Platform LSF Command Reference.
The HPC Portal allows you to monitor, administer, and configure your cluster.

1 Browse to the web server URL and log in to the HPC Portal.
The web server URL is:
http://host_name:8080/platform

The host name is the HPC Portal host.
If the HPC Portal is controlled by EGO and you have not specified a dedicated
HPC Portal host, HPC Portal could start on any management host. To find out
where the HPC Portal is running, log on to a command console as an LSF
administrator and run:
egosh client view GUIURL_1

The description part of the command output shows the full URL including the
host name and port.
If the HPC Portal is not controlled by EGO, and you do not know the port, log
on to the HPC Portal host as LSF administrator and run:
pmcadmin list

The command output shows the port you need to use in the URL.

Set the command-line environment

218 Administering Platform LSF

Set the command-line environment
On Linux hosts, set the environment before you run any LSF or EGO commands.
You need to do this once for each session you open. root, lsfadmin, and egoadmin
accounts use LSF and EGO commands to configure and start the cluster.
You need to reset the environment if the environment changes during your session,
for example, if you run egoconfig mghost, which changes the location of some
configuration files.

◆ For csh or tcsh, use cshrc.lsf.
source LSF_TOP/conf/cshrc.lsf

◆ For sh, ksh, or bash, use profile.lsf:
. LSF_TOP/conf/profile.lsf

If Platform EGO is enabled in the LSF cluster (LSF_ENABLE_EGO=Y and
LSF_EGO_ENVDIR are defined in lsf.conf), cshrc.lsf and profile.lsf set
the following environment variables.
◆ EGO_BINDIR
◆ EGO_CONFDIR
◆ EGO_ESRVDIR
◆ EGO_LIBDIR
◆ EGO_LOCAL_CONFDIR
◆ EGO_SERVERDIR
◆ EGO_TOP
See the Platform EGO Reference for more information about these variables.
See the Platform LSF Configuration Reference for more information about
cshrc.lsf and profile.lsf.

Manage services

Determine the host address where the service is running
Prerequisites: You need to know the address of where the service director (DNS
server) is running (contact IT for assistance, if required).

EGO services may not all run on the same management host. You can use nslookup
to find the address of the host where a specific service is running.

1 Using the CLI, type nslookup.
2 Type server and then enter the IP address of the service director (DNS server).

The Default Server and Address will return. For example,
> server 172.25.237.37

Default server: 172.25.237.37

Address: 172.25.237.37#53

Administering Platform LSF 219

The HPC Portal

3 Enter the name of the service for which you want to find the host address. For
example,
> WEBGUI.ego

Server: 172.25.237.37

Address: 172.25.237.37#53

Name: WEBGUI.ego

Address: 172.25.237.37

Troubleshoot service error states
If you receive a service error message, or a message indicating that a service will not
transition out of the Allocating state, there are steps you can perform to
troubleshoot the issue.

Responding to
service message
Error

Normally, Platform EGO attempts to start a service multiple times, up to the
maximum threshold set in the service profile XML file (containing the service
definition). If the service cannot start, you will receive a service error message.

1 Try stopping and then restarting the service.
2 Review the appropriate service instance log file to discover the cause of the

error.
Platform EGO service log files include those for the service director
(ServiceDirector), web service gateway (WebServiceGateway), and the HPC
Portal (WEBGUI). If you have defined your own non-EGO services, you may
have other log files you will need to review, depending on the service which is
triggering the error.

Responding to
service message
Allocating

Allocating is a transitional service state before the service starts running. If your
service remains in this state for some time without transitioning to Started, or
cycles between Defining and Allocating, you will want to discover the cause of
the delay.

1 If you are the cluster administrator, review the allocation policy.
a Open the service profile XML file (containing the service definition).
b Find the consumer for which the service is expected to run.
c Ensure that a proper resource plan is set for that consumer.
During a service’s “allocation” period, Platform EGO attempts to find an
appropriate resource on which to run the service. If it cannot find the required
resource, the service will not start.

Manage hosts

220 Administering Platform LSF

Manage hosts

Important host roles
Hosts in the cluster may be described as the master host, master candidates,
management hosts, compute hosts, or the web server host.

Master host A cluster requires a master host. This is the first host installed. The master host
controls the rest of the hosts in the grid.

Master candidates There is only one master host at a time. However, if the master host ever fails,
another host automatically takes over the master host role, allowing work to
continue. This process is called failover. When the master host recovers, the role
switches back again.
Hosts that can act as the master are called master candidates. This includes the
original master host and all hosts that can take over the role in a failover scenario.
All master candidates must be management hosts.

Master host failover During master host failover, the system is unavailable for a few minutes while hosts
are waiting to be contacted by the new master.
The master candidate list defines which hosts are master candidates. By default, the
list includes just one host, the master host, and there is no failover. If you configure
additional candidates to enable failover, the master host is first in the list. If the
master host becomes unavailable, the next host becomes the master. If that host is
also unavailable, the next host is considered to become the master, and so on down
the list. A short list with two or three hosts is sufficient for practical purposes.
For failover to work properly, the master candidates must share a file system and the
shared directory must always be available.

IMPORTANT: The shared directory should not reside on a master host or any of the master
candidates. If the shared directory resides on the master host and the master host fails, the next
candidate cannot access the necessary files.

Management host Management hosts belong to the ManagementHosts resource group. These hosts
are not expected to execute workload units for users. Management hosts are
expected to run services such as the web server and web services gateway. The
master host and all master candidates must be management hosts.
A slot is the basic unit of resource allocation, analogous to a "virtual CPU".
Management hosts share configuration files, so a shared file system is needed
among all management hosts.
A management host is configured when you run egoconfig mghost on the host.
The tag mg is assigned to the management host, in order to differentiate it from a
compute host.

Compute host Compute hosts are distributed to cluster consumers to execute workload units. By
default, compute hosts belong to the ComputeHosts resource group.

Administering Platform LSF 221

The HPC Portal

The ComputeHosts group excludes hosts with the mg tag, which is assigned to
management hosts when you run egoconfig mghost. If you create your own
resource groups to replace ComputeHosts, make sure they also exclude hosts with
the mg tag.
By default, the number of slots on a compute host is equal to the number of CPUs.

Web server host or
HPC Portal host

The web server is the host that runs the HPC Portal, when you configure this you
may call it the HPC Portal host. There is only one host at a time acting as the web
server host. If EGO controls the HPC Portal, it does not need to be a dedicated host;
by default, any management host in the cluster can be the web server (decided when
the cluster starts up, failing over if the original host fails). However, if EGO does not
control HPC Portal, you must configure the HPC Portal host manually. If you
specify the HPC Portal host, there can be no failover of HPC Portal.

Manage hosts

222 Administering Platform LSF

Administering Platform LSF 223

C H A P T E R

11
Cluster Version Management and Patching on

UNIX and Linux

IMPORTANT: For LSF 7 Update 2 only, you cannot use the steps in this chapter to update your
cluster from LSF 7 Update 1 to Update 3. You must follow the steps in “Migrating to LSF Version 7
Update 3 on UNIX and Linux” to manually migrate your LSF 7 cluster to Update 3.

Contents
◆ Scope on page 224
◆ Patch installation interaction diagram on page 225
◆ Patch rollback interaction diagram on page 226
◆ Version management components on page 227
◆ Version management concepts on page 229
◆ Cluster patching behavior table on page 231
◆ Cluster rollback behavior table on page 232
◆ Version management files on page 232
◆ Version management commands on page 233
◆ Installing update releases on UNIX and Linux on page 234
◆ Installing fixes on UNIX and Linux on page 235
◆ Rolling back patches on UNIX and Linux on page 235
◆ Patching the Oracle database on page 236
◆ Patching the Derby database on page 237

Scope

224 Administering Platform LSF

Scope
Operating system ◆ Supports UNIX hosts within a single cluster

Limitations pversions supports LSF Update 1 and later
patchinstall supports LSF Update 1 and later
For installation of a new cluster, see Installing Platform LSF on
UNIX and Linux.

Administering Platform LSF 225

Cluster Version Management and Patching on UNIX and Linux

Patch installation interaction diagram
Patches may be installed using the patch installer or LSF installer. The same
mechanism is used.

Patch rollback interaction diagram

226 Administering Platform LSF

Patch rollback interaction diagram
Use the patch installer to roll back the most recent patch in the cluster.

Administering Platform LSF 227

Cluster Version Management and Patching on UNIX and Linux

Version management components

Patches and distributions

Products and
versioning

Platform products and components may be separately licensed and versioned. For
example, LSF and the HPC Portal are licensed together, but delivered as separate
distributions and patched separately.
Product version is a number identifying the release, such as LSF version 7.0.6. The
final digit changes whenever you patch the cluster with a new update release.
In addition to the product version, build date, build number, and binary type are
used to identify the distributions. Build number may help identify related
distributions for different binary types and is important when rolling back the
cluster.
Patching the cluster is optional and clusters with the same product version may
have different patches installed, so a complete description of the cluster includes
information about the patches installed.

Types of
distributions

Upgrades, patches, and hot fixes are used to update the software in an existing
cluster.
◆ Product upgrades deliver a new version of the software with valuable new

features. Upgrades require a new license.
◆ Patches deliver small changes and bug fixes that may result in a minor version

change. Patches do not require a new license.
◆ Hot fixes deliver temporary solutions for emergency problems. Hot fixes do not

require a new license.

Types of patches This document describes installing and removing patches. Patches include fixes, fix
packs, and update releases. These do not require a new license.
◆ Update releases—are full distributions available to all customers at regular

intervals and include all fixes intended for general use. Your cluster should
always use the latest update release. The same package can be used to patch a
cluster or create a new cluster. Each update has a different version number (for
example, LSF 7 Update 6 is version 7.0.6).

◆ Fixes—are partial distributions delivered as needed to resolve customer issues
(identified by a specific fix number). Platform Support will advise you if you
need install any fixes in your cluster. Installing or removing this type of patch
does not change the version of the cluster.

◆ Fix packs (FP)—contain two or more related fixes in one distribution for your
convenience.

Version management components

228 Administering Platform LSF

Version command
The version command pversions is a tool provided to query the patch history and
deliver information about cluster and product version and patch levels.
The version command includes functionality to query a cluster or check contents of
a package.
The version command is not located with other LSF commands so it may not be in
your path. The command location is LSF_TOP/7.0/install/pversions

Data schema update script
The update script for your data schema is a tool provided by Platform to update an
existing database before you patch the cluster. The update script modifies the data
schema so the database is prepared to handle data from an updated cluster.
Use the script that matches your database and cluster version. A patch may not
involve any change to the database, or it may require multiple scripts to update
different parts of the database.

Patch installer
The patch installer patchinstall is a tool provided to install patches on an existing
cluster.
The patch installer includes functionality to query a cluster, check contents of a
package and compatibility with the cluster, and patch or roll back a cluster.

Patch history

History The patch history is a record of information about patches installed with the patch
installer or the LSF installer, including products and patches installed, dates, and
location of backups required for rollback purposes.
The pversions command retrieves and displays the version information. The
patch installer rollback feature retrieves the backup information.

History directory The patch history information is kept in the patch history directory. The directory
location is LSF_TOP/patch by default.
The patch history directory is configurable during installation. See the
PATCH_HISTORY_DIR parameter in install.config.

Patch backups

Backups The patch installer backs up the current installation before attempting to replace
files with the newer versions. The backups are saved so that rollback will be possible
later on.
Patches change relatively few files, but for an update release, all the files in the
cluster are backed up, so the amount of space required is large. The more patches
you install, the more space is required to save multiple backups.

Backup directory The patch backup files are kept in the patch backup directory. The directory
location is LSF_TOP/patch/backup by default.

Administering Platform LSF 229

Cluster Version Management and Patching on UNIX and Linux

The patch backup directory is configurable during installation. See the
PATCH_BACKUP_DIR parameter in install.config.

Maintenance Over time, the backups accumulate. You may choose to manually delete old
backups, starting with the oldest. Remember that rollback is performed one patch
at a time, so your cluster’s rollback functionality stops at the point where a backup
file is unavailable.
If the backup directory runs out of space, your installations and rollbacks will fail.
You can change your backup directory by setting PATCH_BACKUP_DIR in
patch.conf, but you must copy the contents of the old directory to the new
directory manually (or there can be no rollback).

Update release
backup control

You can disable backups when installing update releases. In this case, your update
is installed without backing up the cluster first, so you cannot remove the update
using the rollback functionality.
You might choose this feature to save disk space, to speed up the install process, or
if you have your own methods of backing up the cluster.
Backup is always done before installing fixes, so you can always roll back if a fix does
not behave as expected.w

Multiple daemon files
To make changes without affecting running daemons, the patch installer must
move some files to another directory instead of overwriting.
For each file, a new directory is created in parallel with the file. The directory is
called daemons_old.
Running jobs may require the old files even after you restart the updated cluster.

Version management concepts

Multiple distributions
Like installation, patching the cluster sometimes requires you to download
packages for each binary type or product component.
For example, to install an update, you may need to download multiple patches, such
as distributions for LSF and distributions for the HPC Portal.
Depending on the problem, a fix or fix pack may involve changes affecting just one
binary type, or multiple distributions to patch multiple binary types.

Order of installation
If you have to install multiple patches, start with the most recent update, which
includes all previous fixes. Install on all UNIX hosts to bring the whole cluster up
to date. Then install fixes or fix packs as needed.

Version management concepts

230 Administering Platform LSF

Installers
The LSF installer installs full distributions and can modify configuration. The LSF
installer incorporates the patch installer so the process of updating the files is the
same as the patch installer. However, the LSF installer should be used to install an
update because the update may require configuration changes that lsfinstall can
do automatically.
The patch installer installs all patches and never modifies configuration. A partial
distribution (FP or fix) can only be installed by the patch installer.

Patch installer accessibility
For clusters version 7.0 or earlier, you must obtain the patch installer separately
from Platform, and run the patchinstall command from your download
directory.
For clusters version 7 Update 1 (7.0.1) or later, the patch installer is available under
install directory under the LSF installation directory. This location may not be in
your path, so run the patchinstall command from this directory
(LSF_TOP/7.0/install/patchinstall).

Version command accessibility
For clusters version 7.0 or earlier, the version command is not available.
For clusters version 7 Update 1 (7.0.1) or later, the command is available under
install directory under the LSF installation directory
(LSF_TOP/7.0/install/pversions). It is not located with other LSF commands
so it may not be in your path by default.

lsfinstall and install.config versions
The LSF installer may change with each update. You should not install a new update
using the old lsfinstall program or install.config template. To properly
update your cluster with new parameters and new configuration, make sure your
installers match the version of the distribution you are installing.

Command environment
Both patchinstall and pversions on UNIX need environment information to
identify your cluster.
Before you run the command, set your environment using profile.lsf or
cshrc.lsf. You may have already done this to administer your cluster.
As a workaround, you may use the -f option in the command line and specify a file
that defines your environment. For more information, see the command reference.

Silent install
The silent install option is used for automated installations.
For lsfinstall, enable silent install by the LSF_QUIET_INST parameter in
install.config. Silent install hides some messages.
For patchinstall, enable silent install by the --silent option in the command
line. Silent install shows all messages but does not prompt for confirmations.

Administering Platform LSF 231

Cluster Version Management and Patching on UNIX and Linux

Windows-UNIX clusters and Windows clusters
If your cluster has both Windows and UNIX, patch the UNIX hosts in the cluster
using the patch installer. Patch the Windows hosts using Windows tools.
The Windows patch files should be installed in order from oldest to newest on every
Windows host if you have more than one to install.
To install a Windows patch, double click the .msp file for the OS you want and
follow the wizard. You may be asked to reboot after installing. Follow the Windows
prompts if applicable.

TIP: You can also install silently.

Cluster patching behavior table
When … Actions... The result …

Normal behavior. The installer replaces current files
with new.

◆ Success, cluster is updated.

Installing an update and the patch
history is missing (files are not found
in the directory defined by the
parameter PATCH_HISTORY_DIR in
patch.conf)

The installer creates new history files
in the directory.
The installer cannot determine
compatibility but installs anyway
because an update is a full
distribution.

◆ Cluster is modified but if the
update is not compatible (a
previous version instead of
newer version), the cluster may
not work properly.

Installing a fix and the patch history
is missing (files are not found in the
directory defined by the parameter
PATCH_HISTORY_DIR in patch.conf)

For a fix, the installer cannot
determine compatibility.

◆ No update, cluster remains in
same state

◆ Error presented on screen and
logged in patch.log and
patch.err

The installer is partway through the
installation when there is a problem.
The cluster contains some older files
and some newer files.

If the installer cannot complete, it
reverses the update actions,
removing the newer files and
returning the older ones.

◆ No update, cluster remains in
same state.

◆ Error presented on screen and
logged

Installing a fix and a file in the cluster
is newer than the file in the patch
(build number in cluster is larger
than build number of patch).

Prompt user to overwrite or
preserve file. Install other files in the
patch as usual.

◆ Each build of a file is backwards
compatible, so this patch works
properly with the newer file.

◆ Overwriting the newer file may
break functionality of a newer
patch in the cluster.

Installing a fix and a file in the cluster
has been modified since the last
patch (current file size does not
match size recorded in patch
history).

Prompt user to overwrite or exit. ◆ Overwriting a corrupt file will
result in correct behavior.

◆ Overwriting a customized file
will break existing functionality.
You can modify the updated file
manually after installation.

◆ Patch functionality depends on
updated content in the new file,
so you cannot install the patch if
you do not overwrite the file.

Cluster rollback behavior table

232 Administering Platform LSF

Cluster rollback behavior table

Version management files

Logs

When … Actions... The result …

Normal behavior. The installer replaces current files
with previous backup.

◆ Success, cluster reverts to
previous state.

The patch history is missing (files are
not found in the directory defined
by the parameter
PATCH_HISTORY_DIR in patch.conf)

Without the history, the installer
cannot determine which backups to
use. Since there is nothing to replace
them with, the installer does not
remove the current files.

◆ No rollback, cluster remains in
same state.

◆ Error presented on screen and
logged

You did not specify the most recent
patch.

The history indicates that the patch
is not the newest backup. The
installer must use the most recent
backup to roll back.

◆ No rollback, cluster remains in
same state.

◆ Error presented on screen and
logged

The backups are missing (expected
files are not found in the directory
defined by the parameter
PATCH_BACKUP_DIR in patch.conf).

Since there is nothing to replace
them with, the installer does not
remove the current files.

◆ No rollback, cluster remains in
same state.

◆ Error presented on screen and
logged

The installer is partway through the
roll back when there is a problem.
The cluster contains some older files
and some newer files.

If the installer cannot complete, it
reverses the rollback actions,
removing the older files and
returning the newer ones.

◆ No rollback, cluster remains in
same state.

◆ Error presented on screen and
logged

File Description

patch.log This file:
◆ Created by the patch installer (not created if you use lsfinstall)
◆ Created when you install a patch or update release
◆ Created in current working directory (or if you do not have write

permission there, logs to /tmp)
◆ Logs installation steps

precheck.log This file:
◆ Created by the patch installer
◆ Created when you install or check a patch
◆ Created in current working directory (or if you do not have write

permission there, logs to /tmp)
◆ Logs precheck steps

Install.log This file:
◆ Created by the LSF installer (not created if you use patchinstall)
◆ Created when you install a new cluster or update release
◆ Created in current working directory (or if you do not have write

permission there, logs to /tmp)
◆ Logs installation steps

Administering Platform LSF 233

Cluster Version Management and Patching on UNIX and Linux

Version management commands

Commands to modify cluster

Commands to monitor cluster

Commands to check uninstalled packages

Command Description

lsfinstall This command:
◆ Creates a new cluster (using any full distribution including update

releases)
◆ Patches a cluster with an update release (a full distribution) by installing

binaries and updating configuration

patchinstall This command:
◆ Patches a cluster by installing binaries from a full or partial distribution

(does not update configuration, so lsfinstall is recommended for an
update release)

patchinstall -r This command
◆ Rolls back a cluster by removing binaries (does not roll back

configuration, so rollback of updates may not be recommended)

Command Description

pversions This command:
◆ Displays product version information for the entire cluster, including

patch levels
◆ Displays detailed information for specific builds or files in the cluster; for

example, see what files were modified after installing a patch

file_name -V This command:
◆ Displays detailed information for a specific file in the cluster (specify the

installed file, for example lim -V)

Command Description

pversions -c This command:
◆ Displays detailed information about the contents of an uninstalled

package

patchinstall -c This command:
◆ Tests if an uninstalled package is compatible with the cluster

Installing update releases on UNIX and Linux

234 Administering Platform LSF

Installing update releases on UNIX and Linux
To install an update release to the cluster.

IMPORTANT: For LSF 7 Update 3, you cannot use the steps in this section to update your cluster
from LSF 7 Update 1 to Update 3. You must follow the steps in “Migrating to LSF Version 7 Update 3
on UNIX and Linux” to manually migrate your LSF 7 cluster to Update 3.

1 If you need to patch the reporting database, download the corresponding
database update scripts and update the database schema first.

2 Download and extract the new version of lsfinstall.
For example,
zcat lsf7Update6_lsfinstall.tar.Z | tar xvf -

3 Prepare the install.config file using the new template and information from
your original installation. The new template may have new parameters for you
to set.

4 Download the patches. If hosts in your cluster have multiple binary types, you
may require multiple distribution files to patch the entire cluster. Put the
distribution files in the same directory as lsfinstall.

5 Run the new LSF installer.
For example,
lsfinstall -f install.config

Specify the patches to install and let the installer finish.
6 Restart the cluster.

This will make changes to daemons take effect.
7 Optional. Run pversions to determine the state of the cluster.
8 Optional. Free some space by deleting the contents of backup directories under

EGO and LSF installation directories.

Administering Platform LSF 235

Cluster Version Management and Patching on UNIX and Linux

Installing fixes on UNIX and Linux
To install fixes or fix packs to update the cluster.

1 To patch the reporting database, download the corresponding database update
scripts and update the database schema first.

2 Download the patches from Platform. If hosts in your cluster have multiple
binary types, you may require multiple distribution files to patch the entire
cluster.
Put the distribution files on any host.
For example,
//HostB/downloads/pkg1

//HostB/downloads/pkg2

3 Log on to a host in the cluster.
4 Set your environment (if you cannot do this, prepare a configuration file and

use the -f option in the pversions and patchinstall commands).
source LSF_TOP/conf/cshrc.lsf (for csh or tcsh)
. LSF_TOP/conf/profile.lsf (for sh, ksh, or bash)

5 Run the patch installer tool and specify the patches to install.
For example,
LSF_TOP/7.0/install/patchinstall //HostB/downloads/pkg1
//HostB/downloads/pkg2

Let the patch installer finish.
6 If you were prompted to do so, restart the cluster.

Patches that affect running daemons require you to restart manually.
7 Optional. Run LSF_TOP/7.0/install/pversions to determine the state of

the cluster.
8 Optional. If you were prompted to restart the cluster and have done so, you can

free some space by deleting the contents of backup directories under EGO and
LSF installation directories.

Rolling back patches on UNIX and Linux
To remove patches that you installed using patchinstall, and return the cluster to
a previous state.

1 Log on to a host in the cluster.
2 Set your environment (if you cannot, prepare a configuration file and use -f

option in pversions and patchinstall commands).
source LSF_TOP/conf/cshrc.lsf (for csh or tcsh)
. LSF_TOP/conf/profile.lsf (for sh, ksh, or bash)

Patching the Oracle database

236 Administering Platform LSF

3 Run LSF_TOP/7.0/install/pversions to determine the state of the cluster
and find the build number of the last patch installed (roll back one patch at a
time).

4 Run patchinstall with -r and specify the build number of the last patch
installed (the patch to be removed).
patchinstall -r 12345

5 If you were prompted to do so, restart the cluster.
Patches that affect running daemons require you to restart manually.

6 If necessary, modify LSF cluster configuration manually. This may be necessary
to roll back an update.

7 Optional. Run LSF_TOP/7.0/install/pversions to determine the state of
the cluster.

To roll back multiple builds, repeat as required until the cluster is in the state you
want. The database schema is backwards compatible, so you do not need to change
the reporting database.

Patching the Oracle database
Prerequisites: The Oracle database is properly configured and running:
◆ You have a user name, password, and URL to access the database server.
◆ You installed the latest JDBC driver (ojdbc14.jar or newer) for the Oracle

database. This driver is available from the following URL:
http://www.oracle.com/technology/software/tech/java/sqlj_jdbc/index.html

◆ You are able to run sqlplus.

To patch the reporting database as part of patching the cluster, get the
corresponding database update scripts and update the database schema first.

1 When you download the patches for your cluster, download the corresponding
database update scripts from Platform.

2 In the command console, open the database schema directory.
cd LSF_TOP/perf/lsf/version/DBschema/Oracle

3 Run the scripts to create a database schema.
sqlplus user_name/password@connect_string @update_script
where
◆ user_name is the user name on the database server
◆ password is the password for this user name on the database server
◆ connect_string is the named SQLNet connection for this database
◆ update_script is the name of the patch script

http://www.oracle.com/technology/software/tech/java/sqlj_jdbc/index.html

Administering Platform LSF 237

Cluster Version Management and Patching on UNIX and Linux

Patching the Derby database
Prerequisites: The Derby database is properly configured and running:

To patch the reporting database as part of patching the cluster, get the
corresponding database update scripts and update the database schema first.

1 When you download the patches for your cluster, download the corresponding
database update scripts from Platform.

2 In the command console, open the database schema directory.
cd LSF_TOP/perf/lsf/version/DBschema/Derby

3 Start the ij tool.
ij.sh

4 Connect to the database.
connect
'jdbc:derby://host_name:port/db_name;user=user_name;password=pas
sword;'
where
◆ host_name is the Derby database host
◆ port is the Derby database port, 1527 by default
◆ db_name is the database name, app by default
◆ user_name is the database user name, app by default
◆ password is the database login password, app by default

5 Run the scripts to create a database schema.
run 'update_script'

where
◆ update_script is the full path to the patch script

Patching the Derby database

238 Administering Platform LSF

Administering Platform LSF 239

C H A P T E R

12
Upgrading Platform LSF HPC

Contents
◆ Upgrade Platform LSF HPC on page 239
◆ What lsfinstall does on page 239

Upgrade Platform LSF HPC
You can install Platform LSF HPC on UNIX or Linux hosts. Refer to the installation
guide for more information.
When you run lsfinstall for Platform LSF HPC, a number of changes are made for
you automatically.
A number of shared resources are added to lsf.shared that are required by LSF
HPC. When you upgrade Platform LSF HPC, you should add the appropriate
resource names under the RESOURCES column of the Host section of
lsf.cluster.cluster_name.

What lsfinstall does
◆ Installs Platform LSF HPC binary and configuration files
◆ Installs the LSF HPC license file
◆ Automatically configures the following files:

❖ lsb.hosts
❖ lsb.modules
❖ lsb.resources
❖ lsb.queues
❖ lsf.cluster.cluster_name
❖ lsf.conf
❖ lsf.shared

What lsfinstall does

240 Administering Platform LSF

lsb.hosts
For the default host, lsfinstall enables "!" in the MXJ column of the HOSTS section
of lsb.hosts. For example:

Begin Host

HOST_NAME MXJ r1m pg ls tmp DISPATCH_WINDOW # Keywords

#hostA () 3.5/4.5 15/ 12/15 0 () # Example

default ! () () () () ()

HPPA11 ! () () () () () #pset host

End Host

lsb.modules
◆ Adds the external scheduler plugin module names to the PluginModule section

of lsb.modules:
Begin PluginModule

SCH_PLUGIN RB_PLUGIN SCH_DISABLE_PHASES

schmod_default () ()

schmod_fcfs () ()

schmod_fairshare () ()

schmod_limit () ()

schmod_reserve () ()

schmod_preemption () ()

schmod_advrsv () ()

...

schmod_cpuset () ()

schmod_pset () ()

schmod_rms () ()

schmod_crayx1 () ()

schmod_crayxt3 () ()

End PluginModule

NOTE: The LSF HPC plugin names must be configured after the standard LSF plugin names in the
PluginModule list.

lsb.resources
For IBM POE jobs, lsfinstall configures the ReservationUsage section in
lsb.resources to reserve HPS resources on a per-slot basis.
Resource usage defined in the ReservationUsage section overrides the cluster-wide
RESOURCE_RESERVE_PER_SLOT parameter defined in lsb.params if it also
exists.
Begin ReservationUsag

RESOURCE METHOD

adapter_windows PER_SLOT

ntbl_windows PER_SLOT

csss PER_SLOT

Administering Platform LSF 241

Upgrading Platform LSF HPC

css0 PER_SLOT

End ReservationUsage

lsb.queues
◆ Configures hpc_ibm queue for IBM POE jobs and the hpc_ibm_tv queue for

debugging IBM POE jobs through Etnus TotalView®:
Begin Queue

QUEUE_NAME = hpc_ibm

PRIORITY = 30

NICE = 20

...

RES_REQ = select[poe > 0]

EXCLUSIVE = Y

REQUEUE_EXIT_VALUES = 133 134 135

DESCRIPTION = Platform HPC 7 for IBM. This queue is to run POE jobs
ONLY.

End Queue

Begin Queue

QUEUE_NAME = hpc_ibm_tv

PRIORITY = 30

NICE = 20

...

RES_REQ = select[poe > 0]

REQUEUE_EXIT_VALUES = 133 134 135

TERMINATE_WHEN = LOAD PREEMPT WINDOW

RERUNNABLE = NO

INTERACTIVE = NO

DESCRIPTION = Platform HPC 7 for IBM TotalView debug queue. This
queue is to run POE jobs ONLY.

End Queue

◆ Configures hpc_linux queue for LAM/MPI and MPICH-GM jobs and
hpc_linux_tv queue for debugging LAM/MPI and MPICH-GM jobs through
Etnus TotalView®:

Begin Queue

QUEUE_NAME = hpc_linux

PRIORITY = 30

NICE = 20

...

DESCRIPTION = Platform HPC 7 for linux.

End Queue

Begin Queue

QUEUE_NAME = hpc_linux_tv

What lsfinstall does

242 Administering Platform LSF

PRIORITY = 30

NICE = 20

...

TERMINATE_WHEN = LOAD PREEMPT WINDOW

RERUNNABLE = NO

INTERACTIVE = NO

DESCRIPTION = Platform HPC 7 for linux TotalView Debug queue.

End Queue

By default, LSF sends a SIGUSR2 signal to terminate a job that has reached its run
limit or deadline. Since LAM/MPI does not respond to the SIGUSR2 signal, you
should configure the hpc_linux queue with a custom job termination action
specified by the JOB_CONTROLS parameter.
◆ Configures rms queue for RMS jobs running in LSF HPC for LinuxQsNet.

Begin Queue

QUEUE_NAME = rms

PJOB_LIMIT = 1

PRIORITY = 30

NICE = 20

STACKLIMIT = 5256

DEFAULT_EXTSCHED = RMS[RMS_SNODE] # LSF will using this scheduling policy if

 # -extsched is not defined.

MANDATORY_EXTSCHED = RMS[RMS_SNODE] # LSF enforces this scheduling policy

RES_REQ = select[rms==1]

DESCRIPTION = Run RMS jobs only on hosts that have resource 'rms' defined

End Queue

TIP: To make the one of the LSF queues the default queue, set DEFAULT_QUEUE in
lsb.params.

Use the bqueues -l command to view the queue configuration details. Before
using LSF HPC, see the Platform LSF Configuration Reference to understand
queue configuration parameters in lsb.queues.

lsf.cluster.cluster_name
◆ Removes lsf_data and lsf_parallel from the PRODUCTS line of

lsf.cluster.cluster_name if they are already there.
◆ For IBM POE jobs, configures the ResourceMap section of

lsf.cluster.cluster_name to map the following shared resources for POE
jobs to all hosts in the cluster:

Begin ResourceMap

RESOURCENAME LOCATION

adapter_windows [default]

ntbl_windows [default]

poe [default]

dedicated_tasks (0@[default])

Administering Platform LSF 243

Upgrading Platform LSF HPC

ip_tasks (0@[default])

us_tasks (0@[default])

End ResourceMap

lsf.conf
◆ LSB_SUB_COMMANDNAME=Y to lsf.conf to enable the LSF_SUB_COMMANDLINE

environment variable required by esub.
◆ LSF_ENABLE_EXTSCHEDULER=Y

◆ LSF uses an external scheduler for topology-aware external scheduling.
◆ LSB_CPUSET_BESTCPUS=Y

◆ LSF schedules jobs based on the shortest CPU radius in the processor topology
using a best-fit algorithm for SGI cpuset allocation.

TIP: LSF_IRIX_BESTCPUS is obsolete.

◆ On SGI IRIX and SGI Altix hosts, sets the full path to the SGI vendor MPI
library libxmpi.so:
❖ On SGI IRIX: LSF_VPLUGIN="/usr/lib32/libxmpi.so"
❖ On SGI Altix: LSF_VPLUGIN="/usr/lib/libxmpi.so"
You can specify multiple paths for LSF_VPLUGIN, separated by colons (:). For
example, the following configures both /usr/lib32/libxmpi.so for SGI
IRIX, and /usr/lib/libxmpi.so for SGI IRIX:
LSF_VPLUGIN="/usr/lib32/libxmpi.so:/usr/lib/libxmpi.so"

◆ On HP-UX hosts, sets the full path to the HP vendor MPI library libmpirm.sl
LSF_VPLUGIN="/opt/mpi/lib/pa1.1/libmpirm.sl"

◆ LSB_RLA_PORT=port_number
Where port_number is the TCP port used for communication between the
Platform LSF HPC topology adapter (RLA) and sbatchd.
The default port number is 6883.

◆ LSB_SHORT_HOSTLIST=1

Displays an abbreviated list of hosts in bjobs and bhist for a parallel job where
multiple processes of a job are running on a host. Multiple processes are
displayed in the following format:
processes*hostA

lsf.shared
Defines the following shared resources required by LSF HPC in lsf.shared:

Begin Resource

RESOURCENAME TYPE INTERVAL INCREASING DESCRIPTION # Keywords

rms Boolean () () (RMS)

pset Boolean () () (PSET)

slurm Boolean () () (SLURM)

cpuset Boolean () () (CPUSET)

What lsfinstall does

244 Administering Platform LSF

mpich_gm Boolean () () (MPICH GM MPI)

lammpi Boolean () () (LAM MPI)

mpichp4 Boolean () () (MPICH P4 MPI)

mvapich Boolean () () (Infiniband MPI)

sca_mpimon Boolean () () (SCALI MPI)

ibmmpi Boolean () () (IBM POE MPI)

hpmpi Boolean () () (HP MPI)

sgimpi Boolean () () (SGI MPI)

intelmpi Boolean () () (Intel MPI)

crayxt3 Boolean () () (Cray XT3 MPI)

crayx1 Boolean () () (Cray X1 MPI)

fluent Boolean () () (fluent availability)

ls_dyna Boolean () () (ls_dyna availability)

nastran Boolean () () (nastran availability)

pvm Boolean () () (pvm availability)

openmp Boolean () () (openmp availability)

ansys Boolean () () (ansys availability)

blast Boolean () () (blast availability)

gaussian Boolean () () (gaussian availability)

lion Boolean () () (lion availability)

scitegic Boolean () () (scitegic availability)

schroedinger Boolean () () (schroedinger availability)

hmmer Boolean () () (hmmer availability)

adapter_windows Numeric 30 N (free adapter windows on css0 on IBM SP)

ntbl_windows Numeric 30 N (free ntbl windows on IBM HPS)

poe Numeric 30 N (poe availability)

css0 Numeric 30 N (free adapter windows on css0 on IBM SP)

csss Numeric 30 N (free adapter windows on csss on IBM SP)

dedicated_tasks Numeric () Y (running dedicated tasks)

ip_tasks Numeric () Y (running IP tasks)

us_tasks Numeric () Y (running US tasks)

End Resource

TIP: You should add the appropriate resource names under the RESOURCES column of the Host
section of lsf.cluster.cluster_name.

Administering Platform LSF 245

P A R T

II
Working with Resources

◆ Understanding Resources on page 247
◆ Adding Resources on page 269
◆ Managing Software Licenses with LSF on page 279

246 Administering Platform LSF

Administering Platform LSF 247

C H A P T E R

13
Understanding Resources

Contents
◆ About LSF Resources on page 248
◆ How Resources are Classified on page 250
◆ How LSF Uses Resources on page 253
◆ Load Indices on page 255
◆ Static Resources on page 259
◆ Automatic Detection of Hardware Reconfiguration on page 266

About LSF Resources

248 Administering Platform LSF

About LSF Resources
The LSF system uses built-in and configured resources to track job resource
requirements and schedule jobs according to the resources available on individual
hosts.

View available resources

View cluster resources (lsinfo)

1 Use lsinfo to list the resources available in your cluster.
The lsinfo command lists all the resource names and their descriptions.

lsinfo

RESOURCE_NAME TYPE ORDER DESCRIPTION

r15s Numeric Inc 15-second CPU run queue length

r1m Numeric Inc 1-minute CPU run queue length (alias:cpu)

r15m Numeric Inc 15-minute CPU run queue length

ut Numeric Inc 1-minute CPU utilization (0.0 to 1.0)

pg Numeric Inc Paging rate (pages/second)

io Numeric Inc Disk IO rate (Kbytes/second)

ls Numeric Inc Number of login sessions (alias: login)

it Numeric Dec Idle time (minutes) (alias: idle)

tmp Numeric Dec Disk space in /tmp (Mbytes)

swp Numeric Dec Available swap space (Mbytes) (alias:swap)

mem Numeric Dec Available memory (Mbytes)

ncpus Numeric Dec Number of CPUs

nprocs Numeric Dec Number of physical processors

ncores Numeric Dec Number of cores per physical processor

nthreads Numeric Dec Number of threads per processor

corendisks Numeric Dec Number of local disks

maxmem Numeric Dec Maximum memory (Mbytes)

maxswp Numeric Dec Maximum swap space (Mbytes)

maxtmp Numeric Dec Maximum /tmp space (Mbytes)

cpuf Numeric Dec CPU factor

...

View host resources (lshosts)

1 Run lshosts to get a list of the resources defined on a specific host:
lshosts hostA
HOST_NAME type model cpuf ncpus maxmem maxswp server RESOURCES
hostA SOL732 Ultra2 20.2 2 256M 679M Yes ()

Administering Platform LSF 249

Understanding Resources

View host load by resource

1 Run lshosts -s to view host load by shared resource:
lshosts -s
RESOURCE VALUE LOCATION
tot_lic 5 host1 host2
tot_scratch 500 host1 host2

The above output indicates that 5 licenses are available, and that the shared
scratch directory currently contains 500 MB of space.
The VALUE field indicates the amount of that resource. The LOCATION
column shows the hosts which share this resource. The lshosts -s command
displays static shared resources. The lsload -s command displays dynamic
shared resources.

How Resources are Classified

250 Administering Platform LSF

How Resources are Classified

Resource categories

By values

By the way values
change

By definitions

By scope

Boolean resources
Boolean resources (for example, server to denote LSF server hosts) have a value of
one (1) if they are defined for a host, and zero (0) if they are not defined for the host.
Use Boolean resources to configure host attributes to be used in selecting hosts to
run jobs. For example:
◆ Machines may have different types and versions of operating systems.
◆ Machines may play different roles in the system, such as file server or compute

server.
◆ Some machines may have special-purpose devices needed by some

applications.
◆ Certain software packages or licenses may be available only on some of the

machines.
Specify a Boolean resource in a resource requirement selection string of a job to
select only hosts that can run the job.

Boolean resources Resources that denote the availability of specific features
Numerical resources Resources that take numerical values, such as all the load

indices, number of processors on a host, or host CPU factor
String resources Resources that take string values, such as host type, host model,

host status

Dynamic Resources Resources that change their values dynamically: host status and
all the load indices.

Static Resources Resources that do not change their values: all resources except
for load indices or host status.

External Resources Custom resources defined by user sites: external load indices
and resources defined in the lsf.shared file (shared resources).

Built-In Resources Resources that are always defined in LSF, such as load indices,
number of CPUs, or total swap space.

Host-Based
Resources

Resources that are not shared among hosts, but are tied to
individual hosts, such as swap space, CPU, or memory. An
application must run on a particular host to access the
resources. Using up memory on one host does not affect the
available memory on another host.

Shared Resources Resources that are not associated with individual hosts in the
same way, but are owned by the entire cluster, or a subset of
hosts within the cluster, such as floating licenses or shared file
systems. An application can access such a resource from any
host which is configured to share it, but doing so affects its value
as seen by other hosts.

Administering Platform LSF 251

Understanding Resources

Some examples of Boolean resources:

Shared resources
Shared resources are configured resources that are not tied to a specific host, but are
associated with the entire cluster, or a specific subset of hosts within the cluster. For
example:
◆ Floating licenses for software packages
◆ Disk space on a file server which is mounted by several machines
◆ The physical network connecting the hosts
LSF does not contain any built-in shared resources. All shared resources must be
configured by the LSF administrator. A shared resource may be configured to be
dynamic or static. In the above example, the total space on the shared disk may be
static while the amount of space currently free is dynamic. A site may also configure
the shared resource to report numeric, string or Boolean values.
An application may use a shared resource by running on any host from which that
resource is accessible. For example, in a cluster in which each host has a local disk
but can also access a disk on a file server, the disk on the file server is a shared
resource, and the local disk is a host-based resource. In contrast to host-based
resources such as memory or swap space, using a shared resource from one
machine affects the availability of that resource as seen by other machines. There
will be one value for the entire cluster which measures the utilization of the shared
resource, but each host-based resource is measured separately.
The following restrictions apply to the use of shared resources in LSF products.
◆ A shared resource cannot be used as a load threshold in the Hosts section of

the lsf.cluster.cluster_name file.
◆ A shared resource cannot be used in the loadSched/loadStop thresholds, or in

the STOP_COND or RESUME_COND parameters in the queue definition in
the lsb.queues file.

Resource Name Describes Meaning of Example Name

cs Role in cluster Compute server
fs Role in cluster File server
solaris Operating system Solaris operating system
frame Available software FrameMaker license

How Resources are Classified

252 Administering Platform LSF

View shared resources for hosts

1 Run bhosts -s to view shared resources for hosts. For example:
bhosts -s
RESOURCE TOTAL RESERVED LOCATION
tot_lic 5 0.0 hostA hostB
tot_scratch 00 0.0 hostA hostB
avail_lic 2 3.0 hostA hostB
avail_scratch 100 400.0 hostA hostB

The TOTAL column displays the value of the resource. For dynamic resources,
the RESERVED column displays the amount that has been reserved by running
jobs.

Administering Platform LSF 253

Understanding Resources

How LSF Uses Resources
Jobs submitted through the LSF system will have the resources they use monitored
while they are running. This information is used to enforce resource usage limits
and load thresholds as well as for fairshare scheduling.
LSF collects information such as:
◆ Total CPU time consumed by all processes in the job
◆ Total resident memory usage in KB of all currently running processes in a job
◆ Total virtual memory usage in KB of all currently running processes in a job
◆ Currently active process group ID in a job
◆ Currently active processes in a job
On UNIX, job-level resource usage is collected through a special process called
PIM (Process Information Manager). PIM is managed internally by LSF.

Viewing job resource usage
The -l option of the bjobs command displays the current resource usage of the job.
The usage information is sampled by PIM every 30 seconds and collected by
sbatchd at a maximum frequency of every SBD_SLEEP_TIME (configured in the
lsb.params file) and sent to mbatchd. The update is done only if the value for the
CPU time, resident memory usage, or virtual memory usage has changed by more
than 10 percent from the previous update, or if a new process or process group has
been created.

View load on a host

1 Run bhosts -l to check the load levels on the host, and adjust the suspending
conditions of the host or queue if necessary.
The bhosts -l command gives the most recent load values used for the
scheduling of jobs. A dash (-) in the output indicates that the particular
threshold is not defined.
bhosts -l hostB
HOST: hostB
STATUS CPUF JL/U MAX NJOBS RUN SSUSP USUSP RSV
ok 20.00 2 2 0 0 0 0 0

CURRENT LOAD USED FOR SCHEDULING:
r15s r1m r15m ut pg io ls t tmp swp

mem
Total 0.3 0.8 0.9 61% 3.8 72 26 0 6M 253
M 297M
Reserved 0.0 0.0 0.0 0% 0.0 0 0 0 0M 0M

0M

LOAD THRESHOLD USED FOR SCHEDULING:
r15s r1m r15m ut pg io ls it tmp swp mem

loadSched - - - - - - - - - - -
loadStop - - - - - - - - - - -

 cpuspeed bandwidth

How LSF Uses Resources

254 Administering Platform LSF

loadSched - -
loadStop - -

Administering Platform LSF 255

Understanding Resources

Load Indices
Load indices are built-in resources that measure the availability of static or
dynamic, non-shared resources on hosts in the LSF cluster.
Load indices built into the LIM are updated at fixed time intervals.
External load indices are defined and configured by the LSF administrator, who
writes an external load information manager (elim) executable. The elim collects
the values of the external load indices and sends these values to the LIM.

Load indices collected by LIM

Status
The status index is a string indicating the current status of the host. This status
applies to the LIM and RES.
The possible values for status are:

Index Measures Units Direction Averaged
over

Update Interval

status host status string 15 seconds
r15s run queue length processes increasing 15 seconds 15 seconds
r1m run queue length processes increasing 1 minute 15 seconds
r15m run queue length processes increasing 15 minutes 15 seconds
ut CPU utilization percent increasing 1 minute 15 seconds
pg paging activity pages in + pages out

per second
increasing 1 minute 15 seconds

ls logins users increasing N/A 30 seconds
it idle time minutes decreasing N/A 30 seconds
swp available swap space MB decreasing N/A 15 seconds
mem available memory MB decreasing N/A 15 seconds
tmp available space in temporary

file system
MB decreasing N/A 120 seconds

io disk I/O (shown by lsload -l) KB per second increasing 1 minute 15 seconds
name external load index configured by LSF administrator site-defined

Load Indices

256 Administering Platform LSF

NOTE: The term available is frequently used in command output titles and headings.
Available means a host is in any state except unavail. This means an available host
could be unlicensed, locked, busy, or ok.

CPU run queue lengths (r15s, r1m, r15m)
The r15s, r1m and r15m load indices are the 15-second, 1-minute and 15-minute
average CPU run queue lengths. This is the average number of processes ready to
use the CPU during the given interval.
On UNIX, run queue length indices are not necessarily the same as the load
averages printed by the uptime(1) command; uptime load averages on some
platforms also include processes that are in short-term wait states (such as paging
or disk I/O).

Effective run queue
length

On multiprocessor systems, more than one process can execute at a time. LSF scales
the run queue value on multiprocessor systems to make the CPU load of
uniprocessors and multiprocessors comparable. The scaled value is called the
effective run queue length.
Use lsload -E to view the effective run queue length.

Normalized run
queue length

LSF also adjusts the CPU run queue based on the relative speeds of the processors
(the CPU factor). The normalized run queue length is adjusted for both number of
processors and CPU speed. The host with the lowest normalized run queue length
will run a CPU-intensive job the fastest.
Use lsload -N to view the normalized CPU run queue lengths.

CPU utilization (ut)
The ut index measures CPU utilization, which is the percentage of time spent
running system and user code. A host with no process running has a ut value of 0
percent; a host on which the CPU is completely loaded has a ut of 100 percent.

Status Description

ok The host is available to accept remote jobs. The LIM can select the host
for remote execution.

-ok When the status of a host is preceded by a dash (-), it means LIM is
available but RES is not running on that host or is not responding.

busy The host is overloaded (busy) because a load index exceeded a
configured threshold. An asterisk (*) marks the offending index. LIM
will not select the host for interactive jobs.

lockW The host is locked by its run window. Use lshosts to display run
windows.

lockU The host is locked by an LSF administrator or root.
unavail The host is down or the LIM on the host is not running or is not

responding.
unlicensed The host does not have a valid license.

Administering Platform LSF 257

Understanding Resources

Paging rate (pg)
The pg index gives the virtual memory paging rate in pages per second. This index
is closely tied to the amount of available RAM memory and the total size of the
processes running on a host; if there is not enough RAM to satisfy all processes, the
paging rate will be high. Paging rate is a good measure of how a machine will
respond to interactive use; a machine that is paging heavily feels very slow.

Login sessions (ls)
The ls index gives the number of users logged in. Each user is counted once, no
matter how many times they have logged into the host.

Interactive idle time (it)
On UNIX, the it index is the interactive idle time of the host, in minutes. Idle time
is measured from the last input or output on a directly attached terminal or a
network pseudo-terminal supporting a login session. This does not include activity
directly through the X server such as CAD applications or emacs windows, except
on Solaris and HP-UX systems.
On Windows, the it index is based on the time a screen saver has been active on a
particular host.

Temporary directories (tmp)
The tmp index is the space available in MB on the file system that contains the
temporary directory:
◆ /tmp on UNIX
◆ C:\temp on Windows

Swap space (swp)
The swp index gives the currently available virtual memory (swap space) in MB.
This represents the largest process that can be started on the host.

Memory (mem)
The mem index is an estimate of the real memory currently available to user
processes. This represents the approximate size of the largest process that could be
started on a host without causing the host to start paging.
LIM reports the amount of free memory available. LSF calculates free memory as a
sum of physical free memory, cached memory, buffered memory and an
adjustment value. The command vmstat also reports free memory but displays
these values separately. There may be a difference between the free memory
reported by LIM and the free memory reported by vmstat because of virtual
memory behavior variations among operating systems. You can write an ELIM that
overrides the free memory values returned by LIM.

I/O rate (io)
The io index measures I/O throughput to disks attached directly to this host, in KB
per second. It does not include I/O to disks that are mounted from other hosts.

Load Indices

258 Administering Platform LSF

Viewing information about load indices

lsinfo -l The lsinfo -l command displays all information available about load indices in
the system. You can also specify load indices on the command line to display
information about selected indices:
lsinfo -l swp

RESOURCE_NAME: swp

DESCRIPTION: Available swap space (Mbytes) (alias: swap)

TYPE ORDER INTERVAL BUILTIN DYNAMIC RELEASE

Numeric Dec 60 Yes Yes NO

lsload -l The lsload -l command displays the values of all load indices. External load
indices are configured by your LSF administrator:

lsload

HOST_NAME status r15s r1m r15m ut pg ls it tmp swp mem

hostN ok 0.0 0.0 0.1 1% 0.0 1 224 43M 67M 3M

hostK -ok 0.0 0.0 0.0 3% 0.0 3 0 38M 40M 7M

hostF busy 0.1 0.1 0.3 7% *17 6 0 9M 23M 28M

hostG busy *6.2 6.9 9.5 85% 1.1 30 0 5M 400M 385M

hostV unavail

Administering Platform LSF 259

Understanding Resources

Static Resources
Static resources are built-in resources that represent host information that does not
change over time, such as the maximum RAM available to user processes or the
number of processors in a machine. Most static resources are determined by the
LIM at start-up time, or when LSF detects hardware configuration changes.
Static resources can be used to select appropriate hosts for particular jobs based on
binary architecture, relative CPU speed, and system configuration.
The resources ncpus, nprocs, ncores, nthreads, maxmem, maxswp, and maxtmp are
not static on UNIX hosts that support dynamic hardware reconfiguration.

Static resources reported by LIM

Host type (type)
Host type is a combination of operating system and CPU architecture. All
computers that run the same operating system on the same computer architecture
are of the same type. You can add custom host types in the HostType section of
lsf.shared. This alphanumeric value can be up to 39 characters long.
An example of host type is LINUX86.

Host model (model)
Host model is the combination of host type and CPU speed (CPU factor) of your
machine. All hosts of the same relative type and speed are assigned the same host
model. You can add custom host models in the HostModel section of lsf.shared.
This alphanumeric value can be up to 39 characters long.
An example of host model is Intel_IA64.

Index Measures Units Determined by

type host type string configuration
model host model string configuration
hname host name string configuration
cpuf CPU factor relative configuration
server host can run remote jobs Boolean configuration
rexpri execution priority nice(2) argument configuration
ncpus number of processors processors LIM
ndisks number of local disks disks LIM
nprocs number of physical

processors
processors LIM

ncores number of cores per physical
processor

cores LIM

nthread
s

number of threads per
processor core

threads LIM

maxmem maximum RAM MB LIM
maxswp maximum swap space MB LIM
maxtmp maximum space in /tmp MB LIM

Static Resources

260 Administering Platform LSF

Host name (hname)
Host name specifies the name with which the host identifies itself.

CPU factor (cpuf)
The CPU factor (frequently shortened to cpuf) represents the speed of the host
CPU relative to other hosts in the cluster. For example, if one processor is twice the
speed of another, its CPU factor should be twice as large. For multiprocessor hosts,
the CPU factor is the speed of a single processor; LSF automatically scales the host
CPU load to account for additional processors. The CPU factors are detected
automatically or defined by the administrator.

Server
The server static resource is Boolean. It has the following values:
◆ 1 if the host is configured to run jobs from other hosts
◆ 0 if the host is an LSF client for submitting jobs to other hosts

Number of CPUs (ncpus)
By default, the number of CPUs represents the number of physical processors a
machine has. As most CPUs consist of multiple cores, threads, and processors,
ncpus can be defined by the cluster administrator (either globally or per-host) to
consider one of the following:
◆ Processors
◆ Processors and cores
◆ Processors, cores, and threads
Globally, this definition is controlled by the parameter EGO_DEFINE_NCPUS in
lsf.conf or ego.conf. The default behavior for ncpus is to consider only the
number of physical processors (EGO_DEFINE_NCPUS=procs).

NOTE:
1 On a machine running AIX, ncpus detection is different. Under AIX, the number of detected

physical processors is always 1, whereas the number of detected cores is the number of cores
across all physical processors. Thread detection is the same as other operating systems (the
number of threads per core).

2 When PARALLEL_SCHED_BY_SLOT=Y in lsb.params, the resource requirement string
keyword ncpus refers to the number of slots instead of the number of processors, however
lshosts output will continue to show ncpus as defined by EGO_DEFINE_NCPUS in
lsf.conf.

Number of disks (ndisks)
The number of disks specifies the number of local disks a machine has, determined
by the LIM.

Maximum memory (maxmem)
Maximum memory is the total available memory of a machine, measured in
megabytes (MB).

Administering Platform LSF 261

Understanding Resources

Maximum swap (maxswp)
Maximum swap is the total available swap space a machine has, measured in
megabytes (MB).

Maximum temporary space (maxtmp)
Maximum temporary space is the total temporary space a machine has, measured
in megabytes (MB).

How LIM detects cores, threads and processors
Traditionally, the value of ncpus has been equal to the number of physical CPUs.
However, many CPUs consist of multiple cores and threads, so the traditional 1:1
mapping is no longer useful. A more useful approach is to set ncpus to equal one of
the following:
◆ The number of processors (this is the ncpus default setting)
◆ Cores—the number of cores (per processor) * the number of processors
◆ Threads—the number of threads (per core) * the number of cores

(per processor) * the number of processors
A cluster administrator globally defines how ncpus is computed using the
EGO_DEFINE_NCPUS parameter in lsf.conf or ego.conf (instead of
LSF_ENABLE_DUALCORE in lsf.conf, or EGO_ENABLE_DUALCORE in
ego.conf).
See Define ncpus—processors, cores, or threads on page 262 for details.
LIM detects and stores the number of processors, cores, and threads for all
supported architectures. The following diagram illustrates the flow of information
between daemons, CPUs, and other components.

Although the ncpus computation is applied globally, it can be overridden on a
per-host basis. See Override the global configuration of ncpus computation on page
263 for details.

Static Resources

262 Administering Platform LSF

To correctly detect processors, cores, and threads, LIM assumes that all physical
processors on a single machine are of the same type.
In cases where CPU architectures and operating system combinations may not
support accurate processor, core, thread detection, LIM uses the defaults of
1 processor, 1 core per physical processor, and 1 thread per core. If LIM detects that
it is running in a virtual environment (for example, VMware®), each detected
processor is similarly reported (as a single-core, single-threaded, physical
processor).
LIM only detects hardware that is recognized by the operating system. LIM
detection uses processor- or OS-specific techniques (for example, the Intel CPUID
instruction, or Solaris kstat()/core_id). If the operating system does not
recognize a CPU or core (for example, if an older OS does not recognize a
quad-core processor and instead detects it as dual-core), then LIM will not
recognize it either.

NOTE: RQL normalization never considers threads. Consider a hyper-thread enabled Pentium:
Threads are not full-fledged CPUs, so considering them as CPUs would artificially lower the system
load.

ncpus detection on
AIX

On a machine running AIX, detection of ncpus is different. Under AIX, the
number of detected physical processors is always 1, whereas the number of detected
cores is always the number of cores across all physical processors. Thread detection
is the same as other operating systems (the number of threads per core).

Define ncpus—processors, cores, or threads
A cluster administrator must define how ncpus is computed. Usually, the number
of available job slots is equal to the value of ncpus; however, slots can be redefined
at the EGO resource group level. The ncpus definition is globally applied across the
cluster.

1 Open lsf.conf or ego.conf.
◆ UNIX and Linux:

LSF_CONFDIR/lsf.conf

LSF_CONFDIR/ego/cluster_name/kernel/ego.conf

◆ Windows:
LSF_CONFDIR\lsf.conf

LSF_CONFDIR\ego\cluster_name\kernel\ego.conf

IMPORTANT: You can set EGO_DEFINE_NCPUS in ego.conf only if EGO is enabled in the LSF
cluster. If EGO is not enabled, you must set EGO_DEFINE_NCPUS in lsf.conf.

2 Define the parameter EGO_DEFINE_NCPUS=[procs | cores | threads].
Set it to one of the following:
◆ procs (where ncpus=procs)
◆ cores (where ncpus=procs * cores)

Administering Platform LSF 263

Understanding Resources

◆ threads (where ncpus=procs * cores * threads)
By default, ncpus is set to procs (number of processors).

NOTE: In clusters with older LIMs that do not recognize cores and threads,
EGO_DEFINE_NCPUS is ignored. In clusters where only the master LIM recognizes cores and
threads, the master LIM assigns default values (for example, in Platform LSF 6.2: 1 core, 1
thread).

3 Save and close lsf.conf or ego.conf.

TIP: As a best practice, set EGO_DEFINE_NCPUS instead of EGO_ENABLE_DUALCORE. The
functionality of EGO_ENABLE_DUALCORE=y is preserved by setting EGO_DEFINE_NCPUS=cores.

Interaction with LSF_LOCAL_RESOURCES in lsf.conf

If EGO is enabled, and EGO_LOCAL_RESOURCES is set in ego.conf and
LSF_LOCAL_RESOURCES is set in lsf.conf, EGO_LOCAL_RESOURCES takes
precedence.

Override the global configuration of ncpus computation
The cluster administrator globally defines how the ncpus resource is computed.
The ncpus global definition can be overridden on specified dynamic and static
hosts in the cluster.

Defining computation of ncpus on dynamic hosts

1 Open lsf.conf or ego.conf.
◆ UNIX and Linux:

LSF_CONFDIR/lsf.conf

LSF_CONFDIR/ego/cluster_name/kernel/ego.conf

◆ Windows:
LSF_CONFDIR\lsf.conf

LSF_CONFDIR\ego\cluster_name\kernel\ego.conf

IMPORTANT: You can set EGO_LOCAL_RESOURCES in ego.conf only if EGO is enabled in the
LSF cluster. If EGO is not enabled, you must set EGO_LOCAL_RESOURCES in lsf.conf.

2 Define the parameter EGO_LOCAL_RESOURCES="[resource resource_name]".
Set resource_name to one of the following:
◆ define_ncpus_procs

◆ define_ncpus_cores

◆ define_ncpus_threads

NOTE: Resource definitions are mutually exclusive. Choose only one resource definition per
host.

Static Resources

264 Administering Platform LSF

For example:
◆ Windows: EGO_LOCAL_RESOURCES="[type NTX86] [resource

define_ncpus_procs]"

◆ Linux: EGO_LOCAL_RESOURCES="[resource define_ncpus_cores]"
3 Save and close ego.conf.

NOTE: In multi-cluster environments, if ncpus is defined on a per-host basis (thereby overriding
the global setting) the definition is applied to all clusters that the host is a part of. In contrast,
globally defined ncpus settings only take effect within the cluster for which EGO_DEFINE_NCPUS
is defined.

Defining computation of ncpus on static hosts

1 Open lsf.cluster.cluster_name.
◆ Linux: LSF_CONFDIR/lsf.cluster.cluster_name
◆ Windows: LSF_CONFDIR\lsf.cluster.cluster_name

2 Find the host you for which you want to define ncpus computation. In the
RESOURCES column, add one of the following definitions:
◆ define_ncpus_procs

◆ define_ncpus_cores

◆ define_ncpus_threads

NOTE: Resource definitions are mutually exclusive. Choose only one resource definition per
host.

For example:
Begin Host

HOSTNAME model type r1m mem swp RESOURCES #Keywords

#lemon PC200 LINUX86 3.5 1 2 (linux)

#plum ! NTX86 3.5 1 2 (nt)

Host_name ! NTX86 - - - (define_ncpus_procs)

End Host

3 Save and close lsf.cluster.cluster_name.
4 Restart the master host.

NOTE: In multi-cluster environments, if ncpus is defined on a per-host basis (thereby overriding
the global setting) the definition is applied to all clusters that the host is a part of. In contrast,
globally defined ncpus settings only take effect within the cluster for which EGO_DEFINE_NCPUS
is defined.

Administering Platform LSF 265

Understanding Resources

Interaction with LSF_LOCAL_RESOURCES in lsf.conf

If EGO is enabled, and EGO_LOCAL_RESOURCES is set in ego.conf and
LSF_LOCAL_RESOURCES is set in lsf.conf, EGO_LOCAL_RESOURCES takes
precedence.

Automatic Detection of Hardware Reconfiguration

266 Administering Platform LSF

Automatic Detection of Hardware Reconfiguration
Some UNIX operating systems support dynamic hardware reconfiguration—that
is, the attaching or detaching of system boards in a live system without having to
reboot the host.

Supported platforms
LSF is able to recognize changes in ncpus, maxmem, maxswp, maxtmp in the following
platforms:
◆ Sun Solaris 2.5+
◆ HP-UX 10.10+
◆ IBM AIX 4.0+
◆ SGI IRIX 6.2+

Dynamic changes in ncpus
LSF is able to automatically detect a change in the number of processors in systems
that support dynamic hardware reconfiguration.
The local LIM checks if there is a change in the number of processors at an internal
interval of 2 minutes. If it detects a change in the number of processors, the local
LIM also checks maxmem, maxswp, maxtmp. The local LIM then sends this new
information to the master LIM.

Dynamic changes in maxmem, maxswp, maxtmp
If you dynamically change maxmem, maxswp, or maxtmp without changing the
number of processors, you need to restart the local LIM with the command
lsadmin limrestart so that it can recognize the changes.
If you dynamically change the number of processors and any of maxmem, maxswp, or
maxtmp, the change will be automatically recognized by LSF. When it detects a
change in the number of processors, the local LIM also checks maxmem, maxswp,
maxtmp.

Viewing dynamic hardware changes

lsxxx Commands There may be a 2 minute delay before the changes are recognized by lsxxx
commands (for example, before lshosts displays the changes).

bxxx Commands There may be at most a 2 + 10 minute delay before the changes are recognized by
bxxx commands (for example, before bhosts -l displays the changes).
This is because mbatchd contacts the master LIM at an internal interval of 10
minutes.

Platform
MultiCluster

Configuration changes from a local cluster are communicated from the master LIM
to the remote cluster at an interval of 2 * CACHE_INTERVAL. The parameter
CACHE_INTERVAL is configured in lsf.cluster.cluster_name and is by default
60 seconds.
This means that for changes to be recognized in a remote cluster there is a
maximum delay of 2 minutes + 2*CACHE_INTERVAL.

Administering Platform LSF 267

Understanding Resources

How dynamic hardware changes affect LSF
LSF uses ncpus, maxmem, maxswp, maxtmp to make scheduling and load decisions.
When processors are added or removed, LSF licensing is affected because LSF
licenses are based on the number of processors.
If you put a processor offline:
◆ Per host or per-queue load thresholds may be exceeded sooner. This is because

LSF uses the number of CPUS and relative CPU speeds to calculate effective
run queue length.

◆ The value of CPU run queue lengths (r15s, r1m, and r15m) increases.
◆ Jobs may also be suspended or not dispatched because of load thresholds.
◆ Per-processor job slot limit (PJOB_LIMIT in lsb.queues) may be exceeded

sooner.
If you put a new processor online:
◆ Load thresholds may be reached later.
◆ The value of CPU run queue lengths (r15s, r1m, and r15m) is decreased.
◆ Jobs suspended due to load thresholds may be resumed.
Per-processor job slot limit (PJOB_LIMIT in lsb.queues) may be reached later.

Set the external static LIM
Use the external static LIM to automatically detect the operating system type and
version of hosts.

1 In lsf.shared, remove the comment from the indices you want detected.
2 In $LSF_SERVERDIR, rename tmp.eslim.<extension> to

eslim.extension.

3 Set EGO_ESLIM_TIMEOUT in lsf.conf or ego.conf.
4 Restart the lim on all hosts.

Set the external static LIM

268 Administering Platform LSF

Administering Platform LSF 269

C H A P T E R

14
Adding Resources

Contents
◆ About Configured Resources on page 270
◆ Add New Resources to Your Cluster on page 271
◆ Static Shared Resource Reservation on page 277
◆ External Load Indices on page 278
◆ Modifying a Built-In Load Index on page 278

About Configured Resources

270 Administering Platform LSF

About Configured Resources
LSF schedules jobs based on available resources. There are many resources built
into LSF, but you can also add your own resources, and then use them same way as
built-in resources.
For maximum flexibility, you should characterize your resources clearly enough so
that users have satisfactory choices. For example, if some of your machines are
connected to both Ethernet and FDDI, while others are only connected to Ethernet,
then you probably want to define a resource called fddi and associate the fddi
resource with machines connected to FDDI. This way, users can specify resource
fddi if they want their jobs to run on machines connected to FDDI.

Administering Platform LSF 271

Adding Resources

Add New Resources to Your Cluster

1 Log in to any host in the cluster as the LSF administrator.
2 Define new resources in the Resource section of lsf.shared. Specify at least

a name and a brief description, which will be displayed to a user by lsinfo.
See Configuring lsf.shared Resource Section on page 272.

3 For static Boolean resources and static or dynamic string resources, for all hosts
that have the new resources, add the resource name to the RESOURCES
column in the Host section of lsf.cluster.cluster_name.
See Configuring lsf.cluster.cluster_name Host Section on page 274.

4 For shared resources, for all hosts that have the new resources, associate the
resources with the hosts (you might also have a reason to configure non-shared
resources in this section).
See Configuring lsf.cluster.cluster_name ResourceMap Section on page 275.

5 Reconfigure your cluster.

Configuring lsf.shared Resource Section

272 Administering Platform LSF

Configuring lsf.shared Resource Section
Configured resources are defined in the Resource section of lsf.shared. There is
no distinction between shared and non-shared resources.
You must specify at least a name and description for the resource, using the
keywords RESOURCENAME and DESCRIPTION.
◆ A resource name cannot begin with a number.
◆ A resource name cannot contain any of the following characters

: . () [+ - * / ! & | < > @ =

◆ A resource name cannot be any of the following reserved keywords:
cpu cpuf io logins ls idle maxmem maxswp maxtmp type model

status it mem ncpus nprocs ncores nthreads

define_ncpus_cores define_ncpus_procs define_ncpus_threads

ndisks pg r15m r15s r1m swap swp tmp ut

◆ To avoid conflict with inf and nan keywords in 3rd-party libraries, resource
names should not begin with inf or nan (upper case or lower case). Resource
requirment strings, such as -R "infra" or -R "nano" will cause an error. Use
-R "defined(infxx)" or -R "defined(nanxx)", to specify these resource
names.

◆ Resource names are case sensitive
◆ Resource names can be up to 39 characters in length
You can also specify:
◆ The resource type (TYPE = Boolean | String | Numeric). The default is Boolean.
◆ For dynamic resources, the update interval (INTERVAL, in seconds)
◆ For numeric resources, where a higher value indicates greater load

(INCREASING = Y)
◆ For numeric shared resources, where LSF releases the resource when a job

using the resource is suspended (RELEASE = Y)
When the optional attributes are not specified, the resource is treated as static and
Boolean.

Defining consumable resources
Specify resources as consumable in the CONSUMABLE column of the RESOURCE
section of lsf.shared to explicitly control if a resource is consumable. Static and
dynamic numeric resources can be specified as consumable. CONSUMABLE is
optional. The defaults for the consumable attribute are:
◆ Built-in indicies:

❖ The following are consumable: r15s, r1m, r15m, ut, pg, io, ls, it, tmp, swp,
mem.

❖ All other built-in static resources are not consumable. (e.g., ncpus, ndisks,
maxmem, maxswp, maxtmp, cpuf, type, model, status, rexpri, server,
hname).

◆ External shared resources:

Administering Platform LSF 273

Adding Resources

❖ All numeric resources are consumable.
❖ String and boolean resources are not consumable.

You should only specify consumable resources in the rusage section of a resource
requirement string. Non-consumable resources are ignored in rusage sections.
A non-consumable resource should not be releasable. Non-consumable numeric
resource should be able to be used in order, select and same sections of a resource
requirement string.
When LSF_STRICT_RESREQ=Y in lsf.conf, LSF rejects resource requirement
strings where an rusage section contains a non-consumable resource.

Viewing consumable resources
Use lsfinfo -l to view consumable resources. For example:
lsinfo -l switch

RESOURCE_NAME: switch

DESCRIPTION: Network Switch

TYPE ORDER INTERVAL BUILTIN DYNAMIC RELEASE CONSUMABLE

Numeric Inc 0 No No No No

lsinfo -l specman

RESOURCE_NAME: specman

DESCRIPTION: Specman

TYPE ORDER INTERVAL BUILTIN DYNAMIC RELEASE CONSUMABLE

Numeric Dec 0 No No Yes Yes

Example
Begin Resource

RESOURCENAME TYPE INTERVAL INCREASING CONSUMABLE DESCRIPTION # Keywords

 patchrev Numeric () Y () (Patch revision)

 specman Numeric () N () (Specman)

 switch Numeric () Y N (Network Switch)

 rack String () () () (Server room rack)

 owner String () () () (Owner of the host)

 elimres Numeric 10 Y () (elim generated index)

End Resource

Resources required for JSDL
The following resources are pre-defined to support the submission of jobs using
JSDL files.

Begin Resource

RESOURCENAME TYPE INTERVAL INCREASING DESCRIPTION

osname String 600 () (OperatingSystemName)

osver String 600 () (OperatingSystemVersion)

cpuarch String 600 () (CPUArchitectureName)

cpuspeed Numeric 60 Y (IndividualCPUSpeed)

Configuring lsf.cluster.cluster_name Host Section

274 Administering Platform LSF

bandwidth Numeric 60 Y (IndividualNetworkBandwidth)

End Resource

Configuring lsf.cluster.cluster_name Host Section
The Host section is the only required section in lsf.cluster.cluster_name. It
lists all the hosts in the cluster and gives configuration information for each host.
Define the resource names as strings in the Resource section of lsf.shared. You
may list any number of resources, enclosed in parentheses and separated by blanks
or tabs.
If you need to define shared resources across hosts, you must use the ResourceMap
section.
String resources cannot contain spaces. Static numeric and string resources use
following syntax:
resource_name=resource_value

Resource_value must be alphanumeric.
For dynamic numeric and string resources, use resource_name directly.
If resources are defined in both the resource column of the Host section and the
ResourceMap section, the definition in the resource column takes affect.

Example
Begin Host

HOSTNAME model type server r1m mem swp RESOURCES #Keywords

hostA ! ! 1 3.5 () () (mg elimres patchrev=3 owner=user1)

hostB ! ! 1 3.5 () () (specman=5 switch=1 owner=test)

hostC ! ! 1 3.5 () () (switch=2 rack=rack2_2_3 owner=test)

hostD ! ! 1 3.5 () () (switch=1 rack=rack2_2_3 owner=test)

End Host

Administering Platform LSF 275

Adding Resources

Configuring lsf.cluster.cluster_name ResourceMap Section
Resources are associated with the hosts for which they are defined in the
ResourceMap section of lsf.cluster.cluster_name.
For each resource, you must specify the name and the hosts that have it.
If the ResourceMap section is not defined, then any dynamic resources specified in
lsf.shared are not tied to specific hosts, but are shared across all hosts in the
cluster.

Example
A cluster consists of hosts host1, host2, and host3.
Begin ResourceMap

RESOURCENAME LOCATION

verilog (5@[all ~host1 ~host2])

synopsys (2@[host1 host2] 2@[others])

console (1@[host1] 1@[host2] 1@[host3])

xyz (1@[default])

End ResourceMap

In this example:
◆ 5 units of the verilog resource are defined on host3 only (all hosts except

host1 and host2).
◆ 2 units of the synopsys resource are shared between host1 and host2. 2 more

units of the synopsys resource are defined on host3 (shared among all the
remaining hosts in the cluster).

◆ 1 unit of the console resource is defined on each host in the cluster (assigned
explicitly). 1 unit of the xyz resource is defined on each host in the cluster
(assigned with the keyword default).

RESTRICTION: For Solaris machines, the keyword int is reserved.

Resources required for JSDL

If you plan to submit jobs using JSDL files, you must uncomment the following
lines:
RESOURCENAME LOCATION

osname [default]

osver [default]

cpuarch [default]

cpuspeed [default]

bandwidth [default]

RESOURCENAME
The name of the resource, as defined in lsf.shared.

Configuring lsf.cluster.cluster_name ResourceMap Section

276 Administering Platform LSF

LOCATION
Defines the hosts that share the resource. For a static resource, you must define an
initial value here as well. Do not define a value for a dynamic resource.
Possible states of a resource:
◆ Each host in the cluster has the resource
◆ The resource is shared by all hosts in the cluster
◆ There are multiple instances of a resource within the cluster, and each instance

is shared by a unique subset of hosts.

Syntax
([resource_value@][host_name... | all [~host_name]... | others | default] ...)

◆ For resource_value, square brackets are not valid.
◆ For static resources, you must include the resource value, which indicates the

quantity of the resource. Do not specify the resource value for dynamic
resources because information about dynamic resources is updated by ELIM.

◆ Type square brackets around the list of hosts, as shown. You can omit the
parenthesis if you only specify one set of hosts.

◆ Each set of hosts within square brackets specifies an instance of the resource.
The same host cannot be in more than one instance of a resource. All hosts
within the instance share the quantity of the resource indicated by its value.

◆ The keyword all refers to all the server hosts in the cluster, collectively. Use the
not operator (~) to exclude hosts or host groups.

◆ The keyword others refers to all hosts not otherwise listed in the instance.
◆ The keyword default refers to each host in the cluster, individually.

Non-batch configuration
The following items should be taken into consideration when configuring
resources.
◆ In lsf.cluster.cluster_name, the Host section must precede the

ResourceMap section, since the ResourceMap section uses the host names
defined in the Host section.

◆ Use the RESOURCES column in the Host section of the
lsf.cluster.cluster_name file to associate static Boolean resources with
particular hosts.

◆ Most resources specified in the ResourceMap section are interpreted by LSF
commands as shared resources, which are displayed using lsload -s or
lshosts -s. The exceptions are:
❖ Non-shared static resources
❖ Dynamic numeric resources specified using the default keyword. These

are host-based resources and behave like the built-in load indices such as
mem and swp. They are viewed using lsload -l or lsload -I.

Administering Platform LSF 277

Adding Resources

Static Shared Resource Reservation
You must use resource reservation to prevent over-committing static shared
resources when scheduling.
The usual situation is that you configure single-user application licenses as static
shared resources, and make that resource one of the job requirements. You should
also reserve the resource for the duration of the job. Otherwise, LSF updates
resource information, assumes that all the static shared resources can be used, and
places another job that requires that license. The additional job cannot actually run
if the license is already taken by a running job.
If every job that requests a license and also reserves it, LSF updates the number of
licenses at the start of each new dispatch turn, subtracts the number of licenses that
are reserved, and only dispatches additional jobs if there are licenses available that
are not already in use.

Reserving a static shared resource
To indicate that a shared resource is to be reserved while a job is running, specify
the resource name in the rusage section of the resource requirement string.

Example You configured licenses for the Verilog application as a resource called
verilog_lic. To submit a job that will run on a host when there is a license
available:
bsub -R "select[defined(verilog_lic)] rusage[verilog_lic=1]" myjob

If the job can be placed, the license it uses will be reserved until the job completes.

External Load Indices

278 Administering Platform LSF

External Load Indices
If you have specific workload or resource requirements at your site, the LSF
administrator can define external resources. You can use both built-in and external
resources for LSF job scheduling and host selection.
External load indices report the values of dynamic external resources. A dynamic
external resource is a site-specific resource with a numeric value that changes over
time, such as the space available in a directory. Use the external load indices feature
to make the values of dynamic external resources available to LSF, or to override the
values reported for an LSF built-in load index. For detailed information about the
external load indices feature, see the Platform LSF Configuration Reference.

Modifying a Built-In Load Index
An elim executable can be used to override the value of a built-in load index. For
example, if your site stores temporary files in the /usr/tmp directory, you might
want to monitor the amount of space available in that directory. An elim can report
the space available in the /usr/tmp directory as the value for the tmp built-in load
index. For detailed information about how to use an elim to override a built-in load
index, see the Platform LSF Configuration Reference.

Administering Platform LSF 279

C H A P T E R

15
Managing Software Licenses with LSF

Software licenses are valuable resources that must be fully utilized. This section
discusses how LSF can help manage licensed applications to maximize utilization
and minimize job failure due to license problems.

Contents
◆ Using Licensed Software with LSF on page 279
◆ Host-locked Licenses on page 279
◆ Counted Host-Locked Licenses on page 279
◆ Network Floating Licenses on page 280

Using Licensed Software with LSF
Many applications have restricted access based on the number of software licenses
purchased. LSF can help manage licensed software by automatically forwarding
jobs to licensed hosts, or by holding jobs in batch queues until licenses are available.

Host-locked Licenses
Host-locked software licenses allow users to run an unlimited number of copies of
the product on each of the hosts that has a license.

Configuring host-locked licenses
You can configure a Boolean resource to represent the software license, and
configure your application to require the license resource. When users run the
application, LSF chooses the best host from the set of licensed hosts.
See Boolean resources on page 250 for information about configuring Boolean
resources.
See the Platform LSF Configuration Reference for information about the lsf.task
file and instructions on configuring resource requirements for an application.

Counted Host-Locked Licenses
Counted host-locked licenses are only available on specific licensed hosts, but also
place a limit on the maximum number of copies available on the host.

Network Floating Licenses

280 Administering Platform LSF

Configuring counted host-locked licenses
You configure counted host-locked licenses by having LSF determine the number
of licenses currently available. Use either of the following to count the host-locked
licenses:
◆ External LIM (ELIM)
◆ A check_licenses shell script

Using an External
LIM (ELIM)

To use an external LIM (ELIM) to get the number of licenses currently available,
configure an external load index licenses giving the number of free licenses on
each host. To restrict the application to run only on hosts with available licenses,
specify licenses>=1 in the resource requirements for the application.
See External Load Indices on page 278 for instructions on writing and using an
ELIM and configuring resource requirements for an application.
See the Platform LSF Configuration Reference for information about the lsf.task
file.

Using a
check_license
script

There are two ways to use a check_license shell script to check license availability
and acquire a license if one is available:
◆ Configure the check_license script as a job-level pre-execution command

when submitting the licensed job:
bsub -m licensed_hosts -E check_license licensed_job

◆ Configure the check_license script as a queue-level pre-execution command.
See Configuring Pre- and Post-Execution Commands on page 624 for
information about configuring queue-level pre-execution commands.

It is possible that the license becomes unavailable between the time the
check_license script is run, and when the job is actually run. To handle this case,
configure a queue so that jobs in this queue will be requeued if they exit with values
indicating that the license was not successfully obtained.
See Automatic Job Requeue on page 507 for more information.

Network Floating Licenses
A network floating license allows a fixed number of machines or users to run the
product at the same time, without restricting which host the software can run on.
Floating licenses are cluster-wide resources; rather than belonging to a specific host,
they belong to all hosts in the cluster.
LSF can be used to manage floating licenses using the following LSF features:
◆ Shared resources
◆ Resource reservation
◆ Job requeuing
Using LSF to run licensed software can improve the utilization of the licenses. The
licenses can be kept in use 24 hours a day, 7 days a week. For expensive licenses, this
increases their value to the users. Floating licenses also increase productivity,
because users do not have to wait for a license to become available.
LSF jobs can make use of floating licenses when:

Administering Platform LSF 281

Managing Software Licenses with LSF

◆ All license jobs are run through LSF
◆ Licenses are managed outside of LSF control

All licenses used through LSF
If all jobs requiring licenses are submitted through LSF, then LSF could regulate the
allocation of licenses to jobs and ensure that a job is not started if the required
license is not available. A static resource is used to hold the total number of licenses
that are available. The static resource is used by LSF as a counter which is
decremented by the resource reservation mechanism each time a job requiring that
resource is started.

Example
For example, suppose that there are 10 licenses for the Verilog package shared by
all hosts in the cluster. The LSF configuration files should be specified as shown
below. The resource is a static value, so an ELIM is not necessary.

lsf.shared Begin Resource
RESOURCENAME TYPE INTERVAL INCREASING DESCRIPTION
verilog Numeric () N (Floating licenses for
Verilog)
End Resource

lsf.cluster.cluster_name
Begin ResourceMap
RESOURCENAME LOCATION
verilog (10@[all])
End ResourceMap

Submitting jobs The users would submit jobs requiring verilog licenses as follows:
bsub -R "rusage[verilog=1]" myprog

Licenses used outside of LSF control
To handle the situation where application licenses are used by jobs outside of LSF,
use an ELIM to dynamically collect the actual number of licenses available instead
of relying on a statically configured value. The ELIM periodically informs LSF of
the number of available licenses, and LSF takes this into consideration when
scheduling jobs.

Example
Assuming there are a number of licenses for the Verilog package that can be used
by all the hosts in the cluster, the LSF configuration files could be set up to monitor
this resource as follows:

lsf.shared Begin Resource
RESOURCENAME TYPE INTERVAL INCREASING DESCRIPTION
verilog Numeric 60 N (Floating licenses
for Verilog)
End Resource

Network Floating Licenses

282 Administering Platform LSF

lsf.cluster.cluster_name
Begin ResourceMap
RESOURCENAME LOCATION
verilog ([all])
End ResourceMap

The INTERVAL in the lsf.shared file indicates how often the ELIM is expected
to update the value of the Verilog resource—in this case every 60 seconds. Since
this resource is shared by all hosts in the cluster, the ELIM only needs to be started
on the master host. If the Verilog licenses can only be accessed by some hosts in
the cluster, specify the LOCATION field of the ResourceMap section as ([hostA
hostB hostC ...]). In this case an ELIM is only started on hostA.

Submitting jobs The users would submit jobs requiring verilog licenses as follows:
bsub -R "rusage[verilog=1:duration=1]" myprog

Configuring a dedicated queue for floating licenses
Whether you run all license jobs through LSF or run jobs that use licenses that are
outside of LSF control, you can configure a dedicated queue to run jobs requiring a
floating software license.
For each job in the queue, LSF reserves a software license before dispatching a job,
and releases the license when the job finishes.
Use the bhosts -s command to display the number of licenses being reserved by
the dedicated queue.

Example The following example defines a queue named q_verilog in lsb.queues
dedicated to jobs that require Verilog licenses:
Begin Queue
QUEUE_NAME = q_verilog
RES_REQ=rusage[verilog=1:duration=1]
End Queue

The queue named q_verilog contains jobs that will reserve one Verilog license
when it is started.
If the Verilog licenses are not cluster-wide, but can only be used by some hosts in
the cluster, the resource requirement string should include the defined() tag in the
select section:
select[defined(verilog)] rusage[verilog=1]

Preventing underutilization of licenses
One limitation to using a dedicated queue for licensed jobs is that if a job does not
actually use the license, then the licenses will be under-utilized. This could happen
if the user mistakenly specifies that their application needs a license, or submits a
non-licensed job to a dedicated queue.
LSF assumes that each job indicating that it requires a Verilog license will actually
use it, and simply subtracts the total number of jobs requesting Verilog licenses
from the total number available to decide whether an additional job can be
dispatched.

Administering Platform LSF 283

Managing Software Licenses with LSF

Use the duration keyword in the queue resource requirement specification to
release the shared resource after the specified number of minutes expires. This
prevents multiple jobs started in a short interval from over-using the available
licenses. By limiting the duration of the reservation and using the actual license
usage as reported by the ELIM, underutilization is also avoided and licenses used
outside of LSF can be accounted for.

When interactive jobs compete for licenses
In situations where an interactive job outside the control of LSF competes with
batch jobs for a software license, it is possible that a batch job, having reserved the
software license, may fail to start as its license is intercepted by an interactive job.
To handle this situation, configure job requeue by using the
REQUEUE_EXIT_VALUES parameter in a queue definition in lsb.queues. If a
job exits with one of the values in the REQUEUE_EXIT_VALUES, LSF will requeue
the job.

Example Jobs submitted to the following queue will use Verilog licenses:
Begin Queue
QUEUE_NAME = q_verilog
RES_REQ=rusage[verilog=1:duration=1]
application exits with value 99 if it fails to get license
REQUEUE_EXIT_VALUES = 99
JOB_STARTER = lic_starter
End Queue

All jobs in the queue are started by the job starter lic_starter, which checks if the
application failed to get a license and exits with an exit code of 99. This causes the
job to be requeued and LSF will attempt to reschedule it at a later time.

lic_starter job
starter script

The lic_starter job starter can be coded as follows:
#!/bin/sh
lic_starter: If application fails with no license, exit 99,
otherwise, exit 0. The application displays
"no license" when it fails without license available.
$* 2>&1 | grep "no license"
if [$? != "0"]
then

exit 0 # string not found, application got the license
else

exit 99
fi

For more information
◆ See Automatic Job Requeue on page 507 for more information about

configuring job requeue
◆ See Chapter 39, “Job Starters” for more information about LSF job starters

Network Floating Licenses

284 Administering Platform LSF

Administering Platform LSF 285

P A R T

III
Job Scheduling Policies

◆ Time Syntax and Configuration on page 287
◆ Deadline Constraint and Exclusive Scheduling on page 293
◆ Preemptive Scheduling on page 297
◆ Specifying Resource Requirements on page 299
◆ Fairshare Scheduling on page 337
◆ Goal-Oriented SLA-Driven Scheduling on page 385
◆ Working with Application Profiles on page 403

286 Administering Platform LSF

Administering Platform LSF 287

C H A P T E R

16
Time Syntax and Configuration

Contents
◆ Specifying Time Values on page 287
◆ Specifying Time Windows on page 287
◆ Specifying Time Expressions on page 288
◆ Using Automatic Time-based Configuration on page 289

Specifying Time Values
To specify a time value, a specific point in time, specify at least the hour. Day and
minutes are optional.

Time value syntax
time = hour | hour:minute | day:hour:minute

hour Integer from 0 to 23, representing the hour of the day.

minute Integer from 0 to 59, representing the minute of the hour.
If you do not specify the minute, LSF assumes the first minute of the hour (:00).

day Integer from 0 to 6, representing the day of the week, 0 represents Monday and 6
represents Sunday.
If you do not specify the day, LSF assumes every day. If you do specify the day, you
must also specify the minute.

Specifying Time Windows
To specify a time window, specify two time values separated by a hyphen (-), with
no space in between.
time_window = begin_time-end_time

Time format
Times are specified in the format:
[day:]hour[:minute]

Specifying Time Expressions

288 Administering Platform LSF

where all fields are numbers with the following ranges:
◆ day of the week: 0-6 (0 is Sunday)
◆ hour: 0-23
◆ minute: 0-59
Specify a time window one of the following ways:
◆ hour-hour
◆ hour:minute-hour:minute
◆ day:hour:minute-day:hour:minute
The default value for minute is 0 (on the hour); the default value for day is every day
of the week.
You must specify at least the hour. Day of the week and minute are optional. Both
the start time and end time values must use the same syntax. If you do not specify
a minute, LSF assumes the first minute of the hour (:00). If you do not specify a day,
LSF assumes every day of the week. If you do specify the day, you must also specify
the minute.
You can specify multiple time windows, but they cannot overlap. For example:
timeWindow(8:00-14:00 18:00-22:00)

is correct, but
timeWindow(8:00-14:00 11:00-15:00)

is not valid.

Examples of time windows

Daily window To specify a daily window omit the day field from the time window. Use either the
hour-hour or hour:minute-hour:minute format. For example, to specify a daily
8:30 a.m. to 6:30 p.m window:
8:30-18:30

Overnight window To specify an overnight window make time1 greater than time2. For example, to
specify 6:30 p.m. to 8:30 a.m. the following day:
18:30-8:30

Weekend window To specify a weekend window use the day field. For example, to specify Friday at
6:30 p.m to Monday at 8:30 a.m.:

5:18:30-1:8:30

Specifying Time Expressions
Time expressions use time windows to specify when to change configurations.

Time expression syntax
A time expression is made up of the time keyword followed by one or more
space-separated time windows enclosed in parenthesis. Time expressions can be
combined using the &&, ||, and ! logical operators.

Administering Platform LSF 289

Time Syntax and Configuration

The syntax for a time expression is:
expression = time(time_window[time_window ...])

| expression && expression
| expression || expression
| !expression

Example Both of the following expressions specify weekends (Friday evening at 6:30 p.m.
until Monday morning at 8:30 a.m.) and nights (8:00 p.m. to 8:30 a.m. daily).
time(5:18:30-1:8:30 20:00-8:30)

time(5:18:30-1:8:30) || time(20:00-8:30)

Using Automatic Time-based Configuration
Variable configuration is used to automatically change LSF configuration based on
time windows. It is supported in the following files:
◆ lsb.hosts

◆ lsb.params

◆ lsb.queues

◆ lsb.resources

◆ lsb.users

◆ lsf.licensescheduler

You define automatic configuration changes in configuration files by using if-else
constructs and time expressions. After you change the files, reconfigure the cluster
with the badmin reconfig command.
The expressions are evaluated by LSF every 10 minutes based on mbatchd start
time. When an expression evaluates true, LSF dynamically changes the
configuration based on the associated configuration statements. Reconfiguration is
done in real time without restarting mbatchd, providing continuous system
availability.
In the following examples, the #if, #else, #endif are not interpreted as comments
by LSF but as if-else constructs.

lsb.hosts example
Begin Host
HOST_NAME r15s r1m pg
host1 3/5 3/5 12/20
#if time(5:16:30-1:8:30 20:00-8:30)
host2 3/5 3/5 12/20
#else
host2 2/3 2/3 10/12
#endif
host3 3/5 3/5 12/20
End Host

lsb.params example
if 18:30-19:30 is your short job express period, but

you want all jobs going to the short queue by default

and be subject to the thresholds of that queue

Using Automatic Time-based Configuration

290 Administering Platform LSF

for all other hours, normal is the default queue

#if time(18:30-19:30)

DEFAULT_QUEUE=short

#else

DEFAULT_QUEUE=normal

#endif

lsb.queues example
Begin Queue
...
#if time(8:30-18:30)

INTERACTIVE = ONLY # interactive only during day shift
#endif
...
End Queue

lsb.resources example
Example: limit usage of hosts in 'license1' group and time based
configuration

- 10 jobs can run from normal queue

- any number can run from short queue between 18:30 and 19:30

all other hours you are limited to 100 slots in the short queue

- each other queue can run 30 jobs

Begin Limit

PER_QUEUE HOSTS SLOTS # Example

normal license1 10

if time(18:30-19:30)

short license1 -

#else

short license1 100

#endif

(all ~normal ~short) license1 30

End Limit

lsb.users example
From 12 - 1 p.m. daily, user smith has 10 job slots, but during other hours, user has
only 5 job slots.
Begin User

USER_NAME MAX_JOBS JL/P

#if time (12-13)

smith 10 -

#else

smith 5 -

Administering Platform LSF 291

Time Syntax and Configuration

default 1 -

#endif

End User

lsf.licensescheduler example
Begin Feature

NAME = f1

#if time(5:16:30-1:8:30 20:00-8:30)

DISTRIBUTION=Lan(P1 2/5 P2 1)

#elif time(3:8:30-3:18:30)

DISTRIBUTION=Lan(P3 1)

#else

DISTRIBUTION=Lan(P1 1 P2 2/5)

#endif

End Feature

Creating if-else constructs
The if-else construct can express single decisions and multi-way decisions by
including elif statements in the construct.

If-else The syntax for constructing if-else expressions is:
#if time(expression)
statement
#else
statement
#endif

The #endif part is mandatory and the #else part is optional.
For syntax of a time expression, see Specifying Time Expressions on page 288.

elif The #elif expressions are evaluated in order. If any expression is true, the
associated statement is used, and this terminates the whole chain.
The #else part handles the default case where none of the other conditions are
satisfied.
When you use #elif, the #else and #endif parts are mandatory.
#if time(expression)
statement
#elif time(expression)
statement
#elif time(expression)
statement
#else
statement
#endif

Verify configuration

1 Use the following LSF commands to verify configuration:
❖ bhosts

Using Automatic Time-based Configuration

292 Administering Platform LSF

❖ bladmin ckconfig

❖ blimits -c

❖ blinfo

❖ blstat

❖ bparams

❖ bqueues

❖ bresources

❖ busers

Administering Platform LSF 293

C H A P T E R

17
Deadline Constraint and Exclusive Scheduling

Contents
◆ Using Deadline Constraint Scheduling on page 293
◆ Using Exclusive Scheduling on page 294

Using Deadline Constraint Scheduling
Deadline constraints suspend or terminate running jobs at a certain time. There are
two kinds of deadline constraints:
◆ A run window, specified at the queue level, suspends a running job
◆ A termination time, specified at the job level (bsub -t), terminates a running

job

Time-based resource usage limits
◆ A CPU limit, specified at job or queue level, terminates a running job when it

has used up a certain amount of CPU time.
◆ A run limit, specified at the job or queue level, terminates a running job after it

has spent a certain amount of time in the RUN state.

How deadline constraint scheduling works
If deadline constraint scheduling is enabled, LSF does not place a job that will be
interrupted by a deadline constraint before its run limit expires, or before its CPU
limit expires, if the job has no run limit. In this case, deadline constraint scheduling
could prevent a job from ever starting. If a job has neither a run limit nor a CPU
limit, deadline constraint scheduling has no effect.
A job that cannot start because of a deadline constarint causes an email to be sent
to the job owner.
Deadline constraint scheduling only affects the placement of jobs. Once a job starts,
if it is still running at the time of the deadline, it will be suspended or terminated
because of the deadline constraint or resource usage limit.

Using Exclusive Scheduling

294 Administering Platform LSF

Disabling deadline constraint scheduling
Deadline constraint scheduling is enabled by default. To disable it for a queue, set
IGNORE_DEADLINE=y in lsb.queues.

Example LSF schedules jobs in the liberal queue without observing the deadline
constraints.
Begin Queue
QUEUE_NAME = liberal
IGNORE_DEADLINE=y
End Queue

Resizable jobs
LSF considers both job termination time and queue run windows as part of
deadline constraints. Since the job has already started, LSF does not apply deadline
constraint scheduling to job resize allocation requests.

Using Exclusive Scheduling
Exclusive scheduling gives a job exclusive use of the host that it runs on. LSF
dispatches the job to a host that has no other jobs running, and does not place any
more jobs on the host until the exclusive job is finished.
Compute unit exclusive scheduling gives a job exclusive use of the compute unit
that it runs on.

How exclusive scheduling works
When an exclusive job (bsub -x) is submitted to an exclusive queue (EXCLUSIVE =
Y or =CU in lsb.queues) and dispatched to a host, LSF locks the host (lockU status)
until the job finishes.
LSF cannot place an exclusive job unless there is a host that has no jobs running on
it.
To make sure exclusive jobs can be placed promptly, configure some hosts to run
one job at a time. Otherwise, a job could wait indefinitely for a host in a busy cluster
to become completely idle.

Resizable jobs
For pending allocation requests with resizable exclusive jobs, LSF does not allocate
slots on a host that is occupied by the original job. For newly allocated hosts, LSF
locks the LIM if LSB_DISABLE_LIMLOCK_EXCL=Y is not defined in lsf.conf.
If an entire host is released by a job resize release request with exclusive jobs, LSF
unlocks the LIM if LSB_DISABLE_LIMLOCK_EXCL=Y is not defined in
lsf.conf.

RESTRICTION: Jobs with compute unit resource requirements cannot be auto-resizable. Resizable
jobs with compute unit resource requirements cannot increase job reseource allocations, but can
release allocated resources.

Administering Platform LSF 295

Deadline Constraint and Exclusive Scheduling

Configure an exclusive queue

1 To configure an exclusive queue, set EXCLUSIVE in the queue definition
(lsb.queues) to Y.
EXCLUSIVE=CU also configures the queue to accept exclusive jobs when no
compute unit resource requirement is specified.

Configure a host to run one job at a time

1 To make sure exclusive jobs can be placed promptly, configure some
single-processor hosts to run one job at a time. To do so, set SLOTS=1 and
HOSTS=all in lsb.resources.

Submit a exclusive job

1 To submit an exclusive job, use the -x option of bsub and submit the job to an
exclusive queue.

Configure a compute unit exclusive queue

1 To configure an exclusive queue, set EXCLUSIVE in the queue definition
(lsb.queues) to CU[cu_type].
If no compute unit type is specified, the default compute unit type defined in
COMPUTE_UNIT_TYPES (lsb.params) is used.

Submit a compute unit exclusive job

1 To submit an exclusive job, use the -R option of bsub and submit the job to a
compute unit exclusive queue.
bsub -R "cu[excl]" my_job

Using Exclusive Scheduling

296 Administering Platform LSF

Administering Platform LSF 297

C H A P T E R

18
Preemptive Scheduling

Contents
◆ About Preemptive Scheduling on page 297

About Preemptive Scheduling
Preemptive scheduling lets a pending high-priority job take job slots away from a
running job of lower priority. When two jobs compete for the same job slots, LSF
automatically suspends the low-priority job to make slots available to the
high-priority job. The low-priority job is resumed as soon as possible.
Use preemptive scheduling if you have long-running low-priority jobs causing
high-priority jobs to wait an unacceptably long time.
For detailed information about the preemptive scheduling feature and how to
configure it, see the Platform LSF Configuration Guide.

Limitation
By default, the following types of jobs cannot be preempted:
◆ Jobs that have been forced to run with the command brun
◆ Backfill and exclusive jobs, including compute unit exclusive jobs
By default exclusive jobs, including compute unit exclusive jobs, cannot preempt
other jobs.

Preemptive and preemptable queues

Preemptive queues Jobs in a preemptive queue can preempt jobs in any queue of lower priority, even if
the low-priority queues are not specified as preemptable.

Preemptable
queues

Jobs in a preemptable queue can be preempted by jobs from any queue of a higher
priority, even if the high-priority queues are not specified as preemptive.

About Preemptive Scheduling

298 Administering Platform LSF

Preemptive and preemptable jobs

Preemptive jobs Preemptive jobs are pending in a high-priority queue and require the specified job
slots. Their queue must be able to preempt the low-priority queue.

Preemptable jobs Preemptable jobs are running in a low-priority queue and are holding the specified
job slot. Their queue must be able to be preempted by the high-priority queue.

Administering Platform LSF 299

C H A P T E R

19
Specifying Resource Requirements

Contents
◆ About Resource Requirements on page 300
◆ Queue-level Resource Requirements on page 302
◆ Job-level Resource Requirements on page 304
◆ About Resource Requirement Strings on page 306
◆ Selection String on page 312
◆ Order String on page 320
◆ Usage String on page 322
◆ Span String on page 330
◆ Same String on page 332
◆ Compute Unit String on page 334

About Resource Requirements

300 Administering Platform LSF

About Resource Requirements
Resource requirements define which hosts a job can run on. Each job has its
resource requirements and hosts that match the resource requirements are the
candidate hosts. When LSF schedules a job, it uses the load index values of all the
candidate hosts. The load values for each host are compared to the scheduling
conditions. Jobs are only dispatched to a host if all load values are within the
scheduling thresholds.
By default, if a job has no resource requirements, LSF places it on a host of the same
type as the submission host (i.e., type==local). However, if a job has string or
Boolean resource requirements specified and the host type has not been specified,
LSF places the job on any host (i.e., type==any) that satisfies the resource
requirements.
To override the LSF defaults, specify resource requirements explicitly. Resource
requirements can be set for queues, for application profiles, or for individual jobs.
To best place a job with optimized performance, resource requirements can be
specified for each application. This way, you do not have to specify resource
requirements every time you submit a job. The LSF administrator may have already
configured the resource requirements for your jobs, or you can put your executable
name together with its resource requirements into your personal remote task list.
The bsub command automatically uses the resource requirements of the job from
the remote task lists.
A resource requirement is an expression that contains resource names and
operators.

Compound Resource Requirements
In some cases different resource requirements may apply to different parts of a
parallel job. The first execution host, for example, may require more memory or a
faster processor for optimal job scheduling. Compound resource requirements
allow you to specify different requirements for some slots within a job in the
queue-level, application-level, or job-level resource requirement string.
Compound resource requirement strings can be set by the application-level or
queue-level RES_REQ parameter, or used with bsub -R when a job is submitted.
bmod -R also accepts compound resource requirement strings for both pending and
running jobs.
Special rules take effect when compound resource requirements are merged with
resource requirements defined at more than one level. If a compound resource
requirement is used at any level (job, application, or queue) the compound
multi-level resource requirement combinations described later in this chapter
apply.

RESTRICTION: Compound resource requirements cannot contain cu sections, multiple -R
options, or the || operator.

Resizable jobs cannot have compound resource requirements.

Administering Platform LSF 301

Specifying Resource Requirements

Resource allocation for parallel jobs using compound resources is done for each compound
resource term in the order listed instead of considering all possible combinations. A host rejected
for not satisfying one resource requirement term will not be reconsidered for subsequent resource
requirement terms.

Compound resource requirements were introduced in LSF Version 7 Update 5, and are not
compatible with earlier versions of LSF.

Resource requirements in application profiles
See Chapter 23, “Working with Application Profiles” for information about how
resource requirements in application profiles are resolved with queue-level and
job-level resource requirements.

Resizable jobs and resource requirements
In general, resize allocation requests for resizable jobs use the resource
requirements of the running job. When the resource requirement string for a job is
modified with bmod -R, the new string takes effects for a job resize request. The
resource requirement of the allocation request is merged from resource
requirements specified at the queue, job, and application levels.

RESTRICTION: Autoresizable jobs cannot have compute unit resource requirements. Any
autoresizable jobs switched to queues with compute unit resource requirements will no longer be
autoresizable.

Resizable jobs cannot have compound resource requirements.

Queue-level Resource Requirements

302 Administering Platform LSF

Queue-level Resource Requirements
Each queue can define resource requirements that apply to all the jobs in the queue.
When resource requirements are specified for a queue, and no job-level or
application profile resource requirement is specified, the queue-level resource
requirements become the default resource requirements for the job.
Resource requirements determined by the queue no longer apply to a running job
after running badmin reconfig, For example, if you change the RES_REQ
parameter in a queue and reconfigure the cluster, the previous queue-level resource
requirements for running jobs are lost.

Syntax
The condition for dispatching a job to a host can be specified through the
queue-level RES_REQ parameter in the queue definition in lsb.queues.
Queue-level RES_REQ rusage values must be in the range set by RESRSV_LIMIT (set
in lsb.queues), or the queue-level RES_REQ is ignored.

Examples
RES_REQ=select[((type==LINUX2.4 && r1m < 2.0)||(type==AIX && r1m < 1.0))]

This allows a queue, which contains LINUX2.4 and AIX hosts, to have different
thresholds for different types of hosts.

RES_REQ=select[((hname==hostA && mem > 50)||(hname==hostB && mem > 100))]

Using the hname resource in the resource requirement string allows you to set up
different conditions for different hosts in the same queue.

Load thresholds
Load thresholds can be configured by your LSF administrator to schedule jobs in
queues. Load thresholds specify a load index value.

loadSched The scheduling threshold that determines the load condition for dispatching
pending jobs. If a host’s load is beyond any defined loadSched, a job is not started
on the host. This threshold is also used as the condition for resuming suspended
jobs.

loadStop The suspending condition that determines when running jobs should be
suspended.
Thresholds can be configured for each queue, for each host, or a combination of
both. To schedule a job on a host, the load levels on that host must satisfy both the
thresholds configured for that host and the thresholds for the queue from which the
job is being dispatched.
The value of a load index may either increase or decrease with load, depending on
the meaning of the specific load index. Therefore, when comparing the host load
conditions with the threshold values, you need to use either greater than (>) or less
than (<), depending on the load index.
See Chapter 37, “Load Thresholds” for information about suspending conditions
and configuring load thresholds.

Administering Platform LSF 303

Specifying Resource Requirements

View queue-level resource requirements

1 Use bqueues -l to view resource requirements (RES_REQ) defined for the
queue:
bqueues -l normal

QUEUE: normal

 -- No description provided. This is the default queue.

...

RES_REQ: select[type==any]

rusage[mem=10,dynamic_rsrc=10:duration=2:decay=1]

...

Job-level Resource Requirements

304 Administering Platform LSF

Job-level Resource Requirements
Each job can specify resource requirements. Job-level resource requirements
override any resource requirements specified in the remote task list.
In some cases, the queue specification sets an upper or lower bound on a resource.
If you attempt to exceed that bound, your job will be rejected.

Syntax
To specify resource requirements for your job, use bsub -R and specify the
resource requirement string as usual. You can specify multiple -R order, same,
rusage, and select sections.

TIP: Within esub, you can get resource requirements using the LSB_SUB_RES_REQ variable, which
merges multiple –R from the bsub command. If you want to modify the LSB_SUB_RES_REQ
variable, you cannot use multiple –R format. Instead, use the && operator to merge them
manually.

Merged RES_REQ rusage values from the job and application levels must be in the range of
RESRSV_LIMIT (set in lsb.queues), or the job is rejected.

Examples
bsub -R "swp > 15 && hpux order[ut]" myjob

or
bsub -R "select[swp > 15]" -R "select[hpux] order[ut]" myjob

This runs myjob on an HP-UX host that is lightly loaded (CPU utilization) and has
at least 15 MB of swap memory available.
bsub -R "select[swp > 15]" -R "select[hpux] order[r15m]"
-R "order[r15m]" -R rusage[mem=100]" -R "order[ut]" -R "same[type]
-R "rusage[tmp=50:duration=60]" -R "same[model]" myjob

LSF merges the multiple -R options into one string and dispatches the job if all of
the resource requirements can be met. By allowing multiple resource requirement
strings and automatically merging them into one string, LSF simplifies the use of
multiple layers of wrapper scripts.

View job-level resource requirements

1 Use bjobs -l to view resource requirements defined for the job:
bsub -R "type==any" -q normal myjob

Job <2533> is submitted to queue <normal>.

bjobs -l 2533

Job <2533>, User <user1>, Project <default>, Status <DONE>, Queue
<normal>,

 Command <myjob>

Fri May 10 17:21:26: Submitted from host <hostA>, CWD <$HOME>,
Requested Resources <type==any>;

Fri May 10 17:21:31: Started on <hostB>, Execution Home
</home/user1>,Execution CWD </home/user1>;

Administering Platform LSF 305

Specifying Resource Requirements

Fri May 10 17:21:47: Done successfully. The CPU time used is 0.3
seconds.

...

2 After a job is finished, use bhist -l to view resource requirements defined for
the job:
bhist -l 2533

Job <2533>, User <user1>, Project <default>, Command <myjob>

Fri May 10 17:21:26: Submitted from host <hostA>, to Queue
<normal>, CWD

 <$HOME>, Requested Resources <type==any>;

Fri May 10 17:21:31: Dispatched to <hostB>;

Fri May 10 17:21:32: Starting (Pid 1850232);

Fri May 10 17:21:33: Running with execution home </home/user1>,
Execution

 CWD </home/user1>, Execution Pid <1850232>;

Fri May 10 17:21:45: Done successfully. The CPU time used is 0.3
seconds;

...

NOTE: If you submitted a job with multiple select strings using the bsub -R option,
bjobs -l and bhist -l display a single, merged select string.

About Resource Requirement Strings

306 Administering Platform LSF

About Resource Requirement Strings
Most LSF commands accept a -R res_req argument to specify resource
requirements. The exact behavior depends on the command. For example,
specifying a resource requirement for the lsload command displays the load levels
for all hosts that have the requested resources.
Specifying resource requirements for the lsrun command causes LSF to select the
best host out of the set of hosts that have the requested resources.
A resource requirement string describes the resources a job needs. LSF uses
resource requirements to select hosts for remote execution and job execution.
Resource requirement strings can be simple (applying to the entire job) or
compound (applying to the specified number of slots).

Resource requirement string sections
◆ A selection section (select). The selection section specifies the criteria for

selecting hosts from the system.
◆ An ordering section (order). The ordering section indicates how the hosts that

meet the selection criteria should be sorted.
◆ A resource usage section (rusage). The resource usage section specifies the

expected resource consumption of the task.
◆ A job spanning section (span). The job spanning section indicates if a parallel

batch job should span across multiple hosts.
◆ A same resource section (same). The same section indicates that all processes

of a parallel job must run on the same type of host.
◆ A compute unit resource section (cu). The cu section specifies how a job should

be placed with respect to the underlying network architecture.

Which sections
apply

Depending on the command, one or more of these sections may apply. For example:
◆ bsub uses all sections
◆ lshosts only selects hosts, but does not order them
◆ lsload selects and orders hosts
◆ lsplace uses the information in select, order, and rusage sections to select

an appropriate host for a task
◆ lsloadadj uses the rusage section to determine how the load information

should be adjusted on a host

Simple Syntax select[selection_string] order[order_string] rusage[usage_string
[, usage_string][|| usage_string] ...] span[span_string]
same[same_string] cu[cu_string]

With the bsub and bmod commands, and only with these commands, you can
specify multiple -R order, same, rusage, and select sections. The bmod command
does not support the use of the || operator.
The section names are select, order, rusage, span, same, and cu. Sections that do
not apply for a command are ignored. Each section has a different syntax.

Administering Platform LSF 307

Specifying Resource Requirements

The square brackets must be typed as shown for each section. A blank space must
separate each resource requirement section.
You can omit the select keyword and the square brackets, but the selection string
must be the first string in the resource requirement string. If you do not give a
section name, the first resource requirement string is treated as a selection string
(select[selection_string]).
Each section has a different syntax.
By default, memory (mem) and swap (swp) limits in select[] and rusage[]
sections are specified in MB. Use LSF_UNIT_FOR_LIMITS in lsf.conf to specify
a larger unit for the these limits (MB, GB, TB, PB, or EB).

Compound Syntax num1*{simple_string1} + num2*{simple_string2} + ...

where numx is the number of slots affected and simple_stringx is a simple resource
requirement string with the syntax:

select[selection_string] order[order_string] rusage[usage_string [, usage_string]...]
span[span_string]

Resource requirements applying to the first execution host (if used) should appear
in the first compound term num1*{simple_string1}.
Place specific (harder to fill) requirements before general (easier to fill)
requirements since compound resource requirement terms are considered in the
order they appear. Resource allocation for parallel jobs using compound resources
is done for each compound resource term independently instead of considering all
possible combinations.

NOTE: A host rejected for not satisfying one resource requirement term will not be reconsidered
for subsequent resource requirement terms.

For jobs without the number of total slots specified using bsub -n, the final numx
can be omitted. The final resource requirement is then applied to the zero or more
slots not yet accounted for using the default slot setting of the parameter PROCLIMIT
as follows:
◆ (final res_req number of slots) = MAX(0,(default number of job slots from

PROCLIMIT)-(num1+num2+...))
For jobs with the total number of slots specified using bsub -n num_slots, the total
number of slots must match the number of slots in the resource requirement as
follows, and the final numx can be omitted:
◆ num_slots=(num1+num2+num3+...)
For jobs with compound resource requirements and first execution host candidates
specified using bsub -m, the first allocated host must satisfy the simple resource
requirement string appearing first in the compound resource requirement. Thus
the first execution host must satisfy the requirements in simple_string1 for the
following compound resource requirement:
◆ num1*{simple_string1} + num2*{simple_string2} + num3*{simple_string3}
Compound resource requirements do not support use of the || operator within the
component rusage simple resource requirements, or use of the cu section.

About Resource Requirement Strings

308 Administering Platform LSF

How simple multi-level resource requirements are resolved
Simple resource requirements can be specified at the job, application, and queue
levels. When none of the resource requirements are compound, requirements
defined at different levels are resolved in the following ways:
◆ In a select string, a host must satisfy all queue-level, application-level, and

job-level requirements for the job to be dispatched.
◆ In a same string, all queue-level, application-level, and job-level requirements

are combined before the job is dispatched.
◆ order, span, and cu sections defined at the job level overwrite those defined at

the application level or queue level. order, span, and cu sections defined at the
application level overwrite those defined at the queue level. The default order
string is r15s:pg.

◆ For usage strings, the rusage section defined for the job overrides the rusage
section defined in the application. The two rusage definitions are merged, with
the job-level rusage taking precedence. Similarly, rusage strings defined for
the job or application are merged with queue-level strings, with the job and
then application definitions taking precedence over the queue if there is any
overlap.

For internal load indices and duration, jobs are rejected if the merged job-level and
apllication-level resource reservation requirements exceed the requirements
specified at the queue level.

NOTE: If a compound resource requirement is used at one or more levels, (job, application, or
queue) the compound rules apply.

section simple resource requirement multi-level behavior

select all levels satisfied

same all levels combined

order
span
cu

job-level section overwrites application-level section, which overwrites
queue-level section (if a given level is present)

rusage all levels merge
if conflicts occur the job-level section overwrites the application-level
section, which overwrites the queue-level section.

Administering Platform LSF 309

Specifying Resource Requirements

How compound multi-level resource requirements are resolved
Compound resource requirements can be specified at the job, application, and
queue levels. When one or more of the resource requirements is compound,
requirements at different levels are resolved depending on where the compound
resource requirement appears.
For internal load indices and duration, jobs are rejected if they specify resource
reservation requirements that exceed the requirements specified at the application
level or queue level.

NOTE: If a compound resource requirement is used at one or more levels, (job, application, or
queue) the compound rules apply.

Compound queue
level

When a compound resource requirement is set for a queue it will be ignored unless
it is the only resource requirement specified (no resource requirements are set at the
job level or application level).

Compound
application level

When a compound resource requirement is set at the application level, it will be
ignored if any job-level resource requirements (simple or compound) are defined.
In the event no job-level resource requirements are set, the compound
application-level requirements interact with queue-level resource requirement
strings in the following ways:
◆ If no queue-level resource requirement is defined or a compound queue-level

resource requirement is defined, the compound application-level requirement
is used.

◆ If a simple queue-level requirement is defined, the application-level and
queue-level requirements combine as follows:

Compound job
level

When a compound resource requirement is set at the job level, any simple or
compound application-level resource requirements are ignored, and any
compound queue-level resource requirements are ignored.

section compound application and simple queue behavior

select both levels satisfied; queue requirement applies to all compound terms

same queue level ignored

order
span

application-level section overwrites queue-level section (if a given level is
present); queue requirement (if used) applies to all compound terms

rusage ❖ both levels merge
❖ queue requirement if a job-based resource is applied to the first

compound term, otherwise applies to all compound terms
❖ if conflicts occur the application-level section overwrites the

queue-level section.
For example: if the application-level requirement is
num1*{rusage[R1]} + num2*{rusage[R2]} and the queue-level
requirement is rusage[RQ] where RQ is a job-based resource, the
merged requirement is
num1*{rusage[merge(R1,RQ)]} + num2*{rusage[R2]}

About Resource Requirement Strings

310 Administering Platform LSF

In the event a simple queue-level requirement appears along with a compound
job-level requirement, the requirements interact as follows:

Example 1 A compound job requirement and simple queue requirement.
job level: 2*{select[type==X86_64] rusage[licA=1] span[hosts=1]} +
8*{select[type==any]}

application level: not defined
queue level: rusage[perslot=1]
The final job scheduling resource requirement merges the simple queue-level
rusage section into each term of the compound job-level requirement, resulting in:
2*{select[type==X86_64] rusage[licA=1:perslot=1] span[hosts=1]} +
8*{select[type==any] rusage[perslot=1]}

Example 2 A compound job requirement and compound queue requirement.
job level: 2*{select[type==X86_64 && tmp>10000] rusage[mem=1000]
span[hosts=1]} + 8*{select[type==X86_64]}

application level: not defined
queue level: 2*{select[type==X86_64] rusage[mem=1000] span[hosts=1]}
+8*{select[type==X86_64]}

The final job scheduling resource requirement ignores the compound queue-level
requirement, resulting in: 2*{select[type==X86_64 && tmp>10000]
rusage[mem=1000] span[hosts=1]} + 8*{select[type==X86_64]}

Example 3 A compound job requirement and simple queue requirement where the queue
requirement is a job-based resource.
job level: 2*{select[type==X86_64]} + 2*{select[mem>1000]}
application level: not defined
queue level: rusage[licA=1] where licA=1 is job-based.

section compound job and simple queue behavior

select both levels satisfied; queue requirement applies to all compound terms

same queue level ignored

order
span

job-level section overwrites queue-level section (if a given level is
present); queue requirement (if used) applies to all compound terms

rusage ◆ both levels merge
◆ queue requirement if a job-based resource is applied to the first

compound term, otherwise applies to all compound terms
◆ if conflicts occur the job-level section overwrites the queue-level

section.
For example: if the job-level requirement is
num1*{rusage[R1]} + num2*{rusage[R2]} and the queue-level
requirement is rusage[RQ] where RQ is a job resource, the merged
requirement is
num1*{rusage[merge(R1,RQ)]} + num2*{rusage[R2]}

Administering Platform LSF 311

Specifying Resource Requirements

The queue-level requirement is added to the first term of the compound job-level
requirement, resulting in: 2*{select[type==X86_64] rusage[licA=1]} +
2*{select[mem>1000]}

Example 4 Compound multi-phase job requirements and simple multi-phase queue
requirements.
job level: 2*{rusage[mem=(400 350):duration=(10 15):decay=(0 1)]} +
2*{rusage[mem=300:duration=10:decay=1]}

application level: not defined
queue level: rusage[mem=(500 300):duration=(20 10):decay=(0 1)]
The queue-level requirement is overridden by the first term of the compound
job-level requirement, resulting in: 2*{rusage[mem=(400 350):duration=(10
15):decay=(0 1)]} + 2*{rusage[mem=300:duration=10:decay=1]}

Selection String

312 Administering Platform LSF

Selection String
The selection string specifies the characteristics a host must have to match the
resource requirement. It is a logical expression built from a set of resource names.
The selection string is evaluated for each host; if the result is non-zero, then that
host is selected. When used in conjunction with a cu string, hosts not belonging to
compute unit are not considered.

Syntax
The selection string can combine resource names with logical and arithmetic
operators. Non-zero arithmetic values are treated as logical TRUE, and zero (0) as
logical FALSE. Boolean resources (for example, server to denote LSF server hosts)
have a value of one (1) if they are defined for a host, and zero (0) if they are not
defined for the host.
The resource names swap, idle, login, and cpu are accepted as aliases for swp, it,
ls, and r1m respectively.
The ut index measures CPU utilization, which is the percentage of time spent
running system and user code. A host with no processes running has a ut value of
0 percent; a host on which the CPU is completely loaded has a ut of 100 percent.
You must specify ut as a floating-point number between 0.0 and 1.0.
For the string resources type and model, the special value any selects any value and
local selects the same value as that of the local host. For example, type==local
selects hosts of the same type as the host submitting the job. If a job can run on any
type of host, include type==any in the resource requirements.
If no type is specified, the default depends on the command. For bsub, lsplace,
lsrun, and lsgrun the default is type==local unless a string or Boolean resource
is specified, in which case it is type==any. For lshosts, lsload, lsmon and
lslogin the default is type==any.

TIP: When PARALLEL_SCHED_BY_SLOT=Y in lsb.params, the resource requirement string
keyword ncpus refers to the number of slots instead of the number of processors, however
lshosts output will continue to show ncpus as defined by EGO_DEFINE_NCPUS in
lsf.conf.

Specifying multiple -R options
bsub accepts multiple -R options for the select section in simple resource
requirements.

RESTRICTION: Compound resource requirements do not support multiple -R options.

You can specify multiple resource requirement strings instead of using the &&
operator. For example:
bsub -R "select[swp > 15]" -R "select[hpux]"

LSF merges the multiple -R options into one string and dispatches the job if all of
the resource requirements can be met. By allowing multiple resource requirement
strings and automatically merging them into one string, LSF simplifies the use of
multiple layers of wrapper scripts.

Administering Platform LSF 313

Specifying Resource Requirements

When LSF_STRICT_RESREQ=Y is configured in lsf.conf, you cannot specify
more than one select section in the same -R option. Use the logical and (&&)
operator to specify multiple selection strings in the same select section. For
example, the following command submits a job called myjob to run on a host that
has more than 15 MB of swap space available, and maximum RAM larger than
100MB. The job is expected to reserve 100MB memory on the host:

% bsub -R "select [swp > 15 && maxmem > 100] rusage[mem = 100] " myjob

The number of -R option sections is unlimited.

Selecting shared string resources
You must use single quote characters (') around string-type shared resources. For
example, use lsload -s to see the shared resources defined for the cluster:
lsload -s

RESOURCE VALUE LOCATION

os_version 4.2 pc36

os_version 4.0 pc34

os_version 4.1 devlinux4

cpu_type ia pc36

cpu_type ia pc34

cpu_type unknown devlinux4

Use a select string in lsload -R to specify the shared resources you want to view,
enclosing the shared resource values in single quotes. For example:

lsload -R "select[os_version=='4.2' || cpu_type=='unknown']"

HOST_NAME status r15s r1m r15m ut pg ls it tmp swp mem

pc36 ok 0.0 0.2 0.1 1% 3.4 3 0 895M 517M 123M

devlinux4 ok 0.0 0.1 0.0 0% 2.8 4 0 6348M 504M 205M

NOTE: When reserving resources based on host status (bsub -R "status==ok"), the host
status must be the one displayed by running bhosts not lsload.

Operators
These operators can be used in selection strings. The operators are listed in order
of decreasing precedence.

Syntax Meaning

(a) When LSF_STRICT_RESREQ=Y is configured in lsf.conf, an expression
between parentheses has higher priority than other operators.

-a
!a

Negative of a
Logical not: 1 if a==0, 0 otherwise

a * b
a / b

Multiply a and b
Divide a by b

a + b
a - b

Add a and b
Subtract b from a

Selection String

314 Administering Platform LSF

Examples select[(swp > 50 && type == MIPS) || (swp > 35 && type == ALPHA)]

select[((2*r15s + 3*r1m + r15m) / 6 < 1.0) && !fs && (cpuf > 4.0)]

Specifying shared resources with the keyword “defined”
A shared resource may be used in the resource requirement string of any LSF
command. For example, when submitting an LSF job that requires a certain amount
of shared scratch space, you might submit the job as follows:
bsub -R "avail_scratch > 200 && swap > 50" myjob

The above assumes that all hosts in the cluster have access to the shared scratch
space. The job is only scheduled if the value of the "avail_scratch" resource is
more than 200 MB and goes to a host with at least 50 MB of available swap space.
It is possible for a system to be configured so that only some hosts within the LSF
cluster have access to the scratch space. To exclude hosts that cannot access a shared
resource, the defined(resource_name) function must be specified in the resource
requirement string.
For example:
bsub -R "defined(avail_scratch) && avail_scratch > 100 && swap > 100"
myjob

would exclude any hosts that cannot access the scratch resource. The LSF
administrator configures which hosts do and do not have access to a particular
shared resource.

Supported resource
names in the
defined function

Only the following resource names are accepted as the argument in the
defined(resource_name) function:
◆ The following builtin resource names:

LSF_Base lsf_base LSF_Manager lsf_manager LSF_JobScheduler

lsf_js LSF_Make LSF_parallel LSF_Analyzer lsf_analyzer

◆ Resource names configured inlsf.shared, except dynamic NUMERIC
resource names with INTERVAL fields defined.

The following resource names are not accepted in the defined(resource_name)
function:
◆ The following builtin resource names:

r15s r1m r15m ut pg io ls it tmp swp mem ncpus ndisks maxmem

maxswp maxtmp cpuf type model status rexpri server and hname

a > b
a < b
a >= b
a <= b

1 if a is greater than b, 0 otherwise
1 if a is less than b, 0 otherwise
1 if a is greater than or equal to b, 0 otherwise
1 if a is less than or equal to b, 0 otherwise

a == b
a != b

1 if a is equal to b, 0 otherwise
1 if a is not equal to b, 0 otherwise

a && b Logical AND: 1 if both a and b are non-zero, 0 otherwise
a || b Logical OR: 1 if either a or b is non-zero, 0 otherwise

Syntax Meaning

Administering Platform LSF 315

Specifying Resource Requirements

◆ Dynamic NUMERIC resource names configured inlsf.shared with
INTERVAL fields defined. In the default configuration, these are mode, cntrl,
it_t.)

◆ Other non-builtin resource names not configured lsf.shared.

Specifying exclusive resources
An exclusive resource may be used in the resource requirement string of any
placement or scheduling command, such as bsub, lsplace, lsrun, or lsgrun. An
exclusive resource is a special resource that is assignable to a host. This host will not
receive a job unless that job explicitly requests the host. For example, use the
following command to submit a job requiring the exclusive resource bigmem:
bsub -R "bigmem" myjob

Jobs will not be submitted to the host with the bigmem resource unless the
command uses the -R option to explicitly specify "bigmem".
To configure an exclusive resource, first define a static Boolean resource in
lsf.shared. For example:
Begin Resource

...

bigmem Boolean () ()

End Resource

Assign the resource to a host in the Host section of lsf.cluster.cluster_name.
Prefix the resource name with an exclamation mark (!) to indicate that the resource
is exclusive to the host. For example:

Begin Host

HOSTNAME model type server r1m pg tmp RESOURCES RUNWINDOW

...

hostE ! ! 1 3.5 () () (linux !bigmem) ()

...

End Host

Strict syntax for resource requirement selection strings
When LSF_STRICT_RESREQ=Y is configured in lsf.conf, resource requirement
strings in select sections must conform to a more strict syntax. The strict resource
requirement syntax only applies to the select section. It does not apply to the other
resource requirement sections (order, rusage, same, span, or cu). When
LSF_STRICT_RESREQ=Y in lsf.conf, LSF rejects resource requirement strings
where an rusage section contains a non-consumable resource.

Strict syntax in
EBNF form:

<expression> ::= <relation1> { <logical or> <relation1>}

<relation1> ::=<relation2> { <logical and > <relation2>}

<relation2> ::= <simple expression> [<relation op> <simple
expression>]

<simple expression> ::= <term> { <adding op> <term> }

<term> ::= <factor> { <multiple op> <factor> }

<factor> ::= [<unary op>] <primary>

Selection String

316 Administering Platform LSF

<primary> ::= <numeric> | <string> | (<expression>)| <name or
function call>

<logical or> ::= ||

<logical and>::=&&

<relation op> ::= <= | >= | == | != | < | > | =

<adding op> ::= + | -

<unary op> ::= - | !

<multiple op> ::= * | /

<name or function call> ::= <name> [(<argument list>)]

<argument list> ::= <empty> | <argument> {, <argument> }

<argument> ::= <expression>

<name> ::= [a-zA-Z_][a-zA-Z_0-9]*

<numeric> ::= <int> [. [0-9]*]

<int> ::= [1-9][0-9]* | 0

<string> ::= <single quote> {<string chars>} <single quote> | <double
quote> {<string chars>} <double quote>

<string chars> ::= <printable ascii characters except single/double
quote>

<single quote> ::= '

<double quote> ::= "

<empty>=

Strict select string
syntax usage notes

The strict syntax is case sensitive.
Operators '=' and '==' are equivalent.
Boolean variables, such as fs, hpux, cs, can only be computed with the following
operators:
&& || !

String variables, such as type, can only be computed with the following operators:
= == != < > <= >=

For function calls, blanks between the parentheses "()" and the resource name are
not valid. For example, the following is not correct:
defined(mg)

Multiple logical NOT operators (!) are not valid. For example, the following is not
correct:
!!mg

The following resource requirement is valid:
!(!mg)

At least one blank space must separate each section. For example, the following are
correct:
type==any rusage[mem=1024]

select[type==any] rusage[mem=1024]

select[type==any]rusage[mem=1024]

but the following is not correct:
type==anyrusage[mem=1024]

Administering Platform LSF 317

Specifying Resource Requirements

Only a single select section is supported by the stricter syntax. The following is not
supported in the same resource requirement string:
select[mem>0] select[maxmem>0]

Escape characters (like '\n') are not supported in string literals.
A colon (:) is not allowed inside the select string. For example,
select[mg:bigmem] is not correct.
inf and nan can be used as resource names or part of a resource name.
Single or double quotes are only supported around the whole resource requirement
string, not within the square brackets containing the selection string. For example,
in lsb.queues, RES_REQ='swp>100' and RES_REQ="swp>100" are correct. Neither
RES_REQ=select['swp>100'] nor RES_REQ=select["swp>100"] are supported.
The following are correct bsub command-level resource requirements:
◆ bsub -R "'swp>100'"

◆ bsub -R '"swp>100"'

The following are not correct:
◆ bsub -R "select['swp>100']"

◆ bsub -R 'select["swp>100"]'

Some incorrect resource requirements are no longer silently ignored. For example,
when LSF_STRICT_RESREQ=Y is configured in lsf.conf, the following are
rejected by the resource requirement parser:
◆ microcs73 is rejected:

linux rusage[mem=16000] microcs73

◆ select[AMD64] is rejected:
mem < 16384 && select[AMD64]

◆ linux is rejected:
rusage[mem=2000] linux

◆ Using a colon (:) to separate select conditions, such as linux:qscw .
◆ The restricted syntax of resource requirement select strings described in the

lsfintro(1) man page is not supported.

Explicit and implicit
select sections

An explicit select section starts from the section keyword and ends at the begin of
next section, for example: the select section is select[selection_string]. An
implicit select section starts from the first letter of the resource requirement string
and ends at the end of the string if there are no other resource requirement sections.
If the resource requirement has other sections, the implicit select section ends
before the first letter of the first section following the selection string.
All explicit sections must begin with a section keywords (select, order, span
rusage, or same). The resource requirement content is contained by square
brackets ([) and (]).
An implicit select section must be the first resource requirement string in the whole
resource requirement specification. Explicit select sections can appear after other
sections. A resource requirement string can have only one select section (either an
explicit select section or an implicit select section). A section with an incorrect
keyword name is not a valid section.

Selection String

318 Administering Platform LSF

An implicit select section must have the same format as the content of an explicit
select section. For example, the following commands are correct:
◆ bsub -R "select[swp>15] rusage[mem=100]" myjob

◆ bsub -R "swp > 15 rusage[mem=100]" myjob

◆ bsub -R "rusage[mem=100] select[swp >15]" myjob

Examples The following examples illustrate some correct resource requirement select string
syntax.
◆ bsub -R "(r15s * 2 + r15m) < 3.0 && !(type == IBMAIX4) || fs"

myjob

◆ If swap space is equal to 0, the following means TRUE; if swap space is not equal
to 0, it means FALSE:
bsub -R "!swp" myjob

◆ Select hosts of the same type as the host submitting the job:
bsub -R "type == local" myjob

◆ Select hosts that are not the same type as the host submitting the job:
bsub -R "type != local" myjob

◆ bsub -R "r15s < 1.0 || model ==local && swp <= 10" myjob

Since && has a higher priority than ||, this example means:
r15s < 1.0 || (model == local && swp <=10)

◆ This example has different meaning from the previous example:
bsub -R "(r15s < 1.0 || model == local) && swp <= 10" myjob

This example means:
(r15s < 1.0 || model == local) && swp <= 10

Checking resource
requirement syntax

Use the BSUB_CHK_RESREQ environment variable to check the compatibility of
your existing resource requirement select strings against the stricter syntax enabled
by LSF_STRICT_RESREQ=Y in lsf.conf.
Set the BSUB_CHK_RESREQ environment variable to any value enable bsub to
check the syntax of the resource requirement selection string without actually
submitting the job for scheduling and dispatch. LSF_STRICT_RESREQ does not
need to be set to check the resource requirement selection string syntax.
bsub only checks the select section of the resource requirement. Other sections in
the resource requirement string are not checked.
If resource requirement checking detects syntax errors in the selection string, bsub
returns and error message. For example:
bsub -R "select[type==local] select[hname=abc]" sleep 10

Error near "select": duplicate section. Job not submitted.

echo $?

255

If no errors are found, bsub returns a successful message and exit code zero (0). For
example:
env | grep BSUB_CHK_RESREQ

Administering Platform LSF 319

Specifying Resource Requirements

BSUB_CHK_RESREQ=1

bsub -R "select[type==local]" sleep 10

Resource requirement string is valid.

echo $?

0

If BSUB_CHK_RESREQ is set, but you do not specify -R, LSF treats it as empty
resource requirement. For example:
bsub sleep 120

Resource requirement string is valid.

echo $?

0

Resizable jobs
Resize allocation requests are scheduled using hosts as determined by the select
expression of the merged resource requirement. For example, to run an
autoresizable job on 1-100 slots, but only on hosts of type X86_64, the following job
submission specifies this resource request:
bsub -ar -n "1,100" -R "select[type == X86_64]" myjob

Every time the job grows in slots, slots are requested on hosts of the specified type.

NOTE: Resizable jobs cannot have compound resource requirements.

Order String

320 Administering Platform LSF

Order String
The order string allows the selected hosts to be sorted according to the values of
resources. The values of r15s, r1m, and r15m used for sorting are the normalized
load indices returned by lsload -N.
The order string is used for host sorting and selection. The ordering begins with the
rightmost index in the order string and proceeds from right to left. The hosts are
sorted into order based on each load index, and if more hosts are available than
were requested, the LIM drops the least desirable hosts according to that index. The
remaining hosts are then sorted by the next index.
After the hosts are sorted by the leftmost index in the order string, the final phase
of sorting orders the hosts according to their status, with hosts that are currently not
available for load sharing (that is, not in the ok state) listed at the end.
Because the hosts are sorted again for each load index, only the host status and the
leftmost index in the order string actually affect the order in which hosts are listed.
The other indices are only used to drop undesirable hosts from the list.
When sorting is done on each index, the direction in which the hosts are sorted
(increasing vs. decreasing values) is determined by the default order returned by
lsinfo for that index. This direction is chosen such that after sorting, by default,
the hosts are ordered from best to worst on that index.
When used with a cu string, the preferred compute unit order takes precedence.
Within each compute unit hosts are ordered according to the order string
requirements.

Syntax
[-]resource_name [:[-]resource_name]...

You can specify any built-in or external load index or static resource.
When an index name is preceded by a minus sign ‘-’, the sorting order is reversed
so that hosts are ordered from worst to best on that index.

Specifying multiple -R options

bsub accepts multiple -R options for the order section.

RESTRICTION: Compound resource requirements do not support multiple -R options.

You can specify multiple resource requirement strings instead of using the &&
operator. For example:
bsub -R "order[r15m]" -R "order[ut]"

LSF merges the multiple -R options into one string and dispatches the job if all of
the resource requirements can be met. By allowing multiple resource requirement
strings and automatically merging them into one string, LSF simplifies the use of
multiple layers of wrapper scripts. The number of -R option sections is unlimited.

Default
The default sorting order is r15s:pg (except for lslogin(1): ls:r1m).

Administering Platform LSF 321

Specifying Resource Requirements

Example
swp:r1m:tmp:r15s

Resizable jobs
The order in which hosts are considered for resize allocation requests is determined
by the order expression of the job. For example, to run an autoresizable job on
1-100 slots, preferring hosts with larger memory, the following job submission
specifies this resource request:
bsub -ar -n "1,100" -R "order[mem]" myjob

When slots on multiple hosts become available simultaneously, hosts with larger
available memory get preference when the job adds slots.

NOTE: Resizable jobs cannot have compound resource requirements.

Usage String

322 Administering Platform LSF

Usage String
This string defines the expected resource usage of the job. It is used to specify
resource reservations for jobs, or for mapping jobs on to hosts and adjusting the
load when running interactive jobs.
By default, no resources are reserved.
When LSF_STRICT_RESREQ=Y in lsf.conf, LSF rejects resource requirement
strings where an rusage section contains a non-consumable resource.

Multi-phase resources
Multiple phases within the rusage string allow different time periods to have
different memory requirements (load index mem). The duration of all except the last
phase must be specified, while decay rates are all optional and are assumed to be 0
if omitted. If the optional final duration is left blank, the final resource requirement
applies until the job is finished.
Multi-phase resource reservations cannot include increasing resources, but can
specify constant or decreasing resource reservations over multiple periods of time.

Resource reservation limits
Resource requirement reservation limits can be set using the parameter
RESRSV_LIMIT in lsb.queues. Queue-level RES_REQ rusage values (set in
lsb.queues) must be in the range set by RESRSV_LIMIT, or the queue-level
RES_REQ is ignored. Merged RES_REQ rusage values from the job and application
levels must be in the range of RESRSV_LIMIT, or the job is rejected.
When both the RES_REQ and RESRSV_LIMIT are set in lsb.queues for a
consumable resource, the queue-level RES_REQ no longer acts as a hard limit for the
merged RES_REQ rusage values from the job and application levels. In this case only
the limits set by RESRSV_LIMIT must be satisfied, and the queue-level RES_REQ acts
as a default value.

Batch jobs
The resource usage (rusage) section can be specified at the job level, with the queue
configuration parameter RES_REQ, or with the application profile parameter
RES_REQ.

Basic syntax rusage[usage_string [, usage_string][|| usage_string] ...]

where usage_string is:
load_index=value [:load_index=value]... [:duration=minutes[m] |
:duration=hoursh | :duration=secondss [:decay=0 | :decay=1]]

Multi-phase
memory syntax

rusage[multi_usage_string [, usage_string]...]

where multi_usage_string is:
mem=(v1 [v2 … vn]):[duration=(t1 [t2 … tm])][:decay=(d1 [d2... dk])]

for m = n|n-1. For a single phase (n=1), duration is not required.
if k > m, dm+1 to dk will be ignored; if k < m, dk+1 =.. = dm = 0.
usage_string is the same as the basic syntax, for any load_index other than mem.

Administering Platform LSF 323

Specifying Resource Requirements

Multi-phase syntax can be used with a single phase memory resource requirement
as well as for multiple phases. For multi-phase slot-based resource reservation, use
with RESOURCE_RESERVE_PER_SLOT=Y in lsb.params.
Multi-phase resource reservations cannot increase over time. A job submission
with increasing resource reservations from one phase to the next will be rejected.
For example:
bsub -R"rusage[mem=(200 300):duration=(2 3)]" myjob

specifies an increasing memory reservation from 200 MB to 300 MB. This job will
be rejected.

TIP: When a multi-phase mem resource requirement is being used, duration can be specified
separately for single-phase resources.

Load index Internal and external load indices are considered in the resource usage string. The
resource value represents the initial reserved amount of the resource.

Duration The duration is the time period within which the specified resources should be
reserved. Specify a duration equal to or greater than the ELIM updating interval.
◆ If the value is followed by the letter s, m, or h, the specified time is measured in

seconds, minutes, or hours respectively.
◆ By default, duration is specified in minutes.

For example, the following specify a duration of 1 hour for multi-phase syntax:
❖ duration=(60)

❖ duration=(1h)

❖ duration=(3600s)

For example, the following specify a duration of 1 hour for single-phase syntax:
❖ duration=60

❖ duration=1h

❖ duration=3600s

TIP: Duration is not supported for static shared resources. If the shared resource is
defined in an lsb.resources Limit section, then duration is not applied.

Decay The decay value indicates how the reserved amount should decrease over the
duration.
◆ A value of 1 indicates that system should linearly decrease the amount reserved

over the duration.
◆ A value of 0 causes the total amount to be reserved for the entire duration.
Values other than 0 or 1 are unsupported, and are taken as the default value of 0. If
duration is not specified, decay value is ignored.

TIP: Decay is not supported for static shared resources. If the shared resource is defined in an
lsb.resources Limit section, then decay is not applied.

Usage String

324 Administering Platform LSF

Default If a resource or its value is not specified, the default is not to reserve that resource.
If duration is not specified, the default is to reserve the total amount for the lifetime
of the job. (The default decay value is 0.)

Example rusage[mem=50:duration=100:decay=1]

This example indicates that 50 MB memory should be reserved for the job. As the
job runs, the amount reserved will decrease at approximately 0.5 MB per minute
until the 100 minutes is up.

How simple
queue-level and
job-level rusage
sections are
resolved

Job-level rusage overrides the queue level specification:
◆ For internal load indices (r15s, r1m, r15m, ut, pg, io, ls, it, tmp, swp, and mem),

the job-level value cannot be larger than the queue-level value (unless the limit
parameter RESRSV_LIMIT is being used as a maximum instead of the
queue-level value).

◆ For external load indices (e.g., licenses), the job-level rusage can be larger than
the queue-level requirements.

◆ For duration, the job-level value of internal and external load indices cannot be
larger than the queue-level value.

◆ For multi-phase simple rusage sections:
❖ For internal load indices (r15s, r1m, r15m, ut, pg, io, ls, it, tmp, swp, and

mem), the first phase of the job-level value cannot be larger than the first
phase of the queue-level value (unless the limit parameter RESRSV_LIMIT
is being used as a maximum instead of the queue-level value).

❖ For duration and decay, if either job-level or queue-level is multi-phase, the
job-level value will take precedence.

How simple
queue-level and
job-level rusage
sections are
merged

When both job-level and queue-level rusage sections are defined, the rusage
section defined for the job overrides the rusage section defined in the queue. The
two rusage definitions are merged, with the job-level rusage taking precedence.
For example:

Example 1
Given a RES_REQ definition in a queue:
RES_REQ = rusage[mem=200:lic=1] ...

and job submission:
bsub -R "rusage[mem=100]" ...

The resulting requirement for the job is
rusage[mem=100:lic=1]

where mem=100 specified by the job overrides mem=200 specified by the queue.
However, lic=1 from queue is kept, since job does not specify it.

Example 2
For the following queue-level RES_REQ (decay and duration defined):
RES_REQ = rusage[mem=200:duration=20:decay=1] ...

Administering Platform LSF 325

Specifying Resource Requirements

and job submission (no decay or duration):
bsub -R "rusage[mem=100]" ...

The resulting requirement for the job is:
rusage[mem=100:duration=20:decay=1]

Queue-level duration and decay are merged with the job-level specification, and
mem=100 for the job overrides mem=200 specified by the queue. However,
duration=20 and decay=1 from queue are kept, since job does not specify them.

rusage in
application profiles

See Chapter 23, “Working with Application Profiles” for information about how
resource requirements in application profiles are resolved with queue-level and
job-level resource requirements.

How simple
queue-level rusage
sections are
merged with
compound rusage
sections

When simple queue-level and compound application-level or job-level rusage
sections are defined, the two rusage definitions are merged. If a job-level resource
requirement (simple or compound) is defined, the application level is ignored and
the job-level and queue-level sections merge. If no job-level resource requirement
is defined, the application-level and queue-level merge.
When a compound resource requirement merges with a simple resource
requirement from the queue-level, the behavior depends on whether the
queue-level requirements are job-based or not.

Example 1
Job-based simple queue-level requirements apply to the first term of the merged
compound requirements. For example:
Given a RES_REQ definition for a queue which refers to a job-based resource:
RES_REQ = rusage[lic=1] ...

and job submission resource requirement:
bsub -R "2*{rusage[mem=100] ...} +
4*{[mem=200:duration=20:decay=1] ...}"

The resulting requirement for the job is
bsub -R "2*{rusage[mem=100:lic=1] ...} +
4*{[mem=200:duration=20:decay=1] ...}"

The job-based resource lic=1 from queue is added to the first term only, since it is
job-based and wasn’t included the job-level requirement.

Example 2
Host-based or slot-based simple queue-level requirements apply to all terms of the
merged compound requirements. For example:
For the following queue-level RES_REQ which does not include job-based
resources:
RES_REQ = rusage[mem=200:duration=20:decay=1] ...

and job submission:
bsub -R "2*{rusage[mem=100] ...} + 4*{rusage[lic=1] ...}"

The resulting requirement for the job is:
2*{rusage[mem=100:duration=20:decay=1] ...} +
4*{rusage[lic=1:mem=200:duration=20:decay=1] ...}

Usage String

326 Administering Platform LSF

Where duration=20 and decay=1 from queue are kept, since job does not specify
them in any term. In the first term mem=100 from the job is kept; in the second term
mem=200 from the queue is used since it wasn’t specified by the job resource
requirement.

Specifying multiple -R options
bsub accepts multiple -R options for the rusage section.

RESTRICTION: Compound resource requirements do not support multiple -R options.
Multi-phase rusage strings do not support multiple -R options.

You can specify multiple resource requirement strings instead of using the &&
operator. For example:
bsub -R "rusage[mem=100]" -R "rusage[tmp=50:duration=60]"

LSF merges the multiple -R options into one string and dispatches the job if all of
the resource requirements can be met. By allowing multiple resource requirement
strings and automatically merging them into one string, LSF simplifies the use of
multiple layers of wrapper scripts.
Comma-separated multiple resource requirements within one rusage string is
supported. For example:
bsub -R "rusage[mem=20, license=1:duration=2]"
-R "rusage[app_lic_v201=1||app_lic_v15=1]" myjob

A given load index cannot appear more than once in the resource usage string.

Examples ◆ The following job requests 20 MB memory for the duration of the job, and 1
license to be reserved for 2 minutes:
bsub -R "rusage[mem=20, license=1:duration=2]" myjob

◆ A queue with the same resource requirements could specify:
RES_REQ = rusage[mem=20, license=1:duration=2]

◆ The following job requests 20 MB of memory and 50 MB of swap space for 1
hour, and 1 license to be reserved for 2 minutes:

bsub -R "rusage[mem=20:swp=50:duration=1h, license=1:duration=2]" myjob

◆ The following job requests 50 MB of swap space, linearly decreasing the
amount reserved over a duration of 2 hours, and requests 1 license to be
reserved for 2 minutes:

bsub -R "rusage[swp=20:duration=2h:decay=1, license=1:duration=2]" myjob

◆ The following job requests two resources with same duration but different
decay:

bsub -R "rusage[mem=20:duration=30:decay=1, lic=1:duration=30] myjob

Specifying alternative usage strings
If you use more than one version of an application, you can specify the version you
prefer to use together with a legacy version you can use if the preferred version is
not available. Use the OR (||) expression to separate the different usage strings that
define your alternative resources.

Administering Platform LSF 327

Specifying Resource Requirements

Job-level resource requirement specifications that use the || operator are merged
with other rusage requirements defined at the application and queue levels.

NOTE: Alternative rusage strings cannot be submitted with compound resource requirements.

Job-level examples The following examples assume that you are running an application version 1.5 as
a resource called app_lic_v15 and the same application version 2.0.1 as a resource
called app_lic_v201. The license key for version 2.0.1 is backward compatible with
version 1.5, but the license key for version 1.5 will not work with 2.0.1
◆ If you can only run your job using version 2.0.1 of the application, submit the

job without specifying an alternate resource. To submit a job that will only use
app_lic_v201:
bsub -R "rusage[app_lic_v201=1]" myjob

◆ If you can run your job using either version of the application, try to reserve
version 2.0.1 of the application. If it is not available, you can use version 1.5. To
submit a job that will try app_lic_v201 before trying app_lic_v15:
bsub -R "rusage[app_lic_v201=1||app_lic_v15=1]" myjob

◆ If different versions of an application require different system resources, you
can specify other resources in your rusage strings. To submit a job that will use
20 MB of memory for app_lic_v201 or 20 MB of memory and 50 MB of swap
space for app_lic_v15:

bsub -R "rusage[mem=20:app_lic_v201=1||mem=20:swp=50:app_lic_v15=1]" myjob

◆ You can also specify alternative multi-phase memory requirements. To submit
a job that will use 20 MB of memory for app_lic_v201 or 50 MB of swap space
and 50 MB of memory for 10 minutes followed by 10 MB of memory for the
remainder of the job for app_lic_v15:

bsub -R "rusage[mem=20:app_lic_v201=1

||mem=(50 10):duration=(10),swp=50:app_lic_v15=1]" myjob

How LSF merges rusage strings that contain the || operator
The following examples show how LSF merges job-level and queue-level rusage
strings that contain the || operator.

NOTE: Alternative rusage strings cannot be submitted with compound resource requirements.

Queue level RES_REQ=rusage… Job level bsub -R "rusage … Resulting rusage string

[mem=200:duration=180] [w1=1 || w2=1 || w3=1]" [w1=1, mem=200:duration=180 ||
w2=1, mem=200:duration=180 ||
w3=1, mem=200:duration=180]

[w1=1 || w2=1 || w3=1] [mem=200:duration=180]" [mem=200:duration=180, w1=1 ||
mem=200:duration=180, w2=1 ||
mem=200:duration=180, w3=1]

Usage String

328 Administering Platform LSF

Non-batch environments
Resource reservation is only available for batch jobs. If you run jobs using only LSF
Base, such as through lsrun, LIM uses resource usage to determine the placement
of jobs. Resource usage requests are used to temporarily increase the load so that a
host is not overloaded. When LIM makes a placement advice, external load indices
are not considered in the resource usage string. In this case, the syntax of the
resource usage string is
res[=value]:res[=value]: ... :res[=value]

res is one of the resources whose value is returned by the lsload command.
rusage[r1m=0.5:mem=20:swp=40]

The above example indicates that the task is expected to increase the 1-minute run
queue length by 0.5, consume 20 MB of memory and 40 MB of swap space.
If no value is specified, the task is assumed to be intensive in using that resource. In
this case no more than one task will be assigned to a host regardless of how many
CPUs it has.
The default resource usage for a task is r15s=1.0:r1m=1.0:r15m=1.0. This
indicates a CPU-intensive task which consumes few other resources.

Resizable jobs
Unlike the other components of a resource requirement string that only pertain to
adding additional slots to a running job, rusage resource requirement strings affect
the resource usage when slots are removed from the job as well.
When adding or removing slots from a running job:
◆ The amount of slot-based resources added to or removed from the job

allocation is proportional to the change in the number of slots
◆ The amount of job-based resources is not affected by a change in the number of

slots
◆ The amount of each host-based resource is proportional to the change in the

number of hosts
When using multi-phase resource reservation, the job allocation is based on the
phase of the resource reservation.

NOTE: Resizable jobs cannot have compound resource requirements.

Duration and decay
of rusage

Duration and decay of resource usage and the || operator affect resource allocation.
Duration or decay of a resource in the rusage expression is ignored when
scheduling the job for the additional slots.
If a job has the following rusage string: rusage[mem=100:duration=300], the
resize request of one additional slot is scheduled on a host only if there are 100 units
of memory available on that host. In this case, mem is a slot-based resource
(RESOURCE_RESERVE_PER_SLOT=Y in lsb.params).

Administering Platform LSF 329

Specifying Resource Requirements

Once the resize operation is done, if the job has been running less than 300 seconds
then additional memory will be reserved only until the job has run for 300 seconds.
If the job has been running for more than 300 seconds when the job is resized, no
additional memory is reserved. The behavior is similar for decay.
The || operator lets you specify multiple alternative rusage strings, one of which is
used when dispatching the job. You cannot use bmod to change rusage to a new one
with a || operator after the job has been dispatched
For job resize, when the || operator is used, the resize request uses the rusage
expression that was originally used to dispatch the job. If the rusage expression has
been modified since the job started, the resize request is scheduled using the new
single rusage expression.

Example 1 You want to run an autoresizable job such that every slot occupied by the job
reserves 100 MB of swap space In this case, swp is a slot-based resource
(RESOURCE_RESERVE_PER_SLOT=Y in lsb.params). The job also needs a
separate license for each host on which it runs. Each additional slot allocated to the
job should reserve additional swap space, and each new host should reserve an
additional license. The following job submission specifies this resource request:
bsub -ar -n "1,100" -R "rusage[swp=100,license=1]" myjob

where license is a user-defined host-based resource.
Similarly, if you want to release some of the slots from a running job, resources
reserved by the job are decreased appropriately. For example, for the following job
submission:
bsub -ar -n 100 -R "rusage[swp=50:license=1]" myjob

Job <123> is submitted to default queue.

you can run bresize release to release all the slots from the job on one host:
bresize release "hostA" 123

The swap space used by the job is reduced by the number of slots used on hostA
times 50 MB, and one host-based license resource is released from the job.

Example 2 You have a choice between two versions of an application, each version having
different memory and swap space requirements on hosts and a different license
(app_lic_v15 and app_lic_v201). If you submit an autoresizable job with the ||
operator, once the job is started using one version of an application, slots added to
a job during a resize operation reserve resources depending on which version of the
application was originally run. For example, for the following job submission:

bsub -n "1,100" -ar -R "rusage[mem=20:app_lic_v201=1 || mem=20:swp=50:app_lic_v15=1]"
myjob

If the job starts with app_lic_v15, each additional slot added in a resize operation
reserves 20 MB of memory and 50 MB of swap space.

Span String

330 Administering Platform LSF

Span String
A span string specifies the locality of a parallel job. If span is omitted, LSF allocates
the required processors for the job from the available set of processors.

Syntax
The span string supports the following syntax:

span[hosts=1] Indicates that all the processors allocated to this job must be on the same host.
span[ptile=value] Indicates the number of processors on each host that should be allocated to the job,

where value is one of the following:
◆ Default ptile value, specified by n processors. In the following example, the

job requests 4 processors on each available host, regardless of how many
processors the host has:
span[ptile=4]

◆ Predefined ptile value, specified by ’!’. The following example uses the
predefined maximum job slot limit lsb.hosts (MXJ per host type/model) as
its value:
span[ptile='!']

TIP: If the host or host type/model does not define MXJ, the default predefined ptile value is
1.

RESTRICTION: Under bash 3.0, the exclamation mark (!) is not interpreted correctly by the
shell. To use predefined ptile value (ptile='!'), use the +H option to disable '!' style history
substitution in bash (sh +H).

◆ Predefined ptile value with optional multiple ptile values, per host type or
host model:
❖ For host type, you must specify same[type] in the resource requirement.

In the following example, the job requests 8 processors on a host of type HP
or SGI, and 2 processors on a host of type LINUX, and the predefined
maximum job slot limit in lsb.hosts (MXJ) for other host types:
span[ptile='!',HP:8,SGI:8,LINUX:2] same[type]

❖ For host model, you must specify same[model] in the resource
requirement. In the following example, the job requests 4 processors on
hosts of model PC1133, and 2 processors on hosts of model PC233, and the
predefined maximum job slot limit in lsb.hosts (MXJ) for other host
models:
span[ptile='!',PC1133:4,PC233:2] same[model]

span[hosts=-1] Disables span setting in the queue. LSF allocates the required processors for the job
from the available set of processors.
See Controlling Processor Allocation Across Hosts on page 556 for more
information about specifying span strings.

Administering Platform LSF 331

Specifying Resource Requirements

Resizable jobs
For resource requirements with span[hosts=1], a resize request is limited to slots
on the first-execution host of the job. This behavior eliminates the ambiguities that
arise when the span expression is modified from the time that the job was originally
dispatched.
For span[ptile=n], the job will be allocated exactly n slots on some number of
hosts, and a number between 1 and n slots (inclusive) on one host. This is true even
if a range of slots is requested. For example, for the following job submission:
bsub -n "1,20" -R "span[ptile=2]" sleep 10000

This special span behavior does not only apply to resize requests. It applies to
resizable jobs only when the original allocation is made, and in making additional
resize allocations.
If every host has only a single slot available, the job is allocated one slot.
Resize requests with partially filled hosts are handled so that LSF does not choose
any slots on hosts already occupied by the job. For example, it is common to use the
ptile feature with span[ptile=1] to schedule exclusive jobs. Another typical use
is span[ptile='!'] to make the job occupy all slots on each host it is allocated.
For a resizable job (auto-resizable or otherwise) with a range of slots requested and
span[ptile=n], whenever the job is allocated slots, it will receive either of the
following:
◆ The maximum number of slots requested, comprising n slots on each of a

number of hosts, and between 0 and n-1 (inclusive) slots on one host
◆ n slots on each of a number of hosts, summing to some value less than the

maximum
For example, if a job requests between 1 and 14 additional slots, and
span[ptile=4] is part of the job resource requirement string, when additional
slots are allocated to the job, the job receives either of the following:
◆ 14 slots, with 2 slots on one host and 4 slots on each of 3 hosts
◆ 4, 8 or 12 slots, such that 4 slots are allocated per host of the allocation

NOTE: Resizable jobs cannot have compound resource requirements.

Example When running a parallel exclusive job, it is often desirable to specify
span[ptile=1] so that the job is allocated at most one slot on each host. For an
autoresizable job, new slots are allocated on hosts not already used by the job. The
following job submission specifies this resource request:
bsub -x -ar -n "1,100" -R "span[ptile=1]" myjob

When additional slots are allocated to a running job, the slots will be on new hosts,
not already occupied by the job.

Same String

332 Administering Platform LSF

Same String

TIP: You must have the parallel batch job scheduler plugin installed in order to use the same
string.

Parallel jobs run on multiple hosts. If your cluster has heterogeneous hosts, some
processes from a parallel job may for example, run on Solaris and some on SGI
IRIX. However, for performance reasons you may want all processes of a job to run
on the same type of host instead of having some processes run on one type of host
and others on another type of host.
The same string specifies that all processes of a parallel job must run on hosts with
the same resource.
You can specify the same string:
◆ At the job level in the resource requirement string of:

❖ bsub

❖ bmod

◆ At the queue level in lsb.queues in the RES_REQ parameter.
When queue-level, application-level, and job-level same sections are defined, LSF
combines requirements to allocate processors.

Syntax
resource_name[:resource_name]...

You can specify any static resource.
For example, if you specify resource1:resource2, if hosts always have both
resources, the string is interpreted as allocate processors only on hosts that have the
same value for resource1 and the same value for resource2.
If hosts do not always have both resources, it is interpreted as allocate processors
either on hosts that have the same value for resource1, or on hosts that have the
same value for resource2, or on hosts that have the same value for both resource1
and resource2.

Specifying multiple -R options
bsub accepts multiple -R options for the same section.

RESTRICTION: Compound resource requirements do not support multiple -R options.

You can specify multiple resource requirement strings instead of using the &&
operator. For example:
bsub -R "same[type]" -R "same[model]"

LSF merges the multiple -R options into one string and dispatches the job if all of
the resource requirements can be met. By allowing multiple resource requirement
strings and automatically merging them into one string, LSF simplifies the use of
multiple layers of wrapper scripts.

Administering Platform LSF 333

Specifying Resource Requirements

Resizable jobs
The same expression ensures that the resize allocation request is dispatched to hosts
that have the same resources as the first-execution host. For example, if the first
execution host of a job is SOL7 and the resource requirement string contains
same[type], additional slots are allocated to the job on hosts of type SOL7.
Taking the same resource as the first-execution host avoids ambiguities that arise
when the original job does not have a same expression defined, or has a different
same expression when the resize request is scheduled.
For example, a parallel job may be required to have all slots on hosts of the same
type or model for performance reasons. For an autoresizable job, any additional
slots given to the job will be on hosts of the same type, model, or resource as those
slots originally allocated to the job. The following command submits an
autoresizable job such that all slots allocated in a resize operation are allocation on
hosts with the same model as the original job:
bsub -ar -n "1,100" -R "same[model]" myjob

Examples
bsub -n 4 -R"select[type==SGI6 || type==SOL7] same[type]" myjob

Run all parallel processes on the same host type. Allocate 4 processors on the same
host type—either SGI IRIX, or Solaris 7, but not both.
bsub -n 6 -R"select[type==any] same[type:model]" myjob

Run all parallel processes on the same host type and model. Allocate 6 processors
on any host type or model as long as all the processors are on the same host type
and model.

Same string in
application profiles

See Chapter 23, “Working with Application Profiles” for information about how
resource requirements in application profiles are resolved with queue-level and
job-level resource requirements.

Compute Unit String

334 Administering Platform LSF

Compute Unit String
A cu string specifies the network architecture-based requirements of parallel jobs.
cu sections are accepted by bsub -R, and by bmod -R for non-running jobs.
Compute unit resource requirements are not supported in compound resource
requirements.
For a complete description of compute units see Controlling Job Locality using
Compute Units on page 549 in Chapter 34, “Running Parallel Jobs”.

Syntax
The cu string supports the following syntax:

cu[type=cu_type] Indicates the type of compute units the job can run on. Types are defined by
COMPUTE_UNIT_TYPES in lsb.params. If type is not specified, the default set by
COMPUTE_UNIT_TYPES is assumed.

cu[pref=maxavail |
minavail | config]

Indicates the compute unit scheduling preference, grouping hosts by compute unit
before applying a first-fit algorithm to the sorted hosts. For resource reservation,
the default pref=config is always used.
Compute units are ordered as follows:
◆ config lists compute units in the order they appear in the ComputeUnit section

of lsf.hosts. If pref is not specified, pref=config is assumed.
◆ maxavail lists compute units with more free slots first. Should compute units

have equal numbers of free slots, they appear in the order listed in the
ComputeUnit section of lsf.hosts.

◆ minavail lists compute units with fewer free slots first. Should compute units
have equal numbers of free slots, they appear in the order listed in the
ComputeUnit section of lsf.hosts.

Free slots include all available slots not occupied by running jobs.
When pref is used with the keyword balance, balance takes precedence.
Hosts accept jobs separated by the time interval set by JOB_ACCEPT_INTERVAL in
lsb.params; jobs submitted closer together than this interval will run on different
hosts regardless of the pref setting.

cu[maxcus=number] Indicates the maximum number of compute units a job can run over. Jobs may be
placed over fewer compute units if possible.
When used with bsub -n min, max a job is allocated the first combination
satisfying both min and maxcus, while without maxcus a job is allocated as close to
max as possible.

cu[usablecuslots=nu
mber]

Specifies the minimum number of slots a job must use on each compute unit it
occupies. number is a non-negative integer value.
When more than one compute unit is used by a job, the final compute unit allocated
can provide less than number slots if less are needed.
usablecuslots and balance cannot be used together.

cu[balance] Indicates that a job should be split evenly between compute units, with a difference
in compute unit slot allocation of at most 1. A balanced allocation spans the fewest
compute units possible.

Administering Platform LSF 335

Specifying Resource Requirements

When used with bsub -n min, max the value of max is disregarded.
balance and usablecuslots cannot be used together.
When balance and pref are both used, balance takes precedence. The
keyword pref is only considered if there are multiple balanced allocations
spanning the same number of compute units. In this case pref is considered when
choosing the allocation.
When balance is used with span[ptile=X] (for X>1) a balanced allocation is one
split evenly between compute units, with a difference in compute unit host
allocation of at most 1.

cu[excl] Indicates that jobs must use compute units exclusively. Exclusivity applies to the
compute unit granularity specified by type.
Compute unit exclusivity must be enabled by EXCLUSIVE=CU[cu_type] in
lsb.queues.

Resizable jobs
Auto-resizable jobs cannot be submitted with compute unit resource requirements.
In the event a bswitch call or queue reconfiguration results in an auto-resizable job
running in a queue with compute unit resource requirements, the job will no longer
be auto-resizable.

RESTRICTION: Increasing resources allocated to resizable jobs with compute unit resource
requirements is not supported.

Examples bsub -n 11,60 -R "cu[maxcus=2:type=enclosure]" myjob

Spans the fewest possible compute units for a total allocation of at least 11 slots
using at most 2 compute units of type enclosure. In contrast, without maxcus:
bsub -n 11,60 myjob

In this case the job is allocated as close to 60 slots as possible, with a minimum of
11 slots.
bsub -n 64 -R "cu[balance:maxcus=4:type=enclosure]" myjob

Spans the fewest possible compute units for a balanced allocation of 64 slots using
4 or less compute units of type enclosure.Possible balanced allocations (in order of
preference) are:
◆ 64 slots on 1 enclosure
◆ 32 slots on 2 enclosures
◆ 22 slots on 1 enclosure and 21 slots on 2 enclosures
◆ 16 slots on 4 enclosures
bsub -n 64 -R "cu[excl:maxcus=8:usablecuslots=10]" myjob

Allocates 64 slots over 8 or less compute units in groups of 10 or more slots per
compute unit (with one compute unit possibly using less than 10 slots). The default
compute unit type set in COMPUTE_UNIT_TYPES is used, and are used exclusively by
myjob.
bsub -n 58 -R "cu[balance:type=rack:usablecuslots=20]" myjob

Compute Unit String

336 Administering Platform LSF

Provides a balanced allocation of 58 slots with at least 20 slots in each compute unit
of type rack. Possible allocations are 58 slots in 1 rack or 29 slots in 2 racks.
Jobs submitted with balance requirements choose compute units based on the
pref keyword secondarily, as shown in the following examples where cu1 has 5
available slots and cu2 has 19 available slots.
bsub -n 5 -R "cu[balance:pref=minavail]"

Runs the job on compute unit cu1 where there are the fewest available slots.
bsub -n 5 -R "cu[balance:pref=maxavail]"

Runs the job on compute unit cu2 where there are the most available slots. In both
cases the job is balanced over the fewest possible compute units.

Cu string in
application profiles

See Chapter 23, “Working with Application Profiles” for information about how
resource requirements in application profiles are resolved with queue-level and
job-level resource requirements.

Administering Platform LSF 337

C H A P T E R

20
Fairshare Scheduling

To configure any kind of fairshare scheduling, you should understand the following
concepts:
◆ User share assignments
◆ Dynamic share priority
◆ Job dispatch order
You can configure fairshare at either host level or queue level. If you require more
control, you can implement hierarchical fairshare. You can also set some additional
restrictions when you submit a job.
To get ideas about how to use fairshare scheduling to do different things, see Ways
to Configure Fairshare on page 366.

Contents
◆ Basic Concepts

❖ Understanding Fairshare Scheduling on page 338
❖ User Share Assignments on page 339
❖ Dynamic User Priority on page 340
❖ How Fairshare Affects Job Dispatch Order on page 342

◆ User-based Fairshare
❖ Host Partition User-based Fairshare on page 343
❖ Queue-level User-based Fairshare on page 345
❖ Cross-queue User-based Fairshare on page 345
❖ Hierarchical User-based Fairshare on page 349

◆ Queue-based Fairshare
❖ Queue-based Fairshare on page 352
❖ Configuring Slot Allocation per Queue on page 354
❖ View Queue-based Fairshare Allocations on page 356

◆ Advanced Topics

Understanding Fairshare Scheduling

338 Administering Platform LSF

❖ Using Historical and Committed Run Time on page 362
❖ Users Affected by Multiple Fairshare Policies on page 365
❖ Ways to Configure Fairshare on page 366
❖ Resizable jobs and fairshare on page 369

Understanding Fairshare Scheduling
By default, LSF considers jobs for dispatch in the same order as they appear in the
queue (which is not necessarily the order in which they are submitted to the queue).
This is called first-come, first-served (FCFS) scheduling.
Fairshare scheduling divides the processing power of the LSF cluster among users
and queues to provide fair access to resources, so that no user or queue can
monopolize the resources of the cluster and no queue will be starved.
If your cluster has many users competing for limited resources, the FCFS policy
might not be enough. For example, one user could submit many long jobs at once
and monopolize the cluster’s resources for a long time, while other users submit
urgent jobs that must wait in queues until all the first user’s jobs are all done. To
prevent this, use fairshare scheduling to control how resources should be shared by
competing users.
Fairshare is not necessarily equal share: you can assign a higher priority to the most
important users. If there are two users competing for resources, you can:
◆ Give all the resources to the most important user
◆ Share the resources so the most important user gets the most resources
◆ Share the resources so that all users have equal importance

Queue-level vs. host partition fairshare
You can configure fairshare at either the queue level or the host level. However,
these types of fairshare scheduling are mutually exclusive. You cannot configure
queue-level fairshare and host partition fairshare in the same cluster.
If you want a user’s priority in one queue to depend on their activity in another
queue, you must use cross-queue fairshare or host-level fairshare.

Fairshare policies
A fairshare policy defines the order in which LSF attempts to place jobs that are in
a queue or a host partition. You can have multiple fairshare policies in a cluster, one
for every different queue or host partition. You can also configure some queues or
host partitions with fairshare scheduling, and leave the rest using FCFS scheduling.

How fairshare scheduling works
Each fairshare policy assigns a fixed number of shares to each user or group. These
shares represent a fraction of the resources that are available in the cluster. The most
important users or groups are the ones with the most shares. Users who have no
shares cannot run jobs in the queue or host partition.
A user’s dynamic priority depends on their share assignment, the dynamic priority
formula, and the resources their jobs have already consumed.

Administering Platform LSF 339

Fairshare Scheduling

The order of jobs in the queue is secondary. The most important thing is the
dynamic priority of the user who submitted the job. When fairshare scheduling is
used, LSF tries to place the first job in the queue that belongs to the user with the
highest dynamic priority.

User Share Assignments
Both queue-level and host partition fairshare use the following syntax to define how
shares are assigned to users or user groups.

Syntax
[user, number_shares]
Enclose each user share assignment in square brackets, as shown. Separate multiple
share assignments with a space between each set of square brackets.

user Specify users of the queue or host partition. You can assign the shares:
◆ to a single user (specify user_name)
◆ to users in a group, individually (specify group_name@) or collectively (specify

group_name)
◆ to users not included in any other share assignment, individually (specify the

keyword default) or collectively (specify the keyword others)
By default, when resources are assigned collectively to a group, the group members
compete for the resources according to FCFS scheduling. You can use hierarchical
fairshare to further divide the shares among the group members.
When resources are assigned to members of a group individually, the share
assignment is recursive. Members of the group and of all subgroups always compete
for the resources according to FCFS scheduling, regardless of hierarchical fairshare
policies.

number_shares Specify a positive integer representing the number of shares of cluster resources
assigned to the user.
The number of shares assigned to each user is only meaningful when you compare
it to the shares assigned to other users, or to the total number of shares. The total
number of shares is just the sum of all the shares assigned in each share assignment.

Examples
[User1, 1] [GroupB, 1]

Assigns 2 shares: 1 to User1, and 1 to be shared by the users in GroupB. Each user
in GroupB has equal importance. User1 is as important as all the users in GroupB
put together. In this example, it does not matter if the number of shares is 1, 6 or
600. As long as User1 and GroupB are both assigned the same number of shares, the
relationship stays the same.
[User1, 10] [GroupB@, 1]

If GroupB contains 10 users, assigns 20 shares in total: 10 to User1, and 1 to each
user in GroupB. Each user in GroupB has equal importance. User1 is ten times as
important as any user in GroupB.
[User1, 10] [User2, 9] [others, 8]

Dynamic User Priority

340 Administering Platform LSF

Assigns 27 shares: 10 to User1, 9 to User2, and 8 to the remaining users, as a group.
User1 is slightly more important than User2. Each of the remaining users has equal
importance.
◆ If there are 3 users in total, the single remaining user has all 8 shares, and is

almost as important as User1 and User2.
◆ If there are 12 users in total, then 10 users compete for those 8 shares, and each

of them is significantly less important than User1 and User2.
[User1, 10] [User2, 6] [default, 4]

The relative percentage of shares held by a user will change, depending on the
number of users who are granted shares by default.
◆ If there are 3 users in total, assigns 20 shares: 10 to User1, 6 to User2, and 4 to

the remaining user. User1 has half of the available resources (10 shares out of
20).

◆ If there are 12 users in total, assigns 56 shares: 10 to User1, 6 to User2, and 4 to
each of the remaining 10 users. User1 has about a fifth of the available resources
(10 shares out of 56).

Dynamic User Priority
LSF calculates a dynamic user priority for individual users or for a group, depending
on how the shares are assigned. The priority is dynamic because it changes as soon
as any variable in formula changes. By default, a user’s dynamic priority gradually
decreases after a job starts, and the dynamic priority immediately increases when
the job finishes.

How LSF calculates dynamic priority
By default, LSF calculates the dynamic priority for each user based on:
◆ The number of shares assigned to the user
◆ The resources used by jobs belonging to the user:

❖ Number of job slots reserved and in use
❖ Run time of running jobs
❖ Cumulative actual CPU time (not normalized), adjusted so that recently

used CPU time is weighted more heavily than CPU time used in the distant
past

If you enable additional functionality, the formula can also involve additional
resources used by jobs belonging to the user:
◆ Historical run time of finished jobs
◆ Committed run time, specified at job submission with the -W option of bsub, or

in the queue with the RUNLIMIT parameter in lsb.queues
◆ Memory usage adjustment made by the fairshare plugin

(libfairshareadjust.*).

How LSF measures fairshare resource usage
LSF measures resource usage differently, depending on the type of fairshare:
◆ For user-based fairshare:

Administering Platform LSF 341

Fairshare Scheduling

❖ For queue-level fairshare, LSF measures the resource consumption of all
the user’s jobs in the queue. This means a user’s dynamic priority can be
different in every queue.

❖ For host partition fairshare, LSF measures resource consumption for all the
user’s jobs that run on hosts in the host partition. This means a user’s
dynamic priority is the same in every queue that uses hosts in the same
partition.

◆ For queue-based fairshare, LSF measures the resource consumption of all jobs
in each queue.

Default dynamic priority formula
By default, LSF calculates dynamic priority according to the following formula:
dynamic priority = number_shares / (cpu_time * CPU_TIME_FACTOR + run_time *
RUN_TIME_FACTOR + (1 + job_slots) * RUN_JOB_FACTOR +
fairshare_adjustment*FAIRSHARE_ADJUSTMENT_FACTOR)

NOTE: The maximum value of dynamic user priority is 100 times the number of user shares (if the
denominator in the calculation is less than 0.01, LSF rounds up to 0.01).

For cpu_time, run_time, and job_slots, LSF uses the total resource consumption of
all the jobs in the queue or host partition that belong to the user or group.

number_shares The number of shares assigned to the user.

cpu_time The cumulative CPU time used by the user (measured in hours). LSF calculates the
cumulative CPU time using the actual (not normalized) CPU time and a decay
factor such that 1 hour of recently-used CPU time decays to 0.1 hours after an
interval of time specified by HIST_HOURS in lsb.params (5 hours by default).

run_time The total run time of running jobs (measured in hours).

job_slots The number of job slots reserved and in use.

fairshare_adjustme
nt

The adjustment calculated by the fairshare adjustment plugin (libfairshareadjust.*).

Configuring the default dynamic priority
You can give additional weight to the various factors in the priority calculation by
setting the following parameters in lsb.params.
◆ CPU_TIME_FACTOR
◆ RUN_TIME_FACTOR
◆ RUN_JOB_FACTOR
◆ FAIRSHARE_ADJUSTMENT_FACTOR
◆ HIST_HOURS
If you modify the parameters used in the dynamic priority formula, it affects every
fairshare policy in the cluster.

CPU_TIME_FACTOR The CPU time weighting factor.

How Fairshare Affects Job Dispatch Order

342 Administering Platform LSF

Default: 0.7

RUN_TIME_FACTOR The run time weighting factor.
Default: 0.7

RUN_JOB_FACTOR The job slots weighting factor.
Default: 3

FAIRSHARE_ADJUS
TMENT_FACTOR

The fairshare plugin (libfairshareadjust.*) weighting factor.
Default: 0

HIST_HOURS Interval for collecting resource consumption history
Default: 5

Customizing the dynamic priority
In some cases the dynamic priority equation may require adjustments beyond the
run time, cpu time, and job slot dependencies provided by default. The fairshare
adjustment plugin is open source and can be customized once you identify specific
requirements for dynamic priority.
All information used by the default priority equation (except the user shares) is
passed to the fairshare plugin. In addition, the fairshare plugin is provided with
current memory use over the entire cluster and the average memory allocated to a
slot in the cluster.

NOTE: If you modify the parameters used in the dynamic priority formula, it affects every fairshare
policy in the cluster. The fairshare adjustment plugin (libfairshareadjust.*) is not
queue-specific.

Example Jobs assigned to a single slot on a host can consume host memory to the point that
other slots on the hosts are left unusable. The default dynamic priority calculation
considers job slots used, but doesn’t account for unused job slots effectively blocked
by another job.
The fairshare adjustment plugin example code provided by Platform LSF is found
in the examples directory of your installation, and implements a memory-based
dynamic priority adjustment as follows:
fairshare adjustment= (1+slots)*((used_memory
/used_slots)/(slot_memory*THRESHOLD))

used_slots The number of job slots in use by started jobs.
used_memory The total memory in use by started jobs.

slot_memory The average amount of memory that exists per slot in the cluster.
THRESHOLD The memory threshold set in the fairshare adjustment plugin.

How Fairshare Affects Job Dispatch Order
Within a queue, jobs are dispatched according to the queue’s scheduling policy.

Administering Platform LSF 343

Fairshare Scheduling

◆ For FCFS queues, the dispatch order depends on the order of jobs in the queue
(which depends on job priority and submission time, and can also be modified
by the job owner).

◆ For fairshare queues, the dispatch order depends on dynamic share priority,
then order of jobs in the queue (which is not necessarily the order in which they
are submitted to the queue).

A user’s priority gets higher when they use less than their fair share of the cluster’s
resources. When a user has the highest priority, LSF considers one of their jobs first,
even if other users are ahead of them in the queue.
If there are only one user’s jobs pending, and you do not use hierarchical fairshare,
then there is no resource contention between users, so the fairshare policies have no
effect and jobs are dispatched as usual.

Job dispatch order among queues of equivalent priority
The order of dispatch depends on the order of the queues in the queue
configuration file. The first queue in the list is the first to be scheduled.
Jobs in a fairshare queue are always considered as a group, so the scheduler attempts
to place all jobs in the queue before beginning to schedule the next queue.
Jobs in an FCFS queue are always scheduled along with jobs from other FCFS
queues of the same priority (as if all the jobs belonged to the same queue).

Example In a cluster, queues A, B, and C are configured in that order and have equal queue
priority.
Jobs with equal job priority are submitted to each queue in this order: C B A B A.
◆ If all queues are FCFS queues, order of dispatch is C B A B A (queue A is first;

queues B and C are the same priority as A; all jobs are scheduled in FCFS
order).

◆ If all queues are fairshare queues, order of dispatch is AA BB C (queue A is first;
all jobs in the queue are scheduled; then queue B, then C).

◆ If A and C are fairshare, and B is FCFS, order of dispatch is AA B B C (queue A
jobs are scheduled according to user priority; then queue B jobs are scheduled
in FCFS order; then queue C jobs are scheduled according to user priority)

◆ If A and C are FCFS, and B is fairshare, order of dispatch is C A A BB (queue A
is first; queue A and C jobs are scheduled in FCFS order, then queue B jobs are
scheduled according to user priority)

◆ If any of these queues uses cross-queue fairshare, the other queues must also
use cross-queue fairshare and belong to the same set, or they cannot have the
same queue priority. For more information, see Cross-queue User-based
Fairshare on page 345.

Host Partition User-based Fairshare
User-based fairshare policies configured at the host level handle resource
contention across multiple queues.
You can define a different fairshare policy for every host partition. If multiple
queues use the host partition, a user has the same priority across multiple queues.

Host Partition User-based Fairshare

344 Administering Platform LSF

To run a job on a host that has fairshare, users must have a share assignment
(USER_SHARES in the HostPartition section of lsb.hosts). Even cluster
administrators cannot submit jobs to a fairshare host if they do not have a share
assignment.

View host partition information

1 Use bhpart to view the following information:
◆ Host partitions configured in your cluster
◆ Number of shares (for each user or group in a host partition)
◆ Dynamic share priority (for each user or group in a host partition)
◆ Number of started jobs
◆ Number of reserved jobs
◆ CPU time, in seconds (cumulative CPU time for all members of the group,

recursively)
◆ Run time, in seconds (historical and actual run time for all members of the

group, recursively)
% bhpart Partition1

HOST_PARTITION_NAME: Partition1
HOSTS: hostA hostB hostC

SHARE_INFO_FOR: Partition1/
USER/GROUP SHARES PRIORITY STARTED RESERVED CPU_TIME RUN_TIME
group1 100 5.440 5 0 200.0 1324

Configure host partition fairshare scheduling

1 To configure host partition fairshare, define a host partition in lsb.hosts.
Use the following format.
Begin HostPartition
HPART_NAME = Partition1
HOSTS = hostA hostB ~hostC
USER_SHARES = [groupA@, 3] [groupB, 7] [default, 1]
End HostPartition

◆ A host cannot belong to multiple partitions.
◆ Optional: Use the reserved host name all to configure a single partition

that applies to all hosts in a cluster.
◆ Optional: Use the not operator (~) to exclude hosts or host groups from the

list of hosts in the host partition.
◆ Hosts in a host partition cannot participate in queue-based fairshare.

Hosts that are not included in any host partition are controlled by FCFS
scheduling policy instead of fairshare scheduling policy.

Administering Platform LSF 345

Fairshare Scheduling

Queue-level User-based Fairshare
User-based fairshare policies configured at the queue level handle resource
contention among users in the same queue. You can define a different fairshare
policy for every queue, even if they share the same hosts. A user’s priority is
calculated separately for each queue.
To submit jobs to a fairshare queue, users must be allowed to use the queue (USERS
in lsb.queues) and must have a share assignment (FAIRSHARE in lsb.queues).
Even cluster and queue administrators cannot submit jobs to a fairshare queue if
they do not have a share assignment.

View queue-level fairshare information

1 To find out if a queue is a fairshare queue, run bqueues -l. If you see
“USER_SHARES” in the output, then a fairshare policy is configured for the
queue.

Configure queue-level fairshare

1 To configure a fairshare queue, define FAIRSHARE in lsb.queues and specify
a share assignment for all users of the queue:
FAIRSHARE = USER_SHARES[[user, number_shares]...]

◆ You must specify at least one user share assignment.
◆ Enclose the list in square brackets, as shown.
◆ Enclose each user share assignment in square brackets, as shown.

Cross-queue User-based Fairshare
User-based fairshare policies configured at the queue level handle resource
contention across multiple queues.

Applying the same fairshare policy to several queues
With cross-queue fairshare, the same user-based fairshare policy can apply to
several queues can at the same time. You define the fairshare policy in a master
queue and list slave queues to which the same fairshare policy applies; slave queues
inherit the same fairshare policy as your master queue. For job scheduling
purposes, this is equivalent to having one queue with one fairshare tree.
In this way, if a user submits jobs to different queues, user priority is calculated by
taking into account all the jobs the user has submitted across the defined queues.
To submit jobs to a fairshare queue, users must be allowed to use the queue (USERS
in lsb.queues) and must have a share assignment (FAIRSHARE in lsb.queues).
Even cluster and queue administrators cannot submit jobs to a fairshare queue if
they do not have a share assignment.

Cross-queue User-based Fairshare

346 Administering Platform LSF

User and queue priority
By default, a user has the same priority across the master and slave queues. If the
same user submits several jobs to these queues, user priority is calculated by taking
into account all the jobs the user has submitted across the master-slave set.
If DISPATCH_ORDER=QUEUE is set in the master queue, jobs are dispatched
according to queue priorities first, then user priority. This avoids having users with
higher fairshare priority getting jobs dispatched from low-priority queues.
Jobs from users with lower fairshare priorities who have pending jobs in higher
priority queues are dispatched before jobs in lower priority queues. Jobs in queues
having the same priority are dispatched according to user priority.
Queues that are not part of the ordered cross-queue fairshare can have any priority.
Their priority can fall within the priority range of cross-queue fairshare queues and
they can be inserted between two queues using the same fairshare tree.

View cross-queue fairshare information

1 Run bqueues -l to know if a queue is part of cross-queue fairshare.
The FAIRSHARE_QUEUES parameter indicates cross-queue fairshare. The
first queue listed in the FAIRSHARE_QUEUES parameter is the master
queue—the queue in which fairshare is configured; all other queues listed
inherit the fairshare policy from the master queue.
All queues that participate in the same cross-queue fairshare display the same
fairshare information (SCHEDULING POLICIES, FAIRSHARE_QUEUES,
USER_SHARES, SHARE_INFO_FOR) when bqueues -l is used. Fairshare
information applies to all the jobs running in all the queues in the master-slave
set.
bqueues -l also displays DISPATCH_ORDER in the master queue if it is
defined.

bqueues
QUEUE_NAME PRIO STATUS MAX JL/U JL/P JL/H NJOBS PEND RUN SUSP
normal 30 Open:Active - - - - 1 1 0 0
short 40 Open:Active - 4 2 - 1 0 1 0
license 50 Open:Active 10 1 1 - 1 0 1 0

bqueues -l normal
QUEUE: normal
-- For normal low priority jobs, running only if hosts are lightly loaded. This is
the default queue.

PARAMETERS/STATISTICS
PRIO NICE STATUS MAX JL/U JL/P JL/H NJOBS PEND RUN SSUSP USUSP RSV
30 20 Open:Inact_Win - - - - 1 1 0 0 0 0

SCHEDULING PARAMETERS
r15s r1m r15m ut pg io ls it tmp swp mem
loadSched - - - - - - - - - - -
loadStop - - - - - - - - - - -

 cpuspeed bandwidth
loadSched - -

Administering Platform LSF 347

Fairshare Scheduling

loadStop - -

SCHEDULING POLICIES: FAIRSHARE
FAIRSHARE_QUEUES: normal short license
USER_SHARES: [user1, 100] [default, 1]

SHARE_INFO_FOR: normal/

USER/GROUP SHARES PRIORITY STARTED RESERVED CPU_TIME RUN_TIME ADJUST
user1 100 9.645 2 0 0.2 7034 0.000

USERS: all users

HOSTS: all

...

bqueues -l short
QUEUE: short
PARAMETERS/STATISTICS
PRIO NICE STATUS MAX JL/U JL/P JL/H NJOBS PEND RUN SSUSP USUSP RSV
40 20 Open:Inact_Win - 4 2 - 1 0 1 0 0 0

SCHEDULING PARAMETERS
r15s r1m r15m ut pg io ls it tmp swp mem
loadSched - - - - - - - - - - -
loadStop - - - - - - - - - - -

 cpuspeed bandwidth
loadSched - -
loadStop - -

SCHEDULING POLICIES: FAIRSHARE
FAIRSHARE_QUEUES: normal short license
USER_SHARES: [user1, 100] [default, 1]

SHARE_INFO_FOR: short/

USER/GROUP SHARES PRIORITY STARTED RESERVED CPU_TIME RUN_TIME
user1 100 9.645 2 0 0.2 7034

USERS: all users

HOSTS: all

...

Configuring cross-queue fairshare

Considerations ◆ FAIRSHARE must be defined in the master queue. If it is also defined in the
queues listed in FAIRSHARE_QUEUES, it will be ignored.

◆ Cross-queue fairshare can be defined more than once within lsb.queues. You
can define several sets of master-slave queues. However, a queue cannot belong
to more than one master-slave set. For example, you can define:
❖ In master queue normal: FAIRSHARE_QUEUES=short license
❖ In master queue priority: FAIRSHARE_QUEUES= night owners
You cannot, however, define night, owners, or priority as slaves in the
normal queue; or normal, short and license as slaves in the priority queue;
or short, license, night, owners as master queues of their own.

Cross-queue User-based Fairshare

348 Administering Platform LSF

◆ Cross-queue fairshare cannot be used with host partition fairshare. It is part of
queue-level fairshare.

Configure
cross-queue
fairshare

1 Decide to which queues in your cluster cross-queue fairshare will apply.
For example, in your cluster you may have the queues normal, priority,
short, and license and you want cross-queue fairshare to apply only to
normal, license, and short.

2 Define fairshare policies in your master queue.
In the queue you want to be the master, for example normal, define the
following in lsb.queues:
◆ FAIRSHARE and specify a share assignment for all users of the queue.
◆ FAIRSHARE_QUEUES and list slave queues to which the defined fairshare

policy will also apply
◆ PRIORITY to indicate the priority of the queue.
Begin Queue
QUEUE_NAME = queue1
PRIORITY = 30
NICE = 20
FAIRSHARE = USER_SHARES[[user1,100] [default,1]]
FAIRSHARE_QUEUES = queue2 queue3
DESCRIPTION = For normal low priority jobs, running only if hosts
are lightly loaded.
End Queue

3 In all the slave queues listed in FAIRSHARE_QUEUES, define all queue values
as desired.
For example:
Begin Queue
QUEUE_NAME = queue2
PRIORITY = 40
NICE = 20
UJOB_LIMIT = 4
PJOB_LIMIT = 2
End Queue

Begin Queue
QUEUE_NAME = queue3
PRIORITY = 50
NICE = 10
PREEMPTION = PREEMPTIVE
QJOB_LIMIT = 10
UJOB_LIMIT = 1
PJOB_LIMIT = 1
End Queue

Controlling job dispatch order in cross-queue fairshare

DISPATCH_ORDER
parameter
(lsb.queues)

Use DISPATCH_ORDER=QUEUE in the master queue to define an ordered
cross-queue fairshare set. DISPATCH_ORDER indicates that jobs are dispatched
according to the order of queue priorities, not user fairshare priority.

Administering Platform LSF 349

Fairshare Scheduling

Priority range in
cross-queue
fairshare

By default, the range of priority defined for queues in cross-queue fairshare cannot
be used with any other queues. The priority of queues that are not part of the
cross-queue fairshare cannot fall between the priority range of cross-queue
fairshare queues.
For example, you have 4 queues: queue1, queue2, queue3, and queue4. You
configure cross-queue fairshare for queue1, queue2, and queue3, and assign
priorities of 30, 40, 50 respectively. The priority of queue4 (which is not part of the
cross-queue fairshare) cannot fall between 30 and 50, but it can be any number up
to 29 or higher than 50. It does not matter if queue4 is a fairshare queue or FCFS
queue.
If DISPATCH_ORDER=QUEUE is set in the master queue, queues that are not part
of the ordered cross-queue fairshare can have any priority. Their priority can fall
within the priority range of cross-queue fairshare queues and they can be inserted
between two queues using the same fairshare tree. In the example above, queue4
can have any priority, including a priority falling between the priority range of the
cross-queue fairshare queues (30-50).

Jobs from equal
priority queues

◆ If two or more non-fairshare queues have the same priority, their jobs are
dispatched first-come, first-served based on submission time or job ID as if
they come from the same queue.

◆ If two or more fairshare queues have the same priority, jobs are dispatched in
the order the queues are listed in lsb.queues.

Hierarchical User-based Fairshare
For both queue and host partitions, hierarchical user-based fairshare lets you
allocate resources to users in a hierarchical manner.
By default, when shares are assigned to a group, group members compete for
resources according to FCFS policy. If you use hierarchical fairshare, you control
the way shares that are assigned collectively are divided among group members.
If groups have subgroups, you can configure additional levels of share assignments,
resulting in a multi-level share tree that becomes part of the fairshare policy.

How hierarchical fairshare affects dynamic share priority
When you use hierarchical fairshare, the dynamic share priority formula does not
change, but LSF measures the resource consumption for all levels of the share tree.
To calculate the dynamic priority of a group, LSF uses the resource consumption of
all the jobs in the queue or host partition that belong to users in the group and all
its subgroups, recursively.

How hierarchical fairshare affects job dispatch order
LSF uses the dynamic share priority of a user or group to find out which user's job
to run next. If you use hierarchical fairshare, LSF works through the share tree from
the top level down, and compares the dynamic priority of users and groups at each
level, until the user with the highest dynamic priority is a single user, or a group that
has no subgroups.

Hierarchical User-based Fairshare

350 Administering Platform LSF

View hierarchical share information for a group

1 Use bugroup -l to find out if you belong to a group, and what the share
distribution is.
bugroup -l
GROUP_NAME: group1
USERS: group2/ group3/
SHARES: [group2,20] [group3,10]

GROUP_NAME: group2
USERS: user1 user2 user3
SHARES: [others,10] [user3,4]

GROUP_NAME: group3
USERS: all
SHARES: [user2,10] [default,5]

This command displays all the share trees that are configured, even if they are
not used in any fairshare policy.

View hierarchical share information for a host partition
By default, bhpart displays only the top level share accounts associated with the
partition.

1 Use bhpart -r to display the group information recursively.
The output lists all the groups in the share tree, starting from the top level, and
displays the following information:
◆ Number of shares
◆ Dynamic share priority (LSF compares dynamic priorities of users who

belong to same group, at the same level)
◆ Number of started jobs
◆ Number of reserved jobs
◆ CPU time, in seconds (cumulative CPU time for all members of the group,

recursively)
◆ Run time, in seconds (historical and actual run time for all members of the

group, recursively)
bhpart -r Partition1
HOST_PARTITION_NAME: Partition1
HOSTS: HostA

SHARE_INFO_FOR: Partition1/
USER/GROUP SHARES PRIORITY STARTED RESERVED CPU_TIME RUN_TIME
group1 40 1.867 5 0 48.4 17618
group2 20 0.775 6 0 607.7 24664

SHARE_INFO_FOR: Partition1/group2/

USER/GROUP SHARES PRIORITY STARTED RESERVED CPU_TIME RUN_TIME
user1 8 1.144 1 0 9.6 5108
user2 2 0.667 0 0 0.0 0
others 1 0.046 5 0 598.1 19556

Administering Platform LSF 351

Fairshare Scheduling

Configuring hierarchical fairshare
To define a hierarchical fairshare policy, configure the top-level share assignment
in lsb.queues or lsb.hosts, as usual. Then, for any group of users affected by the
fairshare policy, configure a share tree in the UserGroup section of lsb.users. This
specifies how shares assigned to the group, collectively, are distributed among the
individual users or subgroups.
If shares are assigned to members of any group individually, using @, there can be
no further hierarchical fairshare within that group. The shares are assigned
recursively to all members of all subgroups, regardless of further share distributions
defined in lsb.users. The group members and members of all subgroups compete
for resources according to FCFS policy.
You can choose to define a hierarchical share tree for some groups but not others.
If you do not define a share tree for any group or subgroup, members compete for
resources according to FCFS policy.

Configure a share tree

1 Group membership is already defined in the UserGroup section of lsb.users.
To configure a share tree, use the USER_SHARES column to describe how the
shares are distributed in a hierachical manner. Use the following format.
Begin UserGroup
GROUP_NAME GROUP_MEMBER USER_SHARES
GroupB (User1 User2) ()
GroupC (User3 User4) ([User3, 3] [User4, 4])
GroupA (GroupB GroupC User5) ([User5, 1] [default, 10])
End UserGroup

◆ User groups must be defined before they can be used (in the GROUP_MEMBER
column) to define other groups.

◆ Enclose the share assignment list in parentheses, as shown, even if you do
not specify any user share assignments.

An Engineering queue or host partition organizes users hierarchically, and divides
the shares as shown. It does not matter what the actual number of shares assigned
at each level is.

Queue-based Fairshare

352 Administering Platform LSF

The Development group gets the largest share (50%) of the resources in the event
of contention. Shares assigned to the Development group can be further divided
among the Systems, Application, and Test groups, which receive 15%, 35%, and
50%, respectively. At the lowest level, individual users compete for these shares as
usual.
One way to measure a user’s importance is to multiply their percentage of the
resources at every level of the share tree. For example, User1 is entitled to 10% of
the available resources (.50 x .80 x .25 = .10) and User3 is entitled to 4% (.80 x .20 x
.25 = .04). However, if Research has the highest dynamic share priority among the
3 groups at the top level, and ChipY has a higher dynamic priority than ChipX, the
next comparison is between User3 and User4, so the importance of User1 is not
relevant. The dynamic priority of User1 is not even calculated at this point.

Queue-based Fairshare
When a priority is set in a queue configuration, a high priority queue tries to
dispatch as many jobs as it can before allowing lower priority queues to dispatch any
job. Lower priority queues are blocked until the higher priority queue cannot
dispatch any more jobs. However, it may be desirable to give some preference to
lower priority queues and regulate the flow of jobs from the queue.
Queue-based fairshare allows flexible slot allocation per queue as an alternative to
absolute queue priorities by enforcing a soft job slot limit on a queue. This allows
you to organize the priorities of your work and tune the number of jobs dispatched
from a queue so that no single queue monopolizes cluster resources, leaving other
queues waiting to dispatch jobs.
You can balance the distribution of job slots among queues by configuring a ratio
of jobs waiting to be dispatched from each queue. LSF then attempts to dispatch a
certain percentage of jobs from each queue, and does not attempt to drain the
highest priority queue entirely first.
When queues compete, the allocated slots per queue are kept within the limits of
the configured share. If only one queue in the pool has jobs, that queue can use all
the available resources and can span its usage across all hosts it could potentially
run jobs on.

Managing pools of queues
You can configure your queues into a pool, which is a named group of queues using
the same set of hosts. A pool is entitled to a slice of the available job slots. You can
configure as many pools as you need, but each pool must use the same set of hosts.
There can be queues in the cluster that do not belong to any pool yet share some
hosts used by a pool.

How LSF allocates slots for a pool of queues
During job scheduling, LSF orders the queues within each pool based on the shares
the queues are entitled to. The number of running jobs (or job slots in use) is
maintained at the percentage level specified for the queue. When a queue has no
pending jobs, leftover slots are redistributed to other queues in the pool with jobs
pending.

Administering Platform LSF 353

Fairshare Scheduling

The total number of slots in each pool is constant; it is equal to the number of slots
in use plus the number of free slots to the maximum job slot limit configured either
in lsb.hosts (MXJ) or in lsb.resources for a host or host group. The
accumulation of slots in use by the queue is used in ordering the queues for
dispatch.
Job limits and host limits are enforced by the scheduler. For example, if LSF
determines that a queue is eligible to run 50 jobs, but the queue has a job limit of 40
jobs, no more than 40 jobs will run. The remaining 10 job slots are redistributed
among other queues belonging to the same pool, or make them available to other
queues that are configured to use them.

Accumulated slots
in use

As queues run the jobs allocated to them, LSF accumulates the slots each queue has
used and decays this value over time, so that each queue is not allocated more slots
than it deserves, and other queues in the pool have a chance to run their share of
jobs.

Interaction with other scheduling policies
◆ Queues participating in a queue-based fairshare pool cannot be preemptive or

preemptable.
◆ You should not configure slot reservation (SLOT_RESERVE) in queues that use

queue-based fairshare.
◆ Cross-queue user-based fairshare (FAIRSHARE_QUEUES) can undo the

dispatching decisions of queue-based fairshare. Cross-queue user-based
fairshare queues should not be part of a queue-based fairshare pool.

Examples
Three queues using two hosts each with maximum job slot limit of 6 for a total of
12 slots to be allocated:

◆ queue1 shares 50% of slots to be allocated = 2 * 6 * 0.5 = 6 slots
◆ queue2 shares 30% of slots to be allocated = 2 * 6 * 0.3 = 3.6 -> 4 slots
◆ queue3 shares 20% of slots to be allocated = 2 * 6 * 0.2 = 2.4 -> 3 slots; however,

since the total cannot be more than 12, queue3 is actually allocated only 2 slots.
Four queues using two hosts each with maximum job slot limit of 6 for a total of 12
slots; queue4 does not belong to any pool.

◆ queue1 shares 50% of slots to be allocated = 2 * 6 * 0.5 = 6
◆ queue2 shares 30% of slots to be allocated = 2 * 6 * 0.3 = 3.6 -> 4
◆ queue3 shares 20% of slots to be allocated = 2 * 6 * 0.2 = 2.4 -> 2
◆ queue4 shares no slots with other queues
queue4 causes the total number of slots to be less than the total free and in use by
the queue1, queue2, and queue3 that do belong to the pool. It is possible that the
pool may get all its shares used up by queue4, and jobs from the pool will remain
pending.
queue1, queue2, and queue3 belong to one pool, queue6, queue7, and queue8
belong to another pool, and queue4 and queue5 do not belong to any pool.

Configuring Slot Allocation per Queue

354 Administering Platform LSF

 LSF orders the queues in the two pools from higher-priority queue to
lower-priority queue (queue1 is highest and queue8 is lowest):
queue1 -> queue2 -> queue3 -> queue6 -> queue7 -> queue8

If the queue belongs to a pool, jobs are dispatched from the highest priority queue
first. Queues that do not belong to any pool (queue4 and queue5) are merged into
this ordered list according to their priority, but LSF dispatches as many jobs from
the non-pool queues as it can:

queue1 -> queue2 -> queue3 -> queue4 -> queue5 -> queue6 -> queue7 -> queue8

Configuring Slot Allocation per Queue
Configure as many pools as you need in lsb.queues.

SLOT_SHARE parameter
The SLOT_SHARE parameter represents the percentage of running jobs (job slots)
in use from the queue. SLOT_SHARE must be greater than zero (0) and less than
or equal to 100.
The sum of SLOT_SHARE for all queues in the pool does not need to be 100%. It
can be more or less, depending on your needs.

SLOT_POOL parameter
The SLOT_POOL parameter is the name of the pool of job slots the queue belongs
to. A queue can only belong to one pool. All queues in the pool must share the same
set of hosts.

Host job slot limit
The hosts used by the pool must have a maximum job slot limit, configured either
in lsb.hosts (MXJ) or lsb.resources (HOSTS and SLOTS).

Configure slot allocation per queue

1 For each queue that uses queue-based fairshare, define the following in
lsb.queues:
a SLOT_SHARE
b SLOT_POOL

2 Optional: Define the following in lsb.queues for each queue that uses
queue-based fairshare:
a HOSTS to list the hosts that can receive jobs from the queue

If no hosts are defined for the queue, the default is all hosts.

TIP: Hosts for queue-based fairshare cannot be in a host partition.

b PRIORITY to indicate the priority of the queue.
3 For each host used by the pool, define a maximum job slot limit, either in

lsb.hosts (MXJ) or lsb.resources (HOSTS and SLOTS).

Administering Platform LSF 355

Fairshare Scheduling

Configure two pools

The following example configures pool A with three queues, with different shares,
using the hosts in host group groupA:
Begin Queue
QUEUE_NAME = queue1
PRIORITY = 50
SLOT_POOL = poolA
SLOT_SHARE = 50
HOSTS = groupA
...
End Queue

Begin Queue
QUEUE_NAME = queue2
PRIORITY = 48
SLOT_POOL = poolA
SLOT_SHARE = 30
HOSTS = groupA
...
End Queue

Begin Queue
QUEUE_NAME = queue3
PRIORITY = 46
SLOT_POOL = poolA
SLOT_SHARE = 20
HOSTS = groupA
...
End Queue

The following configures a pool named poolB, with three queues with equal shares,
using the hosts in host group groupB:
Begin Queue
QUEUE_NAME = queue4
PRIORITY = 44
SLOT_POOL = poolB
SLOT_SHARE = 30
HOSTS = groupB
...
End Queue

Begin Queue
QUEUE_NAME = queue5
PRIORITY = 43
SLOT_POOL = poolB
SLOT_SHARE = 30
HOSTS = groupB
...
End Queue

Begin Queue
QUEUE_NAME = queue6
PRIORITY = 42
SLOT_POOL = poolB
SLOT_SHARE = 30
HOSTS = groupB
...
End Queue

View Queue-based Fairshare Allocations

356 Administering Platform LSF

View Queue-based Fairshare Allocations

View configured job slot share

1 Use bqueues -l to show the job slot share (SLOT_SHARE) and the hosts
participating in the share pool (SLOT_POOL):

QUEUE: queue1

PARAMETERS/STATISTICS
PRIO NICE STATUS MAX JL/U JL/P JL/H NJOBS PEND RUN SSUSP USUSP RSV
 50 20 Open:Active - - - - 0 0 0 0 0 0
Interval for a host to accept two jobs is 0 seconds

 STACKLIMIT MEMLIMIT
 2048 K 5000 K

SCHEDULING PARAMETERS
 r15s r1m r15m ut pg io ls it tmp swp mem
 loadSched - - - - - - - - - - -
 loadStop - - - - - - - - - - -

 cpuspeed bandwidth
loadSched - -
loadStop - -

USERS: all users
HOSTS: groupA/
SLOT_SHARE: 50%
SLOT_POOL: poolA

View slot allocation of running jobs

1 Use bhosts, bmgroup, and bqueues to verify how LSF maintains the configured
percentage of running jobs in each queue.
The queues configurations above use the following hosts groups:
bmgroup -r
GROUP_NAME HOSTS
groupA hosta hostb hostc
groupB hostd hoste hostf

Each host has a maximum job slot limit of 5, for a total of 15 slots available to
be allocated in each group:

bhosts
HOST_NAME STATUS JL/U MAX NJOBS RUN SSUSP USUSP RSV
hosta ok - 5 5 5 0 0 0
hostb ok - 5 5 5 0 0 0
hostc ok - 5 5 5 0 0 0
hostd ok - 5 5 5 0 0 0
hoste ok - 5 5 5 0 0 0
hostf ok - 5 5 5 0 0 0

Administering Platform LSF 357

Fairshare Scheduling

Pool named poolA contains queue1,queue2, and queue3.poolB contains
queue4, queue5, and queue6. The bqueues command shows the number
of running jobs in each queue:

bqueues
QUEUE_NAME PRIO STATUS MAX JL/U JL/P JL/H NJOBS PEND RUN SUSP
queue1 50 Open:Active - - - - 492 484 8 0
queue2 48 Open:Active - - - - 500 495 5 0
queue3 46 Open:Active - - - - 498 496 2 0
queue4 44 Open:Active - - - - 985 980 5 0
queue5 43 Open:Active - - - - 985 980 5 0
queue6 42 Open:Active - - - - 985 980 5 0

As a result: queue1 has a 50% share and can run 8 jobs; queue2 has a 30%
share and can run 5 jobs; queue3 has a 20% share and is entitled 3 slots, but
since the total number of slots available must be 15, it can run 2 jobs; queue4,
queue5, and queue6 all share 30%, so 5 jobs are running in each queue.

Typical Slot Allocation Scenarios

3 queues with SLOT_SHARE 50%, 30%, 20%, with 15 job slots
This scenario has three phases:
1 All three queues have jobs running, and LSF assigns the number of slots to

queues as expected: 8, 5, 2. Though queue Genova deserves 3 slots, the total slot
assignment must be 15, so Genova is allocated only 2 slots:

bqueues
QUEUE_NAME PRIO STATUS MAX JL/U JL/P JL/H NJOBS PEND RUN SUSP
Roma 50 Open:Active - - - - 1000 992 8 0
Verona 48 Open:Active - - - - 995 990 5 0
Genova 48 Open:Active - - - - 996 994 2 0

2 When queue Verona has done its work, queues Roma and Genova get their
respective shares of 8 and 3. This leaves 4 slots to be redistributed to queues
according to their shares: 50% (2 slots) to Roma, 20% (1 slot) to Genova. The one
remaining slot is assigned to queue Roma again:

bqueues
QUEUE_NAME PRIO STATUS MAX JL/U JL/P JL/H NJOBS PEND RUN SUSP
Roma 50 Open:Active - - - - 231 221 11 0
Verona 48 Open:Active - - - - 0 0 0 0
Genova 48 Open:Active - - - - 496 491 4 0

3 When queues Roma and Verona have no more work to do, Genova can use all
the available slots in the cluster:

bqueues
QUEUE_NAME PRIO STATUS MAX JL/U JL/P JL/H NJOBS PEND RUN SUSP
Roma 50 Open:Active - - - - 0 0 0 0
Verona 48 Open:Active - - - - 0 0 0 0
Genova 48 Open:Active - - - - 475 460 15 0

The following figure illustrates phases 1, 2, and 3:

Typical Slot Allocation Scenarios

358 Administering Platform LSF

2 pools, 30 job slots, and 2 queues out of any pool
◆ poolA uses 15 slots and contains queues Roma (50% share, 8 slots), Verona (30%

share, 5 slots), and Genova (20% share, 2 remaining slots to total 15).
◆ poolB with 15 slots containing queues Pisa (30% share, 5 slots), Venezia (30%

share, 5 slots), and Bologna (30% share, 5 slots).
◆ Two other queues Milano and Parma do not belong to any pool, but they can

use the hosts of poolB. The queues from Milano to Bologna all have the same
priority.

The queues Milano and Parma run very short jobs that get submitted periodically
in bursts. When no jobs are running in them, the distribution of jobs looks like this:

QUEUE_NAME PRIO STATUS MAX JL/U JL/P JL/H NJOBS PEND RUN SUSP
Roma 50 Open:Active - - - - 1000 992 8 0
Verona 48 Open:Active - - - - 1000 995 5 0
Genova 48 Open:Active - - - - 1000 998 2 0
Pisa 44 Open:Active - - - - 1000 995 5 0
Milano 43 Open:Active - - - - 2 2 0 0
Parma 43 Open:Active - - - - 2 2 0 0
Venezia 43 Open:Active - - - - 1000 995 5 0
Bologna 43 Open:Active - - - - 1000 995 5 0

Administering Platform LSF 359

Fairshare Scheduling

When Milano and Parma have jobs, their higher priority reduces the share of slots
free and in use by Venezia and Bologna:

QUEUE_NAME PRIO STATUS MAX JL/U JL/P JL/H NJOBS PEND RUN SUSP
Roma 50 Open:Active - - - - 992 984 8 0
Verona 48 Open:Active - - - - 993 990 3 0
Genova 48 Open:Active - - - - 996 994 2 0
Pisa 44 Open:Active - - - - 995 990 5 0
Milano 43 Open:Active - - - - 10 7 3 0
Parma 43 Open:Active - - - - 11 8 3 0
Venezia 43 Open:Active - - - - 995 995 2 0
Bologna 43 Open:Active - - - - 995 995 2 0

Typical Slot Allocation Scenarios

360 Administering Platform LSF

Round-robin slot distribution—13 queues and 2 pools
◆ Pool poolA has 3 hosts each with 7 slots for a total of 21 slots to be shared. The

first 3 queues are part of the pool poolA sharing the CPUs with proportions
50% (11 slots), 30% (7 slots) and 20% (3 remaining slots to total 21 slots).

◆ The other 10 queues belong to pool poolB, which has 3 hosts each with 7 slots
for a total of 21 slots to be shared. Each queue has 10% of the pool (3 slots).

The initial slot distribution looks like this:
bqueues
QUEUE_NAME PRIO STATUS MAX JL/U JL/P JL/H NJOBS PEND RUN SUSP
Roma 50 Open:Active - - - - 15 6 11 0
Verona 48 Open:Active - - - - 25 18 7 0
Genova 47 Open:Active - - - - 460 455 3 0
Pisa 44 Open:Active - - - - 264 261 3 0
Milano 43 Open:Active - - - - 262 259 3 0
Parma 42 Open:Active - - - - 260 257 3 0
Bologna 40 Open:Active - - - - 260 257 3 0
Sora 40 Open:Active - - - - 261 258 3 0
Ferrara 40 Open:Active - - - - 258 255 3 0
Napoli 40 Open:Active - - - - 259 256 3 0
Livorno 40 Open:Active - - - - 258 258 0 0
Palermo 40 Open:Active - - - - 256 256 0 0
Venezia 4 Open:Active - - - - 255 255 0 0

Initially, queues Livorno, Palermo, and Venezia in poolB are not assigned any
slots because the first 7 higher priority queues have used all 21 slots available for
allocation.
As jobs run and each queue accumulates used slots, LSF favors queues that have not
run jobs yet. As jobs finish in the first 7 queues of poolB, slots are redistributed to
the other queues that originally had no jobs (queues Livorno, Palermo, and
Venezia). The total slot count remains 21 in all queues in poolB.

bqueues
QUEUE_NAME PRIO STATUS MAX JL/U JL/P JL/H NJOBS PEND RUN SUSP
Roma 50 Open:Active - - - - 15 6 9 0
Verona 48 Open:Active - - - - 25 18 7 0
Genova 47 Open:Active - - - - 460 455 5 0
Pisa 44 Open:Active - - - - 263 261 2 0
Milano 43 Open:Active - - - - 261 259 2 0
Parma 42 Open:Active - - - - 259 257 2 0
Bologna 40 Open:Active - - - - 259 257 2 0
Sora 40 Open:Active - - - - 260 258 2 0
Ferrara 40 Open:Active - - - - 257 255 2 0
Napoli 40 Open:Active - - - - 258 256 2 0
Livorno 40 Open:Active - - - - 258 256 2 0
Palermo 40 Open:Active - - - - 256 253 3 0
Venezia 4 Open:Active - - - - 255 253 2 0

The following figure illustrates the round-robin distribution of slot allocations
between queues Livorno and Palermo:

Administering Platform LSF 361

Fairshare Scheduling

How LSF rebalances slot usage
In the following examples, job runtime is not equal, but varies randomly over time.

3 queues in one
pool with 50%,
30%, 20% shares

A pool configures 3 queues:
◆ queue1 50% with short-running jobs
◆ queue2 20% with short-running jobs
◆ queue3 30% with longer running jobs
As queue1 and queue2 finish their jobs, the number of jobs in queue3 expands, and
as queue1 and queue2 get more work, LSF rebalances the usage:

Using Historical and Committed Run Time

362 Administering Platform LSF

10 queues sharing
10% each of 50
slots

In this example, queue1 (the curve with the highest peaks) has the longer running
jobs and so has less accumulated slots in use over time. LSF accordingly rebalances
the load when all queues compete for jobs to maintain a configured 10% usage
share.

Using Historical and Committed Run Time
By default, as a job is running, the dynamic priority decreases gradually until the
job has finished running, then increases immediately when the job finishes.
In some cases this can interfere with fairshare scheduling if two users who have the
same priority and the same number of shares submit jobs at the same time.
To avoid these problems, you can modify the dynamic priority calculation by using
either or both of the following weighting factors:
◆ Historical run time decay
◆ Committed run time

Historical run time decay
By default, historical run time does not affect the dynamic priority. You can
configure LSF so that the user’s dynamic priority increases gradually after a job
finishes. After a job is finished, its run time is saved as the historical run time of the
job and the value can be used in calculating the dynamic priority, the same way LSF
considers historical CPU time in calculating priority. LSF applies a decaying
algorithm to the historical run time to gradually increase the dynamic priority over
time after a job finishes.

Configure historical
run time

1 Specify ENABLE_HIST_RUN_TIME=Y in lsb.params.
 Historical run time is added to the calculation of the dynamic priority so that
the formula becomes the following:

dynamic priority = number_shares / (cpu_time * CPU_TIME_FACTOR + (historical_run_time
+ run_time) * RUN_TIME_FACTOR + (1 + job_slots) * RUN_JOB_FACTOR +
fairshare_adjustment(struct*shareAdjustPair)*FAIRSHARE_ADJUSTMENT_FACTOR)

Administering Platform LSF 363

Fairshare Scheduling

historical_run_time—(measured in hours) of finished jobs accumulated in the
user’s share account file. LSF calculates the historical run time using the actual
run time of finished jobs and a decay factor such that 1 hour of recently-used
run time decays to 0.1 hours after an interval of time specified by
HIST_HOURS in lsb.params (5 hours by default).

How mbatchd
reconfiguration
and restart affects
historical run time

After restarting or reconfiguring mbatchd, the historical run time of finished jobs
might be different, since it includes jobs that may have been cleaned from mbatchd
before the restart. mbatchd restart only reads recently finished jobs from
lsb.events, according to the value of CLEAN_PERIOD in lsb.params. Any jobs
cleaned before restart are lost and are not included in the new calculation of the
dynamic priority.

Example The following fairshare parameters are configured in lsb.params:
CPU_TIME_FACTOR = 0
RUN_JOB_FACTOR = 0
RUN_TIME_FACTOR = 1
FAIRSHARE_ADJUSTMENT_FACTOR = 0

Note that in this configuration, only run time is considered in the calculation of
dynamic priority. This simplifies the formula to the following:
dynamic priority = number_shares / (run_time * RUN_TIME_FACTOR)
Without the historical run time, the dynamic priority increases suddenly as soon as
the job finishes running because the run time becomes zero, which gives no chance
for jobs pending for other users to start.
When historical run time is included in the priority calculation, the formula
becomes:
dynamic priority = number_shares / (historical_run_time + run_time) *
RUN_TIME_FACTOR)
Now the dynamic priority increases gradually as the historical run time decays over
time.

Committed run time weighting factor
Committed run time is the run time requested at job submission with the -W option
of bsub, or in the queue configuration with the RUNLIMIT parameter. By default,
committed run time does not affect the dynamic priority.
While the job is running, the actual run time is subtracted from the committed run
time. The user’s dynamic priority decreases immediately to its lowest expected
value, and is maintained at that value until the job finishes. Job run time is
accumulated as usual, and historical run time, if any, is decayed.
When the job finishes, the committed run time is set to zero and the actual run time
is added to the historical run time for future use. The dynamic priority increases
gradually until it reaches its maximum value.
Providing a weighting factor in the run time portion of the dynamic priority
calculation prevents a “job dispatching burst” where one user monopolizes job slots
because of the latency in computing run time.

Using Historical and Committed Run Time

364 Administering Platform LSF

Configure
committed run
time

1 Set a value for the COMMITTED_RUN_TIME_FACTOR parameter in lsb.params.
You should also specify a RUN_TIME_FACTOR, to prevent the user’s dynamic
priority from increasing as the run time increases.
If you have also enabled the use of historical run time, the dynamic priority is
calculated according to the following formula:
dynamic priority = number_shares / (cpu_time * CPU_TIME_FACTOR +
(historical_run_time + run_time) * RUN_TIME_FACTOR + (committed_run_time
- run_time) * COMMITTED_RUN_TIME_FACTOR + (1 + job_slots) *
RUN_JOB_FACTOR + fairshare_adjustment(struct*
shareAdjustPair)*FAIRSHARE_ADJUSTMENT_FACTOR)
committed_run_time—The run time requested at job submission with the -W
option of bsub, or in the queue configuration with the RUNLIMIT parameter.
This calculation measures the committed run time in hours.
In the calculation of a user’s dynamic priority, COMMITTED_RUN_TIME_FACTOR
determines the relative importance of the committed run time in the
calculation. If the -W option of bsub is not specified at job submission and a
RUNLIMIT has not been set for the queue, the committed run time is not
considered.
COMMITTED_RUN_TIME_FACTOR can be any positive value between 0.0 and 1.0.
The default value is 0.0. As the value of COMMITTED_RUN_TIME_FACTOR
approaches 1.0, more weight is given to the committed run time in the
calculation of the dynamic priority.

Limitation If you use queue-level fairshare, and a running job has a committed run time, you
should not switch that job to or from a fairshare queue (using bswitch). The
fairshare calculations will not be correct.

Run time displayed
by bqueues and
bhpart

The run time displayed by bqueues and bhpart is the sum of the actual,
accumulated run time and the historical run time, but does not include the
committed run time.

Example The following fairshare parameters are configured in lsb.params:
CPU_TIME_FACTOR = 0
RUN_JOB_FACTOR = 0
RUN_TIME_FACTOR = 1
FAIRSHARE_ADJUSTMENT_FACTOR = 0
COMMITTED_RUN_TIME_FACTOR = 1

Without a committed run time factor, dynamic priority for the job owner drops
gradually while a job is running:

Administering Platform LSF 365

Fairshare Scheduling

When a committed run time factor is included in the priority calculation, the
dynamic priority drops as soon as the job is dispatched, rather than gradually
dropping as the job runs:

Users Affected by Multiple Fairshare Policies
If you belong to multiple user groups, which are controlled by different fairshare
policies, each group probably has a different dynamic share priority at any given
time. By default, if any one of these groups becomes the highest priority user, you
could be the highest priority user in that group, and LSF would attempt to place
your job.
To restrict the number of fairshare policies that will affect your job, submit your job
and specify a single user group that your job will belong to, for the purposes of
fairshare scheduling. LSF will not attempt to dispatch this job unless the group you
specified is the highest priority user. If you become the highest priority user because
of some other share assignment, another one of your jobs might be dispatched, but
not this one.

Ways to Configure Fairshare

366 Administering Platform LSF

Submit a job and specify a user group

1 To associate a job with a user group for the purposes of fairshare scheduling,
use bsub -G and specify a group that you belong to. If you use hierarchical
fairshare, you must specify a group that does not contain any subgroups.

Example User1 shares resources with groupA and groupB. User1 is also a member of groupA,
but not any other groups.
User1 submits a job:
bsub sleep 100

By default, the job could be considered for dispatch if either User1 or GroupA has
highest dynamic share priority.
User1 submits a job and associates the job with GroupA:
bsub -G groupA sleep 100

If User1 is the highest priority user, this job will not be considered.
◆ User1 can only associate the job with a group that he is a member of.
◆ User1 cannot associate the job with his individual user account, because

bsub -G only accepts group names.

Example with
hierarchical
fairshare

In the share tree, User1 shares resources with GroupA at the top level. GroupA has 2
subgroups, B and C. GroupC has 1 subgroup, GroupD. User1 also belongs to GroupB
and GroupC.
User1 submits a job:
bsub sleep 100

By default, the job could be considered for dispatch if either User1, GroupB, or
GroupC has highest dynamic share priority.
User1 submits a job and associates the job with GroupB:
bsub -G groupB sleep 100

If User1 or GroupC is the highest priority user, this job will not be considered.
◆ User1 cannot associate the job with GroupC, because GroupC includes a

subgroup.
◆ User1 cannot associate the job with his individual user account, because

bsub -G only accepts group names.

Ways to Configure Fairshare

Global fairshare
Global fairshare balances resource usage across the entire cluster according to one
single fairshare policy. Resources used in one queue affect job dispatch order in
another queue.
If two users compete for resources, their dynamic share priority is the same in every
queue.

Administering Platform LSF 367

Fairshare Scheduling

Configure global
fairshare

1 To configure global fairshare, you must use host partition fairshare. Use the
keyword all to configure a single partition that includes all the hosts in the
cluster.
Begin HostPartition
HPART_NAME =GlobalPartition
HOSTS = all
USER_SHARES = [groupA@, 3] [groupB, 7] [default, 1]
End HostPartition

Chargeback fairshare
Chargeback fairshare lets competing users share the same hardware resources
according to a fixed ratio. Each user is entitled to a specified portion of the available
resources.
If two users compete for resources, the most important user is entitled to more
resources.

Configure
chargeback
fairshare

1 To configure chargeback fairshare, put competing users in separate user groups
and assign a fair number of shares to each group.

Example Suppose two departments contributed to the purchase of a large system. The
engineering department contributed 70 percent of the cost, and the accounting
department 30 percent. Each department wants to get their money’s worth from the
system.

1 Define 2 user groups in lsb.users, one listing all the engineers, and one listing
all the accountants.
Begin UserGroup
Group_Name Group_Member
eng_users (user6 user4)
acct_users (user2 user5)
End UserGroup

2 Configure a host partition for the host, and assign the shares appropriately.
Begin HostPartition
HPART_NAME = big_servers
HOSTS = hostH
USER_SHARES = [eng_users, 7] [acct_users, 3]
End HostPartition

Equal Share
Equal share balances resource usage equally between users.

Ways to Configure Fairshare

368 Administering Platform LSF

Configure equal
share

1 To configure equal share, use the keyword default to define an equal share for
every user.
Begin HostPartition
HPART_NAME = equal_share_partition
HOSTS = all
USER_SHARES = [default, 1]
End HostPartition

Priority user and static priority fairshare
There are two ways to configure fairshare so that a more important user’s job always
overrides the job of a less important user, regardless of resource use.
◆ Priority User Fairshare: Dynamic priority is calculated as usual, but more

important and less important users are assigned a drastically different number
of shares, so that resource use has virtually no effect on the dynamic priority:
the user with the overwhelming majority of shares always goes first. However,
if two users have a similar or equal number of shares, their resource use still
determines which of them goes first. This is useful for isolating a group of
high-priority or low-priority users, while allowing other fairshare policies to
operate as usual most of the time.

◆ Static Priority Fairshare: Dynamic priority is no longer dynamic, because
resource use is ignored. The user with the most shares always goes first. This is
useful to configure multiple users in a descending order of priority.

Configure priority user fairshare
A queue is shared by key users and other users.
Priority user fairshare gives priority to important users, so their jobs override the
jobs of other users. You can still use fairshare policies to balance resources among
each group of users.
If two users compete for resources, and one of them is a priority user, the priority
user’s job always runs first.

1 Define a user group for priority users in lsb.users, naming it accordingly.
For example, key_users.

2 Configure fairshare and assign the overwhelming majority of shares to the key
users:
Begin Queue
QUEUE_NAME = production
FAIRSHARE = USER_SHARES[[key_users@, 2000] [others, 1]]
...
End Queue

In the above example, key users have 2000 shares each, while other users
together have only 1 share. This makes it virtually impossible for other users’
jobs to get dispatched unless none of the users in the key_users group has jobs
waiting to run.

Administering Platform LSF 369

Fairshare Scheduling

If you want the same fairshare policy to apply to jobs from all queues, configure
host partition fairshare in a similar way.

Configure static priority fairshare
Static priority fairshare assigns resources to the user with the most shares. Resource
usage is ignored.

1 To implement static priority fairshare, edit lsb.params and set all the weighting
factors used in the dynamic priority formula to 0 (zero).
◆ Set CPU_TIME_FACTOR to 0
◆ Set RUN_TIME_FACTOR to 0
◆ Set RUN_JOB_FACTOR to 0
◆ Set COMMITTED_RUN_TIME_FACTOR to 0
◆ Set FAIRSHARE_ADJUSTMENT_FACTOR to 0
The results is: dynamic priority = number_shares / 0.01 (if the denominator in
the dynamic proiority calculation is less than 0.01, LSF rounds up to 0.01)

If two users compete for resources, the most important user’s job always runs first.

Resizable jobs and fairshare
Resizable jobs submitting into fairshare queues or host partitions are subject to
fairshare scheduling policies. The dynamic priority of the user who submitted the
job is the most important criterion. LSF treats pending resize allocation requests as
a regular job and enforces the fairshare user priority policy to schedule them.
The dynamic priority of users depends on:
◆ Their share assignment
◆ The slots their jobs are currently consuming
◆ The resources their jobs consumed in the past
◆ The adjustment made by the fairshare plugin (libfairshareadjust.*)
Resizable job allocation changes affect the user priority calculation if the
RUN_JOB_FACTOR or FAIRSHARE_ADJUSTMENT_FACTOR is greater than zero (0).
Resize add requests increase number of slots in use and decrease user priority.
Resize release requests decrease number of slots in use, and increase user priority.
The faster a resizable job grows, the lower the user priority is, the less likely a
pending allocation request can get more slots.

NOTE: The effect of resizable job allocation changes when the Fairshare_adjustment_factor is
greater than 0 depends on the user-defined fairshare adjustment plugin (libfairshareadjust.*).

After job allocation changes, bqueues and bhpart displays updated user priority.

Resizable jobs and fairshare

370 Administering Platform LSF

Administering Platform LSF 371

C H A P T E R

21
Resource Preemption

Contents
◆ About Resource Preemption on page 372
◆ Requirements for Resource Preemption on page 373
◆ Custom Job Controls for Resource Preemption on page 373
◆ Resource Preemption Steps on page 375
◆ Configure Resource Preemption on page 377
◆ License Preemption Example on page 379
◆ Memory Preemption Example on page 381

About Resource Preemption

372 Administering Platform LSF

About Resource Preemption

Preemptive Scheduling and Resource Preemption
Resource preemption is a special type of preemptive scheduling. It is similar to job
slot preemption.

Job Slot Preemption and Resource Preemption
If you enable preemptive scheduling, job slot preemption is always enabled.
Resource preemption is optional. With resource preemption, you can configure
preemptive scheduling based on other resources in addition to job slots.

Types of Resource Preemption
License Preemption If you have configured a custom resource to manage software application licenses

that are shared throughout the cluster (Network Floating Licenses), you can use
preemptive scheduling to make these licenses more available to high-priority
queues.
The license resource can be either static (network floating licenses managed within
LSF) or dynamic and decreasing (network floating licenses outside of LSF control
and measured with an ELIM).

Other Resources Resource preemption works for any custom shared numeric resource (except
increasing dynamic resources) so its use is not restricted to managing licenses. To
preempt on a host-based resource, such as memory, you could configure a custom
resource "shared" on only one host.

Multiple Resource Preemption
If multiple resources are required, LSF can preempt multiple jobs, until sufficient
resources are available. For example, one or more jobs might be preempted for a job
that needs:
◆ Multiple job slots
◆ Multiple licenses for one software application
◆ Multiple resources, such as a job slot, a license, and memory
◆ More of a resource than can be obtained by preempting just one job

Using Resource Preemption
To allow your job to participate in resource preemption, you must use resource
reservation to reserve the preemption resource (the cluster might be configured so
that this occurs automatically). For dynamic resources, you must specify a duration
also.
Resource reservation is part of resource requirement, which can be specified at the
job level or at the queue level or application level.
You can use a task file to associate specific resource requirements with specific
applications.

Administering Platform LSF 373

Resource Preemption

Dynamic Resources
Specify duration If the preemption resource is dynamic, you must specify the duration part of the

resource reservation string when you submit a preempting or preemptable job.
Resources outside the

control of LSF
If an ELIM is needed to determine the value of a dynamic resource (such as the
number of software licenses available), LSF preempts jobs as necessary, then waits
for ELIM to report that the resources are available before starting the high-priority
job. By default, LSF waits 300 seconds (5 minutes) for resources to become
available. This time can be increased (PREEMPTION_WAIT_TIME in
lsb.params).
If the preempted jobs do not release the resources, or the resources have been
intercepted by a non-LSF user, the ELIM does not report any more of the resource
becoming available, and LSF might preempt more jobs to get the resources.

Requirements for Resource Preemption
◆ Resource preemption depends on all these conditions:
◆ The preemption resources must be configured

(PREEMPTABLE_RESOURCES in lsb.params).
◆ Jobs must reserve the correct amount of the preemption resource, using

resource reservation (the rusage part of the resource requirement string).
◆ For dynamic preemption resources, jobs must specify the duration part of the

resource reservation string.
◆ Jobs that use the preemption resource must be spread out among multiple

queues of different priority, and preemptive scheduling must be configured so
that preemption can occur among these queues (preemption can only occur if
jobs are in different queues).

◆ Only a releaseable resource can be a preemption resource. LSF must be
configured to release the preemption resource when the job is suspended
(RELEASE=Y in lsf.shared, which is the default). You must configure this no
matter what your preemption action is.

◆ LSF’s preemption behavior must be modified. By default, LSF’s default
preemption action does not allow an application to release any resources,
except for job slots and static shared resources.

Custom Job Controls for Resource Preemption

Why you have to customize LSF
By default, LSF’s preemption action is to send a suspend signal (SIGSTOP) to stop
the application. Some applications do not release resources when they get SIGSTOP.
If this happens, the preemption resource does not become available, and the
preempting job is not successful.
You modify LSF’s default preemption behavior to make the application release the
preemption resource when a job is preempted.

Custom Job Controls for Resource Preemption

374 Administering Platform LSF

Customizing the SUSPEND action
Ask your application vendor what job control signals or actions cause your
application to suspend a job and release the preemption resources. You need to
replace the default SUSPEND action (the SIGSTOP signal) with another signal or
script that works properly with your application when it suspends the job. For
example, your application might be able to catch SIGTSTP instead of SIGSTOP.
By default, LSF sends SIGCONT to resume suspended jobs. You should find out if
this causes your application to take the resources back when it resumes the job (for
example, if it checks out a license again). If not, you need to modify the RESUME
action also.
Whatever changes you make to the SUSPEND job control affects all suspended jobs
in the queue, including preempted jobs, jobs that are suspended because of load
thresholds, and jobs that you suspend using LSF commands. Similarly, changes
made to the RESUME job control also affect the whole queue.

Killing Preempted Jobs
If you want to use resource preemption, but cannot get your application to release
or take back the resource, you can configure LSF to kill the low-priority job instead
of suspending it. This method is less efficient because when you kill a job, you lose
all the work, and you have to restart the job from the beginning.
◆ You can configure LSF to kill and requeue suspended jobs (use brequeue as the

SUSPEND job control in lsb.queues). This kills all jobs suspended in the queue,
not just preempted jobs.

◆ You can configure LSF to kill preempted jobs instead of suspending them
(TERMINATE_WHEN=PREEMPT in lsb.queues). In this case, LSF does not
restart the preempted job, you have to resubmit it manually.

Administering Platform LSF 375

Resource Preemption

Resource Preemption Steps
To make resource preemption useful, you may need to work through all of these
steps.

1 Read.
Before you set up resource preemption, you should understand the following:
◆ Preemptive Scheduling
◆ Resource Preemption
◆ Resource Reservation
◆ Customizing Resources
◆ Customizing Job Controls

2 Plan.
When you plan how to set up resource preemption, consider:
◆ Custom job controls: Find out what signals or actions you can use with

your application to control the preemption resource when you suspend and
resume jobs.

◆ Existing cluster configuration: Your design might be based on preemptive
queues or custom resources that are already configured in your cluster.

◆ Requirements for resource preemption: Your design must be able to work.
For example, if the application license is the preemption resource, you
cannot set up one queue for each type of application, because preemption
occurs between different queues. If a host-based resource such as memory
is the preemption resource, you cannot set up only one queue for each host,
because preemption occurs when 2 jobs are competing for the same
resource.

3 Write the ELIM.
4 Configure LSF.

a lsb.queues

◆ Set PREEMPTION in at least one queue (to PREEMPTIVE in a
high-priority queue, or to PREEMPTABLE in a low-priority queue).

◆ Set JOB_CONTROLS (or TERMINATE_WHEN) in the low-priority
queues. Optional. Set RES_REQ to automatically reserve the custom
resource.

b lsf.shared

Define the custom resource in the Resource section.
c lsb.params

◆ Set PREEMPTABLE_RESOURCES and specify the custom resource.
◆ Optional. Set PREEMPTION_WAIT_TIME to specify how many

seconds to wait for dynamic resources to become available.

Resource Preemption Steps

376 Administering Platform LSF

◆ Optional. Set PREEMPT_JOBTYPE to enable preemption of exclusive
and backfill jobs. Specify one or both of the keywords EXCLUSIVE and
BACKFILL. By default, exclusive and backfill jobs are only preempted
if the exclusive low priority job is running on a host that is different
than the one used by the preemptive high priority job.

d lsf.cluster.cluster_name

Define how the custom resource is shared in the ResourceMap section.
e lsf.task.cluster_name

Optional. Configure the RemoteTasks section to automatically reserve the
custom resource.

5 Reconfigure LSF to make your changes take effect.
6 Operate.

❖ Use resource reservation to reserve the preemption resource (this might be
configured to occur automatically). For dynamic resources, you must
specify a duration as well as a quantity.

❖ Distribute jobs that use the preemption resource in way that allows
preemption to occur between queues (this should happen as a result of the
cluster design).

7 Track.
Use bparams -l to view information about preemption configuration in your
cluster.

Administering Platform LSF 377

Resource Preemption

Configure Resource Preemption

1 Configure preemptive scheduling (PREEMPTION in lsb.queues).
2 Configure the preemption resources (PREEMPTABLE_RESOURCES in

lsb.params).
Job slots are the default preemption resource. To define additional resources to
use with preemptive scheduling, set PREEMPTABLE_RESOURCES in
lsb.params, and specify the names of the custom resources as a space-separated
list.

3 Customize the preemption action.
Preemptive scheduling uses the SUSPEND and RESUME job control actions to
suspend and resume preempted jobs. For resource preemption, it is critical that
the preempted job releases the resource. You must modify LSF default job
controls to make resource preemption work.
❖ Suspend using a custom job control.

To modify the default suspend action, set JOB_CONTROLS in
lsb.queues and use replace the SUSPEND job control with a script or a
signal that your application can catch. Do this for all queues where there
could be preemptable jobs using the preemption resources.
For example, if your application vendor tells you to use the SIGTSTP signal,
set JOB_CONTROLS in lsb.queues and use SIGTSTP as the SUSPEND
job control:
JOB_CONTROLS = SUSPEND [SIGTSTP]

❖ Kill jobs with brequeue.
To kill and requeue preempted jobs instead of suspending them, set
JOB_CONTROLS in lsb.queues and use brequeue as the SUSPEND job
control:
JOB_CONTROLS = SUSPEND [brequeue $LSB_JOBID]

Do this for all queues where there could be preemptable jobs using the
preemption resources. This kills a preempted job, and then requeues it so
that it has a chance to run and finish sucessfully.

❖ Kill jobs with TERMINATE_WHEN.
To kill preempted jobs instead of suspending them, set
TERMINATE_WHEN in lsb.queues to PREEMPT. Do this for all queues
where there could be preemptable jobs using the preemption resources.
If you do this, the preempted job does not get to run unless you resubmit it.

4 Optional. Configure the preemption wait time.
To specify how long LSF waits for the ELIM to report that the resources are
available, set PREEMPTION_WAIT_TIME in lsb.params and specify the
number of seconds to wait. You cannot specify any less than the default time
(300 seconds).

Configure Resource Preemption

378 Administering Platform LSF

For example, to make LSF wait for 8 minutes, specify
PREEMPTION_WAIT_TIME=480

Administering Platform LSF 379

Resource Preemption

License Preemption Example

Configuration
This example uses LicenseA as name of preemption resource.

lsf.shared Add the resource to the Resource section.
Begin Resource

RESOURCENAME TYPE INTERVAL INCREASING DESCRIPTION

LicenseA Numeric 60 N (custom application)

...

End Resource

lsf.cluster.cluster_name

Add the resource to the ResourceMap section
Begin ResourceMap

RESOURCENAME LOCATION

LicenseA [all]

...

End ResourceMap

lsb.params Add the resource to the list of preemption resources.
...

PREEMPTABLE_RESOURCES = LicenseA

...

lsb.queues Define a higher priority queue to be a PREEMPTIVE queue by adding one line in
the queue definition.
Begin Queue

QUEUE_NAME=high

PRIORITY=40

...

PREEMPTION=PREEMPTIVE

DESCRIPTION=jobs may preempt jobs in lower-priority queues

...

End Queue

Configure a job control action in a lower priority queue, let SIGTSTP be sent when
the SUSPEND action is called, we assume your application can catch the signal
SIGTSTP and release the resource (license) it used, then suspend itself. You should
also make sure that your application can catch the signal SIGCONT while it is
suspended, and consume (check out) the resource (license) again.
Begin Queue

QUEUE_NAME=low

PRIORITY=20

...

JOB_CONTROLS=SUSPEND[SIGTSTP] RESUME[SIGCONT] TERMINATE[SIGTERM]

License Preemption Example

380 Administering Platform LSF

DESCRIPTION=jobs preempted by jobs in higher-priority queues

...

End Queue

ELIM Write an ELIM to report the current available number of Application A licenses.
This ELIM starts on the master host.

Operation

Check how many
LicenseA resources
are available

Check the number of LicenseA existing in the cluster by using bhosts -s
LicenseA. In this example, 2 licenses are available.
bhosts -s LicenseA

RESOURCE TOTAL RESERVED LOCATION

LicenseA 2 0.0 hostA hostB ...

Using up all
LicenseA resources

Submit 2 jobs to a low-priority queue to consume those 2 licenses.
bsub -J first -q low -R "rusage[LicenseA=1:duration=2]" your_app

bsub -J second -q low -R "rusage[LicenseA=1:duration=2]" your_app

After a while, those jobs are running and the LicenseA resource is used up.
bjobs

JOBID USER STAT QUEUE FROM_HOS EXEC_HOST JOB_NAME SUBMIT_TIME

201 you RUN low hostx hostA /first Aug 23 15:42

202 you RUN low hostx hostB /second Aug 23 15:43

bhosts -s LicenseA

RESOURCE TOTAL RESERVED LOCATION

LicenseA 0 2.0 hostA hostB ...

Preempting a job
for the LicenseA
resource

Submit a job to a high-priority queue to preempt a job from a low-priority queue
for the resource LicenseA.
bsub -J third -q high -R "rusage[LicenseA=1:duration=2]" your_app

After a while, the third job is running and the second job is suspended.
bjobs

JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME

203 you RUN high hostx hostA /third Aug 23 15:48

201 you RUN low hostx hostA /first Aug 23 15:42

202 you SSUSP low hostx hostB /second Aug 23 15:43

bhosts -s LicenseA

RESOURCE TOTAL RESERVED LOCATION

LicenseA 0 2.0 hostA hostB ...

Administering Platform LSF 381

Resource Preemption

Memory Preemption Example

Configuration
This example uses pre_mem as the name of the preemption resource.

lsf.shared Add the resource to the Resource section.
Begin Resource

RESOURCENAME TYPE INTERVAL INCREASING DESCRIPTION

pre_mem Numeric 60 N (external memory usage reporter)

...

End Resource

lsf.cluster.cluster_n
ame

Add the resource to the "ResourceMap" section.
Begin ResourceMap

RESOURCENAME LOCATION

pre_mem ([hostA] [hostB] ... [hostX])

#List the hosts where you want memory preemption to occur.

...
End ResourceMap

lsb.params Add the resource to the list of preemption resources.
...

PREEMPTABLE_RESOURCES=pre_mem

...

lsb.queues Define a higher-priority queue to be the PREEMPTIVE queue by adding one line
in the queue definition.
Begin Queue

QUEUE_NAME=high

PRIORITY=40

...

PREEMPTION=PREEMPTIVE

DESCRIPTION=preempt jobs in lower-priority queues

...

End Queue

Configure a job control action in a lower-priority queue, and let SIGTSTP be sent
when the SUSPEND action is called. This assumes your application can catch the
signal SIGTSTP and release (free) the resource (memory) it used, then suspend
itself. You should also make sure that your application can catch the signal
SIGCONT while it is suspended, and consume the resource (memory) again.
Begin Queue

QUEUE_NAME=low

PRIORITY=20

...

JOB_CONTROLS=SUSPEND[SIGTSTP] RESUME[SIGCONT] TERMINATE[SIGTERM]

Memory Preemption Example

382 Administering Platform LSF

DESCRIPTION=jobs may be preempted by jobs in higher-priority queues

...

End Queue

ELIM This is an example of an ELIM that reports the current value of pre_mem. This ELIM
starts on all the hosts that have the pre_mem resource.

#!/bin/sh

host=`hostname`

while :

do

lsload > /dev/null 2>&1

if [$? != 0] ; then exit 1

fi

memStr=`lsload -I mem -w $host|grep $host|awk '{print $3}'|sed 's/M//'`
reportStr="1 ""pre_mem ""$memStr"

echo "$reportStr \c"

sleep 60

done

Operation

Check how many
pre_mem resources
are available

Check the number of pre_mem existing on hostA by using bhosts -s pre_mem to
display how much memory is available. In this example, 110 MB of memory is
available on hostA.
bhosts -s pre_mem

RESOURCE TOTAL RESERVED LOCATION

pre_mem 110 0.0 hostA

pre_mem 50 0.0 hostB

...

Using up some
pre_mem resources

Submit 1 job to a low-priority queue to consume 100 MB pre_mem. Assume the
application mem_app consumes 100 MB memory after it starts.
bsub -J first -q low -R "rusage[pre_mem=100:duration=2]" mem_app

After a while, the first job is running and the pre_mem is reduced.
bjobs

JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME

301 you RUN low hostx hostA /first Aug 23 16:42

bhosts -s pre_mem

RESOURCE TOTAL RESERVED LOCATION

pre_mem 10 100.0 hostA

pre_mem 50 0.0 hostB

...

Administering Platform LSF 383

Resource Preemption

Preempting the job
for pre_mem
resources

Submit a job to a high-priority queue to preempt a job from low-priority queue to
get the resource pre_mem.
bsub -J second -q high -R "rusage[pre_mem=100:duration=2]" mem_app

After a while, the second job is running and the first job was suspended.
bjobs

JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME

302 you RUN high hostx hostA /second Aug 23 16:48

301 you SSUSP low hostx hostA /first Aug 23 16:42

bhosts -s pre_mem

RESOURCE TOTAL RESERVED LOCATION

pre_mem 10 100.0 hostA

pre_mem 50 0.0 hostB

...

Memory Preemption Example

384 Administering Platform LSF

Administering Platform LSF 385

C H A P T E R

22
Goal-Oriented SLA-Driven Scheduling

Contents
◆ Using Goal-Oriented SLA Scheduling on page 385
◆ Configuring Service Classes for SLA Scheduling on page 388
◆ View Information about SLAs and Service Classes on page 390
◆ Understanding Service Class Behavior on page 394

Using Goal-Oriented SLA Scheduling
Goal-oriented SLA scheduling policies help you configure your workload so that
your jobs are completed on time and reduce the risk of missed deadlines. They
enable you to focus on the “what and when” of your projects, not the low-level
details of “how” resources need to be allocated to satisfy various workloads.

Service-level agreements in LSF
A service-level agreement (SLA) defines how a service is delivered and the
parameters for the delivery of a service. It specifies what a service provider and a
service recipient agree to, defining the relationship between the provider and
recipient with respect to a number of issues, among them:
◆ Services to be delivered
◆ Performance
◆ Tracking and reporting
◆ Problem management
An SLA in LSF is a “just-in-time” scheduling policy that defines an agreement
between LSF administrators and LSF users. The SLA scheduling policy defines how
many jobs should be run from each SLA to meet the configured goals.

RESTRICTION: LSF MultiCluster does not support SLAs.

Using Goal-Oriented SLA Scheduling

386 Administering Platform LSF

Service classes
SLA definitions consist of service-level goals that are expressed in individual service
classes. A service class is the actual configured policy that sets the service-level goals
for the LSF system. The SLA defines the workload (jobs or other services) and users
that need the work done, while the service class that addresses the SLA defines
individual goals, and a time window when the service class is active.

Service-level goals
You configure the following kinds of goals:

Deadline goals A specified number of jobs should be completed within a specified time window.
For example, run all jobs submitted over a weekend.

Velocity goals Expressed as concurrently running jobs. For example: maintain 10 running jobs
between 9:00 a.m. and 5:00 p.m. Velocity goals are well suited for short jobs (run
time less than one hour). Such jobs leave the system quickly, and configuring a
velocity goal ensures a steady flow of jobs through the system.

Throughput goals Expressed as number of finished jobs per hour. For example: finish 15 jobs per hour
between the hours of 6:00 p.m. and 7:00 a.m. Throughput goals are suitable for
medium to long running jobs. These jobs stay longer in the system, so you typically
want to control their rate of completion rather than their flow.

Combining
different types of
goals

You might want to set velocity goals to maximize quick work during the day, and
set deadline and throughput goals to manage longer running work on nights and
over weekends.

How service classes perform goal-oriented scheduling
Goal-oriented scheduling makes use of other, lower level LSF policies like queues
and host partitions to satisfy the service-level goal that the service class expresses.
The decisions of a service class are considered first before any queue or host
partition decisions. Limits are still enforced with respect to lower level scheduling
objects like queues, hosts, and users.

Optimum number
of running jobs

As jobs are submitted, LSF determines the optimum number of job slots (or
concurrently running jobs) needed for the service class to meet its service-level
goals. LSF schedules a number of jobs at least equal to the optimum number of slots
calculated for the service class.
LSF attempts to meet SLA goals in the most efficient way, using the optimum
number of job slots so that other service classes or other types of work in the cluster
can still progress. For example, in a service class that defines a deadline goal, LSF
spreads out the work over the entire time window for the goal, which avoids
blocking other work by not allocating as many slots as possible at the beginning to
finish earlier than the deadline.

Administering Platform LSF 387

Goal-Oriented SLA-Driven Scheduling

Submit jobs to a service class
You submit jobs to a service class as you would to a queue, except that a service class
is a higher level scheduling policy that makes use of other, lower level LSF policies
like queues and host partitions to satisfy the service-level goal that the service class
expresses.
The service class name where the job is to run is configured in
lsb.serviceclasses. If the SLA does not exist or the user is not a member of the
service class, the job is rejected.
Outside of the configured time windows, the SLA is not active, and LSF schedules
jobs without enforcing any service-level goals. Jobs will flow through queues
following queue priorities even if they are submitted with -sla.

1 Run bsub -sla service_class_name to submit a job to a service class for
SLA-driven scheduling.
bsub -W 15 -sla Kyuquot sleep 100

submits the UNIX command sleep together with its argument 100 as a job to
the service class named Kyuquot.

Submitting with a
run limit

You should submit your jobs with a run time limit at the job level (-W option), the
application level (RUNLIMIT parameter in the application definition in
lsb.applications), or the queue level (RUNLIMIT parameter in the queue
definition in lsb.queues). You can also submit the job with a run time estimate
defined at the application level (RUNTIME parameter in lsb.applications)
instead of or in conjunction with the run time limit.
The following table describes how LSF uses the values that you provide for
SLA-driven scheduling.

If you specify… And… Then…

A run time limit and a
run time estimate

The run time estimate is less
than or equal to the run time
limit

LSF uses the run time
estimate to compute the
optimum number of running
jobs.

A run time limit You do not specify a run time
estimate, or the estimate is
greater than the limit

LSF uses the run time limit to
compute the optimum
number of running jobs.

A run time estimate You do not specify a run time
limit

LSF uses the run time
estimate to compute the
optimum number of running
jobs.

Neither a run time limit
nor a run time estimate

LSF automatically adjusts the
optimum number of running
jobs according to the
observed run time of finished
jobs.

Configuring Service Classes for SLA Scheduling

388 Administering Platform LSF

Modify SLA jobs (bmod)

1 Run bmod -sla to modify the service class a job is attached to, or to attach a
submitted job to a service class. Run bmod -slan to detach a job from a service
class:
bmod -sla Kyuquot 2307

Attaches job 2307 to the service class Kyuquot.
bmod -slan 2307

Detaches job 2307 from the service class Kyuquot.
You cannot:
◆ Use -sla with other bmod options
◆ Move job array elements from one service class to another, only entire job

arrays
◆ Modify the service class of jobs already attached to a job group
If a default SLA is configured in lsb.params, bmod -slan moves the job to the
default SLA. If the job is already attached to the default SLA, bmod -slan has
no effect on that job.

Configuring Service Classes for SLA Scheduling
Configure service classes in
LSB_CONFDIR/cluster_name/configdir/lsb.serviceclasses. Each service
class is defined in a ServiceClass section.
Each service class section begins with the line Begin ServiceClass and ends with the
line End ServiceClass. You must specify:
◆ A service class name
◆ At least one goal (deadline, throughput, or velocity) and a time window when

the goal is active
◆ A service class priority
All other parameters are optional. You can configure as many service class sections
as you need.

IMPORTANT: The name you use for your service classes cannot be the same as an existing host
partition or user group name.

User groups for service classes
You can control access to the SLA by configuring a user group for the service class.
If LSF user groups are specified in lsb.users, each user in the group can submit
jobs to this service class. If a group contains a subgroup, the service class policy
applies to each member in the subgroup recursively. The group can define fairshare
among its members, and the SLA defined by the service class enforces the fairshare
policy among the users in the user group configured for the SLA.
By default, all users in the cluster can submit jobs to the service class.

Administering Platform LSF 389

Goal-Oriented SLA-Driven Scheduling

Service class priority
A higher value indicates a higher priority, relative to other service classes. Similar
to queue priority, service classes access the cluster resources in priority order.
LSF schedules jobs from one service class at a time, starting with the
highest-priority service class. If multiple service classes have the same priority, LSF
runs the jobs from these service classes in the order the service classes are
configured in lsb.serviceclasses.
Service class priority in LSF is completely independent of the UNIX scheduler’s
priority system for time-sharing processes. In LSF, the NICE parameter is used to
set the UNIX time-sharing priority for batch jobs.

Service class configuration examples
◆ The service class Uclulet defines one deadline goal that is active during

working hours between 8:30 AM and 4:00 PM. All jobs in the service class
should complete by the end of the specified time window. Outside of this time
window, the SLA is inactive and jobs are scheduled without any goal being
enforced:
Begin ServiceClass
NAME = Uclulet
PRIORITY = 20
GOALS = [DEADLINE timeWindow (8:30-16:00)]
DESCRIPTION = "working hours"
End ServiceClass

◆ The service class Nanaimo defines a deadline goal that is active during the
weekends and at nights.
Begin ServiceClass
NAME = Nanaimo
PRIORITY = 20
GOALS = [DEADLINE timeWindow (5:18:00-1:8:30 20:00-8:30)]
DESCRIPTION = "weekend nighttime regression tests"
End ServiceClass

◆ The service class Inuvik defines a throughput goal of 6 jobs per hour that is
always active:
Begin ServiceClass
NAME = Inuvik
PRIORITY = 20
GOALS = [THROUGHPUT 6 timeWindow ()]
DESCRIPTION = "constant throughput"
End ServiceClass

TIP: To configure a time window that is always open, use the timeWindow keyword with
empty parentheses.

◆ The service class Tofino defines two velocity goals in a 24 hour period. The
first goal is to have a maximum of 10 concurrently running jobs during
business hours (9:00 a.m. to 5:00 p.m). The second goal is a maximum of 30
concurrently running jobs during off-hours (5:30 p.m. to 8:30 a.m.)
Begin ServiceClass
NAME = Tofino
PRIORITY = 20

View Information about SLAs and Service Classes

390 Administering Platform LSF

GOALS = [VELOCITY 10 timeWindow (9:00-17:00)] \
 [VELOCITY 30 timeWindow (17:30-8:30)]
DESCRIPTION = "day and night velocity"
End ServiceClass

◆ The service class Kyuquot defines a velocity goal that is active during working
hours (9:00 a.m. to 5:30 p.m.) and a deadline goal that is active during off-hours
(5:30 p.m. to 9:00 a.m.) Only users user1 and user2 can submit jobs to this
service class.
Begin ServiceClass
NAME = Kyuquot
PRIORITY = 23
USER_GROUP = user1 user2
GOALS = [VELOCITY 8 timeWindow (9:00-17:30)] \
 [DEADLINE timeWindow (17:30-9:00)]
DESCRIPTION = "Daytime/Nighttime SLA"
End ServiceClass

◆ The service class Tevere defines a combination similar to Kyuquot, but with a
deadline goal that takes effect overnight and on weekends. During the working
hours in weekdays the velocity goal favors a mix of short and medium jobs.
Begin ServiceClass
NAME = Tevere
PRIORITY = 20
GOALS = [VELOCITY 100 timeWindow (9:00-17:00)] \
 [DEADLINE timeWindow (17:30-8:30 5:17:30-1:8:30)]
DESCRIPTION = "nine to five"
End ServiceClass

View Information about SLAs and Service Classes

Monitor the progress of an SLA (bsla)

1 Run bsla to display the properties of service classes configured in
lsb.serviceclasses and dynamic information about the state of each
configured service class.

Examples ◆ One velocity goal of service class Tofino is active and on time. The other
configured velocity goal is inactive.

bsla
SERVICE CLASS NAME: Tofino
 -- day and night velocity
PRIORITY: 20

GOAL: VELOCITY 30
ACTIVE WINDOW: (17:30-8:30)
STATUS: Inactive
SLA THROUGHPUT: 0.00 JOBS/CLEAN_PERIOD

GOAL: VELOCITY 10
ACTIVE WINDOW: (9:00-17:00)
STATUS: Active:On time
SLA THROUGHPUT: 10.00 JOBS/CLEAN_PERIOD

Administering Platform LSF 391

Goal-Oriented SLA-Driven Scheduling

 NJOBS PEND RUN SSUSP USUSP FINISH
 300 280 10 0 0 10

◆ The deadline goal of service class Uclulet is not being met, and bsla displays
status Active:Delayed:

bsla
SERVICE CLASS NAME: Uclulet
 -- working hours
PRIORITY: 20

GOAL: DEADLINE
ACTIVE WINDOW: (8:30-19:00)
STATUS: Active:Delayed
SLA THROUGHPUT: 0.00 JOBS/CLEAN_PERIOD
ESTIMATED FINISH TIME: (Tue Oct 28 06:17)
OPTIMUM NUMBER OF RUNNING JOBS: 6

 NJOBS PEND RUN SSUSP USUSP FINISH
 40 39 1 0 0 0

◆ The configured velocity goal of the service class Kyuquot is active and on time.
The configured deadline goal of the service class is inactive.

bsla Kyuquot
SERVICE CLASS NAME: Kyuquot
 -- Daytime/Nighttime SLA
PRIORITY: 23
USER_GROUP: user1 user2

GOAL: VELOCITY 8
ACTIVE WINDOW: (9:00-17:30)
STATUS: Active:On time
SLA THROUGHPUT: 0.00 JOBS/CLEAN_PERIOD

GOAL: DEADLINE
ACTIVE WINDOW: (17:30-9:00)
STATUS: Inactive
SLA THROUGHPUT: 0.00 JOBS/CLEAN_PERIOD

 NJOBS PEND RUN SSUSP USUSP FINISH
 0 0 0 0 0 0

◆ The throughput goal of service class Inuvik is always active. bsla displays:
❖ Status as active and on time
❖ An optimum number of 5 running jobs to meet the goal
❖ Actual throughput of 10 jobs per hour based on the last CLEAN_PERIOD

bsla Inuvik
SERVICE CLASS NAME: Inuvik
 -- constant throughput
PRIORITY: 20

GOAL: THROUGHPUT 6
ACTIVE WINDOW: Always Open
STATUS: Active:On time
SLA THROUGHPUT: 10.00 JOBs/CLEAN_PERIOD
OPTIMUM NUMBER OF RUNNING JOBS: 5

View Information about SLAs and Service Classes

392 Administering Platform LSF

 NJOBS PEND RUN SSUSP USUSP FINISH
 110 95 5 0 0 10

View jobs running in an SLA (bjobs)

1 Run bjobs -sla to display jobs running in a service class:
bjobs -sla Inuvik

JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME

136 user1 RUN normal hostA hostA sleep 100 Sep 28 13:24

137 user1 RUN normal hostA hostB sleep 100 Sep 28 13:25

Use -sla with -g to display job groups attached to a service class. Once a job
group is attached to a service class, all jobs submitted to that group are subject
to the SLA.

Track historical behavior of an SLA (bacct)

1 Run bacct to display historical performance of a service class. For example,
service classes Inuvik and Tuktoyaktuk configure throughput goals.
bsla
SERVICE CLASS NAME: Inuvik
 -- throughput 6
PRIORITY: 20

GOAL: THROUGHPUT 6
ACTIVE WINDOW: Always Open
STATUS: Active:On time
SLA THROUGHPUT: 10.00 JOBs/CLEAN_PERIOD
OPTIMUM NUMBER OF RUNNING JOBS: 5

 NJOBS PEND RUN SSUSP USUSP FINISH
 111 94 5 0 0 12
--
SERVICE CLASS NAME: Tuktoyaktuk
 -- throughput 3
PRIORITY: 15

GOAL: THROUGHPUT 3
ACTIVE WINDOW: Always Open
STATUS: Active:On time
SLA THROUGHPUT: 4.00 JOBs/CLEAN_PERIOD
OPTIMUM NUMBER OF RUNNING JOBS: 4

 NJOBS PEND RUN SSUSP USUSP FINISH
 104 96 4 0 0 4

These two service classes have the following historical performance. For SLA
Inuvik, bacct shows a total throughput of 8.94 jobs per hour over a period of
20.58 hours:

bacct -sla Inuvik

Accounting information about jobs that are:

Administering Platform LSF 393

Goal-Oriented SLA-Driven Scheduling

 - submitted by users user1,
 - accounted on all projects.
 - completed normally or exited
 - executed on all hosts.
 - submitted to all queues.
 - accounted on service classes Inuvik,
--

SUMMARY: (time unit: second)
 Total number of done jobs: 183 Total number of exited jobs: 1
 Total CPU time consumed: 40.0 Average CPU time consumed: 0.2
 Maximum CPU time of a job: 0.3 Minimum CPU time of a job: 0.1
 Total wait time in queues: 1947454.0
 Average wait time in queue:10584.0
 Maximum wait time in queue:18912.0 Minimum wait time in queue: 7.0
 Average turnaround time: 12268 (seconds/job)
 Maximum turnaround time: 22079 Minimum turnaround time: 1713
 Average hog factor of a job: 0.00 (cpu time / turnaround time)
 Maximum hog factor of a job: 0.00 Minimum hog factor of a job: 0.00
 Total throughput: 8.94 (jobs/hour) during 20.58 hours
 Beginning time: Oct 11 20:23 Ending time: Oct 12 16:58

For SLA Tuktoyaktuk, bacct shows a total throughput of 4.36 jobs per hour
over a period of 19.95 hours:

bacct -sla Tuktoyaktuk

Accounting information about jobs that are:
 - submitted by users user1,
 - accounted on all projects.
 - completed normally or exited
 - executed on all hosts.
 - submitted to all queues.
 - accounted on service classes Tuktoyaktuk,
--

SUMMARY: (time unit: second)
 Total number of done jobs: 87 Total number of exited jobs: 0
 Total CPU time consumed: 18.0 Average CPU time consumed: 0.2
 Maximum CPU time of a job: 0.3 Minimum CPU time of a job: 0.1
 Total wait time in queues: 2371955.0
 Average wait time in queue:27263.8
 Maximum wait time in queue:39125.0 Minimum wait time in queue: 7.0
 Average turnaround time: 30596 (seconds/job)
 Maximum turnaround time: 44778 Minimum turnaround time: 3355
 Average hog factor of a job: 0.00 (cpu time / turnaround time)
 Maximum hog factor of a job: 0.00 Minimum hog factor of a job: 0.00
 Total throughput: 4.36 (jobs/hour) during 19.95 hours
 Beginning time: Oct 11 20:50 Ending time: Oct 12 16:47

Because the run times are not uniform, both service classes actually achieve
higher throughput than configured.

Understanding Service Class Behavior

394 Administering Platform LSF

Understanding Service Class Behavior

A simple deadline goal
The following service class configures an SLA with a simple deadline goal with a
half hour time window.
Begin ServiceClass
NAME = Quadra
PRIORITY = 20
GOALS = [DEADLINE timeWindow (16:15-16:45)]
DESCRIPTION = short window
End ServiceClass

Six jobs submitted with a run time of 5 minutes each will use 1 slot for the half hour
time window. bsla shows that the deadline can be met:
bsla Quadra
SERVICE CLASS NAME: Quadra
 -- short window
PRIORITY: 20

GOAL: DEADLINE
ACTIVE WINDOW: (16:15-16:45)
STATUS: Active:On time
ESTIMATED FINISH TIME: (Wed Jul 2 16:38)
OPTIMUM NUMBER OF RUNNING JOBS: 1

 NJOBS PEND RUN SSUSP USUSP FINISH
 6 5 1 0 0 0

The following illustrates the progress of the SLA to the deadline. The optimum
number of running jobs in the service class (nrun) is maintained at a steady rate of
1 job at a time until near the completion of the SLA.
When the finished job curve (nfinished) meets the total number of jobs curve
(njobs) the deadline is met. All jobs are finished well ahead of the actual configured
deadline, and the goal of the SLA was met.

Administering Platform LSF 395

Goal-Oriented SLA-Driven Scheduling

An overnight run with two service classes
bsla shows the configuration and status of two service classes Qualicum and
Comox:
◆ Qualicum has a deadline goal with a time window which is active overnight:

bsla Qualicum
SERVICE CLASS NAME: Qualicum
PRIORITY: 23

GOAL: VELOCITY 8
ACTIVE WINDOW: (8:00-18:00)
STATUS: Inactive
SLA THROUGHPUT: 0.00 JOBS/CLEAN_PERIOD

GOAL: DEADLINE
ACTIVE WINDOW: (18:00-8:00)
STATUS: Active:On time
ESTIMATED FINISH TIME: (Thu Jul 10 07:53)
OPTIMUM NUMBER OF RUNNING JOBS: 2

 NJOBS PEND RUN SSUSP USUSP FINISH
 280 278 2 0 0 0

The following illustrates the progress of the deadline SLA Qualicum running
280 jobs overnight with random runtimes until the morning deadline. As with
the simple deadline goal example, when the finished job curve (nfinished)
meets the total number of jobs curve (njobs) the deadline is met with all jobs
completed ahead of the configured deadline.

Understanding Service Class Behavior

396 Administering Platform LSF

◆ Comox has a velocity goal of 2 concurrently running jobs that is always active:
bsla Comox
SERVICE CLASS NAME: Comox
PRIORITY: 20

GOAL: VELOCITY 2
ACTIVE WINDOW: Always Open
STATUS: Active:On time
SLA THROUGHPUT: 2.00 JOBS/CLEAN_PERIOD

 NJOBS PEND RUN SSUSP USUSP FINISH
 100 98 2 0 0 0

The following illustrates the progress of the velocity SLA Comox running 100
jobs with random runtimes over a 14 hour period.

Administering Platform LSF 397

Goal-Oriented SLA-Driven Scheduling

When an SLA is missing its goal

1 Use the CONTROL_ACTION parameter in your service class to configure an
action to be run if the SLA goal is delayed for a specified number of minutes.

CONTROL_ACTION
(lsb.serviceclasses)

CONTROL_ACTION=VIOLATION_PERIOD[minutes] CMD [action]
If the SLA goal is delayed for longer than VIOLATION_PERIOD, the action
specified by CMD is invoked. The violation period is reset and the action runs again
if the SLA is still active when the violation period expires again. If the SLA has
multiple active goals that are in violation, the action is run for each of them.

Example CONTROL_ACTION=VIOLATION_PERIOD[10] CMD [echo `date`: SLA is in
violation >> ! /tmp/sla_violation.log]

Preemption and SLA policies
SLA jobs cannot be preempted. You should avoid running jobs belonging to an SLA
in low priority queues.

Chunk jobs and SLA policies
SLA jobs will not get chunked. You should avoid submitting SLA jobs to a chunk
job queue.

Understanding Service Class Behavior

398 Administering Platform LSF

SLA statistics files
Each active SLA goal generates a statistics file for monitoring and analyzing the
system. When the goal becomes inactive the file is no longer updated. The files are
created in the LSB_SHAREDIR/cluster_name/logdir/SLA directory. Each file
name consists of the name of the service class and the goal type.
For example the file named Quadra.deadline is created for the deadline goal of the
service class name Quadra. The following file named Tofino.velocity refers to a
velocity goal of the service class named Tofino:

cat Tofino.velocity
service class Tofino velocity, NJOBS, NPEND (NRUN + NSSUSP + NUSUSP), (NDONE + NEXIT)
 17/9 15:7:34 1063782454 2 0 0 0 0
 17/9 15:8:34 1063782514 2 0 0 0 0
 17/9 15:9:34 1063782574 2 0 0 0 0
service class Tofino velocity, NJOBS, NPEND (NRUN + NSSUSP + NUSUSP), (NDONE + NEXIT)
 17/9 15:10:10 1063782610 2 0 0 0 0

Resizable jobs and SLA scheduling
For resizable job allocation requests, since the job itself has already started to run,
LSF bypasses dispatch rate checking and continues scheduling the allocation
request.

Job groups and SLA scheduling
Job groups provide a method for assigning arbitrary labels to groups of jobs.
Typically, job groups represent a project hierarchy. You can use -g with -sla at job
submission to attach all jobs in a job group to a service class and have them
scheduled as SLA jobs and subject to the scheduling policy of the SLA. Within the
job group, resources are allocated to jobs on a fairshare basis.
All jobs submitted to a group under an SLA automatically belong to the SLA itself.
You cannot modify a job group of a job that is attached to an SLA.
A job group hierarchy can belong to only one SLA.
It is not possible to have some jobs in a job group not part of the service class.
Multiple job groups can be created under the same SLA. You can submit additional
jobs to the job group without specifying the service class name again.
If the specified job group does not exist, it is created and attached to the SLA.
You can also use -sla to specify a service class when you create a job group with
bgadd.

View job groups attached to an SLA (bjgroup)

1 Run bjgroup to display job groups attached to a service class:
bjgroup

GROUP_NAME NJOBS PEND RUN SSUSP USUSP FINISH SLA JLIMIT OWNER

/fund1_grp 5 4 0 1 0 0 Venezia 1/5 user1

/fund2_grp 11 2 5 0 0 4 Venezia 5/5 user1

/bond_grp 2 2 0 0 0 0 Venezia 0/- user2

/risk_grp 2 1 1 0 0 0 () 1/- user2

Administering Platform LSF 399

Goal-Oriented SLA-Driven Scheduling

/admi_grp 4 4 0 0 0 0 () 0/- user2

bjgroup displays the name of the service class that the job group is attached to
with bgadd -sla service_class_name. If the job group is not attached to any
service class, empty parentheses () are displayed in the SLA name column.

Understanding Service Class Behavior

400 Administering Platform LSF

Administering Platform LSF 401

P A R T

IV
Job Scheduling and Dispatch

◆ Resource Allocation Limits on page 421
◆ Reserving Resources on page 439
◆ Advance Reservation on page 455
◆ Dispatch and Run Windows on page 479
◆ Job Dependencies on page 483
◆ Job Priorities on page 491
◆ Job Requeue and Job Rerun on page 505
◆ Job Checkpoint, Restart, and Migration on page 515
◆ Chunk Job Dispatch on page 521
◆ Job Arrays on page 527
◆ Running Parallel Jobs on page 539
◆ Submitting Jobs Using JSDL on page 587

402 Administering Platform LSF

Administering Platform LSF 403

C H A P T E R

23
Working with Application Profiles

Application profiles improve the management of applications by separating
scheduling policies (preemption, fairshare, etc.) from application-level
requirements, such as pre-execution and post-execution commands, resource
limits, or job controls, job chunking, etc.

Contents
◆ Manage application profiles on page 404
◆ View application profile information on page 409
◆ Use application profiles on page 407
◆ How application profiles interact with queue and job parameters on page 413

Manage application profiles

404 Administering Platform LSF

Manage application profiles

About application profiles
Use application profiles to map common execution requirements to
application-specific job containers. For example, you can define different job types
according to the properties of the applications that you use; your FLUENT jobs can
have different execution requirements from your CATIA jobs, but they can all be
submitted to the same queue.
The following application profile defines the execution requirements for the
FLUENT application:
Begin Application

NAME = fluent

DESCRIPTION = FLUENT Version 6.2

CPULIMIT = 180/hostA # 3 hours of host hostA

FILELIMIT = 20000

DATALIMIT = 20000 # jobs data segment limit

CORELIMIT = 20000

PROCLIMIT = 5 # job processor limit

PRE_EXEC = /usr/local/lsf/misc/testq_pre >> /tmp/pre.out

REQUEUE_EXIT_VALUES = 55 34 78

End Application

See the lsb.applications template file for additional application profile
examples.

Add or remove application profiles

Add an application
profile

1 Log in as the LSF administrator on any host in the cluster.
2 Edit lsb.applications to add the new application profile definition.

You can copy another application profile definition from this file as a starting
point; remember to change the NAME of the copied profile.

3 Save the changes to lsb.applications.
4 Run badmin reconfig to reconfigure mbatchd.

Adding an application profile does not affect pending or running jobs.

Administering Platform LSF 405

Working with Application Profiles

Remove an
application profile

Prerequisites: Before removing an application profile, make sure there are no
pending jobs associated with the application profile.

If there are jobs in the application profile, use bmod -app to move pending jobs to
another application profile, then remove the application profile. Running jobs are
not affected by removing the application profile associated with them,

NOTE: You cannot remove a default application profile.

1 Log in as the LSF administrator on any host in the cluster.
2 Run bmod -app to move all pending jobs into another application profile.

If you leave pending jobs associated with an application profile that has been
removed, they remain pending wit h the pending reason
Specified application profile does not exist

3 Edit lsb.applicationss and remove or comment out the definition for the
application profile you want to remove.

4 Save the changes to lsb.applications.
5 Run badmin reconfig to reconfigure mbatchd.

Define a default application profile
Define a default application profile that is used when a job is submitted without
specifying an application profile,

1 Log in as the LSF administrator on any host in the cluster.
2 Set DEFAULT_APPLICATION in lsb.params to the name of the default

application profile.
DEFAULT_APPLICATION=catia

3 Save the changes to lsb.params.
4 Run badmin reconfig to reconfigure mbatchd.

Adding an application profile does not affect pending or running jobs.

Specify successful application exit values.
Use SUCCESS_EXIT_VALUES to specify a list of exit codes that will be considered
as successful execution for the application.

1 Log in as the LSF administrator on any host in the cluster.
2 Set SUCCESS_EXIT_VALUES to specify a list of job success exit codes for the

application.
SUCCESS_EXIT_VALUES=230 222 12

3 Save the changes to lsb.applications.

Manage application profiles

406 Administering Platform LSF

4 Run badmin reconfig to reconfigure mbatchd.

Understanding
successful
application exit
values

Jobs that exit with one of the exit codes specified by SUCCESS_EXIT_VALUES in
an application profile are marked as DONE. These exit values are not be counted in
the EXIT_RATE calculation.
0 always indicates application success regardless of SUCCESS_EXIT_VALUES.
If both SUCCESS_EXIT_VALUES and REQUEUE_EXIT_VALUES are defined,
job will be set to PEND state and requeued.
SUCCESS_EXIT_VALUES has no effect on pre-exec and post-exec commands.
The value is only used for user jobs.
If the job exit value falls into SUCCESS_EXIT_VALUES, the job will be marked as
DONE. Job dependencies on done jobs behave normally.
For parallel jobs, the exit status refers to the job exit status and not the exit status of
individual tasks.
Exit codes for jobs terminated by LSF are excluded from success exit value even if
they are specified in SUCCESS_EXIT_VALUES.
For example. if SUCCESS_EXIT_VALUES=2 is defined, jobs exiting with 2 are
marked as DONE. However, if LSF cannot find the current working directory, LSF
terminates the job with exit code 2, and the job is marked as EXIT. The appropriate
termination reason is displayed by bacct.

MultiCluster jobs
In the job forwarding model, for jobs sent to a remote cluster, jobs exiting with
success exit codes defined in the remote cluster are considered done successfully.
In the lease model, the parameters of lsb.applications apply to jobs running on
remote leased hosts as if they are running on local hosts.

Administering Platform LSF 407

Working with Application Profiles

Use application profiles

Submit jobs to application profiles
Use the -app option of bsub to specify an application profile for the job.

1 Run bsub -app to submit jobs to an application profile.
bsub -app fluent -q overnight myjob

LSF rejects the job if the specified application profile does not exist.

Modify the application profile associated with a job
Prerequisites: You can only modify the application profile for pending jobs.

1 Run bmod -app application_profile_name to modify the application profile of
the job.
The -appn option dissociates the specified job from its application profile. If the
application profile does not exist, the job is not modified

bmod -app fluent 2308

Associates job 2308 with the application profile fluent.
bmod -appn 2308

Dissociates job 2308 from the application profile fluent.

Control jobs associated with application profiles
bstop, bresume, and bkill operate on jobs associated with the specified
application profile. You must specify an existing application profile. If job_ID or 0
is not specified, only the most recently submitted qualifying job is operated on.

1 Run bstop -app to suspend jobs in an application profile.
bstop -app fluent 2280

Suspends job 2280 associated with the application profile fluent.
bstop -app fluent 0

Suspends all jobs associated with the application profile fluent.
2 Run bresume -app to resume jobs in an application profile.

bresume -app fluent 2280

Resumes job 2280 associated with the application profile fluent.
3 Run bkill -app to kill jobs in an application profile.

bkill -app fluent

Kills the most recently submitted job associated with the application profile
fluent for the current user.
bkill -app fluent 0

Use application profiles

408 Administering Platform LSF

Kills all jobs associated with the application profile fluent for the current user.

Administering Platform LSF 409

Working with Application Profiles

View application profile information

View available application profiles

1 Run bapp. You can view a particular application profile or all profiles.
bapp

APPLICATION_NAME NJOBS PEND RUN SUSP

fluent 0 0 0 0

catia 0 0 0 0

A dash (-) in any entry means that the column does not apply to the row.

View detailed application profile information

1 To see the complete configuration for each application profile, run bapp -l.
bapp -l also gives current statistics about the jobs in a particular application
profile, such as the total number of jobs in the profile, the number of jobs
running, suspended, and so on.
Specify application profile names to see the properties of specific application
profiles.
bapp -l fluent

APPLICATION NAME: fluent

 -- Application definition for Fluent v2.0

STATISTICS:

 NJOBS PEND RUN SSUSP USUSP RSV

 0 0 0 0 0 0

PARAMETERS:

 CPULIMIT

 600.0 min of hostA

 RUNLIMIT

 200.0 min of hostA

 PROCLIMIT

To view the... Run...

Available application profiles bapp

Detailed application profile information bapp -l

Jobs associated with an application profile bjobs -l -app application_profile_name
Accounting information for all jobs associated with an
application profile

bacct -l -app application_profile_name

Job success and requeue exit code information bapp -l
bacct -l
bhist -l
bjobs -l

View application profile information

410 Administering Platform LSF

 9

 FILELIMIT DATALIMIT STACKLIMIT CORELIMIT MEMLIMIT SWAPLIMIT
PROCESSLIMIT THREADLIMIT

 800 K 100 K 900 K 700 K 300 K 1000 K 400
500

RERUNNABLE: Y

CHUNK_JOB_SIZE: 5

View jobs associated with application profiles

1 Run bjobs -l -app application_profile_name.
bjobs -l -app fluent

Job <1865>, User <user1>, Project <default>, Application <fluent>,

 Status <PSUSP>, Queue <normal>, Command <ls>

Tue Jun 6 11:52:05: Submitted from host <hostA> with hold, CWD

 </clusters/lsf7.0/work/cluster1/logdir>;

 PENDING REASONS:

 Job was suspended by LSF admin or root while pending;

 SCHEDULING PARAMETERS:

 r15s r1m r15m ut pg io ls it tmp swp mem tlu

 loadSched - - - - - - - - - - - -

 loadStop - - - - - - - - - - - -

 cpuspeed bandwidth

 loadSched - -

 loadStop - -

A dash (-) in any entry means that the column does not apply to the row.

Accounting information for all jobs associated with an application profile

1 Run bacct -l -app application_profile_name.
bacct -l -app fluent

Accounting information about jobs that are:

 - submitted by users jchan,

 - accounted on all projects.

 - completed normally or exited

 - executed on all hosts.

 - submitted to all queues.

 - accounted on all service classes.

 - associated with application profiles: fluent

--

Job <207>, User <user1>, Project <default>, Application <fluent>, Status <DONE>

Administering Platform LSF 411

Working with Application Profiles

 , Queue <normal>, Command <dir>

Wed May 31 16:52:42: Submitted from host <hostA>, CWD <$HOME/src/mainline/lsbatch

 /cmd>;

Wed May 31 16:52:48: Dispatched to 10 Hosts/Processors <10*hostA>

Wed May 31 16:52:48: Completed <done>.

Accounting information about this job:

 CPU_T WAIT TURNAROUND STATUS HOG_FACTOR MEM SWAP

 0.02 6 6 done 0.0035 2M 5M

--

...

SUMMARY: (time unit: second)

 Total number of done jobs: 15 Total number of exited jobs: 4

 Total CPU time consumed: 0.4 Average CPU time consumed: 0.0

 Maximum CPU time of a job: 0.0 Minimum CPU time of a job: 0.0

 Total wait time in queues: 5305.0

 Average wait time in queue: 279.2

 Maximum wait time in queue: 3577.0 Minimum wait time in queue: 2.0

 Average turnaround time: 306 (seconds/job)

 Maximum turnaround time: 3577 Minimum turnaround time: 5

 Average hog factor of a job: 0.00 (cpu time / turnaround time)

 Maximum hog factor of a job: 0.01 Minimum hog factor of a job: 0.00

 Total throughput: 0.14 (jobs/hour) during 139.98 hours

 Beginning time: May 31 16:52 Ending time: Jun 6 12:51

View job success exit values and requeue exit code information

1 Run bjobs -l to see command-line requeue exit values if defined.
bjobs -l

Job <405>, User <user1>, Project <default>, Status <PSUSP>, Queue <normal>, Co

 mmand <myjob 1234>

Tue Dec 11 23:32:00: Submitted from host <hostA> with hold, CWD </scratch/d

 ev/lsfjobs/user1/work>, Requeue Exit Values <2>;

...

2 Run bapp -l to see SUCCESS_EXIT_VALUES when the parameter is defined
in an application profile.

bapp -l

APPLICATION NAME: fluent

 -- Run FLUENT applications

STATISTICS:

 NJOBS PEND RUN SSUSP USUSP RSV

 0 0 0 0 0 0

View application profile information

412 Administering Platform LSF

PARAMETERS:

SUCCESS_EXIT_VALUES: 230 222 12

...

3 Run bhist -l to show command-line specified requeue exit values with bsub
and modified requeue exit values with bmod.

bhist -l

Job <405>, User <user1>, Project <default>, Command <myjob 1234>

Tue Dec 11 23:32:00: Submitted from host <hostA> with hold, to Queue

<norma

 l>, CWD </scratch/dev/lsfjobs/user1/work>, R

 e-queue Exit Values <1>;

Tue Dec 11 23:33:14: Parameters of Job are changed:

 Requeue exit values changes to: 2;

...

4 Run bhist -l and bacct -l to see success exit values when a job is done
successfully. If the job exited with default success exit value 0, bhist an bacct
do not display the 0 exit value

bhist -l 405

Job <405>, User <user1>, Project <default>, Interactive pseudo-terminal mode, Co

 mmand <myjob 1234>

...

Sun Oct 7 22:30:19: Done successfully. Success Exit Code: 230 222 12.

...

bacct -l 405

...

Job <405>, User <user1>, Project <default>, Status <DONE>, Queue <normal>, Comma

 nd <myjob 1234>

Wed Sep 26 18:37:47: Submitted from host <hostA>, CWD </scratch/dev/lsfjobs/user1/wo

 rk>;

Wed Sep 26 18:37:50: Dispatched to <hostA>;

Wed Sep 26 18:37:51: Completed <done>. Success Exit Code: 230 222 12.

 ...

Administering Platform LSF 413

Working with Application Profiles

How application profiles interact with queue and job
parameters

Application profiles operate in conjunction with queue and job-level options. In
general, you use application profile definitions to refine queue-level settings, or to
exclude some jobs from queue-level parameters.

Application profile settings that override queue settings
The following application profile parameters override the corresponding queue
setting:
◆ CHKPNT_DIR—overrides queue CHKPNT=chkpnt_dir
◆ CHKPNT_PERIOD—overrides queue CHKPNT=chkpnt_period
◆ JOB_STARTER
◆ LOCAL_MAX_PREEXEC_RETRY
◆ MAX_JOB_PREEMPT
◆ MAX_JOB_REQUEUE
◆ MAX_PREEXEC_RETRY
◆ MIG
◆ REMOTE_MAX_PREEXEC_RETRY
◆ REQUEUE_EXIT_VALUES
◆ RESUME_CONTROL—overrides queue JOB_CONTROLS
◆ SUSPEND_CONTROL—overrides queue JOB_CONTROLS
◆ TERMINATE_CONTROL—overrides queue JOB_CONTROLS

Application profile limits and queue limits
The following application profile limits override the corresponding queue-level soft
limits:
◆ CORELIMIT
◆ CPULIMIT
◆ DATALIMIT
◆ FILELIMIT
◆ MEMLIMIT
◆ PROCESSLIMIT
◆ RUNLIMIT
◆ STACKLIMIT
◆ SWAPLIMIT
◆ STACKLIMIT
◆ THREADLIMIT
Job-level limits can override the application profile limits. The application profile
limits cannot override queue-level hard limits.

How application profiles interact with queue and job parameters

414 Administering Platform LSF

Processor limits PROCLIMIT in an application profile specifies the maximum number of slots that
can be allocated to a job. For parallel jobs, PROCLIMIT is the maximum number
of processors that can be allocated to the job.
You can optionally specify the minimum and default number of processors. All
limits must be positive integers greater than or equal to 1 that satisfy the following
relationship:
1 <= minimum <= default <= maximum
Job-level processor limits (bsub -n) override application-level PROCLIMIT,
which overrides queue-level PROCLIMIT. Job-level limits must fall within the
maximum and minimum limits of the application profile and the queue.

Absolute run limits
If you want the scheduler to treat any run limits as absolute, define
ABS_RUNLIMIT=Y in lsb.params or in lsb.applications for the application
profile associated with your job. When ABS_RUNLIMIT=Y is defined in
lsb.params or in the application profile, the run time limit is not normalized by
the host CPU factor. Absolute wall-clock run time is used for all jobs submitted
with a run limit configured.

Pre-execution
Queue-level pre-execution commands run before application-level pre-execution
commands. Job level pre-execution commands (bsub -E) override
application-level pre-execution commands.

Post-execution
When a job finishes, application-level post-execution commands run, followed by
queue-level post-execution commands if any.
If both application-level and job-level post-execution commands (bsub -Ep) are
specified, job level post-execution overrides application-level post-execution
commands. Queue-level post-execution commands run after application-level
post-execution and job-level post-execution commands

Chunk job scheduling
CHUNK_JOB_SIZE in an application profile ensures that jobs associated with the
application are chunked together. CHUNK_JOB_SIZE=1 disables job chunk
scheduling. Application-level job chunk definition overrides chunk job dispatch
configured in the queue.
CHUNK_JOB_SIZE is ignored and jobs are not chunked under the following
conditions:
◆ CPU limit greater than 30 minutes (CPULIMIT parameter in lsb.queues or

lsb.applications)
◆ Run limit greater than 30 minutes (RUNLIMIT parameter in lsb.queues or

lsb.applications)
◆ Run time estimate greater than 30 minutes (RUNTIME parameter in

lsb.applications)

Administering Platform LSF 415

Working with Application Profiles

If CHUNK_JOB_DURATION is set in lsb.params, chunk jobs are accepted
regardless of the value of CPULIMIT, RUNLIMIT or RUNTIME.

Rerunnable jobs
RERUNNABLE in an application profile overrides queue-level job rerun, and
allows you to submit rerunnable jobs to a non-rerunnable queue. Job-level rerun
(bsub -r or bsub -rn) overrides both the application profile and the queue.

Resource requirements
Application-level resource requirements can be simple (one requirement for all
slots) or compound (different requirements for specified numbers of slots). When
resource requirements are set at the application-level as well as the job-level or
queue-level, the requirements are combined in different ways depending on
whether they are simple or compound.
Simple job-level, application-level, and queue-level resource requirements are
merged in the following manner:
◆ If resource requirements are not defined at the application level, simple

job-level and simple queue-level resource requirements are merged.
◆ When simple application-level resource requirements are defined, simple

job-level requirements usually take precedence. Specifically:

Compound application-level resource requirements are merged in the following
manner:
◆ When a compound resource requirement is set at the application level, it will

be ignored if any job-level resource requirements (simple or compound) are
defined.

◆ In the event no job-level resource requirements are set, the compound
application-level requirements interact with queue-level resource requirement
strings in the following ways:
❖ If no queue-level resource requirement is defined or a compound

queue-level resource requirement is defined, the compound
application-level requirement is used.

❖ If a simple queue-level requirement is defined, the application-level and
queue-level requirements combine as follows:

section simple resource requirement multi-level behavior

select all levels satisfied

same all levels combined

order
span
cu

job-level section overwrites application-level section, which overwrites
queue-level section (if a given level is present)

rusage all levels merge
if conflicts occur the job-level section overwrites the application-level
section, which overwrites the queue-level section.

How application profiles interact with queue and job parameters

416 Administering Platform LSF

For internal load indices and duration, jobs are rejected if they specify resource
reservation requirements at the job level or application level that exceed the
requirements specified in the queue.
If RES_REQ is defined at the queue level and there are no load thresholds defined,
the pending reasons for each individual load index will not be displayed by bjobs.
When LSF_STRICT_RESREQ=Y is configured in lsf.conf, resource requirement
strings in select sections must conform to a more strict syntax. The strict resource
requirement syntax only applies to the select section. It does not apply to the other
resource requirement sections (order, rusage, same, span, or cu). When
LSF_STRICT_RESREQ=Y in lsf.conf, LSF rejects resource requirement strings
where an rusage section contains a non-consumable resource.
When the parameter RESRSV_LIMIT in lsb.queues is set, the merged
application-level and job-level rusage consumable resource requirements must
satisfy any limits set by RESRSV_LIMIT, or the job will be rejected.

Estimated runtime and runtime limits
Instead of specifying an explicit runtime limit for jobs, you can specify an estimated
run time for jobs. LSF uses the estimated value for job scheduling purposes only,
and does not kill jobs that exceed this value unless the jobs also exceed a defined
runtime limit. The format of runtime estimate is same as run limit set by the bsub
-W option or the RUNLIMIT parameter in lsb.queues and lsb.applications.
Use JOB_RUNLIMIT_RATIO in lsb.params to limit the runtime estimate users
can set. If JOB_RUNLIMIT_RATIO is set to 0 no restriction is applied to the
runtime estimate. The ratio does not apply to the RUNTIME parameter in
lsb.applications.
The job-level runtime estimate setting overrides the RUNTIME setting in an
application profile in lsb.applications.
The following LSF features use the estimated runtime value to schedule jobs:
◆ Job chunking
◆ Advance reservation
◆ SLA

section compound application and simple queue behavior

select both levels satisfied; queue requirement applies to all compound terms

same queue level ignored

order
span

application-level section overwrites queue-level section (if a given level is
present); queue requirement (if used) applies to all compound terms

rusage ✧ both levels merge
✧ queue requirement if a job-based resource is applied to the first

compound term, otherwise applies to all compound terms
✧ if conflicts occur the application-level section overwrites the

queue-level section.
For example: if the application-level requirement is
num1*{rusage[R1]} + num2*{rusage[R2]} and the queue-level
requirement is rusage[RQ] where RQ is a job resource, the merged
requirement is
num1*{rusage[merge(R1,RQ)]} + num2*{rusage[R2]}

Administering Platform LSF 417

Working with Application Profiles

◆ Slot reservation
◆ Backfill

Define a runtime estimate

Define the RUNTIME parameter at the application level. Use the bsub -We option
at the job-level.
You can specify the runtime estimate as hours and minutes, or minutes only. The
following examples show an application-level runtime estimate of three hours and
30 minutes:
◆ RUNTIME=3:30

◆ RUNTIME=210

Configuring
normalized run
time

LSF uses normalized run time for scheduling in order to account for different
processing speeds of the execution hosts.

TIP: If you want the scheduler to use wall-clock (absolute) run time instead of normalized run
time, define ABS_RUNLIMIT=Y in the file lsb.params or in the file lsb.applications for
the application associated with your job.

LSF calculates the normalized run time using the following formula:
NORMALIZED_RUN_TIME = RUNTIME * CPU_Factor_Normalization_Host / CPU_Factor_Execute_Host

You can specify a host name or host model with the runtime estimate so that LSF
uses a specific host name or model as the normalization host. If you do not specify
a host name or host model, LSF uses the CPU factor for the default normalization
host as described in the following table.

To specify a host name (defined in lsf.cluster.clustername) or host model
(defined in lsf.shared) as the normalization host, insert the "/" character between
the minutes and the host name or model, as shown in the following examples:
RUNTIME=3:30/hostA

bsub -We 3:30/hostA

LSF calculates the normalized run time using the CPU factor defined for hostA.
RUNTIME=210/Ultra5S

bsub -We 210/Ultra5S

If you define… In the file… Then…

DEFAULT_HOST_SPEC lsb.queues LSF selects the default
normalization host for the
queue.

DEFAULT_HOST_SPEC lsb.params LSF selects the default
normalization host for the
cluster.

No default host at either
the queue or cluster level

LSF selects the submission host
as the normalization host.

How application profiles interact with queue and job parameters

418 Administering Platform LSF

LSF calculates the normalized run time using the CPU factor defined for host
model Ultra5S.

TIP: Use lsinfo to see host name and host model information.

Guidelines for
defining a runtime
estimate

1 You can define an estimated run time, along with a runtime limit (job level with
bsub -W, application level with RUNLIMIT in lsb.applications, or queue
level with RUNLIMIT lsb.queues).

2 If the runtime limit is defined, the job-level (-We) or application-level
RUNTIME value must be less than or equal to the run limit. LSF ignores the
estimated runtime value and uses the run limit value for scheduling when
❖ The estimated runtime value exceeds the run limit value, or
❖ An estimated runtime value is not defined

NOTE: When LSF uses the run limit value for scheduling, and the run limit is defined at more
than one level, LSF uses the smallest run limit value to estimate the job duration.

3 For chunk jobs, ensure that the estimated runtime value is
❖ Less than the CHUNK_JOB_DURATION defined in the file lsb.params,

or
❖ Less than 30 minutes, if CHUNK_JOB_DURATION is not defined.

How estimated run
time interacts with
run limits

The following table includes all the expected behaviors for the combinations of
job-level runtime estimate (-We), job-level rum limit (-W), application-level
runtime estimate (RUNTIME), application-level run limit (RUNLIMIT),
queue-level run limit (RUNLIMIT, both default and hard limit). Ratio is the value
of JOB_RUNLIMIT_RATIO defined in lsb.params. The dash (—) indicates no
value is defined for the job.

Job-runtime
estimate

Job-run limit Application
runtime
estimate

Application
run limit

Queue default
run limit

Queue hard
run limit

Result

T1 - — — — — Job is accepted
Jobs running longer than T1*ratio
are killed

T1 T2>T1*ratio — — — — Job is rejected

T1 T2<=T1*ratio — — — — Job is accepted
Jobs running longer than T2 are
killed

T1 T2<=T1*ratio T3 T4 — — Job is accepted
Jobs running longer than T2 are
killed
T2 overrides T4 or T1*ratio
overrides T4
T1 overrides T3

Administering Platform LSF 419

Working with Application Profiles

T1 T2<=T1*ratio — — T5 T6 Job is accepted
Jobs running longer than T2 are
killed
If T2>T6, the job is rejected

T1 — T3 T4 — — Job is accepted
Jobs running longer than T1*ratio
are killed
T2 overrides T4 or T1*ratio
overrides T4
T1 overrides T3

T1 — — — T5 T6 Job is accepted
Jobs running longer than T1*ratio
are killed
If T1*ratio>T6, the job is rejected

Job-runtime
estimate

Job-run limit Application
runtime
estimate

Application
run limit

Queue default
run limit

Queue hard
run limit

Result

How application profiles interact with queue and job parameters

420 Administering Platform LSF

Administering Platform LSF 421

C H A P T E R

24
Resource Allocation Limits

Contents
◆ About Resource Allocation Limits on page 422
◆ Configuring Resource Allocation Limits on page 427
◆ Viewing Information about Resource Allocation Limits on page 436

About Resource Allocation Limits

422 Administering Platform LSF

About Resource Allocation Limits

Contents
◆ What resource allocation limits do on page 422
◆ How LSF enforces limits on page 423
◆ How LSF counts resources on page 423
◆ Limits for resource consumers on page 426

What resource allocation limits do
By default, resource consumers like users, hosts, queues, or projects are not limited
in the resources available to them for running jobs. Resource allocation limits
configured in lsb.resources restrict:
◆ The maximum amount of a resource requested by a job that can be allocated

during job scheduling for different classes of jobs to start
◆ Which resource consumers the limits apply to
If all of the resource has been consumed, no more jobs can be started until some of
the resource is released.
For example, by limiting maximum amount of memory for each of your hosts, you
can make sure that your system operates at optimal performance. By defining a
memory limit for some users submitting jobs to a particular queue and a specified
set of hosts, you can prevent these users from using up all the memory in the system
at one time.

Jobs must specify
resource
requirements

For limits to apply, the job must specify resource requirements (bsub -R rusage
string or RES_REQ in lsb.queues). For example, the a memory allocation limit of
4 MB is configured in lsb.resources:
Begin Limit

NAME = mem_limit1

MEM = 4

End Limit

A is job submitted with an rusage resource requirement that exceeds this limit:
bsub -R "rusage[mem=5]" uname

and remains pending:
bjobs -p 600

JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME

 600 user1 PEND normal suplin02 uname Aug 12 14:05

Resource (mem) limit defined cluster-wide has been reached;

A job is submitted with a resource requirement within the configured limit:
bsub -R"rusage[mem=3]" sleep 100

is allowed to run:
bjobs

JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME

 600 user1 PEND normal hostA uname Aug 12 14:05

Administering Platform LSF 423

Resource Allocation Limits

 604 user1 RUN normal hostA sleep 100 Aug 12 14:09

Resource usage
limits and resource
allocation limits

Resource allocation limits are not the same as resource usage limits, which are
enforced during job run time. For example, you set CPU limits, memory limits, and
other limits that take effect after a job starts running. See Chapter 36, “Runtime
Resource Usage Limits” for more information.

Resource
reservation limits
and resource
allocation limits

Resource allocation limits are not the same as queue-based resource reservation
limits, which are enforced during job submission. The parameter RESRSV_LIMIT (in
lsb.queues) specifies allowed ranges of resource values, and jobs submitted with
resource requests outside of this range are rejected. See Chapter 25, “Reserving
Resources” for more information.

How LSF enforces limits
Resource allocation limits are enforced so that they apply to:
◆ Several kinds of resources:

❖ Job slots by host
❖ Job slots per processor
❖ Running and suspended jobs
❖ Memory (MB or percentage)
❖ Swap space (MB or percentage)
❖ Tmp space (MB or percentage)
❖ Software licenses
❖ Other shared resources

◆ Several kinds of resource consumers:
❖ Users and user groups (all users or per-user)
❖ Hosts and host groups (all hosts or per-host)
❖ Queues (all queues or per-queue)
❖ Projects (all projects or per-project)

◆ All jobs in the cluster
◆ Combinations of consumers:

❖ For jobs running on different hosts in the same queue
❖ For jobs running from different queues on the same host

How LSF counts resources
Resources on a host are not available if they are taken by jobs that have been started,
but have not yet finished. This means running and suspended jobs count against the
limits for queues, users, hosts, projects, and processors that they are associated with.

Job slot limits Job slot limits can correspond to the maximum number of jobs that can run at any
point in time. For example, a queue cannot start jobs if it has no job slots available,
and jobs cannot run on hosts that have no available job slots.

About Resource Allocation Limits

424 Administering Platform LSF

Limits such as such as QJOB_LIMIT (lsb.queues), HJOB_LIMIT (lsb.queues),
UJOB_LIMIT (lsb.queues), MXJ (lsb.hosts), JL/U (lsb.hosts), MAX_JOBS
(lsb.users), and MAX_PEND_JOBS (lsb.users) limit the number of job slots.
When the workload is sequential, job slots are usually equivalent to jobs. For
parallel or distributed applications, these are true job slot limits and not job limits.

Job limits Job limits, specified by JOBS in a Limit section in lsb.resources, correspond to
the maximum number of running and suspended jobs that can run at any point in
time. If both job limits and job slot limits are configured, the most restrictive limit
is applied.

Resource
reservation and
backfill

When processor or memory reservation occurs, the reserved resources count
against the limits for users, queues, hosts, projects, and processors. When
backfilling of parallel jobs occurs, the backfill jobs do not count against any limits.

MultiCluster Limits apply only to the cluster where lsb.resources is configured. If the cluster
leases hosts from another cluster, limits are enforced on those hosts as if they were
local hosts.

Switched jobs can
exceed resource
allocation limits

If a switched job (bswitch) has not been dispatched, then the job behaves as if it
were submitted to the new queue in the first place, and the JOBS limit is enforced
in the target queue.
If a switched job has been dispatched, then resource allocation limits like SWP.
TMP. and JOBS can be exceeded in the target queue. For example, given the
following JOBS limit configuration:
Begin Limit

USERS QUEUES SLOTS TMP JOBS

- normal - 20 2

- short - 20 2

End Limit

Submit 3 jobs to the normal queue, and 3 jobs to the short queue:
bsub -q normal -R"rusage[tmp=20]" sleep 1000

bsub -q short -R"rusage[tmp=20]" sleep 1000

bjobs shows 1 job in RUN state in each queue:
bjobs

JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME

16 user1 RUN normal hosta hosta sleep 1000 Aug 30 16:26

17 user1 PEND normal hosta sleep 1000 Aug 30 16:26

18 user1 PEND normal hosta sleep 1000 Aug 30 16:26

19 user1 RUN short hosta hosta sleep 1000 Aug 30 16:26

20 user1 PEND short hosta sleep 1000 Aug 30 16:26

21 user1 PEND short hosta sleep 1000 Aug 30 16:26

blimits shows the TMP limit reached:
blimits

INTERNAL RESOURCE LIMITS:

NAME USERS QUEUES SLOTS TMP JOBS

Administering Platform LSF 425

Resource Allocation Limits

NONAME000 - normal - 20/20 1/2

NONAME001 - short - 20/20 1/2

Switch the running job in the normal queue to the short queue:
bswitch short 16

bjobs shows 1 job running in the short queue, and two jobs running in the normal
queue:

bjobs

JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME

17 user1 RUN normal hosta hosta sleep 1000 Aug 30 16:26

18 user1 PEND normal hosta sleep 1000 Aug 30 16:26

19 user1 RUN short hosta hosta sleep 1000 Aug 30 16:26

16 user1 RUN normal hosta hosta sleep 1000 Aug 30 16:26

20 user1 PEND short hosta sleep 1000 Aug 30 16:26

21 user1 PEND short hosta sleep 1000 Aug 30 16:26

blimits now shows the TMP limit exceeded and the JOBS limit reached in the
short queue:
blimits

INTERNAL RESOURCE LIMITS:

NAME USERS QUEUES SLOTS TMP JOBS

NONAME000 - normal - 20/20 1/2

NONAME001 - short - 40/20 2/2

Switch the running job in the normal queue to the short queue:
bswitch short 17

bjobs now shows 3 jobs running in the short queue and the third job running in
the normal queue:

bjobs

JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME

18 user1 RUN normal hosta hosta sleep 1000 Aug 30 16:26

19 user1 RUN short hosta hosta sleep 1000 Aug 30 16:26

16 user1 RUN short hosta hosta sleep 1000 Aug 30 16:26

17 user1 RUN short hosta hosta sleep 1000 Aug 30 16:26

20 user1 PEND short hosta sleep 1000 Aug 30 16:26

21 user1 PEND short hosta sleep 1000 Aug 30 16:26

blimits shows both TMP and JOBS limits exceeded in the short queue:
blimits

INTERNAL RESOURCE LIMITS:

NAME USERS QUEUES SLOTS TMP JOBS

NONAME000 - normal - 20/20 1/2

NONAME001 - short - 60/20 3/2

About Resource Allocation Limits

426 Administering Platform LSF

Limits for resource consumers

Host groups and
compute units

If a limit is specified for a host group or compute unit, the total amount of a resource
used by all hosts in that group or unit is counted. If a host is a member of more than
one group, each job running on that host is counted against the limit for all groups
to which the host belongs.

Limits for users and
user groups

Jobs are normally queued on a first-come, first-served (FCFS) basis. It is possible
for some users to abuse the system by submitting a large number of jobs; jobs from
other users must wait until these jobs complete. Limiting resources by user prevents
users from monopolizing all the resources.
Users can submit an unlimited number of jobs, but if they have reached their limit
for any resource, the rest of their jobs stay pending, until some of their running jobs
finish or resources become available.
If a limit is specified for a user group, the total amount of a resource used by all users
in that group is counted. If a user is a member of more than one group, each of that
user’s jobs is counted against the limit for all groups to which that user belongs.
Use the keyword all to configure limits that apply to each user or user group in a
cluster. This is useful if you have a large cluster but only want to exclude a few users
from the limit definition.
You can use ENFORCE_ONE_UG_LIMITS=Y combined with bsub -G to have better
control over limits when user groups have overlapping members. When set to Y,
only the specified user group’s limits (or those of any parent user group) are
enforced. If set to N, the most restrictive job limits of any overlapping user/user
group are enforced.

Per-user limits on
users and groups

Per-user limits are enforced on each user or individually to each user in the user
group listed. If a user group contains a subgroup, the limit also applies to each
member in the subgroup recursively.
Per-user limits that use the keywords all apply to each user in a cluster. If user
groups are configured, the limit applies to each member of the user group, not the
group as a whole.

Resizable jobs
When a resize allocation request is scheduled for a resizable job, all resource
allocation limits (job and slot) are enforced. Once the new allocation is satisfied, it
consumes limits such as SLOTS, MEM, SWAP and TMP for queues, users, projects,
hosts or cluster-wide. However the new allocation will not consume job limits such
as job group limits, job array limits, and non-host level JOBS limit.
Releasing part of an allocation from a resizable job frees general limits that belong
to the allocation, but not the actual job limits.

Administering Platform LSF 427

Resource Allocation Limits

Configuring Resource Allocation Limits

Contents
◆ lsb.resources file on page 427
◆ Enable resource allocation limits on page 428
◆ Configure cluster-wide limits on page 428
◆ Compatibility with pre-version 7 job slot limits on page 428
◆ How resource allocation limits map to pre-version 7 job slot limits on page 429
◆ How conflicting limits are resolved on page 430
◆ Example limit configurations on page 432

lsb.resources file
Configure all resource allocation limits in one or more Limit sections in the
lsb.resources file. Limit sections set limits for how much of the specified
resources must be available for different classes of jobs to start, and which resource
consumers the limits apply to.

Resource
parameters To limit ... Set in a Limit section of lsb.resources ...

Total number of running and suspended
(RUN, SSUSP, USUSP) jobs

JOBS

Total number of job slots that can be used
by specific jobs

SLOTS

Jobs slots based on the number of
processors on each host affected by the
limit

SLOTS_PER_PROCESSOR and PER_HOST

Memory—if PER_HOST is set for the limit,
the amount can be a percentage of
memory on each host in the limit

MEM (MB or percentage)

Swap space —if PER_HOST is set for the
limit, the amount can be a percentage of
swap space on each host in the limit

SWP (MB or percentage)

Tmp space —if PER_HOST is set for the
limit, the amount can be a percentage of
tmp space on each host in the limit

TMP (MB or percentage)

Software licenses LICENSE or RESOURCE
Any shared resource RESOURCE

Configuring Resource Allocation Limits

428 Administering Platform LSF

Consumer parameters

Enable resource allocation limits

1 To enable resource allocation limits in your cluster, you configure the resource
allocation limits scheduling plugin schmod_limit in lsb.modules:
Begin PluginModule

SCH_PLUGIN RB_PLUGIN SCH_DISABLE_PHASES

schmod_default () ()

schmod_limit () ()

End PluginModule

Configure cluster-wide limits

1 To configure limits that take effect for your entire cluster, configure limits in
lsb.resources, but do not specify any consumers.

Compatibility with pre-version 7 job slot limits
The Limit section of lsb.resources does not support the keywords or format
used in lsb.users, lsb.hosts, and lsb.queues. However, any existing job slot
limit configuration in these files will continue to apply.

For jobs submitted ... Set in a Limit section of lsb.resources ...

By all specified users or user groups USERS
To all specified queues QUEUES
To all specified hosts, host groups, or
compute units

HOSTS

For all specified projects PROJECTS
By each specified user or each member of
the specified user groups

PER_USER

To each specified queue PER_QUEUE
To each specified host or each member of
specified host groups or compute units

PER_HOST

For each specified project PER_PROJECT

Administering Platform LSF 429

Resource Allocation Limits

How resource allocation limits map to pre-version 7 job slot limits
Job slot limits are the only type of limit you can configure in lsb.users,
lsb.hosts, and lsb.queues. You cannot configure limits for user groups, host
groups, and projects in lsb.users, lsb.hosts, and lsb.queues. You should not
configure any new resource allocation limits in lsb.users, lsb.hosts, and
lsb.queues. Use lsb.resources to configure all new resource allocation limits,
including job slot limits.

Limits for the following resources have no corresponding limit in lsb.users,
lsb.hosts, and lsb.queues:
◆ JOBS
◆ LICENSE
◆ RESOURCE
◆ SWP
◆ TMP

Job slot resources Resource consumers (lsb.resources) Equivalent
existing limit
(file)(lsb.resources) USERS PER_USER QUEUES HOSTS PER_HOST

SLOTS — all — host_name — JL/U
(lsb.hosts)

SLOTS_PER_PROCESSOR user_name — — — all JL/P (lsb.users)
SLOTS — all queue_name — — UJOB_LIMIT

(lsb.queues)
SLOTS — all — — — MAX_JOBS

(lsb.users)
SLOTS — — queue_name — all HJOB_LIMIT

(lsb.queues)
SLOTS — — — host_name — MXJ (lsb.hosts)
SLOTS_PER_PROCESSOR — — queue_name — all PJOB_LIMIT

 (lsb.queues)
SLOTS — — queue_name — — QJOB_LIMIT

(lsb.queues)

Configuring Resource Allocation Limits

430 Administering Platform LSF

How conflicting limits are resolved
LSF handles two kinds of limit conflicts:
◆ Similar conflicting limits
◆ Equivalent conflicting limits

Similar conflicting limits

For similar limits configured in lsb.resources, lsb.users, lsb.hosts, or
lsb.queues, the most restrictive limit is used. For example, a slot limit of 3 for all
users is configured in lsb.resources:
Begin Limit

NAME = user_limit1

USERS = all

SLOTS = 3

End Limit

This is similar, but not equivalent to an existing MAX_JOBS limit of 2 is configured
in lsb.users.
busers

USER/GROUP JL/P MAX NJOBS PEND RUN SSUSP USUSP RSV

user1 - 2 4 2 2 0 0 0

user1 submits 4 jobs:
bjobs

JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME

816 user1 RUN normal hostA hostA sleep 1000 Jan 22 16:34

817 user1 RUN normal hostA hostA sleep 1000 Jan 22 16:34

818 user1 PEND normal hostA sleep 1000 Jan 22 16:34

819 user1 PEND normal hostA sleep 1000 Jan 22 16:34

Two jobs (818 and 819) remain pending because the more restrictive limit of 2 from
lsb.users is enforced:

bjobs -p

JOBID USER STAT QUEUE FROM_HOST JOB_NAME SUBMIT_TIME

818 user1 PEND normal hostA sleep 1000 Jan 22 16:34

The user has reached his/her job slot limit;

819 user1 PEND normal hostA sleep 1000 Jan 22 16:34

The user has reached his/her job slot limit;

If the MAX_JOBS limit in lsb.users is 4:
busers

USER/GROUP JL/P MAX NJOBS PEND RUN SSUSP USUSP RSV

user1 - 4 4 1 3 0 0 0

and user1 submits 4 jobs:
bjobs

JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME

824 user1 RUN normal hostA hostA sleep 1000 Jan 22 16:38

Administering Platform LSF 431

Resource Allocation Limits

825 user1 RUN normal hostA hostA sleep 1000 Jan 22 16:38

826 user1 RUN normal hostA hostA sleep 1000 Jan 22 16:38

827 user1 PEND normal hostA sleep 1000 Jan 22 16:38

Only one job (827) remains pending because the more restrictive limit of 3 in
lsb.resources is enforced:

bjobs -p

JOBID USER STAT QUEUE FROM_HOST JOB_NAME SUBMIT_TIME

827 user1 PEND normal hostA sleep 1000 Jan 22 16:38

Resource (slot) limit defined cluster-wide has been reached;

Equivalent conflicting limits

New limits in lsb.resources that are equivalent to existing limits in lsb.users,
lsb.hosts, or lsb.queues, but with a different value override the existing limits.
The equivalent limits in lsb.users, lsb.hosts, or lsb.queues are ignored, and
the value of the new limit in lsb.resources is used.
For example, a per-user job slot limit in lsb.resources is equivalent to a
MAX_JOBS limit in lsb.users, so only the lsb.resources limit is enforced, the
limit in lsb.users is ignored:
Begin Limit

NAME = slot_limit

PER_USER =all

SLOTS = 3

End Limit

How job limits work
The JOBS parameter limits the maximum number of running or suspended jobs
available to resource consumers. Limits are enforced depending on the number of
jobs in RUN, SSUSP, and USUSP state.

Stopping and
resuming jobs

Jobs stopped with bstop, go into USUSP status. LSF includes USUSP jobs in the
count of running jobs, so the usage of JOBS limit will not change when you suspend
a job.
Resuming a stopped job (bresume) changes job status to SSUSP. The job can enter
RUN state, if the JOBS limit has not been exceeded. Lowering the JOBS limit before
resuming the job can exceed the JOBS limit, and prevent SSUSP jobs from entering
RUN state.
For example, JOBS=5, and 5 jobs are running in the cluster (JOBS has reached 5/5).
Normally. the stopped job (in USUSP state) can later be resumed and begin
running, returning to RUN state. If you reconfigre the JOBS limit to 4 before
resuming the job, the JOBS usage becomes 5/4, and the job cannot run because the
JOBS limit has been exceeded.

Preemption The JOBS limit does not block preemption based on job slots. For example, if
JOBS=2, and a host is already running 2 jobs in a preemptable queue, a new
preemptive job can preempt a job on that host as long as the preemptive slots can
be satisfied even though the JOBS limit has been reached.

Configuring Resource Allocation Limits

432 Administering Platform LSF

Reservation and
backfill

Reservation and backfill are still made at the job slot level, but despite a slot
reservation being satisfied, the job may ultimately not run because the JOBS limit
has been reached. This similar to a job not running because a license is not
available.

Other jobs ◆ brun forces a pending job to run immediately on specified hosts. A job forced
to run with brun is counted as a running job, which may violate JOBS limits.
After the forced job starts, the JOBS limits may be exceeded.

◆ Requeued jobs (brequeue) are assigned PEND status or PSUSP. Usage of JOBS
limit is decreased by the number of requeued jobs.

◆ Checkpointed jobs restarted with brestart start a new job based on the
checkpoint of an existing job. Whether the new job can run depends on the
limit policy (including the JOBS limit) that applies to the job. For example, if
you checkpoint a job running on a host that has reached its JOBS limit, then
restart it, the restarted job cannot run because the JOBS limit has been reached.

◆ For job arrays, you can define a maximum number of jobs that can run in the
array at any given time. The JOBS limit, like other resource allocation limits,
works in combination with the array limits. For example, if JOBS=3 and the
array limit is 4, at most 3 job elements can run in the array.

◆ For chunk jobs, only the running job among the jobs that are dispatched
together in a chunk is counted against the JOBS limit. Jobs in WAIT state do not
affect the JOBS limit usage.

Example limit configurations
Each set of limits is defined in a Limit section enclosed by Begin Limit and End
Limit.

Example 1 user1 is limited to 2 job slots on hostA, and user2’s jobs on queue normal are
limited to 20 MB of memory:
Begin Limit

NAME HOSTS SLOTS MEM SWP TMP USERS QUEUES

Limit1 hostA 2 - - - user1 -

- - - 20 - - user2 normal

End Limit

Example 2 Set a job slot limit of 2 for user user1 submitting jobs to queue normal on host
hosta for all projects, but only one job slot for all queues and hosts for project test:
Begin Limit

HOSTS SLOTS PROJECTS USERS QUEUES

hosta 2 - user1 normal

 - 1 test user1 -

End Limit

Example 3 Limit usage of hosts in license1 group:
◆ 10 jobs can run from normal queue
◆ Any number can run from short queue, but only can use 200 MB of memory

in total

Administering Platform LSF 433

Resource Allocation Limits

◆ Each other queue can run 30 jobs, each queue using up to 300 MB of memory
in total
Begin Limit

HOSTS SLOTS MEM PER_QUEUE

license1 10 - normal

license1 - 200 short

license1 30 300 (all ~normal ~short)

End Limit

Example 4 All users in user group ugroup1 except user1 using queue1 and queue2 and
running jobs on hosts in host group hgroup1 are limited to 2 job slots per processor
on each host:
Begin Limit

NAME = limit1

Resources:

SLOTS_PER_PROCESSOR = 2

#Consumers:

QUEUES = queue1 queue2

USERS = ugroup1 ~user1

PER_HOST = hgroup1

End Limit

Example 5 user1 and user2 can use all queues and all hosts in the cluster with a limit of 20 MB
of available memory:
Begin Limit

NAME = 20_MB_mem

Resources:

MEM = 20

Consumers:

USERS = user1 user2

End Limit

Example 6 All users in user group ugroup1 can use queue1 and queue2 and run jobs on any
host in host group hgroup1 sharing 10 job slots:
Begin Limit

NAME = 10_slot

Resources:

SLOTS = 10

#Consumers:

QUEUES = queue1 queue2

USERS = ugroup1

HOSTS = hgroup1

End Limit

Configuring Resource Allocation Limits

434 Administering Platform LSF

Example 7 All users in user group ugroup1 except user1 can use all queues but queue1 and
run jobs with a limit of 10% of available memory on each host in host group
hgroup1:
Begin Limit

NAME = 10_percent_mem

Resources:

MEM = 10%

QUEUES = all ~queue1

USERS = ugroup1 ~user1

PER_HOST = hgroup1

End Limit

Example 8 Limit users in the develop group to 1 job on each host, and 50% of the memory on
the host.
Begin Limit

NAME = develop_group_limit

Resources:

SLOTS = 1

MEM = 50%

#Consumers:

USERS = develop

PER_HOST = all

End Limit

Example 9 Limit software license lic1, with quantity 100, where user1 can use 90 licenses and
all other users are restricted to 10.
Begin Limit

USERS LICENSE

user1 ([lic1,90])

(all ~user1) ([lic1,10])

End Limit

lic1 is defined as a decreasing numeric shared resource in lsf.shared.
To submit a job to use one lic1 license, use the rusage string in the -R option of
bsub specify the license:
bsub -R "rusage[lic1=1]" my-job

Example 10 Jobs from crash project can use 10 lic1 licenses, while jobs from all other projects
together can use 5.
Begin Limit

LICENSE PROJECTS

([lic1,10]) crash

([lic1,5]) (all ~crash)

End Limit

lic1 is defined as a decreasing numeric shared resource in lsf.shared.

Administering Platform LSF 435

Resource Allocation Limits

Example 11 Limit all hosts to 1 job slot per processor:
Begin Limit

NAME = default_limit

SLOTS_PER_PROCESSOR = 1

PER_HOST = all

End Limit

Example 12 The short queue can have at most 200 running and suspended jobs:
Begin Limit

NAME = shortq_limit

QUEUES = short

JOBS = 200

End Limit

Viewing Information about Resource Allocation Limits

436 Administering Platform LSF

Viewing Information about Resource Allocation Limits
Your job may be pending because some configured resource allocation limit has
been reached. Use the blimits command to show the dynamic counters of
resource allocation limits configured in Limit sections in lsb.resources. blimits
displays the current resource usage to show what limits may be blocking your job.

blimits command
The blimits command displays:
◆ Configured limit policy name
◆ Users (-u option)
◆ Queues (-q option)
◆ Hosts (-m option)
◆ Project names (-P option)
◆ Limits (SLOTS, MEM, TMP, SWP, JOBS)
◆ All resource configurations in lsb.resources (-c option). This is the same as

bresources with no options.
Resources that have no configured limits or no limit usage are indicated by a dash
(-). Limits are displayed in a USED/LIMIT format. For example, if a limit of 10 slots
is configured and 3 slots are in use, then blimits displays the limit for SLOTS as
3/10.
If limits MEM, SWP, or TMP are configured as percentages, both the limit and the
amount used are displayed in MB. For example, lshosts displays maxmem of 249
MB, and MEM is limited to 10% of available memory. If 10 MB out of 25 MB are
used, blimits displays the limit for MEM as 10/25 (10 MB USED from a 25 MB
LIMIT).
Configured limits and resource usage for built-in resources (slots, mem, tmp, and
swp load indices, and number of running and suspended jobs) are displayed as
INTERNAL RESOURCE LIMITS separately from custom external resources,
which are shown as EXTERNAL RESOURCE LIMITS.
Limits are displayed for both the vertical tabular format and the horizontal format
for Limit sections. If a vertical format Limit section has no name, blimits displays
NONAMEnnn under the NAME column for these limits, where the unnamed
limits are numbered in the order the vertical-format Limit sections appear in the
lsb.resources file.
If a resource consumer is configured as all, the limit usage for that consumer is
indicated by a dash (-).
PER_HOST slot limits are not displayed. The bhosts commands displays these as
MXJ limits.
In MultiCluster, blimits returns the information about all limits in the local
cluster.

Administering Platform LSF 437

Resource Allocation Limits

Examples
For the following limit definitions:
Begin Limit

NAME = limit1

USERS = user1

PER_QUEUE = all

PER_HOST = hostA hostC

TMP = 30%

SWP = 50%

MEM = 10%

End Limit

Begin Limit

NAME = limit_ext1

PER_HOST = all

RESOURCE = ([user1_num,30] [hc_num,20])

End Limit

Begin Limit

NAME = limit2

QUEUES = short

JOBS = 200

End Limit

blimits displays the following:
blimits

INTERNAL RESOURCE LIMITS:

NAME USERS QUEUES HOSTS PROJECTS SLOTS MEM TMP SWP JOBS

limit1 user1 q2 hostA@cluster1 - - 10/25 - 10/258 -

limit1 user1 q3 hostA@cluster1 - - - 30/2953 - -

limit1 user1 q4 hostC - - - 40/590 - -

limit2 - short - - - - - - 50/200

EXTERNAL RESOURCE LIMITS:

NAME USERS QUEUES HOSTS PROJECTS user1_num hc_num

limit_ext1 - - hostA@cluster1 - - 1/20

limit_ext1 - - hostC@cluster1 - 1/30 1/20

◆ In limit policy limit1, user1 submitting jobs to q2, q3, or q4 on hostA or
hostC is limited to 30% tmp space, 50% swap space, and 10% available memory.
No limits have been reached, so the jobs from user1 should run. For example,
on hostA for jobs from q2, 10 MB of memory are used from a 25 MB limit and
10 MB of swap space are used from a 258 MB limit.

Viewing Information about Resource Allocation Limits

438 Administering Platform LSF

◆ In limit policy limit_ext1, external resource user1_num is limited to 30 per
host and external resource hc_num is limited to 20 per host. Again, no limits
have been reached, so the jobs requesting those resources should run.

◆ In limit policy limit2, the short queue can have at most 200 running and
suspended jobs. 50 jobs are running or suspended against the 200 job limit. The
limit has not been reached, so jobs can run in the short queue.

Administering Platform LSF 439

C H A P T E R

25
Reserving Resources

Contents
◆ About Resource Reservation on page 439
◆ Using Resource Reservation on page 440
◆ Memory Reservation for Pending Jobs on page 442
◆ Time-based Slot Reservation on page 445
◆ Viewing Resource Reservation Information on page 452

About Resource Reservation
When a job is dispatched, the system assumes that the resources that the job
consumes will be reflected in the load information. However, many jobs do not
consume the resources they require when they first start. Instead, they will typically
use the resources over a period of time.
For example, a job requiring 100 MB of swap is dispatched to a host having 150 MB
of available swap. The job starts off initially allocating 5 MB and gradually increases
the amount consumed to 100 MB over a period of 30 minutes. During this period,
another job requiring more than 50 MB of swap should not be started on the same
host to avoid over-committing the resource.
Resources can be reserved to prevent overcommitment by LSF. Resource
reservation requirements can be specified as part of the resource requirements
when submitting a job, or can be configured into the queue level resource
requirements.
Pending job resize allocation requests are not supported in slot reservation policies.
Newly added or removed resources are reflected in the pending job predicted start
time calculation.

Resource reservation limits
Maximum and minimum values for consumable resource requirements can be set
for individual queues, so jobs will only be accepted if they have resource
requirements within a specified range. This can be useful when queues are
configured to run jobs with specific memory requirements, for example. Jobs

Using Resource Reservation

440 Administering Platform LSF

requesting more memory than the maximum limit for the queue will not be
accepted, and will not take memory resources away from the smaller memory jobs
the queue is designed to run.
Resource reservation limits are set at the queue level by the parameter
RESRSV_LIMIT in lsb.queues.

How resource reservation works
When deciding whether to schedule a job on a host, LSF considers the reserved
resources of jobs that have previously started on that host. For each load index, the
amount reserved by all jobs on that host is summed up and subtracted (or added if
the index is increasing) from the current value of the resources as reported by the
LIM to get amount available for scheduling new jobs:
available amount = current value - reserved amount for all jobs

For example:
bsub -R "rusage[tmp=30:duration=30:decay=1]" myjob

will reserve 30 MB of temp space for the job. As the job runs, the amount reserved
will decrease at approximately 1 MB/minute such that the reserved amount is 0
after 30 minutes.

Queue-level and job-level resource reservation
The queue level resource requirement parameter RES_REQ may also specify the
resource reservation. If a queue reserves certain amount of a resource (and the
parameter RESRSV_LIMIT is not being used), you cannot reserve a greater amount
of that resource at the job level.
For example, if the output of bqueues -l command contains:
RES_REQ: rusage[mem=40:swp=80:tmp=100]

the following submission will be rejected since the requested amount of certain
resources exceeds queue's specification:
bsub -R "rusage[mem=50:swp=100]" myjob

When both RES_REQ and RESRSV_LIMIT are set in lsb.queues for a consumable
resource, the queue-level RES_REQ no longer acts as a hard limit for the merged
RES_REQ rusage values from the job and application levels. In this case only the
limits set by RESRSV_LIMIT must be satisfied, and the queue-level RES_REQ acts as a
default value.

Using Resource Reservation

Queue-level resource reservation
At the queue level, resource reservation allows you to specify the amount of
resources to reserve for jobs in the queue. It also serves as the upper limits of
resource reservation if a user also specifies it when submitting a job.

Queue-level resource reservation and pending reasons
The use of RES_REQ affects the pending reasons as displayed by bjobs. If
RES_REQ is specified in the queue and the loadSched thresholds are not specified,
then the pending reasons for each individual load index will not be displayed.

Administering Platform LSF 441

Reserving Resources

Configuring resource reservation at the queue level
Queue-level resource reservations and resource reservation limits can be
configured as parameters in lsb.queues. The resource reservation requirement
can be configured at the queue level as part of the queue level resource
requirements. Use the resource usage (rusage) section of the resource requirement
string to specify the amount of resources a job should reserve after it is started.

Examples Begin Queue
.
RES_REQ = select[type==any] rusage[swp=100:mem=40:duration=60]
RESRSV_LIMIT = [mem=30,100]
.
End Queue

This will allow a job to be scheduled on any host that the queue is configured to use
and will reserve 100 MB of swap and 40 MB of memory for a duration of 60
minutes. The requested memory reservation of 40 MB falls inside the allowed limits
set by RESRSV_LIMIT of 30 MB to 100 MB.
Begin Queue
.
RES_REQ = select[type==any] rusage[mem=20||mem=10:swp=20]
.
End Queue

This will allow a job to be scheduled on any host that the queue is configured to use.
The job will attempt to reserve 20 MB of memory, or 10 MB of memory and 20 MB
of swap if the 20 MB of memory is unavailable. In this case no limits are defined by
RESRSV_LIMIT.

Job-level resource reservation

1 To specify resource reservation at the job level, use bsub -R and include the
resource usage section in the resource requirement string.

Configure per-resource reservation

1 To enable greater flexibility for reserving numeric resources are reserved by
jobs, configure the ReservationUsage section in lsb.resources to reserve
resources like license tokens per resource as PER_JOB, PER_SLOT, or
PER_HOST:
Begin ReservationUsage
RESOURCE METHOD
licenseX PER_JOB
licenseY PER_HOST
licenseZ PER_SLOT
End ReservationUsage

Only user-defined numeric resources can be reserved. Builtin resources like
mem, cpu, swp, etc. cannot be configured in the ReservationUsage section.

Memory Reservation for Pending Jobs

442 Administering Platform LSF

The cluster-wide RESOURCE_RESERVE_PER_SLOT parameter in
lsb.params is obsolete. Configuration in lsb.resources overrides
RESOURCE_RESERVE_PER_SLOT if it also exists for the same resource.
RESOURCE_RESERVE_PER_SLOT parameter still controls resources not
configured in lsb.resources. Resources not reserved in lsb.resources are
reserved per job.
PER_HOST reservation means that for the parallel job, LSF reserves one
instance of a for each host. For example, some application licenses are charged
only once no matter how many applications are running provided those
applications are running on the same host under the same user.

Assumptions and limitations

◆ Per-resource configuration defines resource usage for individual resources, but
it does not change any existing resource limit behavior (PER_JOB,
PER_SLOT).

◆ In a MultiCluster environment, you should configure resource usage in the
scheduling cluster (submission cluster in lease model or receiving cluster in job
forward model).

◆ The keyword pref in the compute unit resource string is ignored, and the
default configuration order is used (pref=config).

Memory Reservation for Pending Jobs

About memory reservation for pending jobs
By default, the rusage string reserves resources for running jobs. Because resources
are not reserved for pending jobs, some memory-intensive jobs could be pending
indefinitely because smaller jobs take the resources immediately before the larger
jobs can start running. The more memory a job requires, the worse the problem is.
Memory reservation for pending jobs solves this problem by reserving memory as
it becomes available, until the total required memory specified on the rusage string
is accumulated and the job can start. Use memory reservation for pending jobs if
memory-intensive jobs often compete for memory with smaller jobs in your cluster.

Configure memory reservation for pending jobs

RESOURCE_RESERVE parameter

1 Use the RESOURCE_RESERVE parameter in lsb.queues to reserve host
memory for pending jobs.
The amount of memory reserved is based on the currently available memory
when the job is pending. Reserved memory expires at the end of the time
period represented by the number of dispatch cycles specified by the value of
MAX_RESERVE_TIME set on the RESOURCE_RESERVE parameter.

Administering Platform LSF 443

Reserving Resources

Configure lsb.modules

1 To enable memory reservation for sequential jobs, add the LSF scheduler
plugin module name for resource reservation (schmod_reserve) to the
lsb.modules file:
Begin PluginModule
SCH_PLUGIN RB_PLUGIN SCH_DISABLE_PHASES
schmod_default () ()
schmod_reserve () ()
schmod_preemption () ()
End PluginModule

Configure lsb.queues

1 Set the RESOURCE_RESERVE parameter in a queue defined in lsb.queues.
If both RESOURCE_RESERVE and SLOT_RESERVE are defined in the same
queue, job slot reservation and memory reservation are both enabled and an
error is displayed when the cluster is reconfigured. SLOT_RESERVE is ignored.

Example queues

The following queue enables memory reservation for pending jobs:
Begin Queue
QUEUE_NAME = reservation
DESCRIPTION = For resource reservation
PRIORITY=40
RESOURCE_RESERVE = MAX_RESERVE_TIME[20]
End Queue

Use memory reservation for pending jobs

1 Use the rusage string in the -R option to bsub or the RES_REQ parameter in
lsb.queues to specify the amount of memory required for the job. Submit the
job to a queue with RESOURCE_RESERVE configured.
See Examples on page 451 for examples of jobs that use memory reservation.

NOTE: Compound resource requirements do not support use of the || operator within the
component rusage simple resource requirements, multiple -R options, or the cu section.

How memory reservation for pending jobs works

Amount of memory reserved

The amount of memory reserved is based on the currently available memory when
the job is pending. For example, if LIM reports that a host has 300 MB of memory
available, the job submitted by the following command:
bsub -R "rusage[mem=400]" -q reservation my_job

Memory Reservation for Pending Jobs

444 Administering Platform LSF

will be pending and reserve the 300 MB of available memory. As other jobs finish,
the memory that becomes available is added to the reserved memory until 400 MB
accumulates, and the job starts.
No memory is reserved if no job slots are available for the job because the job could
not run anyway, so reserving memory would waste the resource.
Only memory is accumulated while the job is pending; other resources specified on
the rusage string are only reserved when the job is running. Duration and decay
have no effect on memory reservation while the job is pending.

How long memory is reserved (MAX_RESERVE_TIME)

Reserved memory expires at the end of the time period represented by the number
of dispatch cycles specified by the value of MAX_RESERVE_TIME set on the
RESOURCE_RESERVE parameter. If a job has not accumulated enough memory
to start by the time MAX_RESERVE_TIME expires, it releases all its reserved
memory so that other pending jobs can run. After the reservation time expires, the
job cannot reserve slots or memory for one scheduling session, so other jobs have a
chance to be dispatched. After one scheduling session, the job can reserve available
resources again for another period specified by MAX_RESERVE_TIME.

Examples

lsb.queues The following queues are defined in lsb.queues:
Begin Queue
QUEUE_NAME = reservation
DESCRIPTION = For resource reservation
PRIORITY=40
RESOURCE_RESERVE = MAX_RESERVE_TIME[20]
End Queue

Assumptions Assume one host in the cluster with 10 CPUs and 1 GB of free memory currently
available.

Sequential jobs Each of the following sequential jobs requires 400 MB of memory and runs for 300
minutes.
Job 1:
bsub -W 300 -R "rusage[mem=400]" -q reservation myjob1

The job starts running, using 400M of memory and one job slot.
Job 2:
Submitting a second job with same requirements yields the same result.
Job 3:
Submitting a third job with same requirements reserves one job slot, and reserves
all free memory, if the amount of free memory is between 20 MB and 200 MB (some
free memory may be used by the operating system or other software.)

Administering Platform LSF 445

Reserving Resources

Time-based Slot Reservation
Existing LSF slot reservation works in simple environments, where the host-based
MXJ limit is the only constraint to job slot request. In complex environments, where
more than one constraint exists (for example job topology or generic slot limit):
◆ Estimated job start time becomes inaccurate
◆ The scheduler makes a reservation decision that can postpone estimated job

start time or decrease cluster utilization.
Current slot reservation by start time (RESERVE_BY_STARTTIME) resolves
several reservation issues in multiple candidate host groups, but it cannot help on
other cases:
◆ Special topology requests, like span[ptile=n] and cu[] keywords balance,

maxcus, and excl.
◆ Only calculates and displays reservation if host has free slots. Reservations may

change or disappear if there are no free CPUs; for example, if a backfill job takes
all reserved CPUs.

◆ For HPC machines containing many internal nodes, host-level number of
reserved slots is not enough for administrator and end user to tell which CPUs
the job is reserving and waiting for.

Time-based slot reservation versus greedy slot reservation
With time-based reservation, a set of pending jobs get future allocation and an
estimated start time so that the system can reserve a place for each job. Reservations
use the estimated start time, which is based on future allocations.
Time-based resource reservation provides a more accurate predicted start time for
pending jobs because LSF considers job scheduling constraints and requirements,
including job topology and resource limits, for example.

RESTRICTION: Time-based reservation does not work with job chunking.

Start time and future allocation

The estimated start time for a future allocation is the earliest start time when all
considered job constraints are satisfied in the future. There may be a small delay of
a few minutes between the job finish time on which the estimate was based and the
actual start time of the allocated job.
For compound resource requirement strings, the predicted start time is based on
the simple resource requirement term (contained in the compound resource
requirement) with the latest predicted start time.
If a job cannot be placed in a future allocation, the scheduler uses greedy slot
reservation to reserve slots. Existing LSF slot reservation is a simple greedy
algorithm:
◆ Only considers current available resources and minimal number of requested

job slots to reserve as many slots as it is allowed
◆ For multiple exclusive candidate host groups, scheduler goes through those

groups and makes reservation on the group that has the largest available slots

Time-based Slot Reservation

446 Administering Platform LSF

◆ For estimated start time, after making reservation, scheduler sorts all running
jobs in ascending order based on their finish time and goes through this sorted
job list to add up slots used by each running job till it satisfies minimal job slots
request. The finish time of last visited job will be job estimated start time.

Reservation decisions made by greedy slot reservation do not have an accurate
estimated start time or information about future allocation. The calculated job start
time used for backfill scheduling is uncertain, so bjobs displays:
Job will start no sooner than indicated time stamp

Time-based reservation and greedy reservation compared

Greedy reservation example

A cluster has four hosts: A, B, C and D, with 4 CPUs each. Four jobs are running in
the cluster: Job1, Job2, Job3 and Job4. According to calculated job estimated start
time, the job finish times (FT) have this order: FT(Job2) < FT(Job1) < FT(Job4) <
FT(Job3).

Start time prediction Time-based reservation Greedy reservation

Backfill scheduling if free
slots are available

Yes Yes

Correct with no job
topology

Yes Yes

Correct for job topology
requests

Yes No

Correct based on resource
allocation limits

Yes (guaranteed if only two
limits are defined)

No

Correct for memory
requests

Yes No

When no slots are free for
reservation

Yes No

Future allocation and
reservation based on
earliest start time

Yes No

bjobs displays best
estimate

Yes No

bjobs displays predicted
future allocation

Yes No

Absolute predicted start
time for all jobs

No No

Advance reservation
considered

No No

Administering Platform LSF 447

Reserving Resources

Now, a user submits a high priority job. It pends because it requests –n 6 –R
“span[ptile=2]”. This resource requirement means this pending job needs three
hosts with two CPUs on each host. The default greedy slot reservation calculates job
start time as the job finish time of Job4 because after Job4 finishes, three hosts with
a minimum of two slots are available.
Greedy reservation indicates that the pending job starts no sooner than when Job 2
finishes.
In contrast, time-based reservation can determine that the pending job starts in 2
hours. It is a much more accurate reservation.

Configuring time-based slot reservation
Greedy slot reservation is the default slot reservation mechanism and time-based
slot reservation is disabled.

LSB_TIME_RESERVE_NUMJOBS (lsf.conf)

1 Use LSB_TIME_RESERVE_NUMJOBS=maximum_reservation_jobs in
lsf.conf to enable time-based slot reservation. The value must be a positive
integer.
LSB_TIME_RESERVE_NUMJOBS controls maximum number of jobs using
time-based slot reservation. For example, if
LSB_TIME_RESERVE_NUMJOBS=4, only the top 4 jobs will get their future
allocation information.

Time-based Slot Reservation

448 Administering Platform LSF

2 Use LSB_TIME_RESERVE_NUMJOBS=1 to allow only the highest priority
job to get accurate start time prediction.
Smaller values are better than larger values because after the first pending job
starts, the estimated start time of remaining jobs may be changed. For example,
you could configure LSB_TIME_RESERVE_NUMJOBS based on the number
of exclusive host partitions or host groups.

Some scheduling examples
1 Job5 requests –n 6 –R “span[ptile=2]”, which will require three hosts with 2

CPUs on each host. As in the greedy slot reservation example, four jobs are
running in the cluster: Job1, Job2, Job3 and Job4. Two CPUs are available now,
1 on host A, and 1 on host D:

2 Job2 finishes, freeing 2 more CPUs for future allocation, 1 on host A, and 1 on
host C:

3 Job4 finishes, freeing 4 more CPUs for future allocation, 2 on host A, and 2 on
host C:

Administering Platform LSF 449

Reserving Resources

4 Job1 finishes, freeing 2 more CPUs for future allocation, 1 on host C, and 1
host D:

5 Job5 can now be placed with 2 CPUs on host A, 2 CPUs on host C, and 2 CPUs
on host D. The estimated start time is shown as the finish time of Job1:

Assumptions and limitations
◆ To get an accurate estimated start time, you must specify a run limit at the job

level using the bsub -W option, in the queue by configuring RUNLIMIT in
lsb.queues, or in the application by configuring RUNLIMIT in
lsb.applications, or you must specify a run time estimate by defining the
RUNTIME parameter in lsb.applications. If a run limit or a run time
estimate is not defined, the scheduler will try to use CPU limit instead.

◆ Estimated start time is only relatively accurate according to current running job
information. If running jobs finish earlier, estimated start time may be moved
to earlier time. Only the highest priority job will get accurate predicted start
time. The estimated start time for other jobs could be changed after the first job
starts.

◆ Under time-based slot reservation, only information from currently running
jobs is used for making reservation decisions.

◆ Estimated start time calculation does not consider Deadline scheduling.
◆ Estimated start time calculation does not consider Advance Reservation.
◆ Estimated start time calculation does not consider DISPATCH_WINDOW in

lsb.hosts and lsb.queue configuration.
◆ If preemptive scheduling is used, the estimated start time may not be accurate.

The scheduler may calculate and estimated time, but actually it may preempt
other jobs to start earlier.

Time-based Slot Reservation

450 Administering Platform LSF

◆ For resizable jobs, time-based slot reservation does not schedule pending resize
allocation requests. However, for resized running jobs, the allocation change is
used when calculating pending job predicted start time and resource
reservation. For example, if a running job uses 4 slots at the beginning, but
added another 4 slots, after adding the new resources, LSF expects 8 slots to be
available after the running job completes.

Slot limit enforcement

The following slot limits are enforced:
◆ Slot limits configured in lsb.resources (SLOTS, PER_SLOT)
◆ MXJ, JL/U in lsb.hosts
◆ PJOB_LIMIT, HJOB_LIMIT, QJOB_LIMIT, UJOB_LIMIT in lsb.queues

Memory request To request memory resources, configure RESOURCE_RESERVE in lsb.queues.
When RESOURCE_RESERVE is used, LSF will consider memory and slot requests
during time-based reservation calculation. LSF will not reserve slot or memory if
any other resources are not satisfied.
If SLOT_RESERVE is configured, time-based reservation will not make a slot
reservation if any other type of resource is not satisfied, including memory requests.
When SLOT_RESERVE is used, if job cannot run because of non-slot resources,
including memory, time-based reservation will not reserve slots. For example, if job
cannot run because it cannot get required license, job will be pending without any
reservation

Host partition and queue-level scheduling

If host partitions are configured, LSF first schedules jobs on the host partitions and
then goes through each queue to schedule jobs. The same job may be scheduled
several times, one for each host partition and last one at queue-level. Available
candidate hosts may be different for each time.
Because of this difference, the same job may get different estimated start times,
future allocation, and reservation in different host partitions and queue-level
scheduling. With time-based reservation configured, LSF always keeps the same
reservation and future allocation with the earliest estimated start time.

bjobs displays future allocation information

◆ By default, job future allocation contains LSF host list and number of CPUs per
host, for example: alloc=2*hostA 3*hostB

◆ LSF integrations define their own future allocation string to override the
default LSF allocation. For example, in RMS, future allocation is displayed as:
rms_alloc=2*sierra0 3*sierra1

Predicted start time may be postponed for some jobs

If a pending job cannot be placed in a future resource allocation, the scheduler can
skip it in the start time reservation calculation and fall back to use greedy slot
reservation. There are two possible reasons:
◆ The job slot request cannot be satisfied in the future allocation

Administering Platform LSF 451

Reserving Resources

◆ Other non-slot resources cannot be satisfied.
Either way, the scheduler continues calculating predicted start time for the
remaining jobs without considering the skipped job.
Later, once the resource request of skipped job can be satisfied and placed in a
future allocation, the scheduler reevaluates the predicted start time for the rest of
jobs, which may potentially postpone their start times.
To minimize the overhead in recalculating the predicted start times to include
previously skipped jobs, you should configure a small value for
LSB_TIME_RESERVE_NUMJOBS in lsf.conf.

Reservation scenarios

Scenario 1 Even though no running jobs finish and no host status in cluster are changed, a job’s
future allocation may still change from time to time.

Why this happens Each scheduling cycle, the scheduler recalculates a job’s reservation information,
estimated start time and opportunity for future allocation. The job candidate host
list may be reordered according to current load. This reordered candidate host list
will be used for the entire scheduling cycle, also including job future allocation
calculation. So different order of candidate hosts may lead to different result of job
future allocation. However, the job estimated start time should be the same.
For example, there are two hosts in cluster, hostA and hostB. 4 CPUs per host. Job
1 is running and occupying 2 CPUs on hostA and 2 CPUs on hostB. Job 2 requests
6 CPUs. If the order of hosts is hostA and hostB, then the future allocation of job 2
will be 4 CPUs on hostA 2 CPUs on hostB. If the order of hosts changes in the next
scheduling cycle changes to hostB and hostA, then the future allocation of job 2
will be 4 CPUs on hostB 2 CPUs on hostA.

Scenario 2: If you set JOB_ACCEPT_INTERVAL to non-zero value, after job is dispatched,
within JOB_ACCEPT_INTERVAL period, pending job estimated start time and
future allocation may momentarily fluctuate.

Why this happens The scheduler does a time-based reservation calculation each cycle. If
JOB_ACCEPT_INTERVAL is set to non-zero value. once a new job has been
dispatched to a host, this host will not accept new job within
JOB_ACCEPT_INTERVAL interval. Because the host will not be considered for
the entire scheduling cycle, no time-based reservation calculation is done, which
may result in slight change in job estimated start time and future allocation
information. After JOB_ACCEPT_INTERVAL has passed, host will become
available for time-based reservation calculation again, and the pending job
estimated start time and future allocation will be accurate again.

Examples

Example 1 Three hosts, 4 CPUs each: qat24, qat25, and qat26. Job 11895 uses 4 slots on qat24
(10 hours). Job 11896 uses 4 slots on qat25 (12 hours), and job 11897 uses 2 slots
on qat26 (9 hours).

Viewing Resource Reservation Information

452 Administering Platform LSF

Job 11898 is submitted and requests -n 6 -R "span[ptile=2]".
bjobs -l 11898
Job <11898>, User <user2>, Project <default>, Status <PEND>, Queue <challenge>,

Job Priority <50>, Command <sleep 100000000>
..
RUNLIMIT
 840.0 min of hostA
Fri Apr 22 15:18:56: Reserved <2> job slots on host(s) <2*qat26>;
Sat Apr 23 03:28:46: Estimated Job Start Time;

alloc=2*qat25 2*qat24 2*qat26.lsf.platform.com

Example 2 Two RMS hosts, sierraA and sierraB, 8 CPUs per host. Job 3873 uses 4*sierra0
and will last for 10 hours. Job 3874 uses 4*sierra1 and will run for 12 hours. Job 3875
uses 2*sierra2 and 2*sierra3, and will run for 13 hours.
Job 3876 is submitted and requests -n 6 -ext "RMS[nodes=3]".

bjobs -l 3876
Job <3876>, User <user2>, Project <default>, Status <PEND>, Queue <rms>, Extsch
 ed <RMS[nodes=3]>, Command <sleep 1000000>
Fri Apr 22 15:35:28: Submitted from host <sierraa>, CWD <$HOME>, 6 Processors R
 equested;
RUNLIMIT
 840.0 min of sierraa
Fri Apr 22 15:35:46: Reserved <4> job slots on host(s) <4*sierrab>;
Sat Apr 23 01:34:12: Estimated job start time;
 rms_alloc=2*sierra[0,2-3]
...

Example 3 Rerun example 1, but this time, use greedy slot reservation instead of time-based
reservation:

bjobs -l 3876
Job <12103>, User <user2>, Project <default>, Status <PEND>, Queue <challenge>,
 Job Priority <50>, Command <sleep 1000000>
Fri Apr 22 16:17:59: Submitted from host <qat26>, CWD <$HOME>, 6 Processors Req
 uested, Requested Resources <span[ptile=2]>;

RUNLIMIT
 720.0 min of qat26
Fri Apr 22 16:18:09: Reserved <2> job slots on host(s) <2*qat26.lsf.platform.co
 m>;
Sat Apr 23 01:39:13: Job will start no sooner than indicated time stamp;

Viewing Resource Reservation Information

View host-level resource information (bhosts)

1 Use bhosts -l to show the amount of resources reserved on each host. In the
following example, 143 MB of memory is reserved on hostA, and no memory
is currently available on the host.

bhosts -l hostA
HOST hostA
STATUS CPUF JL/U MAX NJOBS RUN SSUSP USUSP RSV DISPATCH_WINDOW
ok 20.00 - 4 2 1 0 0 1 -

Administering Platform LSF 453

Reserving Resources

CURRENT LOAD USED FOR SCHEDULING:
r15s r1m r15m ut pg io ls it tmp swp

mem
Total 1.5 1.2 2.0 91% 2.5 7 49 0 911M 915M
0M

Reserved 0.0 0.0 0.0 0% 0.0 0 0 0 0M 0M
143M

2 Use bhosts -s to view information about shared resources.

View queue-level resource information (bqueues)

1 Use bqueues -l to see the resource usage configured at the queue level.
bqueues -l reservation
QUEUE: reservation
 -- For resource reservation

PARAMETERS/STATISTICS
PRIO NICE STATUS MAX JL/U JL/P JL/H NJOBS PEND RUN SSUSP USUSP RSV
40 0 Open:Active - - - - 4 0 0 0 0 4

SCHEDULING PARAMETERS
 r15s r1m r15m ut pg io ls it tmp swp mem
loadSched - - - - - - - - - - -
loadStop - - - - - - - - - - -

 cpuspeed bandwidth
loadSched - -
loadStop - -

SCHEDULING POLICIES: RESOURCE_RESERVE

USERS: all users
HOSTS: all

Maximum resource reservation time: 600 seconds

View reserved memory for pending jobs (bjobs)
If the job memory requirements cannot be satisfied, bjobs -l shows the pending
reason. bjobs -l shows both reserved slots and reserved memory.

1 For example, the following job reserves 60 MB of memory on hostA:
bsub -m hostA -n 2 -q reservation -R"rusage[mem=60]" sleep 8888
Job <3> is submitted to queue <reservation>.

bjobs -l shows the reserved memory:
bjobs -lp

Job <3>, User <user1>, Project <default>, Status <PEND>, Queue <reservation>
 , Command <sleep 8888>
Tue Jan 22 17:01:05: Submitted from host <user1>, CWD </home/user1/>, 2 Processors
Requested, Requested Resources <rusage[mem=60]>, Specified Hosts <hostA>;

Viewing Resource Reservation Information

454 Administering Platform LSF

Tue Jan 22 17:01:15: Reserved <1> job slot on host <hostA>;
Tue Jan 22 17:01:15: Reserved <60> megabyte memory on host <60M*hostA>;
 PENDING REASONS:
 Not enough job slot(s): hostA;

 SCHEDULING PARAMETERS
 r15s r1m r15m ut pg io ls it tmp swp mem
loadSched - - - - - - - - - - -
loadStop - - - - - - - - - - -

 cpuspeed bandwidth
loadSched - -
loadStop - -

View per-resource reservation (bresources)

1 Use bresources to display per-resource reservation configurations from
lsb.resources:
The following example displays all resource reservation configurations:
bresources -s
Begin ReservationUsage
RESOURCE METHOD
licenseX PER_JOB
licenseY PER_HOST
licenseZ PER_SLOT
End ReservationUsage

The following example displays only licenseZ configuration:
bresources -s licenseZ
RESOURCE METHOD
licenseZ PER_SLOT

Administering Platform LSF 455

C H A P T E R

26
Advance Reservation

Contents
◆ Understanding Advance Reservations on page 456
◆ Configure Advance Reservation on page 458
◆ Using Advance Reservation on page 460

Understanding Advance Reservations

456 Administering Platform LSF

Understanding Advance Reservations
Advance reservations ensure access to specific hosts during specified times. During
the time that an advance reservation is active only users or groups associated with
the reservation have access to start new jobs on the reserved hosts.
Only LSF administrators or root can create or delete advance reservations. Any LSF
user can view existing advance reservations.
Each reservation consists of the number of job slots to reserve, a list of hosts for the
reservation, a start time, an end time, and an owner. You can also specify a resource
requirement string instead of or in addition to a list of hosts.

Active reservations
When a reservation becomes active, LSF attempts to run all jobs associated with the
reservation. By default jobs running before the reservation became active continue
to run when the reservation becomes active. When a job associated with the
reservation is pending because not enough job slots are available, LSF suspends all
jobs not associated with the reservation that are running on the required hosts.
During the time the reservation is active, only users or groups associated with the
reservation have access to start new jobs on the reserved hosts. The reservation is
active only within the time frame specified, and any given host may have several
reservations in place, some of which may be active at the same time.
Jobs are suspended only if advance reservation jobs require the slots. Jobs using a
reservation are subject to all job resource usage limits, but any resources freed by
suspending non-advance reservation jobs are available for advance reservation jobs
to use.

Closed and open reservations
Reservations are typically closed. When a closed reservation expires, LSF kills jobs
running in the reservation and allows any jobs suspended when the reservation
became active to run.
Open advance reservations allow jobs to run even after the associated reservation
expires. A job in the open advance reservation is only be treated as an advance
reservation job during the reservation window, after which it becomes a normal
job. This prevents the job from being killed and makes sure that LSF does not
prevent any previously suspended jobs from running or interfere with any existing
scheduling policies.
Jobs running in a one-time open reservation are detached from the reservation and
suspended when the reservation expires, allowing them to be scheduled as regular
jobs. Jobs submitted before the reservation became active are still suspended when
the reservation becomes active. These are only resumed after the open reservation
jobs finish.
Jobs running is a closed recurring reservation are killed when the reservation
expires.
Jobs running in an open recurring reservation are suspended when the reservation
expires, and remain pending until the reservation becomes active again to resume.

Administering Platform LSF 457

Advance Reservation

If a non-advance reservation job is submitted while the open reservation is active,
it remains pending until the reservation expires. Any advance reservation jobs that
were suspended and became normal jobs when the reservation expired are resumed
first before dispatching the non-advance reservation job submitted while the
reservation was active.

Job scheduling in advance reservations
LSF treats advance reservation like other deadlines, such as dispatch windows or
run windows; LSF does not schedule jobs that are likely to be suspended when a
reservation becomes active. Jobs referencing the reservation are killed when the
reservation expires.

NOTE: If IGNORE_DEADLINE=Y, there is no effect on advance reservations. Jobs are always
prevented from starting if there is a chance that they could encounter an advance reservation.

System reservations
Reservations can also be created for system maintenance. If a system reservation is
active, no other jobs can use the reserved hosts, and LSF does not dispatch jobs to
the specified hosts while the reservation is active.

Configure Advance Reservation

458 Administering Platform LSF

Configure Advance Reservation

Enable advance reservation

1 To enable advance reservation in your cluster, make sure the advance
reservation scheduling plugin schmod_advrsv is configured in lsb.modules.
Begin PluginModule

SCH_PLUGIN RB_PLUGIN SCH_DISABLE_PHASES

schmod_default () ()

schmod_advrsv () ()

End PluginModule

Allow users to create advance reservations
By default, only LSF administrators or root can add or delete advance reservations.
To allow other users to use brsvadd to create advance reservations and brsvdel to
delete advance reservations, you need to configure advance reservation user
policies.

1 Use the ResourceReservation section of lsb.resources to configure advance
reservation policies for users.
A ResourceReservation section specifies:
◆ Users or user groups that can create reservations
◆ Hosts that can be used for the reservation
◆ Time window when reservations can be created.
Each advance reservation policy is defined in a separate ResourceReservation
section, so it is normal to have multiple ResourceReservation sections in
lsb.resources.
Only user1 and user2 can make advance reservations on hostA and hostB.
The reservation time window is between 8:00 a.m. and 6:00 p.m. every day:
Begin ResourceReservation

NAME = dayPolicy

USERS = user1 user2 # optional

HOSTS = hostA hostB # optional

TIME_WINDOW = 8:00-18:00 # weekly recurring reservation

End ResourceReservation

user1 can add the following reservation for user user2 to use on hostA every
Friday between 9:00 a.m. and 11:00 a.m.:
brsvadd -m "hostA" -n 1 -u "user2" -t "5:9:0-5:11:0"

Reservation "user2#2" is created

Users can only delete reservations they created themselves. In the example, only
user user1 can delete the reservation; user2 cannot. Administrators can delete
any reservations created by users.

Administering Platform LSF 459

Advance Reservation

All users in user group ugroup1 except user1 can make advance reservations
on any host in hgroup1, except hostB, between 10:00 p.m. and 6:00 a.m. every
day
Begin ResourceReservation

NAME = nightPolicy

USERS = ugroup1 ~user1

HOSTS = hgroup1 ~hostB

TIME_WINDOW = 20:00-8:00

End ResourceReservation

IMPORTANT: The not operator (~) does not exclude LSF administrators from the policy.

For example:
1 Define a policy for user: user1:

Policy Name: dayPolicy

Users: user1

Hosts: hostA

Time Window: 8:00-18:00

2 User user1 creates a reservation matching the policy (the creator is user1, the
user is user2):
brsvadd -n 1 -m hostA -u user2 -b 10:00 -e 12:00

user2#0 is created.

3 User user1 modifies the policy to remove user1 from the users list:
Policy Name: dayPolicy

Users: user3

Hosts: hostA

Time Window: 8:00-18:00

4 As the creator, user1 can modify the reservation with the brsvmod options
rmhost, -u, -o, -on, and -d, but user1 cannot add hosts or modify the time
window of the reservation.

USER_ADVANCE_RESERVATION is obsolete (lsb.params)
USER_ADVANCE_RESERVATION in lsb.params is obsolete in LSF Version 7.
Use the ResourceReservation section configuration in lsb.resources to configure
advance reservation policies for your cluster.

Using Advance Reservation

460 Administering Platform LSF

Using Advance Reservation

Advance reservation commands
Use the following commands to work with advance reservations:

brsvadd Add a reservation

brsvdel Delete a reservation

brsvmod Modify a reservation

brsvs View reservations

Add reservations

NOTE: By default, only LSF administrators or root can add or delete advance reservations.

1 Run brsvadd to create new advance reservations.
You must specify the following for the reservation:
◆ Number of job slots to reserve—This number should less than or equal to

the actual number of slots for the hosts defined in the reservation.
◆ Hosts for the reservation
◆ Owners of the reservation
◆ Time period for the reservation—either:

❖ Begin time and end time for a one-time reservation, OR
❖ Time window for a recurring reservation

NOTE: Advance reservations should be 10 minutes or more in length. Advance
reservations of less than 10 minutes may be rejected if they overlap other advance
reservations in 10-minute time slots of the weekly planner.

The brsvadd command returns a reservation ID that you use when you submit
a job that uses the reserved hosts. Any single user or user group can have a
maximum of 100 reservation IDs.

Specify hosts for the reservation

1 Use one or both of the following brsvadd options to specify hosts for which job
slots are reserved:
❖ The -m option lists the hosts needed for the reservation. The hosts listed by

the -m option can be local to the cluster or hosts leased from remote
clusters. At job submission, LSF considers the hosts in the specified order.
If you also specify a resource requirement string with the -R option, -m is
optional.

Administering Platform LSF 461

Advance Reservation

❖ The -R option selects hosts for the reservation according to a resource
requirements string. Only hosts that satisfy the resource requirement
expression are reserved. -R accepts any valid resource requirement string,
but only the select string takes effect. If you also specify a host list with the
-m option, -R is optional.
If LSF_STRICT_RESREQ=y in lsf.conf, the selection string must
conform to the stricter resource requirement string syntax described in
Chapter 19, “Specifying Resource Requirements”. The strict resource
requirement syntax only applies to the select section. It does not apply to
the other resource requirement sections (order, rusage, same, span, or
cu).

Add a one-time reservation

1 Use the -b and -e options of brsvadd to specify the begin time and end time of
a one-time advance reservation. One-time reservations are useful for
dedicating hosts to a specific user or group for critical projects.
The day and time are in the form:
[[[year:]month:]day:]hour:minute

with the following ranges:
◆ year: any year after 1900 (YYYY)
◆ month: 1-12 (MM)
◆ day of the month: 1-31 (dd)
◆ hour: 0-23 (hh)
◆ minute: 0-59 (mm)
You must specify at least hour:minute. Year, month, and day are optional.
Three fields are assumed to be day:hour:minute, four fields are assumed to be
month:day:hour:minute, and five fields are year:month:day:hour:minute.
If you do not specify a day, LSF assumes the current day. If you do not specify
a month, LSF assumes the current month. If you specify a year, you must
specify a month.
You must specify a begin and an end time. The time value for -b must use the
same syntax as the time value for -e. The begin time must be earlier than the
time value for -e. The begin time cannot be earlier than the current time.
The following command creates a one-time advance reservation for 1024 job
slots on host hostA for user user1 between 6:00 a.m. and 8:00 a.m. today:
brsvadd -n 1024 -m hostA -u user1 -b 6:0 -e 8:0
Reservation "user1#0" is created

The hosts specified by -m can be local to the cluster or hosts leased from remote
clusters.
The following command creates a one-time advance reservation for 1024 job
slots on a host of any type for user user1 between 6:00 a.m. and 8:00 a.m. today:
brsvadd -n 1024 -R "type==any" -u user1 -b 6:0 -e 8:0
Reservation "user1#1" is created

Using Advance Reservation

462 Administering Platform LSF

The following command creates a one-time advance reservation that reserves
12 slots on hostA between 6:00 p.m. on 01 December 2003 and 6:00 a.m. on 31
January 2004:
brsvadd -n 12 -m hostA -u user1 -b 2003:12:01:18:00 -e
2004:01:31:06:00
Reservation user1#2 is created

Add a recurring reservation

1 Use the -t option of brsvadd to specify a recurring advance reservation. The
-t option specifies a time window for the reservation. Recurring reservations
are useful for scheduling regular system maintenance jobs.
The day and time are in the form:
[day:]hour[:minute]

with the following ranges:
◆ day of the week: 0-6
◆ hour: 0-23
◆ minute: 0-59
Specify a time window one of the following ways:
◆ hour-hour
◆ hour:minute-hour:minute
◆ day:hour:minute-day:hour:minute
You must specify at least the hour. Day of the week and minute are optional.
Both the start time and end time values must use the same syntax. If you do not
specify a minute, LSF assumes the first minute of the hour (:00). If you do not
specify a day, LSF assumes every day of the week. If you do specify the day, you
must also specify the minute.
If the current time when the reservation is created is within the time window of
the reservation. the reservation becomes active immmediately.
When the job starts running, the termination time of the advance reservation
job is determined by the minimum of the job run limit (if specified), the queue
run limit (if specified), or the duration of the reservation time window.
The following command creates an advance reservation for 1024 job slots on
two hosts hostA and hostB for user group groupA every Wednesday from 12:00
midnight to 3:00 a.m.:
brsvadd -n 1024 -m "hostA hostB" -g groupA -t "3:0:0-3:3:0"
Reservation "groupA#0" is created

The following command creates an advance reservation for 1024 job slots on
hostA for user user2 every weekday from 12:00 noon to 2:00 p.m.:
brsvadd -n 1024 -m "hostA" -u user2 -t "12:0-14:0"
Reservation "user2#0" is created

Administering Platform LSF 463

Advance Reservation

The following command creates a system reservation on hostA every Friday
from 6:00 p.m. to 8:00 p.m.:
brsvadd -n 1024 -m hostA -s -t "5:18:0-5:20:0"
Reservation "system#0" is created

While the system reservation is active, no other jobs can use the reserved hosts,
and LSF does not dispatch jobs to the specified hosts.
The following command creates an advance reservation for 1024 job slots on
hosts hostA and hostB with more that 50 MB of swap space for user user2
every weekday from 12:00 noon to 2:00 p.m.:

brsvadd -n 1024 -R "swp > 50" -m "hostA hostB" -u user2 -t "12:0-14:0"
Reservation "user2#1" is created

Add an open reservation

1 Use the -o option of brsvadd to create an open advance reservation. You must
specify the same information as for normal advance reservations.
The following command creates a one-time open advance reservation for 1024
job slots on a host of any type for user user1 between 6:00 a.m. and 8:00 a.m.
today:
brsvadd -o -n 1024 -R "type==any" -u user1 -b 6:0 -e 8:0
Reservation "user1#1" is created

The following command creates an open advance reservation for 1024 job slots
on hostB for user user3 every weekday from 12:00 noon to 2:00 p.m.:
brsvadd -o -n 1024 -m "hostB" -u user3 -t "12:0-14:0"
Reservation "user2#0" is created

Specify a reservation name

1 Use the -N option of brsvadd to specify a user-defined advance reservation
name unique in an LSF cluster.
The reservation name is a string of letters, numeric characters, underscores,
and dashes beginning with a letter. The maximum length of the name is 39
characters.
If no user-defined advance reservation name is specified, LSF creates the
reservation with a system assigned name with the form
user_name#sequence

For example:
brsvadd -n 3 -M "hostA hostB" -u user2 -b 16:0 -e 17:0 -d
"Production AR test"

Reservation user2#0 (Production AR test) is created

brsvadd -n 2 -N Production_AR -M hostA -u user2 -b 16:0 -e 17:0
-d "Production AR test"

Reservation Production_AR (Production AR test) is created

Using Advance Reservation

464 Administering Platform LSF

If a job already exists that references a reservation with the specified name, an
error message is returned: The specified reservation name is referenced by a
job.

Modify an advance reservation

1 Use brsvmod to modify reservations. Specify the reservation ID for the
reservation you want to modify. For example, run the following command to
extend the duration from 6:00 a.m. to 9:00 a.m.:
brsvmod -e "+60" user1#0

Reservation "user1#0" is modified

Administrators and root can modify any reservations. Users listed in the
ResourceReservation section of lsb.resources, can only modify reservations
they created themselves.

Using brsvmod to modify advance reservations
Use brsvmod to make the following changes to an existing advance reservation:
◆ Modify start time (postpone or move closer)
◆ Modify the duration of the reservation window (and thus the end time)
◆ Modify the slot numbers required by the reservation (add or remove slots with

hosts)
◆ Modify the host or host group list (add or remove hosts or host groups)
◆ Modify the user or user group
◆ Add hosts by resource requirement (-R)
◆ Modify the reservation type (open or closed)
◆ Disable the specified occurrences of a recurring reservation
For example, assume an advance reservation is the box between the time t1 and t2,
as shown in the following figure:

In this figure:
◆ The shadowed box shows the original reservation

Administering Platform LSF 465

Advance Reservation

◆ Time means the time window of the reservation
◆ t1 is the begin time of the reservation
◆ t2 is the end time of the reservation
◆ The reservation size means the resources that are reserved, such as hosts (slots)

or host groups
Use brsvmod to shift, extend or reduce the time window horizontally; grow or
shrink the size vertically.

Extending the
duration

The following command creates a one-time advance reservation for 1024 job slots
on host hostA for user user1 between 6:00 a.m. and 8:00 a.m. today:
brsvadd -n 1024 -m hostA -u user1 -b "6:0" -e "8:0"

Reservation "user1#0" is created

Run the following command to extend the duration from 6:00 a.m. to 9:00 a.m.:
brsvmod -e "+60" user1#0

Reservation "user1#0" is modified

Adding hosts to a
reservation
allocation

Use brsvmod to add hosts and slots on hosts into the original advance reservation
allocation. The hosts can be local to the cluster or hosts leased from remote clusters.
Adding a host without -n reserves all available slots on the host; that is, slots that
are not already reserved by other reservations. You must specify -n along with -m
or -R. The -m option can be used alone if there is no host group specified in the list.
You cannot specify -R without -n.
The specified slot number must be less than or equal to the available number of job
slots for the host.
You can only add hosts (-m) to a system reservation. You cannot add slots (-n) to a
system reservation.
For example:
◆ Reserve 2 more slots from hostA:

brsvmod addhost -n2 -m "hostA"

◆ Reserve 4 slots in total from hostA and hostB:
brsvmod addhost -n4 -m "hostA hostB"

◆ Reserve 4 more slots from any Linux hosts:
brsvmod addhost -n4 -R"type==linux"

◆ Reserve 4 more slots from any Linux hosts in the host group hostgroup1:
brsvmod addhost -n4 -m "hostgroup1" -R "type==linux"

◆ Reserve all available slots from hostA and hostB:
brsvmod addhost -m "hostA hostB"

The following command creates an advance reservation for 1024 slots on two hosts
hostA and hostB for user group groupA every Wednesday from 12:00 midnight to
3:00 a.m.:
brsvadd -n 1024 -m "hostA hostB" -g groupA -t "3:0:0-3:3:0"

Reservation "groupA#0" is created

brsvs

Using Advance Reservation

466 Administering Platform LSF

RSVID TYPE USER NCPUS RSV_HOSTS TIME_WINDOW

groupA#0 user groupA 0/1024 hostA:0/256 3:3:0-3:3:0 *

 hostB:0/768

The following commands reserve 512 slots from each host for the reservation:
brsvmod addhost -n 256 -m "hostA" groupA#0

Reservation "groupA#0" is modified

brsvmod rmhost -n 256 -m "hostB" groupA#0

Reservation "groupA#0" is modified

Removing hosts
from a reservation
allocation

Use brsvmod rmhost to remove hosts or slots on hosts from the original
reservation allocation. You must specify either -n or -m. Use -n to specify the
number of slots to be released from the host. Removing a host without -n releases
all reserved slots on the host. The slot specification must be less than or equal to
the actual reserved slot number of the host.
For example:
◆ Remove 4 reserved slots from hostA

brsvmod rmhost -n 4 -m "hostA"

◆ Remove 4 slots in total from hostA and hostB.
brsvmod rmhost -n 4 -m "hostA hostB"

◆ Release reserved hostA and hostB.
brsvmod rmhost -m "hostA hostB"

◆ Remove 4 slots from current reservation allocation.
brsvmod rmhost -n 4

You cannot remove slots from a system reservation. The following modification to
the system reservation System#1 is rejected:
brsvmod rmhost -n 2 -m "hostA" system#1

How many slots or hosts can be removed also depends on the number of slots free
while the reservation is active. brsvmod rmhost cannot remove more slots than
free amount on a host. For example:
brsvs

RSVID TYPE USER NCPUS RSV_HOSTS TIME_WINDOW

user1_1 user user1 3/4 hostA:2/2 1/24/12/2-1/24/13/0

 hostB:1/2

The following modifications are accepted, and one slot is removed from hostB:
brsvmod rmhost -m hostB user1_1

brsvmod rmhost -n 1 -m hostB user1_1

The following modifications are rejected:
brsvmod rmhost -n 2 user1_1

brsvmod rmhost -m hostA user1_1

brsvmod rmhost -n 1 -m hostA user1_1

brsvmod rmhost -n 2 -m hostB user1_1

Administering Platform LSF 467

Advance Reservation

Modifying closed
reservations

The following command creates an open advance reservation for 1024 job slots on
host hostA for user user1 between 6:00 a.m. and 8:00 a.m. today.
brsvadd -o -n 1024 -m hostA -u user1 -b 6:0 -e 8:0

Reservation "user1#0" is created

Run the following command to close the reservation when it expires.
brsvmod -on user1#0

Reservation "user1#0" is modified

Disable specified
occurrences for
recurring
reservations

Use brsvmod disable to disable specified periods, or instances, of a recurring
advance reservation.
Recurring reservations may repeat either on a daily cycle or a weekly cycle. For
daily reservations, the instances of the reservation that occur on disabled days will
be inactive. Jobs using the reservation are not dispatched during on those disabled
days. Other reservations are permitted to use slots of the reservation on those days.
For overnight reservations (active from 11 p.m. to 9 a.m. daily), if the reservation is
disabled on the starting day of an instance, the reservation is disabled for the whole
of that instance.
For a weekly reservation, if the reservation is disabled on the start date of an
instance of the reservation then the reservation is disabled for the entire instance.
For example, for a weekly reservation with time window from 9 a.m. Wednesday to
10 p.m. Friday, in one particular week, the reservation is disabled on Thursday, then
the instance of the reservation remains active for that week. However, if the same
reservation is disabled for the Wednesday of the week, then the reservation is
disabled for the week.
The following figure illustrates how the disable options apply to the weekly
occurrences of a recurring advance reservation.

Once a reservation is disabled for a period, it cannot be enabled again; that is, the
disabled periods remain fixed. Before a reservation is disabled, you are prompted to
confirm whether to continue disabling the reservation. Use the -f option to silently
force the command to run without prompting for confirmation, for example, to
allow for automating disabling reservations from a script.
For example, the following command creates a recurring advance reservation for 4
slots on host hostA for user user1 between 6:00 a.m. and 8:00 a.m. every day.
Reservation "user1#0" is created

brsvadd -n 4 -m hostA -u user1 -t "6:0-8:0"

Using Advance Reservation

468 Administering Platform LSF

Run the following command to disable the reservation instance that is active
between Dec 1 to Dec 10, 2007.
brsvmod -disable -td "2007:12:1-2007:12:10" user1#0

Reservation "user1#0" is modified

Then the administrator can use host hostA for other reservations during the
duration
brsvadd -n 4 -m hostA -u user1 -b "2007:12:1:6:0" -e "2007:12:1:8:0"

Reservation "user1#2" is created

Change users and
user groups

Use brsvmod -u to change the user or brsvmod -g to change the user group that is
able to submit jobs with the advance reservation.
Jobs submitted by the original user or user group to the reservation still belong to
the reservation and scheduled as advance reservation jobs, but new submitted jobs
from the removed user or user group cannot use the reservation any longer.

brun An advance reservationa job dispatched with brun is still subject to run windows
and suspending conditions of the advance reservation for the job. The job must
finish running before the time window of a closed reservation expires. Extending
or shrinking a closed advance reservation duration prolongs or shortens lifetime of
a brun job.

bslots bslots displays a snapshot of the slots currently not in use by parallel jobs or
advance reservations. If the hosts or duration of an advance reservation is modified,
bslots recalculates and displays the available slots and available run time
accordingly.

How advance reservation modifications interact

The following table summarizes how advance reservation modification applies to
various advance reservation instances.

Where: "Yes" means the modification is supported in the scenario; otherwise, "No"
is marked. For example, all modifications are acceptable in the case that the advance
reservation is inactive.

Reservation policy checking
The following table summarizes how advance reservation commands interpret
reservation policy configurations in lsb.resources:

Disable Modification

Begin
time

End
Time

Add
Hosts

Rm Hosts User/
Usergroup

open/
closed

Pre cmd Post cmd

One-time Active No No Yes Yes Yes Yes Yes Yes Yes

Inactive No Yes Yes Yes Yes Yes Yes Yes Yes

Recurring Occurrences All No Yes Yes Yes Yes Yes Yes Yes Yes

Specified Yes No No No No No No No No

Active
instance

No No No No No No No No No

Administering Platform LSF 469

Advance Reservation

Reservation policies are checked when:
◆ Modifying the reservation time window
◆ Adding hosts to the reservation
Reservation policies are not checked when
◆ Running brsvmod to remove hosts
◆ Changing the reservation type (open or closed)
◆ Changing users or user groups for the reservation
◆ Modifying the reservation description

Remove an advance reservation

1 Use brsvdel to delete reservations. Specify the reservation ID for the
reservation you want to delete.
For example:
brsvdel user1#0
Reservation user1#0 is being deleted

You can delete more than one reservation at a time. Administrators can delete
any reservation, but users may only delete their own reservations.
If the recurring reservation is deleted with brsvdel, jobs running in the
reservation are detached from the reservation and scheduled as normal jobs.

View reservations

1 Use brsvs to show current reservations:
brsvs
RSVID TYPE USER NCPUS RSV_HOSTS TIME_WINDOW
user1#0 user user1 0/1024 hostA:0/1024 11/12/6/0-11/12/8/0
user2#0 user user2 0/1024 hostA:0/1024 12:0-14:0 *
groupA#0 group groupA -/2048 hostA:-/1024 3:0:0-3:3:0 *

hostB:0/1024
system#0 sys system 1024 hostA:0/1024 5:18:0-5:20:0 *

In the TIME_WINDOW column:

The command … Checks policies for …

Creator Host TimeWindow

brsvadd Yes Yes Yes

brsvdel No No No

brsvmod -u or -g (changing user) No No No

addhost Yes Yes Yes

rmhost No No No

-b, -e, -t (change timeWindow) Yes Yes Yes

-d (description) No No No

-o or -on No No No

Using Advance Reservation

470 Administering Platform LSF

◆ A one-time reservation displays fields separated by slashes
(month/day/hour/minute). For example:

11/12/14/0-11/12/18/0

◆ A recurring reservation displays fields separated by colons
(day:hour:minute). An asterisk (*) indicates a recurring reservation. For
example:

5:18:0-5:20:0 *

In the NCPUS and RSV_HOSTS columns:
◆ Remote reservations do not display details. For example:
-/2048 hostA:-/1024

Show a weekly planner

1 Use brsvs -p to show a weekly planner for specified hosts using advance
reservation. The all keyword shows the planner for all hosts with reservations.
The output of brsvs -p is displayed in terms of weeks. The week starts on
Sunday. The timeframe of a recurring reservation is not displayed, since it is
unlimited. The timeframe of one-time reservation is displayed in terms of a
week. If the reservation spans multiple weeks, these weeks are displayed
separately. If a week contains a one-time reservation and a recurring
reservation, the timeframe is displayed, since that is relevant for one-time
reservation.

TIP: MAX indicates the configured maximum number of job slots for the host (MXJ defined
in lsb.hosts).

brsvs -p all
RSVID TYPE USER NCPUS RSV_HOSTS TIME_WINDOW
user1#0 user user1 0/1024 hostA:0/1024 11/12/6/0-11/12/8/0
user2#0 user user2 0/1024 hostA:0/1024 12:0-14:0 *
groupA#0 group groupA 0/2048 hostA:0/1024 3:0:0-3:3:0 *

hostB:0/1024
system#0 sys system 1024 hostA:0/1024 5:18:0-5:20:0 *

HOST: hostA (MAX = 1024)
Week: 11/11/2009 - 11/17/2009
Hour:Min Sun Mon Tue Wed Thu Fri Sat

0:0 0 0 0 1024 0 0 0
0:10 0 0 0 1024 0 0 0
0:20 0 0 0 1024 0 0 0
...
2:30 0 0 0 1024 0 0 0
2:40 0 0 0 1024 0 0 0
2:50 0 0 0 1024 0 0 0
3:0 0 0 0 0 0 0 0
3:10 0 0 0 0 0 0 0
3:20 0 0 0 0 0 0 0
...
5:30 0 0 0 0 0 0 0

Administering Platform LSF 471

Advance Reservation

5:40 0 0 0 0 0 0 0
5:50 0 0 0 0 0 0 0
6:0 0 1024 0 0 0 0 0
6:10 0 1024 0 0 0 0 0
6:20 0 1024 0 0 0 0 0
...
7:30 0 1024 0 0 0 0 0
7:40 0 1024 0 0 0 0 0
7:50 0 1024 0 0 0 0 0
8:0 0 0 0 0 0 0 0
8:10 0 0 0 0 0 0 0
8:20 0 0 0 0 0 0 0
...
11:30 0 0 0 0 0 0 0
11:40 0 0 0 0 0 0 0
11:50 0 0 0 0 0 0 0
12:0 1024 1024 1024 1024 1024 1024 1024
12:10 1024 1024 1024 1024 1024 1024 1024
12:20 1024 1024 1024 1024 1024 1024 1024
...
13:30 1024 1024 1024 1024 1024 1024 1024
13:40 1024 1024 1024 1024 1024 1024 1024
13:50 1024 1024 1024 1024 1024 1024 1024
14:0 0 0 0 0 0 0 0
14:10 0 0 0 0 0 0 0
14:20 0 0 0 0 0 0 0
...
17:30 0 0 0 0 0 0 0
17:40 0 0 0 0 0 0 0
17:50 0 0 0 0 0 0 0
18:0 0 0 0 0 0 1024 0
18:10 0 0 0 0 0 1024 0
18:20 0 0 0 0 0 1024 0
...
19:30 0 0 0 0 0 1024 0
19:40 0 0 0 0 0 1024 0
19:50 0 0 0 0 0 1024 0
20:0 0 0 0 0 0 0 0
20:10 0 0 0 0 0 0 0
20:20 0 0 0 0 0 0 0
...
23:30 0 0 0 0 0 0 0
23:40 0 0 0 0 0 0 0
23:50 0 0 0 0 0 0 0

HOST: hostB (MAX = 1024)
Week: 11/11/2009 - 11/17/2009
Hour:Min Sun Mon Tue Wed Thu Fri Sat

0:0 0 0 0 1024 0 0 0
0:10 0 0 0 1024 0 0 0
0:20 0 0 0 1024 0 0 0
...
2:30 0 0 0 1024 0 0 0
2:40 0 0 0 1024 0 0 0
2:50 0 0 0 1024 0 0 0
3:0 0 0 0 0 0 0 0
3:10 0 0 0 0 0 0 0

Using Advance Reservation

472 Administering Platform LSF

3:20 0 0 0 0 0 0 0
...
23:30 0 0 0 0 0 0 0
23:40 0 0 0 0 0 0 0
23:50 0 0 0 0 0 0 0

2 Use brsvs -z instead of brsvs -p to show only the weekly items that have
reservation configurations. Lines that show all zero (0) are omitted.
For example:

brsvs -z all

RSVID TYPE USER NCPUS RSV_HOSTS TIME_WINDOW

user1_1 user user1 0/3 hostA:0/2 12/28/14/30-12/28/15/30

 hostB:0/1

HOST: hostA (MAX = 2)

Week: 12/23/2007 - 12/29/2007

Hour:Min Sun Mon Tue Wed Thu Fri Sat

--

14:30 0 0 0 0 0 1 0

14:40 0 0 0 0 0 1 0

14:50 0 0 0 0 0 1 0

15:0 0 0 0 0 0 1 0

15:10 0 0 0 0 0 1 0

15:20 0 0 0 0 0 1 0

HOST: hostB (MAX = 2)

Week: 12/23/2007 - 12/29/2007

Hour:Min Sun Mon Tue Wed Thu Fri Sat

--

14:30 0 0 0 0 0 2 0

14:40 0 0 0 0 0 2 0

14:50 0 0 0 0 0 2 0

15:0 0 0 0 0 0 2 0

15:10 0 0 0 0 0 2 0

15:20 0 0 0 0 0 2 0

Show reservation types and associated jobs

1 Use the -l option of brsvs to show each advance reservation in long format.
The rows that follow the reservation information show the
◆ The status of the reservation
◆ Time when the next instance of recurring reservation is active
◆ Type of reservation (open or closed)

Administering Platform LSF 473

Advance Reservation

◆ The status by job ID of any job associated with the specified reservation
(FINISHED, PEND, RUN, or SUSP)

brsvs -l

RSVID TYPE USER NCPUS RSV_HOSTS TIME_WINDOW

user1_1#0 user user1_1 10/10 host1:4/4 8:00-22:00 *

 host2:4/4

 host3:2/2

Reservation Status: Active

Next Active Period:

 Sat Aug 22 08:00:00 2009 - Sat Aug 22 22:00:00 2009

Creator: user1_1

Reservation Type: CLOSED

FINISHED Jobs: 203 204 205 206 207 208 209 210 211 212

PEND Jobs: 323 324

RUN Jobs: 313 314 316 318 319 320 321 322

SUSP Jobs: 315 317

Show reservation ID

1 Use bjobs -l to show the reservation ID used by a job:
bjobs -l
Job <1152>, User <user1>, Project <default>, Status <PEND>, Queue
<normal>, Reservation <user1#0>, Command <myjob>

Mon Nov 12 5:13:21: Submitted from host <hostB>, CWD
</home/user1/jobs>;

View historical accounting information for advance reservations

1 Use the -U option of the bacct command to display accounting information
about advance reservations.
bacct -U summarizes all historical modification of the reservation and
displays information similar to the brsvs command:
◆ The reservation ID specified on the -U option.
◆ The type of reservation: user or system
◆ The user names of users who used the brsvadd command to create the

advance reservations
◆ The user names of the users who can use the advance reservations (with

bsub -U)
◆ Number of slots reserved
◆ List of hosts for which job slots are reserved
◆ Time window for the reservation.

Using Advance Reservation

474 Administering Platform LSF

❖ A one-time reservation displays fields separated by slashes
(month/day/hour/minute). For example:
11/12/14/0-11/12/18/0

◆ A recurring reservation displays fields separated by colons
(day:hour:minute). For example:
5:18:0 5:20:0

For example, the following advance reservation has four time modifications
during its life time. The original reservation has the scope of one user (user1)
and one host (hostA) with 1 slot. The various modifications change the user to
user2, then back to user1, adds, then removes 1 slot from the reservation.

bacct -U user1#1

Accounting about advanced reservations that are:

 - accounted on advanced reservation IDs user1#1,

 - accounted on advanced reservations created by user1,

---------------------------- SUMMARY ----------------------------

RSVID: user1#1

TYPE: user

CREATOR: user1

Total number of jobs: 0

Total CPU time consumed: 0.0 second

Maximum memory of a job: 0.0 MB

Maximum swap of a job: 0.0 MB

Total active time: 0 hour 6 minute 42 second

------------------------ Configuration 0 ------------------------

RSVID TYPE CREATOR USER NCPUS RSV_HOSTS

user1#1 user user1 user1 1 hostA:1

Active time with this configuration: 0 hour 0 minute 16 second

------------------------ Configuration 1 ------------------------

RSVID TYPE CREATOR USER NCPUS RSV_HOSTS

user1#1 user user1 user2 1 hostA:1

Active time with this configuration: 0 hour 0 minute 24 second

------------------------ Configuration 2 ------------------------

RSVID TYPE CREATOR USER NCPUS RSV_HOSTS

user1#1 user user1 user2 1 hostA:1

Active time with this configuration: 0 hour 1 minute 58 second

------------------------ Configuration 3 ------------------------

RSVID TYPE CREATOR USER NCPUS RSV_HOSTS

user1#1 user user1 user1 2 hostA:2

Active time with this configuration: 0 hour 1 minute 34 second

------------------------ Configuration 4 ------------------------

RSVID TYPE CREATOR USER NCPUS RSV_HOSTS

user1#1 user user1 user1 1 hostA:2

Active time with this configuration: 0 hour 2 minute 30 second

Administering Platform LSF 475

Advance Reservation

The following reservation (user2#0) has one time modification during its life
time. The original one has the scope of one user (user2) and one host (hostA)
with 1 slot; the modification changes the user to user3.

bacct -U user2#0

Accounting about advanced reservations that are:

 - accounted on all advanced reservation IDs:

 - accounted on advanced reservations created by all users:

--------------------------- SUMMARY -------------------------

RSVID: user2#0

TYPE: user

CREATOR: user2

Total number of jobs: 1

Total CPU time consumed: 5.0 second

Maximum memory of a job: 1.7 MB

Maximum swap of a job: 7.5 MB

Total active time: 2 hour 0 minute 0 second

------------------------ Configuration 0 ------------------------

RSVID TYPE CREATOR USER NCPUS RSV_HOSTS

user1#0 user user2 user2 1 hostA:1

Active time with this configuration: 1 hour 0 minute 0 second

------------------------ Configuration 1 ------------------------

RSVID TYPE CREATOR USER NCPUS RSV_HOSTS

user1#0 user user2 user3 1 hostA:1

Active time with this configuration: 1 hour 0 minute 0 second

Submit and modify jobs using advance reservations

1 Use the -U option of bsub to submit jobs with a reservation ID. For example:
bsub -U user1#0 myjob

The job can only use hosts reserved by the reservation user1#0. By default, LSF
selects only hosts in the reservation. Use the -m option to specify particular
hosts within the list of hosts reserved by the reservation; you can only select
from hosts that were included in the original reservation.
If you do not specify hosts (bsub -m) or resource requirements (bsub -R), the
default resource requirement is to select hosts that are of any host type (LSF
assumes "type==any" instead of "type==local" as the default select string).
If you later delete the advance reservation while it is still active, any pending
jobs still keep the "type==any" attribute.
A job can only use one reservation. There is no restriction on the number of
jobs that can be submitted to a reservation; however, the number of slots
available on the hosts in the reservation may run out. For example, reservation
user2#0 reserves 1024 slots on hostA. When all 1024 slots on hostA are used

Using Advance Reservation

476 Administering Platform LSF

by jobs referencing user2#0, hostA is no longer available to other jobs using
reservation user2#0. Any single user or user group can have a maximum of 100
reservation IDs.
Jobs referencing the reservation are killed when the reservation expires.

Modify job reservation ID
Prerequisites: You must be an administrator to perform this task.

1 Use the -U option of bmod to change a job to another reservation ID.
For example:
bmod -U user1#0 1234

2 To cancel the reservation, use the -Un option of bmod.
For example:
bmod -Un 1234

Use bmod -Un to detach a running job from an inactive open reservation. Once
detached, the job is scheduled like a normal job.

Job resource usage limits and job chunking
A job using a reservation is subject to all job resource usage limits. If a limit is
reached on a particular host in a reservation, jobs using that reservation cannot
start on that host.
An advance reservation job is dispatched to its reservation even if the run limit or
estimated run time of the job exceeds the remaining active time of the reservation.
For example, if a job has a runlimit of 1 hour, and a reservation has a remaining
active time of 1 minute, the job is still dispatched to the reservation. If the
reservation is closed, the job is terminated when the reservation expires.
Similarly, when using chunk job scheduling, advance reservation jobs are chunked
together as usual when dispatched to a host of the reservation without regard to the
expiry time of the reservation. This is true even when the jobs are given a run limit
or estimated run time. If the reservation is closed, the jobs in WAIT state are
terminated when the reservation expires.

Advance reservation preemption
Advance reservation preemption allows advance reservation jobs to use the slots
reserved by the reservation. Slots occupied by non-advance jobs may be preempted
when the reservation becomes active.
Without modification with brsvmod, advance reservation preemption is triggered
at most once per reservation period (in the case of a non-recurring reservation,
there is only one period) whenever both of the following conditions are met:
◆ The reservation is active
◆ At least one job associated with the advance reservation is pending or

suspended

Administering Platform LSF 477

Advance Reservation

If an advance reservation is modified, preemption is done for an active advance
reservation after every modification of the reservation when there is at least one
pending or suspended job associated with the reservation.
When slots are added to an advance reservation with brsvmod, LSF preempts
running non-reservation jobs if necessary to provide slots for jobs belonging to the
reservation. Preemption is triggered if there are pending or suspended jobs
belonging to the reservation in the system.
When preemption is triggered, non-advance reservation jobs are suspended and
their slots given to the advance reservation on the hosts belonging to the
reservation. On each host, enough non-advance reservation jobs are suspended so
that all of slots required by the advance reservation are obtained. The number of
slots obtained does not depend on the number of jobs submitted to the advance
reservation. Non-advance reservation jobs on a host can only to use slots not
assigned to the advance reservation.
When a job is preempted for an advance reservation, it can only resume on the host
when either the advance reservation finishes, or some other non-advance
reservation job finishes on the host.
For example, a single-host cluster has 10 slots, with 9 non-advance reservation jobs
dispatched to the host (each requiring one slot). An advance reservation that uses
5 slots on the host is created, and a single job is submitted to the reservation. When
the reservation becomes active, 4 of the non-advance reservation jobs are
suspended, and the advance reservation job will start.

Forcing a job to run before a reservation is active
LSF administrators can use brun to force jobs to run before the reservation is active,
but the job must finish running before the time window of the reservation expires.
For example, if the administrator forces a job with a reservation to run one hour
before the reservation is active, and the reservation period is 3 hours, a 4 hour run
limit takes effect.

Host intersection and advance reservation
When ENABLE_HOST_INTERSECTION=y in lsb.params, LSF finds any existing
intersection with hosts specified in the queue and those specified at job submission
by bsub -m and/or hosts with advance reservation. When specifying keywords such
as all, allremote, and others, LSF finds an existing intersection of hosts available
and the job runs rather than being rejected.

Advance reservations across clusters
You can create and use advance reservation for the MultiCluster job forwarding
model. To enable this feature, you must upgrade all clusters to LSF Version 7 or
later.
See the Using Platform LSF MultiCluster for more information.

Resizable jobs and advance reservations
Like regular jobs, resizable jobs associated with an advance reservation can be
dispatched only after the reservation becomes active, and the minimum processor
request can be satisfied. The allocation request is treated like a regular advance

Using Advance Reservation

478 Administering Platform LSF

reservation job, which relies on slots available to the reservation. If an advance
reservation gets more resources by modification (brsvmod addhost), those
resources can be used by pending allocation requests immediately.
The following table summarizes the relationship of the AR lifecycle and resizable
job requests:

By the time a reservation has expired or deleted, the status change of the resizable
job to SSUSP blocks a resizable job allocation request from being scheduled.
Released slots from a resizable job can be reused by other jobs in the reservation.
Resizable advance reservation jobs can preempt non-advance reservation jobs that
are consuming the slots that belong to the reservation. Higher priority advance
reservation jobs can preempt low priority advance reservation jobs, regardless of
whether both are resizable jobs.
Allocation requests of resizable AR jobs honor limits configuration. They cannot
preempt any limit tokens from other jobs.

Compute units and advance reservations
Like regular jobs, jobs with compute unit resource requirements and an advance
reservation can be dispatched only after the reservation becomes active, and the
minimum processor request can be satisfied.
In the case of exclusive compute unit jobs (with the resource requirement
cu[excl]), the advance reservation can affect hosts outside the advance reservation
but in the same compute unit as follows:
◆ An exclusive compute unit job dispatched to a host inside the advance

reservation will lock the entire compute unit, including any hosts outside the
advance reservation.

◆ An exclusive compute unit job dispatched to a host outside the advance
reservation will lock the entire compute unit, including any hosts inside the
advance reservation.

Ideally all hosts belonging to a compute unit should be inside or outside of an
advance reservation.

Advance Reservation Resizable job Allocation request

One-time
expired/deleted

Open RUN->SSUSP->RUN Postponed until the job runs

Closed Removed Removed

Recurrent
expired/deleted

Open SSUSP till next instance Postponed until the job runs again in next instance

Closed Removed Removed

Administering Platform LSF 479

C H A P T E R

27
Dispatch and Run Windows

Contents
◆ Dispatch and Run Windows on page 479
◆ Run Windows on page 479
◆ Dispatch Windows on page 480

Dispatch and Run Windows
Both dispatch and run windows are time windows that control when LSF jobs start
and run.
◆ Dispatch windows can be defined in lsb.hosts. Dispatch and run windows

can be defined in lsb.queues.
◆ Hosts can only have dispatch windows. Queues can have dispatch windows and

run windows.
◆ Both windows affect job starting; only run windows affect the stopping of jobs.
◆ Dispatch windows define when hosts and queues are active and inactive. It does

not control job submission.
◆ Run windows define when jobs can and cannot run. While a run window is

closed, LSF cannot start any of the jobs placed in the queue, or finish any of the
jobs already running.

◆ When a dispatch window closes, running jobs continue and finish, and no new
jobs can be dispatched to the host or from the queue. When a run window
closes, LSF suspends running jobs, but new jobs can still be submitted to the
queue.

Run Windows
Queues can be configured with a run window, which specifies one or more time
periods during which jobs in the queue are allowed to run. Once a run window is
configured, jobs in the queue cannot run outside of the run window.

Dispatch Windows

480 Administering Platform LSF

Jobs can be submitted to a queue at any time; if the run window is closed, the jobs
remain pending until it opens again. If the run window is open, jobs are placed and
dispatched as usual. When an open run window closes, running jobs are
suspended, and pending jobs remain pending. The suspended jobs are resumed
when the window opens again.

Configure run windows

1 To configure a run window, set RUN_WINDOW in lsb.queues.
For example, to specify that the run window will be open from 4:30 a.m. to
noon, type:
RUN_WINDOW = 4:30-12:00

You can specify multiple time windows.
For more information about the syntax of time windows, see Specifying Time
Windows on page 287.

View information about run windows

1 Use bqueues -l to display information about queue run windows.

Dispatch Windows
Queues can be configured with a dispatch window, which specifies one or more
time periods during which jobs are accepted. Hosts can be configured with a
dispatch window, which specifies one or more time periods during which jobs are
allowed to start.
Once a dispatch window is configured, LSF cannot dispatch jobs outside of the
window. By default, no dispatch windows are configured (the windows are always
open).
Dispatch windows have no effect on jobs that have already been dispatched to the
execution host; jobs are allowed to run outside the dispatch windows, as long as the
queue run window is open.

Queue-level
Each queue can have a dispatch window. A queue can only dispatch jobs when the
window is open.
You can submit jobs to a queue at any time; if the queue dispatch window is closed,
the jobs remain pending in the queue until the dispatch window opens again.

Host-level
Each host can have dispatch windows. A host is not eligible to accept jobs when its
dispatch windows are closed.

Administering Platform LSF 481

Dispatch and Run Windows

Configure dispatch windows
Dispatch windows can be defined for both queues and hosts. The default is no
restriction, or always open.

Configure host
dispatch windows

1 To configure dispatch windows for a host, set DISPATCH_WINDOW in
lsb.hosts and specify one or more time windows. If no host dispatch window
is configured, the window is always open.

Configure queue
dispatch windows

1 To configure dispatch windows for queues, set DISPATCH_WINDOW in
lsb.queues and specify one or more time windows. If no queue dispatch
window is configured, the window is always open.

Display queue dispatch windows

1 Use bqueues -l to display queue dispatch windows.

Display host dispatch windows

1 Use bhosts -l to display host dispatch windows.

Dispatch Windows

482 Administering Platform LSF

Administering Platform LSF 483

C H A P T E R

28
Job Dependencies

Contents
◆ Job Dependency Terminology on page 483
◆ Job Dependency Scheduling on page 484
◆ Dependency Conditions on page 486
◆ View Job Dependencies on page 488

Job Dependency Terminology
◆ Job dependency: The start of a job depends on the state of other jobs.
◆ Parent jobs: Jobs that other jobs depend on.
◆ Child jobs: Jobs that cannot start until other jobs have reached a specific state.
Example: If job2 depends on job1 (meaning that job2 cannot start until job1 reaches
a specific state), then job2 is the child job and job1 is the parent job.

Job Dependency Scheduling

484 Administering Platform LSF

Job Dependency Scheduling

About job dependency scheduling
Sometimes, whether a job should start depends on the result of another job. For
example, a series of jobs could process input data, run a simulation, generate images
based on the simulation output, and finally, record the images on a high-resolution
film output device. Each step can only be performed after the previous step finishes
successfully, and all subsequent steps must be aborted if any step fails.
Some jobs may not be considered complete until some post-job processing is
performed. For example, a job may need to exit from a post-execution job script,
clean up job files, or transfer job output after the job completes.
In LSF, any job can be dependent on other LSF jobs. When you submit a job, you
use bsub -w to specify a dependency expression, usually based on the job states of
preceding jobs.
LSF will not place your job unless this dependency expression evaluates to TRUE.
If you specify a dependency on a job that LSF cannot find (such as a job that has not
yet been submitted), your job submission fails.

Specify a job dependency

1 To specify job dependencies, use bsub -w to specify a dependency expression
for the job.

Syntax bsub -w 'dependency_expression'
The dependency expression is a logical expression composed of one or more
dependency conditions. For syntax of individual dependency conditions, see
Dependency Conditions on page 486.
◆ To make dependency expression of multiple conditions, use the following

logical operators:
❖ && (AND)
❖ || (OR)
❖ ! (NOT)

◆ Use parentheses to indicate the order of operations, if necessary.
◆ Enclose the dependency expression in single quotes (') to prevent the shell from

interpreting special characters (space, any logic operator, or parentheses). If
you use single quotes for the dependency expression, use double quotes for
quoted items within it, such as job names.

◆ Job names specify only your own jobs, unless you are an LSF administrator.
◆ Use double quotes (") around job names that begin with a number.
◆ In Windows, enclose the dependency expression in double quotes (") when the

expression contains a space. For example:
❖ bsub -w "exit(678, 0)" requires double quotes in Windows.
❖ bsub -w 'exit(678,0)' can use single quotes in Windows.

Administering Platform LSF 485

Job Dependencies

◆ In the job name, specify the wildcard character (*) at the end of a string, to
indicate all jobs whose name begins with the string. For example, if you use
jobA* as the job name, it specifies jobs named jobA, jobA1, jobA_test,
jobA.log, etc.

NOTE: Wildcard characters can only be used at the end of job name strings within the job
dependency expression.

Multiple jobs with the same name
By default, if you use the job name to specify a dependency condition, and more
than one of your jobs has the same name, all of your jobs that have that name must
satisfy the test.
To change this behavior, set JOB_DEP_LAST_SUB in lsb.params to 1. Then, if
more than one of your jobs has the same name, the test is done on the one submitted
most recently.

Dependency Conditions

486 Administering Platform LSF

Dependency Conditions
The following dependency conditions can be used with any job:
◆ done(job_ID | "job_name")
◆ ended(job_ID | "job_name")
◆ exit(job_ID [,[op] exit_code])
◆ exit("job_name"[,[op] exit_code])
◆ external(job_ID | "job_name", "status_text")
◆ job_ID | "job_name"
◆ post_done(job_ID | "job_name")
◆ post_err(job_ID | "job_name")
◆ started(job_ID | "job_name")

done

Syntax done(job_ID | "job_name")

Description The job state is DONE.

ended

Syntax ended(job_ID | "job_name")

Description The job state is EXIT or DONE.

exit

Syntax exit(job_ID | "job_name"[,[operator] exit_code])
where operator represents one of the following relational operators:
>
>=
<
<=
==
!=

Description The job state is EXIT, and the job’s exit code satisfies the comparison test.
If you specify an exit code with no operator, the test is for equality (== is assumed).
If you specify only the job, any exit code satisfies the test.

Examples exit (myjob)

The job named myjob is in the EXIT state, and it does not matter what its exit code
was.
exit (678,0)

The job with job ID 678 is in the EXIT state, and terminated with exit code 0.

Administering Platform LSF 487

Job Dependencies

exit ("678",!=0)

The job named 678 is in the EXIT state, and terminated with any non-zero exit
code.

external

Syntax external(job_ID | "job_name", "status_text")
Specify the first word of the job status or message description (no spaces). Only the
first word is evaluated.

Description The job has the specified job status, or the text of the job’s status begins with the
specified word.

Job ID or job name

Syntax job_ID | "job_name"

Description If you specify a job without a dependency condition, the test is for the DONE state
(LSF assumes the “done” dependency condition by default).

post_done

Syntax post_done(job_ID | "job_name")

Description The job state is POST_DONE (the post-processing of specified job has completed
without errors).

post_err

Syntax post_err(job_ID | "job_name")

Description The job state is POST_ERR (the post-processing of specified job has completed
with errors).

started

Syntax started(job_ID | "job_name")

Description The job state is:
◆ USUSP, SSUSP, DONE, or EXIT
◆ RUN and the job has a pre-execution command (bsub -E) that is done.

Advanced dependency conditions

Job arrays If you use job arrays, you can specify additional dependency conditions that only
work with job arrays.
To use other dependency conditions with array jobs, specify elements of a job array
in the usual way.

View Job Dependencies

488 Administering Platform LSF

Job dependency examples
bsub -J "JobA" -w 'done(JobB)' command

The simplest kind of dependency expression consists of only one dependency
condition. For example, if JobA depends on the successful completion of JobB,
submit the job as shown.
-w 'done(312) && (started(Job2)||exit("99Job"))'

The submitted job will not start until the job with the job ID of 312 has completed
successfully, and either the job named Job2 has started, or the job named 99Job has
terminated abnormally.
-w "210"

The submitted job will not start unless the job named 210 is finished.

View Job Dependencies
The bjdepinfo command displays any dependencies that jobs have, either jobs that
depend on a job or jobs that your job depends on.
By specifying -r, you get not only direct dependencies (job A depends on job B),
but also indirect dependencies (job A depends on job B, job B depends on jobs C
and D). You can also limit the number of levels returned using the -r option.
The -l option displays results in greater detail.

◆ To display all jobs that this job depends on:
bjdepinfo 123

JOBID PARENT PARENT_STATUS PARENT_NAME LEVEL

123 32522 RUN JOB32522 1

◆ To display jobs that depend on a job you specify (display child jobs):
bjdepinfo -c 300
JOBID CHILD CHILD_STATUS CHILD_NAME LEVEL

300 310 PEND JOB310 1

300 311 PEND JOB311 1

300 312 PEND JOB312 1

◆ To display the parent jobs that cause a job to pend:
bjdepinfo -p 100
These jobs are always pending because their dependency has not yet been
satisfied.
JOBID PARENT PARENT_STATUS PARENT_NAME LEVEL

100 99 PEND JOB99 1

100 98 PEND JOB98 1

100 97 PEND JOB97 1

100 30 PEND JOB30 1

Administering Platform LSF 489

Job Dependencies

◆ Display more information about job dependencies including whether the
condition has been satisfied or not and the condition that is on the job:
bjdepinfo -l 32522

Dependency condition of job <32522> is not satisfied: done(23455)

JOBID PARENT PARENT_STATUS PARENT_NAME LEVEL

32522 23455 RUN JOB23455 1

◆ Display information about job dependencies that includes only direct
dependencies and two levels of indirect dependencies:

bjdepinfo -r 3 -l 100

Dependency condition of job <100> is not satisfied: done(99) && ended(98) && done(97)
&& done(96)

JOBID PARENT PARENT_STATUS PARENT_NAME LEVEL

100 99 PEND JOB99 1

100 98 PEND JOB98 1

100 97 PEND JOB97 1

100 96 DONE JOB96 1

Dependency condition of job <97> is not satisfied: done(89)

JOBID PARENT PARENT_STATUS PARENT_NAME LEVEL

97 89 PEND JOB89 2

Dependency condition of job <89> is not satisfied: ended(86)

JOBID PARENT PARENT_STATUS PARENT_NAME LEVEL

89 86 PEND JOB86 3

View Job Dependencies

490 Administering Platform LSF

Administering Platform LSF 491

C H A P T E R

29
Job Priorities

Contents
◆ User-Assigned Job Priority on page 492
◆ Automatic Job Priority Escalation on page 494
◆ Absolute Job Priority Scheduling on page 495

User-Assigned Job Priority

492 Administering Platform LSF

User-Assigned Job Priority
User-assigned job priority provides controls that allow users to order their jobs in a
queue. Job order is the first consideration to determine job eligibility for dispatch.
Jobs are still subject to all scheduling policies regardless of job priority. Jobs with the
same priority are ordered first come first served.
The job owner can change the priority of their own jobs. LSF and queue
administrators can change the priority of all jobs in a queue.
User-assigned job priority is enabled for all queues in your cluster, and can be
configured with automatic job priority escalation to automatically increase the
priority of jobs that have been pending for a specified period of time.

Considerations
The btop and bbot commands move jobs relative to other jobs of the same priority.
These commands do not change job priority.

In this section
◆ Configure job priority on page 492
◆ Specify job priority on page 492
◆ View job priority information on page 493

Configure job priority

1 To configure user-assigned job priority edit lsb.params and define
MAX_USER_PRIORITY. This configuration applies to all queues in your
cluster.

2 Use bparams -l to display the value of MAX_USER_PRIORITY.

Syntax MAX_USER_PRIORITY=max_priority

Where:
max_priority
Specifies the maximum priority a user can assign to a job. Valid values are positive
integers. Larger values represent higher priority; 1 is the lowest.
LSF and queue administrators can assign priority beyond max_priority for jobs
they own.

Example MAX_USER_PRIORITY=100

Specifies that 100 is the maximum job priority that can be specified by a user.

Specify job priority

◆ Job priority is specified at submission using bsub and modified after
submission using bmod. Jobs submitted without a priority are assigned the
default priority of MAX_USER_PRIORITY/2.

Administering Platform LSF 493

Job Priorities

Syntax bsub -sp priority
bmod [-sp priority | -spn] job_ID

Where:
-sp priority
Specifies the job priority. Valid values for priority are any integers between 1 and
MAX_USER_PRIORITY (displayed by bparams -l). Incorrect job priorities are
rejected.
LSF and queue administrators can specify priorities beyond
MAX_USER_PRIORITY for jobs they own.
-spn

Sets the job priority to the default priority of MAX_USER_PRIORITY/2 (displayed
by bparams -l).

View job priority information

1 Use the following commands to view job history, the current status and system
configurations:

bhist -l job_ID Displays the history of a job including changes in job priority.

bjobs -l [job_ID] Displays the current job priority and the job priority at submission time. Job
priorities are changed by the job owner, LSF and queue administrators, and
automatically when automatic job priority escalation is enabled.

bparams -l Displays values for:
◆ The maximum user priority, MAX_USER_PRIORITY
◆ The default submission priority, MAX_USER_PRIORITY/2
◆ The value and frequency used for automatic job priority escalation,

JOB_PRIORITY_OVER_TIME

Automatic Job Priority Escalation

494 Administering Platform LSF

Automatic Job Priority Escalation
Automatic job priority escalation automatically increases job priority of jobs that
have been pending for a specified period of time. User-assigned job priority (see
User-Assigned Job Priority on page 492) must also be configured.
As long as a job remains pending, LSF automatically increases the job priority
beyond the maximum priority specified by MAX_USER_PRIORITY. Job priority
is not increased beyond the value of max_int on your system.
Pending job resize allocation requests for resizable jobs inherit the job priority from
the original job. When the priority of the allocation request gets adjusted, the
priority of the original job is adjusted as well. The job priority of a running job is
adjusted when there is an associated resize request for allocation growth. bjobs
displays the updated job priority.
If necessary, a new pending resize request is regenerated after the job gets
dispatched. The new job priority is used.
For requeued and rerun jobs, the dynamic priority value is reset. For migrated jobs,
the existing dynamic priority value is carried forward. The priority is recalculated
based on the original value.

Configure job priority escalation

1 To configure job priority escalation edit lsb.params and define
JOB_PRIORITY_OVER_TIME.
User-assigned job priority must also be configured,

2 Use bparams -l to display the values of JOB_PRIORITY_OVER_TIME.

Syntax JOB_PRIORITY_OVER_TIME=increment/interval

Where:
increment
Specifies the value used to increase job priority every interval minutes. Valid values
are positive integers.
interval
Specifies the frequency, in minutes, to increment job priority. Valid values are
positive integers.

Example JOB_PRIORITY_OVER_TIME=3/20

Specifies that every 20 minute interval increment to job priority of pending jobs by
3.

Administering Platform LSF 495

Job Priorities

Absolute Job Priority Scheduling
Absolute job priority scheduling (APS) provides a mechanism to control the job
dispatch order to prevent job starvation.
When configured in a queue, APS sorts pending jobs for dispatch according to a job
priority value calculated based on several configurable job-related factors. Each job
priority weighting factor can contain subfactors. Factors and subfactors can be
independently assigned a weight.
APS provides administrators with detailed yet straightforward control of the job
selection process.
◆ APS only sorts the jobs; job scheduling is still based on configured LSF

scheduling policies. LSF attempts to schedule and dispatch jobs based on their
order in the APS queue, but the dispatch order is not guaranteed.

◆ The job priority is calculated for pending jobs across multiple queues based on
the sum of configurable factor values. Jobs are then ordered based on the
calculated APS value.

◆ You can adjust the following for APS factors:
❖ A weight for scaling each job-related factor and subfactor
❖ Limits for each job-related factor and subfactor
❖ A grace period for each factor and subfactor

◆ To configure absolute priority scheduling (APS) across multiple queues, define
APS queue groups. When you submit a job to any queue in a group, the job's
dispatch priority is calculated using the formula defined in the group's master
queue.

◆ Administrators can also set a static system APS value for a job. A job with a
system APS priority is guaranteed to have a higher priority than any calculated
value. Jobs with higher system APS settings have priority over jobs with lower
system APS settings.

◆ Administrators can use the ADMIN factor to manually adjust the calculated
APS value for individual jobs.

Scheduling priority factors
To calculate the job priority, APS divides job-related information into several
categories. Each category becomes a factor in the calculation of the scheduling
priority. You can configure the weight, limit, and grace period of each factor to get
the desired job dispatch order.
LSF sums the value of each factor based on the weight of each factor.

Factor weight The weight of a factor expresses the importance of the factor in the absolute
scheduling priority. The factor weight is multiplied by the value of the factor to
change the factor value. A positive weight increases the importance of the factor,
and a negative weight decreases the importance of a factor. Undefined factors have
a weight of 0, which causes the factor to be ignored in the APS calculation.

Factor limit The limit of a factor sets the minimum and maximum absolute value of each
weighted factor. Factor limits must be positive values.

Absolute Job Priority Scheduling

496 Administering Platform LSF

Factor grace period Each factor can be configured with a grace period. The factor only counted as part
of the APS value when the job has been pending for a long time and it exceeds the
grace period.

Factors and
subfactors Factors Subfactors Metric

FS (user based
fairshare factor)

The existing fairshare
feature tunes the
dynamic user priority

The fairshare factor automatically
adjusts the APS value based on
dynamic user priority.
FAIRSHARE must be defined in the
queue. The FS factor is ignored for
non-fairshare queues.
The FS factor is influenced by the
following fairshare parameters in
lsb.params:
◆ CPU_TIME_FACTOR
◆ RUN_TIME_FACTOR
◆ RUN_JOB_FACTOR
◆ HIST_HOURS

RSRC (resource
factors)

PROC Requested processors is the max of
bsub -n min, max, the min of
bsub -n min, or the value of
PROCLIMIT in lsb.queues.

MEM Total real memory requested (in MB).
Memory requests appearing to the
right of a || symbol in a usage string
are ignored in the APS calculation.
For multi-phase memory reservation,
the APS value is based on the first
phase of reserved memory.

SWAP Total swap space requested (in MB).
As with MEM, swap space requests
appearing to the right of a || symbol in
a usage string are ignored.

Administering Platform LSF 497

Job Priorities

Where LSF gets the job information for each factor

Enable absolute priority scheduling
Configure APS_PRIORITY in an absolute priority queue in lsb.queues.

WORK (job
attributes)

JPRIORITY The job priority specified by:
◆ Default specified by

MAX_USER_PRIORITY in
lsb.params

◆ Users with bsub -sp or
bmod -sp

◆ Automatic priority escalation
with
JOB_PRIORITY_OVER_TIME in
lsb.params

QPRIORITY The priority of the submission queue.

ADMIN Administrators use bmod -aps to set
this subfactor value for each job. A
positive value increases the APS. A
negative value decreases the APS. The
ADMIN factor is added to the
calculated APS value to change the
factor value.
The ADMIN factor applies to the entire
job. You cannot configure separate
weight, limit, or grace period factors.
The ADMIN factor takes effect as soon
as it is set.

Factors Subfactors Metric

Factor or subfactor Gets job information from...

MEM The value for jobs submitted with -R "rusage[mem]"
For compound resource requirements submitted with -R
"n1*{rusage[mem1]} + n2*{rusage[mem2]}" the value of
MEM depends on whether resources are reserved per slot.
◆ If RESOURCE_RESERVE_PER_SLOT=N, then

MEM=mem1+mem2
◆ If RESOURCE_RESERVE_PER_SLOT=Y, then

MEM=n1*mem1+n2*mem2

SWAP The value for jobs submitted with -R "rusage[swp]"
For compound resource requirements, SWAP is determined
in the same manner as MEM.

PROC The value of n for jobs submitted with bsub -n (min, max),
or the value of PROCLIMIT in lsb.queues

JPRIORITY The dynamic priority of the job, updated every scheduling
cycle and escalated by interval defined in
JOB_PRIORITY_OVER_TIME defined in lsb.params

QPRIORITY The priority of the job submission queue

FS The fairshare priority value of the submission user

Absolute Job Priority Scheduling

498 Administering Platform LSF

APS_PRIORITY=WEIGHT[[factor, value] [subfactor, value]...]...] LIMIT[[factor,
value] [subfactor, value]...]...] GRACE_PERIOD[[factor, value] [subfactor,
value]...]...]
Pending jobs in the queue are ordered according to the calculated APS value.
If weight of a subfactor is defined, but the weight of parent factor is not defined, the
parent factor weight is set as 1.
The WEIGHT and LIMIT factors are floating-point values. Specify a value for
GRACE_PERIOD in seconds (values), minutes (valuem), or hours (valueh).
The default unit for grace period is hours.
For example, the following sets a grace period of 10 hours for the MEM factor, 10
minutes for the JPRIORITY factor, 10 seconds for the QPRIORITY factor, and 10
hours (default) for the RSRC factor:
GRACE_PERIOD[[MEM,10h] [JPRIORITY, 10m] [QPRIORITY,10s] [RSRC, 10]]

You cannot specify zero (0) for the WEIGHT, LIMIT, and GRACE_PERIOD of any
factor or subfactor.
APS queues cannot configure cross-queue fairshare (FAIRSHARE_QUEUES) or
host-partition fairshare.

Modify the system APS value (bmod)
The absolute scheduling priority for a newly submitted job is dynamic. Job priority
is calculated and updated based on formula specified by APS_PRIORITY in the
absolute priority queue. Administrators can use bmod to manually override the
calculated APS value.
Run bmod -apsn job_ID to undo the previous bmod -aps setting.

Assign a static
system priority and
ADMIN factor value

Administrators can use using bmod -aps "system=value" to assign a static job
priority for a pending job. The value cannot be zero (0).
In this case, job's absolute priority is not calculated. The system APS priority is
guaranteed to be higher than any calculated APS priority value. Jobs with higher
system APS settings have priority over jobs with lower system APS settings.
The system APS value set by bmod -aps is preserved after mbatchd reconfiguration
or mbatchd restart.

Use the ADMIN
factor to adjust the
APS value

Administrators can use bmod -aps "admin=value" to change the calculated APS
value for a pending job. The ADMIN factor is added to the calculated APS value to
change the factor value. The absolute priority of the job is recalculated. The value
cannot be zero (0).
A bmod -aps command always overrides the last bmod -aps commands
The ADMIN APS value set by bmod -aps is preserved after mbatchd
reconfiguration or mbatchd restart.

Example bmod
output

The following commands change the APS values for jobs 313 and 314:
bmod -aps "system=10" 313

Parameters of job <313> are being changed

bmod -aps "admin=10.00" 314

Parameters of job <314> are being changed

Administering Platform LSF 499

Job Priorities

View modified APS
values

Use bjobs -aps to see the effect of the changes:

bjobs -aps

JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME APS

313 user1 PEND owners hostA myjob Feb 12 01:09 (10)

321 user1 PEND owners hostA myjob Feb 12 01:09 -

314 user1 PEND normal hostA myjob Feb 12 01:08 109.00

312 user1 PEND normal hostA myjob Feb 12 01:08 99.00

315 user1 PEND normal hostA myjob Feb 12 01:08 99.00

316 user1 PEND normal hostA myjob Feb 12 01:08 99.00

Use bjobs -l to show APS values modified by the administrator:
bjobs -l

Job <313>, User <user1>, Project <default>, Service Class
<SLASamples>, Status <RUN>, Queue <normal>, Command <myjob>, System
Absolute Priority <10>

Job <314>, User <user1>, Project <default>, Status <PEND>, Queue
<normal>, Command <myjob>, Admin factor value <10>

Use bhist -l to see historical information about administrator changes to APS
values. For example, after running these commands:
1 bmod -aps "system=10" 108

2 bmod -aps "admin=20" 108

3 bmod -apsn 108

bhist -l shows the sequence changes to job 108:
bhist -l

Job <108>, User <user1>, Project <default>, Command <sleep 10000>

Tue Feb 13 15:15:26: Submitted from host <HostB>, to Queue <normal>, CWD
</scratch/user1>;

Tue Feb 13 15:15:40: Parameters of Job are changed:

 Absolute Priority Scheduling factor string changed to : system=10;

Tue Feb 13 15:15:48: Parameters of Job are changed:

 Absolute Priority Scheduling factor string changed to : admin=20;

Tue Feb 13 15:15:58: Parameters of Job are changed:

 Absolute Priority Scheduling factor string deleted;

Summary of time in seconds spent in various states by Tue Feb 13 15:16:02

 PEND PSUSP RUN USUSP SSUSP UNKWN TOTAL

 36 0 0 0 0 0 36

Configure APS across multiple queues
Use QUEUE_GROUP in an absolute priority queue in lsb.queues to configure APS
across multiple queues.
When APS is enabled in the queue with APS_PRIORITY, the
FAIRSHARE_QUEUES parameter is ignored. The QUEUE_GROUP parameter
replaces FAIRSHARE_QUEUES, which is obsolete in LSF 7.0.

Absolute Job Priority Scheduling

500 Administering Platform LSF

Example 1 You want to schedule jobs from the normal queue and the short queue, factoring
the job priority (weight 1) and queue priority (weight 10) in the APS value:
Begin Queue

QUEUE_NAME = normal

PRIORITY = 30

NICE = 20

APS_PRIORITY = WEIGHT [[JPRIORITY, 1] [QPRIORITY, 10]]

QUEUE_GROUP = short

DESCRIPTION = For normal low priority jobs, running only if hosts
are lightly loaded.

End Queue

...

Begin Queue

QUEUE_NAME = short

PRIORITY = 20

NICE = 20

End Queue

The APS value for jobs from the normal queue and the short queue are: calculated
as:
APS_PRIORITY = 1 * (1 * job_priority + 10 * queue_priority)

The first 1 is the weight of the WORK factor; the second 1 is the weight of the job
priority subfactor; the 10 is the weight of queue priority subfactor.
If you want the job priority to increase based on the pending time, you must
configure JOB_PRIORITY_OVER_TIME parameter in the lsb.params.

Example 2 Extending example 1, you want to add user-based fairshare with a weight of 100 to
the APS value in the normal queue:
Begin Queue

QUEUE_NAME = normal

PRIORITY = 30

NICE = 20

FAIRSHARE = USER_SHARES [[user1, 5000] [user2, 5000] [others, 1]]

APS_PRIORITY = WEIGHT [[JPRIORITY, 1] [QPRIORITY, 10] [FS, 100]]

QUEUE_GROUP = short

DESCRIPTION = For normal low priority jobs, running only if hosts
are lightly loaded.

End Queue

The APS value is now calculated as
APS_PRIORITY = 1 * (1 * job_priority + 10 * queue_priority) + 100 * user_priority

Example 3 Extending example 2, you now to add swap space to the APS value calculation. The
APS configuration changes to:

APS_PRIORITY = WEIGHT [[JPRIORITY, 1] [QPRIORITY, 10] [FS, 100] [SWAP, -10]]

Administering Platform LSF 501

Job Priorities

And the APS value is now calculated as
APS_PRIORITY = 1 * (1 * job_priority + 10 * queue_priority) + 100 * user_priority + 1 *
(-10 * SWAP)

View pending job order by the APS value
Run bjobs -aps to see APS information for pending jobs in the order of absolute
scheduling priority. The order that the pending jobs are displayed is the order in
which the jobs are considered for dispatch.
The APS value is calculated based on the current scheduling cycle, so jobs are not
guaranteed to be dispatched in this order.
Pending jobs are ordered by APS value. Jobs with system APS values are listed first,
from highest to lowest APS value. Jobs with calculated APS values are listed next
ordered from high to low value. Finally, jobs not in an APS queue are listed. Jobs
with equal APS values are listed in order of submission time.
If queues are configured with the same priority, bjobs -aps may not show jobs in
the correct expected dispatch order. Jobs may be dispatched in the order the queues
are configured in lsb.queues. You should avoid configuring queues with the same
priority.

Example bjobs -aps
output

The following example uses this configuration;
◆ The APS only considers the job priority and queue priority for jobs from

normal queue (priority 30) and short queue (priority 20)
❖ APS_PRIORITY = WEIGHT [[QPRIORITY, 10] [JPRIORITY, 1]]
❖ QUEUE_GROUP = short

◆ Priority queue (40) and idle queue (15) do not use APS to order jobs
◆ JOB_PRIORITY_OVER_TIME=5/10 in lsb.params
◆ MAX_USER_PRIORITY=100 in lsb.params
bjobs -aps was run at 14:41:

bjobs -aps

JOBID USER STAT QUEUE FROM_HOST JOB_NAME SUBMIT_TIME APS

 15 User2 PEND priority HostB myjob Dec 21 14:30 -

 22 User1 PEND Short HostA myjob Dec 21 14:30 (60)

 2 User1 PEND Short HostA myjob Dec 21 11:00 360

 12 User2 PEND normal HostB myjob Dec 21 14:30 355

 4 User1 PEND Short HostA myjob Dec 21 14:00 270

 5 User1 PEND Idle HostA myjob Dec 21 14:01 -

For job 2, APS = 10 * 20 + 1 * (50 + 220 * 5 /10) = 360
For job 12, APS = 10 *30 + 1 * (50 + 10 * 5/10) = 355
For job 4, APS = 10 * 20 + 1 * (50 + 40 * 5 /10) = 270

View APS configuration for a queue
Run bqueues -l to see the current APS information for a queue:

bqueues -l normal

Absolute Job Priority Scheduling

502 Administering Platform LSF

QUEUE: normal

 -- No description provided. This is the default queue.

PARAMETERS/STATISTICS

PRIO NICE STATUS MAX JL/U JL/P JL/H NJOBS PEND RUN SSUSP USUSP RSV

500 20 Open:Active - - - - 0 0 0 0 0 0

SCHEDULING PARAMETERS

 r15s r1m r15m ut pg io ls it tmp swp mem

 loadSched - - - - - - - - - - -

 loadStop - - - - - - - - - - -

SCHEDULING POLICIES: FAIRSHARE APS_PRIORITY

APS_PRIORITY:

 WEIGHT FACTORS LIMIT FACTORS GRACE PERIOD

 FAIRSHARE 10000.00 - -

 RESOURCE 101010.00 - 1010h

 PROCESSORS -10.01 - -

 MEMORY 1000.00 20010.00 3h

 SWAP 10111.00 - -

 WORK 1.00 - -

 JOB PRIORITY -999999.00 10000.00 4131s

 QUEUE PRIORITY 10000.00 10.00 -

USER_SHARES: [user1, 10]

SHARE_INFO_FOR: normal/

 USER/GROUP SHARES PRIORITY STARTED RESERVED CPU_TIME RUN_TIME

user1 10 3.333 0 0 0.0 0

USERS: all

HOSTS: all

REQUEUE_EXIT_VALUES: 10

Feature interactions

Fairshare The default user-based fairshare can be a factor in APS calculation by adding the FS
factor to APS_PRIORITY in the queue.
◆ APS cannot be used together with DISPATCH_ORDER=QUEUE.
◆ APS cannot be used together with cross-queue fairshare

(FAIRSHARE_QUEUES). The QUEUE_GROUP parameter replaces
FAIRSHARE_QUEUES, which is obsolete in LSF 7.0.

◆ APS cannot be used together with queue-level fairshare or host-partition
fairshare.

Administering Platform LSF 503

Job Priorities

FCFS APS overrides the job sort result of FCFS.

SLA scheduling APS cannot be used together with SLA scheduling.

Job requeue All requeued jobs are treated as newly submitted jobs for APS calculation. The job
priority, system, and ADMIN APS factors are reset on requeue.

Rerun jobs Rerun jobs are not treated the same as requeued jobs. A job typically reruns because
the host failed, not through some user action (like job requeue), so the job priority
is not reset for rerun jobs.

Job migration Suspended (bstop) jobs and migrated jobs (bmig) are always scheduled before
pending jobs. For migrated jobs, LSF keeps the existing job priority information.
If LSB_REQUEUE_TO_BOTTOM and LSB_MIG2PEND are configured in
lsf.conf, the migrated jobs keep their APS information. When
LSB_REQUEUE_TO_BOTTOM and LSB_MIG2PEND are configured, the
migrated jobs need to compete with other pending jobs based on the APS value. If
you want to reset the APS value, the you should use brequeue, not bmig.

Resource
reservation

The resource reservation is based on queue policies. The APS value does not affect
current resource reservation policy.

Preemption The preemption is based on queue policies. The APS value does not affect the
current preemption policy.

Chunk jobs The first chunk job to be dispatched is picked based on the APS priority. Other jobs
in the chunk is picked based on the APS priority and the default chunk job
scheduling policies.
The following job properties must be the same for all chunk jobs:
◆ Submitting user
◆ Resource requirements
◆ Host requirements
◆ Queue or application profile
◆ Job priority

Backfill scheduling Not affected.

Advance
reservation

Not affected.

Absolute Job Priority Scheduling

504 Administering Platform LSF

Resizable jobs For new resizable job allocation requests, the resizable job inherits the APS value
from the original job. The subsequent calculations use factors as follows:

Factor or sub-factor Behavior

FAIRSHARE Resizable jobs submitting into fairshare queues or host
partitions are subject to fairshare scheduling policies. The
dynamic priority of the user who submitted the job is the
most important criterion. LSF treats pending resize allocation
requests as a regular job and enforces the fairshare user
priority policy to schedule them.
The dynamic priority of users depends on:
◆ Their share assignment
◆ The slots their jobs are currently consuming
◆ The resources their jobs consumed in the past
◆ The adjustment made by the fairshare plugin

(libfairshareadjust.*)
Resizable job allocation changes affect the user priority
calculation if RUN_JOB_FACTOR is greater than zero (0). Resize
add requests increase number of slots in use and decrease
user priority. Resize release requests decrease number of slots
in use, and increase user priority. The faster a resizable job
grows, the lower the user priority is, the less likely a pending
allocation request can get more slots.

MEM Use the value inherited from the original job

PROC Use the MAX value of the resize request

SWAP Use the value inherited from the original job

JPRIORITY Use the value inherited from the original job. If the automatic
job priority escalation is configured, the dynamic value is
calculated as described in Automatic Job Priority Escalation
on page 494.
For a requeued and rerun resizable jobs, the JPRIORITY is
reset, and the new APS value is calculated with the new
JPRIORITY.
For migrated resizable job, the JPRIORITY is carried forward,
and the new APS value is calculated with the JPRIORITY
continued from the original value.

QPRIORITY Use the value inherited from the original job

ADMIN Use the value inherited from the original job

Administering Platform LSF 505

C H A P T E R

30
Job Requeue and Job Rerun

Contents
◆ About Job Requeue on page 506
◆ Automatic Job Requeue on page 507
◆ Job-level automatic requeue on page 509
◆ Reverse Requeue on page 510
◆ Exclusive Job Requeue on page 511
◆ User-Specified Job Requeue on page 512
◆ Automatic Job Rerun on page 513

About Job Requeue

506 Administering Platform LSF

About Job Requeue
A networked computing environment is vulnerable to any failure or temporary
conditions in network services or processor resources. For example, you might get
NFS stale handle errors, disk full errors, process table full errors, or network
connectivity problems. Your application can also be subject to external conditions
such as a software license problems, or an occasional failure due to a bug in your
application.
Such errors are temporary and probably happen at one time but not another, or on
one host but not another. You might be upset to learn all your jobs exited due to
temporary errors and you did not know about it until 12 hours later.
LSF provides a way to automatically recover from temporary errors. You can
configure certain exit values such that in case a job exits with one of the values, the
job is automatically requeued as if it had not yet been dispatched. This job is then
be retried later. It is also possible for you to configure your queue such that a
requeued job is not scheduled to hosts on which the job had previously failed to
run.

Administering Platform LSF 507

Job Requeue and Job Rerun

Automatic Job Requeue
You can configure a queue to automatically requeue a job if it exits with a specified
exit value.
◆ The job is requeued to the head of the queue from which it was dispatched,

unless the LSB_REQUEUE_TO_BOTTOM parameter in lsf.conf is set.
◆ When a job is requeued, LSF does not save the output from the failed run.
◆ When a job is requeued, LSF does not notify the user by sending mail.
◆ A job terminated by a signal is not requeued.
The reserved keyword all specifies all exit codes. Exit codes are typically between
0 and 255. Use a tilde (~) to exclude specified exit codes from the list.
For example:
REQUEUE_EXIT_VALUES=all ~1 ~2 EXCLUDE(9)

Jobs exited with all exit codes except 1 and 2 are requeued. Jobs with exit code 9 are
requeued requeued so that the failed job is not rerun on the same host (exclusive
job requeue).

Configure automatic job requeue

1 To configure automatic job requeue, set REQUEUE_EXIT_VALUES in the
queue definition (lsb.queues) or in an application profile
(lsb.applications) and specify the exit codes that cause the job to be
requeued.
Application-level exit values override queue-level values. Job-level exit values
(bsub -Q) override application-level and queue-level values.
Begin Queue
...
REQUEUE_EXIT_VALUES = 99 100
...
End Queue

This configuration enables jobs that exit with 99 or 100 to be requeued.

Control how many times a job can be requeued
By default, if a job fails and its exit value falls into REQUEUE_EXIT_VALUES, LSF
requeues the job automatically. Jobs that fail repeatedly are requeued five times by
default.

1 To limit the number of times a failed job is requeued, set
MAX_JOB_REQUEUE cluster wide (lsb.params), in the queue definition
(lsb.queues), or in an application profile (lsb.applications).
Specify an integer greater than zero (0).
MAX_JOB_REQUEUE in lsb.applications overrides lsb.queues, and
lsb.queues overrides lsb.params configuration. Specifying a job-level exit
value using bsub -Q overrides all MAX_JOB_REQUEUE settings.

Automatic Job Requeue

508 Administering Platform LSF

When MAX_JOB_REQUEUE is set, if a job fails and its exit value falls into
REQUEUE_EXIT_VALUES, the number of times the job has been requeued is
increased by 1 and the job is requeued. When the requeue limit is reached, the job
is suspended with PSUSP status. If a job fails and its exit value is not specified in
REQUEUE_EXIT_VALUES, the job is not requeued.

Viewing the
requeue retry limit

1 Run bjobs -l to display the job exit code and reason if the job requeue limit is
exceeded.

2 Run bhist -l to display the exit code and reason for finished jobs if the job
requeue limit is exceeded.

How job requeue
retry limit is
recovered

The job requeue limit is recovered when LSF is restarted and reconfigured. LSF
replays the job requeue limit from the JOB_STATUS event and its pending reason
in lsb.events.

Administering Platform LSF 509

Job Requeue and Job Rerun

Job-level automatic requeue
Use bsub -Q to submit a job that is automatically requeued if it exits with the
specified exit values. Use spaces to separate multiple exit codes. The reserved
keyword all specifies all exit codes. Exit codes are typically between 0 and 255. Use
a tilde (~) to exclude specified exit codes from the list.
Job-level requeue exit values override application-level and queue-level
configuration of the parameter REQUEUE_EXIT_VALUES, if defined.
Jobs running with the specified exit code share the same application and queue with
other jobs.
For example:
bsub -Q "all ~1 ~2 EXCLUDE(9)" myjob

Jobs exited with all exit codes except 1 and 2 are requeued. Jobs with exit code 9 are
requeued requeued so that the failed job is not rerun on the same host (exclusive
job requeue).
Define an exit code as EXCLUDE(exit_code) to enable exclusive job requeue.
Exclusive job requeue does not work for parallel jobs.
If mbatchd is restarted, it does not remember the previous hosts from which the job
exited with an exclusive requeue exit code. In this situation, it is possible for a job
to be dispatched to hosts on which the job has previously exited with an exclusive
exit code.
Use bmod -Q to modify or cancel job-level requeue exit values. bmod -Q does not
affect running jobs. For rerunnable and requeue jobs, bmod -Q affects the next run.

MultiCluster jobs
Job forwarding model For jobs sent to a remote cluster, arguments of bsub -Q take effect on remote

clusters.
Lease model The arguments of bsub -Q apply to jobs running on remote leased hosts as if they

are running on local hosts.

Reverse Requeue

510 Administering Platform LSF

Reverse Requeue
By default, if you use automatic job requeue, jobs are requeued to the head of a
queue. You can have jobs requeued to the bottom of a queue instead. The job
priority does not change.

Configure reverse requeue
You must already use automatic job requeue (REQUEUE_EXIT_VALUES in
lsb.queues).
To configure reverse requeue:

1 Set LSB_REQUEUE_TO_BOTTOM in lsf.conf to 1.
2 Reconfigure the cluster:

a lsadmin reconfig

b badmin mbdrestart

Administering Platform LSF 511

Job Requeue and Job Rerun

Exclusive Job Requeue
You can configure automatic job requeue so that a failed job is not rerun on the
same host.

Limitations
◆ If mbatchd is restarted, this feature might not work properly, since LSF forgets

which hosts have been excluded. If a job ran on a host and exited with an
exclusive exit code before mbatchd was restarted, the job could be dispatched
to the same host again after mbatchd is restarted.

◆ Exclusive job requeue does not work for MultiCluster jobs or parallel jobs
◆ A job terminated by a signal is not requeued

Configure exclusive job requeue

1 Set REQUEUE_EXIT_VALUES in the queue definition (lsb.queues) and
define the exit code using parentheses and the keyword EXCLUDE:
EXCLUDE(exit_code...)

exit_code has the following form:
"[all] [~number ...] | [number ...]"

The reserved keyword all specifies all exit codes. Exit codes are typically
between 0 and 255. Use a tilde (~) to exclude specified exit codes from the list.
Jobs are requeued to the head of the queue. The output from the failed run is
not saved, and the user is not notified by LSF.

When a job exits with any of the specified exit codes, it is requeued, but it is not
dispatched to the same host again.
Begin Queue
...
REQUEUE_EXIT_VALUES=30 EXCLUDE(20)
HOSTS=hostA hostB hostC
...
End Queue

A job in this queue can be dispatched to hostA, hostB or hostC.
If a job running on hostA exits with value 30 and is requeued, it can be dispatched
to hostA, hostB, or hostC. However, if a job running on hostA exits with value 20
and is requeued, it can only be dispatched to hostB or hostC.
If the job runs on hostB and exits with a value of 20 again, it can only be dispatched
on hostC. Finally, if the job runs on hostC and exits with a value of 20, it cannot be
dispatched to any of the hosts, so it is pending forever.

User-Specified Job Requeue

512 Administering Platform LSF

User-Specified Job Requeue
You can use brequeue to kill a job and requeue it. When the job is requeued, it is
assigned the PEND status and the job’s new position in the queue is after other jobs
of the same priority.

Requeue a job

1 To requeue one job, use brequeue.
◆ You can only use brequeue on running (RUN), user-suspended (USUSP),

or system-suspended (SSUSP) jobs.
◆ Users can only requeue their own jobs. Only root and LSF administrator

can requeue jobs submitted by other users.
◆ You cannot use brequeue on interactive batch jobs

brequeue 109

LSF kills the job with job ID 109, and requeues it in the PEND state. If job 109 has
a priority of 4, it is placed after all the other jobs with the same priority.
brequeue -u User5 45 67 90

LSF kills and requeues 3 jobs belonging to User5. The jobs have the job IDs 45, 67,
and 90.

Administering Platform LSF 513

Job Requeue and Job Rerun

Automatic Job Rerun

Job requeue vs. job rerun
Automatic job requeue occurs when a job finishes and has a specified exit code
(usually indicating some type of failure).
Automatic job rerun occurs when the execution host becomes unavailable while a
job is running. It does not occur if the job itself fails.

About job rerun
When a job is rerun or restarted, it is first returned to the queue from which it was
dispatched with the same options as the original job. The priority of the job is set
sufficiently high to ensure the job gets dispatched before other jobs in the queue.
The job uses the same job ID number. It is executed when a suitable host is available,
and an email message is sent to the job owner informing the user of the restart.
Automatic job rerun can be enabled at the job level, by the user, or at the queue level,
by the LSF administrator. If automatic job rerun is enabled, the following
conditions cause LSF to rerun the job:
◆ The execution host becomes unavailable while a job is running
◆ The system fails while a job is running
When LSF reruns a job, it returns the job to the submission queue, with the same
job ID. LSF dispatches the job as if it was a new submission, even if the job has been
checkpointed.
Once job is rerun, LSF schedules resizable jobs based on their initial allocation
request.

Execution host fails
If the execution host fails, LSF dispatches the job to another host. You receive a mail
message informing you of the host failure and the requeuing of the job.

LSF system fails
If the LSF system fails, LSF requeues the job when the system restarts.

Configure queue-level job rerun

1 To enable automatic job rerun at the queue level, set RERUNNABLE in
lsb.queues to yes.

Submit a rerunnable job

1 To enable automatic job rerun at the job level, use bsub -r.
Interactive batch jobs (bsub -I) cannot be rerunnable.

Automatic Job Rerun

514 Administering Platform LSF

Submit a job as not rerunnable

1 To disable automatic job rerun at the job level, use bsub -rn.

Disable post-execution for rerunnable jobs
Running of post-execution commands upon restart of a rerunnable job may not
always be desirable; for example, if the post-exec removes certain files, or does other
cleanup that should only happen if the job finishes successfully.

1 Use LSB_DISABLE_RERUN_POST_EXEC=Y in lsf.conf to prevent the
post-exec from running when a job is rerun.

Administering Platform LSF 515

C H A P T E R

31
Job Checkpoint, Restart, and Migration

Job checkpoint and restart optimizes resource usage by enabling a non-interactive
job to restart on a new host from the point at which the job stopped—checkpointed
jobs do not have to restart from the beginning. Job migration facilitates load
balancing by enabling users to move a job from one host to another while taking
advantage of job checkpoint and restart functionality.

Contents
◆ Checkpoint and restart options on page 516
◆ Checkpoint directory and files on page 516
◆ Checkpoint and restart executables on page 518
◆ Job restart on page 518
◆ Job migration on page 519

Checkpoint and restart options

516 Administering Platform LSF

Checkpoint and restart options
You can implement job checkpoint and restart at one of the following levels.
◆ Kernel level—provided by your operating system, enabled by default
◆ User level—provided by special LSF libraries that you link to your application

object files
◆ Application level—provided by your site-specific applications and supported

by LSF through the use of application-specific echkpnt and erestart
executables

NOTE: For a detailed description of the job checkpoint and restart feature and how to configure
it, see the Platform LSF Configuration Reference.

Checkpoint directory and files
The job checkpoint and restart feature requires that a job be made checkpointable
at the job, application profile, or queue level. LSF users can make a job
checkpointable by submitting the job using bsub -k and specifying a checkpoint
directory, and optional checkpoint period, initial checkpoint period, and
checkpoint method. Administrators can make all jobs in a queue or an application
profile checkpointable by specifying a checkpoint directory for the queue or
application.

Requirements
The following requirements apply to a checkpoint directory specified at the queue
or application profile level:
◆ The specified checkpoint directory must already exist. LSF does not create the

checkpoint directory.
◆ The user account that submits the job must have read and write permissions for

the checkpoint directory.
◆ For the job to restart on another execution host, both the original and new

hosts must have network connectivity to the checkpoint directory.

Behavior
Specifying a checkpoint directory at the queue level or in an application profile
enables checkpointing.
◆ All jobs submitted to the queue or application profile are checkpointable. LSF

writes the checkpoint files, which contain job state information, to the
checkpoint directory. The checkpoint directory can contain checkpoint files for
multiple jobs.

NOTE: LSF does not delete the checkpoint files; you must perform file maintenance manually.

◆ If the administrator specifies a checkpoint period, in minutes, LSF creates a
checkpoint file every chkpnt_period during job execution.

Administering Platform LSF 517

Job Checkpoint, Restart, and Migration

◆ If the administrator specifies an initial checkpoint period in an application
profile, in minutes, the first checkpoint does not happen until the initial period
has elapsed. LSF then creates a checkpoint file every chkpnt_period after the
initial checkpoint period, during job execution.

◆ If a user specifies a checkpoint directory, initial checkpoint period, checkpoint
method or checkpoint period at the job level with bsub -k, or modifies the job
with bmod, the job-level values override the queue-level and applcation profile
values.

The brestart command restarts checkpointed jobs that have stopped running.

Precendence of checkpointing options
If checkpoint-related configuration is specified in both the queue and an
application profile, the application profile setting overrides queue level
configuration.
If checkpoint-related configuration is specified in the queue, application profile,
and at job level:
◆ Application-level and job-level parameters are merged. If the same parameter

is defined at both job-level and in the application profile, the job-level value
overrides the application profile value.

◆ The merged result of job-level and application profile settings override
queue-level configuration.

Checkpointing MultiCluster jobs
To enable checkpointing of MultiCluster jobs, define a checkpoint directory in both
the send-jobs and receive-jobs queues (CHKPNT in lsb.queues), or in an
application profile (CHKPNT_DIR, CHKPNT_PERIOD,
CHKPNT_INITPERIOD, CHKPNT_METHOD in lsb.applications) of both
submission cluster and execution cluster. LSF uses the directory specified in the
execution cluster.
Checkpointing is not supported if a job runs on a leased host.

Checkpointing resizable jobs
After a checkpointable resizable job restarts (brestart), LSF restores the original
job allocation request. LSF also restores job-level autoresizable attribute and
notification command if they are specified at job submission.

Example
The following example shows a queue configured for periodic checkpointing in
lsb.queues:
Begin Queue

...

QUEUE_NAME=checkpoint

CHKPNT=mydir 240

DESCRIPTION=Automatically checkpoints jobs every 4 hours to mydir

...

Checkpoint and restart executables

518 Administering Platform LSF

End Queue

NOTE: The bqueues command displays the checkpoint period in seconds; the lsb.queues
CHKPNT parameter defines the checkpoint period in minutes.

If the command bchkpnt -k 123 is used to checkpoint and kill job 123, you can
restart the job using the brestart command as shown in the following example:
brestart -q priority mydir 123

Job <456> is submitted to queue <priority>

LSF assigns a new job ID of 456, submits the job to the queue named "priority," and
restarts the job.
Once job 456 is running, you can change the checkpoint period using the bchkpnt
command:
bchkpnt -p 360 456

Job <456> is being checkpointed

NOTE: For a detailed description of the commands used with the job checkpoint and restart
feature, see the Platform LSF Configuration Reference.

Checkpoint and restart executables
 LSF controls checkpointing and restart by means of interfaces named echkpnt and
erestart. By default, when a user specifies a checkpoint directory using bsub -k
or bmod -k or submits a job to a queue that has a checkpoint directory specified,
echkpnt sends checkpoint instructions to an executable named echkpnt.default.
For application-level job checkpoint and restart, you can specify customized
checkpoint and restart executables for each application that you use. The optional
parameter LSB_ECHKPNT_METHOD specifies a checkpoint executable used for all jobs
in the cluster. An LSF user can override this value when submitting a job.

NOTE: For a detailed description of how to write and configure application-level checkpoint and
restart executables, see the Platform LSF Configuration Reference.

Job restart
LSF can restart a checkpointed job on a host other than the original execution host
using the information saved in the checkpoint file to recreate the execution
environment. Only jobs that have been checkpointed successfully can be restarted
from a checkpoint file. When a job restarts, LSF performs the following actions:
1 LSF resubmits the job to its original queue as a new job and assigns a new

job ID.
2 When a suitable host becomes available, LSF dispatches the job.
3 LSF recreates the execution environment from the checkpoint file.
4 LSF restarts the job from its last checkpoint. You can restart a job manually

from the command line using brestart, automatically through configuration,
or by migrating the job to a different host using bmig.

Administering Platform LSF 519

Job Checkpoint, Restart, and Migration

Requirements
To allow restart of a checkpointed job on a different host than the host on which the
job originally ran, both the original and the new hosts must:
◆ Be binary compatible
◆ Run the same dot version of the operating system for predictable results
◆ Have network connectivity and read/execute permissions to the checkpoint

and restart executables (in LSF_SERVERDIR by default)
◆ Have network connectivity and read/write permissions to the checkpoint

directory and the checkpoint file
◆ Have access to all files open during job execution so that LSF can locate them

using an absolute path name

Job migration
Job migration is the process of moving a checkpointable or rerunnable job from one
host to another. This facilitates load balancing by moving jobs from a
heavily-loaded host to a lightly-loaded host.
You can initiate job migration manually on demand (bmig) or automatically. To
initiate job migration automatically, you can configure a migration threshold at job
submission, or at the host, queue, or in an application profile.

NOTE: For a detailed description of the job migration feature and how to configure it, see the
Platform LSF Configuration Reference.

Manual job migration
The bmig command migrates checkpointable or rerunnable jobs on demand. Jobs
can be manually migrated by the job owner, queue administrator, and LSF
administrator.
For example, to migrate a job with job ID 123 to the first available host:
bmig 123

Job <123> is being migrated

Automatic job migration
Automatic job migration assumes that if a job is system-suspended (SSUSP) for an
extended period of time, the execution host is probably heavily loaded. Specifying
a migration threshold at job submission (bsub -mig) or configuring an application
profile-level, queue-level or host-level migration threshold allows the job to
progress and reduces the load on the host. You can use bmig at any time to override
a configured migration threshold, or bmod -mig to change a job-level migration
threshold.
For example, at the queue level, in lsb.queues:
Begin Queue

...
MIG=30 # Migration threshold set to 30 mins
DESCRIPTION=Migrate suspended jobs after 30 mins
...

End Queue

Job migration

520 Administering Platform LSF

At the host level, in lsb.hosts:
Begin Host

HOST_NAME r1m pg MIG # Keywords
...
hostA 5.0 18 30
...

End Host

For example, in an application profile, in lsb.applications:
Begin Application

...
MIG=30 # Migration threshold set to 30 mins
DESCRIPTION=Migrate suspended jobs after 30 mins
...

End Application

If you want to requeue migrated jobs instead of restarting or rerunning them, you
can define the following parameters in lsf.conf:
◆ LSB_MIG2PEND=1 requeues a job with the original submission time and priority
◆ LSB_REQUEUE_TO_BOTTOM=1 requeues a job at the bottom of the queue,

regardless of the submission time and priority

Administering Platform LSF 521

C H A P T E R

32
Chunk Job Dispatch

Contents
◆ About Job Chunking on page 521
◆ Configure Chunk Job Dispatch on page 522
◆ Submitting and Controlling Chunk Jobs on page 524

About Job Chunking
LSF supports job chunking, where jobs with similar resource requirements
submitted by the same user are grouped together for dispatch. The
CHUNK_JOB_SIZE parameter in lsb.queues and lsb.applications specifies
the maximum number of jobs allowed to be dispatched together in a chunk job.
Job chunking can have the following advantages:
◆ Reduces communication between sbatchd and mbatchd, and scheduling

overhead in mbatchd
◆ Increases job throughput in mbatchd and more balanced CPU utilization on

the execution hosts
All of the jobs in the chunk are dispatched as a unit rather than individually. Job
execution is sequential, but each chunk job member is not necessarily executed in
the order it was submitted.

RESTRICTION: You cannot auto-migrate a suspended chunk job member.

Chunk job candidates
Jobs with the following characteristics are typical candidates for job chunking:
◆ Take between 1 and 2 minutes to run
◆ All require the same resource (for example a software license or a specific

amount of memory)
◆ Do not specify a beginning time (bsub -b) or termination time (bsub -t)

Configure Chunk Job Dispatch

522 Administering Platform LSF

Running jobs with these characteristics without chunking can underutilize
resources because LSF spends more time scheduling and dispatching the jobs than
actually running them.
Configuring a special high-priority queue for short jobs is not desirable because
users may be tempted to send all of their jobs to this queue, knowing that it has high
priority.

Configure Chunk Job Dispatch

CHUNK_JOB_SIZE (lsb.queues)
By default, CHUNK_JOB_SIZE is not enabled.

1 To configure a queue to dispatch chunk jobs, specify the CHUNK_JOB_SIZE
parameter in the queue definition in lsb.queues.
For example, the following configures a queue named chunk, which dispatches
up to 4 jobs in a chunk:
Begin Queue
QUEUE_NAME = chunk
PRIORITY = 50
CHUNK_JOB_SIZE = 4
End Queue

Postrequisites: After adding CHUNK_JOB_SIZE to lsb.queues, use badmin
reconfig to reconfigure your cluster.

Chunk jobs and job
throughput

Throughput can deteriorate if the chunk job size is too big. Performance may
decrease on queues with CHUNK_JOB_SIZE greater than 30. You should evaluate
the chunk job size on your own systems for best performance.

CHUNK_JOB_SIZE (lsb.applications)
By default, CHUNK_JOB_SIZE is not enabled. Enabling application-level job
chunking overrides queue-level job chunking.

1 To configure an application profile to chunk jobs together, specify the
CHUNK_JOB_SIZE parameter in the application profile definition in
lsb.applications.
Specify CHUNK_JOB_SIZE=1 to disable job chunking for the application.
This value overrides chunk job dispatch configured in the queue.

Postrequisites: After adding CHUNK_JOB_SIZE to lsb.applications, use
badmin reconfig to reconfigure your cluster.

CHUNK_JOB_DURATION (lsb.params)
If CHUNK_JOB_DURATION is defined in the file lsb.params, a job submitted to
a chunk job queue is chunked under the following conditions:
◆ A job-level CPU limit or run time limit is specified (bsub -c or -W), or

Administering Platform LSF 523

Chunk Job Dispatch

◆ An application-level CPU limit, run time limit, or run time estimate is specified
(CPULIMIT, RUNLIMIT, or RUNTIME in lsb.applications), or

◆ A queue-level CPU limit or run time limit is specified (CPULIMIT or
RUNLIMIT in lsb.queues),

and the values of the CPU limit, run time limit, and run time estimate are all less
than or equal to the CHUNK_JOB_DURATION.
Jobs are not chunked if:
◆ The CPU limit, run time limit, or run time estimate is greater than the value of

CHUNK_JOB_DURATION, or
◆ No CPU limit, no run time limit, and no run time estimate are specified.
The value of CHUNK_JOB_DURATION is displayed by bparams -l.

1 After adding CHUNK_JOB_DURATION to lsb.params, use badmin
reconfig to reconfigure your cluster.
By default, CHUNK_JOB_DURATION is not enabled.

Restrictions on chunk jobs
CHUNK_JOB_SIZE is ignored and jobs are not chunked under the following
conditions:
◆ Interactive queues (INTERACTIVE = ONLY parameter)
◆ CPU limit greater than 30 minutes (CPULIMIT parameter in lsb.queues or

lsb.applications). If CHUNK_JOB_DURATION is set in lsb.params, the
job is chunked only if it is submitted with a CPU limit that is less than or equal
to the value of CHUNK_JOB_DURATION (bsub -c)

◆ Run limit greater than 30 minutes (RUNLIMIT parameter in lsb.queues or
lsb.applications). If CHUNK_JOB_DURATION is set in lsb.params, the
job is chunked only if it is submitted with a run limit that is less than or equal
to the value of CHUNK_JOB_DURATION (bsub -W)

◆ Run time estimate greater than 30 minutes (RUNTIME parameter in
lsb.applications)

Jobs submitted with the following bsub options are not chunked; they are
dispatched individually:
◆ -I (interactive jobs)
◆ -c (jobs with CPU limit greater than 30)
◆ -W (jobs with run limit greater than 30 minutes)
◆ -app (jobs associated with an application profile that specifies a run time

estimate or run time limit greater than 30 minutes, or a CPU limit greater than
30). CHUNK_JOB_SIZE is either not specified in the application, or
CHUNK_JOB_SIZE=1, which disables chunk job dispatch configured in the
queue.

◆ -R "cu[]" (jobs with a compute unit resource requirement).

Submitting and Controlling Chunk Jobs

524 Administering Platform LSF

Submitting and Controlling Chunk Jobs
When a job is submitted to a queue or application profile configured with the
CHUNK_JOB_SIZE parameter, LSF attempts to place the job in an existing chunk.
A job is added to an existing chunk if it has the same characteristics as the first job
in the chunk:
◆ Submitting user
◆ Resource requirements
◆ Host requirements
◆ Queue or application profile
◆ Job priority
If a suitable host is found to run the job, but there is no chunk available with the
same characteristics, LSF creates a new chunk.
Resources reserved for any member of the chunk are reserved at the time the chunk
is dispatched and held until the whole chunk finishes running. Other jobs requiring
the same resources are not dispatched until the chunk job is done.
For example, if all jobs in the chunk require a software license, the license is checked
out and each chunk job member uses it in turn. The license is not released until the
last chunk job member is finished running.

WAIT status
When sbatchd receives a chunk job, it does not start all member jobs at once. A
chunk job occupies a single job slot. Even if other slots are available, the chunk job
members must run one at a time in the job slot they occupy. The remaining jobs in
the chunk that are waiting to run are displayed as WAIT by bjobs. Any jobs in WAIT
status are included in the count of pending jobs by bqueues and busers. The
bhosts command shows the single job slot occupied by the entire chunk job in the
number of jobs shown in the NJOBS column.
The bhist -l command shows jobs in WAIT status as Waiting ...
The bjobs -l command does not display a WAIT reason in the list of pending jobs.

Controlling chunk jobs
Job controls affect the state of the members of a chunk job. You can perform the
following actions on jobs in a chunk job:

Action (Command) Job State Effect on Job (State)

Suspend (bstop) PEND Removed from chunk (PSUSP)
RUN All jobs in the chunk are suspended

(NRUN -1, NSUSP +1)
USUSP No change
WAIT Removed from chunk (PSUSP)

Kill (bkill) PEND Removed from chunk (NJOBS -1, PEND -1)
RUN Job finishes, next job in the chunk starts if one exists

(NJOBS -1, PEND -1)
USUSP Job finishes, next job in the chunk starts if one exists

(NJOBS -1, PEND -1, SUSP -1, RUN +1)

Administering Platform LSF 525

Chunk Job Dispatch

Migrating jobs with bmig changes the dispatch sequence of the chunk job members.
They are not redispatched in the order they were originally submitted.

Rerunnable chunk jobs
If the execution host becomes unavailable, rerunnable chunk job members are
removed from the queue and dispatched to a different execution host.
See Chapter 30, “Job Requeue and Job Rerun” for more information about
rerunnable jobs.

Checkpointing chunk jobs
Only running chunk jobs can be checkpointed. If bchkpnt -k is used, the job is also
killed after the checkpoint file has been created. If chunk job in WAIT state is
checkpointed, mbatchd rejects the checkpoint request.
See Chapter 31, “Job Checkpoint, Restart, and Migration” for more information
about checkpointing jobs.

Fairshare policies and chunk jobs
Fairshare queues can use job chunking. Jobs are accumulated in the chunk job so
that priority is assigned to jobs correctly according to the fairshare policy that
applies to each user. Jobs belonging to other users are dispatched in other chunks.

TERMINATE_WHEN job control action
If the TERMINATE_WHEN job control action is applied to a chunk job, sbatchd
kills the chunk job element that is running and puts the rest of the waiting elements
into pending state to be rescheduled later.

Enforce resource usage limits on chunk jobs
By default, resource usage limits are not enforced for chunk jobs because chunk jobs
are typically too short to allow LSF to collect resource usage.

1 To enforce resource limits for chunk jobs, define LSB_CHUNK_RUSAGE=Y
in lsf.conf. Limits may not be enforced for chunk jobs that take less than a
minute to run.

WAIT Job finishes (NJOBS-1, PEND -1)
Resume (bresume) USUSP Entire chunk is resumed (RUN +1, USUSP -1)
Migrate (bmig) WAIT Removed from chunk
Switch queue
(bswitch)

RUN Job is removed from the chunk and switched; all other
WAIT jobs are requeued to PEND

WAIT Only the WAIT job is removed from the chunk and
switched, and requeued to PEND

Checkpoint
(bchkpnt)

RUN Job is checkpointed normally

Modify (bmod) PEND Removed from the chunk to be scheduled later

Action (Command) Job State Effect on Job (State)

Submitting and Controlling Chunk Jobs

526 Administering Platform LSF

Administering Platform LSF 527

C H A P T E R

33
Job Arrays

LSF provides a structure called a job array that allows a sequence of jobs that share
the same executable and resource requirements, but have different input files, to be
submitted, controlled, and monitored as a single unit. Using the standard LSF
commands, you can also control and monitor individual jobs and groups of jobs
submitted from a job array.
After the job array is submitted, LSF independently schedules and dispatches the
individual jobs. Each job submitted from a job array shares the same job ID as the
job array and are uniquely referenced using an array index. The dimension and
structure of a job array is defined when the job array is created.

Contents
◆ Create a Job Array on page 527
◆ Handling Input and Output Files on page 529
◆ Job Array Dependencies on page 531
◆ Monitoring Job Arrays on page 531
◆ Controlling Job Arrays on page 533
◆ Requeuing a Job Array on page 536
◆ Job Array Job Slot Limit on page 537

Create a Job Array
A job array is created at job submission time using the -J option of bsub.

1 For example, the following command creates a job array named myArray made
up of 1000 jobs.
bsub -J "myArray[1-1000]" myJob
Job <123> is submitted to default queue <normal>.

Create a Job Array

528 Administering Platform LSF

Syntax
The bsub syntax used to create a job array follows:
bsub -J "arrayName[indexList, ...]" myJob

Where:
-J "arrayName[indexList, ...]"

Names and creates the job array. The square brackets, [], around indexList must
be entered exactly as shown and the job array name specification must be enclosed
in quotes. Commas (,) are used to separate multiple indexList entries. The
maximum length of this specification is 255 characters.
arrayName

User specified string used to identify the job array. Valid values are any combination
of the following characters:
a-z | A-Z | 0-9 | . | - | _

indexList = start[-end[:step]]

Specifies the size and dimension of the job array, where:
start: Specifies the start of a range of indices. Can also be used to specify an
individual index. Valid values are unique positive integers. For example, [1-5] and
[1, 2, 3, 4, 5] specify 5 jobs with indices 1 through 5.
end: Specifies the end of a range of indices. Valid values are unique positive
integers.
step: Specifies the value to increment the indices in a range. Indices begin at start,
increment by the value of step, and do not increment past the value of end. The
default value is 1. Valid values are positive integers. For example, [1-10:2] specifies
a range of 1-10 with step value 2 creating indices 1, 3, 5, 7, and 9.
After the job array is created (submitted), individual jobs are referenced using the
job array name or job ID and an index value. For example, both of the following
series of job array statements refer to jobs submitted from a job array named
myArray which is made up of 1000 jobs and has a job ID of 123:
myArray[1], myArray[2], myArray[3], ..., myArray[1000]
123[1], 123[2], 123[3], ..., 123[1000]

Change the maximum size of a job array
A large job array allows a user to submit a large number of jobs to the system with
a single job submission.

Administering Platform LSF 529

Job Arrays

By default, the maximum number of jobs in a job array is 1000, which means the
maximum size of a job array can never exceed 1000 jobs.

1 To make a change to the maximum job array value, set
MAX_JOB_ARRAY_SIZE in lsb.params to any positive integer between 1
and 2147483646. The maximum number of jobs in a job array cannot exceed
the value set by MAX_JOB_ARRAY_SIZE.

Handling Input and Output Files
LSF provides methods for coordinating individual input and output files for the
multiple jobs created when submitting a job array. These methods require your
input files to be prepared uniformly. To accommodate an executable that uses
standard input and standard output, LSF provides runtime variables (%I and %J)
that are expanded at runtime. To accommodate an executable that reads command
line arguments, LSF provides an environment variable (LSB_JOBINDEX) that is set
in the execution environment.

Methods
◆ Redirecting Standard Input and Output on page 529
◆ Passing Arguments on the Command Line on page 530

Prepare input files
LSF needs all the input files for the jobs in your job array to be located in the same
directory. By default LSF assumes the current working directory (CWD); the
directory from where bsub was issued.

1 To override CWD, specify an absolute path when submitting the job array.
Each file name consists of two parts, a consistent name string and a variable
integer that corresponds directly to an array index. For example, the following
file names are valid input file names for a job array. They are made up of the
consistent name input and integers that correspond to job array indices from
1 to 1000:
input.1, input.2, input.3, ..., input.1000

Redirecting Standard Input and Output
The variables %I and %J are used as substitution strings to support file redirection
for jobs submitted from a job array. At execution time, %I is expanded to provide
the job array index value of the current job, and %J is expanded at to provide the job
ID of the job array.

Passing Arguments on the Command Line

530 Administering Platform LSF

Redirect standard input

1 Use the -i option of bsub and the %I variable when your executable reads from
standard input.
To use %I, all the input files must be named consistently with a variable part
that corresponds to the indices of the job array. For example:
input.1, input.2, input.3, ..., input.N

For example, the following command submits a job array of 1000 jobs whose
input files are named input.1, input.2, input.3, ..., input.1000 and located
in the current working directory:
bsub -J "myArray[1-1000]" -i "input.%I" myJob

Redirect standard output and error

1 Use the -o option of bsub and the %I and %J variables when your executable
writes to standard output and error.
a To create an output file that corresponds to each job submitted from a job

array, specify %I as part of the output file name.
For example, the following command submits a job array of 1000 jobs
whose output files are put in CWD and named output.1, output.2,
output.3, ..., output.1000:
bsub -J "myArray[1-1000]" -o "output.%I" myJob

b To create output files that include the job array job ID as part of the file
name specify %J.
For example, the following command submits a job array of 1000 jobs
whose output files are put in CWD and named output.123.1,
output.123.2, output.123.3, ..., output.123.1000. The job ID of the
job array is 123.
bsub -J "myArray[1-1000]" -o "output.%J.%I" myJob

Passing Arguments on the Command Line
The environment variable LSB_JOBINDEX is used as a substitution string to
support passing job array indices on the command line. When the job is dispatched,
LSF sets LSB_JOBINDEX in the execution environment to the job array index of
the current job. LSB_JOBINDEX is set for all jobs. For non-array jobs,
LSB_JOBINDEX is set to zero (0).
To use LSB_JOBINDEX, all the input files must be named consistently and with a
variable part that corresponds to the indices of the job array. For example:
input.1, input.2, input.3, ..., input.N

You must escape LSB_JOBINDEX with a backslash, \, to prevent the shell
interpreting bsub from expanding the variable. For example, the following
command submits a job array of 1000 jobs whose input files are named input.1,

Administering Platform LSF 531

Job Arrays

input.2, input.3, ..., input.1000 and located in the current working directory.
The executable is being passed an argument that specifies the name of the input
files:
bsub -J "myArray[1-1000]" myJob -f input.\$LSB_JOBINDEX

Job Array Dependencies
Like all jobs in LSF, a job array can be dependent on the completion or partial
completion of a job or another job array. A number of job-array-specific
dependency conditions are provided by LSF.

Set a whole array dependency

1 To make a job array dependent on the completion of a job or another job array
use the -w "dependency_condition" option of bsub.
For example, to have an array dependent on the completion of a job or job array
with job ID 123, use the following command:
bsub -w "done(123)" -J "myArray2[1-1000]" myJob

Set a partial array dependency

1 To make a job or job array dependent on an existing job array , use one of the
following dependency conditions.

2 Use one the following operators (op) combined with a positive integer (num) to
build a condition:
== | > | < | >= |<= | !=

Optionally, an asterisk (*) can be used in place of num to mean all jobs
submitted from the job array.
For example, to start a job named myJob when 100 or more elements in a job
array with job ID 123 have completed successfully:
bsub -w "numdone(123, >= 100)" myJob

Monitoring Job Arrays
Use bjobs and bhist to monitor the current and past status of job arrays.

Condition Description

numrun(jobArrayJobId, op num) Evaluate the number of jobs in RUN state
numpend(jobArrayJobId, op num) Evaluate the number of jobs in PEND state
numdone(jobArrayJobId, op num) Evaluate the number of jobs in DONE state
numexit(jobArrayJobId, op num) Evaluate the number of jobs in EXIT state
numended(jobArrayJobId, op num) Evaluate the number of jobs in DONE and EXIT

state
numhold(jobArrayJobId, op num) Evaluate the number of jobs in PSUSP state
numstart(jobArrayJobId, op num) Evaluate the number of jobs in RUN and SSUSP

and USUSP state

Individual job status

532 Administering Platform LSF

Display job array status

1 To display summary information about the currently running jobs submitted
from a job array, use the -A option of bjobs.
 For example, a job array of 10 jobs with job ID 123:

bjobs -A 123
JOBID ARRAY_SPEC OWNER NJOBS PEND DONE RUN EXIT SSUSP USUSP PSUSP
123 myArra[1-10] user1 10 3 3 4 0 0 0 0

Display job array dependencies

1 To display information for any job dependency information for an array, use
the bjdepinfo command.
For example, a job array (with job ID 456) where you want to view the
dependencies on the third element of the array:

bjdepinfo -c "456[3]"

JOBID CHILD CHILD_STATUS CHILD_NAME LEVEL

456[3] 300 PEND job300 1

Individual job status

Display current job status

1 To display the status of the individual jobs submitted from a job array, specify
the job array job ID with bjobs. For jobs submitted from a job array, JOBID
displays the job array job ID, and JOBNAME displays the job array name and
the index value of each job.
For example, to view a job array with job ID 123:

bjobs 123
JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME
123 user1 DONE default hostA hostC myArray[1] Feb 29 12:34
123 user1 DONE default hostA hostQ myArray[2] Feb 29 12:34
123 user1 DONE default hostA hostB myArray[3] Feb 29 12:34
123 user1 RUN default hostA hostC myArray[4] Feb 29 12:34
123 user1 RUN default hostA hostL myArray[5] Feb 29 12:34
123 user1 RUN default hostA hostB myArray[6] Feb 29 12:34
123 user1 RUN default hostA hostQ myArray[7] Feb 29 12:34
123 user1 PEND default hostA myArray[8] Feb 29 12:34
123 user1 PEND default hostA myArray[9] Feb 29 12:34
123 user1 PEND default hostA myArray[10] Feb 29 12:34

Administering Platform LSF 533

Job Arrays

Display past job status

1 To display the past status of the individual jobs submitted from a job array,
specify the job array job ID with bhist.
For example, to view the history of a job array with job ID 456:

bhist 456
Summary of time in seconds spent in various states:
JOBID USER JOB_NAME PEND PSUSP RUN USUSP SSUSP UNKWN TOTAL
456[1] user1 *rray[1] 14 0 65 0 0 0 79
456[2] user1 *rray[2] 74 0 25 0 0 0 99
456[3] user1 *rray[3] 121 0 26 0 0 0 147
456[4] user1 *rray[4] 167 0 30 0 0 0 197
456[5] user1 *rray[5] 214 0 29 0 0 0 243
456[6] user1 *rray[6] 250 0 35 0 0 0 285
456[7] user1 *rray[7] 295 0 33 0 0 0 328
456[8] user1 *rray[8] 339 0 29 0 0 0 368
456[9] user1 *rray[9] 356 0 26 0 0 0 382
456[10]user1 *ray[10] 375 0 24 0 0 0 399

Specific job status

Display the current status of a specific job

1 To display the current status of a specific job submitted from a job array, specify
in quotes, the job array job ID and an index value with bjobs.
For example, the status of the 5th job in a job array with job ID 123:

bjobs "123[5]"
JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME
123 user1 RUN default hostA hostL myArray[5] Feb 29 12:34

Display the past status of a specific job

1 To display the past status of a specific job submitted from a job array, specify, in
quotes, the job array job ID and an index value with bhist.
For example, the status of the 5th job in a job array with job ID 456:

bhist "456[5]"
Summary of time in seconds spent in various states:
JOBID USER JOB_NAME PEND PSUSP RUN USUSP SSUSP UNKWN TOTAL
456[5] user1 *rray[5] 214 0 29 0 0 0 243

Controlling Job Arrays
You can control the whole array, all the jobs submitted from the job array, with a
single command. LSF also provides the ability to control individual jobs and groups
of jobs submitted from a job array. When issuing commands against a job array, use

Job Array Chunking

534 Administering Platform LSF

the job array job ID instead of the job array name. Job names are not unique in LSF,
and issuing a command using a job array name may result in unpredictable
behavior.
Most LSF commands allow operation on both the whole job array, individual jobs,
and groups of jobs. These commands include bkill, bstop, bresume, and bmod.
Some commands only allow operation on individual jobs submitted from a job
array. These commands include btop, bbot, and bswitch.

◆ Control a whole array
◆ Control individual jobs
◆ Control groups of jobs

Control a whole array

1 To control the whole job array, specify the command as you would for a single
job using only the job ID.
For example, to kill a job array with job ID 123:
bkill 123

Control individual jobs

1 To control an individual job submitted from a job array, specify the command
using the job ID of the job array and the index value of the corresponding job.
The job ID and index value must be enclosed in quotes.
For example, to kill the 5th job in a job array with job ID 123:
bkill "123[5]"

Control groups of jobs

1 To control a group of jobs submitted from a job array, specify the command as
you would for an individual job and use indexList syntax to indicate the jobs.
For example, to kill jobs 1-5, 239, and 487 in a job array with job ID 123:
bkill "123[1-5, 239, 487]"

Job Array Chunking
Job arrays in most queues can be chunked across an array boundary (not all jobs
must belong to the same array). However, if the queue is preemptable or
preemptive, the jobs are chunked when they belong to the same array.
For example:

Administering Platform LSF 535

Job Arrays

job1[1], job1[2], job2[1], job2[2] in a preemption queue with
CHUNK_JOB_SIZE=3

Then
◆ job1[1] and job1[2] are chunked.
◆ job2[1] and job2[2] are chunked.

Requeuing a Job Array

536 Administering Platform LSF

Requeuing a Job Array
Use brequeue to requeue a job array. When the job is requeued, it is assigned the
PEND status and the job’s new position in the queue is after other jobs of the same
priority. You can requeue:
◆ Jobs in DONE job state
◆ Jobs in EXIT job state
◆ All jobs regardless of job state in a job array.
◆ EXIT, RUN, DONE jobs to PSUSP state
◆ Jobs in RUN job state
brequeue is not supported across clusters.

Requeue jobs in DONE state

1 To requeue DONE jobs use the -d option of brequeue.
For example, the command brequeue -J "myarray[1-10]" -d 123 requeues
jobs with job ID 123 and DONE status.

Requeue Jobs in EXIT state

1 To requeue EXIT jobs use the -e option of brequeue.
For example, the command brequeue -J "myarray[1-10]" -e 123 requeues
jobs with job ID 123 and EXIT status.

Requeue all jobs in an array regardless of job state

1 A submitted job array can have jobs that have different job states. To requeue
all the jobs in an array regardless of any job’s state, use the -a option of
brequeue.
For example, the command brequeue -J "myarray[1-10]" -a 123 requeues
all jobs in a job array with job ID 123 regardless of their job state.

Requeue RUN jobs to PSUSP state

1 To requeue RUN jobs to PSUSP state, use the -H option of brequeue.
For example, the command brequeue -J "myarray[1-10]" -H 123 requeues
to PSUSP RUN status jobs with job ID 123.

Administering Platform LSF 537

Job Arrays

Requeue jobs in RUN state

1 To requeue RUN jobs use the -r option of brequeue.
For example, the command brequeue -J "myarray[1-10]" -r 123 requeues
jobs with job ID 123 and RUN status.

Job Array Job Slot Limit
The job array job slot limit is used to specify the maximum number of jobs
submitted from a job array that are allowed to run at any one time. A job array
allows a large number of jobs to be submitted with one command, potentially
flooding a system, and job slot limits provide a way to limit the impact a job array
may have on a system. Job array job slot limits are specified using the following
syntax:

bsub -J "job_array_name[index_list]%job_slot_limit" myJob

where:
%job_slot_limit Specifies the maximum number of jobs allowed to run at any one time. The percent

sign (%) must be entered exactly as shown. Valid values are positive integers less
than the maximum index value of the job array.

Setting a job array job slot limit

Set a job array slot
limit at submission

1 Use the bsub command to set a job slot limit at the time of submission.
To set a job array job slot limit of 100 jobs for a job array of 1000 jobs:
bsub -J "job_array_name[1000]%100" myJob

Set a job array slot
limit after
submission

1 Use the bmod command to set a job slot limit after submission.
For example, to set a job array job slot limit of 100 jobs for an array with job ID
123:
bmod -J "%100" 123

Change a job array job slot limit
Changing a job array job slot limit is the same as setting it after submission.

1 Use the bmod command to change a job slot limit after submission.
For example, to change a job array job slot limit to 250 for a job array with job
ID 123:
bmod -J "%250" 123

Job Array Job Slot Limit

538 Administering Platform LSF

View a job array job slot limit

1 To view job array job slot limits use the -A and -l options of bjobs. The job
array job slot limit is displayed in the Job Name field in the same format in
which it was set.
For example, the following output displays the job array job slot limit of 100 for
a job array with job ID 123:

bjobs -A -l 123
Job <123>, Job Name <myArray[1-1000]%100>, User <user1>, Project <default>, Sta
 tus <PEND>, Queue <normal>, Job Priority <20>, Command <my
 Job>
Wed Feb 29 12:34:56: Submitted from host <hostA>, CWD <$HOME>;

 COUNTERS:
 NJOBS PEND DONE RUN EXIT SSUSP USUSP PSUSP
 10 9 0 1 0 0 0 0

Administering Platform LSF 539

C H A P T E R

34
Running Parallel Jobs

Contents
◆ How LSF Runs Parallel Jobs on page 540
◆ Preparing Your Environment to Submit Parallel Jobs to LSF on page 541
◆ Submitting Parallel Jobs on page 542
◆ Starting Parallel Tasks with LSF Utilities on page 543
◆ Job Slot Limits For Parallel Jobs on page 545
◆ Specifying a Minimum and Maximum Number of Processors on page 546
◆ Specifying a First Execution Host on page 547
◆ Controlling Processor Allocation Across Hosts on page 556
◆ Controlling Job Locality using Compute Units on page 549
◆ Running Parallel Processes on Homogeneous Hosts on page 559
◆ Limiting the Number of Processors Allocated on page 561
◆ Reserving Processors on page 564
◆ Reserving Memory for Pending Parallel Jobs on page 566
◆ Backfill Scheduling: Allowing Jobs to Use Reserved Job Slots on page 567
◆ Parallel Fairshare on page 576
◆ How Deadline Constraint Scheduling Works For Parallel Jobs on page 577
◆ Optimized Preemption of Parallel Jobs on page 578
◆ Processor Binding for Parallel Jobs on page 578
◆ Job Allocations that Grow and Shrink (Resizable) on page 580

How LSF Runs Parallel Jobs

540 Administering Platform LSF

How LSF Runs Parallel Jobs
When LSF runs a job, the LSB_HOSTS variable is set to the names of the hosts
running the batch job. For a parallel batch job, LSB_HOSTS contains the complete
list of hosts that LSF has allocated to that job.
LSF starts one controlling process for the parallel batch job on the first host in the
host list. It is up to your parallel application to read the LSB_HOSTS environment
variable to get the list of hosts, and start the parallel job components on all the other
allocated hosts.
LSF provides a generic interface to parallel programming packages so that any
parallel package can be supported by writing shell scripts or wrapper programs.

Administering Platform LSF 541

Running Parallel Jobs

Preparing Your Environment to Submit Parallel Jobs to LSF

Getting the host list
Some applications can take this list of hosts directly as a command line parameter.
For other applications, you may need to process the host list.

Example The following example shows a /bin/sh script that processes all the hosts in the
host list, including identifying the host where the job script is executing.
#!/bin/sh
Process the list of host names in LSB_HOSTS

for host in $LSB_HOSTS ; do
handle_host $host
done

Parallel job scripts
Each parallel programming package has different requirements for specifying and
communicating with all the hosts used by a parallel job. LSF is not tailored to work
with a specific parallel programming package. Instead, LSF provides a generic
interface so that any parallel package can be supported by writing shell scripts or
wrapper programs.
You can modify these scripts to support more parallel packages.
For more information, see Submitting Parallel Jobs on page 542

Use a job starter
You can configure the script into your queue as a job starter, and then all users can
submit parallel jobs without having to type the script name. See Queue-Level Job
Starters on page 634 for more information about job starters.

1 To see if your queue already has a job starter defined, run bqueues -l.

Submitting Parallel Jobs

542 Administering Platform LSF

Submitting Parallel Jobs
LSF can allocate more than one host or processor to run a job and automatically
keeps track of the job status, while a parallel job is running.

Specify the number of processors
When submitting a parallel job that requires multiple processors, you can specify
the exact number of processors to use.

1 To submit a parallel job, use bsub -n and specify the number of processors the
job requires.

2 To submit jobs based on the number of available job slots instead of the number
of processors, use PARALLEL_SCHED_BY_SLOT=Y in lsb.params.
For example:
bsub -n 4 myjob

submits myjob as a parallel job. The job is started when 4 job slots are available.

TIP: When PARALLEL_SCHED_BY_SLOT=Y in lsb.params, the resource requirement
string keyword ncpus refers to the number of slots instead of the number of processors,
however lshosts output will continue to show ncpus as defined by
EGO_DEFINE_NCPUS in lsf.conf.

Administering Platform LSF 543

Running Parallel Jobs

Starting Parallel Tasks with LSF Utilities
For simple parallel jobs you can use LSF utilities to start parts of the job on other
hosts. Because LSF utilities handle signals transparently, LSF can suspend and
resume all components of your job without additional programming.

Running parallel tasks with lsgrun
The simplest parallel job runs an identical copy of the executable on every host. The
lsgrun command takes a list of host names and runs the specified task on each
host. The lsgrun -p command specifies that the task should be run in parallel on
each host.

Example This example submits a job that uses lsgrun to run myjob on all the selected hosts
in parallel:
bsub -n 10 ’lsgrun -p -m "$LSB_HOSTS" myjob’
Job <3856> is submitted to default queue <normal>.

For more complicated jobs, you can write a shell script that runs lsrun in the
background to start each component.

Running parallel tasks with the blaunch distributed application framework
Most MPI implementations and many distributed applications use rsh and ssh as
their task launching mechanism. The blaunch command provides a drop-in
replacement for rsh and ssh as a transparent method for launching parallel and
distributed applications within LSF.
Similar to the lsrun command, blaunch transparently connects directly to the
RES/SBD on the remote host, and subsequently creates and tracks the remote tasks,
and provides the connection back to LSF. There is no need to insert pam or
taskstarter into the rsh or ssh calling sequence, or configure any wrapper scripts.

IMPORTANT: You cannot run blaunch directly from the command line.

blaunch only works within an LSF job; it can only be used to launch tasks on
remote hosts that are part of a job allocation. It cannot be used as a standalone
command. On success blaunch exits with 0.
Windows: blaunch is supported on Windows 2000 or later with the following
exceptions:
◆ Only the following signals are supported: SIGKILL, SIGSTOP, SIGCONT.
◆ The -n option is not supported.
◆ CMD.EXE /C <user command line> is used as intermediate command shell

when: -no-shell is not specified
◆ CMD.EXE /C is not used when -no-shell is specified.
◆ Windows Vista User Account Control must be configured correctly to run jobs.
See Using Platform LSF HPC for more information about using the blaunch
distributed application framework.

Submitting jobs
with blaunch

Use bsub to call blaunch, or to invoke a job script that calls blaunch. The blaunch
command assumes that bsub -n implies one remote task per job slot.

Starting Parallel Tasks with LSF Utilities

544 Administering Platform LSF

◆ Submit a parallel job:
bsub -n 4 blaunch myjob

◆ Submit a parallel job to launch tasks on a specific host:
bsub -n 4 blaunch hostA myjob

◆ Submit a job with a host list:
bsub -n 4 blaunch -z "hostA hostB" myjob

◆ Submit a job with a host file:
bsub -n 4 blaunch -u ./hostfile myjob

◆ Submit a job to an application profile
bsub -n 4 -app pjob blaunch myjob

Administering Platform LSF 545

Running Parallel Jobs

Job Slot Limits For Parallel Jobs
A job slot is the basic unit of processor allocation in LSF. A sequential job uses one
job slot. A parallel job that has N components (tasks) uses N job slots, which can
span multiple hosts.
By default, running and suspended jobs count against the job slot limits for queues,
users, hosts, and processors that they are associated with.
With processor reservation, job slots reserved by pending jobs also count against all
job slot limits.
When backfilling occurs, the job slots used by backfill jobs count against the job slot
limits for the queues and users, but not hosts or processors. This means when a
pending job and a running job occupy the same physical job slot on a host, both
jobs count towards the queue limit, but only the pending job counts towards host
limit.

Specifying a Minimum and Maximum Number of Processors

546 Administering Platform LSF

Specifying a Minimum and Maximum Number of Processors
By default, when scheduling a parallel job, the number of slots allocated on each
host will not exceed the number of CPUs on that host even though host MXJ is set
greater than number of CPUs. When submitting a parallel job, you can also specify
a minimum number and a maximum number of processors.
If you specify a maximum and minimum number of processors, the job starts as
soon as the minimum number of processors is available, but it uses up to the
maximum number of processors, depending on how many processors are available
at the time. Once the job starts running, no more processors are allocated to it even
though more may be available later on.
Jobs that request fewer processors than the minimum PROCLIMIT defined for the
queue or application profile to which the job is submitted, or more processors than
the maximum PROCLIMIT are rejected. If the job requests minimum and
maximum processors, the maximum requested cannot be less than the minimum
PROCLIMIT, and the minimum requested cannot be more than the maximum
PROCLIMIT.
If PARALLEL_SCHED_BY_SLOT=Y in lsb.params, the job specifies a maximum and
minimum number of job slots instead of processors. LSF ignores the number of
CPUs constraint during parallel job scheduling and only schedules based on slots.
If PARALLEL_SCHED_BY_SLOT is not defined for a resizable job, individual
allocation requests are constrained by the number of CPUs during scheduling.
However, the final resizable job allocation may not agree. For example, if an
autoresizable job requests 1 to 4 slots, on a 2 CPUs 4 slots box, an autoresizable job
eventually will use up to 4 slots.

Syntax
bsub -n min_proc[,max_proc]

Example
bsub -n 4,16 myjob

At most, 16 processors can be allocated to this job. If there are less than 16
processors eligible to run the job, this job can still be started as long as the number
of eligible processors is greater than or equal to 4.

Administering Platform LSF 547

Running Parallel Jobs

Specifying a First Execution Host
In general, the first execution host satisfies certain resource requirements that
might not be present on other available hosts.
By default, LSF selects the first execution host dynamically according to the
resource availability and host load for a parallel job. Alternatively, you can specify
one or more first execution host candidates so that LSF selects one of the candidates
as the first execution host.
When a first execution host is specified to run the first task of a parallel application,
LSF does not include the first execution host or host group in a job resize allocation
request.

Specify a first execution host
To specify one or more hosts, host groups, or compute units as first execution host
candidates, add the (!) symbol after the host name. You can specify first execution
host candidates at job submission, or in the queue definition.

Job level 1 Use the -m option of bsub:
bsub -n 32 -m "hostA! hostB hostgroup1! hostC" myjob

The scheduler selects either hostA or a host defined in hostgroup1 as the first
execution host, based on the job’s resource requirements and host availability.

2 In a MultiCluster environment, insert the (!) symbol after the cluster name, as
shown in the following example:
bsub -n 2 -m "host2@cluster2! host3@cluster2" my_parallel_job

Queue level The queue-level specification of first execution host candidates applies to all jobs
submitted to the queue.

1 Specify the first execution host candidates in the list of hosts in the HOSTS
parameter in lsb.queues:
HOSTS = hostA! hostB hostgroup1! hostC

Rules Follow these guidelines when you specify first execution host candidates:
◆ If you specify a host group or compute unit, you must first define the host group

or compute unit in the file lsb.hosts.
◆ Do not specify a dynamic host group as a first execution host.
◆ Do not specify “all,” "allremote," or “others,” or a host partition as a first

execution host.
◆ Do not specify a preference (+) for a host identified by (!) as a first execution

host candidate.
◆ For each parallel job, specify enough regular hosts to satisfy the CPU

requirement for the job. Once LSF selects a first execution host for the current
job, the other first execution host candidates
❖ Become unavailable to the current job

Specifying a First Execution Host

548 Administering Platform LSF

❖ Remain available to other jobs as either regular or first execution hosts
◆ You cannot specify first execution host candidates when you use the brun

command.
If the first execution host is incorrect at job submission, the job is rejected. If
incorrect configurations exist on the queue level, warning messages are logged and
displayed when LSF starts, restarts or is reconfigured.

Job chunking Specifying first execution host candidates affects job chunking. For example, the
following jobs have different job requirements, and is not placed in the same job
chunk:
bsub -n 2 -m "hostA! hostB hostC" myjob

bsub -n 2 -m "hostA hostB hostC" myjob

bsub -n 2 -m "hostA hostB! hostC" myjob

The requirements of each job in this example are:
◆ Job 1 must start on hostA
◆ Job 2 can start and run on hostA, hostB, or hostC
◆ Job 3 must start on hostB
For job chunking, all jobs must request the same hosts and the same first execution
hosts (if specified). Jobs that specify a host preference must all specify the same
preference.

Resource
reservation

If you specify first execution host candidates at the job or queue level, LSF tries to
reserve a job slot on the first execution host. If LSF cannot reserve a first execution
host job slot, it does not reserve slots on any other hosts.

Compute units If compute units resource requirements are used, the compute unit containing the
first execution host is given priority:
bsub -n 64 -m "hg! cu1 cu2 cu3 cu4" -R "cu[pref=config]" myjob

In this example the first execution host is selected from the host group hg. Next in
the job’s allocation list are any appropriate hosts from the same compute unit as the
first execution host. Finally remaining hosts are grouped by compute unit, with
compute unit groups appearing in the same order as in the ComputeUnit section of
lsb.hosts.

Compound
resource
requirements

If compound resource requirements are being used, the resource requirements
specific to the first execution host should appear first:
bsub -m "hostA! hg12" -R "1*{select[type==X86_64]rusage[licA=1]} +
{select[type==any]}" myjob

In this example the first execution host must satisfy:
select[type==X86_64]rusage[licA=1]

Administering Platform LSF 549

Running Parallel Jobs

Controlling Job Locality using Compute Units
Compute units are groups of hosts laid out by the LSF administrator and configured
to mimic the network architecture, minimizing communications overhead for
optimal placement of parallel jobs. Different granularities of compute units provide
the flexibility to configure an extensive cluster accurately and run larger jobs over
larger compute units.
Resource requirement keywords within the compute unit section can be used to
allocate resources throughout compute units in manner analogous to host resource
allocation. Compute units then replace hosts as the basic unit of allocation for a job.
High performance computing clusters running large parallel jobs spread over many
hosts benefit from using compute units. Communications bottlenecks within the
network architecture of a large cluster can be isolated through careful configuration
of compute units. Using compute units instead of hosts as the basic allocation unit,
scheduling policies can be applied on a large scale.

TIP: Configure each individual host as a compute unit to use the compute unit features for host
level job allocation.

As indicated in the picture, two types of compute units have been defined in the
parameter COMPUTE_UNIT_TYPES in lsb.params:
COMPUTE_UNIT_TYPES= enclosure! rack

Controlling Job Locality using Compute Units

550 Administering Platform LSF

! indicates the default compute unit type. The first type listed (enclosure) is the
finest granularity and the only type of compute unit containing hosts and host
groups. Coarser granularity rack compute units can only contain enclosures.
The hosts have been grouped into compute units in the ComputeUnit section of
lsb.hosts as follows (some lines omitted):
Begin ComputeUnit

NAME MEMBER CONDENSED TYPE

enclosure1 (host1[01-16]) Y enclosure

...

enclosure8 (host8[01-16]) Y enclosure

rack1 (enclosure[1-2]) Y rack

rack2 (enclosure[3-4]) Y rack

rack3 (enclosure[5-6]) Y rack

rack4 (enclosure[7-8]) Y rack

End ComputeUnit

This example defines 12 compute units, all of which have condensed output:
◆ enclosure1 through enclosure8 are the finest granularity, and each contain

16 hosts.
◆ rack1, rack2, rack3, and rack4 are the coarsest granularity, and each contain

2 enclosures.

Syntax The cu string supports the following syntax:

cu[balance] All compute units used for this job should contribute the same number of slots (to
within one slot). Provides a balanced allocation over the fewest possible compute
units.

cu[pref=config] Compute units for this job are considered in the order they appear in the
lsb.hosts configuration file. This is the default value.

cu[pref=minavail] Compute units with the fewest available slots are considered first for this job. Useful
for smaller jobs (both sequential and parallel) since this reduces fragmentation of
compute units, leaving whole compute units free for larger jobs.

cu[pref=maxavail] Compute units with the most available slots are considered first for this job.
cu[maxcus=number] Maximum number of compute units the job can run across.
cu[usablecuslots=nu

mber]
All compute units used for this job should contribute the same minimum number
of slots. At most the final allocated compute unit can contribute fewer than number
slots.

cu[type=cu_type] Type of compute unit being used, where cu_type is one of the types defined by
COMPUTE_UNIT_TYPES in lsb.params. The default is the compute unit type listed
first in lsb.params.

cu[excl] Compute units used exclusively for the job. Must be enabled by EXCLUSIVE in
lsb.queues.

Administering Platform LSF 551

Running Parallel Jobs

Continuing with the example shown above, assume lsb.queues contains the
parameter definition EXCLUSIVE=CU[rack] and that the slots available for each
compute unit are shown under MAX in the condensed display from bhosts, where
HOST_NAME refers to the compute unit:
HOST_NAME STATUS JL/U MAX NJOBS RUN SSUSP USUSP RSV

enclosure1 ok - 64 34 34 0 0 0

enclosure2 ok - 64 54 54 0 0 0

enclosure3 ok - 64 46 46 0 0 0

enclosure4 ok - 64 44 44 0 0 0

enclosure5 ok - 64 45 45 0 0 0

enclosure6 ok - 64 44 44 0 0 0

enclosure7 ok - 32 0 0 0 0 0

enclosure8 ok - 64 0 0 0 0 0

rack1 ok - 128 88 88 0 0 0

rack2 ok - 128 90 90 0 0 0

rack3 ok - 128 89 89 0 0 0

rack4 ok - 128 0 0 0 0 0

Based on the 12 configured compute units, jobs can be submitted with a variety of
compute unit requirements.

Using compute units
1 bsub -R "cu[]" -n 64 ./app

This job is restricted to compute units of the default type enclosure. The
default pref=config applies, with compute units considered in configuration
order. The job runs on 30 slots in enclosure1, 10 slots in enclosure2, 8 slots
in enclosure3, and 16 slots in enclosure4 for a total of 64 slots.

2 Compute units can be considered in order of most free slots or fewest free slots,
where free slots include any slots available and not occupied by a running job.
bsub -R "cu[pref=minavail]" -n 32 ./app

This job is restricted to compute units of the default type enclosure in the
order pref=minavail. Compute units with the fewest free slots are considered
first. The job runs on 10 slots in enclosure2, 18 slots in enclosure3 and 3 slots
in enclosure5 for a total of 32 slots.

3 bsub -R "cu[type=rack:pref=maxavail]" -n 64 ./app

This job is restricted to compute units of the default type enclosure in the
order pref=maxavail. Compute units with the most free slots are considered
first. The job runs on 64 slots in enclosure8.

Localized allocations
Jobs can be run over a limited number of compute units using the maxcus keyword.
1 bsub -R "cu[pref=maxavail:maxcus=1]" ./app

This job is restricted to a single enclosure, and compute units with the most free
slots are considered first. The job requirements are satisfied by enclosure8
which has 64 free slots.

2 bsub -n 64 -R "cu[maxcus=3]" ./app

Controlling Job Locality using Compute Units

552 Administering Platform LSF

This job requires a total of 64 slots over 3 enclosures or less. Compute units are
considered in configuration order. The job requirements are satisfied by the
following allocation:

Balanced slot allocations
Balanced allocations split jobs evenly between compute units, which increases the
efficiency of some applications.
1 bsub -n 80 -R "cu[balance:maxcus=4]" ./app

This job requires a balanced allocation over the fewest possible compute units
of type enclosure (the default type), with a total of 80 slots. Since none of the
configured enclosures have 80 slots, 2 compute units with 40 slots each are
used, satisfying the maxcus requirement to use 4 compute units or less.
The keyword pref is not included so the default order of pref=config is used.
The job requirements are satisfied by 40 slots on both enclosure7 and
enclosure8 for a total of 80 slots.

2 bsub -n 64 -R "cu[balance:type=rack:pref=maxavail]" ./app

This job requires a balanced allocation over the fewest possible compute units
of type rack, with a total of 64 slots. Compute units with the most free slots are
considered first, in the order rack4, rack1, rack3, rack2. The job
requirements are satisfied by rack4.

3 bsub -n "40,80" -R "cu[balance:pref=minavail]" ./app

This job requires a balanced allocation over compute units of type rack, with a
range of 40 to 80 slots. Only the minimum number of slots is considered when
a range is specified along with keyword balance, so the job needs 40 slots.
Compute units with the fewest free slots are considered first.
Because balance uses the fewest possible compute units, racks with 40 or more
slots are considered first, namely rack1 and rack4. The rack with the fewest
available slots is then selected, and all job requirements are satisfied by rack1.

Balanced host allocations
Using balance and ptile together within the requirement string results in a
balanced host allocation over compute units, and the same number of slots from
each host. The final host may provide fewer slots if required.
◆ bsub -n 64 -R "cu[balance] span[ptile=4]" ./app

This job requires a balanced allocation over the fewest possible compute units
of type enclosure, with a total of 64 slots. Each host used must provide 4 slots.
Since enclosure8 has 64 slots available over 16 hosts (4 slots per host), it
satisfies the job requirements.
Had enclosure8 not satisfied the requirements, other possible allocations in
order of consideration (fewest compute units first) include:

compute unit free slots

enclosure1 30

enclosure3 18

enclosure4 16

Administering Platform LSF 553

Running Parallel Jobs

Minimum slot allocations
Minimum slot allocations result in jobs spreading over fewer compute units, and
ignoring compute units with few hosts available.
1 bsub -n 45 -R "cu[usablecuslots=10:pref=minavail]" ./app

This job requires an allocation of at least 10 slots in each enclosure, except
possibly the last one. Compute units with the fewest free slots are considered
first. The requirements are satisfied by a slot allocation of:

2 bsub -n "1,140" -R "cu[usablecuslots=20]" ./app

This job requires an allocation of at least 20 slots in each enclosure, except
possibly the last one. Compute units are considered in configuration order and
as close to 140 slots are allocated as possible. The requirements are satisfied by
an allocation of 140 slots, where only the last compute unit has fewer than 20
slots allocated as follows:

Exclusive compute unit jobs
Because EXCLUSIVE=CU[rack] in lsb.queues, jobs may use compute units of type
rack or finer granularity type enclosure exclusively. Exclusive jobs lock all
compute units they run in, even if not all slots are being used by the job. Running
compute unit exclusive jobs minimizes communications slowdowns resulting from
shared network bandwidth.
1 bsub -R "cu[excl:type=enclosure]" ./app

This job requires exclusive use of an enclosure with compute units considered
in configuration order. The first enclosure not running any jobs is enclosure7.

2 Using excl with usablecuslots, the job avoids compute units where a large
portion of the hosts are unavailable.
bsub -n 90 -R "cu[excl:usablecuslots=12:type=enclosure]" ./app

number of
compute units

number of hosts

2 8+8

3 5+5+6

4 4+4+4+4

5 3+3+3+3+4

compute unit number of slots

enclosure2 10

enclosure5 19

enclosure4 16

compute unit number of slots

enclosure1 30

enclosure4 20

enclosure6 20

enclosure7 64

enclosure2 6

Controlling Job Locality using Compute Units

554 Administering Platform LSF

This job requires exclusive use of compute units, and will not use a compute
unit if fewer than 12 slots are available. Compute units are considered in
configuration order. In this case the job requirements are satisfied by 64 slots in
enclosure7 and 26 slots in enclosure8.

3 bsub -R "cu[excl]" ./app

This job requires exclusive use of a rack with compute units considered in
configuration order. The only rack not running any jobs is rack4.

Reservation
Compute unit constraints such as keywords maxcus, balance, and excl can result
in inaccurately predicted start times from default LSF resource reservation.
Time-based resource reservation provides a more accurate pending job predicted
start time. When calculating job a time-based predicted start time, LSF considers
job scheduling constraints and requirements, including job topology and resource
limits, for example.

Host-level compute
units

Configuring each individual host as a compute unit allows you to use the compute
unit features for host level job allocation. Consider an example where one type of
compute units has been defined in the parameter COMPUTE_UNIT_TYPES in
lsb.params:
COMPUTE_UNIT_TYPES= host!

The hosts have been grouped into compute hosts in the ComputeUnit section of
lsb.hosts as follows:
Begin ComputeUnit

NAME MEMBER TYPE

h1 host1 host

h2 host2 host

...

h50 host50 host

End ComputeUnit

Each configured compute unit of default type host contains a single host.

Ordering host allocations
Using the compute host keyword pref, hosts can be considered in order of most
free slots or fewest free slots, where free slots include any slots available and not
occupied by a running job:
1 bsub -R "cu[]" ./app

Compute units of default type host, each containing a single host, are
considered in configuration order.

2 bsub -R "cu[pref=minavail]" ./app

Compute units of default type host each contain a single host. Compute units
with the fewest free slots are considered first.

3 bsub -n 20 -R "cu[pref=maxavail]" ./app

Compute units of default type host each contain a single host. Compute units
with the most free slots are considered first. A total of 20 slots are allocated for
this job.

Administering Platform LSF 555

Running Parallel Jobs

Limiting hosts in allocations
Using the compute unit keyword maxcus, the maximum number of hosts allocated
to a job can be set:
◆ bsub -n 12 -R "cu[pref=maxavail:maxcus=3]" ./app

Compute units of default type host each contain a single host. Compute units
with the most free slots are considered first. This job requires an allocation of
12 slots over at most 3 hosts.

Balanced slot allocations
Using the compute unit keyword balance, jobs can be evenly distributed over
hosts:
1 bsub -n 9 -R "cu[balance]" ./app

Compute units of default type host, each containing a single host, are
considered in configuration order. Possible balanced allocations are:

2 bsub -n 9 -R "cu[balance:maxcus=3]" ./app

Compute units of default type host, each containing a single host, are
considered in configuration order. Possible balanced allocations are 1 host with
9 slots, 2 hosts with 4 and 5 slots, or 3 hosts with 3 slots each.

Minimum slot allocations
Using the compute unit keyword usablecuslots, hosts are only considered if they
have a minimum number of slots free and usable for this job:
1 bsub -n 16 -R "cu[usablecuslots=4]" ./app

Compute units of default type host, each containing a single host, are
considered in configuration order. Only hosts with 4 or more slots available and
not occupied by a running job are considered. Each host (except possibly the
last host allocated) must contribute at least 4 slots to the job.

2 bsub -n 16 -R "rusage[mem=1000] cu[usablecuslots=4]" ./app

Compute units of default type host, each containing a single host, are
considered in configuration order. Only hosts with 4 or more slots available,
not occupied by a running job, and with 1000 memory units are considered. A
host with 10 slots and 2000 units of memory, for example, will only have 2 slots
free that satisfy the memory requirements of this job.

compute units hosts number of slots per
host

1 1 9

2 2 4, 5

3 3 3, 3, 3

4 4 2, 2, 2, 3

5 5 2, 2, 2, 2, 1

6 6 2, 2, 2, 1, 1, 1

7 7 2, 2, 1, 1, 1, 1, 1

8 8 2, 1, 1, 1, 1, 1, 1, 1

9 9 1, 1, 1, 1, 1, 1, 1, 1, 1

Controlling Processor Allocation Across Hosts

556 Administering Platform LSF

Controlling Processor Allocation Across Hosts
Sometimes you need to control how the selected processors for a parallel job are
distributed across the hosts in the cluster.
You can control this at the job level or at the queue level. The queue specification is
ignored if your job specifies its own locality.

Specifying parallel job locality at the job level
By default, LSF does allocate the required processors for the job from the available
set of processors.
A parallel job may span multiple hosts, with a specifiable number of processes
allocated to each host. A job may be scheduled on to a single multiprocessor host
to take advantage of its efficient shared memory, or spread out on to multiple hosts
to take advantage of their aggregate memory and swap space. Flexible spanning
may also be used to achieve parallel I/O.
You are able to specify “select all the processors for this parallel batch job on the
same host”, or “do not choose more than n processors on one host” by using the
span section in the resource requirement string (bsub -R or RES_REQ in the queue
definition in lsb.queues).
If PARALLEL_SCHED_BY_SLOT=Y in lsb.params, the span string is used to control
the number of job slots instead of processors.

Syntax The span string supports the following syntax:

span[hosts=1] Indicates that all the processors allocated to this job must be on the same host.
span[ptile=value] Indicates the number of processors on each host that should be allocated to the job,

where value is one of the following:
◆ Default ptile value, specified by n processors. In the following example, the

job requests 4 processors on each available host, regardless of how many
processors the host has:
span[ptile=4]

◆ Predefined ptile value, specified by ’!’. The following example uses the
predefined maximum job slot limit lsb.hosts (MXJ per host type/model) as
its value:
span[ptile='!']

TIP: If the host or host type/model does not define MXJ, the default predefined ptile value is
1.

◆ Predefined ptile value with optional multiple ptile values, per host type or
host model:
❖ For host type, you must specify same[type] in the resource requirement.

In the following example, the job requests 8 processors on a host of type HP
or SGI, and 2 processors on a host of type LINUX, and the predefined
maximum job slot limit in lsb.hosts (MXJ) for other host types:
span[ptile='!',HP:8,SGI:8,LINUX:2] same[type]

Administering Platform LSF 557

Running Parallel Jobs

❖ For host model, you must specify same[model] in the resource
requirement. In the following example, the job requests 4 processors on
hosts of model PC1133, and 2 processors on hosts of model PC233, and the
predefined maximum job slot limit in lsb.hosts (MXJ) for other host
models:
span[ptile='!',PC1133:4,PC233:2] same[model]

span[hosts=-1] Disables span setting in the queue. LSF allocates the required processors for the job
from the available set of processors.

Specifying multiple ptile values
In a span string with multiple ptile values, you must specify a predefined default
value (ptile='!') and either host model or host type.
You can specify both type and model in the same section in the resource
requirement string, but the ptile values must be the same type.
If you specify same[type:model], you cannot specify a predefined ptile value (!)
in the span section.

RESTRICTION: Under bash 3.0, the exclamation mark (!) is not interpreted correctly by the shell. To
use predefined ptile value (ptile='!'), use the +H option to disable '!' style history substitution in
bash (sh +H).

The following span strings are valid:
same[type:model] span[ptile=LINUX:2,SGI:4]

LINUX and SGI are both host types and can appear in the same span string.
same[type:model] span[ptile=PC233:2,PC1133:4]

PC233 and PC1133 are both host models and can appear in the same span string.
You cannot mix host model and host type in the same span string. The following
span strings are not correct:
span[ptile='!',LINUX:2,PC1133:4] same[model]

span[ptile='!',LINUX:2,PC1133:4] same[type]

The LINUX host type and PC1133 host model cannot appear in the same span string.

Multiple ptile values for a host type

For host type, you must specify same[type] in the resource requirement. For
example:
span[ptile='!',HP:8,SGI:8,LINUX:2] same[type]

The job requests 8 processors on a host of type HP or SGI, and 2 processors on a host
of type LINUX, and the predefined maximum job slot limit in lsb.hosts (MXJ) for
other host types.

Multiple ptile values for a host model

For host model, you must specify same[model] in the resource requirement. For
example:
span[ptile='!',PC1133:4,PC233:2] same[model]

Controlling Processor Allocation Across Hosts

558 Administering Platform LSF

The job requests 4 processors on hosts of model PC1133, and 2 processors on hosts
of model PC233, and the predefined maximum job slot limit in lsb.hosts (MXJ)
for other host models.

Examples
bsub -n 4 -R "span[hosts=1]" myjob

Runs the job on a host that has at least 4 processors currently eligible to run the 4
components of this job.
bsub -n 4 -R "span[ptile=2]" myjob

Runs the job on 2 hosts, using 2 processors on each host. Each host may have more
than 2 processors available.
bsub -n 4 -R "span[ptile=3]" myjob

Runs the job on 2 hosts, using 3 processors on the first host and 1 processor on the
second host.
bsub -n 4 -R "span[ptile=1]" myjob

Runs the job on 4 hosts, even though some of the 4 hosts may have more than one
processor currently available.

bsub -n 4 -R "type==any same[type] span[ptile='!',LINUX:2,SGI:4]" myjob

Submits myjob to request 4 processors running on 2 hosts of type LINUX (2
processors per host), or a single host of type SGI, or for other host types, the
predefined maximum job slot limit in lsb.hosts (MXJ).

bsub -n 16 -R "type==any same[type] span[ptile='!',HP:8,SGI:8,LINUX:2]" myjob

Submits myjob to request 16 processors on 2 hosts of type HP or SGI (8 processors
per hosts), or on 8 hosts of type LINUX (2 processors per host), or the predefined
maximum job slot limit in lsb.hosts (MXJ) for other host types.

bsub -n 4 -R "same[model] span[ptile='!',PC1133:4,PC233:2]" myjob

Submits myjob to request a single host of model PC1133 (4 processors), or 2 hosts
of model PC233 (2 processors per host), or the predefined maximum job slot limit
in lsb.hosts (MXJ) for other host models.

Specifying parallel job locality at the queue level
The queue may also define the locality for parallel jobs using the RES_REQ
parameter.

Administering Platform LSF 559

Running Parallel Jobs

Running Parallel Processes on Homogeneous Hosts
Parallel jobs run on multiple hosts. If your cluster has heterogeneous hosts some
processes from a parallel job may for example, run on Solaris and some on SGI
IRIX. However, for performance reasons you may want all processes of a job to run
on the same type of host instead of having some processes run on one type of host
and others on another type of host.
You can use the same section in the resource requirement string to indicate to LSF
that processes are to run on one type or model of host. You can also use a custom
resource to define the criteria for homogeneous hosts.

Examples

Running all parallel processes on the same host type
bsub -n 4 -R"select[type==SGI6 || type==SOL7] same[type]" myjob

Allocate 4 processors on the same host type—either SGI IRIX, or Solaris 7, but not
both.

Running all parallel processes on the same host type and model
bsub -n 6 -R"select[type==any] same[type:model]" myjob

Allocate 6 processors on any host type or model as long as all the processors are on
the same host type and model.

Running all parallel processes on hosts in the same high-speed connection group
bsub -n 12 -R "select[type==any && (hgconnect==hg1 || hgconnect==hg2 || hgconnect==hg3)]
same[hgconnect:type]" myjob

For performance reasons, you want to have LSF allocate 12 processors on hosts in
high-speed connection group hg1, hg2, or hg3, but not across hosts in hg1, hg2 or
hg3 at the same time. You also want hosts that are chosen to be of the same host
type.
This example reflects a network in which network connections among hosts in the
same group are high-speed, and network connections between host groups are
low-speed.
In order to specify this, you create a custom resource hgconnect in lsf.shared.

Begin Resource
RESOURCENAME TYPE INTERVAL INCREASING RELEASE DESCRIPTION
hgconnect STRING () () () (OS release)
...
End Resource

In the lsf.cluster.cluster_name file, identify groups of hosts that share
high-speed connections.

Begin ResourceMap
RESOURCENAME LOCATION
hgconnect (hg1@[hostA hostB] hg2@[hostD hostE] hg3@[hostF hostG hostX])
End ResourceMap

Running Parallel Processes on Homogeneous Hosts

560 Administering Platform LSF

If you want to specify the same resource requirement at the queue level, define a
custom resource in lsf.shared as in the previous example, map hosts to
high-speed connection groups in lsf.cluster.cluster_name, and define the
following queue in lsb.queues:
Begin Queue
QUEUE_NAME = My_test
PRIORITY = 30
NICE = 20
RES_REQ = "select[mem > 1000 && type==any && (hgconnect==hg1 ||
hgconnect==hg2 || hgconnect=hg3)]same[hgconnect:type]"
DESCRIPTION = either hg1 or hg2 or hg3
End Queue

This example allocates processors on hosts that:
◆ Have more than 1000 MB in memory
◆ Are of the same host type
◆ Are in high-speed connection group hg1 or hg2 or hg3

Administering Platform LSF 561

Running Parallel Jobs

Limiting the Number of Processors Allocated
Use the PROCLIMIT parameter in lsb.queues or lsb.applications to limit the
number of processors that can be allocated to a parallel job.
◆ Syntax on page 561
◆ How PROCLIMIT affects submission of parallel jobs on page 561
◆ Changing PROCLIMIT on page 562
◆ MultiCluster on page 562
◆ Resizable jobs on page 562
◆ Automatic queue selection on page 562
◆ Examples on page 563

Syntax
PROCLIMIT = [minimum_limit [default_limit]] maximum_limit
All limits must be positive numbers greater than or equal to 1 that satisfy the
following relationship:
1 <= minimum <= default <= maximum
You can specify up to three limits in the PROCLIMIT parameter:

How PROCLIMIT affects submission of parallel jobs
The -n option of bsub specifies the number of processors to be used by a parallel
job, subject to the processor limits of the queue or application profile.
Jobs that specify fewer processors than the minimum PROCLIMIT or more
processors than the maximum PROCLIMIT are rejected.
If a default value for PROCLIMIT is specified, jobs submitted without specifying -n
use the default number of processors. If the queue or application profile has only
minimum and maximum values for PROCLIMIT, the number of processors is
equal to the minimum value. If only a maximum value for PROCLIMIT is
specified, or no PROCLIMIT is specified, the number of processors is equal to 1.
Incorrect processor limits are ignored, and a warning message is displayed when
LSF is reconfigured or restarted. A warning message is also logged to the mbatchd
log file when LSF is started.

If you specify ... Then ...

One limit It is the maximum processor limit. The minimum and default
limits are set to 1.

Two limits The first is the minimum processor limit, and the second is the
maximum. The default is set equal to the minimum.
The minimum must be less than or equal to the maximum.

Three limits The first is the minimum processor limit, the second is the
default processor limit, and the third is the maximum.
The minimum must be less than the default and the maximum.

Limiting the Number of Processors Allocated

562 Administering Platform LSF

Changing PROCLIMIT
If you change the PROCLIMIT parameter, the new processor limit does not affect
running jobs. Pending jobs with no processor requirements use the new default
PROCLIMIT value. If the pending job does not satisfy the new processor limits, it
remains in PEND state, and the pending reason changes to the following:
Job no longer satisfies PROCLIMIT configuration

If PROCLIMIT specification is incorrect (for example, too many parameters), a
reconfiguration error message is issued. Reconfiguration proceeds and the
incorrect PROCLIMIT is ignored.

MultiCluster
Jobs forwarded to a remote cluster are subject to the processor limits of the remote
queues. Any processor limits specified on the local cluster are not applied to the
remote job.

Resizable jobs
Resizable job allocation requests obey the PROCLIMIT definition in both
application profiles and queues. When the maximum job slot request is greater than
the maximum slot definition in PROCLIMIT, LSF chooses the minimum value of
both. For example, if a job asks for -n 1,4, but PROCLIMIT is defined as 2 2 3,
the maximum slot request for the job is 3 rather than 4.

Automatic queue selection
When you submit a parallel job without specifying a queue name, LSF
automatically selects the most suitable queue from the queues listed in the
DEFAULT_QUEUE parameter in lsb.params or the LSB_DEFAULTQUEUE
environment variable. Automatic queue selection takes into account any maximum
and minimum PROCLIMIT values for the queues available for automatic selection.
If you specify -n min_proc,max_proc, but do not specify a queue, the first queue
that satisfies the processor requirements of the job is used. If no queue satisfies the
processor requirements, the job is rejected.

Example For example, queues with the following PROCLIMIT values are defined in
lsb.queues:
◆ queueA with PROCLIMIT=1 1 1
◆ queueB with PROCLIMIT=2 2 2
◆ queueC with PROCLIMIT=4 4 4
◆ queueD with PROCLIMIT=8 8 8
◆ queueE with PROCLIMIT=16 16 16
In lsb.params: DEFAULT_QUEUE=queueA queueB queueC queueD queueE
For the following jobs:
bsub -n 8 myjob

LSF automatically selects queueD to run myjob.
bsub -n 5 myjob

Job myjob fails because no default queue has the correct number of processors.

Administering Platform LSF 563

Running Parallel Jobs

Examples

Maximum processor limit

PROCLIMIT is specified in the default queue in lsb.queues as:
PROCLIMIT = 3

The maximum number of processors that can be allocated for this queue is 3.

Minimum and maximum processor limits

PROCLIMIT is specified in lsb.queues as:
PROCLIMIT = 3 8

The minimum number of processors that can be allocated for this queue is 3 and
the maximum number of processors that can be allocated for this queue is 8.

Minimum, default, and maximum processor limits

PROCLIMIT is specified in lsb.queues as:
PROCLIMIT = 4 6 9

◆ Minimum number of processors that can be allocated for this queue is 4
◆ Default number of processors for the queue is 6
◆ Maximum number of processors that can be allocated for this queue is 9

Example Description

bsub -n 2 myjob The job myjob runs on 2 processors.
bsub -n 4 myjob The job myjob is rejected from the queue because it requires more than

the maximum number of processors configured for the queue (3).
bsub -n 2,3 myjob The job myjob runs on 2 or 3 processors.
bsub -n 2,5 myjob The job myjob runs on 2 or 3 processors, depending on how many slots

are currently available on the host.
bsub myjob No default or minimum is configured, so the job myjob runs on 1

processor.

Example Description

bsub -n 5 myjob The job myjob runs on 5 processors.
bsub -n 2 myjob The job myjob is rejected from the queue because the number of

processors requested is less than the minimum number of processors
configured for the queue (3).

bsub -n 4,5 myjob The job myjob runs on 4 or 5 processors.
bsub -n 2,6 myjob The job myjob runs on 3 to 6 processors.
bsub -n 4,9 myjob The job myjob runs on 4 to 8 processors.
bsub myjob The default number of processors is equal to the minimum number (3).

The job myjob runs on 3 processors.

Example Description

bsub myjob Because a default number of processors is configured, the job myjob runs
on 6 processors.

Reserving Processors

564 Administering Platform LSF

Reserving Processors

About processor reservation
When parallel jobs have to compete with sequential jobs for job slots, the slots that
become available are likely to be taken immediately by a sequential job. Parallel jobs
need multiple job slots to be available before they can be dispatched. If the cluster
is always busy, a large parallel job could be pending indefinitely. The more
processors a parallel job requires, the worse the problem is.
Processor reservation solves this problem by reserving job slots as they become
available, until there are enough reserved job slots to run the parallel job.
You might want to configure processor reservation if your cluster has a lot of
sequential jobs that compete for job slots with parallel jobs.

How processor reservation works
Processor reservation is disabled by default.
If processor reservation is enabled, and a parallel job cannot be dispatched because
there are not enough job slots to satisfy its minimum processor requirements, the
job slots that are currently available is reserved and accumulated.
A reserved job slot is unavailable to any other job. To avoid deadlock situations in
which the system reserves job slots for multiple parallel jobs and none of them can
acquire sufficient resources to start, a parallel job gives up all its reserved job slots
if it has not accumulated enough to start within a specified time. The reservation
time starts from the time the first slot is reserved. When the reservation time
expires, the job cannot reserve any slots for one scheduling cycle, but then the
reservation process can begin again.
If you specify first execution host candidates at the job or queue level, LSF tries to
reserve a job slot on the first execution host. If LSF cannot reserve a first execution
host job slot, it does not reserve slots on any other hosts.

Configure processor reservation

1 To enable processor reservation, set SLOT_RESERVE in lsb.queues and
specify the reservation time (a job cannot hold any reserved slots after its
reservation time expires).

Syntax SLOT_RESERVE=MAX_RESERVE_TIME[n].
where n is an integer by which to multiply MBD_SLEEP_TIME.
MBD_SLEEP_TIME is defined in lsb.params; the default value is 60 seconds.

Example Begin Queue
.
PJOB_LIMIT=1
SLOT_RESERVE = MAX_RESERVE_TIME[5]
.
End Queue

Administering Platform LSF 565

Running Parallel Jobs

In this example, if MBD_SLEEP_TIME is 60 seconds, a job can reserve job slots for
5 minutes. If MBD_SLEEP_TIME is 30 seconds, a job can reserve job slots for 5
*30= 150 seconds, or 2.5 minutes.

Viewing information about reserved job slots
Reserved slots can be displayed with the bjobs command. The number of reserved
slots can be displayed with the bqueues, bhosts, bhpart, and busers commands.
Look in the RSV column.

Reserving Memory for Pending Parallel Jobs

566 Administering Platform LSF

Reserving Memory for Pending Parallel Jobs
By default, the rusage string reserves resources for running jobs. Because resources
are not reserved for pending jobs, some memory-intensive jobs could be pending
indefinitely because smaller jobs take the resources immediately before the larger
jobs can start running. The more memory a job requires, the worse the problem is.
Memory reservation for pending jobs solves this problem by reserving memory as
it becomes available, until the total required memory specified on the rusage string
is accumulated and the job can start. Use memory reservation for pending jobs if
memory-intensive jobs often compete for memory with smaller jobs in your cluster.
Unlike slot reservation, which only applies to parallel jobs, memory reservation
applies to both sequential and parallel jobs.

Configuring memory reservation for pending parallel jobs
Use the RESOURCE_RESERVE parameter in lsb.queues to reserve host memory
for pending jobs, as described in Memory Reservation for Pending Jobs on page
442.

lsb.queues 1 Set the RESOURCE_RESERVE parameter in a queue defined in lsb.queues.
The RESOURCE_RESERVE parameter overrides the SLOT_RESERVE
parameter. If both RESOURCE_RESERVE and SLOT_RESERVE are defined in
the same queue, job slot reservation and memory reservation are enabled and
an error is displayed when the cluster is reconfigured. SLOT_RESERVE is
ignored. Backfill on memory may still take place.
The following queue enables both memory reservation and backfill in the same
queue:
Begin Queue
QUEUE_NAME = reservation_backfill
DESCRIPTION = For resource reservation and backfill
PRIORITY = 40
RESOURCE_RESERVE = MAX_RESERVE_TIME[20]
BACKFILL = Y
End Queue

Enable per-slot memory reservation
By default, memory is reserved for parallel jobs on a per-host basis. For example, by
default, the command:
bsub -n 4 -R "rusage[mem=500]" -q reservation myjob

requires the job to reserve 500 MB on each host where the job runs.

1 To enable per-slot memory reservation, define
RESOURCE_RESERVE_PER_SLOT=y in lsb.params. In this example, if
per-slot reservation is enabled, the job must reserve 500 MB of memory for
each job slot (4 * 500 = 2 GB) on the host in order to run.

Administering Platform LSF 567

Running Parallel Jobs

Backfill Scheduling: Allowing Jobs to Use Reserved Job Slots
By default, a reserved job slot cannot be used by another job. To make better use of
resources and improve performance of LSF, you can configure backfill scheduling.

About backfill scheduling
Backfill scheduling allows other jobs to use the reserved job slots, as long as the
other jobs do not delay the start of another job. Backfilling, together with processor
reservation, allows large parallel jobs to run while not underutilizing resources.
In a busy cluster, processor reservation helps to schedule large parallel jobs sooner.
However, by default, reserved processors remain idle until the large job starts. This
degrades the performance of LSF because the reserved resources are idle while jobs
are waiting in the queue.
Backfill scheduling allows the reserved job slots to be used by small jobs that can
run and finish before the large job starts. This improves the performance of LSF
because it increases the utilization of resources.

How backfilling works
For backfill scheduling, LSF assumes that a job can run until its run limit expires.
Backfill scheduling works most efficiently when all the jobs in the cluster have a run
limit.
Since jobs with a shorter run limit have more chance of being scheduled as backfill
jobs, users who specify appropriate run limits in a backfill queue is rewarded by
improved turnaround time.
Once the big parallel job has reserved sufficient job slots, LSF calculates the start
time of the big job, based on the run limits of the jobs currently running in the
reserved slots. LSF cannot backfill if the big job is waiting for a job that has no run
limit defined.
If LSF can backfill the idle job slots, only jobs with run limits that expire before the
start time of the big job is allowed to use the reserved job slots. LSF cannot backfill
with a job that has no run limit.

Example

In this scenario, assume the cluster consists of a 4-CPU multiprocessor host.

Backfill Scheduling: Allowing Jobs to Use Reserved Job Slots

568 Administering Platform LSF

1 A sequential job (job1) with a run limit of 2 hours is submitted and gets started
at 8:00 am (figure a).

2 Shortly afterwards, a parallel job (job2) requiring all 4 CPUs is submitted. It
cannot start right away because job1 is using one CPU, so it reserves the
remaining 3 processors (figure b).

3 At 8:30 am, another parallel job (job3) is submitted requiring only two
processors and with a run limit of 1 hour. Since job2 cannot start until 10:00am
(when job1 finishes), its reserved processors can be backfilled by job3 (figure
c). Therefore job3 can complete before job2's start time, making use of the idle
processors.

4 Job3 finishes at 9:30am and job1 at 10:00am, allowing job2 to start shortly
after 10:00am. In this example, if job3's run limit was 2 hours, it would not be
able to backfill job2's reserved slots, and would have to run after job2 finishes.

Limitations ◆ A job does not have an estimated start time immediately after mbatchd is
reconfigured.

Backfilling and job slot limits

A backfill job borrows a job slot that is already taken by another job. The backfill
job does not run at the same time as the job that reserved the job slot first.
Backfilling can take place even if the job slot limits for a host or processor have been
reached. Backfilling cannot take place if the job slot limits for users or queues have
been reached.

Job resize
allocation requests

Pending job resize allocation requests are supported by backfill policies. However,
the run time of pending resize request is equal to the remaining run time of the
running resizable job. For example, if RUN LIMIT of a resizable job is 20 hours and
4 hours have already passed, the run time of pending resize request is 16 hours.

Configuring backfill scheduling
Backfill scheduling is enabled at the queue level. Only jobs in a backfill queue can
backfill reserved job slots. If the backfill queue also allows processor reservation,
then backfilling can occur among jobs within the same queue.

Configure a backfill queue

1 To configure a backfill queue, define BACKFILL in lsb.queues.
2 Specify Y to enable backfilling. To disable backfilling, specify N or blank space.

Example BACKFILL=Y

Enforcing run limits
Backfill scheduling requires all jobs to specify a duration. If you specify a run time
limit using the command line bsub -W option or by defining the RUNLIMIT
parameter in lsb.queues or lsb.applications, LSF uses that value as a hard limit
and terminates jobs that exceed the specified duration. Alternatively, you can

Administering Platform LSF 569

Running Parallel Jobs

specify an estimated duration by defining the RUNTIME parameter in
lsb.applications. LSF uses the RUNTIME estimate for scheduling purposes
only, and does not terminate jobs that exceed the RUNTIME duration.
Backfill scheduling works most efficiently when all the jobs in a cluster have a run
limit specified at the job level (bsub -W). You can use the external submission
executable, esub, to make sure that all users specify a job-level run limit.
Otherwise, you can specify ceiling and default run limits at the queue level
(RUNLIMIT in lsb.queues) or application level (RUNLIMIT in
lsb.applications).

View information about job start time

1 Use bjobs -l to view the estimated start time of a job.

Using backfill on memory
If BACKFILL is configured in a queue, and a run limit is specified with -W on bsub
or with RUNLIMIT in the queue, backfill jobs can use the accumulated memory
reserved by the other jobs, as long as the backfill job can finish before the predicted
start time of the jobs with the reservation.
Unlike slot reservation, which only applies to parallel jobs, backfill on memory
applies to sequential and parallel jobs.
The following queue enables both memory reservation and backfill on memory in
the same queue:
Begin Queue
QUEUE_NAME = reservation_backfill
DESCRIPTION = For resource reservation and backfill
PRIORITY = 40
RESOURCE_RESERVE = MAX_RESERVE_TIME[20]
BACKFILL = Y
End Queue

Examples of memory reservation and backfill on memory

lsb.queues The following queues are defined in lsb.queues:
Begin Queue
QUEUE_NAME = reservation
DESCRIPTION = For resource reservation
PRIORITY=40
RESOURCE_RESERVE = MAX_RESERVE_TIME[20]
End Queue

Begin Queue
QUEUE_NAME = backfill
DESCRIPTION = For backfill scheduling
PRIORITY = 30
BACKFILL = y
End Queue

lsb.params Per-slot memory reservation is enabled by RESOURCE_RESERVE_PER_SLOT=y
in lsb.params.

Backfill Scheduling: Allowing Jobs to Use Reserved Job Slots

570 Administering Platform LSF

Assumptions Assume one host in the cluster with 10 CPUs and 1 GB of free memory currently
available.

Sequential jobs Each of the following sequential jobs requires 400 MB of memory. The first three
jobs run for 300 minutes.
Job 1:
bsub -W 300 -R "rusage[mem=400]" -q reservation myjob1

The job starts running, using 400M of memory and one job slot.
Job 2:
Submitting a second job with same requirements get the same result.
Job 3:
Submitting a third job with same requirements reserves one job slot, and reserve all
free memory, if the amount of free memory is between 20 MB and 200 MB (some
free memory may be used by the operating system or other software.)
Job 4:
bsub -W 400 -q backfill -R "rusage[mem=50]" myjob4

The job keeps pending, since memory is reserved by job 3 and it runs longer than
job 1 and job 2.
Job 5:
bsub -W 100 -q backfill -R "rusage[mem=50]" myjob5

The job starts running. It uses one free slot and memory reserved by job 3. If the job
does not finish in 100 minutes, it is killed by LSF automatically.
Job 6:
bsub -W 100 -q backfill -R "rusage[mem=300]" myjob6

The job keeps pending with no resource reservation because it cannot get enough
memory from the memory reserved by job 3.
Job 7:
bsub -W 100 -q backfill myjob7

The job starts running. LSF assumes it does not require any memory and enough
job slots are free.

Parallel jobs Each process of a parallel job requires 100 MB memory, and each parallel job needs
4 cpus. The first two of the following parallel jobs run for 300 minutes.
Job 1:
bsub -W 300 -n 4 -R "rusage[mem=100]" -q reservation myJob1

The job starts running and use 4 slots and get 400MB memory.
Job 2:
Submitting a second job with same requirements gets the same result.
Job 3:
Submitting a third job with same requirements reserves 2 slots, and reserves all 200
MB of available memory, assuming no other applications are running outside of
LSF.

Administering Platform LSF 571

Running Parallel Jobs

Job 4:
bsub -W 400 -q backfill -R "rusage[mem=50]" myJob4

The job keeps pending since all available memory is already reserved by job 3. It
runs longer than job 1 and job 2, so no backfill happens.
Job 5:
bsub -W 100 -q backfill -R "rusage[mem=50]" myJob5

This job starts running. It can backfill the slot and memory reserved by job 3. If the
job does not finish in 100 minutes, it is killed by LSF automatically.

Using interruptible backfill
Interruptible backfill scheduling can improve cluster utilization by allowing
reserved job slots to be used by low priority small jobs that are terminated when the
higher priority large jobs are about to start.
An interruptible backfill job:
◆ Starts as a regular job and is killed when it exceeds the queue runtime limit, or
◆ Is started for backfill whenever there is a backfill time slice longer than the

specified minimal time, and killed before the slot-reservation job is about to
start. This applies to compute-intensive serial or single-node parallel jobs that
can run a long time, yet be able to checkpoint or resume from an arbitrary
computation point.

Resource allocation diagram

Job life cycle 1 Jobs are submitted to a queue configured for interruptible backfill. The job
runtime requirement is ignored.

2 Job is scheduled as either regular job or backfill job.

Backfill Scheduling: Allowing Jobs to Use Reserved Job Slots

572 Administering Platform LSF

3 The queue runtime limit is applied to the regularly scheduled job.
4 In backfill phase, the job is considered for run on any reserved resource, which

duration is longer than the minimal time slice configured for the queue. The
job runtime limit is set in such way, that the job releases the resource before it
is needed by the slot reserving job.

5 The job runs in a regular manner. It is killed upon reaching its runtime limit,
and requeued for the next run. Requeueing must be explicitly configured in the
queue.

Assumptions and limitations

◆ The interruptible backfill job holds the slot-reserving job start until its
calculated start time, in the same way as a regular backfill job. The interruptible
backfill job is killed when its run limit expires.

◆ Killing other running jobs prematurely does not affect the calculated run limit
of an interruptible backfill job. Slot-reserving jobs do not start sooner.

◆ While the queue is checked for the consistency of interruptible backfill, backfill
and runtime specifications, the requeue exit value clause is not verified, nor
executed automatically. Configure requeue exit values according to your site
policies.

◆ In LSF MultiCluster, bhist does not display interruptible backfill information
for remote clusters.

◆ A migrated job belonging to an interruptible backfill queue is migrated as if
LSB_MIG2PEND is set.

◆ Interruptible backfill is disabled for resizable jobs. A resizable job can be
submitted into interruptible backfill queue, but the job cannot be resized.

Configure an interruptible backfill queue

1 Configure INTERRUPTIBLE_BACKFILL=seconds in the lowest priority queue
in the cluster. There can only be one interruptible backfill queue in the cluster.
Specify the minimum number of seconds for the job to be considered for
backfilling. This minimal time slice depends on the specific job properties; it
must be longer than at least one useful iteration of the job. Multiple queues may
be created if a site has jobs of distinctively different classes.
For example:
Begin Queue
QUEUE_NAME = background
REQUEUE_EXIT_VALUES (set to whatever needed)
DESCRIPTION = Interruptible Backfill queue
BACKFILL = Y
INTERRUPTIBLE_BACKFILL = 1
RUNLIMIT = 10
PRIORITY = 1
End Queue

Interruptible backfill is disabled if BACKFILL and RUNLIMIT are not
configured in the queue.

Administering Platform LSF 573

Running Parallel Jobs

The value of INTERRUPTIBLE_BACKFILL is the minimal time slice in
seconds for a job to be considered for backfill. The value depends on the
specific job properties; it must be longer than at least one useful iteration of the
job. Multiple queues may be created for different classes of jobs.
BACKFILL and RUNLIMIT must be configured in the queue.
RUNLIMIT corresponds to a maximum time slice for backfill, and should be
configured so that the wait period for the new jobs submitted to the queue is
acceptable to users. 10 minutes of runtime is a common value.
You should configure REQUEUE_EXIT_VALUES for the queue so that
resubmission is automatic. In order to terminate completely, jobs must have
specific exit values:
◆ If jobs are checkpointable, use their checkpoint exit value.
◆ If jobs periodically save data on their own, use the SIGTERM exit value.

View the run limits for interruptible backfill jobs (bjobs and bhist)

1 Use bjobs to display the run limit calculated based on the configured
queue-level run limit.
For example, the interruptible backfill queue lazy configures RUNLIMIT=60:

bjobs -l 135

Job <135>, User <user1>, Project <default>, Status <RUN>, Queue <lazy>, Command

 <myjob>

Mon Nov 21 11:49:22: Submitted from host <hostA>, CWD <$HOME/H

 PC/jobs>;

 RUNLIMIT

 59.5 min of hostA

Mon Nov 21 11:49:26: Started on <hostA>, Execution Home </home

 /user1>, Execution CWD </home/user1/HPC/jobs>;

2 Use bhist to display job-level run limit if specified.
For example, job 135 was submitted with a run limit of 3 hours:
bsub -n 1 -q lazy -W 3:0 myjob

Job <135> is submitted to queue <lazy>.

bhist displays the job-level run limit:
bhist -l 135

Job <135>, User <user1>, Project <default>, Command <myjob>

Mon Nov 21 11:49:22: Submitted from host <hostA>, to Queue <la

 zy>, CWD <$HOME/HPC/jobs>;

 RUNLIMIT

 180.0 min of hostA

Mon Nov 21 11:49:26: Dispatched to <hostA>;

Mon Nov 21 11:49:26: Starting (Pid 2746);

Mon Nov 21 11:49:27: Interruptible backfill runtime limit is 59.5 minutes;

Backfill Scheduling: Allowing Jobs to Use Reserved Job Slots

574 Administering Platform LSF

Mon Nov 21 11:49:27: Running with execution home </home/user1>, Execution CWD

...

Displaying available slots for backfill jobs
The bslots command displays slots reserved for parallel jobs and advance
reservations. The available slots are not currently used for running jobs, and can be
used for backfill jobs. The available slots displayed by bslots are only a snapshot of
the slots currently not in use by parallel jobs or advance reservations. They are not
guaranteed to be available at job submission.
By default, bslots displays all available slots, and the available run time for those
slots. When no reserved slots are available for backfill, bslots displays "No
reserved slots available."
The backfill window calculation is based on the snapshot information (current
running jobs, slot reservations, advance reservations) obtained from mbatchd.
The backfill window displayed can serve as reference for submitting backfillable
jobs. However, if you have specified extra resource requirements or special
submission options, it does not insure that submitted jobs are scheduled and
dispatched successfully.
bslots -R only supports the select resource requirement string. Other resource
requirement selections are not supported.
If the available backfill window has no run time limit, its length is displayed as
UNLIMITED.

Examples Display all available slots for backfill jobs:
bslots

SLOTS RUNTIME
1 UNLIMITED
3 1 hour 30 minutes
5 1 hour 0 minutes
7 45 minutes
15 40 minutes
18 30 minutes
20 20 minutes
Display available slots for backfill jobs requiring 15 slots or more:
bslots -n 15

SLOTS RUNTIME
15 40 minutes
18 30 minutes
20 20 minutes
Display available slots for backfill jobs requiring a run time of 30 minutes or more:
bslots -W 30

SLOTS RUNTIME
3 1 hour 30 minutes
5 1 hour 0 minutes

Administering Platform LSF 575

Running Parallel Jobs

7 45 minutes
15 40 minutes
18 30 minutes
bslots -W 2:45
No reserved slots available.
bslots -n 15 -W 30

SLOTS RUNTIME
15 40 minutes
18 30 minutes
Display available slots for backfill jobs requiring a host with more than 500 MB of
memory:
bslots -R "mem>500"

SLOTS RUNTIME
7 45 minutes
15 40 minutes
Display the host names with available slots for backfill jobs:
bslots -l

SLOTS: 15
RUNTIME: 40 minutes
HOSTS: 1*hostB 1*hostE 3*hostC ...

3*hostZ

SLOTS: 15
RUNTIME: 30 minutes
HOSTS: 2*hostA 1*hostB 3*hostC ...

1*hostX

Submitting backfill jobs according to available slots

1 Use bslots to display job slots available for backfill jobs.
2 Submit a job to a backfill queue. Specify a runtime limit and the number of

processors required that are within the availability shown by bslots.

Submitting a job according to the backfill slot availability shown by bslots does
not guarantee that the job is backfilled successfully. The slots may not be available
by the time job is actually scheduled, or the job cannot be dispatched because other
resource requirements are not satisfied.

Parallel Fairshare

576 Administering Platform LSF

Parallel Fairshare
LSF can consider the number of CPUs when using fairshare scheduling with
parallel jobs.
If the job is submitted with bsub -n, the following formula is used to calculate
dynamic priority:
dynamic priority = number_shares / (cpu_time * CPU_TIME_FACTOR + run_time *
number_CPUs * RUN_TIME_FACTOR + (1 + job_slots)* RUN_JOB_FACTOR +
fairshare_adjustment(struc* shareAdjustPair)*FAIRSHARE_ADJUSTMENT_FACTOR)
where number_CPUs is the number of CPUs used by the job.

Configure parallel fairshare
To configure parallel fairshare so that the number of CPUs is considered when
calculating dynamic priority for queue-level user-based fairshare:

NOTE: LSB_NCPU_ENFORCE does not apply to host-partition user-based fairshare. For
host-partition user-based fairshare, the number of CPUs is automatically considered.

1 Configure fairshare at the queue level as indicated in Fairshare Scheduling on
page 337.

2 To enable parallel fairshare, set the parameter LSB_NCPU_ENFORCE=1 in
lsf.conf.

3 To make your changes take effect, use the following commands to restart all
LSF daemons:
lsadmin reconfig
lsadmin resrestart all
badmin hrestart all
badmin mbdrestart

Administering Platform LSF 577

Running Parallel Jobs

How Deadline Constraint Scheduling Works For Parallel Jobs
For information about deadline constraint scheduling, see Using Deadline
Constraint Scheduling on page 293. Deadline constraint scheduling is enabled by
default.
If deadline constraint scheduling is enabled and a parallel job has a CPU limit but
no run limit, LSF considers the number of processors when calculating how long
the job takes.
LSF assumes that the minimum number of processors are used, and that they are all
the same speed as the candidate host. If the job cannot finish under these
conditions, LSF does not place the job.
The formula is:
(deadline time - current time) > (CPU limit on candidate host / minimum number
of processors)

Optimized Preemption of Parallel Jobs

578 Administering Platform LSF

Optimized Preemption of Parallel Jobs
You can configure preemption for parallel jobs to reduce the number of jobs
suspended in order to run a large parallel job.
When a high-priority parallel job preempts multiple low-priority parallel jobs,
sometimes LSF preempts more low-priority jobs than are necessary to release
sufficient job slots to start the high-priority job.
The PREEMPT_FOR parameter in lsb.params with the MINI_JOB keyword
enables the optimized preemption of parallel jobs, so LSF preempts fewer of the
low-priority parallel jobs.
Enabling the feature only improves the efficiency in cases where both preemptive
and preempted jobs are parallel jobs.

How optimized preemption works
When you run many parallel jobs in your cluster, and parallel jobs preempt other
parallel jobs, you can enable a feature to optimize the preemption mechanism
among parallel jobs.
By default, LSF can over-preempt parallel jobs. When a high-priority parallel job
preempts multiple low-priority parallel jobs, sometimes LSF preempts more
low-priority jobs than are necessary to release sufficient job slots to start the
high-priority job. The optimized preemption mechanism reduces the number of
jobs that are preempted.
Enabling the feature only improves the efficiency in cases where both preemptive
and preempted jobs are parallel jobs. Enabling or disabling this feature has no effect
on the scheduling of jobs that require only a single processor.

Configure optimized preemption

1 Use the PREEMPT_FOR parameter in lsb.params and specify the keyword
MINI_JOB to configure optimized preemption at the cluster level.
If the parameter is already set, the MINI_JOB keyword can be used along with
other keywords; the other keywords do not enable or disable the optimized
preemption mechanism.

Processor Binding for Parallel Jobs
See also Processor binding for LSF job processes on page 686.
By default, there is no processor binding.
For multi-host parallel jobs, LSF sets two environment variables ($LSB_BIND_JOB
and $LSB_BIND_CPU_LIST) but does not attempt to bind the job to any host even if
you enable the processor binding.

Resizable jobs
Adding slots to or removing slots from a resizable job triggers unbinding and
rebinding of job processes. Rebinding does not guarantee that the processes can be
bound to the same processors they were bound to previously.

Administering Platform LSF 579

Running Parallel Jobs

If a multi-host parallel job becomes a single-host parallel job after resizing, LSF
does not bind it.
If a single-host parallel job or sequential job becomes a multi-host parallel job after
resizing, LSF does not bind it.
After unbinding and binding, the job CPU affinity is changed. LSF puts the new
CPU list in the LSB_BIND_CPU_LIST environment variable and the binding
method to LSB_BIND_JOB environment variable. And it is the responsibility of the
notification command to tell the job that CPU binding has changed.

Job Allocations that Grow and Shrink (Resizable)

580 Administering Platform LSF

Job Allocations that Grow and Shrink (Resizable)
A resizable job is a job whose slot allocation can change while the job is running.
For detailed information about the resizable job feature and how to configure it, see
the Platform LSF Configuration Guide.

Overview
To optimize resource utilization, LSF allows a job’s allocation to shrink and grow
during the job run time.
Making jobs resizable is most useful for:
◆ Long-tailed jobs: Jobs that use a large number of processors for a period, but

then toward the end of the job use a smaller number of processors.

For long-tailed jobs, resources are wasted at the end because fewer processors
are needed than at the beginning of the job. By the end, most of the
short-running tasks have already finished leaving many nodes idle. But there
are still a few long-running tasks left that occupy a small number of nodes. You
can release these idle resources and let other jobs make use of them.
Traditional HPC applications have a long running parallel portion that finishes;
then the job waits for a serial job to run to complete file staging. In this case,
you can release every node except the first one for the serial portion of the job
to run.

◆ Jobs in which tasks are easily parallelized: Each step or task can be made to run
on a separate processor to achieve a faster result. The more resources it gets, the
faster it can run. A resizable job gets more slots while the job is running. Session
Scheduler jobs are very good candidates.

Without resizable jobs, LSF makes a one-time allocation and schedules the job.
Because no adjustments to the resource allocations occur, resources are sometimes
wasted.

About releasing idle resources from the application
Once a resizable job is running, you can release resources (also called shrinking the
allocation) as needed. When specifying which resources to release, you can:
◆ Release all slots except one slot from the first execution node
◆ Release all hosts except the first execution node

Administering Platform LSF 581

Running Parallel Jobs

◆ Release a list of hosts (optionally specifying specific slots)

Autoresizable jobs (grow model)
An autoresizable job is a job that can be dispatched with one slot allocation but can
automatically acquire more slots as they become available. In other words, the
resource allocation can grow.
An autoresizable job is submitted with a minimum and maximum slot requirement
(bsub -n "min, max"). LSF automatically schedules and allocates resources to
satisfy the job’s minimum and maximum request.
An autoresizable job, with its minimum and maximum resource request, is
scheduled initially like a regular LSF job.
1 A job starts running when its minimum slot requirement can be met.
2 If the job does not get its maximum number of slots once it starts running, a

resize request is created for the remaining resources.
3 A pending resize request is scheduled along with pending jobs in the same

queue, except they are given a higher priority.
Resize requests for jobs in the same queue and with the same priority are
scheduled on a first-come, first-served basis, according to the submission time
of the original job.

4 When some or all resources become available, LSF allocates the additional
resources to satisfy the resize request. LSF runs a user-defined resize
notification command on the original job's first execution host to
communicate to the application the resize. LSF monitors the exit value from
the notification command. Upon success, if the job requires more slots, LSF
creates a new resize request for the job. Upon failure, LSF deallocates the
resources given in the resize, and requeues the resize request.

LSF does not remove resources from autoresizable jobs if they do not need them.
You must shrink the allocation manually or set your application to shrink the
allocation when needed.

Resize notification command
The resize notification command is the means by which LSF can communicate with
your application in the event of a resize.
Environment variables for the resize notification command describe whether the
resize is shrink or grow as well as the allocation changes.
LSF monitors the exit code from the command and, if it fails, takes appropriate
action: If it is a grow event, LSF releases allocated slots and reschedules a pending
request. If it is a shrink event, slots are not released.
No notification command is included with LSF; it is a user-created executable.

Resizable job management

Enable shrinking an allocation for an application
Prerequisites: You must set up your application profile with RESIZABLE_JOBS=Y.

Resizable job management

582 Administering Platform LSF

You must be the job owner, cluster administrator, queue administrator, user group
administrator, or root to release resources.

You can set your application to release its resources when they are no longer used.

1 Configure the application profile for resizable jobs.
RESIZABLE_JOBS=Y

2 Set your application to release resources when they are no longer used:
bresize release -c -rncn released_host_specification job_ID (or
use the API lsb_resize_release).
-c cancels pending resize requests.
-rncn releases resources without running a resize notification command.
where released_host_specification is the specification (list or range of hosts and
number of slots) of resources to be released and where job_ID is the ID of the
job.
Result: LSF releases slots when the application no longer needs them.

Shrink an allocation manually
Prerequisites: You must set up your application profile with RESIZABLE_JOBS=Y.
You must be the job owner, cluster administrator, queue administrator, user group
administrator, or root to release resources.

If you have not set up your application to automatically shrink an allocation, a user
can also shrink an allocation.

1 In the application profile, specify a value for RESIZE_NOTIFY_CMD.
The resize notification command communicates the job’s allocation changes
between LSF and the application. The application tells LSF it wants to release
slots. LSF can then communicate with the application to release resources that
are no longer needed, shrinking the allocation.
A script is one possible solution and can inform an application of the resizing
by:
◆ signalling the job
◆ writing to a file that is monitored by the job
◆ calling an API
◆ running a command particular to an application
See Script for resizing on page 584 for an example script.
When a resize occurs, this command runs and communicates resource
allocation changes.

2 When resources are no longer used, release resources:
bresize release -c released_host_specification job_ID

Administering Platform LSF 583

Running Parallel Jobs

where released_host_specification is the specification (list or range of hosts and
number of slots) of resources to be released and where job_ID is the ID of the
job.
Example: bresize release -c "1*hostA 2*hostB hostC" 221
LSF releases 1 slot on hostA, 2 slots on hostB, and all slots on hostC for job221.

If the resize notification command completes successfully, LSF considers the
allocation release done and updates the job allocation. If the shrink request fails,
LSF does not update the job allocation.

Autoresizable job management
Autoresizable jobs can have resources released or added.

Submit an autoresizable job

1 Run bsub –n 4,10 -ar.
LSF dispatches the job (as long as the minimum slot request is satisfied).
After the job successfully starts, LSF continues to schedule and allocate
additional resources to satisfy the maximum slot request for the job.

2 (Optional, as required) Release resources that are no longer needed.
bresize release released_host_specification job_ID

where released_host_specification is the specification (list or range of hosts and
number of slots) of resources to be released.
Example: bresize release "1*hostA 2*hostB hostC" 221
LSF releases 1 slot on hostA, 2 slots on hostB, and all slots on hostC for job221.
Result: The resize notification command runs on the first execution host.

Check pending resize requests
A resize request pends until the job’s maximum slot request has been allocated or
the job finishes (or the resize request is canceled).

1 Run bjobs -l job_id.

Cancel an active pending request
Prerequisites: Only the job owner, cluster administrators, queue administrators,
user group administrators, and root can cancel pending resource allocation
requests.
An allocation request must be pending.

If a job still has an active pending resize request, but you do not want to allocate
more resources to the job, you can cancel it.

Specify a resize notification command manually

584 Administering Platform LSF

By default, if the job has an active pending resize request, you cannot release the
resources. You must cancel the request first.

1 Run bresize cancel.

Specify a resize notification command manually
You can specify a resize notification command on job submission, other than one
that is set up for the application profile

1 On job submission, run bsub -rnc resize_notification_cmd .
The job submission command overrides the application profile setting.

2 Ensure the resize notification command checks any environment variables for
resizing.
For example, LSB_RESIZE_EVENT indicates why the notification command was
called (grow or shrink) and LSB_RESIZE_HOSTS lists slots and hosts. Use
LSB_JOBID to determine which job is affected.

The command you specified runs on the first execution host of the resized job.
LSF monitors the exit code from the command and takes appropriate action when
the command returns an exit code corresponding to resize failure.

Script for resizing
#!/bin/sh

The purpose of this script is to inform

an application of a resize event.

#

You can identify the application by:

#

1. LSF job ID ($LSB_JOBID), or

2. pid ($LS_JOBPID).

handle the 'grow' event

if [$LSB_RESIZE_EVENT = "grow"]; then

 # Inform the application that it can use

 # additional slots as specified in

 # $LSB_RESIZE_HOSTS.

 #

 # Exit with $LSB_RESIZE_NOTIFY_FAIL if

 # the application fails to resize.

 #

 # If the application cannot use any

Administering Platform LSF 585

Running Parallel Jobs

 # additional resources, you may want

 # to run ‘bresize cancel $LSB_JOBID’

 # before exit.

 exit $LSB_RESIZE_NOTIFY_OK

fi

handle the 'shrink' event

if [$LSB_RESIZE_EVENT = "shrink"]; then

 # Instruct the application to release the

 # slots specified in $LSB_RESIZE_HOSTS.

 #

 # Exit with $LSB_RESIZE_NOTIFY_FAIL if

 # the resources cannot be released.

 exit $LSB_RESIZE_NOTIFY_OK

fi

unknown event -- should not happen

exit $LSB_RESIZE_NOTIFY_FAIL

Feature interactions
Resource usage When a job grows or shrinks, its resource reservation (for example memory or

shared resources) changes proportionately.
◆ Job-based resource usage does not change in grow or shrink operations.
◆ Host-based resource usage changes only when the job gains slots on a new host

or releases all slots on a host.
◆ Slot-based resource usage changes whenever the job grows or shrinks.

Limits Slots are only added to a job’s allocation when resize occurs if the job does not
violate any resource limits placed on it.

Job scheduling and
dispatch

The JOB_ACCEPT_INTERVAL parameter in lsb.params or lsb.queues controls
the number of seconds to wait after dispatching a job to a host before dispatching a
second job to the same host. The parameter applies to all allocated hosts of a parallel
job. For resizable job allocation requests, JOB_ACCEPT_INTERVAL applies to
newly allocated hosts.

Chunk jobs Because candidate jobs for the chunk job feature are short-running sequential jobs,
the resizable job feature does not support job chunking:
◆ Autoresizable jobs in a chunk queue or application profile cannot be chunked

together
◆ bresize commands to resize job allocations do not apply to running chunk job

members

Feature interactions

586 Administering Platform LSF

brequeue Jobs requeued with brequeue start from the beginning. After requeue, LSF restores
the original allocation request for the job.

blaunch Parallel tasks running through blaunch can be resizable.
bswitch bswitch can switch resizable jobs between queues regardless of job state (including

job’s resizing state). Once the job is switched, the parameters in new queue apply,
including threshold configuration, run limit, CPU limit, queue-level resource
requirements, etc.

User group
administrators

User group administrators are allowed to issue bresize commands to release a part
of resources from job allocation (bresize release) or cancel active pending resize
request (bresize cancel).

Requeue exit values If job-level, application-level or queue-level REQUEUE_EXIT_VALUES are
defined, and as long as job exits with a defined exit code, LSF puts the requeued job
back to PEND status. For resizable jobs, LSF schedules the job according to the
initial allocation request regardless of any job allocation size change.

Automatic job rerun A rerunnable job is rescheduled after the first running host becomes unreachable.
Once job is rerun, LSF schedules resizable jobs based on their initial allocation
request.

Compute units Autoresizable jobs cannot have compute unit requirements.
Compound resource

requirements
Resizable jobs cannot have compound resource requirements.

Administering Platform LSF 587

C H A P T E R

35
Submitting Jobs Using JSDL

Contents
◆ Why Use JSDL? on page 587
◆ Using JSDL Files with LSF on page 587
◆ Collecting resource values using elim.jsdl on page 596

Why Use JSDL?
The Job Submission Description Language (JSDL) provides a convenient format for
describing job requirements. You can save a set of job requirements in a JSDL XML
file, and then reuse that file as needed to submit jobs to LSF.
For detailed information about JSDL, see the "Job Submission Description
Language (JSDL) Specification" at
http://www.gridforum.org/documents/GFD.56.pdf.

Using JSDL Files with LSF
LSF complies with the JSDL specification by supporting most valid JSDL elements
and POSIX extensions. The LSF extension schema allows you to use LSF features
not included in the JSDL standard schema.
The following sections describe how LSF supports the use of JSDL files for job
submission.

Where to find the JSDL schema files
The JSDL schema (jsdl.xsd), the POSIX extension (jsdl-posix.xsd), and the
LSF extension (jsdl-lsf.xsd) are located in the LSF_LIBDIR directory.

Supported JSDL and POSIX extension elements
The following table maps the supported JSDL standard and POSIX extension
elements to LSF submission options.

NOTE: For information about how to specify JSDL element types such as range values, see the
"Job Submission Description Language (JSDL) Specification" at
http://www.gridforum.org/documents/GFD.56.pdf.

Using JSDL Files with LSF

588 Administering Platform LSF

Table 2: Supported JSDL and POSIX extension elements
Element bsub

Option
Description Example

Job Structure Elements

JobDefinition N/A Root element of the
JSDL document.
Contains the
mandatory child
element
JobDescription.

<JobDefinition>
<JobDescription> ...
</JobDescription>
</JobDefinition>

JobDescription -P High-level container
element that holds
more specific cription
elements.

Job Identity Elements

JobName -J String used to name
the job.

<jsdl:JobName>myjob</jsdl:JobName>

JobProject -P String that specifies
the project to which
the job belongs.

<jsdl:JobProject>myproject
</jsdl:JobProject>

Application Elements

Application N/A High-level container
element that holds
more specific
application definition
elements.

ApplicationName -app String that defines the
name of an
application profile
defined in
lsb.applications.

<jsdl:Application>
<jsdl:ApplicationName>ApplicationX
</jsdl:ApplicationName>
</jsdl:Application>

ApplicationVersion -app String that defines the
version of the
application defined in
lsb.applications.

<jsdl:Application>
<jsdl:ApplicationName>

ApplicationX</jsdl:ApplicationName>
<jsdl:ApplicationVersion>5.5

</jsdl:ApplicationVersion>
...
</jsdl:Application>

Resource Elements

CandidateHosts -m Complex type
element that specifies
the set of named
hosts that can be
selected to run the
job.

<jsdl:CandidateHosts>
<jsdl:HostName>host1</jsdl:HostName>
<jsdl:HostName>host2</jsdl:HostName>
</jsdl:CandidateHosts>

HostName -m Contains a single
name of a host or host
group. See the
previous example
(CandidateHosts).

Administering Platform LSF 589

Submitting Jobs Using JSDL

ExclusiveExecution -x Boolean that
designates whether
the job must have
exclusive access to
the resources it uses.

<jsdl:ExclusiveExecution>true
</jsdl:ExclusiveExecution>

OperatingSystemName -R A token type that
contains the
operating system
name. LSF uses the
external resource
"osname."

<jsdl:OperatingSystemName>LINUX
</jsdl:OperatingSystemName>

OperatingSystemVersion -R A token type that
contains the
operating system
version. LSF uses the
external resource
"osver."

<jsdl:OperatingSystemVersion>5.7
</jsdl:OperatingSystemVersion>

CPUArchitectureName -R Token that specifies
the CPU architecture
required by the job in
the execution
environment. LSF
uses the external
resource "cpuarch."

<jsdl:CPUArchitectureName>sparc
</jsdl:CPUArchitectureName>

IndividualCPUSpeed -R Range value that
specifies the speed of
each CPU required by
the job in the
execution
environment, in Hertz
(Hz). LSF uses the
external resource
"cpuspeed."

<jsdl:IndividualCPUSpeed>
<jsdl:LowerBoundedRange>1073741824.0
</jsdl:LowerBoundedRange>
</jsdl:IndividualCPUSpeed>

IndividualCPUCount -n Range value that
specifies the number
of CPUs for each
resource.

<jsdl:IndividualCPUCount>
<jsdl:exact>2.0</jsdl:exact>
</jsdl:IndividualCPUCount>

IndividualPhysicalMemory -R Range value that
specifies the amount
of physical memory
required on each
resource, in bytes.

<jsdl:IndividualPhysicalMemory>
<jsdl:LowerBoundedRange>1073741824.0
</jsdl:LowerBoundedRange>
</jsdl:IndividualPhysicalMemory>

IndividualVirtualMemory -R Range value that
specifies the amount
of virtual memory
required for each
resource, in bytes.

<jsdl:IndividualVirtualMemory>
<jsdl:LowerBoundedRange>1073741824.0
</jsdl:LowerBoundedRange>
</jsdl:IndividualVirtualMemory>

Element bsub
Option

Description Example

Using JSDL Files with LSF

590 Administering Platform LSF

IndividualNetworkBandwidth -R Range value that
specifies the
bandwidth
requirements of each
resource, in bits per
second (bps). LSF uses
the external resource
"bandwidth."

<jsdl:IndividualNetworkBandwidth>
<jsdl:LowerBoundedRange>104857600.0
</jsdl:LowerBoundedRange>
</jsdl:IndividualNetworkBandwidth>

TotalCPUCount -n Range value that
specifies the total
number of CPUs
required for the job.

<jsdl:TotalCPUCount><jsdl:exact>2.0
</jsdl:exact></jsdl:TotalCPUCount>

TotalPhysicalMemory -R Range value that
specifies the required
amount of physical
memory for all
resources for the job,
in bytes.

<jsdl:TotalPhysicalMemory>
<jsdl:LowerBoundedRange>
10737418240.0
</jsdl:LowerBoundedRange>
</jsdl:TotalPhysicalMemory>

TotalVirtualMemory -R Range value that
specifies the required
amount of virtual
memory for the job, in
bytes.

<jsdl:TotalVirtualMemory>
<jsdl:LowerBoundedRange>1073741824.0
</jsdl:LowerBoundedRange>
</jsdl:TotalVirtualMemory>

TotalResourceCount -n Range value that
specifies the total
number of resources
required by the job.

<jsdl:Resources>...
<jsdl:TotalResourceCount>
<jsdl:exact>5.0</jsdl:exact>
</jsdl:TotalResourceCount>

Data Staging Elements

FileName -f String that specifies
the local name of the
file or directory on the
execution host. For a
directory, you must
specify the relative
path.

<jsdl:DataStaging><jsdl:FileName>
job1/input/control.txt
</jsdl:FileName>
...</jsdl:DataStaging>

CreationFlag -f Specifies whether the
file created on the
local execution
system overwrites or
append to an existing
file.

<jsdl:DataStaging>
<jsdl:CreationFlag>overwrite
</jsdl:CreationFlag>
...</jsdl:DataStaging>

Source N/A Contains the location
of the file or directory
on the remote system.
In LSF, the file location
is specified by the URI
element. The file is
staged in before the
job is executed. See
the example for the
Target element.

Element bsub
Option

Description Example

Administering Platform LSF 591

Submitting Jobs Using JSDL

URI -f Specifies the location
used to stage in
(Source) or stage out
(Target) a file. For use
with LSF, the URI must
be a file path only,
without a protocol.

Target N/A Contains the location
of the file or directory
on the remote system.
In LSF, the file location
is specified by the URI
element. The file is
staged out after the
job is executed.

<jsdl:DataStaging><jsdl:Source>
<jsdl:URI>//input/myjobs/control.txt
</jsdl:URI></jsdl:Source>
<jsdl:Target><jsdl:URI>
//output/myjobs/control.txt
</jsdl:URI></jsdl:Target>
...</jsdl:DataStaging>

POSIX Extension Elements

Executable N/A String that specifies
the command to
execute.

<jsdl-posix:Executable>myscript
</jsdl-posix:Executable>

Argument N/A Constrained
normalized string that
specifies an argument
for the application or
command.

<jsdl-posix:Argument>10
</jsdl-posix:Argument>

Input -i String that specifies
the Standard Input for
the command.

...<jsdl-posix:Input>input.txt
</jsdl-posix:Input>...

Output -o String that specifies
the Standard Output
for the command.

...<jsdl-posix:Output>output.txt
</jsdl-posix:Output>...

Error -e String that specifies
the Standard Error for
the command.

...<jsdl-posix:Error>error.txt
</jsdl-posix:Error>...

WorkingDirectory N/A String that specifies
the starting directory
required for job
execution. If no
directory is specified,
LSF sets the starting
directory on the
execution host to the
current working
directory on the
submission host. If
the current working
directory is not
accessible on the
execution host, LSF
runs the job in the
/tmp directory on the
execution host.

...<jsdl-posix:WorkingDirectory>
/home</jsdl-posix:WorkingDirectory>
...

Element bsub
Option

Description Example

Using JSDL Files with LSF

592 Administering Platform LSF

Environment N/A Specifies the name
and value of an
environment variable
defined for the job in
the execution
environment. LSF
maps the JSDL
element definitions to
the matching LSF
environment
variables.

<jsdl-posix:Environment
name="SHELL">
/bin/bash</jsdl-posix:Environment>

WallTimeLimit -W Positive integer that
specifies the soft limit
on the duration of the
application’s
execution, in seconds.

<jsdl-posix:WallTimeLimit>60
</jsdl-posix:WallTimeLimit>

FileSizeLimit -F Positive integer that
specifies the
maximum size of any
file associated with
the job, in bytes.

<jsdl-posix:FileSizeLimit>1073741824
</jsdl-posix:FileSizeLimit>

CoreDumpLimit -C Positive integer that
specifies the
maximum size of core
dumps a job may
create, in bytes.

<jsdl-posix:CoreDumpLimit>0
</jsdl-posix:CoreDumpLimit>

DataSegmentLimit -D Positive integer that
specifies the
maximum data
segment size, in
bytes.

<jsdl-posix:DataSegmentLimit>32768
</jsdl-posix:DataSegmentLimit>

MemoryLimit -M Positive integer that
specifies the
maximum amount of
physical memory that
the job can use during
execution, in bytes.

<jsdl-posix:MemoryLimit>67108864
</jsdl-posix:MemoryLimit>

StackSizeLimit -S Positive integer that
specifies the
maximum size of the
execution stack for
the job, in bytes.

<jsdl-posix:StackSizeLimit>1048576
</jsdl-posix:StackSizeLimit>

CPUTimeLimit -c Positive integer that
specifies the number
of CPU time seconds a
job can consume
before a SIGXCPU
signal is sent to the
job.

<jsdl-posix:CPUTimeLimit>30
</jsdl-posix:CPUTimeLimit>

Element bsub
Option

Description Example

Administering Platform LSF 593

Submitting Jobs Using JSDL

LSF extension elements
To use all available LSF features, add the elements described in the following table
to your JSDL file.

Table 3: LSF extension elements

ProcessCountLimit -p Positive integer that
specifies the
maximum number of
processes the job can
spawn.

<jsdl-posix:ProcessCountLimit>8
</jsdl-posix:ProcessCountLimit>

VirtualMemoryLimit -v Positive integer that
specifies the
maximum amount of
virtual memory the
job can allocate, in
bytes.

<jsdl-posix:VirtualMemoryLimit>
134217728
</jsdl-posix:VirtualMemoryLimit>

ThreadCountLimit -T Positive integer that
specifies the number
of threads the job can
create.

<jsdl-posix:ThreadCountLimit>8
</jsdl-posix:VirtualMemoryLimit>

Element bsub
Option

Description Example

Element bsub
Option

Description

SchedulerParams N/A Complex type element that specifies various scheduling parameters
(starting with Queue and ending with JobGroup).

<jsdl-lsf:SchedulerParams>
<jsdl-lsf:Queue>normal</jsdl-lsf:Queue>
<jsdl-lsf:ResourceRequirements>"select[swp>15 && hpux] order[ut]"
</jsdl-lsf:ResourceRequirements>
<jsdl-lsf:Start>12:06:09:55</jsdl-lsf:Start>
<jsdl-lsf:Deadline>8:22:15:50</jsdl-lsf:Deadline>
<jsdl-lsf:ReservationID>"user1#0"</jsdl-lsf:ReservationID>
<jsdl-lsf:Dependencies>’done myjob1’</jsdl-lsf:Dependencies>
<jsdl-lsf:Rerunnable>true</jsdl-lsf:Rerunnable>
<jsdl-lsf:UserPriority>3</jsdl-lsf:UserPriority>
<jsdl-lsf:ServiceClass>platinum</jsdl-lsf:ServiceClass>
<jsdl-lsf:Group>sysadmin</jsdl-lsf:Group>
<jsdl-lsf:ExternalScheduler></jsdl-lsf:ExternalScheduler><jsdl-lsf:Hold>true
</jsdl-lsf:Hold>
<jsdl-lsf:JobGroup>/risk_group/portfolio1/current</jsdl-lsf:JobGroup>
</jsdl-lsf:SchedulerParams>

Queue -q String that specifies the queue in which the job runs.

ResourceRequirements -R String that specifies one or more resource requirements of the job. Multiple
rusage sections are not supported.

Start -b String that specifies the earliest time that the job can start.

Deadline -t String that specifies the job termination deadline.

ReservationID -U String that specifies the reservation ID returned when you use brsvadd to
add a reservation.

Dependencies -w String that specifies a dependency expression. LSF does not run your job
unless the dependency expression evaluates to TRUE.

Rerunnable -r Boolean value that specifies whether to reschedule a job on another host if
the execution host becomes unavailable while the job is running.

Using JSDL Files with LSF

594 Administering Platform LSF

UserPriority -sp Positive integer that specifies the user-assigned job priority. This allows
users to order their own jobs within a queue.

ServiceClass -sla String that specifies the service class where the job is to run.

Group -G String that associates the job with the specified group for fairshare
scheduling.

ExternalScheduler -ext
[sched]

String used to set application-specific external scheduling options for the
job.

Hold -H Boolean value that tells LSF to hold the job in the PSUSP state when the job
is submitted. The job is not scheduled until you tell the system to resume the
job.

JobGroup -g String that specifies the job group to which the job is submitted.

NotificationParams N/A Complex type element that tells LSF when and where to send notification
emails for a job. See the following example:

<jsdl-lsf:NotificationParams>
<jsdl-lsf:NotifyAtStart>true</jsdl-lsf:NotifyAtStart>
<jsdl-lsf:NotifyAtFinish>true</jsdl-lsf:NotifyAtFinish>
<jsdl-lsf:NotificationEmail>-u user10</jsdl-lsf:NotificationEmail>
</jsdl-lsf:NotificationParams>

NotifyAtStart -B Boolean value that tells LSF to notify the user who submitted the job that
the job has started.

NotifyAtFinish -N Boolean value that tells LSF to to notify the user who submitted the job that
the job has finished.

NotificationEmail -u String that specifies the user who receives notification emails.

RuntimeParams N/A Complex type element that contains values for LSF runtime parameters.

<jsdl-lsf:RuntimeParams>
<jsdl-lsf:Interactive>I</jsdl-lsf:Interactive>
<jsdl-lsf:Block>true</jsdl-lsf:Block>
<jsdl-lsf:PreExec>myscript</jsdl-lsf:PreExec>
<jsdl-lsf:Checkpoint>myjobs/checkpointdir</jsdl-lsf:Checkpoint>
<jsdl-lsf:LoginShell>/csh</jsdl-lsf:LoginShell>
<jsdl-lsf:SignalJob>18</jsdl-lsf:SignalJob>
<jsdl-lsf:WarningAction>’URG’</jsdl-lsf:WarningAction>
<jsdl-lsf:WarningTime>’2’</jsdl-lsf:WarningTime>
<jsdl-lsf:SpoolCommand>true</jsdl-lsf:SpoolCommand>
<jsdl-lsf:Checkpoint></jsdl-lsf:RuntimeParams>

Interactive -I[s|p] String that specifies an interactive job with a defined pseudo-terminal
mode.

Block -K Boolean value that tells LSF to complete the submitted job before allowing
the user to submit another job.

PreExec -E String that specifies a pre-exec command to run on the batch job’s
execution host before actually running the job. For a parallel job, the
pre-exec command runs on the first host selected for the parallel job.

Checkpoint -k String that makes a job checkpointable and specifies the checkpoint
directory.

LoginShell -L For UNIX jobs, string that tells LSF to initialize the execution environment
using the specified login shell.

Element bsub
Option

Description

Administering Platform LSF 595

Submitting Jobs Using JSDL

Unsupported JSDL and POSIX extension elements
The current version of LSF does not support the following elements:

Job structure elements

◆ Description

Job identity elements

◆ JobAnnotation

Resource elements

◆ FileSystem
◆ MountPoint
◆ MountSource
◆ DiskSpace
◆ FileSystemType
◆ OperatingSystemType
◆ IndividualCPUTime
◆ IndividualDiskSpace
◆ TotalCPUTime
◆ TotalDiskSpace

Data staging elements

◆ FileSystemName
◆ DeleteOnTermination

POSIX extension elements

◆ LockedMemoryLimit
◆ OpenDescriptorsLimit
◆ PipeSizeLimit
◆ UserName
◆ GroupName

SignalJob -s String that specifies the signal to send when a queue-level run window
closes. Use this to override the default signal that suspends jobs running in
the queue.

WarningAction -wa String that specifies the job action prior to the job control action. Requires
that you also specify the job action warning time.

WarningTime -wt Positive integer that specifies the amount of time prior to a job control
action that the job warning action should occur.

SpoolCommand -is Boolean value that spools a job command file to the directory specified by
JOB_SPOOL_DIR, and uses the spooled file as the command file for the job.

Element bsub
Option

Description

Collecting resource values using elim.jsdl

596 Administering Platform LSF

Submit a job using a JSDL file

1 To submit a job using a JSDL file, use one of the following bsub command
options:
a To submit a job that uses elements included in the LSF extension, use the

-jsdl option.
b To submit a job that uses only standard JSDL elements and POSIX

extensions, use the -jsdl_strict option. Error messages indicate invalid
elements, including:
◆ Elements that are not part of the JSDL specification
◆ Valid JSDL elements that are not supported in this version of LSF
◆ Elements that are not part of the JSDL standard and POSIX extension

schemas

If you specify duplicate or conflicting job submission parameters, LSF resolves the
conflict by applying the following rules:
◆ The parameters specified in the command line override all other parameters.
◆ A job script or user input for an interactive job overrides parameters specified

in the JSDL file.

Collecting resource values using elim.jsdl
To support the use of JSDL files at job submission, LSF collects the following load
indices:

The file elim.jsdl is automatically configured to collect these resources, but you
must enable its use by modifying the files lsf.cluster.cluster_name and
lsf.shared.

Enable JSDL resource collection

1 In the file lsf.cluster.cluster_name, locate the ResourcesMap section.
2 In the file lsf.shared, locate the Resource section.
3 Uncomment the lines for the following resources in both files:

◆ osname
◆ osver

Attribute name Attribute type Resource name

OperatingSystemName string osname

OperatingSystemVersion string osver

CPUArchitectureName string cpuarch

IndividualCPUSpeed int64 cpuspeed

IndividualNetworkBandwidth int64 bandwidth
(This is the maximum
bandwidth).

Administering Platform LSF 597

Submitting Jobs Using JSDL

◆ cpuarch
◆ cpuspeed
◆ bandwidth

4 To propagate the changes through the LSF system, run the following
commands.
a lsadmin reconfig

b badmin mbdrestart

You have now configured LSF to use the elim.jsdl file to collect JSDL
resources.

Collecting resource values using elim.jsdl

598 Administering Platform LSF

Administering Platform LSF 599

P A R T

V
Controlling Job Execution

◆ Runtime Resource Usage Limits on page 601
◆ Load Thresholds on page 615
◆ Pre-Execution and Post-Execution Commands on page 621
◆ Job Starters on page 631
◆ External Job Submission and Execution Controls on page 637
◆ Configuring Job Controls on page 649

600 Administering Platform LSF

Administering Platform LSF 601

C H A P T E R

36
Runtime Resource Usage Limits

Contents
◆ About Resource Usage Limits on page 601
◆ Specifying Resource Usage Limits on page 605
◆ Supported Resource Usage Limits and Syntax on page 607
◆ CPU Time and Run Time Normalization on page 613
◆ PAM resource limits on page 614

About Resource Usage Limits
Resource usage limits control how much resource can be consumed by running
jobs. Jobs that use more than the specified amount of a resource are signalled or
have their priority lowered.
Limits can be specified by the LSF administrator:
◆ At the queue level in lsb.queues
◆ In an application profile in lsb.applications
◆ At the job level when you submit a job
For example, by defining a high-priority short queue, you can allow short jobs to be
scheduled earlier than long jobs. To prevent some users from submitting long jobs
to this short queue, you can set CPU limit for the queue so that no jobs submitted
from the queue can run for longer than that limit.
Limits specified at the queue level are hard limits, while those specified with job
submission or in an application profile are soft limits. The hard limit acts as a ceiling
for the soft limit. See setrlimit(2) man page for concepts of hard and soft limits.

NOTE: This chapter describes queue-level and job-level resource usage limits. Priority of limits is
different if limits are also configured in an application profile. See Chapter 23, “Working with
Application Profiles” for information about resource usage limits in application profiles.

About Resource Usage Limits

602 Administering Platform LSF

Resource usage limits and resource allocation limits
Resource usage limits are not the same as resource allocation limits, which are
enforced during job scheduling and before jobs are dispatched. You set resource
allocation limits to restrict the amount of a given resource that must be available
during job scheduling for different classes of jobs to start, and which resource
consumers the limits apply to. See Chapter 24, “Resource Allocation Limits” for
more information.

Resource usage limits and resource reservation limits
Resource usage limits are not the same as queue-based resource reservation limits,
which are enforced during job submission. The parameter RESRSV_LIMIT (in
lsb.queues) specifies allowed ranges of resource values, and jobs submitted with
resource requests outside of this range are rejected. See Chapter 25, “Reserving
Resources” for more information.

Summary of resource usage limits

Priority of resource usage limits
If no limit is specified at job submission, then the following apply to all jobs
submitted to the queue:

Incorrect resource usage limits
Incorrect limits are ignored, and a warning message is displayed when the cluster is
reconfigured or restarted. A warning message is also logged to the mbatchd log file
when LSF is started.

Limit Job syntax (bsub) Syntax (lsb.queues and lsb.applications) Fomat/Default Units

Core file size limit -C core_limit CORELIMIT=limit integer KB
CPU time limit -c cpu_limit CPULIMIT=[default] maximum [hours:]minutes[/host_name |

/host_model]
Data segment size
limit

-D data_limit DATALIMIT=[default] maximum integer KB

File size limit -F file_limit FILELIMIT=limit integer KB
Memory limit -M mem_limit MEMLIMIT=[default] maximum integer KB
Process limit -p process_limit PROCESSLIMIT=[default]

maximum
integer

Run time limit -W run_limit RUNLIMIT=[default] maximum [hours:]minutes[/host_name |
/host_model]

Stack segment size
limit

-S stack_limit STACKLIMIT=limit integer KB

Virtual memory limit -v swap_limit SWAPLIMIT=limit integer KB
Thread limit -T thread_limit THREADLIMIT=[default] maximum integer

If ... Then ...

Both default and maximum limits are defined The default is enforced
Only a maximum is defined The maximum is enforced
No limit is specified in the queue or at job submission No limits are enforced

Administering Platform LSF 603

Runtime Resource Usage Limits

If no limit is specified at job submission, then the following apply to all jobs
submitted to the queue:

Resource usage limits specified at job submission must be less than the maximum
specified in lsb.queues. The job submission is rejected if the user-specified limit
is greater than the queue-level maximum, and the following message is issued:
Cannot exceed queue’s hard limit(s). Job not submitted.

Enforce limits on chunk jobs
By default, resource usage limits are not enforced for chunk jobs because chunk jobs
are typically too short to allow LSF to collect resource usage.

1 To enforce resource limits for chunk jobs, define LSB_CHUNK_RUSAGE=Y
in lsf.conf. Limits may not be enforced for chunk jobs that take less than a
minute to run.

Scaling the units for resource usage limits
The default unit for the following resource usage limits is KB:
◆ Core limit (-C and CORELIMIT)
◆ Memory limit (-M and MEMLIMIT)
◆ Stack limit (-S and STACKLIMIT)
◆ Swap limit (-v and SWAPLIMIT)
This default may be too small for some environments that make use of very large
resource usage limits, for example, GB or TB.
LSF_UNIT_FOR_LIMITS in lsf.conf specifies larger units for the resource usage
limits with default unit of KB.
The unit for the resource usage limit can be one of:
◆ KB (kilobytes)
◆ MB (megabytes)
◆ GB (gigabytes)
◆ TB (terabytes)
◆ PB (petabytes)
◆ EB (exabytes)
LSF_UNIT_FOR_LIMITS applies cluster-wide to limts at the job-level (bsub),
queue-level (lsb.queues), and application level (lsb.applications).

If ... Then ...

The default limit is not correct The default is ignored and the maximum limit is
enforced

Both default and maximum
limits are specified, and the
maximum is not correct

The maximum is ignored and the resource has no
maximum limit, only a default limit

Both default and maximum
limits are not correct

The default and maximum are ignored and no limit is
enforced

About Resource Usage Limits

604 Administering Platform LSF

The lmit unit specified by LSF_UNIT_FOR_LIMITS also applies to limts modified
with bmod, and the display of resource usage limits in query commands (bacct,
bapp, bhist, bhosts, bjobs, bqueues, lsload, and lshosts).

IMPORTANT: Before changing the units of your resource usage limits, you should completely
drain the cluster of all workload. There should be no running, pending, or finished jobs in the
system.

In a MultiCluster environment, you should configure the same unit for all clusters.
After changing LSF_UNIT_FOR_LIMITS, you must restart your cluster.

How limit unit
changes affect jobs

When LSF_UNIT_FOR_LIMITS is specified, the defined unit is used for the
following commands. In command output, the larger unit appears as T, G, P, or E,
depending on the job rusage and the unit defined.

Example A job is submitted with bsub -M 100 and LSF_UNIT_FOR_LIMITS=MB; the
memory limit for the job is 100 MB rather than the default 100 KB.

Command Option/Output Default unit

bsub/bmod -C (core limit) KB

-M (memory limit) KB

-S (stack limit) KB

-v (swap limit) KB

bjobs rusage
CORELIMIT,
MEMLIMIT,
STACKLIMIT,
SWAPLIMIT

KB (may show MB depending on job
rusage)

bqueues CORELIMIT,
MEMLIMIT,
STACKLIMIT,
SWAPLIMIT

KB (may show MB depending on job
rusage)

loadSched, loadStop MB

bacct Summary rusage KB (may show MB depending on job
rusage)

bapp CORELIMIT,
MEMLIMIT,
STACKLIMIT,
SWAPLIMIT

KB

bhist History of limit
change by bmod

KB

MEM, SWAP KB (may show MB depending on job
rusage)

bhosts loadSched, loadStop MB

lsload mem, swp KB (may show MB depending on job
rusage)

lshosts maxmem, maxswp KB (may show MB depending on job
rusage)

Administering Platform LSF 605

Runtime Resource Usage Limits

Specifying Resource Usage Limits
Queues can enforce resource usage limits on running jobs. LSF supports most of the
limits that the underlying operating system supports. In addition, LSF also supports
a few limits that the underlying operating system does not support.
Specify queue-level resource usage limits using parameters in lsb.queues.

Specifying queue-level resource usage limits
Limits configured in lsb.queues apply to all jobs submitted to the queue. Job-level
resource usage limits specified at job submission override the queue definitions.

Maximum value
only

Specify only a maximum value for the resource.
For example, to specify a maximum run limit, use one value for the RUNLIMIT
parameter in lsb.queues:
RUNLIMIT = 10

The maximum run limit for the queue is 10 minutes. Jobs cannot run for more than
10 minutes. Jobs in the RUN state for longer than 10 minutes are killed by LSF.
If only one run limit is specified, jobs that are submitted with bsub -W with a run
limit that exceeds the maximum run limit is not allowed to run. Jobs submitted
without bsub -W are allowed to run but are killed when they are in the RUN state
for longer than the specified maximum run limit.
For example, in lsb.queues:
RUNLIMIT = 10

The maximum run limit for the queue is 10 minutes. Jobs cannot run for more than
10 minutes.

Default and
maximum values

If you specify two limits, the first one is the default limit for jobs in the queue and
the second one is the maximum (hard) limit. Both the default and the maximum
limits must be positive integers. The default limit must be less than the maximum
limit. The default limit is ignored if it is greater than the maximum limit.
Use the default limit to avoid having to specify resource usage limits in the bsub
command.
For example, to specify a default and a maximum run limit, use two values for the
RUNLIMIT parameter in lsb.queues:
RUNLIMIT = 10 15

◆ The first number is the default run limit applied to all jobs in the queue that are
submitted without a job-specific run limit (without bsub -W).

◆ The second number is the maximum run limit applied to all jobs in the queue
that are submitted with a job-specific run limit (with bsub -W). The default run
limit must be less than the maximum run limit.

You can specify both default and maximum values for the following resource usage
limits in lsb.queues:
◆ CPULIMIT
◆ DATALIMIT
◆ MEMLIMIT

Specifying Resource Usage Limits

606 Administering Platform LSF

◆ PROCESSLIMIT
◆ RUNLIMIT
◆ THREADLIMIT

Host specification
with two limits

If default and maximum limits are specified for CPU time limits or run time limits,
only one host specification is permitted. For example, the following CPU limits are
correct (and have an identical effect):
CPULIMIT = 400/hostA 600

CPULIMIT = 400 600/hostA

The following CPU limit is not correct:
CPULIMIT = 400/hostA 600/hostB

The following run limits are correct (and have an identical effect):
RUNLIMIT = 10/hostA 15

RUNLIMIT = 10 15/hostA

The following run limit is not correct:
RUNLIMIT = 10/hostA 15/hostB

Default run limits for backfill scheduling
Default run limits are used for backfill scheduling of parallel jobs.
For example, in lsb.queues, you enter: RUNLIMIT = 10 15
◆ The first number is the default run limit applied to all jobs in the queue that are

submitted without a job-specific run limit (without bsub -W).
◆ The second number is the maximum run limit applied to all jobs in the queue

that are submitted with a job-specific run limit (with
bsub -W). The default run limit cannot exceed the maximum run limit.

Automatically assigning a default run limit to all jobs in the queue means that
backfill scheduling works efficiently.
For example, in lsb.queues, you enter:
RUNLIMIT = 10 15

The first number is the default run limit applied to all jobs in the queue that are
submitted without a job-specific run limit. The second number is the maximum
run limit.
If you submit a job to the queue without the -W option, the default run limit is used:
bsub myjob

The job myjob cannot run for more than 10 minutes as specified with the default
run limit.
If you submit a job to the queue with the -W option, the maximum run limit is used:
bsub -W 12 myjob

The job myjob is allowed to run on the queue because the specified run limit (12)
is less than the maximum run limit for the queue (15).
bsub -W 20 myjob

The job myjob is rejected from the queue because the specified run limit (20) is
more than the maximum run limit for the queue (15).

Administering Platform LSF 607

Runtime Resource Usage Limits

Specify job-level resource usage limits

1 To specify resource usage limits at the job level, use one of the following bsub
options:
❖ -C core_limit
❖ -c cpu_limit
❖ -D data_limit
❖ -F file_limit
❖ -M mem_limit
❖ -p process_limit
❖ -W run_limit
❖ -S stack_limit
❖ -T thread_limit
❖ -v swap_limit
Job-level resource usage limits specified at job submission override the queue
definitions.

Supported Resource Usage Limits and Syntax

Core file size limit

Sets a per-process (soft) core file size limit for each process that belongs to this batch
job.
By default, the limit is specified in KB. Use LSF_UNIT_FOR_LIMITS in lsf.conf
to specify a larger unit for the the limit (MB, GB, TB, PB, or EB).
On some systems, no core file is produced if the image for the process is larger than
the core limit. On other systems only the first core_limit KB of the image are
dumped. The default is no soft limit.

CPU time limit

Sets the soft CPU time limit to cpu_limit for this batch job. The default is no limit.
This option is useful for avoiding runaway jobs that use up too many resources. LSF
keeps track of the CPU time used by all processes of the job.

Job syntax (bsub) Queue syntax (lsb.queues) Fomat/Default Units

-C core_limit CORELIMIT=limit integer KB

Job syntax (bsub) Queue syntax (lsb.queues) Fomat/Default Units

-c cpu_limit CPULIMIT=[default]
maximum

[hours:]minutes[/host_name |
/host_model]

Supported Resource Usage Limits and Syntax

608 Administering Platform LSF

When the job accumulates the specified amount of CPU time, a SIGXCPU signal is
sent to all processes belonging to the job. If the job has no signal handler for
SIGXCPU, the job is killed immediately. If the SIGXCPU signal is handled, blocked,
or ignored by the application, then after the grace period expires, LSF sends
SIGINT, SIGTERM, and SIGKILL to the job to kill it.
You can define whether the CPU limit is a per-process limit enforced by the OS or
a per-job limit enforced by LSF with LSB_JOB_CPULIMIT in lsf.conf.
Jobs submitted to a chunk job queue are not chunked if the CPU limit is greater
than 30 minutes.

Format cpu_limit is in the form [hour:]minute, where minute can be greater than 59. 3.5
hours can either be specified as 3:30 or 210.

Normalized CPU
time

The CPU time limit is normalized according to the CPU factor of the submission
host and execution host. The CPU limit is scaled so that the job does approximately
the same amount of processing for a given CPU limit, even if it is sent to a host with
a faster or slower CPU.
For example, if a job is submitted from a host with a CPU factor of 2 and executed
on a host with a CPU factor of 3, the CPU time limit is multiplied by 2/3 because
the execution host can do the same amount of work as the submission host in 2/3
of the time.
If the optional host name or host model is not given, the CPU limit is scaled based
on the DEFAULT_HOST_SPEC specified in the lsb.params file. (If
DEFAULT_HOST_SPEC is not defined, the fastest batch host in the cluster is used
as the default.) If host or host model is given, its CPU scaling factor is used to adjust
the actual CPU time limit at the execution host.
The following example specifies that myjob can run for 10 minutes on a DEC3000
host, or the corresponding time on any other host:
bsub -c 10/DEC3000 myjob

See CPU Time and Run Time Normalization on page 613 for more information.

Data segment size limit

Sets a per-process (soft) data segment size limit in KB for each process that belongs
to this batch job (see getrlimit(2)).
This option affects calls to sbrk() and brk() . An sbrk() or malloc() call to
extend the data segment beyond the data limit returns an error.

NOTE: Linux does not use sbrk() and brk() within its calloc() and malloc(). Instead, it
uses (mmap()) to create memory. DATALIMIT cannot be enforced on Linux applications that call
sbrk() and malloc().

Job syntax (bsub) Queue syntax (lsb.queues) Fomat/Default Units

-D data_limit DATALIMIT=[default] maximum integer KB

Administering Platform LSF 609

Runtime Resource Usage Limits

On AIX, if the XPG_SUS_ENV=ON environment variable is set in the user's
environment before the process is executed and a process attempts to set the limit
lower than current usage, the operation fails with errno set to EINVAL. If the
XPG_SUS_ENV environment variable is not set, the operation fails with errno set
to EFAULT.
The default is no soft limit.

File size limit

Sets a per-process (soft) file size limit in KB for each process that belongs to this
batch job. If a process of this job attempts to write to a file such that the file size
would increase beyond the file limit, the kernel sends that process a SIGXFSZ
signal. This condition normally terminates the process, but may be caught. The
default is no soft limit.

Memory limit

Sets a per-process physical memory limit for all of the processes belonging to a job
By default, the limit is specified in KB. Use LSF_UNIT_FOR_LIMITS in lsf.conf
to specify a larger unit for the the limit (MB, GB, TB, PB, or EB).
If LSB_MEMLIMIT_ENFORCE=Y or LSB_JOB_MEMLIMIT=Y are set in
lsf.conf, LSF kills the job when it exceeds the memory limit. Otherwise, LSF
passes the memory limit to the operating system. Some operating systems apply the
memory limit to each process, and some do not enforce the memory limit at all.

LSF memory limit
enforcement

To enable LSF memory limit enforcement, set LSB_MEMLIMIT_ENFORCE in
lsf.conf to y. LSF memory limit enforcement explicitly sends a signal to kill a
running process once it has allocated memory past mem_limit.
You can also enable LSF memory limit enforcement by setting
LSB_JOB_MEMLIMIT in lsf.conf to y. The difference between
LSB_JOB_MEMLIMIT set to y and LSB_MEMLIMIT_ENFORCE set to y is that
with LSB_JOB_MEMLIMIT, only the per-job memory limit enforced by LSF is
enabled. The per-process memory limit enforced by the OS is disabled. With
LSB_MEMLIMIT_ENFORCE set to y, both the per-job memory limit enforced by
LSF and the per-process memory limit enforced by the OS are enabled.
LSB_JOB_MEMLIMIT disables per-process memory limit enforced by the OS and
enables per-job memory limit enforced by LSF. When the total memory allocated
to all processes in the job exceeds the memory limit, LSF sends the following signals
to kill the job: SIGINT first, then SIGTERM, then SIGKILL.
On UNIX, the time interval between SIGINT, SIGKILL, SIGTERM can be
configured with the parameter JOB_TERMINATE_INTERVAL in lsb.params.

Job syntax (bsub) Queue syntax (lsb.queues) Fomat/Default Units

-F file_limit FILELIMIT=limit integer KB

Job syntax (bsub) Queue syntax (lsb.queues) Fomat/Default Units

-M mem_limit MEMLIMIT=[default] maximum integer KB

Supported Resource Usage Limits and Syntax

610 Administering Platform LSF

OS memory limit
enforcement

OS enforcement usually allows the process to eventually run to completion. LSF
passes mem_limit to the OS, which uses it as a guide for the system scheduler and
memory allocator. The system may allocate more memory to a process if there is a
surplus. When memory is low, the system takes memory from and lowers the
scheduling priority (re-nice) of a process that has exceeded its declared mem_limit.
OS memory limit enforcement is only available on systems that support
RLIMIT_RSS for setrlimit().
The following operating systems do not support the memory limit at the OS level:
◆ Microsoft Windows
◆ Sun Solaris 2.x

Process limit

Sets the limit of the number of processes to process_limit for the whole job. The
default is no limit. Exceeding the limit causes the job to terminate.
Limits the number of concurrent processes that can be part of a job.
If a default process limit is specified, jobs submitted to the queue without a job-level
process limit are killed when the default process limit is reached.
If you specify only one limit, it is the maximum, or hard, process limit. If you specify
two limits, the first one is the default, or soft, process limit, and the second one is
the maximum process limit.

Run time limit

A run time limit is the maximum amount of time a job can run before it is
terminated. It sets the run time limit of a job. The default is no limit. If the
accumulated time the job has spent in the RUN state exceeds this limit, the job is
sent a USR2 signal. If the job does not terminate within 10 minutes after being sent
this signal, it is killed.
With deadline constraint scheduling configured, a run limit also specifies the
amount of time a job is expected to take, and the minimum amount of time that
must be available before a job can be started.
Jobs submitted to a chunk job queue are not chunked if the run limit is greater than
30 minutes.

Format run_limit is in the form [hour:]minute, where minute can be greater than 59. 3.5
hours can either be specified as 3:30 or 210.

Job syntax (bsub) Queue syntax (lsb.queues) Fomat/Default Units

-p process_limit PROCESSLIMIT=[default] maximum integer

Job syntax (bsub) Queue syntax (lsb.queues) Fomat/Default Units

-W run_limit RUNLIMIT=[default] maximum [hours:]minutes[
/host_name |
/host_model]

Administering Platform LSF 611

Runtime Resource Usage Limits

Normalized run
time

The run time limit is normalized according to the CPU factor of the submission
host and execution host. The run limit is scaled so that the job has approximately
the same run time for a given run limit, even if it is sent to a host with a faster or
slower CPU.
For example, if a job is submitted from a host with a CPU factor of 2 and executed
on a host with a CPU factor of 3, the run limit is multiplied by 2/3 because the
execution host can do the same amount of work as the submission host in 2/3 of the
time.
If the optional host name or host model is not given, the run limit is scaled based
on the DEFAULT_HOST_SPEC specified in the lsb.params file. (If
DEFAULT_HOST_SPEC is not defined, the fastest batch host in the cluster is used
as the default.) If host or host model is given, its CPU scaling factor is used to adjust
the actual run limit at the execution host.
The following example specifies that myjob can run for 10 minutes on a DEC3000
host, or the corresponding time on any other host:
bsub -W 10/DEC3000 myjob

If ABS_RUNLIMIT=Y is defined in lsb.params, the run time limit is not
normalized by the host CPU factor. Absolute wall-clock run time is used for all jobs
submitted with a run limit.
See CPU Time and Run Time Normalization on page 613 for more information.

Platform
MultiCluster

For MultiCluster jobs, if no other CPU time normalization host is defined and
information about the submission host is not available, LSF uses the host with the
largest CPU factor (the fastest host in the cluster). The ABS_RUNLIMIT parameter
in lsb.params is is not supported in either MultiCluster model; run time limit is
normalized by the CPU factor of the execution host.

Thread limit

Sets the limit of the number of concurrent threads to thread_limit for the whole job.
The default is no limit.
Exceeding the limit causes the job to terminate. The system sends the following
signals in sequence to all processes belongs to the job: SIGINT, SIGTERM, and
SIGKILL.
If a default thread limit is specified, jobs submitted to the queue without a job-level
thread limit are killed when the default thread limit is reached.
If you specify only one limit, it is the maximum, or hard, thread limit. If you specify
two limits, the first one is the default, or soft, thread limit, and the second one is the
maximum thread limit.

Stack segment size limit

Job syntax (bsub) Queue syntax (lsb.queues) Fomat/Default Units

-T thread_limit THREADLIMIT=[default] maximum integer

Job syntax (bsub) Queue syntax (lsb.queues) Fomat/Default Units

-S stack_limit STACKLIMIT=limit integer KB

Examples

612 Administering Platform LSF

Sets a per-process (hard) stack segment size limit for all of the processes belonging
to a job. Application-level and job-level stack segment size limits overwrite this
value as the soft limit, but cannot exceed the hard limit set in lsb.queues.
By default, the limit is specified in KB. Use LSF_UNIT_FOR_LIMITS in lsf.conf
to specify a larger unit for the the limit (MB, GB, TB, PB, or EB).
An sbrk() call to extend the stack segment beyond the stack limit causes the
process to be terminated. The default is no limit.

Virtual memory (swap) limit

Sets a total process virtual memory limit for the whole job. The default is no limit.
Exceeding the limit causes the job to terminate.
By default, the limit is specified in KB. Use LSF_UNIT_FOR_LIMITS in lsf.conf
to specify a larger unit for the the limit (MB, GB, TB, PB, or EB).
This limit applies to the whole job, no matter how many processes the job may
contain.

Examples

Queue-level limits
CPULIMIT = 20/hostA 15

The first number is the default CPU limit. The second number is the maximum
CPU limit.
However, the default CPU limit is ignored because it is a higher value than the
maximum CPU limit.
CPULIMIT = 10/hostA

In this example, the lack of a second number specifies that there is no default CPU
limit. The specified number is considered as the default and maximum CPU limit.
RUNLIMIT = 10/hostA 15

The first number is the default run limit. The second number is the maximum run
limit.
The first number specifies that the default run limit is to be used for jobs that are
submitted without a specified run limit (without the -W option of bsub).
RUNLIMIT = 10/hostA

No default run limit is specified. The specified number is considered as the default
and maximum run limit.
THREADLIMIT=6

No default thread limit is specified. The value 6 is the default and maximum thread
limit.
THREADLIMIT=6 8

The first value (6) is the default thread limit. The second value (8) is the maximum
thread limit.

Job syntax (bsub) Queue syntax (lsb.queues) Fomat/Default Units

-v swap_limit SWAPLIMIT=limit integer KB

Administering Platform LSF 613

Runtime Resource Usage Limits

Job-level limits
bsub -M 5000 myjob

Submits myjob with a memory limit of 5000 KB.
bsub -W 14 myjob

myjob is expected to run for 14 minutes. If the run limit specified with bsub -W
exceeds the value for the queue, the job is rejected.
bsub -T 4 myjob

Submits myjob with a maximum number of concurrent threads of 4.

CPU Time and Run Time Normalization
To set the CPU time limit and run time limit for jobs in a platform-independent
way, LSF scales the limits by the CPU factor of the hosts involved. When a job is
dispatched to a host for execution, the limits are then normalized according to the
CPU factor of the execution host.
Whenever a normalized CPU time or run time is given, the actual time on the
execution host is the specified time multiplied by the CPU factor of the
normalization host then divided by the CPU factor of the execution host.
If ABS_RUNLIMIT=Y is defined in lsb.params or in lsb.applications for the
application associated with your job, the run time limit and run time estimate are
not normalized by the host CPU factor. Absolute wall-clock run time is used for all
jobs submitted with a run time limit or a run time estimate.

Normalization host
If no host or host model is given with the CPU time or run time, LSF uses the
default CPU time normalization host defined at the queue level
(DEFAULT_HOST_SPEC in lsb.queues) if it has been configured, otherwise uses
the default CPU time normalization host defined at the cluster level
(DEFAULT_HOST_SPEC in lsb.params) if it has been configured, otherwise uses
the submission host.

Example CPULIMIT=10/hostA

If hostA has a CPU factor of 2, and hostB has a CPU factor of 1 (hostB is slower
than hostA), this specifies an actual time limit of 10 minutes on hostA, or on any
other host that has a CPU factor of 2. However, if hostB is the execution host, the
actual time limit on hostB is 20 minutes (10 * 2 / 1).

Normalization hosts for default CPU and run time limits
The first valid CPU factor encountered is used for both CPU limit and run time
limit. To be valid, a host specification must be a valid host name that is a member
of the LSF cluster. The CPU factor is used even if the specified limit is not valid.
If the CPU and run limit have different host specifications, the CPU limit host
specification is enforced.
If no host or host model is given with the CPU or run time limits, LSF determines
the default normalization host according to the following priority:
1 DEFAULT_HOST_SPEC is configured in lsb.queues

PAM resource limits

614 Administering Platform LSF

2 DEFAULT_HOST_SPEC is configured in lsb.params
3 If DEFAULT_HOST_SPEC is not configured in lsb.queues or lsb.params,

host with the largest CPU factor is used.

CPU time display (bacct, bhist, bqueues)
Normalized CPU time is displayed in the output of bqueues. CPU time is not
normalized in the output if bacct and bhist.

PAM resource limits
PAM limits are system resource limits defined in limits.conf.
◆ Windows: Not applicable
◆ Linux: /etc/pam.d/lsf
When USE_PAM_CREDS is enabled in lsb.queues or lsb.applications, applies
PAM limits to an application or queue when its job is dispatched to a Linux host
using PAM. The job will fail if the execution host does not have PAM configured.

Configure a PAM file
When USE_PAM_CREDS is enabled in lsb.queues or lsb.applications, the limits
specified in the PAM configuration file are applied to an application or queue when
its job is dispatched to a Linux host using PAM. The job will fail if the execution
host does not have PAM configured.

1 Create a PAM configuration file on each execution host you want.
/etc/pam.d/lsf/limits.conf

2 In the first two lines, specify the authentication and authorization you need to
successfully run PAM limits. For example:
auth required pam_localuser.so

account required pam_unix.so

3 Specify any resource limits. For example:
session required pam_limits.so

On hosts that have a PAM configuration file with resource limits specified and
when USE_PAM_CREDS=y in lsb.queues or lsb.applications, applies resource
limits on jobs running on the execution host.
For more information about configuring a PAM file, check Linux documentation.

Administering Platform LSF 615

C H A P T E R

37
Load Thresholds

Contents
◆ Automatic Job Suspension on page 616
◆ Suspending Conditions on page 618

Automatic Job Suspension

616 Administering Platform LSF

Automatic Job Suspension
Jobs running under LSF can be suspended based on the load conditions on the
execution hosts. Each host and each queue can be configured with a set of
suspending conditions. If the load conditions on an execution host exceed either
the corresponding host or queue suspending conditions, one or more jobs running
on that host are suspended to reduce the load.
When LSF suspends a job, it invokes the SUSPEND action. The default SUSPEND
action is to send the signal SIGSTOP.
By default, jobs are resumed when load levels fall below the suspending conditions.
Each host and queue can be configured so that suspended checkpointable or
rerunnable jobs are automatically migrated to another host instead.
If no suspending threshold is configured for a load index, LSF does not check the
value of that load index when deciding whether to suspend jobs.
Suspending thresholds can also be used to enforce inter-queue priorities. For
example, if you configure a low-priority queue with an r1m (1 minute CPU run
queue length) scheduling threshold of 0.25 and an r1m suspending threshold of
1.75, this queue starts one job when the machine is idle. If the job is CPU intensive,
it increases the run queue length from 0.25 to roughly 1.25. A high-priority queue
configured with a scheduling threshold of 1.5 and an unlimited suspending
threshold sends a second job to the same host, increasing the run queue to 2.25.
This exceeds the suspending threshold for the low priority job, so it is stopped. The
run queue length stays above 0.25 until the high priority job exits. After the high
priority job exits the run queue index drops back to the idle level, so the low priority
job is resumed.
When jobs are running on a host, LSF periodically checks the load levels on that
host. If any load index exceeds the corresponding per-host or per-queue
suspending threshold for a job, LSF suspends the job. The job remains suspended
until the load levels satisfy the scheduling thresholds.
At regular intervals, LSF gets the load levels for that host. The period is defined by
the SBD_SLEEP_TIME parameter in the lsb.params file. Then, for each job
running on the host, LSF compares the load levels against the host suspending
conditions and the queue suspending conditions. If any suspending condition at
either the corresponding host or queue level is satisfied as a result of increased load,
the job is suspended. A job is only suspended if the load levels are too high for that
particular job’s suspending thresholds.
There is a time delay between when LSF suspends a job and when the changes to
host load are seen by the LIM. To allow time for load changes to take effect, LSF
suspends no more than one job at a time on each host.
Jobs from the lowest priority queue are checked first. If two jobs are running on a
host and the host is too busy, the lower priority job is suspended and the higher
priority job is allowed to continue. If the load levels are still too high on the next
turn, the higher priority job is also suspended.
If a job is suspended because of its own load, the load drops as soon as the job is
suspended. When the load goes back within the thresholds, the job is resumed until
it causes itself to be suspended again.

Administering Platform LSF 617

Load Thresholds

Exceptions
In some special cases, LSF does not automatically suspend jobs because of load
levels. LSF does not suspend a job:
◆ Forced to run with brun -f.
◆ If it is the only job running on a host, unless the host is being used interactively.

When only one job is running on a host, it is not suspended for any reason
except that the host is not interactively idle (the it interactive idle time load
index is less than one minute). This means that once a job is started on a host,
at least one job continues to run unless there is an interactive user on the host.
Once the job is suspended, it is not resumed until all the scheduling conditions
are met, so it should not interfere with the interactive user.

◆ Because of the paging rate, unless the host is being used interactively. When a
host has interactive users, LSF suspends jobs with high paging rates, to improve
the response time on the host for interactive users. When a host is idle, the pg
(paging rate) load index is ignored. The PG_SUSP_IT parameter in
lsb.params controls this behavior. If the host has been idle for more than
PG_SUSP_IT minutes, the pg load index is not checked against the suspending
threshold.

Suspending Conditions

618 Administering Platform LSF

Suspending Conditions
LSF provides different alternatives for configuring suspending conditions.
Suspending conditions are configured at the host level as load thresholds, whereas
suspending conditions are configured at the queue level as either load thresholds,
or by using the STOP_COND parameter in the lsb.queues file, or both.
The load indices most commonly used for suspending conditions are the CPU run
queue lengths (r15s, r1m, and r15m), paging rate (pg), and idle time (it). The (swp)
and (tmp) indices are also considered for suspending jobs.
To give priority to interactive users, set the suspending threshold on the it (idle
time) load index to a non-zero value. Jobs are stopped when any user is active, and
resumed when the host has been idle for the time given in the it scheduling
condition.
To tune the suspending threshold for paging rate, it is desirable to know the
behavior of your application. On an otherwise idle machine, check the paging rate
using lsload, and then start your application. Watch the paging rate as the
application runs. By subtracting the active paging rate from the idle paging rate, you
get a number for the paging rate of your application. The suspending threshold
should allow at least 1.5 times that amount. A job can be scheduled at any paging
rate up to the scheduling threshold, so the suspending threshold should be at least
the scheduling threshold plus 1.5 times the application paging rate. This prevents
the system from scheduling a job and then immediately suspending it because of its
own paging.
The effective CPU run queue length condition should be configured like the paging
rate. For CPU-intensive sequential jobs, the effective run queue length indices
increase by approximately one for each job. For jobs that use more than one process,
you should make some test runs to determine your job’s effect on the run queue
length indices. Again, the suspending threshold should be equal to at least the
scheduling threshold plus 1.5 times the load for one job.

Resizable jobs
If new hosts are added for resizable jobs, LSF considers load threshold scheduling
on those new hosts. If hosts are removed from allocation, LSF does not apply load
threshold scheduling for resizing the jobs.

Configuring load thresholds at queue level
The queue definition (lsb.queues) can contain thresholds for 0 or more of the load
indices. Any load index that does not have a configured threshold has no effect on
job scheduling.

Syntax Each load index is configured on a separate line with the format:
load_index = loadSched/loadStop

Specify the name of the load index, for example r1m for the 1-minute CPU run
queue length or pg for the paging rate. loadSched is the scheduling threshold for
this load index. loadStop is the suspending threshold. The loadSched condition
must be satisfied by a host before a job is dispatched to it and also before a job
suspended on a host can be resumed. If the loadStop condition is satisfied, a job is
suspended.

Administering Platform LSF 619

Load Thresholds

The loadSched and loadStop thresholds permit the specification of conditions
using simple AND/OR logic. For example, the specification:
MEM=100/10
SWAP=200/30

translates into a loadSched condition of mem>=100 && swap>=200 and a loadStop
condition of mem < 10 || swap < 30.

Theory ◆ The r15s, r1m, and r15m CPU run queue length conditions are compared to the
effective queue length as reported by lsload -E, which is normalised for
multiprocessor hosts. Thresholds for these parameters should be set at
appropriate levels for single processor hosts.

◆ Configure load thresholds consistently across queues. If a low priority queue
has higher suspension thresholds than a high priority queue, then jobs in the
higher priority queue are suspended before jobs in the low priority queue.

Configuring load thresholds at host level
A shared resource cannot be used as a load threshold in the Hosts section of the
lsf.cluster.cluster_name file.

Configuring suspending conditions at queue level
The condition for suspending a job can be specified using the queue-level
STOP_COND parameter. It is defined by a resource requirement string. Only the
select section of the resource requirement string is considered when stopping a
job. All other sections are ignored.
This parameter provides similar but more flexible functionality for loadStop.
If loadStop thresholds have been specified, then a job is suspended if either the
STOP_COND is TRUE or the loadStop thresholds are exceeded.

Example This queue suspends a job based on the idle time for desktop machines and based
on availability of swap and memory on compute servers. Assume cs is a Boolean
resource defined in the lsf.shared file and configured in the
lsf.cluster.cluster_name file to indicate that a host is a compute server:

Begin Queue

.

STOP_COND= select[((!cs && it < 5) || (cs && mem < 15 && swap < 50))]

.

End Queue

Viewing host-level and queue-level suspending conditions
The suspending conditions are displayed by the bhosts -l and bqueues -l
commands.

Viewing job-level suspending conditions
The thresholds that apply to a particular job are the more restrictive of the host and
queue thresholds, and are displayed by the bjobs -l command.

Suspending Conditions

620 Administering Platform LSF

Viewing suspend reason
The bjobs -lp command shows the load threshold that caused LSF to suspend a
job, together with the scheduling parameters.
The use of STOP_COND affects the suspending reasons as displayed by the bjobs
command. If STOP_COND is specified in the queue and the loadStop thresholds
are not specified, the suspending reasons for each individual load index are not
displayed.

Resuming suspended jobs
Jobs are suspended to prevent overloading hosts, to prevent batch jobs from
interfering with interactive use, or to allow a more urgent job to run. When the host
is no longer overloaded, suspended jobs should continue running.
When LSF automatically resumes a job, it invokes the RESUME action. The default
action for RESUME is to send the signal SIGCONT.
If there are any suspended jobs on a host, LSF checks the load levels in each dispatch
turn.
If the load levels are within the scheduling thresholds for the queue and the host,
and all the resume conditions for the queue (RESUME_COND in lsb.queues) are
satisfied, the job is resumed.
If RESUME_COND is not defined, then the loadSched thresholds are used to
control resuming of jobs: all the loadSched thresholds must be satisfied for the job
to be resumed. The loadSched thresholds are ignored if RESUME_COND is
defined.
Jobs from higher priority queues are checked first. To prevent overloading the host
again, only one job is resumed in each dispatch turn.

Specify resume condition

1 Use RESUME_COND in lsb.queues to specify the condition that must be
satisfied on a host if a suspended job is to be resumed.
Only the select section of the resource requirement string is considered when
resuming a job. All other sections are ignored.

Viewing resume thresholds
The bjobs -l command displays the scheduling thresholds that control when a job
is resumed.

Administering Platform LSF 621

C H A P T E R

38
Pre-Execution and Post-Execution Commands

Jobs can be submitted with optional pre- and post-execution commands. A pre- or
post-execution command is an arbitrary command to run before the job starts or
after the job finishes. Pre- and post-execution commands are executed in a separate
environment from the job.

Contents
◆ About Pre-Execution and Post-Execution Commands on page 622
◆ Configuring Pre- and Post-Execution Commands on page 624

About Pre-Execution and Post-Execution Commands

622 Administering Platform LSF

About Pre-Execution and Post-Execution Commands
Each batch job can be submitted with optional pre- and post-execution commands.
Pre- and post-execution commands can be any executable command lines to be run
before a job is started or after a job finishes.
Some batch jobs require resources that LSF does not directly support. For example,
appropriate pre- and/or post-execution commands can be used to handle various
situations:
◆ Reserving devices like tape drives
◆ Creating and deleting scratch directories for a job
◆ Customized scheduling
◆ Checking availability of software licenses
◆ Assigning jobs to run on specific processors on SMP machines
◆ Transferring data files needed for job processing
◆ Modifying system configuration files before and after running a job
By default, the pre- and post-execution commands are run under the same user ID,
environment, and home and working directories as the batch job. If the command
is not in your normal execution path, the full path name of the command must be
specified.
For parallel jobs, the command is run on the first selected host.
The command path can contain up to 4094 characters for UNIX and Linux, or up
to 255 characters for Windows, including the directory and file name.

Pre-execution commands
Pre-execution commands support job starting decisions which cannot be
configured directly in LSF. LSF supports job-level, queue-level, and
application-level (lsb.applications) pre-execution.
The pre-execution command returns information to LSF using its exit status. When
a pre-execution command is specified, the job is held in the queue until the
specified pre-execution command returns exit status zero (0).
If the pre-execution command exits with non-zero status, the batch job is not
dispatched. The job goes back to the PEND state, and LSF tries to dispatch another
job to that host. While the job is pending, other jobs can proceed ahead of the
waiting job. The next time LSF tries to dispatch jobs this process is repeated.
If the pre-execution command exits with a value of 99, the job does not go back to
the PEND state, it exits. This gives you flexibility to abort the job if the
pre-execution command fails.
LSF assumes that the pre-execution command runs without side effects. For
example, if the pre-execution command reserves a software license or other
resource, you must not reserve the same resource more than once for the same
batch job.

Administering Platform LSF 623

Pre-Execution and Post-Execution Commands

Post-execution commands
If a post-execution command is specified, then the command is run after the job is
finished regardless of the exit state of the job.
Post-execution commands are typically used to clean up some state left by the
pre-execution and the job execution. LSF supports job-level, queue-level, and
application-level (lsb.applications) post-execution.

Job-level commands
The bsub -E option specifies an arbitrary command to run before starting the
batch job. When LSF finds a suitable host on which to run a job, the pre-execution
command is executed on that host. If the pre-execution command runs
successfully, the batch job is started.
The bsub -Ep option specifies job-level post-execution commands to run on the
execution host after the job finishes.

Queue-level and application-level commands
In some situations (for example, license checking), it is better to specify a
queue-level or application-level pre-execution command instead of requiring every
job be submitted with the -E option of bsub.
Queue-level pre-execution commands run before application-level pre-execution
commands. Job level pre-execution commands (bsub -E) override
application-level pre-execution commands.
Application level pre-execution commands run on the execution host before the job
associated with the application profile is dispatched on an execution host.
When a job finishes, the application-level post-execution commands run, followed
by queue-level post-execution commands if any.
Application-level post-execution commands run on the execution host after the job
associated with the application profile has finished running on the execution host.
They also run if the PRE_EXEC command exited with a 0 exit status even if the job
execution environment failed to be set up.

Post-execution job states
Some jobs may not be considered complete until some post-job processing is
performed. For example, a job may need to exit from a post-execution job script,
clean up job files, or transfer job output after the job completes.
By default, the DONE or EXIT job states do not indicate whether post-processing
is complete, so jobs that depend on processing may start prematurely. Use the
post_done and post_err keywords on the bsub -w command to specify job
dependency conditions for job post-processing. The corresponding job states
POST_DONE and POST_ERR indicate the state of the post-processing.
The bhist command displays the POST_DONE and POST_ERR states. The
resource usage of post-processing is not included in the job resource usage.
After the job completes, you cannot perform any job control on the
post-processing. Post-processing exit codes are not reported to LSF.

Configuring Pre- and Post-Execution Commands

624 Administering Platform LSF

Configuring Pre- and Post-Execution Commands
Pre-execution commands can be configured at the job level, in queues, or in
application profiles.
Post-execution commands can be configured at the job level, in queues or in
application profiles.

Order of command execution
Pre-execution commands run in the following order:
1 The queue-level command
2 The application-level or job-level command. If you specify a command at both

the application and job levels, the job-level command overrides the
application-level command; the application-level command is ignored.

Post-execution commands run in the following order:
1 The application-level or job-level command. If you specify a command at both

the application and job levels, the job-level command overrides the
application-level command; the application-level command is ignored.

2 The queue-level command
If both application-level (POST_EXEC in lsb.applications) and job-level
post-execution commands are specified, job level post-execution overrides
application-level post-execution commands.

Job-level commands
Job-level pre-execution and post-execution commands require no configuration.
Use the bsub -E option to specify an arbitrary command to run before the job
starts. Use the bsub -Ep option to specify an arbitrary command to run after the
job finishes running.

If a pre-execution command is specified at the … Then the commands execute in the order of …

Queue, application, and job levels 1 Queue level
2 Job level

Queue and application levels 1 Queue level
2 Application level

Queue and job levels 1 Queue level
2 Job level

Application and job levels 1 Job level

If a post-execution command is specified at
the …

Then the commands execute
in the order of …

Queue, application, and job levels 1 Job level
2 Queue level

Queue and application levels 1 Application level
2 Queue level

Queue and job levels 1 Job level
2 Queue level

Administering Platform LSF 625

Pre-Execution and Post-Execution Commands

Example The following example shows a batch job that requires a tape drive. The user
program tapeCheck exits with status zero if the specified tape drive is ready:
bsub -E "/usr/share/bin/tapeCheck /dev/rmt01" myJob

Queue-level commands
Use the PRE_EXEC and POST_EXEC keywords in the queue definition
(lsb.queues) to specify pre- and post-execution commands.
The following points should be considered when setting up pre- and post-execution
commands at the queue level:
◆ If the pre-execution command exits with a non-zero exit code, then it is

considered to have failed and the job is requeued to the head of the queue. This
feature can be used to implement customized scheduling by having the
pre-execution command fail if conditions for dispatching the job are not met.

◆ Other environment variables set for the job are also set for the pre- and
post-execution commands.

◆ When a job is dispatched from a queue which has a post-execution command,
LSF remembers the post-execution command defined for the queue from
which the job is dispatched. If the job is later switched to another queue or the
post-execution command of the queue is changed, LSF still runs the original
post-execution command for this job.

◆ When the post-execution command is run, the environment variable,
LSB_JOBEXIT_STAT, is set to the exit status of the job. See the man page for
the wait(2) command for the format of this exit status.

◆ The post-execution command is also run if a job is requeued because the job’s
execution environment fails to be set up, or if the job exits with one of the
queue’s REQUEUE_EXIT_VALUES. The LSB_JOBPEND environment
variable is set if the job is requeued. If the job’s execution environment could
not be set up, LSB_JOBEXIT_STAT is set to 0.

◆ Running of post-execution commands upon restart of a rerunnable job may
not always be desirable; for example, if the post-exec removes certain files, or
does other cleanup that should only happen if the job finishes successfully. Use
LSB_DISABLE_RERUN_POST_EXEC=Y in lsf.conf to prevent the
post-exec from running when a job is rerun.

◆ If both queue and job-level pre-execution commands are specified, the
job-level pre-execution is run after the queue-level pre-execution command.

◆ If both application-level and job-level post-execution commands are specified,
job level post-execution overrides application-level post-execution commands.
Queue-level post-execution commands run after application-level
post-execution and job-level post-execution commands

Example The following queue specifies the pre-execution command
/usr/share/lsf/pri_prexec and the post-execution command
/usr/share/lsf/pri_postexec.
Begin Queue
QUEUE_NAME = priority
PRIORITY = 43
NICE = 10

Configuring Pre- and Post-Execution Commands

626 Administering Platform LSF

PRE_EXEC = /usr/share/lsf/pri_prexec
POST_EXEC = /usr/share/lsf/pri_postexec
End Queue

See the lsb.queues template file for additional queue examples.

Application-level commands
Use the PRE_EXEC and POST_EXEC keywords in the application profile
definition (lsb.applications) to specify pre- and post-execution commands.
The following points should be considered when setting up pre- and post-execution
commands at the application level:
◆ When a job finishes, the application-level post-execution commands run,

followed by queue-level post-execution commands if any.
◆ Environment variables set for the job are also set for the pre- and

post-execution commands.
◆ Queue-level pre-execution commands run before application-level

pre-execution commands. Job level pre-execution commands (bsub -E)
override application-level pre-execution commands.

◆ When a job is submitted to an application profile that has a pre-execution
command, the system will remember the post-execution command defined for
the application profile from which the job is dispatched. If the job is later moved
to another application profile or the post-execution command of the
application profile is changed, the original post-execution command will be
run.

◆ When the post-execution command is run, the environment variable
LSB_JOBEXIT_STAT is set to the exit status of the job. Refer to the man page
for wait(2) for the format of this exit status.

◆ The post-execution command is also run if a job is requeued because the job’s
execution environment fails to be set up or if the job exits with one of the
application profile’s REQUEUE_EXIT_VALUES. The environment variable
LSB_JOBPEND is set if the job is requeued. If the job’s execution environment
could not be set up, LSB_JOBEXIT_STAT is set to 0 (zero).

◆ If the pre-execution command exits with a non-zero exit code, it is considered
to have failed, and the job is requeued to the head of the queue. Use this feature
to implement customized scheduling by having the pre-execution command
fail if conditions for dispatching the job are not met.

Example Begin Application

NAME = catia

DESCRIPTION = CATIA V5

CPULIMIT = 24:0/hostA # 24 hours of host hostA

FILELIMIT = 20000

DATALIMIT = 20000 # jobs data segment limit

CORELIMIT = 20000

PROCLIMIT = 5 # job processor limit

PRE_EXEC = /usr/share/lsf/catia_prexec

POST_EXEC = /usr/share/lsf/catia_postexec

Administering Platform LSF 627

Pre-Execution and Post-Execution Commands

REQUEUE_EXIT_VALUES = 55 34 78

End Application

See the lsb.applications template file for additional application profile
examples.

Pre- and post-execution on UNIX and Linux
The entire contents of the configuration line of the pre- and post-execution
commands are run under /bin/sh -c, so shell features can be used in the
command.
For example, the following is valid:
PRE_EXEC = /usr/share/lsf/misc/testq_pre >> /tmp/pre.out
POST_EXEC = /usr/share/lsf/misc/testq_post | grep -v "Hey!"

The pre- and post-execution commands are run in /tmp.
Standard input and standard output and error are set to /dev/null. The output
from the pre- and post-execution commands can be explicitly redirected to a file for
debugging purposes.
The PATH environment variable is set to:
PATH='/bin /usr/bin /sbin /usr/sbin'

Pre- and post-execution on Windows
The pre- and post-execution commands are run under cmd.exe /c.

NOTE: For pre- and post-execution commands that execute on a Windows Server 2003, x64
Edition platform, users must have “Read” and “Execute” privileges for cmd.exe.

Standard input and standard output and error are set to NULL. The output from the
pre- and post-execution commands can be explicitly redirected to a file for
debugging purposes.

Setting a pre- and post-execution user ID
By default, both the pre- and post-execution commands are run as the job
submission user. Use the LSB_PRE_POST_EXEC_USER parameter in
lsf.sudoers to specify a different user ID for queue-level and application-level
pre- and post-execution commands.

Example If the pre- or post-execution commands perform privileged operations that require
root permission, specify:
LSB_PRE_POST_EXEC_USER=root

See the Platform LSF Configuration Reference for information about the
lsf.sudoers file.

Including job post-execution in job finish status reporting
By default, LSF releases resources for a job as soon as the job is finished and when
sbatchd reports job finish status (DONE or EXIT) to mbatchd. Post-execution
processing is not considered part of job processing. This makes it possible for a new
job to be started before post-execution processing for a previous job is complete.

Configuring Pre- and Post-Execution Commands

628 Administering Platform LSF

There are situations where you do not want the first job’s post-execution affecting
the second job’s execution. Or the execution of a second job might crucially depend
on the completion of post-execution of the previous job.
In other cases, you may want to include job post-execution in job accounting
processes, or if the post-execution is CPU intensive, you might not want a second
job running at the same time. Finally, system configuration required by the original
job may be changed or removed by a new job, which could prevent the first job from
finishing normally.
To enable all associated processing to complete before LSF reports job finish status,
configure JOB_INCLUDE_POSTPROC=Y in an application profile in
lsb.applications or cluster wide in lsb.params.
When JOB_INCLUDE_POSTPROC is set:
◆ sbatchd sends both job finish status (DONE or EXIT) and post-execution

status (POST_DONE or POST_ERR) to mbatchd at the same time
◆ The job remains in RUN state and holds its job slot until the job post-execution

processing has finished
◆ Jobs can now depend on the completion of post-execution processing
◆ bjobs, bhist, and bacct will show the same time for both job finish and

post-execution finish
◆ Job requeue will happen after post-execution processing, not when the job

finishes
For job history and job accounting, the job CPU time and run time will also include
the post-execution CPU time and run time.

Limitations and
side-effects

Job query commands (bjobs, bhist) show that the job remains in RUN state until
the post-execution processing is finished, even though the job itself has finished.
job control commands (bstop, bkill, bresume) will have no effect.
Rerunnable jobs may rerun after they have actually finished because the host
became unavailable before post-execution processing finished, but the mbatchd
considers the job still in RUN state.
Job preemption is delayed until post-execution processing is finished.

Post-execution on
SGI cpusets

Post-execution processing on SGI cpusets behave differently from previous
releases. If JOB_INCLUDE_POSTPROC=Y is specified in lsb.applications or
cluster wide in lsb.params, post-execution processing is not attached to the job
cpuset, and Platform LSF does not release the cpuset until post-execution
processing has finished.

Preventing job
overlap on hosts

You can use JOB_INCLUDE_POSTPROC to ensure that there is no execution
overlap among running jobs. For example, you may have pre-execution processing
to create a user execution environment at the desktop (mount a disc for the user,
create rlogin permissions, etc.) Then you configure post-execution processing to
clean up the user execution environment set by the pre-exec.

Administering Platform LSF 629

Pre-Execution and Post-Execution Commands

If the post-execution for one job is still running when a second job is dispatched,
pre-execution processing that sets up the user environment for the next job may not
be able to run correctly because the previous job’s environment has not yet been
cleaned up by its post-exec.
 You should configure jobs to run exclusively to prevent the actual jobs from not
overlapping, but in this case, you also need to configure post-execution to be
included in job finish status reporting.

Setting a post-execution timeout
Configure JOB_POSTPROC_TIMEOUT in an application profile in
lsb.applications or cluster wide in lsb.params to control how long
post-execution processing is allowed to run.
JOB_POSTPROC_TIMEOUT specifies a timeout in minutes for job
post-execution processing. If post-execution processing takes longer than the
timeout, sbatchd reports the post-execution has failed (POST_ERR status), and
kills the process group of the job’s post-execution processes.
The specified timeout must be greater than zero.
If JOB_INCLUDE_POSTPROC is enabled in the application profile or cluster wide
in lsb.params, and sbatchd kills the post-execution processes because the timeout
has been reached, the CPU time of the post-execution processing is set to 0, and the
job CPU time will not include the CPU time of the post-execution processing.

Controlling how many times pre-execution commands are retried
By default, if job pre-execution fails, LSF retries the job automatically.
Configure MAX_PREEXEC_RETRY, LOCAL_MAX_PREEXEC_RETRY, or
REMOTE_MAX_PREEXEC_RETRY to limit the number of times LSF retries job
pre-execution. Pre-execution retry is configured cluster-wide (lsb.params), at the
queue level (lsb.queues), and at the application level (lsb.applications).
Pre-execution retry configured in lsb.applications overrides lsb.queues, and
lsb.queues overrides lsb.params configuration.

Configuring Pre- and Post-Execution Commands

630 Administering Platform LSF

Administering Platform LSF 631

C H A P T E R

39
Job Starters

A job starter is a specified shell script or executable program that sets up the
environment for a job and then runs the job. The job starter and the job share the
same environment. This chapter discusses two ways of running job starters in LSF
and how to set up and use them.

Contents
◆ About Job Starters on page 631
◆ Command-Level Job Starters on page 632
◆ Queue-Level Job Starters on page 634
◆ Controlling Execution Environment Using Job Starters on page 635

About Job Starters
Some jobs have to run in a particular environment, or require some type of setup to
be performed before they run. In a shell environment, job setup is often written into
a wrapper shell script file that itself contains a call to start the desired job.
A job starter is a specified wrapper script or executable program that typically
performs environment setup for the job, then calls the job itself, which inherits the
execution environment created by the job starter. LSF controls the job starter
process, rather than the job. One typical use of a job starter is to customize LSF for
use with specific application environments, such as Alias Renderer or IBM Rational
ClearCase.

Two ways to run job starters
You run job starters two ways in LSF. You can accomplish similar things with either
job starter, but their functional details are slightly different.

Command-level Are user-defined. They run interactive jobs submitted using lsrun, lsgrun, or ch.
Command-level job starters have no effect on batch jobs, including interactive
batch jobs run with bsub -I.
Use the LSF_JOB_STARTER environment variable to specify a job starter for
interactive jobs. See Controlling Execution Environment Using Job Starters on page
635 for detailed information.

Command-Level Job Starters

632 Administering Platform LSF

Queue-level Defined by the LSF administrator, and run batch jobs submitted to a queue defined
with the JOB_STARTER parameter set. Use bsub to submit jobs to queues with
job-level job starters.
A queue-level job starter is configured in the queue definition in lsb.queues. See
Queue-Level Job Starters on page 634 for detailed information.

Pre-execution commands are not job starters
A job starter differs from a pre-execution command. A pre-execution command
must run successfully and exit before the LSF job starts. It can signal LSF to dispatch
the job, but because the pre-execution command is an unrelated process, it does not
control the job or affect the execution environment of the job. A job starter,
however, is the process that LSF controls. It is responsible for invoking LSF and
controls the execution environment of the job.
See Chapter 38, “Pre-Execution and Post-Execution Commands” for more
information.

Examples
The following are some examples of job starters:
◆ In UNIX, a job starter defined as /bin/ksh -c causes jobs to be run under a

Korn shell environment.
◆ In Windows, a job starter defined as C:\cmd.exe /C causes jobs to be run

under a DOS shell environment.

NOTE: For job starters that execute on a Windows Server 2003, x64 Edition platform, users must
have “Read” and “Execute” privileges for cmd.exe.

◆ Setting the JOB_STARTER parameter in lsb.queues to $USER_STARTER
enables users to define their own job starters by defining the environment
variable USER_STARTER.

RESTRICTION: USER_STARTER can only be used in UNIX clusters. Mixed or Windows-only
clusters are not supported.

◆ Setting a job starter to make clean causes the command make clean to be run
before the user job.

Command-Level Job Starters
A command-level job starter allows you to specify an executable file that does any
necessary setup for the job and runs the job when the setup is complete. You can
select an existing command to be a job starter, or you can create a script containing
a desired set of commands to serve as a job starter.
This section describes how to set up and use a command-level job starter to run
interactive jobs.
Command-level job starters have no effect on batch jobs, including interactive
batch jobs. See Chapter 42, “Interactive Jobs with bsub” for information on
interactive batch jobs.

Administering Platform LSF 633

Job Starters

A job starter can also be defined at the queue level using the JOB_STARTER
parameter. Only the LSF administrator can configure queue-level job starters. See
Queue-Level Job Starters on page 634 for more information.

LSF_JOB_STARTER environment variable
Use the LSF_JOB_STARTER environment variable to specify a command or script
that is the job starter for the interactive job. When the environment variable
LSF_JOB_STARTER is defined, RES invokes the job starter rather than running the
job itself, and passes the job to the job starter as a command-line argument.

Using command-level job starters

UNIX The job starter is invoked from within a Bourne shell, making the command-line
equivalent:
/bin/sh -c "$LSF_JOB_STARTER command [argument ...]"

where command and argument are the command-line arguments you specify in
lsrun, lsgrun, or ch.

Windows RES runs the job starter, passing it your commands as arguments:
LSF_JOB_STARTER command [argument ...]

Examples

UNIX If you define the LSF_JOB_STARTER environment variable using the following
C-shell command:
% setenv LSF_JOB_STARTER "/bin/sh -c"

Then you run a simple C-shell job:
% lsrun "’a.out; hostname’"

The command that actually runs is:
/bin/sh -c "/bin/sh -c ’a.out hostname’"

The job starter can be a shell script. In the following example, the
LSF_JOB_STARTER environment variable is set to the Bourne shell script named
job_starter:
$ LSF_JOB_STARTER=/usr/local/job_starter
The job_starter script contains the following:
#!/bin/sh
set term = xterm
eval "$*"

Windows If you define the LSF_JOB_STARTER environment variable as follows:
set LSF_JOB_STARTER=C:\cmd.exe /C

Then you run a simple DOS shell job:
C:\> lsrun dir /p
The command that actually runs is:
C:\cmd.exe /C dir /p

Queue-Level Job Starters

634 Administering Platform LSF

Queue-Level Job Starters
LSF administrators can define a job starter for an individual queue to create a
specific environment for jobs to run in. A queue-level job starter specifies an
executable that performs any necessary setup, and then runs the job when the setup
is complete. The JOB_STARTER parameter in lsb.queues specifies the command
or script that is the job starter for the queue.
This section describes how to set up and use a queue-level job starter.
Queue-level job starters have no effect on interactive jobs, unless the interactive job
is submitted to a queue as an interactive batch job. See Chapter 42, “Interactive Jobs
with bsub” for information on interactive batch jobs.
LSF users can also select an existing command or script to be a job starter for their
interactive jobs using the LSF_JOB_STARTER environment variable. See
Command-Level Job Starters on page 632 for more information.

Configure a queue-level job starter

1 Use the JOB_STARTER parameter in lsb.queues to specify a queue-level job
starter in the queue definition. All jobs submitted to this queue are run using
the job starter. The jobs are called by the specified job starter process rather
than initiated by the batch daemon process.
For example:
Begin Queue
.
JOB_STARTER = xterm -e
.
End Queue

All jobs submitted to this queue are run under an xterm terminal emulator.

JOB_STARTER parameter (lsb.queues)
The JOB_STARTER parameter in the queue definition (lsb.queues) has the
following format:
JOB_STARTER=starter [starter] ["%USRCMD"] [starter]
The string starter is the command or script that is used to start the job. It can be any
executable that can accept a job as an input argument. Optionally, additional strings
can be specified.
When starting a job, LSF runs the JOB_STARTER command, and passes the shell
script containing the job commands as the argument to the job starter. The job
starter is expected to do some processing and then run the shell script containing
the job commands. The command is run under /bin/sh -c and can contain any
valid Bourne shell syntax.

Administering Platform LSF 635

Job Starters

%USRCMD string The special string %USRCMD indicates the position of the job starter command in the
job command line. By default, the user commands run after the job starter, so the
%USRCMD string is not usually required. For example, these two job starters both give
the same results:
JOB_STARTER = /bin/csh -c

JOB_STARTER = /bin/csh -c "%USRCMD"

You must enclose the %USRCMD string in quotes. The %USRCMD string can be followed
by additional commands. For example:
JOB_STARTER = /bin/csh -c "%USRCMD;sleep 10"

If a user submits the following job to the queue with this job starter:
bsub myjob arguments

the command that actually runs is:
/bin/csh -c "myjob arguments; sleep 10"

For more
information

See the Platform LSF Configuration Reference for information about the
JOB_STARTER parameter in the lsb.queues file.

Controlling Execution Environment Using Job Starters
In some cases, using bsub -L does not result in correct environment settings on the
execution host. LSF provides the following two job starters:
◆ preservestarter—preserves the default environment of the execution host.

It does not include any submission host settings.
◆ augmentstarter—augments the default user environment of the execution

host by adding settings from the submission host that are not already defined
on the execution host

bsub -L cannot be used for a Windows execution host.

Where the job starter executables are located
By default, the job starter executables are installed in LSF_BINDIR. If you prefer to
store them elsewhere, make sure they are in a directory that is included in the
default PATH on the execution host.
For example:
◆ On Windows, put the job starter under %WINDIR%.
◆ On UNIX, put the job starter under $HOME/bin.

Source code for the
job starters

The source code for the job starters is installed in LSF_MISC/examples.

Adding to the initial login environment
By default, the preservestarter job starter preserves the environment that RES
establishes on the execution host, and establishes an initial login environment for
the user with the following variables from the user’s login environment on the
execution host:
◆ HOME
◆ USER

Controlling Execution Environment Using Job Starters

636 Administering Platform LSF

◆ SHELL
◆ LOGNAME
Any additional environment variables that exist in the user’s login environment on
the submission host must be added to the job starter source code.

Example A user’s .login script on the submission host contains the following setting:
if ($TERM != "xterm") then

set TERM=`tset - -Q -m 'switch:?vt100'
else

stty -tabs
endif

The TERM environment variable must also be included in the environment on the
execution host for login to succeed. If it is missing in the job starter, the login fails,
the job starter may fail as well. If the job starter can continue with only the initial
environment settings, the job may execute correctly, but this is not likely.

Administering Platform LSF 637

C H A P T E R

40
External Job Submission and Execution

Controls

This document describes the use of external job submission and execution controls
called esub and eexec. These site-specific user-written executables are used to
validate, modify, and reject job submissions, pass data to and modify job execution
environments.

Contents
◆ Understanding External Executables on page 637
◆ Using esub on page 638
◆ Working with eexec on page 647

Understanding External Executables

About esub and eexec
LSF provides the ability to validate, modify, or reject job submissions, modify
execution environments, and pass data from the submission host directly to the
execution host through the use of the esub and eexec executables. Both are
site-specific and user written and must be located in LSF_SERVERDIR.

Validate, modify, or reject a job

To validate, modify, or reject a job, an esub needs to be written. See Using esub on
page 638

Modifying execution environments

To modify the execution environment on the execution host, an eexec needs to be
written. See Working with eexec on page 647

Passing data

To pass data directly to the execution host, an esub and eexec need to be written.
See Using esub and eexec to pass data to execution environments on page 647

Using esub

638 Administering Platform LSF

Interactive remote execution
Interactive remote execution also runs esub and eexec if they are found in
LSF_SERVERDIR. For example, lsrun invokes esub, and RES runs eexec before
starting the task. esub is invoked at the time of the ls_connect(3) call, and RES
invokes eexec each time a remote task is executed. RES runs eexec only at task
startup time.

DCE credentials and AFS tokens
esub and eexec are also used for processing DCE credentials and AFS tokens. See
the following documents on the Platform Web site for more information:
◆ “Installing LSF on AFS”
◆ “Installing LSF on DCE/DFS”

Using esub

About esub
An esub, short for external submission, is a user-written executable (binary or
script) that can be used to validate, modify, or reject jobs. The esub is put into
LSF_SERVERDIR (defined in lsf.conf) where LSF checks for its existence when
a job is submitted, restarted, and modified. If LSF finds an esub, it is run by LSF.
Whether the job is submitted, modified, or rejected depends on the logic built into
the esub.
Any messages that need to be provided to the user should be directed to the
standard error (stderr) stream and not the standard output (stdout) stream.

In this section ◆ Environment variables to bridge esub and LSF on page 638
◆ General esub logic on page 642
◆ Rejecting jobs on page 643
◆ Validating job submission parameters on page 643
◆ Modifying job submission parameters on page 643
◆ Using bmod and brestart commands with mesub on page 644
◆ Use multiple esub (mesub) on page 644
◆ How master esub invokes application-specific esubs on page 645
◆ Configure master esub and your application-specific esub on page 646

Environment variables to bridge esub and LSF
LSF provides the following environment variables in the esub execution
environment:

LSB_SUB_PARM_FILE

This variable points to a temporary file containing the job parameters that esub
reads when the job is submitted. The submission parameters are a set of name-value
pairs on separate lines in the format "option_name=value".
 The following option names are supported:

Administering Platform LSF 639

External Job Submission and Execution Controls

Option Description

LSB_SUB_ADDITIONAL String format parameter containing the value of the -a option to
bsub
The value of -a is passed to esub, but it does not directly affect
the other bsub parameters or behavior. The value of -a must
correspond to an actual esub file. For example, to use
bsub -a fluent, the file esub.fluent must exist in
LSF_SERVERDIR.
LSB_SUB_ADDITIONAL cannot be changed in or added to
LSB_SUB_MODIFY_FILE.

LSB_SUB_BEGIN_TIME Begin time, in seconds since 00:00:00 GMT, Jan. 1, 1970
LSB_SUB_CHKPNT_DIR Checkpoint directory.

The file path of the checkpoint directory can contain up to 4000
characters for UNIX and Linux, or up to 255 characters for
Windows, including the directory and file name.

LSB_SUB_COMMAND_LINE bsub job command argument
LSB_SUB_COMMANDNAME must be set in lsf.conf to enable
esub to use this variable

LSB_SUB_CHKPNT_PERIOD Checkpoint period in seconds
LSB_SUB_DEPEND_COND Dependency condition
LSB_SUB_ERR_FILE Standard error file name
LSB_SUB_EXCEPTION Exception condition
LSB_SUB_EXCLUSIVE "Y" specifies exclusive execution
LSB_SUB_EXTSCHED_PARAM Validate or modify bsub -extsched option
LSB_SUB_HOLD Hold job (bsub -H option)
LSB_SUB_HOSTS List of execution host names
LSB_SUB_HOST_SPEC Host specifier
LSB_SUB_IN_FILE Standard input file name
LSB_SUB_INTERACTIVE "Y" specifies an interactive job
LSB_SUB_LOGIN_SHELL Login shell
LSB_SUB_JOB_DESCRIPTION cription
LSB_SUB_JOB_NAME Job name
LSB_SUB_JOB_WARNING_ACTION Job warning action specified by bsub -wa

LSB_SUB_JOB_ACTION_WARNING_TIME Job warning time period specified by bsub -wt

LSB_SUB_MAIL_USER Email address used by LSF for sending job email
LSB_SUB_MAX_NUM_PROCESSORS Maximum number of processors requested
LSB_SUB_MODIFY "Y" specifies a modification request
LSB_SUB_MODIFY_ONCE "Y" specifies a modification-once request
LSB_SUB_NOTIFY_BEGIN "Y" specifies email notification when job begins
LSB_SUB_NOTIFY_END "Y" specifies email notification when job ends
LSB_SUB_NUM_PROCESSORS Minimum number of processors requested
LSB_SUB_OTHER_FILES The value is SUB_RESET if defined to indicate a bmod is being

performed to reset the number of files to be transferred.
The file path can contain up to 4094 characters for UNIX and
Linux, or up to 255 characters for Windows, including the
directory and file name.

Using esub

640 Administering Platform LSF

LSB_SUB_OTHER_FILES_number number is an index number indicating the particular file transfer
value is the specified file transfer expression.
For example, for bsub -f "a > b" -f "c < d", the following
would be defined:
LSB_SUB_OTHER_FILES_0="a > b"
LSB_SUB_OTHER_FILES_1="c < d"

LSB_SUB_OUT_FILE Standard output file name
LSB_SUB_PRE_EXEC Pre-execution command.

The command path can contain up to 4094 characters for UNIX
and Linux, or up to 255 characters for Windows, including the
directory and file name.

LSB_SUB_PROJECT_NAME Project name
LSB_SUB_PTY "Y" specifies an interactive job with PTY support
LSB_SUB_PTY_SHELL "Y" specifies an interactive job with PTY shell support
LSB_SUB_QUEUE Submission queue name
LSB_SUB_RERUNNABLE "Y" specifies a rerunnable job

"N" specifies a nonrerunnable job (specified with bsub -rn). The
job is not rerunnable even it was submitted to a rerunable queue
or application profile
For bmod -rn, the value is SUB_RESET.

LSB_SUB_RES_REQ Resource requirement string—does not support multiple
resource requirement strings

LSB_SUB_RESTART "Y" specifies a restart job
LSB_SUB_RESTART_FORCE "Y" specifies forced restart job
LSB_SUB_RLIMIT_CORE Core file size limit
LSB_SUB_RLIMIT_CPU CPU limit
LSB_SUB_RLIMIT_DATA Data size limit
LSB_SUB_RLIMIT_FSIZE File size limit
LSB_SUB_RLIMIT_PROCESS Process limit
LSB_SUB_RLIMIT_RSS Resident size limit
LSB_SUB_RLIMIT_RUN Wall-clock run limit
LSB_SUB_RLIMIT_STACK Stack size limit
LSB_SUB_RLIMIT_SWAP Virtual memory limit (swap space)
LSB_SUB_RLIMIT_THREAD Thread limit
LSB_SUB_TERM_TIME Termination time, in seconds, since 00:00:00 GMT, Jan. 1, 1970
LSB_SUB_TIME_EVENT Time event expression
LSB_SUB_USER_GROUP User group name
LSB_SUB_WINDOW_SIG Window signal number
LSB_SUB2_JOB_GROUP Options specified by bsub -g
LSB_SUB2_LICENSE_PROJECT LSF License Scheduler project name specified by bsub -Lp
LSB_SUB2_IN_FILE_SPOOL Spooled input file (bsub -is)
LSB_SUB2_JOB_CMD_SPOOL Spooled job command file (bsub -Zs)
LSB_SUB2_JOB_PRIORITY Job priority (bsub- sp and bmod -sp)

For bmod -spn, the value is SUB_RESET
LSB_SUB2_SLA SLA scheduling options
LSB_SUB2_USE_RSV Advance reservation ID specified by bsub -U

Option Description

Administering Platform LSF 641

External Job Submission and Execution Controls

Example submission parameter file

If a user submits the following job:
bsub -q normal -x -P my_project -R “r1m rusage[dummy=1]” -n 90 sleep
10

LSB_SUB3_ABSOLUTE_PRIORITY For bmod -aps, the value equal to the APS string given with the
bmod -aps. For bmod -apsn, the value is SUB_RESET.

LSB_SUB3_APP Options specified by bsub- app and bmod -app. For
bmod -appn, the value is SUB_RESET.

LSB_SUB3_AUTO_RESIZABLE Defines the job autoresizable attribute.
LSB_SUB3_AUTO_RESIZABLE=Y if bsub -ar or bmod -ar is
specified. LSB_SUB3_AUTO_RESIABLE=SUB_RESET if bmod
-arn is used.

LSB_SUB3_RESIZE_NOTIFY_CMD Define the job resize notification command.
LSB_SUB3_RESIZE_NOTIFY_CMD=<cmd> if bsub -rnc or bmod
-rnc is specified.
LSB_SUB3_RESIZE_NOTIFY_CMD=SUB_RESET if bmod -rnc is
used.

LSB_SUB3_JOB_REQUEUE String format parameter containing the value of the -Q option to
bsub. For bmod -Qn, the value is SUB_RESET.

LSB_SUB3_CWD Current working directory specified on on the command line
with bsub -cwd

LSB_SUB_INTERACTIVE
LSB_SUB3_INTERACTIVE_SSH

If both are specified by "Y", the session of the interactive job is
encrypted with SSH.
bsub -IS
bsub -ISs

LSB_SUB_INTERACTIVE
LSB_SUB_PTY
LSB_SUB3_INTERACTIVE_SSH

If LSB_SUB_INTERACTIVE is specified by "Y", LSB_SUB_PTY is
specified by "Y" and LSB_SUB3_INTERACTIVE_SSH is specified by
"Y", the session of interactive job with PTY support will be
encrypted by SSH.
bsub –ISp

LSB_SUB_INTERACTIVE
LSB_SUB_PTY
LSB_SUB_PTY_SHELL
LSB_SUB3_INTERACTIVE_SSH

If LSB_SUB_INTERACTIVE is specified by "Y", LSB_SUB_PTY is
specified by "Y", LSB_SUB_PTY_SHELL is specified by "Y", and
LSB_SUB3_INTERACTIVE_SSH is specified by "Y", the session of
interactive job with PTY shell support will be encrypted by SSH.
bsub –ISs

LSB_SUB3_POST_EXEC Run the specified post-execution command on the execution
host after the job finishes. Specified by bsub -Ep.
The command path directory can contain up to 4094 characters
for UNIX and Linux, or up to 255 characters for Windows,
including the directory and file name.

LSB_SUB3_RUNTIME_ESTIMATION Runtime estimate spedified by bsub -We
LSB_SUB3_USER_SHELL_LIMITS Pass user shell limits to execution host. Spedified by bsub -ul.
LSB_SUB_INTERACTIVE
LSB_SUB3_XJOB_SSH

If both are specified by "Y", the session between the X-client and
X-server as well as the session between the execution host and
submission host are encrypted with SSH.
bsub -IX

Option Description

Using esub

642 Administering Platform LSF

The contents of the LSB_SUB_PARM_FILE will be:
LSB_SUB_QUEUE="normal"
LSB_SUB_EXCLUSIVE=Y
LSB_SUB_RES_REQ="r1m rusage[dummy=1]"
LSB_SUB_PROJECT_NAME="my_project"
LSB_SUB_COMMAND_LINE="sleep 10"
LSB_SUB_NUM_PROCESSORS=90
LSB_SUB_MAX_NUM_PROCESSORS=90

LSB_SUB_ABORT_VALUE

This variable indicates the value esub should exit with if LSF is to reject the job
submission.

LSB_SUB_MODIFY_ENVFILE

The file in which esub should write any changes to the job environment variables.
esub writes the variables to be modified to this file in the same format used in
LSB_SUB_PARM_FILE. The order of the variables does not matter.
After esub runs, LSF checks LSB_SUB_MODIFY_ENVFILE for changes and if
found, LSF will apply them to the job environment variables.

LSB_SUB_MODIFY_FILE

The file in which esub should write any submission parameter changes.
esub writes the job options to be modified to this file in the same format used in
LSB_SUB_PARM_FILE. The order of the options does not matter. After esub runs,
LSF checks LSB_SUB_MODIFY_FILE for changes and if found LSF will apply
them to the job.

TIP: LSB_SUB_ADDITIONAL cannot be changed in or added to LSB_SUB_MODIFY_FILE.

LSF_INVOKE_CMD

Indicates the name of the last LSF command that invoked an external executable
(for example, esub).
External executables get called by several LSF commands (bsub, bmod, lsrun). This
variable contains the name of the last LSF command to call the executable.

General esub logic
After esub runs, LSF checks:
1 Is the esub exit value LSB_SUB_ABORT_VALUE?

a Yes, step 2
b No, step 4

2 Reject the job
3 Go to step 5
4 Does LSB_SUB_MODIFY_FILE or LSB_SUB_MODIFY_ENVFILE exist?

❖ Apply changes
5 Done

Administering Platform LSF 643

External Job Submission and Execution Controls

Rejecting jobs
Depending on your policies you may choose to reject a job. To do so, have esub exit
with LSB_SUB_ABORT_VALUE.
If esub rejects the job, it should not write to either LSB_SUB_MODIFY_FILE or
LSB_SUB_MODIFY_ENVFILE.

Example The following Bourne shell esub rejects all job submissions by exiting with
LSB_SUB_ABORT_VALUE:
#!/bin/sh

Redirect stderr to stdout so echo can be used for
error messages
exec 1>&2

Reject the submission
echo "LSF is Rejecting your job submission..."
exit $LSB_SUB_ABORT_VALUE

Validating job submission parameters
One use of validation is to support project-based accounting. The user can request
that the resources used by a job be charged to a particular project. Projects are
associated with a job at job submission time, so LSF will accept any arbitrary string
for a project name. In order to ensure that only valid projects are entered and the
user is eligible to charge to that project, an esub can be written.

Example

The following Bourne shell esub validates job submission parameters:
#!/bin/sh

. $LSB_SUB_PARM_FILE

Redirect stdout to stderr so echo can be used for error messages
exec 1>&2

Check valid projects
if [$LSB_SUB_PROJECT_NAME != "proj1" -o $LSB_SUB_PROJECT_NAME != "proj2"]; then

echo "Incorrect project name specified"
exit $LSB_SUB_ABORT_VALUE

fi

USER=`whoami`
if [$LSB_SUB_PROJECT_NAME = "proj1"]; then

Only user1 and user2 can charge to proj1
if [$USER != "user1" -a $USER != "user2"]; then

echo "You are not allowed to charge to this project"
exit $LSB_SUB_ABORT_VALUE

fi
fi

Modifying job submission parameters
esub can be used to modify submission parameters and the job environment before
the job is actually submitted.

Using esub

644 Administering Platform LSF

The following example writes modifications to LSB_SUB_MODIFY_FILE for the
following parameters:
◆ LSB_SUB_QUEUE
◆ USER
◆ SHELL
In the example, user userA can only submit jobs to queue queueA. User userB must
use Bourne shell (/bin/sh), and user userC should never be able to submit a job.
#!/bin/sh
. $LSB_SUB_PARM_FILE

Redirect stderr to stdout so echo can be used for error messages
exec 1>&2

USER=`whoami`
Ensure userA is using the right queue queueA
if [$USER="userA" -a $LSB_SUB_QUEUE != "queueA"]; then

echo "userA has submitted a job to an incorrect queue"
echo "...submitting to queueA"
echo 'LSB_SUB_QUEUE="queueA"' > $LSB_SUB_MODIFY_FILE

fi

Ensure userB is using the right shell (/bin/sh)
if [$USER="userB" -a $SHELL != "/bin/sh"]; then

echo "userB has submitted a job using $SHELL"
echo "...using /bin/sh instead"
echo 'SHELL="/bin/sh"' > $LSB_SUB_MODIFY_ENVFILE

fi

Deny userC the ability to submit a job
if [$USER="userC"]; then

echo "You are not permitted to submit a job."
exit $LSB_SUB_ABORT_VALUE

fi

Using bmod and brestart commands with mesub
You can use the bmod command to modify job submission parameters, and
brestart to restart checkpointed jobs. Like bsub, bmod and brestart also call
mesub, which in turn invoke any existing esub executables in LSF_SERVERDIR.
bmod and brestart cannot make changes to the job environment through mesub
and esub. Environment changes only occur when mesub is called by the original job
submission with bsub.

Use multiple esub (mesub)
LSF provides a master esub (LSF_SERVERDIR/mesub) to handle the invocation of
individual application-specific esub executables and the job submission
requirements of your applications.

1 Use the -a option of bsub to specify the application you are running through
LSF.
For example, to submit a FLUENT job:
bsub -a fluent bsub_options fluent_command

Administering Platform LSF 645

External Job Submission and Execution Controls

The method name fluent, uses the esub for FLUENT jobs
(LSF_SERVERDIR/esub.fluent), which sets the checkpointing method
LSB_ECHKPNT_METHOD="fluent" to use the echkpnt.fluent and
erestart.fluent.

LSB_ESUB_METHOD (lsf.conf)

To specify a mandatory esub method that applies to all job submissions, you can
configure LSB_ESUB_METHOD in lsf.conf.
LSB_ESUB_METHOD specifies the name of the esub method used in addition to
any methods specified in the bsub -a option.
For example, LSB_ESUB_METHOD="dce fluent" defines DCE as the mandatory
security system, and FLUENT as the mandatory application used on all jobs.

Compatibility note

RESTRICTION: After LSF version 5.1, the value of -a and LSB_ESUB_METHOD must correspond to
an actual esub file in LSF_SERVERDIR. For example, to use bsub -a fluent, the file esub.fluent must
exist in LSF_SERVERDIR.

How master esub invokes application-specific esubs
bsub invokes mesub at job submission, which calls esub programs in this order:
1 Mandatory esub programs defined by LSB_ESUB_METHOD
2 Any existing executable named LSF_SERVERDIR/esub
3 Application-specific esub programs in the order specified in the bsub -a

option

Example

In this example:
◆ esub.dce is defined as the only mandatory esub
◆ An executable named esub already exists in LSF_SERVERDIR
◆ Executables named esub.fluent and esub.license exist in

LSF_SERVERDIR

Existing esub

646 Administering Platform LSF

◆ bsub -a fluent license submits the job as a FLUENT job, and mesub
invokes the following esub executables in LSF_SERVERDIR in this order:
❖ esub.dce

❖ esub

❖ esub.fluent

❖ esub.license

◆ bsub without the -a option submits the job, and mesub invokes only the
mandatory esub.dce and the existing esub in LSF_SERVERDIR, not the
application-specific esub programs.

Configure master esub and your application-specific esub
The master esub is installed as LSF_SERVERDIR/mesub. After installation:

1 Create your own application-specific esub.
2 Optional. Configure LSB_ESUB_METHOD in lsf.conf to specify a

mandatory esub for all job submissions.

Name your esub

1 Use the following naming conventions:
❖ On UNIX, LSF_SERVERDIR/esub.application
❖ On Windows, LSF_SERVERDIR\esub.application.[exe |bat]
For FLUENT jobs, for example:
◆ UNIX: esub.fluent
◆ Windows: esub.fluent.exe
The name of the esub program must be a valid file name. It can contain only
alphanumeric characters, underscore (_) and hyphen (-).

CAUTION: The file name esub.user is reserved for backward compatibility. Do not use the
name esub.user for your application-specific esub.

Existing esub
Your existing esub does not need to follow this convention and does not need to be
renamed. However, since mesub invokes any esub that follows this convention, you
should move any backup copies of your esubs out of LSF_SERVERDIR or choose a
name that does not follow the convention (for example, use esub_bak instead of
esub.bak).

Administering Platform LSF 647

External Job Submission and Execution Controls

Working with eexec

About eexec
The eexec program runs on the execution host at job start-up and completion time
and when checkpointing is initiated. It is run as the user after the job environment
variables have been set. The environment variable LS_EXEC_T is set to START,
END, and CHKPNT, respectively, to indicate when eexec is invoked.
If you need to run eexec as a different user, such as root, you must properly define
LSF_EEXEC_USER in the file /etc/lsf.sudoers. See the Platform LSF
Configuration Reference for information about the lsf.sudoers file.
eexec is expected to finish running because the parent job process waits for eexec
to finish running before proceeding. The environment variable LS_JOBPID stores
the process ID of the process that invoked eexec. If eexec is intended to monitor
the execution of the job, eexec must fork a child and then have the parent eexec
process exit. The eexec child should periodically test that the job process is still
alive using the LS_JOBPID variable.

Using esub and eexec to pass data to execution environments
If esub needs to pass some data to eexec, it can write the data to its standard output
for eexec to read from its standard input (stdin). LSF effectively acts as the pipe
between esub and eexec (e.g., esub | eexec).
Standard output (stdout) from any esub is automatically sent to eexec.

Limitation

Since eexec cannot handle more than one standard output stream, only one esub
can use standard output to generate data as standard input to eexec.
For example, the esub for AFS (esub.afs) sends its authentication tokens as
standard output to eexec. If you use AFS, no other esub can use standard output.

Working with eexec

648 Administering Platform LSF

Administering Platform LSF 649

C H A P T E R

41
Configuring Job Controls

After a job is started, it can be killed, suspended, or resumed by the system, an LSF
user, or LSF administrator. LSF job control actions cause the status of a job to
change. This chapter describes how to configure job control actions to override or
augment the default job control actions.

Contents
◆ Default Job Control Actions on page 649
◆ Configuring Job Control Actions on page 651
◆ Customizing Cross-Platform Signal Conversion on page 654

Default Job Control Actions
After a job is started, it can be killed, suspended, or resumed by the system, an LSF
user, or LSF administrator. LSF job control actions cause the status of a job to
change. LSF supports the following default actions for job controls:
◆ SUSPEND
◆ RESUME
◆ TERMINATE
On successful completion of the job control action, the LSF job control commands
cause the status of a job to change.
The environment variable LS_EXEC_T is set to the value JOB_CONTROLS for a
job when a job control action is initiated.
See Killing Jobs on page 130 for more information about job controls and the LSF
commands that perform them.

SUSPEND action
Change a running job from RUN state to one of the following states:
◆ USUSP or PSUSP in response to bstop
◆ SSUSP state when the LSF system suspends the job
The default action is to send the following signals to the job:

Default Job Control Actions

650 Administering Platform LSF

◆ SIGTSTP for parallel or interactive jobs. SIGTSTP is caught by the master
process and passed to all the slave processes running on other hosts.

◆ SIGSTOP for sequential jobs. SIGSTOP cannot be caught by user programs.
The SIGSTOP signal can be configured with the LSB_SIGSTOP parameter in
lsf.conf.

LSF invokes the SUSPEND action when:
◆ The user or LSF administrator issues a bstop or bkill command to the job
◆ Load conditions on the execution host satisfy any of:

❖ The suspend conditions of the queue, as specified by the STOP_COND
parameter in lsb.queues

❖ The scheduling thresholds of the queue or the execution host
◆ The run window of the queue closes
◆ The job is preempted by a higher priority job

RESUME action
Change a suspended job from SSUSP, USUSP, or PSUSP state to the RUN state. The
default action is to send the signal SIGCONT.
LSF invokes the RESUME action when:
◆ The user or LSF administrator issues a bresume command to the job
◆ Load conditions on the execution host satisfy all of:

❖ The resume conditions of the queue, as specified by the RESUME_COND
parameter in lsb.queues

❖ The scheduling thresholds of the queue and the execution host
◆ A closed run window of the queue opens again
◆ A preempted job finishes

TERMINATE action
Terminate a job. This usually causes the job change to EXIT status. The default
action is to send SIGINT first, then send SIGTERM 10 seconds after SIGINT, then
send SIGKILL 10 seconds after SIGTERM. The delay between signals allows user
programs to catch the signals and clean up before the job terminates.
To override the 10 second interval, use the parameter
JOB_TERMINATE_INTERVAL in the lsb.params file. See the Platform LSF
Configuration Reference for information about the lsb.params file.
LSF invokes the TERMINATE action when:
◆ The user or LSF administrator issues a bkill or brequeue command to the job
◆ The TERMINATE_WHEN parameter in the queue definition (lsb.queues)

causes a SUSPEND action to be redirected to TERMINATE
◆ The job reaches its CPULIMIT, MEMLIMIT, RUNLIMIT or PROCESSLIMIT
If the execution of an action is in progress, no further actions are initiated unless it
is the TERMINATE action. A TERMINATE action is issued for all job states except
PEND.

Administering Platform LSF 651

Configuring Job Controls

Windows job control actions
On Windows, actions equivalent to the UNIX signals have been implemented to do
the default job control actions. Job control messages replace the SIGINT and
SIGTERM signals, but only customized applications will be able to process them.
Termination is implemented by the TerminateProcess() system call.
See Platform LSF Programmer’s Guide for more information about LSF signal
handling on Windows.

Configuring Job Control Actions
Several situations may require overriding or augmenting the default actions for job
control. For example:
◆ Notifying users when their jobs are suspended, resumed, or terminated
◆ An application holds resources (for example, licenses) that are not freed by

suspending the job. The administrator can set up an action to be performed
that causes the license to be released before the job is suspended and
re-acquired when the job is resumed.

◆ The administrator wants the job checkpointed before being:
❖ Suspended when a run window closes
❖ Killed when the RUNLIMIT is reached

◆ A distributed parallel application must receive a catchable signal when the job
is suspended, resumed or terminated to propagate the signal to remote
processes.

To override the default actions for the SUSPEND, RESUME, and TERMINATE job
controls, specify the JOB_CONTROLS parameter in the queue definition in
lsb.queues.
See the Platform LSF Configuration Reference for information about the
lsb.queues file.

JOB_CONTROLS parameter (lsb.queues)
The JOB_CONTROLS parameter has the following format:
Begin Queue
...
JOB_CONTROLS = SUSPEND[signal | CHKPNT | command] \

RESUME[signal | command] \
TERMINATE[signal | CHKPNT | command]

...
End Queue

When LSF needs to suspend, resume, or terminate a job, it invokes one of the
following actions as specified by SUSPEND, RESUME, and TERMINATE.

signal A UNIX signal name (for example, SIGTSTP or SIGTERM). The specified signal is
sent to the job.
The same set of signals is not supported on all UNIX systems. To display a list of the
symbolic names of the signals (without the SIG prefix) supported on your system,
use the kill -l command.

Configuring Job Control Actions

652 Administering Platform LSF

CHKPNT Checkpoint the job. Only valid for SUSPEND and TERMINATE actions.
◆ If the SUSPEND action is CHKPNT, the job is checkpointed and then stopped

by sending the SIGSTOP signal to the job automatically.
◆ If the TERMINATE action is CHKPNT, then the job is checkpointed and killed

automatically.

command A /bin/sh command line.
◆ Do not quote the command line inside an action definition.
◆ Do not specify a signal followed by an action that triggers the same signal (for

example, do not specify JOB_CONTROLS=TERMINATE[bkill] or
JOB_CONTROLS=TERMINATE[brequeue]). This will cause a deadlock between
the signal and the action.

Using a command as a job control action
◆ The command line for the action is run with /bin/sh -c so you can use shell

features in the command.
◆ The command is run as the user of the job.
◆ All environment variables set for the job are also set for the command action.

The following additional environment variables are set:
❖ LSB_JOBPGIDS—a list of current process group IDs of the job
❖ LSB_JOBPIDS—a list of current process IDs of the job

◆ For the SUSPEND action command, the environment variables
LSB_SUSP_REASONS and LSB_SUSP_SUBREASONS are also set. Use them
together in your custom job control to determine the exact load threshold that
caused a job to be suspended.
❖ LSB_SUSP_REASONS—an integer representing a bitmap of suspending

reasons as defined in lsbatch.h. The suspending reason can allow the
command to take different actions based on the reason for suspending the
job.

❖ LSB_SUSP_SUBREASONS—an integer representing the load index that
caused the job to be suspended. When the suspending reason
SUSP_LOAD_REASON (suspended by load) is set in
LSB_SUSP_REASONS, LSB_SUSP_SUBREASONS is set to one of the load
index values defined in lsf.h.

◆ The standard input, output, and error of the command are redirected to the
NULL device, so you cannot tell directly whether the command runs correctly.
The default null device on UNIX is /dev/null.

◆ You should make sure the command line is correct. If you want to see the
output from the command line for testing purposes, redirect the output to a file
inside the command line.

Administering Platform LSF 653

Configuring Job Controls

TERMINATE job actions
Use caution when configuring TERMINATE job actions that do more than just kill
a job. For example, resource usage limits that terminate jobs change the job state to
SSUSP while LSF waits for the job to end. If the job is not killed by the TERMINATE
action, it remains suspended indefinitely.

TERMINATE_WHEN parameter (lsb.queues)
In certain situations you may want to terminate the job instead of calling the default
SUSPEND action. For example, you may want to kill jobs if the run window of the
queue is closed. Use the TERMINATE_WHEN parameter to configure the queue
to invoke the TERMINATE action instead of SUSPEND.
See the Platform LSF Configuration Reference for information about the
lsb.queues file and the TERMINATE_WHEN parameter.

Syntax TERMINATE_WHEN = [LOAD] [PREEMPT] [WINDOW]

Example The following defines a night queue that will kill jobs if the run window closes.
Begin Queue
NAME = night
RUN_WINDOW = 20:00-08:00
TERMINATE_WHEN = WINDOW
JOB_CONTROLS = TERMINATE[kill -KILL $LSB_JOBPIDS;

echo "job $LSB_JOBID killed by queue run window" |
mail $USER]

End Queue

LSB_SIGSTOP parameter (lsf.conf)
Use LSB_SIGSTOP to configure the SIGSTOP signal sent by the default SUSPEND
action.
If LSB_SIGSTOP is set to anything other than SIGSTOP, the SIGTSTP signal that is
normally sent by the SUSPEND action is not sent. For example, if
LSB_SIGSTOP=SIGKILL, the three default signals sent by the TERMINATE action
(SIGINT, SIGTERM, and SIGKILL) are sent 10 seconds apart.
See the Platform LSF Configuration Reference for information about the lsf.conf
file.

Avoiding signal and action deadlock
Do not configure a job control to contain the signal or command that is the same
as the action associated with that job control. This will cause a deadlock between
the signal and the action.
For example, the bkill command uses the TERMINATE action, so a deadlock
results when the TERMINATE action itself contains the bkill command.
Any of the following job control specifications will cause a deadlock:
◆ JOB_CONTROLS=TERMINATE[bkill]

◆ JOB_CONTROLS=TERMINATE[brequeue]

◆ JOB_CONTROLS=RESUME[bresume]

◆ JOB_CONTROLS=SUSPEND[bstop]

Customizing Cross-Platform Signal Conversion

654 Administering Platform LSF

Customizing Cross-Platform Signal Conversion
LSF supports signal conversion between UNIX and Windows for remote interactive
execution through RES.
On Windows, the CTRL+C and CTRL+BREAK key combinations are treated as
signals for console applications (these signals are also called console control
actions).
LSF supports these two Windows console signals for remote interactive execution.
LSF regenerates these signals for user tasks on the execution host.

Default signal conversion
In a mixed Windows/UNIX environment, LSF has the following default conversion
between the Windows console signals and the UNIX signals:

For example, if you issue the lsrun or bsub -I commands from a Windows
console but the task is running on an UNIX host, pressing the CTRL+C keys will
generate a UNIX SIGINT signal to your task on the UNIX host. The opposite is also
true.

Custom signal conversion
For lsrun (but not bsub -I), LSF allows you to define your own signal conversion
using the following environment variables:
◆ LSF_NT2UNIX_CTRLC
◆ LSF_NT2UNIX_CTRLB
For example:
◆ LSF_NT2UNIX_CTRLC=SIGXXXX
◆ LSF_NT2UNIX_CTRLB=SIGYYYY
Here, SIGXXXX/SIGYYYY are UNIX signal names such as SIGQUIT, SIGTINT,
etc. The conversions will then be: CTRL+C=SIGXXXX and
CTRL+BREAK=SIGYYYY.
If both LSF_NT2UNIX_CTRLC and LSF_NT2UNIX_CTRLB are set to the same
value (LSF_NT2UNIX_CTRLC=SIGXXXX and
LSF_NT2UNIX_CTRLB=SIGXXXX), CTRL+C will be generated on the Windows
execution host.
For bsub -I, there is no conversion other than the default conversion.

Windows UNIX

CTRL+C SIGINT

CTRL+BREAK SIGQUIT

Administering Platform LSF 655

P A R T

VI
Interactive Jobs

◆ Interactive Jobs with bsub on page 657
◆ Running Interactive and Remote Tasks on page 669

656 Administering Platform LSF

Administering Platform LSF 657

C H A P T E R

42
Interactive Jobs with bsub

Contents
◆ About Interactive Jobs on page 657
◆ Submitting Interactive Jobs on page 658
◆ Performance Tuning for Interactive Batch Jobs on page 660
◆ Interactive Batch Job Messaging on page 663
◆ Running X Applications with bsub on page 664
◆ Writing Job Scripts on page 666
◆ Registering utmp File Entries for Interactive Batch Jobs on page 668

About Interactive Jobs
It is sometimes desirable from a system management point of view to control all
workload through a single centralized scheduler.
Running an interactive job through the LSF batch system allows you to take
advantage of batch scheduling policies and host selection features for
resource-intensive jobs. You can submit a job and the least loaded host is selected
to run the job.
Since all interactive batch jobs are subject to LSF policies, you will have more
control over your system. For example, you may dedicate two servers as interactive
servers, and disable interactive access to all other servers by defining an interactive
queue that only uses the two interactive servers.

Scheduling policies
Running an interactive batch job allows you to take advantage of batch scheduling
policies and host selection features for resource-intensive jobs.
An interactive batch job is scheduled using the same policy as all other jobs in a
queue. This means an interactive job can wait for a long time before it gets
dispatched. If fast response time is required, interactive jobs should be submitted to
high-priority queues with loose scheduling constraints.

Submitting Interactive Jobs

658 Administering Platform LSF

Interactive queues
You can configure a queue to be interactive-only, batch-only, or both interactive
and batch with the parameter INTERACTIVE in lsb.queues.
See the Platform LSF Configuration Reference for information about configuring
interactive queues in the lsb.queues file.

Interactive jobs with non-batch utilities
Non-batch utilities such as lsrun, lsgrun, etc., use LIM simple placement advice
for host selection when running interactive tasks. For more details on using
non-batch utilities to run interactive tasks, see Running Interactive and Remote
Tasks on page 669.

Submitting Interactive Jobs
Use the bsub -I option to submit batch interactive jobs, and the bsub -Is and -Ip
options to submit batch interactive jobs in pseudo-terminals.
Pseudo-terminals are not supported for Windows.
For more details, see the bsub command.

Finding out which queues accept interactive jobs
Before you submit an interactive job, you need to find out which queues accept
interactive jobs with the bqueues -l command.
If the output of this command contains the following, this is a batch-only queue.
This queue does not accept interactive jobs:
SCHEDULING POLICIES: NO_INTERACTIVE

If the output contains the following, this is an interactive-only queue:
SCHEDULING POLICIES: ONLY_INTERACTIVE

If none of the above are defined or if SCHEDULING POLICIES is not in the output of
bqueues -l, both interactive and batch jobs are accepted by the queue.
You configure interactive queues in the lsb.queues file.

Submit an interactive job

1 Use the bsub -I option to submit an interactive batch job.
For example:
bsub -I ls

Submits a batch interactive job which displays the output of ls at the user’s
terminal.
% bsub -I -q interactive -n 4,10 lsmake
<<Waiting for dispatch ...>>

This example starts Platform Make on 4 to 10 processors and displays the
output on the terminal.
A new job cannot be submitted until the interactive job is completed or
terminated.

Administering Platform LSF 659

Interactive Jobs with bsub

When an interactive job is submitted, a message is displayed while the job is
awaiting scheduling. The bsub command stops display of output from the shell
until the job completes, and no mail is sent to the user by default. A user can
issue a ctrl-c at any time to terminate the job.
Interactive jobs cannot be checkpointed.
Interactive batch jobs cannot be rerunnable (bsub -r)
 You can submit interactive batch jobs to rerunnable queues
(RERUNNABLE=y in lsb.queues) or rerunnable application profiles
(RERUNNABLE=y in lsb.applications).

Submit an interactive job by using a pseudo-terminal
Submission of interaction jobs using pseudo-terminal is not supported for
Windows for either lsrun or bsub LSF commands.

bsub -Ip 1 To submit a batch interactive job by using a pseudo-terminal, use the bsub -Ip
option.
For example:
% bsub -Ip vi myfile

Submits a batch interactive job to edit myfile.
When you specify the -Ip option, bsub submits a batch interactive job and
creates a pseudo-terminal when the job starts. Some applications such as vi for
example, require a pseudo-terminal in order to run correctly.

bsub -Is 1 To submit a batch interactive job and create a pseudo-terminal with shell mode
support, use the bsub -Is option.
For example:
% bsub -Is csh

Submits a batch interactive job that starts up csh as an interactive shell.
When you specify the -Is option, bsub submits a batch interactive job and
creates a pseudo-terminal with shell mode support when the job starts. This
option should be specified for submitting interactive shells, or applications
which redefine the CTRL-C and CTRL-Z keys (for example, jove).

Submit an interactive job and redirect streams to files

bsub -i, -o, -e You can use the -I option together with the -i, -o, and -e options of bsub to
selectively redirect streams to files. For more details, see the bsub(1) man page.

1 To save the standard error stream in the job.err file, while standard input and
standard output come from the terminal:
% bsub -I -q interactive -e job.err lsmake

Performance Tuning for Interactive Batch Jobs

660 Administering Platform LSF

Split stdout and
stderr

If in your environment there is a wrapper around bsub and LSF commands so that
end-users are unaware of LSF and LSF-specific options, you can redirect standard
output and standard error of batch interactive jobs to a file with the > operator.
By default, both standard error messages and output messages for batch interactive
jobs are written to stdout on the submission host.

1 To write both stderr and stdout to mystdout:
bsub -I myjob 2>mystderr 1>mystdout

2 To redirect both stdout and stderr to different files, set
LSF_INTERACTIVE_STDERR=y in lsf.conf or as an environment variable.
For example, with LSF_INTERACTIVE_STDERR set:
bsub -I myjob 2>mystderr 1>mystdout

stderr is redirected to mystderr, and stdout to mystdout.
See the Platform LSF Configuration Reference for more details on
LSF_INTERACTIVE_STDERR.

Submit an interactive job, redirect streams to files, and display streams
When using any of the interactive bsub options (for example: -I, -Is, -ISs) as well
as the -o or -e options, you can also have your output displayed on the console by
using the -tty option.

1 To run an interactive job, redirect the error stream to file, and display the
stream to the console:
% bsub -I -q interactive -e job.err -tty lsmake

Performance Tuning for Interactive Batch Jobs
LSF is often used on systems that support both interactive and batch users. On one
hand, users are often concerned that load sharing will overload their workstations
and slow down their interactive tasks. On the other hand, some users want to
dedicate some machines for critical batch jobs so that they have guaranteed
resources. Even if all your workload is batch jobs, you still want to reduce resource
contentions and operating system overhead to maximize the use of your resources.
Numerous parameters can be used to control your resource allocation and to avoid
undesirable contention.

Types of load conditions
Since interferences are often reflected from the load indices, LSF responds to load
changes to avoid or reduce contentions. LSF can take actions on jobs to reduce
interference before or after jobs are started. These actions are triggered by different
load conditions. Most of the conditions can be configured at both the queue level
and at the host level. Conditions defined at the queue level apply to all hosts used
by the queue, while conditions defined at the host level apply to all queues using the
host.

Administering Platform LSF 661

Interactive Jobs with bsub

Scheduling
conditions

These conditions, if met, trigger the start of more jobs. The scheduling conditions
are defined in terms of load thresholds or resource requirements.
At the queue level, scheduling conditions are configured as either resource
requirements or scheduling load thresholds, as described in lsb.queues. At the
host level, the scheduling conditions are defined as scheduling load thresholds, as
described in lsb.hosts.

Suspending
conditions

These conditions affect running jobs. When these conditions are met, a SUSPEND
action is performed to a running job.
At the queue level, suspending conditions are defined as STOP_COND as
described in lsb.queues or as suspending load threshold. At the host level,
suspending conditions are defined as stop load threshold as described in
lsb.hosts.

Resuming
conditions

These conditions determine when a suspended job can be resumed. When these
conditions are met, a RESUME action is performed on a suspended job.
At the queue level, resume conditions are defined as by RESUME_COND in
lsb.queues, or by the loadSched thresholds for the queue if RESUME_COND is
not defined.

Types of load indices
To effectively reduce interference between jobs, correct load indices should be used
properly. Below are examples of a few frequently used parameters.

Paging rate (pg) The paging rate (pg) load index relates strongly to the perceived interactive
performance. If a host is paging applications to disk, the user interface feels very
slow.
The paging rate is also a reflection of a shortage of physical memory. When an
application is being paged in and out frequently, the system is spending a lot of time
performing overhead, resulting in reduced performance.
The paging rate load index can be used as a threshold to either stop sending more
jobs to the host, or to suspend an already running batch job to give priority to
interactive users.
This parameter can be used in different configuration files to achieve different
purposes. By defining paging rate threshold in lsf.cluster.cluster_name, the
host will become busy from LIM’s point of view; therefore, no more jobs will be
advised by LIM to run on this host.
By including paging rate in queue or host scheduling conditions, jobs can be
prevented from starting on machines with a heavy paging rate, or can be suspended
or even killed if they are interfering with the interactive user on the console.
A job suspended due to pg threshold will not be resumed even if the resume
conditions are met unless the machine is interactively idle for more than
PG_SUSP_IT seconds.

Interactive idle time
(it)

Strict control can be achieved using the idle time (it) index. This index measures
the number of minutes since any interactive terminal activity. Interactive terminals
include hard wired ttys, rlogin and lslogin sessions, and X shell windows such as
xterm. On some hosts, LIM also detects mouse and keyboard activity.

Performance Tuning for Interactive Batch Jobs

662 Administering Platform LSF

This index is typically used to prevent batch jobs from interfering with interactive
activities. By defining the suspending condition in the queue as it<1 && pg>50, a
job from this queue will be suspended if the machine is not interactively idle and
the paging rate is higher than 50 pages per second. Furthermore, by defining the
resuming condition as it>5 && pg<10 in the queue, a suspended job from the
queue will not resume unless it has been idle for at least five minutes and the paging
rate is less than ten pages per second.
The it index is only non-zero if no interactive users are active. Setting the it
threshold to five minutes allows a reasonable amount of think time for interactive
users, while making the machine available for load sharing, if the users are logged
in but absent.
For lower priority batch queues, it is appropriate to set an it suspending threshold
of two minutes and scheduling threshold of ten minutes in the lsb.queues file.
Jobs in these queues are suspended while the execution host is in use, and resume
after the host has been idle for a longer period. For hosts where all batch jobs, no
matter how important, should be suspended, set a per-host suspending threshold
in the lsb.hosts file.

CPU run queue
length (r15s, r1m,
r15m)

Running more than one CPU-bound process on a machine (or more than one
process per CPU for multiprocessors) can reduce the total throughput because of
operating system overhead, as well as interfering with interactive users. Some tasks
such as compiling can create more than one CPU-intensive task.
Queues should normally set CPU run queue scheduling thresholds below 1.0, so
that hosts already running compute-bound jobs are left alone. LSF scales the run
queue thresholds for multiprocessor hosts by using the effective run queue lengths,
so multiprocessors automatically run one job per processor in this case.
For short to medium-length jobs, the r1m index should be used. For longer jobs, you
might want to add an r15m threshold. An exception to this are high priority queues,
where turnaround time is more important than total throughput. For high priority
queues, an r1m scheduling threshold of 2.0 is appropriate.
See Load Indices on page 255 for the concept of effective run queue length.

CPU utilization (ut) The ut parameter measures the amount of CPU time being used. When all the CPU
time on a host is in use, there is little to gain from sending another job to that host
unless the host is much more powerful than others on the network. A ut threshold
of 90% prevents jobs from going to a host where the CPU does not have spare
processing cycles.
If a host has very high pg but low ut, then it may be desirable to suspend some jobs
to reduce the contention.
Some commands report ut percentage as a number from 0-100, some report it as a
decimal number between 0-1. The configuration parameter in the
lsf.cluster.cluster_name file, the configuration files, and the bsub -R resource
requirement string take a fraction in the range from 0 to 1.
The command bhist shows the execution history of batch jobs, including the time
spent waiting in queues or suspended because of system load.
The command bjobs -p shows why a job is pending.

Administering Platform LSF 663

Interactive Jobs with bsub

Scheduling conditions and resource thresholds
Three parameters, RES_REQ, STOP_COND and RESUME_COND, can be
specified in the definition of a queue. Scheduling conditions are a more general way
for specifying job dispatching conditions at the queue level. These parameters take
resource requirement strings as values which allows you to specify conditions in a
more flexible manner than using the loadSched or loadStop thresholds.

Interactive Batch Job Messaging
LSF can display messages to stderr or the Windows console when the following
changes occur with interactive batch jobs:
◆ Job state
◆ Pending reason
◆ Suspend reason
Other job status changes, like switching the job’s queue, are not displayed.

Limitations
Interactive batch job messaging is not supported in a MultiCluster environment.

Windows Interactive batch job messaging is not fully supported on Windows. Only changes
in the job state that occur before the job starts running are displayed. No messages
are displayed after the job starts.

Configure interactive batch job messaging
Messaging for interactive batch jobs can be specified cluster-wide or in the user
environment.

Cluster level 1 To enable interactive batch job messaging for all users in the cluster, the LSF
administrator configures the following parameters in lsf.conf:
❖ LSB_INTERACT_MSG_ENH=Y
❖ (Optional) LSB_INTERACT_MSG_INTVAL
LSB_INTERACT_MSG_INTVAL specifies the time interval, in seconds, in
which LSF updates messages about any changes to the pending status of the job.
The default interval is 60 seconds. LSB_INTERACT_MSG_INTVAL is ignored
if LSB_INTERACT_MSG_ENH is not set.

User level 1 To enable messaging for interactive batch jobs, LSF users can define
LSB_INTERACT_MSG_ENH and LSB_INTERACT_MSG_INTVAL as
environment variables.

The user-level definition of LSB_INTERACT_MSG_ENH overrides the definition
in lsf.conf.

Running X Applications with bsub

664 Administering Platform LSF

Example messages

Job in pending
state

The following example shows messages displayed when a job is in pending state:
bsub -Is -R "ls < 2" csh
Job <2812> is submitted to default queue <normal>.
<<Waiting for dispatch ...>>

<< Job's resource requirements not satisfied: 2 hosts; >>
<< Load information unavailable: 1 host; >>

<< Just started a job recently: 1 host; >>
<< Load information unavailable: 1 host; >>
<< Job's resource requirements not satisfied: 1 host; >>

Job terminated by
user

The following example shows messages displayed when a job in pending state is
terminated by the user:
bsub -m hostA -b 13:00 -Is sh
Job <2015> is submitted to default queue <normal>.
Job will be scheduled after Fri Nov 19 13:00:00 1999
<<Waiting for dispatch ...>>

<< New job is waiting for scheduling >>

<< The job has a specified start time >>

bkill 2015
<< Job <2015> has been terminated by user or administrator >>

<<Terminated while pending>>

Job suspended
then resumed

The following example shows messages displayed when a job is dispatched,
suspended, and then resumed:
bsub -m hostA -Is sh
Job <2020> is submitted to default queue <normal>.
<<Waiting for dispatch ...>>

<< New job is waiting for scheduling >>
<<Starting on hostA>>
bstop 2020
<< The job was suspended by user >>

bresume 2020
<< Waiting for re-scheduling after being resumed by user >>

Running X Applications with bsub
You can start an X session on the least loaded host by submitting it as a batch job:
bsub xterm

An xterm is started on the least loaded host in the cluster.
When you run X applications using lsrun or bsub, the environment variable
DISPLAY is handled properly for you. It behaves as if you were running the X
application on the local machine.

Administering Platform LSF 665

Interactive Jobs with bsub

Configure SSH X11 forwarding for jobs
Prerequisites: X11 forwarding must already be working outside LSF.

1 Install SSH and enable X11 forwarding for all hosts that will submit and run
these jobs (UNIX hosts only).

2 (Optional) In lsf.conf, specify an SSH command for
LSB_SSH_XFORWARD_CMD.

The command can include full PATH and options.

Writing Job Scripts

666 Administering Platform LSF

Writing Job Scripts
You can build a job file one line at a time, or create it from another file, by running
bsub without specifying a job to submit. When you do this, you start an interactive
session in which bsub reads command lines from the standard input and submits
them as a single batch job. You are prompted with bsub> for each line.
You can use the bsub -Zs command to spool a file.
For more details on bsub options, see the bsub(1) man page.

Writing a job file one line at a time

UNIX example % bsub -q simulation
bsub> cd /work/data/myhomedir
bsub> myjob arg1 arg2
bsub> rm myjob.log
bsub> ^D
Job <1234> submitted to queue <simulation>.

In the above example, the 3 command lines run as a Bourne shell (/bin/sh) script.
Only valid Bourne shell command lines are acceptable in this case.

Windows example C:\> bsub -q simulation
bsub> cd \\server\data\myhomedir
bsub> myjob arg1 arg2
bsub> del myjob.log
bsub> ^Z
Job <1234> submitted to queue <simulation>.

In the above example, the 3 command lines run as a batch file (.BAT). Note that only
valid Windows batch file command lines are acceptable in this case.

Specifying job options in a file
In this example, options to run the job are specified in the options_file.
% bsub -q simulation < options_file
Job <1234> submitted to queue <simulation>.

UNIX On UNIX, the options_file must be a text file that contains Bourne shell
command lines. It cannot be a binary executable file.

Windows On Windows, the options_file must be a text file containing Windows batch file
command lines.

Spooling a job command file
Use bsub -Zs to spool a job command file to the directory specified by the
JOB_SPOOL_DIR parameter in lsb.params, and use the spooled file as the
command file for the job.
Use the bmod -Zsn command to modify or remove the command file after the job
has been submitted. Removing or modifying the original input file does not affect
the submitted job.

Administering Platform LSF 667

Interactive Jobs with bsub

Redirecting a script to bsub standard input
You can redirect a script to the standard input of the bsub command:
% bsub < myscript
Job <1234> submitted to queue <test>.

In this example, the myscript file contains job submission options as well as
command lines to execute. When the bsub command reads a script from its
standard input, it can be modified right after bsub returns for the next job
submission.
When the script is specified on the bsub command line, the script is not spooled:
% bsub myscript
Job <1234> submitted to default queue <normal>.

In this case the command line myscript is spooled, instead of the contents of the
myscript file. Later modifications to the myscript file can affect job behavior.

Specifying embedded submission options
You can specify job submission options in scripts read from standard input by the
bsub command using lines starting with #BSUB:
% bsub -q simulation
bsub> #BSUB -q test
bsub> #BSUB -o outfile -R "mem>10"
bsub> myjob arg1 arg2
bsub> #BSUB -J simjob
bsub> ^D
Job <1234> submitted to queue <simulation>.

Note that:
◆ Command-line options override embedded options. In this example, the job is

submitted to the simulation queue rather than the test queue.
◆ Submission options can be specified anywhere in the standard input. In the

above example, the -J option of bsub is specified after the command to be run.
◆ More than one option can be specified on one line, as shown in the example

above.

Running a job under a particular shell
By default, LSF runs batch jobs using the Bourne (/bin/sh) shell. You can specify
the shell under which a job is to run. This is done by specifying an interpreter in the
first line of the script.
For example:
% bsub
bsub> #!/bin/csh -f
bsub> set coredump=‘ls |grep core‘
bsub> if ("$coredump" != "") then
bsub> mv core core.‘date | cut -d" " -f1‘
bsub> endif
bsub> myjob
bsub> ^D
Job <1234> is submitted to default queue <normal>.

Registering utmp File Entries for Interactive Batch Jobs

668 Administering Platform LSF

The bsub command must read the job script from standard input to set the
execution shell. If you do not specify a shell in the script, the script is run using
/bin/sh. If the first line of the script starts with a # not immediately followed by an
exclamation mark (!), then /bin/csh is used to run the job.
For example:
% bsub
bsub> # This is a comment line. This tells the system to use /bin/csh
to
bsub> # interpret the script.
bsub>
bsub> setenv DAY ‘date | cut -d" " -f1‘
bsub> myjob
bsub> ^D
Job <1234> is submitted to default queue <normal>.

If running jobs under a particular shell is required frequently, you can specify an
alternate shell using a command-level job starter and run your jobs interactively.
See Controlling Execution Environment Using Job Starters on page 635 for more
details.

Registering utmp File Entries for Interactive Batch Jobs
LSF administrators can configure the cluster to track user and account information
for interactive batch jobs submitted with bsub -Ip or bsub -Is. User and account
information is registered as entries in the UNIX utmp file, which holds information
for commands such as who. Registering user information for interactive batch jobs
in utmp allows more accurate job accounting.

Configuration and operation
To enable utmp file registration, the LSF administrator sets the LSB_UTMP
parameter in lsf.conf.
When LSB_UTMP is defined, LSF registers the job by adding an entry to the utmp
file on the execution host when the job starts. After the job finishes, LSF removes
the entry for the job from the utmp file.

Limitations
◆ Registration of utmp file entries is supported on the following platforms:

❖ SGI IRIX (6.4 and later)
❖ Solaris (all versions)
❖ HP-UX (all versions)
❖ Linux (all versions)

◆ utmp file registration is not supported in a MultiCluster environment.
◆ Because interactive batch jobs submitted with bsub -I are not associated with

a pseudo-terminal, utmp file registration is not supported for these jobs.

Administering Platform LSF 669

C H A P T E R

43
Running Interactive and Remote Tasks

This chapter provides instructions for running tasks interactively and remotely
with non-batch utilities such as lsrun, lsgrun, and lslogin.

Contents
◆ Running Remote Tasks on page 669
◆ Interactive Tasks on page 672
◆ Load Sharing Interactive Sessions on page 674
◆ Load Sharing X Applications on page 674

Running Remote Tasks
lsrun is a non-batch utility to run tasks on a remote host. lsgrun is a non-batch
utility to run the same task on many hosts, in sequence one after the other, or in
parallel.
The default for lsrun is to run the job on the host with the least CPU load
(represented by the lowest normalized CPU run queue length) and the most
available memory. Command-line arguments can be used to select other resource
requirements or to specify the execution host.
To avoid typing in the lsrun command every time you want to execute a remote
job, you can also use a shell alias or script to run your job.
For a complete description of lsrun and lsgrun options, see the lsrun(1) and
lsgrun(1) man pages.

In this section
◆ Run a task on the best available host on page 670
◆ Run a task on a host with specific resources on page 670
◆ Run a task on a specific host on page 671
◆ Run a task by using a pseudo-terminal on page 671
◆ Run the same task on many hosts in sequence on page 671
◆ Run parallel tasks on page 671

Running Remote Tasks

670 Administering Platform LSF

◆ Run tasks on hosts specified by a file on page 672

Run a task on the best available host

1 To run mytask on the best available host, enter:
lsrun mytask

LSF automatically selects a host of the same type as the local host, if one is
available. By default the host with the lowest CPU and memory load is selected.

Run a task on a host with specific resources
If you want to run mytask on a host that meets specific resource requirements, you
can specify the resource requirements using the -R res_req option of lsrun.

1 lsrun -R 'cserver && swp>100' mytask

In this example mytask must be run on a host that has the resource cserver
and at least 100 MB of virtual memory available.
You can also configure LSF to store the resource requirements of specific tasks.
If you configure LSF with the resource requirements of your task, you do not
need to specify the -R res_req option of lsrun on the command-line. If you do
specify resource requirements on the command line, they override the
configured resource requirements.
See the Platform LSF Configuration Reference for information about
configuring resource requirements in the lsf.task file.

Resource usage Resource reservation is only available for batch jobs. If you run jobs using only LSF
Base, LIM uses resource usage to determine the placement of jobs. Resource usage
requests are used to temporarily increase the load so that a host is not overloaded.
When LIM makes a placement advice, external load indices are not considered in
the resource usage string. In this case, the syntax of the resource usage string is
res[=value]:res[=value]: ... :res[=value]

The res is one of the resources whose value is returned by the lsload command.
rusage[r1m=0.5:mem=20:swp=40]

The above example indicates that the task is expected to increase the 1-minute run
queue length by 0.5, consume 20 MB of memory and 40 MB of swap space.
If no value is specified, the task is assumed to be intensive in using that resource. In
this case no more than one task will be assigned to a host regardless of how many
CPUs it has.
The default resource usage for a task is r15s=1.0:r1m=1.0:r15m=1.0. This
indicates a CPU-intensive task which consumes few other resources.

Administering Platform LSF 671

Running Interactive and Remote Tasks

Run a task on a specific host

1 If you want to run your task on a particular host, use the lsrun -m option:
lsrun -m hostD mytask

Run a task by using a pseudo-terminal
Submission of interaction jobs using pseudo-terminal is not supported for
Windows for either lsrun or bsub LSF commands.
Some tasks, such as text editors, require special terminal handling. These tasks must
be run using a pseudo-terminal so that special terminal handling can be used over
the network.

1 The -P option of lsrun specifies that the job should be run using a
pseudo-terminal:
lsrun -P vi

Run the same task on many hosts in sequence
The lsgrun command allows you to run the same task on many hosts, one after the
other, or in parallel.

1 For example, to merge the /tmp/out file on hosts hostA, hostD, and hostB into
a single file named gout, enter:
lsgrun -m "hostA hostD hostB" cat /tmp/out >> gout

Run parallel tasks

lsgrun -p The -p option tells lsgrun that the task specified should be run in parallel. See
lsgrun(1) for more details.

1 To remove the /tmp/core file from all 3 hosts, enter:
lsgrun -m "hostA hostD hostB" -p rm -r /tmp/core

Interactive Tasks

672 Administering Platform LSF

Run tasks on hosts specified by a file

lsgrun -f host_file 1 The lsgrun -f host_file option reads the host_file file to get a list of hosts on
which to run the task.

Interactive Tasks
LSF supports transparent execution of tasks on all server hosts in the cluster. You
can run your program on the best available host and interact with it just as if it were
running directly on your workstation. Keyboard signals such as CTRL-Z and CTRL-C
work as expected.
Interactive tasks communicate with the user in real time. Programs like vi use a
text-based terminal interface. Computer Aided Design and desktop publishing
applications usually use a graphic user interface (GUI).
This section outlines issues for running interactive tasks with the non-batch
utilities lsrun, lsgrun, etc. To run interactive tasks with these utilities, use the -i
option.
For more details, see the lsrun(1) and lsgrun(1) man pages.

In this section
◆ Interactive tasks on remote hosts on page 672
◆ Interactive processing and scheduling policies on page 673
◆ Shared files and user IDs on page 673
◆ Shell mode for remote execution on page 673
◆ Run windows on page 673
◆ Redirect streams to files on page 673

Interactive tasks on remote hosts

Job controls When you run an interactive task on a remote host, you can perform most of the
job controls as if it were running locally. If your shell supports job control, you can
suspend and resume the task and bring the task to background or foreground as if
it were a local task.
For a complete description, see the lsrun(1) man page.

Hiding remote
execution

You can also write one-line shell scripts or csh aliases to hide remote execution. For
example:
#!/bin/sh
Script to remotely execute mytask
exec lsrun -m hostD mytask

or
alias mytask "lsrun -m hostD mytask"

Administering Platform LSF 673

Running Interactive and Remote Tasks

Interactive processing and scheduling policies
LSF lets you run interactive tasks on any computer on the network, using your own
terminal or workstation. Interactive tasks run immediately and normally require
some input through a text-based or graphical user interface. All the input and
output is transparently sent between the local host and the job execution host.

Shared files and user IDs
When LSF runs a task on a remote host, the task uses standard UNIX system calls
to access files and devices. The user must have an account on the remote host. All
operations on the remote host are done with the user’s access permissions.
Tasks that read and write files access the files on the remote host. For load sharing
to be transparent, your files should be available on all hosts in the cluster using a file
sharing mechanism such as NFS or AFS. When your files are available on all hosts
in the cluster, you can run your tasks on any host without worrying about how your
task will access files.
LSF can operate correctly in cases where these conditions are not met, but the
results may not be what you expect. For example, the /tmp directory is usually
private on each host. If you copy a file into /tmp on a remote host, you can only read
that file on the same remote host.
LSF can also be used when files are not available on all hosts. LSF provides the
lsrcp command to copy files across LSF hosts. You can use pipes to redirect the
standard input and output of remote commands, or write scripts to copy the data
files to the execution host.

Shell mode for remote execution
On UNIX, shell mode support is provided for running interactive applications
through RES.
Not supported for Windows.
Shell mode support is required for running interactive shells or applications that
redefine the CTRL-C and CTRL-Z keys (for example, jove).
The -S option of lsrun, ch or lsgrun creates the remote task with shell mode
support. The default is not to enable shell mode support.

Run windows
Some run windows are only applicable to batch jobs. Interactive jobs scheduled by
LIM are controlled by another set of run windows.

Redirect streams to files
By default, both standard error messages and standard output messages of
interactive tasks are written to stdout on the submission host.
To separate stdout and stderr and redirect to separate files, set
LSF_INTERACTIVE_STDERR=y in lsf.conf or as an environment variable.

1 To redirect both stdout and stderr to different files with the parameter set:
lsrun mytask 2>mystderr 1>mystdout

Load Sharing Interactive Sessions

674 Administering Platform LSF

The result of the above example is for stderr to be redirected to mystderr, and
stdout to mystdout. Without LSF_INTERACTIVE_STDERR set, both
stderr and stdout will be redirected to mystdout.
See the Platform LSF Configuration Reference for more details on
LSF_INTERACTIVE_STDERR.

Load Sharing Interactive Sessions
There are different ways to use LSF to start an interactive session on the best
available host.

Log on to the least loaded host

1 To log on to the least loaded host, use the lslogin command.
When you use lslogin, LSF automatically chooses the best host and does an
rlogin to that host.
With no argument, lslogin picks a host that is lightly loaded in CPU, has few
login sessions, and whose binary is compatible with the current host.

Log on to a host with specific resources

1 If you want to log on a host that meets specific resource requirements, use the
lslogin -R res_req option.
lslogin -R "solaris order[ls:cpu]"

This command opens a remote login to a host that has the sunos resource, few
other users logged in, and a low CPU load level. This is equivalent to using
lsplace to find the best host and then using rlogin to log in to that host:
rlogin 'lsplace -R "sunos order[ls:cpu]"'

Load Sharing X Applications

Start an xterm

1 If you are using the X Window System, you can start an xterm that opens a shell
session on the least loaded host by entering:
lsrun sh -c xterm &

The & in this command line is important as it frees resources on the host once
xterm is running, by running the X terminal in the background.
In this example, no processes are left running on the local host. The lsrun
command exits as soon as xterm starts, and the xterm on the remote host
connects directly to the X server on the local host.

Administering Platform LSF 675

Running Interactive and Remote Tasks

xterm on a PC
Each X application makes a separate network connection to the X display on the
user's desktop. The application generally gets the information about the display
from the DISPLAY environment variable.
X-based systems such as eXceed start applications by making a remote shell
connection to the UNIX server, setting the DISPLAY environment variable, and
then invoking the X application. Once the application starts, it makes its own
connection to the display and the initial remote shell is no longer needed.
This approach can be extended to allow load sharing of remote applications. The
client software running on the X display host makes a remote shell connection to
any server host in the LSF cluster. Instead of running the X application directly, the
client invokes a script that uses LSF to select the best available host and starts the
application on that host. Because the application then makes a direct connection to
the display, all of the intermediate connections can be closed. The client software
on the display host must select a host in the cluster to start the connection. You can
choose an arbitrary host for this; once LSF selects the best host and starts the X
application there, the initial host is no longer involved. There is no ongoing load on
the initial host.

Setting up an X terminal to start an X session on the least loaded host
If you are using a PC as a desktop machine and are running an X Window server on
your PC, then you can start an X session on the least loaded host.
The following steps assume you are using Exceed from Hummingbird
Communications. This procedure can be used to load share any X-based
application.
You can customize host selection by changing the resource requirements specified
with -R "...". For example, a user could have several icons in the xterm program
group: one called Best, another called Best_Sun, another Best_SGI.

Set up Exceed to
log on the least
loaded host

To set up Exceed to log on to the least loaded host:

1 Click the Xstart icon in the Exceed program group.
2 Choose REXEC (TCP/IP, ...) as start method, program type is X window.
3 Set the host to be any server host in your LSF cluster:

lsrun -R "type==any order[cpu:mem:login]" xterm -sb -ls -display your_PC:0.0

4 Set description to be Best.
5 Click the Install button in the Xstart window.

This installs Best as an icon in the program group you chose (for example,
xterm).
The user can now log on to the best host by clicking Best in the Xterm program
group.

Load Sharing X Applications

676 Administering Platform LSF

Start an xterm in Exceed
To start an xterm:

1 Double-click the Best icon.
An xterm starts on the least loaded host in the cluster and is displayed on your
screen.

Examples

Running any application on the least loaded host

To run appY on the best machine licensed for it, you could set the command line in
Exceed to be the following and set the description to appY:

lsrun -R "type==any && appY order[mem:cpu]" sh -c "appY -display your_PC:0.0 &"

You must make sure that all the UNIX servers licensed for appY are configured with
the resource "appY". In this example, appY requires a lot of memory when there are
embedded graphics, so we make "mem" the most important consideration in
selecting the best host among the eligible servers.

Starting an X session on the least loaded host in any X desktop environment

The above approach also applies to other X desktop environments. In general, if you
want to start an X session on the best host, run the following on an LSF host:

lsrun -R "resource_requirement" my_Xapp -display your_PC:0.0

where
resource_requirement is your resource requirement string

Script for automatically specifying resource requirements

The above examples require the specification of resource requirement strings by
users. You may want to centralize this such that all users use the same resource
specifications.
You can create a central script (for example lslaunch) and place it in the /lsf/bin
directory. For example:
#!/bin/sh
lsrun -R "order[cpu:mem:login]" $@
exit $?

Which would simplify the command string to:
lslaunch xterm -sb -ls -display your_PC:0.0

Taking this one step further, you could create a script named lsxterm:
#!/bin/sh
lsrun -R "order[cpu:mem:login]" xterm -sb -ls $@
exit $?

Which would simplify the command string to:
lsxterm -display your_PC:0.0

Administering Platform LSF 677

P A R T

VII
Monitoring Your Cluster

◆ Achieving Performance and Scalability on page 679
◆ Reporting on page 697
◆ Event Generation on page 725
◆ Tuning the Cluster on page 729
◆ Authentication and Authorization on page 743
◆ Job Email and Job File Spooling on page 751
◆ Non-Shared File Systems on page 757
◆ Error and Event Logging on page 763
◆ Troubleshooting and Error Messages on page 775

678 Administering Platform LSF

Administering Platform LSF 679

C H A P T E R

44
Achieving Performance and Scalability

Contents
◆ Optimizing Performance in Large Sites on page 679
◆ Tuning UNIX for Large Clusters on page 680
◆ Tuning LSF for Large Clusters on page 681
◆ Monitoring Performance Metrics in Real Time on page 692

Optimizing Performance in Large Sites
As your site grows, you must tune your LSF cluster to support a large number of
hosts and an increased workload.
This chapter discusses how to efficiently tune querying, scheduling, and event
logging in a large cluster that scales to 5000 hosts and 100,000 jobs at any one time.
To target performance optimization to a cluster with 5000 hosts and 100,000 jobs,
you must:
◆ Configure your operating system. See Tuning UNIX for Large Clusters on page

680
◆ Fine-tune LSF. See Tuning LSF for Large Clusters on page 681

What’s new in LSF performance?
LSF provides parameters for tuning your cluster, which you will learn about in this
chapter. However, before you calculate the values to use for tuning your cluster,
consider the following enhancements to the general performance of LSF daemons,
job dispatching, and event replaying:
◆ Both scheduling and querying are much faster
◆ Switching and replaying the events log file, lsb.events, is much faster. The

length of the events file no longer impacts performance
◆ Restarting and reconfiguring your cluster is much faster
◆ Job submission time is constant. It does not matter how many jobs are in the

system. The submission time does not vary.
◆ The scalability of load updates from the slaves to the master has increased

Tuning UNIX for Large Clusters

680 Administering Platform LSF

◆ Load update intervals are scaled automatically
The following graph shows the improvement in LIM startup after the LSF
performance enhancements:

Tuning UNIX for Large Clusters
The following hardware and software specifications are requirements for a large
cluster that supports 5,000 hosts and 100,000 jobs at any one time.

In this section
◆ Hardware recommendation on page 680
◆ Software requirement on page 680

Hardware recommendation
LSF master host:
◆ 4 processors, one each for:

❖ mbatchd

❖ mbschd

❖ lim

❖ Operating system
◆ 10 GB Ram

Software requirement
To meet the performance requirements of a large cluster, increase the file descriptor
limit of the operating system.
The file descriptor limit of most operating systems used to be fixed, with a limit of
1024 open files. Some operating systems, such as Linux and AIX, have removed this
limit, allowing you to increase the number of file descriptors.

Y axis: # of hosts
x axis: Time in seconds

Administering Platform LSF 681

Achieving Performance and Scalability

Increase the file
descriptor limit

1 To achieve efficiency of performance in LSF, follow the instructions in your
operating system documentation to increase the number of file descriptors on
the LSF master host.

TIP: To optimize your configuration, set your file descriptor limit to a value at least as high as
the number of hosts in your cluster.

The following is an example configuration. The instructions for different
operating systems, kernels, and shells are varied. You may have already
configured the host to use the maximum number of file descriptors that are
allowed by the operating system. On some operating systems, the limit is
configured dynamically.
Your cluster size is 5000 hosts. Your master host is on Linux, kernel version 2.4:
1 Log in to the LSF master host as the root user.
2 Add the following line to your /etc/rc.d/rc.local startup script:

echo -n "5120" > /proc/sys/fs/file-max

3 Restart the operating system to apply the changes.
4 In the bash shell, instruct the operating system to use the new file limits:

ulimit -n unlimited

Tuning LSF for Large Clusters
To enable and sustain large clusters, you need to tune LSF for efficient querying,
dispatching, and event log management.

In this section
◆ Managing scheduling performance on page 681
◆ Limiting the number of batch queries on page 683
◆ Improving the speed of host status updates on page 683
◆ Managing your user’s ability to move jobs in a queue on page 684
◆ Managing the number of pending reasons on page 684
◆ Achieving efficient event switching on page 684
◆ Automatic load updating on page 685
◆ Managing the I/O performance of the info directory on page 685
◆ Processor binding for LSF job processes on page 686
◆ Increasing the job ID limit on page 691

Managing scheduling performance
For fast job dispatching in a large cluster, configure the following parameters:
LSB_MAX_JOB_DISPATCH_PER_SESSION in lsf.conf
The maximum number of jobs the scheduler can dispatch in one scheduling session

Tuning LSF for Large Clusters

682 Administering Platform LSF

Some operating systems, such as Linux and AIX, let you increase the number of file
descriptors that can be allocated on the master host. You do not need to limit the
number of file descriptors to 1024 if you want fast job dispatching. To take
advantage of the greater number of file descriptors, you must set
LSB_MAX_JOB_DISPATCH_PER_SESSION to a value greater than 300.
Set LSB_MAX_JOB_DISPATCH_PER_SESSION to one-half the value of
MAX_SBD_CONNS. This setting configures mbatchd to dispatch jobs at a high rate
while maintaining the processing speed of other mbatchd tasks.
MAX_SBD_CONNS in lsb.params
The maximum number of open file connections between mbatchd and sbatchd.
Specify a value equal to the number of hosts in your cluster plus a buffer. For
example, if your cluster includes 4000 hosts, set:
MAX_SBD_CONNS=4100

Highly recommended for large clusters to decrease the load on the master LIM.
Forces the client sbatchd to contact the local LIM for host status and load
information. The client sbatchd only contacts the master LIM or a LIM on one of
the LSF_SERVER_HOSTS if sbatchd cannot find the information locally.

Enable fast job
dispatch

1 Log in to the LSF master host as the root user.
2 Increase the system-wide file descriptor limit of your operating system if you

have not already done so.
3 In lsb.params, set MAX_SBD_CONNS equal to the number of hosts in the cluster

plus a buffer.
4 In lsf.conf, set the parameter LSB_MAX_JOB_DISPATCH_PER_SESSION to a

value greater than 300 and less than or equal to one-half the value of
MAX_SBD_CONNS.
For example, for a cluster with 4000 hosts:
LSB_MAX_JOB_DISPATCH_PER_SESSION = 2050

MAX_SBD_CONNS=4100

5 In lsf.conf, define the parameter LSF_SERVER_HOSTS to decrease the load on
the master LIM.

6 In the shell you used to increase the file descriptor limit, shut down the LSF
batch daemons on the master host:
badmin hshutdown

7 Run badmin mbdrestart to restart the LSF batch daemons on the master host.
8 Run badmin hrestart all to restart every sbatchd in the cluster:

NOTE: When you shut down the batch daemons on the master host, all LSF services are
temporarily unavailable, but existing jobs are not affected. When mbatchd is later started by
sbatchd, its previous status is restored and job scheduling continues.

Administering Platform LSF 683

Achieving Performance and Scalability

Enable continuous
scheduling

1 To enable the scheduler to run continuously, define the parameter
JOB_SCHEDULING_INTERVAL=0 in lsb.params.

Limiting the number of batch queries
In large clusters, job querying can grow very quickly. If your site sees a lot of high
traffic job querying, you can tune LSF to limit the number of job queries that
mbatchd can handle. This helps decrease the load on the master host.
If a job information query is sent after the limit has been reached, an error message
is displayed and mbatchd keeps retrying, in one second intervals. If the number of
job queries later drops below the limit, mbatchd handles the query.
You define the maximum number of concurrent jobs queries to be handled by
mbatchd in the parameter MAX_CONCURRENT_JOB_QUERY in lsb.params:
◆ If mbatchd is using multithreading, a dedicated query port is defined by the

parameter LSB_QUERY_PORT in lsf.conf. When mbatchd has a dedicated
query port, the value of MAX_CONCURRENT_JOB_QUERY sets the maximum
number of queries that can be handled by each child mbatchd that is forked by
mbatchd. This means that the total number of job queries handled can be more
than the number specified by MAX_CONCURRENT_JOB_QUERY
(MAX_CONCURRENT_JOB_QUERY multiplied by the number of child daemons
forked by mbatchd).

◆ If mbatchd is not using multithreading, the value of
MAX_CONCURRENT_JOB_QUERY sets the maximum total number of job queries
that can be handled by mbatchd

Syntax MAX_CONCURRENT_JOB_QUERY=max_query

Where:
max_query

Specifies the maximum number of job queries that can be handled by mbatchd.
Valid values are positive integers between 1 and 100. The default value is unlimited.

Examples MAX_CONCURRENT_JOB_QUERY=20

Specifies that no more than 20 queries can be handled by mbatchd.
MAX_CONCURRENT_JOB_QUERY=101

Incorrect value. The default value will be used. An unlimited number of job queries
will be handled by mbatchd.

Improving the speed of host status updates
To improve the speed with which mbatchd obtains and reports host status,
configure the parameter LSB_SYNC_HOST_STAT_LIM in the file lsb.params.
This also improves the speed with which LSF reschedules jobs: the sooner LSF
knows that a host has become unavailable, the sooner LSF reschedules any
rerunnable jobs executing on that host.
For example, during maintenance operations, the cluster administrator might need
to shut down half of the hosts at once. LSF can quickly update the host status and
reschedule any rerunnable jobs that were running on the unavailable hosts.

Tuning LSF for Large Clusters

684 Administering Platform LSF

When you define this parameter, mbatchd periodically obtains the host status from
the master LIM, and then verifies the status by polling each sbatchd at an interval
defined by the parameters MBD_SLEEP_TIME and LSB_MAX_PROBE_SBD.

Managing your user’s ability to move jobs in a queue
JOB_POSITION_CONTROL_BY_ADMIN=Y allows an LSF administrator to control
whether users can use btop and bbot to move jobs to the top and bottom of queues.
When set, only the LSF administrator (including any queue administrators) can use
bbot and btop to move jobs within a queue. A user attempting to user bbot or btop
receives the error “User permission denied.”

REMEMBER: You must be an LSF administrator to set this parameter.

Managing the number of pending reasons
For efficient, scalable management of pending reasons, use
CONDENSE_PENDING_REASONS=Y in lsb.params to condense all the host-based
pending reasons into one generic pending reason.
If a job has no other main pending reason, bjobs -p or bjobs -l will display the
following:
Individual host based reasons

If you condense host-based pending reasons, but require a full pending reason list,
you can run the following command:
badmin diagnose <job_ID>

REMEMBER: You must be an LSF administrator or a queue administrator to run this command.

Achieving efficient event switching
Periodic switching of the event file can weaken the performance of mbatchd ,which
automatically backs up and rewrites the events file after every 1000 batch job
completions. The old lsb.events file is moved to lsb.events.1, and each old
lsb.events.n file is moved to lsb.events.n+1.
Change the frequency of event switching with the following two parameters in
lsb.params:
◆ MAX_JOB_NUM specifies the number of batch jobs to complete before

lsb.events is backed up and moved to lsb.events.1. The default value is
1000

◆ MIN_SWITCH_PERIOD controls how frequently mbatchd checks the number of
completed batch jobs

The two parameters work together. Specify the MIN_SWITCH_PERIOD value in
seconds.
For example:
MAX_JOB_NUM=1000

MIN_SWITCH_PERIOD=7200

Administering Platform LSF 685

Achieving Performance and Scalability

This instructs mbatchd to check if the events file has logged 1000 batch job
completions every two hours. The two parameters can control the frequency of the
events file switching as follows:
◆ After two hours, mbatchd checks the number of completed batch jobs. If 1000

completed jobs have been logged, it switches the events file
◆ If 1000 jobs complete after five minutes, mbatchd does not switch the events file

until till the end of the two-hour period

TIP: For large clusters, set the MIN_SWITCH_PERIOD to a value equal to or greater than 600. This
causes mbatchd to fork a child process that handles event switching, thereby reducing the load
on mbatchd. mbatchd terminates the child process and appends delta events to new events
after the MIN_SWITCH_PERIOD has elapsed. If you define a value less than 600 seconds, mbatchd
will not fork a child process for event switching.

Automatic load updating
Periodically, the LIM daemons exchange load information. In large clusters, let LSF
automatically load the information by dynamically adjusting the period based on
the load.

IMPORTANT: For automatic tuning of the loading interval, make sure the parameter
EXINTERVAL in lsf.cluster.cluster_name file is not defined. Do not configure your cluster
to load the information at specific intervals.

Managing the I/O performance of the info directory
In large clusters, there are large numbers of jobs submitted by its users. Since each
job generally has a job file, this results in a large number of job files stored in the
LSF_SHAREDIR/cluster_name/logdir/info directory at any time. When the total
size of the job files reaches a certain point, you will notice a significant delay when
performing I/O operations in the info directory.
This delay is caused by a limit in the total size of files that can reside in a file server
directory. This limit is dependent on the file system implementation. A high load
on the file server delays the master batch daemon operations, and therefore slows
down the overall cluster throughput.
You can prevent this delay by creating and using subdirectories under the parent
directory. Each new subdirectory is subject to the file size limit, but the parent
directory is not subject to the total file size of its subdirectories. Since the total file
size of the info directory is divided among its subdirectories, your cluster can
process more job operations before reaching the total size limit of the job files.
If your cluster has a lot of jobs resulting in a large info directory, you can tune your
cluster by enabling LSF to create subdirectories in the info directory. Use
MAX_INFO_DIRS in lsb.params to create the subdirectories and enable mbatchd to
distribute the job files evenly throughout the subdirectories.

Syntax MAX_INFO_DIRS=num_subdirs

Where num_subdirs specifies the number of subdirectories that you want to create
under the LSF_SHAREDIR/cluster_name/logdir/info directory. Valid values are
positive integers between 1 and 1024. By default, MAX_INFO_DIRS is not defined.

Tuning LSF for Large Clusters

686 Administering Platform LSF

Run badmin reconfig to create and use the subdirectories.

Duplicate event
logging

NOTE: If you enabled duplicate event logging, you must run badmin mbdrestart instead of
badmin reconfig to restart mbatchd.

Run bparams -l to display the value of the MAX_INFO_DIRS parameter.

Example MAX_INFO_DIRS=10

mbatchd creates ten subdirectories from
LSB_SHAREDIR/cluster_name/logdir/info/0 to
LSB_SHAREDIR/cluster_name/logdir/info/9.

Processor binding for LSF job processes
See also Processor Binding for Parallel Jobs on page 578.
Rapid progress of modern processor manufacture technologies has enabled the low
cost deployment of LSF on hosts with multicore and multithread processors. The
default soft affinity policy enforced by the operating system scheduler may not give
optimal job performance. For example, the operating system scheduler may place
all job processes on the same processor or core leading to poor performance.
Frequently switching processes as the operating system schedules and reschedules
work between cores can cause cache invalidations and cache miss rates to grow
large.
Processor binding for LSF job processes takes advantage of the power of multiple
processors and multiple cores to provide hard processor binding functionality for
sequential LSF jobs and parallel jobs that run on a single host.

RESTRICTION: Processor binding is supported on hosts running Linux with kernel version 2.6 or
higher.

For multi-host parallel jobs, LSF sets two environment variables ($LSB_BIND_JOB
and $LSB_BIND_CPU_LIST) but does not attempt to bind the job to any host.
When processor binding for LSF job processes is enabled on supported hosts, job
processes of an LSF job are bound to a processor according to the binding policy of
the host. When an LSF job is completed (exited or done successfully) or suspended,
the corresponding processes are unbound from the processor.
When a suspended LSF job is resumed, the corresponding processes are bound
again to a processor. The process is not guaranteed to be bound to the same
processor it was bound to before the job was suspended.
The processor binding affects the whole job process group. All job processes forked
from the root job process (the job RES) are bound to the same processor.
Processor binding for LSF job processes does not bind daemon processes.
If processor binding is enabled, but the execution hosts do not support processor
affinity, the configuration has no effect on the running processes. Processor
binding has no effect on a single-processor host.

Administering Platform LSF 687

Achieving Performance and Scalability

Processor, core, and
thread-based CPU
binding

By default, the number of CPUs on a host represents the number of physical
processors a machine has. For LSF hosts with multiple cores, threads, and
processors, ncpus can be defined by the cluster administrator to consider one of the
following:
◆ Processors
◆ Processors and cores
◆ Processors, cores, and threads
Globally, this definition is controlled by the parameter EGO_DEFINE_NCPUS in
lsf.conf or ego.conf. The default behavior for ncpus is to consider only the
number of physical processors (EGO_DEFINE_NCPUS=procs).

TIP: When PARALLEL_SCHED_BY_SLOT=Y in lsb.params, the resource requirement string
keyword ncpus refers to the number of slots instead of the number of processors, however
lshosts output will continue to show ncpus as defined by EGO_DEFINE_NCPUS in
lsf.conf.

Binding job processes randomly to multiple processors, cores, or threads, may
affect job performance. Processor binding configured with LSF_BIND_JOB in
lsf.conf or BIND_JOB in lsb.applications, detects the
EGO_DEFINE_NCPUS policy to bind the job processes by processor, core, or
thread (PCT).
For example, if a host's PCT policy is set to processor
(EGO_DEFINE_NCPUS=procs) and the binding option is set to BALANCE, the
first job process is bound to the first physical processor, the second job process is
bound to the second physical processor and so on.
If host's PCT policy is set to core level (EGO_DEFINE_NCPUS=cores) and the
binding option is set to BALANCE, the first job process is bound to the first core
on the first physical processor, the second job process is bound to the first core on
the second physical processor, the third job process is bound to the second core on
the first physical processor and so on.
If host's PCT policy is set to thread level (EGO_DEFINE_NCPUS=threads) and the
binding option is set to BALANCE, the first job process is bound to the first thread
on the first physical processor, the second job process is bound to the first thread
on the second physical processor, the third job process is bound to the second
thread on the first physical processor and so on.

BIND_JOB=BALAN
CE

The BIND_JOB=BALANCE option instructs LSF to bind the job based on the load
of the available processors/cores/threads. For each slot:
◆ If the PCT level is set to processor, the lowest loaded physical processor runs

the job.
◆ If the PCT level is set to core, the lowest loaded core on the lowest loaded

processor runs the job.
◆ If the PCT level is set to thread, the lowest loaded thread on the lowest loaded

core on the lowest loaded processor runs the job.
If there is a single 2 processor quad core host and you submit a parallel job with –n
2 –R”span[hosts=1]” when the PCT level is core, the job is bound to the first core
on the first processor and the first core on the second processor:

Tuning LSF for Large Clusters

688 Administering Platform LSF

After submitting another three jobs with -n 2 -R"span[hosts=1]":

If PARALLEL_SCHED_BY_SLOT=Y is set in lsb.params, the job specifies a maximum
and minimum number of job slots instead of processors. If the MXJ value is set to
16 for this host (there are 16 job slots on this host), LSF can dispatch more jobs to
this host. Another job submitted to this host is bound to the first core on the first
processor and the first core on the second processor:

BIND_JOB=PACK The BIND_JOB=PACK option instructs LSF to try to pack all the processes onto a
single processor. If this cannot be done, LSF tries to use as few processors as
possible. Email is sent to you after job dispatch and when job finishes. If no
processors/cores/threads are free (when the PCT level is processor/core/thread
level), LSF tries to use the BALANCE policy for the new job.
LSF depends on the order of processor IDs to pack jobs to a single processor.
If PCT level is processor (default value after installation), there is no difference
between BALANCE and PACK.
This option binds jobs to a single processor where it makes sense, but does not
oversubscribe the processors/cores/threads. The other processors are used when
they are needed. For instance, when the PCT level is core level, if we have a single 4
processor quad core host and we had bound 4 sequential jobs onto the first
processor, the 5th-8th sequential job is bound to the second processor.
If you submit three single-host parallel jobs with -n 2 -R"span[hosts=1]" when
the PCT level is core level, the first job is bound to the first and seconds cores of the
first processor, the second job is bound to the third and fourth cores of the first
processor. Binding the third job to the first processor oversubscribes the cores in
the first processor, so the third job is bound to the first and second cores of the
second processor:

Administering Platform LSF 689

Achieving Performance and Scalability

After JOB1 and JOB2 finished, if you submit one single-host parallel jobs with -n
2 -R"span[hosts=1], the job is bound to the third and fourth cores of the second
processor:

BIND_JOB=ANY BIND_JOB=ANY binds the job to the first N available processors/cores/threads with
no regard for locality. If the PCT level is core, LSF binds the first N available cores
regardless of whether they are on the same processor or not. LSF arranges the order
based on APIC ID.
If PCT level is processor (default value after installation), there is no difference
between ANY and BALANCE.
For example, with a single 2-processor quad core host and the below table is the
relationship of APIC ID and logic processor/core id:

If the PCT level is core level and you submits two jobs to this host with -n 3 -R
"span[hosts=1]", then the first job is bound to the first, second and third core of
the first physical processor, the second job is bound to the fourth core of the first
physical processor and the first, second core in the second physical processor.

BIND_JOB=USER BIND_JOB=USER binds the job to the value of $LSB_USER_BIND_JOB as specified in
the user submission environment. This allows the Administrator to delegate
binding decisions to the actual user. This value must be one of Y, N, NONE,
BALANCE, PACK, or ANY. Any other value is treated as ANY.

APC ID Processor ID Core ID

0 0 0

1 0 1

2 0 2

3 0 3

4 1 0

5 1 1

6 1 2

7 1 3

Tuning LSF for Large Clusters

690 Administering Platform LSF

BIND_JOB=USER_C
PU_LIST

BIND_JOB=USER_CPU_LIST binds the job to the explicit logic CPUs specified in
environment variable $LSB_USER_BIND_CPU_LIST. LSF does not check that the
value is valid for the execution host(s). It is the user's responsibility to correctly
specify the CPU list for the hosts they select.
The correct format of $LSB_USER_BIND_CPU_LIST is a list which may contain
multiple items, separated by comma, and ranges. For example, 0,5,7,9-11.
If the value's format is not correct or there is no such environment variable, jobs are
not bound to any processor.
If the format is correct and it cannot be mapped to any logic CPU, the binding fails.
But if it can be mapped to some CPUs, the job is bound to the mapped CPUs. For
example, with a two-processor quad core host and the logic CPU ID is 0-7:
1 If user1 specifies 9,10 into $LSB_USER_BIND_CPU_LIST, his job is not bound to

any CPUs.
2 If user2 specifies 1,2,9 into $LSB_USER_BIND_CPU_LIST, his job is bound to

CPU 1 and 2.
If the value's format is not correct or it does not apply for the execution host, the
related information is added to the email sent to users after job dispatch and job
finish.
If user specifies a minimum and a maximum number of processors for a single-host
parallel job, LSF may allocate processors between these two numbers for the job. In
this case, LSF binds the job according to the CPU list specified by the user.

BIND_JOB=NONE BIND_JOB=NONE is functionally equivalent to the former BIND_JOB=N where the
processor binding is disabled.

Feature
interactions

◆ Existing CPU affinity features
Processor binding of LSF job processes will not take effect on a master host with
the following parameters configured.
❖ MBD_QUERY_CPUS
❖ LSF_DAEMONS_CPUS
❖ EGO_DAEMONS_CPUS

◆ IRIX cpusets
Processor binding cannot be used with IRIX cpusets. If an execution host is
configured as part of a cpuset, processor binding is disabled on that host.

◆ Job requeue, rerun, and migration
When a job is requeued, rerun or migrated, a new job process is created. If
processor binding is enabled when the job runs, the job processes will be bound
to a processor.

◆ badmin hrestart

badmin hrestart restarts a new sbatchd. If a job process has already been
bound to a processor, after sbatchd is restarted, processor binding for the job
processes are restored.

◆ badmin reconfig

Administering Platform LSF 691

Achieving Performance and Scalability

If the BIND_JOB parameter is modified in an application profile, badmin
reconfig only affects pending jobs. The change does not affect running jobs.

◆ MultiCluster job forwarding model
In a MultiCluster environment, the behavior is similar to the current
application profile behavior. If the application profile name specified in the
submission cluster is not defined in the execution cluster, the job is rejected. If
the execution cluster has the same application profile name, but does not enable
processor binding, the job processes are not bound at the execution cluster.

Enable processor
binding for LSF job
processes

LSF supports the following binding options for sequential jobs and parallel jobs that
run on a single host:
◆ BALANCE
◆ PACK
◆ ANY
◆ USER
◆ USER_CPU_LIST
◆ NONE

1 Enable processor binding cluster-wide or in an application profile.
❖ Cluster-wide configuration (lsf.conf)

Define LSF_BIND_JOB in lsf.conf to enable processor binding for all
execution hosts in the cluster. On the execution hosts that support this
feature, job processes will be hard bound to selected processors.

❖ Application profile configuration (lsb.applications)
Define BIND_JOB in an application profile configuration in
lsb.applications to enable processor binding for all jobs submitted to
the application profile. On the execution hosts that support this feature, job
processes will be hard bound to selected processors.

If BIND_JOB is not set in an application profile in lsb.applications, the
value of LSF_BIND_JOB in lsf.conf takes effect. The BIND_JOB parameter
configured in an application profile overrides the lsf.conf setting.

Increasing the job ID limit
By default, LSF assigns job IDs up to 6 digits. This means that no more than 999999
jobs can be in the system at once. The job ID limit is the highest job ID that LSF will
ever assign, and also the maximum number of jobs in the system.
LSF assigns job IDs in sequence. When the job ID limit is reached, the count rolls
over, so the next job submitted gets job ID "1". If the original job 1 remains in the
system, LSF skips that number and assigns job ID "2", or the next available job ID.
If you have so many jobs in the system that the low job IDs are still in use when the
maximum job ID is assigned, jobs with sequential numbers could have different
submission times.

Monitoring Performance Metrics in Real Time

692 Administering Platform LSF

Increase the
maximum job ID

You cannot lower the job ID limit, but you can raise it to 10 digits. This allows
longer term job accounting and analysis, and means you can have more jobs in the
system, and the job ID numbers will roll over less often.
Use MAX_JOBID in lsb.params to specify any integer from 999999 to
2147483646 (for practical purposes, you can use any 10-digit integer less than this
value).

Increase the job ID
display length

By default, bjobs and bhist display job IDs with a maximum length of 7
characters. Job IDs greater than 9999999 are truncated on the left.
Use LSB_JOBID_DISP_LENGTH in lsf.conf to increase the width of the JOBID
column in bjobs and bhist display. When LSB_JOBID_DISP_LENGTH=10, the
width of the JOBID column in bjobs and bhist increases to 10 characters.

Monitoring Performance Metrics in Real Time

Enable metric collection
Set SCHED_METRIC_ENABLE=Y in lsb.params to enable performance metric
collection.
Start performance metric collection dynamically:
badmin perfmon start sample_period

Optionally, you can set a sampling period, in seconds. If no sample period is
specified, the default sample period set in SCHED_METRIC_SAMPLE_PERIOD in
lsb.params is used.
Stop sampling:
badmin perfmon stop

SCHED_METRIC_ENABLE and SCHED_METRIC_SAMPLE_PERIOD can be specified
independently. That is, you can specify SCHED_METRIC_SAMPLE_PERIOD and not
specify SCHED_METRIC_ENABLE. In this case, when you turn on the feature
dynamically (using badmin perfmon start), the sampling period valued defined
in SCHED_METRIC_SAMPLE_PERIOD will be used.
badmin perfmon start and badmin perfmon stop override the configuration
setting in lsb.params. Even if SCHED_METRIC_ENABLE is set, if you run
badmin perfmon start, performance metric collection is started. If you run
badmin perfmon stop, performance metric collection is stopped.

Tune the metric sampling period
Set SCHED_METRIC_SAMPLE_PERIOD in lsb.params to specify an initial
cluster-wide performance metric sampling period.
Set a new sampling period in seconds:
badmin perfmon setperiod sample_period
Collecting and recording performance metric data may affect the performance of
LSF. Smaller sampling periods will result in the lsb.streams file growing faster.

Administering Platform LSF 693

Achieving Performance and Scalability

Display current performance
Run badmin perfmon view to view real time performance metric information.
The following metrics are collected and recorded in each sample period:
◆ The number of queries handled by mbatchd
◆ The number of queries for each of jobs, queues, and hosts. (bjobs, bqueues,

and bhosts, as well as other daemon requests)
◆ The number of jobs submitted (divided into job submission requests and jobs

actually submitted)
◆ The number of jobs dispatched
◆ The number of jobs completed
◆ The numbers of jobs sent to remote cluster
◆ The numbers of jobs accepted by from cluster
badmin perfmon view

Performance monitor start time: Fri Jan 19 15:07:54

End time of last sample period: Fri Jan 19 15:25:55

Sample period : 60 Seconds

--

Metrics Last Max Min Avg Total

--

Total queries 0 25 0 8 159

Jobs information queries 0 13 0 2 46

Hosts information queries 0 0 0 0 0

Queue information queries 0 0 0 0 0

Job submission requests 0 10 0 0 10

Jobs submitted 0 100 0 5 100

Jobs dispatched 0 0 0 0 0

Jobs completed 0 13 0 5 100

Jobs sent to remote cluster 0 12 0 5 100

Jobs accepted from remote cluster 0 0 0 0 0

--

File Descriptor Metrics Free Used Total

--

MBD file descriptor usage 800 424 1024

Performance metrics information is calculated at the end of each sampling period.
Running badmin perfmon before the end of the sampling period displays metric
data collected from the sampling start time to the end of last sample period.
If no metrics have been collected because the first sampling period has not yet
ended, badmin perfmon view displays:
badmin perfmon view

Performance monitor start time: Thu Jan 25 22:11:12

End time of last sample period: Thu Jan 25 22:11:12

Sample period : 120 Seconds

Monitoring Performance Metrics in Real Time

694 Administering Platform LSF

--

No performance metric data available. Please wait until first sample
period ends.

badmin perfmon output

Sample Period Current sample period
Performance monitor

start time
The start time of sampling

End time of last
sample period

The end time of last sampling period

Metric The name of metrics
Total This is accumulated metric counter value for each metric. It is counted from

Performance monitor start time to End time of last sample period.
Last Period Last sampling value of metric. It is calculated per sampling period. It is represented

as the metric value per period, and normalized by the following formula.

Max Maximum sampling value of metric. It is re-evaluated in each sampling period by
comparing Max and Last Period. It is represented as the metric value per period.

Min Minimum sampling value of metric. It is re-evaluated in each sampling period by
comparing Min and Last Period. It is represented as the metric value per period.

Avg Average sampling value of metric. It is recalculated in each sampling period. It is
represented as the metric value per period, and normalized by the following
formula.

Reconfiguring your cluster with performance metric sampling enabled

badmin mbdrestart If performance metric sampling is enabled dynamically with
badmin perfmon start. You must enable it again after running badmin
mbdrestart. If performance metric sampling is enabled by default, StartTime will
be reset to the point mbatchd is restarted.

badmin reconfig If SCHED_METRIC_ENABLE and SCHED_METRIC_SAMPLE_PERIOD parameters are
changed, badmin reconfig is the same as badmin mbdrestart.

Performance metric logging in lsb.streams
By default, collected metrics must be written to lsb.streams. However,
performance metric can still be turned on even if ENABLE_EVENT_STREAM=N is
defined. In this case, no metric data will be logged.
◆ If EVENT_STREAM_FILE is defined and is valid, collected metrics should be

written to EVENT_STREAM_FILE.
◆ If ENABLE_EVENT_STREAM=N is defined, metrics data will not be logged.

Administering Platform LSF 695

Achieving Performance and Scalability

Job arrays
Only one submission request is counted. Element jobs are counted for jobs
submitted, jobs dispatched, and jobs completed.

Job rerun
Job rerun occurs when execution hosts become unavailable while a job is running,
and the job will be put to its original queue first and later will be dispatched when
a suitable host is available. So in this case, only one submission request, one job
submitted, and n jobs dispatched, n jobs completed are counted (n represents the
number of times the job reruns before it finishes successfully).

Job requeue
Requeued jobs may be dispatched, run, and exit due to some special errors again
and again. The job data always exists in the memory, so LSF only counts one job
submission request and one job submitted, and counts more than one job
dispatched.
For jobs completed, if a job is requeued with brequeue, LSF counts two jobs
completed, since requeuing a job first kills the job and later puts the job into
pending list. If the job is automatically requeued, LSF counts one job completed
when the job finishes successfully.

Job replay
When job replay is finished, submitted jobs are not counted in job submission and
job submitted, but are counted in job dispatched and job finished.

Monitoring Performance Metrics in Real Time

696 Administering Platform LSF

Administering Platform LSF 697

C H A P T E R

45
Reporting

Reporting is a feature of Platform LSF. It allows you to look at the overall statistics
of your entire cluster. You can analyze the history of hosts, resources, and workload
in your cluster to get an overall picture of your cluster’s performance.

Contents
◆ Introduction to Reporting on page 697
◆ Getting Started with Standard Reports on page 698
◆ Custom Reports on page 700
◆ System Description on page 704
◆ Reports Administration on page 706
◆ Test the Reporting Feature on page 718
◆ Disable the Reporting Feature on page 719
◆ Move to a Production Database on page 720

Introduction to Reporting
An efficient cluster maximizes the usage of resources while minimizing the average
wait time of workload. To ensure that your cluster is running efficiently at all times,
you need to analyze the activity within your cluster to see if there are any areas for
improvement.
The reporting feature uses the data loader controller service, the job data
transformer service, and the data purger service to collect data from the cluster, and
to maintain this data in a relational database system. The reporting feature collects
the cluster data from a relational database system and displays it in reports either
graphically or in tables. You can use these reports to analyze and improve the
performance of your cluster, and to troubleshoot configuration problems.
You can access the reporting feature from the HPC Portal.

Getting Started with Standard Reports

698 Administering Platform LSF

Standard and custom reports
Platform has provided a set of standard reports to allow you to immediately analyze
your cluster without having to create any new reports. These standard reports
provide the most common and useful data to analyze your cluster.
You may also create custom reports to perform advanced queries and reports
beyond the data produced in the standard reports.

The database
The reporting feature optionally includes the Apache Derby database, a
JDBC-based relational database system. The Derby database is a small-footprint,
open source database, and is only appropriate for demo clusters. If you want to use
the reporting feature to produce regular reports for a production cluster, you must
use a supported commercial database.
The reporting feature supports Oracle 9i, Oracle 10g, and MySQL 5.x databases.

IMPORTANT: The Apache Derby database is not supported for any production clusters.

Getting Started with Standard Reports
For your convenience, Platform has provided several standard reports for you to
use. These reports allow you to keep track of some useful statistics in your cluster.

Standard reports overview
Standard reports are based on raw data stored in the relational database, and do not
perform any data aggregation or calculations.
The following is a list of the standard reports that are included with the reporting
feature. For further details on a report, open its full description as described in View
the full description of a report on page 699.

Table 4: Standard reports
Name Description Category

Cluster Availability - EGO EGO host availability in a cluster. EGO

Host Resource Usage Resource usage trends for selected hosts. EGO

Resource Allocation vs Resource Plan Actual resource allocation compared to resource plan
and unsatisfied resource demand for the selected
consumer.

EGO

Active Job States Statistics by Queue Number of active jobs in each active job state in a
selected queue.

LSF

Cluster Availability - LSF LSF host availability in an LSF cluster. LSF

Cluster Job Hourly Throughput Number of submitted, exited, and done jobs in a cluster. LSF

Cluster Job Slot Utilization Job slot utilization levels in your cluster. LSF

Job Slot Usage by Application Tag Job slots used by applications as indicated by the
application tag.

LSF

Performance Metrics Internal performance metrics trend for a cluster. You can
only produce this report if you enabled performance
metric collection in your cluster (badmin perfmon
start)

LSF

Administering Platform LSF 699

Reporting

View the full description of a report

1 In the Console, navigate to Reports, then Standard Reports.
2 Click the name of your report to open it.
3 Click Report properties.

What can I do with standard reports?

Producing reports The reports stored in the system do not include actual data. Instead, the reports
define what data to extract from the system, and how to display it graphically.
Reports need to be produced before you can see the data. When you produce a
report, you query the database and extract specific data. The amount of system
overhead depends on how much data is in the report.
Standard reports have configurable parameters so you can modify the report and
get exactly the data that you want.

Exporting reports Data expires from the database periodically, so producing a report at a later date
may return different data, or return no output at all. After you produce a report, you
can keep your results by exporting the report data as comma-separated values in a
CSV file. In this way you can preserve your data outside the system and integrate it
with external programs, such as a spreadsheet. You can also keep your graphical
results by using your browser to save the report results as an image.

Produce a standard report

1 In the Console, navigate to Reports, then Standard Reports.
2 Click the name of your report to open it.

Service Level Agreement (SLA) Job statistics by job state over time, compared with SLA
goals.

LSF

Hourly Desktop Job Throughput Number of downloaded and completed jobs for each
MED host or the entire cluster. You can only produce this
report if you use LSF Desktop.

LSF Desktop

Desktop Utilization Desktop utilization at each MED host or the entire
cluster. You can only produce this report if you use LSF
Desktop.

LSF Desktop

License Usage The license usage under License Scheduler. You can only
produce this report if you use LSF License Scheduler.

LSF License
Scheduler

Jobs Forwarded to Other Clusters The number of jobs forwarded from your cluster to other
clusters. You can only produce this report if you use LSF
MultiCluster.

LSF MultiCluster

Jobs Received from Other Clusters The number of jobs forwarded to your cluster from other
clusters. You can only produce this report if you use LSF
MultiCluster.

LSF MultiCluster

Name Description Category

Custom Reports

700 Administering Platform LSF

3 Set the report parameters as desired. Default settings are shown, but you can
modify them to suit your needs.

4 Click Produce Report.
After a short time, the resulting data is displayed graphically.

When you close the report window, you lose the contents of the report unless you
export it first.

Export report data
Once you produce a report, exporting is the best way to save the data for future use.
You cannot produce the same report at a later date if the data has expired from the
database.

1 In the Console, produce and view your report.
2 Click Export Report Data.
3 In the browser dialog, specify the output path and name the exported file.

In the Save as type field, specify "CSV".

Custom Reports
You can create and use custom reports if the standard reports are insufficient for
your needs.

What are custom reports?
While standard reports are provided for your use by Platform, custom reports are
reports you create as needed to satisfy specific reporting needs at your site.
Custom reports let you define combinations of data that are not available in the
standard reports. Custom report output is always displayed in tabular format.

What can I do with custom reports?

Creating reports The easiest way to create a custom report is to copy an existing report, then
customize the SQL query string as desired. To customize the SQL query string, you
may need to refer to the data schema, which describes the organization of
information in the relational database. The data schema for each standard report is
available in the Console by opening the report and clicking Help.
Even if you cannot edit SQL, saving a report as a custom report lets you re-use the
report data without having to re-input the parameters in the standard report.
- If the time period is fixed, you get the same data every time you produce the
report, but the report will be empty when the data expires from the database.
- If the time period is relative, you can get data for a different time period each time
you produce the report.
You can also define custom reports from a blank template and input the SQL query
string directly.

Administering Platform LSF 701

Reporting

When you create custom reports, you can enter a category and use it to group the
reports any way you want.

Deleting reports Unlike standard reports, custom reports can be deleted. You might prefer to rename
old reports (by modifying them) instead of deleting them.

Using reports You produce custom reports and export the data in the same way as standard
reports.
Data expires from the database periodically, so producing a report at a later date
may return different data, or return no output at all. After you produce a report, you
can keep your results by exporting the report data as comma-separated values in a
CSV file. In this way you can preserve your data outside the system and integrate it
with external programs, such as a spreadsheet. You can also keep your graphical
results by using your browser to save the report results as an image.
If you ever want to modify parameters of a custom report, you must edit the SQL
query string directly.

Create a custom report from an existing report
This method is convenient because you can extend an existing report. Examine
your current standard and custom reports and select one with similar data sources
or output to the new report that you want to create.

1 In the Console, select the report that you want to copy, with all the parameters
configured as you wish to copy them.

2 Click Copy to New Custom Report.
3 Edit the report properties and query string as desired.

a In the Report properties section, you should give the new report a
unique name. You can also modify the report summary, description, and
category.

b In the Report query section, you can modify the SQL query directly.
To edit the SQL query, you will need to know about the data schema of the
database. For further information on the data schema, refer to
Platform LSF Reports Data Schema in the Platform LSF Knowledge
Center.

c To validate your SQL query string and ensure that your report delivers the
appropriate results, click Produce Report.
This will actually produce the report, so you might want to limit your
testing to a small set of data.
You can continue to edit your SQL query string and test the results of your
report until you are ready to save it.

4 To finish, click Create.

To access your new custom report, navigate to Reports then Custom Reports.

Custom Reports

702 Administering Platform LSF

Create a new custom report
Prerequisites: You must be able to construct valid query strings with Structured
Query Language (SQL).

1 In the Console, navigate to Reports then Custom Reports.
2 Select Global Actions > Create Custom Report.
3 Define the report properties and query string as desired.

a In the Report properties section, specify the report name, summary,
description, and category.

b In the Report query section, input your SQL query string.
For further information on the data schema, refer to Platform LSF
Reports Data Schema in the Platform LSF Knowledge Center.

c To validate your SQL query string and ensure that your report delivers the
appropriate results, click Produce Report.
This will actually produce the report, so you might want to limit your
testing to a small set of data.
You can continue to edit your SQL query string and test the results of your
report until you are ready to save it.

4 To finish, click Create.

To access your new custom report, navigate to Reports then Custom Reports.

Modify a custom report

1 In the Console, navigate to Reports then Custom Reports.
2 Click the name of your report.
3 Modify the report properties and query string as desired.

a Edit the report properties and SQL query string.
For further information on the data schema, refer to Platform LSF
Reports Data Schema in the Platform LSF Knowledge Center.

b To validate your SQL query string and ensure that your report delivers the
appropriate results, click Produce Report.
This will actually produce the report, so you might want to limit your
testing to a small set of data.
You can continue to edit your SQL query string and test the results of your
report until you are ready to save it.

4 To confirm your changes, click Save.

Administering Platform LSF 703

Reporting

Produce a custom report

1 In the Console, navigate to Reports then Custom Reports.
2 Click the name of your report to open it.
3 Click Produce Report.

After a short time, the resulting data is displayed in tabular format.

When you close the report window, you will lose the contents of the report unless
you export it first.

Export report data
Once you produce a report, exporting is the best way to save the data for future use.
You cannot produce the same report at a later date if the data has expired from the
database.

1 In the Console, produce and view your report.
2 Click Export Report Data.
3 In the browser dialog, specify the output path and name the exported file.

In the Save as type field, specify "CSV".

Delete a custom report

1 In the Console, navigate to Reports then Custom Reports.
2 Locate your report in the list.
3 Select Actions > Delete Report.

System Description

704 Administering Platform LSF

System Description
The reporting feature is built on top of the Platform Enterprise Reporting
Framework (PERF) architecture. This architecture defines the communication
between your EGO cluster, relational database, and data sources via the PERF
Loader Controller (PLC). The loader controller is the module that controls multiple
loaders for data collection.

PERF architecture
The following diagram illustrates the PERF architecture as it relates to your cluster,
reporting services, relational database, and data loaders.

Data loaders
The reporting feature collects cluster operation data using data loaders to load data
into tables in a relational database. The data loaders connect to the database using
a JDBC driver. The data loaders handle daylight savings automatically by using
GMT time when collecting data.

Default data
loaders

The following are lists of the data loaders and default behavior:

Administering Platform LSF 705

Reporting

Table 5: LSF data loaders

Table 6: EGO data loaders

Data loader name Data type Data
gathering
interval

Data loads to Loader
type

License Scheduler
(bldloader)

license usage 5 minutes BLD_LICUSAGE polling

Desktop job
(desktopjobdataloader) -
Linux hosts only

job completion log 1 day ACTIVE_DESKTOP_JOBDATA polling

Desktop client
(desktopclientdataloade
r) - Linux hosts only

client status (data
from the
WSClientStatus file)

10 minutes ACTIVE_DESKTOP_SED_CLIENT polling

Desktop active event
(desktopeventloader) -
Linux hosts only

downloaded and
reported jobs (data
from the event.log
file)

each time
an event is
logged in
event.log.

ACTIVE_DESKTOP_ACEVENT
for each event of type 2
(REPORT_JOB) and type 4
(COMPLETE_JOB)

polling

Host metrics
(hostmetricsloader)

host-related metrics 5 minutes RESOURCE_METRICS
RESOURCES_RESOURCE_METRICS

polling

Host properties
(hostpropertiesloader)

resource properties 1 hour LSF_RESOURCE_PROPERTIES polling

Bhosts (lsfbhostsloader) host utilization and
state-related

5 minutes LSF_BHOSTS polling

LSF events
(lsfeventsloader)

events with a job ID,
performance events,
resource events

5 minutes LSB_EVENTS
LSB_EVENTS_EXECHOSTLIST
LSF_PERFORMANCE_METRIC

file

Resource properties
(lsfresproploader)

shared resource
properties

1 hour LSF_RESOURCE_PROPERTIES polling

SLA (lsfslaloader) SLA performance 5 minutes LSF_SLA polling

Shared resource usage
(sharedresusageloader)

shared resource
usage

5 minutes SHARED_RESOURCE_USAGE
SHARED_RESOURCE_USAGE_HOST
LIST

polling

Data loader name Data type Data
gathering
interval

Data loads to Loader
type

Consumer resource
(egoconsumerresloader)

resource allocation 5 minutes CONSUMER_DEMAND
CONSUMER_RESOURCE_ALLOCATI
ON
CONSUMER_RESOURCELIST

polling

Dynamic metric
(egodynamicresloader)

host-related
dynamic metric

5 minutes RESOURCE_METRICS
RESOURCES_RESOURCE_METRICS

polling

EGO allocation events
(egoeventsloader)

resource allocation 5 minutes ALLOCATION_EVENT file

Static attribute
(egostaticresloader)

host-related static
attribute

1 hour ATTRIBUTES_RESOURCE_METRIC
S
RESOURCE_ATTRIBUTES

polling

Reports Administration

706 Administering Platform LSF

System services
The reporting feature has system services, including the Derby service if you are
running a demo database. If your cluster has PERF controlled by EGO, these service
are run as EGO services. Each service uses one slot on a management host.

Loader controller The loader controller service (plc) controls the data loaders that collect data from
the system and writes the data into the database.

Data purger The data purger service (purger) maintains the size of the database by purging old
records from the database. By default, the data purger purges all data that is older
than 14 days, and purges data every day at 12:30am.

Job data
transformer

The job data transformer service (jobdt) converts raw job data in the relational
database into a format usable by the reporting feature. By default, the job data
transformer converts job data every hour at thirty minutes past the hour (that is, at
12:30am, 1:30am, and so on throughout the day).

Derby database If you are running a demo database, the Derby database (derbydb) stores the cluster
data. When using a supported commercial database, the Derby database service no
longer runs as an EGO service.

Reports Administration

What do I need to know?

Reports directories The reporting feature resides in various perf subdirectories within the LSF
directory structure. This document uses LSF_TOP to refer to the top-level LSF
installation directory. The reporting feature directories include the following:

Table 7: LSF reporting directory environment variables in UNIX

Table 8: LSF reporting directory environment variables in Windows

Reporting services The reporting feature uses the following services.
◆ Job data transformer (jobdt)

Directory name Directory description Default file path

$PERF_TOP Reports framework directory LSF_TOP/perf

$PERF_CONFDIR Configuration files LSF_TOP/conf/perf/cluster_name/conf

$PERF_LOGDIR Log files LSF_TOP/log/perf

$PERF_WORKDIR Working directory LSF_TOP/work/perf

$PERF_DATADIR Data directory LSF_TOP/work/cluster_name/perf/data

Directory name Directory description Default file path

%PERF_TOP% Reports framework directory LSF_TOP\perf

%PERF_CONFDIR% Configuration files LSF_TOP\conf\perf\cluster_name\conf

%PERF_LOGDIR% Log files LSF_TOP\log\perf

%PERF_WORKDIR% Working directory LSF_TOP\work\perf

%PERF_DATADIR% Data directory LSF_TOP\work\cluster_name\perf\data

Administering Platform LSF 707

Reporting

◆ Loader controller (plc)
◆ Data purger (purger)
The Derby demo database uses the derbydb service.
If your cluster has PERF controlled by EGO, these services are run as EGO services.
You need to stop and restart a service after editing its configuration files. If you are
disabling the reporting feature, you need to disable automatic startup of these
services, as described in Disable automatic startup of the reporting services on page
711.
Log files for these services are available in the PERF_LOGDIR directory. There are
seven logging levels that determine the detail of messages recorded in the log files.
In decreasing level of detail, these are ALL (all messages), TRACE, DEBUG, INFO, WARN,
ERROR, FATAL, and OFF (no messages). By default, all service log files log messages
of INFO level or higher (that is, all INFO, WARN, ERROR, and FATAL messages). You can
change the logging level of the plc service using the loader controller client tool as
described in Dynamically change the log level of your loader controller log file on
page 711, or the logging level of the other services as described in Change the log
level of your log files on page 712.

Job data
transformer

The job data is logged in the relational database in a raw format. At regular
intervals, the job data transformer converts this data to a format usable by the
reporting feature. By default, the data transformer converts the job data every hour
at thirty minutes past the hour (that is, at 12:30am, 1:30am, and so on throughout
the day).
To reschedule the transformation of data from the relational database to the
reporting feature, you can change the data transformer schedule as described in
Change the data transformer schedule on page 715.
If your cluster has PERF controlled by EGO, you can edit the jobdt.xml
configuration file, but you need to restart the jobdt service and EGO on the master
host after editing the file. The jobdt.xml file is located in the EGO service
directory:
◆ UNIX: LSF_CONFDIR/ego/cluster_name/eservice/esc/conf/services
◆ Windows: LSF_CONFDIR\ego\cluster_name\eservice\esc\conf\

services

Loader controller The loader controller manages the data loaders. By default, the loader controller
manages the following data loaders:
◆ bldloader (License Scheduler data loader)
◆ desktopjobdataloader (Desktop job data loader)
◆ desktopclientdataloader (Desktop client data loader)
◆ desktopeventloader (Desktop active event data loader)
◆ egoconsumerresloader (consumer resource data loader)
◆ egodynamicresloader (dynamic metric data loader)
◆ egoeventsloader (EGO allocation events data loader)
◆ egostaticresloader (static attribute data loader)

Reports Administration

708 Administering Platform LSF

◆ lsfbhostsloader (bhosts data loader)
◆ lsfeventsloader (LSF events data loader)
◆ lsfslaloader (SLA data loader)
◆ lsfresproploader (LSF resource properties data loader)
◆ sharedresusageloader (share resource usage data loader)
You can view the status of the loader controller service using the loader controller
client tool as described in View the status of the loader controller on page 711.
Log files for the loader controller and data loaders are available in the PERF_LOGDIR
directory. There are logging levels that determine the detail of messages recorded in
the log files. In decreasing level of detail, these are ALL (all messages), TRACE, DEBUG,
INFO, WARN, ERROR, FATAL, and OFF (no messages). By default, all service log files log
messages of INFO level or higher (that is, all INFO, WARN, ERROR, and FATAL
messages). You can change the logging level of the plc service using the loader
controller client tool as described in Dynamically change the log level of your
loader controller log file on page 711, or the logging level of the data loaders using
the client tool as described in Dynamically change the log level of your data loader
log files on page 712.
To balance data accuracy with computing power, you can change how often the data
loaders collect data by changing the frequency of data collection per loader, as
described in Change the frequency of data collection on page 717. To reduce the
amount of unwanted data logged in the database, you can also disable individual
data loaders from collecting data, as described in Disable data collection for
individual data loaders on page 717.
If you edit any plc configuration files, you need to restart the plc service.
If your cluster has PERF controlled by EGO, you can edit the plc_service.xml
service configuration file, but you must restart the plc service and EGO on the
master host after editing the file. The plc_service.xml file is located in the EGO
service directory:
◆ UNIX: LSF_CONFDIR/ego/cluster_name/eservice/esc/conf/services
◆ Windows: LSF_CONFDIR\ego\cluster_name\eservice\esc\conf\

services

Data purger The relational database needs to be kept to a reasonable size to maintain optimal
efficiency. The data purger manages the database size by purging old data at regular
intervals. By default, the data purger purges records older than 14 days at 12:30am
every day.
To reschedule the purging of old data, you can change the purger schedule, as
described in Change the data purger schedule on page 714. To reduce or increase
the number or records in the database, you can change the duration of time that
records are stored in the database, as described in Change the default record expiry
time on page 716. If there are specific tables that are containing too much or too
little data, you can also change the duration of time that records are stored in each
individual table within the database, as described in Change the record expiry time
per table on page 716.
If you edit any purger configuration files, you need to restart the purger service.

Administering Platform LSF 709

Reporting

If your cluster has PERF controlled by EGO, you can edit the purger_service.xml
service configuration file, but you must restart the purger service and EGO on the
master host after editing the file. The purger_service.xml file is located in the
EGO service directory:
◆ UNIX: LSF_CONFDIR/ego/cluster_name/eservice/esc/conf/services
◆ Windows: LSF_CONFDIR\ego\cluster_name\eservice\esc\conf\

services

Derby database The Derby database uses the derbydb service. You need to restart this service
manually whenever you change the Derby database settings. The Derby database is
only appropriate for demo clusters. To use the reporting feature to produce regular
reports for a production cluster, you must move to a production database using a
supported commercial database and disable automatic startup of the derbydb
service.

Event data files The events logger stores event data in event data files. The EGO allocation event
data file (for EGO-enabled clusters only) is named ego.stream by default and has
a default maximum size of 10MB. The LSF event data file is named lsb.stream by
default and has a default maximum size of 100MB. When a data file exceeds this
size, the events logger archives the file and creates a new data file.
The events logger only maintains one archive file and overwrites the old archive
with the new archive. The default archive file name is ego.stream.0 for EGO and
lsb.stream.0 for LSF. The two LSF files are located in
LSF_TOP/work/cluster_name/logdir/stream by default, and the two EGO files
are located in LSF_TOP/work/cluster_name/ego/data by default. The event data
loaders read both the data files and the archive files.
If your system logs a large number of events, you should increase the maximum file
size to see more archived event data. If your disk space is insufficient for storing the
four files, you should decrease the maximum file size, or change the file path to a
location with sufficient storage space. Change the disk usage of your LSF event data
files as described in Change the disk usage of LSF event data files on page 713 or the
file path as described in Change the location of the LSF event data files on page 713.
Change the disk usage or file path of your EGO allocation event data files as
described in Change the disk usage of EGO allocation event data files on page 713.
You can manage your event data files by editing the system configuration files. Edit
ego.conf for the EGO allocation event data file configuration and lsb.params for
the LSF event data file configuration.

Reports Administration

710 Administering Platform LSF

Administering reports

Determine if your cluster is EGO-enabled and has PERF controlled by EGO

You need to determine whether your cluster is EGO-enabled and has PERF
controlled by EGO in order to determine which command you use to manage the
reporting services.

1 In the command console, run egosh service list to see the list of EGO
services.
❖ If you see a list of services showing that the reporting services are STARTED,

your cluster is EGO-enabled and has PERF controlled by EGO. The
reporting services are run as EGO services, and you use egosh service to
manage the reporting services.

❖ If you see a list of services showing that the reporting services are not
STARTED, your cluster is EGO-enabled but does not have PERF controlled
by EGO. You use perfadmin to manage the reporting services.

❖ If you get an error running egosh service list, your cluster is not
EGO-enabled and therefore does not have PERF controlled by EGO. You
use perfadmin to manage the reporting services.

Stop or restart reporting services (PERF controlled by EGO)

Prerequisites: Your cluster must have PERF controlled by EGO.

Stop or restart the derbydb (if you are using the Derby demo database), jobdt, plc,
and purger services. If your cluster has PERF controlled by EGO, the reporting
services are run as EGO services, and you use the egosh service command to stop
or restart these services.

1 In the command console, stop the service by running egosh service stop.
egosh service stop service_name

2 If you want to restart the service, run egosh service start.
egosh service start service_name

Stop or restart reporting services (PERF not controlled by EGO)

Prerequisites: Your cluster must have PERF not controlled by EGO.

Stop or restart the derbydb (if you are using the Derby demo database), jobdt, plc,
and purger services. If your cluster does not have PERF controlled by EGO, you use
the perfadmin command to stop or restart these services.

1 In the command console, stop the service by running perfadmin stop.
perfadmin stop service_name

Administering Platform LSF 711

Reporting

2 If you want to restart the service, run perfadmin start.
perfadmin start service_name

Disable automatic startup of the reporting services

Prerequisites: Your cluster must be EGO-enabled.

When disabling the reporting feature, disable automatic startup of the derbydb (if
you are using the Derby demo database), jobdt, plc, and purger services. When
moving from the Derby demo database to a production database, disable automatic
startup of the derbydb service.
Disable automatic startup of these services by editing their service configuration
files (jobdt.xml, plc_service.xml, purger_service.xml, and
derby_service.xml for the jobdt, plc, purger, and derbydb services,
respectively).

1 In the command console, open the EGO service directory.
◆ UNIX: cd

LSF_CONFDIR/ego/cluster_name/eservice/esc/conf/services

◆ Windows: cd LSF_CONFDIR\ego\cluster_name\eservice\esc\conf\
services

2 Edit the service configuration file and change the service type from automatic
to manual.
In the <sc:StartType> tag, change the text from AUTOMATIC to MANUAL.

3 Stop the service.
4 In the command console, restart EGO on the master host to activate these

changes.
egosh ego restart master_host_name

View the status of the loader controller

Use the loader controller client tool to view the status of the loader controller.

1 Launch the loader controller client tool with the -s option.
❖ In UNIX, run $PERF_TOP/version/bin/plcclient.sh -s.
❖ In Windows, run %PERF_TOP%\version\bin\plcclient -s.

Dynamically change the log level of your loader controller log file

Use the loader controller client tool to dynamically change the log level of your plc
log file if it does not cover enough detail, or covers too much, to suit your needs.

Reports Administration

712 Administering Platform LSF

If you restart the plc service, the log level of your plc log file will be set back to the
default level. To retain your new log level, change the level of your plc log file as
described in Change the log level of your log files on page 712.

1 Launch the loader controller client tool with the -l option.
❖ In UNIX, run $PERF_TOP/bin/plcclient.sh -l log_level.
❖ In Windows, run $PERF_TOP\bin\plcclient -l log_level.
In decreasing level of detail, the log levels are ALL (for all messages), TRACE,
DEBUG, INFO, WARN, ERROR, FATAL, and OFF (for no messages).

Dynamically change the log level of your data loader log files

Use the loader controller client tool to dynamically change the log level of your
individual data loader log files if they do not cover enough detail, or cover too
much, to suit your needs.
If you restart the plc service, the log level of your data loader log files will be set
back to the default level. To retain your new log level, change the level of your data
loader log files as described in Change the log level of your log files on page 712.

1 If you are using the default configuration file, launch the loader controller client
tool with the -n and -l options.
❖ In UNIX, run $PERF_TOP/version/bin/plcclient.sh

-n data_loader_name -l log_level.
❖ In Windows, run %PERF_TOP%\version\bin\plcclient

-n data_loader_name -l log_level.
Refer to Loader controller on page 707 for a list of the data loader names.
In decreasing level of detail, the log levels are ALL (for all messages), TRACE,
DEBUG, INFO, WARN, ERROR, FATAL, and OFF (for no messages).

Change the log level of your log files

Change the log level of your log files if they do not cover enough detail, or cover too
much, to suit your needs.

1 Edit the log4j.properties file, located in the reports configuration directory
(PERF_CONFDIR).

2 Navigate to the section representing the service you want to change, or to the
default loader configuration if you want to change the log level of the data
loaders, and look for the log4j.logger.com.platform.perf. variable.
For example, to change the log level of the data purger log files, navigate to the
following section, which is set to the default INFO level:
Data purger ("purger") configuration
log4j.logger.com.platform.perf.purger=INFO,
com.platform.perf.purger

Administering Platform LSF 713

Reporting

3 Change the log4j.logger.com.platform.perf. variable to the new logging level.
In decreasing level of detail, the valid values are ALL (for all messages), TRACE,
DEBUG, INFO, WARN, ERROR, FATAL, and OFF (for no messages). The services or
data loaders only log messages of the same or lower level of detail as specified
by the log4j.logger.com.platform.perf. variable. Therefore, if you change the log
level to ERROR, the service or data loaders will only log ERROR and FATAL
messages.
For example, to change the data purger log files to the ERROR log level:
Data purger ("purger") configuration
log4j.logger.com.platform.perf.purger=ERROR,
com.platform.perf.purger

4 Restart the service that you changed (or the plc service if you changed the data
loader log level).

Change the disk usage of LSF event data files

If your system logs a large number of events and you have sufficient disk space,
increase the disk space allocated to the LSF event data files.

1 Edit lsb.params and specify or change the MAX_EVENT_STREAM_SIZE
parameter.
MAX_EVENT_STREAM_SIZE = integer
If unspecified, this is 1024 by default. Change this to the new desired file size in
MB.
The recommended size is 2000 MB.

2 In the command console, reconfigure the master host to activate this change.
badmin reconfig

Change the location of the LSF event data files

If your system logs a large number of events and your do not have enough disk
space, move the LSF event data files to another location.

1 Edit lsb.params and specify or change the EVENT_STREAM_FILE parameter.
EVENT_STREAM_FILE = file_path
If unspecified, this is
LSF_TOP/work/cluster_name/logdir/stream/lsb.stream by default.

2 In the command console, reconfigure the master host to activate this change.
badmin reconfig

3 Restart the plc service on the master host to activate this change.

Change the disk usage of EGO allocation event data files

Prerequisites: Your cluster must be EGO-enabled.

Reports Administration

714 Administering Platform LSF

If your system logs a large number of events, increase the disk space allocated to the
EGO allocation event data files. If your disk space is insufficient, decrease the space
allocated to the EGO allocation event data files or move these files to another
location.

1 Edit ego.conf.
a To change the size of each EGO allocation event data file, specify or change

the EGO_DATA_MAXSIZE parameter.
EGO_DATA_MAXSIZE = integer
If unspecified, this is 10 by default. Change this to the new desired file size
in MB.

b To move the files to another location, specify or change the EGO_DATA_FILE
parameter.
EGO_DATA_FILE = file_path
If unspecified, this is
LSF_TOP/work/cluster_name/ego/data/ego.stream by default.

2 In the command console, restart EGO on the master host to activate this
change.
egosh ego restart master_host_name

Change the data purger schedule

Prerequisites: Your cluster must be EGO-enabled.

To reschedule the deletion of old data, change the time in which the data purger
deletes the old data.

1 Edit purger_service.xml in the EGO service directory. .
◆ UNIX:

LSF_CONFDIR/ego/cluster_name/eservice/esc/conf/services

◆ Windows: LSF_CONFDIR\ego\cluster_name\eservice\esc\conf\
services

2 Navigate to <ego:Command> with the -t parameter in the purger script.
◆ In UNIX, this is <ego:Command> ...purger.sh -t ...
◆ In Windows, this is <ego:Command> ...purger.bat -t ...
By default, the data purger is scheduled to delete old data at 12:30am every day.

3 Change the -t parameter in the data purger script to the new time
(-t new_time).
You can change the data purger schedule to a specific daily time, or at regular
time intervals, in minutes, from when the purger service first starts up.
For example, to change the schedule of the data purger:

Administering Platform LSF 715

Reporting

◆ To delete old data at 11:15pm every day:
<ego:Command> ...purger... -t 23:15

◆ To delete old data every 12 hours from when the purger service first starts
up:
<ego:Command> ...purger... -t *[12]

4 In the command console, restart EGO on the master host to activate these
changes.
egosh ego restart master_host_name

5 Restart the purger service.

Change the data transformer schedule

Prerequisites: Your cluster must be EGO-enabled.

To have reschedule the transformation of data from the relational database to the
reporting feature, change the time in which the data transformer converts job data.

1 Edit jobdt.xml in the EGO service directory.
◆ UNIX:

LSF_CONFDIR/ego/cluster_name/eservice/esc/conf/services

◆ Windows: LSF_CONFDIR\ego\cluster_name\eservice\esc\conf\
services

2 Navigate to <ego:Command> with the -t parameter in the purger script.
◆ In UNIX, this is <ego:Command> ...jobdt.sh -t ...
◆ In Windows, this is <ego:Command> ...jobdt.bat -t ...
By default, the data transformer converts the job data every hour at thirty
minutes past the hour (that is, at 12:30am, 1:30am, and so on throughout the
day).

3 Change the -t parameter in the data transformer script to the new time
(-t new_time).
You can change the data transformer schedule to a specific daily time, a specific
hourly time, or at regular time intervals, in minutes or hours, from when the
jobdt service first starts up.
For example, to change the schedule of the data transformer:
◆ To convert job data at 10:20pm every day:

<ego:Command> ...jobdt... -t 22:20

◆ To convert job data at the 25th minute of every hour:
<ego:Command> ...jobdt... -t *:25

◆ To convert job data every fifteen minutes from when the jobdt service first
starts up:
<ego:Command> ...jobdt... -t *:*[15]

Reports Administration

716 Administering Platform LSF

◆ To convert job data every two hours from when the jobdt service first
starts up:
<ego:Command> ...jobdt... -t *[2]

4 In the command console, restart EGO on the master host to activate these
changes.
egosh ego restart master_host_name

5 Restart the jobdt service.

Change the default record expiry time

To reduce or increase the number of records stored in the database, change the
duration of time that a record is stored in the database before it is purged. This
applies to all tables in the database unless you also specify the record expiry time in
a particular table.

1 Edit the purger configuration files for your data loaders.
❖ For EGO data loaders, edit purger_ego_rawdata.xml.
❖ For LSF data loaders, edit purger_lsf_basic_rawdata.xml.
The purger configuration files are located in the purger subdirectory of the
reports configuration directory:
◆ UNIX: $PERF_CONFDIR/purger
◆ Windows: %PERF_CONFDIR%\purger

2 In the <TableList> tag, edit the Duration attribute to your desired time in
days, up to a maximum of 31 days.
For example, to have the records purged after 7 days:
<TableList Duration="7">

By default, the records are purged after 14 days.
3 Restart the purger service.

Change the record expiry time per table

To reduce or increase the number of records stored in the database for a particular
table, change the duration of time that a record is stored in the database per table
before it is purged. The duration only applies to this particular table.

1 Edit the purger configuration files for your data loaders.
❖ For EGO data loaders, edit purger_ego_rawdata.xml.
❖ For LSF data loaders, edit purger_lsf_basic_rawdata.xml.
The purger configuration files are located in the purger subdirectory of the
reports configuration directory:
◆ UNIX: $PERF_CONFDIR/purger
◆ Windows: %PERF_CONFDIR%\purger

Administering Platform LSF 717

Reporting

2 Navigate to the specific <Table> tag with the TableName attribute matching the
table that you want to change.
For example:
<Table TableName="RESOURCE_METRICS"
TimestampColumn="TIME_STAMP" ... />

3 Add or edit the Duration attribute with your desired time in days, up to a
maximum of 31 days.
For example, to have the records in this table purged after 10 days:
<Table TableName="RESOURCE_METRICS"
TimestampColumn="TIME_STAMP" Duration="10" ... />

4 Restart the purger service.

Change the frequency of data collection

To change how often the data loaders collect data, change the frequency of data
collection per loader.

1 Edit the plc configuration files for your data loaders.
❖ For EGO data loaders, edit plc_ego_rawdata.xml.
❖ For LSF data loaders, edit plc_lsf_basic_rawdata.xml.
The plc configuration files are located in the plc subdirectory of the reports
configuration directory:
◆ UNIX: $PERF_CONFDIR/plc
◆ Windows: %PERF_CONFDIR%\plc

2 Navigate to the specific <DataLoader> tag with the Name attribute matching the
data loader that you want to change.
For example:
<DataLoader Name="egodynamicresloader" Interval="300" ... />

3 Add or edit the Interval attribute with your desired time in seconds.
For example, to have this plug-in collect data every 200 seconds:
<DataLoader Name="egodynamicresloader" Interval="200" ... />

4 Restart the plc service.

Disable data collection for individual data loaders

To reduce unwanted data from being logged in the database, disable data collection
for individual data loaders.

1 Edit the plc configuration files for your data loaders.
❖ For EGO data loaders, edit plc_ego_rawdata.xml.
❖ For LSF data loaders, edit plc_lsf_basic_rawdata.xml.

Test the Reporting Feature

718 Administering Platform LSF

The plc configuration files are located in the plc subdirectory of the reports
configuration directory:
◆ UNIX: $PERF_CONFDIR/plc
◆ Windows: %PERF_CONFDIR%\plc

2 Navigate to the specific <DataLoader> tag with the Name attribute matching the
data loader that you want to disable.
For example:
<DataLoader Name="egodynamicresloader" ... Enable="true" .../>

3 Edit the Enable attribute to "false".
For example, to disable data collection for this plug-in:
<DataLoader Name="egodynamicresloader" ... Enable="false" ... />

4 Restart the plc service.

Test the Reporting Feature
Verify that components of the reporting feature are functioning properly.

1 Check that the reporting services are running.
❖ If your cluster has PERF controlled by EGO, run egosh service list.
❖ If your cluster has PERF not controlled by EGO, run perfadmin list.

2 Check that there are no error messages in the reporting logs.
a View the loader controller log file.

◆ UNIX: $PERF_LOGDIR/plc.log.host_name
◆ Windows: %PERF_LOGDIR%/plc.log.host_name.txt

b Verify that there are no ERROR messages and that, in the DataLoader
Statistics section, there are data loader statistics messages for the data
loaders in the last hour.
You need to find statistics messages for the following data loaders:
◆ bldloader

◆ desktopjobdataloader

◆ desktopclientdataloader

◆ desktopeventloader

◆ lsfbhostsloader

◆ lsfeventsloader

◆ lsfslaloader

◆ lsfresproploader

◆ sharedresusageloader

◆ EGO data loaders (for EGO-enabled clusters only):
❖ egoconsumerresloader

❖ egodynamicresloader

Administering Platform LSF 719

Reporting

❖ egoeventsloader

❖ egostaticresloader

c View the data purger and data loader log files and verify that there are no
ERROR messages in these files.
You need to view the following log files (PERF_LOGDIR is
LSF_LOGDIR/perf):
◆ PERF_LOGDIR/dataloader/bldloader.host_name.log

◆ PERF_LOGDIR/dataloader/desktopjobdataloader.host_name.log

◆ PERF_LOGDIR/dataloader/desktopclientdataloader.host_name.
log

◆ PERF_LOGDIR/dataloader/desktopeventloader.host_name.log

◆ PERF_LOGDIR/jobdt.host_name.log

◆ PERF_LOGDIR/dataloader/lsfbhostsloader.host_name.log

◆ PERF_LOGDIR/dataloader/lsfeventsloader.host_name.log

◆ PERF_LOGDIR/dataloader/lsfslaloader.host_name.log

◆ PERF_LOGDIR/purger.host_name.log

◆ PERF_LOGDIR/dataloader/lsfresproploader.host_name.log

◆ PERF_LOGDIR/dataloader/sharedresusageloader.host_name.log

◆ EGO data loader log files (EGO-enabled clusters only):
❖ PERF_LOGDIR/dataloader/egoconsumerresloader.host_name.l

og

❖ PERF_LOGDIR/dataloader/egodynamicresloader.host_name.lo
g

❖ PERF_LOGDIR/dataloader/egoeventsloader.host_name.log

❖ PERF_LOGDIR/dataloader/egostaticresloader.host_name.log

3 Check the report output.
a Produce a standard report.
b Verify that the standard report produces a chart or table with data for your

cluster.

Postrequisites: If you were not able to verify that these components are functioning
properly, identify the cause of these problems and correct them.

Disable the Reporting Feature
Prerequisites: You must have root or lsfadmin access in the master host.

1 Disable the LSF events data logging.
a Define or edit the ENABLE_EVENT_STREAM parameter in the lsb.params

file to disable event streaming.
ENABLE_EVENT_STREAM = N

Move to a Production Database

720 Administering Platform LSF

b In the command console, reconfigure the master host to activate these
changes.
badmin reconfig

2 If your cluster is EGO-enabled, disable the EGO allocation events data logging.
a Define or edit the EGO_DATA_ENABLE parameter in the ego.conf file to

disable data logging.
EGO_DATA_ENABLE = N

b In the command console, restart EGO on the master host to activate these
changes.
egosh ego restart master_host_name

3 Stop the reporting services.
Stop the derbydb (if you are using the Derby demo database), jobdt, plc, and
purger services.

4 Disable automatic startup of the derbydb (if you are using the Derby demo
database), jobdt, plc, and purger services .

Move to a Production Database
Move the reporting feature to a production database.
Prerequisites: The commercial database is properly configured and running:
❏ You have a user name, password, and URL to access the database.
❏ There is appropriate space in the database allocated for the reporting feature.

The Derby demo database is not supported for any production clusters. To produce
regular reports for a production cluster, you must use a supported commercial
database. The reporting feature supports Oracle 9i, Oracle 10g, and MySQL 5.x
databases.
All data in the demo database will not be available in the production database. Some
of your custom reports may not be compatible with the production database if you
used non-standard SQL code.

1 Create a database schema for your commercial database.
❖ If you are using an Oracle database, create a database schema as described

in Create an Oracle database schema on page 721.
❖ If you are using a MySQL database, create a database schema as described

in Create a MySQL database schema on page 722.
2 Stop the reporting services.

Stop the derbydb (if you are using the Derby demo database), jobdt, plc, and
purger services.

3 If you are using the Derby demo database, disable automatic startup of the
derbydb service.

4 If you are in UNIX, copy the Oracle JDBC driver into the PERF and GUI library
directories.

Administering Platform LSF 721

Reporting

You need to copy the Oracle JDBC driver to the following directories:
◆ $PERF_TOP/version/lib

◆ LSF_TOP/gui/version/tomcat/common/lib

5 Configure your database connection.
6 Restart the reporting services.

Restart the jobdt, plc, and purger services.
7 If your cluster is EGO-enabled, restart the HPC Portal.

NOTE: The HPC Portal will be unavailable during this step.

a In the command console, stop the WEBGUI service.
egosh service stop WEBGUI

b Restart the WEBGUI service.
egosh service start WEBGUI

The report data will now be loaded into the production database and the Console
will use the data in this database.

Create an Oracle database schema
Prerequisites: The Oracle database is properly configured and running:
◆ You have a user name, password, and URL to access the database.
◆ You installed the latest JDBC driver (ojdbc14.jar or newer) for the Oracle

database. This driver is available from the following URL:
http://www.oracle.com/technology/software/tech/java/sqlj_jdbc/index.html

1 In the command console, open the EGO database schema directory.
◆ UNIX: cd $PERF_TOP/ego/version/DBschema/Oracle
◆ Windows: cd %PERF_TOP%\ego\version\DBschema\Oracle

2 Run the script to create the EGO database schema.
sqlplus user_name/password@connect_string @egodata.sql data_tablespace
index_tablespace

where
◆ user_name is the user name on the database.
◆ password is the password for this user name on the database.
◆ connect_string is the named SQLNet connection for this database.
◆ data_tablespace is the name of the tablespace where you intend to store the

table schema.
◆ index_tablespace is the name of the tablespace where you intend to store the

index.
3 In the command console, open the LSF database schema directory.

◆ UNIX: cd $PERF_TOP/lsf/version/DBschema/Oracle

http://www.oracle.com/technology/software/tech/java/sqlj_jdbc/index.html

Move to a Production Database

722 Administering Platform LSF

◆ Windows: cd %PERF_TOP%\lsf\version\DBschema\Oracle
4 Run the script to create the LSF database schema.

sqlplus user_name/password@connect_string @lsfdata.sql data_tablespace
index_tablespace

where
◆ user_name is the user name on the database.
◆ password is the password for this user name on the database.
◆ connect_string is the named SQLNet connection for this database.
◆ data_tablespace is the name of the tablespace where you intend to store the

table schema.
◆ index_tablespace is the name of the tablespace where you intend to store the

index.

Create a MySQL database schema
Prerequisites: The MySQL database is properly configured and running:
◆ You have a user name, password, and URL to access the database.
◆ You installed the latest JDBC driver

(mysql-connector-java-3.1.12-bin.jar or newer) for the MySQL
database. This driver is available from the following URL:
http://dev.mysql.com/downloads/

1 In the command console, open the EGO database schema directory.
◆ UNIX: cd $PERF_TOP/ego/version/DBschema/MySQL
◆ Windows: cd %PERF_TOP%\ego\version\DBschema\MySQL

2 Run the scripts to create the EGO database schema.
mysql --user=user_name --password=password --database=report_database < egodata.sql

where
◆ user_name is the user name on the database.
◆ password is the password for this user name on the database.
◆ report_database is the name of the database to store the report data.

3 In the command console, open the LSF database schema directory.
◆ UNIX: cd $PERF_TOP/lsf/version/DBschema/MySQL
◆ Windows: cd %PERF_TOP%\lsf\version\DBschema\MySQL

4 Run the scripts to create the LSF database schema.
mysql --user=user_name --password=password --database=report_database < lsfdata.sql

where
◆ user_name is the user name on the database.
◆ password is the password for this user name on the database.
◆ report_database is the name of the database to store the report data.

http://dev.mysql.com/downloads/

Administering Platform LSF 723

Reporting

Configure the database connection
Prerequisites: You have a user name, password, and URL to access the database.

Launch the database configuration tool to configure your database connection.

1 If you connected to the UNIX host via telnet and are running xserver on a
local host, set your display environment.
Test your display by running xclock or another X-Windows application.
If the application displays, your display environment is already set correctly;
otherwise, you need to set your display environment.
❖ For csh or tcsh:

setenv DISPLAY hostname:0.0

❖ For sh, ksh, or bash:
DISPLAY=hostname:0.0

export DISPLAY

where hostname is your local host.
2 Launch the database configuration tool.

❖ In UNIX, run $PERF_TOP/version/bin/dbconfig.sh.
❖ In Windows, run %PERF_TOP%\version\bin\dbconfig.

3 In the User ID and Password fields, specify the user account name and
password with which to connect to the database and to create your database
tablespaces.
This user account must have been defined in your database application, and
must have read and write access to the database tables.

4 In the JDBC driver field, select the driver for your commercial database.
5 In the JDBC URL field, enter the URL for your database.

This should be similar to the format given in Example URL format.
6 In the Maximum connections field, specify the maximum allowed number of

concurrent connections to the database server.
This is the maximum number of users who can produce reports at the same
time.

Move to a Production Database

724 Administering Platform LSF

Administering Platform LSF 725

C H A P T E R

46
Event Generation

Contents
◆ Event Generation on page 725
◆ Enabling event generation on page 725
◆ Events list on page 726
◆ Arguments passed to the LSF event program on page 726

Event Generation
LSF detects events occurring during the operation of LSF daemons. LSF provides a
program which translates LSF events into SNMP traps. You can also write your own
program that runs on the master host to interpret and respond to LSF events in
other ways. For example, your program could:
◆ Page the system administrator
◆ Send email to all users
◆ Integrate with your existing network management software to validate and

correct the problem
On Windows, use the Windows Event Viewer to view LSF events.

Enabling event generation

SNMP trap program
If you use the LSF SNMP trap program as the event handler, see the SNMP
documentation for instructions on how to enable event generation.

Events list

726 Administering Platform LSF

Enable event generation for custom programs
If you use a custom program to handle the LSF events, take the following steps to
enable event generation.

1 Write a custom program to interpret the arguments passed by LSF. See
Arguments passed to the LSF event program on page 726 and Events list on
page 726 for more information.

2 To enable event generation, define LSF_EVENT_RECEIVER in lsf.conf. You
must specify an event receiver even if your program ignores it.
The event receiver maintains cluster-specific or changeable information that
you do not want to hard-code into the event program. For example, the event
receiver could be the path to a current log file, the email address of the cluster
administrator, or the host to send SNMP traps to.

3 Set LSF_EVENT_PROGRAM in lsf.conf and specify the name of your
custom event program. If you name your event program genevent
(genevent.exe on Windows) and place it in LSF_SERVERDIR, you can skip
this step.

4 Reconfigure the cluster with the commands lsadmin reconfig and
badmin reconfig.

Events list
The following daemon operations cause mbatchd or the master LIM to call the
event program to generate an event. Each LSF event is identified by a predefined
number, which is passed as an argument to the event program. Events 1-9 also
return the name of the host on which on an event occurred.
1 LIM goes down (detected by the master LIM). This event may also occur if LIM

temporarily stops communicating to the master LIM.
2 RES goes down (detected by the master LIM).
3 sbatchd goes down (detected by mbatchd).
4 An LSF server or client host becomes unlicensed (detected by the master LIM).
5 A host becomes the new master host (detected by the master LIM).
6 The master host stops being the master (detected by the master LIM).
7 mbatchd comes up and is ready to schedule jobs (detected by mbatchd).
8 mbatchd goes down (detected by mbatchd).
9 mbatchd receives a reconfiguration request and is being reconfigured (detected

by mbatchd).
10 LSB_SHAREDIR becomes full (detected by mbatchd).

Arguments passed to the LSF event program
If LSF_EVENT_RECEIVER is defined, a function called ls_postevent() allows
specific daemon operations to generate LSF events. This function then calls the LSF
event program and passes the following arguments:

Administering Platform LSF 727

Event Generation

◆ The event receiver (LSF_EVENT_RECEIVER in lsf.conf)
◆ The cluster name
◆ The LSF event number (LSF events list or LSF_EVENT_XXXX macros in lsf.h)
◆ The event argument (for events that take an argument)

Example
For example, if the event receiver is the string xxx and LIM goes down on HostA in
Cluster1, the function returns:
xxx Cluster1 1 HostA

The custom LSF event program can interpret or ignore these arguments.

Arguments passed to the LSF event program

728 Administering Platform LSF

Administering Platform LSF 729

C H A P T E R

47
Tuning the Cluster

Contents
◆ Tuning LIM on page 730
◆ Improving performance of mbatchd query requests on UNIX on page 736

Tuning LIM

730 Administering Platform LSF

Tuning LIM
LIM provides critical services to all LSF components. In addition to the timely
collection of resource information, LIM provides host selection and job placement
policies. If you are using Platform MultiCluster, LIM determines how different
clusters should exchange load and resource information. You can tune LIM policies
and parameters to improve performance.
LIM uses load thresholds to determine whether to place remote jobs on a host. If
one or more LSF load indices exceeds the corresponding threshold (too many users,
not enough swap space, etc.), then the host is regarded as busy and LIM will not
recommend jobs to that host. You can also tune LIM load thresholds.
You can also change default LIM behavior and pre-select hosts to be elected master
to improve performance.

In this section
◆ Adjusting LIM Parameters on page 730
◆ Load Thresholds on page 730
◆ Changing Default LIM Behavior to Improve Performance on page 732

Adjusting LIM Parameters
There are two main goals in adjusting LIM configuration parameters: improving
response time, and reducing interference with interactive use. To improve response
time, tune LSF to correctly select the best available host for each job. To reduce
interference, tune LSF to avoid overloading any host.
LIM policies are advisory information for applications. Applications can either use
the placement decision from LIM, or make further decisions based on information
from LIM.
Most of the LSF interactive tools use LIM policies to place jobs on the network. LSF
uses load and resource information from LIM and makes its own placement
decisions based on other factors in addition to load information.
Files that affect LIM are lsf.shared, lsf.cluster.cluster_name, where
cluster_name is the name of your cluster.

RUNWINDOW parameter

LIM thresholds and run windows affect the job placement advice of LIM. Job
placement advice is not enforced by LIM.
The RUNWINDOW parameter defined in lsf.cluster.cluster_name specifies
one or more time windows during which a host is considered available. If the
current time is outside all the defined time windows, the host is considered locked
and LIM will not advise any applications to run jobs on the host.

Load Thresholds
Load threshold parameters define the conditions beyond which a host is considered
busy by LIM and are a major factor in influencing performance. No jobs will be
dispatched to a busy host by LIM’s policy. Each of these parameters is a load index
value, so that if the host load goes beyond that value, the host becomes busy.

Administering Platform LSF 731

Tuning the Cluster

LIM uses load thresholds to determine whether to place remote jobs on a host. If
one or more LSF load indices exceeds the corresponding threshold (too many users,
not enough swap space, etc.), then the host is regarded as busy and LIM will not
recommend jobs to that host.
Thresholds can be set for any load index supported internally by the LIM, and for
any external load index.
If a particular load index is not specified, LIM assumes that there is no threshold for
that load index. Define looser values for load thresholds if you want to aggressively
run jobs on a host.
See Load Thresholds on page 615 for more details.

In this section ◆ Load indices that affect LIM performance on page 731
◆ Comparing LIM load thresholds on page 731
◆ If LIM often reports a host as busy on page 732
◆ If interactive jobs slow down response on page 732
◆ Multiprocessor systems on page 732

Load indices that affect LIM performance

For more details on load indices see Load Indices on page 255.

Comparing LIM load thresholds

To tune LIM load thresholds, compare the output of lsload to the thresholds
reported by lshosts -l.
The lsload and lsmon commands display an asterisk * next to each load index that
exceeds its threshold.

Example
Consider the following output from lshosts -l and lsload:

lshosts -l
HOST_NAME: hostD
...
LOAD_THRESHOLDS:

r15s r1m r15m ut pg io ls it tmp swp mem
- 3.5 - - 15 - - - - 2M 1M

HOST_NAME: hostA
...

Load index Description

r15s 15-second CPU run queue length
r1m 1-minute CPU run queue length
r15m 15-minute CPU run queue length
pg Paging rate in pages per second
swp Available swap space
it Interactive idle time
ls Number of users logged in

Tuning LIM

732 Administering Platform LSF

LOAD_THRESHOLDS:
r15s r1m r15m ut pg io ls it tmp swp mem
- 3.5 - - 15 - - - - 2M 1M

lsload
HOST_NAME status r15s r1m r15m ut pg ls it tmp swp mem
hostD ok 0.0 0.0 0.0 0% 0.0 6 0 30M 32M 10M
hostA busy 1.9 2.1 1.9 47% *69.6 21 0 38M 96M 60M

In this example, the hosts have the following characteristics:
◆ hostD is ok.

◆ hostA is busy—The pg (paging rate) index is 69.6, above the threshold of 15.

If LIM often reports a host as busy

If LIM often reports a host as busy when the CPU utilization and run queue lengths
are relatively low and the system is responding quickly, the most likely cause is the
paging rate threshold. Try raising the pg threshold.
Different operating systems assign subtly different meanings to the paging rate
statistic, so the threshold needs to be set at different levels for different host types.
In particular, HP-UX systems need to be configured with significantly higher pg
values; try starting at a value of 50.
There is a point of diminishing returns. As the paging rate rises, eventually the
system spends too much time waiting for pages and the CPU utilization decreases.
Paging rate is the factor that most directly affects perceived interactive response. If
a system is paging heavily, it feels very slow.

If interactive jobs slow down response

If you find that interactive jobs slow down system response too much while LIM
still reports your host as ok, reduce the CPU run queue lengths (r15s, r1m, r15m).
Likewise, increase CPU run queue lengths if hosts become busy at low loads.

Multiprocessor systems

On multiprocessor systems, CPU run queue lengths (r15s, r1m, r15m) are
compared to the effective run queue lengths as displayed by the lsload -E
command.
CPU run queue lengths should be configured as the load limit for a single processor.
Sites with a variety of uniprocessor and multiprocessor machines can use a standard
value for r15s, r1m and r15m in the configuration files, and the multiprocessor
machines will automatically run more jobs.
Note that the normalized run queue length displayed by lsload -N is scaled by the
number of processors. See Load Indices on page 255 for the concept of effective and
normalized run queue lengths.

Changing Default LIM Behavior to Improve Performance
You may want to change the default LIM behavior in the following cases:
◆ In very large sites. As the size of the cluster becomes large (500 hosts or more),

reconfiguration of the cluster causes each LIM to re-read the configuration
files. This can take quite some time.

Administering Platform LSF 733

Tuning the Cluster

◆ In sites where each host in the cluster cannot share a common configuration
directory or exact replica.

In this section ◆ Default LIM behavior on page 733
◆ Changing Default LIM Behavior to Improve Performance on page 732
◆ Reconfiguration and LSF_MASTER_LIST on page 733
◆ How LSF works with LSF_MASTER_LIST on page 734
◆ Considerations on page 734

Default LIM behavior

By default, each LIM running in an LSF cluster must read the configuration files
lsf.shared and lsf.cluster.cluster_name to obtain information about resource
definitions, host types, host thresholds, etc. This includes master and slave LIMs.
This requires that each host in the cluster share a common configuration directory
or an exact replica of the directory.

Change default LIM behavior

The parameter LSF_MASTER_LIST in lsf.conf allows you to identify for the LSF
system which hosts can become masters. Hosts not listed in LSF_MASTER_LIST
will be considered as slave-only hosts and will never be considered to become
master.

Set LSF_MASTER_LIST (lsf.conf)

1 Edit lsf.conf and set the parameter LSF_MASTER_LIST to indicate hosts
that are candidates to become the master host. For example:
LSF_MASTER_LIST="hostA hostB hostC"

The order in which you specify hosts in LSF_MASTER_LIST is the preferred
order for selecting hosts to become the master LIM.

2 Save your changes.
3 Reconfigure the cluster

lsadmin reconfig
badmin mbdrestart.

Reconfiguration and LSF_MASTER_LIST

If you change LSF_MASTER_LIST
Whenever you change the parameter LSF_MASTER_LIST, reconfigure the cluster
with lsadmin reconfig and badmin mbdrestart.

If you change lsf.cluster.cluster_name or lsf.shared
If you make changes that do not affect load report messages such as adding or
removing slave-only hosts, you only need to restart the LIMs on all master
candidates with the command lsadmin limrestart and the specific host names.
For example:
lsadmin limrestart hostA hostB hostC

Tuning LIM

734 Administering Platform LSF

If you make changes that affect load report messages such as load indices, you must
restart all the LIMs in the cluster. Use the command lsadmin reconfig.

How LSF works with LSF_MASTER_LIST

The files lsf.shared and lsf.cluster.cluster_name are shared only among LIMs
listed as candidates to be elected master with the parameter LSF_MASTER_LIST.
The preferred master host is no longer the first host in the cluster list in
lsf.cluster.cluster_name, but the first host in the list specified by
LSF_MASTER_LIST in lsf.conf.
Whenever you reconfigure, only master LIM candidates read lsf.shared and
lsf.cluster.cluster_name to get updated information. The elected master LIM
sends configuration information to slave LIMs.
The order in which you specify hosts in LSF_MASTER_LIST is the preferred order
for selecting hosts to become the master LIM.

Considerations Generally, the files lsf.cluster.cluster_name and lsf.shared for hosts that are
master candidates should be identical.
When the cluster is started up or reconfigured, LSF rereads configuration files and
compares lsf.cluster.cluster_name and lsf.shared for hosts that are master
candidates.
In some cases in which identical files are not shared, files may be out of sync. This
section describes situations that may arise should lsf.cluster.cluster_name and
lsf.shared for hosts that are master candidates not be identical to those of the
elected master host.

LSF_MASTER_LIST defined
When LSF_MASTER_LIST is defined, LSF only rejects candidate master hosts
listed in LSF_MASTER_LIST from the cluster if the number of load indices in
lsf.cluster.cluster_name or lsf.shared for master candidates is different
from the number of load indices in the lsf.cluster.cluster_name or lsf.shared
files of the elected master.

Administering Platform LSF 735

Tuning the Cluster

A warning is logged in the log file lim.log.master_host_name and the cluster
continues to run, but without the hosts that were rejected.
If you want the hosts that were rejected to be part of the cluster, ensure the number
of load indices in lsf.cluster.cluster_name and lsf.shared are identical for all
master candidates and restart LIMs on the master and all master candidates:
lsadmin limrestart hostA hostB hostC

LSF_MASTER_LIST defined, and master host goes down
If LSF_MASTER_LIST is defined and the elected master host goes down, and if the
number of load indices in lsf.cluster.cluster_name or lsf.shared for the new
elected master is different from the number of load indices in the files of the master
that went down, LSF will reject all master candidates that do not have the same
number of load indices in their files as the newly elected master. LSF will also reject
all slave-only hosts. This could cause a situation in which only the newly elected
master is considered part of the cluster.
A warning is logged in the log file lim.log.new_master_host_name and the cluster
continues to run, but without the hosts that were rejected.
To resolve this, from the current master host, restart all LIMs:
lsadmin limrestart all

All slave-only hosts will be considered part of the cluster. Master candidates with a
different number of load indices in their lsf.cluster.cluster_name or
lsf.shared files will be rejected.
When the master that was down comes back up, you will have the same situation as
described in The files lsf.shared and lsf.cluster.cluster_name are shared only among
LIMs listed as candidates to be elected master with the parameter
LSF_MASTER_LIST. on page 734. You will need to ensure load indices defined in
lsf.cluster.cluster_name and lsf.shared for all master candidates are
identical and restart LIMs on all master candidates.

Improving performance of mbatchd query requests on UNIX

736 Administering Platform LSF

Improving performance of mbatchd query requests on UNIX
You can improve mbatchd query performance on UNIX systems using the
following methods:
◆ Multithreading—On UNIX platforms that support thread programming, you

can change default mbatchd behavior to use multithreading and increase
performance of query requests when you use the bjobs command.
Multithreading is beneficial for busy clusters with many jobs and frequent
query requests. This may indirectly increase overall mbatchd performance.

◆ Hard CPU affinity—You can specify the master host CPUs on which mbatchd
child query processes can run. This improves mbatchd scheduling and dispatch
performance by binding query processes to specific CPUs so that higher
priority mbatchd processes can run more efficiently.

In this section
◆ How mbatchd works without multithreading on page 736
◆ Configure mbatchd to use multithreading on page 736
◆ Set a query-dedicated port for mbatchd on page 738
◆ Specify an expiry time for child mbatchds (optional) on page 738
◆ Specify hard CPU affinity on page 738
◆ Configure mbatchd to push new job information to child mbatchd on page 739

How mbatchd works without multithreading

Ports By default, mbatchd uses the port defined by the parameter LSB_MBD_PORT in
lsf.conf or looks into the system services database for port numbers to
communicate with LIM and job request commands.
It uses this port number to receive query requests from clients.

Servicing requests For every query request received, mbatchd forks a child mbatchd to service the
request. Each child mbatchd processes the request and then exits.

Configure mbatchd to use multithreading
When mbatchd has a dedicated port specified by the parameter
LSB_QUERY_PORT in lsf.conf, it forks a child mbatchd which in turn creates
threads to process query requests.
As soon as mbatchd has forked a child mbatchd, the child mbatchd takes over and
listens on the port to process more query requests. For each query request, the child
mbatchd creates a thread to process it.
The child mbatchd continues to listen to the port number specified by
LSB_QUERY_PORT and creates threads to service requests until the job status
changes, a new job is submitted, or until the time specified in
MBD_REFRESH_TIME in lsb.params has passed.
Specify a time interval, in seconds, when mbatchd will fork a new child mbatchd to
service query requests to keep information sent back to clients updated. A child
mbatchd processes query requests creating threads.

Administering Platform LSF 737

Tuning the Cluster

MBD_REFRESH_TIME has the following syntax:
MBD_REFRESH_TIME=seconds [min_refresh_time]
where min_refresh_time defines the minimum time (in seconds) that the child
mbatchd will stay to handle queries. The valid range is 0 - 300. The default is 5
seconds.
◆ If MBD_REFRESH_TIME is < min_refresh_time, the child mbatchd exits at

MBD_REFRESH_TIME even if the job changes status or a new job is submitted
before MBD_REFRESH_TIME expires.

◆ If MBD_REFRESH_TIME > min_refresh_time
❖ the child mbatchd exits at min_refresh_time if a job changes status or a new

job is submitted before the min_refresh_time
❖ the child mbatchd exits after the min_refresh_time when a job changes

status or a new job is submitted
◆ If MBD_REFRESH_TIME > min_refresh_time and no job changes status or a

new job is submitted, the child mbatchd exits at MBD_REFRESH_TIME
The default for min_refresh_time is 10 seconds.
If you use the bjobs command and do not get up-to-date information, you may
want to decrease the value of MBD_REFRESH_TIME or MIN_REFRESH_TIME
in lsb.params to make it likely that successive job queries could get the
newly-submitted job information.

NOTE: Lowering the value of MBD_REFRESH_TIME or MIN_REFRESH_TIME increases the load on
mbatchd and might negatively affect performance.

1 Specify a query-dedicated port for the mbatchd by setting LSB_QUERY_PORT
in lsf.conf.
See Set a query-dedicated port for mbatchd on page 738.

2 Optional: Set an interval of time to indicate when a new child mbatchd is to be
forked by setting MBD_REFRESH_TIME in lsb.params. The default value of
MBD_REFRESH_TIME is 5 seconds, and valid values are 0-300 seconds.
See Specify an expiry time for child mbatchds (optional) on page 738.

3 Optional: Use NEWJOB_REFRESH=Y in lsb.params to enable a child
mbatchd to get up to date new job information from the parent mbatchd.
See Configure mbatchd to push new job information to child mbatchd on page
739.

Improving performance of mbatchd query requests on UNIX

738 Administering Platform LSF

Set a query-dedicated port for mbatchd

To change the default mbatchd behavior so that mbatchd forks a child mbatchd that
can create threads, specify a port number with LSB_QUERY_PORT in lsf.conf.

TIP: This configuration only works on UNIX platforms that support thread programming.

1 Log on to the host as the primary LSF administrator.
2 Edit lsf.conf.
3 Add the LSB_QUERY_PORT parameter and specify a port number that will be

dedicated to receiving requests from hosts.
4 Save the lsf.conf file.
5 Reconfigure the cluster:

badmin mbdrestart

Specify an expiry time for child mbatchds (optional)

Use MBD_REFRESH_TIME in lsb.params to define how often mbatchd forks a
new child mbatchd.

1 Log on to the host as the primary LSF administrator.
2 Edit lsb.params.
3 Add the MBD_REFRESH_TIME parameter and specify a time interval in

seconds to fork a child mbatchd.
The default value for this parameter is 5 seconds. Valid values are 0 to 300
seconds.

4 Save the lsb.params file.
5 Reconfigure the cluster as follows:

badmin reconfig

Specify hard CPU affinity

You can specify the master host CPUs on which mbatchd child query processes can
run (hard CPU affinity). This improves mbatchd scheduling and dispatch
performance by binding query processes to specific CPUs so that higher priority
mbatchd processes can run more efficiently.

Administering Platform LSF 739

Tuning the Cluster

When you define this parameter, LSF runs mbatchd child query processes only on
the specified CPUs. The operating system can assign other processes to run on the
same CPU, however, if utilization of the bound CPU is lower than utilization of the
unbound CPUs.

1 Identify the CPUs on the master host that will run mbatchd child query
processes.
❖ Linux: To obtain a list of valid CPUs, run the command

/proc/cpuinfo

❖ Solaris: To obtain a list of valid CPUs, run the command
psrinfo

2 In the file lsb.params, define the parameter MBD_QUERY_CPUS.
For example, if you specify:

MBD_QUERY_CPUS=1 2

the mbatchd child query processes will run only on CPU numbers 1 and 2 on
the master host.
You can specify CPU affinity only for master hosts that use one of the following
operating systems:
◆ Linux 2.6 or higher
◆ Solaris 8 or higher
If failover to a master host candidate occurs, LSF maintains the hard CPU
affinity, provided that the master host candidate has the same CPU
configuration as the original master host. If the configuration differs, LSF
ignores the CPU list and reverts to default behavior.

3 Verify that the mbatchd child query processes are bound to the correct CPUs
on the master host.
a Start up a query process by running a query command such as bjobs.
b Check to see that the query process is bound to the correct CPU.

◆ Linux: Run the command taskset -p <pid>
◆ Solaris: Run the command ps -AP

Configure mbatchd to push new job information to child mbatchd

Prerequisites: LSB_QUERY_PORT must be defined. in lsf.conf.

If you have enabled multithreaded mbatchd support, the bjobs command may not
display up-to-date information if two consecutive query commands are issued
before a child mbatchd expires because child mbatchd job information is not
updated. Use NEWJOB_REFRESH=Y in lsb.params to enable a child mbatchd to
get up to date new job information from the parent mbatchd.

Improving performance of mbatchd query requests on UNIX

740 Administering Platform LSF

When NEWJOB_REFRESH=Y the parent mbatchd pushes new job information to
a child mbatchd. Job queries with bjobs display new jobs submitted after the child
mbatchd was created.

1 Log on to the host as the primary LSF administrator.
2 Edit lsb.params.
3 Add NEWJOB_REFRESH=Y.

You should set MBD_REFRESH_TIME in lsb.params to a value greater than
10 seconds.

4 Save the lsb.params file.
5 Reconfigure the cluster as follows:

badmin reconfig

Administering Platform LSF 741

Tuning the Cluster

Improving performance of mbatchd query requests on UNIX

742 Administering Platform LSF

Administering Platform LSF 743

C H A P T E R

48
Authentication and Authorization

LSF uses authentication and authorization to ensure the security of your cluster.
The authentication process verifies the identity of users, hosts, and daemons,
depending on the security requirements of your site. The authorization process
enforces user account permissions.

Contents
◆ Authentication options on page 743
◆ Authorization options on page 746

Authentication options
During LSF installation, the authentication method is set to external authentication
(eauth), which offers the highest level of security. To change the authentication
method used by LSF, configure the parameter LSF_AUTH in lsf.conf.

Authentication options

744 Administering Platform LSF

NOTE: If you change the authentication method while LSF daemons are running, you must shut
down and restart the daemons on all hosts in order to apply the changes.

When the external authentication (eauth) feature is enabled, you can also configure
LSF to authenticate daemons by defining the parameter LSF_AUTH_DAEMONS in
lsf.conf.
All authentication methods supported by LSF depend on the security of the root
account on all hosts in the cluster.

UNIX user and host authentication
The primary LSF administrator can configure additional authentication for UNIX
users and hosts by defining the parameter LSF_USE_HOSTEQUIV in the lsf.conf
file. With LSF_USE_HOSTEQUIV defined, mbatchd on the master host and RES on
the remote host call the ruserok(3) function to verify that the originating host is
listed in the /etc/hosts.equiv file and that the host and user account are listed in

Authentication
method

Description Configuration Behavior

External
authentication

◆ A framework that enables you
to integrate LSF with any
third-party authentication
product—such as Kerberos or
DCE Security Services—to
authenticate users, hosts, and
daemons. This feature provides
a secure transfer of data within
the authentication data stream
between LSF clients and
servers. Using external
authentication, you can
customize LSF to meet the
security requirements of your
site.

LSF_AUTH=eauth ◆ LSF uses the default eauth
executable located in
LSF_SERVERDIR. The default
executable provides an
example of how the eauth
protocol works. You should
write your own eauth
executable to meet the
security requirements of your
cluster. For a detailed
description of the external
authentication feature and
how to configure it, see the
Platform LSF Configuration
Reference.

Identification
daemon (identd)

◆ Authentication using the
identd daemon available in
the public domain.

LSF_AUTH=ident ◆ LSF uses the identd daemon
available in the public
domain.

◆ LSF supports both RFC 931
and RFC 1413 protocols.

Privileged ports
(setuid)

◆ User authentication between
LSF clients and servers on UNIX
hosts only. An LSF command or
other executable configured as
setuid uses a reserved
(privileged) port number
(1-1024) to contact an LSF
server. The LSF server accepts
requests received on a
privileged port as coming from
the root user and then runs the
LSF command or other
executable using the real user
account of the user who issued
the command.

LSF_AUTH not
defined

◆ For UNIX hosts only, LSF
clients (API functions) use
reserved ports 1-1024 to
communicate with LSF
servers.

◆ The number of user accounts
that can connect
concurrently to remote hosts
is limited by the number of
available privileged ports.

◆ LSF_AUTH must be deleted
or commented out and LSF
commands must be installed
as setuid programs owned
by root.

Administering Platform LSF 745

Authentication and Authorization

the $HOME/.rhosts file. Include the name of the local host in both files. This
additional level of authentication works in conjunction with eauth, privileged ports
(setuid), or identd authentication.

CAUTION: Using the /etc/hosts.equiv and $HOME/.rhosts files grants permission to use
the rlogin and rsh commands without requiring a password.

SSH
SSH is a network protocol that provides confidentiality and integrity of data using
a secure channel between two networked devices. Use SSH to secure
communication between submission, execution, and display hosts.
A frequently used option is to submit jobs with SSH X11 forwarding (bsub -XF),
which allows a user to log into an X-Server client, access the submission host
through the client, and run an interactive X-Window job, all through SSH. For
information on configuring SSH, see the Platform LSF Configuration Reference and
read “Configure SSH X11 forwarding for jobs”.

Strict checking protocol in an untrusted environment
To improve security in an untrusted environment, the primary LSF administrator
can enable the use of a strict checking communications protocol . When you define
LSF_STRICT_CHECKING in lsf.conf, LSF authenticates messages passed between
LSF daemons and between LSF commands and daemons. This type of
authentication is not required in a secure environment, such as when your cluster
is protected by a firewall.

IMPORTANT: You must shut down the cluster before adding or deleting the
LSF_STRICT_CHECKING parameter.

Authentication failure
If authentication fails (the user’s identity cannot be verified), LSF displays the
following error message after a user issues an LSF command:
User permission denied

This error has several possible causes depending on the authentication method
used.

Authentication method Possible cause of failure

eauth ◆ External authentication failed

identd ◆ The identification daemon is not available on the local or
submitting host

setuid ◆ The LSF applications are not installed setuid
◆ The NFS directory is mounted with the nosuid option

ruserok ◆ The client (local) host is not found in either the
/etc/hosts.equiv or the $HOME/.rhosts file on the
master or remote host

Authorization options

746 Administering Platform LSF

Authorization options

Operating system authorization
By default, an LSF job or command runs on the execution host under the user
account that submits the job or command, with the permissions associated with
that user account. Any UNIX or Windows user account with read and execute
permissions for LSF commands can use LSF to run jobs—the LSF administrator
does not need to define a list of LSF users. User accounts must have the operating
system permissions required to execute commands on remote hosts. When users
have valid accounts on all hosts in the cluster, they can run jobs using their own
account permissions on any execution host.
All external executables invoked by the LSF daemons, such as esub, eexec, elim,
eauth, and pre- and post-execution commands, run under the lsfadmin user
account.

Windows
passwords

Windows users must register their Windows user account passwords with LSF by
running the command lspasswd. If users change their passwords, they must use
this command to update LSF. A Windows job does not run if the password is not
registered in LSF. Passwords must be 31 characters or less.
For Windows password authorization in a non-shared file system environment, you
must define the parameter LSF_MASTER_LIST in lsf.conf so that jobs run with
correct permissions. If you do not define this parameter, LSF assumes that the
cluster uses a shared file system environment.

LSF authorization
As an LSF administrator, you have the following authorization options:
◆ Enable one or more types of user account mapping
◆ Specify the user account used to run eauth and eexec executables or pre- and

post-execution commands
◆ Control user access to LSF resources and functionality

Enabling user account mapping

You can configure different types of user account mapping so that a job or
command submitted by one user account runs on the remote host under a different
user account.

Type of account
mapping

Description

Between-host Enables job submission and execution within a cluster that has
different user accounts assigned to different hosts. Using this
feature, you can map a local user account to a different user
account on a remote host.

Administering Platform LSF 747

Authentication and Authorization

For a detailed description of the user account mapping features and how to
configure them, see the Platform LSF Configuration Reference.

Specifying a user account

Controlling user access to LSF resources and functionality

Cross-cluster Enables cross-cluster job submission and execution for a
MultiCluster environment that has different user accounts
assigned to different hosts. Using this feature, you can map user
accounts in a local cluster to user accounts in one or more
remote clusters.

UNIX/Windows Enables cross-platform job submission and execution in a mixed
UNIX/Windows environment. Using this feature, you can map
Windows user accounts, which include a domain name, to UNIX
user accounts, which do not include a domain name, for user
accounts with the same user name on both operating systems.

Type of account
mapping

Description

To change the user account for … Define the parameter … In the file …

eauth LSF_EAUTH_USER lsf.sudoers

eexec LSF_EEXEC_USER

Pre- and post execution commands LSB_PRE_POST_EXEC_USER

If you want to … Define … In the file … Section …

Specify the user accounts
with cluster administrator
privileges

ADMINISTRATORS lsf.cluster.cluster_name ClusterAdmins

Allow the root user to run
jobs on a remote host

LSF_ROOT_REX lsf.conf N/A

Allow specific user accounts
to use @ for host redirection
with lstcsh

LSF_SHELL_AT_USERS lsf.conf N/A

Allow user accounts other
than root to start LSF
daemons

TIP: For information about how
to configure the LSF daemon
startup control feature, see the
Platform LSF Configuration
Reference.

LSF_STARTUP_USERS
LSF_STARTUP_PATH

lsf.sudoers N/A

Authorization options

748 Administering Platform LSF

Authorization failure

Symptom Probable cause Solution

User receives an email notification that LSF
has placed a job in the USUSP state.

The job cannot run because the
Windows password for the job
is not registered with LSF.

The user should
◆ Register the Windows

password with LSF using the
command lspasswd.

◆ Use the bresume command
to resume the suspended
job.

LSF displays one of the following error
messages:
◆ findHostbyAddr/<proc>: Host

<host>/<port> is unknown by
<myhostname>

◆ function:
Gethostbyaddr_(<host>/<port>)
failed: error

◆ main: Request from unknown host
<host>/<port>: error

◆ function: Received request from
non-LSF host <host>/<port>

The LSF daemon does not
recognize host as part of the
cluster. These messages can
occur if you add host to the
configuration files without
reconfiguring all LSF daemons.

Run the following commands
after adding a host to the cluster:
◆ lsadmin reconfig
◆ badmin mbdrestart
If the problem still occurs, the
host might have multiple
addresses. Match all of the host
addresses to the host name by
either:
◆ Modifying the system hosts

file (/etc/hosts). The
changes affect all software
programs on your system.

◆ Creating an LSF hosts file
(EGO_CONFDIR/hosts).
Only LSF resolves the
addresses to the specified
host.

◆ doacceptconn:
getpwnam(<username>@<host>/<po
rt>) failed: error

◆ doacceptconn: User <username>
has uid <uid1> on client host
<host>/<port>, uid <uid2> on
RES host; assume bad user

◆ authRequest: username/uid
<userName>/<uid>@<host>/<port>
does not exist

◆ authRequest: Submitter’s name
<clname>@<clhost> is different
from name <lname> on this host

RES assumes that a user has the
same UNIX user name and user
ID on all LSF hosts. These
messages occur if this
assumption is violated.

If the user is allowed to use LSF for
interactive remote execution,
make sure the user’s account has
the same user ID and user name
on all LSF hosts.

◆ doacceptconn: root remote
execution permission denied

◆ authRequest: root job
submission rejected

The root user tried to execute
or submit a job but
LSF_ROOT_REX is not defined
in lsf.conf.

To allow the root user to run jobs
on a remote host, define
LSF_ROOT_REX in lsf.conf.

Administering Platform LSF 749

Authentication and Authorization

◆ resControl: operation
permission denied, uid = <uid>

The user with user ID uid is not
allowed to make RES control
requests. By default, only the
LSF administrator can make
RES control requests.

To allow the root user to make
RES control requests, define
LSF_ROOT_REX in lsf.conf.

◆ do_restartReq: Failed to get
hData of host
<host_name>/<host_addr>

mbatchd received a request
from sbatchd on host
host_name, but that host is not
known to mbatchd. Either
◆ The configuration file has

been changed but
mbatchd has not been
reconfigured.

◆ host_name is a client host
but sbatchd is running on
that host.

To reconfigure mbatchd, run the
command
badmin reconfig
To shut down sbatchd on
host_name, run the command
badmin hshutdown host_name

Symptom Probable cause Solution

Authorization options

750 Administering Platform LSF

Administering Platform LSF 751

C H A P T E R

49
Job Email and Job File Spooling

Contents
◆ Mail Notification When a Job Starts on page 751
◆ File Spooling for Job Input, Output, and Command Files on page 754

Mail Notification When a Job Starts
When a batch job completes or exits, LSF by default sends a job report by electronic
mail to the submitting user account. The report includes the following information:
◆ Standard output (stdout) of the job
◆ Standard error (stderr) of the job
◆ LSF job information such as CPU, process and memory usage
The output from stdout and stderr are merged together in the order printed, as if
the job was run interactively. The default standard input (stdin) file is the null
device. The null device on UNIX is /dev/null.

bsub mail options

-B Sends email to the job submitter when the job is dispatched and begins running.
The default destination for email is defined by LSB_MAILTO in lsf.conf.

-u user_name If you want mail sent to another user, use the -u user_name option to the bsub
command. Mail associated with the job will be sent to the named user instead of to
the submitting user account.

-N If you want to separate the job report information from the job output, use the -N
option to specify that the job report information should be sent by email.

Output and error file options (-o output_file, -e error_file, -oo output_file, and -eo error_file)

The output file created by the -o and -oo options to the bsub command normally
contains job report information as well as the job output. This information includes
the submitting user and host, the execution host, the CPU time (user plus system
time) used by the job, and the exit status.

Mail Notification When a Job Starts

752 Administering Platform LSF

If you specify a -o output_file or -oo output_file option and do not specify a
-e error_file or -eo error_file option, the standard output and standard error are
merged and stored in output_file. You can also specify the standard input file if the
job needs to read input from stdin.

NOTE: The file path can contain up to 4094 characters for UNIX and Linux, or up to 255 characters
for Windows, including the directory, file name, and expanded values for %J (job_ID) and %I
(index_ID).

The output files specified by the output and error file options are created on the
execution host.
See Remote File Access on page 758 for an example of copying the output file back
to the submission host if the job executes on a file system that is not shared between
the submission and execution hosts.

Disabling job email If you do not want job output to be sent by mail, specify stdout and stderr as the
files for the output and error options (-o, -oo, -e, and -eo). For example, the
following command directs stderr and stdout to file named /tmp/job_out, and
no email is sent.
bsub -o /tmp/job_out sleep 5

On UNIX, If you want no job output or email at all, specify /dev/null as the output
file:
bsub -o /dev/null sleep 5

Example The following example submits myjob to the night queue:
bsub -q night -i job_in -o job_out -e job_err myjob

The job reads its input from file job_in. Standard output is stored in file job_out,
and standard error is stored in file job_err.

Size of job email
Some batch jobs can create large amounts of output. To prevent large job output
files from interfering with your mail system, you can use the
LSB_MAILSIZE_LIMIT parameter in lsf.conf to limit the size of the email
containing the job output information.
By default, LSB_MAILSIZE_LIMIT is not enabled—no limit is set on size of batch
job output email.
If the size of the job output email exceeds LSB_MAILSIZE_LIMIT, the output is
saved to a file under JOB_SPOOL_DIR, or the default job output directory if
JOB_SPOOL_DIR is undefined. The email informs users where the job output is
located.
If the -o or -oo option of bsub is used, the size of the job output is not checked
against LSB_MAILSIZE_LIMIT.

LSB_MAILSIZE
environment
variable

LSF sets LSB_MAILSIZE to the approximate size in KB of the email containing job
output information, allowing a custom mail program to intercept output that is
larger than desired. If you use the LSB_MAILPROG parameter to specify the
custom mail program that can make use of the LSB_MAILSIZE environment
variable, it is not necessary to configure LSB_MAILSIZE_LIMIT.

Administering Platform LSF 753

Job Email and Job File Spooling

LSB_MAILSIZE is not recognized by the LSF default mail program. To prevent
large job output files from interfering with your mail system, use
LSB_MAILSIZE_LIMIT to explicitly set the maximum size in KB of the email
containing the job information.

LSB_MAILSIZE
values

The LSB_MAILSIZE environment variable can take the following values:
◆ A positive integer: if the output is being sent by email, LSB_MAILSIZE is set to

the estimated mail size in KB.
◆ -1 :if the output fails or cannot be read, LSB_MAILSIZE is set to -1 and the

output is sent by email using LSB_MAILPROG if specified in lsf.conf.
◆ Undefined: If you use the output or error options (-o, -oo, -e, or -eo) of bsub,

the output is redirected to an output file. Because the output is not sent by email
in this case, LSB_MAILSIZE is not used and LSB_MAILPROG is not called.

If the -N option is used with the output or error options of bsub, LSB_MAILSIZE is
not set.

Directory for job output
The output and error options (-o, -oo, -e, and -eo) of the bsub and bmod
commands can accept a file name or directory path. LSF creates the standard output
and standard error files in this directory. If you specify only a directory path, job
output and error files are created with unique names based on the job ID so that you
can use a single directory for all job output, rather than having to create separate
output directories for each job.

NOTE: The directory path can contain up to 4094 characters for UNIX and Linux, or up to 255
characters for Windows.

Specifying a directory for job output
Make the final character in the path a slash (/) on UNIX, or a double backslash (\\)
on Windows. If you omit the trailing slash or backslash characters, LSF treats the
specification as a file name.
If the specified directory does not exist, LSF creates it on the execution host when
it creates the standard error and standard output files.
By default, the output files have the following format:

Standard output output_directory/job_ID.out

Standard error error_directory/job_ID.err

Example The following command creates the directory /usr/share/lsf_out if it does not
exist, and creates the standard output file job_ID.out in this directory when the job
completes:
bsub -o /usr/share/lsf_out/ myjob

The following command creates the directory C:\lsf\work\lsf_err if it does not
exist, and creates the standard error file job_ID.err in this directory when the job
completes:
bsub -e C:\lsf\work\lsf_err\\ myjob

File Spooling for Job Input, Output, and Command Files

754 Administering Platform LSF

For more information
See the Platform LSF Configuration Reference for information about the
LSB_MAILSIZE environment variable and the LSB_MAILTO,
LSB_MAILSIZE_LIMIT parameters in lsf.conf, and JOB_SPOOL_DIR in
lsb.params.

File Spooling for Job Input, Output, and Command Files

About job file spooling
LSF enables spooling of job input, output, and command files by creating directories
and files for buffering input and output for a job. LSF removes these files when the
job completes.
You can make use of file spooling when submitting jobs with the -is and -Zs
options to bsub. Use similar options in bmod to modify or cancel the spool file
specification for the job. Use the file spooling options if you need to modify or
remove the original job input or command files before the job completes. Removing
or modifying the original input file does not affect the submitted job.

NOTE: The file path for spooling job input, output, and command files can contain up to 4094
characters for UNIX and Linux, or up to 255 characters for Windows, including the directory, file
name, and expanded values for %J (job_ID) and %I (index_ID).

File spooling is not supported across MultiClusters.

Specifying job input files
Use the bsub -i input_file and bsub -is input_file commands to get the
standard input for the job from the file path name specified by input_file. The path
can be an absolute path or a relative path to the current working directory. The
input file can be any type of file, though it is typically a shell script text file.
LSF first checks the execution host to see if the input file exists. If the file exists on
the execution host, LSF uses this file as the input file for the job.
If the file does not exist on the execution host, LSF attempts to copy the file from
the submission host to the execution host. For the file copy to be successful, you
must allow remote copy (rcp) access, or you must submit the job from a server host
where RES is running. The file is copied from the submission host to a temporary
file in the directory specified by the JOB_SPOOL_DIR parameter in lsb.params,
or your $HOME/.lsbatch directory on the execution host. LSF removes this file
when the job completes.
The -is option of bsub spools the input file to the directory specified by the
JOB_SPOOL_DIR parameter in lsb.params, and uses the spooled file as the input
file for the job.
Use the bsub -is command if you need to change the original input file before the
job completes. Removing or modifying the original input file does not affect the
submitted job.

Administering Platform LSF 755

Job Email and Job File Spooling

Unless you use -is, you can use the special characters %J and %I in the name of the
input file. %J is replaced by the job ID. %I is replaced by the index of the job in the
array, if the job is a member of an array, otherwise by 0 (zero). The special
characters %J and %I are not valid with the -is option.

Specifying a job command file (bsub -Zs)
Use the bsub -Zs command to spool a job command file to the directory specified
by the JOB_SPOOL_DIR parameter in lsb.params. LSF uses the spooled file as the
command file for the job.
Use the bmod -Zs command if you need to change the command file after the job
has been submitted. Changing the original input file does not affect the submitted
job. Use bmod -Zsn to cancel the last spooled command file and use the original
spooled file.
The bsub -Zs option is not supported for embedded job commands because LSF is
unable to determine the first command to be spooled in an embedded job
command.

About the job spooling directory (JOB_SPOOL_DIR)
If JOB_SPOOL_DIR is specified in lsb.params:
◆ The job input file for bsub -is is spooled to JOB_SPOOL_DIR/lsf_indir. If

the lsf_indir directory does not exist, LSF creates it before spooling the file.
LSF removes the spooled file when the job completes.

◆ The job command file for bsub -Zs is spooled to
JOB_SPOOL_DIR/lsf_cmddir. If the lsf_cmddir directory does not exist, LSF
creates it before spooling the file. LSF removes the spooled file when the job
completes.

The JOB_SPOOL_DIR directory should be a shared directory accessible from the
master host and the submission host. The directory must be readable and writable
by the job submission users.
JOB_SPOOL_DIR can be any valid path up to a maximum length up to 4094
characters on UNIX and Linux or up to 255 characters for Windows.
JOB_SPOOL_DIR must be readable and writable by the job submission user, and it
must be shared by the master host and the submission host. If the specified
directory is not accessible or does not exist, bsub -is cannot write to the default
directory LSB_SHAREDIR/cluster_name/lsf_cmddir and the job will fail.
Except for bsub -is and bsub -Zs, if JOB_SPOOL_DIR is not accessible or does
not exist, output is spooled to the default job output directory .lsbatch.
For bsub -is and bsub -Zs, JOB_SPOOL_DIR must be readable and writable by
the job submission user. If the specified directory is not accessible or does not exist,
bsub -is and bsub -Zs cannot write to the default directory and the job will fail.
If JOB_SPOOL_DIR is not specified in lsb.params:
◆ The job input file for bsub -is is spooled to

LSB_SHAREDIR/cluster_name/lsf_indir. If the lsf_indir directory does
not exist, LSF creates it before spooling the file. LSF removes the spooled file
when the job completes.

Modifying the job input file

756 Administering Platform LSF

◆ The job command file for bsub -Zs is spooled to
LSB_SHAREDIR/cluster_name/lsf_cmddir. If the lsf_cmddir directory does
not exist, LSF creates it before spooling the file. LSF removes the spooled file
when the job completes.

If you want to use job file spooling, but do not specify JOB_SPOOL_DIR, the
LSB_SHAREDIR/cluster_name directory must be readable and writable by all the
job submission users. If your site does not permit this, you must manually create
lsf_indir and lsf_cmddir directories under LSB_SHAREDIR/cluster_name that
are readable and writable by all job submission users.

Modifying the job input file
Use the -i and -is options of bmod to specify a new job input file. The -in and -isn
options cancel the last job input file modification made with either -i or -is.

Modifying the job command file
Use the -Z and -Zs options of bmod to modify the job command file specification.
-Z modifies a command submitted without spooling, and Zs modifies a spooled
command file. The -Zsn option of bmod cancels the last job command file
modification made with -Zs and uses the original spooled command.

For more information
See the Platform LSF Command Reference for more information about the bsub and
bmod commands.
See the Platform LSF Configuration Reference for more information about the
JOB_SPOOL_DIR parameter in lsb.params, and the LSF_TMPDIR environment
variable.

Administering Platform LSF 757

C H A P T E R

50
Non-Shared File Systems

Contents
◆ About Directories and Files on page 757
◆ Using LSF with Non-Shared File Systems on page 758
◆ Remote File Access on page 758
◆ File Transfer Mechanism (lsrcp) on page 760

About Directories and Files
LSF is designed for networks where all hosts have shared file systems, and files have
the same names on all hosts.
LSF includes support for copying user data to the execution host before running a
batch job, and for copying results back after the job executes.
In networks where the file systems are not shared, this can be used to give remote
jobs access to local data.

Supported file systems

UNIX On UNIX systems, LSF supports the following shared file systems:
◆ Network File System (NFS). NFS file systems can be mounted permanently or

on demand using automount.
◆ Andrew File System (AFS)
◆ Distributed File System (DCE/DFS)

Windows On Windows, directories containing LSF files can be shared among hosts from a
Windows server machine.

Non-shared directories and files
LSF is usually used in networks with shared file space. When shared file space is not
available, LSF can copy needed files to the execution host before running the job,
and copy result files back to the submission host after the job completes. See
Remote File Access on page 758 for more information.

Using LSF with Non-Shared File Systems

758 Administering Platform LSF

Some networks do not share files between hosts. LSF can still be used on these
networks, with reduced fault tolerance. See Using LSF with Non-Shared File
Systems on page 758 for information about using LSF in a network without a shared
file system.

Using LSF with Non-Shared File Systems

LSF installation
To install LSF on a cluster without shared file systems, follow the complete
installation procedure on every host to install all the binaries, man pages, and
configuration files.

Configuration files
After you have installed LSF on every host, you must update the configuration files
on all hosts so that they contain the complete cluster configuration. Configuration
files must be the same on all hosts.

Master host
You must choose one host to act as the LSF master host. LSF configuration files and
working directories must be installed on this host, and the master host must be
listed first in lsf.cluster.cluster_name.
You can use the parameter LSF_MASTER_LIST in lsf.conf to define which hosts
can be considered to be elected master hosts. In some cases, this may improve
performance.
For Windows password authentication in a non-shared file system environment,
you must define the parameter LSF_MASTER_LIST in lsf.conf so that jobs will
run with correct permissions. If you do not define this parameter, LSF assumes that
the cluster uses a shared file system environment.

Fault tolerance
Some fault tolerance can be introduced by choosing more than one host as a
possible master host, and using NFS to mount the LSF working directory on only
these hosts. All the possible master hosts must be listed first in
lsf.cluster.cluster_name. As long as one of these hosts is available, LSF
continues to operate.

Remote File Access

Using LSF with non-shared file space
LSF is usually used in networks with shared file space. When shared file space is not
available, use the bsub -f command to have LSF copy needed files to the execution
host before running the job, and copy result files back to the submission host after
the job completes.
LSF attempts to run a job in the directory where the bsub command was invoked.
If the execution directory is under the user’s home directory, sbatchd looks for the
path relative to the user’s home directory. This handles some common
configurations, such as cross-mounting user home directories with the /net
automount option.

Administering Platform LSF 759

Non-Shared File Systems

If the directory is not available on the execution host, the job is run in /tmp. Any
files created by the batch job, including the standard output and error files created
by the -o and -e options to bsub, are left on the execution host.
LSF provides support for moving user data from the submission host to the
execution host before executing a batch job, and from the execution host back to the
submitting host after the job completes. The file operations are specified with the
-f option to bsub.
LSF uses the lsrcp command to transfer files. lsrcp contacts RES on the remote
host to perform file transfer. If RES is not available, the UNIX rcp command is
used. See File Transfer Mechanism (lsrcp) on page 760 for more information.

bsub -f
The -f "[local_file operator [remote_file]]" option to the bsub command copies
a file between the submission host and the execution host. To specify multiple files,
repeat the -f option.

local_file File name on the submission host

remote_file File name on the execution host
The files local_file and remote_file can be absolute or relative file path names. You
must specific at least one file name. When the file remote_file is not specified, it is
assumed to be the same as local_file. Including local_file without the operator
results in a syntax error.

operator Operation to perform on the file. The operator must be surrounded by white space.
Valid values for operator are:

> local_file on the submission host is copied to remote_file on the execution host
before job execution. remote_file is overwritten if it exists.

< remote_file on the execution host is copied to local_file on the submission host after
the job completes. local_file is overwritten if it exists.

<< remote_file is appended to local_file after the job completes. local_file is created if it
does not exist.

><, <> Equivalent to performing the > and then the < operation. The file local_file is copied
to remote_file before the job executes, and remote_file is copied back, overwriting
local_file, after the job completes. <> is the same as ><
If the submission and execution hosts have different directory structures, you must
ensure that the directory where remote_file and local_file will be placed exists. LSF
tries to change the directory to the same path name as the directory where the bsub
command was run. If this directory does not exist, the job is run in your home
directory on the execution host.
You should specify remote_file as a file name with no path when running in
non-shared file systems; this places the file in the job’s current working directory on
the execution host. This way the job will work correctly even if the directory where
the bsub command is run does not exist on the execution host. Be careful not to
overwrite an existing file in your home directory.

File Transfer Mechanism (lsrcp)

760 Administering Platform LSF

bsub -i
If the input file specified with bsub -i is not found on the execution host, the file
is copied from the submission host using the LSF remote file access facility and is
removed from the execution host after the job finishes.

bsub -o and bsub -e
The output files specified with the -o and -e arguments to bsub are created on the
execution host, and are not copied back to the submission host by default. You can
use the remote file access facility to copy these files back to the submission host if
they are not on a shared file system.
For example, the following command stores the job output in the job_out file and
copies the file back to the submission host:

bsub -o job_out -f "job_out <" myjob

Example
To submit myjob to LSF, with input taken from the file /data/data3 and the output
copied back to /data/out3, run the command:
bsub -f "/data/data3 > data3" -f "/data/out3 < out3" myjob data3 out3

To run the job batch_update, which updates the batch_data file in place, you
need to copy the file to the execution host before the job runs and copy it back after
the job completes:

bsub -f "batch_data <>" batch_update batch_data

File Transfer Mechanism (lsrcp)
The LSF remote file access mechanism (bsub -f) uses lsrcp to process the file
transfer. The lsrcp command tries to connect to RES on the submission host to
handle the file transfer.
See Remote File Access on page 758 for more information about using bsub -f.

Limitations to lsrcp
Because LSF client hosts do not run RES, jobs that are submitted from client hosts
should only specify bsub -f if rcp is allowed. You must set up the permissions for
rcp if account mapping is used.
File transfer using lscrp is not supported in the following contexts:
◆ If LSF account mapping is used; lsrcp fails when running under a different

user account
◆ LSF client hosts do not run RES, so lsrcp cannot contact RES on the

submission host
See Authorization options on page 746 for more information.

Workarounds
In these situations, use the following workarounds:

Administering Platform LSF 761

Non-Shared File Systems

rcp on UNIX If lsrcp cannot contact RES on the submission host, it attempts to use rcp to copy
the file. You must set up the /etc/hosts.equiv or HOME/.rhosts file in order to
use rcp.
See the rcp(1) and rsh(1) man pages for more information on using the rcp
command.

Custom file transfer
mechanism

You can replace lsrcp with your own file transfer mechanism as long as it supports
the same syntax as lsrcp. This might be done to take advantage of a faster
interconnection network, or to overcome limitations with the existing lsrcp.
sbatchd looks for the lsrcp executable in the LSF_BINDIR directory as specified in
the lsf.conf file.

File Transfer Mechanism (lsrcp)

762 Administering Platform LSF

Administering Platform LSF 763

C H A P T E R

51
Error and Event Logging

Contents
◆ System Directories and Log Files on page 763
◆ Managing Error Logs on page 764
◆ System Event Log on page 766
◆ Duplicate Logging of Event Logs on page 767
◆ LSF Job Termination Reason Logging on page 768
◆ Understanding LSF job exit codes on page 773

System Directories and Log Files
LSF uses directories for temporary work files, log files and transaction files and
spooling.
LSF keeps track of all jobs in the system by maintaining a transaction log in the
work subtree. The LSF log files are found in the directory
LSB_SHAREDIR/cluster_name/logdir.
The following files maintain the state of the LSF system:

lsb.events
LSF uses the lsb.events file to keep track of the state of all jobs. Each job is a
transaction from job submission to job completion. LSF system keeps track of
everything associated with the job in the lsb.events file.

lsb.events.n
The events file is automatically trimmed and old job events are stored in
lsb.event.n files. When mbatchd starts, it refers only to the lsb.events file, not
the lsb.events.n files. The bhist command can refer to these files.

Job script files in the info directory
When a user issues a bsub command from a shell prompt, LSF collects all of the
commands issued on the bsub line and spools the data to mbatchd, which saves the
bsub command script in the info directory (or in one of its subdirectories if

Managing Error Logs

764 Administering Platform LSF

MAX_INFO_DIRS is defined in lsb.params) for use at dispatch time or if the job
is rerun. The info directory is managed by LSF and should not be modified by
anyone.

Log directory permissions and ownership
Ensure that the permissions on the LSF_LOGDIR directory to be writable by root.
The LSF administrator must own LSF_LOGDIR.

Log levels and descriptions

Support for UNICOS accounting
In Cray UNICOS environments, LSF writes to the Network Queuing System (NQS)
accounting data file, nqacct, on the execution host. This lets you track LSF jobs and
other jobs together, through NQS.

Support for IRIX Comprehensive System Accounting (CSA)
The IRIX 6.5.9 Comprehensive System Accounting facility (CSA) writes an
accounting record for each process in the pacct file, which is usually located in the
/var/adm/acct/day directory. IRIX system administrators then use the csabuild
command to organize and present the records on a job by job basis.
The LSF_ENABLE_CSA parameter in lsf.conf enables LSF to write job events to
the pacct file for processing through CSA. For LSF job accounting, records are
written to pacct at the start and end of each LSF job.
See the Platform LSF Configuration Reference for more information about the
LSF_ENABLE_CSA parameter.
See the IRIX 6.5.9 resource administration documentation for information about
CSA.

Managing Error Logs
Error logs maintain important information about LSF operations. When you see
any abnormal behavior in LSF, you should first check the appropriate error logs to
find out the cause of the problem.

Number Level Description

0 LOG_EMERG Log only those messages in which the system is unusable.

1 LOG_ALERT Log only those messages for which action must be taken immediately.

2 LOG_CRIT Log only those messages that are critical.

3 LOG_ERR Log only those messages that indicate error conditions.

4 LOG_WARNING Log only those messages that are warnings or more serious messages. This is
the default level of debug information.

5 LOG_NOTICE Log those messages that indicate normal but significant conditions or
warnings and more serious messages.

6 LOG_INFO Log all informational messages and more serious messages.

7 LOG_DEBUG Log all debug-level messages.

8 LOG_TRACE Log all available messages.

Administering Platform LSF 765

Error and Event Logging

LSF log files grow over time. These files should occasionally be cleared, either by
hand or using automatic scripts.

Daemon error logs
LSF log files are reopened each time a message is logged, so if you rename or remove
a daemon log file, the daemons will automatically create a new log file.
The LSF daemons log messages when they detect problems or unusual situations.
The daemons can be configured to put these messages into files.
The error log file names for the LSF system daemons are:
◆ res.log.host_name
◆ sbatchd.log.host_name
◆ mbatchd.log.host_name
◆ mbschd.log.host_name
LSF daemons log error messages in different levels so that you can choose to log all
messages, or only log messages that are deemed critical. Message logging for LSF
daemons (except LIM) is controlled by the parameter LSF_LOG_MASK in
lsf.conf. Possible values for this parameter can be any log priority symbol that is
defined in /usr/include/sys/syslog.h. The default value for LSF_LOG_MASK
is LOG_WARNING.

IMPORTANT: LSF_LOG_MASK in lsf.conf no longer specifies LIM logging level in LSF Version 7. For
LIM, you must use EGO_LOG_MASK in ego.conf to control message logging for LIM. The default
value for EGO_LOG_MASK is LOG_WARNING.

Set the log files owner
Prerequisites: You must be the cluster administrator. The performance monitoring
(perfmon) metrics must be enabled or you must set LC_PERFM to debug.

You can set the log files owner for the LSF daemons (not including the mbschd). The
default owner is the LSF Administrator.

RESTRICTION: Applies to UNIX hosts only.

RESTRICTION: This change only takes effect for daemons that are running as root.

1 Edit lsf.conf and add the parameter LSF_LOGFILE_OWNER.
2 Specify a user account name to set the owner of the log files.
3 Shut down the LSF daemon or daemons you want to set the log file owner for.

Run lsfshutdown on the host.
4 Delete or move any existing log files.

IMPORTANT: If you do not clear out the existing log files, the file ownership does not change.

5 Restart the LSF daemons you shut down.

System Event Log

766 Administering Platform LSF

Run lsfstartup on the host.

View the number of file descriptors remaining
Prerequisites: The performance monitoring (perfmon) metrics must be enabled or
you must set LC_PERFM to debug.

The mbatchd daemon can log a large number of files in a short period when you
submit a large number of jobs to LSF. You can view the remaining file descriptors at
any time.

RESTRICTION: Applies to UNIX hosts only.

1 Run badmin perfmon view.
The free, used, and total amount of file descriptors display.
On AIX5, 64-bit hosts, if the file descriptor limit has never been changed, the
maximum value displays: 9223372036854775797.

Error logging
If the optional LSF_LOGDIR parameter is defined in lsf.conf, error messages
from LSF servers are logged to files in this directory.
If LSF_LOGDIR is defined, but the daemons cannot write to files there, the error
log files are created in /tmp.
If LSF_LOGDIR is not defined, errors are logged to the system error logs (syslog)
using the LOG_DAEMON facility. syslog messages are highly configurable, and
the default configuration varies widely from system to system. Start by looking for
the file /etc/syslog.conf, and read the man pages for syslog(3) and
syslogd(1).
If the error log is managed by syslog, it is probably already being automatically
cleared.
If LSF daemons cannot find lsf.conf when they start, they will not find the
definition of LSF_LOGDIR. In this case, error messages go to syslog. If you cannot
find any error messages in the log files, they are likely in the syslog.

System Event Log
The LSF daemons keep an event log in the lsb.events file. The mbatchd daemon
uses this information to recover from server failures, host reboots, and mbatchd
restarts. The lsb.events file is also used by the bhist command to display detailed
information about the execution history of batch jobs, and by the badmin command
to display the operational history of hosts, queues, and daemons.
By default, mbatchd automatically backs up and rewrites the lsb.events file after
every 1000 batch job completions. This value is controlled by the MAX_JOB_NUM
parameter in the lsb.params file. The old lsb.events file is moved to

Administering Platform LSF 767

Error and Event Logging

lsb.events.1, and each old lsb.events.n file is moved to lsb.events.n+1. LSF
never deletes these files. If disk storage is a concern, the LSF administrator should
arrange to archive or remove old lsb.events.n files periodically.

CAUTION: Do not remove or modify the current lsb.events file. Removing or modifying the
lsb.events file could cause batch jobs to be lost.

Duplicate Logging of Event Logs
To recover from server failures, host reboots, or mbatchd restarts, LSF uses
information stored in lsb.events. To improve the reliability of LSF, you can
configure LSF to maintain copies of these logs, to use as a backup.
If the host that contains the primary copy of the logs fails, LSF will continue to
operate using the duplicate logs. When the host recovers, LSF uses the duplicate
logs to update the primary copies.

How duplicate logging works
By default, the event log is located in LSB_SHAREDIR. Typically, LSB_SHAREDIR
resides on a reliable file server that also contains other critical applications
necessary for running jobs, so if that host becomes unavailable, the subsequent
failure of LSF is a secondary issue. LSB_SHAREDIR must be accessible from all
potential LSF master hosts.
When you configure duplicate logging, the duplicates are kept on the file server, and
the primary event logs are stored on the first master host. In other words,
LSB_LOCALDIR is used to store the primary copy of the batch state information, and
the contents of LSB_LOCALDIR are copied to a replica in LSB_SHAREDIR, which
resides on a central file server. This has the following effects:
◆ Creates backup copies of lsb.events
◆ Reduces the load on the central file server
◆ Increases the load on the LSF master host

Failure of file server If the file server containing LSB_SHAREDIR goes down, LSF continues to process
jobs. Client commands such as bhist, which directly read LSB_SHAREDIR will not
work.
When the file server recovers, the current log files are replicated to LSB_SHAREDIR.

Failure of first
master host

If the first master host fails, the primary copies of the files (in LSB_LOCALDIR)
become unavailable. Then, a new master host is selected. The new master host uses
the duplicate files (in LSB_SHAREDIR) to restore its state and to log future events.
There is no duplication by the second or any subsequent LSF master hosts.
When the first master host becomes available after a failure, it will update the
primary copies of the files (in LSB_LOCALDIR) from the duplicates (in) and continue
operations as before.
If the first master host does not recover, LSF will continue to use the files in
LSB_SHAREDIR, but there is no more duplication of the log files.

LSF Job Termination Reason Logging

768 Administering Platform LSF

Simultaneous
failure of both
hosts

If the master host containing LSB_LOCALDIR and the file server containing
LSB_SHAREDIR both fail simultaneously, LSF will be unavailable.

Network partioning We assume that Network partitioning does not cause a cluster to split into two
independent clusters, each simultaneously running mbatchd.
This may happen given certain network topologies and failure modes. For example,
connectivity is lost between the first master, M1, and both the file server and the
secondary master, M2. Both M1 and M2 will run mbatchd service with M1 logging
events to LSB_LOCALDIR and M2 logging to LSB_SHAREDIR. When connectivity is
restored, the changes made by M2 to LSB_SHAREDIR will be lost when M1 updates
LSB_SHAREDIR from its copy in LSB_LOCALDIR.
The archived event files are only available on LSB_LOCALDIR, so in the case of
network partitioning, commands such as bhist cannot access these files. As a
precaution, you should periodically copy the archived files from LSB_LOCALDIR to
LSB_SHAREDIR.

Setting an event
update interval

If NFS traffic is too high and you want to reduce network traffic, use
EVENT_UPDATE_INTERVAL in lsb.params to specify how often to back up the
data and synchronize the LSB_SHAREDIR and LSB_LOCALDIR directories.
The directories are always synchronized when data is logged to the files, or when
mbatchd is started on the first LSF master host.

Automatic archiving and duplicate logging

Event logs Archived event logs, lsb.events.n, are not replicated to LSB_SHAREDIR. If LSF
starts a new event log while the file server containing LSB_SHAREDIR is down, you
might notice a gap in the historical data in LSB_SHAREDIR.

Configure duplicate logging
To enable duplicate logging, set LSB_LOCALDIR in lsf.conf to a directory on the
first master host (the first host configured in lsf.cluster.cluster_name) that will
be used to store the primary copies of lsb.events. This directory should only exist
on the first master host.

1 Edit lsf.conf and set LSB_LOCALDIR to a local directory that exists only on
the first master host.

2 Use the commands lsadmin reconfig and badmin mbdrestart to make the
changes take effect.

LSF Job Termination Reason Logging
When a job finishes, LSF reports the last job termination action it took against the
job and logs it into lsb.acct.

Administering Platform LSF 769

Error and Event Logging

If a running job exits because of node failure, LSF sets the correct exit information
in lsb.acct, lsb.events, and the job output file. Jobs terminated by a signal from
LSF, the operating system, or an application have the signal logged as the LSF exit
code. Exit codes are not the same as the termination actions.

View logged job exit information (bacct -l)

1 Use bacct -l to view job exit information logged to lsb.acct:
bacct -l 7265

Accounting information about jobs that are:

 - submitted by all users.

 - accounted on all projects.

 - completed normally or exited

 - executed on all hosts.

 - submitted to all queues.

 - accounted on all service classes.

--

Job <7265>, User <lsfadmin>, Project <default>, Status <EXIT>, Queue <normal>,

 Command <srun sleep 100000>

Thu Sep 16 15:22:09: Submitted from host <hostA>, CWD <$HOME>;

Thu Sep 16 15:22:20: Dispatched to 4 Hosts/Processors <4*hostA>;

Thu Sep 16 15:22:20: slurm_id=21793;ncpus=4;slurm_alloc=n[13-14];

Thu Sep 16 15:23:21: Completed <exit>; TERM_RUNLIMIT: job killed after reaching

 LSF run time limit.

Accounting information about this job:

 Share group charged </lsfadmin>

 CPU_T WAIT TURNAROUND STATUS HOG_FACTOR MEM SWAP

 0.04 11 72 exit 0.0006 0K 0K

--

SUMMARY: (time unit: second)

 Total number of done jobs: 0 Total number of exited jobs: 1

 Total CPU time consumed: 0.0 Average CPU time consumed: 0.0

 Maximum CPU time of a job: 0.0 Minimum CPU time of a job: 0.0

 Total wait time in queues: 11.0

 Average wait time in queue: 11.0

 Maximum wait time in queue: 11.0 Minimum wait time in queue: 11.0

 Average turnaround time: 72 (seconds/job)

 Maximum turnaround time: 72 Minimum turnaround time: 72

 Average hog factor of a job: 0.00 (cpu time / turnaround time)

LSF Job Termination Reason Logging

770 Administering Platform LSF

 Maximum hog factor of a job: 0.00 Minimum hog factor of a job: 0.00

View recent job exit information (bjobs -l)

1 Use bjobs -l to view job exit information for recent jobs:
bjobs -l 7265

Job <642>, User <user12>, Project <default>, Status <EXIT>, Queue <normal>, Command
<perl -e "while(1){}">

Fri Feb 27 15:06:35: Submitted from host <hostabc>, CWD
<$HOME/home/lsf/lsf7.0.4.slt/7.0/linux2.4-glibc2.3-x86/bin>;

CPULIMIT

1.0 min of hostabc

Fri Feb 27 15:07:59: Started on <hostabc>, Execution Home </home/user12>, Execution
CWD </home/user12/home/lsf/lsf7.0.4.slt/7.0/linux2.4-glibc2.3-x86/bin>;

Fri Feb 27 15:09:30: Exited by signal 24. The CPU time used is 84.0 seconds.

Fri Feb 27 15:09:30: Completed <exit>; TERM_CPULIMIT: job killed after reaching

 LSF CPU usage limit.

SCHEDULING PARAMETERS:

 r15s r1m r15m ut pg io ls it tmp swp mem

loadSched - - - - - - - - - - -

loadStop - - - - - - - - - - -

Administering Platform LSF 771

Error and Event Logging

Termination reasons displayed by bacct and bjobs
When LSF detects that a job is terminated, bacct -l and bjobs -l display one of
the following termination reasons:

TIP: The integer values logged to the JOB_FINISH event inlsb.acct and termination reason
keywords are mapped in lsbatch.h.

Restrictions ◆ If a queue-level JOB_CONTROL is configured, LSF cannot determine the
result of the action. The termination reason only reflects what the termination
reason could be in LSF.

◆ LSF cannot be guaranteed to catch any external signals sent directly to the job.

Keyword displayed by bacct Termination reason Integer value logged
to JOB_FINISH in
lsb.acct

TERM_ADMIN Job killed by root or LSF administrator 15
TERM_BUCKET_KILL Job killed with bkill -b 23
TERM_CHKPNT Job killed after checkpointing 13
TERM_CPULIMIT Job killed after reaching LSF CPU usage limit 12
TERM_CWD_NOTEXIST Current working directory is not accessible or does not exist

on the execution host
25

TERM_DEADLINE Job killed after deadline expires 6
TERM_EXTERNAL_SIGNAL Job killed by a signal external to LSF 17
TERM_FORCE_ADMIN Job killed by root or LSF administrator without time for

cleanup
9

TERM_FORCE_OWNER Job killed by owner without time for cleanup 8
TERM_LOAD Job killed after load exceeds threshold 3
TERM_MEMLIMIT Job killed after reaching LSF memory usage limit 16
TERM_OTHER Member of a chunk job in WAIT state killed and requeued

after being switched to another queue.
4

TERM_OWNER Job killed by owner 14
TERM_PREEMPT Job killed after preemption 1
TERM_PROCESSLIMIT Job killed after reaching LSF process limit 7
TERM_REQUEUE_ADMIN Job killed and requeued by root or LSF administrator 11
TERM_REQUEUE_OWNER Job killed and requeued by owner 10
TERM_RMS Job exited from an RMS system error 18
TERM_RUNLIMIT Job killed after reaching LSF run time limit 5
TERM_SLURM Job terminated abnormally in SLURM (node failure) 22
TERM_SWAP Job killed after reaching LSF swap usage limit 20
TERM_THREADLIMIT Job killed after reaching LSF thread limit 21
TERM_UNKNOWN LSF cannot determine a termination reason—0 is logged but

TERM_UNKNOWN is not displayed
0

TERM_WINDOW Job killed after queue run window closed 2
TERM_ZOMBIE Job exited while LSF is not available 19

LSF Job Termination Reason Logging

772 Administering Platform LSF

◆ In MultiCluster, a brequeue request sent from the submission cluster is
translated to TERM_OWNER or TERM_ADMIN in the remote execution
cluster. The termination reason in the email notification sent from the
execution cluster as well as that in the lsb.acct is set to TERM_OWNER or
TERM_ADMIN.

Example output of bacct and bhist

Example termination cause Termination reason in bacct –l Example bhist output

bkill -s KILL
bkill job_ID

Completed <exit>; TERM_OWNER or
TERM_ADMIN

Thu Mar 13 17:32:05: Signal <KILL>
requested by user or administrator
<user2>;
Thu Mar 13 17:32:06: Exited by signal
2. The CPU time used is 0.1 seconds;

bkill –r Completed <exit>; TERM_FORCE_ADMIN or
TERM_FORCE_OWNER when sbatchd is not
reachable.
Otherwise, TERM_USER or
TERM_ADMIN

Thu Mar 13 17:32:05: Signal <KILL>
requested by user or administrator
<user2>;
Thu Mar 13 17:32:06: Exited by signal
2. The CPU time used is 0.1 seconds;

TERMINATE_WHEN Completed <exit>; TERM_LOAD/
TERM_WINDOWS/
TERM_PREEMPT

Thu Mar 13 17:33:16: Signal <KILL>
requested by user or administrator
<user2>;
Thu Mar 13 17:33:18: Exited by signal
2. The CPU time used is 0.1 seconds;

Memory limit reached Completed <exit>; TERM_MEMLIMIT Thu Mar 13 19:31:13: Exited by signal
2. The CPU time used is 0.1 seconds;

Run limit reached Completed <exit>; TERM_RUNLIMIT Thu Mar 13 20:18:32: Exited by signal
2. The CPU time used is 0.1 seconds.

CPU limit Completed <exit>; TERM_CPULIMIT Thu Mar 13 18:47:13: Exited by signal
24. The CPU time used is 62.0 seconds;

Swap limit Completed <exit>; TERM_SWAPLIMIT Thu Mar 13 18:47:13: Exited by signal
24. The CPU time used is 62.0 seconds;

Regular job exits when
host crashes

Rusage 0,
Completed <exit>;
TERM_ZOMBIE

Thu Jun 12 15:49:02: Unknown;
unable to reach the execution host;
Thu Jun 12 16:10:32: Running;
Thu Jun 12 16:10:38: Exited with exit
code 143. The CPU time used is 0.0
seconds;

brequeue –r For each requeue,
Completed <exit>;
TERM_REQUEUE_ADMIN or
TERM_REQUEUE_OWNER

Thu Mar 13 17:46:39: Signal
<REQUEUE_PEND> requested by user
or administrator <user2>;
Thu Mar 13 17:46:56: Exited by signal
2. The CPU time used is 0.1 seconds;

bchkpnt -k On the first run:
Completed <exit>;
TERM_CHKPNT

Wed Apr 16 16:00:48: Checkpoint
succeeded (actpid 931249);
Wed Apr 16 16:01:03: Exited with exit
code 137. The CPU time used is 0.0
seconds;

Administering Platform LSF 773

Error and Event Logging

Understanding LSF job exit codes
Exit codes are generated by LSF when jobs end due to signals received instead of
exiting normally. LSF collects exit codes via the wait3() system call on UNIX
platforms. The LSF exit code is a result of the system exit values. Exit codes less than
128 relate to application exit values, while exit codes greater than 128 relate to
system signal exit values (LSF adds 128 to system values). Use bhist to see the exit
code for your job.
How or why the job may have been signaled, or exited with a certain exit code, can
be application and/or system specific. The application or system logs might be able
to give a better description of the problem.

TIP: Termination signals are operating system dependent, so signal 5 may not be SIGTRAP and 11
may not be SIGSEGV on all UNIX and Linux systems. You need to pay attention to the execution
host type in order to correct translate the exit value if the job has been signaled.

Application exit values
The most common cause of abnormal LSF job termination is due to application
system exit values. If your application had an explicit exit value less than 128, bjobs
and bhist display the actual exit code of the application; for example, Exited with
exit code 3. You would have to refer to the application code for the meaning of
exit code 3.
It is possible for a job to explicitly exit with an exit code greater than 128, which can
be confused with the corresponding system signal. Make sure that applications you
write do not use exit codes greater than128.

System signal exit values
Jobs terminated with a system signal are returned by LSF as exit codes greater than
128 such that exit_code-128=signal_value. For example, exit code 133 means that
the job was terminated with signal 5 (SIGTRAP on most systems, 133-128=5). A
job with exit code 130 was terminated with signal 2 (SIGINT on most systems,
130-128 = 2).
Some operating systems define exit values as 0-255. As a result, negative exit values
or values > 255 may have a wrap-around effect on that range. The most common
example of this is a program that exits -1 will be seen with "exit code 255" in LSF.

bhist and bjobs output
In most cases, bjobs and bhist show the application exit value (128 + signal). In
some cases, bjobs and bhist show the actual signal value.
If LSF sends catchable signals to the job, it displays the exit value. For example, if
you run bkill jobID to kill the job, LSF passes SIGINT, which causes the job to exit
with exit code 130 (SIGINT is 2 on most systems, 128+2 = 130).

Kill –9 <RES> and job Completed <exit>;
TERM_EXTERNAL_SIGNAL

Thu Mar 13 17:30:43: Exited by signal
15. The CPU time used is 0.1 seconds;

Others Completed <exit>; Thu Mar 13 17:30:43: Exited with 3;
The CPU time used is 0.1 seconds;

Example termination cause Termination reason in bacct –l Example bhist output

Understanding LSF job exit codes

774 Administering Platform LSF

If LSF sends uncatchable signals to the job, then the entire process group for the job
exits with the corresponding signal. For example, if you run bkill -s SEGV jobID
to kill the job, bjobs and bhist show:
Exited by signal 7

In addition bjobs displays the termination reason immediately following the exit
code or signal value. For example:
Exited by signal 24. The CPU time used is 84.0 seconds.

Completed <exit>; TERM_CPULIMIT: job killed after reaching LSF CPU
usage limit.

Unknown termination reasons appear without a detailed description in the bjobs
output as follows:
Completed <exit>;

Example
The following example shows a job that exited with exit code 130, which means that
the job was terminated by the owner.

bkill 248

Job <248> is being terminated

bjobs -l 248

Job <248>, User <user1>, Project <default>, Status <EXIT>, Queue <normal>, Command

Sun May 31 13:10:51: Submitted from host <host1>, CWD <$HOME>;

Sun May 31 13:10:54: Started on <host5>, Execution Home </home/user1>, Execution CWD
<$HOME>;

Sun May 31 13:11:03: Exited with exit code 130. The CPU time used is 0.9 seconds.

Sun May 31 13:11:03: Completed <exit>; TERM_OWNER: job killed by owner.

SCHEDULING PARAMETERS:

 r15s r1m r15m ut pg io ls it tmp swp mem

 loadSched - - - - - - - - - - -

 loadStop - - - - - - - - - - -

Administering Platform LSF 775

C H A P T E R

52
Troubleshooting and Error Messages

Contents
◆ Shared File Access on page 776
◆ Common LSF Problems on page 777
◆ Error Messages on page 784
◆ Setting Daemon Message Log to Debug Level on page 791
◆ Setting Daemon Timing Levels on page 794

Shared File Access

776 Administering Platform LSF

Shared File Access
A frequent problem with LSF is non-accessible files due to a non-uniform file space.
If a task is run on a remote host where a file it requires cannot be accessed using the
same name, an error results. Almost all interactive LSF commands fail if the user’s
current working directory cannot be found on the remote host.

Shared files on UNIX
If you are running NFS, rearranging the NFS mount table may solve the problem.
If your system is running the automount server, LSF tries to map the filenames, and
in most cases it succeeds. If shared mounts are used, the mapping may break for
those files. In such cases, specific measures need to be taken to get around it.
The automount maps must be managed through NIS. When LSF tries to map
filenames, it assumes that automounted file systems are mounted under the
/tmp_mnt directory.

Shared files on Windows

1 To share files among Windows machines, set up a share on the server and
access it from the client. You can access files on the share either by specifying a
UNC path (\\server\share\path) or connecting the share to a local drive
name and using a drive:\path syntax. Using UNC is recommended because
drive mappings may be different across machines, while UNC allows you to
unambiguously refer to a file on the network.

Shared files across UNIX and Windows
For file sharing across UNIX and Windows, you require a third party NFS product
on Windows to export directories from Windows to UNIX.

Administering Platform LSF 777

Troubleshooting and Error Messages

Common LSF Problems
This section lists some other common problems with the LIM, RES, mbatchd,
sbatchd, and interactive applications.
Most problems are due to incorrect installation or configuration. Check the error
log files; often the log message points directly to the problem.

LIM dies quietly

1 Run the following command to check for errors in the LIM configuration files.
lsadmin ckconfig -v

This displays most configuration errors. If this does not report any errors,
check in the LIM error log.

LIM unavailable
Sometimes the LIM is up, but executing the lsload command prints the following
error message:
Communication time out.

If the LIM has just been started, this is normal, because the LIM needs time to get
initialized by reading configuration files and contacting other LIMs. If the LIM
does not become available within one or two minutes, check the LIM error log for
the host you are working on.
To prevent communication timeouts when starting or restarting the local LIM,
define the parameter LSF_SERVER_HOSTS in the lsf.conf file. The client will
contact the LIM on one of the LSF_SERVER_HOSTS and execute the command,
provided that at least one of the hosts defined in the list has a LIM that is up and
running.
When the local LIM is running but there is no master LIM in the cluster, LSF
applications display the following message:
Cannot locate master LIM now, try later.

1 Check the LIM error logs on the first few hosts listed in the Host section of the
lsf.cluster.cluster_name file. If LSF_MASTER_LIST is defined in
lsf.conf, check the LIM error logs on the hosts listed in this parameter
instead.

Master LIM is down
Sometimes the master LIM is up, but executing the lsload or lshosts command
prints the following error message:
Master LIM is down; try later

If the /etc/hosts file on the host where the master LIM is running is configured
with the host name assigned to the loopback IP address (127.0.0.1), LSF client LIMs
cannot contact the master LIM. When the master LIM starts up, it sets its official

Common LSF Problems

778 Administering Platform LSF

host name and IP address to the loopback address. Any client requests will get the
master LIM address as 127.0.0.1, and try to connect to it, and in fact will try to
access itself.

1 Check the IP configuration of your master LIM in /etc/hosts. The following
example incorrectly sets the master LIM IP address to the loopback address:
127.0.0.1 localhost myhostname

The following example correctly sets the master LIM IP address:
127.0.0.1 localhost

192.168.123.123 myhostname

For a master LIM running on a host that uses an IPv6 address, the loopback
address is
::1

The following example correctly sets the master LIM IP address using an IPv6
address:
::1 localhost ipv6-localhost ipv6-loopback

fe00::0 ipv6-localnet

ff00::0 ipv6-mcastprefix

ff02::1 ipv6-allnodes

ff02::2 ipv6-allrouters

ff02::3 ipv6-allhosts

RES does not start

1 Check the RES error log.

User permission denied
If remote execution fails with the following error message, the remote host could
not securely determine the user ID of the user requesting remote execution.
User permission denied.

1 Check the RES error log on the remote host; this usually contains a more
detailed error message.

2 If you are not using an identification daemon (LSF_AUTH is not defined in the
lsf.conf file), then all applications that do remote executions must be owned
by root with the setuid bit set. This can be done as follows.
chmod 4755 filename

3 If the binaries are on an NFS-mounted file system, make sure that the file
system is not mounted with the nosuid flag.

Administering Platform LSF 779

Troubleshooting and Error Messages

4 If you are using an identification daemon (defined in the lsf.conf file by
LSF_AUTH), inetd must be configured to run the daemon. The identification
daemon must not be run directly.

5 If LSF_USE_HOSTEQUIV is defined in the lsf.conf file, check if
/etc/hosts.equiv or HOME/.rhosts on the destination host has the client
host name in it. Inconsistent host names in a name server with /etc/hosts and
/etc/hosts.equiv can also cause this problem.

6 On SGI hosts running a name server, you can try the following command to tell
the host name lookup code to search the /etc/hosts file before calling the
name server.
setenv HOSTRESORDER "local,nis,bind"

7 For Windows hosts, users must register and update their Windows passwords
using the lspasswd command. Passwords must be 3 characters or longer, and
31 characters or less.
For Windows password authentication in a non-shared file system
environment, you must define the parameter LSF_MASTER_LIST in
lsf.conf so that jobs will run with correct permissions. If you do not define
this parameter, LSF assumes that the cluster uses a shared file system
environment.

Non-uniform file name space
A command may fail with the following error message due to a non-uniform file
name space.
chdir(...) failed: no such file or directory

You are trying to execute a command remotely, where either your current working
directory does not exist on the remote host, or your current working directory is
mapped to a different name on the remote host.
If your current working directory does not exist on a remote host, you should not
execute commands remotely on that host.

On UNIX If the directory exists, but is mapped to a different name on the remote host, you
have to create symbolic links to make them consistent.
LSF can resolve most, but not all, problems using automount. The automount maps
must be managed through NIS. Follow the instructions in your Release Notes for
obtaining technical support if you are running automount and LSF is not able to
locate directories on remote hosts.

Batch daemons die quietly

1 First, check the sbatchd and mbatchd error logs. Try running the following
command to check the configuration.
badmin ckconfig

Common LSF Problems

780 Administering Platform LSF

This reports most errors. You should also check if there is any email in the LSF
administrator’s mailbox. If the mbatchd is running but the sbatchd dies on
some hosts, it may be because mbatchd has not been configured to use those
hosts.
See Host not used by LSF on page 780.

sbatchd starts but mbatchd does not

1 Check whether LIM is running. You can test this by running the lsid
command. If LIM is not running properly, follow the suggestions in this
chapter to fix the LIM first. It is possible that mbatchd is temporarily
unavailable because the master LIM is temporarily unknown, causing the
following error message.
sbatchd: unknown service

2 Check whether services are registered properly. See Registering Service Ports
on page 87 for information about registering LSF services.

Detached processes
LSF uses process groups to keep track of all the processes of a job. When a job is
launched, the application runs under the job-RES (or root) process group.
If an application creates a new process group, and its PPID still belongs to the job,
the PIM can track this new process group as part of the job.
However, if the application forks a child, the child becomes a new process group,
and the parent dies immediately, the child process group is now orphaned and
cannot be tracked.
Any process that daemonizes itself will almost certainly be lost (will orphan child
processes) because it will change its process group right after being detached.
The only reliable way to not lose track of a process is to prevent it from using a new
process group.

Host not used by LSF
If you configure a list of server hosts in the Host section of the lsb.hosts file,
mbatchd allows sbatchd to run only on the hosts listed. If you try to configure an
unknown host in the HostGroup or HostPartition sections of the lsb.hosts file,
or as a HOSTS definition for a queue in the lsb.queues file, mbatchd logs the
following message.
mbatchd on host: LSB_CONFDIR/cluster1/configdir/file(line #): Host
hostname is not used by lsbatch;

ignored

If you start sbatchd on a host that is not known by mbatchd, mbatchd rejects the
sbatchd. The sbatchd logs the following message and exits.
This host is not used by lsbatch system.

Administering Platform LSF 781

Troubleshooting and Error Messages

Both of these errors are most often caused by not running the following commands,
in order, after adding a host to the configuration.
lsadmin reconfig

badmin reconfig

You must run both of these before starting the daemons on the new host.

UNKNOWN host type or model

Viewing UNKNOWN host type or model

1 Run lshosts. A model or type UNKNOWN indicates the host is down or the
LIM on the host is down. You need to take immediate action. For example:

lshosts
HOST_NAME type model cpuf ncpus maxmem maxswp server RESOURCES
hostA UNKNOWN Ultra2 20.2 2 256M 710M Yes ()

Fixing UNKNOWN matched host type or matched model

1 Start the host.
2 Run lsadmin limstartup to start LIM on the host.

For example:
lsadmin limstartup hostA
Starting up LIM on <hostA> done

or, if EGO is enabled in the LSF cluster, you can also run:
egosh ego start lim hostA
Starting up LIM on <hostA> done

You can specify more than one host name to start up LIM on multiple hosts. If
you do not specify a host name, LIM is started up on the host from which the
command is submitted.
On UNIX, in order to start up LIM remotely, you must be root or listed in
lsf.sudoers (or ego.sudoers if EGO is enabled in the LSF cluster) and be
able to run the rsh command across all hosts without entering a password.

3 Wait a few seconds, then run lshosts again. You should now be able to see a
specific model or type for the host or DEFAULT. If you see DEFAULT, it means
that automatic detection of host type or model has failed, and the host type
configured in lsf.shared cannot be found. LSF will work on the host, but a
DEFAULT model may be inefficient because of incorrect CPU factors. A
DEFAULT type may also cause binary incompatibility because a job from a
DEFAULT host type can be migrated to another DEFAULT host type.

Common LSF Problems

782 Administering Platform LSF

DEFAULT host type or model

Viewing DEFAULT host type or model

If you see DEFAULT in lim -t, it means that automatic detection of host type or
model has failed, and the host type configured in lsf.shared cannot be found. LSF
will work on the host, but a DEFAULT model may be inefficient because of
incorrect CPU factors. A DEFAULT type may also cause binary incompatibility
because a job from a DEFAULT host type can be migrated to anotherDEFAULT
host type.

1 Run lshosts. If Model or Type are displayed as DEFAULT when you use
lshosts and automatic host model and type detection is enabled, you can leave
it as is or change it. For example:

lshosts
HOST_NAME type model cpuf ncpus maxmem maxswp server RESOURCES
hostA DEFAULT DEFAULT 1 2 256M 710M Yes ()

If model is DEFAULT, LSF will work correctly but the host will have a CPU
factor of 1, which may not make efficient use of the host model.
If type is DEFAULT, there may be binary incompatibility. For example, there are
2 hosts, one is Solaris, the other is HP. If both hosts are set to type DEFAULT, it
means jobs running on the Solaris host can be migrated to the HP host and
vice-versa.

Fixing DEFAULT matched host type or matched model

1 Run lim -t on the host whose type is DEFAULT:
lim -t

Host Type : LINUX86

Host Architecture : SUNWUltra2_200_sparcv9

Physical Processors : 2

Cores per Processor : 4

Threads per Core: : 2

Matched Type: DEFAULT

Matched Architecture: DEFAULT

Matched Model: DEFAULT

CPU Factor : 60.0

Note the value of Host Type and Host Architecture.
2 Edit lsf.shared.

a In the HostType section, enter a new host type. Use the host type name
detected with lim -t. For example:
Begin HostType

TYPENAME

DEFAULT

Administering Platform LSF 783

Troubleshooting and Error Messages

CRAYJ

LINUX86

...

End HostType

b In the HostModel section, enter the new host model with architecture and
CPU factor. Use the architecture detected with lim -t. Add the host model
to the end of the host model list. The limit for host model entries is 127.
Lines commented out with # are not counted in the 127-line limit. For
example:
Begin HostModel

MODELNAME CPUFACTOR ARCHITECTURE # keyword

Ultra2 20 SUNWUltra2_200_sparcv9

End HostModel

3 Save changes to lsf.shared.
4 Run lsadmin reconfig to reconfigure LIM.
5 Wait a few seconds, and run lim -t again to check the type and model of the

host.

Error Messages

784 Administering Platform LSF

Error Messages
The following error messages are logged by the LSF daemons, or displayed by the
following commands.
lsadmin ckconfig

badmin ckconfig

General errors
The messages listed in this section may be generated by any LSF daemon.
can’t open file: error

The daemon could not open the named file for the reason given by error. This error
is usually caused by incorrect file permissions or missing files. All directories in the
path to the configuration files must have execute (x) permission for the LSF
administrator, and the actual files must have read (r) permission. Missing files
could be caused by incorrect path names in the lsf.conf file, running LSF
daemons on a host where the configuration files have not been installed, or having
a symbolic link pointing to a nonexistent file or directory.
file(line): malloc failed

Memory allocation failed. Either the host does not have enough available memory
or swap space, or there is an internal error in the daemon. Check the program load
and available swap space on the host; if the swap space is full, you must add more
swap space or run fewer (or smaller) programs on that host.
auth_user: getservbyname(ident/tcp) failed: error; ident must be
registered in services

LSF_AUTH=ident is defined in the lsf.conf file, but the ident/tcp service is not
defined in the services database. Add ident/tcp to the services database, or
remove LSF_AUTH from the lsf.conf file and setuid root those LSF binaries
that require authentication.
auth_user: operation(<host>/<port>) failed: error

LSF_AUTH=ident is defined in the lsf.conf file, but the LSF daemon failed to
contact the identd daemon on host. Check that identd is defined in inetd.conf
and the identd daemon is running on host.
auth_user: Authentication data format error (rbuf=<data>) from
<host>/<port>

auth_user: Authentication port mismatch (...) from <host>/<port>

LSF_AUTH=ident is defined in the lsf.conf file, but there is a protocol error
between LSF and the ident daemon on host. Make sure the ident daemon on the
host is configured correctly.
userok: Request from bad port (<port_number>), denied

LSF_AUTH is not defined, and the LSF daemon received a request that originates
from a non-privileged port. The request is not serviced.
Set the LSF binaries to be owned by root with the setuid bit set, or define
LSF_AUTH=ident and set up an ident server on all hosts in the cluster. If the
binaries are on an NFS-mounted file system, make sure that the file system is not
mounted with the nosuid flag.

Administering Platform LSF 785

Troubleshooting and Error Messages

userok: Forged username suspected from <host>/<port>:
<claimed_user>/<actual_user>

The service request claimed to come from user claimed_user but ident
authentication returned that the user was actually actual_user. The request was not
serviced.
userok: ruserok(<host>,<uid>) failed

LSF_USE_HOSTEQUIV is defined in the lsf.conf file, but host has not been set
up as an equivalent host (see /etc/host.equiv), and user uid has not set up a
.rhosts file.
init_AcceptSock: RES service(res) not registered, exiting

init_AcceptSock: res/tcp: unknown service, exiting

initSock: LIM service not registered.

initSock: Service lim/udp is unknown. Read LSF Guide for help

get_ports: <serv> service not registered

The LSF services are not registered. See Registering Service Ports on page 87 for
information about configuring LSF services.
init_AcceptSock: Can’t bind daemon socket to port <port>: error,
exiting

init_ServSock: Could not bind socket to port <port>: error

These error messages can occur if you try to start a second LSF daemon (for
example, RES is already running, and you execute RES again). If this is the case, and
you want to start the new daemon, kill the running daemon or use the lsadmin or
badmin commands to shut down or restart the daemon.

Configuration errors
The messages listed in this section are caused by problems in the LSF configuration
files. General errors are listed first, and then errors from specific files.
file(line): Section name expected after Begin; ignoring section

file(line): Invalid section name name; ignoring section

The keyword begin at the specified line is not followed by a section name, or is
followed by an unrecognized section name.
file(line): section section: Premature EOF

The end of file was reached before reading the end section line for the named
section.
file(line): keyword line format error for section section; Ignore
this section

The first line of the section should contain a list of keywords. This error is printed
when the keyword line is incorrect or contains an unrecognized keyword.
file(line): values do not match keys for section section; Ignoring
line

The number of fields on a line in a configuration section does not match the
number of keywords. This may be caused by not putting () in a column to represent
the default value.

Error Messages

786 Administering Platform LSF

file: HostModel section missing or invalid

file: Resource section missing or invalid

file: HostType section missing or invalid

The HostModel, Resource, or HostType section in the lsf.shared file is either
missing or contains an unrecoverable error.
file(line): Name name reserved or previously defined. Ignoring index

The name assigned to an external load index must not be the same as any built-in
or previously defined resource or load index.
file(line): Duplicate clustername name in section cluster. Ignoring
current line

A cluster name is defined twice in the same lsf.shared file. The second definition
is ignored.
file(line): Bad cpuFactor for host model model. Ignoring line

The CPU factor declared for the named host model in the lsf.shared file is not a
valid number.
file(line): Too many host models, ignoring model name

You can declare a maximum of 127 host models in the lsf.shared file.
file(line): Resource name name too long in section resource. Should
be less than 40 characters. Ignoring line

The maximum length of a resource name is 39 characters. Choose a shorter name
for the resource.
file(line): Resource name name reserved or previously defined.
Ignoring line.

You have attempted to define a resource name that is reserved by LSF or already
defined in the lsf.shared file. Choose another name for the resource.
file(line): illegal character in resource name: name, section
resource. Line ignored.

Resource names must begin with a letter in the set [a-zA-Z], followed by letters,
digits or underscores [a-zA-Z0-9_].

Administering Platform LSF 787

Troubleshooting and Error Messages

LIM messages
The following messages are logged by the LIM:
main: LIM cannot run without licenses, exiting

The LSF software license key is not found or has expired. Check that FLEXnet is set
up correctly, or contact your LSF technical support.
main: Received request from unlicensed host <host>/<port>

LIM refuses to service requests from hosts that do not have licenses. Either your
LSF license has expired, or you have configured LSF on more hosts than your
license key allows.
initLicense: Trying to get license for LIM from source
<LSF_CONFDIR/license.dat>

getLicense: Can’t get software license for LIM from license file
<LSF_CONFDIR/license.dat>: feature not yet available.

Your LSF license is not yet valid. Check whether the system clock is correct.
findHostbyAddr/<proc>: Host <host>/<port> is unknown by <myhostname>

function: Gethostbyaddr_(<host>/<port>) failed: error

main: Request from unknown host <host>/<port>: error

function: Received request from non-LSF host <host>/<port>

The daemon does not recognize host. The request is not serviced. These messages
can occur if host was added to the configuration files, but not all the daemons have
been reconfigured to read the new information. If the problem still occurs after
reconfiguring all the daemons, check whether the host is a multi-addressed host.
See Host Naming on page 89 for information about working with multi-addressed
hosts.
rcvLoadVector: Sender (<host>/<port>) may have different config?

MasterRegister: Sender (host) may have different config?

LIM detected inconsistent configuration information with the sending LIM. Run
the following command so that all the LIMs have the same configuration
information.
lsadmin reconfig

Note any hosts that failed to be contacted.
rcvLoadVector: Got load from client-only host <host>/<port>. Kill
LIM on <host>/<port>

A LIM is running on a client host. Run the following command, or go to the client
host and kill the LIM daemon.
lsadmin limshutdown host

saveIndx: Unknown index name <name> from ELIM

LIM received an external load index name that is not defined in the lsf.shared
file. If name is defined in lsf.shared, reconfigure the LIM. Otherwise, add name
to the lsf.shared file and reconfigure all the LIMs.
saveIndx: ELIM over-riding value of index <name>

Error Messages

788 Administering Platform LSF

This is a warning message. The ELIM sent a value for one of the built-in index
names. LIM uses the value from ELIM in place of the value obtained from the
kernel.
getusr: Protocol error numIndx not read (cc=num): error

getusr: Protocol error on index number (cc=num): error

Protocol error between ELIM and LIM.

RES messages
These messages are logged by the RES.
doacceptconn: getpwnam(<username>@<host>/<port>) failed: error

doacceptconn: User <username> has uid <uid1> on client host
<host>/<port>, uid <uid2> on RES host; assume bad user

authRequest: username/uid <userName>/<uid>@<host>/<port> does not
exist

authRequest: Submitter’s name <clname>@<clhost> is different from
name <lname> on this host

RES assumes that a user has the same userID and username on all the LSF hosts.
These messages occur if this assumption is violated. If the user is allowed to use LSF
for interactive remote execution, make sure the user’s account has the same userID
and username on all LSF hosts.
doacceptconn: root remote execution permission denied

authRequest: root job submission rejected

Root tried to execute or submit a job but LSF_ROOT_REX is not defined in the
lsf.conf file.
resControl: operation permission denied, uid = <uid>

The user with user ID uid is not allowed to make RES control requests. Only the LSF
manager, or root if LSF_ROOT_REX is defined in lsf.conf, can make RES control
requests.
resControl: access(respath, X_OK): error

The RES received a reboot request, but failed to find the file respath to re-execute
itself. Make sure respath contains the RES binary, and it has execution permission.

mbatchd and sbatchd messages
The following messages are logged by the mbatchd and sbatchd daemons:
renewJob: Job <jobId>: rename(<from>,<to>) failed: error

mbatchd failed in trying to re-submit a rerunnable job. Check that the file from
exists and that the LSF administrator can rename the file. If from is in an AFS
directory, check that the LSF administrator’s token processing is properly setup.
See the document “Installing LSF on AFS” on the Platform Web site for more
information about installing on AFS.
logJobInfo_: fopen(<logdir/info/jobfile>) failed: error

logJobInfo_: write <logdir/info/jobfile> <data> failed: error

logJobInfo_: seek <logdir/info/jobfile> failed: error

Administering Platform LSF 789

Troubleshooting and Error Messages

logJobInfo_: write <logdir/info/jobfile> xdrpos <pos> failed: error

logJobInfo_: write <logdir/info/jobfile> xdr buf len <len> failed:
error

logJobInfo_: close(<logdir/info/jobfile>) failed: error

rmLogJobInfo: Job <jobId>: can’t unlink(<logdir/info/jobfile>):
error

rmLogJobInfo_: Job <jobId>: can’t stat(<logdir/info/jobfile>): error

readLogJobInfo: Job <jobId> can’t open(<logdir/info/jobfile>): error

start_job: Job <jobId>: readLogJobInfo failed: error

readLogJobInfo: Job <jobId>: can’t read(<logdir/info/jobfile>) size
size: error

initLog: mkdir(<logdir/info>) failed: error

<fname>: fopen(<logdir/file> failed: error

getElogLock: Can’t open existing lock file <logdir/file>: error

getElogLock: Error in opening lock file <logdir/file>: error

releaseElogLock: unlink(<logdir/lockfile>) failed: error

touchElogLock: Failed to open lock file <logdir/file>: error

touchElogLock: close <logdir/file> failed: error

mbatchd failed to create, remove, read, or write the log directory or a file in the log
directory, for the reason given in error. Check that LSF administrator has read,
write, and execute permissions on the logdir directory.
If logdir is on AFS, check that the instructions in the document “Installing LSF on
AFS” on the Platform Web site have been followed. Use the fs ls command to
verify that the LSF administrator owns logdir and that the directory has the
correct acl.
replay_newjob: File <logfile> at line <line>: Queue <queue> not
found, saving to queue <lost_and_found>

replay_switchjob: File <logfile> at line <line>: Destination queue
<queue> not found, switching to queue <lost_and_found>

When mbatchd was reconfigured, jobs were found in queue but that queue is no
longer in the configuration.
replay_startjob: JobId <jobId>: exec host <host> not found, saving
to host <lost_and_found>

When mbatchd was reconfigured, the event log contained jobs dispatched to host,
but that host is no longer configured to be used by LSF.
do_restartReq: Failed to get hData of host <host_name>/<host_addr>

mbatchd received a request from sbatchd on host host_name, but that host is not
known to mbatchd. Either the configuration file has been changed but mbatchd has
not been reconfigured to pick up the new configuration, or host_name is a client
host but the sbatchd daemon is running on that host. Run the following command
to reconfigure the mbatchd or kill the sbatchd daemon on host_name.
badmin reconfig

Error Messages

790 Administering Platform LSF

LSF command messages
LSF daemon (LIM) not responding ... still trying

During LIM restart, LSF commands will fail and display this error message. User
programs linked to the LIM API will also fail for the same reason. This message is
displayed when LIM running on the master host list or server host list is restarted
after configuration changes, such as adding new resources, binary upgrade, and so
on.
Use LSF_LIM_API_NTRIES in lsf.conf or as an environment variable to define
how many times LSF commands will retry to communicate with the LIM API while
LIM is not available. LSF_LIM_API_NTRIES is ignored by LSF and EGO daemons
and all EGO commands.
When LSB_API_VERBOSE=Y in lsf.conf, LSF batch commands will display the
not responding retry error message to stderr when LIM is not available.
When LSB_API_VERBOSE=N in lsf.conf, LSF batch commands will not display
the retry error meesage when LIM is not available.

Batch command client messages
LSF displays error messages when a batch command cannot communicate with
mbatchd. The following table provides a list of possible error reasons and the
associated error message output.

EGO command messages
You cannot run the egosh command because the administrator has chosen
not to enable EGO in lsf.conf: LSF_ENABLE_EGO=N.

If EGO is disabled, the egosh command cannot find ego.conf or cannot contact
vemkd (not started).

Point of failure Possible reason Error message output

Establishing a
connection with
mbatchd

mbatchd is too busy to accept new
connections. The connect() system call times
out.

LSF is processing your request. Please
wait…

mbatchd is down or there is no process
listening at either the LSB_MBD_PORT or the
LSB_QUERY_PORT

LSF is down. Please wait…

mbatchd is down and the LSB_QUERY_PORT
is busy

bhosts displays "LSF is down. Please
wait. . ."
bjobs displays "Cannot connect to LSF.
Please wait…"

Socket error on the client side Cannot connect to LSF. Please wait…

connect() system call fails Cannot connect to LSF. Please wait…

Internal library error Cannot connect to LSF. Please wait…

Send/receive handshake
message to/from
mbatchd

mbatchd is busy. Client times out when
waiting to receive a message from mbatchd.

LSF is processing your request. Please
wait…

Socket read()/write() fails Cannot connect to LSF. Please wait…

Internal library error Cannot connect to LSF. Please wait…

Administering Platform LSF 791

Troubleshooting and Error Messages

Setting Daemon Message Log to Debug Level
The message log level for LSF daemons is set in lsf.conf with the parameter
LSF_LOG_MASK. To include debugging messages, set LSF_LOG_MASK to one of:
◆ LOG_DEBUG
◆ LOG_DEBUG1
◆ LOG_DEBUG2
◆ LOG_DEBUG3
By default, LSF_LOG_MASK=LOG_WARNING and these debugging messages
are not displayed.
The debugging log classes for LSF daemons is set in lsf.conf with the parameters
LSB_DEBUG_CMD, LSB_DEBUG_MBD, LSB_DEBUG_SBD,
LSB_DEBUG_SCH, LSF_DEBUG_LIM, LSF_DEBUG_RES.
The location of log files is specified with the parameter LSF_LOGDIR in lsf.conf.
You can use the lsadmin and badmin commands to temporarily change the class,
log file, or message log level for specific daemons such as LIM, RES, mbatchd,
sbatchd, and mbschd without changing lsf.conf.

How the message log level takes effect
The message log level you set will only be in effect from the time you set it until you
turn it off or the daemon stops running, whichever is sooner. If the daemon is
restarted, its message log level is reset back to the value of LSF_LOG_MASK and
the log file is stored in the directory specified by LSF_LOGDIR.

Limitations
When debug or timing level is set for RES with lsadmin resdebug, or lsadmin
restime, the debug level only affects root RES. The root RES is the RES that runs
under the root user ID.
Application RESs always use lsf.conf to set the debug environment. Application
RESs are the RESs that have been created by sbatchd to service jobs and run under
the ID of the user who submitted the job.
This means that any RES that has been launched automatically by the LSF system
will not be affected by temporary debug or timing settings. The application RES will
retain settings specified in lsf.conf.

Debug commands for daemons
The following commands set temporary message log level options for LIM, RES,
mbatchd, sbatchd, and mbschd.

lsadmin limdebug [-c class_name] [-l debug_level] [-f logfile_name] [-o] [host_name]

lsadmin resdebug [-c class_name] [-l debug_level] [-f logfile_name] [-o] [host_name]

badmin mbddebug [-c class_name] [-l debug_level] [-f logfile_name] [-o]

badmin sbddebug [-c class_name] [-l debug_level] [-f logfile_name] [-o] [host_name]

badmin schddebug [-c class_name] [-l debug_level] [-f logfile_name] [-o]

For a detailed description of lsadmin and badmin, see the Platform LSF Command
Reference.

Setting Daemon Message Log to Debug Level

792 Administering Platform LSF

Examples
lsadmin limdebug -c "LC_MULTI LC_PIM" -f myfile hostA hostB

Log additional messages for the LIM daemon running on hostA and hostB, related
to MultiCluster and PIM. Create log files in the LSF_LOGDIR directory with the
name myfile.lim.log.hostA, and myfile.lim.log.hostB. The debug level is
the default value, LOG_DEBUG level in parameter LSF_LOG_MASK.
lsadmin limdebug -o hostA hostB

Turn off temporary debug settings for LIM on hostA and hostB and reset them to
the daemon starting state. The message log level is reset back to the value of
LSF_LOG_MASK and classes are reset to the value of LSF_DEBUG_RES,
LSF_DEBUG_LIM, LSB_DEBUG_MBD, LSB_DEBUG_SBD, and
LSB_DEBUG_SCH. The log file is reset to the LSF system log file in the directory
specified by LSF_LOGDIR in the format daemon_name.log.host_name.
badmin sbddebug -o

Turn off temporary debug settings for sbatchd on the local host (host from which
the command was submitted) and reset them to the daemon starting state. The
message log level is reset back to the value of LSF_LOG_MASK and classes are reset
to the value of LSF_DEBUG_RES, LSF_DEBUG_LIM, LSB_DEBUG_MBD,
LSB_DEBUG_SBD, and LSB_DEBUG_SCH. The log file is reset to the LSF system
log file in the directory specified by LSF_LOGDIR in the format
daemon_name.log.host_name.
badmin mbddebug -l 1

Log messages for mbatchd running on the local host and set the log message level
to LOG_DEBUG1. This command must be submitted from the host on which
mbatchd is running because host_name cannot be specified with mbddebug.
badmin sbddebug -f hostB/myfolder/myfile hostA

Log messages for sbatchd running on hostA, to the directory myfile on the server
hostB, with the file name myfile.sbatchd.log.hostA. The debug level is the
default value, LOG_DEBUG level in parameter LSF_LOG_MASK.
badmin schddebug -l 2

Log messages for mbatchd running on the local host and set the log message level
to LOG_DEBUG2. This command must be submitted from the host on which
mbatchd is running because host_name cannot be specified with schddebug.
badmin schddebug -l 1 -c “LC_PERFM”

badmin schdtime -l 2

Activate the LSF scheduling debug feature.
Log performance messages for mbatchd running on the local host and set the log
message level to LOG_DEBUG. Set the timing level for mbschd to include two levels
of timing information.
lsadmin resdebug -o hostA

Turn off temporary debug settings for RES on hostA and reset them to the daemon
starting state. The message log level is reset back to the value of LSF_LOG_MASK
and classes are reset to the value of LSF_DEBUG_RES, LSF_DEBUG_LIM,

Administering Platform LSF 793

Troubleshooting and Error Messages

LSB_DEBUG_MBD, LSB_DEBUG_SBD, and LSB_DEBUG_SCH. The log file is
reset to the LSF system log file in the directory specified by LSF_LOGDIR in the
format daemon_name.log.host_name.
For timing level examples, see Setting Daemon Timing Levels on page 794.

Setting Daemon Timing Levels

794 Administering Platform LSF

Setting Daemon Timing Levels
The timing log level for LSF daemons is set in lsf.conf with the parameters
LSB_TIME_CMD, LSB_TIME_MBD, LSB_TIME_SBD, LSB_TIME_SCH,
LSF_TIME_LIM, LSF_TIME_RES.
The location of log files is specified with the parameter LSF_LOGDIR in lsf.conf.
Timing is included in the same log files as messages.
To change the timing log level, you need to stop any running daemons, change
lsf.conf, and then restart the daemons.
It is useful to track timing to evaluate the performance of the LSF system. You can
use the lsadmin and badmin commands to temporarily change the timing log level
for specific daemons such as LIM, RES, mbatchd, sbatchd, and mbschd without
changing lsf.conf.
LSF_TIME_RES is not supported on Windows.

How the timing log level takes effect
The timing log level you set will only be in effect from the time you set it until you
turn the timing log level off or the daemon stops running, whichever is sooner. If
the daemon is restarted, its timing log level is reset back to the value of the
corresponding parameter for the daemon (LSB_TIME_MBD, LSB_TIME_SBD,
LSF_TIME_LIM, LSF_TIME_RES). Timing log messages are stored in the same file
as other log messages in the directory specified with the parameter LSF_LOGDIR
in lsf.conf.

Limitations
When debug or timing level is set for RES with lsadmin resdebug, or lsadmin
restime, the debug level only affects root RES. The root RES is the RES that runs
under the root user ID.
An application RES always uses lsf.conf to set the debug environment. An
application RES is the RES that has been created by sbatchd to service jobs and run
under the ID of the user who submitted the job.
This means that any RES that has been launched automatically by the LSF system
will not be affected by temporary debug or timing settings. The application RES will
retain settings specified in lsf.conf.

Timing level commands for daemons
The total execution time of a function in the LSF system is recorded to evaluate
response time of jobs submitted locally or remotely.
The following commands set temporary timing options for LIM, RES, mbatchd,
sbatchd, and mbschd.

lsadmin limtime [-l timing_level] [-f logfile_name] [-o] [host_name]

lsadmin restime [-l timing_level] [-f logfile_name] [-o] [host_name]

badmin mbdtime [-l timing_level] [-f logfile_name] [-o]

badmin sbdtime [-l timing_level] [-f logfile_name] [-o] [host_name]

badmin schdtime [-l timing_level] [-f logfile_name] [-o]

Administering Platform LSF 795

Troubleshooting and Error Messages

For debug level examples, see Setting Daemon Message Log to Debug Level on page
791.
For a detailed description of lsadmin and badmin, see the Platform LSF Command
Reference.

Setting Daemon Timing Levels

796 Administering Platform LSF

Administering Platform LSF 797

P A R T

VIII
LSF Utilities

Using lstcsh on page 799

798 Administering Platform LSF

Administering Platform LSF 799

C H A P T E R

53
Using lstcsh

This chapter describes lstcsh, an extended version of the tcsh command
interpreter. The lstcsh interpreter provides transparent load sharing of user jobs.
This chapter is not a general description of the tcsh shell. Only load sharing
features are described in detail.
Interactive tasks, including lstcsh, are not supported on Windows.

Contents
◆ About lstcsh on page 799
◆ Starting lstcsh on page 802
◆ Using lstcsh as Your Login Shell on page 802
◆ Host Redirection on page 803
◆ Task Control on page 804
◆ Built-in Commands on page 804
◆ Writing Shell Scripts in lstcsh on page 806

About lstcsh
The lstcsh shell is a load-sharing version of the tcsh command interpreter. It is
compatible with csh and supports many useful extensions. csh and tcsh users can
use lstcsh to send jobs to other hosts in the cluster without needing to learn any
new commands. You can run lstcsh from the command-line, or use the chsh
command to set it as your login shell.
With lstcsh, your commands are sent transparently for execution on faster hosts
to improve response time or you can run commands on remote hosts explicitly.
lstcsh provides a high degree of network transparency. Command lines executed on
remote hosts behave the same as they do on the local host. The remote execution
environment is designed to mirror the local one as closely as possible by using the
same values for environment variables, terminal setup, current working directory,
file creation mask, and so on. Each modification to the local set of environment

About lstcsh

800 Administering Platform LSF

variables is automatically reflected on remote hosts. Note that shell variables, the
nice value, and resource usage limits are not automatically propagated to remote
hosts.
For more details on lstcsh, see the lstcsh(1) man page.

In this section
◆ Task Lists on page 800
◆ Local and Remote Modes on page 800
◆ Automatic Remote Execution on page 801

Task Lists
LSF maintains two task lists for each user, a local list (.lsftask) and a remote list
(lsf.task). Commands in the local list must be executed locally. Commands in the
remote list can be executed remotely.
See the Platform LSF Configuration Reference for information about the .lsftask
and lsf.task files.

Changing task list
membership

You can use the LSF commands lsltasks and lsrtasks to inspect and change the
memberships of the local and remote task lists.

Task lists and
resource
requirements

Resource requirements for specific commands can be configured using task lists.
You can optionally associate resource requirements with each command in the
remote list to help LSF find a suitable execution host for the command.
If there are multiple eligible commands on a command-line, their resource
requirements are combined for host selection.
If a command is in neither list, you can choose how lstcsh handles the command.

Local and Remote Modes
lstcsh has two modes of operation:
◆ Local
◆ Remote

Local mode The local mode is the default mode. In local mode, a command line is eligible for
remote execution only if all of the commands on the line are present in the remote
task list, or if the @ character is specified on the command-line to force it to be
eligible.
See @ character on page 801 for more details.
Local mode is conservative and can fail to take advantage of the performance
benefits and load-balancing advantages of LSF.

Remote mode In remote mode, a command line is considered eligible for remote execution if none
of the commands on the line is in the local task list.
Remote mode is aggressive and makes more extensive use of LSF. However, remote
mode can cause inconvenience when lstcsh attempts to send host-specific
commands to other hosts.

Administering Platform LSF 801

Using lstcsh

Automatic Remote Execution
Every time you enter a command, lstcsh looks in your task lists to determine
whether the command can be executed on a remote host and to find the configured
resource requirements for the command.
See the Platform LSF Configuration Reference for information about task lists and
lsf.task file.
If the command can be executed on a remote host, lstcsh contacts LIM to find the
best available host.
The first time a command is run on a remote host, a server shell is started on that
host. The command is sent to the server shell, and the server shell starts the
command on the remote host. All commands sent to the same host use the same
server shell, so the start-up overhead is only incurred once.
If no host is found that meets the resource requirements of your command, the
command is run on the local host.

Differences from Other Shells
When a command is running in the foreground on a remote host, all keyboard
input (type-ahead) is sent to the remote host. If the remote command does not read
the input, it is lost.
lstcsh has no way of knowing whether the remote command reads its standard
input. The only way to provide any input to the command is to send everything
available on the standard input to the remote command in case the remote
command needs it. As a result, any type-ahead entered while a remote command is
running in the foreground, and not read by the remote command, is lost.

@ character
The @ character has a special meaning when it is preceded by white space. This
means that the @ must be escaped with a backslash \ to run commands with
arguments that start with @, like finger. This is an example of using finger to get
a list of users on another host:
finger @other.domain

Normally the finger command attempts to contact the named host. Under
lstcsh, the @ character is interpreted as a request for remote execution, so the shell
tries to contact the RES on the host other.domain to remotely execute the finger
command. If this host is not in your LSF cluster, the command fails. When the @
character is escaped, it is passed to finger unchanged and finger behaves as
expected.
finger \@hostB

Limitations
A shell is a very complicated application by itself. lstcsh has certain limitations:

Native language system
Native Language System is not supported. To use this feature of the tcsh, you must
compile tcsh with SHORT_STRINGS defined. This causes complications for
characters flowing across machines.

Starting lstcsh

802 Administering Platform LSF

Shell variables
Shell variables are not propagated across machines. When you set a shell variable
locally, then run a command remotely, the remote shell will not see that shell
variable. Only environment variables are automatically propagated.

fg command
The fg command for remote jobs must use @, as shown by examples in Task Control
on page 804.

tcsh version
lstcsh is based on tcsh 6.03 (7 bit mode). It does not support the new features of
the latest tcsh.

Starting lstcsh

Start lstcsh
If you normally use some other shell, you can start lstcsh from the command-line.

1 Make sure that the LSF commands are in your PATH environment variable,
then enter:
lstcsh

If you have a .cshrc file in your home directory, lstcsh reads it to set variables
and aliases.

Exit lstcsh

1 Use the exit command to get out of lstcsh.

Using lstcsh as Your Login Shell
If your system administrator allows, you can use LSF as your login shell. The
/etc/shells file contains a list of all the shells you are allowed to use as your login
shell.

Set your login shell

Using csh The chsh command can set your login shell to any of those shells. If the
/etc/shells file does not exist, you cannot set your login shell to lstcsh.

1 Run the command:
chsh user3 /usr/share/lsf/bin/lstcsh

The next time user3 logs in, the login shell will be lstcsh.

Administering Platform LSF 803

Using lstcsh

Using a standard
system shell

if you cannot set your login shell using chsh, you can use one of the standard system
shells to start lstcsh when you log in.
To set up lstcsh to start when you log in:

1 Use chsh to set /bin/sh to be your login shell.
2 Edit the .profile file in your home directory to start lstcsh, as shown below:

SHELL=/usr/share/lsf/bin/lstcsh
export SHELL
exec $SHELL -l

Host Redirection
Host redirection overrides the task lists, so you can force commands from your
local task list to execute on a remote host or override the resource requirements for
a command.
You can explicitly specify the eligibility of a command-line for remote execution
using the @ character. It may be anywhere in the command line except in the first
position (@ as the first character on the line is used to set the value of shell variables).
You can restrict who can use @ for host redirection in lstcsh with the parameter
LSF_SHELL_AT_USERS in lsf.conf. See the Platform LSF Configuration
Reference for more details.

Examples
hostname @hostD
<< remote execution on hostD >>
hostD

hostname @/type==linux
<< remote execution on hostB >>
hostB

@ character

For ease of use, the host names and the reserved word local following @ can all be
abbreviated as long as they do not cause ambiguity.

@ @ followed by nothing means that the command line is eligible for
remote execution.

@host_name @ followed by a host name forces the command line to be executed on
that host.

@local @ followed by the reserved word local forces the command line to be
executed on the local host only.

@/res_req @ followed by / and a resource requirement string means that the
command is eligible for remote execution and that the specified
resource requirements must be used instead of those in the remote
task list.

Task Control

804 Administering Platform LSF

Similarly, when specifying resource requirements following the @, it is necessary to
use / only if the first requirement characters specified are also the first characters
of a host name. You do not have to type in resource requirements for each
command line you type if you put these task names into remote task list together
with their resource requirements by running lsrtasks.

Task Control
Task control in lstcsh is the same as in tcsh except for remote background tasks.
lstcsh numbers shell tasks separately for each execution host.

jobs command
The output of the built-in command jobs lists background tasks together with their
execution hosts. This break of transparency is intentional to give you more control
over your background tasks.
sleep 30 @hostD &
<< remote execution on hostD >>
[1] 27568
sleep 40 @hostD &
<< remote execution on hostD >>
[2] 10280
sleep 60 @hostB &
<< remote execution on hostB >>
[1] 3748
jobs
<hostD>
[1] + Running sleep 30
[2] Running sleep 40
<hostB>
[1] + Running sleep 60

Bring a remote background task to the foreground

1 To bring a remote background task to the foreground, the host name must be
specified together with @, as in the following example:
fg %2 @hostD

<< remote execution on hostD >>
sleep 40

Built-in Commands
lstcsh supports two built-in commands to control load sharing, lsmode and
connect.

In this section
◆ lsmode on page 805
◆ connect on page 806

Administering Platform LSF 805

Using lstcsh

lsmode

Syntax lsmode [on|off] [local|remote] [e|-e] [v|-v] [t|-t]

Description The lsmode command reports that LSF is enabled if lstcsh was able to contact
LIM when it started up. If LSF is disabled, no load-sharing features are available.
The lsmode command takes a number of arguments that control how lstcsh
behaves.
With no arguments, lsmode displays the current settings:
lsmode
LSF
Copyright Platform Computing Corporation
LSF enabled, local mode, LSF on, verbose, no_eligibility_verbose,
no timing.

Options [on | off]
Turns load sharing on or off. When turned off, you can send a command line to a
remote host only if force eligibility is specified with @.
The default is on.
[local | remote]
Sets lstcsh to use local or remote mode.
The default is local. See Local and Remote Modes on page 800 for a description of
local and remote modes.
[e | -e]
Turns eligibility verbose mode on (e) or off (-e). If eligibility verbose mode is on,
lstcsh shows whether the command is eligible for remote execution, and displays
the resource requirement used if the command is eligible.
The default is off.
[v | -v]
Turns task placement verbose mode on (v) or off (-v). If verbose mode is on,
lstcsh displays the name of the host on which the command is run, if the
command is not run on the local host. The default is on.
[t | -t]
Turns wall-clock timing on (t) or off (-t).
If timing is on, the actual response time of the command is displayed. This is the
total elapsed time in seconds from the time you submit the command to the time
the prompt comes back.
This time includes all remote execution overhead. The csh time builtin does not
include the remote execution overhead.
This is an impartial way of comparing the response time of jobs submitted locally
or remotely, because all the load sharing overhead is included in the displayed
elapsed time.
The default is off.

Writing Shell Scripts in lstcsh

806 Administering Platform LSF

connect

Syntax connect [host_name]

Description lstcsh opens a connection to a remote host when the first command is executed
remotely on that host. The same connection is used for all future remote executions
on that host.
The connect command with no argument displays connections that are currently
open.
The connect host_name command creates a connection to the named host. By
connecting to a host before any command is run, the response time is reduced for
the first remote command sent to that host.
lstcsh has a limited number of ports available to connect to other hosts. By default
each shell can only connect to 15 other hosts.

Examples connect
CONNECTED WITH SERVER SHELL
hostA +

connect hostB
Connected to hostB

connect
CONNECTED WITH SERVER SHELL
hostA +
hostB -

In this example, the connect command created a connection to host hostB, but the
server shell has not started.

Writing Shell Scripts in lstcsh
You should write shell scripts in /bin/sh and use the lstools commands for load
sharing. However, lstcsh can be used to write load-sharing shell scripts.
By default, an lstcsh script is executed as a normal tcsh script with load-sharing
disabled.

Run a script with load sharing enabled
The lstcsh -L option tells lstcsh that a script should be executed with load
sharing enabled, so individual commands in the script may be executed on other
hosts.
There are three different ways to run an lstcsh script with load sharing enabled:
◆ Run lstcsh -L script_name, or
◆ Make the script executable and put the following as the first line of the script.

By default, lstcsh is installed in LSF_BINDIR.

Administering Platform LSF 807

Using lstcsh

The following assumes you installed lstcsh in the /usr/share/lsf/bin
directory):
#!/usr/share/lsf/bin/lstcsh -L

1 Start an interactive lstcsh.
2 Enable load sharing, and set to remote mode:

lsmode on remote

3 Use the source command to read the script in.

Writing Shell Scripts in lstcsh

808 Administering Platform LSF

Administering Platform LSF 809

Index
Symbols
! (NOT) operator

job dependencies 484
%I substitution string in job arrays 530
%J substitution string in job arrays 530
%USRCMD string in job starters 634
&& (AND) operator

job dependencies 484
.cshrc file and lstcsh 802
.lsbatch directory 37
.rhosts file

disadvantages 745
file transfer with lsrcp 761
host authentication 745
troubleshooting 778

/etc/hosts file
example host entries 92
host naming 89
name lookup 90
troubleshooting 778

/etc/hosts.equiv file
host authentication 744
troubleshooting 778
using rcp 761

/etc/services file
adding LSF entries to 87

/etc/shells file, and lstcsh 802
/etc/syslog.conf file 207, 766
/usr/include/sys/syslog.h file 765
@ (at sign) in lstcsh 803
|| (OR) operator

job dependencies 484
~ (tilde)

not operator
host partition fairshare 344
host-based resources 276

A
abnormal job termination 122
ABS_RUNLIMIT parameter in lsb.params 611
absolute job priority scheduling

admin value 498
description 495
LSF feature interactions 502

modifying calculated APS value 498
priority factors 495
resizable jobs 504

absolute run time limit 611
access permissions for interactive tasks 673
accounting information for advance reservations 473
adaptive dispatch. See chunk jobs
admin APS value 498
administrator comments

logging in lsb.events
for host open and close 71
for mbatchd restart 54
for queue events 111

ADMINISTRATORS
lsb.queues file 498

administrators
cluster administrator description 51
primary LSF administrator 51

ADMINISTRATORS parameter in
lsf.cluster.cluster_name 51

advance reservation
accounting information 473
adding and removing 460
commands 460
configuring user policies 458
description 456, 458
preemption 476
reservation ID 473
schmod_advrsv plugin 458
submitting jobs 475
user policies 458
viewing 469
viewing accounting information 473
weekly planner (brsvs -p) 470

advance reservations
compute units 478
resizable jobs 477

advanced dependency conditions 487
advanced reservation

compute units 103
AFS (Andrew File System)

overview 757
tokens for esub and eexec 638

810 Administering Platform LSF

Index

aliases
for resource names 312
host name ranges 89
using as host names 89

allocation limits. See resource allocation limits
AND operator (&&)

job dependencies 484
Andrew File System. See AFS
application profiles

adding and removing 404
checkpoint directory 516
configuring

for chunk jobs 522
controlling jobs 407
default application profile 405
description 404
job success exit values 405
modifying jobs (bmod -app) 407
pre- and post-execution commands

configuring 626
submitting jobs (bsub -app) 407
viewing

detailed information (bapp -l) 409
jobs (bjobs -app) 410
summary information (bacct -app) 410
summary information (bapp) 409

APS. See absolute job priority scheduling
APS_PRIORITY parameter in lsb.queues 497
architecture

EGO 193
architecture, viewing for hosts 66
arguments

passed to the LSF event program 726
passing to job arrays 530

arrays
chunking 534

at sign (@) in lstcsh 803
augmentstarter job starter 635
authentication

security 744
automatic

duplicate event logging 768
event log archiving 768
job requeue 507
job rerun

description 513
resizable jobs 513

priority escalation 494
queue selection 33
remote execution in lstcsh 801
time-based configuration 289

automatic job priority escalation
resizable jobs 494

automount command

NFS (Network File System) 757, 776
automount option

/net 758
autoresizable jobs

checkpoint and restart 517
available

meaning 256
B
bacct -app 410
bacct command

CPU time display 614
SLA scheduling 392

bacct -U
advance reservations 473

BACKFILL parameter in lsb.queues 569
backfill scheduling

default run limit 606
description 567
interruptible backfill 571
resizable jobs 568
resource allocation limits 424

background jobs, bringing to foreground 804
badmin command

hopen 70
hrestart 52
hshutdown 52
hstartup 52
logging administrator comments

for host open and close 71
for mbatchd restart 54
for queue events 111

LSF event logs 766
mbdrestart 52, 58
qact 111
qclose 111
qinact 111
qopen 111

balance keyword
cu string 550

banded licensing 157
bapp 409
batch jobs

accessing files 757, 758
allocating processors 542
email about jobs

disabling 752
options 751

file access 637, 758
input and output 751
killing 130
pre- and post-execution commands 622
requeue 506
rerunning and restarting 513

Administering Platform LSF 811

Index

signalling 130
batch log files. See log files
batch queues. See queues
bbot command 126

user-assigned job priority 492
B-Class LSF license type 157
benchmarks for setting CPU factors 104
Berkeley Internet Name Domain (BIND)

host naming 89
bgadd command

job group limits 137
bgdel command 142
bgmod command

job group limits 142
bhist command

job exit codes 773
LSF event logs 766

bhist -l 141
administrator changes to absolute job priority

scheduling 499
bhosts command

checking time-based configuration 291
bhosts -l 60
bhosts -x

viewing host exception status 69
BIND (Berkeley Internet Name Domain)

host naming 89
binding processors

resizable jobs 578
bjgroup command 138

SLA scheduling 398
bjobs -app 410
bjobs -aps

changes to absolute job priority scheduling 499
order of absolute job priority scheduling 501

bjobs command
reservation ID for advance reservation 473
SLA scheduling 392

bjobs -g 139
bjobs -l

modifed absolute job priority scheduling
values 499

bjobs -x
viewing job exception status 124

bkill -app 407
bkill -g 141
black hole hosts 105, 144
bladmin chkconfig command

checking time-based configuration 292
blimits -c command

checking time-based configuration 292
blimits command 436
blinfo command

checking time-based configuration 292

blstat command
checking time-based configuration 292

bmod
absolute job priority scheduling 498

bmod -app 407
bmod -g 140
bmod -is 756
bmod -Zs 756
Boolean resources 250
bparams command

checking time-based configuration 292
viewing configuration parameters 44

bqueues command
checking time-based configuration 292
cross-queue fairshare information 346

bqueues -l
absolute job priority scheduling 501

bresize cancel command 584
bresize release command 583
bresources command

checking time-based configuration 292
brestart command

resizable jobs 517
bresume -app 407
bresume -g 140
brsvadd -b

specifying begin times 461
brsvadd command 460
brsvadd -e

specifying end times 461
brsvadd -m

specifying a host list 460
brsvadd -R

specifying a resource requirement string 461
brsvadd -t

specifying recurring reservations 462
brsvdel command 469
brsvmod command 464
brsvs command 469
brun command

advance reservation 477
forcing a job to run 128
job preemption 297

bsla command 390
bstop -app 407
bstop -g 140
bsub -app 407
bsub command

email job notification 751
input and output 751
remote file access 759
submitting a job

associated to a job group 138
associated to a service class 387

812 Administering Platform LSF

Index

bsub -f 759
bsub -is 754
bsub -sla 387
bsub -Zs 755
bswitch command

resizable jobs 586
btop command

user-assigned job priority 492
built-in load indices

overriding 278
built-in resources 250
busers command

checking time-based configuration 292
busy host status

lsload command 61
status load index 256

busy thresholds, tuning 730
C
calculating license key check sums (lmcksum) 174
calculation of required licenses 161
candidate master hosts, specifying 733
ceiling resource usage limit 605
ceiling run limit 605
chargeback fairshare 367
check_license script, for counted software

licenses 280
checking

license server status (lmstat) 172
LSF floating client 184

checkout of licenses 161
checkpoint and restart

executables 518
resizable jobs 517

checkpointable jobs
chunk jobs 525

checksum
calculating for license key (lmcksum) 174

chsh and lstcsh 802
chunk jobs

absolute job priority scheduling 503
checkpointing 525
CHUNK_JOB_DURATION parameter in

lsb.params 522
configuring application profile for 522
configuring queue for 522
description 521
fairshare scheduling 525
job controls 524
killing 524
limitations on queues 523
migrating 525
modifying 525
rerunnable 525

resizable jobs 585
resource usage limits 603
resuming 525
submitting and controlling 524
WAIT status and pending reason 524

CHUNK_JOB_DURATION
parameter in lsb.params 522

chunking
job array 534

CLEAN_PERIOD parameter in lsb.params 130
client host

floating licenses 180
closed host status 60

bhosts command 60
bhosts -l 60, 65

closed_Adm condition, output of bhosts -l 60
closed_Busy condition, output of bhosts -l 60
closed_cu_Excl condition, output of bhosts -l 60
closed_EGO condition, output of bhosts -l 60
closed_Excl condition, output of bhosts -l 60
closed_Full condition, output of bhosts -l 60
closed_LIM condition, output of bhosts -l 60
closed_Lock condition, output of bhosts -l 60
closed_Wind condition, output of bhosts -l 60
cluster administrators

description 51
viewing 44

cluster names
viewing 44

clusters
configuration file quick reference 57
protecting with strict checking 81
reconfiguring

commands 57
how reconfiguration affects licenses 58

viewing
information about 44

viewing information 44
command file spooling

See also job file spooling
default directory 755
description 754
JOB_SPOOL_DIR parameter in lsb.params 754

commands
built-in 805
checking time-based configuration 291
FLEXnet utilities 172
job starters 631
lmcksum (FLEXnet) 174
lmdown (FLEXnet) 174
lmhostid (FLEXnet) 174
lmremove (FLEXnet) 174
lmreread (FLEXnet) 174
lmstat (FLEXnet)

Administering Platform LSF 813

Index

description 174
displaying license server status 172
example 173
using 172

lmver (FLEXnet) 174
lshosts -l 177
post-execution. See post-execution commands
pre-execution. See pre-execution commands
running under user ID 627
using in job control actions 652

components
EGO 193

compound resource requirements
multi-level 309
overview 300
syntax 307

Comprehensive System Accounting (IRIX CSA)
configuring 764

compute unit resource allocation 306
compute units

advanced reservation 103
configuring external compute units 103
cu string 334

syntax 550
exclusive 553
external 103
host level job allocation 554
reservation 554
resource requirements 334

concurrent threads 611
CONDENSE keyword in lsb.hosts 98, 102
CONDENSE_PENDING_REASONS parameter in

lsb.params 684
condensed host groups

defining 98, 102
viewing 64

condensed notation
host names 95

configuration
adding and removing

application profiles 404
queues 114

application profiles
job success exit values 405

commands for checking 291
default application profile 405
preselecting master hosts 732
removing

hosts 75
tuning

busy thresholds 730
LIM policies 730
load indices 731
load thresholds 731

mbatchd on UNIX 736
run windows 730

viewing
errors 58

configuration files
location 151
non-shared file systems 758
reconfiguration quick reference 57

configuration parameters. See individual parameter
names

CONSUMABLE
lsf.shared file 272

consumers
about 194

CONTROL_ACTION parameter in
lsb.serviceclasses 397

core file size limit 607
CORELIMIT parameter in lsb.queues 607
counted software licenses

configuring 280
description 279

CPU
factors

static resource 260
time normalization 613
tuning in lsf.shared 103

limits
per job 608
per process 608

normalization 613
run queue length, description 662
time

cumulative and decayed 341
in dynamic user priority calculation 341

time limit
job-level resource limit 607

tuning CPU factors in lsf.shared 103
utilization, ut load index 256
viewing run queue length 104

CPU factor
non-normalized run time limit 611

CPU factor (cpuf) static resource 259
CPU time

idle job exceptions 116, 144
CPU time normalization 608
CPU_TIME_FACTOR parameter in lsb.params

fairshare dynamic user priority 341
cpuf static resource 260
CPULIMIT parameter in lsb.queues 607
Cray

UNICOS accounting log files 764
cross-queue fairshare 345
CSA (IRIX Comprehensive System Accounting)

configuring 764

814 Administering Platform LSF

Index

.cshrc file and lstcsh 802
cu resource requirement string

resizable jobs 335
cu string 334

keyword balance 550
keyword excl 550
keyword maxcus 550
keyword pref 550
keyword type 550
syntax 550

cumulative CPU time 341
custom event handlers 726
custom file transfer

configuring 761
custom resources

adding 272
configuring 272
description 270
resource types 250

D
DAEMON line

license.dat file 159
DAEMON line, editing 164
daemons

commands 52
debug commands 791
error logs 207, 765
restarting

mbatchd 54
sbatchd 53

shutting down
mbatchd 55
sbatchd 53

TCP service ports 87
ypbind 90

data loader plug-ins 707
LSF 704

data loaders
EGO 705

data purger 706, 708
record expiry time 716
schedule 708, 714

data segment size limit 608
DATALIMIT parameter in lsb.queues 608
date of expiry (demo) 156
DCE/DFS (Distributed File System)

credentials, esub and eexec 638
overview 757

deadline constraint scheduling
description 293
parallel jobs 577
resizable jobs 294

deadlock, avoiding signal and job action 653

debug information
logging classes 209
logging levels 209

debug level
commands for daemons 791
setting temporarily 791

debug log classes
description 209

debug log levels
description 209

decayed
CPU time 341
run time 363

dedicated resources. See exclusive resources
DEFAULT

model or type with lshosts command 782
default

input file spooling 755
job control actions 649
JOB_SPOOL_DIR 755
LSF log file location 207, 763
LSF_LOGDIR 207, 766
output file spooling 755
queue

viewing 33
resource usage limits 605
run limit

backfill scheduling 606
UNIX directory structure 49
Windows directory structure 50

default normalization host 608
DEFAULT_APPLICATION parameter in

lsb.params 405
DEFAULT_HOST_SPEC parameter

in lsb.params 608
in lsb.queues 613

DEFAULT_JOBGROUP parameter in lsb.params 134
defined keyword 314
definitions

EGO 192
delayed SLA scheduling goals

control action 397
deletion

automatic job group cleanup 143
demand

defining in SDK 193
demo license 156
dependency conditions

job arrays
operators 531

relational operators 486
dependency conditions. See job dependency condi-

tions
dependency expressions

Administering Platform LSF 815

Index

multiple conditions 484
DFS (Distributed File System). See DCE/DFS
directories

default UNIX directory structure 49
default Windows directory structure 50
log

permissions and ownership 208, 764
.lsbatch 37
LSF_SERVERDIR

esub and eexec 638
remote access 637, 758
shared 37
user accounts 37

directory for license (demo) 163
directory for license (permanent) 166
disks

I/O rate 257
dispatch order, fairshare 342
dispatch turn

description 34
dispatch windows

description 480
hosts 70
queues 112
tuning for LIM 730

dispatch, adaptive. See chunk jobs
DISPATCH_WINDOW

queues 113
displaying

FLEXnet version information (lmver) 174
hardware host ID (lmhostid) 174
license server status (lmstat) 172, 174
licensed products 177

distributed license server hosts 175
distribution (partial licensing) 177
distribution of licenses 161
Domain Name Service (DNS)

host naming 89
done job dependency condition 486
DONE job state

description 120
post-execution commands 623

done jobs, viewing 120
dual-stack hosts

defining official host name 92
dns configuration 93

duplicate event logging 768
after network partitioning 768
automatic 768
description 767
mbatchd restart with MAX_INFO_DIRS 686

dynamic
hosts, protecting with strict checking 81
master host 38

resources 250
user priority

description 340
formula 341

dynamic priority
fairshare adjustment 342
memory based 342

E
eadmin script

default exception actions 145
host and job exception handling 144

EADMIN_TRIGGER_DURATION parameter in
lsb.params 117

E-Class LSF license type 157
eexec (external executable) script

description 637
passing data to execution environments 647
running as non-root 647

effective run queue length
built-in resources 256
description 662
tuning LIM 732

EGO
components 193
grace period

resources 214
how it works 193
what it is 192

ego.conf file
EGO_LOG_MASK parameter 765
managing error logs 765

EGO_LOG_MASK parameter in ego.conf 765
electronic mail. See email
eligible hosts

viewing 36
eligible hosts, viewing 36
ELIM (external LIM)

counted software licenses 280
email

disabling batch job notification 752
job options 751
limiting the size of job email 752

embedded submission options for interactive
jobs 667

ENABLE_EXIT_RATE_PER_SLOT parameter in
lsb.params 147

ENABLE_ONE_UG_LIMITS
limits and user groups 426

encryption
esub 641
X-Window 641

ended job dependency condition 486
environment

816 Administering Platform LSF

Index

setting 206, 218
environment of a job 37
environment variables. See individual environment

variable names
equal share fairshare 367
error logs

EGO_LOG_MASK parameter 765
log directory

LSF_LOGDIR 207, 766
log files 207, 765
LSF daemons 207, 765
LSF_LOG_MASK parameter 765
managing log files 764
on UNIX and Windows 207, 766

error messages
service 219

errors
viewing in reconfiguration 58

esub (external submission) executable
description 638
environment variables 638
job submission parameters 643
mandatory method (LSB_ESUB_METHOD) 645
pass data to execution environments 647

esub method (LSB_ESUB_METHOD) 645
/etc/hosts file

example host entries 92
host naming 89
name lookup 90
troubleshooting 778

/etc/hosts.equiv file
host authentication 744
troubleshooting 778
using rcp 761

/etc/services file
adding LSF entries to 87

/etc/syslog.conf file 207, 766
evaluation license 156
event generation 725
event log archiving

automatic 768
event log replication. See duplicate event logging
event logging

mbatchd restart with MAX_INFO_DIRS 686
event logs 709

automatic archiving 709, 768
configuring duplicate logging 768
duplicate logging 768
ego.stream file 709
logging administrator comments

for host open and close 71
for mbatchd restart 54
for queue events 111

lsb.events file 38

lsb.stream file 709
LSF Batch log file in lsb.events file 766
update interval 768

Event Viewer, Windows 725
EVENT_UPDATE_INTERVAL in lsb.params 768
events

custom programs to handle 726
generated by LSF 726
logging 38

example
demo license 159
partial licensing 177
permanent license 160

example.services file 87
examples

/etc/hosts file entries 92
lmstat command 173

exception handling
configuring host exceptions 105
configuring in queues 116
description 39

exception status
for hosts

viewing with bhosts 68
for jobs

viewing with bjobs 124
viewing with bqueues 110

excl keyword
cu string 550

exclusive jobs
requeue 511

EXCLUSIVE parameter
in lsb.queues file 100

exclusive resources host-based resources
exclusive resources 315

exclusive scheduling
resizable jobs 294

execution
environment 37
forcing for jobs 128
priority 259

execution host
mandatory for parallel jobs 547

exit codes
job success exit values 405
returned by jobs 773

exit dependency condition
relational operators 486

exit job dependency condition 486
EXIT job state

abnormal job termination 122
pre- and post-execution commands 623

exit rate for jobs 105, 144
EXIT_RATE

Administering Platform LSF 817

Index

bhosts -l 68
EXIT_RATE parameter in lsb.hosts 105
expiry date (demo) 156
expiry time for mbatchd 737
external

job dependency condition 487
job submission executable (esub) 638
LIM. See ELIM (external LIM)

external resources 250
F
factor grace period

absolute job priority scheduling 496
factor limit

absolute job priority scheduling 495
factor weight

absolute job priority scheduling 495
fairshare adjustment plugin 342
FAIRSHARE parameter in lsb.queues 347
fairshare scheduling

absolute job priority scheduling 502
across queues 345
chargeback 367
chunk jobs 525
defining policies that apply to several

queues 345
description 338
dynamic user priority

description 340
formula 341

equal share 367
global 366
hierarchical share tree 351
overview 337
parallel jobs 576
policies 338
priority user 368
resizable jobs 369
resource usage measurement 340
static priority 369
user share assignment 339
viewing cross-queue fairshare information 346

FAIRSHARE_QUEUES parameter
in bqueues 346
in lsb.queues 347

OBSOLETE 499
fast job dispatching 681
fault tolerance

description 38
non-shared file systems 758

FCFS (first-come, first-served) scheduling 34
FEATURE line

license.dat file (demo) 158
license.dat file (permanent) 159

features (LSF) 168
file (for demo license) 158
file (for permanent license) 159
file access, interactive tasks 673
file preparation, job arrays 529
file sharing 37
file size usage limit 609
file spooling. See command file spooling, job file

spooling
file systems

AFS (Andrew File System) 757
DCE/DFS (Distributed File System) 757
NFS (Network File System) 757
supported by LSF 757

file transfer
lsrcp command 760

file, updating 170
FILELIMIT parameter in lsb.queues 609
files

/etc/hosts
example host entries 92
host naming 89
name lookup 90

/etc/services
adding LSF entries to 87

automatic time-based configuration 289
copying across hosts 673
enabling utmp registration 668
hosts

configuring 91
if-else constructs 289
license.dat

location 167
lsb.params

CHUNK_JOB_DURATION parameter 522
JOB_ACCEPT_INTERVAL parameter 34

lsf.cluster.cluster_name
FLOAT_CLIENTS_ADDR_RANGE

parameter 183
lsf.conf

configuring TCP service ports 87
daemon service ports 87

lsf.shared
adding a custom host types and models 86

redirecting 659
redirecting stdout and stderrr 673
resolv.conf 90
spooling command and job files 666

finger command in lstcsh 801
first execution host

parallel jobs 547
resizable jobs 547

first-come, first-served (FCFS) scheduling 34
FLEXnet 174

818 Administering Platform LSF

Index

calculating license key check sums
(lmcksum) 174

displaying
hardware host ID (lmhostid) 174
license server status (lmstat) 174
version information (lmver) 174

removing a licensed feature (lmremove) 174
rereading license file (lmreread) 174
shutting down license server (lmdown) 174
utility commands 172

FLEXnet log file 173
FLEXnet-based license 156
floating client

description 180
enabling 181
resetting 180
specifying host or model type 181
verifying 184

floating client licenses
FLOAT_CLIENTS parameter in

lsf.cluster.cluster_name 182
FLOAT_CLIENTS_ADDR_RANGE parameter in

lsf.cluster.cluster_name 183
floating LSF client

description 180
enabling 181
resetting 180
specifying host or model type 181
verifying 184

floating LSF client licenses
FLOAT_CLIENTS parameter in

lsf.cluster.cluster_name 182
FLOAT_CLIENTS_ADDR_RANGE parameter in

lsf.cluster.cluster_name 183
floating software licenses

configuring dedicated queue for 282
managing with LSF 280

forcing job execution 128
formula

fairshare dynamic user priority calculation 341
free memory 257
FS absolute job priority scheduling factor 497
G
gethostbyname function (host naming) 90
global fairshare 366
GLOBAL_EXIT_RATE parameter in lsb.params 147
GLOBEtrotter Software 160
goal-oriented scheduling. See SLA scheduling
goals

SLA scheduling 386
grace period

absolute job priority scheduling factor 496
EGO resources 214

licenses 161
groups

external host 99, 103
external user 153
hosts 96
users 151

groups, specifying 366
H
hard resource limits

description 601
stack segment size 612

hard resource usage limits
example 605

hardware host ID
displaying (lmhostid) 174

hardware host name 165
hierarchical fairshare 349
hierarchical share tree 351
HIST_HOURS parameter in lsb.params

fairshare dynamic user priority 342
historical run time 363
history

job arrays 532, 536
HJOB_LIMIT parameter in lsb.queues 429
hname static resource 259
home directories

remote file access 759
shared 37

$HOME/.lsbatch directory 37
$HOME/.rhosts file

disadvantages 745
file transfer with lsrcp command 761
host authentication 745

hopen badmin command 70
host affinity

same string 332
host dispatch windows 480
host entries

examples 92
host exception handling

configuring 105
example 106
job exit rate exception 105, 144

host failure 39
host groups 64

CONDENSE keyword 98, 102
condensed

viewing 64
configuring external host groups 99
defining 151
defining condensed 98, 102
external 99
overview 151

Administering Platform LSF 819

Index

host ID 165
displaying (lmhostid) 174

host identifier 165
host load levels 36
host model static resource 259
host models

adding custom names in lsf.shared 86
DEFAULT 782
select string 312
tuning CPU factors 104

host name static resource 259
host names

/etc/hosts file 89
aliases 89
matching with Internet addresses 89
ranges 95
ranges as aliases 89
resolv.conf file 90
resolver function 90
using DNS 90
wildcards and special characters 97, 101

host partition fairshare 343
host redirection 803
host reservation. See advance reservation
host selection 306
host state. See host status
host status

busy
load index 256
lsload 61

closed 65
bhosts 60

description 60
index 255
lockU and lockW 61, 256
-ok 61, 256
ok

bhosts 60
load index 256
lsload 61

unavail 60
load index 256
lsload 61

unlicensed 60, 61, 256
unreach 60

host thresholds 36
host type static resource 259
host types

adding custom names in lsf.shared 86
DEFAULT 782
resource requirements 300
select string 312

host-based resources
description 250

hostcache
modifying 84

host-level
fairshare scheduling 343
resource information 452

host-locked software licenses 279
HOSTRESORDER environment variable 779
hosts

adding with lsfinstall 73
associating resources with 275
available 256
closing 70
connecting to remote 806
controlling 70
copying files across 673
dispatch windows 70
displaying 64
file 90
finding resource 674
for advance reservations 460
logging on the least loaded 674
master candidates 733
multiple network interfaces 91
official name 89
opening 70
preselecting masters for LIM 732
redirecting 803
removing 75
resource groups overview 194
restricting use by queues 115
selecting for task 670
setting up 74, 75
spanning with parallel jobs 556
specifying master candidates 733
specifying master host 768
viewing

architecture information 66
detailed information 65
eligible 36
execeptions 68
history 67
job exit rate and load 68
load by host 66, 253
load by resource 249
model and type information 67
resource allocation limits (blimits) 436
shared resources 252
status of closed servers 65
suspending conditions 619

hosts file (/etc/hosts)
example host entries 92
host naming 89
name lookup 90
troubleshooting 778

820 Administering Platform LSF

Index

hosts file (LSF)
configuring 91

HOSTS parameter
in lsb.hosts 96
in lsb.queues file 96, 100

hosts.equiv file
host authentication 744
using rcp 761

hostsetup script 74, 75
hrestart badmin command 52
hshutdown badmin command 52
hstartup badmin command 52
I
%I substitution string in job arrays 530
idle job exceptions

configuring 116
description 116, 144
viewing with bjobs 124
viewing with bqueues 110

idle time
built-in load index 257
description 661
suspending conditions 618

if-else constructs
creating 291
files 289

INCREMENT lines 170
index list for job arrays 528
input and output files

and interactive jobs 659
job arrays 529
splitting stdout and stderr 660
spooling directory 755

installation
on non-shared file systems 758

installation (demo) 162
installation (permanent) 164
installation directories

default UNIX structure 49
Windows default structure 50

interactive jobs
competing for software licenses 283
configuring queues to accept 658
redirecting scripts to standard input 667
resource reservation 328
running X applications 664
scheduling policies 657
specifying embedded submission options 667
specifying job options in a file 666
specifying shell 667
splitting stdout and stderr 660
spooling job command files 666
submitting 658

submitting and redirecting streams to files 659
submitting with pseudo-terminals 659
viewing queues for 658
writing job file one line at a time 666
writing job scripts 666

interactive sessions
starting 674

interactive tasks
file access 673

interfaces, network 91
Internet addresses

matching with host names 89
Internet Domain Name Service (DNS)

host naming 89
inter-queue priority 616
interruptible backfill 571

resizable jobs 572
INTERRUPTIBLE_BACKFILL parameter in

lsb.queues 572
io load index 257
IPv6

configure hosts 94
supported platforms 93
using IPv6 addresses 93

IRIX
Comprehensive System Accounting (CSA)

configuring 764
utmp file registration 668

it load index
automatic job suspension 617
description 257, 661
suspending conditions 618

J
%J substitution string in job arrays 530
JL/P parameter in lsb.users 429
JL/U parameter in lsb.hosts 429
job array dependency conditions

operators 531
job arrays

%I substitution string 530
%J substitution string 530
argument passing 530
controlling 534
creating 527
dependency condition operators 531
dependency conditions 531
file preparation 529
format 528
history 532, 536
index list 528
input and output files 529
maximum size 529
monitoring 532, 536

Administering Platform LSF 821

Index

overview 527
passing arguments 530
redirection of input and output 529
requeueing 536
specifying job slot limit 537
standard input and output 530
status 532, 536
submitting 527
syntax 528

job checkpoint and restart
application profiles 516
checkpoint directory 516
echkpnt 518
erestart 518
job restart description 518
queue level 516
resizable jobs 517

job chunking. See chunk jobs
job control actions

CHKPNT 652
configuring 651
default actions 649
LS_EXEC_T 649
on Windows 651
overriding terminate interval 650
RESUME 650
SUSPEND 649
TERMINATE 650
terminating 653
using commands in 652
with lstcsh 804

job data transformer 706, 707
schedule 715

job dependencies
logical operators 484

job dependency conditions
advanced 487
description 486
done 486
ended 486
examples 488
exit 486
external 487
job arrays 531
job name 487
post_done 487, 623
post_err 487, 623
post-processing 623
scheduling 484
specifying 484
specifying job ID 487
started 487

job dispatch
fast 681

maximum per session 681
job dispatch order, fairshare 342
job email

bsub options 751
disabling batch job notification 752
limiting size with LSB_MAILSIZE_LIMIT 752

job exception handling
configuring 116
default eadmin action 145
exception types 116, 144
viewing exception status with bjobs 124
viewing exceptions with bqueues 110

job execution environment 37
job exit rate exceptions

configuring 105
description 105, 144
viewing with bhosts 68

job file spooling
See also command file spooling
default directory 755
description 754
JOB_SPOOL_DIR parameter in lsb.params 754

job files 33
job groups

add limits 137
automatic deletion 143
controlling jobs 140
default job group 134
description 133
displaying SLA service classes 398
example hierarchy 136
job limits 135
modify limits 142
viewing 138

job idle factor
viewing with bjobs 124

job ladders. See batch jobs, pre-execution commands
job limit 611
job limits 424

job groups 135
job migration

absolute job priority scheduling 503
configuration

application profile level 520
host level 520
queue level 519

description 519
manual 519

job overrun exceptions
configuring 116
description 116, 144
viewing with bjobs 124
viewing with bqueuees 110

job preemption

822 Administering Platform LSF

Index

absolute job priority scheduling 503
description 297
SLA scheduling 397

job priority
automatic escalation 494
user assigned 492

job requeue
absolute job priority scheduling 503
automatic 507
exclusive 511
resizable jobs 586
reverse requeue 510
user-specified 512

job rerun
absolute job priority scheduling 503
disabling post-execution commands 514, 625
resizable jobs 513

job restart
resizable jobs 517

job scripts
writing for interactive jobs 666

job slot limits 423
for job arrays 537
for parallel jobs 545
viewing resource allocation limits (blimits) 436

job spanning 306, 330
job starters

augmentstarter 635
command-level 631
lic_starter script to manage software

licenses 283
preservestarter 635
queue-level

configuring 634
description 632

specifying command or script 633, 634
user commands 634

job states
description 120
DONE

description 120
post-execution commands 623

EXIT
abnormal job termination 122
pre- and post-execution commands 623

PEND 120
POST_DONE 122, 623
POST_ERR 122, 623
post-execution 623
PSUSP 120
RUN 120
SSUSP 120
USUSP 120
WAIT for chunk jobs 524

job submission 32
job success exit values

application profile configuration 405
JOB_ACCEPT_INTERVAL parameter in lsb.params 34
JOB_CONTROLS parameter in lsb.queues 651
JOB_EXIT_RATE_DURATION parameter in

lsb.params 105
JOB_GROUP_CLEAN parameter in lsb.params 143
JOB_IDLE parameter in lsb.queues 116
JOB_INCLUDE_POSTPROC parameter

in lsb.applications 628
JOB_OVERRUN parameter in lsb.queues 116
JOB_POSITION_CONTROL_BY_ADMIN parameter in

lsb.params 684
JOB_POSTPROC_TIMEOUT parameter

in lsb.applications 629
JOB_PRIORITY_OVER_TIME parameter in

lsb.params 497
automatic job priority escalation 494

JOB_SCHEDULING_INTERVAL parameter in
lsb.params 34, 683

JOB_SPOOL_DIR parameter in lsb.params 754
JOB_STARTER

lsb.queues file 634
JOB_STARTER parameter in lsb.queues 634
JOB_TERMINATE_INTERVAL parameter in

lsb.params 609, 650
JOB_UNDERRUN parameter in lsb.queues 116
job-level

post-execution commands
description 623

pre-execution commands
configuring 624
description 623

resource requirements 304
resource reservation 440
run limits 610

job-level suspending conditions
viewing 619

jobs
changing execution order 126
checkpointing

chunk jobs 525
CHKPNT 652
controlling

in an application profile 407
dispatch order 35
email notification

disabling 752
options 751

enabling rerun 513
enforcing memory usage limits 609
exit codes

description 773

Administering Platform LSF 823

Index

job success exit values 405
forcing execution 128
interactive. See interactive jobs
killing 130

in an application profile 407
limiting processors for parallel 561
modifying

in an application profile 407
optimum number running in SLA 386
pending 120
preemption 616
preemptive and preemptable 298
requeueing 536
requeuing

description 512
rerunning 513
rerunning automatically 513
restarting

automatically 513
resuming 129, 620

in an application profile 407
sending specific signals to 132
short running 521
specifying options for interactive 666
specifying shell for interactive 667
spooling command and job files 666
spooling input, output, and command files 754
stopping

in an application profile 407
submitting

to a job group 138
to a service class 387
to an application profile 407

suspended 620
suspending 129, 616
suspending at queue level 619
switching queues 127
viewing

by user 123
configuration parameters in lsb.params 45
order in queue 35

viewing resource allocation limits (blimits) 436
jobs command in lstcsh 804
jobs requeue, description 506
JPRIORITY absolute job priority scheduling factor 497
JSDL

configuration 275
required resources 273

JSDL (Job Submission Description Language)
benefits 587
elim.jsdl 596
how to submit a job 596
LSF extension elements 593
schema files 587

supported elements 587
unsupported elements 595
using with LSF 587

L
libfairshareadjust 342
lic_starter script, to manage software licenses 283
license file (demo) 158
license file (permanent) 159
license host 160
license key

calculating checksum (lmcksum) 174
license management commands 172
license server

calculating license key check sums
(lmcksum) 174

checking status (lmstat) 172
displaying

hardware host ID (lmhostid) 174
status (lmstat) 172
version information (lmver) 174

specifying TCP port 188
utility commands 172

license server daemon (lmgrd) 160
license server host 168

description 160
license.dat (demo) 158
license.dat (permanent) 159
license.dat file

location 167
license.dat, updating 170
licenses

cluster reconfiguration 58
displaying

FLEXnet version information (lmver) 174
hardware host ID (lmhostid) 174
LSF products 177
server status (lmstat) 174

floating LSF client
description 180
enabling 181
specifying host or model type 181

removing feature (lmremove) 174
rereading license file (lmreread) 174
shutting down FLEXnet server (lmdown) 174
software

counted 279
dedicated queue for 282
floating 280
host locked 279
interactive jobs and 283

LIM (Load Information Manager)
preselecting master hosts 732
tuning 732

824 Administering Platform LSF

Index

load indices 731
load thresholds 731
policies 730
run windows 730

LIM, master 160
limdebug command 791
limitations

lsrcp command 760
on chunk job queues 523

limits
job 424
job group 135
job slot 423
See resource allocation limits or resource usage

limits
limtime command 794
Linux and Windows hosts

multicore processor support 156
lmcksum command 174
lmdown command 174
lmgrd daemon 160
lmhostid 165
lmhostid command 174
lmremove command 174
lmreread command 174
lmstat command

description 174
example 173
using 172

lmver command 174
load average 256
load indices

See also resources
built-in

overriding 278
summary 255

io 257
it 257
ls 257
mem 257
pg 257
r15m 256
r15s 256
r1m 256
swp 257
tmp 257
tuning for LIM 731
types 661
ut 256
ut load index

select resource requirement string 312
viewing 44, 258

load levels
viewing by resource 249

viewing for cluster 44
viewing for hosts 66

load sharing
displaying current setting 805
with lstcsh 806

load thresholds
configuring 618
description 302
paging rate, tuning 732
queue level 618
resizable jobs 618
tuning 731
tuning for LIM 730, 731

loader controller 704, 706, 707
data collection

disabling 717
frequency 708, 717

local event logging
mbatchd restart with MAX_INFO_DIRS 686

local mode in lstcsh 800
LOCAL_MAX_PREEXEC_RETRY parameter

in lsb.applications, lsb.params, lsb.queues 629
locality

parallel jobs 330, 549, 556
location of license (demo) 163
location of license (permanent) 166
lockU and lockW host status

lsload command 61
status load index 256

log file (FLEXnet) 173
log files

about 208
change ownership 765
default location 207, 763
directory permissions and ownership 208, 764
ESC 208
logging events on Cray UNICOS 764
maintaining 207, 765
managing 207, 765
mbatchd.log.host_name 207, 765
mbschd.log.host_name 207, 765
named 208
PEM 208
res.log.host_name 207, 765
sbatchd.log.host_name 207, 765
troubleshooting 211
VEMKD 208
WSG 208
WSM 208

LOG_DAEMON facility, LSF error logging 207, 766
logging classes

description 209
logging levels 764

description 209

Administering Platform LSF 825

Index

logical operators
in time expesssions 288
job dependencies 484

login sessions 257
login shell, using lstcsh as 802
logs

classes 209
entry formats 208
levels 209

lost_and_found queue 114
ls load index 257
ls_connect API call 638
LS_EXEC_T environment variable 649
LS_JOBPID environment variable 647
ls_postevent() arguments 726
lsadmin command

limlock 60
limunlock 60

lsb.acct file
job exit information 769
job termination reason logging 768
killing jobs in a batch 130

lsb.applications file
adding an application profile 404
JOB_INCLUDE_POSTPROC parameter 628
JOB_POSTPROC_TIMEOUT parameter 629
LOCAL_MAX_PREEXEC_RETRY parameter 629
MAX_PREEXEC_RETRY parameter 629
NAME parameter 404
POST_EXEC parameter 626
PRE_EXEC parameter 626
REMOTE_MAX_PREEXEC_RETRY parameter 629
REQUEUE_EXIT_VALUES parameter 507
SUCCESS_EXIT_VALUES parameter 405

lsb.events file
event logging 38
logging administrator comments

for host open and close 71
for mbatchd restart 54
for queue events 111

managing event log 766
lsb.hosts file

CONDENSE keyword 98, 102
host exception handling 105
if-else constructs 289
time-based configuration 289
user groups 152
USER_SHARES parameter 152
using host groups 96
using user groups 152

lsb.modules file
advance reservation 458
schmod_advrsv plugin 458

lsb.params file

absolute run time limit 611
CHUNK_JOB_DURATION parameter 522
CLEAN_PERIOD parameter 130
CONDENSE_PENDING_REASONS parameter 684
controlling lsb.events file rewrites 766
CPU time normalization 608
default application profile 405
default normalization host 608
DEFAULT_JOBGROUP parameter 134
EADMIN_TRIGGER_DURATION threshold for ex-

ception handling 117
ENABLE_EXIT_RATE_PER_SLOT parameter 147
GLOBAL_EXIT_RATE parameter 147
if-else constructs 289
job termination signal interval 609
JOB_ACCEPT_INTERVAL parameter 34
JOB_EXIT_RATE_DURATION for exception

handling 105
JOB_GROUP_CLEAN parameter 143
JOB_POSITION_CONTROL_BY_ADMIN

parameter 684
JOB_PRIORITY_OVER_TIME parameter 494
JOB_SCHEDULING_INTERVAL parameter 34,

683
JOB_SPOOL_DIR parameter 754
LOCAL_MAX_PREEXEC_RETRY parameter 629
MAX_CONCURRENT_JOB_QUERY

parameter 683
MAX_INFO_DIRS parameter 685
MAX_PEND_JOBS parameter 121
MAX_PREEXEC_RETRY parameter 629
MAX_SBD_CONNS parameter 682
MAX_USER_PRIORITY parameter 492
MBD_QUERY_CPUS parameter 739
MBD_REFRESH_TIME parameter 736
MIN_REFRESH_TIME parameter 737
MIN_SWITCH_PERIOD parameter 684
NEWJOB_REFRESH parameter 739
non-normalized run time limit 611
PARALLEL_SCHED_BY_SLOT parameter 546
REMOTE_MAX_PREEXEC_RETRY parameter 629
specifying job input files 754
SUB_TRY_INTERVAL parameter 121
time-based configuration 289

lsb.queues file
adding a queue 114
EXCLUSIVE parameter 100
HOSTS parameter 96, 100
if-else constructs 289
job exception handling 116
JOB_IDLE parameter 116
JOB_OVERRUN parameter 116
JOB_UNDERRUN parameter 116
LOCAL_MAX_PREEXEC_RETRY parameter 629

826 Administering Platform LSF

Index

MAX_PREEXEC_RETRY parameter 629
normalization host 613
POST_EXEC parameter 625
PRE_EXEC parameter 625
QUEUE_NAME parameter 114
REMOTE_MAX_PREEXEC_RETRY parameter 629
REQUEUE_EXIT_VALUES parameter 507
resource usage limits 605
restricting host use by queues 115
time-based configuration 289
user groups 152
USERS parameter 152
using compute units 100
using host groups 96
using user groups 152

lsb.queues files
DEFAULT_HOST_SPEC parameter 613

lsb.resources file
advance reservation policies 458
if-else constructs 289
parameters 427
ReservationUsage section 240
time-based configuration 289
viewing limit configuration (blimits) 436

lsb.serviceclasses file
configuring SLA scheduling 388
CONTROL_ACTION 397

lsb.users file
if-else constructs 289
MAX_PEND_JOBS parameter 121
time-based configuration 289
user groups 152
USER_NAME parameter 152
using user groups 152

LSB_CHUNK_RUSAGE parameter in lsf.conf 603
LSB_CONFDIR parameter in lsf.conf

default UNIX directory 49
LSB_DEFAULT_JOBGROUP environment

variable 134
LSB_DEFAULTQUEUE environment variable 33
LSB_DISABLE_RERUN_POST_EXEC parameter in

lsf.conf 514, 625
LSB_ESUB_METHOD in lsf.conf 645
LSB_HOSTS environment variable 540
LSB_JOB_CPULIMIT parameter in lsf.conf 608
LSB_JOBEXIT_STAT environment variable 625
LSB_JOBINDEX environment variable 530
LSB_JOBPEND environment variable 625
LSB_JOBPGIDS environment variable 652
LSB_JOBPIDS environment variable 652
LSB_LOCALDIR parameter in lsf.conf file 768
LSB_MAILSIZE environment variable 752
LSB_MAILSIZE_LIMIT parameter in lsf.conf 752
LSB_MAILTO parameter in lsf.conf 751

LSB_MAX_JOB_DISPATCH_PER_SESSION parameter in
lsf.conf 681

LSB_MBD_PORT parameter in lsf.conf 87
LSB_NCPU_ENFORCE parameter in lsf.conf 576
LSB_NTRIES environment variable 121
LSB_PRE_POST_EXEC_USER parameter

in lsf.sudoers 627
LSB_QUERY_PORT parameter in lsf.conf 683, 738
LSB_REQUEUE_TO_BOTTOM parameter in

lsf.conf 507, 510
LSB_SBD_PORT parameter in lsf.conf 87
LSB_SHAREDIR parameter in lsf.conf

default UNIX directory 49
duplicate event logging 767

LSB_SHAREDIR/cluster_name/logdir
LSF log files 207, 763

LSB_SIGSTOP parameter in lsf.conf 129, 653
LSB_SUB_ABORT_VALUE environment variable 642
LSB_SUB_COMMANDNAME

lsf.conf file 243
LSB_SUB_COMMANDNAME parameter in

lsf.conf 639
LSB_SUB_PARM_FILE environment variable 638
LSB_SUSP_REASON environment variable 652
LSB_SUSP_SUBREASONS environment variable 652
LSB_UTMP parameter in lsf.conf 668
lsbapplications file

using compute units 100
.lsbatch directory 37
LSF Daemon Error Log 207, 765
LSF events

generated by LSF 726
generation of 725
program arguments 726

LSF features 168
LSF license grace period 161
LSF licenses

license file location 167
LSF licensing

banded license types 157
lsf_mv_grid_filter feature 157
multicore processor Linux and Windows

hosts 156
LSF master LIM 160
LSF parameters. See individual parameter names
LSF products 168

displaying enabled license 177
LSF vendor license daemon (lsf_ld) 160
LSF version

viewing 44
lsf.cluster.cluster_name file

ADMINISTRATORS parameter 51
configuring cluster administrators 51
exclusive resources 315

Administering Platform LSF 827

Index

floating LSF client licenses 181
license checkout 161

lsf.conf file
comprehensive system account 764
configuring duplicate logging 768
configuring TCP service ports 87
custom file transfer 761
daemon service ports 87
default UNIX directory 49
duplicate event logging 767
dynamic host startup time 77
limiting the size of job email 752
LSB_CHUNK_RUSAGE parameter 603
LSB_DISABLE_RERUN_POST_EXEC

parameter 514, 625
LSB_JOB_CPULIMIT parameter 608
LSB_JOB_MEMLIMIT 609
LSB_MAILSIZE_LIMIT parameter 752
LSB_MAILTO parameter 751
LSB_MAX_JOB_DISPATCH_PER_SESSION

parameter 681
LSB_MEMLIMIT_ENFORCE 609
LSB_QUERY_PORT parameter 683, 738
LSB_SIGSTOP parameter 129
LSB_SUB_COMMANDNAME parameter 243, 639
LSF_BINDIR parameter 49, 761
LSF_DYNAMIC_HOST_WAIT_TIME parameter 77
LSF_ENABLE_CSA parameter 764
LSF_LOG_MASK parameter 765
LSF_LOGDIR parameter 207, 766
LSF_MANDIR parameter 49
LSF_MASTER_LIST parameter 77, 733
LSF_MISC parameter 49
LSF_SERVERDIR parameter 49
LSF_STRICT_CHECKING parameter 81
LSF_STRICT_RESREQ parameter 315
lsrcp command executable 761
managing error logs 765
master host candidates 733
per-job CPU limit 608
resource usage limits for chunk jobs 603
sending email to job submitter 751
setting message log to debug level 791
strict checking, enabling 81

lsf.conf parameter LSF_LICENSE_FILE 166
lsf.licensescheduler file

if-else constructs 289
time-based configuration 289

lsf.shared file
adding a custom host type and model 86
tuning CPU factors 103

lsf.sudoers file
LSB_PRE_POST_EXEC_USER parameter 627

LSF_BINDIR parameter in lsf.conf 49, 761

LSF_CONFDIR parameter in lsf.conf 49
LSF_DYNAMIC_HOST_WAIT_TIME parameter in

lsf.conf 77
LSF_ENABLE_CSA parameter in lsf.conf 764
LSF_INCLUDEDIR parameter in lsf.conf

default UNIX directory 49
LSF_JOB_STARTER environment variable 633
lsf_ld 160
LSF_LICENSE_FILE parameter in lsf.conf 166
LSF_LIM_PORT parameter in lsf.conf 87
LSF_LOG_MASK parameter in lsf.conf 765, 791
LSF_LOGDIR parameter in lsf.conf 207, 766
LSF_MANDIR parameter in lsf.conf 49
LSF_MASTER_LIST parameter in lsf.conf 77, 733
LSF_MISC parameter in lsf.conf 49
lsf_mv_grid_filter license feature 157
LSF_NT2UNIX_CLTRB environment variable 654
LSF_NT2UNIX_CLTRC environment variable 654
LSF_RES_PORT parameter in lsf.conf 87
LSF_RSH parameter in lsf.conf

controlling daemons 52
LSF_SERVERDIR 169
LSF_SERVERDIR parameter in lsf.conf 49
LSF_STRICT_CHECKING parameter in lsf.conf 81
LSF_STRICT_RESREQ parameter in lsf.conf 315
LSF_SUB_COMMANDLINE environment variable 243
LSF_TOP directory

default UNIX directory structure 49
lsfinstall

adding a host 73
lsfinstall command

using 239
lsfinstall program 162
lsfshutdown command

shutting down daemons on all hosts 52
lsfstartup command

starting daemons on all hosts 52
lshosts

viewing dynamic host information 69
lshosts command

DEFAULT host model or type 782
lshosts -l

viewing licensed LSF products 177
lsrcp command

description 759
executable file location 761
file transfer 760
restrictions 760

lstcsh
about 799
difference from other shells 801
exiting 802
limitations 801
local mode 800

828 Administering Platform LSF

Index

remote mode 800
resource requirements 800
starting 802
task lists 800
using as login shell 802
writing shell scripts in 806

M
mail

disabling batch job notification 752
job options 751
limiting the size of job email 752

mandatory esub method (LSB_ESUB_METHOD) 645
mandatory first execution host

parallel jobs 547
resizable jobs 547

master esub (mesub)
configuring 646
description 644

master host candidates 220
with LSF_MASTER_LIST 733

master host failover
about 220

master hosts 220
in non-shared file systems 758
preselecting 732
specifying 768
viewing current 44

MAX_CONCURRENT_JOB_QUERY parameter in
lsb.params 683

MAX_INFO_DIRS parameter in lsb.params 685
MAX_JOB_NUM parameter in lsb.params 766
MAX_JOBS parameter in lsb.users 429
MAX_PEND_JOBS parameter in lsb.params or

lsb.users 121
MAX_PREEXEC_RETRY parameter

in lsb.applications, lsb.params, lsb.queues 629
MAX_RESERVE_TIME parameter in lsb.queues 442,

444
MAX_SBD_CONNS parameter in lsb.params 682
MAX_USER_PRIORITY parameter in lsb.params

automatic job priority escalation 494
user-assigned job priority 492

maxcus keyword
cu string 550

maximum
number of processors for parallel jobs 546
resource usage limit 605
run limit 605

maxmem static resource 259
maxswp static resource 259
maxtmp static resource 259
mbatchd (master batch daemon)

expiry time 737

push new job information to a child
mbatchd 737, 739

refresh time 737
restarting 54
shutting down 55
specifying query-dedicated port 737
specifying time interval for forking child 737
tuning on UNIX 736

mbatchd.log.host_name file 207, 765
MBD. See mbatchd
MBD_QUERY_CPUS parameter in lsb.params 739
MBD_REFRESH_TIME parameter in lsb.params 736
mbddebug command 791
mbdrestart badmin command 52
mbdtime command 794
mbschd.log.host_name file 207, 765
MEM absolute job priority scheduling factor 497
mem load index

description 257
MEMLIMIT parameter in lsb.queues 609
memory

available 257
usage limit 609
viewing resource allocation limits (blimits) 436

mesub (master esub)
configuring 646
description 644

migrated jobs
absolute job priority scheduling 503

MIN_REFRESH_TIME parameter in lsb.params 737
MIN_SWITCH_PERIOD parameter in lsb.params 684
minimum processors for parallel jobs 546
missed SLA scheduling goals

control action 397
model static resource 259
modify

LSF_MASTER_LIST 76
multicore processor support 156
multi-homed hosts 91
multiple condensed host groups 98
multiple conditions

dependency expressions 484
multiple esub 644
multiple license server hosts 175
multiple queues

absolute job priority scheduling 499
multi-processor hosts 161
multiprocessor hosts

configuring queue-level load thresholds 619
tuning LIM 732

multithreading, configuring mbatchd for 736
MXJ parameter in lsb.hosts 429

Administering Platform LSF 829

Index

N
name lookup using /etc/hosts file 90
NAME parameter in lsb.applications 404
native language system, and lstcsh 801
ncores static resource 259
ncpus static resource

dynamically changing processors 266
reported by LIM 259

ndisks static resource 259
network

failure 38
interfaces 91
partitioning

and duplicate event logging 768
port numbers

configuring for NIS or NIS+ databases 88
Network File System. See NFS
Network Information Service. See NIS
NEWJOB_REFRESH parameter in lsb.params 739
NFS (Network File System)

automount command 757, 776
nosuid option 745
overview 757

NIS (Network Information Service)
configuring port numbers 88
host name lookup in LSF 89
ypcat hosts.byname 90

non-normalized run time limit 611
non-shared file systems

installing LSF 758
normalization

CPU time limit 613
host 613
run time limit 613

normalization host 608
normalized run queue length

description 256
tuning LIM 732

nosuid option, NFS mounting 745
NOT operator (!)

job dependencies 484
not operator (~)

host partition fairshare 344
host-based resources 276

nprocs static resource 259
NQS (Network Queueing System)

logging events on Cray UNICOS 764
nqsacct file 764
nthreads static resource 259
number of processors for parallel jobs 546
numdone dependency condition 531
numended dependency condition 531
numerical resources 250
numexit dependency condition 531

numhold dependency condition 531
numpend dependency condition 531
numrun dependency condition 531
numstart dependency condition 531
O
obsolete parameters

FAIRSHARE_QUEUES 499
USER_ADVANCE_RESERVATION in

lsb.params 459
official host name 89
-ok host status

lsload command 61
status load index 256

ok host status
bhosts command 60
lsload command 61
status load index 256

one-time advance reservation 461
operators

job array dependency conditions 531
logical in job dependencies 484
logical in time expressions 288
not (~)

host partition fairshare 344
host-based resources 276

relational
exit dependency condition 486

remote file access 759
resource requirments 313
selection strings 313

OR operator (||)
job dependencies 484

order of job execution,changing 126
order resource requirement string

resizable jobs 321
order string 320
OS memory limit 610
output and input files, for job arrays 530
output file spooling

default directory 755
overrun job exceptions

configuring 116
description 116, 144
viewing with bjobs 124
viewing with bqueuees 110

ownership of log directory 208, 764
P
paging rate

automatic job suspension 617
checking 618
description 257, 661
load index 257
suspending conditions 618

830 Administering Platform LSF

Index

parallel fairshare 576
parallel jobs

allocating processors 542
backfill scheduling 567
deadline constraint scheduling 577
fairshare 576
interruptible backfill scheduling 571
job slot limits 545
limiting processors 561
locality 330, 549, 556
mandatory first execution host 547
number of processors 546
overview 539
processor reservation 564
PROCLIMIT

resizable jobs 562
selecting hosts with same string 332
spanning hosts 556
submitting 542

parallel programming
packages 541

parallel tasks
running with lsgrun 671
starting 543

PARALLEL_SCHED_BY_SLOT parameter in
lsb.params 546

partial licensing 177
partitioned networks 38
PATH environment variable

and lstcsh 802
shared user directories 37

paths
/etc/hosts file

example host entries 92
host naming 89
name lookup 90

/etc/hosts.equiv file 745
host authentication 744
using rcp 761

/etc/services file
adding LSF entries to 87

/net 758
/usr/bin/ 37

PEND
job state 120

pending jobs
absolute job priority scheduling 495
order of absolute job priority scheduling 501

pending reasons
queue-level resource reservation 440
viewing 121

per-CPU licensing 161
PERF 704
performance tuning

busy thresholds 730
LIM policies 730
load indices 731
load thresholds 731
mbatchd on UNIX 736
preselecting master hosts 732
run windows for LIM 730

periodic tasks 207, 765
per-job CPU limit 608
permanent license 156
permanent LSF license

displaying server status (lmstat) 172
permissions

log directory 208, 764
per-process limits

CPU limit 608
data segment size 608
file size 609
memory limit 609
stack segment size 612

per-resource reservation
configuring 441
viewing with bresources 454

pg load index
suspending conditions 618

PIM (Process Information Manager)
resource use 253

PJOB_LIMIT parameter in lsb.queues 429
plcclient 708, 711, 712
PluginModule section in lsb.modules

advance reservation 458
policies

fairshare 338
tuning for LIM 730

port
notation

license daemon 188
port (in LSF_LICENSE_FILE) 166
port numbers

configuring for NIS or NIS+ databases 88
ports

registering daemon services 87
specifying dedicated 737

post_done job dependency condition 487, 623
POST_DONE post-execution job state 122, 623
post_err job dependency condition 487, 623
POST_ERR post-execution job state 122, 623
POST_EXEC parameter

in lsb.applications 626
in lsb.queues 625

post-execution
job dependency conditions 623
job states 623

post-execution commands

Administering Platform LSF 831

Index

configuring 624
disabling for rerunnable jobs 514, 625
including in job processing 627
job-level 623
overview 622
queue-level 623
running under user ID 627
setting a post-processing timeout 629

PRE_EXEC parameter
in lsb.applications 626
in lsb.queues 625

PREEMPT_FOR parameter in lsb.params 578
preemptable

jobs 298
queues 297

preemption
absolute job priority scheduling 503

preemption. See preemptive scheduling
preemptive

jobs 298
queues 297
scheduling

description 297
preemptive scheduling

advance reservation 476
SLA scheduling 397

pre-execution commands
configuring 624
job-level 623
overview 622
queue-level 623
running under user ID 627
setting a retry limit 629

pref keyword
cu string 550

preservestarter job starter 635
priority

automatic escalation 494
user assigned 492

PRIORITY parameter in lsb.queues 348, 354
priority user fairshare 368
priority. See dynamic user priority
PROC absolute job priority scheduling factor 497
process allocation for parallel jobs 306, 332
PROCESSLIMIT parameter in lsb.queues 610
processor binding

resizable jobs 578
processor reservation

configuring 564
processors

limiting for parallel jobs 561
number for parallel jobs 546
reservation 564

PROCLIMIT parameter in lsb.queues 497

products 168
PRODUCTS line, editing 168
programs

handling LSF events 726
project names

viewing resource allocation limits (blimits) 436
pseudo-terminal

submitting interactive jobs with 659
using to run a task 671

PSUSP job state
description 129
overview 120

Q
qact badmin command 111
qclose badmin command 111
qinact badmin command 111
QJOB_LIMIT parameter in lsb.queues 429
qopen badmin command 111
QPRIORITY absolute job priority scheduling

factor 497
queue dispatch windows 480
queue groups

absolute job priority scheduling 499
queue priority 32
queue thresholds

viewing 36
QUEUE_GROUP parameter in lsb.queues 499
QUEUE_NAME parameter in lsb.queues 114
queue-based fairshare

resource usage measurement 341
queue-level

fairshare across queues 345
fairshare scheduling 345
job starter 634
pre- and post-execution commands

configuring 625
description 623

resource limits 605
resource requirements 302
resource reservation 440
run limits 606

queue-level resource information
viewing 453

queue-level resource limits, defaults 605
queues

adding and removing 114
automatic selection 33
backfill queue 568
changing job order within 126
chunk job limitations 523
configuring

for chunk jobs 522
job control actions 651

832 Administering Platform LSF

Index

suspending conditions 619
default 33
dispatch windows 112
fairshare across queues 345
interactive 658
interruptible backfill 572
lost_and_found 114
overview 32
preemptive and preemptable 297
REQUEUE_EXIT_VALUES parameter 625
restricting host use 115
run windows 113
setting rerun level 513
specifying suspending conditions 619
user-assigned job priority 492
viewing

available 108
default 33
detailed queue information 108
for interactive jobs 658
history 109
job exception status 110
resource allocation limits (blimits) 436
status 108

viewing absolute job priority scheduling
information 501

viewing administrator of 44
R
-R res_req command argument 306
r15m load index

built-in resources 256
description 662
suspending conditions 618

r15s load index
built-in resources 256
description 662
suspending conditions 618

r1m load index
built-in resources 256
description 662
suspending conditions 618

ranges
host name aliases 89

rcp command 759
recurring advance reservation 462
redundant license server hosts 176
relational operators

exit dependency condition 486
remote execution

with lstcsh 801
remote file access

operators 759
remote jobs

bringing background jobs to foreground 804
execution priority 259

remote mode in lstcsh 800
REMOTE_MAX_PREEXEC_RETRY parameter

in lsb.applications, lsb.params, lsb.queues 629
remove

master host 76
removing

a licensed feature (lmremove) 174
reports (reporting feature) 719

reports 697
architecture 704
creating 700, 701, 702
custom 698, 700

creating 700, 701, 702
deleting 701, 703
producing 703

data loader plug-ins 707
log files 708, 712
LSF 704

data purger 706, 708
record expiry time 716
schedule 708, 714

database 698, 707, 709
Derby 698, 709
moving 709, 720
MySQL 722
Oracle 236, 237, 721
schema 236, 721, 722

deleting 701, 703
disabling 719
event data files 709

EGO 714
LSF 713

exporting 699, 700, 701, 703
job data transformer 706, 707

schedule 715
loader controller 704, 706, 707

data collection 708, 717
log files 712
plcclient 708, 711, 712
status 711

log files 707, 708, 712
data loader plug-ins 712
loader controller 712

PERF 704
producing

custom 703
standard 699

services 706
data purger 706, 708
database 707, 709
disabling automatic startup 711
job data transformer 706, 707

Administering Platform LSF 833

Index

loader controller 706, 707
log files 707, 712
restarting 707, 710

standard 698
exporting 699, 701
producing 699

REQUEUE_EXIT_VALUES parameter in
lsb.applications 507

REQUEUE_EXIT_VALUES parameter in
lsb.queues 507, 510

requeued jobs
absolute job priority scheduling 503
automatic 507
description 506
exclusive 511
resizable jobs 586
reverse 510
user-specified 512

rerun jobs
absolute job priority scheduling 503

rerunnable jobs 513
chunk jobs 525
disabling post-execution 514, 625

RERUNNABLE parameter in lsb.queues 513
res.log.host_name file 207, 765
RES_REQ parameter

in lsb.applications 100
in lsb.queues 100

resdebug command 791
reservation

advance 456, 458
reservation ID

advance reservation 473
reservation limits

resource requirements 439
ReservationUsage section

lsb.resources file 240
reserved memory

for pending jobs 453
resetting LSF floating client 180
resizable jobs

absolute job priority scheduling 504
advance reservations 477
automatic job priority escalation 494
backfill scheduling 568
bresize cancel command 584
bresize release command 583
checkpoint and restart 517
chunk jobs 585
compute units 478
cu resource requirement string 335
deadline constraint scheduling 294
description 580
exclusive scheduling 294

fairshare scheduling 369
first execution host 547
interruptible backfill 572
job rerun 513
JOB_ACCEPT_INTERVAL parameter 585
limiting processors for parallel jobs 562
load thresholds 618
minimum and maximum processors for parallel

jobs 546
order resource requirement string 321
processor binding 578
requeued jobs 586
resource allocation limits 426
resource requirements 301
rusage resource requirement string 328
same resource requirement string 333
select resource requirement string 319
SLA scheduling 398
slot reservation 439
span resource requirement string 331
switched jobs 586
time-based slot reservation 450

RESIZABLE_JOBS parameteter in lsb.applications 581
resize

notification command 584
resolv.conf file 90
resolver function 90
resource allocation limits

configuring 427
description 422
enforcement 423
job limits 424
job slot limits 423
resolving conflicts 430
resource requirements 422
resource reservation and backfill 424
switched jobs 424
viewing (blimits) 436

resource configurations
viewing with blimits 436

resource consumers 422
resource distribution tree

about 194
resource granularity 441
resource groups

about 194
resource names

aliases 312
description 272

resource plan
overview 194

resource reclaim
grace period 214

resource requirement string

834 Administering Platform LSF

Index

cu section
syntax 550

resource requirements
and task lists in lstcsh 800
compound

multi-level 309
syntax 307

compute units 306
description 300
exclusive resources 315
for advance reservations 461
host type 300
operators 313
ordering hosts 306, 320
parallel job locality 306, 330
parallel job processes 306, 332
parallel jobs 334

selecting hosts 332
reservation limits 439
resizable jobs 301
resource reservation 322
resource usage 306, 322
select string 312
selecting hosts 306, 312, 332
simple

multi-level 308
syntax 306

topology 334
resource reservation

absolute job priority scheduling 503
description 439
resizable jobs 439
resource allocation limits 424
static shared resources 277

resource types
external resources 250

resource usage
fairshare scheduling 340
resource requirements 306, 322
viewing 253

resource usage limits
ceiling 605
chunk job enforcement 603
configuring 605
conflicting 602
default 605
for deadline constraints 293
hard 605
maximum 605
priority 602
soft 605
specifying 605

RESOURCE_RESERVE parameter in lsb.queues 442,
443, 444, 450, 566

RESOURCE_RESERVE_PER_SLOT paramete rin
lsb.params 328

RESOURCE_RESERVE_PER_SLOT parameter in
lsb.params 240, 323, 329, 442, 497

ResourceMap section in lsf.cluster.cluster_name 275
ResourceReservation section in lsb.resources 458
resources

See also load indices
adding custom 272
advance reservations 456
associating with hosts 275
Boolean 250
built-in 255
configuring custom 272
configuring limits 427
custom 270
host-level 452
per-resource configuration 454
queue-level 453
shared 251, 252
types 250
viewing

available 44, 248
host load 249
shared 44

RESRSV_LIMIT, lsb.queues 439
restime command 794
restrictions

chunk job queues 523
lsrcp command 760
lstcsh 801

RESUME job control action 650
resume thresholds

viewing 620
RESUME_COND parameter in lsb.queues 650
reverse requeue 510
rexpri static resource 259
.rhosts file

troubleshooting 778
disadvantages 745
file transfer with lsrcp 761
host authentication 745

rlogin command
interactive terminals 661

rsh command
lsfrestart 52

RUN job state
overview 120

run limits
ceiling 605
configuring 602, 610
default 606
maximum 605
specifying 613

Administering Platform LSF 835

Index

run queue
effective 256
normalized 256
suspending conditions 618

run time
decayed 363
historical 363
normalization 613

run time limit
non-normalized (absolute) 611

run windows
description 479
queues 113
tuning for LIM 730

RUN_JOB_FACTOR parameter in lsb.params
fairshare dynamic user priority 342

RUN_TIME_FACTOR parameter in lsb.params
fairshare dynamic user priority 342

RUN_WINDOW
queues 113

RUNLIMIT parameter in lsb.queues 569, 610
running jobs

viewing 120
rusage

resource requirements section 306
resource reservation 440
usage string syntax 322

rusage resource requirement string
resizable jobs 328

S
same resource requirement string

resizable jobs 333
same string 332
sample /etc/hosts file entries 92
sbatchd (slave batch daemon)

remote file access 758
restarting 53
shutting down 53

sbatchd.log.host_name file 207, 765
sbddebug command 791
sbdtime command 794
schddebug command 791
schddtime command 794
scheduling

exclusive 294
fairshare 338
hierarchical fairshare 349
preemptive

description 297
service level agreement (SLA) 34, 385
threshold

host selection 36
queue-level resource requirements 302

scheduling policies
absolute job priority scheduling 495
automatic job priority escalation 494
user-assigned job priority 492

scheduling priority factors
absolute job priority scheduling 495

schmod_advrsv plugin for advance reservation 458
S-Class LSF license type 157
scripts

check_license for counted software licenses 280
lic_starter to manage software licenses 283
redirecting to standard input for interactive

jobs 667
writing for interactive jobs 666
writing in lstcsh 806

SDK
defining demand 193

security
LSF authentication 744

select resource requirement string
resizable jobs 319
ut load index 312

selection strings
defined keyword 314
description 312
operators 313

server hosts, viewing detailed information 65
SERVER line

license.dat file 159
server static resource 259, 260
server status closed 65
servers

displaying license status (lmstat) 174
service class

configuring 388
examples 389
goal-oriented scheduling 386

service classes
bacct command 390, 392
bjgroup command 398
bjobs command 392
description 386
submitting jobs 387

service database examples 87
service error messages 219
service level agreement. See SLA scheduling
service level goals

job preemption 397
optimum number of running jobs 386
service classes 386

service ports (TCP and UDP)
registering 87

services
about 194

836 Administering Platform LSF

Index

cluster
service director 194
web service gateway 194
WEBGUI 194

setuid permissions 778
setup (demo) 162
setup (permanent) 164
SGI IRIX. See IRIX
share assignments 339
share tree 351
shared file systems

using LSF without 758
shared files 776
shared resources

defined keyword 314
description 251
exclusive resourcesselection strings

exclusive resources 315
static

reserving 277
viewing 252

shared user directories 37
shares

fairshare assignment 339
viewing user share information 150

shell mode, enabling 673
shell scripts. See scripts
shell variables and lstcsh 801
shells

default shell for interactive jobs 668
lstcsh 801
specifying for interactive jobs 667

short-running jobs, as chunk jobs 521
shutting down

FLEXnet server (lmdown) 174
shutting down license server (lmdown) 174
SIGCONT signal

default RESUME action 650
job control actions 132

SIGINT signal
conversion to Windows 654
default TERMINATE action 650
job control actions 132

SIGKILL signal
default TERMINATE action 650
job control actions 132
sending a signal to a job 132

signals
avoiding job action deadlock 653
configuring SIGSTOP 129, 650, 653
converting 654
customizing conversion 654
job exit codes 773
sending to a job 132

SIGINT 132
SIGTERM 132

SIGQUIT signal
conversion to Windows 654

SIGSTOP signal
bstop 129
configuring 129, 650, 653
default SUSPEND action 650
job control actions 132

SIGTERM signal
default TERMINATE action 650
job control actions 132

SIGTSTP signal
bstop 129
default SUSPEND action 650

simple resource requirements
multi-level 308
syntax 306

sitched jobs
resource allocation limits 424

site-defined resources
resource types 250

SLA scheduling
bacct command 392
bjgroup command 398
bjobs command 392
bsla command 390
configuring 388
deadline goals 386
delayed goals 397
description 385
job preemption 397
missed goals 397
optimum number of running jobs 386
resizable jobs 398
service classes

description 386
examples 389

service level goals 386
submitting jobs 387
throughput goals 386
velocity goals 386
violation period 397

slot limits 423
slot reservation

resizable jobs 439
SLOT_POOL parameter

in lsb.queues 354
SLOT_RESERVE parameter in lsb.queues 443, 450,

566
SLOT_SHARE parameter in lsb.queues 354
slots

viewing resource allocation limits (blimits) 436
soft resource limits

Administering Platform LSF 837

Index

data segment size 608
description 601
example 605
file size 609
memory usage 609

software licenses
counted 279
floating

dedicated queue for 282
description 280

host locked 279
interactive jobs competing with batch jobs 283
managing 283

span resource requirement string
resizable jobs 331

span string 330
special characters

defining host names 97, 101
specifying

license server TCP port 188
spooling. See command file spooling, job file spooling
SSH 641, 745

esub 641
SSH X11 forwarding

setting up 665
SSUSP job state

description 129
overview 120

stack segment size limit 612
STACKLIMIT parameter in lsb.queues 611
standard input and error

splitting for interactive jobs 660
standard input and output

job arrays 530
passing data between esub and eexec 647

standard output and error
redirecting to a file 673

started job dependency condition 487
static job priority

absolute job priority scheduling 498
static priority fairshare 369
static resources

See also individual resource names
description 259
shared

reserving 277
STATUS

bhosts 60
status

closed in bhosts 65
displaying license server (lmstat) 174
job arrays 532, 536
load index 255
viewing

queues 108
WAIT for chunk jobs 524

stderr and stdout
redirecting to a file 673
splitting for interactive jobs 660

stdin and stdout
passing data between esub and eexec 647

STOP_COND parameter in lsb.queues 650
stopping

FLEXnet server (lmdown) 174
string resources 250
SUB_TRY_INTERVAL parameter in lsb.params 121
subfactors

absolute job priority scheduling 498
submission executable (esub) 638
submission options

embedding for interactive jobs 667
success exit values

application profile configuration 405
SUCCESS_EXIT_VALUES parameter in

lsb.applications 405
Sun Network Information Service/Yellow Pages. See

NIS
supported file systems 757
SUSPEND job control action

default 649
suspended jobs

resuming 620
states 121
viewing resource allocation limits (blimits) 436

suspending conditions
configuring 619
viewing 619

suspending reason
viewing 121, 620

suspending thresholds 620
swap space

load index 257
suspending conditions 618
viewing resource allocation limits (blimits) 436

SWAPLIMIT parameter in lsb.queues 612
switched jobs

resizable jobs 586
SWP absolute job priority scheduling factor 497
swp load index

description 257
suspending conditions 618
viewing resource allocation limits (blimits) 436

syslog.h file 765
system overview 193
T
task control

with lstcsh 804

838 Administering Platform LSF

Index

task lists
and lstcsh 800
changing memberships 800

tasks
file access 673
running same on many hosts in sequence 671
selecting host to run on 670
starting parallel 543

TCP service port numbers
configuring for NIS or NIS+ databases 88
registering for LSF 87

tcsh
version and lstcsh 801

temp space
suspending conditions 618
viewing resource allocation limits (blimits) 436

temporary license 156
TERMINATE job control action 650
TERMINATE_WHEN parameter in lsb.queues

changing default SUSPEND action 653
TERMINATE job control action 650

TerminateProcess() system call (Windows)
job control actions 651

THREADLIMIT parameter in lsb.queues 611
threads

job limit 611
thresholds

exited job exceptions 105
host and queue 36
idle job exceptions 116
job exit rate for hosts 105, 144
job overrun exceptions 116
job underrun exceptions 116
scheduling and suspending 620
tuning for LIM 731

tilde (~)
not operator

host partition fairshare 344
host-based resources 276

time expressions
creating for automatic configuration 288
logical operators 288

time normalization
CPU factors 613

time values
specifying 287

time windows
syntax 287

time-based configuration
automatic 289
commands for checking 291

time-based resource limits 293
time-based slot reservation

resizable jobs 450

timing level
commands for daemons 794

/tmp directory
default LSF_LOGDIR 207, 766

tmp load index
description 257
suspending conditions 618
viewing resource allocation limits (blimits) 436

/tmp_mnt directory 776
troubleshoot

service error states 219
using multiple log files 211

troubleshooting 186
type keyword

cu string 550
type static resource 66, 259
U
UDP service port numbers

registering for LSF 87
UJOB_LIMIT parameter in lsb.queues 429
unavail host status

bhosts command 60
lsload command 61
status load index

status load index 256
uncondensed host groups

viewing 64
underrun job exceptions

configuring 116
description 116, 144
viewing with bjobs 124
viewing with bqueues 110

UNICOS accounting 764
UNIX directory structure

example 49
UNIX/Windows user account mapping

scope 224
unlicensed cluster 161
unlicensed host status

bhosts command 60
lsload command 61
status load index 256

unreach host status
bhosts command 60

update interval 768
duplicate event logging 768

updating a license 170
usage limits. See resource usage limits
usage string 322
user accounts

about 195
user authentication

security 744

Administering Platform LSF 839

Index

user groups
configuring external user groups 153
external 153
overview 151
specifying 366
viewing information about 149

user groups and limits 426
user home directories

shared 37
user priority

description 340
formula 341

user share assignments 339
USER_ADVANCE_RESERVATION parameter in

lsb.params
obsolete parameter 459

USER_NAME parameter in lsb.users 152
USER_NAME parameter in lsb.users file 152
USER_SHARES parameter in lsb.hosts 152
USER_SHARES parameter in lsb.hosts file 152
user-assigned job priority 492
user-based host partition fairshare

resource usage measurement 341
user-based queue-level fairshare

resource usage measurement 341
users

viewing information about 149
viewing jobs submitted by 123
viewing resource allocation limits (blimits) 436
viewing shares 150

USERS parameter in lsb.queues 152
USERS parameter in lsb.queues file 152
user-specified job requeue 512
/usr/include/sys/syslog.h file 765
%USRCMD string in job starters 634
USUSP job state

description 129
overview 120
suspending and resuming jobs 129

ut load index
built-in resource 256
select resource requirment string 312

utmp file registration on IRIX
enabling 668

V
variables. See individual environment variable names
vendor daemon (lsf_ld) 160
verifying LSF floating client 184
version information, displaying in FLEXnet

(lmver) 174
viewing

configuration errors 58
viewing condensed and uncondensed 64

violation period
SLA scheduling 397

virtual memory
load index 257
suspending conditions 618

virtual memory limit 612
vmstat 257
W
WAIT status of chunk jobs

description 524
viewing 124

wall-clock run time limit 611
weekly planner for advance reservation (brsvs -p) 470
wildcards

defining host names 97, 101
Windows

default directory structure 50
job control actions 651
TerminateProcess() system call

job control actions 651
windows

dispatch 480
run 479
time 287

Windows Event Viewer 725
workarounds to lsrcp limitations 760
X
X applications

running with bsub 664
X11 665
xterm

starting in LSF Base 674
Y
ypbind daemon 90
ypcat hosts.byname 90
ypmake command 89

840 Administering Platform LSF

	Administering Platform™ LSF™
	About Platform LSF
	Contents
	Learn about Platform LSF
	Cluster Concepts
	Job Life Cycle

	How the System Works
	Contents
	Job Submission
	Job Scheduling and Dispatch
	Host Selection
	Job Execution Environment
	Fault Tolerance

	Managing Your Cluster
	Working with Your Cluster
	Contents
	Viewing cluster information
	Example directory structures
	Cluster administrators
	Controlling daemons
	Controlling mbatchd
	Customize batch command messages
	Reconfiguring your cluster

	Working with Hosts
	Contents
	Host status
	How LIM Determines Host Models and Types
	Viewing Host Information
	Controlling Hosts
	Adding a Host
	Remove a Host
	Remove a Host from Master Candidate List
	Adding Hosts Dynamically
	Automatically Detect Operating System Types and Versions
	Add Host Types and Host Models to lsf.shared
	Registering Service Ports
	Host Naming
	Hosts with Multiple Addresses
	Using IPv6 Addresses
	Specify host names with condensed notation
	Host Groups
	Compute Units
	Tuning CPU Factors
	Handling Host-level Job Exceptions

	Working with Queues
	Contents
	Queue States
	Viewing Queue Information
	Control Queues
	Add and Remove Queues
	Manage Queues
	Handling Job Exceptions in Queues

	Managing Jobs
	Contents
	Understanding Job States
	View Job Information
	Changing Job Order Within Queues
	Switch Jobs from One Queue to Another
	Forcing Job Execution
	Suspending and Resuming Jobs
	Killing Jobs
	Sending a Signal to a Job
	Using Job Groups
	Handling Job Exceptions

	Managing Users and User Groups
	Contents
	Viewing User and User Group Information
	About User Groups
	Existing User Groups as LSF User Groups
	LSF User Groups

	Platform LSF Licensing
	Contents
	The LSF License File
	How LSF Permanent Licensing Works
	Installing a Demo License
	Installing a Permanent License
	Updating a License
	FLEXnet Basics
	Multiple FLEXnet License Server Hosts
	Partial Licensing
	Floating Client Licenses
	Troubleshooting License Issues

	Managing LSF on Platform EGO
	Contents
	About LSF on Platform EGO
	LSF and EGO directory structure
	Configuring LSF and EGO
	Managing LSF daemons through EGO
	EGO control of HPC Portal and PERF services
	Administrative Basics
	Logging and troubleshooting
	Frequently asked questions

	The HPC Portal
	Contents
	Log on to the HPC Portal
	Set the command-line environment
	Manage services
	Manage hosts

	Cluster Version Management and Patching on UNIX and Linux
	Contents
	Scope
	Patch installation interaction diagram
	Patch rollback interaction diagram
	Version management components
	Version management concepts
	Cluster patching behavior table
	Cluster rollback behavior table
	Version management files
	Version management commands
	Installing update releases on UNIX and Linux
	Installing fixes on UNIX and Linux
	Rolling back patches on UNIX and Linux
	Patching the Oracle database
	Patching the Derby database

	Upgrading Platform LSF HPC
	Contents
	Upgrade Platform LSF HPC
	What lsfinstall does

	Working with Resources
	Understanding Resources
	Contents
	About LSF Resources
	How Resources are Classified
	How LSF Uses Resources
	Load Indices
	Static Resources
	Automatic Detection of Hardware Reconfiguration
	Set the external static LIM

	Adding Resources
	Contents
	About Configured Resources
	Add New Resources to Your Cluster
	Configuring lsf.shared Resource Section
	Configuring lsf.cluster.cluster_name Host Section
	Configuring lsf.cluster.cluster_name ResourceMap Section
	Static Shared Resource Reservation
	External Load Indices
	Modifying a Built-In Load Index

	Managing Software Licenses with LSF
	Contents
	Using Licensed Software with LSF
	Host-locked Licenses
	Counted Host-Locked Licenses
	Network Floating Licenses

	Job Scheduling Policies
	Time Syntax and Configuration
	Contents
	Specifying Time Values
	Specifying Time Windows
	Specifying Time Expressions
	Using Automatic Time-based Configuration

	Deadline Constraint and Exclusive Scheduling
	Contents
	Using Deadline Constraint Scheduling
	Using Exclusive Scheduling

	Preemptive Scheduling
	Contents
	About Preemptive Scheduling

	Specifying Resource Requirements
	Contents
	About Resource Requirements
	Queue-level Resource Requirements
	Job-level Resource Requirements
	About Resource Requirement Strings
	Selection String
	Order String
	Usage String
	Span String
	Same String
	Compute Unit String

	Fairshare Scheduling
	Contents
	Understanding Fairshare Scheduling
	User Share Assignments
	Dynamic User Priority
	How Fairshare Affects Job Dispatch Order
	Host Partition User-based Fairshare
	Queue-level User-based Fairshare
	Cross-queue User-based Fairshare
	Hierarchical User-based Fairshare
	Queue-based Fairshare
	Configuring Slot Allocation per Queue
	View Queue-based Fairshare Allocations
	Typical Slot Allocation Scenarios
	Using Historical and Committed Run Time
	Users Affected by Multiple Fairshare Policies
	Ways to Configure Fairshare
	Resizable jobs and fairshare

	Resource Preemption
	Contents
	About Resource Preemption
	Requirements for Resource Preemption
	Custom Job Controls for Resource Preemption
	Resource Preemption Steps
	Configure Resource Preemption
	License Preemption Example
	Memory Preemption Example

	Goal-Oriented SLA-Driven Scheduling
	Contents
	Using Goal-Oriented SLA Scheduling
	Configuring Service Classes for SLA Scheduling
	View Information about SLAs and Service Classes
	Understanding Service Class Behavior

	Job Scheduling and Dispatch
	Working with Application Profiles
	Contents
	Manage application profiles
	Use application profiles
	View application profile information
	How application profiles interact with queue and job parameters

	Resource Allocation Limits
	Contents
	About Resource Allocation Limits
	Configuring Resource Allocation Limits
	Viewing Information about Resource Allocation Limits

	Reserving Resources
	Contents
	About Resource Reservation
	Using Resource Reservation
	Memory Reservation for Pending Jobs
	Time-based Slot Reservation
	Viewing Resource Reservation Information

	Advance Reservation
	Contents
	Understanding Advance Reservations
	Configure Advance Reservation
	Using Advance Reservation

	Dispatch and Run Windows
	Contents
	Dispatch and Run Windows
	Run Windows
	Dispatch Windows

	Job Dependencies
	Contents
	Job Dependency Terminology
	Job Dependency Scheduling
	Dependency Conditions
	View Job Dependencies

	Job Priorities
	Contents
	User-Assigned Job Priority
	Automatic Job Priority Escalation
	Absolute Job Priority Scheduling

	Job Requeue and Job Rerun
	Contents
	About Job Requeue
	Automatic Job Requeue
	Job-level automatic requeue
	Reverse Requeue
	Exclusive Job Requeue
	User-Specified Job Requeue
	Automatic Job Rerun

	Job Checkpoint, Restart, and Migration
	Contents
	Checkpoint and restart options
	Checkpoint directory and files
	Checkpoint and restart executables
	Job restart
	Job migration

	Chunk Job Dispatch
	Contents
	About Job Chunking
	Configure Chunk Job Dispatch
	Submitting and Controlling Chunk Jobs

	Job Arrays
	Contents
	Create a Job Array
	Handling Input and Output Files
	Redirecting Standard Input and Output
	Passing Arguments on the Command Line
	Job Array Dependencies
	Monitoring Job Arrays
	Individual job status
	Specific job status
	Controlling Job Arrays
	Job Array Chunking
	Requeuing a Job Array
	Job Array Job Slot Limit

	Running Parallel Jobs
	Contents
	How LSF Runs Parallel Jobs
	Preparing Your Environment to Submit Parallel Jobs to LSF
	Submitting Parallel Jobs
	Starting Parallel Tasks with LSF Utilities
	Job Slot Limits For Parallel Jobs
	Specifying a Minimum and Maximum Number of Processors
	Specifying a First Execution Host
	Controlling Job Locality using Compute Units
	Controlling Processor Allocation Across Hosts
	Running Parallel Processes on Homogeneous Hosts
	Limiting the Number of Processors Allocated
	Reserving Processors
	Reserving Memory for Pending Parallel Jobs
	Backfill Scheduling: Allowing Jobs to Use Reserved Job Slots
	Parallel Fairshare
	How Deadline Constraint Scheduling Works For Parallel Jobs
	Optimized Preemption of Parallel Jobs
	Processor Binding for Parallel Jobs
	Job Allocations that Grow and Shrink (Resizable)
	Resizable job management
	Autoresizable job management
	Specify a resize notification command manually
	Script for resizing
	Feature interactions

	Submitting Jobs Using JSDL
	Contents
	Why Use JSDL?
	Using JSDL Files with LSF
	Collecting resource values using elim.jsdl

	Controlling Job Execution
	Runtime Resource Usage Limits
	Contents
	About Resource Usage Limits
	Specifying Resource Usage Limits
	Supported Resource Usage Limits and Syntax
	Examples
	CPU Time and Run Time Normalization
	PAM resource limits

	Load Thresholds
	Contents
	Automatic Job Suspension
	Suspending Conditions

	Pre-Execution and Post-Execution Commands
	Contents
	About Pre-Execution and Post-Execution Commands
	Configuring Pre- and Post-Execution Commands

	Job Starters
	Contents
	About Job Starters
	Command-Level Job Starters
	Queue-Level Job Starters
	Controlling Execution Environment Using Job Starters

	External Job Submission and Execution Controls
	Contents
	Understanding External Executables
	Using esub
	Existing esub
	Working with eexec

	Configuring Job Controls
	Contents
	Default Job Control Actions
	Configuring Job Control Actions
	Customizing Cross-Platform Signal Conversion

	Interactive Jobs
	Interactive Jobs with bsub
	Contents
	About Interactive Jobs
	Submitting Interactive Jobs
	Performance Tuning for Interactive Batch Jobs
	Interactive Batch Job Messaging
	Running X Applications with bsub
	Configure SSH X11 forwarding for jobs
	Writing Job Scripts
	Registering utmp File Entries for Interactive Batch Jobs

	Running Interactive and Remote Tasks
	Contents
	Running Remote Tasks
	Interactive Tasks
	Load Sharing Interactive Sessions
	Load Sharing X Applications

	Monitoring Your Cluster
	Achieving Performance and Scalability
	Contents
	Optimizing Performance in Large Sites
	Tuning UNIX for Large Clusters
	Tuning LSF for Large Clusters
	Monitoring Performance Metrics in Real Time

	Reporting
	Contents
	Introduction to Reporting
	Getting Started with Standard Reports
	Custom Reports
	System Description
	Reports Administration
	Test the Reporting Feature
	Disable the Reporting Feature
	Move to a Production Database

	Event Generation
	Contents
	Event Generation
	Enabling event generation
	Events list
	Arguments passed to the LSF event program

	Tuning the Cluster
	Contents
	Tuning LIM
	Improving performance of mbatchd query requests on UNIX

	Authentication and Authorization
	Contents
	Authentication options
	Authorization options

	Job Email and Job File Spooling
	Contents
	Mail Notification When a Job Starts
	File Spooling for Job Input, Output, and Command Files
	Specifying a job command file (bsub -Zs)
	About the job spooling directory (JOB_SPOOL_DIR)
	Modifying the job input file
	Modifying the job command file
	For more information

	Non-Shared File Systems
	Contents
	About Directories and Files
	Using LSF with Non-Shared File Systems
	Remote File Access
	File Transfer Mechanism (lsrcp)

	Error and Event Logging
	Contents
	System Directories and Log Files
	Managing Error Logs
	System Event Log
	Duplicate Logging of Event Logs
	LSF Job Termination Reason Logging
	Understanding LSF job exit codes

	Troubleshooting and Error Messages
	Contents
	Shared File Access
	Common LSF Problems
	Error Messages
	Setting Daemon Message Log to Debug Level
	Setting Daemon Timing Levels

	LSF Utilities
	Using lstcsh
	Contents
	About lstcsh
	Differences from Other Shells
	Limitations
	Starting lstcsh
	Using lstcsh as Your Login Shell
	Host Redirection
	Task Control
	Built-in Commands
	Writing Shell Scripts in lstcsh

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

