
Installing and Configuring
Platform LSF for SLURM
SLURM Version 1.2.25
Platform LSF Version 7 Update 5

January 30 2009
Comments to: doc@platform.com

Contents ◆ “Platform LSF for SLURM Overview” on page 2
◆ “Installing a New Platform LSF for SLURM Cluster” on page 8
◆ “Configuring Platform LSF for SLURM” on page 11
◆ “Operating Platform LSF for SLURM” on page 17
◆ “Submitting and Monitoring Jobs” on page 25
◆ “Command Reference” on page 35
◆ “File Reference” on page 37

mailto:doc@platform.com?Subject=LSF%20Documentation%20Feedback

Platform LSF for SLURM Overview

2

Platform LSF for SLURM Overview
Contents ◆ “About Platform LSF for SLURM”

◆ “About this document”
◆ “Assumptions and limitations”

About Platform LSF for SLURM

Simple Linux Utility for Resource Management (SLURM)

SLURM is a resource management system suitable for use on large and small Linux
clusters. It was jointly developed by Lawrence Livermore National Laboratory (LLNL),
HP, Bull, and Linux NetworX. As a resource manager, SLURM allocates exclusive or
non-exclusive access to resources on compute nodes) for users to perform work, and
provides a framework to start, execute and monitor work (normally parallel jobs) on the
set of allocated nodes.

A SLURM system consists of two daemons:

◆ slurmctld—runs on a node with the resource manager role as a central
“controller” daemon that monitors node state and allocates nodes to jobs. Primary
and backup slurmctld can run on separate resource manager nodes.

◆ slurmd—runs as root on nodes with compute role to export control to SLURM
for starting and managing user jobs.

The SLURM configuration file (slurm.conf) must be available on each node of the
system. Use the SLURM scontrol reconfig command to see the current SLURM
configuration.

SLURM
terminology

◆ Node—the basic hardware unit in a computing cluster. One node is one computer
running Linux, configured with one or more role:
❖ Compute role provides services to run user tasks. In this document, node means

node with compute role. Compute role nodes are monitored and controlled by
SLURM.

❖ Resource manager role provides administrative and operating system services
for users and system administrators.

❖ Login role provides services for users to compile and launch their jobs.
◆ Partition—a group of nodes. A SLURM job cannot be scheduled to run across

partitions. A root-only partition indicates that only users root or SLURM system
administrator (SlurmUser) are allowed to allocate resource for any other user.
Normally, one or two nodes are configured as resource manager nodes, several are
configured as login nodes, the rest are compute nodes.

◆ LSF partition—a root-only partition named lsf, explicitly configured for the LSF
system.

◆ Free node—a node that is configured in an LSF partition and is not allocated to
any job

◆ Available or Usable node—a node in IDLE, ALLOCATED, COMPLETING, or
DRAINING status:
❖ ALLOCATED—the node has been allocated to a job.
Installing and Configuring Platform LSF for SLURM

http://www.llnl.gov/linux/slurm/slurm.html
http://www.linuxnetworx.com
http://www.hp.com
http://www.bull.com

Installing and Configuring Platform LSF for SLURM
❖ COMPLETING—the node has been allocated a job that is in the process of
completing. The node state is removed when all of the job processes have ended
and the SLURM epilog program (if any) has ended.

❖ DRAINING—the node is currently running a job, but will not be allocated to
additional jobs. The node state changes to state DRAINED when the last job
on it completes.

❖ IDLE—the node is not allocated to any job and is available for use.
◆ Unavailable node—a node in DOWN, DRAINED, or UNKNOWN status:

❖ DOWN—the node is unavailable for use.
❖ DRAINED—the node is unavailable for use per system administrator request.
❖ UNKNOWN—the SLURM controller has just started, and node state has not

yet been determined.
◆ SLURM allocation—a set of compute nodes available for running work; same as

a SLURM job. Allocations can be exclusive or shared, LSF always uses shared mode
◆ SLURM job ID—a 32-bit integer that uniquely identifies a SLURM allocation in

the system. This ID can be reused.

LSF job
terminology

◆ Interactive and normal batch jobs—A an interactive batch job allows you to
interact with the application and still take advantage of LSF scheduling policies and
fault tolerance. All input and output are through the terminal that you used to type
the job submission command.
Interactive batch jobs (bsub -I), are started on the resource manager node.

Normal batch jobs (bsub without -I) are started on the first node of the SLURM
allocation.

When you submit an interactive job, a message is displayed while the job is awaiting
scheduling. A new job cannot be submitted until the interactive job is completed or
terminated.

The bsub command stops display of output from the shell until the job completes,
and no mail is sent to you by default. Use Ctrl-C at any time to terminate the job.

◆ Serial job—a job that requests only one slot and does not specify any of the
following constraints: mem, tmp, mincpus, nodes. Serial jobs are allocated a single
CPU on a shared node with minimal capacities that satisfies other allocation criteria.
LSF always tries to run multiple serial jobs on the same node, one CPU per job.

Parallel jobs and serial jobs cannot run on the same node.

◆ Pseudo-parallel job—a job that requests only one slot but specifies any of the
following constraints: mem, tmp, nodes = 1, mincpus > 1. Pseudo-parallel jobs
are allocated one node for their exclusive use.

Do NOT rely on this feature to provide node-level allocation for small
jobs in job scripts. Use the SLURM[nodes] specification instead, along
with mem, tmp, mincpus allocation options.

◆ Parallel job—a job that requests more than one slot, regardless of any other
constraints. Parallel jobs are allocated up to the maximum number of nodes
specified by:
❖ SLURM[nodes=min-max] (if specified)
Installing and Configuring Platform LSF for SLURM 3

Platform LSF for SLURM Overview

4

❖ SLURM[nodelist=node_list] (if specified)
Parallel jobs and serial jobs cannot run on the same node.

◆ Small job—a parallel job that can potentially fit into a single node of the machine,
and does not explicitly request more than one node (SLURM[nodes] or
SLURM[node_list] specification). LSF tries to allocate small jobs to a single node.

◆ Node-level allocation—all pseudo-parallel and parallel jobs get nodes for their
exclusive use, even if the requested number of job slots is less than the total number
of CPUs on those nodes. LSF provides node-level scheduling for parallel jobs and
CPU-level scheduling for serial jobs. Under node-level allocation, the number of
actually allocated CPUs may be greater than the requested slots.

◆ First-fit allocation: for a parallel, or pseudo-parallel job, an allocation is made left
to right, for the serial job, right to left, all other criteria being equal.

◆ Best-fit allocation: all other criteria being satisfied, for parallel jobs only, the nodes
with maximum number of cpus are chosen first. For both parallel and serial jobs,
the nodes with minimal memory, minimal tmp space, and minimal weight are
chosen.

Platform LSF for SLURM system architecture

What Platform LSF for SLURM does

LSF acts primarily as the workload scheduler and node allocator on top of the SLURM
system, providing policy and topology-based scheduling for user tasks. SLURM
provides a job execution and monitoring layer for LSF. LSF uses SLURM interfaces to:

◆ Query system topology information
◆ Make scheduling decisions
◆ Create allocations
LSF daemons run on a single front-end node with resource manager role, which
represents the whole SLURM cluster. From the point of view of users, a SLURM cluster
is one LSF host with multiple CPUs. LIM communicates with the SLURM system to get
all available resource metrics for each compute node and reports resource and load
information to the master LIM.

LSF Master Host SLURM Cluster

Master LIM

mbatchd

schmod_slurm
plugin

mbschd

Resource
Management Node

Compute Nodes

LIM

sbatchd

RLA

S
L
U
R
M

S
y
s
t
e
m

Startup

Run (bsub)
Kill (bkill)

Suspend (bstop)
Resume (bresume)

task

task task task

task

LSF
commands

Job
Installing and Configuring Platform LSF for SLURM

Installing and Configuring Platform LSF for SLURM
Supported
features

Platform LSF for SLURM provides the following capabilities:

◆ As single LSF host image, LSF daemons will collect and summarize static resource
metrics from compute nodes. See “How LSF reports resource metrics” on page 20
for more information.

◆ SLURM job submission, using the SLURM[] external scheduler parameter at the
job-level (bsub -ext) and queue-level (MANDATORY_EXTSCHED or
DEFAULT_EXTSCHED) to
❖ Allocate nodes for a SLURM job
❖ Start the job on allocated nodes
❖ Support LSF job query and control.
See “Submitting and Monitoring Jobs” on page 25 for more information.

◆ Topology-aware scheduling, supporting all node allocation options supported by
the SLURM srun -A command. See “Supported srun -A allocation shape
options” on page 19 for more information.

◆ Improved job resource accounting in SLURM—job resource usage reported
accurately by bacct.

About this document
This document describes how to install and configure Platform LSF for SLURM.

Who should use
this document

This document is intended for experienced Linux users who run applications developed
by others, and for experienced system or application developers who develop, build, and
run applications on a SLURM cluster.

What you should
know

This document assumes you are a Linux system administrator who has experience with:

◆ Common system administration tasks such as working with compressed tar
archives, creating user accounts, sharing and mounting shared file systems (for
example, Network File System (NFS) partitions), and backing up the system

◆ Installing and configuring software on systems running Linux and SLURM
◆ Multiprocessor systems and the Message Passing Interface (MPI)
◆ Basic SLURM concepts (for a brief overview, see

http://www.llnl.gov/linux/slurm/overview.html)
◆ Basic LSF concepts such as clusters, jobs, resources, servers, and hosts

For more
information about

Platform LSF

◆ See Running Jobs with Platform LSF for information about basic Platform LSF
concepts

◆ See Administering Platform LSF for information about managing Platform LSF
clusters

◆ See the Platform LSF Command Reference for information about Platform LSF
commands

◆ See the Platform LSF Configuration Reference for information about Platform LSF
features, configuration files, and environment variables
Installing and Configuring Platform LSF for SLURM 5

http://www.llnl.gov/linux/slurm/overview.html

Platform LSF for SLURM Overview

6

Assumptions and limitations
◆ A single parallel LSF job must run within a single SLURM partition. A SLURM job

cannot be scheduled to run across partitions
◆ A shared file system is required for failover between SLURM resource manager

nodes, in order to replay the event file after LSF daemons are restarted.
◆ Only application-level checkpointing/restart is supported.
◆ User-level checkpointing is not supported.
◆ Kernel-level checkpointing is not available.
◆ LSF cannot collect maxswap and ndisks static resources from compute nodes.

The number of login users (ls) is the only load index that LSF reports. For load
indices that cannot be calculated (r15s, r1m, r15m, ut, pg, io, it, tmp, swp, and
mem), lshosts and lsload displays not available (-).

◆ Except for wall-clock runtime, bjobs will not display job runtime resource usage
◆ LSF runtime resource usage limits are not enforced.
◆ LSF reports job accounting information only for wall-clock run time, and total

number of CPUs. LSF cannot report any other job runtime resource usage
information.

◆ LSF passes all signals for a running job to SLURM, which handles only the
following signals: HUP, INT, QUIT, ABRT, KILL, ALRM, TERM, USR1, USR2,
CONT, STOP, TSTP, TTIN, TTOU.

◆ Because SLURM does not support jobs in PTY mode on compute nodes, do not
use the bsub -Is or bsub -Ip options. Interactive jobs in PTY mode are
accepted on nodes with resource manager role.

◆ Under node-level allocation, the number of actually allocated CPUs may be greater
than the requested slots. The fairshare formula is still based on slots, not on CPUs.

◆ Contiguous allocation will work well only if all nodes in an LSF partition of a
SLURM machine are contiguous. Otherwise, LSF may reserve the wrong
contiguous nodes and job will never have a chance to run.

◆ When LSF selects SLURM jobs to preempt, jobs to be preempted are selected from
the list of preemptable candidates based on the topology-aware allocation
algorithm.
Some specialized preemption preferences, such as MINI_JOB and
LEAST_RUN_TIME in the PREEMPT_FOR parameter in lsb.params, and
others are ignored when slot preemption is required.

◆ LSF takes advantage of SLURM node share feature to support preemptive
scheduling. When a low priority job is preempted, the job processes are suspended
on the allocated nodes, and LSF places the high priority job on the same nodes.
After the high priority job finishes, LSF resumes the suspended low priority job.
Multiple jobs can be allocated to use the same node, but at any time, only one job is
actually running on the node, others are suspended.

◆ Preemptable queue preference is not supported.
◆ Jobs submitted to a chunk job queue are not chunked together, but run as a normal

LSF job.
◆ User-level account mapping is not supported.
Installing and Configuring Platform LSF for SLURM

Installing and Configuring Platform LSF for SLURM
◆ Job start time is not accurately predicted for resource reserving jobs with special
topological requirements. The forecast time shown by bjobs -l is optimistic. LSF
may incorrectly indicate that the job can start at a certain time, when it actually
cannot start until some time after the indicated time.

◆ The administrator must use brun -c to force a job to run on a SLURM host. If
the SLURM allocation cannot be satisfied for any reason, the job will be dispatched,
but will be requeued and returned to pending state. The administrator can use
brun -c again to start the job.

◆ By default, brun ignores topology options. If you specify
LSF_HPC_EXTENSION="BRUN_WITH_TOPOLOGY" in lsf.conf, brun
tries to run the job with the requested topology. If a topology request can be
satisfied for a brun job, brun preserves the topology request. LSF allocates the
resource according to the request and tries to run the job with the requested
topology. If allocation fails because of topology request cannot be satisfied, job is
requeued and returned to pending state.

◆ In MultiCluster lease model, you should export the entire SLURM cluster.
◆ Node names in a SLURM host must end with a number, for example hostA1,

hostA2, etc. The SLURM host name itself can contain number characters, but it
must begin and end with an alphabetic character. For example, 2hostA and
hostA2 are not correct, but host2A is correct, and the nodes in host2A will be
named like host2A12, host2A13, host2A14, etc. Note that node numbering
does not necessarily start with 1.

Where to go next
◆ Continue to “Installing a New Platform LSF for SLURM Cluster” on page 8.
Installing and Configuring Platform LSF for SLURM 7

Installing a New Platform LSF for SLURM Cluster

8

Installing a New Platform LSF for SLURM Cluster
Contents ◆ “Platform LSF for SLURM distribution”

◆ “Installing Platform LSF for SLURM (lsfinstall)”

Platform LSF for SLURM distribution
The Platform LSF for SLURM distribution consists of the following files:

◆ lsf7Update3_lsfinstall.tar.Z
◆ lsf7Update3_linux2.6-glibc2.3-x86_64-slurm.tar.Z
◆ lsf7Update3_linux2.6-glibc2.3-ia64-slurm.tar.Z

◆ readme_lsf_slurm.pdf (this document)

Installing Platform LSF for SLURM (lsfinstall)
The installation program for Platform LSF is lsfinstall.

What lsfinstall
does

◆ Installs Platform LSF binary and configuration files
◆ Adds the Platform_HPC feature name to the PRODUCTS line of

lsf.cluster.cluster_name if it is not already there
◆ Defines the following shared resources required by LSF in lsf.shared:

Begin Resource
RESOURCENAME TYPE INTERVAL INCREASING DESCRIPTION
...
 slurm Boolean () () (SLURM)
...
End Resource

◆ Sets maximum job slot limit to the number of CPUs that LIM reports. This is
specified by MXJ=! for host type and SLINUX64 in the Host section of
LSB_CONFDIR/lsb.hosts:

Begin Host
HOST_NAME MXJ r1m pg ls tmp DISPATCH_WINDOW # Keywords
...
default () () () () () () # Example
SLINUX64 ! () () () () ()
...
End Host

Do not change the default MXJ=! in lsb.hosts.

◆ Sets JOB_ACCEPT_INTERVAL=0 in lsb.params
◆ Sets the following parameters in lsf.conf:

❖ LSF_ENABLE_EXTSCHEDULER=Y
Enables external scheduling for Platform LSF for SLURM

❖ LSB_RLA_PORT=port_number
Where port_number is the TCP port used for communication between the
Platform LSF allocation adapter (RLA) and sbatchd and the SLURM
scheduler plugin.

The default port number is 6883.
Installing and Configuring Platform LSF for SLURM

Installing and Configuring Platform LSF for SLURM
❖ LSB_SHORT_HOSTLIST=1
Displays an abbreviated list of hosts in bjobs and bhist for a parallel job
where multiple processes of a job are running on a host. Multiple processes are
displayed in the following format:

processes*hostA

◆ Adds the schmod_slurm external scheduler plugin module name to the
PluginModule section of lsb.modules:
Begin PluginModule
SCH_PLUGIN RB_PLUGIN SCH_DISABLE_PHASES
schmod_default () ()
schmod_fcfs () ()
schmod_fairshare () ()
schmod_limit () ()
schmod_parallel () ()
schmod_reserve () ()
schmod_mc () ()
schmod_preemption () ()
schmod_advrsv () ()
schmod_slurm () ()
End PluginModule

See the Platform LSF Configuration Reference for more information about
lsb.modules.

Preinstallation
checks

1 Log on as root to the node with resource manager role.
2 Check for the existence of /var/lsf/lsfslurm.

If the file does not exist, touch a file with that name:

touch /var/lsf/lsfslurm

3 Make sure there is a shared file system available and mounted on all SLURM nodes,
with a verified mount point. For example: /hptc_cluster/lsf/tmp.

4 Make sure that users’ home directories can be accessed from all SLURM nodes.

Running lsfinstall 1 Log on as root to the node with resource manager role.
2 Change to the directory containing the distribution files.

For example:

cd /tmp

3 Use the zcat and tar commands to uncompress and extract
lsf7Update3_lsfinstall.tar.Z:
zcat lsf7Update3_lsfinstall.tar.Z | tar xvf -

Do not extract the Platform LSF for SLURM distribution files.

4 Change to lsf7_lsfinstall:
cd /tmp/lsf7Update5_lsfinstall

5 Read lsf7Update5_lsfinstall/install.config and decide which
installation variables you need to set.
Installing and Configuring Platform LSF for SLURM 9

Installing a New Platform LSF for SLURM Cluster

10
6 Edit lsf7Update5_lsfinstall/install.config to set the installation
variables you need.
Uncomment the options you want in the template file, and replace the example
values with your own settings.

The sample values in the install.config template file are examples only. They are
not default installation values.

7 Run lsfinstall as root:
./lsfinstall -f install.config

See the Platform LSF Command Reference for more information about lsfinstall
and the Platform LSF Configuration Reference for more information about the
install.config file.

Required
install.config

variables

◆ LSF_TOP="/path"
◆ LSF_ADMINS="user_name [user_name...]"
◆ LSF_CLUSTERNAME="cluster_name"
◆ LSF_LICENSE=<none>

<none> indicates that no license file is to be configured in
LSF_ENVDIR/lsf.conf and OEM license is to be used. See “LSF Licensing” on
page 21 for more information.

Variables that
require an

absolute path

◆ LSF_TOP="/path"
◆ LSF_TARDIR="/path"

Adding RLA port to the NIS or NIS+ database (optional)

By default, LSB_RLA_PORT is configured in LSF_ENVDIR/lsf.conf during
installation. If you have configured other LSF ports in NIS or NIS+, you should also
configure the RLA port in the NIS database before installing LSF. lsfinstall checks
if this port is already defined in NIS and does not add it to lsf.conf if it is already
defined.

See Administering Platform LSF for information about modifying the NIS or NIS+
database.

Where to go next
Continue to “Configuring Platform LSF for SLURM” on page 11.
Installing and Configuring Platform LSF for SLURM

Installing and Configuring Platform LSF for SLURM
Configuring Platform LSF for SLURM
Contents ◆ “Recommended SLURM configuration (slurm.conf)”

◆ “LSF configuration notes”
◆ “Customizing job control actions (optional)”
◆ “Verifying that the configuration is correct”
◆ “Making LSF available to users”

Recommended SLURM configuration (slurm.conf)

General
parameters

◆ Set MaxJobCount based on number of CPUs in the SLURM cluster and the number
of preemption queues you plan to use in LSF to make sure allocations are available
for LSF jobs. The default value is 2000 jobs.

◆ Set MinJobAge to at least 1 hour to make sure LSF has enough time to get job status
information after it finishes. The default value is 300 seconds. A value of zero
prevents any job record purging.

◆ Set ReturnToService to 1, so that a DOWN node will become available for use upon
registration. The default value is 0, which means that a node will remain in the
DOWN state until a system administrator explicitly changes its state (even if the
slurmd daemon registers and resumes communications).

Partitions ◆ Configure one partition for LSF with the name lsf that sets the following
parameters:
❖ RootOnly=YES, so that only root or the SLURM administrator can create

allocations for normal user jobs. The default value is NO.
❖ Shared=FORCE, so that more than one job can run on the same node. LSF

uses this facility to support preemption and scheduling multiple serial jobs on
the same node (node sharing). FORCE makes all nodes in the partition available
for sharing without user means of disabling it. The default value is NO.

◆ Do not configure MaxNodes, MaxTime, MinNodes in an LSF partition; these
parameters will conflict with LSF scheduling decisions.

LSF configuration notes

Resource to determine SLURM-enabled hosts

If not already configured, you must add the Boolean resource slurm in the
RESOURCES column of the host section in lsf.cluster.cluster_name for all
nodes that run in an LSF partition.

For example:

Begin Host
HOSTNAME model type server r1m mem swp RESOURCES #Keywords
hostA ! ! 1 3.5 () () (slurm)
End Host

The slurm resource is defined in the default lsf.shared template file at installation.
Installing and Configuring Platform LSF for SLURM 11

Configuring Platform LSF for SLURM

12
Maximum job slot limit (MXJ in lsb.hosts)

By default, the maximum job slot limit is set by lsfinstall to the number of CPUs
that LIM reports. This is specified by MXJ=! for host type and SLINUX64 in the Host
section of LSB_CONFDIR/lsb.hosts:

Begin Host
HOST_NAME MXJ r1m pg ls tmp DISPATCH_WINDOW # Keywords
...
default () () () () () () # Example
SLINUX64 ! () () () () ()
...
End Host

Do not change the default MXJ=! in lsb.hosts.

schmod_slurm
plugin

The SLURM scheduling plugin schmod_slurm must be configured as the last
scheduler plugin module in lsb.modules.

Maximum number of sbatchd connections (lsb.params)

If LSF operates on a large system (for example, a system with more than 32 nodes), you
may need to configure the parameter MAX_SBD_CONNS in lsb.params.
MAX_SBD_CONNS controls the maximum number of files mbatchd can have open
and connected to sbatchd. The default value of MAX_SBD_CONNS is 32.

In a very busy cluster with many jobs being dispatched, running, finishing at the same
time, you may see it takes a very long time for mbatchd to update the status change of
a job, and to dispatch new jobs. If your cluster shows this behavior, you should set
MAX_SBD_CONNS = (number of nodes) * 2 or 300, which ever is less. Setting
MAX_SBD_CONNS too high may slow down the speed of mbatchd dispatching new
jobs.

RLA status file
directory (lsf.conf)

Use LSB_RLA_WORKDIR=director y to specify the location of the RLA status file.
The RLA status file keeps track of job information to allow RLA to recover its original
state when it restarts. When RLA first starts, it creates the directory defined by
LSB_RLA_WORKDIR if it does not exist, then creates subdirectories for each host.

You should avoid using /tmp or any other directory that is automatically cleaned up by
the system. Unless your installation has restrictions on the LSB_SHAREDIR directory,
you should use the default:

LSB_SHAREDIR/cluster_name/rla_workdir

Other LSF
configuration

parameters
(lsf.conf)

◆ LSB_RLA_PORT=port_number
TCP port used for communication between the LSF HPC allocation adapter (RLA)
and the SLURM scheduler plugin.

Default: 6883

◆ LSB_RLA_TIMEOUT=seconds (optional)
Defines the communication timeout between RLA and its clients.

Default: 10 seconds
Installing and Configuring Platform LSF for SLURM

Installing and Configuring Platform LSF for SLURM
◆ LSB_RLA_UPDATE=seconds (optional)
Specifies how often the LSF scheduler refreshes free node information

Default: 600 seconds (10 minutes)

◆ LSB_RLA_WORKDIR=directory (optional)
Directory to store RLA status file, which saves LSF job allocation information.

Default: LSB_SHAREDIR/cluster_name/rla_workdir

◆ LSB_SLURM_BESTFIT=Y (optional)
Enables best-fit node allocation.

By default, LSF applies a first-fit allocation policy. In a heterogeneous SLURM
cluster, a best-fit allocation may be preferable for clusters where a mix of serial and
parallel jobs run.

◆ LSF_ENABLE_EXTSCHEDULER=Y
Enables external scheduling for Platform LSF for SLURM.

◆ LSF_HPC_EXTENSIONS="extension_name ..." (optional)
The following extensions are supported:

❖ SHORT_EVENTFILE
❖ SHORT_PIDLIST
❖ RESERVE_BY_STARTTIME
❖ BRUN_WITH_TOPOLOGY

◆ LSF_NON_PRIVILEGED_PORTS = Y (optional)
Disables privileged ports usage of LSF commands and daemons, which covers
functionality of LSF_MC_NON_PRIVILEGED_PORTS.

◆ LSF_SLURM_BINDIR=path
Specifies an absolute path to the directory containing the SLURM commands. If
you install SLURM in a different location from the default, you must define
LSF_SLURM_BINDIR.

Default: /opt/hptc/slurm/bin

◆ LSF_SLURM_DISABLE_CLEANUP=Y (optional)
Disables cleanup of non-LSF jobs running in a SLURM LSF partition.

By default, only LSF jobs are allowed to run within a SLURM LSF partition. LSF
periodically cleans up any jobs submitted outside of LSF. This clean up period is
defined through LSB_RLA_UPDATE.

◆ LSF_SLURM_TMPDIR=path
Specifies the LSF tmp directory for SLURM machines. The default LSF_TMPDIR
/tmp cannot be shared across nodes, so LSF_SLURM_TMPDIR must specify a
path that is accessible on all SLURM nodes.

Default: /hptc_cluster/lsf/tmp
Installing and Configuring Platform LSF for SLURM 13

Configuring Platform LSF for SLURM

14
The following lsf.conf parameters control when LIM starts to report number of
usable CPUs. They are all optional.

◆ LSF_HPC_NCPU_COND=and|or
Defines how two conditions are combined. By default, the value is or.

◆ LSF_HPC_NCPU_THRESHOLD=threshold
Defines percentage of usable CPUs in LSF partition. By default, the value is 80.

◆ LSF_HPC_NCPU_INCREMENT=increment
◆ LSF_HPC_NCPU_INCR_CYCLES=incr_cycles
Two parameters determine whether system becomes stable:

◆ LSF_HPC_NCPU_INCR_CYCLES defines the minimum number of consecutive
number of cpus checking cycle (2 minutes per each cycle).
LSF_HPC_NCPU_INCREMENT defines upper limit for the number of CPUs
that are changed.

For more
information

◆ About the lsf.conf, lsb.hosts, lsb.params, and lsb.queues files, see the
Platform LSF Configuration Reference

◆ About job limits and configuring hosts and queues, see Administering
Platform LSF

Customizing job control actions (optional)
By default, LSF carries out job control actions by sending the appropriate signal to
suspend, terminate, or resume a job. If your jobs need special job control actions, change
the default job control actions in your queue configuration.

JOB_CONTROLS
parameter

(lsb.queues)

Use the JOB_CONTROLS parameter in lsb.queues to configure suspend,
terminate, or resume job controls for the queue:

JOB_CONTROLS = SUSPEND[command] |
RESUME[command] |
TERMINATE[command]

where command is:

◆ The SLURM scancel command to control launched tasks running on remote
allocated nodes

◆ The kill command to control LSF job processes running on the resource manager
node.

◆ Any site-specific action required for job control
See the Platform LSF Configuration Reference for more information about the
JOB_CONTROLS parameter in lsb.queues.
Installing and Configuring Platform LSF for SLURM

Installing and Configuring Platform LSF for SLURM
Example job control actions
Begin Queue
QUEUE_NAME=slurm
...
JOB_CONTROLS = TERMINATE[/opt/scripts/act.sh;kill -s TERM
-$LSB_JOBPGIDS;scancel $SLURM_JOBID]
 SUSPEND[/opt/scripts/act.sh;kill -s STOP -$LSB_JOBPGIDS;
scancel -s STOP $SLURM_JOBID]
 RESUME[/opt/scripts/act.sh;kill -s CONT -$LSB_JOBPGIDS;
scancel -s CONT $SLURM_JOBID]
...
End Queue

Some environments may require a TSTP signal instead of STOP.

Verifying that the configuration is correct
1 Log on as root to the LSF master host.
2 Set your LSF user environment. For example:

❖ For csh or tcsh:
% source /usr/share/lsf/conf/cshrc.lsf

❖ For sh, ksh, or bash:
$. /usr/share/lsf/conf/profile.lsf

3 Start LSF:
lsadmin limstartup
lsadmin resstartup
badmin hstartup

You must be root to start LSF.

4 Test your cluster by running some basic LSF commands (e.g., lsid and lshosts).
5 Use the lsload -l and bhosts -l commands to display load information for

the cluster.

Example lsload -l
output

The status for all nodes should be ok. Hosts with the static resource slurm defined only
report the ls load index. The output should look similar to the this:

lsload -l
HOST_NAME status r15s r1m r15m ut pg io ls it tmp swp mem
hostA ok - - - - - - 1 - - - -

See “How LSF reports resource metrics” on page 20 for more information about how
load indices displayed by lsload.
Installing and Configuring Platform LSF for SLURM 15

Configuring Platform LSF for SLURM

16
Example bhosts -l
output

The status for all nodes should be ok. The output should look similar to this:

bhosts -l
HOST hostA
STATUS CPUF JL/U MAX NJOBS RUN SSUSP USUSP RSV DISPATCH_WINDOW
ok 16.00 - 8 0 0 0 0 0 -

 CURRENT LOAD USED FOR SCHEDULING:
 r15s r1m r15m ut pg io ls it tmp swp mem
 Total - - - - - - 1 - - - -
 Reserved 0.0 0.0 0.0 0% 0.0 0 0 0 0M 0M 0M

 LOAD THRESHOLD USED FOR SCHEDULING:
 r15s r1m r15m ut pg io ls it tmp swp mem
 loadSched - - - - - - - - - - -
 loadStop - - - - - - - - - - -

When a partition is down, bhosts shows all LSF hosts belonging to the partition as
closed_Adm.

Making LSF available to users
After verifying that LSF is operating properly, make LSF available to your users by
having them include LSF_ENVDIR/cshrc.lsf or LSF_ENVDIR/profile.lsf in
their .cshrc or .profile.
Installing and Configuring Platform LSF for SLURM

Installing and Configuring Platform LSF for SLURM
Operating Platform LSF for SLURM
Contents ◆ “Platform LSF SLURM allocation plugin”

◆ “Job lifecycle”
◆ “Supported srun -A allocation shape options”
◆ “How LSF reports resource metrics”
◆ “LSF Licensing”
◆ “Best-fit and first-fit cluster-wide allocation policies”
◆ “Node failover”
◆ “Threshold conditions to report number of CPUs”
◆ “Running pre-execution programs”
◆ “Support for SLURM batch mode (srun -b)”
◆ “Application-level checkpointing”

Platform LSF SLURM allocation plugin
The Platform LSF external scheduler plugin for SLURM (schmod_slurm) is loaded
on the LSF master host by mbschd and handles all communication between the LSF
scheduler and SLURM. It translates LSF concepts (hosts and job slots) into SLURM
concepts (nodes, allocation options, and allocation shape).

Platform LSF
allocation adapter

(RLA)

The Platform LSF allocation adapter (RLA) is located on each LSF host. RLA is started
by sbatchd and runs on the SLURM node with resource manager role. It is the
interface for the LSF SLURM plugin and the SLURM system.

To schedule a job, the SLURM external scheduler plugin calls RLA to:

◆ Query SLURM allocation information
◆ Allocate and deallocate nodes with the specified shape
The SLURM allocation plugin works with RLA to do the allocation calculation and use
RLA services to allocate nodes and de-allocate nodes. sbatchd places jobs within
allocated nodes.

Job lifecycle

How jobs run LSF schedules jobs based on their resource requirements and communicates with the
SLURM system to allocate the resources needed for the job to run. LSF provides node-
level scheduling for parallel jobs and CPU-level scheduling for serial jobs.

After the LSF scheduler creates SLURM resources, it saves allocation information into
LSF event file (lsb.events) and account file (lsb.acct).

When LSF starts job, it sets SLURM_JOBID and SLURM_NPROCS environment
variables in the job environment. SLURM_JOBID associates the LSF job with SLURM
allocated resources. SLURM_NPROCS corresponds to the bsub -n option. The LSF
job file is started on the same node where the LSF daemons run. You must use srun or
mpirun to launch real tasks on the allocated nodes.

After the job finishes, LSF cleans up the SLURM resources.
Installing and Configuring Platform LSF for SLURM 17

Operating Platform LSF for SLURM

18
1. Job submission Use bsub with the -ext SLURM[] external scheduler parameter to submit jobs.

In a mixed cluster, use -R "select[defined(slurm)]" to explicitly run jobs on a
SLURM cluster.

Use srun to launch real parallel tasks on the allocated nodes.

2. Job scheduling For each job, the SLURM scheduler plugin

◆ Merges job-level external scheduler parameter and queue-level parameters
◆ Loads the topology map and restores SLURM allocation for LSF jobs from RLA

during the first scheduling session
◆ Updates the SLURM cluster free map every LSB_RLA_UPDATE interval by

default or on demand if system free map is change
◆ Splits SLURM hosts into different host groups, one host per group to prevent jobs

running across hosts
◆ Schedules the job based on final topology request
◆ Contacts RLA to create a SLURM allocation for job submission user, so that only

the job owner can use the allocation
◆ Attaches SLURM allocation information to the job additional information string

3. Job execution When a job starts, sbatchd

◆ Sets the SLURM_JOBID environment variable in the job control environment
based on SLURM allocation information

◆ For brun jobs, sbatchd contacts RLA to get the job allocation string. If brun
fails, the job is requeued

◆ Sets environment variables before starting up RES:
❖ SLURM_NPROCS—corresponds to bsub -n option
❖ LSF_SLURM_INPUTFILE—corresponds to bsub -i option
❖ LSF_SLURM_OUTPUTFILE—corresponds to bsub -o option
❖ LSF_SLURM_ERRORFILE—corresponds to bsub -e option

By default, pre-execution programs start on the resource manager node. You can use
srun to launch pre-execution programs on all allocated nodes. See “Running pre-
execution programs” on page 23 for more information.

Interactive batch jobs (bsub -I), are started on the resource manager node

Normal batch jobs (bsub without -I) are started on the first node of the SLURM
allocation.

Except for sending signals to job processes running on the resource manager node,
when sbatchd receives a signal request, it uses the SLURM scancel command to
propagate signals to all remote tasks.
Installing and Configuring Platform LSF for SLURM

Installing and Configuring Platform LSF for SLURM
4. Job finish
(Done/Exit)

For interactive jobs, sbatchd considers a job finished if:

◆ Job processes running on resource manager node are gone
OR

◆ sbatchd and res are gone, and job step launched for the job does not exist any
more

sbatchd uses the SLURM scontrol command to check whether job exits because
of SLURM NODE FAIL. If so, sbatchd sets TERM_SLURM job terminate reason
and job exit code as 123. Configure REQUEUE_EXIT_VALUE in the queue to enable
automatic job requeue.

Post-execution commands run on the resource manager node.

After mbschd receives a job finish event, SLURM plugin contacts RLA to clean up
SLURM job allocation.

Supported srun -A allocation shape options

SRUN option Description LSF equivalent

-n, --ntasks=ntasks Number of processes (tasks) to run. Total
CPUs required = ncpus * ntasks

bsub -n

-c, --cpus-per-task=ncpus Number of CPUs per task. Minimum CPUs per
node = MAX(ncpus, mincpus)

Not provided—the meaning of this
option is already covered by bsub -n
and
-ext "SLURM[mincpus=num_cpus]"

-N, --nodes=min[-max] Minimum number of nodes in the allocation
request. Optionally, specifies a range of
minimum to maximum nodes in the allocation.
The allocation will contain at least the minimum
number of nodes, but cannot exceed the
maximum number of nodes.

-ext "SLURM[nodes=min[-max]]"

--mincpus=n Minimum number of CPUs on the node.
Min CPUs per node = MAX(-c ncpus,
--mincpus=n)
The default is 1.

-ext "SLURM[mincpus=num_cpus]"

--mem=MB Minimum amount of real memory on each
node, in MB

-ext "SLURM[mem=MB]"

--tmp=MB Minimum amount of space on /tmp file
system on each node, in MB

-ext "SLURM[tmp=MB]"

-C, --constraint=list A list of constraints on the node allocation.
The constraint list is a logical expression
containing multiple features separated by | (OR
— all nodes have must have at least one of the
listed features) and & (AND — all nodes must
have all listed features).

-ext "SLURM[constraint=list]"
Installing and Configuring Platform LSF for SLURM 19

Operating Platform LSF for SLURM

20
How LSF reports resource metrics
LSF treats an entire SLURM cluster as one LSF host with multiple CPUs and provides
a single system image end users. The following tables summarize the static resource
metrics and load indices reported for SLURM clusters.

Static resource metrics

Only the following static resource metrics are available for each compute node:

◆ ncpus
◆ maxmem
◆ maxtmp

-w, --nodelist=node1,..,nodeN Request a specific list of nodes. Specify a
comma-separated list of nodes, or a range of
nodes.
The allocation will contain at least the minimum
number of nodes, but cannot exceed the
maximum number of nodes.
nodelist=[node_list]
Comma-separated list of node names or a list of
node ranges that must be included in the
allocation.
If you specify node list with contiguous
allocation, the nodes in the node list must be
contiguous for the job to run. You cannot
specify a non-contiguous node list.
nodelist cannot specify the first execution node;
SLURM starts the job on the leftmost node in
the allocation.

-ext "SLURM[nodelist=node_list]"

-x, --exclude=node1,.. nodeN Comma-separated list of node name ranges that
must be excluded from the allocation

-ext "SLURM[exclude=node_list]"

-p, --partition=partition Request resources from specified partition One RootOnly partition for LSF
named lsf

--contiguous Fit the allocation in a single block of nodes with
consecutive node indices

-ext "SLURM[contiguous=yes]"

SRUN option Description LSF equivalent

Static Resource Description How to Calculate

ncpus Total number of usable CPUs on host Minimum value between CPUs of all available
nodes in LSF partition and number of
licensed CPUs. If total number of usable
CPUs is 0, LIM sets ncpus to 1 and close
host.

maxmem Maximum amount of memory available for
user processes

Calculated as a minimal value over all
compute nodes

maxtmp The maximum /tmp space available on the
host

Calculated as a minimal value over all
compute nodes

maxswap The total available swap space Not available (-)
ndisks Number of disks attached to host Not available (-)
Installing and Configuring Platform LSF for SLURM

Installing and Configuring Platform LSF for SLURM
Load indices

The number of login users (ls) is the only load index that LSF reports. For load indices
that cannot be calculated (r15s, r1m, r15m, ut, pg, io, it, tmp, swp, and mem),
lshosts and lsload displays not available (-).

Custom load
indices

You can configure LSF to report other load indices. For more information about LSF
load indices, see Administering Platform LSF.

LSF Licensing
LSF licenses are managed by the Platform LSF licensing mechanism, which determines
whether LSF is correctly licensed for the appropriate number of CPUs on the LSF host.

The LSF license is not transferable to any other hosts in the LSF cluster.

The following LSF features are enabled:

◆ lsf_base
◆ lsf_float_client
◆ lsf_manager

How to get
additional LSF

licenses

To get licenses for additional LSF features, contact Platform Computing at
license@platform.com. For example, to enable Platform MultiCluster licenses in
your LSF cluster, get a license key for the feature lsf_multicluster.

For more information about LSF features and licensing, see Administering
Platform LSF.

Best-fit and first-fit cluster-wide allocation policies
By default, LSF applies a first-fit allocation policy to select from the nodes available for
the job. The allocations are made left to right for all parallel jobs, and right to left for all
serial jobs (all other job requirements being equal).

Load Index Description How to Calculate

r15s 15-second exponentially averaged CPU run queue length Not available (-)
r1m 1-minute exponentially averaged CPU run queue length Not available (-)
r15m 15-minutes exponentially averaged CPU run queue length Not available (-)
ut CPU utilization exponentially averaged over last minute, in 0-1

interval
Not available (-)

pg Memory paging rate exponentially averaged over the last minute,
pages per second

Not available (-)

io I/O rate exponentially averaged over the last minute, KB per
second

Not available (-)

ls Number of currently logged users The value on resource
manager node

it Idle time of the host (keyboard is not touched on all login
sessions), seconds

Not available (-)

tmp Amount of free space on /tmp, MB Not available (-)
swp Amount of free swap space, MB Not available (-)
mem Amount of free memory, MB Not available (-)
Installing and Configuring Platform LSF for SLURM 21

mailto:license@platform.com

Operating Platform LSF for SLURM

22
In a heterogeneous SLURM cluster, a best-fit allocation may be preferable for clusters
where a mix of serial and parallel jobs run. In this context, best fit means: “the nodes
that minimally satisfy the requirements.” Nodes with the maximum number of CPUs are
chosen first. For parallel and serial jobs, the nodes with minimal memory, minimal tmp
space, and minimal weight are chosen.

To enable best-fit allocation, specify LSB_SLURM_BESTFIT=Y in lsf.conf.

Node failover
The failover mechanism on SLURM clusters requires two nodes with resource manager
role, where one node is master and another node is backup. At any time, LSF daemons
should only be started and running on the master node.

When failover happens, the administrator must restart the LSF daemons on the backup
node, and this node will become the new master node. LSF daemons or clients from
other hosts can communicate with new LSF daemons.

Requeing exited jobs when the resource manager node fails

LSF jobs already started on the master node exit with exit code 122 if the master node
goes down. To make sure that these jobs are restarted when the LSF daemons restart
either on the backup node (as new master) or on the original master node, configure
REQUEUE_EXIT_VALUES in lsb.queues to requeue the jobs automatically.

For example:

Begin Queue
QUEUE_NAME = high
...
REQUEUE_EXIT_VALUES = 122
...
End Queue

Threshold conditions to report number of CPUs
When a SLURM system starts, some compute nodes may take some time to come up. If
LSF starts to report the number of CPUs before all nodes are up, already queued smaller
jobs might get started when a more optimal choice might be to start a larger job needing
more CPUs.

To make sure all usable nodes are available for LSF to dispatch jobs to, use the following
parameters in lsf.conf to control when LSF starts to report total usable CPUs on a
SLURM cluster:

◆ LSF_HPC_NCPU_THRESHOLD=threshold
The percentage of total usable CPUs in LSF partition. The default value is 80.

◆ LSF_HPC_NCPU_INCREMENT=increment
Upper limit for number of CPUs that is changed since last checking cycle. The
default value is 0.

◆ LSF_HPC_NCPU_INCR_CYCLES=increment_cycles
Minimum number of consecutive cycles where the number of CPUs changed does
not exceed LSF_HPC_NCPU_INCREMENT. The default value is 1. LSF checks
total usable CPUs every 2 minutes.

◆ LSF_HPC_NCPU_COND= or | and
Installing and Configuring Platform LSF for SLURM

Installing and Configuring Platform LSF for SLURM
Define how any two thresholds are combined. The default is or.

Running pre-execution programs
Though LSF daemons only run on a SLURM node with resource manager role, batch
jobs can run on any SLURM nodes with compute role that satisfy the scheduling and
allocation requirements.

By default, where pre-execution commands run depends on the type of job:

◆ For interactive jobs, pre-execution commands run on the node where sbatchd
runs, typically the resource manager node.

◆ For normal batch jobs, pre-execution commands run on the first node of the
SLURM allocation.

Before starting a pre-exec program, LSF sets the SLURM_JOBID environment variable.
To enable srun to launch pre-execution on the first allocated node and other allocated
nodes, your pre-exec program should pick up the SLURM_JOBID environment
variable. SLURM_JOBID gives LSF the information it needs to run the job on the
nodes required by your pre-exec program.

Controlling where
a pre-execution
program starts

and runs

To run a pre-execution program on

◆ On the resource manager node. This is the default behavior. Run the pre-execution
program normally. Your pre-exec does not need to make use of SLURM_JOBID.

◆ On the first allocated node. Use the srun -N 1 option. For example:
slurm_installation_dir/bin/srun -N 1 my_pre_exec

◆ On all allocated nodes. Use srun directly with no node options. For example
slurm_installation_dir/bin/srun my_pre_exec

See the SLURM srun command man page for more information about the
SLURM_JOBID environment variable and the -N option.
Installing and Configuring Platform LSF for SLURM 23

Operating Platform LSF for SLURM

24
Support for SLURM batch mode (srun -b)
Platform LSF for SLURM uses the SLURM srun -b --jobid=SLURM_JOBID
command to launch jobs on the first node of the SLURM allocation.

In LSF job pre-
execution
programs

Do not use srun -b --jobid=SLURM_JOBID inside pre-execution programs. The
srun -b --jobid=SLURM_JOBID command returns immediately after a SLURM
batch job gets submitted. This can cause the pre-exec script to exit with success while
the real task is still running in batch mode.

In LSF job
commands

◆ Unless special handling provided in job command, LSF will only catch the exit code
of SLURM job step that is associated with LSF job command. LSF will not catch
the exit status of the job steps generated by the srun -b commands included in
the job command.

◆ LSF handles the I/O for the LSF job command by using srun I/O options.
However, subsequent srun -b --jobid=SLURM_JOBID do not inherit the I/O
settings of the LSF job command. You must set I/O for the
srun -b --jobid=SLURM_JOBID command included in LSF job command.
When the -i, -o, or -e options to bsub are used, the following environment
variables are set with proper values.

❖ LSB_SLURM_INPUTFILE
❖ LSB_SLURM_OUTPUTFILE
❖ LSB_SLURM_ERRORFILE
You must make sure your pre-execution programs and job scripts make use of these
variables.

Application-level checkpointing
To enable application-level checkpoint, the checkpoint directory specified for
checkpointable jobs (CHKPNT=chkpnt_dir parameter in the configuration of the
preemptable queue) must be accessible by all SLURM nodes configured in the LSF
partition.

Platform LSF creates checkpoint trigger files in the job working directory to trigger the
checkpoint process of applications. Since the specified checkpoint directory must be
accessible by all the nodes of LSF partition, the checkpoint trigger files will be readable
by the application at run time.

For more
information

About checkpointing and restart, and checkpointing specific applications, see
Administering Platform LSF
Installing and Configuring Platform LSF for SLURM

Installing and Configuring Platform LSF for SLURM
Submitting and Monitoring Jobs
Contents ◆ “bsub command”

◆ “Running jobs on any host type”
◆ “Viewing nodes allocated to your job”
◆ “Example job submissions”

bsub command
To submit a job, use the bsub command.

Syntax
bsub -n min_cpus[,max_cpus]
-ext[sched] "SLURM[[allocation_options][;allocation_options]...]" job_name

Specify allocation options for SLURM jobs either in the -ext option, or with
DEFAULT_EXTSCHED or MANDATORY_EXTSCHED in a queue definition in
lsb.queues.

You can abbreviate the -extsched option to -ext.

The options set by -ext can be combined with the queue-level
MANDATORY_EXTSCHED or DEFAULT_EXTSCHED parameters.
The -ext "SLURM[]" options override the DEFAULT_EXTSCHED parameter, and
the MANDATORY_EXTSCHED parameter overrides -ext "SLURM[]" options.

Controlling and
monitoring jobs

Use bkill, bstop, and bresume to kill, suspend, and resume jobs.

Use bjobs, bacct, and bhist to view allocation and job resource usage information.

Examples ◆ Request 4 nodes, each node must have 2 cpus, 300 MB memory.
% bsub -n 8 -ext "SLURM[nodes=4;mincpus=2;mem=300]" my_job

◆ Request at least the following six nodes: hostA1, hostA40, hostA41, hostA43,
hostA44, and hostA50, but does not want to use following two nodes: hostA45
and hostA46.s

% bsub -n 12 -ext "SLURM[nodelist=hostA1,hostA[40-41,43-44,50];exclude=hostA[45-46]]
my_job

◆ Request at least 5 and at most 8 contiguous nodes.
% bsub -n 16 -ext "SLURM[nodes=5-8;contiguous=yes]" my_job

◆ Request exactly 5 nodes.
% bsub -n 10 -ext "SLURM[nodes=5-5]" my_job

◆ Submit single srun job:
% bsub -n 4 -ext "SLURM[nodes=2]" srun srun_options my_job

◆ Submit single MPI job:
% bsub -n 8 -ext "SLURM[nodes=2]" mpirun -srun
srun_options myjob

◆ Submit a job script:
% bsub -n 8 -ext "SLURM[nodes=2]" < jobscript
Installing and Configuring Platform LSF for SLURM 25

Submitting and Monitoring Jobs

26
For more
information

◆ About -ext options, see “bsub command” on page 35
◆ About MANDATORY_EXTSCHED and DEFAULT_EXTSCHED, see

“lsb.queues file” on page 37
◆ About job operations, see Administering Platform LSF
◆ About bsub, see the Platform LSF Command Reference

Running jobs on any host type
You can specify several types of allocation options at job submission and LSF will
schedule jobs appropriately. Jobs that do not specify SLURM-related options can be
dispatched to SLURM hosts, and jobs with SLURM-related options can be dispatched
to non-SLURM hosts.

Use the LSF resource requirements specification (-R option of bsub or RES_REQ in
queue definition in lsb.queues) to identify the host types required for your job.

SLURM hosts can exist in the same LSF cluster with other host types. Use the -R option
to define host type resource requirements. For example. 64-bit Linux hosts are host type
LINUX64 and SLURM hosts are host type SLINUX64.

Examples ◆ Run myjob on a 64-bit Linux host or a SLURM host if one is available, but not both:
% bsub -n 8 -R "LINUX64 || SLINUX64" -ext "SLURM[nodes=4-4]" myjob

If myjob runs on a SLURM host, the SLURM[nodes=4-4] allocation option is
applied. If it runs on a 64-bit Linux host, the SLURM option is ignored.

◆ Run myjob on any host type, and apply allocation options appropriately:
% bsub-n 8 -R "type==any" -ext "SLURM[nodes=4-4];RMS[ptile=2]" myjob

If myjob runs on an RMS-enabled host, the RMS ptile option is applied. If it
runs on any other host type, the SLURM and RMS options are ignored.

Viewing nodes allocated to your job
After LSF allocates nodes for job, it attaches allocation information to job, so you can
view allocation through bjobs, bhist, and bacct.

The job allocation information string has the form:

slurm_id=slurm_jobid;ncpus=number;slurm_alloc=node_list;

Where:

◆ slurm_id—SLURM allocation ID (SLURM_JOBID environement variable).
◆ ncpus—actual total number of CPUs allocated to job. Because LSF uses node-

level allocation for parallel jobs, the ncpus value may be larger than the number of
CPUs requested by the bsub -n option at job submission.

◆ slurm_alloc—allocated node list.
For example:

Tue Aug 31 16:22:27: slurm_id=60;ncpus=4;slurm_alloc=n[14-15];
Installing and Configuring Platform LSF for SLURM

Installing and Configuring Platform LSF for SLURM
Running jobs
(bjobs -l)

Use bjobs -l to see SLURM allocation information for a running job.

For example, the following job allocates nodes on hosts hostA:

% bsub -n 8 -ext"SLURM[]" mpirun -srun /usr/share/lsf7slurm/bin/hw
Job <7267> is submitted to default queue <normal>.

bjobs output looks like this:

% bjobs -l 7267

Job <7267>, User <user1>, Project <default>, Status <DONE>, Queue <normal>,
 Extsched <SLURM[]>, Command <mpirun -srun /usr/share/lsf7
 slurm/bin/hw>
Thu Sep 16 15:29:06: Submitted from host <hostA>, CWD </usr/share/lsf7slurm/b
 in>, 8 Processors Requested;
Thu Sep 16 15:29:16: Started on 8 Hosts/Processors <8*hostA>;
Thu Sep 16 15:29:16: slurm_id=21795;ncpus=8;slurm_alloc=n[13-16];
Thu Sep 16 15:29:23: Done successfully. The CPU time used is 0.0 seconds.

 SCHEDULING PARAMETERS:
 r15s r1m r15m ut pg io ls it tmp swp mem
 loadSched - - - - - - - - - - -
 loadStop - - - - - - - - - - -

 EXTERNAL MESSAGES:
 MSG_ID FROM POST_TIME MESSAGE ATTACHMENT
 0 - - - -
 1 user1 Sep 16 15:29 SLURM[] N

Finished jobs (bhist -l)

Use bhist -l to see SLURM allocation information for finished jobs. For example:

% bhist -l 7267

Job <7267>, User <user1>, Project <default>, Extsched <SLURM[]>, Command <mpi
 run -srun /usr/share/lsf7slurm/bin/hw>
Thu Sep 16 15:29:06: Submitted from host <hostA>, to Queue <normal>, CWD </u
 sr/share/lsf7slurm/bin>, 8 Processors Requested;
Thu Sep 16 15:29:16: Dispatched to 8 Hosts/Processors <8*hostA>;
Thu Sep 16 15:29:16: slurm_id=21795;ncpus=8;slurm_alloc=n[13-16];
Thu Sep 16 15:29:16: Starting (Pid 5804);
Thu Sep 16 15:29:23: Done successfully. The CPU time used is 0.0 seconds;
Thu Sep 16 15:29:23: Post job process done successfully;

Summary of time in seconds spent in various states by Thu Sep 16 15:29:23
 PEND PSUSP RUN USUSP SSUSP UNKWN TOTAL
 10 0 7 0 0 0 17
Installing and Configuring Platform LSF for SLURM 27

Submitting and Monitoring Jobs

28
Job accounting information (bacct -l)

Use bacct -l to see SLURM allocation information logged to lsb.acct. For
example:

% bacct -l 7267

Accounting information about jobs that are:
 - submitted by all users.
 - accounted on all projects.
 - completed normally or exited
 - executed on all hosts.
 - submitted to all queues.
 - accounted on all service classes.
--

Job <7267>, User <user1>, Project <default>, Status <DONE>, Queue <normal>,
 Command <mpirun -srun /usr/share/lsf7slurm/bin/hw>
Thu Sep 16 15:29:06: Submitted from host <hostA>, CWD </usr/share/lsf7slurm/b
 in>;
Thu Sep 16 15:29:16: Dispatched to 8 Hosts/Processors <8*hostA>;
Thu Sep 16 15:29:16: slurm_id=21795;ncpus=8;slurm_alloc=n[13-16];
Thu Sep 16 15:29:23: Completed <done>.

Accounting information about this job:
 Share group charged </user1>
 CPU_T WAIT TURNAROUND STATUS HOG_FACTOR MEM SWAP
 0.05 10 17 done 0.0029 0K 0K
--

SUMMARY: (time unit: second)
 Total number of done jobs: 1 Total number of exited jobs: 0
 Total CPU time consumed: 0.1 Average CPU time consumed: 0.1
 Maximum CPU time of a job: 0.1 Minimum CPU time of a job: 0.1
 Total wait time in queues: 7.0
 Average wait time in queue: 7.0
 Maximum wait time in queue: 7.0 Minimum wait time in queue: 7.0
 Average turnaround time: 28 (seconds/job)
 Maximum turnaround time: 28 Minimum turnaround time: 28
 Average hog factor of a job: 0.00 (cpu time / turnaround time)
 Maximum hog factor of a job: 0.00 Minimum hog factor of a job: 0.00
Installing and Configuring Platform LSF for SLURM

Installing and Configuring Platform LSF for SLURM
Example job submissions

Environment On one SLURM cluster, the lsf partition configures 4 compute nodes, each with 2
CPUs. LSF is installed on hostA. lsid, lshosts, bhosts, and sinfo show the
configuration:

% lsid
Platform LSF HPC 7.0.3.108010 for SLURM, Jun 3 2008
Copyright 1992-2009 Platform Computing Corporation

My cluster name is cluster1
My master name is hostA

% lshosts
HOST_NAME type model cpuf ncpus maxmem maxswp server RESOURCES
hostA SLINUX6 Itanium2 16.0 8 1M - Yes (slurm)

% bhosts
HOST_NAME STATUS JL/U MAX NJOBS RUN SSUSP USUSP RSV
hostA ok - 8 0 0 0 0 0
% sinfo
PARTITION AVAIL TIMELIMIT NODES STATE NODELIST
lsf up infinite 4 alloc n[13-16]

Submit a job script with -I

Multiple srun commands are specified inside the script:

% cat myjobscript.sh
#!/bin/sh
srun hostname
srun uname -a

Submit the job:

% bsub -I -n 4 < myjobscript.sh
Job <1> is submitted to default queue <normal>.
<<Waiting for dispatch ...>>
<<Starting on hostA>>
n13
n13
n14
n14
Linux n13 2.4.21-15.9smp #1 SMP Wed Aug 25 01:07:12 EDT 2009 ia64 ia64 ia64
GNU/Linux
Linux n13 2.4.21-15.9smp #1 SMP Wed Aug 25 01:07:12 EDT 2009 ia64 ia64 ia64
GNU/Linux
Linux n14 2.4.21-15.9smp #1 SMP Wed Aug 25 01:07:12 EDT 2009 ia64 ia64 ia64
GNU/Linux
Linux n14 2.4.21-15.9smp #1 SMP Wed Aug 25 01:07:12 EDT 2009 ia64 ia64 ia64
GNU/Linux
Installing and Configuring Platform LSF for SLURM 29

Submitting and Monitoring Jobs

30
Submit /bin/sh with -Ip

Use the SLURM sinfo command to show node information:

% sinfo
PARTITION AVAIL TIMELIMIT NODES STATE NODELIST
lsf up infinite 4 alloc n[13-16]

Submit the job:

% bsub -n8 -Ip /bin/sh
Job <2> is submitted to default queue <normal>.
<<Waiting for dispatch ...>>
<<Starting on hostA>>

sinfo shows the allocation:

% sinfo
PARTITION AVAIL TIMELIMIT NODES STATE NODELIST
lsf up infinite 4 alloc n[13-16]

View the SLURM job ID:

% env | grep SLURM
SLURM_JOBID=18
SLURM_NPROCS=8

Run some commands:

% srun hostname
n13
n13
n14
n14
n15
n15
n16
n16

% srun -n 5 hostname
n13
n13
n14
n15
n16

% exit
exit

Use bjobs to see the interactive jobs:

% bjobs -l 2

Job <2>, User <user1>, Project <default>, Status <DONE>, Queue <normal>, Int
 eractive pseudo-terminal mode, Command </bin/sh>
Wed Sep 22 18:05:56: Submitted from host <hostA>, CWD <$HOME>, 8 Processors
 Requested;
Wed Sep 22 18:06:06: Started on 8 Hosts/Processors <8*hostA>;
Wed Sep 22 18:06:06: slurm_id=18;ncpus=8;slurm_alloc=n[13-16];
Wed Sep 22 18:10:37: Done successfully. The CPU time used is 0.6 seconds.
Installing and Configuring Platform LSF for SLURM

Installing and Configuring Platform LSF for SLURM
 SCHEDULING PARAMETERS:
 r15s r1m r15m ut pg io ls it tmp swp mem
 loadSched - - - - - - - - - - -
 loadStop - - - - - - - - - - -

Use bhist to see the history of the finished jobs:

% bhist -l 2

Job <2>, User <user1>, Project <default>, Interactive pseudo-terminal mode,
 Command </bin/sh>
Wed Sep 22 18:05:56: Submitted from host <hostA>, to Queue <normal>, CWD <$H
 OME>, 8 Processors Requested;
Wed Sep 22 18:06:06: Dispatched to 8 Hosts/Processors <8*hostA>;
Wed Sep 22 18:06:06: slurm_id=18;ncpus=8;slurm_alloc=n[13-16];
Wed Sep 22 18:06:06: Starting (Pid 9462);
Wed Sep 22 18:10:24: Done successfully. The CPU time used is 0.6 seconds;
Wed Sep 22 18:10:37: Post job process done successfully;

Summary of time in seconds spent in various states by Wed Sep 22 18:10:37
 PEND PSUSP RUN USUSP SSUSP UNKWN TOTAL
 10 0 258 0 0 0 268

Use the SLURM sinfo command to see node state:

% sinfo
PARTITION AVAIL TIMELIMIT NODES STATE NODELIST
lsf up infinite 4 alloc n[13-16]

Use the SLURM scontrol command to see the SLURM job information:

% scontrol show job 18
JobId=18 UserId=user1(502) GroupId=lsfadmin(502)
 Name=lsf7slurm@2 JobState=COMPLETED
 Priority=4294901743 Partition=lsf BatchFlag=0
 AllocNode:Sid=n16:8833 TimeLimit=UNLIMITED
 StartTime=09/22-18:06:01 EndTime=09/22-18:10:24
 NodeList=n[13-16] NodeListIndecies=-1
 ReqProcs=0 MinNodes=0 Shared=0 Contiguous=0
 MinProcs=0 MinMemory=0 Features=(null) MinTmpDisk=0
 ReqNodeList=(null) ReqNodeListIndecies=-1
 ExcNodeList=(null) ExcNodeListIndecies=-1
Installing and Configuring Platform LSF for SLURM 31

Submitting and Monitoring Jobs

32
Run an MPI job

Submit the job:

% bsub -I -n6 -ext "SLURM[nodes=3]" /opt/mpi/bin/mpirun -srun
/usr/share/lsf7slurm/bin/hw
Job <6> is submitted to default queue <normal>.
<<Waiting for dispatch ...>>
<<Starting on hostA>>
I'm process 0! from (n13 pid 27222)
Greetings from process 1! from (n13 pid 27223)
Greetings from process 2! from (n14 pid 14011)
Greetings from process 3! from (n14 pid 14012)
Greetings from process 4! from (n15 pid 18227)
Greetings from process 5! from (n15 pid 18228)
mpirun exits with status: 0

Use bjobs to see the job:

% bjobs -l 6

Job <6>, User <user1>, Project <default>, Status <DONE>, Queue <normal>, Int
 eractive mode, Extsched <SLURM[nodes=3]>, Command </opt/
 mpi/bin/mpirun -srun /usr/share/lsf7slurm/bin/hw>
Wed Sep 22 18:16:51: Submitted from host <hostA>, CWD <$HOME>, 6 Processors
 Requested;
Wed Sep 22 18:17:02: Started on 6 Hosts/Processors <6*hostA>;
Wed Sep 22 18:17:02: slurm_id=22;ncpus=6;slurm_alloc=n[13-15];
Wed Sep 22 18:17:09: Done successfully. The CPU time used is 0.0 seconds.

 SCHEDULI7NG PARAMETERS:
 r15s r1m r15m ut pg io ls it tmp swp mem
 loadSched - - - - - - - - - - -
 loadStop - - - - - - - - - - -

 EXTERNAL MESSAGES:
 MSG_ID FROM POST_TIME MESSAGE ATTACHMENT
 0 - - - -
 1 user1 Sep 22 18:16 SLURM[nodes=3] N

Use bhist to see the history of the finished job:

% bhist -l 6

Job <6>, User <user1>, Project <default>, Interactive mode, Extsched <SLURM[
 nodes=3]>, Command </opt/mpi/bin/mpirun -srun /usr/share
 /lsf7slurm/bin/hw>
Wed Sep 22 18:16:51: Submitted from host <hostA>, to Queue <normal>, CWD <$H
 OME>, 6 Processors Requested;
Wed Sep 22 18:17:02: Dispatched to 6 Hosts/Processors <6*hostA>;
Wed Sep 22 18:17:02: slurm_id=22;ncpus=6;slurm_alloc=n[13-15];
Wed Sep 22 18:17:02: Starting (Pid 11216);
Wed Sep 22 18:17:09: Done successfully. The CPU time used is 0.0 seconds;
Wed Sep 22 18:17:09: Post job process done successfully;

Summary of time in seconds spent in various states by Wed Sep 22 18:17:09
Installing and Configuring Platform LSF for SLURM

Installing and Configuring Platform LSF for SLURM
 PEND PSUSP RUN USUSP SSUSP UNKWN TOTAL
 11 0 7 0 0 0 18

Run a job with a SLURM allocation request

Submit jobs to a SLURM cluster with three compute nodes (n13, n14, and n16).

◆ Submit a job requesting 2 slots on any 2 nodes:
% bsub -I -n 2 -ext "SLURM[nodes=2]" srun hostname
Job <8> is submitted to default queue <normal>.
<<Waiting for dispatch ...>>
<<Starting on hostA>>
n13
n14

Use bjobs to see the job:

% bjobs -l 8

Job <8>, User <user1>, Project <default>, Status <DONE>, Queue <normal>, Int
 eractive mode, Extsched <SLURM[nodes=2]>, Command <srun ho
 stname>
Wed Sep 22 18:18:58: Submitted from host <hostA>, CWD <$HOME>, 2 Processors
 Requested;
Wed Sep 22 18:19:07: Started on 2 Hosts/Processors <2*hostA>;
Wed Sep 22 18:19:07: slurm_id=24;ncpus=4;slurm_alloc=n[13-14];
Wed Sep 22 18:19:12: Done successfully. The CPU time used is 0.0 seconds.

 SCHEDULING PARAMETERS:
 r15s r1m r15m ut pg io ls it tmp swp mem
 loadSched - - - - - - - - - - -
 loadStop - - - - - - - - - - -

 EXTERNAL MESSAGES:
 MSG_ID FROM POST_TIME MESSAGE ATTACHMENT
 0 - - - -
 1 user1 Sep 22 18:18 SLURM[nodes=2] N

◆ Submit a job requesting 2 slots on specific nodes:
% bsub -I -n 4 -ext "SLURM[nodelist=n[14,16]]"
srun hostname
Job <9> is submitted to default queue <normal>.
<<Waiting for dispatch ...>>
<<Starting on hostA>>
n14
n14
n16
n16

Use bjobs to see the job:

% bjobs -l 9

Job <9>, User <user1>, Project <default>, Status <DONE>, Queue <normal>, Int
 eractive mode, Extsched <SLURM[nodelist=n[14,16]]>, Comman
 d <srun hostname>
Wed Sep 22 18:20:00: Submitted from host <hostA>, CWD <$HOME>, 4 Processors
Installing and Configuring Platform LSF for SLURM 33

Submitting and Monitoring Jobs

34
 Requested;
Wed Sep 22 18:20:07: Started on 4 Hosts/Processors <4*hostA>;
Wed Sep 22 18:20:07: slurm_id=25;ncpus=4;slurm_alloc=n[14,16];
Wed Sep 22 18:20:24: Done successfully. The CPU time used is 0.0 seconds.

 SCHEDULING PARAMETERS:
 r15s r1m r15m ut pg io ls it tmp swp mem
 loadSched - - - - - - - - - - -
 loadStop - - - - - - - - - - -

 EXTERNAL MESSAGES:
 MSG_ID FROM POST_TIME MESSAGE ATTACHMENT
 0 - - - -
 1 user1 Sep 22 18:20 SLURM[nodelist=n[14,16]] N
Installing and Configuring Platform LSF for SLURM

Installing and Configuring Platform LSF for SLURM
Command Reference

bsub command

-ext[sched] "SLURM[[allocation_options][;allocation_options] ...]"

Specifies allocation options for SLURM jobs.

You can abbreviate the -extsched option to -ext.

The options set by -ext can be combined with the queue-level
MANDATORY_EXTSCHED or DEFAULT_EXTSCHED parameters.
The -ext "SLURM[]" options override the DEFAULT_EXTSCHED parameter, and
the MANDATORY_EXTSCHED parameter overrides -ext "SLURM[]" options.

See “lsb.queues file” on page 37 for more information about
MANDATORY_EXTSCHED and DEFAULT_EXTSCHED.

allocation_options

Specifies the SLURM allocation shape options for the job:
✧ constraint=[constraint_list]

A list of constraints on the node allocation.

The constraints are features that have been assigned to the nodes by the
SLURM administrator. A feature is an arbitrary string that represents some
characteristic associated with the node. There is no value associated with a
feature; a node either has a feature or it does not. If desired a feature may
contain a numeric component indicating, for example, processor speed. By
default a node has no features.

The constraint list is a logical expression containing multiple features
separated by | (OR—all nodes have must have at least one of the listed
features) and & (AND—all nodes must have all listed features).

For example:

constraint=bigmem|bigtmp

If no nodes have the requested features, the job remains pending.

✧ contiguous=[yes | no]
Fit the allocation in a single block of nodes with consecutive node indices

If the requested block of contiguous nodes is not available for allocation,
the allocation fails and the job remains pending.

If you specify contiguous allocation with a node list, the nodes in the node
list must be contiguous for the job to run. You cannot specify a non-
contiguous node list.

✧ exclude=[node_list]
Comma-separated list of node name ranges that must be excluded from the
allocation

✧ mem=[integer]
Minimum amount of real memory on each node, in MB
Installing and Configuring Platform LSF for SLURM 35

Command Reference

36
✧ mincpus=[num_cpus]
Minimum number of CPUs on the node. The default is 1.

✧ nodes=[min_nodes[-max_nodes]]
Minimum number of nodes in the allocation request.Optionally, specifies a
range of minimum to maximum nodes in the allocation. The allocation will
contain at least the minimum number of nodes, but cannot exceed the
maximum number of nodes.

✧ nodelist=[node_list]
Comma-separated list of node names or a list of node ranges that must be
included in the allocation.

If you specify node list with contiguous allocation, all the nodes in the node
list must be contiguous for the job to run. You cannot specify any other
non-contiguous nodes in the node list.

nodelist cannot specify the first execution node; SLURM starts the job
on the leftmost node in the allocation.

✧ tmp=[integer]
Minimum amount of space on /tmp file system on each node, in MB

Usage ◆ Option names are not case sensitive. mem=300 is the same as MEM=300.
◆ You can specify any SLURM[] option only once.
◆ The bsub -n option cannot be less than the number of nodes specified in the

nodes or nodelist options.
◆ The values for mincpus, mem, and tmp options must be either positive integers or

empty.
◆ In a range expression for nodes, nodelist and exclude options, the minimum

value cannot be greater than the maximum value specified.
◆ For nodelist and exclude options, node names in node_list must end with a

number, for example hostA1, hostA2, etc. The SLURM host name itself can
contain number characters, but it must begin and end with an alphabetic character.
For example, 2hostA and hostA2 are not correct, but host2A is correct, and the
nodes in host2A will be named like host2A12, host2A13, host2A14, etc. Note
that node numbering does not necessarily start with 1.

If allocation options are set in DEFAULT_EXTSCHED, and you do not want to specify
values for these options, use the keyword with no value in the -ext option of bsub. For
example, if DEFAULT_EXTSCHED=SLURM[nodes=2], and you do not want to specify
any node option at all, use -ext "SLURM[nodes=]".
Installing and Configuring Platform LSF for SLURM

Installing and Configuring Platform LSF for SLURM
File Reference
Contents ◆ “lsb.queues file”

◆ “lsf.conf file”

lsb.queues file

DEFAULT_EXTSCHED

Syntax DEFAULT_EXTSCHED=SLURM[[allocation_options][;allocation_options] ...]

Description Specifies SLURM allocation options for the queue.

-ext options on the bsub command are merged with DEFAULT_EXTSCHED
options, and -ext options override any conflicting queue-level options set by
DEFAULT_EXTSCHED.

For example, if DEFAULT_EXTSCHED=SLURM[nodes=2;tmp=100] and a job is
submitted with -ext "SLURM[nodes=3;tmp=]", LSF uses the following resulting
options for scheduling:

SLURM[nodes=3]

nodes=3 in the -ext option overrides nodes=2 in DEFAULT_EXTSCHED, and
tmp= in -ext option overrides tmp=100 in DEFAULT_EXTSCHED.

DEFAULT_EXTSCHED can be used in combination with
MANDATORY_EXTSCHED in the same queue. For example:

◆ -ext "SLURM[nodes=3;tmp=]"
◆ DEFAULT_EXTSCHED=SLURM[nodes=2;tmp=100]
◆ MANDATORY_EXTSCHED=SLURM[contiguous=yes;tmp=200]

LSF uses the resulting options for scheduling:

SLURM[nodes=3;contiguous=yes;tmp=200]

nodes=3 in the -ext option overrides nodes=2 in DEFAULT_EXTSCHED, and
tmp= in -ext option overrides tmp=100 in DEFAULT_EXTSCHED.
MANDATORY_EXTSCHED adds contiguous=yes, and overrides tmp= in -ext
option and tmp=100 in DEFAULT_EXTSCHED with tmp=200.

If allocation options are set in DEFAULT_EXTSCHED, and you do not want to specify
values for these options, use the keyword with no value in the -ext option of bsub. For
example, if DEFAULT_EXTSCHED=SLURM[nodes=2], and you do not want to specify
any node option at all, use -ext "SLURM[nodes=]".

See “bsub command” on page 25 for more information.

Default Undefined.
Installing and Configuring Platform LSF for SLURM 37

File Reference

38
MANDATORY_EXTSCHED

Syntax MANDATORY_EXTSCHED=SLURM[[allocation_options][;allocation_options] ...]

Description Specifies mandatory SLURM allocation options for the queue.
-ext options on the bsub command are merged with MANDATORY_EXTSCHED
options, and MANDATORY_EXTSCHED options override any conflicting job-level
options set by -ext.

Overrides -ext options on the bsub command.

For example, if MANDATORY_EXTSCHED=SLURM[contiguous=yes;tmp=200]
and a job is submitted with -ext "SLURM[nodes=3;tmp=100]", LSF uses the
following resulting options for scheduling:

"SLURM[nodes=3;contiguous=yes;tmp=200]"

MANDATORY_EXTSCHED can be used in combination with
DEFAULT_EXTSCHED in the same queue. For example:

◆ -ext "SLURM[nodes=3;tmp=]"
◆ DEFAULT_EXTSCHED=SLURM[nodes=2;tmp=100]
◆ MANDATORY_EXTSCHED=SLURM[contiguous=yes;tmp=200]

LSF uses the resulting options for scheduling:

SLURM[nodes=3;contiguous=yes;tmp=200]

nodes=3 in the -ext option overrides nodes=2 in DEFAULT_EXTSCHED, and
tmp= in -ext option overrides tmp=100 in DEFAULT_EXTSCHED.
MANDATORY_EXTSCHED adds contiguous=yes, and overrides tmp= in -ext
option and tmp=100 in DEFAULT_EXTSCHED with tmp=200.

If you want to prevent users from setting allocation options in the -ext option of bsub,
use the keyword with no value. For example, if the job is submitted with
-ext "SLURM[nodes=4]", use MANDATORY_EXTSCHED=RMS[nodes=] to
override this setting.

See “bsub command” on page 25 for more information.

Default Undefined.

lsf.conf file

LSB_RLA_PORT

Syntax LSB_RLA_PORT=port_number

Description TCP port used for communication between the LSF HPC allocation adapter (RLA) and
the SLURM scheduler plugin.

Default 6883
Installing and Configuring Platform LSF for SLURM

Installing and Configuring Platform LSF for SLURM
LSB_RLA_TIMEOUT

Syntax LSB_RLA_TIMEOUT=seconds

Description Defines the communications timeout between RLA and its clients (e.g., sbatchd and
SLURM scheduler plugin.)

Default 10 seconds

LSB_RLA_UPDATE

Syntax LSB_RLA_UPDATE=seconds

Description Specifies how often the LSF scheduler refreshes free node information from RLA.

Default 600 seconds

LSB_RLA_WORKDIR

Syntax LSB_RLA_WORKDIR=director y

Description Directory to store the RLA status file. Allows RLA to recover its original state when it
restarts. When RLA first starts, it creates the directory defined by
LSB_RLA_WORKDIR if it does not exist, then creates subdirectories for each host.

You should avoid using /tmp or any other directory that is automatically cleaned up by
the system. Unless your installation has restrictions on the LSB_SHAREDIR directory,
you should use the default for LSB_RLA_WORKDIR.

Default LSB_SHAREDIR/cluster_name/rla_workdir

LSB_SLURM_BESTFIT

Syntax LSB_SLURM_BESTFIT=y | Y

Description Enables best-fit node allocation.

By default, LSF applies a first-fit allocation policy to select from the nodes available for
the job. The allocations are made left to right for all parallel jobs, and right to left for all
serial jobs (all other job requirements being equal).

In a heterogeneous SLURM cluster, a best-fit allocation may be preferable for clusters
where a mix of serial and parallel jobs run. In this context, best fit means: “the nodes
that minimally satisfy the requirements.” Nodes with the maximum number of CPUs are
chosen first. For parallel and serial jobs, the nodes with minimal memory, minimal tmp
space, and minimal weight are chosen.

Default Undefined

LSF_ENABLE_EXTSCHEDULER

Syntax LSF_ENABLE_EXTSCHEDULER=y | Y

Description Enables external scheduling for Platform LSF for SLURM

Default Y (automatically set by lsfinstall)
Installing and Configuring Platform LSF for SLURM 39

File Reference

40
LSF_HPC_EXTENSIONS

Syntax LSF_HPC_EXTENSIONS="extension_name ..."

Description Enables Platform LSF extensions.

Valid values The following extension names are supported:

◆ SHORT_EVENTFILE—compresses long host name lists when event records are
written to lsb.events and lsb.acct for large parallel jobs. The short host
string has the format:
number_of_hosts*real_host_name

When SHORT_EVENTFILE is enabled, older daemons and commands (pre-LSF
Version 6) cannot recognize the lsb.acct and lsb.events file format.

For example, if the original host list record is

6 "hostA" "hostA" "hostA" "hostA" "hostB" "hostC"

redundant host names are removed and the host count is changed so that the short
host list record becomes

3 "4*hostA" "hostB" "hostC"

When LSF_HPC_EXTENSION="SHORT_EVENTFILE" is set, and LSF reads
the host list from lsb.events or lsb.acct, the compressed host list is
expanded into a normal host list.

Applies to the following events:

❖ JOB_START when a normal job is dispatched
❖ JOB_FORCE when a job is forced with brun
❖ JOB_CHUNK when a job is inserted into a job chunk
❖ JOB_FORWARD when a job is forwarded to a MultiCluster leased host
❖ JOB_FINISH in lsb.acct

◆ SHORT_PIDLIST—shortens the output from bjobs not to include all of the
process IDs (PIDs) for a job. bjobs displays only the first ID and a count of the
process group IDs (PGIDs) and process IDs for the job.
Without SHORT_PIDLIST, bjobs -l displays all the PGIDs and PIDs for the
job. With SHORT_PIDLIST set, bjobs -l displays a count of the PGIDS and
PIDs.

◆ RESERVE_BY_STARTTIME— LSF selects the reservation that will give the job
the earliest predicted start time.
By default, if multiple host groups are available for reservation, LSF chooses the
largest possible reservation based on number of slots. When backfill is configured,
this can lead to larger jobs not running as their start times get pushed further into
the future.

◆ BRUN_WITH_TOPOLOGY—if a topology request can be satisfied for a brun
job, brun preserves the topology request. LSF allocates the resource according to
the request and tries to run the job with the requested topology. If allocation fails
because of topology request cannot be satisfied, job is requeued.
Installing and Configuring Platform LSF for SLURM

Installing and Configuring Platform LSF for SLURM
By default, if BRUN_WITH_TOPOLOGY is not specified, the job topology
request is ignored by the scheduler when it creates an allocation.

Default Undefined

LSF_HPC_NCPU_COND

Syntax LSF_HPC_NCPU_COND=and | or

Description Defines how any two LSF_HPC_NCPU_* thresholds are combined.

Default or

LSF_HPC_NCPU_INCREMENT

Syntax LSF_HPC_NCPU_INCREMENT=increment

Description Defines the upper limit for the number of CPUs that are changed since the last checking
cycle.

Default 0

LSF_HPC_NCPU_INCR_CYCLES

Syntax LSF_HPC_NCPU_INCR_CYCLES=incr_cyscles

Description Minimum number of consecutive cycles where the number of CPUs changed does not
exceed LSF_HPC_NCPU_INCREMENT. LSF checks total usable CPUs every 2
minutes.

Default 1

LSF_HPC_NCPU_THRESHOLD

Syntax LSF_HPC_NCPU_THRESHOLD=threshold

Description LSF_HPC_NCPU_THRESHOLD=threshold

The percentage of total usable CPUs in the LSF partition.

Default 80

LSF_NON_PRIVILEGED_PORTS

Syntax LSF_NON_PRIVILEGED_PORTS=y | Y

Description Disables privileged ports usage.

By default, LSF daemons and clients running under root account will use privileged
ports to communicate with each other. Without LSF_NON_PRIVILEGED_PORTS
defined, and if LSF_AUTH is not defined in lsf.conf, LSF daemons check privileged
port of request message to do authentication.

If LSF_NON_PRIVILEGED_PORTS=Y is defined, LSF clients (LSF commands and
daemons) will not use privileged ports to communicate with daemons and LSF daemons
will not check privileged ports of incoming requests to do authentication.

Default Undefined
Installing and Configuring Platform LSF for SLURM 41

File Reference

42
LSF_SLURM_BINDIR

Syntax LSF_SLURM_BINDIR=absolute_path

Description Specifies an absolute path to the directory containing the SLURM commands. If you
install SLURM in a different location from the default, you must define
LSF_SLURM_BINDIR.

Default /opt/hptc/slurm/bin

LSF_SLURM_DISABLE_CLEANUP

Syntax LSF_SLURM_DISABLE_CLEANUP=y | Y

Description Disables cleanup of non-LSF jobs running in a SLURM LSF partition.

By default, only LSF jobs are allowed to run within a SLURM LSF partition. LSF
periodically cleans up any jobs submitted outside of LSF. This clean up period is defined
through LSB_RLA_UPDATE.

For example, the following srun job is not submitted through LSF, so it is terminated:

% srun -n 4 -p lsf sleep 100000
srun: error: n13: task[0-1]: Terminated
srun: Terminating job

If LSF_SLURM_DISABLE_CLEANUP=Y is set, this job would be allowed to run.

Default Undefined

LSF_SLURM_TMPDIR

Syntax LSF_SLURM_TMPDIR=path

Description Specifies the LSF tmp directory for SLURM clusters. The default LSF_TMPDIR /tmp
cannot be shared across nodes, so LSF_SLURM_TMPDIR must specify a path that is
accessible on all SLURM nodes.

LSF_SLURM_TMPDIR only affects SLURM machine configuration. It is ignored on
other systems in a mixed cluster environment.

The location of LSF tmp directory is determined in the following order:

◆ LSF_SLURM_TMPDIR, if defined
◆ LSF_TMPDIR, if defined
◆ The default shared directory /hptc_cluster/lsf/tmp

Default /hptc_cluster/lsf/tmp
Installing and Configuring Platform LSF for SLURM

Installing and Configuring Platform LSF for SLURM
Copyright
© 1994-2009 Platform Computing Inc.

Although the information in this document has been carefully reviewed, Platform
Computing Inc. (“Platform”) does not warrant it to be free of errors or omissions.
Platform reserves the right to make corrections, updates, revisions or changes to the
information in this document.

UNLESS OTHERWISE EXPRESSLY STATED BY PLATFORM, THE PROGRAM
DESCRIBED IN THIS DOCUMENT IS PROVIDED “AS IS” AND WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO
EVENT WILL PLATFORM COMPUTING BE LIABLE TO ANYONE FOR
SPECIAL, COLLATERAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES,
INCLUDING WITHOUT LIMITATION ANY LOST PROFITS, DATA, OR
SAVINGS, ARISING OUT OF THE USE OF OR INABILITY TO USE THIS
PROGRAM.

Document redistribution policy

This document is protected by copyright and you may not redistribute or translate it into
another language, in part or in whole.

Internal redistribution

You may only redistribute this document internally within your organization (for
example, on an intranet) provided that you continue to check the Platform Web site for
updates and update your version of the documentation. You may not make it available
to your organization over the Internet.

Trademarks

LSF is a registered trademark of Platform Computing Corporation in the United States
and in other jurisdictions.

ACCELERATING INTELLIGENCE, PLATFORM COMPUTING, PLATFORM
SYMPHONY, PLATFORM JOBSCHEDULER, and the PLATFORM and
PLATFORM LSF logos are trademarks of Platform Computing Corporation in the
United States and in other jurisdictions.

UNIX is a registered trademark of The Open Group in the United States and in other
jurisdictions.

Linux is the registered trademark of Linus Torvalds in the U.S. and other countries.

Microsoft is either a registered trademark or a trademark of Microsoft Corporation in
the United States and/or other countries.

Windows is a registered trademark of Microsoft Corporation in the United States and
other countries.

Macrovision, Globetrotter, FLEXlm, FLEXnet, FLEXnet Manager, FLEXnet
Connector, are registered trademarks or trademarks of Macrovision Corporation in the
United States of America and/or other countries.

Other products or services mentioned in this document are identified by the trademarks
or service marks of their respective owners.
Installing and Configuring Platform LSF for SLURM 43

Copyright

44
 Installing and Configuring Platform LSF for SLURM

	Installing and Configuring Platform LSF for SLURM
	Platform LSF for SLURM Overview
	About Platform LSF for SLURM
	About this document
	Assumptions and limitations
	Where to go next

	Installing a New Platform LSF for SLURM Cluster
	Platform LSF for SLURM distribution
	Installing Platform LSF for SLURM (lsfinstall)
	Where to go next

	Configuring Platform LSF for SLURM
	Recommended SLURM configuration (slurm.conf)
	LSF configuration notes
	Customizing job control actions (optional)
	Verifying that the configuration is correct
	Making LSF available to users

	Operating Platform LSF for SLURM
	Platform LSF SLURM allocation plugin
	Job lifecycle
	Supported srun -A allocation shape options
	How LSF reports resource metrics
	LSF Licensing
	Best-fit and first-fit cluster-wide allocation policies
	Node failover
	Threshold conditions to report number of CPUs
	Running pre-execution programs
	Support for SLURM batch mode (srun -b)
	Application-level checkpointing

	Submitting and Monitoring Jobs
	bsub command
	Running jobs on any host type
	Viewing nodes allocated to your job
	Example job submissions

	Command Reference
	bsub command
	-ext[sched] "SLURM[[allocation_options][;allocation_options] ...]"

	File Reference
	lsb.queues file
	DEFAULT_EXTSCHED
	MANDATORY_EXTSCHED
	lsf.conf file
	LSB_RLA_PORT
	LSB_RLA_TIMEOUT
	LSB_RLA_UPDATE
	LSB_RLA_WORKDIR
	LSB_SLURM_BESTFIT
	LSF_ENABLE_EXTSCHEDULER
	LSF_HPC_EXTENSIONS
	LSF_HPC_NCPU_COND
	LSF_HPC_NCPU_INCREMENT
	LSF_HPC_NCPU_INCR_CYCLES
	LSF_HPC_NCPU_THRESHOLD
	LSF_NON_PRIVILEGED_PORTS
	LSF_SLURM_BINDIR
	LSF_SLURM_DISABLE_CLEANUP
	LSF_SLURM_TMPDIR

	Copyright

