
Platform™ LSF™ API Reference

Version 7 Update 5
Release date: March 2009

Last modified: March 20, 2009
Comments to: doc@platform.com

Support: support@platform.com



Copyright © 1994-2009, Platform Computing Inc.
Although the information in this document has been carefully reviewed, Platform Computing Inc. 
(“Platform”) does not warrant it to be free of errors or omissions. Platform reserves the right to make 
corrections, updates, revisions or changes to the information in this document.
UNLESS OTHERWISE EXPRESSLY STATED BY PLATFORM, THE PROGRAM DESCRIBED IN 
THIS DOCUMENT IS PROVIDED “AS IS” AND WITHOUT WARRANTY OF ANY KIND, 
EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO 
EVENT WILL PLATFORM COMPUTING BE LIABLE TO ANYONE FOR SPECIAL, 
COLLATERAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT 
LIMITATION ANY LOST PROFITS, DATA, OR SAVINGS, ARISING OUT OF THE USE OF OR 
INABILITY TO USE THIS PROGRAM.

We’d like to hear from you You can help us make this document better by telling us what you think of the content, organization, 
and usefulness of the information. If you find an error, or just want to make a suggestion for improving 
this document, please address your comments to doc@platform.com.
Your comments should pertain only to Platform documentation. For product support, contact 
support@platform.com.

Document redistribution 
and translation

This document is protected by copyright and you may not redistribute or translate it into another 
language, in part or in whole.

Internal redistribution You may only redistribute this document internally within your organization (for example, on an 
intranet) provided that you continue to check the Platform Web site for updates and update your 
version of the documentation. You may not make it available to your organization over the Internet.

Trademarks LSF is a registered trademark of Platform Computing Inc. in the United States and in other 
jurisdictions.
ACCELERATING INTELLIGENCE, PLATFORM COMPUTING, PLATFORM SYMPHONY, 
PLATFORM JOBSCHEDULER, PLATFORM ENTERPRISE GRID ORCHESTRATOR, PLATFORM 
EGO, and the PLATFORM and PLATFORM LSF logos are trademarks of Platform Computing Inc. in 
the United States and in other jurisdictions.
UNIX is a registered trademark of The Open Group in the United States and in other jurisdictions.
Microsoft is either a registered trademark or a trademark of Microsoft Corporation in the United 
States and/or other countries.
Windows is a registered trademark of Microsoft Corporation in the United States and other countries.
Other products or services mentioned in this document are identified by the trademarks or service 
marks of their respective owners.

Third-party license 
agreements

http://www.platform.com/Company/third.part.license.htm

Third-party copyright 
notices

http://www.platform.com/Company/Third.Party.Copyright.htm



Platform LSF API Reference 3

Contents
lslib .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 7
lsblib .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 11
glb_close_all() .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 14
glb_groupinfolist()  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 15
glb_info()  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 16
glb_init_all()  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 17
glb_jobinfo() .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 18
glb_param()   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 19
glb_perror()   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 20
glb_userinfo()  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 21
glb_workloadinfo() .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 23
ls_chdir()  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 24
ls_clusterinfo()   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 26
ls_connect()  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 28
ls_conntaskport() .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 30
ls_deleteltask()   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 31
ls_deletertask()   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 33
ls_donerex()  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 35
ls_eligible() .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 36
ls_errlog() .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 38
ls_fdbusy()  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 40
ls_findmyconnections() .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 41
ls_getclustername()   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 42
ls_gethostfactor() .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 43
ls_gethostinfo()  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 44
ls_gethostmodel()   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 46
ls_gethosttype() .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 47
ls_getmastername()  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 48
ls_getmnthost() .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 49
ls_getmodelfactor()   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 50
ls_getmyhostname2()  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 51
ls_getmyhostname() .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 52
ls_getstdin()  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 53
ls_info()  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 55
ls_initrex()   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 58
ls_insertltask()  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 60
ls_insertrtask() .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 62



Platform LSF API Reference 4

ls_isconnected()   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 64
ls_limcontrol() .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 65
ls_listltask() .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 67
ls_listrtask() .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 69
ls_load() .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 71
ls_loadadj() .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 74
ls_loadinfo()  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 76
ls_loadofhosts()  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 80
ls_lockhost()  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 83
ls_perror() .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 84
ls_placeofhosts()   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 85
ls_placereq()  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 87
ls_rclose() .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 89
ls_readconfenv()   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 91
ls_readrexlog()   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 93
ls_rescontrol()  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 95
ls_resreq()   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 98
ls_rexecv()   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 100
ls_rexecve() .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 102
ls_rfcontrol()  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 104
ls_rfstat()   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 106
ls_rgetmnthost()   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 108
ls_rkill()   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 110
ls_rlseek() .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 111
ls_ropen() .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 113
ls_rread()  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 115
ls_rstat() .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 117
ls_rsetenv() .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 119
ls_rtask()   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 120
ls_rtaske() .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 122
ls_rwait()   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 124
ls_rwaittid() .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 127
ls_rwrite() .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 130
ls_setstdin()   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 132
ls_sharedresourceinfo()  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 134
ls_stdinmode()   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 136
ls_stoprex() .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 138
ls_sysmsg() .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 139
ls_unlockhost()   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 140
lsb_addreservation() .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 141
lsb_calendarinfo()   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 143
lsb_calendarop()   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 145
lsb_chkpntjob()  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 147
lsb_closejobinfo() .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 148
lsb_closestream() .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 150



Platform LSF API Reference 5

lsb_deletejob()   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 151
lsb_freeLimitInfoEnt()  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 153
lsb_getalloc()   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 154
lsb_geteventrec() .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 155
lsb_geteventrecbyline() .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 211
lsb_getjobdepinfo()   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 212
lsb_hostcontrol()  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 215
lsb_hostgrpinfo()  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 217
lsb_hostinfo()   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 220
lsb_hostinfo_cond()  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 226
lsb_hostinfo_ex()  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 228
lsb_hostpartinfo() .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 234
lsb_init() .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 237
lsb_jsdl2submit()  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 238
lsb_killbulkjobs()   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 239
lsb_launch()   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 240
lsb_limitInfo()   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 242
lsb_mig()  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 245
lsb_modify()  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 247
lsb_modreservation()   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 250
lsb_movejob() .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 252
lsb_openjobinfo() .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 254
lsb_openjobinfo_a()  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 258
lsb_openjobinfo_a_ext()  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 260
lsb_openstream() .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 262
lsb_parameterinfo()   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 264
lsb_peekjob()   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 274
lsb_pendreason() .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 275
lsb_perror() .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 295
lsb_postjobmsg() .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 296
lsb_puteventrec() .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 299
lsb_queuecontrol() .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 315
lsb_queueinfo()  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 317
lsb_readjobinfo()  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 330
lsb_readjobinfo_cond()  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 341
lsb_readjobmsg() .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 352
lsb_readframejob() .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 355
lsb_readstream()  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 358
lsb_readstreamline() .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 360
lsb_reconfig()   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 361
lsb_removereservation()   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 362
lsb_requeuejob()  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 363
lsb_reservationinfo() .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 365
lsb_resize_cancel()  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 368
lsb_resize_release()   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 369



6 Platform LSF API Reference

lsb_runjob()   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 371
lsb_sharedresourceinfo()  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 373
lsb_signaljob() .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 375
lsb_streamversion()   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 376
lsb_submit()  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 377
lsb_submitframe()   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 389
lsb_suspreason()   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 392
lsb_switchjob()   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 396
lsb_sysmsg()  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 397
lsb_usergrpinfo()  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 398
lsb_userinfo()   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 401
lsb_writestream()   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 404



Platform LSF API Reference 7

lslib
Application Programming Interface (API) library routines for LSF services
LSLIB routines allow application programs to contact the Load Information 
Manager (LIM) and Remote Execution Server (RES) daemons in order to obtain 
LSF services. These services include obtaining static system configuration 
information and dynamic load information for the hosts in distributed clusters, 
obtaining task placement advice from LIM, executing tasks (UNIX processes) on 
remote hosts with a high degree of transparency using RES, remote file operations 
across hosts that do not share file systems, performing remote terminal I/O and 
signal operations, and other related functions. You can build distributed 
applications on top of LSLIB to effectively exploit the resources available on the 
network, improving application performance and resource accessibility. 
The LSLIB APIs are grouped by function on the following man pages: 

ls_readconfenv() Library API for reading the LSF configuration environment. The 
ls_readconfenv() API is documented on this page.

ls_info() Library routines for obtaining load sharing cluster configuration information. The 
APIs documented on this page include: 
◆ ls_info()

◆ ls_getclustername()

◆ ls_getmastername()

◆ ls_getmodelfactor()

ls_hostinfo() Library routines for obtaining host configuration information. The APIs 
documented on this page include: 
◆ ls_gethosttype()

◆ ls_gethostmodel()

◆ ls_gethostfactor()

◆ ls_gethostinfo()

ls_load() Library routines for obtaining host load information. An application can use this 
information to make task placement decisions instead of using LIM’s. The APIs 
documented on this page include: 
◆ ls_loadinfo()

◆ ls_load()

◆ ls_loadofhosts()

◆ ls_sharedresourceinfo()

ls_policy() Library routines implementing LIM’s task placement policy. These routines include 
calls to obtain task placement information, and calls to adjust host load measures. 
The APIs documented on this page include: 
◆ ls_placereq()

◆ ls_placeofhosts()

◆ ls_loadadj()



REMOTE EXECUTION

8 Platform LSF API Reference

ls_task() Library routines for displaying and manipulating the local and remote task lists. 
These lists specify the eligibility of various types of tasks for remote execution, and 
their resource requirement characteristics. The APIs documented on this page 
include: 
◆ ls_eligible()

◆ ls_listrtask()

◆ ls_listltask()

◆ ls_insertrtask()

◆ ls_insertltask()

◆ ls_deletertask()

◆ ls_deleteltask()

REMOTE EXECUTION
Library routines related to remote execution, including initiation, connection and 
remote environment manipulation. There are a number of manual pages that 
describe remote execution calls: 

ls_initrex() Library routine for initializing an LSF application for remote execution. The APIs 
documented on this page is: 
ls_initrex()

ls_connect() Library routines for establishing and querying remote connections. The APIs 
documented on this page include: 
◆ ls_connect()

◆ ls_isconnected()

◆ ls_findmyconnections()

ls_rexecv() Library routines for executing remote tasks. The APIs documented on this page 
include: 
◆ ls_rexecv()

◆ ls_rexecve()

◆ ls_rtask()

◆ ls_rtaske()

ls_stdinmode() Library routines for querying and manipulating stdin for remote tasks. The APIs 
documented on this page include: 
◆ ls_stdinmode()

◆ ls_getstdin()

◆ ls_setstdin()

ls_rwait() Wait for a remote or local task, then return its status. The routines documented on 
this page include: 
◆ ls_rwait()

◆ ls_rwaittid()

ls_chdir() Set the remote current working directory. 



Platform LSF API Reference 9

ls_rsetenv() Set up a remote task environment. 
ls_rkill() Send a signal to a remote task. 

ls_donerex() Clean up before closing a remote connection. 
ls_fdbusy() Check if a file descriptor is claimed by LSF. 

ls_stoprex() Stop the network I/O server and restore local tty settings. 
ls_conntaskport() Get a socket connected to a remote task port. 

ls_rfs() Library routines for operations on files on remote hosts. The APIs documented on 
this page include: 
◆ ls_ropen()

◆ ls_rread()

◆ ls_rwrite()

◆ ls_rlseek()

◆ ls_rclose()

◆ ls_rstat()

◆ ls_rfstat()

◆ ls_rgetmnthost()

◆ ls_rfcontrol()

ls_perror() Library routine for load sharing error messages. The routines documented on this 
page are: 
◆ ls_perror()

◆ ls_sysmsg()

◆ ls_errlog()

ls_admin() Library routines for administering and controlling the LSF system. The APIs 
documented on this page include: 
◆ ls_limcontrol()

◆ ls_lockhost()

◆ ls_unlockhost()

ls_rescontrol() Remote Execution Server control. 
ls_readrexlog() Read a record from the remote executed task log file. 

ls_getmnthost() Get the name of the host that exports a file system. 
ls_getmyhostname() Deprecated. Get the name used throughout LSF to represent the local host. 

ls_getmyhostname2() Replaces ls_getmyhostname(). Get the name used throughout LSF to represent the 
local host. 

NOTES
All LSLIB routines require that the LSF header file <lsf/lsf.h> be included. 
Many LSLIB APIs return a pointer to an array or structure. These data structures 
are in static storage or on the heap. The next time the routine is called, the storage 
is overwritten or freed. 



FILES

10 Platform LSF API Reference

Any program using LSLIB routines that change the state of the LSF system (that is, 
those routines documented in ls_admin() and ls_rex()) must be setuid to root if 
LSF_AUTH is not defined in the lsf.conf file. 
Any program using LSLIB routines documented in the ls_rex() or ls_rfs() man 
pages must call ls_initrex() before calling any of the other routines. 
On systems which have both System V and BSD programming interfaces, LSLIB 
typically requires the BSD programming interface. On System V-based versions of 
UNIX, for example SGI IRIX, it is normally necessary to link applications using 
LSLIB with the BSD compatibility library. 
On AFS systems, the following needs to be added to the end of your linkage 
specifications when linking with LSLIB (assuming your AFS library path is 
/usr/afsws): 
For HP-UX and Solaris,
-lc -L/usr/afsws/lib -L/usr/afsws/lib/afs -lsys -lrx -llwp 
/usr/afsws/lib/afs/util.a 

For other platforms,

-lc -L/usr/afsws/lib -L/usr/afsws/lib/afs -lsys -lrx -llwp 

FILES
${LSF_ENVDIR-/etc}/lsf.conf

$LSF_CONFDIR/lsf.shared

$LSF_CONFDIR/lsf.cluster.cluster_name

$LSF_CONFDIR/lsf.task

$LSF_CONFDIR/lsf.task.cluster_name

SEE ALSO
ls_readconfenv(), ls_info(), ls_hostinfo(), ls_load(), ls_policy(), 
ls_task(), ls_rex(), ls_initrex(), ls_connect(), ls_rexecv(), 
ls_stdinmode(), ls_rwait(), ls_chdir(), ls_rsetenv(), ls_rkill(), 
ls_donerex(), ls_fdbusy(), ls_stoprex(), ls_rfs(), ls_perror(), 
ls_admin(), ls_rescontrol(), lim, res, nios 



Platform LSF API Reference 11

lsblib
Application Programming Interface (API) library functions for batch jobs
LSBLIB functions allow application programs to get information about the hosts, 
queues, users, jobs and configuration of the batch system. Application programs 
can also submit jobs and control hosts, queues and jobs. Finally, application 
programs can read batch log files and write batch error messages. 
LSBLIB contains the following functions: 

lsb_chkpntjob()

Checkpoint a job
lsb_closejobinfo()

Close the job information connection with mbatchd
lsb_geteventrec()

Get an event record from a log file
lsb_hostcontrol()

Enable or disable a host, restart or shutdown a slave batch daemon
lsb_hostgrpinfo()

Get membership of batch host groups
lsb_hostinfo()

Get information about job server hosts
lsb_sharedresourceinfo()

Get information about shared resource used for scheduling
lsb_hostpartinfo()

Get information about host partitions
lsb_init()

Initialize LSBLIB and get the configuration environment
lsb_mig()

Migrate a job from one host to another
lsb_movejob()

Move a job in a queue
lsb_openjobinfo()

Open a job information connection with the mbatchd
lsb_parameterinfo()

Get information about the batch cluster
lsb_peekjob()

Retrieve the name of a job’s output file
lsb_pendreason()

Explain why a job is pending



NOTES

12 Platform LSF API Reference

lsb_perror()

Print a batch error message on stderr
lsb_queuecontrol()

Dynamically change the status of a batch job queue
lsb_queueinfo()

Get information about batch queues
lsb_readjobinfo()

Get the next job information record from the connection with mbatchd
lsb_reconfig()

Reconfigure the batch cluster
lsb_signaljob()

Send a signal to a job
lsb_submit()

Submit a job to the batch system
lsb_suspreason()

Explain why a job was suspended
lsb_switchjob()

Switch a job to another queue
lsb_sysmsg()

Return an batch error message
lsb_usergrpinfo()

Get membership of batch user groups
lsb_userinfo()

Get information about users and user groups

NOTES
All LSBLIB APIs require that the batch header file <lsf/lsbatch.h> be included. 
Many LSBLIB APIs return a pointer to an array or structure. These data structures 
are in static storage or on the heap. The next time the API is called, the storage is 
overwritten or freed. 
Any program using LSBLIB APIs that change the state of the batch system (that is, 
except for APIs that just get information about the system) must be setuid to root if 
LSF_AUTH is not defined in the lsf.conf file. 
On systems which have both System V and BSD programming interfaces, LSBLIB 
typically requires the BSD programming interface. On System V-based versions of 
UNIX, for example SGI IRIX, it is normally necessary to link applications using 
LSBLIB with the BSD compatibility library. 
On AFS systems, the following needs to be added to the end of your linkage 
specifications when linking with LSBLIB (assuming your AFS library path is 
/usr/afsws): 



Platform LSF API Reference 13

For HP-UX and Solaris,
-lc -L/usr/afsws/lib -L/usr/afsws/lib/afs -lsys -lrx -llwp 
/usr/afsws/lib/afs/util.a 
For other platforms,
-lc -L/usr/afsws/lib -L/usr/afsws/lib/afs -lsys -lrx -llwp 

FILES
${LSF_ENVDIR-/etc}/lsf.conf

$LSF_CONFDIR/lsf.shared

$LSF_CONFDIR/lsf.cluster.cluster_name 
$LSF_CONFDIR/lsf.task

$LSF_CONFDIR/lsf.task.cluster_name 
$LSB_CONFDIR/cluster/lsb.hosts

$LSB_CONFDIR/cluster/lsb.params

$LSB_CONFDIR/cluster/lsb.queues

$LSB_CONFDIR/cluster/lsb.users

SEE ALSO
lsb_chkpntjob(), lsb_closejobinfo(), lsb_hostgrpinfo(), 
lsb_usergrpinfo(), lsb_hostcontrol(), lsb_hostinfo(), 
lsb_sharedresourceinfo(), lsb_hostpartinfo(), lsb_init(), lsb_mig(), 
lsb_movejob(), lsb_openjobinfo(), lsb_parameterinfo(), lsb_peekjob(), 
lsb_pendreason(), lsb_perror(), lsb_queuecontrol(), lsb_queueinfo(), 
lsb_readjobinfo(), lsb_reconfig(), lsb_signaljob(), lsb_submit(), 
lsb_suspreason(), lsb_switchjob(), lsb_sysmsg(), lsb_userinfo(), 
lsb.queues, lim, res, mbatchd 



glb_close_all()

14 Platform LSF API Reference

glb_close_all()
Closes the connections to all License Scheduler daemons.

DESCRIPTION
glb_close_all() is a routine that closes the connections to all License Scheduler 
daemons specified in lsf.licensescheduler. This is useful when there are 
multiple License Scheduler master and slave daemons running for failover 
purposes.

SYNOPSIS
#include <glb/glb.h>

void glb_close_all(void)

PARAMETERS
void: There are no parameters.

RETURN VALUES
void: There is no return value.

ERRORS
On failure, glberrno is set to indicate the error.

SEE ALSO

Related APIs
glb_init_all() - Initializes and establishes a connection with all License 
Scheduler daemons

Files
LSF_CONFDIR/lsf.licensescheduler



Platform LSF API Reference 15

glb_groupinfolist()
Returns an array of License Scheduler project group information.

DESCRIPTION
glb_groupinfolist() returns an array of glbGroupInfoList structures, which 
contains the License Scheduler project hierarchical group information.

SYNOPSIS
#include <glb/glb.h>

struct glbGroupInfoList *glb_groupinfolist(int *num)

struct glbGroupInfoList {
int num;
char *featurename;
char *sdlist;
int totalavail;
struct glbGroupInfo *groups;

};

struct glbGroupInfo {
char *name;
char *path;
struct groupWeight *w;
int numChildren;

};

PARAMETERS
*num: The number of desired glbGroupInfoList structures returned in the array.

RETURN VALUES
*glbGroupInfoList: A list of License Scheduler project group information.

ERRORS
On failure, glberrno is set to indicate the error.



glb_info()

16 Platform LSF API Reference

glb_info()
Returns an array of license features information.

DESCRIPTION
glb_info() returns an array of glbInfo structures, which contains the license 
features information as configured in the Feature section of glb.conf.

SYNOPSIS
#include <glb/glb.h>

struct glbInfo *glb_info(struct glbHandle *h2, int *num)

struct glbInfo {
char *featureName;
int numdomains;
struct glbSrvDomain *domains;

};

PARAMETERS
*h2: The License Scheduler daemon containing the desired license features information.

*num: The number of desired glbInfo structures returned in the array.

RETURN VALUES
*glbInfo: A list of parameters associated with the License Scheduler daemon.

ERRORS
On failure, glberrno is set to indicate the error.

SEE ALSO

Related APIs
glb_jobinfo() - Returns an array of running jobs that are using license tokens and 
licenses
glb_param() - Returns an array of parameters of the specified License Scheduler 
daemon
glb_perror() - Prints LSF License Scheduler error messages
glb_userinfo() - Returns an array of users that are using license tokens and 
licenses
glb_workloadinfo() - Returns an array of workload distribution information



Platform LSF API Reference 17

glb_init_all()
Initializes and establishes a connection with all License Scheduler daemons.

DESCRIPTION
glb_init_all() is a routine that initializes and establishes a connection with all 
License Scheduler daemons specified in lsf.licensescheduler. This is useful 
when there are multiple License Scheduler master and slave daemons running for 
failover purposes.

SYNOPSIS
#include <glb/glb.h>

link_t *glb_init_all() {
return *link_t;

};

typedef struct link_t {
int num;
void *ptr;
struct link_t *next

};

RETURN VALUES
*link_t: A linked list of License Scheduler daemon handles that glb_init_all() initialises 

and connects to.

ERRORS
On failure, glberrno is set to indicate the error.

SEE ALSO

Related APIs
glb_close_all() - Closes the connections to all License Scheduler daemons

Files
LSF_CONFDIR/lsf.licensescheduler



glb_jobinfo()

18 Platform LSF API Reference

glb_jobinfo()
Returns an array of running jobs that are using license tokens and licenses.

DESCRIPTION
glb_jobinfo() returns an array of glbJob structures, which contains information 
on each job that is using a license token and a license from the license server. Each 
job is either an LSF batch job or a taskman-controlled application.

SYNOPSIS
#include <glb/glb.h>

struct glbJob *glb_jobinfo(int *njobs)

struct glbJob {
char *jobid;
char *client;
char *user;
char *host;
char *cluster;
int starttime;
int status;
int nSpec;
struct glbJobSpec *jobSpec;

};

PARAMETERS
*njobs The number of jobs that are currently in the system. This parameter is used as a 

return value.

RETURN VALUES
*glbJob: An array of running jobs currently using license tokens and licenses from the 

license server.

ERRORS
On failure, glberrno is set to indicate the error.

SEE ALSO

Related APIs
glb_info() - Returns an array of license features information
glb_param() - Returns an array of parameters of the specified License Scheduler 
daemon
glb_perror() - Prints LSF License Scheduler error messages
glb_userinfo() - Returns an array of users that are using license tokens and 
licenses
glb_workloadinfo() - Returns an array of workload distribution information



Platform LSF API Reference 19

glb_param()
Returns an array of parameters of the specified License Scheduler daemon.

DESCRIPTION
glb_param() gets an array of glbParams structures which contains all the 
parameters associated with the specified License Scheduler daemon.

SYNOPSIS
#include <glb/glb.h>

struct glbParams *glb_param(struct glbHandle *h2)

struct glbParams {
int globPort;
char *host;
char *logMask;
char *logEvent;
char *adminName;
char *logDir;
char *workDir;
int logInterval;
int lmStatInterval;
char *licfile;

};

PARAMETERS
*h2: The glbHandle structure that specifies the License Scheduler daemon.

RETURN VALUES
*glbParams: An array of internal parameters associated with the License Scheduler daemon.

ERRORS
On failure, glberrno is set to indicate the error.

SEE ALSO

Related APIs
glb_info() - Returns an array of license features information
glb_jobinfo() - Returns an array of running jobs that are using license tokens and 
licenses
glb_perror() - Prints LSF License Scheduler error messages
glb_userinfo() - Returns an array of users that are using license tokens and 
licenses
glb_workloadinfo() - Returns an array of workload distribution information



glb_perror()

20 Platform LSF API Reference

glb_perror()
Prints LSF License Scheduler error messages.

DESCRIPTION
glb_perror() is a library routine for printing LSF License Scheduler error 
messages corresponding to the reported error number.
glb_perror() 

SYNOPSIS
#include <glb/glb.h>

void glb_perror (const char *msg)

PARAMETERS
*msg The user-defined message. This is printed in front of the error message and is 

separated from the error message by a colon.

RETURN VALUES
void: There is no return value.

ERRORS
Systems that conform to the Single UNIX specification are not required to detect 
error conditions for this function. – Error handling

SEE ALSO

Related APIs
glb_info() - Returns an array of license features information
glb_jobinfo() - Returns an array of running jobs that are using license tokens and 
licenses
glb_param() - Returns an array of parameters of the specified License Scheduler 
daemon
glb_userinfo() - Returns an array of users that are using license tokens and 
licenses
glb_workloadinfo() - Returns an array of workload distribution information



Platform LSF API Reference 21

glb_userinfo()
Returns an array of users that are using license tokens and licenses.

DESCRIPTION
glb_userinfo() returns an array of glbUser structures, which contains 
information on each user that is using a license token and a license from the license 
server. The license server identifies users by the identifier user_name@host_name.

SYNOPSIS
#include <glb/glb.h>

struct glbUser *glb_userinfo(int *nusers, int *lmstatIntvl)

struct glbUser {
char *feature;
char *serviceDomain;
char *name;
char *host;
char *version;
char *vendor;
int ndisplays;
char **display;
int numlics;
char *checkoutTime;
int handle;
int ntasks;
char *client;
int nonglb;
int nTotalLic;

};

PARAMETERS
*nusers The number of users that are currently in the system. This parameter is used as a 

return value.
*lmstatIntvl The current lmstat interval. This parameter is used as a return value.

RETURN VALUES
*glbUser: An array of users currently using license tokens and licenses from the license server.

ERRORS
On failure, glberrno is set to indicate the error.

SEE ALSO

Related APIs
glb_info() - Returns an array of license features information
glb_jobinfo() - Returns an array of running jobs that are using license tokens and 
licenses



SEE ALSO

22 Platform LSF API Reference

glb_param() - Returns an array of parameters of the specified License Scheduler 
daemon
glb_perror() - Prints LSF License Scheduler error messages
glb_workloadinfo() - Returns an array of workload distribution information



Platform LSF API Reference 23

glb_workloadinfo()
Returns an array of workload distribution information.

DESCRIPTION
glb_workloadinfo() returns an array of glbWorkload structures, which contains 
detailed LSF and non-LSF workload distribution information for a particular 
feature.

SYNOPSIS
#include <glb/glb.h>

struct glbWorkload *glb_workloadinfo(void)

struct glbWorkload {
struct glbWorkload *next;
char *feature;
char *sDomain;
struct workloadBasket lsf;
struct workloadBasket nonlsf;

};

PARAMETERS
void: There are no parameters

RETURN VALUES
*glbWorkload: A linked list of workload distribution inforation for a particular feature.

ERRORS
On failure, glberrno is set to indicate the error.

SEE ALSO

Related APIs
glb_info() - Returns an array of license features information
glb_jobinfo() - Returns an array of running jobs that are using license tokens and 
licenses
glb_param() - Returns an array of parameters of the specified License Scheduler 
daemon
glb_perror() - Prints LSF License Scheduler error messages
glb_userinfo() - Returns an array of users that are using license tokens and 
licenses



ls_chdir()

24 Platform LSF API Reference

ls_chdir() 
DESCRIPTION

ls_chdir() sets the application’s working directory on the remote host to the 
directory specified by clntdir. If the application subsequently requests remote 
execution with the flag REXF_CLNTDIR, the Remote Execution Server (RES) uses the 
application’s working directory on the remote host, instead of the application’s local 
current working directory, as the current working directory for the remote 
execution. The RES keeps a working directory for each application, which is 
initialized as the user’s home directory. The application can call this routine to 
change its working directory on a particular host. clntdir must be the full pathname 
of a valid directory on the host host. 
Any program using this routine must call ls_initrex() first. 
Any program using this API must be setuid to root if LSF_AUTH is not defined in 
the lsf.conf file.
Sets an application’s working directory on a remote host to a specified directory.

SYNOPSIS
#include <lsf/lsf.h>

int ls_chdir(char *host, char *clntdir)

PARAMETERS
*host The remote host containing the client directory.

*clntdir The full pathname of a valid directory on the host host.

RETURN VALUES
integer:0 Function was successful.

integer:-1 Function failed.
integer:-2 A warning if the RES fails to check clntdir due to permission denial. This is a 

temporary mechanism to get around the root uid mapping problem of NFS.

ERRORS
Systems that conform to the Single UNIX specification are not required to detect 
error conditions for this function. – Error handling

SEE ALSO

Related APIs
none

Equivalent line command
none



Platform LSF API Reference 25

Files
${LSF_ENVDIR-/etc}/lsf.conf 



ls_clusterinfo()

26 Platform LSF API Reference

ls_clusterinfo() 
Returns general information about LSF clusters.

DESCRIPTION
This routine returns general configuration information about LSF clusters. 
ls_clusterinfo() returns an array of clusterInfo data structures, as defined in 
<lsf/lsf.h>. Each entry contains information about one cluster. The information 
includes cluster name, cluster status, the master host name, LSF primary 
administrator login name (for backward compatibility), LSF primary administrator 
user Id (for backward compatibility), total number of server hosts, total number of 
client hosts, available resource names, host types, host models, total number of LSF 
administrators, LSF administrator user Ids and LSF administrator login names. 
The parameter resreq is designed to select eligible clusters that satisfy the given 
resource requirements from candidate clusters. This parameter is currently 
ignored. clusterlist gives a list of cluster names whose information should be 
returned, if they satisfy the resreq. If clusterlist is NULL, then all clusters known 
to LSF satisfying resreq will be returned. listsize gives the size of the 
clusterlist. If numhosts is not NULL, then *numhosts will be modified to return 
the number of clusters selected. The parameter options is currently ignored. 
This routine returns a pointer to dynamically allocated data which can be freed in 
subsequent calls. 

SYNOPSIS
#include <lsf/lsf.h>
struct clusterInfo *ls_clusterinfo(char *resreq, 

int *numclusters, char **clusterlist, 
int listsize, int options)

struct clusterInfo {
char clusterName[MAXNAMELEN];
int status;
char masterName[MAXHOSTNAMELEN];
char managerName[MAXHOSTNAMELEN];
int managerId;
int numServers;
int numClients;
int nRes;
char **resources;
int nTypes;
char **hostTypes;
int nModels;
char **hostModels;
int nAdmins;



Platform LSF API Reference 27

int *adminIds;
char **admins;
int   jsLicFlag; 

char  afterHoursWindow[MAXLINELEN]; 

 char  preferAuthName[MAXLSFNAMELEN];

char  inUseAuthName[MAXLSFNAMELEN];
};

PARAMETERS
*resreq Select eligible clusters that satisfy the given resource requirements from candidate 

clusters. This parameter is currently ignored.
*numclusters If numclusters is not NULL, then *numclusters will be modified to return the 

number of clusters selected.
**clusterlist Gives a list of cluster names whose information should be returned, if they satisfy 

the resreq. If clusterlist is NULL, then all clusters known to LSF satisfying 
resreq will be returned.

listsize The size of the clusterlist.
option The parameter options is currently ignored.

RETURN VALUES
array: Function was successful.

struct:NULL Function failed.

ERRORS
If the function fails, lserrno is set to indicate the error. 

SEE ALSO

Related APIs
none

Equivalent line command
none

Files
$LSF_CONFDIR/lsf.shared

$LSF_CONFDIR/lsf.cluster.cluster_name 



ls_connect()

28 Platform LSF API Reference

ls_connect() 
Sets up an initial connection with the Remote Execution Server (RES) on a 
specified remote host.

DESCRIPTION
ls_connect() sets up an initial connection with the Remote Execution Server 
(RES) on a specified remote host. You can then use this connection for future 
remote execution or control interactions. This routine is called automatically if a 
connection is not set up when a remote execution request is made (see 
ls_rexecv()). The explicit invocation of this routine has performance advantages 
in certain cases, typically for parallel applications. The routine returns immediately 
when the connection is established rather than waiting for the completion of the 
possibly time consuming authentication and status checking process by the RES 
(see res()). The application can set up initial connections with many remote hosts 
simultaneously, overlapping the authentication processes on all remote hosts. On 
successful completion, this routine returns a socket descriptor through which the 
connection has been established. If the caller’s effective uid is root, this socket has 
been bound to a privileged port during ls_initrex(). ls_connect() uses a socket 
created by the preceding invocation of ls_initrex() and invokes connect() to 
connect to the specified host. If the connection fails, -1 is returned and the socket 
is closed. 
The successful return of ls_connect() does not mean that the RES has granted 
remote execution permission, it means that the authentication process has been 
initiated. If the RES does not grant remote execution permission, an error is 
returned in the next interaction with the RES. Calling ls_connect() multiple 
times with the same host name does not create multiple connections; the same 
connection is always used. 

SYNOPSIS
#include <lsf.h>

int ls_connect(char *host)

PARAMETERS
*host The host that is set up with a Remote Execution Server.

RETURN VALUES
character: Function was successful.

character:-1 Function failed.

ERRORS
Systems that conform to the Single UNIX specification are not required to detect 
error conditions for this function. – Error handling



Platform LSF API Reference 29

SEE ALSO

Related APIs
ls_rexecv() 
ls_initrex() 
ls_isconnected() 
ls_findmyconnections() 

Equivalent line command
none

Files
none



ls_conntaskport()

30 Platform LSF API Reference

ls_conntaskport()
Connects a socket to a remote task port.

DESCRIPTION
ls_conntaskport() connects a socket to the task port that was created by the 
remote RES for the remote task tid returned by an ls_rtask() or ls_rtaske() 
call. You must have started the remote task with the REX_TASKPORT flag (see 
ls_rtask()). 
Any program using this routine must call ls_initrex() first. 
Any program using this API must be setuid to root if LSF_AUTH is not defined in 
the lsf.conf file. 

SYNOPSIS
#include <lsf.h>

int ls_conntaskport(int tid)

PARAMETERS
tid

RETURN VALUES
integer:(non-zero?) Function was successful

integer:-1 Function failed
A connected socket is returned on success. 

ERRORS
If the function fails, lserrno is set to indicate the error. 

SEE ALSO

Related APIs
ls_initrex()

Equivalent line command
none

Files
${LSF_ENVDIR-/etc}/lsf.conf 



Platform LSF API Reference 31

ls_deleteltask()
Deletes the specified task from the local task list.

DESCRIPTION
LSLIB library routine for manipulating task lists stored by LSLIB. Task lists contain 
information about the eligibility of tasks for remote execution and their resource 
requirement characteristics. LSLIB maintains two task lists: local and remote. The 
local list contains tasks (i.e. UNIX processes) that must be executed on the local 
host (for example, ps, uptime, hostname). The remote list contains tasks that are 
suitable for remote execution (for example, compress), together with their resource 
requirements. 
Task lists are generated and stored in memory by reading the system task file() 
and the .lsftask file in the user’s home directory. The task lists can be updated and 
displayed using the command lsltasks(). See the LSF User’s Guide for detailed 
information on the use of task lists and resource requirements. 
ls_deleteltask() deletes the specified task from the local task list. 
task is a character string containing a task name. 
For example, 
"cc/select[swp>20 || (mem>10 && pg<5)] order[swp:pg] rusage[swp=20]" 

See Administering Platform LSF for a description of the resource requirement 
string. 

 SYNOPSIS
#include <lsf/lsf.h>
int ls_deleteltask(char *task)

PARAMETERS
*task The task to be deleted from the local task list.

RETURN VALUES
integer:0 The function was successful. 

integer:-1 Function failed.

ERRORS
If the function fails, lserrno is set to indicate the error. 

SEE ALSO

Related APIs
ls_eligible() 
ls_resreq() 
ls_listrtask() 



SEE ALSO

32 Platform LSF API Reference

ls_listltask() 
ls_inesrtrtask() 
ls_inesrtltask() 
ls_deletertask() 

Equivalent line command
none

Files
$LSF_CONFDIR/lsf.task

$LSF_CONFDIR/lsf.task.cluster_name

$HOME/.lsftask



Platform LSF API Reference 33

ls_deletertask()
Deletes a specified task from the remote task list.

DESCRIPTION
LSLIB library routine for manipulating task lists stored by LSLIB. Task lists contain 
information about the eligibility of tasks for remote execution and their resource 
requirement characteristics. LSLIB maintains two task lists: local and remote. The 
local list contains tasks (i.e. UNIX processes) that must be executed on the local 
host (for example, ps, uptime, hostname). The remote list contains tasks that are 
suitable for remote execution (for example, compress), together with their resource 
requirements. 
Task lists are generated and stored in memory by reading the system task file() 
and the .lsftask file in the user’s home directory. The task lists can be updated and 
displayed using the command lsrtasks(). See the LSF User’s Guide for detailed 
information on the use of task lists and resource requirements. 

ls_deletertask() deletes the specified task from the remote task list. 

SYNOPSIS
#include <lsf/lsf.h>
int ls_deletertask(char *task)

PARAMETERS
*task task is a character string containing the name of the task to be deleted and, for a 

remote task, optionally a resource requirement string, separated by ‘/’.
For example, 
"cc/select[swp>20 || (mem>10 && pg<5)] order[swp:pg] rusage[swp=20]" 

See Administering Platform LSF for a description of the resource requirement 
string. 

RETURN VALUES
integer:0 The function was successful. 

integer:-1 Function failed.

ERRORS
If the function fails, lserrno is set to indicate the error. 

SEE ALSO

Related APIs
ls_eligible() 
ls_resreq() 
ls_listrtask() 



SEE ALSO

34 Platform LSF API Reference

ls_listltask() 
ls_inesrtrtask() 
ls_inesrtltask() 
ls_deleteltask() 

Equivalent line command
none

Files
$LSF_CONFDIR/lsf.task

$LSF_CONFDIR/lsf.task.cluster_name 

$HOME/.lsftask



Platform LSF API Reference 35

ls_donerex()
Kills the Network I/O server (NIOS) and restores the tty environment before a 
remote execution connection is closed.

DESCRIPTION
ls_donerex() kills the Network I/O server (NIOS) and restores the tty 
environment before a remote execution connection is closed. You need to call this 
routine only if a remote execution was started by either ls_rtask() or 
ls_rtaske(), and the option REXF_USEPTY was set. If the application exits without 
calling this routine, the terminal may behave abnormally on occasion. If the option 
REXF_USEPTY is not specified when either ls_rtask() or ls_rtaske() is called, 
there is no need to call ls_donerex().
Any program using this routine must call ls_initrex() first. 
Any program using this API must be setuid to root if LSF_AUTH is not defined in 
the lsf.conf file. 

SYNOPSIS
#include <lsf/lsf.h>

int ls_donerex(void)

RETURN VALUES
integer:0 Function was successful.

integer:-1 Function failed.

ERRORS
If the function fails, lserrno is set to indicate the error. 

SEE ALSO

Related APIs
ls_initrex()

ls_rtask()

ls_rtaske()

Equivalent line command
none

Files
${LSF_ENVDIR-/etc}/lsf.conf 



ls_eligible()

36 Platform LSF API Reference

ls_eligible()
Checks to see if a task is eligible for remote execution.

DESCRIPTION
LSLIB library routine for manipulating task lists stored by LSLIB. Task lists contain 
information about the eligibility of tasks for remote execution and their resource 
requirement characteristics. LSLIB maintains two task lists: local and remote. The 
local list contains tasks (i.e. UNIX processes) that must be executed on the local 
host (for example, ps, uptime, hostname). The remote list contains tasks that are 
suitable for remote execution (for example, compress), together with their resource 
requirements. 
Task lists are generated and stored in memory by reading the system task file() 
and the .lsftask file in the user’s home directory. The task lists can be updated and 
displayed using the command lsrtasks(). See the LSF User’s Guide for detailed 
information on the use of task lists and resource requirements. 
ls_eligible() checks whether or not taskname is eligible for remote execution 
and, if so, obtains its resource requirements. ls_eligible() returns TRUE if 
taskname is eligible for remote execution, FALSE otherwise. 
resreq is an output parameter; you supply the character array. If taskname is 
eligible for remote execution, the resource requirements associated with taskname 
in the remote task lists are copied into resreq. If no resource requirements are 
associated with taskname, an empty string is copied into resreq. 

SYNOPSIS
#include <lsf/lsf.h>

int ls_eligible(char *taskname, char *resreq, char mode)

PARAMETERS
*taskname The task that is being checked to see if it can be remotely executed.

*resreq The resource requirements associated with the task taskname. If no resource 
requirements are associated with taskname, an empty string is copied into resreq.

mode One of two constants defined in <lsf/lsf.h>. 
If mode is LSF_LOCAL_MODE, the routine searches through the remote task lists to see 
if taskname is on a list. If found, the task is considered eligible for remote execution, 
otherwise the task is considered ineligible. 
If mode is LSF_REMOTE_MODE, the routine searches through the local task lists to see 
if taskname is on a list. If found, the task is considered ineligible for remote 
execution, otherwise the task is considered eligible. 

RETURN VALUES
character:TRUE Returned if the task can be remotely executed. 

character:FALSE Returned if the task can not be remotely executed. 



Platform LSF API Reference 37

ERRORS
If the function fails, lserrno is set to indicate the error. 

SEE ALSO

Related APIs
ls_resreq() 
ls_listrtask() 
ls_listltask() 
ls_insertrtask() 
ls_inesrtltask() 
ls_deletertask() 
ls_deleteltask() 

Equivalent line command
none

Files
$LSF_CONFDIR/lsf.task

$LSF_CONFDIR/lsf.task.cluster_name

$HOME/.lsftask



ls_errlog()

38 Platform LSF API Reference

ls_errlog()
Logs error messages.

DESCRIPTION
ls_errlog() is a LSLIB library routine for logging LSF error messages. The global 
variable lserrno, maintained by LSLIB, indicates the error number of the most 
recent LSLIB call that caused an error. 
ls_errlog() is very similar to the fprintf() function, except that it prints out the 
time before it prints other information. You can specify an additional conversion 
character ‘m’ in the format to represent the error message that corresponds to 
lserrno. This function is typically used by load sharing applications running in the 
background (such as daemons) to log error messages to a log file. 
The vector of error message strings, ls_errmsg[ ], is provided for the benefit of 
application programs. You can use lserrno as an index into this table to obtain the 
corresponding LSF error message. The global variable ls_nerr indicates the size of 
the table. 

SYNOPSIS
#include <lsf/lsf.h>

void ls_errlog(FILE *fp, char *fmt, ...)

char *ls_errmsg[ ];
int lserrno;
int ls_nerr;

PARAMETERS
*fp .

*fmt .
ls_errmsg Vector of error message strings, provided for the benefit of application programs.

lserrno Index into this table to obtain the corresponding LSF error message.
ls_nerr Indicates the size of the table.

RETURN VALUES
void: There is no return value.

ERRORS
Systems that conform to the Single UNIX specification are not required to detect 
error conditions for this function. – Error handling

SEE ALSO

Related APIs
ls_perror() 



Platform LSF API Reference 39

ls_sysmsg() 

Equivalent line command
none

Files
lsf/lsf.h



ls_fdbusy()

40 Platform LSF API Reference

ls_fdbusy()
Tests if a specified file descriptor is in use or reserved by LSF.

DESCRIPTION
ls_fdbusy() tests if a specified file descriptor is in use or reserved by LSF. The 
possible descriptors used by LSF are those used for contacting the LIM and for 
remote execution. fd is the file descriptor to test. This call is typically used when an 
application wants to close all unneeded file descriptors.
Any program using this routine must call ls_initrex() first. 
Any program using this API must be setuid to root if LSF_AUTH is not defined in 
the lsf.conf file.

SYNOPSIS
#include <lsf/lsf.h>

int ls_fdbusy(int fd)

PARAMETERS
fd fd is the file descriptor to test.

RETURN VALUES
integer:True Returned if fd is in use or reserved by LSF.

integer:False Returned if fd is not in use or reserved by LSF.

ERRORS
Systems that conform to the Single UNIX specification are not required to detect 
error conditions for this function. – Error handling

SEE ALSO

Related APIs
ls_initrex()

Equivalent line command
none

Files
${LSF_ENVDIR-/etc}/lsf.conf 



Platform LSF API Reference 41

ls_findmyconnections() 
Finds established connections to hosts.

DESCRIPTION
ls_findmyconnections() retrieves the list of hosts with which the application has 
established a connection. A connection is established upon the first successful 
return from an ls_connect(), ls_rtask(), ls_rtaske(), ls_rexecv(), or 
ls_rexecve() call. The returned host name list is terminated by a NULL value. The 
function maintains a static array, each element of which points to a host name. This 
array is overwritten the next time ls_findmyconnections() is called. If a 
connection is not found, the first element of the array is a NULL pointer.
Any program using these routines must call ls_initrex() first. 
Any program using these routines must be setuid to root if LSF_AUTH is not defined 
in the lsf.conf file. 

SYNOPSIS
#include <lsf.h>

char **ls_findmyconnections(void)

RETURN VALUES
character:NULL Function was successful.

character:

ERRORS
Systems that conform to the Single UNIX specification are not required to detect 
error conditions for this function. – Error handling

SEE ALSO

Related APIs
ls_connect()

ls_isconnected()

ls_rtask()

ls_rtaske()

ls_rexecv()

ls_rexecve()

ls_initrex()

Equivalent line command
none

Files
none



ls_getclustername()

42 Platform LSF API Reference

ls_getclustername()
Returns the name of the local load sharing cluster.

DESCRIPTION
This routines provides access to LSF cluster configuration information.
ls_getclustername() returns the name of the local load sharing cluster defined 
in the configuration files. 

SYNOPSIS
#include <lsf/lsf.h>

char *ls_getclustername(void)

RETURN VALUES
character

character:NULL

ERRORS
If the function fails, lserrno is set to indicate the error.

SEE ALSO

Related APIs
ls_info() – Returns a pointer to an lsInfo structure
ls_getmastername() 
ls_getmodelfactor() 

Equivalent line command
none

Files
$LSF_CONFDIR/lsf.shared 

$LSF_CONFDIR/lsf.cluster.cluster_name 



Platform LSF API Reference 43

ls_gethostfactor()
Returns a pointer to a floating point number that contains the CPU factor of the 
specified host.

DESCRIPTION
This routine obtains static resource information about hosts. Static resources 
include configuration information as determined by LSF configuration files (see 
lsf.shared and lsf.cluster) as well as others determined automatically by LIM 
at start up. 
ls_gethostfactor() returns a pointer to a floating point number that contains 
the CPU factor of the specified host.
This routine returns a pointer to dynamically allocated data structures which can 
be freed in subsequent calls.

SYNOPSIS
#include <lsf/lsf.h>

float *ls_gethostfactor(char *hostname)

PARAMETERS
*hostname The host to which the floating point number is returned.

RETURN VALUES
ls_gethostfactor Returns a pointer to a floating point number that contains the CPU factor of the 

specified host.
char:NULL Function failed.

ERRORS
If the function fails, lserrno is set to indicate the error.

SEE ALSO

Related APIs
ls_gethosttype()

ls_gethostmodel()

ls_gethostinfo()

Equivalent line command
none

Files
$LSF_CONFDIR/lsf.shared

$LSF_CONFDIR/lsf.cluster.cluster_name 



ls_gethostinfo()

44 Platform LSF API Reference

ls_gethostinfo()
Returns an array of hostInfo data structures.

DESCRIPTION
This routine obtains static resource information about hosts. Static resources 
include configuration information as determined by LSF configuration files (see 
lsf.shared and lsf.cluster) as well as others determined automatically by LIM 
at start up. 
ls_gethostinfo() returns an array of hostInfo data structures, as defined in 
<lsf/lsf.h>. Each entry contains information about one host, including the host 
type, the host model, its CPU normalization factor, the number of CPUs, its 
maximum memory, swap and tmp space, number of disks, the resources available 
on the host, the run windows during which the host is available for load sharing, 
the busy thresholds for the host, whether the host is a LSF server, and the default 
priority used by the RES for remote tasks executing on that host. The windows field 
will be set to "–" if the host is always open. The busyThreshold field is an array of 
floating point numbers specifying the load index thresholds that LIM uses to 
consider a host as busy. The size of the array is indicated by the numIndx field. The 
order of the array elements is the same as the load indicies returned by ls_load(). 
This routine returns a pointer to dynamically allocated data structures which can 
be freed in subsequent calls.

SYNOPSIS
#include <lsf/lsf.h>

struct hostInfo *ls_gethostinfo(char *resreq, int *numhosts, 
char **hostlist, int listsize, int options)

struct hostInfo {
char hostName[MAXHOSTNAMELEN];
char *hostType;
char *hostModel;
float cpuFactor;
int maxCpus;
int maxMem;
int maxSwap;
int maxTmp;
int nDisks;
int nRes;
char **resources;
char *windows;
int numIndx;
float *busyThreshold;
char isServer;
char licensed;
int rexPriority;
int licFeaturesNeeded;
int licClass;
int cores;
char hostAddr[INET6_ADDRSTRLEN];
int pprocs;



Platform LSF API Reference 45

int cores_per_proc;
int threads_per_core;

};

PARAMETERS
*resreq resreq specifies resource requirements that a host must satisfy if it is to be included 

in the hostInfo array returned. See Administering Platform LSF for information 
about resource requirement string syntax. If this parameter is a NULL pointer or is 
an empty string, then the default resource requirement will be used, which is to 
return all hosts.

*numhosts numhosts is the address of an integer which, if it is not NULL, will contain the 
number of hostInfo records returned on success. 

**hostlist hostlist gives a list of hosts or clusters whose information is returned if they satisfy 
the requirements in resreq. If hostlist is NULL, all hosts known to LSF that satisfy the 
requirements in resreq are returned.

listsize listsize gives the size of the hostlist. 
options options is constructed from the bitwise inclusive OR of zero or more of the flags that 

are defined in <lsf/lsf.h>. These flags are documented in ls_load().

RETURN VALUES
struct

struct:NULL Function failed.

ERRORS
If the function fails, lserrno is set to indicate the error.

SEE ALSO

Related APIs
ls_gethosttype()

ls_gethostmodel()

ls_gethostfactor()

ls_load()

Equivalent line command
none

Files
$LSF_CONFDIR/lsf.shared

$LSF_CONFDIR/lsf.cluster.cluster_name 



ls_gethostmodel()

46 Platform LSF API Reference

ls_gethostmodel()
Returns the model of the specified host.

DESCRIPTION
This routine obtains static resource information about hosts. Static resources 
include configuration information as determined by LSF configuration files (see 
lsf.shared and lsf.cluster) as well as others determined automatically by LIM 
at start up. 
ls_gethostmodel() returns the model of the specified host. 
This routine returns a pointer to dynamically allocated data structures which can 
be freed in subsequent calls.

SYNOPSIS
#include <lsf/lsf.h>

char *ls_gethostmodel(char *hostname)

PARAMETERS
*hostname The host whose model is to be determined.

RETURN VALUES
char Function was successful.

char:NULL Function failed.

ERRORS
If the function fails, lserrno is set to indicate the error.

SEE ALSO

Related APIs
ls_gethosttype()

ls_gethostfactor()

ls_gethostinfo()

Equivalent line command
none

Files
$LSF_CONFDIR/lsf.shared

$LSF_CONFDIR/lsf.cluster.cluster_name 



Platform LSF API Reference 47

ls_gethosttype()
Returns the type of the specified host.

DESCRIPTION
This routine obtains static resource information about hosts. Static resources 
include configuration information as determined by LSF configuration files (see 
lsf.shared and lsf.cluster) as well as others determined automatically by LIM 
at start up. 
ls_gethosttype() returns the type of the specified host. 
This routine returns a pointer to dynamically allocated data structures which can 
be freed in subsequent calls.

SYNOPSIS
#include <lsf/lsf.h>

char *ls_gethosttype(char *hostname)

PARAMETERS
*hostname The host whose type is to be determined.

RETURN VALUES
char Function was successful.

char:NULL Function failed.

ERRORS
If the function fails, lserrno is set to indicate the error.

SEE ALSO

Related APIs
ls_gethostfactor()

ls_gethostmodel()

ls_gethostinfo()

Equivalent line command
none

Files
$LSF_CONFDIR/lsf.shared

$LSF_CONFDIR/lsf.cluster.cluster_name 



ls_getmastername()

48 Platform LSF API Reference

ls_getmastername()
Returns the name of the host running the local load sharing cluster’s master LIM.

DESCRIPTION
This routines provides access to LSF cluster configuration information.
ls_getmastername() returns the name of the host running the local load sharing 
cluster’s master LIM. 

SYNOPSIS
#include <lsf/lsf.h>

char *ls_getmastername(void)

RETURN VALUES
character

character:NULL

ERRORS
If the function fails, lserrno is set to indicate the error.

SEE ALSO

Related APIs
ls_info() – Returns a pointer to an lsInfo structure
ls_getclustername() 
ls_getmodelfactor() 

Equivalent line command
none

Files
$LSF_CONFDIR/lsf.shared 

$LSF_CONFDIR/lsf.cluster.cluster_name 



Platform LSF API Reference 49

ls_getmnthost()
Returns the name of the file server containing a specific file.

DESCRIPTION
ls_getmnthost() returns the name of the file server that exports the file system 
containing file, where file is a relative or absolute path name. For remote files, 
use ls_rgetmnthost() instead. 

SYNOPSIS
#include <lsf/lsf.h>
char *ls_getmnthost(char *file)

PARAMETERS
*file The relative or absolute path name for the file server.

RETURN VALUES
character:file server Function was successful.

character:NULL Function failed.

ERRORS
Systems that conform to the Single UNIX specification are not required to detect 
error conditions for this function. – Error handling

SEE ALSO

Related APIs
ls_rgetmnthost()

Equivalent line command
none

Files
none



ls_getmodelfactor()

50 Platform LSF API Reference

ls_getmodelfactor()
Returns the CPU normalization factor of the specified host model.

DESCRIPTION
This routines provides access to LSF cluster configuration information.
ls_getmodelfactor() returns the CPU normalization factor of the specified host 
model as defined in the LSF configuration files. This factor is based on the the host 
model’s CPU speed relative to other host models in the load sharing system.

SYNOPSIS
#include <lsf/lsf.h>

float *ls_getmodelfactor(char *modelname)

PARAMETERS
*modelname The model for which the CPU nominalization factor is returned.

RETURN VALUES
character

character:NULL

ERRORS
If the function fails, lserrno is set to indicate the error.

SEE ALSO

Related APIs
ls_info() – Returns a pointer to an lsInfo structure
ls_getclustername() 
ls_getmastername() 

Equivalent line command
none

Files
$LSF_CONFDIR/lsf.shared 

$LSF_CONFDIR/lsf.cluster.cluster_name 



Platform LSF API Reference 51

ls_getmyhostname2()
New. Returns the name used throughout LSF to represent the local host.

DESCRIPTION
ls_getmyhostname2() returns the name used throughout LSF to represent the 
local host. 
This function supports the use of both IPv4 and IPv6 protocols. Call this function 
rather than ls_getmyhostname().
This routine returns a pointer to static data which can be overwritten by subsequent 
calls.

SYNOPSIS
#include <lsf/lsf.h>

char *ls_getmyhostname2(void)

RETURN VALUES
character:hostname Function was successful.

character:NULL Function failed.

ERRORS
Systems that conform to the Single UNIX specification are not required to detect 
error conditions for this function. – Error handling

SEE ALSO

Related APIs
ls_getmyhostname

Equivalent line command
none

Files
none



ls_getmyhostname()

52 Platform LSF API Reference

ls_getmyhostname()
Deprecated. Returns the name used throughout LSF to represent the local host.

DESCRIPTION
ls_getmyhostname() returns the name used throughout LSF to represent the local 
host.
This routine returns a pointer to static data which can be overwritten by subsequent 
calls.

SYNOPSIS
#include <lsf/lsf.h>

char *ls_getmyhostname(void)

RETURN VALUES
character:hostname Function was successful.

character:NULL Function failed.

ERRORS
Systems that conform to the Single UNIX specification are not required to detect 
error conditions for this function. – Error handling

SEE ALSO

Related APIs
ls_getmyhostname2()

Equivalent line command
none

Files
none



Platform LSF API Reference 53

ls_getstdin()
Allows an application program to query and specify how stdin is assigned to remote 
tasks.

DESCRIPTION
ls_getstdin() gives an application program the ability to query and specify how 
stdin is assigned to remote tasks. It allows you to assign stdin to to all remote tasks. 
You can change this setting at any time. 
ls_getstdin() gets the list of remote task IDs that receive (or do not receive) 
standard input. If on is non-zero, the task IDs of the remote tasks that are enabled 
to receive standard input are stored in tidlist. maxlen is the size of the tidlist 
array. If on is zero, then the IDs of remote tasks whose standard input is disabled are 
returned. The ID of a task is assigned by the LSLIB when ls_rtask() is called. 
Upon success, ls_getstdin() returns the number of entries stored in tidlist. On 
failure, -1 is returned, and the error code is stored in lserrno. In particular, if there 
are more than maxlen remote task IDs to be returned, lserrno is set to 
LSE_RPIDLISTLEN. 
Any program using this routine must call ls_initrex() first. 
Any program using this API must be setuid to root if LSF_AUTH is not defined in 
the lsf.conf file. 

SYNOPSIS
#include <lsf/lsf.h>

int ls_getstdin(int on, int *tidlist, int *maxlen)

PARAMETERS
on If on is non-zero, the task IDs of the remote tasks that are enabled to receive 

standard input are stored in tidlist. If on is zero, then the IDs of remote tasks 
whose standard input is disabled are returned. The ID of a task is assigned by the 
LSLIB when ls_rtask() is called.

*tidlist

*maxlen The size of the tidlist array.

RETURN VALUES
integer:# of Entries Stored

The function was successful. 
integer:-1

Function failed.

ERRORS
If the function fails, lserrno is set to indicate the error. If there are more than 
maxlen remote task IDs to be returned, lserrno is set to LSE_RPIDLISTLEN. 



SEE ALSO

54 Platform LSF API Reference

SEE ALSO

Related APIs
ls_stdinmodel() 
ls_setstdin() 
ls_initrex() 

Equivalent line command
none

Files
${LSF_ENVDIR-/etc}/lsf.conf



Platform LSF API Reference 55

ls_info()
Returns a pointer to an lsInfo structure.

DESCRIPTION
This routine provides access to LSF cluster configuration information.
On success, ls_info() returns a pointer to an lsInfo structure, which contains 
complete load sharing configuration information. This information includes the 
name of the cluster, the name of the current cluster master host, the set of defined 
resources, the set of defined host types and models, the CPU factors of the host 
models, and all load indices (resTable[0] through resTable[numIndx - 1]), 
including the site defined external load indices (resTable[MAX + 1] through 
resTable[MAX + numUsrIndx]). 
The set of defined resource items is a list of all resources that may be assigned to 
various hosts in the cluster. The resource names can be used to build expressions 
for querying information about hosts, or for describing how tasks are to be 
scheduled. New resources may be defined as desired by the LSF administrator. See 
ls_task() for more information about how resource names can be used to 
describe resource requirements. 
The valueType component of the resItem structure indicates whether the type of 
the resource is NUMERIC, STRING, or BOOLEAN. 
The orderType indicates how hosts should be ordered from best to worst based on 
the resource. If the orderType is INCR, the hosts should be ordered from the lowest 
to the highest value for that resource; if DECR, they should be ordered from the 
highest to lowest. If the orderType is NA, then the resource cannot be used to order 
hosts. 
The flags component is used to indicate the attributes of the resource. It is formed 
from the bitwise inclusive OR of zero or more of the following flags, as defined in 
<lsf/lsf.h>: 

RESF_BUILTIN Indicate whether this resource is builtin to LSF or configured by the LSF 
administrator (external). 

RESF_DYNAMIC Indicate whether the value of this resource can change dynamically or is static. 
Information about dynamic resources for a host can be retrieved through 
ls_load(). Information about static resources can be retrieved through 
ls_gethostinfo(). 

RESF_GLOBAL Indicate whether the resource name is defined for every host in the cluster. The 
value of the resource is specific to each host. This type of resource is also called a 
non-shared resource. 

RESF_SHARED Indicate whether the resource is a shared resource. A shared resource is a resource 
whose value is shared by more than one host, and the resource may be defined only 
on a subset of the hosts. 
The interval component applies to resources with dynamic values. It indicates 
how frequently (in seconds) the resource value is evaluated. 



SYNOPSIS

56 Platform LSF API Reference

The set of host types hostTypes in the lsInfo structure is a list of all defined host 
architectures in the cluster. All machines that can run the same binaries are 
generally considered to be of the same host type. 
The set of host models hostModels in lsInfo structure is a list of all defined 
computer models in the cluster. Generally, machines of the same host type that have 
exactly the same performance characteristics are considered to be the same model. 

SYNOPSIS
#include <lsf/lsf.h>

struct lsInfo *ls_info(void)

struct lsInfo {
int nRes;
struct resItem *resTable;
int nTypes;
char hostTypes[MAXTYPES][MAXLSFNAMELEN];
int nModels;
char hostModels[MAXMODELS][MAXLSFNAMELEN];
char hostArchs[MAXMODELS][MAXLSFNAMELEN_70_EP1];
int modelRefs[MAXMODELS];
float cpuFactor[MAXMODELS];
int numIndx;
int numUsrIndx;

};

struct resItem {
char name[MAXLSFNAMELEN];
char des[MAXRESDESLEN];
enum valueType valueType;
enum orderType orderType;
int flags;
int interval;

};

enum valueType {LS_BOOLEAN, LS_NUMERIC, LS_STRING};
enum orderType {INCR, DECR, NA};

RETURN VALUES
struct:

struct:NULL

ERRORS
If the function fails, lserrno is set to indicate the error.

SEE ALSO

Related APIs
ls_getclustername()

ls_getmastername()

ls_getmodelfactor()



Platform LSF API Reference 57

Equivalent line command
none

Files
$LSF_CONFDIR/lsf.shared 

$LSF_CONFDIR/lsf.cluster.cluster_name 



ls_initrex()

58 Platform LSF API Reference

ls_initrex()
Initializes the LSF library for remote execution.

DESCRIPTION
ls_initrex() initializes the LSF library for remote execution. This routine must 
be called before any other remote execution LSLIB library routines (see ls_rex()) 
can be used. 
Two remote execution security options are supported in LSF. The first option is to 
set the effective user ID of an LSF application to root, as other UNIX applications 
that access remote resources (e.g., rlogin) do. Using this option, numports of the 
application’s file descriptors are bound to privileged ports by ls_initrex(). These 
sockets are used only for remote connections to RES. If numports is 0, then the 
system will use the default value LSF_DEFAULT_SOCKS defined in <lsf/lsf.h>. If 
successful, the number of socket descriptors starting from FIRST_RES_SOCK 
(defined in <lsf/lsf.h>) that are actually bound to privileged ports is returned, -1 
otherwise. To use this option for authentication, the application must be installed 
as setuid to root. The second security option is to use an authentication daemon 
supporting the Ident protocol (RFC 931/1413/1414). In this case, this routine 
returns the value of the input parameter numports if it succeeds, -1 otherwise. 
ls_initrex() selects the security option according to the following rule: if the 
application program invoking it has the effective uid of root, then privileged ports 
are created; otherwise, no such port is created, and RES will contact an 
authentication daemon on a connection request (see ls_connect()). 
Currently, the only option that can be specified in options is KEEPUID, which 
instructs ls_initrex() to preserve the current user ID. If the KEEPUID bit is not set 
in options (i.e. options is zero), then ls_initrex() will change the real, effective 
and saved user ID to the real user ID. 
Any program using this API must be setuid to root if LSF_AUTH is not defined in 
the lsf.conf file. 
This function must be called before calling any other remote execution function. 

SYNOPSIS
#include <lsf/lsf.h>

int ls_initrex(int numports, int options)

PARAMETERS
numports

hostname

RETURN VALUES
integer:numports Function was successful.

integer:-1 Function failed.



Platform LSF API Reference 59

ERRORS
If the function fails, lserrno is set to indicate the error.

SEE ALSO

Related APIs
ls_connect() 
ls_rex() 

Equivalent line command
none

Files
${LSF_ENVDIR-/etc}/lsf.conf



ls_insertltask()

60 Platform LSF API Reference

ls_insertltask()
Adds the specified task to the local task list.

DESCRIPTION
LSLIB library routine for manipulating task lists stored by LSLIB. Task lists contain 
information about the eligibility of tasks for remote execution and their resource 
requirement characteristics. LSLIB maintains two task lists: local and remote. The 
local list contains tasks (i.e. UNIX processes) that must be executed on the local 
host (for example, ps, uptime, hostname). The remote list contains tasks that are 
suitable for remote execution (for example, compress), together with their resource 
requirements. 
Task lists are generated and stored in memory by reading the system task file() 
and the .lsftask file in the user’s home directory. The task lists can be updated and 
displayed using the command lsltasks(). See the LSF User’s Guide for detailed 
information on the use of task lists and resource requirements. 

ls_insertltask() adds the specified task to the local task list. 

SYNOPSIS
#include <lsf/lsf.h>

int ls_insertltask(char *task)

PARAMETERS
*task task is a character string containing the name of the task to be inesrted. 

For example, 
"cc/select[swp>20 || (mem>10 && pg<5)] order[swp:pg] rusage[swp=20]" 

See Administering Platform LSF for a description of the resource requirement 
string. 

RETURN VALUES
integer:0 The function was successful. 

integer:-1 Function failed.

ERRORS
If the function fails, lserrno is set to indicate the error. 

SEE ALSO

Related APIs
ls_eligible() 
ls_resreq() 
ls_listrtask() 
ls_listltask() 



Platform LSF API Reference 61

ls_inesrtrtask() 
ls_deletertask() 
ls_deleteltask() 

Equivalent line command
none

Files
$LSF_CONFDIR/lsf.task

$LSF_CONFDIR/lsf.task.cluster_name

$HOME/.lsftask



ls_insertrtask()

62 Platform LSF API Reference

ls_insertrtask()
Adds a specified task to the remote task list.

DESCRIPTION
LSLIB library routine for manipulating task lists stored by LSLIB. Task lists contain 
information about the eligibility of tasks for remote execution and their resource 
requirement characteristics. LSLIB maintains two task lists: local and remote. The 
local list contains tasks (i.e. UNIX processes) that must be executed on the local 
host (for example, ps, uptime, hostname). The remote list contains tasks that are 
suitable for remote execution (for example, compress), together with their resource 
requirements. 
Task lists are generated and stored in memory by reading the system task file() 
and the .lsftask file in the user’s home directory. The task lists can be updated and 
displayed using the command lsrtasks(). See the LSF User’s Guide for detailed 
information on the use of task lists and resource requirements. 

ls_insertrtask() adds the specified task to the remote task list. 

SYNOPSIS
#include <lsf/lsf.h>
int ls_insertrtask(char *task)

PARAMETERS
*task task is a character string containing the name of the task to be inesrted and, for a 

remote task, optionally a resource requirement string, separated by ‘/’. 
For example, 
"cc/select[swp>20 || (mem>10 && pg<5)] order[swp:pg] rusage[swp=20]" 

See Administering Platform LSF for a description of the resource requirement 
string. 

RETURN VALUES
integer:0 The function was successful. 

integer:-1 Function failed.

ERRORS
If the function fails, lserrno is set to indicate the error. 

SEE ALSO

Related APIs
ls_eligible() 
ls_resreq() 
ls_listrtask() 



Platform LSF API Reference 63

ls_listltask() 
ls_inesrtltask() 
ls_deletertask() 
ls_deleteltask() 

Equivalent line command
none

Files
$LSF_CONFDIR/lsf.task

$LSF_CONFDIR/lsf.task.cluster_name

$HOME/.lsftask



ls_isconnected()

64 Platform LSF API Reference

ls_isconnected() 
Tests if the specified host is currently connected with the application.

DESCRIPTION
ls_isconnected() tests if the specified host is currently connected with the 
application. A connection is established on the first successful return from an 
ls_connect(), ls_rtask(), ls_rtaske(), ls_rexecv(), or ls_rexecve() call.
Any program using these routines must call ls_initrex() first. 
Any program using these routines must be setuid to root if LSF_AUTH is not defined 
in the lsf.conf file. 

SYNOPSIS
#include <lsf.h> 

int ls_connect(char *host)

PARAMETERS
*host The host that is tested for connection with an application.

RETURN VALUES
integer:non-zero Function was successful.

integer:0 Function failed.

ERRORS
Systems that conform to the Single UNIX specification are not required to detect 
error conditions for this function. – Error handling

SEE ALSO

Related APIs
ls_connect() 

ls_findmyconnections() 

ls_rtask() 

ls_rtaske() 

ls_rexecv() 

ls_rexecve() 

Equivalent line command
none

Files
none



Platform LSF API Reference 65

ls_limcontrol()
Shuts down or reboots a host’s LIM.

DESCRIPTION
To remove a host from a cluster, use ls_limcontrol() to shut down the host’s LIM. 
Next, to return a removed host to a cluster, use ls_limcontrol() to reboot its LIM. 
When you reboot the LIM, the configuration files are read again and the previous 
LIM status of the host is lost.
The use of ls_limcontrol() is restricted to root and the LSF administrator as 
defined in the file LSF_CONFDIR/lsf.cluster.cluster_name. 
Any program using this API must be setuid to root if LSF_AUTH is not defined in 
the lsf.conf file. 

SYNOPSIS
#include <lsf/lsf.h>

int ls_limcontrol(char *hostname, int opCode)

PARAMETERS
hostname

Specifies the host
opCode

Specifies the shutdown or reboot LIM command.
LIM_CMD_SHUTDOWN

Command to shutdown the LIM. 
LIM_CMD_REBOOT

Command to reboot the LIM.

RETURN VALUES
integer:0 The function was successful.

integer:-1 The function failed.

ERRORS
If the function fails, lserrno is set to indicate the error.

SEE ALSO

Related APIs:
ls_lockhost() - locks a local host
ls_unlockhost() - unlocks a local host



SEE ALSO

66 Platform LSF API Reference

Equivalent line command
lsadmin limstartup

lsadmin limshutdown

lsadmin limrestart

Files:
${LSF_ENVDIR-/etc}/lsf.conf

$LSF_CONFDIR/lsf.shared

$LSF_CONFDIR/lsf.cluster.cluster_name



Platform LSF API Reference 67

ls_listltask()
Returns the contents of the user’s local task list.

DESCRIPTION
LSLIB library routine for manipulating task lists stored by LSLIB. Task lists contain 
information about the eligibility of tasks for remote execution and their resource 
requirement characteristics. LSLIB maintains two task lists: local and remote. The 
local list contains tasks (i.e. UNIX processes) that must be executed on the local 
host (for example, ps, uptime, hostname). The remote list contains tasks that are 
suitable for remote execution (for example, compress), together with their resource 
requirements. 
Task lists are generated and stored in memory by reading the system task file() 
and the .lsftask file in the user’s home directory. The task lists can be updated and 
displayed using the command lsltasks(). See the LSF User’s Guide for detailed 
information on the use of task lists and resource requirements. 
 ls_listltask() returns the contents of a user’s local task list in tasklist. 
Memory for tasklist is allocated as needed and freed by the next call to 
ls_listltask(). If sortflag is non-zero, then the returned task list is sorted 
alphabetically. Each of the returned tasks is a character string consisting of a task 
name optionally followed by ‘/’ and the associated resource requirement string. 
ls_listltask() return the number of items in the tasklist on success, -1 on 
error. 

SYNOPSIS
#include <lsf/lsf.h>

int ls_listltask(char ***taskList, int sortflag)

***taskList The task list to be accessed.
sortflag

RETURN VALUES
 integer:Number of Items in Task List

The function was successful. 
integer:-1

Function failed.

ERRORS
If the function fails, lserrno is set to indicate the error. 

SEE ALSO

Related APIs
ls_eligible() 



SEE ALSO

68 Platform LSF API Reference

ls_resreq() 
ls_listrtask() 
ls_insertrtask() 
ls_inesrtltask() 
ls_deletertask() 
ls_deleteltask() 

Equivalent line command
none

Files
$LSF_CONFDIR/lsf.task

$LSF_CONFDIR/lsf.task.cluster_name

$HOME/.lsftask



Platform LSF API Reference 69

ls_listrtask()
Returns the contents of the user’s remote task list.

DESCRIPTION
LSLIB library routine for manipulating task lists stored by LSLIB. Task lists contain 
information about the eligibility of tasks for remote execution and their resource 
requirement characteristics. LSLIB maintains two task lists: local and remote. The 
local list contains tasks (i.e. UNIX processes) that must be executed on the local 
host (for example, ps, uptime, hostname). The remote list contains tasks that are 
suitable for remote execution (for example, compress), together with their resource 
requirements. 
Task lists are generated and stored in memory by reading the system task file() 
and the .lsftask file in the user’s home directory. The task lists can be updated and 
displayed using the command lsrtasks(). See the LSF User’s Guide for detailed 
information on the use of task lists and resource requirements. 
ls_listrtask() returns the contents of a user’s remote task list in tasklist. 
Memory for tasklist is allocated as needed and freed by the next call to 
ls_listrtask(). If sortflag is non-zero, then the returned task list is sorted 
alphabetically. Each of the returned tasks is a character string consisting of a task 
name optionally followed by ‘/’ and the associated resource requirement string. 
ls_listrtask() return the number of items in the tasklist on success, -1 on 
error. 

 SYNOPSIS
#include <lsf/lsf.h>

int ls_listrtask(char ***taskList, int sortflag)

PARAMETERS
***taskList The task list to be accessed.

sortflag

RETURN VALUES
 integer:Number of Items in Task List

The function was successful. 
integer:-1

Function failed.

ERRORS
If the function fails, lserrno is set to indicate the error. 



SEE ALSO

70 Platform LSF API Reference

SEE ALSO

Related APIs
ls_eligible() 
ls_resreq() 
ls_listltask() 
ls_insertrtask() 
ls_inesrtltask() 
ls_deletertask() 
ls_deleteltask() 

Equivalent line command
none

Files
$LSF_CONFDIR/lsf.task

$LSF_CONFDIR/lsf.task.cluster_name

$HOME/.lsftask



Platform LSF API Reference 71

ls_load()
Returns all load indices.

DESCRIPTION
This routine returns the dynamic load information of qualified hosts. 
ls_load() returns all load indices. The result of this call is an array of hostLoad 
data structures as defined in <lsf/lsf.h>. The status component of the 
hostLoad structure is an array of integers. The high order 16 bits of the first integer 
are used to mark the operation status of the host. Possible states defined in 
<lsf/lsf.h> are as follows: 

LIM_UNAVAIL The host Load Information Manager (LIM) is unavailable (e.g. the host is down or 
there is no LIM ). If LIM is unavailable the other information in the hostLoad 
structure is meaningless. 

LIM_BUSY The host is busy (overloaded). 
LIM_LOCKEDU The host’s LIM is locked by the root, LSF administrator or a user. 
LIM_LOCKEDW The host’s LIM is locked by its run windows. 
LIM_RESDOWN The host’s Remote Execution Server (RES) is not available. 

LIM_UNLICENSED The host has no software license. 
The low order 16 bits of the first integer are reserved. The other integer() of the 
status array is used to indicate the load status of the host. If any of these bits is set, 
then the host is considered to be busy (overloaded). Each bit (starting from bit 0) in 
integer() represents one load index that caused the host to be busy. If bit i is set 
then the load index corresponding to li[i] caused the host to be busy. An integer 
can be used to for 32 load indices. If number of load indices on the host, both 
built-in and user defined, are more than 32, more than one integer will be used. 
Programmers can use macros to test the status of a host. The most commonly used 
macros include: 
LS_ISUNAVAIL(status)

LS_ISBUSY(status)

LS_ISBUSYON(status, index)

LS_ISLOCKEDU(status)

LS_ISLOCKEDW(status)

LS_ISLOCKED(status)

LS_ISRESDOWN(status)

LS_ISUNLICENSED(status)

LS_ISOK(status)

In the hostLoad data structure, the li vector contains load information on various 
resources on a host. The elements of the load vector are determined by the namelist 
parameter. 

SYNOPSIS
#include <lsf/lsf.h>



PARAMETERS

72 Platform LSF API Reference

struct hostLoad *ls_load(char *resreq, int *numhosts, 
int options, char *fromhost)

struct hostLoad {
char hostName[MAXHOSTNAMELEN];
int *status;
float *li;

};

PARAMETERS
*resreq resreq is a character string describing resource requirements. Only the load 

vectors of the hosts satisfying the requirements will be returned. If resreq is NULL, 
the load vectors of all hosts will be returned. 

*numhosts numhosts is the address of an integer which initially contains the number of hosts 
requested. If *numhosts is 0, request information on as many hosts as satisfy 
resreq. If numhosts is NULL, requests load information on one (1) host. If 
numhosts is not NULL, then *numhosts will contain the number of hostLoad 
records returned on success. 

options options is constructed from the bitwise inclusive OR of zero or more of the 
following flags, as defined in <lsf/lsf.h>.
EXACT 

Exactly *numhosts hosts are desired. If EXACT is set, either exactly *numhosts hosts 
are returned, or the call returns an error. If EXACT is not set, then up to *numhosts 
hosts are returned. If *numhosts is zero, then the EXACT flag is ignored and as many 
hosts in the load sharing system as are eligible (that is, those that satisfy the resource 
requirements) are returned. 
OK_ONLY 

Return only those hosts that are currently in the ‘ok’ state. If OK_ONLY is set, those 
hosts that are busy, locked, or unavail are not returned. If OK_ONLY is not set, then 
some or all of the hosts whose status are not ‘ok’ may also be returned, depending 
on the value of *numhosts and whether the EXACT flag is set. 
NORMALIZE

Normalize CPU load indices. If NORMALIZE is set, then the CPU run queue length 
load indices r15s, r1m, and r15m of each host returned are normalized. See 
Administering Platform LSF for the concept of normalized queue length. Default is 
to return the raw queue length. The options EFFECTIVE and NORMALIZE are 
mutually exclusive. 
EFFECTIVE

If EFFECTIVE is set, then the CPU run queue length load indices of each host 
returned are effective load. See Administering Platform LSF for the concept of 
effective queue length. Default is to return the raw queue length. The options 
EFFECTIVE and NORMALIZE are mutually exclusive. 
IGNORE_RES

Ignore the status of RES when determining the hosts that are considered to be ‘ok’. 
If IGNORE_RES is specified, then hosts with RES not running are also considered to 
be ‘ok’ during host selection. 



Platform LSF API Reference 73

DFT_FROMTYPE

Return hosts with the same type as the fromhost which satisfy the resource 
requirements. By default all host types are considered. 

*fromhost fromhost is the name of the host from which a task might be transferred. This 
parameter affects the host selection in such a way as to give preference to fromhost 
if the load on other hosts is not much better. If fromhost is NULL, the local host is 
assumed. 

RETURN VALUES
character:

character:NULL Depends on which parameter is returned with NULL.

ERRORS
Systems that conform to the Single UNIX specification are not required to detect 
error conditions for this function. – Error handling

SEE ALSO

Related APIs
ls_loadinfo() 
ls_loadofhosts() 

Equivalent line command
none

Files
$LSF_CONFDIR/lsf.shared

$LSF_CONFDIR/lsf.cluster.cluster_name



ls_loadadj()

74 Platform LSF API Reference

ls_loadadj()
Sends a load adjustment request to LIM after the execution host or hosts have been 
selected outside the LIM by the calling application.

DESCRIPTION
ls_loadadj() sends a load adjustment request to LIM after the execution host or 
hosts have been selected outside the LIM by the calling application. Use this call 
only if a placement decision is made by the application without calling 
ls_placereq() (for example, a decision based on the load information from an 
earlier ls_load() call). This request keeps LIM informed of task transfers so that 
the potential load increase on the destination host() provided in placeinfo are 
immediately taken into consideration in future LIM placement decisions. listsize 
gives the total number of entries in placeinfo. 
ls_loadadj() returns 0 on success, otherwise -1 is returned and lserrno is set to 
indicate the error. 
ls_loadadj() can adjust all load indices with the exception of ls, it, r15m and 
external load indices. 

SYNOPSIS
#include <lsf/lsf.h>

int ls_loadadj(char *resreq, struct placeInfo *placeinfo, 
int listsize)

struct placeInfo {
char hostName[MAXHOSTNAMELEN];
int numtask;

}

PARAMETERS
*resreq resreq is a resource requirement expression (which can be NULL) that describes the 

resource requirements for which the load must be adjusted. These typically are the 
resource requirements for the previously placed task (see ls_task()). LIM adjusts 
the host load indices according to the resource requirement. If NULL is specified, 
then LIM assumes that the task or tasks are both CPU and memory intensive (this 
is the default). 

*placeinfo placeinfo is a pointer to an array of placeInfo structures. A placeInfo structure 
contains a hostname, and an integer, numtask, that represents a particular number 
of tasks. The host load indices (specified by resreq) of all the hosts that are 
specified in the array are increased by the number of tasks specified. Each task is 
assumed to have the same resource requirements. The requirements are those 
specified in resreq. 

listsize

hostname Name of the host.
numtask Number of tasks on the host.



Platform LSF API Reference 75

RETURN VALUES
integer:0 Function was successful.

integer:-1 Function failed.

ERRORS
If the function fails, lserrno is set to indicate the error.

SEE ALSO

Related APIs
ls_placereq() 
ls_placeofhosts() 
ls_eligible() 
ls_info() – Returns a pointer to an lsInfo structure
ls_load() 
ls_task() 

Equivalent line command
none

Files
none



ls_loadinfo()

76 Platform LSF API Reference

ls_loadinfo()
Returns the requested load indices of the hosts that satisfy specified resource 
requirements.

DESCRIPTION
This routine returns the dynamic load information of qualified hosts. 
ls_loadinfo() returns the requested load indices of the hosts that satisfy the 
specified resource requirements. The result of this call is an array of hostLoad data 
structures as defined in <lsf/lsf.h>. The status component of the hostLoad 
structure is an array of integers. The high order 16 bits of the first integer are used 
to mark the operation status of the host. Possible states defined in <lsf/lsf.h> are 
as follows: 

LIM_UNAVAIL The host Load Information Manager (LIM) is unavailable (e.g. the host is down or 
there is no LIM ). If LIM is unavailable the other information in the hostLoad 
structure is meaningless. 

LIM_BUSY The host is busy (overloaded). 
LIM_LOCKEDU The host’s LIM is locked by the root, LSF administrator or a user. 
LIM_LOCKEDW The host’s LIM is locked by its run windows. 
LIM_RESDOWN The host’s Remote Execution Server (RES) is not available. 

LIM_UNLICENSED The host has no software license. 
The low order 16 bits of the first integer are reserved. The other integer() of the 
status array is used to indicate the load status of the host. If any of these bits is set, 
then the host is considered to be busy (overloaded). Each bit (starting from bit 0) in 
integer() represents one load index that caused the host to be busy. If bit i is set 
then the load index corresponding to li[i] caused the host to be busy. An integer 
can be used to for 32 load indices. If number of load indices on the host, both 
built-in and user defined, are more than 32, more than one integer will be used. 
Programmers can use macros to test the status of a host. The most commonly used 
macros include: 
LS_ISUNAVAIL(status)

LS_ISBUSY(status)

LS_ISBUSYON(status, index)

LS_ISLOCKEDU(status)

LS_ISLOCKEDW(status)

LS_ISLOCKED(status)

LS_ISRESDOWN(status)

LS_ISUNLICENSED(status)

LS_ISOK(status)

In the hostLoad data structure, the li vector contains load information on various 
resources on a host. The elements of the load vector are determined by the 
namelist parameter. 



Platform LSF API Reference 77

The returned hostLoad array is sorted according to the order section of the resource 
requirements, resreq (or, if not specified, the 1-minute average CPU queue length 
and paging rate), with the lightest loaded host being the first. 
hostlist is an array of listsize host or cluster names. If not NULL, then only load 
information about hosts in this list will be returned. 

SYNOPSIS
#include <lsf/lsf.h>

struct hostLoad *ls_loadinfo(char *resreq, int *numhosts, 
int options, char *fromhost, char **hostlist, 
int listsize, char ***namelist)

struct hostLoad {
char hostName[MAXHOSTNAMELEN];
int *status;
float *li;

};

PARAMETERS
*resreq resreq is a character string describing resource requirements. Only the load 

vectors of the hosts satisfying the requirements will be returned. If resreq is NULL, 
the load vectors of all hosts will be returned. 

*numhosts numhosts is the address of an integer which initially contains the number of hosts 
requested. If *numhosts is 0, request information on as many hosts as satisfy 
resreq. If numhosts is NULL, requests load information on one (1) host. If 
numhosts is not NULL, then *numhosts will contain the number of hostLoad 
records returned on success. 

options options is constructed from the bitwise inclusive OR of zero or more of the 
following flags, as defined in <lsf/lsf.h>.
EXACT 

Exactly *numhosts hosts are desired. If EXACT is set, either exactly *numhosts hosts 
are returned, or the call returns an error. If EXACT is not set, then up to *numhosts 
hosts are returned. If *numhosts is zero, then the EXACT flag is ignored and as many 
hosts in the load sharing system as are eligible (that is, those that satisfy the resource 
requirements) are returned. 
OK_ONLY 

Return only those hosts that are currently in the ‘ok’ state. If OK_ONLY is set, those 
hosts that are busy, locked, or unavail are not returned. If OK_ONLY is not set, then 
some or all of the hosts whose status are not ‘ok’ may also be returned, depending 
on the value of *numhosts and whether the EXACT flag is set. 
NORMALIZE

Normalize CPU load indices. If NORMALIZE is set, then the CPU run queue length 
load indices r15s, r1m, and r15m of each host returned are normalized. See 
Administering Platform LSF for the concept of normalized queue length. Default is 
to return the raw queue length. The options EFFECTIVE and NORMALIZE are 
mutually exclusive. 



PARAMETERS

78 Platform LSF API Reference

EFFECTIVE

If EFFECTIVE is set, then the CPU run queue length load indices of each host 
returned are effective load. See Administering Platform LSF for the concept of 
effective queue length. Default is to return the raw queue length. The options 
EFFECTIVE and NORMALIZE are mutually exclusive. 
IGNORE_RES

Ignore the status of RES when determining the hosts that are considered to be ‘ok’. 
If IGNORE_RES is specified, then hosts with RES not running are also considered to 
be ‘ok’ during host selection. 
DFT_FROMTYPE

Return hosts with the same type as the fromhost which satisfy the resource 
requirements. By default all host types are considered. 

**fromhost fromhost is the name of the host from which a task might be transferred. This 
parameter affects the host selection in such a way as to give preference to fromhost 
if the load on other hosts is not much better. If fromhost is NULL, the local host is 
assumed. 

**hostlist An array of listsize host or cluster names.
listsize

***namelist namelist is an input/output parameter. On input it points to a null-terminated list 
of names of indices whose values will be returned in the li vector for each host 
selected. Setting namelist to point to NULL returns all indices. On return it points 
to a null-terminated list of the names of the indices returned in the li load vector 
for each host. Each element of the load vector is a floating point number between 
0.0 and INFINIT_LOAD (defined in lsf.h). The index value is set to INFINIT_LOAD 
to indicate an invalid or unknown value for an index. The indices in the li vector 
are ordered such that li[i] contains the value of index namelist[i]. If index 
namelist[i] is causing the host to be busy, then LS_ISBUSYON(status, i) will be 
TRUE. When the input namelist is NULL the output namelist is ordered such that 
the li vector can be indexed using constants defined in <lsf/lsf.h> as listed 
below: 
li[R15S]

15-second exponentially averaged CPU run queue length. 
li[R1M]

1-minute exponentially averaged CPU run queue length. 
li[R15M]

15-minute exponentially averaged CPU run queue length. 
li[UT]

CPU utilization exponentially averaged over the last minute (from 0.0 to 1.0). 
li[IO]

Disk I/O rate exponentially averaged over the last minute, in KBytes per second. 
li[PG]



Platform LSF API Reference 79

Memory paging rate exponentially averaged over the last minute, in pages per 
second. 
li[LS]

Number of current login users. 
li[IT]

Idle time of the host (keyboard not touched on all logged in sessions), in minutes. 
li[TMP]

Available free disk space in /tmp, in MBytes. 
li[SWP]

Amount of currently available swap space, in MBytes. 
li[MEM]

Amount of currently available memory, in MBytes. 

RETURN VALUES
character:

character:NULL Depends on which parameter is returned with NULL.

ERRORS
Systems that conform to the Single UNIX specification are not required to detect 
error conditions for this function. – Error handling

SEE ALSO

Related APIs
ls_loadofhosts() 
ls_load()  

Equivalent line command
none

Files
$LSF_CONFDIR/lsf.shared

$LSF_CONFDIR/lsf.cluster.cluster_name



ls_loadofhosts()

80 Platform LSF API Reference

ls_loadofhosts()
Returns all load indices except those specified.

DESCRIPTION
This routine returns the dynamic load information of qualified hosts. 
ls_loadofhosts() returns all load indices except for the ones excluded b the 
parameters. The result of this call is an array of hostLoad data structures as defined 
in <lsf/lsf.h>. The status component of the hostLoad structure is an array of 
integers. The high order 16 bits of the first integer are used to mark the operation 
status of the host. Possible states defined in <lsf/lsf.h> are as follows: 

LIM_UNAVAIL The host Load Information Manager (LIM) is unavailable (e.g. the host is down or 
there is no LIM ). If LIM is unavailable the other information in the hostLoad 
structure is meaningless. 

LIM_BUSY The host is busy (overloaded). 
LIM_LOCKEDU The host’s LIM is locked by the root, LSF administrator or a user. 
LIM_LOCKEDW The host’s LIM is locked by its run windows. 
LIM_RESDOWN The host’s Remote Execution Server (RES) is not available. 

LIM_UNLICENSED The host has no software license. 
The low order 16 bits of the first integer are reserved. The other integer() of the 
status array is used to indicate the load status of the host. If any of these bits is set, 
then the host is considered to be busy (overloaded). Each bit (starting from bit 0) in 
integer() represents one load index that caused the host to be busy. If bit i is set 
then the load index corresponding to li[i] caused the host to be busy. An integer 
can be used to for 32 load indices. If number of load indices on the host, both 
built-in and user defined, are more than 32, more than one integer will be used. 
Programmers can use macros to test the status of a host. The most commonly used 
macros include: 
LS_ISUNAVAIL(status)

LS_ISBUSY(status)

LS_ISBUSYON(status, index)

LS_ISLOCKEDU(status)

LS_ISLOCKEDW(status)

LS_ISLOCKED(status)

LS_ISRESDOWN(status)

LS_ISUNLICENSED(status)

LS_ISOK(status)

SYNOPSIS
#include <lsf/lsf.h>

struct hostLoad *ls_loadofhosts(char *resreq, int *numhosts, 
int options, char *fromhost, char **hostlist, 
int listsize)



Platform LSF API Reference 81

struct hostLoad {
char hostName[MAXHOSTNAMELEN];
int *status;
float *li;

};

PARAMETERS
*resreq resreq is a character string describing resource requirements. Only the load 

vectors of the hosts satisfying the requirements will be returned. If resreq is NULL, 
the load vectors of all hosts will be returned. 

*numhosts numhosts is the address of an integer which initially contains the number of hosts 
requested. If *numhosts is 0, request information on as many hosts as satisfy 
resreq. If numhosts is NULL, requests load information on one (1) host. If 
numhosts is not NULL, then *numhosts will contain the number of hostLoad 
records returned on success. 

options options is constructed from the bitwise inclusive OR of zero or more of the 
following flags, as defined in <lsf/lsf.h>.
EXACT 

Exactly *numhosts hosts are desired. If EXACT is set, either exactly *numhosts hosts 
are returned, or the call returns an error. If EXACT is not set, then up to *numhosts 
hosts are returned. If *numhosts is zero, then the EXACT flag is ignored and as many 
hosts in the load sharing system as are eligible (that is, those that satisfy the resource 
requirements) are returned. 
OK_ONLY 

Return only those hosts that are currently in the ‘ok’ state. If OK_ONLY is set, those 
hosts that are busy, locked, or unavail are not returned. If OK_ONLY is not set, then 
some or all of the hosts whose status are not ‘ok’ may also be returned, depending 
on the value of *numhosts and whether the EXACT flag is set. 
NORMALIZE

Normalize CPU load indices. If NORMALIZE is set, then the CPU run queue length 
load indices r15s, r1m, and r15m of each host returned are normalized. See 
Administering Platform LSF for the concept of normalized queue length. Default is 
to return the raw queue length. The options EFFECTIVE and NORMALIZE are 
mutually exclusive. 
EFFECTIVE

If EFFECTIVE is set, then the CPU run queue length load indices of each host 
returned are effective load. See Administering Platform LSF for the concept of 
effective queue length. Default is to return the raw queue length. The options 
EFFECTIVE and NORMALIZE are mutually exclusive. 
IGNORE_RES

Ignore the status of RES when determining the hosts that are considered to be ‘ok’. 
If IGNORE_RES is specified, then hosts with RES not running are also considered to 
be ‘ok’ during host selection. 
DFT_FROMTYPE



RETURN VALUES

82 Platform LSF API Reference

Return hosts with the same type as the fromhost which satisfy the resource 
requirements. By default all host types are considered. 

*fromhost fromhost is the name of the host from which a task might be transferred. This 
parameter affects the host selection in such a way as to give preference to fromhost 
if the load on other hosts is not much better. If fromhost is NULL, the local host is 
assumed. 

**hostlist hostlist is an array of listsize host or cluster names. If not NULL, then only load 
information about hosts in this list will be returned. 

listsize

RETURN VALUES
character:

character:NULL Depends on which parameter is returned with NULL.

ERRORS
Systems that conform to the Single UNIX specification are not required to detect 
error conditions for this function. – Error handling

SEE ALSO

Related APIs
ls_loadinfo() 
ls_load() 

Equivalent line command
none

Files
$LSF_CONFDIR/lsf.shared

$LSF_CONFDIR/lsf.cluster.cluster_name



Platform LSF API Reference 83

ls_lockhost()
Locks the local host for a specified number of seconds.

DESCRIPTION
ls_lockhost() prevents a host from being selected by the master LIM for task or 
job placement. If the host is locked for 0 seconds, it remains locked until it is 
explicitly unlocked by ls_unlockhost(). Indefinitely locking a host is useful if a 
job or task must run exclusively on the local host, or if machine owners want private 
control over their machines. 
A program using ls_lockhost() must be setuid to root in order for the LSF 
administrator or any other user to lock a host.
To lock a host, use the setuid function (int setuid(uid_t uid)) to set the effective user 
id of the calling process to root or LSF administrator. On success, this API changes 
the status of the local host to indicate that it has been locked by the user.

SYNOPSIS
#include <lsf/lsf.h>

int ls_lockhost(time_t duration)

PARAMETERS
duration The number of seconds the local host is locked. 0 seconds locks a host indefinitely.

RETURN VALUES
integer:0 The function was successful.

integer:-1 The function failed. 

ERRORS
On failure, lserrno is set to indicate the error. If the host is already locked, 
ls_lockhost() sets lserrno to LSE_LIM_ALOCKED.

SEE ALSO

Related APIs:
ls_limcontrol() - shuts down or reboots a host’s LIM
ls_unlockhost() - unlocks a locked host

Equivalent line command
lsadmin limlock

Files:
${LSF_ENVDIR-/etc}/lsf.conf 

$LSF_CONFDIR/lsf.shared 

$LSF_CONFDIR/lsf.cluster.cluster_name



ls_perror()

84 Platform LSF API Reference

ls_perror()
Prints LSF error messages.

DESCRIPTION
ls_perror() is a LSLIB library routine for printing LSF error messages. The global 
variable lserrno, maintained by LSLIB, indicates the error number of the most 
recent LSLIB call that caused an error. 
ls_perror() prints on the standard error output the character string usrMsg, if it 
is not a null pointer, followed by a colon and a space, then an error message that 
describes the error that corresponds to the value of lserrno, followed by a newline. 
If an LSLIB call failed due to a system error, then the system error message as 
indicated by errno is included in the error message. 

SYNOPSIS
#include <lsf/lsf.h>

void ls_perror(char *usrMsg)

PARAMETERS
*usrMsg The standard output error string.

RETURN VALUES
void: There is no return value.

ERRORS
Systems that conform to the Single UNIX specification are not required to detect 
error conditions for this function. – Error handling

SEE ALSO

Related APIs
ls_sysmsg() 
ls_errlog() 

Equivalent line command
none

Files
lsf/lsf.h



Platform LSF API Reference 85

ls_placeofhosts()
Returns the most suitable host() for the task() from a set of candidate hosts with 
regards to current load conditions and the task’s resource requirements.

DESCRIPTION
ls_placeofhosts() sends a task placement request to the LIM. The LIM returns 
a set of most suitable host() for the task(), taking into account the current load 
conditions and the task’s resource requirements. Hostnames may be duplicated for 
hosts that have sufficient resources to accept multiple tasks (for example, 
multiprocessors). 
If ls_placeofhosts() is successful, an array of host names is returned and *num is 
set to reflect the number of returned hosts. Otherwise, ls_placeofhosts() 
returns NULL and sets lserrno to indicate the error. 
The routine returns a pointer to a dynamically allocated array of strings which can 
be freed in subsequent calls. 

SYNOPSIS
#include <lsf/lsf.h>

char **ls_placeofhosts(char *resreq, int *num, int options, 
char *fromhost, char **hostlist, int listsize)

PARAMETERS
*resreq resreq is a resource requirement expression that characterizes the resource needs 

of a single task. You can retrieve this parameter by calling ls_eligible() or the 
application can supply its own. See Administering Platform LSF for more 
information about resource requirement expressions. The names used for resource 
requirements are defined by the LSF administrator in the configuration file 
LSF_CONFDIR/lsf.shared. You can obtain the available resource names by calling 
ls_info() or running the LSF utility program lsinfo(). If resreq is NULL, then 
the default is assumed, which is to require a host of the same type as the local host 
with low 1-minute average CPU queue length and paging rate. 

*num *num is the number of hosts requested. If *num is zero, then all eligible hosts are 
requested. If *num is NULL, then a single host is requested. 

options options is constructed from the bitwise inclusive OR of zero or more of the flags 
that are defined in <lsf/lsf.h>. These flags are documented in ls_load(). 

*fromhost fromhost is the host from which the task originates when LIM makes the 
placement decision. Preference is given to fromhost over remote hosts that do not 
have significantly lighter loads or greater resources. This preference avoids 
unnecessary task transfer and reduces overhead. If fromhost is NULL, then the local 
host is assumed. 

**hostlist Specifies a list of candidate hosts from which ls_placeofhosts() can choose 
suitable hosts.

listsize listsize gives the number of host or cluster names in hostlist.



RETURN VALUES

86 Platform LSF API Reference

RETURN VALUES
character:Array An array of host names is returned.
character:NULL Function failed.

ERRORS
If the function fails, lserrno is set to indicate the error.

SEE ALSO

Related APIs
ls_placereq() 
ls_loadadj() 
ls_eligible() 
ls_info() – Returns a pointer to an lsInfo structure
ls_load() 

Equivalent line command
none

Files
none



Platform LSF API Reference 87

ls_placereq()
Returns the most suitable host() for the task() with regards to current load 
conditions and the task’s resource requirements.

DESCRIPTION
ls_placereq() sends a task placement request to the LIM. The LIM returns a set 
of most suitable host() for the task(), taking into account the current load 
conditions and the task’s resource requirements. Hostnames may be duplicated for 
hosts that have sufficient resources to accept multiple tasks (for example, 
multiprocessors). 
If ls_placereq() is successful, an array of host names is returned and *num is set 
to reflect the number of returned hosts. Otherwise, NULL is returned and lserrno 
is set to indicate the error. 
The routine returns a pointer to a dynamically allocated array of strings which can 
be freed in subsequent calls. 

SYNOPSIS
#include <lsf/lsf.h>

char **ls_placereq(char *resreq, int *num, int options, 
char *fromhost)

PARAMETERS
*resreq The input parameter resreq is a resource requirement expression that 

characterizes the resource needs of a single task. You can retrieve this parameter by 
calling ls_eligible() or the application can supply its own. See Administering 
Platform LSF for more information about resource requirement expressions. The 
names used for resource requirements are defined by the LSF administrator in the 
configuration file LSF_CONFDIR/lsf.shared. You can obtain the available resource 
names by calling ls_info() or running the LSF utility program lsinfo(). If 
resreq is NULL, then the default is assumed, which is to require a host of the same 
type as the local host with low 1-minute average CPU queue length and paging rate. 

*num The input parameter *num is the number of hosts requested. If *num is zero, then all 
eligible hosts are requested. If *num is NULL, then a single host is requested. 

options The input parameter options is constructed from the bitwise inclusive OR of zero 
or more of the flags that are defined in <lsf/lsf.h>. These flags are documented 
in ls_load(). 

*fromhost fromhost is the host from which the task originates when LIM makes the 
placement decision. Preference is given to fromhost over remote hosts that do not 
have significantly lighter loads or greater resources. This preference avoids 
unnecessary task transfer and reduces overhead. If fromhost is NULL, then the local 
host is assumed. 

RETURN VALUES
character:Array An array of host names is returned.



ERRORS

88 Platform LSF API Reference

character:NULL Function failed.

ERRORS
If the function fails, lserrno is set to indicate the error.

SEE ALSO

Related APIs
ls_placeofhosts() 
ls_loadadj() 
ls_eligible() 
ls_info() – Returns a pointer to an lsInfo structure.
ls_load() 

Equivalent line command
none

Files
none



Platform LSF API Reference 89

ls_rclose()
Performs a close operation on a file on a remote host.

DESCRIPTION
This routine performs operations on files located on remote hosts. This call 
corresponds to the UNIX close() system calls. 
ls_rclose() performs a close operation on an opened file that is referenced by 
rfd. The file has been previously opened using ls_ropen(). 
Either the RES must be running at the remote host to service any remote file 
operation or rcp() be available. 
ls_initrex() must be called before calling any remote file operation. 
This remote file operation makes use of a Remote File Server on the remote host. 
When this RFS shuts down, its status will be reported to its client. The client should 
ignore this status. 

SYNOPSIS
#include <sys/types.h>
#include <unistd.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <limits.h>
#include <lsf/lsf.h>

int ls_rclose(int rfd)

PARAMETERS
rfd References the file that is to be closed.

RETURN VALUES
integer:0  Response is the same from its UNIX counterpart. 

integer:-1 Function failed.

ERRORS
If the function fails, lserrno is set to indicate the error. 

SEE ALSO

Related APIs
ls_ropen() 
ls_rread() 
ls_rwrite() 
ls_rlseek() 
ls_rstat() 



SEE ALSO

90 Platform LSF API Reference

ls_rfstat() 
ls_rgetmnthost() 
ls_rfcontrol() 
ls_initrex() 

Equivalent line command
none

Files
none



Platform LSF API Reference 91

ls_readconfenv()
Reads the LSF configuration parameters from the *confPath/lsf.conf file. 

DESCRIPTION
ls_readconfenv() reads the LSF configuration parameters from the 
*confPath/lsf.conf file. If confPath is NULL, the LSF configurable parameters 
are read from the ${LSF_ENVDIR-/etc}/lsf.conf file. See lsf.conf. The input 
paramList is an array of data structures that are defined in <lsf/lsf.h>. The 
paramName parameter in the config_param data structure should be the pointer to 
the configuration parameter name defined in the *confPath/lsf.conf or 
/etc/lsf.conf file if confPath is NULL. The paramValue parameter in the 
config_param data structure must initially contain NULL and is then modified to 
point to a result string if a matching paramName is found in the lsf.conf file. A 
typical data structure declaration is as follows: 
struct config_param paramList[] =
{
#define LSF_CONFDIR  0

{"LSF_CONFDIR", NULL},
#define LSF_LOGDIR   1

{"LSF_LOGDIR", NULL},
#define LSF_SERVERDIR 2

{"LSF_SERVERDIR", NULL},
#define LSF_RES_DEBUG 3

{"LSF_RES_DEBUG", NULL},
#define LSF_NPARAMS  4

{NULL, NULL},
};

By calling ls_readconfenv(paramList, "/localpath/etc"), it is possible to 
read in the required parameters and use the defined constants as indices for 
referencing the parameters when needed. If a certain parameter name is not found 
in the lsf.conf file, then its paramValue will remain NULL on return. 

SYNOPSIS
#include <lsf/lsf.h>

int ls_readconfenv(struct config_param *paramList, 
char *confPath)

struct config_param {
char *paramName;
char *paramValue;

};

PARAMETERS
*paramlist An array of data structures that are defined in <lsf/lsf.h>.

paramname The pointer to the configuration parameter name defined in the 
*confPath/lsf.conf or /etc/lsf.conf file if confPath is NULL.

*paramValue The config_param data structure must initially contain NULL and is then modified 
to point to a result string if a matching paramName is found in the lsf.conf file.



RETURN VALUES

92 Platform LSF API Reference

RETURN VALUES
integer:0 Function was successful.

integer:-1 Function failed.

ERRORS
If the function fails, lserrno is set to indicate the error.

SEE ALSO

Related APIs
none

Equivalent line command
none

Files
${LSF_ENVDIR-/etc}/lsf.conf



Platform LSF API Reference 93

ls_readrexlog()
Reads the next record from the opened log file created by RES.

DESCRIPTION
ls_readrexlog() reads the next record from the opened log file created by RES 
(see lsf.acct). It returns a pointer to the lsfAcctRec structure. 
Memory for the lsfAcctRec structure is statically allocated and will be overwritten 
by the next ls_readrexlog() call. 
The meaning of the fields in the lsfAcctRec structure is: 

pid The process ID of the task. If a task contains a tree of processes, the root process ID 
is logged. 

username The login name of the user who issued the task. 
exitStatus The exit status of the task (see wait() for details). 

dispTime The start time of the task. 
termTime The termination time of the task. 
fromHost The name of the host from which the task was submitted. 
execHost The name of the host on which the task was executed. 

cwd The current working directory of the task. 
cmdln The task command line. 

lsfRu Resource usage statistics. The lsfRusage structure is defined in <lsf/lsf.h>. 
Note that the availability of certain fields depends on the platform on which the RES 
runs. The fields that do not make sense on the platform will be logged as -1.0. 

SYNOPSIS
#include <stdio.h>
#include <lsf/lsf.h>

struct lsfAcctRec *ls_readrexlog(FILE *fp)

struct lsfAcctRec {
int pid;
char *username;
int exitStatus;
time_t dispTime;
time_t termTime;
char *fromHost;
char *execHost;
char *cwd;
char *cmdln;
struct lsfRusage lsfRu;

}

PARAMETERS
*fp



RETURN VALUES

94 Platform LSF API Reference

RETURN VALUES
FILE:1 Function was successful.

integer:0 Function failed.

ERRORS
Systems that conform to the Single UNIX specification are not required to detect 
error conditions for this function. – Error handling

SEE ALSO

Related APIs
none

Equivalent line command
none

Files
none



Platform LSF API Reference 95

ls_rescontrol()
Controls and maintains the Remote Execution Server.

DESCRIPTION
This library routine is used by the LSF administrator or authorized users to control 
and maintain the Remote Execution Server (RES). 

SYNOPSIS
#include <lsf/lsf.h>

int ls_rescontrol(char *host, int opCode, int data)

PARAMETERS
*host The host argument is used to specify the host name of the machine whose RES is 

to be operated upon.
opCode The command is specified by the opCode argument and the data argument is used 

to supply an extra parameter for a particular opCode. The supported values are: 
RES_CMD_REBOOT

Restart the RES. If the RES is in service, it will keep serving until all remote tasks 
exit, meanwhile starting another RES to serve new clients. 
RES_CMD_SHUTDOWN

Shutdown the RES. The RES will not accept new tasks and will die after all current 
remote tasks exit. 
RES_CMD_LOGON

Enable task logging, so that resource usage information can be logged to a file (see 
lsf.acct). 
RES_CMD_LOGOFF

Disable task logging. 
data The data argument is optionally used with RES_CMD_LOGON to specify a CPU time 

threshold in msec, so that RES will log resource information only for tasks that 
consumed more than the specified CPU time. 

RETURN VALUES
integer:0 Function was successful.

integer:-1 Function failed.

ERRORS
If the function fails, then lserrno is set to indicate the error. In particular, 
ls_rescontrol() will set lserrno to LSE_BAD_OPCODE if the opCode is not from 
the list above. 



ERRORS

96 Platform LSF API Reference

LSLIB calls for remote execution services
These routines allow programs to make use of LSF remote execution services. Such 
services include support for maintaining standard I/O transparency to and from 
remote machines, establishing, using, and terminating remote connections, 
transferring terminal and environment variable settings to remote processes, 
executing remote tasks and so on. 
All rex routines require that the header <lsf/lsf.h> is included. 
The following routines are supported: 

ls_initrex()

Initiate remote execution 
ls_connect()

Establish a remote connection 
ls_isconnected()

Check for an established connection 
ls_findmyconnections()

List hosts with open remote connections 
ls_rexecv()

Remote execv 
ls_rexecve()

Remote execve 
ls_rtask()

Start a remote task 
ls_rtaske()

Start a remote task with a new environment 
ls_stdinmode()

Assign stdin to local or remote tasks 
ls_getstdin()

List the remote task IDs that receive (or do not receive) standard input 
ls_setstdin()

Specify how stdin is assigned to remote tasks. 
ls_rwait()

Wait for a remote task to exit 
ls_chdir()

Change the remote current working directory 
ls_rsetenv()

Set environment on remote host 
ls_rkill()

Kill a remote task 



Platform LSF API Reference 97

ls_donerex()

Restore terminal settings after remote execution 
ls_fdbusy()

Test if a specified file descriptor is in use or reserved by LSF 
ls_stoprex()

Stop the network I/O server 
ls_conntaskport()

Connect to the remote task port. 

LIMITATIONS
Although the level of transparency for remote execution in LSF is high, minor parts 
of the UNIX execution environment are not propagated to remote hosts. One such 
example is the UNIX process group. 

SEE ALSO

Related APIs
none

Equivalent line command
none

Files
none



ls_resreq()

98 Platform LSF API Reference

ls_resreq()
Searches a remote task list for a task name and returns the resource requirements.

DESCRIPTION
LSLIB library routine for manipulating task lists stored by LSLIB. Task lists contain 
information about the eligibility of tasks for remote execution and their resource 
requirement characteristics. LSLIB maintains two task lists: local and remote. The 
local list contains tasks (i.e. UNIX processes) that must be executed on the local 
host (for example, ps, uptime, hostname). The remote list contains tasks that are 
suitable for remote execution (for example, compress), together with their resource 
requirements. 
Task lists are generated and stored in memory by reading the system task file() 
and the .lsftask file in the user’s home directory. The task lists can be updated and 
displayed using the command lsrtasks(). See the LSF User’s Guide for detailed 
information on the use of task lists and resource requirements. 
ls_resreq() is a simplified version of ls_eligible() which searches the remote 
task list for taskname and returns the resource requirements associated with the 
task if found otherwise NULL is returned.
ls_resreq() returns a pointer to static data which can be overwritten by 
subsequent calls. 

 SYNOPSIS
#include <lsf/lsf.h>

char *ls_resreq(char *taskname)

PARAMETERS
*taskname The name of the task being sought.

RETURN VALUES
character:Requirements

Returns the resource requirements associated with the taskname. 
character:NULL

Unable to find the taskname on the remote task list. 

ERRORS
If the function fails, lserrno is set to indicate the error. 

SEE ALSO

Related APIs
ls_eligible() 
ls_listrtask() 



Platform LSF API Reference 99

ls_listltask() 
ls_insertrtask() 
ls_inesrtltask() 
ls_deletertask() 
ls_deleteltask() 

Equivalent line command
none

Files
$LSF_CONFDIR/lsf.task

$LSF_CONFDIR/lsf.task.cluster_name

$HOME/.lsftask



ls_rexecv()

100 Platform LSF API Reference

ls_rexecv()
Executes a program on a specified remote host.

DESCRIPTION
This routine is for executing remote tasks. It is modeled after the UNIX fork and 
execv system calls. 
ls_rexecv() executes a program on the specified remote host. The program name 
is given in argv[0] and the arguments are listed in argv. This routine is basically a 
remote execv. If a connection with the Remote Execution Server (RES) on host has 
not been set up previously, ls_connect() is invoked to automatically establish the 
connection. The remote execution environment is set up to be exactly the same as 
the local one and is cached by the remote RES server. 
The options value is constructed by ORing flags from the following list: 

REXF_USEPTY Use a remote pseudo-terminal. 
REXF_CLNTDIR Use the local client’s current working directory as the current working directory for 

remote execution (see ls_chdir()). 
REXF_TASKPORT Request the remote RES to create a task port and return its number to the LSLIB. 

The application program can later call ls_conntaskport() to connect to the port. 
REXF_SHMODE Enable shell mode support if the REXF_USEPTY flag is also given. This flag is ignored 

if REXF_USEPTY is not given. This flag should be specified for submitting interactive 
shells, or applications which redefine the ctrl-C and ctrl-Z keys (e.g., jove). 
The caller of this routine is typically a child process which terminates when the 
remote task is over. This routine does not return if successful. It returns -1 on 
failure.
Any program using this routine must call ls_initrex() first. 
Any program using these routines must be setuid to root if LSF_AUTH is not defined 
in the lsf.conf file. 
The remote file operations documented in ls_rfs() make use of a Remote File 
Server on the remote host. When this RFS shuts down, its status will be reported to 
its client. The client should ignore this status. 

SYNOPSIS
#include <lsf/lsf.h>

int ls_rexecv(char *host, char **argv, int options)

PARAMETERS
*host The remote host where the program is executed.

**argv The program being used.
options



Platform LSF API Reference 101

RETURN VALUES
None Function was successful.

integer:-1 Function failed.

ERRORS
Systems that conform to the Single UNIX specification are not required to detect 
error conditions for this function. – Error handling

SEE ALSO

Related APIs
ls_rexecve() 
ls_rtask() 
ls_rtaske() 
ls_control() 
ls_chdir() 
ls_conntaskport() 
ls_initrex() 
ls_rfs() 

Equivalent line command
none

Files
${LSF_ENVDIR-/etc}/lsf.conf 



ls_rexecve()

102 Platform LSF API Reference

ls_rexecve()
Executes a program on a specified remote host.

DESCRIPTION
This routine is for executing remote tasks. It is modeled after the UNIX fork and 
execv system calls. 
ls_rexecve() executes a program on the specified remote host. The program 
name is given in argv[0] and the arguments are listed in argv. This routine is 
basically a remote execv. If a connection with the Remote Execution Server (RES) 
on host has not been set up previously, ls_connect() is invoked to automatically 
establish the connection. The remote execution environment is set up to be exactly 
the same as the local one and is cached by the remote RES server. 
ls_rexecve() is the same as ls_rexecv() except that it provides the support of 
setting up a new environment specified by the string array **envp. When envp is a 
NULL pointer, it means using the remote RES server’s cached environment, 
otherwise using the new one. A minimal default environment (HOME, SHELL, USER, 
and PATH) is initially cached when a remote execution connection is established and 
the cached environment is updated whenever the remote execution environment is 
changed by ls_rsetenv() or any of the routines on this man page. 
The caller of this routine is typically a child process which terminates when the 
remote task is over. This routine does not return if successful. It returns -1 on 
failure.
Any program using this routine must call ls_initrex() first. 
Any program using these routines must be setuid to root if LSF_AUTH is not defined 
in the lsf.conf file. 
The remote file operations documented in ls_rfs() make use of a Remote File 
Server on the remote host. When this RFS shuts down, its status will be reported to 
its client. The client should ignore this status. 

SYNOPSIS
#include <lsf/lsf.h>

int ls_rexecve(char *host, char **argv, int options, 
char **envp)

PARAMETERS
*host The remote host where the program is executed.

**argv The program being used.
options The options value is constructed by ORing flags from the following list: 

REXF_USEPTY

Use a remote pseudo-terminal. 
REXF_CLNTDIR



Platform LSF API Reference 103

Use the local client’s current working directory as the current working directory for 
remote execution (see ls_chdir()). 
REXF_TASKPORT

Request the remote RES to create a task port and return its number to the LSLIB. 
The application program can later call ls_conntaskport() to connect to the port. 
REXF_SHMODE

Enable shell mode support if the REXF_USEPTY flag is also given. This flag is ignored 
if REXF_USEPTY is not given. This flag should be specified for submitting interactive 
shells, or applications which redefine the ctrl-C and ctrl-Z keys (e.g., jove). 

**envp

RETURN VALUES
None Function was successful.

integer:-1 Function failed.

ERRORS
Systems that conform to the Single UNIX specification are not required to detect 
error conditions for this function. – Error handling

SEE ALSO

Related APIs
ls_rexecv() 
ls_rtask() 
ls_rtaske() 
ls_control() 
ls_chdir() 
ls_conntaskport() 
ls_rstenv() 
ls_initrex() 
ls_rfs() 

Equivalent line command
none

Files
${LSF_ENVDIR-/etc}/lsf.conf 



ls_rfcontrol()

104 Platform LSF API Reference

ls_rfcontrol()
Controls the behavior of remote file operations.

DESCRIPTION
This routine performs operations on files located on remote hosts. 
ls_rfcontrol() controls the behavior of remote file operations. Possible 
commands are: 

RF_CMD_MAXHOSTS Allows the caller to specify the number of connected hosts. When a remote file 
operation is being serviced at a host for the first time, a connection is made to the 
Remote Execution Server’s (RES) file server process on the remote host. If the 
number of connections reaches RF_MAXHOSTS defined in lsf.h, the least recently 
used connection which does not have any files open on that host is broken. The 
RF_CMD_MAXHOSTS command allows you to change the maximum number of 
connections. The new maximum is specified in arg. 

RF_CMD_TERMINATE Terminates the connection with the RES’s file server process on host arg. arg is a 
pointer to the remote host name cast to int. 
Either the RES must be running at the remote host to service any remote file 
operation or rcp() must be available. 
ls_initrex() must be called before calling any remote file operation. 
This remote file operation makes use of a Remote File Server on the remote host. 
When this RFS shuts down, its status will be reported to its client. The client should 
ignore this status. 

 SYNOPSIS
#include <sys/types.h>
#include <unistd.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <limits.h>
#include <lsf/lsf.h>

int ls_rfcontrol(int command, int arg)

PARAMETERS
command

arg A pointer to the remote host name cast to int.

RETURN VALUES
integer:0 The function was successful. 

integer:-1 Function failed.

ERRORS
If the function fails, lserrno is set to indicate the error. 



Platform LSF API Reference 105

SEE ALSO

Related APIs
ls_ropen() 
ls_rread() 
ls_rwrite() 
ls_rlseek() 
ls_rclose() 
ls_rstat() 
ls_rfstat() 
ls_rgetmnthost() 
ls_initrex() 

Equivalent line command
none

Files
none:



ls_rfstat()

106 Platform LSF API Reference

ls_rfstat()
Obtains information about a file located on a remote host.

DESCRIPTION
This routine performs operations on files located on remote hosts. This call 
corresponds to the UNIX fstat() system calls. 
ls_rfstat() obtains information about a file located on the remote host. Because 
different platforms have different fields in the stat structure, only the following 
fields are updated: st_dev, st_ino, st_mode, st_nlink, st_uid, st_gid, st_rdev, 
st_size, st_atime, st_mtime, and st_ctime. 
Either the RES must be running at the remote host to service any remote file 
operation or rcp() be available. 
ls_initrex() must be called before calling any remote file operation. 
This remote file operation makes use of a Remote File Server on the remote host. 
When this RFS shuts down, its status will be reported to its client. The client should 
ignore this status. 

SYNOPSIS
#include <sys/types.h>
#include <unistd.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <limits.h>
#include <lsf/lsf.h>

int ls_rfstat(int rfd, struct stat *buf)

PARAMETERS
rfd References the file that is to be accessed.

*buf

RETURN VALUES
Response is the same from its UNIX counterpart. 

integer:-1 Function failed.

ERRORS
If the function fails, lserrno is set to indicate the error. 

SEE ALSO

Related APIs
ls_ropen() 
ls_rread() 
ls_rwrite() 



Platform LSF API Reference 107

ls_rlseek() 
ls_rclose() 
ls_rstat() 
ls_rgetmnthost() 
ls_rfcontrol() 
ls_initrex() 

Equivalent line command
none

Files
none



ls_rgetmnthost()

108 Platform LSF API Reference

ls_rgetmnthost()
Obtains the name of the file server that exports a specified file system.

DESCRIPTION
This routine performs operations on files located on remote hosts. 
ls_rgetmnthost() obtains the name of the file server that exports the file system 
mounted on host that contains file, where file is a relative or absolute path name. 
If host is NULL, the local host name is assumed. This call corresponds to the 
ls_getmnthost() call. 
Either the RES must be running at the remote host to service any remote file 
operation or rcp() be available. 
ls_initrex() must be called before calling any remote file operation. 
This remote file operation makes use of a Remote File Server on the remote host. 
When this RFS shuts down, its status will be reported to its client. The client should 
ignore this status. 

SYNOPSIS
#include <sys/types.h>
#include <unistd.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <limits.h>
#include <lsf/lsf.h>

char *ls_rgetmnthost(char *host, char *file)

PARAMETERS
*host The host containing the file.

*file The file to be accessed.

RETURN VALUES
character:Hostname The function was successful. 

character:NULL Function failed.

ERRORS
If the function fails, lserrno is set to indicate the error. 

SEE ALSO

Related APIs
ls_ropen()

ls_rread()

ls_rwrite()

ls_rlseek()



Platform LSF API Reference 109

ls_rclose()

ls_rstat()

ls_rfstat()

ls_rfcontrol()

ls_initrex()

Equivalent line command
none

Files
none



ls_rkill()

110 Platform LSF API Reference

ls_rkill()
Signals a remote task

DESCRIPTION
ls_rkill() sends the signal sig to the remote task tid and all its children that 
belong to the same UNIX process group. tid is the remote task ID that is returned 
by ls_rtask() or ls_rtaske(). If sig is zero, then this call only polls the existence 
of the remote task tid.
Any program using this routine must call ls_initrex() first. 
Any program using this API must be setuid to root if LSF_AUTH is not defined in 
the lsf.conf file. 

SYNOPSIS
#include <lsf/lsf.h>
#include <signal.h>

int ls_rkill(int tid, int sig)

PARAMETERS
sig The signal sent to the tid.
tid The remote task ID returned by ls_rtask() or ls_rtaske().

RETURN VALUES
integer:0 Function was successful.

integer:-1 Function failed.

ERRORS
If the function fails, lserrno is set to indicate the error.

SEE ALSO

Related APIs
ls_rtask() 
ls_rtaske() 

Equivalent line command
none

Files
${LSF_ENVDIR-/etc}/lsf.conf



Platform LSF API Reference 111

ls_rlseek()
Performs a seek operation on a file on a remote host.

DESCRIPTION
This routine performs operations on files located on remote hosts. This call 
corresponds to the UNIX lseek() system calls. 
ls_rlseek() performs a read operation on an opened file that is referenced by rfd. 
The file has been previously opened using ls_ropen(). 
Either the RES must be running at the remote host to service any remote file 
operation or rcp() be available. 
ls_initrex() must be called before calling any remote file operation. 
This remote file operation makes use of a Remote File Server on the remote host. 
When this RFS shuts down, its status will be reported to its client. The client should 
ignore this status. 

SYNOPSIS
#include <sys/types.h>
#include <unistd.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <limits.h>
#include <lsf/lsf.h>

off_t ls_rlseek(int rfd, off_t offset, int whence)

PARAMETERS
rfd References the file that is to be sought.

offset

whence

RETURN VALUES
 Response is the same from its UNIX counterpart. 

integer:-1 Function failed.

ERRORS
If the function fails, lserrno is set to indicate the error. 

SEE ALSO

Related APIs
ls_ropen() 
ls_rread() 
ls_rwrite() 



SEE ALSO

112 Platform LSF API Reference

ls_rclose() 
ls_rstat() 
ls_rfstat() 
ls_rgetmnthost() 
ls_rfcontrol() 
ls_initrex() 

Equivalent line command
none

Files
none



Platform LSF API Reference 113

ls_ropen()
Opens a file on a remote host.

DESCRIPTION
This routine performs operations on files located on remote hosts. This call 
corresponds to the UNIX open() system calls. 
ls_ropen() opens the named file located on the remote host. A remote file 
descriptor, rfd, is returned on success. You can use this descriptor in subsequent 
remote file calls as an argument. 
Either the RES must be running at the remote host to service any remote file 
operation or rcp() be available. 
ls_initrex() must be called before calling any remote file operation. 
This remote file operation makes use of a Remote File Server on the remote host. 
When this RFS shuts down, its status will be reported to its client. The client should 
ignore this status. 

SYNOPSIS
#include <sys/types.h>
#include <unistd.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <limits.h>
#include <lsf/lsf.h>

int ls_ropen(char *host, char *path, int flags, int mode)

PARAMETERS
*host The host where the file to be opened is located.
*path The path name to the file to be opened.
flags

mode

RETURN VALUES
 Response is the same from its UNIX counterpart. 

integer:-1 Function failed.

ERRORS
If the function fails, lserrno is set to indicate the error. 

SEE ALSO

Related APIs
ls_rread() 



SEE ALSO

114 Platform LSF API Reference

ls_rwrite() 
ls_rlseek() 
ls_rclose() 
ls_rstat() 
ls_rfstat() 
ls_rgetmnthost() 
ls_rfcontrol() 
ls_initrex() 

Equivalent line command
none

Files
none



Platform LSF API Reference 115

ls_rread()
Performs a read operation on a file on a remote host.

DESCRIPTION
This routine performs operations on files located on remote hosts. This call 
corresponds to the UNIX read() system calls. 
ls_rread() performs a read operation on an opened file that is referenced by rfd. 
The file has been previously opened using ls_ropen(). 
Either the RES must be running at the remote host to service any remote file 
operation or rcp() be available. 
ls_initrex() must be called before calling any remote file operation. 
This remote file operation makes use of a Remote File Server on the remote host. 
When this RFS shuts down, its status will be reported to its client. The client should 
ignore this status. 

SYNOPSIS
#include <sys/types.h>
#include <unistd.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <limits.h>
#include <lsf/lsf.h>

int ls_rread(int rfd, char *buf, int len)

PARAMETERS
rfd References the file that is to be read.

*buf

len

RETURN VALUES
 Response is the same from its UNIX counterpart. 

integer:-1 Function failed.

ERRORS
If the function fails, lserrno is set to indicate the error. 

SEE ALSO

Related APIs
ls_ropen() 
ls_rwrite() 
ls_rlseek() 



SEE ALSO

116 Platform LSF API Reference

ls_rclose() 
ls_rstat() 
ls_rfstat() 
ls_rgetmnthost() 
ls_rfcontrol() 
ls_initrex() 

Equivalent line command
none

Files
none



Platform LSF API Reference 117

ls_rstat()
Obtains information about a file located on a remote host.

DESCRIPTION
This routine performs operations on files located on remote hosts. This call 
corresponds to the UNIX stat() system calls. 
ls_rstat() obtains information about a file located on the remote host. Because 
different platforms have different fields in the stat structure, only the following 
fields are updated: st_dev, st_ino, st_mode, st_nlink, st_uid, st_gid, st_rdev, 
st_size, st_atime, st_mtime, and st_ctime. 
Either the RES must be running at the remote host to service any remote file 
operation or rcp() be available. 
ls_initrex() must be called before calling any remote file operation. 
This remote file operation makes use of a Remote File Server on the remote host. 
When this RFS shuts down, its status will be reported to its client. The client should 
ignore this status. 

SYNOPSIS
#include <sys/types.h>
#include <unistd.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <limits.h>
#include <lsf/lsf.h>

int ls_rstat(char *host, char *path, struct stat *buf)

PARAMETERS
*host The remote host containing the file to be analyzed.
*path

*buf

RETURN VALUES
 Response is the same from its UNIX counterpart. 

integer:-1 Function failed.

ERRORS
If the function fails, lserrno is set to indicate the error. 

SEE ALSO

Related APIs
ls_ropen() 



SEE ALSO

118 Platform LSF API Reference

ls_rread() 
ls_rwrite() 
ls_rlseek() 
ls_rclose() 
ls_rfstat() 
ls_rgetmnthost() 
ls_rfcontrol() 
ls_initrex() 

Equivalent line command
none

Files
none



Platform LSF API Reference 119

ls_rsetenv()
Sets up environment variables on a remote host.

DESCRIPTION
ls_rsetenv() sets up the environment variables given in envp on the specified 
remote host. envp is a pointer to an array of strings of the form variable=value. 
When the environment variables are set, all remote tasks on the remote host acquire 
the environment setting until another call to this routine overrides it. A default set 
of environment variables is set up for the remote host if this routine is never called 
(see ls_rtask()). This call is typically used to propagate changes in the local 
environment to the remote hosts to which the application has connections.
Any program using this routine must call ls_initrex() first. 
Any program using this API must be setuid to root if LSF_AUTH is not defined in 
the lsf.conf file. 

 SYNOPSIS
#include <lsf/lsf.h>

int ls_rsetenv(char *host, char **envp)

PARAMETERS
*host The remote host upon which the environment is being set.

**envp A pointer to an array of strings of the form variable=value.

RETURN VALUES
integer:0 The function was successful. 

integer:-1 Function failed.

ERRORS
If the function fails, lserrno is set to indicate the error. 

SEE ALSO

Related APIs
ls_rtask() 
ls_initrex() 

Equivalent line command
none

Files
${LSF_ENVDIR-/etc}/lsf.conf



ls_rtask()

120 Platform LSF API Reference

ls_rtask()
Starts a remote task on a specified host.

DESCRIPTION
This routine is for executing remote tasks. It is modeled after the UNIX fork and 
execv system calls. 
ls_rtask() starts a remote task on the specified host. This routine is basically a 
remote fork followed by an execv. The arguments are identical to those of 
ls_rexecv(). ls_rtask() is typically used by a parallel application to execute 
multiple remote tasks efficiently. When a remote task finishes, a SIGUSR1 signal is 
delivered back to the application, and its status can be collected by calling 
ls_rwait() or ls_rwaittid(). ls_rtask() returns a unique task ID to be used 
by the application to differentiate outstanding remote tasks. It returns -1 on failure. 
Any program using this routine must call ls_initrex() first. 
Any program using these routines must be setuid to root if LSF_AUTH is not defined 
in the lsf.conf file. 
The remote file operations documented in ls_rfs() make use of a Remote File 
Server on the remote host. When this RFS shuts down, its status will be reported to 
its client. The client should ignore this status. 

SYNOPSIS
#include <lsf/lsf.h>

int ls_rtask(char *host, char **argv, int options)

PARAMETERS
*host The remote host where the program is executed.

**argv The program being used.
options

RETURN VALUES
integer:Unique TaskID Function was successful.

integer:-1 Function failed.

ERRORS
Systems that conform to the Single UNIX specification are not required to detect 
error conditions for this function. – Error handling

SEE ALSO

Related APIs
ls_rexecv() 
ls_rexecve() 



Platform LSF API Reference 121

ls_rtaske() 
ls_control() 
ls_chdir() 
ls_conntaskport() 
ls_rstenv() 
ls_initrex() 
ls_rfs() 

Equivalent line command
none

Files
${LSF_ENVDIR-/etc}/lsf.conf 



ls_rtaske()

122 Platform LSF API Reference

ls_rtaske()
Starts a remote task on a specified host.

DESCRIPTION
This routine is for executing remote tasks. It is modeled after the UNIX fork and 
execv system calls. 
ls_rtaske() starts a remote task on the specified host. This routine is basically a 
remote fork followed by an execv. The arguments are identical to those of 
ls_rexecv(). ls_rtask() is typically used by a parallel application to execute 
multiple remote tasks efficiently. When a remote task finishes, a SIGUSR1 signal is 
delivered back to the application, and its status can be collected by calling 
ls_rwait() or ls_rwaittid(). ls_rtask() returns a unique task ID to be used 
by the application to differentiate outstanding remote tasks. It returns -1 on failure. 
ls_rtaske() is the same as ls_rtask() except that it provides the support of 
setting up a new environment specified by the string array **envp. When envp is a 
NULL pointer, it means using the remote RES server’s cached environment, 
otherwise using the new one. A minimal default environment (HOME, SHELL, USER, 
and PATH) is initially cached when a remote execution connection is established and 
the cached environment is updated whenever the remote execution environment is 
changed by ls_rsetenv() or any of the routines on this man page. 
Any program using this routine must call ls_initrex() first. 
Any program using these routines must be setuid to root if LSF_AUTH is not defined 
in the lsf.conf file. 
The remote file operations documented in ls_rfs() make use of a Remote File 
Server on the remote host. When this RFS shuts down, its status will be reported to 
its client. The client should ignore this status. 

SYNOPSIS
#include <lsf/lsf.h>

int ls_rtaske(char *host, char **argv, int options, 
char **envp)

PARAMETERS
*host The remote host where the program is executed.

**argv The program being used.
options

*envp

RETURN VALUES
integer:Unique TaskID Function was successful.

integer:-1 Function failed.



Platform LSF API Reference 123

ERRORS
Systems that conform to the Single UNIX specification are not required to detect 
error conditions for this function. – Error handling

SEE ALSO

Related APIs
ls_rexecv() 
ls_rexecve() 
ls_rtask() 
ls_control() 
ls_chdir() 
ls_conntaskport() 
ls_rstenv() 
ls_initrex() 
ls_rfs() 

Equivalent line command
none

Files
${LSF_ENVDIR-/etc}/lsf.conf 



ls_rwait()

124 Platform LSF API Reference

ls_rwait()
Collects the status of a remote task started by ls_rtask() or ls_rtaske().

DESCRIPTION
ls_rwait() collects the status of a remote child (task) that has been started by 
ls_rtask() or ls_rtaske(). This call is similar to the UNIX wait3() call, except 
that the child is located on a remote host. 
If a remote child’s status is successfully obtained, then the remote task ID (which is 
returned by an earlier ls_rtask() or ls_rtaske() call) is returned. Also, if 
status is not NULL, the status of the exited child is stored in the structure pointed 
to by status. If ru is not NULL, and the remote child’s machine supports the rusage 
structure in its wait3() call, the resource usage information of the exited child is 
stored in the structure pointed to by ru. Only the ru_utime and ru_stime fields are 
set in the structure if the remote child’s machine does not support the rusage 
structure in the wait3() call. If the remote child is run on a different platform than 
the parent, then only the fields in the resource structure that are common between 
the two platforms are filled in (the rusage structure is not identical across all 
platforms). If the child runs on a 64-bit machine, and the parent runs on a 32-bit 
machine, each of the values in the rusage structure that will overflow on a 32-bit 
machine are set to LONG_MAX. 
The ls_rwait() call are automatically restarted when the parent receives a signal 
while awaiting termination of a remote child process, unless the SV_INTERRUPT bit 
has been set for the signal (see sigaction()). 
LSLIB defines some new return status values related to load sharing. These values 
are returned by ls_rwait(). They include: 

STATUS_TIMEOUT Timeout trying to connect to the remote RES. 
STATUS_IOERR The remote task failed with an I/O error. 

STATUS_EXCESS Too many tasks are currently executing. 
STATUS_REX_NOMEM RES failed to allocate memory 

STATUS_REX_FATAL Fatal error, check RES err log 
STATUS_REX_CWD Cannot change to current working directory 

STATUS_REX_PTY RES cannot allocate a pty 
STATUS_REX_SP RES cannot allocate a socket pair 

STATUS_REX_FORK RES failed to fork the task 
STATUS_REX_UNKNOWN

Internal error in RES  
Use the blocking mode of ls_rwait() with care. If there are both local and remote 
children, ls_rwait() take care only of remote children; none of them will return 
even though a local child has exited. In such cases, you can call wait(), ls_rwait() 
and/or ls_rwaittid() via signal handlers (for SIGCHLD and SIGUSR1, respectively) 
to process local and remote children. 



Platform LSF API Reference 125

When a remote child terminates, SIGUSR1 is sent to the parent process. Thus, 
ls_rwait() is typically called from inside the SIGUSR1 signal handler of the 
parent process. 
Any program using these routines must call ls_initrex() first. 
Any program using these routines must be setuid to root if LSF_AUTH is not defined 
in the lsf.conf file. 
The remote file operations documented in ls_rfs() make use of a Remote File 
Server on the remote host. When this RFS shuts down, its status will be reported to 
its client. The client should ignore this status. 

 SYNOPSIS
#include <sys/types.h>
#include <sys/wait.h>
#include <sys/time.h>
#include <sys/resource.h>
#include <lsf/lsf.h>

int ls_rwait(LS_WAIT_T *status, int options, struct rusage *ru)

PARAMETERS
*status

options If specified as 0, and there is at least one remote child, then the calling host is 
blocked until a remote child exits. If options is specified to be WNOHANG, the routine 
checks for any exited (remote) child and returns immediately. The options 
parameter may be extended to provide more options in the future. 

*ru The structure where the resource usage information of the exited child is stored. 

RETURN VALUES
character:remote task ID

The function was successful. 
integer:-1

Function failed.

ERRORS
If the function fails, lserrno is set to indicate the error. 

SEE ALSO

Related APIs
ls_rwaittid() 
ls_rtask() 
ls_rtaske() 
ls_rfs() 



SEE ALSO

126 Platform LSF API Reference

Equivalent line command
none

Files
${LSF_ENVDIR-/etc}/lsf.conf



Platform LSF API Reference 127

ls_rwaittid()
Provides support for collecting the status of a specified remote task.

DESCRIPTION
ls_rwaittid() is modelled after the UNIX waitpid() system call. It provides 
support for collecting the status of the remote task whose task ID is tid.
If a remote child’s status is successfully obtained, then the remote task ID (which is 
returned by an earlier ls_rtask() or ls_rtaske() call) is returned. Also, if 
status is not NULL, the status of the exited child is stored in the structure pointed 
to by status. If ru is not NULL, and the remote child’s machine supports the rusage 
structure in its wait3() call, the resource usage information of the exited child is 
stored in the structure pointed to by ru. Only the ru_utime and ru_stime fields are 
set in the structure if the remote child’s machine does not support the rusage 
structure in the wait3() call. If the remote child is run on a different platform than 
the parent, then only the fields in the resource structure that are common between 
the two platforms are filled in (the rusage structure is not identical across all 
platforms). If the child runs on a 64-bit machine, and the parent runs on a 32-bit 
machine, each of the values in the rusage structure that will overflow on a 32-bit 
machine are set to LONG_MAX. 
ls_rwaittid() behaves identically to ls_rwait() if tid has a value of zero. If tid 
is less than 0, it returns -1 and sets lserrno to LSE_BAD_ARGS. 
The ls_rwaittid() call are automatically restarted when the parent receives a 
signal while awaiting termination of a remote child process, unless the 
SV_INTERRUPT bit has been set for the signal (see sigaction()). 
LSLIB defines some new return status values related to load sharing. These values 
are returned by ls_rwaitidt(). They include: 

STATUS_TIMEOUT Timeout trying to connect to the remote RES. 
STATUS_IOERR The remote task failed with an I/O error. 

STATUS_EXCESS Too many tasks are currently executing. 
STATUS_REX_NOMEM RES failed to allocate memory 

STATUS_REX_FATAL Fatal error, check RES err log 
STATUS_REX_CWD Cannot change to current working directory 

STATUS_REX_PTY RES cannot allocate a pty 
STATUS_REX_SP RES cannot allocate a socket pair 

STATUS_REX_FORK RES failed to fork the task 
STATUS_REX_UNKNOWN

Internal error in RES  



SYNOPSIS

128 Platform LSF API Reference

Use the blocking mode of ls_rwaittid() with care. If there are both local and 
remote children, ls_rwaittid() take care only of remote children; none of them 
will return even though a local child has exited. In such cases, you can call wait(), 
ls_rwait() and/or ls_rwaittid() via signal handlers (for SIGCHLD and SIGUSR1, 
respectively) to process local and remote children. 
Any program using these routines must call ls_initrex() first. 
Any program using these routines must be setuid to root if LSF_AUTH is not defined 
in the lsf.conf file. 
The remote file operations documented in ls_rfs() make use of a Remote File 
Server on the remote host. When this RFS shuts down, its status will be reported to 
its client. The client should ignore this status. 

 SYNOPSIS
#include <sys/types.h>
#include <sys/wait.h>
#include <sys/time.h>
#include <sys/resource.h>
#include <lsf/lsf.h>

int ls_rwaittid(int tid, LS_WAIT_T *status, int options, 
struct rusage *ru)

PARAMETERS
tid The ID of the remote task being accessed.

*status

options If options is set to 0, and there is at least one remote task, the calling host is blocked 
until the specific task exits. If options is WNOHANG (non-blocking), it reads the 
child’s status if the child is dead, otherwise it returns immediately with 0. If the 
status of the child is successfully read, the remote task ID is returned. 

ru The structure where the resource usage information of the exited child is stored. 

RETURN VALUES
character:remote task ID

The function was successful. 
integer:-1

Function failed.

ERRORS
If the function fails, lserrno is set to indicate the error. If tid is less than 0, it 
returns -1 and sets lserrno to LSE_BAD_ARGS.

SEE ALSO

Related APIs
ls_rwait() 



Platform LSF API Reference 129

ls_rtask() 
ls_rtaske() 
ls_rfs() 

Equivalent line command
none

Files
${LSF_ENVDIR-/etc}/lsf.conf



ls_rwrite()

130 Platform LSF API Reference

ls_rwrite()
Performs a write operation on a file on a remote host.

DESCRIPTION
This routine performs operations on files located on remote hosts. This call 
corresponds to the UNIX write() system calls. 
ls_rwrite() performs a read operation on an opened file that is referenced by rfd. 
The file has been previously opened using ls_ropen(). 
Either the RES must be running at the remote host to service any remote file 
operation or rcp() be available. 
ls_initrex() must be called before calling any remote file operation. 
This remote file operation makes use of a Remote File Server on the remote host. 
When this RFS shuts down, its status will be reported to its client. The client should 
ignore this status. 

SYNOPSIS
#include <sys/types.h>
#include <unistd.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <limits.h>
#include <lsf/lsf.h>

int ls_rwrite(int rfd, char *buf, int len)

PARAMETERS
rfd References the file that is to be written.

*buf

len

RETURN VALUES
 Response is the same from its UNIX counterpart. 

integer:-1 Function failed.

ERRORS
If the function fails, lserrno is set to indicate the error. 

SEE ALSO

Related APIs
ls_ropen() 
ls_rread() 
ls_rlseek() 



Platform LSF API Reference 131

ls_rclose() 
ls_rstat() 
ls_rfstat() 
ls_rgetmnthost() 
ls_rfcontrol() 
ls_initrex() 

Equivalent line command
none

Files
none



ls_setstdin()

132 Platform LSF API Reference

ls_setstdin()
Allows an application program to query and specify how stdin is assigned to a 
specific subset of remote tasks.

DESCRIPTION
ls_setstdin() gives an application program the ability to query and specify how 
stdin is assigned to remote tasks. It allows you to assign stdin to a specific subset of 
remote tasks. You can change this setting at any time. 
ls_setstdin() turns on or off the delivery of standard input to specific remote 
tasks. Other remote tasks are not affected by this call. 
By default, a remote task is set to receive standard input. Note that remote tasks only 
receive standard input if the current stdin mode is remote. Hence, if the application 
is running in local stdin mode (see the description of ls_stdinmode()), 
ls_setstdin() is not effective. 
Upon success, ls_setstdin() returns zero. On failure, -1 is returned, and the error 
code is stored in lserrno. 
Any program using this routine must call ls_initrex() first. 
Any program using this API must be setuid to root if LSF_AUTH is not defined in 
the lsf.conf file. 

 SYNOPSIS
#include <lsf/lsf.h>

int ls_setstdin(int on, int *tidlist, int len)

PARAMETERS
on If on is non-zero and the current stdin mode is remote, then the tasks given by 

tidlist receive the standard input. If on is zero, the tasks will not receive standard 
input.

*tidlist tidlist gives the list of task IDs of the remote tasks to be operated upon.
len The number of entries.

RETURN VALUES
integer:0 The function was successful. 

integer:-1 Function failed.

ERRORS
If the function fails, lserrno is set to indicate the error. 

SEE ALSO

Related APIs
ls_stdinmodel() 



Platform LSF API Reference 133

ls_getstdin() 
ls_initrex() 

Equivalent line command
none

Files
${LSF_ENVDIR-/etc}/lsf.conf



ls_sharedresourceinfo()

134 Platform LSF API Reference

ls_sharedresourceinfo()
Returns shared resource information in dynamic values.

DESCRIPTION
ls_sharedresourceinfo() returns the requested shared resource information in 
dynamic values. The result of this call is a chained data structure as defined in 
<lsf/lsf.h>, which contains requested information. 

SYNOPSIS
#include <lsf/lsf.h>

LS_SHARED_RESOURCE_INFO_T *ls_sharedresourceinfo(
char **resources, 
int *numResources, char *hostName, 
int options)

typedef struct lsSharedResourceInfo {
/* resource name */

char *resourceName;
/* number of instances */

int nInstances;
/* pointer to the next instance */

LS_SHARED_RESOURCE_INST_T *instances;
} LS_SHARED_RESOURCE_INFO_T;

typedef struct lsSharedResourceInstance {
/* Value associated with the resource */

char *value;
int nHosts;

/* Hosts associated with the resource. */
char **hostList;

} LS_SHARED_RESOURCE_INST_T;

PARAMETERS
**resources resources is an array of NULL terminated strings storing requesting resource 

names. If set to NULL, the call returns all shared resources defined in the cluster. 
*numResources numResources is an input/output parameter. On input it indicates how many 

resources are requested. Value 0 means requesting all shared resources. On return 
it contains qualified number of resources. 

*hostName hostName is a string containing a host name. Only shared resource available on the 
specified host will be returned. If hostName is set to NULL, shared resource 
available on all hosts will be returned. 

options options is reserved for future use. Currently, it should be set to 0. 

RETURN VALUES
pointer:array The function was successful. 

character:NULL Function failed.



Platform LSF API Reference 135

ERRORS
If the function fails, lserrno is set to indicate the error. 

SEE ALSO

Related APIs
none

Equivalent line command
none

Files
$LSF_CONFDIR/lsf.shared

$LSF_CONFDIR/lsf.cluster.cluster_name



ls_stdinmode()

136 Platform LSF API Reference

ls_stdinmode()
Allows an application program to query and specify how stdin is assigned to remote 
tasks on a local application.

DESCRIPTION
ls_stdinmode() gives an application program the ability to query and specify how 
stdin is assigned to remote tasks. It allows you to assign stdin to the local program 
only. You can change this setting at any time. 
ls_stdinmode() specifies whether standard input is read by the calling (local) 
application or its remote children. 
This routine returns 0 on success; otherwise, it returns -1 and sets lserrno to 
indicate the error. 
Any program using this routine must call ls_initrex() first. 
Any program using this API must be setuid to root if LSF_AUTH is not defined in 
the lsf.conf file. 

SYNOPSIS
#include <lsf/lsf.h>

int ls_stdinmode(int remote)

PARAMETERS
remote If remote is non-zero, then the application will not read subsequent standard input, 

and the remote children will read standard input. This mode of operation is called 
the remote stdin mode. Remote stdin mode is the default. In remote stdin mode, 
standard input is read by the Network I/O Server (NIOS) and forwarded to the 
appropriate remote tasks. If remote is zero, then the application reads the 
subsequent standard input, and it is not forwarded to remote children. This mode 
of operation is called the local stdin mode. 

RETURN VALUES
integer:0 The function was successful.

integer:-1 The function failed.

ERRORS
If the function fails, lserrno is set to indicate the error. 

SEE ALSO

Related APIs
ls_getstdin() 
ls_setstdin() 
ls_initrex() 



Platform LSF API Reference 137

Equivalent line command
none

Files

${LSF_ENVDIR-/etc}/lsf.conf



ls_stoprex()

138 Platform LSF API Reference

ls_stoprex()
Stops the Networks I/O Server and restores the local tty environment.

DESCRIPTION
ls_stoprex() stops the Network I/O Server (NIOS) and restores the local tty 
environment. This routine is necessary only for those LSF applications that 
explicitly catch job control signals (that is, SIGTSTP) and eventually suspend 
themselves. For most applications, the default SIGTSTP handler in the LSF library 
provides the desired behavior, without the requirement of calling this routine. 
When NIOS receives a SIGTSTP signal, it sends the signal to all its remote tasks. If 
the local client also needs to be stopped, then ls_stoprex() must be called to stop 
the NIOS and restore the tty environment for the parent application first. 
Any program using this routine must call ls_initrex() first. 
Any program using this API must be setuid to root if LSF_AUTH is not defined in the 
lsf.conf file. 

 SYNOPSIS
#include <lsf/lsf.h>

int ls_stoprex(void)

RETURN VALUES
integer:0 The function was successful. 

integer:-1 Function failed.

ERRORS
If the function fails, lserrno is set to indicate the error. 

SEE ALSO

Related APIs
ls_initrex() 

Equivalent line command
none

Files
${LSF_ENVDIR-/etc}/lsf.conf



Platform LSF API Reference 139

ls_sysmsg()
Obtains LSF error messages.

DESCRIPTION
ls_sysmsg() is a LSLIB library routine for obtaining LSF error messages. The 
global variable lserrno, maintained by LSLIB, indicates the error number of the 
most recent LSLIB call that caused an error. 
ls_sysmsg() returns a character string that contains an error message that 
corresponds to the current value of lserrno. If an LSLIB call failed due to a system 
call, then the system error message as indicated by errno is included in the error 
message. 

SYNOPSIS
#include <lsf/lsf.h>

char *ls_sysmsg(void)

RETURN VALUES
char: Function was successful.

char:NULL Function failed.

ERRORS
Systems that conform to the Single UNIX specification are not required to detect 
error conditions for this function. – Error handling

SEE ALSO

Related APIs
ls_perror() 
ls_errlog() 

Equivalent line command
none

Files
lsf/lsf.h



ls_unlockhost()

140 Platform LSF API Reference

ls_unlockhost()
Unlocks a locked local host.

DESCRIPTION
ls_unlockhost() unlocks a host locked by ls_lockhost(). On success, 
ls_unlockhost() changes the status of the local host to indicate that it is no longer 
locked by the user.
Any program using this API must be setuid to root if LSF_AUTH is not defined in 
the lsf.conf file.

SYNOPSIS
#include <lsf/lsf.h>

int ls_unlockhost(void)

RETURN VALUES
integer:0 The function was successful.

integer:-1 The function failed. 

ERRORS
If the function fails, lserrno is set to indicate the error. In particular, 
ls_unlockhost() sets lserrno to LSE_LIM_NLOCKED if the host is not locked.

SEE ALSO

Related APIs:
ls_limcontrol() - shuts down or reboots a host’s LIM
ls_lockhost() - locks a host

Equivalent line command
lsadmin limunlock

Files:
${LSF_ENVDIR-/etc}/lsf.conf 

$LSF_CONFDIR/lsf.shared 

$LSF_CONFDIR/lsf.cluster.cluster_name 



Platform LSF API Reference 141

lsb_addreservation()
Makes an advance reservation.

DESCRIPTION
Use lsb_addreservation() to send a reservation request to mbatchd. If mbatchd 
grants the reservation, it issues the reservation ID. If mbatchd rejects the request, it 
issues NULL as the reservation ID.

SYNOPSIS
#include <lsf/lsbatch.h>

int lsb_addreservation (struct addRsvRequest *request char *rsvId)

struct addRsvRequest {

int options; 

char *name;

struct {

int minNumProcs;

int maxNumProcs;

} procRange;

int numAskedHosts;

char **askedHosts;

char *resReq;

char *timeWindow;

rsvExecCmd_t *execCmd;

char *desc;

char *rsvName;

};

PARAMETERS
*request The reservation request

*rsvId Reservation ID returned from mbatchd. If the reservation fails, this is NULL. The 
memory for rsvid is allocated by the caller.

addRsvRequest structure 
options Reservation options.

name LSF user group name for the reservation. See the -g option of brsvadd.
minNumProcs Minimum number of processors the required to run the job. See the -g option of 

brsvadd.
maxNumProcessors Maximum number of processors the required to run the job. 

numAskedHosts The number of invoker specified hosts for the reservation. If numAskedHosts is 0, 
all qualified hosts will be considered. 



RETURN VALUES

142 Platform LSF API Reference

askedHosts The array of names of invoker specified hosts hosts for the reservation. The number 
of hosts is given by numAskedHosts. See the -m option of brsvadd.

resReq The resource requirements of the reservation. See the -R option of brsvadd.
timeWindow Active time window for a recurring reservation. See the -t option of brsvadd.

rsvExecCmd_t
*execCmd;

Info for the -exec option.

desc description for the reservation to be created. The description must be provided as a 
double quoted text string. The maximum length is 512 characters. Equivalent to the 
value of brsvadd -d.

rsvName User-defined advance reservation name unique in an LSF cluster. The name is a 
string of letters, numeric characters, underscores, and dashes beginning with a 
letter. The maximum length of the name is  39 characters. Equivalent to the value 
of brsvadd -N.

RETURN VALUES
integer:0 The reservation was successful.

integer:-1 The reservation failed.

ERRORS
On failure, lsberrno is set to indicate the error. 

SEE ALSO

Related APIs
lsb_removereservation() - Removes a reservation
lsb_modreservation() - Modifies a reservation
lsb_reservationinfo() - Retrieves reservation information

Equivalent line command
brsvadd

Files:
none



Platform LSF API Reference 143

lsb_calendarinfo()
Gets information about calendars defined in the batch system.

DESCRIPTION
lsb_calendarinfo() gets information about calendars defined in the batch 
system. 
On success, this routine returns a pointer to an array of calendarInfoEnt 
structures which stores the information about the returned calendars and 
*numCalendars gives number of calendars returned. On failure NULL is returned 
and lsberrno is set to indicate the error. 
In calendarInfoEnt structure: 

name A pointer to the name of the calendar. 
desc A description string associated with the calendar 

timeEvents The time expression list used to generate the time events of the calendar (see 
bcaladd() for a description of time events and expressions.) 

lastEvent The time of the last event which occurred in the calendar. 
lastDuration The duration of the last time event. 

nextEvent The time of the next event which is expected to occur in the calendar. 
nextDuration The duration of the next time event. 

 SYNOPSIS
#include <lsf/lsbatch.h>

struct calendarInfoEnt *lsb_calendarinfo(char **calendars,

int *numCalendars, char *user)

struct calendarInfoEnt {

char *name;

char *desc;

 char *calExpr;

char *userName;

int status;

int options;

int lastDay;

int nextDay;

time_t creatTime;

time_t lastModifyTime;

intflags;

};

PARAMETERS
**calendars calendars is a pointer to an array of calendar names.



RETURN VALUES

144 Platform LSF API Reference

*numCalendars *numCalendars gives the number of calendar names. If *numCalendars is 0, then 
information about all calendars is returned. By default, only the invokers calendars 
are considered.

*user Setting the user parameter will cause the given users calendars to be considered. 
Use the reserved user name all to get calendars of all users.

RETURN VALUES
character:POINTER Sends an array about the calendars and their info . 

character:NULL Function failed.

ERRORS
If the function fails, lsberrno is set to indicate the error. 

SEE ALSO

Related APIs
lsb_calendarop() 
none

Equivalent line command
none

Files
none 



Platform LSF API Reference 145

lsb_calendarop()
Adds, modifies or deletes a calendar.

DESCRIPTION
lsb_calendarop() is used to add, modify or delete a calendar. The oper parameter 
is one of CALADD, CALMOD, or CALDEL. When the operation CALADD is specified, the 
first element of the names array is used as the name of the calendar to add. The desc 
and timeEvents parameters should point to the description string and the time 
expression list, respectively. See bcaladd() for a description of time expressions. 
CALMOD permits the modification of the description or time expression list 
associated with an existing calendar. The first name in the names array indicates the 
calendar to be modified. The desc and timeEvents parameters can be set to the 
updated value or to NULL to indicate that the existing value should be maintained. 
If the operation is CALDEL then the names parameter points to an array of calendar 
names to be deleted. numNames gives the number of names in the array. options is 
reserved for the future use. 

 SYNOPSIS
#include <lsf/lsbatch.h>
int *lsb_calendarop(int oper, int numNames, char **names, char 
*desc, char *timeEvents, int options, char **badStar)

#define CALADD    1
#define CALMOD    2
#define CALMOD    3

PARAMETERS
oper One of CALADD, CALMOD, or CALDEL. Depending on which one is chosen, adds, 

modifies, or deletes a calendar.
*names Depending on oper, it defines the name of the calendar is going to be added, 

modified or deleted.
*desc The calendar’s description list.

**timeEvents The calendar’s time events list.
numNames The number of names in the array.

options Currently unused.
**badStar Need description

RETURN VALUES
character:POINTER Sends an array about the calendars and their info . 

character:NULL Function failed.



ERRORS

146 Platform LSF API Reference

ERRORS
If the function fails, lsberrno is set to indicate the error. If error is related to bad 
calendar name or time expression, the routine returns the name or expression in 
badStr.

SEE ALSO

Related APIs
lsb_calendarinfo() 

Equivalent line command
none

Files
none



Platform LSF API Reference 147

lsb_chkpntjob()
Checkpoints a job.

DESCRIPTION
Checkpoints a job.

SYNOPSIS
#include <lsf/lsbatch.h>

int lsb_chkpntjob(jobId, period, options)

PARAMETERS
LS_LONG_INT jobId The job to be checkpointed.

time_t period; The checkpoint period in seconds.  The value 0  disables periodic checkpointing.
int options; The bitwise inclusive OR of some of the following:

LSB_CHKPNT_KILL

Checkpoint and kill the job as an atomic action.
LSB_CHKPNT_FORCE

Checkpoint the job even if non-checkpointable conditions exist.

RETURN VALUES
integer:0 The function was successful.

integer:-1 The function failed.

NOTES
Any program using this API must be setuid to root if LSF_AUTH is not defined in 
the lsf.conf file.

ERRORS
On failure, lsberrno is set to indicate the error. 

SEE ALSO

Related APIs:
none

Equivalent line command
bchkpnt

Files

${LSF_ENVDIR-/etc}/lsf.conf



lsb_closejobinfo()

148 Platform LSF API Reference

lsb_closejobinfo()
Closes job information connection with the master batch daemon.

DESCRIPTION
Use lsb_closejobinfo() to close the connection to the master batch daemon 
after opening a job information connection with lsb_openjobinfo() and reading 
job records with lsb_readjobinfo().

SYNOPSIS
#include <lsf/lsbatch.h>

void lsb_closejobinfo(void)

RETURN VALUES
Returns void.

ERRORS
On failure, lsberrno is set to indicate the error. 

SEE ALSO

Related APIs:
lsb_openjobinfo() - Opens a connection to the master batch daemon
lsb_openjobinfo_a() - Provides the name and number of jobs and hosts in the 
master batch daemon
lsb_readjobinfo() - Returns the next job information record in master batch 
daemon

Equivalent line command
none

Files:
none



Platform LSF API Reference 149



lsb_closestream()

150 Platform LSF API Reference

lsb_closestream()
Close an lsb_stream file.

DESCRIPTION
lsb_closestream() closes the streamFile.
This API function is inside liblsbstream.so.

SYNOPSIS
#include <lsf/lsbatch.h>

int lsb_closestream(const char *config)

PARAMETERS
* config Pointer to the handle of the stream file.

RETURN VALUES
integer:0 The function was successful.

integer:-1 The function failed.

ERRORS
If the function fails, lsberrno is set to indicate the error. 

SEE ALSO

Related APIs
lsb_openstream(): Open the stream file.
lsb_readstreamline(): Read a line from the stream file.
lsb_writestream(): Write an event to the stream file.
lsb_readstream(): Read from the stream file.
lsb_streamversion(): Version of the current event type supported by mbatchd.

Equivalent line command
None

Files

lsb.params



Platform LSF API Reference 151

lsb_deletejob()
Kills a job in a queue

DESCRIPTION
Use lsb_deletejob() to send a signal to kill a running, user-suspended, or 
system-suspended job. The job can be requeued or deleted from the batch system. 
If the job is requeued, it retains its submit time but it is dispatched according to its 
requeue time. When the job is requeued, it is assigned the PEND status and re-run. 
If the job is deleted from the batch system, it is no longer available to be requeued.

SYNOPSIS
#include <lsf/lsbatch.h>

int lsb_deletejob (LS_LONG_INT jobId, int times, int options)

PARAMETERS
jobId The job to be killed. If an element of a job array is to be killed, use the array form 

jobID[i] where jobID is the job array name, and i is the index value.
times Original job submit time.

options If the preprocessor macro LSB_KILL_REQUEUE in lsbatch.h is compared with 
options and found true, then requeue the job using the same job ID.
If the preprocessor macro LSB_KILL_REQUEUE in lsbatch.h is compared with 
options and found false, then the job is deleted from the batch system.

RETURN VALUES
integer:0 The function was successful.

integer:-1 The function failed.

NOTES
Any program using this API must be setuid to root if LSF_AUTH is not defined in the 
lsf.conf file.

ERRORS
On failure, lsberrno is set to indicate the error. 

SEE ALSO

Related API
lsb_signaljob() - Signals a job
lsb_chkpntjob() - Checkpoints a job

Equivalent line command
bkill



SEE ALSO

152 Platform LSF API Reference

brequeue -J

Files
${LSF_ENVDIR-/etc}/lsf.conf



Platform LSF API Reference 153

lsb_freeLimitInfoEnt()
Frees the memory allocated by lsb_limitInfo().

SYNOPSIS
#include <lsf/lsbatch.h>

void lsb_freeLimitInfoEnt(limitInfoEnt * ent, int size)

typedef struct _limitInfoEnt {
char *        name;
limitItem   confInfo;
int              usageC;
limitItem   usageInfo;
} limitInfoEnt;

PARAMETERS
ent input, the array of limit information

size input, the size of the limit information array
_limitInfoEnt The structure limitInfoEnt contains the following fields:

name

Limit policy name given by the user.
confInfo

Limit configuration.
usageC

Size of limit dynamic usage info array.
usageInfo

Limit dynamic usage info array.

RETURN VALUES
LSBE_NO_ERROR Suceess; others, errors happened.

ERRORS
On failure, lsberrno is set to indicate the error. 

SEE ALSO

Related API
lsb_limitInfo() 

Equivalent command
blimits 

Files
lsb.queues, lsb.users, lsb.hosts, lsb.resources 



lsb_getalloc()

154 Platform LSF API Reference

lsb_getalloc()
Allocates memory for a host list to be used for launching parallel tasks through 
blaunch and the lsb_launch() API.

DESCRIPTION
It is the responsibility of the caller to free the host list when it is no longer needed. 
On success, the host list will be a list of strings. Before freeing host list, the 
individual elements must be freed.
An application using the lsb_getalloc() API is assumed to be part of an LSF job, 
and that LSB_MCPU_HOSTS is set in the environment.

SYNOPSIS
#include <lsf/lsbatch.h>

int lsb_getalloc(char ***hostlist)

PARAMETERS
hostlist [OUT] A null-terminated list of host names

RETURN VALUES
> 0 Function was successful. Returns length of hostlist, not including the null last 

element.
< 0 Function failed.

ERRORS
If the function fails, lsberrno is set to indicate the error. 

SEE ALSO

Related API
none

Equivalent line command
none

Files
none



Platform LSF API Reference 155

lsb_geteventrec()
Get an event record from a log file 

DESCRIPTION
lsb_geteventrec() returns an eventRec from a log file.
The storage for the eventRec structure returned by lsb_geteventrec() will be 
reused by the next call. 

SYNOPSIS
#include <lsf/lsbatch.h> 

struct eventRec *lsb_geteventrec(log_fp, lineNum)

FILE *log_fp;

int *lineNum;

struct eventRec {

    char  version[MAX_VERSION_LEN];

    int   type;

    time_t eventTime;

    union eventLog eventLog;

};

union  eventLog {

    struct jobNewLog jobNewLog;

    struct jobStartLog jobStartLog;

    struct jobStatusLog jobStatusLog;

    struct sbdJobStatusLog sbdJobStatusLog;

    struct jobSwitchLog jobSwitchLog;

    struct jobMoveLog jobMoveLog;

    struct queueCtrlLog queueCtrlLog;

    struct newDebugLog  newDebugLog;

    struct hostCtrlLog hostCtrlLog;

    struct mbdStartLog mbdStartLog;

    struct mbdDieLog mbdDieLog;

    struct unfulfillLog unfulfillLog;

    struct jobFinishLog jobFinishLog;

    struct loadIndexLog loadIndexLog;

    struct migLog migLog;

    struct calendarLog calendarLog;

    struct jobForwardLog jobForwardLog;

    struct jobAcceptLog jobAcceptLog;

    struct statusAckLog statusAckLog;

    struct signalLog signalLog;

    struct jobExecuteLog jobExecuteLog;

    struct jobMsgLog jobMsgLog;



SYNOPSIS

156 Platform LSF API Reference

    struct jobMsgAckLog jobMsgAckLog;

    struct jobRequeueLog jobRequeueLog;

    struct chkpntLog chkpntLog;

    struct sigactLog sigactLog;

    struct jobOccupyReqLog jobOccupyReqLog;

    struct jobVacatedLog jobVacatedLog;

    struct jobStartAcceptLog jobStartAcceptLog;

    struct jobCleanLog jobCleanLog;

    struct jobExceptionLog jobExceptionLog;

    struct jgrpNewLog jgrpNewLog;

    struct jgrpCtrlLog jgrpCtrlLog;

    struct jobForceRequestLog jobForceRequestLog;

    struct logSwitchLog logSwitchLog;

    struct jobModLog jobModLog;

    struct jgrpStatusLog jgrpStatusLog;

    struct jobAttrSetLog jobAttrSetLog;

    struct jobExternalMsgLog jobExternalMsgLog;

    struct jobChunkLog jobChunkLog;

    struct sbdUnreportedStatusLog sbdUnreportedStatusLog

    struct rsvFinishLog rsvFinishLog;

    struct hgCtrlLog hgCtrlLog;

    struct cpuProfileLog cpuProfileLog;

    struct dataLoggingLog dataLoggingLog;

    struct jobRunRusageLog   jobRunRusageLog;

    struct eventEOSLog eventEOSLog;

    struct slaLog slaLog;

    struct perfmonLog perfmonLog;

 struct taskFinishLog taskFinishLog;

};

struct xFile {

    char *subFn;

    char *execFn;

    int options;

};

struct jobAttrSetLog {   /* Structure for log_jobattrset() and other calls */

    int       jobId;

    int       idx;

    int       uid;

    int       port;

    char      *hostname;

};

struct logSwitchLog { /* Records of logged events */

    int lastJobId;



Platform LSF API Reference 157

};

struct dataLoggingLog {         /* Records of job cpu data logged event */

    time_t loggingTime;

};

struct jgrpNewLog {

    int    userId;

    time_t submitTime;

    char   userName[MAX_LSB_NAME_LEN];

  char   *depCond;

 char   *timeEvent;

 char   *groupSpec;

   char   *destSpec;

    int    delOptions;

 int    delOptions2;

   int    fromPlatform;

 char   *sla;

    int  maxJLimit;

int options;

};

struct jgrpCtrlLog {

   int    userId;

   char   userName[MAX_LSB_NAME_LEN];

    char   *groupSpec;

    int    options;

    int    ctrlOp;

};

struct jgrpStatusLog {

    char   *groupSpec;

    int    status;

    int    oldStatus;

};

struct jobNewLog {        /* logged in lsb.events when a job is submitted */

    int    jobId;

    int    userId;

    char   userName[MAX_LSB_NAME_LEN];

    int    options;

    int    options2;

    int    numProcessors;

    time_t submitTime;

    time_t beginTime;

    time_t termTime;

    int    sigValue;

    int    chkpntPeriod;



SYNOPSIS

158 Platform LSF API Reference

    int    restartPid;

    int    rLimits[LSF_RLIM_NLIMITS];

    char   hostSpec[MAXHOSTNAMELEN];

    float  hostFactor;

    int    umask;

    char   queue[MAX_LSB_NAME_LEN];

    char   *resReq;

    char   fromHost[MAXHOSTNAMELEN];

    char   *cwd;

    char   *chkpntDir;

    char   *inFile;

    char   *outFile;

    char   *errFile;

    char   *inFileSpool;

    char   *commandSpool;

    char   *jobSpoolDir;

    char   *subHomeDir;

    char   *jobFile;

    int    numAskedHosts;

    char   **askedHosts;

    char   *dependCond;

    char   *timeEvent;

    char   *jobName;

    char   *command;

    int    nxf;

    struct xFile *xf;

    char   *preExecCmd;

    char   *mailUser;

    char   *projectName;

    int    niosPort;

    int    maxNumProcessors;

    char   *schedHostType;

    char   *loginShell;

    char   *userGroup;

    char   *exceptList;

    int    idx;

    int    userPriority;

    char   *rsvId;

    char   *jobGroup;

    char   *extsched;

    int    warningTimePeriod;

    char   *warningAction;

    char   *sla;



Platform LSF API Reference 159

    int    SLArunLimit;

    char   *licenseProject;

    int    options3;

    char   *app;

    char   *postExecCmd;

    int     runtimeEstimation;

    char    *requeueEValues;

    int     initChkpntPeriod;

    int     migThreshold;

};

struct jobModLog {

    char    *jobIdStr;

    int     options;

    int     options2;

    int     delOptions;

    int     delOptions2;

    int     userId;

    char    *userName;

    int     submitTime;

    int     umask;

    int     numProcessors;

    int     beginTime;

    int     termTime;

    int     sigValue;

    int     restartPid;

    char    *jobName;

    char    *queue;

    int     numAskedHosts;

    char    **askedHosts;

    char    *resReq;

    int     rLimits[LSF_RLIM_NLIMITS];

    char    *hostSpec;

    char    *dependCond;

    char    *timeEvent;

    char    *subHomeDir;

    char    *inFile;

char *outFile;

    char    *errFile;

    char    *command;

    char    *inFileSpool;

    char    *commandSpool;

    int     chkpntPeriod;

    char    *chkpntDir;



SYNOPSIS

160 Platform LSF API Reference

    int     nxf;

    struct  xFile *xf;

    char    *jobFile;

    char    *fromHost;

    char    *cwd;

    char    *preExecCmd;

    char    *mailUser;

    char    *projectName;

    int     niosPort;

    int     maxNumProcessors;

    char    *loginShell;

    char    *schedHostType;

    char    *userGroup;

    char    *exceptList;

    int     userPriority;

    char    *rsvId;

    char    *extsched;

    int     warningTimePeriod;

    char    *warningAction;

    char    *jobGroup;

    char    *sla;

    char    *licenseProject;

    int     options3;

    int     delOptions3;

    char    *app;

    char    *apsString;

    char    *postExecCmd;

    int     runtimeEstimation;

char *requeueEValues;

 int initChkpntPeriod;

int migThreshold;

};

struct jobStartLog {      /* logged in lsb.events when a job is started */

    int    jobId;

    int    jStatus;

    int    jobPid;

    int    jobPGid;

    float  hostFactor;

    int    numExHosts;

    char   **execHosts;

    char   *queuePreCmd;

    char   *queuePostCmd;

 int jFlags;



Platform LSF API Reference 161

    char   *userGroup;

    int    idx;

    char   *additionalInfo;

 int    duration4PreemptBackfill;

};

struct jobStartAcceptLog {  /* logged in lsb.events when a job start request is accepted 

*/

    int    jobId;

    int    jobPid;

    int    jobPGid;

    int    idx;

};

struct jobExecuteLog {   /* logged in lsb.events when a job is executed */

    int    jobId;

    int    execUid;

    char   *execHome;

    char   *execCwd;

    int    jobPGid;

    char   *execUsername;

    int    jobPid;

    int    idx;

    char   *additionalInfo;

    int    SLAscaledRunLimit;

    int    position;

    char   *execRusage;

    int    duration4PreemptBackfill;

};

struct jobStatusLog {     /* logged when a job's status is changed */

    int    jobId;

    int    jStatus;

    int    reason;

    int    subreasons;

    float  cpuTime;

    time_t endTime;

    int    ru;

    struct lsfRusage lsfRusage;

    int   jFlags;

    int   exitStatus;

    int    idx;

    int    exitInfo;

};

struct sbdJobStatusLog {     /* logged when a job's status is changed */

    int    jobId;



SYNOPSIS

162 Platform LSF API Reference

    int    jStatus;

    int    reasons;

    int    subreasons;

    int    actPid;

    int    actValue;

    time_t actPeriod;

    int    actFlags;

    int    actStatus;

    int    actReasons;

    int    actSubReasons;

    int    idx;

    int    sigValue;

    int    exitInfo;

};

struct sbdUnreportedStatusLog {   /* job status that we could send to MBD */

    int    jobId;

    int    actPid;

    int    jobPid;

    int    jobPGid;

    int    newStatus;

    int    reason;

    int    subreasons;

    struct lsfRusage lsfRusage;

    int    execUid;

    int    exitStatus;

    char   *execCwd;

    char   *execHome;

    char   *execUsername;

    int    msgId;

    struct jRusage runRusage;

    int    sigValue;

    int    actStatus;

    int    seq;

    int    idx;

    int    exitInfo;

};

struct jobSwitchLog {     /* logged when a job is switched to another queue */ 

    int    userId; 

    int    jobId; 

    char   queue[MAX_LSB_NAME_LEN]; 

    int    idx; 

    char   userName[MAX_LSB_NAME_LEN]; 



Platform LSF API Reference 163

}; 

struct jobMoveLog {       /* logged when a job is moved to another position */ 

    int    userId; 

    int    jobId; 

    int    position; 

    int    base; 

    int    idx; 

    char   userName[MAX_LSB_NAME_LEN]; 

}; 

struct chkpntLog {

    int jobId;

    time_t period;

    int pid;

    int ok;

    int flags;

    int    idx;

};

struct jobRequeueLog {

    int   jobId;

    int   idx;

};

struct jobCleanLog {

    int   jobId;

    int   idx;

};

struct jobExceptionLog {

    int jobId;

    int    exceptMask;

    int    actMask;

    time_t timeEvent;

    int    exceptInfo;

    int    idx;

};

struct sigactLog {

    int      jobId;

    time_t   period;

    int      pid;

    int      jStatus;

    int      reasons;

    int      flags;

    char     *signalSymbol;

    int      actStatus;

    int      idx;



SYNOPSIS

164 Platform LSF API Reference

};

struct migLog {

    int    jobId;

    int    numAskedHosts;

    char   **askedHosts;

    int    userId;

    int    idx;

    char   userName[MAX_LSB_NAME_LEN];

};

struct signalLog {

    int    userId;

    int    jobId;

    char   *signalSymbol;

    int    runCount;

    int    idx;

    char   userName[MAX_LSB_NAME_LEN];

};

struct queueCtrlLog { /* logged when bqc command is invoked */

    int  opCode;

    char queue[MAX_LSB_NAME_LEN];

    int  userId;

    char userName[MAX_LSB_NAME_LEN];

    char message[MAXLINELEN];

};

struct newDebugLog {

    int opCode;

    int level;

    int logclass;

    int turnOff;

    char logFileName[MAXLSFNAMELEN];

    int userId;

 };

struct hostCtrlLog { /* logged when bhc command is invoked */

    int  opCode;

    char host[MAXHOSTNAMELEN];

    int  userId;

    char userName[MAX_LSB_NAME_LEN];

    char message[MAXLINELEN];

};

struct hgCtrlLog {       /* logged when dynamic hosts are added to group */

    int    opCode;

    char   host[MAXHOSTNAMELEN];

    char   grpname[MAXHOSTNAMELEN];



Platform LSF API Reference 165

    int    userId;

    char   userName[MAX_LSB_NAME_LEN];

    char   message[MAXLINELEN];

};

struct mbdStartLog {

    char master[MAXHOSTNAMELEN];

    char cluster[MAXLSFNAMELEN];

    int  numHosts;

    int  numQueues;

};

struct mbdDieLog {

    char master[MAXHOSTNAMELEN];

    int  numRemoveJobs;

    int  exitCode;

 char   message[MAXLINELEN];

};

struct unfulfillLog { /* logged before mbatchd dies */

    int  jobId;

    int  notSwitched;

    int  sig;

    int  sig1;

    int  sig1Flags;

    time_t chkPeriod;

    int  notModified;

    int  idx;

    int  miscOpts4PendSig;

};

struct jobFinishLog {          /* logged in lsb.acct when a job finished */

    int    jobId;

    int    userId;

    char   userName[MAX_LSB_NAME_LEN];

    int    options;

    int    numProcessors;

    int    jStatus;

    time_t submitTime;

    time_t beginTime;

    time_t termTime;

    time_t startTime;

    time_t endTime;

    char   queue[MAX_LSB_NAME_LEN];

    char   *resReq;

    char   fromHost[MAXHOSTNAMELEN];

    char   *cwd;



SYNOPSIS

166 Platform LSF API Reference

    char   *inFile;

    char   *outFile;

    char   *errFile;

    char   *inFileSpool;

    char   *commandSpool;

    char   *jobFile;

    int    numAskedHosts;

    char   **askedHosts;

    float  hostFactor;

    int    numExHosts;

    char   **execHosts;

    float  cpuTime;

    char   *jobName;

    char   *command;

    struct  lsfRusage lsfRusage;

    char   *dependCond;

    char   *timeEvent;

    char   *preExecCmd;

    char   *mailUser;

    char   *projectName;

    int    exitStatus;

    int    maxNumProcessors;

    char   *loginShell;

    int    idx;

    int    maxRMem; 

    int    maxRSwap;

    char   *rsvId;

    char   *sla;

    int    exceptMask;

    char   *additionalInfo;

    int    exitInfo;

    int    warningTimePeriod;

    char   *warningAction;

    char   *chargedSAAP;

    char   *licenseProject;

    char   *app;

    char   *postExecCmd;

    int    runtimeEstimation;

 char   *jgroup;

 char *requeueEValues;

};

struct loadIndexLog {

   int  nIdx;



Platform LSF API Reference 167

    char **name;

};

struct calendarLog {

    int    options;

    int    userId;

    char   *name;

    char   *desc;

    char   *calExpr;

};

struct jobForwardLog {

    int    jobId;

    char   *cluster;

    int    numReserHosts;

    char   **reserHosts;

    int    idx;

    int    jobRmtAttr;

};

struct jobAcceptLog {

    int         jobId;

    LS_LONG_INT remoteJid;

    char        *cluster;

    int         idx;

    int         jobRmtAttr;

};

struct statusAckLog {

    int jobId;

    int statusNum;

    int    idx;

};

struct jobMsgLog {

    int   usrId;

    int   jobId;

    int   msgId;

    int   type;

    char  *src;

    char  *dest;

    char  *msg;

    int   idx;

};

struct jobMsgAckLog {

    int usrId;

    int jobId;

    int msgId;



SYNOPSIS

168 Platform LSF API Reference

    int type;

    char *src;

    char *dest;

    char *msg;

    int    idx;

};

struct jobOccupyReqLog {     

    int userId;

    int jobId;

    int numOccupyRequests;

    void *occupyReqList;

    int    idx;

    char userName[MAX_LSB_NAME_LEN];

};

struct jobVacatedLog {        

    int userId;

    int jobId;

    int    idx;

    char userName[MAX_LSB_NAME_LEN];

};

struct jobForceRequestLog {

    int     userId;

    int     numExecHosts;

    char**  execHosts;

    int     jobId;

    int     idx;

    int     options;

    char    userName[MAX_LSB_NAME_LEN];

    char   *queue;

};

struct jobChunkLog {

    long         membSize;

    LS_LONG_INT *membJobId;

    long         numExHosts;

    char       **execHosts;

};

struct jobExternalMsgLog {

    int      jobId;

    int      idx;

    int      msgIdx;

    char     *desc;

    int      userId;

    long     dataSize;



Platform LSF API Reference 169

    time_t   postTime;

    int      dataStatus;

    char     *fileName;

    char     userName[MAX_LSB_NAME_LEN];

};

struct rsvRes {

    char     *resName; 

    int      count;

    int      usedAmt;

};

struct rsvFinishLog { /* for advanced reservation */

    time_t        rsvReqTime;

    int           options;

 int uid;

    char          *rsvId;

    char          *name; 

    int           numReses; 

    struct rsvRes *alloc; 

    char          *timeWindow; 

    time_t        duration; 

 char          *creator;

};

struct cpuProfileLog {

    char    servicePartition[MAX_LSB_NAME_LEN];

    int     slotsRequired;

    int     slotsAllocated;

    int     slotsBorrowed;

    int     slotsLent;

};

struct jobRunRusageLog {         /* log the running rusage of a job in the lsb.stream 

file */

    int              jobid;

    int              idx;

    struct jRusage   jrusage;

};

struct slaLog { /* SLA event */

    char   *name; 

    char   *consumer; 

    int    goaltype; 

    int    state; 

    int    optimum; 

    int    counters[NUM_JGRP_COUNTERS]; 



PARAMETERS

170 Platform LSF API Reference

};

struct perfmonLogInfo { /* a wrap of structure perfmonLog for perf. metrics project */

int samplePeriod;

int * metrics;

time_t startTime;

time_t logTime;

};

struct perfmonLog {              /* performance metrics log in lsb.stream */

    int    samplePeriod;

    int    totalQueries;

    int    jobQuries;

    int    queueQuries;

    int    hostQuries;

    int    submissionRequest;

    int    jobSubmitted;

    int    dispatchedjobs;

    int    jobcompleted;

    int    jobMCSend;

    int    jobMCReceive;

    time_t startTime;

};

struct taskFinishLog {     /* task accounting record in ssched.acct */

    struct jobFinishLog jobFinishLog;

    int    taskId;

    int    taskIdx;

    char   *taskName;

    int    taskOptions;

    int    taskExitReason;

};

struct eventEOSLog {     /* Event end of stream. */

    int   eos;

};

PARAMETERS
log_fp Either an event log file or a job log file. 

*lineNum The number of the event record. 
struct eventRec The eventRec structure contains the following fields:

version

The mbatchd version number
type 

The type of event—one of the following: 
EVENT_JOB_NEW



Platform LSF API Reference 171

New job submitted
EVENT_JOB_START

mbatchd is trying to start a job
EVENT_JOB_START_ACCEPT

Accept Job started
EVENT_JOB_STATUS 

Job’s status change event
EVENT_JOB_SWITCH 

Job switched to another queue
EVENT_JOB_MOVE 

Move a pending job's position within a queue
EVENT_QUEUE_CTRL 

Queue’s status changed by Platform LSF administrator (bhc operation)
EVENT_HOST_CTRL 

Host status changed by Platform LSF administrator (bhc operation)
EVENT_MBD_START 

New mbatchd start event
EVENT_MBD_DIE 

Log parameters before mbatchd died
EVENT_MBD_UNFULFILL 

Action that was not taken because the mbatchd was unable to contact the sbatchd 
on the job’s execution host
EVENT_JOB_FINISH 

Job finished (Logged in lsb.acct) 
EVENT_LOAD_INDEX 

The complete list of load indices, including external load indices
EVENT_CHKPNT 

Job checkpointed. 
EVENT_MIG 

Job migrated
EVENT_PRE_EXEC_START 

The pre-execution command started
EVENT_JOB_MODIFY

Job modification request
EVENT_JOB_MODIFY2

Job modification request
EVENT_JOB_ATTR_SET



PARAMETERS

172 Platform LSF API Reference

Job attributes have been set
EVENT_CAL_NEW: deprecated

Add new calendar to the system
EVENT_CAL_MODIFY: deprecated

Calendar modified
EVENT_CAL_DELETE: deprecated

Calendar deleted
EVENT_CAL_UNDELETE: deprecated

Undo delete of Calendar
EVENT_JOB_FORWARD

Job forwarded to another cluster
EVENT_JOB_ACCEPT

Job from a remote cluster dispatched
EVENT_STATUS_ACK

Job status successfully sent to submission cluster
EVENT_JOB_SIGNAL

Signal/delete a job
EVENT_JOB_EXECUTE

Job started successfully on the execution host
EVENT_JOB_MSG

Send a message to a job
EVENT_JOB_MSG_ACK

The message has been delivered
EVENT_JOB_REQUEUE

Job is requeued
EVENT_JOB_CLEAN

Job is cleaned out of the core
EVENT_JOB_SIGACT

A signal action on a job has been initiated or finished
EVENT_JOB_EXCEPTION

Job exception was detected
EVENT_JGRP_ADD

Adding a new job group
EVENT_JGRP_MOD

Modifying a job group
EVENT_JGRP_CTRL

Controlling a job group



Platform LSF API Reference 173

EVENT_JGRP_STATUS

Log job group status
EVENT_JOB_OCCUPY_REQ

Submission mbatchd logs this after sending an occupy request to execution 
mbatchd
EVENT_JOB_VACATED

Submission mbatchd logs this event after all execution mbatchds have vacated the 
occupied hosts for the job
EVENT_SBD_JOB_STATUS

sbatchd's new job status
EVENT_JOB_FORCE

Forcing a job to start on specified hosts (brun operation)
EVENT_LOG_SWITCH

Switching the event file lsb.events
EVENT_JOB_CHUNK

Insert one job to a chunk
EVENT_SBD_UNREPORTED_STATUS

Save unreported sbatchd status
EVENT_JOB_EXT_MSG

Send an external message to a job
EVENT_JOB_ATTA_DATA

Update data status of a message for a job
EVENT_ADRSV_FINISH

Reservation finished
EVENT_CPUPROFILE_STATUS

Saved current CPU allocation on service partition
EVENT_DATA_LOGGING

Write out data logging file
EVENT_CPUPROFILE_STATUS

Write CPU profile status
EVENT_DATA_LOGGING

Log data
EVENT_JOB_RUN_RUSAGE

Write job rusage in lsb.stream
EVENT_SLA_RECOMPUTE

SLA goal is reavaluated
EVENT_JOB_ROUTE 

The job has been routed to NQS



PARAMETERS

174 Platform LSF API Reference

EVENT_TASK_FINISH

Write task finish log to ssched.acct
JOB_RUN_RUSAGE

Writes job rusage in lsb.stream.
END_OF_STREAM

Stream closed and new stream opened.
SLA_RECOMPUTE

SLA goal is reavaluated.
eventTime

The time the event occurred
eventLog 

The information for this type of event, contained in a structure corresponding to 
type

struct jobNewLog The jobNewLog structure contains the following fields: 
jobId 

The job ID that the LSF assigned to the job
userId 

The user ID of the submitter
userName 

The name of the submitter
options 

Job submission options. See lsb_submit().
options2 

Job submission options. See lsb_submit().
numProcessors 

The number of processors requested for execution
submitTime 

The job submission time
beginTime 

The job should be started on or after this time
termTime 

If the job has not finished by this time, it will be killed
sigValue 

The signal value sent to the job 10 minutes before its run window closes
chkpntPeriod

The checkpointing period
restartPid 



Platform LSF API Reference 175

The process ID assigned to the job when it was restarted
rLimits 

The user’s resource limits
hostSpec 

The model, host name or host type for scaling CPULIMIT and RUNLIMIT
hostFactor 

The CPU factor for the above model, host name or host type
umask 

The file creation mask for this job
queue 

The name of the queue to which this job was submitted
resReq 

The resource requirements of the job
fromHost 

The submission host name
cwd 

The current working directory
chkpntDir 

The checkpoint directory
inFile 

The input file name
outFile 

The output file name
errFile 

The error output file name
inFileSpool

Job spool input file
commandSpool

Job spool command file
jobSpoolDir

job spool directory
subHomeDir 

The home directory of the submitter
jobFile 

The job file name
numAskedHosts 

The number of hosts considered for dispatching this job



PARAMETERS

176 Platform LSF API Reference

askedHosts 

The array of names of hosts considered for dispatching this job
dependCond 

The job dependency condition
timeEvent

Time event string
jobName 

The job name
command 

The job command
nxf 

The number of files to transfer
xf

The array of file transfer specifications. (The xFile structure is defined in 
<lsf/lsbatch.h>) 
preExecCmd 

The pre-execution command
mailUser

User option mail string
projectName

Project name for the job; used for accounting purposes
niosPort

NIOS callback port to be used for interactive jobs
maxNumProcessors

Maximum number of processors 
schedHostType

Execution host type 
loginShell

The login shell specified by user
userGroup

The user group name for this job
exceptList

List of job exception conditions
idx

Job array index; must be 0 in JOB_NEW
userPriority

User priority



Platform LSF API Reference 177

rsvId

Advance reservation ID
jobGroup

The job group under which the job runs
extsched

External scheduling options 
warningTimePeriod

Job warning time period in seconds; -1 if unspecified
warningAction

Job warning action: SIGNAL | CHKPNT | command; NULL if unspecified
sla

SLA service class name under which the job runs 
SLArunLimit

Absolute run time limit of the job for SLA service classes 
licenseProject

LSF License Scheduler project name
 options3

Extended bitwise inclusive OR of options flags. See lsb_submit().
app

Application profile under which the job runs.
postExecCmd

Post-execution commands.
runtimeEstimation

Runtime estimate specified.
requeueEValues

Job-level requeue exit values. 
initChkpntPeriod

Initial checkpoint period.
migThreshold

Job migration threshold.
struct jobStartLog The jobStartLog structure contains the following fields: 

jobId 

The unique ID for the job
jStatus 

The status of the job (See lsb_readjobinfo())
jobPid 

The job process ID



PARAMETERS

178 Platform LSF API Reference

jobPGid 

The job process group ID
hostFactor 

The CPU factor of the first execution host
numExHosts 

The number of processors used for execution
execHosts 

The array of execution host names
queuePreCmd

Pre-execution command defined in the queue
queuePostCmd

Post-execution command defined in the queue
jFlags

Job processing flags
userGroup

The user group name for this job
idx

Job array index; must be 0 in JOB_NEW
additionalInfo

Placement information of LSF HPC jobs
duration4PreemptBackfill

How long a backfilled job can run; used for preemption backfill jobs
struct

jobForceRequestLog
The jobForceRequestLog structure contains the following fields:
userId

The user ID of the submitter
numExecHosts

Number of execution hosts
execHosts

The array of execution host names
jobId

The unique ID for the job
idx

Job array index; must be 0 in JOB_NEW
options

Job run options (RUNJOB_OPT_NOSTOP | JFLAG_URGENT_NOSTOP | 
JFLAG_URGENT)
userName



Platform LSF API Reference 179

The name of the submitter
queue

The name of the queue to which this job was submitted
struct

logSwitchLog
The logSwitchLog structure contains the following fields:
lastJobId

the last jobId so far
struct jobModLog The jobModLog structure contains the following fields: 

jobIdStr

jobId or jobName in char
options 

Job submission options (See lsb_submit())
options2 

Job submission options (See lsb_submit())
delOptions

Delete options in options field .
delOptions2

Extended delete options in options2 field .
userId 

The user ID of the submitter
userName 

The name of the submitter
submitTime 

The job submission time
umask 

The file creation mask for this job
numProcessors 

The number of processors requested for execution
beginTime 

The job should be started on or after this time
termTime 

If the job has not finished by this time, it will be killed
sigValue 

The signal value sent to the job 10 minutes before its run window closes
restartPid 

The process ID assigned to the job when it was restarted
jobName 

The job name



PARAMETERS

180 Platform LSF API Reference

queue 

The name of the queue to which this job was submitted
numAskedHosts 

The number of hosts considered for dispatching this job
askedHosts

List of asked hosts
resReq 

The resource requirements of the job
rLimits 

The user’s resource limits
hostSpec 

The model, host name or host type for scaling CPULIMIT and RUNLIMIT
dependCond 

The job dependency condition
timeEvent

Time event string. 
subHomeDir 

The home directory of the submitter
inFile 

The input file name
outFile 

The output file name
errFile 

The error output file name
command 

The job command
inFileSpool

Job spool input file
commandSpool

Job spool command file
chkpntPeriod

The checkpointing period
chkpntDir 

The checkpoint directory
nxf 

The number of files to transfer
xf



Platform LSF API Reference 181

The array of file transfer specifications. (The xFile structure is defined in 
<lsf/lsbatch.h>) 
jobFile 

The job file name
fromHost 

The submission host name
cwd 

The current working directory
preExecCmd 

The pre-execution command
mailUser

User option mail string
projectName

Project name for the job; used for accounting purposes
niosPort

NIOS callback port to be used for interactive jobs
maxNumProcessors

Maximum number of processors 
loginShell

The login shell specified by user
schedHostType

Execution host type 
userGroup

The user group name for this job
exceptList

List of job exception conditions
userPriority

User priority
rsvId

Advance reservation ID
extsched

External scheduling options 
warningTimePeriod

Job warning time period in seconds; -1 if unspecified
warningAction

Job warning action: SIGNAL | CHKPNT | command; NULL if unspecified
jobGroup



PARAMETERS

182 Platform LSF API Reference

The job group under which the job runs
sla

SLA service class name under which the job runs 
licenseProject

LSF License Scheduler project name
 options3

Extended bitwise inclusive OR of options flags. See lsb_submit().
delOptions3

Extended delete options in options3 field.
app

Application profile under which the job runs.
apsString

Absolute priority scheduling string set by administrators to denote static system 
APS value or ADMIN factor APS value. 
postExecCmd

Post-execution commands.
runtimeEstimation

Runtime estimate.
requeueEValues

Job-level requeue exit values. 
initChkpntPeriod

Initial checkpoint period.
migThreshold

Job migration threshold.
struct

jobStatusLog
The jobStatusLog structure contains the following fields: 
jobId 

The unique ID for the job
jStatus 

The job status (See lsb_readjobinfo())
reason

The reason the job is pending or suspended (See  lsb_pendreason() and 
lsb_suspreason())
subreasons

The load indices that have overloaded the host (See lsb_pendreason() and 
lsb_suspreason())
cpuTime 

The CPU time consumed before this event occurred
endTime 



Platform LSF API Reference 183

The job completion time
ru

Boolean indicating lsfRusage is logged
lsfRusage 

Resource usage statistics
The lsfRusage structure is defined in <lsf/lsf.h>. Note that the availability of 
certain fields depends on the platform on which the sbatchd runs. The fields that 
do not make sense on the platform will be logged as -1.0.  
exitStatus

Job exit status
idx

Job array index; must be 0 in JOB_NEW
exitInfo

Job termination reason, see <lsf/lsbatch.h>
struct migLog The migLog structure contains the following fields: 

jobId 

The job to be migrated
numAskedHosts 

The number of candidate hosts for migration
askedHosts 

The array of candidate host names
userId 

The user ID of the submitter
idx

Job array index; must be 0 in JOB_NEW
userName 

The user name of the submitter
struct sigactLog The sigactLog structure contains the following fields:

jobId 

The unique ID of the job
period 

action period
pid

action process ID
jStatus

job status
reasons



PARAMETERS

184 Platform LSF API Reference

Pending reasons
flags

Action flag
signalSymbol

signal symbol from the set: DELETEJOB | KILL | KILLREQUEUE | 
REQUEUE_DONE | REQUEUE_EXIT | REQUEUE_PEND | 
REQUEUE_PSUSP_ADMIN | REQUEUE_PSUSP_USER | SIG_CHKPNT | 
SIG_CHKPNT_COPY
actStatus

action logging status (ACT_NO | ACT_START | ACT_PREEMPT | ACT_DONE | 
ACT_FAIL)
idx

Job array index; must be 0 in JOB_NEW
struct

jobOccupyReqLog
The jobOccupyReqLog structure contains the following fields: 
userId 

The user ID of the submitter 
jobId 

The unique ID for the job
numOccupyRequests

Number of Jobs Slots desired
occupyReqList

List of slots occupied
idx 

Job array index; must be 0 in JOB_NEW
userName 

The name of the submitter
struct jobVacatedLog The jobVacatedLog structure contains the following fields: 

userId 

The user ID of the submitter 
jobId 

The unique ID for the job
idx 

Job array index; must be 0 in JOB_NEW
userName 

The name of the submitter
struct jobCleanLog The jobCleanLog structure contains the following fields: 

jobId 

The unique ID for the job



Platform LSF API Reference 185

idx

Job array index; must be 0 in JOB_NEW
struct

jobStartAcceptLog
The jobStartAcceptLog structure contains the following fields: 
jobId 

The unique ID for the job
jobPid

The job process ID
jobPGid

The job process group ID
idx

Job array index; must be 0 in JOB_NEW
struct

jobExceptionLog
The jobExceptionLog structure contains the following fields: 

jobId 

The unique ID for the job
exceptMask 

Job exception handling mask
ActMask

Action Id (kill | alarm | rerun | setexcept)
timeEvent 

Time event string
ExceptInfo

Except Info, pending reason for missched or cantrun exception, the exit code of the 
job for the abend exception, otherwise 0.
idx

Job array index; must be 0 in JOB_NEW
struct

jobForceRequestLog
The jobForceRequestLog structure contains the following fields: 
userId 

The user ID of the submitter
numExecHosts

The number of execution hosts
ExecHosts

The array of execution host names
jobId 

The unique ID for the job
idx

Job array index; must be 0 in JOB_NEW
options



PARAMETERS

186 Platform LSF API Reference

Job run options (RUNJOB_OPT_NOSTOP | JFLAG_URGENT_NOSTOP | 
JFLAG_URGENT)
userName 

The name of the submitter 
queue 

The name of the queue to which this job was submitted 
struct logSwitchLog The logSwitchLog structure contains the following fields: 

lastJobId

the last jobId so far
struct jobModLog The jobModLog structure contains the following fields: 

jobIdStr

Job id
options

Job submission options
options2

Job submission options – more
delOptions

Delete options in options field
delOptions2

Delete options in options2 field
userId

The user ID of the submitter
userName

The name of the submitter
submitTime

time of job submission
umask

The file creation mask for this job
numProcessors

min num of proc for the job
beginTime

mustn't start before this
termTime

kill if not done after this
sigValue

signal value
restartPid



Platform LSF API Reference 187

pid of original job
jobName

Job name
queue

Queue name
numAskedHosts

number of user specified hosts
askedHosts

user specified execution hosts
resReq

resource request
rLimits

user's resource limits (soft)
hostSpec

host/model name for CPU scale
dependCond

depend_cond expression string
timeEvent

Time event string
subHomeDir

job's homedir at submission host
inFile

input file
outFile

output file 
errFile

error file
command

command description - this is really a job description field
inFileSpool

spool input file
commandSpool

spool command file
chkpntPeriod

The checkpointing period
chkpntDir

The checkpointing directory



PARAMETERS

188 Platform LSF API Reference

nxf

Number of files to be copied
xf

Files to be copied
jobFile

The job file name.  ‘\0’ indicate let mbatchd make up name, otherwise, mbatchd will 
use given name.  It is '\0' if it is a regular job, non-nil means it is a restart job.
fromHost

The submission host name
cwd

The current working directory
preExecCmd

Command string to be pre_executed
mailUser

Specified user results mailed to
projectName

project name for acct purposes
niosPort

nios port for interactive job
maxNumProcessors

max num of proc for the job
loginShell

login shell specified by user
schedHostType

restart job's submission host type
userGroup

user group
exceptList

exceptions to be detected
userPriority

user priority
rsvId

reservation ID
extsched

extsched option
warningTimePeriod

warning time period in seconds, -1 if unspecified



Platform LSF API Reference 189

warningAction

warning action, SIGNAL | CHKPNT | command, NULL if unspecified
jobGroup

job group
sla

service class
licenseProject

License Project
options3

Job submission options – more and more
delOptions3

Delete options in options3 field
app

Application
apsString

aps value set by admin
postExecCmd

Post-execution commands specified by -Ep option of bsub and bmod
runtimeEstimation

Runtime estimate specified by -We option of bsub and bmod
struct sigactLog The sigactLog structure contains the following fields: 

jobId

The unique ID for the job
period

action period
pid

action process ID
jStatus

job status
reasons

pending reasons
flags

action flag
signalSymbol

signal symbol from the set: DELETEJOB | KILL | KILLREQUEUE | 
REQUEUE_DONE | REQUEUE_EXIT | REQUEUE_PEND | 
REQUEUE_PSUSP_ADMIN | REQUEUE_PSUSP_USER | SIG_CHKPNT | 
SIG_CHKPNT_COPY



PARAMETERS

190 Platform LSF API Reference

actStatus

action logging status (ACT_NO | ACT_START | ACT_PREEMPT | ACT_DONE | 
ACT_FAIL)
idx

Job array index; must be 0 in JOB_NEW
struct

jobOccupyReqLog
The jobOccupyReqLog structure contains the following fields:
userId

The user ID of the submitter
jobId

The unique ID for the job
numOccupyRequests

Number of Jobs Slots desired
occupyReqList

list of slots occupied
idx

Job array index; must be 0 in JOB_NEW
userName

The name of the submitter
struct jobVacatedLog The jobVacatedLog structure contains the following fields: 

userId

The user ID of the submitter
jobId

The unique ID for the job
idx

Job array index; must be 0 in JOB_NEW
userName

The name of the submitter 
struct

jobStartAcceptLog
The jobStartAcceptLog structure contains the following fields:
jobId
The unique ID for the job
jobPid

The job process ID
jobPGid

The job process group ID
idx

Job array index; must be 0 in JOB_NEW
struct jobCleanLog The jobCleanLog structure contains the following fields:



Platform LSF API Reference 191

jobId

The unique ID for the job
idx

Job array index; must be 0 in JOB_NEW
struct

jobExceptionLog
The jobExceptionLog structure contains the following fields:
jobId

The unique ID for the job
exceptMask

Job exception handling mask
ActMask

Action Id (kill | alarm | rerun | setexcept)
timeEvent

Time event string
ExceptInfo

Except Info, pending reason for missched or cantrun exception, the exit code of the 
job for the abend exception, otherwise 0.
idx

Job array index; must be 0 in JOB_NEW
struct jgrpStatusLog The jgrpStatusLog structure contains the following fields: 

groupSpec 

The full group path name for the job group 
status

Job group status
oldStatus

Prior status
struct jgrpNewLog The jgrpNewLog structure contains the following fields: 

userId 

The user ID of the submitter
submitTime 

The job submission time
userName 

The name of the submitter
dependCond 

The job dependency condition
timeEvent

Time event string
groupSpec 



PARAMETERS

192 Platform LSF API Reference

Job group name
destSpec

New job group name
delOptions

Delete options in options field .
delOptions2

Extended delete options in options2 field .
fromPlatform

Platform type e.g. Unix, Windows
sla

SLA service class name under which the job runs 
maxJLimit

Job group slot limit 
options

Job group creation method: implicit or explicit
struct jgrpCtrlLog The jgrpCtrlLog structure contains the following fields: 

userId 

The user ID of the submitter
userName 

The name of the submitter
groupSpec 

Job group name
options 

Options
ctrlOp

Job control JGRP_RELEASE, JGRP_HOLD, JGRP_DEL
struct jobAttrSetLog The jobAttrSetLog structure contains the following fields: 

jobId 

The unique ID for the job
idx 

Job array index; must be 0 in JOB_NEW
uid 

The user who requested the action
port

job attributes
hostname

Name of the host



Platform LSF API Reference 193

struct
jobExternalMsgLog

The jobExternalMsgLog structure contains the following fields: 
jobId

 The unique ID for the job
idx

 Job array index; must be 0 in JOB_NEW
msgIdx

The message index
desc

Message description
userId

The user ID of the submitter
dataSize

Size of the message
postTime

The time the author posted the message.
dataStatus

The status of the message
fileName

Name of attached data file. If no file is attached, use NULL.
userName

 The author of the message
struct perfmonLog The perfmonLog structure contains the following fields: 

samplePeriod

sample rate
totalQueries

Number of Queries
jobQueries

Number of Job Query
queueQuries

Number of Queue Query
hostQuries

Number of Host Query
SubmissionRequest

Number of Submission Requests
jobSubmitted

Number of Jobs Submitted
dispatchedjobs



PARAMETERS

194 Platform LSF API Reference

Number of Dispatched Jobs
jobcompleted

Number of Job Completed
jobMCSend

Number of MultiCluster Jobs Sent
jobMCReceive

Number of MultiCluster Jobs Received
startTime

Start Time
structure

jobChunkLog
The jobChunkLog structure contains the following fields: 
membSize

Size of array membJobId
membJobId

Job IDs of jobs in the chunk
numExHosts 

The number of processors used for execution
execHosts 

The array of names of execution hosts
struct

sbdJobStatusLog
The sbdJobStatusLog structure contains the following fields: 
jobId 

The unique ID for the job
jStatus 

The status of the job (See lsb_readjobinfo()) 
reason 

The reason the job is pending or suspended (See lsb_pendreason() and 
lsb_suspreason()) 
subreasons 

The load indices that have overloaded the host (See lsb_pendreason() and 
lsb_suspreason())
actPid

Action process ID
actValue

Action Value SIG_CHKPNT | SIG_CHKPNT_COPY | SIG_WARNING
actPeriod

Action period
actFlags

Action flag



Platform LSF API Reference 195

actStatus

Action logging status
actReasons

Action Reason SUSP_MBD_LOCK | SUSP_USER_STOP | SUSP_USER_RESUME 
| SUSP_SBD_STARTUP
ActSubReasons

Sub Reason SUB_REASON_RUNLIMIT | SUB_REASON_DEADLINE | 
SUB_REASON_PROCESSLIMIT | SUB_REASON_MEMLIMIT | 
SUB_REASON_CPULIMIT
idx 

Job array index; must be 0 in JOB_NEW 
sigValue 

The signal value
exitInfo

The termination reason of a job
struct

jobSwitchLog
The jobSwitchLog structure contains the following fields: 
userId 

The user ID of the submitter
jobId 

The unique ID of the job
queue 

The name of the queue the job has been switched to
idx

Job array index; must be 0 in JOB_NEW
userName 

The name of the submitter
struct jobMoveLog The jobMoveLog structure contains the following fields: 

userId 

The user ID of the submitter
jobId 

The unique ID of the job
position 

The new position of the job
base 

The operation code for the move (See lsb_movejob())
idx

Job array index; must be 0 in JOB_NEW
userName 



PARAMETERS

196 Platform LSF API Reference

The name of the submitter
struct

queueCtrlLog
The queueCtrlLog structure contains the following fields: 
opCode 

The queue control operation (See lsb_queuecontrol())
queue 

The name of the queue
userId 

The user ID of the submitter
userName 

The name of the submitter
message

Queue control message
struct newDebugLog The newDebugLog structure contains the following fields:

opCode 

The queue control operation (See lsb_queuecontrol()) 
level

Debug level
logclass

Class of log
turnOff

Log enabled, disabled
logFileName

Name of log file
userId

The user ID of the submitter 
struct hostCtrlLog The hostCtrlLog structure contains the following fields: 

opCode 

The host control operation (See lsb_hostcontrol())
host 

The name of the host
userId 

The user ID of the submitter
userName 

The name of the submitter
message

Host control message
struct hgCtrlLog The hgCtrlLog structure contains the following fields: 



Platform LSF API Reference 197

opCode 

The host control operation (See lsb_hostcontrol())
host

The name of the host 
grpname 

The name of the host group
userId 

The user ID of the submitter
userName 

The name of the submitter
message

Host group control message
struct mbdStartLog The mbdStartLog structure contains the following fields: 

master 

The master host name
cluster 

The cluster name
numHosts 

The number of hosts in the cluster
numQueues 

The number of queues in the cluster
struct mbdDieLog The mbdDieLog structure contains the following fields: 

master 

The master host name
numRemoveJobs 

The number of finished jobs that have been removed from the system and logged 
in the current event file
exitCode 

The exit code from the master batch daemon
message

mbatchd administrator control message
struct unfulfillLog The unfulfillLog structure contains the following fields: 

jobId 

The job ID. 
notSwitched 

The mbatchd has switched the job to a new queue but the sbatchd has not been 
informed of the switch



PARAMETERS

198 Platform LSF API Reference

sig 

This signal was not sent to the job
sig1 

The job was not signaled to checkpoint itself
sig1Flags 

Checkpoint flags. See the chkpntLog structure below. 
chkPeriod 

The new checkpoint period for the job
notModified

Flag for modifying job parameters of a running job
idx

Job array index 
miscOpts4PendSig

Option flags for pending job signals
struct jobFinishLog The jobFinishLog structure contains the following fields: 

jobId 

The unique ID for the job
userId 

The user ID of the submitter
userName 

The user name of the submitter
options 

Job submission options (See lsb_submit())
numProcessors 

The number of processors requested for execution
jStatus 

The status of the job (See lsb_readjobinfo())
submitTime 

Job submission time
beginTime 

The job started at or after this time
termTime 

If the job was not finished by this time, it was killed
startTime 

Job dispatch time
endTime 

The time the job finished



Platform LSF API Reference 199

queue 

The name of the queue to which this job was submitted
resReq 

Resource requirements
fromHost 

Submission host name
cwd 

Current working directory
inFile 

Input file name
outFile 

Output file name
errFile 

Error output file name
inFileSpool

Job spool input file
commandSpool

Job spool command file
jobFile 

Job file name
numAskedHosts 

The number of hosts considered for dispatching this job
askedHosts 

The array of names of hosts considered for dispatching this job
hostFactor 

The CPU factor of the first execution host
numExHosts 

The number of processors used for execution
execHosts 

The array of names of execution hosts
cpuTime 

The total CPU time consumed by the job
jobName 

Job name
command 

Job command
lsfRusage 



PARAMETERS

200 Platform LSF API Reference

Resource usage statistics
The lsfRusage structure is defined in <lsf/lsf.h>. Note that the availability of 
certain fields depends on the platform on which the sbatchd runs. The fields that 
do not make sense on this platform will be logged as -1.0.  
dependCond 

The job dependency condition
timeEvent

Time event string
preExecCmd 

The pre-execution command
mailUser

Name of the user to whom job related mail was sent 
projectName

The project name, used for accounting purposes
exitStatus

Job exit status
maxNumProcessors

Maximum number of processors specified for the job 
loginShell

The login shell specified by user
idx

Job array index 
maxRMem

Maximum memory used by job
maxRSwap

Maximum swap used by job
rsvId

Advanced reservation ID
sla

SLA service class name for the job
exceptMask

Job exception handling mask
additionalInfo

Placement information of LSF HPC jobs
exitInfo

Job termination reason, see <lsf/lsbatch.h>
warningTimePeriod



Platform LSF API Reference 201

Job warning time period in seconds; -1 if unspecified
warningAction

Job warning action, SIGNAL | CHKPNT | command; NULL if unspecified
chargedSAAP

SAAP charged for job
licenseProject

LSF License Scheduler project name
app

Application profile under which the job runs.
postExecCmd

Post-execution commands.
runtimeEstimation

Runtime estimate specified.
jgroup

Job group name
requeueEValues

Job-level requeue exit values
struct loadIndexLog The loadIndexLog structure contains the following fields: 

nIdx

The number of load indices
name 

The array of load index names
struct calendarLog The calendarLog structure contains the following fields

options

Reserved for future use
userId

The user ID of the submitter
name

The name of the calendar
desc

Description
calExpr

calendar expression
struct jobForwardLog The jobForwardLog structure contains the following fields: 

jobId

The unique ID of the job
cluster



PARAMETERS

202 Platform LSF API Reference

The cluster name
numReserHosts

Number of Reserved Hosts
reserHosts

Reserved Host Names
idx

 Job array index; must be 0 in JOB_NEW
jobRmtAttr

Remote job attributes from:
JOB_FORWARD            Remote batch job on submit side
JOB_LEASE              Lease job on submit side
JOB_REMOTE_BATCH       Remote batch job on exec. side
JOB_REMOTE_LEASE       Lease job on exec. side
JOB_LEASE_RESYNC       Lease job resync during restart
JOB_REMOTE_RERUNNABLE  Remote batch job rerunnable on execution 
cluster

struct jobAcceptLog The jobAcceptLog structure contains the following fields: 
jobId

The unique ID of the job
remoteJid

The unique ID of the remote job
cluster

The cluster name
idx

Job array index; must be 0 in JOB_NEW
jobRmtAttr

Remote job attributes from:
JOB_FORWARD            Remote batch job on submit side
JOB_LEASE              Lease job on submit side
JOB_REMOTE_BATCH       Remote batch job on exec. side
JOB_REMOTE_LEASE       Lease job on exec. side
JOB_LEASE_RESYNC       Lease job resync during restart
JOB_REMOTE_RERUNNABLE  Remote batch job rerunnable on execution 
cluster
statusAckLog

The statusAckLog structure contains the following fields: 
jobId

The unique ID of the job



Platform LSF API Reference 203

statusNum

Line number of Status
idx

Job array index; must be 0 in JOB_NEW
struct signalLog The signalLog structure contains the following fields: 

userId 

The user ID of the submitter 
jobId 

The unique ID of the job
signalSymbol

signal symbol from the set: DELETEJOB | KILL | KILLREQUEUE | 
REQUEUE_DONE | REQUEUE_EXIT | REQUEUE_PEND | 
REQUEUE_PSUSP_ADMIN | REQUEUE_PSUSP_USER | SIG_CHKPNT | 
SIG_CHKPNT_COPY
runCount

the number of running times
idx 

Job array index; must be 0 in JOB_NEW
userName

The name of the submitter 
struct jobExecuteLog The jobExecuteLog structure contains the following fields: 

jobId

The unique ID of the job
execUid

User ID under which the job is running 
execHome

Home directory of the user denoted by execUid
execCwd

Current working directory where job is running
jobPGid

The job process group ID
execUsername

User name under which the job is running
jobPid

The job process ID
idx

Job array index; must be 0 in JOB_NEW
additionalInfo



PARAMETERS

204 Platform LSF API Reference

 Placement information of LSF HPC jobs 
SLAscaledRunLimit

Run time limit for the job scaled by the execution host
position

 The position of the job
execRusage

The rusage satisfied at job runtime
duration4PreemptBackfill

The duration for preemptive backfill class in seconds
struct jobMsgLog The jobMsgLog structure contains the following fields: 

userId

The user ID of the submitter
jobId

The unique ID of the job
msgId

message index
type

message type
src

message source
dest

message destination
msg

message
idx

Job array index; must be 0 in JOB_NEW
struct jobMsgAckLog The jobMsgAckLog structure contains the following fields: 

userId

 The user ID of the submitter
jobId

The unique ID of the job
msgId

message index
type

message type
src

message source



Platform LSF API Reference 205

dest

message destination
msg

message
idx

Job array index; must be 0 in JOB_NEW
struct jobRequeueLog The jobRequeueLog structure contains the following fields:

jobId

The unique ID of the job
idx

Job array index; must be 0 in JOB_NEW
struct chkpntLog The chkpntLog structure contains the following fields: 

jobId 

The unique ID of the job
period 

The new checkpointing period
pid 

The process ID of the checkpointing process (a child sbatchd)
ok

0: checkpoint started; 1: checkpoint succeeded
flags 

One of the following: 
LSB_CHKPNT_KILL : Kill process if checkpoint successful
LSB_CHKPNT_FORCE : Force checkpoint even if non-checkpointable conditions 
exist
LSB_CHKPNT_MIG : Checkpoint for the purpose of migration
idx

Job array index; must be 0 in JOB_NEW
struct rsvRes The rsvRes structure contains the following fields: 

resName

Name of the resource (currently: host)
count

Reserved counter (currently: cpu number)
usedAmt

Amount of reserved counter used (currently: not used)
struct

sbdUnreportedStatus
Log

The sbdUnreportedStatusLog structure contains the following fields: 
jobId



PARAMETERS

206 Platform LSF API Reference

The unique ID for the job
jobPid 

The job process ID
jobPGid

The job process group ID
newStatus

New status of the job
reason

Pending or suspending reason code
subreasons

Pending or suspending subreason code
lsfRusage

Resource usage information for the job (see jobFinishLog)
execUid

User ID under which the job is running
exitStatus

Job exit status
execCwd

Current working directory where job is running
execHome

Home directory of the user denoted by execUid
execUsername

User name under which the job is running
msgId

Message index
runRusage

Job's resource usage
sigValue

Signal value
actStatus

Action logging status
seq

Sequence status of the job
idx

 Job array index 
exitInfo

Job termination reason



Platform LSF API Reference 207

struct rsvFinishLog The rsvFinishLog structure contains the following fields: 
rsvReqTime

Time when the reservation is required
options

Same as the options field in the struct addRsvRequest in <lsbatch.h>
uid

The user who created the reservation
rsvId

Reservation ID
name

User the reservation is for
numReses

Number of resources reserved
alloc

Allocation vector
timeWindow

Time window within which the advance reservation is active:
◆ time_t1-time_t2, or
◆ [day1]:hour1:0-[day2]:hour2:0
duration

Duration in seconds. (1) duration = to - from : when the reservation expired
creator

Creator of the reservation
struct cpuProfileLog The cpuProfileLog structure contains the following fields: 

servicePartition

Queue name
slotsRequired

The number of CPUs required
slotsAllocated

The number of CPUs actually allocated
slotsBorrowed

The number of CPUs borrowed
slotsLent

The number of CPUs lent
struct

dataLoggingLog
The dataLoggingLog structure contains the following field: 
loggingTime

The time of last job cpu data logging 



PARAMETERS

208 Platform LSF API Reference

struct
jobRunRusageLog

The jobRunRusageLog structure contains the following fields: 
jobId 

The unique ID of the job
idx 

Job array index; must be 0 in JOB_NEW
struct jRusage The jRusage structure contains the following fields: 

mem 

Total resident memory usage in kilobytes of all currently running processes in given 
process groups
swap 

Total virtual memory usage in kilobytes of all currently running processes in given 
proces groups. 
utime 

Cumulative total user time in seconds
stime 

Cumulative total system time in seconds
npids 

Number of currently active processesin given process groups
pidInfo 

Structure containing information about an active process
struct eventEOSLog The eventEOSLog structure contains the following field: 

eos

Event end of stream
struct slaLog The slaLog structure contains the following fields: 

name

Service class name
consumer

Consumer name associated with the service class
goaltype

Objectives 
state

The service class state (ontine, delayed) 
optimum

Optimum number of job slots (or concurrently running jobs) needed for the 
service class to meet its service-level goals 
counters

Job counters for the service class 
struct taskFinishLog The taskFinishLog structure contains the following fields: 



Platform LSF API Reference 209

taskId

Task ID
taskIdx

Task index
taskName

Name of task
TaskOptions

Bit mask of task options:
TASK_IN_FILE (0x01)-specify input file
TASK_OUT_FILE (0x02)-specify output file
TASK_ERR_FILE (0x04)-specify error file
TASK_PRE_EXEC (0x08)-specify pre-exec command
TASK_POST_EXEC (0x10)-specify post-exec command
TASK_NAME (0x20)-specify task name
taskExitReason

Task Exit Reason
TASK_EXIT_NORMAL = 0- normal exit
TASK_EXIT_INIT = 1-generic task initialization failure
TASK_EXIT_PATH = 2-failed to initialize path
TASK_EXIT_NO_FILE = 3-failed to create task file
TASK_EXIT_PRE_EXEC = 4- task pre-exec failed
TASK_EXIT_NO_PROCESS = 5-fork failed
TASK_EXIT_XDR = 6-xdr communication error
TASK_EXIT_NOMEM = 7- no memory
TASK_EXIT_SYS = 8-system call failed
TASK_EXIT_TSCHILD_EXEC = 9-failed to run sschild
TASK_EXIT_RUNLIMIT = 10-task reaches run limit
TASK_EXIT_IO = 11-I/O failure
TASK_EXIT_RSRC_LIMIT = 12-set task resource limit failed

Struct jobFinishLog See jobFinishLog structure above

RETURN VALUES
character:Pointer Points to an eventRec which contains information on a job event and updates 

*lineNum to point to the next line of the log file. 
character:NULL Function failed.

ERRORS
On failure, lsberrno is set to indicate the error. 



SEE ALSO

210 Platform LSF API Reference

If there are no more records, returns NULL and sets lsberrno to LSBE_EOF. 

SEE ALSO

Related APIs
lsb_hostcontrol() - Opens or closes a host, or restarts or shuts down its slave 
batch daemon
lsb_movejob() - Changes the position of a pending job in a queue
lsb_pendreason() - Explains why a job is pending
lsb_puteventrec() - Puts information of an eventRec structure pointed to by 
logPtr into a log file
lsb_queuecontrol()- Changes the status of a queue
lsb_readjobinfo()- Returns the next job information record in mbatchd
lsb_submit() - Submits or restarts a job in the batch system
lsb_suspreason()- Explains why a job was suspended

Equivalent line command
none

FILES
$LSB_SHAREDIR/cluster/logdir/lsb.acct

$LSB_SHAREDIR/cluster/logdir/lsb.events

$LSB_SHAREDIR/cluster/logdir/lsb.rsv.ids 

$LSB_SHAREDIR/cluster/logdir/lsb.rsv.state



Platform LSF API Reference 211

lsb_geteventrecbyline()
Parse an event line and put the result in an event record structure

SYNOPSIS
#include <lsf/lsf.h>

int lsb_geteventrecbyline(char *line, struct eventRec *logRec)

PARAMETERS
char *line

Buffer containing a line of event text string
struct eventRec *logRec

Pointer to an eventRec structure

PRE-CONDITIONS
The event record structure must have been initialized outside the 
lsb_geteventrecbyline() function.

DESCRIPTION
The lsb_geteventrecbyline() function parses an event line and puts the result 
in an event record structure.
If the line to be parsed is a comment line, lsb_geteventrecbyline() sets errno to 
bad event format and logs an error.

RETURN
◆ 0 on success
◆ -1 on failure and set lserrno



lsb_getjobdepinfo()

212 Platform LSF API Reference

lsb_getjobdepinfo()
Returns the job dependency information.

DESCRIPTION
lsb_getjobdepinfo() returns information about jobs (including job arrays) when 
a job has one or more dependencies on it.

SYNOPSIS
#include <lsf/lsbatch.h>

struct jobDependInfo *lsb_getjobdepinfo(struct jobDepRequest 
*jobdepReq)

struct dependJobs {

    LS_LONG_INT jobId;

    char    *jobname;

    int     level;

    int     jobstatus;

    char    hasDependency;

    char    *condition;

    int     satisfied;

    LS_LONG_INT depjobid;

};

struct queriedJobs {

    LS_LONG_INT jobId;

    char    *dependcondition;

    int     satisfied;

};

struct jobDependInfo {

    int    options;

    int     numQueriedJobs;

    struct quieriedJobs *queriedJobs;

    int     level; 

    int     numJobs;

    struct dependJobs *depJobs; 

};

struct jobDepRequest {

    LS_LONG_INT jobId;

    int     options; 

    int     level; 

};

struct dependJobs
The dependJobs structure contains the following fields:



Platform LSF API Reference 213

jobId Job ID. By default, it is the parent job of the queried job. Modify to child job by 
setting QUERY_DEPEND_CHILD in options of JobDepRequest.

jobname The job name associated with the job ID.
jobstatus Job status of the job.

level The number of degrees of separation from the original job.
hasDependency Whether the job ID has a dependency or not. When you set 

QUERY_DEPEND_RECURSIVELY in options of JobDepRequest, 0 indicates job ID does 
not have a dependency. Otherwise, one or more of the following bits displays:
◆ JOB_HAS_DEPENDENCY: Job has a dependency.
◆ JOB_HAS_INDIVIDUAL_CONDITION: Job has an individual dependency 

condition when it is an element of job array.
condition  When you set "QUERY_DEPEND_DETAIL" into options, it is dependency 

condition of jobId. It is "" when you do not set "QUERY_DEPEND_DETAIL".
satisfied Whether the condition is satisfied.

depJobId Job ID. By default, it is the child job. Modify to parent job by setting 
QUERY_DEPEND_CHILD in options of JobDepRequest

struct queriedJobs
The queriedJobs structure contains the following fields:

jobId Job ID of the queried job or job array.
dependcondition The whole dependency condition of the job.

satisfied Whether the condition is satisfied.

struct jobDependInfo
The jobDependInfo structure contains the following fields: 

options You can set the following bits into this field:
QUERY_DEPEND_RECURSIVELY

Query the dependency information recursively.
QUERY_DEPEND_DETAIL

Query the detailed dependency information.
QUERY_DEPEND_UNSATISFIED

Query the jobs that cause this job pend.
QUERY_DEPEND_CHILD

Query child jobs.
numQueriedJobs The number of jobs you queried. By default, the value is 1. However, when you set 

QUERY_DEPEND_DETAIL in the options and you query a job array where some 
elements have a dependency condition that has changed, the value is the number of 
the changed element + 1.

queriedJobs The jobs you queried. 
level The number of levels returned. 



SYNOPSIS

214 Platform LSF API Reference

numJobs The number of jobs returned.
depJobs  The returned dependency jobs.

structure jobDepRequest
The jobDepRequest structure contains the following fields: 

jobid Job ID of the queried job or job array.
options You can set the following bits into this field:

QUERY_DEPEND_RECURSIVELY

Query the dependency information recursively.
QUERY_DEPEND_DETAIL

Query the detailed dependency information.
QUERY_DEPEND_UNSATISFIED

Query the jobs that cause this job pend.
QUERY_DEPEND_CHILD

Query child jobs.
level The level when you set QUERY_DEPEND_RECURSIVELY. 



Platform LSF API Reference 215

lsb_hostcontrol()
Opens or closes a host, or restarts or shuts down its slave batch daemon.

DESCRIPTION
lsb_hostcontrol() opens or closes a host, or restarts or shuts down its slave batch 
daemon. Any program using this API must be setuid to root if LSF_AUTH is not 
defined in the lsf.conf file. 
To restart the master batch daemon, mbatchd, in order to use updated batch LSF 
configuration files, use lsb_reconfig(). 

SYNOPSIS
#include <lsf/lsbatch.h>

int lsb_hostcontrol (struct hostCtrlReq)

struct hostCtrlReq {

    char  *host; 

    int    opCode; 

    char  *message; 

};

PARAMETERS
*host The host to be controlled. If host is NULL, the local host is assumed. 

opCode One of the following: 
HOST_CLOSE

Closes the host so that no jobs can dispatched to it. 
HOST_OPEN

Opens the host to accept jobs. 
HOST_REBOOT

Restart the sbatchd on the host. The sbatchd will receive a request from the 
mbatchd and re-execute itself. This permits the sbatchd binary to be updated. This 
operation will fail if no sbatchd is running on the specified host. 
HOST_SHUTDOWN

The sbatchd on the host will exit. 
*message Message attached by the administrator.

RETURN VALUES
int:0 The function was successful.

int:-1 Function failed.

ERRORS
If the function fails, lsberrno is set to indicate the error. 



SEE ALSO

216 Platform LSF API Reference

SEE ALSO

Related APIs
lsb_reconfig() 

Equivalent line command
none

Files
lsf.conf



Platform LSF API Reference 217

lsb_hostgrpinfo()
Returns LSF host group membership.

DESCRIPTION
lsb_hostgrpinfo() gets LSF host group membership. 
LSF host group is defined in the configuration file lsb.hosts. 
The storage for the array of groupInfoEnt structures will be reused by the next call. 

SYNOPSIS
#include <lsf/lsbatch.h>

struct groupInfoEnt *lsb_hostgrpinfo (char **groups, 
int *numGroups, int options)

struct groupInfoEnt {

char *group;

char *memberList;

char *adminMemberList;

int  numUserShares;

struct userShares  *userShares;

int  options;

char *pattern;

char *neg_pattern;

int  cu_type;

};

PARAMETERS
**groups An array of group names. 

*numGroups The number of group names. *numGroups will be updated to the actual number of 
groups when this call returns. 

options The bitwise inclusive OR of some of the following flags: 
GRP_RECURSIVE

Expand the group membership recursively. That is, if a member of a group is itself 
a group, give the names of its members recursively, rather than its name, which is 
the default. 
GRP_ALL

Get membership of all groups. 

groupInfoEnt structure fields
group Group name.

memberList ASCII list of member names.



RETURN VALUES

218 Platform LSF API Reference

adminMemberList ASCII list of admin member names.
numUserShares The number of users with shares.

userShares The user shares representation.
options The bitwise inclusive OR of some of the following:

GRP_NO_CONDENSE_OUTPUT

0x01 Group output is in regular (uncondensed) format.
GRP_CONDENSE_OUTPUT

0x02 Group output is in condensed format.
GRP_HAVE_REG_EXP

0x04
GRP_SERVICE_CLASS

0x08 Group is a service class.
GRP_IS_CU

0x10 Group is a compute unit.
pattern Host membership pattern.

neg_pattern Negation membership pattern.
cu_type Compute unit type.

RETURN VALUES
array:groupInfoEnt On success, returns an array of groupInfoEnt structures which hold the group 

name and the list of names of its members. If a member of a group is itself a group 
(i.e., a subgroup), then a ’/’ is appended to the name to indicate this. *numGroups is 
the number of groupInfoEnt structures returned. 

char:NULL Function failed.

ERRORS
On failure, returns NULL and sets lsberrno to indicate the error. If there are invalid 
groups specified, the function returns the groups up to the invalid ones and then 
sets lsberrno to LSBE_BAD_GROUP, which means that the specified 
(*groups)[*numGroups] is not a group known to the LSF system. If the first group 
specified is invalid, the function returns NULL.

SEE ALSO

Related APIs
lsb_usergrpinfo() 

Equivalent line command
none

Files
$LSB_CONFDIR/cluster_name/lsb.hosts



Platform LSF API Reference 219

$LSB_CONFDIR/cluster_name/lsb.users



lsb_hostinfo()

220 Platform LSF API Reference

lsb_hostinfo()
Returns information about job server hosts.

DESCRIPTION
lsb_hostinfo() returns information about job server hosts. 
The hostInfoEnt structure contains the following fields: 

SYNOPSIS
#include <lsf/lsbatch.h>

struct hostInfoEnt *lsb_hostinfo(char **hosts, int *numHosts)

struct hostInfoEnt {

char *host;

int  hStatus;

int *busySched;

int *busyStop;

float cpuFactor;

int nIdx;

float *load;

float *loadSched;

float *loadStop;

char *windows;

int userJobLimit;

int maxJobs;

int numJobs; 

int numRUN; 

int numSSUSP; 

int numUSUSP;

int mig;

int attr;

float *realLoad;

int numRESERVE;

int chkSig;

float cnsmrUsage;

float prvdrUsage;

float cnsmrAvail;

float prvdrAvail;

float maxAvail;

float maxExitRate;

float numExitRate;

char *hCtrlMsg;

};



Platform LSF API Reference 221

PARAMETERS
**hosts

An array of host or cluster names.
*numHosts

The number of host names. 
To get information on all hosts, set *numHosts to 0;  *numHosts will be set to the 
actual number of hostInfoEnt structures when this call returns. 
If *numHosts is 1 and hosts is NULL, information on the local host is returned. 

host

The name of the host. 
hStatus

The status of the host. It is the bitwise inclusive OR of some of the following: 
HOST_STAT_BUSY

The host load is greater than a scheduling threshold. In this status, no new job will 
be scheduled to run on this host. 
HOST_STAT_WIND

The host dispatch window is closed. In this status, no new job will be accepted. 
HOST_STAT_DISABLED

The host has been disabled by the LSF administrator and will not accept jobs. In this 
status, no new job will be scheduled to run on this host. 
HOST_STAT_LOCKED

The host is locked by a exclusive task. In this status, no new job will be scheduled 
to run on this host. 
HOST_STAT_FULL

The host has reached its job limit. In this status, no new job will be scheduled to run 
on this host. 
HOST_STAT_UNREACH

The sbatchd on this host is unreachable. 
HOST_STAT_UNAVAIL

The LIM and sbatchd on this host are unavailable. 
HOST_STAT_UNLICENSED

The host does not have an LSF license. 
HOST_STAT_NO_LIM

The host is running an sbatchd but not a LIM. 
HOST_STAT_EXCLUSIVE

The host is running an sbatchd but not a LIM. 
HOST_STAT_LOCKED_MASTER

LIM locked by master LIM.



PARAMETERS

222 Platform LSF API Reference

HOST_STAT_REMOTE_DISABLED

Close a remote lease host. This flag is used together with HOST_STAT_DISABLED.
HOST_STAT_LEASE_INACTIVE

Close a remote lease host due to the lease is renewing or terminating.
HOST_STAT_DISABLED_RES

Host is disabled by RES. 
HOST_STAT_LOCKED_EGO

The host is disabled by RMS.
HOST_CLOSED_BY_ADMIN

If none of the above hold, hStatus is set to HOST_STAT_OK to indicate that the host 
is ready to accept and run jobs. 

busySched & busyStop

If hStatus is HOST_STAT_BUSY, these indicate the host loadSched or loadStop 
busy reason. If none of the thresholds have been exceeded, the value is 
HOST_BUSY_NOT. Otherwise the value is the bitwise inclusive OR of some of the 
following: 
HOST_BUSY_R15S

The 15 second average CPU run queue length is too high. 
HOST_BUSY_R1M

The 1 minute average CPU run queue length is too high. 
HOST_BUSY_R15M

The 15 minute average CPU run queue length is too high. 
HOST_BUSY_UT

The CPU utilization is too high. 
HOST_BUSY_PG

The paging rate is too high. 
HOST_BUSY_IO

The I/O rate is too high. 
HOST_BUSY_LS

There are too many login sessions. 
HOST_BUSY_IT

The host has not been idle long enough. 
HOST_BUSY_TMP

There is not enough free space in the file system containing /tmp. 
HOST_BUSY_SWP

There is not enough free swap space. 
HOST_BUSY_MEM

There is not enough free memory. 



Platform LSF API Reference 223

The external load indices are designated by the constants from 
B 1 << HOST_BUSY_MEM + 1 to 1 << nIdx - 1. The names of these indices can 
be obtained from ls_info(). 

cpuFactor

The host CPU factor used to scale CPU load values to account for differences in 
CPU speeds. The faster the CPU, the larger the CPU factor. 

nIdx

The number of load indices in the load, loadSched and loadStop arrays. 
load

Load information array on a host. This array gives the load information that is used 
for scheduling batch jobs. This load information is the effective load information 
from ls_loadofhosts() (see ls_loadofhosts()) plus the load reserved for 
running jobs (see lsb.queues for details on resource reservation). The load array 
is indexed the same as loadSched and loadStop (see loadSched and loadStop 
below). 

loadSched & loadStop The loadSched and loadStop arrays control batch job scheduling, suspension, and 
resumption. 
The values in the loadSched array specify the scheduling thresholds for the 
corresponding load indices. Only if the current values of all specified load indices 
of this host are within (below or above, depending on the meaning of the load 
index) the corresponding thresholds of this host, will jobs be scheduled to run on 
this host. 
Similarly, the values in the loadStop array specify the stop thresholds for the 
corresponding load indices. If any of the load index values of the host goes beyond 
its stop threshold, the job will be suspended. 
The loadSched and loadStop arrays are indexed by the following constants: 
R15S

15-second average CPU run queue length. 
R1M

1-minute average CPU run queue length. 
R15M

15-minute average CPU run queue length. 
UT

CPU utilization over the last minute. 
PG

Average memory paging rate, in pages per second. 
IO

Average disk I/O rate, in KB per second. 
LS

Number of current login users. 
IT



PARAMETERS

224 Platform LSF API Reference

Idle time of the host in minutes. 
TMP

The amount of free disk space in the file system containing /tmp, in MB. 
SWP

The amount of swap space available, in MB. 
MEM

The amount of available user memory on this host, in MB. 
windows One or more time windows in a week during which batch jobs may be dispatched 

to run on this host . The default is no restriction, or always open (i.e., 24 hours a day, 
seven days a week). These windows are similar to the dispatch windows of batch job 
queues. See lsb_queueinfo(). 

userJobLimit The maximum number of job slots any user is allowed to use on this host. 
maxJobs The maximum number of job slots that the host can process concurrently. 
numJobs The number of job slots running or suspended on the host. 
numRUN The number of job slots running on the host. 

numSSUSP The number of job slots suspended by the batch daemon on the host. 
numUSUSP The number of job slots suspended by the job submitter or the LSF system 

administrator. 
mig The migration threshold in minutes after which a suspended job will be considered 

for migration. 
attr The host attributes; the bitwise inclusive OR of some of the following: 

H_ATTR_CHKPNTABLE

This host can checkpoint jobs. 
H_ATTR_CHKPNT_COPY

This host provides kernel support for checkpoint copy. 
realLoad The effective load of the host. 

numRESERVE The number of job slots reserved by LSF for the PEND jobs. 
chkSig If attr has an H_ATTR_CHKPNT_COPY attribute, chkSig is set to the signal which 

triggers checkpoint and copy operation on the host. Otherwise, chkSig is set to the 
signal which triggers checkpoint operation on the host.

cnsmrUsage The number of resources used by the consumer.
prvdrUsage The number of resources used by the provider.
cnsmrAvail The number of resources available for the consumer to use.
prvdrAvail The number of resources available for the provider to use.

maxAvail The maximum number resources available in total.
maxExitRate The job exit rate threshold on the host.

*hCtrlMsg AdminAction: host control message.



Platform LSF API Reference 225

RETURN VALUES
array:hostInfoEnt On success, return an array of hostInfoEnt structures which hold the host 

information and sets *numHosts to the number of hostInfoEnt structures. 
char:NULL Function failed.

ERRORS
If the function fails, lsberrno is set to indicate the error. If lsberrno is 
LSBE_BAD_HOST, (*hosts)[*numHosts] is not a host known to the batch system. 
Otherwise, if *numHosts is less than its original value, *numHosts is the actual 
number of hosts found. 

SEE ALSO

Related APIs
lsb_hostinfo_ex()

ls_info() - Returns a pointer to an lsInfo structure
ls_loadofhosts() 
lsb_queueinfo() - Get information about job queues
lsb_userinfo() - Get information about users and user groups

Equivalent line command
bhosts

Files
$LSB_CONFDIR/cluster_name/lsb.hosts



lsb_hostinfo_cond()

226 Platform LSF API Reference

lsb_hostinfo_cond()
Returns condensed information about job server hosts.

DESCRIPTION
lsb_hostinfo_cond() returns condensed information about job server hosts. 
While lsb_hostinfo() returns specific information about individual hosts, 
lsb_hostinfo_cond() returns the number of jobs in each state within the entire 
host group. The condHostInfoEnt structure contains counters that indicate how 
many hosts are in the ok, busy, closed, full, unreach, and unavail states and an 
array of hostInfoEnt structures that indicate the status of each host in the host 
group.

SYNOPSIS
#include <lsf/lsbatch.h>

struct condHostInfoEnt * lsb_hostinfo_cond
(char **hosts, int *numHosts,
char *resReq, int options)

struct condHostInfoEnt {
char *name;
int howManyOk;
int howManyBusy;
int howManyClosed;
int howManyFull;
int howManyUnreach;
int howManyUnavail;
struct hostInfoEnt *hostInfo;

};

PARAMETERS
**hosts An array of host names belonging to the host group.

*numHosts The number of host names in the host group.
To get information on all hosts in the host group, set *numHosts to 0; *numHosts 
will be set to the actual number of hostInfoEnt structures in the host group when 
this call returns.

*resReq Any resource requirements called with the function.
options Any options called with the function.

RETURN VALUES
*condHostInfoEnt The condHostInfoEnt structure contains condensed information about the status 

of job server hosts in the host group. If there is no condensed host group matching 
the specified host, *name is set to NULL and *hostInfo contains specific host 
information to be displayed instead of the condensed host group information.



Platform LSF API Reference 227

ERRORS
If the function fails, lsberrno is set to indicate the error. 

SEE ALSO

Related APIs:

lsb_hostinfo() - Returns information about job server hosts



lsb_hostinfo_ex()

228 Platform LSF API Reference

lsb_hostinfo_ex()
Returns informaton about job server hosts that satisfy specified resource 
requirements.

DESCRIPTION
lsb_hostinfo_ex() returns information about job server hosts that satisfy the 
specified resource requirements. 

SYNOPSIS
#include <lsf/lsbatch.h>

struct hostInfoEnt *lsb_hostinfo_ex(char **hosts, 

int *numHosts, char *resReq, int options)

struct hostInfoEnt {

char *host;

int hStatus;

int *busySched;

int *busyStop;

float cpuFactor;

int nIdx;

float *load;

float *loadSched;

float *loadStop;

char *windows;

int userJobLimit;

int maxJobs;

int numJobs; 

int numRUN; 

int numSSUSP; 

int numUSUSP;

int mig;

int attr;

float *realLoad;

int numRESERVE;

int chkSig;

float cnsmrUsage;

float prvdrUsage;

float cnsmrAvail;

float prvdrAvail;

float maxAvail;

float maxExitRate;

float numExitRate;

char *hCtrlMsg;



Platform LSF API Reference 229

};

PARAMETERS
**hosts An array of host or cluster names.

*numHosts The number of host names. 
To get information on all hosts, set *numHosts to 0;  *numHosts will be set to the 
actual number of hostInfoEnt structures when this call returns. 
If *numHosts is 1 and hosts is NULL, information on the local host is returned. 

*resReq Resource requirements. 
If this option is specified, then only host information for those hosts that satisfy the 
resource requirements is returned. Returned hosts are sorted according to the load 
on the resource() given in resReq, or by default according to CPU and paging 
load. 

options Options is reserved for the future use.  
The hostInfoEnt structure contains the following fields: 

host The name of the host. 
hStatus The status of the host. It is the bitwise inclusive OR of some of the following: 

HOST_STAT_BUSY

The host load is greater than a scheduling threshold. In this status, no new job will 
be scheduled to run on this host. 
HOST_STAT_WIND

The host dispatch window is closed. In this status, no new job will be accepted. 
HOST_STAT_DISABLED

The host has been disabled by the LSF administrator and will not accept jobs. In this 
status, no new job will be scheduled to run on this host. 
HOST_STAT_LOCKED

The host is locked by a exclusive task. In this status, no new job will be scheduled 
to run on this host. 
HOST_STAT_FULL

The host has reached its job limit. In this status, no new job will be scheduled to run 
on this host. 
HOST_STAT_UNREACH

The sbatchd on this host is unreachable. 
HOST_STAT_UNAVAIL

The LIM and sbatchd on this host are unavailable. 
HOST_STAT_UNLICENSED

The host does not have an LSF license. 
HOST_STAT_NO_LIM

The host is running an sbatchd but not a LIM. 



PARAMETERS

230 Platform LSF API Reference

HOST_STAT_EXCLUSIVE

The host is running an sbatchd but not a LIM. 
HOST_STAT_LOCKED_MASTER

LIM locked by master LIM.
HOST_STAT_REMOTE_DISABLED

Close a remote lease host. This flag is used together with HOST_STAT_DISABLED.
HOST_STAT_LEASE_INACTIVE

Close a remote lease host due to the lease is renewing or terminating.
HOST_STAT_DISABLED_RES

Host is disabled by RES. 
HOST_STAT_LOCKED_EGO

The host is disabled by RMS.
HOST_CLOSED_BY_ADMIN

If none of the above hold, hStatus is set to HOST_STAT_OK to indicate that the host 
is ready to accept and run jobs. 

busySched &
busyStop

If hStatus is HOST_STAT_BUSY, these indicate the host loadSched or loadStop 
busy reason. If none of the thresholds have been exceeded, the value is 
HOST_BUSY_NOT. Otherwise the value is the bitwise inclusive OR of some of the 
following: 
HOST_BUSY_R15S

The 15 second average CPU run queue length is too high. 
HOST_BUSY_R1M

The 1 minute average CPU run queue length is too high. 
HOST_BUSY_R15M

The 15 minute average CPU run queue length is too high. 
HOST_BUSY_UT

The CPU utilization is too high. 
HOST_BUSY_PG

The paging rate is too high. 
HOST_BUSY_IO

The I/O rate is too high. 
HOST_BUSY_LS

There are too many login sessions. 
HOST_BUSY_IT

The host has not been idle long enough. 
HOST_BUSY_TMP

There is not enough free space in the file system containing /tmp. 
HOST_BUSY_SWP



Platform LSF API Reference 231

There is not enough free swap space. 
HOST_BUSY_MEM

There is not enough free memory. 
The external load indices are designated by the constants from 
B 1 << HOST_BUSY_MEM + 1 to 1 << nIdx - 1. The names of these indices can 
be obtained from ls_info(). 

cpuFactor The host CPU factor used to scale CPU load values to account for differences in 
CPU speeds. The faster the CPU, the larger the CPU factor. 

nIdx The number of load indices in the load, loadSched and loadStop arrays. 
load Load information array on a host. This array gives the load information that is used 

for scheduling batch jobs. This load information is the effective load information 
from ls_loadofhosts() (see ls_loadofhosts()) plus the load reserved for 
running jobs (see lsb.queues for details on resource reservation). The load array 
is indexed the same as loadSched and loadStop (see loadSched and loadStop 
below). 

loadSched & loadStop The loadSched and loadStop arrays control batch job scheduling, suspension, and 
resumption. 
The values in the loadSched array specify the scheduling thresholds for the 
corresponding load indices. Only if the current values of all specified load indices 
of this host are within (below or above, depending on the meaning of the load 
index) the corresponding thresholds of this host, will jobs be scheduled to run on 
this host. 
Similarly, the values in the loadStop array specify the stop thresholds for the 
corresponding load indices. If any of the load index values of the host goes beyond 
its stop threshold, the job will be suspended. 
The loadSched and loadStop arrays are indexed by the following constants: 
R15S

15-second average CPU run queue length. 
R1M

1-minute average CPU run queue length. 
R15M

15-minute average CPU run queue length. 
UT

CPU utilization over the last minute. 
PG

Average memory paging rate, in pages per second. 
IO

Average disk I/O rate, in KB per second. 
LS

Number of current login users. 
IT



PARAMETERS

232 Platform LSF API Reference

Idle time of the host in minutes. 
TMP

The amount of free disk space in the file system containing /tmp, in MB. 
SWP

The amount of swap space available, in MB. 
MEM

The amount of available user memory on this host, in MB. 
windows One or more time windows in a week during which batch jobs may be dispatched 

to run on this host . The default is no restriction, or always open (i.e., 24 hours a day, 
seven days a week). These windows are similar to the dispatch windows of batch job 
queues. See lsb_queueinfo(). 

userJobLimit The maximum number of job slots any user is allowed to use on this host. 
maxJobs The maximum number of job slots that the host can process concurrently. 
numJobs The number of job slots running or suspended on the host. 
numRUN The number of job slots running on the host. 

numSSUSP The number of job slots suspended by the batch daemon on the host. 
numUSUSP The number of job slots suspended by the job submitter or the LSF system 

administrator. 
mig The migration threshold in minutes after which a suspended job will be considered 

for migration. 
attr The host attributes; the bitwise inclusive OR of some of the following: 

H_ATTR_CHKPNTABLE

This host can checkpoint jobs. 
H_ATTR_CHKPNT_COPY

This host provides kernel support for checkpoint copy. 
realLoad The effective load of the host. 

numRESERVE The number of job slots reserved by LSF for the PEND jobs. 
chkSig If attr has an H_ATTR_CHKPNT_COPY attribute, chkSig is set to the signal which 

triggers checkpoint and copy operation on the host. Otherwise, chkSig is set to the 
signal which triggers checkpoint operation on the host.
The storage for the array of hostInfoEnt structures will be reused by the next call. 

cnsmrUsage The number of resources used by the consumer.
prvdrUsage The number of resources used by the provider.
cnsmrAvail The number of resources available for the consumer to use.
prvdrAvail The number of resources available for the provider to use.

maxAvail The maximum number resources available in total.
maxExitRate The job exit rate threshold on the host.

*hCtrlMsg AdminAction: host control message.



Platform LSF API Reference 233

RETURN VALUES
array:hostInfoEnt On success, return an array of hostInfoEnt structures which hold the host 

information and sets *numHosts to the number of hostInfoEnt structures. 
char:NULL Function failed.

ERRORS
If the function fails, lsberrno is set to indicate the error. If lsberrno is 
LSBE_BAD_HOST, (*hosts)[*numHosts] is not a host known to the batch system. 
Otherwise, if *numHosts is less than its original value, *numHosts is the actual 
number of hosts found. 

SEE ALSO

Related APIs
ls_info() - Returns a pointer to an lsInfo structure
ls_loadofhosts() 
lsb_hostinfo() - Get information about job server hosts
lsb_queueinfo() - Get information about job queues
lsb_userinfo() - Get information about users and user groups

Equivalent line command
none

Files
$LSB_CONFDIR/cluster_name/lsb.hosts 



lsb_hostpartinfo()

234 Platform LSF API Reference

lsb_hostpartinfo()
Returns informaton about host partitions.

DESCRIPTION
lsb_hostpartinfo() gets information about host partitions. 
The hostPartInfoEnt structure has the following fields: 

hostPart The name of the host partition. 
hostList A blank-separated list of names of hosts and host groups which are members of the 

host partition. The name of a host group has a ’/’ appended. (See 
lsb_hostgrpinfo().) 

numUsers The number of users in this host partition. i.e., the number of hostPartUserInfo 
structures. 

users An array of hostPartUserInfo structures which hold information on users in this 
host partition. 
The hostPartUserInfo structure has the following fields: 

user The user name or user group name. (See lsb_userinfo() and 
lsb_usergrpinfo().) 

shares The number of shares assigned to the user or user group, as configured in the file 
lsb.hosts. (See lsb.hosts.) 

numStartJobs The number of job slots belonging to the user or user group that are running or 
suspended in the host partition. 

numReserveJobs The number of job slots that are reserved for the PEND jobs belonging to the user or 
user group in the host partition. 

histCpuTime The normalized CPU time accumulated in the host partition during the recent 
period by finished jobs belonging to the user or user group. The period may be 
configured in the file lsb.params (see lsb.params), with a default value of five (5) 
hours. 

priority The priority of the user or user group to use the host partition. Bigger values 
represent higher priorities. Jobs belonging to the user or user group with the highest 
priority are considered first for dispatch when resources in the host partition are 
being contended for. In general, a user or user group with more shares, fewer 
numStartJobs and less histCpuTime has higher priority. 
The storage for the array of hostPartInfoEnt structures will be reused by the next 
call. 

runTime The time unfinished jobs spend in the RUN state.
shareAdjustment The fairshare adjustment value from the fairshare plugin 

(libfairshareadjust.*). The adjustment is enabled and weighted by setting the 
value of FAIRSHARE_ADJUSTMENT_FACTOR in lsb.params.



Platform LSF API Reference 235

SYNOPSIS
#include <lsf/lsbatch.h>
struct hostPartInfoEnt *lsb_hostpartinfo (char **hostParts, 

int *numHostParts)

struct hostPartInfoEnt {
char hostPart[MAX_LSB_NAME_LEN];
char *hostList;
int numUsers;
struct hostPartUserInfo *users;

};

struct hostPartUserInfo {
char user[MAX_LSB_NAME_LEN];
int shares;
float priority;
int numStartJobs; 
float histCpuTime;
int numReserveJobs; 
int runTime;
float shareAdjustment;

};

PARAMETERS
**hostParts An array of host partition names.

*numHostHosts The number of host partition names. 
To get information on all host partitions, set hostParts to NULL; *numHostParts 
will be the actual number of host partitions when this call returns.

RETURN VALUES
array:hostPartInfoEnt On success, returns an array of hostPartInfoEnt structures which hold 

information on the host partitions, and sets *numHostParts to the number of 
hostPartInfoEnt structures. 

char:NULL Function failed.

ERRORS
If the function fails, lsberrno is set to indicate the error. If lsberrno is 
LSBE_BAD_HPART, (*hostParts)[*numHostParts] is not a host partition known 
to the LSF system. Otherwise, if *numHostParts is less than its original value, 
*numHostParts is the actual number of host partitions found. 

SEE ALSO

Related APIs
lsb_usergrpinfo() 
lsb_hostgrpinfo() 



SEE ALSO

236 Platform LSF API Reference

Equivalent line command
none

Files
$LSB_CONFDIR/cluster_name/lsb.hosts 



Platform LSF API Reference 237

lsb_init()
Initializes the LSF batch library (LSBLIB), and gets the configuration environment.

DESCRIPTION
You must use lsb_init() before any other LSBLIB library routine in your application.

SYNOPSIS
#include <lsf/lsbatch.h>

int lsb_init(char *appname)

PARAMETERS
*appName The name of your application.

If appName holds the name of your application, a logfile with the same name as 
your application receives LSBLIB transaction information.
If appName is NULL, the logfile $LSF_LOGDIR/bcmd receives LSBLIB transaction 
information.

RETURN VALUES
integer:0 The function was successful.

integer:-1 The function failed.

ERRORS
If the function fails, lsberrno is set to indicate the error. 

SEE ALSO

Related APIs:
none

Equivalent line command
none

Files:
none



lsb_jsdl2submit()

238 Platform LSF API Reference

lsb_jsdl2submit()
Accepts a JSDL job submission file as input and converts the file for use with LSF.

DESCRIPTION
lsb_jsdl2submit() converts parameters specified in the JSDL file and merges 
them with the other command line and job script options. The merged submit 
request is then sent to mbatchd for processing.
Code must link to LSF_LIBDIR/libbat.jsdl.lib

SYNOPSIS
extern int lsb_jsdl2submit(struct submit* req, char *template);

PARAMETERS
submit* req Reads the specified JSDL options and maps them to the submitReq structure. Code 

must specify either jsdl or jsdl_strict.
*template The default template, which contains all of the bsub submission options.

RETURN VALUES
0 Function completed successfully.

-1 Function failed.

ERRORS
On failure, sets lsberrno to indicate the error. 

SEE ALSO

Related API
lsb_submit() - Submits or restarts a job in the batch system
lsb_modify() - Modifies a submitted job’s parameters

Equivalent line command
bsub with options

Files
LSF_LIBDIR/jsdl.xsd

LSF_LIBDIR/jsdl-posix.xsd

LSF_LIBDIR/jsdl-lsf.xsd



Platform LSF API Reference 239

lsb_killbulkjobs()
Kills bulk jobs as soon as possible.

DESCRIPTION
Use lsb_killbulkjobs() to kill bulk jobs on a local host immediately, or to kill 
other jobs as soon as possible. If mbatchd rejects the request, it issues NULL as the 
reservation ID.

SYNOPSIS
#include <lsf/lsbatch.h>
int lsb_killbulkjobs(struct signalBulkJobs *s)

struct signalBulkJobs {
int signal;
int njobs;
LS_LONG_INT *jobs;
int flags;

};

PARAMETERS
*signalBulkJobs The signal to a group of jobs.

RETURN VALUES
integer:0 The bulk jobs were successfully killed.

integer:-1 The bulk jobs were not killed.

ERRORS
On failure, lsberrno is set to indicate the error. 

SEE ALSO

Related APIs:
none

Equivalent line command
bkill -b

Files:
none



lsb_launch()

240 Platform LSF API Reference

lsb_launch()
Launch commands on remote hosts in parallel.

DESCRIPTION
lsb_launch() is a synchronous API call to allow source level integration with 
vendor MPI implementations. This API will launch the specified command (argv) 
on the remote nodes in parallel. 
LSF must be installed before integrating your MPI implementation with 
lsb_launch(). The lsb_launch() API requires the full set of liblsf.so, 
libbat.so (or liblsf.a, libbat.a).

SYNOPSIS
#include <lsf/lsbatch.h>

int

lsb_launch (char** where, char** argv, int userOptions, char** envp)

PARAMETERS
where [IN] A NULL-terminated list of hosts. A task will be launched for each slot.

If this parameter is NULL then the environment variable LSB_MCPU_HOSTS will 
be used. 

argv [IN] The command to be executed
userOptions [IN] Options to modify the behavior of lsb_launch()

Multiple option values can be specified. For example option values can be separated 
by OR (|):

lsb_launch(where, argv, LSF_DJOB_REPLACE_ENV | LSF_DJOB_DISABLE_STDIN, envp);

Valid options are:
◆ LSF_DJOB_DISABLE_STDIN—Disable standard input and redirect input 

from the special device /dev/null. This is equivalent to blaunch -n.
◆ LSF_DJOB_REPLACE_ENV—Replace existing enviornment variable values 

with envp.
◆ LSF_DJOB_NOWAIT—Non-blocking mode; the parallel job does not wait 

once all tasks start. This forces lsb_launch() not to wait for its tasks to finish.
◆ LSF_DJOB_STDERR_WITH_HOSTNAME—Display standard error 

messages with a corresponding host name where the message was generated. 
Cannot be specified with LSF_DJOB_NOWAIT.

◆ LSF_DJOB_STDOUT_WITH_HOSTNAME—Display standard output 
messages with a corresponding host name where the message was generated. 
Cannot be specified with LSF_DJOB_NOWAIT.

◆ LSF_DJOB_USE_LOGIN_SHELL—Launch commands through user's login 
shell. 



Platform LSF API Reference 241

◆ LSF_DJOB_USE_BOURNE_SHELL—Launch commands through Bourne 
shell (/bin/sh). If LSF_DJOB_USE_LOGIN_SHELL is also specified, 
LSF_DJOB_USE_LOGIN_SHELL is used.

◆ LSF_DJOB_STDERR—Separates stderr from stdout.
envp [IN] A NULL-terminated list of environment variables specifying the environment 

to set for each task.
If envp is NULL, lsb_launch() uses the same environment used to start the first 
task on the first execution host. If non-NULL, envp values are appended to the 
environment used for the first task.
If the LSF_DJOB_REPLACE_ENV option is specified, envp entries will overwrite 
all existing environment values except those needed by LSF.

RETURN VALUES
> 0 Function was successful (the number of tasks launched).
< 0 Function failed.

ERRORS
If the function fails, lsberrno is set to indicate the error. 

SEE ALSO

Related API
none

Equivalent line command
blaunch

Files
none



lsb_limitInfo()

242 Platform LSF API Reference

lsb_limitInfo()
gets resource allocation limit configuration and dynamic usage information

DESCRIPTION
Displays current usage of resource allocation limits configured in Limit sections in 
lsb.resources:
◆ Configured limit policy name
◆ Users
◆ Queues
◆ Hosts
◆ Project names

SYNOPSIS
#include <lsf/lsbatch.h>

int lsb_limitInfo(limitInfoReq *req, limitInfoEnt **entRef, int * size, struct lsInfo* 
lsInfo)

typedef struct _limitInfoReq {

char * name; 

int consumerC; 

limitConsumer  *consumerV;

} limitInfoReq;

typedef struct _limitConsumer {

consumerType type; char * name;

} limitConsumer

typedef struct _limitInfoEnt {

char * name; limitItem confInfo; int usageC;

limitItem   usageInfo;

} limitInfoEnt;

typedef struct _limitItem {

int consumerC; limitConsumer *consumerV; int resourceC; limitResource  *resourceV;

} limitItem;

typedef struct _ limitResource {

char * rsrcName; 

int type;

float val;

} limitResource;

PARAMETERS
req input, the user request for limit information

entRef output, the limit information array
size output, the size of the limit information array



Platform LSF API Reference 243

_limitInfoReq The structure limitInfoReq contains the following fields:
name

Limit policy name given by the user.
jobid

Job ID of jobs with resource usage.
consumerC

consumerV

Consumer name, queue/host/user/project.
_limitConsumer The structure limitConsumer contains the following fields:

type

Consumer type:
◆ Queues per-queue
◆ Users and per-user
◆ Hosts and per-host
◆ Projects and per-project
name

Consumer name
_limitInfoEnt The structure limitInfoEnt contains the following fields:

name

limit policy name given by the user
confInfo

limit configuration
usageC

size of limit dynamic usage info array
usageInfo

limit dynamic usage info array
_limitItem The structure limitItem contains the following fields:

consumerC

consumerV

queue/host/user/project
resourceC

resourceV

_limitResource The structure limitResource contains the following fields:
rsrcName

val



RETURN VALUES

244 Platform LSF API Reference

RETURN VALUES
LSBE_NO_ERROR Suceess; others, errors happened.

ERRORS
On failure, lsberrno is set to indicate the error. 

SEE ALSO

Related API
lsb_freeLimitInfoEnt()

Equivalent command
blimits 

Files

lsb.queues, lsb.users, lsb.hosts, lsb.resources



Platform LSF API Reference 245

lsb_mig()
Migrates a job from one host to another.

DESCRIPTION
lsb_mig() migrates a job from one host to another. 
The submig structure contains the following fields: 

jobId The job ID of the job to be migrated. 
options See lsb_submit(). 

numAskedHosts The number of hosts supplied as candidates for migration. 
askedHosts An array of pointers to the names of candidate hosts for migration. 

Any program using this API must be setuid to root if LSF_AUTH is not defined in the 
lsf.conf file. 

SYNOPSIS
#include <lsf/lsbatch.h>
int lsb_mig(struct submig *mig, int *badHostIdx)

struct submig {
LS_LONG_INT jobId;
int options;
int numAskedHosts;
char **askedHosts;

};

PARAMETERS
*mig The job to be migrated. 

*badHostIdx If the call fails, (**askedHosts)[*badHostIdx] is not a host known to the LSF 
system. 

RETURN VALUES
integer:0 The function was successful.

integer:-1 Function failed.

ERRORS
If the function fails, lsberrno is set to indicate the error and badHostIdx indicates 
which askedHost is not acceptable.

SEE ALSO

Related APIs
lsb_submit() - Submits or restarts a job in the batch system



SEE ALSO

246 Platform LSF API Reference

Equivalent line command
none

Files
${LSF_ENVDIR}/lsf.conf



Platform LSF API Reference 247

lsb_modify()
Modifies a submitted job’s parameters.

DESCRIPTION
lsb_modify() allows for the modification of a submitted job’s parameters. 

SYNOPSIS
#include <lsf/lsbatch.h>

LS_LONG_INT lsb_modify (struct submit *jobSubReq,

 struct submitReply *jobSubReply, int jobId)

struct submit {

    int     options;

    int     options2;

    char    *jobName;

    char    *queue;

    int     numAskedHosts;

    char    **askedHosts;

    char    *resReq;

    int     rLimits[LSF_RLIM_NLIMITS];

    char    *hostSpec;

    int     numProcessors;

    char    *dependCond;

    char    *timeEvent;

    time_t  beginTime;

    time_t  termTime;

    int     sigValue;

    char    *inFile;

    char    *outFile;

    char    *errFile;

    char    *command;

    char    *newCommand;

    time_t  chkpntPeriod;

    char    *chkpntDir;

    int     nxf;

    struct xFile *xf;

    char    *preExecCmd;

    char    *mailUser;

    int     delOptions;

    int     delOptions2;

    char    *projectName;

    int     maxNumProcessors;



PARAMETERS

248 Platform LSF API Reference

    char    *loginShell;

    char    *userGroup;

    char    *exceptList;

    int     userPriority;

    char    *rsvId;

    char    *jobGroup;

    char    *sla;

    char    *extsched;

    int     warningTimePeriod;

    char    *warningAction;

    char    *licenseProject;

    int     options3;

    int     delOptions3;

    char    *app;

    int     jsdlFlag;

    char    *jsdlDoc;

    void    *correlator;

    char    *apsString;

    char    *postExecCmd;

    char    *cwd;

    int     runtimeEstimation;

    char    *requeueEValues;

    int     initChkpntPeriod;

    int     migThreshold;

    char    *notifyCmd;

};

struct submitReply {

char *queue;

LS_LONG_INT badJobId;

char *badJobName;

int badReqIndx;

};

PARAMETERS
*jobSubReq Describes the requirements for job modification to the batch system. A job that 

does not meet these requirements is not submitted to the batch system and an error 
is returned.
See lsb_submit() on page 377 for descriptions of the submit structure fields. 

*jobSubReply Describes the results of the job modification to the batch system.
See lsb_submit() on page 377 for descriptions of the submitReply structure fields.

*jobId The job to be modified. If an element of a job array is to be modified, use the array 
form jobID[i] where jobID is the job array name, and i is the index value.



Platform LSF API Reference 249

RETURN VALUES
character:job ID The function was successful, and sets the queue field of jobSubReply to the name of 

the queue that the job was submitted to.
integer:-1 Function failed.

ERRORS
If the function fails, lsberrno is set to indicate the error. 

SEE ALSO

Related API
lsb_submit() - Submits or restarts a job in the batch system
ls_info() - Returns a pointer to an lsInfo structure
ls_task() 
lsb_queueinfo() - Returns information about batch queues

Equivalent line command
bmod

Files
${LSF_ENVDIR-/etc}/lsf.conf



250 Platform LSF API Reference

lsb_modreservation()
Modifies an advance reservation.

DESCRIPTION
Use lsb_modreservation() to modify an advance reservation. mbatchd receives 
the modification request and modifies the reservation with the specified 
reservation ID.

SYNOPSIS
#include <lsf/lsbatch

int lsb_modreservation(struct modRsvRequest *request)

struct modRsvRequest {

    char    *rsvId;

    struct addRsvRequest   fieldsFromAddReq;

    char    *disabledDuration;

};

struct addRsvRequest {

   int     options;               

    char    *name; 

    struct {

int     minNumProcs; 

int     maxNumProcs;

    } procRange;

    int     numAskedHosts;

    char    **askedHosts; 

    char    *resReq; 

    char    *timeWindow;

    rsvExecCmd_t  *execCmd; 

    char   *desc; 

    char    *rsvName; 

};

PARAMETERS
*rsvId Reservation ID of the reservation that you wish to modify.

addRsvRequest Fields in the reservation request addRsvRequest structure that you wish to modify.
*disabledDuration Disabled time duration.

RETURN VALUES
integer:0 The reservation was modified successfully.

integer:-1 The reservation modification failed.



Platform LSF API Reference 251

ERRORS
On failure, lsberrno is set to indicate the error. 

SEE ALSO

Related APIs
lsb_addreservation() - Makes a reservation
lsb_removereservation() - Removes a reservation
lsb_reservationinfo() - Retrieves reservation information

Equivalent line command
brsvmod

Files:
none



lsb_movejob()

252 Platform LSF API Reference

lsb_movejob()
Changes the position of a pending job in a queue.

DESCRIPTION
Use lsb_movejob() to move a pending job to a new position that you specify in a 
queue. Position the job in a queue by first specifying the job ID. Next, count, 
beginning at 1, from either the top or the bottom of the queue, to the position you 
want to place the job. 
To position a job at the top of a queue, choose the top of a queue parameter and a 
postion of 1. 
To position a job at the bottom of a queue, choose the bottom of the queue 
parameter and a position of 1.
By default, LSF dispatches jobs in a queue in order of their arrival (e.g., 
first-come-first-served), subject to the availability of suitable server hosts. 

SYNOPSIS
#include <lsf/lsbatch.h>

int lsb_movejob (LS_LONG_INT jobId, int *position, int opCode)

PARAMETERS
jobId The job ID that the LSF system assigns to the job. If a job in a job array is to be 

moved, use the array form jobID[ i ] where jobID is the job array name, and i is the 
index value.

position The new position of the job in a queue. position must be a value of 1 or more.
opCode The top or bottom position of a queue.

TO_TOP

The top position of a queue. 
TO_BOTTOM

The bottom position of a queue. 
If an opCode is not specified for the top or bottom position, the function fails.

RETURN VALUES
integer:0 The function is successful. 

integer:-1 The function failed.

ERRORS
If the function fails, lsberrno is set to indicate the error. 



Platform LSF API Reference 253

SEE ALSO

Related APIs:
lsb_pendreason() - Explains why a job is pending

Equivalent line command
btop

bbot

bjobs -q

Files:
${LSF_ENVDIR-/etc}/lsf.conf



lsb_openjobinfo()

254 Platform LSF API Reference

lsb_openjobinfo()
Returns the number of jobs in the master batch daemon.

DESCRIPTION
lsb_openjobinfo() accesses information about pending, running and suspended 
jobs in the master batch daemon. Use lsb_openjobinfo() to create a connection 
to the master batch daemon. Next, use lsb_readjobinfo() to read job records. 
Close the connection using lsb_closejobinfo().

SYNOPSIS
#include <lsf/lsbatch.h>

int lsb_openjobinfo(LS_LONG_INT jobId, char *jobName, 
char *userName, char *queueName, char *hostName, 
int options)

PARAMETERS
lsb_openjobinfo() opens a connection with mbatchd and returns the total 
number of records in the connection on success.

jobId Passes information about jobs with the given job ID. If jobId is 0, 
lsb_openjobinfo() looks to another parameter to return information about jobs. 
If a member of a job array is to be passed, use the array form jobID[ i ] where jobID 
is the job array name, and i is the index value.

jobName Passes information about jobs with the given job name. If jobName is NULL, 
lsb_openjobinfo() looks to another parameter to return information about jobs.

userName Passes information about jobs submitted by the named user or user group, or by all 
users if user is all. If user is NULL, lsb_openjobinfo() assumes the user is 
invoking this call. 

queueName Passes information about jobs belonging to the named queue. If queue is NULL, 
jobs in all the queues of the batch system are counted. 

hostName Passes information about jobs on the named host, host group or cluster name. If 
host is NULL, jobs on all hosts of the batch system will be considered.

options <lsf/lsbatch.h> defines the following flags constructed from bits. Use the bitwise 
OR to set more than one flag.
ALL_JOB

Information about all jobs, including unfinished jobs (pending, running or 
suspended) and recently finished jobs. LSF remembers jobs finished within the 
preceding period. This period is set by the parameter CLEAN_PERIOD in the 
lsb.params file. The default is 3600 seconds (1 hour). (See lsb.params). The 
command line equivalent is bjobs -a.
DONE_JOB

Information about recently finished jobs. 
PEND_JOB



Platform LSF API Reference 255

Information about pending jobs. 
SUSP_JOB

Information about suspended jobs. 
CUR_JOB

Information about all unfinished jobs. 
LAST_JOB

Information about the last submitted job. 
RUN_JOB

Information about all running jobs
JOBID_ONLY

Information about JobId only. 
HOST_NAME

Internal use only. 
NO_PEND_REASONS

Exclude pending jobs. 
JGRP_INFO

Information about job groups. 
JGRP_RECURSIVE

Information about job group arrays. 
JOB_ID_ONLY_ALL

Information about all jobs in the core. 
ZOMBIE_JOB

Information about all zombie jobs. 
TRANSPARENT_MC

Display remote jobs by submission jobid. 
EXCEPT_JOB

Information about unfinished jobs that have triggered a job exception (overrun, 
underrun, idle). 
MUREX_JOB

Information about all murex jobs. 
TO_SYM_UA

Information about all jobs to Symphony UA. 
SYM_TOP_LEVEL_ONLY

Internal use only.
JGRP_NAME

Information about job group structure. 
COND_HOSTNAME



RETURN VALUES

256 Platform LSF API Reference

Uncondensed output for host groups. Option ignored in lsb_openjobinfo().
FROM_BJOBSCMD

Internal use only. 
WITH_LOPTION

Internal use only. 
APS_JOB

Jobs submitted to APS queue. 
UGRP_INFO

Information about user group. 
TIME_LEFT

Estimated time remaining based on the runtime estimate or runlimit. 
FINISH_TIME

Estimated finish time based on the runtime estimate or runlimit. 
COM_PERCENTAGE

Estimated completion percentage based on the runtime estimate or runlimit. 
If options is 0, default to CUR_JOB. 

RETURN VALUES
integer:value The total number of records in the connection. 

integer:-1 The function failed.

ERRORS
If the function fails, lsberrno is set to indicate the error. 

SEE ALSO

Related APIs:
lsb_openjobinfo_a() - Provides the name and number of jobs and hosts in the 
master batch daemon
lsb_openjobinfo_a_ext() – Provides the name and number of jobs and hosts in the 
master batch daemon with additional host group information
lsb_openjobinfo_req() – Extensible API interface providing name, number of jobs 
and other information in the master batch daemon.
lsb_closejobinfo() - Closes a job information connection to the master batch 
daemon
lsb_readjobinfo() - Returns the next job information record in master batch 
daemon
lsb_readframejob() - Returns frame job information from the master batch daemon

Equivalent line command
bjobs



Platform LSF API Reference 257

Files:
${LSF_ENVDIR}/lsf.conf



lsb_openjobinfo_a()

258 Platform LSF API Reference

lsb_openjobinfo_a()
Provides the name and number of jobs and hosts in the master batch daemon.

DESCRIPTION
lsb_openjobinfo_a() provides more information on pending, running and 
suspended jobs than lsb_openjobinfo(). Use lsb_openjobinfo_a() to create a 
connection to the master batch daemon. Next, use lsb_readjobinfo() to read job 
records. Close the connection using lsb_closejobinfo().

SYNOPSIS
#include <lsf/lsbatch.h>

struct jobInfoHead *lsb_openjobinfo_a(LS_LONG_INT jobId, 
char *jobName,
char *userName,
char *queueName,
char *hostName,
int options)

PARAMETERS
lsb_openjobinfo_a() passes information about jobs based on the value of jobId, 
jobName, userName, queueName, or hostName. Only one parameter can be 
chosen. The other parameters must be NULL or 0.

jobId Passes information about jobs with the given job ID. If jobId is 0, 
lsb_openjobinfo() looks to another parameter to return information about jobs. 
If information about a member of a job array is to be passed, use the array form 
jobID[ i ] where jobID is the job array name, and i is the index value.

jobName Passes information about jobs with the given job name. If jobName is NULL, 
lsb_openjobinfo() looks to another parameter to return information about jobs.

userName Passes information about jobs submitted by the named user or user group, or by all 
users if userName is all. If userName is NULL, lsb_openjobinfo_a() assumes the 
user is invoking this call. 

queueName Passes information about jobs belonging to the named queue. If queueName is 
NULL, jobs in all queues of the batch system will be considered. 

hostName Passes information about jobs on the named host, host group or cluster name. If 
hostName is NULL, jobs on all hosts of the batch system will be considered.

options <lsf/lsbatch.h> defines the following flags constructed from bits. Use the bitwise 
OR to set more than one flag. 
ALL_JOB

Information about all jobs, including unfinished jobs (pending, running or 
suspended) and recently finished jobs. LSF remembers jobs finished within the 
preceding period. This period is set by the parameter CLEAN_PERIOD in the 
lsb.params file. The default is 3600 seconds (1 hour). (See lsb.params). The 
command line equivalent is bjobs -a.



Platform LSF API Reference 259

CUR_JOB

Information about all unfinished jobs. 
DONE_JOB

Information about recently finished jobs. 
PEND_JOB

Information about pending jobs. 
SUSP_JOB

Information about suspended jobs. 
LAST_JOB

Information about the last submitted job. 
If options is 0, default to CUR_JOB. 

RETURN VALUES
struct jobInfoHeadExt *

On success, returns an array of data type struct jobInfoHeadExt *, which 
represents the name and number of jobs and hosts in the master batch daemon with 
the host group information.

integer:-1 The function failed.

ERRORS
If the function fails, lsberrno is set to indicate the error. 

SEE ALSO

Related APIs
lsb_openjobinfo() - Opens a job information connection to the master batch 
daemon
lsb_closejobinfo() - Closes a job information connection to the master batch 
daemon
lsb_readjobinfo() - Returns the next job information record in master batch 
daemon
lsb_readframejob() - Returns frame job information from the master batch 
daemon

Equivalent line command
bjobs

Files
${LSF_ENVDIR-/etc}/lsf.conf

lsb.params



lsb_openjobinfo_a_ext()

260 Platform LSF API Reference

lsb_openjobinfo_a_ext()
Returns the name and number of jobs and hosts in the master batch daemon with 
additional host group information.

DESCRIPTION
lsb_openjobinfo_a_ext() is run from lsb_openjobinfo_a() using the same 
parameters and provides the same information as lsb_openjobinfo_a(), but with 
additional host group information. 

SYNOPSIS
#include <lsf/lsbatch.h>

struct jobInfoHeadExt *
lsb_openjobinfo_a_ext (LS_LONG_INT jobId, char *jobName, 

char *userName, char *queueName, 
char *hostName, int options)

PARAMETERS
lsb_openjobinfo_a_ext() passes information about jobs based on the value of 
jobId, jobName, userName, queueName, or hostName. Only one parameter can be 
chosen. The other parameters must be NULL or 0.

jobId Passes information about jobs with the given job ID. If jobId is 0, 
lsb_openjobinfo_a_ext() looks to another parameter to return information 
about jobs. If information about a member of a job array is to be passed, use the 
array form jobID[ i ] where jobID is the job array name, and i is the index value.

jobName Passes information about jobs with the given job name. If jobName is NULL, 
lsb_openjobinfo_a_ext() looks to another parameter to return information 
about jobs.

userName Passes information about jobs submitted by the named user or user group, or by all 
users if userName is all. If userName is NULL, lsb_openjobinfo_a_ext() assumes 
the user is invoking this call. 

queueName Passes information about jobs belonging to the named queue. If queueName is 
NULL, jobs in all queues of the batch system will be considered. 

hostName Passes information about jobs on the named host, host group or cluster name. If 
hostName is NULL, jobs on all hosts of the batch system will be considered.

options <lsf/lsbatch.h> defines the following flags constructed from bits. Use the bitwise 
OR to set more than one flag. 
ALL_JOB

Information about all jobs, including unfinished jobs (pending, running or 
suspended) and recently finished jobs. LSF remembers jobs finished within the 
preceding period. This period is set by the parameter CLEAN_PERIOD in the 
lsb.params file. The default is 3600 seconds (1 hour). (See lsb.params). The 
command line equivalent is bjobs -a.
CUR_JOB



Platform LSF API Reference 261

Information about all unfinished jobs. 
DONE_JOB

Information about recently finished jobs. 
PEND_JOB

Information about pending jobs. 
SUSP_JOB

Information about suspended jobs. 
LAST_JOB

Information about the last submitted job. 
If options is 0, default to CUR_JOB. 

RETURN VALUES
struct jobInfoHeadExt *

On success, returns an array of data type struct jobInfoHeadExt *, which 
represents the name and number of jobs and hosts in the master batch daemon with 
the host group information.

integer:-1 The function failed.

ERRORS
If the function fails, lsberrno is set to indicate the error. 

SEE ALSO

Related APIs
lsb_openjobinfo() - Opens a job information connection to the master batch 
daemon
lsb_openjobinfo_a() - Returns the name and number of jobs and hosts in the 
master batch daemon
lsb_closejobinfo() - Closes a job information connection to the master batch 
daemon
lsb_readjobinfo() - Returns the next job information record in master batch 
daemon
lsb_readframejob() - Returns frame job information from the master batch 
daemon

Equivalent line command
bjobs

Files
${LSF_ENVDIR-/etc}/lsf.conf

lsb.params



lsb_openstream()

262 Platform LSF API Reference

lsb_openstream()
Open and create an lsb_stream file.

.

DESCRIPTION
lsb_openstream() opens the streamFile .
This API function is inside liblsbstream.so.

SYNOPSIS
#include <lsf/lsbatch.h>

int lsb_openstream(const struct lsbStream *params)

struct lsbStream {

    char   *streamFile;

    int    maxStreamSize;

    int    maxStreamFileNum;

    int    trace;

    int    (*trs)(const char *);

}; 

PARAMETERS
* streamFile Pointer to the full path name of the stream file.

maxStreamSize Maximium size of the stream file in bytes.
maxStreamFileNum Maximium number of backup stream files.

trace Set to 1 to enable tracing of the stream.
* trs Pointer to a function that the library invokes, passing a trace buffer.

RETURN VALUES
integer:0 The function was successful.

integer:-1 or NULL The function failed.

ERRORS
If the function fails, lsberrno is set to indicate the error. 

SEE ALSO

Related APIs
lsb_closestream(): Close the stream file.
lsb_readstreamline(): Read a line from the stream file.
lsb_writestream(): Write an event to the stream file.



Platform LSF API Reference 263

lsb_readstream(): Read from the stream file.
lsb_streamversion(): Version of the current event type supported by mbatchd.

Equivalent line command
None

Files

lsb.params



lsb_parameterinfo()

264 Platform LSF API Reference

lsb_parameterinfo()
Returns information about the LSF cluster.

DESCRIPTION
lsb_parameterinfo() gets information about the LSF cluster. 
The static storage for the parameterInfo structure is reused on the next call. 

SYNOPSIS
#include <lsf/lsbatch.h>

struct parameterInfo *lsb_parameterinfo(char **names, 

int *numUsers, int options)

struct parameterInfo {

    char *defaultQueues; 

    char *defaultHostSpec; 

    int  mbatchdInterval; 

    int  sbatchdInterval; 

    int  jobAcceptInterval;

    int  maxDispRetries;

    int  maxSbdRetries; 

    int  preemptPeriod; 

    int  cleanPeriod; 

    int  maxNumJobs; 

    float historyHours; 

    int  pgSuspendIt; 

    char *defaultProject; 

    int  retryIntvl;

    int  nqsQueuesFlags;

    int  nqsRequestsFlags;

    int  maxPreExecRetry;

    int  eventWatchTime;

    float runTimeFactor;

    float waitTimeFactor;

    float runJobFactor;

    int  eEventCheckIntvl;

    int  rusageUpdateRate;

    int  rusageUpdatePercent;

    int  condCheckTime;

    int  maxSbdConnections;

    int  rschedInterval;

    int  maxSchedStay; 

    int  freshPeriod;

    int  preemptFor;



Platform LSF API Reference 265

    int  adminSuspend; 

    int  userReservation; 

    float cpuTimeFactor;

 int fyStart;

    int     maxJobArraySize;

 time_t  exceptReplayPeriod;

    int jobTerminateInterval; 

    int disableUAcctMap;

    int enforceFSProj;

    int enforceProjCheck; 

    int     jobRunTimes;

 int     dbDefaultIntval;

 int     dbHjobCountIntval;

 int     dbQjobCountIntval;

 int     dbUjobCountIntval;

 int     dbJobResUsageIntval;

 int     dbLoadIntval;

 int     dbJobInfoIntval;

    int     jobDepLastSub;

    int     maxJobNameDep;

 char   *dbSelectLoad;

    int     jobSynJgrp; 

    char   *pjobSpoolDir; 

    int     maxUserPriority; 

    int     jobPriorityValue; 

    int     jobPriorityTime; 

    int     enableAutoAdjust; 

    int     autoAdjustAtNumPend;

    float   autoAdjustAtPercent; 

    int     sharedResourceUpdFactor;

    int     scheRawLoad; 

    char   *jobAttaDir; 

    int     maxJobMsgNum; 

    int     maxJobAttaSize; 

    int     mbdRefreshTime; 

    int     updJobRusageInterval; 

    char    *sysMapAcct;

    int     preExecDelay; 

    int     updEventUpdateInterval; 

    int     resourceReservePerSlot; 

    int    maxJobId; 

    char    *preemptResourceList; 

    int     preemptionWaitTime; 



SYNOPSIS

266 Platform LSF API Reference

    int     maxAcctArchiveNum;

    int     acctArchiveInDays; 

    int     acctArchiveInSize; 

    float committedRunTimeFactor;

    int  enableHistRunTime;

#ifdef PS_SXNQS

    int   nqsUpdateInterval;

#endif

    int  mcbOlmReclaimTimeDelay; 

    int  chunkJobDuration; 

    int  sessionInterval;

    int  publishReasonJobNum; 

    int  publishReasonInterval; 

    int  publishReason4AllJobInterval;

    int  mcUpdPendingReasonInterval; 

    int  mcUpdPendingReasonPkgSize;

    int noPreemptRunTime; 

    int noPreemptFinishTime; 

    char *  acctArchiveAt; 

    int  absoluteRunLimit; 

    int  lsbExitRateDuration; 

    int  lsbTriggerDuration; 

    int  maxJobinfoQueryPeriod;

    int jobSubRetryInterval; 

    int pendingJobThreshold; 

 int maxConcurrentJobQuery; 

    int minSwitchPeriod; 

    int condensePendingReasons; 

    int slotBasedParallelSched; 

    int disableUserJobMovement; 

    int detectIdleJobAfter; 

 int useSymbolPriority;

 int JobPriorityRound;

 char* priorityMapping;

    int maxInfoDirs; 

    int minMbdRefreshTime; 

 int enableStopAskingLicenses2LS;

int expiredTime;

    char* mbdQueryCPUs; 

    char *defaultApp; 

    int  enableStream; 

    char *streamFile;

    int  streamSize; 



Platform LSF API Reference 267

    int syncUpHostStatusWithLIM; 

    char   *defaultSLA; 

    int    slaTimer; 

     int    mbdEgoTtl; 

    int    mbdEgoConnTimeout; 

    int    mbdEgoReadTimeout; 

    int    mbdUseEgoMXJ; 

 int    mbdEgoReclaimByQueue;

    int    defaultSLAvelocity; 

    char  *exitRateTypes;

    float  globalJobExitRate; 

    int    enableJobExitRatePerSlot; 

    int  enableMetric; 

    int  schMetricsSample;

    float maxApsValue; 

    int  newjobRefresh; 

    int  preemptJobType; 

    char *defaultJgrp; 

    int    jobRunlimitRatio;

    int    jobIncludePostproc;

    int    jobPostprocTimeout;

 int    sschedUpdateSummaryInterval;

    int    sschedUpdateSummaryByTask;

    int    sschedRequeueLimit;

    int    sschedRetryLimit;

    int    sschedMaxTasks;

    int    sschedMaxRuntime;

    char *sschedAcctDir;

    int     jgrpAutoDel;     

    int     maxJobPreempt;

    int     maxJobRequeue;

    int     noPreemptRunTimePercent;

    int     maxStreamFileNum;

    int     PrivilegedUserForceBkill;

    int     intersectCandidateHosts;

    int     enforceOneUGLimit;

    int     logRuntimeESTExceeded;

    char*   computeUnitTypes;

    float   fairAdjustFactor;

    int     noPreemptFinishTimePercent;

    int     slotReserveQueueLimit;

    int     maxJobPercentagePerSession;

    int     useSuspSlots;



PARAMETERS

268 Platform LSF API Reference

};

PARAMETERS
**names Reserved but not used; supply NULL. 

*numUsers Reserved but not used; supply NULL. 
options Reserved but not used; supply 0. 

parameterInfo structure
The parameterInfo structure contains the following fields: 

defaultQueues DEFAULT_QUEUE: A blank_separated list of queue names for automatic queue 
selection. 

defaultHostSpec DEFAULT_HOST_SPEC: The host name or host model name used as the system 
default for scaling CPULIMIT and RUNLIMIT. 

mbatchdInterval MBD_SLEEP_TIME: The interval in seconds at which the mbatchd dispatches jobs. 
sbatchdInterval SBD_SLEEP_TIME: The interval in seconds at which the sbatchd suspends or 

resumes jobs. 
jobAcceptInterval JOB_ACCEPT_INTERVAL: The interval at which a host accepts two successive jobs. 

(In units of SBD_SLEEP_TIME.) 
maxDispRetries MAX_RETRY: The maximum number of retries for dispatching a job. 
maxSbdRetries MAX_SBD_FAIL: The maximum number of retries for reaching an sbatchd. 
preemptPeriod PREEM_PERIOD: The interval in seconds for preempting jobs running on the same 

host. 
cleanPeriod CLEAN_PERIOD: The interval in seconds during which finished jobs are kept in core. 

maxNumJobs MAX_JOB_NUM: The maximum number of finished jobs that are logged in the current 
event file. 

historyHours HIST_HOURS: The number of hours of resource consumption history used for fair 
share scheduling and scheduling within a host partition. 

pgSuspendIt PG_SUSP_IT: The interval a host must be idle before resuming a job suspended for 
excessive paging. 

defaultProject The default project assigned to jobs.
retryIntvl Job submission retry interval

nqsQueuesFlags For Cray NQS compatiblilty only. Used by LSF to get the NQS queue information
maxPreExecRetry The maximum number of times to attempt the preexecution command of a job 

from a remote cluster ( MultiCluster only)
eventWatchTime Event watching Interval in seconds

runTimeFactor Run time weighting factor for fairshare scheduling
waitTimeFactor used for calcultion of the fairshare scheduling formula

runJobFactor Job slots weighting factor for fairshare scheduling
eEventCheckIntvl default check interval



Platform LSF API Reference 269

rusageUpdateRate sbatchd report every sbd_sleep_time
rusageUpdatePercent sbatchd updates jobs jRusage in mbatchd if more than 10% changes

condCheckTime time period to check for reconfig
maxSbdConnections The maximum number of connections between master and slave batch daemons

rschedInterval The interval for rescheduling jobs
maxSchedStay Max time mbd stays in scheduling routine, after which take a breather

freshPeriod During which load remains fresh
preemptFor The preemption behavior, GROUP_MAX, GROUP_JLP, USER_JLP, HOST_JLU, 

MINI_JOB, LEAST_RUN_TIME
adminSuspend Flags whether users can resume their jobs when suspended by the LSF 

administrator
userReservation Flags to enable/disable normal user to create advance reservation

cpuTimeFactor CPU time weighting factor for fairshare scheduling
fyStart The starting month for a fiscal year

maxJobArraySize The maximum number of jobs in a job array
exceptReplayPeriod Replay period for exceptions, in seconds

jobTerminateInterval The interval to terminate a job
disableUAcctMap User level account mapping for remote jobs is disabled

enforceFSProj If set to TRUE, Project name for a job will be considerred when doing fairshare 
scheduling, i.e., as if user has submitted jobs using -G

enforceProjCheck Enforces the check to see if the invoker of bsub is in the specifed group when the -P 
option is used

jobRunTimes Run time for a job
dbDefaultIntval Event table Job default interval

dbHjobCountIntval Event table Job Host Count
dbQjobCountIntval Event table Job Queue Count
dbUjobCountIntval Event table Job User Count

dbJobResUsageIntval Event table Job Resource Interval
dbLoadIntval Event table Resource Load Interval

dbJobInfoIntval Event table Job Info
jobDepLastSub Used with job dependency scheduling

maxJobNameDep Used with job dependency scheduling, deprecated
dbSelectLoad select resources to be logged

jobSynJgrp job synchronizes its group status
pjobSpoolDir The batch jobs' temporary output directory

maxUserPriority Maximal job priority defined for all users



PARAMETERS

270 Platform LSF API Reference

jobPriorityValue Job priority is increased by the system dynamically based on waiting time
jobPriorityTime Waiting time to increase Job priority by the system dynamically 

enableAutoAdjust Enable internal statistical adjustment
autoAdjustAtNumPen

d
Start to autoadjust when the user has this number of pending jobs

autoAdjustAtPercent If this number of jobs has been visited skip the user
sharedResourceUpdF

actor
Static shared resource update interval for the cluster

scheRawLoad schedule job based on raw load info
jobAttaDir The batch jobs' external storage for attached data

maxJobMsgNum Maximum message number for each job
maxJobAttaSize Maximum attached data size to be transferred for each message

mbdRefreshTime The life time of a child MBD to serve queries in the MT way
updJobRusageInterva

l
The interval of the execution cluster updating the job's resource usage

sysMapAcct The account to which all windows workgroup users are to be mapped
preExecDelay dispatch delay internal

updEventUpdateInter
val

The interval of updating duplicated logging info

resourceReservePerSl
ot

Resources are reserved for parallel jobs on a per-slot basis

maxJobId The Maximum JobId defined in the system
preemptResourceList The list of preemption resources
preemptionWaitTime The time for preemption wait
maxAcctArchiveNum Max number of Acct files

acctArchiveInDays Mbatchd Archive Interval
acctArchiveInSize Mbatchd Archive threshold

committedRunTimeFa
ctor

Committed run time weighting factor

enableHistRunTime Enable the use of historical run time in the calculation of fairshare scheduling 
priority, Disable the use of historical run time in the calculation of fairshare 
scheduling priority

nqsUpdateInterval NQS resource usage update interval
mcbOlmReclaimTime

Delay
Open lease reclaim time

chunkJobDuration Enable chunk job dispatch for jobs with CPU limit or run limits
sessionInterval The interval for scheduling jobs by scheduler daemon

publishReasonJobNu
m

The number of jobs per user per queue whose pending reason is published at the 
PEND_REASON_UPDATE_INTERVAL interval



Platform LSF API Reference 271

publishReasonInterva
l

The interval for publishing job pending reason by scheduler daemon

publishReason4AllJo
bInterval

Interval (in seconds) of pending reason publish for all jobs

mcUpdPendingReaso
nInterval

MC pending reason update interval (0 means no updates)

mcUpdPendingReaso
nPkgSize

MC pending reason update package size (0 means no limit)

noPreemptRunTime No preemption run time
noPreemptFinishTime No preemption finish time

acctArchiveAt Mbatchd Archive Time
absoluteRunLimit Absolute run limit for job

lsbExitRateDuration The job exit rate duration
lsbTriggerDuration The duration to trigger eadmin

maxJobinfoQueryPeri
od

Maximum time for job information query commands (for example,with bjobs) to 
wait

jobSubRetryInterval Job submission retry interval
pendingJobThreshold System wide max pending jobs
maxConcurrentJobQu

ery
Maximum concurrent job query

minSwitchPeriod Minimal event switch period
condensePendingRea

sons
Condense pending reasons enabled

slotBasedParallelSche
d

Schedule Parallel jobs based on slots instead of CPUs

disableUserJobMove
ment

Job position control by admin

detectIdleJobAfter Detect idle jobs after
useSymbolPriority Use symbolic when specifing priority of session scheduler jobs
JobPriorityRound Priority rounding for session scheduler jobs

priorityMapping Priority rounding for session scheduler jobs
maxInfoDirs Maximum number of info directories

minMbdRefreshTime The minimum period of a child MBD to serve queries in the MT way
enableStopAskingLic

enses2LS
Stop asking license to LS not due to lack license

mbdQueryCPUs MBD child query processes will only run on the following CPUs
defaultApp The default application profile assigned to jobs

enableStream Streaming of lsbatch data is enabled
streamFile File to which lsbatch data is streamed



PARAMETERS

272 Platform LSF API Reference

streamSize File size in MB to which lsbatch data is streamed
syncUpHostStatusWit

hLIM
Sync up host status with master LIM is enabled

defaultSLA EGO Enabled SLA scheduling is enabled
slaTimer EGO Enabled SLA scheduling timer period

mbdEgoTtl EGO Enabled SLA scheduling time to live
mbdEgoConnTimeout EGO Enabled SLA scheduling connection timeout
mbdEgoReadTimeout EGO Enabled SLA scheduling read timeout

mbdUseEgoMXJ EGO Enabled SLA scheduling use MXJ flag
mbdEgoReclaimByQu

eue
EGO Enabled SLA scheduling reclaim by queue

defaultSLAvelocity EGO Enabled SLA scheduling default velocity
exitRateTypes Type of host exit rate exception handling types: EXIT_RATE_TYPE

globalJobExitRate Type of host exit rate exception handling types: GLOBAL_EXIT_RATE
enableJobExitRatePer

Slot
Type of host exit rate exception handling types ENABLE_EXIT_RATE_PER_SLOT

enableMetric Performance metrics monitor is enabled flag
schMetricsSample Performance metrics monitor sample period flag

maxApsValue used to bound: (1) factors, (2) weights, and (3) APS values
newjobRefresh Child mbatchd gets updated information about new jobs from the parent mbatchd

preemptJobType Job type to preempt, PREEMPT_JOBTYPE_BACKFILL, 
PREEMPT_JOBTYPE_EXCLUSIVE

defaultJgrp The default job group assigned to jobs
jobRunlimitRatio Max ratio between run limit and runtime estimation

jobIncludePostproc Enable the post-execution processing of the job to be included as part of the job flag
jobPostprocTimeout Timeout of post-execution processing

sschedUpdateSumma
ryInterval

The interval, in seconds, for updating the session scheduler status summary

sschedUpdateSumma
ryByTask

The number of completed tasks for updating the session scheduler status summary

sschedRequeueLimit The maximum number of times a task can be requeued via requeue exit values
sschedRetryLimit The maximum number of times a task can be retried after a dispatch error

sschedMaxTasks The maximum number of tasks that can be submitted in one session
sschedMaxRuntime The maximum run time of a single task

sschedAcctDir The output directory for task accounting files
jgrpAutoDel If TRUE enable the job group automatic deletion functionality (default is FALSE). 

maxJobPreempt Maximum number of job preempted times.



Platform LSF API Reference 273

maxJobRequeue Maximum number of job re-queue times.
noPreemptRunTimeP

ercent
No preempt run time percent.

maxStreamFileNum Maximum number of backup stream.utc files.
privilegedUserForceB

kill
If enforced only admin can use the bkill -r option.

intersectCandidateHo
sts

Jobs run on only on hosts belonging to the intersection of the queue the job was 
submitted to, advance reservation hosts, and any hosts specified by bsub -m at the 
time of submission.

enforceOneUGLimit Enforces the limitations of a single specified user group.
logRuntimeESTExcee

ded
Logging of runtime estimation events.

computeUnitTypes Compute unit types.
fairAdjustFactor Fairshare adjustment weighting factor.

noPreemptFinishTime
Percent

No preempt finish time percent.

slotReserveQueueLim
it

The reservation request being within JL/U.

maxJobPercentagePe
rSession

Job accept limit percentage.

useSuspSlots The low priority job will use the slots freed by preempted jobs.

RETURN VALUES
pointer:parameterInfo

The function was a success, returns a pointer to a parameterInfo structure. 
char:NULL

Function failed.

ERRORS
If the function fails, lsberrno is set to indicate the error. 

SEE ALSO

Related APIs
none

Equivalent line command
none

Files
$LSB_CONFDIR/cluster_name/lsb.params



lsb_peekjob()

274 Platform LSF API Reference

lsb_peekjob()
Returns the base name of the file related to the job ID

DESCRIPTION
lsb_peekjob() retrieves the name of a job file.
Only the submitter can peek at job output. 
The storage for the file name will be reused by the next call. 
Any program using this API must be setuid to root if LSF_AUTH is not defined in 
the lsf.conf file. 

SYNOPSIS
#include <lsf/lsbatch.h>
char * lsb_peekjob (LS_LONG_INT jobId)

PARAMETERS
jobId The job ID that the LSF system assigned to the job. If a job in a job array is to be 

returned, use the array form jobID[i] where jobID is the job array name, and i is 
the index value.

RETURN VALUES
char:Name of job Output File

The function was a success. 
char:NULL

Function failed.

ERRORS
If the function fails, lsberrno is set to indicate the error. 

SEE ALSO

Related APIs
none

Equivalent line command
bpeek

Files
${LSF_ENVDIR-/etc}/lsf.conf



Platform LSF API Reference 275

lsb_pendreason()
Explains why a job is pending.

DESCRIPTION
Use lsb_pendreason() to determine why a job is pending. Each pending reason is 
associated with one or more hosts. 

SYNOPSIS
#include <lsf/lsbatch.h>

char *lsb_pendreason (int numReasons, int *rsTb, 
                      struct jobInfoHead *jInfoH,
                      struct loadIndexLog *ld, int clusterId)

struct jobInfoHead{
int numJobs;
LS_LONG_INT *jobIds;
int numHosts;
char **hostNames;
int   numClusters;

    char  **clusterNames;

    int   *numRemoteHosts;

    char  ***remoteHosts;

};

struct loadIndexLog {
int nIdx;
char **name;

};

PARAMETERS
numReasons The number of reasons in the rsTb reason table. 

rsTb The reason table. Each entry in the table contains one of the following pending 
reasons:
PEND_JOB_NEW

A new job is waiting to be scheduled. 
PEND_JOB_START_TIME

The job is held until its specified start time. 
PEND_JOB_DEPEND

The job is waiting for its dependency condition(s) to be satisfied. 
PEND_JOB_DEP_INVALID

The dependency condition is invalid or never satisfied. 
PEND_JOB_MIG

The migrating job is waiting to be rescheduled. 
PEND_JOB_PRE_EXEC



PARAMETERS

276 Platform LSF API Reference

The job’s pre-exec command exited with non-zero status.
PEND_JOB_NO_FILE

Unable to access the job file. 
PEND_JOB_ENV

Unable to set the job’s environment variables. 
PEND_JOB_PATHS

Unable to determine the job’s home or working directories.
PEND_JOB_OPEN_FILES

Unable to open the job’s input and output files.
PEND_JOB_EXEC_INIT

Job execution initialization failed. 
PEND_JOB_RESTART_FILE

Unable to copy restarting job’s checkpoint files. 
PEND_JOB_DELAY_SCHED

Scheduling of the job is delayed. 
PEND_JOB_SWITCH

Waiting for the re-scheduling of the job after switching queues. 
PEND_JOB_DEP_REJECT

An event is rejected by eeventd due to a syntax error. 
PEND_JOB_JS_DISABLED

A JobScheduler feature is not enabled.
PEND_JOB_NO_PASSWD

Failed to get a user password.
PEND_JOB_LOGON_FAIL

The job is pending due to logon failure.
PEND_JOB_MODIFY

The job is waiting to be re-scheduled after its parameters have been changed.
PEND_JOB_TIME_INVALID

The job time event is invalid.
PEND_TIME_EXPIRED

The job time event has expired.
PEND_JOB_REQUEUED

The job has been requeued..
PEND_WAIT_NEXT

Waiting for the next time event.
PEND_JGRP_HOLD

The parent group is held.



Platform LSF API Reference 277

PEND_JGRP_INACT

The parent group is inactive.
PEND_JGRP_WAIT

The parent group is waiting for scheduling.
PEND_JOB_RCLUS_UNREACH

The remote cluster(s) are unreachable. 
PEND_JOB_QUE_REJECT

SNDJOBS_TO queue rejected by remote cluster(s). 
PEND_JOB_RSCHED_START

Waiting for remote scheduling session. 
PEND_JOB_RSCHED_ALLOC

Waiting for allocation replies from remote cluster(s).
PEND_JOB_FORWARDED

The job is forwarded to a remote cluster.
PEND_JOB_RMT_ZOMBIE

The job running remotely is in a zombie state.
PEND_JOB_ENFUGRP

The job’s enforced user group share account is not selected.
PEND_SYS_UNABLE

The system is unable to schedule the job.
PEND_JGRP_RELEASE

The parent group has just been released.
PEND_HAS_RUN

The job has run since the parent group was active.
PEND_JOB_ARRAY_JLIMIT

The job has reached its running element limit.
PEND_CHKPNT_DIR

The checkpoint directory is invalid.
PEND_CHUNK_FAIL

The first job in the chunk failed (all other jobs in the chunk are set to PEND).
PEND_JOB_SLA_MET

Optimum number of running jobs for SLA has been reached.
PEND_JOB_APP_NOEXIST

Specified application profile does not exist
PEND_APP_PROCLIMIT

Job no longer satisfies application profile PROCLIMIT configuration
PEND_EGO_NO_HOSTS



PARAMETERS

278 Platform LSF API Reference

No hosts for the job from EGO.
PEND_JGRP_JLIMIT

Job group's limit.
PEND_PREEXEC_LIMIT

Job pre-exec retry limit.
PEND_REQUEUE_LIMIT

Job re-queue limit.
PEND_BAD_RESREQ

Job has bad res req.
PEND_RSV_INACTIVE

job's reservation is inactive.
PEND_WAITING_RESUME

Job was in PSUSP with bad res req, after successful bmod  waiting for the user to 
bresume.
PEND_QUE_INACT

The queue is inactivated by the administrator. 
PEND_QUE_WINDOW

The queue is inactivated by its time windows. 
PEND_QUE_JOB_LIMIT

The queue has reached its job slot limit. 
PEND_QUE_USR_JLIMIT

The user has reached the per-user job slot limit of the queue. 
PEND_QUE_USR_PJLIMIT

Not enough per-user job slots of the queue for the parallel job. 
PEND_QUE_PRE_FAIL

The queue’s pre-exec command exited with non-zero status. 
PEND_NQS_RETRY

The job was not accepted by the NQS host. Attempt again later.
PEND_NQS_REASONS

Unable to send the job to an NQS host. 
PEND_NQS_FUN_OFF

Unable to contact NQS host. 
PEND_SYS_NOT_READY

The system is not ready for scheduling after reconfiguration. 
PEND_SBD_JOB_REQUEUE

The requeued job is waiting for rescheduling. 
PEND_JOB_SPREAD_TASK



Platform LSF API Reference 279

Not enough hosts to meet the job’s spanning requirement. 
PEND_QUE_SPREAD_TASK

Not enough hosts to meet the queue’s spanning requirement.
PEND_QUE_PJOB_LIMIT

The queue has not enough job slots for the parallel job. 
PEND_QUE_WINDOW_WILL_CLOSE

The job will not finish before queue’s run window is closed.
PEND_QUE_PROCLIMIT

The job no longer satisfies queue PROCLIMIT configuration.
PEND_SBD_PLUGIN

The job requeued due to plug-in failure.
PEND_WAIT_SIGN_LEASE

Waiting for lease signing.
PEND_USER_JOB_LIMIT

The job slot limit is reached. 
PEND_UGRP_JOB_LIMIT

A user group has reached its job slot limit. 
PEND_USER_PJOB_LIMIT

The job slot limit for the parallel job is reached.
PEND_UGRP_PJOB_LIMIT

A user group has reached its job slot limit for the parallel job.
PEND_USER_RESUME

Waiting for scheduling after resumed by user. 
PEND_USER_STOP

The job was suspended by the user while pending. 
PEND_NO_MAPPING 

Unable to determine user account for execution. 
PEND_RMT_PERMISSION 

The user has no permission to run the job on remote host/cluster. 
PEND_ADMIN_STOP

The job was suspended by LSF admin or root while pending. 
PEND_MLS_INVALID

The requested label is not valid.
PEND_MLS_CLEARANCE

The requested label is above user allowed range.
PEND_MLS_RHOST

The requested label rejected by /etc/rhost.conf.



PARAMETERS

280 Platform LSF API Reference

PEND_MLS_DOMINATE

The requested label does not dominate current label.
PEND_MLS_FATAL

The requested label problem.
PEND_HOST_RES_REQ

The job’s resource requirements not satisfied. 
PEND_HOST_NONEXCLUSIVE

The job’s requirement for exclusive execution not satisfied. 
PEND_HOST_JOB_SSUSP

Higher or equal priority jobs already suspended by system. 
PEND_HOST_PART_PRIO

The job failed to compete with other jobs on host partition. 
PEND_SBD_GETPID

Unable to get the PID of the restarting job. 
PEND_SBD_LOCK

Unable to lock the host for exclusively executing the job. 
PEND_SBD_ZOMBIE

Cleaning up zombie job. 
PEND_SBD_ROOT

Can’t run jobs submitted by root. The job is rejected by the sbatchd.
PEND_HOST_WIN_WILL_CLOSE

The job will not finish on the host before queue’s run window closes.
PEND_HOST_MISS_DEADLINE

The job will not finish on the host before job’s termination deadline.
PEND_FIRST_HOST_INELIGIBLE

The specified first execution host is not eligible for this job at this time.
PEND_HOST_DISABLED

The host is closed by the LSF administrator. 
PEND_HOST_LOCKED

The host is locked by the LSF administrator. 
PEND_HOST_LESS_SLOTS

Not enough job slots for the parallel job. 
PEND_HOST_WINDOW

The dispatch windows are closed. 
PEND_HOST_JOB_LIMIT

The job slot limit reached. 
PEND_QUE_PROC_JLIMIT



Platform LSF API Reference 281

The queue’s per-CPU job slot limit is reached. 
PEND_QUE_HOST_JLIMIT

The queue’s per-host job slot limit is reached. 
PEND_USER_PROC_JLIMIT

The user’s per-CPU job slot limit is reached. 
PEND_HOST_USR_JLIMIT

The host’s per-user job slot limit is reached. 
PEND_HOST_QUE_MEMB

Not a member of the queue
PEND_HOST_USR_SPEC

Not a user specified host. 
PEND_HOST_PART_USER

The user has no access to the host partition. 
PEND_HOST_NO_USER

There is no such user account. 
PEND_HOST_ACCPT_ONE

Just started a job recently. 
PEND_LOAD_UNAVAIL

Load information unavailable. 
PEND_HOST_NO_LIM

The LIM is unreachable by the sbatchd. 
PEND_HOST_UNLICENSED

The host does not have a valid LSF software license. 
PEND_HOST_QUE_RESREQ

The queue’s resource requirements are not satisfied. 
PEND_HOST_SCHED_TYPE

The submission host type is not the same. 
PEND_JOB_NO_SPAN

There are not enough processors to meet the job’s spanning requirement. The job 
level locality is unsatisfied.
PEND_QUE_NO_SPAN

There are not enough processors to meet the queue’s spanning requirement. The 
queue level locality is unsatisfied.
PEND_HOST_EXCLUSIVE

An exclusive job is running. 
PEND_HOST_JS_DISABLED

Job Scheduler is disabled on the host. It is not licensed to accept repetitive jobs.



PARAMETERS

282 Platform LSF API Reference

PEND_UGRP_PROC_JLIMIT 

The user group's per-CPU job slot limit is reached. 
PEND_BAD_HOST

Incorrect host, group or cluster name.
PEND_QUEUE_HOST

The host is not used by the queue.
PEND_HOST_LOCKED_MASTER

The host is locked by the master LIM.
PEND_HOST_LESS_RSVSLOTS

Not enough reserved job slots at this time for specified reservation ID
PEND_HOST_LESS_DURATION

Not enough slots or resources for whole duration of the job
PEND_HOST_NO_RSVID

Specified reservation has expired or has been deleted
PEND_HOST_LEASE_INACTIVE

The host is closed due to lease is inactive
PEND_HOST_ADRSV_ACTIVE

Not enough job slot(s) while advance reservation is active
PEND_QUE_RSVID_NOMATCH

This queue is not configured to send jobs to the cluster specified in the advance 
reservation
PEND_HOST_GENERAL

Individual host based reasons
PEND_HOST_RSV

Host does not belong to the specified advance reservation.
PEND_SBD_UNREACH

Unable to reach the sbatchd. 
PEND_SBD_JOB_QUOTA

The number of jobs exceeds quota. 
PEND_JOB_START_FAIL

The job failed in talking to the server to start the job. 
PEND_JOB_START_UNKNWN

Failed in receiving the reply from the server when starting the job. 
PEND_SBD_NO_MEM

Unable to allocate memory to run job. There is no memory on the sbatchd.
PEND_SBD_NO_PROCESS

Unable to fork process to run the job. There are no more processes on the sbatchd.



Platform LSF API Reference 283

PEND_SBD_SOCKETPAIR

Unable to communicate with the job process. 
PEND_SBD_JOB_ACCEPT

The slave batch server failed to accept the job. 
PEND_LEASE_JOB_REMOTE_DISPATCH

Lease job remote dispatch failed.
PEND_JOB_RESTART_FAIL

Failed to restart job from last checkpoint.
PEND_HOST_LOAD

The load threshold is reached. 
PEND_HOST_QUE_RUSAGE

The queue’s requirements for resource reservation are not satisfied.
PEND_HOST_JOB_RUSAGE

The job’s requirements for resource reservation are not satisfied.
PEND_RMT_JOB_FORGOTTEN

Remote job not recongized by remote cluster, waiting for rescheduling
PEND_RMT_IMPT_JOBBKLG

Remote import limit reached, waiting for rescheduling
PEND_RMT_MAX_RSCHED_TIME

Remote schedule time reached, waiting for rescheduling
PEND_RMT_MAX_PREEXEC_RETRY

Remote pre-exec retry limit reached, waiting for rescheduling
PEND_RMT_QUEUE_CLOSED

Remote queue is closed
PEND_RMT_QUEUE_INACTIVE

Remote queue is inactive
PEND_RMT_QUEUE_CONGESTED

Remote queue is congested
PEND_RMT_QUEUE_DISCONNECT

Remote queue is disconnected
PEND_RMT_QUEUE_NOPERMISSION

Remote queue is not configured to accept jobs from this cluster
PEND_RMT_BAD_TIME

Job's termination time exceeds the job creation time on remote cluster
PEND_RMT_PERMISSIONS

Permission denied on the execution cluster
PEND_RMT_PROC_NUM



PARAMETERS

284 Platform LSF API Reference

Job's required on number of processors cannot be satisfied on the remote cluster
PEND_RMT_QUEUE_USE

User is not defined in the fairshare policy of the remote queue
PEND_RMT_NO_INTERACTIVE

Remote queue is a non-interactive queue
PEND_RMT_ONLY_INTERACTIVE

Remote queue is an interactive-only queue
PEND_RMT_PROC_LESS

Job's required maximum number of processors is less then the minimum number 
of processors defined on the remote queue
PEND_RMT_OVER_LIMIT

Job's required resource limit exceeds that of the remote queue
PEND_RMT_BAD_RESREQ

Job's resource requirements do not match with those of the remote queue
PEND_RMT_CREATE_JOB

Job failed to be created on the remote cluster
PEND_RMT_RERUN

Job is requeued for rerun on the execution cluster
PEND_RMT_EXIT_REQUEUE

Job is requeued on the execution cluster due to exit value
PEND_RMT_REQUEUE

Job was killed and requeued on the execution cluster
PEND_RMT_JOB_FORWARDING

Job was forwarded to remote cluster
PEND_RMT_QUEUE_INVALID

Remote import queue defined for the job in lsb.queues is either not ready or not 
valid
PEND_RMT_QUEUE_NO_EXCLUSIVE

Remote queue is a non-exclusive queue
PEND_RMT_UGROUP_MEMBER

Job was rejected; submitter does not belong to the specified User Group in the 
remote cluster or the user group does not exist in the remote cluster
PEND_RMT_INTERACTIVE_RERUN

Remote queue is rerunnable: can not accept interactive jobs
PEND_RMT_JOB_START_FAIL

Remote cluster failed in talking to server to start the job
PEND_RMT_FORWARD_FAIL_UGROUP_MEMBER



Platform LSF API Reference 285

Job was rejected; submitter does not belong to the specified User Group in the 
remote cluster or the user group does not exist in the remote cluster
PEND_RMT_HOST_NO_RSVID

Specified remote reservation has expired or has been deleted
PEND_RMT_APP_NULL

Application profile could not be found in the remote cluster.
PEND_RMT_BAD_RUNLIMIT

Job's required RUNLIMIT exceeds RUNTIME * JOB_RUNLIMIT_RATIO of the 
remote cluster.
PEND_RMT_OVER_QUEUE_LIMIT

Job's required RUNTIME exceeds the hard runtime limit in the remote queue.
PEND_GENERAL_LIMIT_USER 

Resource limit defined on user or user group has been reached.
PEND_GENERAL_LIMIT_QUEUE 

Resource (%s) limit defined on queue has been reached.
PEND_GENERAL_LIMIT_PROJECT     

Resource limit defined on project has been reached.
PEND_GENERAL_LIMIT_CLUSTER

Resource (%s) limit defined cluster wide has been reached.
PEND_GENERAL_LIMIT_HOST 

Resource (%s) limit defined on host and/or host group has been reached.
PEND_GENERAL_LIMIT_JOBS_USER 

JOBS limit defined for the user or user group has been reached.
PEND_GENERAL_LIMIT_JOBS_QUEUE  

JOBS limit defined for the queue has been reached.
PEND_GENERAL_LIMIT_JOBS_PROJECT

JOBS limit defined for the project has been reached.
PEND_GENERAL_LIMIT_JOBS_CLUSTER

JOBS limit defined cluster-wide has been reached.
PEND_GENERAL_LIMIT_JOBS_HOST

JOBS limit defined on host or host group has been reached.
PEND_RMS_PLUGIN_INTERNAL

RMS scheduler plugin internal error.
PEND_RMS_PLUGIN_RLA_COMM

RLA communication failure.
PEND_RMS_NOT_AVAILABLE

RMS is not available.



PARAMETERS

286 Platform LSF API Reference

PEND_RMS_FAIL_TOPOLOGY

Cannot satisfy the topology requirement.
PEND_RMS_FAIL_ALLOC

Cannot allocate an RMS resource.
PEND_RMS_SPECIAL_NO_PREEMPT_BACKFILL

RMS job with special topology requirements cannot be preemptive or backfill job.
PEND_RMS_SPECIAL_NO_RESERVE

RMS job with special topology requirements cannot reserve slots.
PEND_RMS_RLA_INTERNAL

RLA internal error.
PEND_RMS_NO_SLOTS_SPECIAL

Not enough slots for job. Job with RMS topology requirements cannot reserve slots, 
be preemptive, or be a backfill job.
PEND_RMS_RLA_NO_SUCH_USER

User account does not exist on the execution host.
PEND_RMS_RLA_NO_SUCH_HOST

Unknown host and/or partition unavailable.
PEND_RMS_CHUNKJOB

Cannot schedule chunk jobs to RMS hosts.
PEND_RLA_PROTOMISMATCH

RLA protocol mismatch.
PEND_RMS_BAD_TOPOLOGY

Contradictory topology requirements specified.
PEND_RMS_RESREQ_MCONT

Not enough slots to satisfy manditory contiguous requirement.
PEND_RMS_RESREQ_PTILE

Not enough slots to satisfy RMS ptile requirement.
PEND_RMS_RESREQ_NODES

Not enough slots to satisfy RMS nodes requirement.
PEND_RMS_RESREQ_NODES

Not enough slots to satisfy RMS nodes requirement.
PEND_RMS_RESREQ_BASE

Cannot satisfy RMS base node requirement.
PEND_RMS_RESREQ_RAILS

Cannot satisfy RMS rails requirement.
PEND_RMS_RESREQ_RAILMASK

Cannot satisfy RMS railmask requirement.



Platform LSF API Reference 287

PEND_MAUI_UNREACH

Unable to communicate with external Maui scheduler.
PEND_MAUI_FORWARD

Job is pending at external Maui scheduler.
PEND_MAUI_REASON

External Maui scheduler sets detail reason.
PEND_CPUSET_ATTACH

CPUSET attach failed. Job requeued.
PEND_CPUSET_NOT_CPUSETHOST

Not a cpuset host
PEND_CPUSET_TOPD_INIT

Topd initialization failed
PEND_CPUSET_TOPD_TIME_OUT

Topd communication timeout
PEND_CPUSET_TOPD_FAIL_ALLOC

Cannot satisfy the cpuset allocation requirement
PEND_CPUSET_TOPD_BAD_REQUEST

Bad cpuset allocation request
PEND_CPUSET_TOPD_INTERNAL

Topd internal error
PEND_CPUSET_TOPD_SYSAPI_ERR

Cpuset system API failure
PEND_CPUSET_TOPD_NOSUCH_NAME

Specified static cpuset does not exist on the host
PEND_CPUSET_TOPD_JOB_EXIST

Cpuset is already allocated for this job
PEND_CPUSET_TOPD_NO_MEMORY

Topd malloc failure
PEND_CPUSET_TOPD_INVALID_USER

User account does not exist on the cpuset host
PEND_CPUSET_TOPD_PERM_DENY

User does not have permission to run job within cpuset
PEND_CPUSET_TOPD_UNREACH

Topd is not available
PEND_CPUSET_TOPD_COMM_ERR

Topd communication failure
PEND_CPUSET_PLUGIN_INTERNAL 



PARAMETERS

288 Platform LSF API Reference

CPUSET Scheduler Plugin internal error.
PEND_CPUSET_CHUNKJOB

Cannot schedule chunk jobs to cpuset hosts
PEND_CPUSET_CPULIST

Cannot satisfy CPUSET CPU_LIST requirement
PEND_CPUSET_MAXRADIUS

Cannot satisfy CPUSET MAX_RADIUS requirement
PEND_NODE_ALLOC_FAIL

Node allocation failed
PEND_RMSRID_UNAVAIL

RMS resource is not available.
PEND_NO_FREE_CPUS

Not enough free cpus to satisfy job requirements
PEND_TOPOLOGY_UNKNOWN

Topology unknown or recently changed
PEND_BAD_TOPOLOGY

Contradictory topology requirement specified
PEND_RLA_COMM

RLA communications failure
PEND_RLA_NO_SUCH_USER

User account does not exist on execution host
PEND_RLA_INTERNAL

RLA internal error
PEND_RLA_NO_SUCH_HOST

Unknown host and/or partition unavailable
PEND_RESREQ_TOOFEWSLOTS

Too few slots for specified topology requirement
PEND_PSET_PLUGIN_INTERNAL

PSET scheduler plugin internal error
PEND_PSET_RESREQ_PTILE

Cannot satisfy PSET ptile requirement
PEND_PSET_RESREQ_CELLS

Cannot satisfy PSET cells requirement
PEND_PSET_CHUNKJOB

Cannot schedule chunk jobs to PSET hosts
PEND_PSET_NOTSUPPORT

Host does not support processor set functionality



Platform LSF API Reference 289

PEND_PSET_BIND_FAIL

PSET bind failed. Job requeued
PEND_PSET_RESREQ_CELLLIST

Cannot satisfy PSET CELL_LIST requirement
PEND_SLURM_PLUGIN_INTERNAL

SLURM scheduler plugin internal error
PEND_SLURM_RESREQ_NODES

Not enough resource to satisfy SLURM nodes requirment
PEND_SLURM_RESREQ_NODE_ATTR

Not enough resource to satisfy SLURM node attributes requirment.
PEND_SLURM_RESREQ_EXCLUDE

Not enough resource to satisfy SLURM exclude requirment.
PEND_SLURM_RESREQ_NODELIST

Not enough resource to satisfy SLURM nodelist requirment.
PEND_SLURM_RESREQ_CONTIGUOUS

Not enough resource to satisfy SLURM contiguous requirment.
PEND_SLURM_ALLOC_UNAVAIL

SLURM allocation is not available. Job requeued.
PEND_SLURM_RESREQ_BAD_CONSTRAINT

Invalid grammar in SLURM constraints option, job will never run.
PEND_CRAYX1_SSP

Not enough SSPs for job.
PEND_CRAYX1_MSP

Not enough MSPs for job.
PEND_CRAYX1_PASS_LIMIT

Unable to pass job limit information to psched.
PEND_CRAYXT3_ASSIGN_FAIL

Cannot create or assign a partition by CPA.
PEND_BLUEGENE_PLUGIN_INTERNAL

BG/L: Scheduler plug-in internal error.
PEND_JOB_APP_NOEXIST

Specified application profile does not exist.
PEND_BLUEGENE_ALLOC_UNAVAIL

BG/L: Allocation is not available. Job requeued.
PEND_BLUEGENE_NOFREEMIDPLANES

BG/L: No free base partitions available for a full block allocation.
PEND_BLUEGENE_NOFREEQUARTERS



PARAMETERS

290 Platform LSF API Reference

BG/L: No free quarters available for a small block allocation.
PEND_BLUEGENE_NOFREENODECARDS

BG/L: No free node cards available for a small block allocation.
PEND_PS_PLUGIN_INTERNAL

Host does not have enough slots for this SLA job.
PEND_PS_MBD_SYNC

EGO SLA: Failed to synchronize resource with MBD.
PEND_CUSTOMER_MIN

Customized pending reason number between min and max.
PEND_CUSTOMER_MAX

Customized pending reason number between min and max.
PEND_MAX_REASONS

The maximum number of reasons.
PEND_RESIZE_FIRSTHOSTUNAVAIL

First execution host unavailable.
PEND_RESIZE_MASTERSUSP

Master host is not in the RUN state.
PEND_RESIZE_MASTER_SAME

The host is not same as for master.
PEND_RESIZE_SPAN_PTILE

The host is already used by master.
PEND_RESIZE_SPAN_HOSTS

The job can only use first host.
PEND_RESIZE_LEASE_HOST

The job cannot get slots on remote hosts.
PEND_COMPOUND_RESREQ_OLD_LEASE_HOST

The job cannot get slots on pre-7Update5 remote hosts.
PEND_COMPOUND_RESREQ_TOPLIB_HOST

Hosts using LSF HPC system integrations do not support compound resource 
requirements.
SUSP_USER_REASON     

Virtual code. Not a reason. 
SUSP_USER_RESUME     

bresumed a USUSP job.
SUSP_USER_STOP       

User bstoped a started job.
SUSP_QUEUE_REASON    



Platform LSF API Reference 291

Virtual code. Not a reason.
SUSP_QUEUE_WINDOW     

Queue closed by its time window.
SUSP_RESCHED_PREEMPT

Preempted for re-scheduling.
SUSP_HOST_LOCK       

Host is locked now.
SUSP_LOAD_REASON     

Load index - has subreasons.
SUSP_MBD_PREEMPT     

By jobs in preemptive queue.
SUSP_SBD_PREEMPT     

By jobs in preemptive queue.
SUSP_QUE_STOP_COND   

Queue's STOP_COND is true.
SUSP_QUE_RESUME_COND 

Queue's RESUME_COND is false.
SUSP_PG_IT           

PG_SUSP_IT not satisfied.
SUSP_REASON_RESET    

Just reset the last reason.
SUSP_LOAD_UNAVAIL    

Load is unavailable.
SUSP_ADMIN_STOP 

admin bstoped a started job.
SUSP_RES_RESERVE

Don't have enough resource to resume the job.
SUSP_MBD_LOCK 

The job is lock by mbatchd.
SUSP_RES_LIMIT 

The job is terminated due to resource limit.
SUB_REASON_RUNLIMIT 

Sub reason of SUSP_RES_LIMIT: RUNLIMIT is reached.
SUB_REASON_DEADLINE    

Sub reason of SUSP_RES_LIMIT: DEADLINE is reached.
SUB_REASON_PROCESSLIMIT

Sub reason of SUSP_RES_LIMIT: PROCESSLIMIT is reached.



PARAMETERS

292 Platform LSF API Reference

SUB_REASON_CPULIMIT    

Sub reason of SUSP_RES_LIMIT: CPULIMIT is reached.
SUB_REASON_MEMLIMIT    

Sub reason of SUSP_RES_LIMIT: MEMLIMIT is reached.
SUB_REASON_THREADLIMIT 

Sub reason of SUSP_RES_LIMIT: THREADLIMIT is reached.
SUB_REASON_SWAPLIMIT   

Sub reason of SUSP_RES_LIMIT: SWAPLIMIT is reached.
SUSP_SBD_STARTUP

The suspending action is being taken on the job when the sbatchd is restarting up.
SUSP_HOST_LOCK_MASTER  

Host is locked by master LIM.
SUSP_HOST_RSVACTIVE    

An advance reservation using the host is active.
SUSP_DETAILED_SUBREASON

There is a detailed reason in the subreason field.
SUSP_GLB_LICENSE_PREEMPT

The job is preempted by glb.
SUSP_CRAYX1_POSTED

Job not placed by Cray X1.
SUB_REASON_CRAYX1_RESTART

Application is in the process of being restarted and it is under the control of CPR.
SUB_REASON_CRAYX1_DEPTH

Depth does not match those allowed by the gate.
SUB_REASON_CRAYX1_GID       

GID does not match those allowed by the gate.
SUB_REASON_CRAYX1_GASID     

No GASID is available.
SUB_REASON_CRAYX1_HARDLABEL 

Hard label does not match those allowed by the gate.
SUB_REASON_CRAYX1_LIMIT

Limit exceeded in regions or domains.
SUB_REASON_CRAYX1_MEMORY

Memory size does not match those allowed by the gate.
SUB_REASON_CRAYX1_SOFTLABEL 

Soft label does not match those allowed by the gate.
SUB_REASON_CRAYX1_SIZE      



Platform LSF API Reference 293

Size gate (width times depth larger than gate allows).
SUB_REASON_CRAYX1_TIME      

Time limit does not match those allowed by the gate.
SUB_REASON_CRAYX1_UID       

UID does not match those allowed by the gate.
SUB_REASON_CRAYX1_WIDTH     

Width does not match those allowed by the gate.
SUSP_ADVRSV_EXPIRED 

Job suspended when its advance reservation expired.
PEND_HOST_EXCLUSIVE_RESERVE

Exclusive job reserves slots on host.
PEND_RMT_BAD_RUNLIMIT

Job's required RUNLIMIT exceeds RUNTIME * JOB_RUNLIMIT_RATIO of the 
remote cluster
PEND_RMT_OVER_QUEUE_LIMIT

Job's required RUNTIME exceeds the hard runtime limit in the remote queue
PEND_JGRP_JLIMIT

The specified job group has reached its job limit
PEND_RMS_RESREQ_RAILS

Cannot satisfy RMS rails requirement
PEND_RMS_RESREQ_RAILMASK

Cannot satisfy RMS railmask requirement
PEND_RMS_RESREQ_BASE

Cannot satisfy RMS base node requirement 
jInfoH jInfoH contains job information.

numJobs

The number of jobs in the connection
jobIds

An array of job identification numbers in the conection
numHosts

The number of hosts in the connection
hostNames

An array of host names in the connection
ld From lsb_suspreason, when reasons is SUSP_LOAD_REASON, ld is used to 

determine the name of any external load indices. ld uses the most recent load index 
log in the lsb.events file.
The loadIndexLog structure contains the following fields:
nIdx



RETURN VALUES

294 Platform LSF API Reference

Number of load indices
names

Names of load indices
clusterId MultiCluster cluster ID. If clusterId is greater than or equal to 0, the job is a 

pending remote job, and lsb_pendreason checks for host_name@cluster_name. If 
host name is needed, it should be found in jInfoH->remoteHosts. If the remote 
host name is not available, the constant string remoteHost is used.

RETURN VALUES
character:reasons The function is successful. It returns a reason why the job is pending. 

character:NULL The function fails. The reason code is bad.

ERRORS
If no PEND reason is found, the function fails and lsberrno is set to indicate the 
error.

SEE ALSO

Related APIs:
lsb_geteventrec() - Returns an event record from a log files

Equivalent line command
bjobs -p

Files:
${LSF_ENVDIR-/etc}/lsf.conf



Platform LSF API Reference 295

lsb_perror()
Prints a batch LSF error message on stderr.

DESCRIPTION
lsb_perror() prints a batch LSF error message on stderr. The usrMsg is printed 
out first, followed by a ":" and the batch error message corresponding to lsberrno. 
lsb_perror - Print LSBATCH error message on stderr. In addition to the error 
message defined by lsberrno, user supplied message usrMsg1 is printed out first 
and a ':' is added to separate * usrMsg1 and LSBATCH error message. 

SYNOPSIS
#include <lsf/lsbatch.h>

void lsb_perror (char *usrMsg)

PARAMETERS
*usrMsg A user supplied error message. 

RETURN VALUES
None Prints out the user supplied error message. 

ERRORS
If the function fails, lsberrno is set to indicate the error. 

SEE ALSO

Related APIs
none

Equivalent line command
none

Files
none



lsb_postjobmsg()

296 Platform LSF API Reference

lsb_postjobmsg()
Sends messages and data posted to a job.

DESCRIPTION
Use lsb_postjobmsg() to post a message and data to a job, open a TCP 
connection, and transfer attached message and data from the mbatchd. Use 
lsb_readjobmsg() to display messages and copy data files posted by 
lsb_postjobmsg().
While you can post multiple messages and attached data files to a job, you must call 
lsb_postjobmsg() for each message and attached data file you want to post. By 
default, lsb_postjobmsg() posts a message to position 0 of the message index 
(msgId) (see PARAMETERS) of the specified job. To post additional messages to a 
job, call lsb_postjobmsg() and increment the message index . 
lsb_readjobmsg() reads posted job messages by their position in the message 
index.
If a data file is attached to a message and the flag EXT_ATTA_POST is set, use the 
JOB_ATTA_DIR parameter in lsb.params(5) to specify the directory where 
attachment data fies are saved. The directory must have at least 1MB of free space. 
The mbatchd checks for available space in the job attachment directory before 
transferring the file.
Use the MAX_JOB_ATTA_SIZE parameter in lsb.params(5) to set a maximum size 
for job message attachments.
Users can only send messages and data from their own jobs. Root and LSF 
administrators can also send messages of jobs submtted by other users, but they 
cannot attach data files to jobs owned by other users.
You can post messages and data to a job until it is cleaned from the system. You 
cannot send messages and data to finished or exited jobs.

SYNOPSIS
#include <lsf/lsbatch.h>
#include <time.h>

int lsb_readjobmsg(struct jobExternalMsgReq *jobExternalMsg, 
char *filename)

struct jobExternalMsgReq {
int options;
LS_LONG_INT jobId;
int msgIdx;
char *desc;
int userId;
long dataSize;
time_t postTime;
int dataStatus;

};

PARAMETERS
filename Name of attached data file. If no file is attached, use NULL.



Platform LSF API Reference 297

jobExternalMsg This structure contains the information required to define an external message of a 
job.
options

Specifies if the message has an attachment to be posted.
<lsf/lsbatch.h> defines the following flags constructed from bits. These flags 
correspond to the options. 
EXT_MSG_POST

Post an external job message. Don’t attach a data file.
EXT_ATTA_POST

Post an external job message. Attach a data file.
When the message is read by lsb_readjobmsg(), if a data file is not attached, the 
error message “The attached data of the message is not available” is displayed, and 
the external job message is displayed.
jobId

The system generated job Id of the job.
msgIdx

The message index. A job can have more than one message. Use msgIdx in an array 
to index messages. The default is position 0.
desc

The text of the message.
userId

The userId of the author of the message.
dataSize

The size of the data file. If no data file is attached, the size is 0.
postTime

The time the author posted the message.
dataStatus

The status of the attached data file.

RETURN VALUES
integer:value The successful function returns a socket number. 

integer:0 The EXT_ATTA_POST bit of options is not set or there is no attached data.
integer:-1 The function failed.

ERRORS
If the function fails, lserrno is set to indicate the error.



SEE ALSO

298 Platform LSF API Reference

SEE ALSO

Related APIs
lsb_readjobmsg() - Reads messages and data posted to a job

Equivalent line command
bpost 

Files
lsb.params

JOB_ATTA_DIR

LSB_SHAREDIR/info/ 



Platform LSF API Reference 299

lsb_puteventrec()
Puts information of an eventRec structure pointed to by logPtr into a log file.

DESCRIPTION
lsb_puteventrec() puts information of an eventRec structure pointed to by 
logPtr into a log file. log_fp is a pointer pointing to the log file name that could 
be either event a log file or job log file.
See lsb_geteventrec() for detailed information about parameters.

SYNOPSIS
#include <lsf/lsbatch.h>

int lsb_puteventrec(FILE *log_fp, struct eventRec *logPtr)

struct eventRec {

char version[MAX_VERSION_LEN];

int type;

time_t eventTime;

union eventLog eventLog;

};

union  eventLog {

    struct jobNewLog jobNewLog;

    struct jobStartLog jobStartLog;

    struct jobStatusLog jobStatusLog;

 struct sbdJobStatusLog sbdJobStatusLog;

    struct jobSwitchLog jobSwitchLog;

    struct jobMoveLog jobMoveLog;

    struct queueCtrlLog queueCtrlLog;

 struct newDebugLog  newDebugLog;

    struct hostCtrlLog hostCtrlLog;

    struct mbdStartLog mbdStartLog;

    struct mbdDieLog mbdDieLog;

    struct unfulfillLog unfulfillLog;

    struct jobFinishLog jobFinishLog;

    struct loadIndexLog loadIndexLog;

    struct migLog migLog;

 struct calendarLog calendarLog;

    struct jobForwardLog jobForwardLog;

    struct jobAcceptLog jobAcceptLog;

 struct statusAckLog statusAckLog;

    struct signalLog signalLog;

    struct jobExecuteLog jobExecuteLog;

    struct jobMsgLog jobMsgLog;



SYNOPSIS

300 Platform LSF API Reference

 struct jobMsgAckLog jobMsgAckLog;

    struct jobRequeueLog jobRequeueLog;

    struct chkpntLog chkpntLog;

 struct sigactLog sigactLog;

    struct jobOccupyReqLog jobOccupyReqLog;

    struct jobVacatedLog jobVacatedLog;

    struct jobExceptionLog jobExceptionLog;

 struct jobCleanLog jobCleanLog;

    struct Log jgrpNewLog;

    struct jgrpCtrlLog jgrpCtrlLog;

 struct jobForceRequestLog jobForceRequestLog;

    struct logSwitchLog logSwitchLog;

    struct jobModLog jobModLog;

 struct jgrpStatusLog jgrpStatusLog;

 struct jobAttrSetLog jobAttrSetLog; 

      struct jobExternalMsgLog jobExternalMsgLog;

    struct jobChunkLog jobChunkLog;

 struct sbdUnreportedStatusLog sbdUnreportedStatusLog;

    struct rsvFinishLog rsvFinishLog;

 struct cpuProfileLog cpuProfileLog;

    struct dataLoggingLog dataLoggingLog;

    struct jobRunRusageLog   jobRunRusageLog;

    struct eventEOSLog       eventEOSLog;

    struct slaLog            slaLog;

 struct perfmonLog        perfmonLog;

};

struct xFile {

    char *subFn;

    char *execFn;

    int options;

};

struct jobAttrSetLog {   /* Structure for log_jobattrset() and other calls */

    int       jobId;

    int       idx;

    int       uid;

    int       port;

    char      *hostname;

};

struct logSwitchLog { /* Records of logged events */

    int lastJobId;

};

struct dataLoggingLog {         /* Records of job cpu data logged event */

    time_t loggingTime;



Platform LSF API Reference 301

};

struct jgrpNewLog {

    int    userId;

    time_t submitTime;

    char   userName[MAX_LSB_NAME_LEN];

    char   *depCond;

    char   *timeEvent;

    char   *groupSpec;

    char   *destSpec;

    int    delOptions;

    int    delOptions2;

    int    fromPlatform;

    char   *sla;

    int  maxJLimit;

};

struct jgrpCtrlLog {

    int    userId;

    char   userName[MAX_LSB_NAME_LEN];

    char   *groupSpec;

    int    options;

    int    ctrlOp;

};

struct jgrpStatusLog {

    char   *groupSpec;

    int    status;

    int    oldStatus;

};

struct jobNewLog {        /* logged in lsb.events when a job is submitted */

    int     jobId;

    int     userId;

    char    userName[MAX_LSB_NAME_LEN];

    int     options;

    int     options2;

    int     numProcessors;

    time_t  submitTime;

    time_t  beginTime;

    time_t  termTime;

    int     sigValue;

    int     chkpntPeriod;

    int     restartPid;

    int     rLimits[LSF_RLIM_NLIMITS];

    char    hostSpec[MAXHOSTNAMELEN];

    float   hostFactor;



SYNOPSIS

302 Platform LSF API Reference

    int     umask;

    char    queue[MAX_LSB_NAME_LEN];

    char    *resReq;

    char    fromHost[MAXHOSTNAMELEN];

    char    *cwd;

    char    *chkpntDir;

    char    *inFile;

    char    *outFile;

    char    *errFile;

    char    *inFileSpool;

    char    *commandSpool;

    char    *jobSpoolDir; 

    char    *subHomeDir;

    char    *jobFile;

    int     numAskedHosts;

    char    **askedHosts;

    char    *dependCond;

    char    *timeEvent;

    char    *jobName;

    char    *command;

    int     nxf;

    struct xFile *xf;

    char    *preExecCmd;

    char    *mailUser;

    char    *projectName;

    int     niosPort;

    int     maxNumProcessors;

    char    *schedHostType;

    char    *loginShell;

    char    *userGroup;

    char    *exceptList;

    int     idx;

    int     userPriority;

    char    *rsvId;

    char    *jobGroup; 

    char    *extsched;

    int     warningTimePeriod;

    char    *warningAction;

    char    *sla;

    int     SLArunLimit;

    char    *licenseProject;

    int     options3;

    char    *app;



Platform LSF API Reference 303

    char    *postExecCmd;

    int     runtimeEstimation;

    char    *requeueEValues;

    int     initChkpntPeriod;

    int     migThreshold;

};

struct jobModLog {

    char    *jobIdStr;

    int     options;

    int     options2;

    int     delOptions;

    int     delOptions2;

    int     userId;

    char    *userName;

    int     submitTime;

    int     umask;

    int     numProcessors;

    int     beginTime;

    int     termTime;

         int     sigValue;

    int     restartPid;

    char    *jobName;

    char    *queue;

    int     numAskedHosts;

    char    **askedHosts;

    char    *resReq;

    int     rLimits[LSF_RLIM_NLIMITS];

    char    *hostSpec;

    char    *dependCond;

    char    *timeEvent;

    char    *subHomeDir;

    char    *inFile;

    char    *outFile;

    char    *errFile;

    char    *command;

    char    *inFileSpool;

    char    *commandSpool;

    int     chkpntPeriod;

    char    *chkpntDir;

    int     nxf;

    struct  xFile *xf;

    char    *jobFile;

    char    *fromHost;



SYNOPSIS

304 Platform LSF API Reference

    char    *cwd;

    char    *preExecCmd;

    char    *mailUser;

    char    *projectName;

    int     niosPort;

    int     maxNumProcessors;

    char    *loginShell;

    char    *schedHostType;

    char    *userGroup;

    char    *exceptList;

    int     userPriority;

    char    *rsvId;

    char    *extsched;

    int     warningTimePeriod;

    char    *warningAction;

    char    *jobGroup;

    char    *sla;

    char    *licenseProject;

    int     options3;

    int     delOptions3;

    char    *app;

    char    *apsString;

    char   *postExecCmd;

    int      runtimeEstimation;

};

struct jobStartLog {

LS_LONG_INT jobId;

int jStatus;

int jobPid;

int jobPGid;

float hostFactor;

int numExHosts;

char **execHosts;

 char   *queuePreCmd; 

    char   *queuePostCmd; 

          int    jFlags;

    char   *userGroup; 

    int    idx; 

    char   *additionalInfo; 

    int    duration4PreemptBackfill;

}; 

struct jobStartAcceptLog {  /* logged in lsb.events when a job start request is accepted 
*/



Platform LSF API Reference 305

    int    jobId;

    int    jobPid;

    int    jobPGid;

    int    idx;

};

struct jobExecuteLog {   /* logged in lsb.events when a job is executed */

    int    jobId;

    int    execUid;

    char   *execHome;

    char   *execCwd;

    int    jobPGid;

    char   *execUsername;

    int    jobPid;

    int    idx;

    char   *additionalInfo;

    int    SLAscaledRunLimit;

    int    position;

    char   *execRusage;

   int    duration4PreemptBackfill;

};

struct jobStatusLog {

int  jobId;

int  jStatus;

int reasons;

 int    subreasons;

float cpuTime;

time_t endTime;

 int    ru;

    struct lsfRusage lsfRusage;

    int    jFlags;

    int    exitStatus;

    int    idx;

    int    exitInfo;

};

struct sbdJobStatusLog {     /* logged when a job's status is changed */

    int    jobId;

    int    jStatus;

    int    reasons;

    int    subreasons;

    int    actPid;

    int    actValue;

    time_t actPeriod;

    int    actFlags;



SYNOPSIS

306 Platform LSF API Reference

    int    actStatus;

    int    actReasons;

    int    actSubReasons;

    int    idx;

    int    sigValue;

    int    exitInfo;

};

struct sbdUnreportedStatusLog {   /* job status that we could send to MBD */

    int    jobId;

    int    actPid;

    int    jobPid;

    int    jobPGid;

    int    newStatus;

    int    reason;

    int    subreasons;

    struct lsfRusage lsfRusage;

    int    execUid;

    int    exitStatus;

    char   *execCwd;

    char   *execHome;

    char   *execUsername;

    int    msgId;

    struct jRusage runRusage;

    int    sigValue;

    int    actStatus;

    int    seq;

    int    idx;

    int    exitInfo;

};

struct jobSwitchLog {     /* logged when a job is switched to another queue */ 

    int    userId; 

    int    jobId; 

    char   queue[MAX_LSB_NAME_LEN]; 

    int    idx; 

    char   userName[MAX_LSB_NAME_LEN]; 

}; 

struct jobMoveLog {       /* logged when a job is moved to another position */ 

    int    userId; 

    int    jobId; 

    int    position; 

    int    base; 

    int    idx; 

    char   userName[MAX_LSB_NAME_LEN]; 



Platform LSF API Reference 307

}; 

struct chkpntLog {

    int jobId;

    time_t period;

    int pid;

    int ok;

    int flags;

    int    idx;

};

struct jobRequeueLog {

    int   jobId;

    int   idx;

};

struct jobCleanLog {

    int   jobId;

    int   idx;

};

struct jobExceptionLog {

    int jobId;

    int    exceptMask;

    int    actMask;

    time_t timeEvent;

    int    exceptInfo;

    int    idx;

};

struct sigactLog {

    int      jobId;

    time_t   period;

    int      pid;

    int      jStatus;

    int      reasons;

    int      flags;

    char     *signalSymbol;

    int      actStatus;

    int      idx;

};

struct migLog {

    int    jobId;

    int    numAskedHosts;

    char   **askedHosts;

    int    userId;

    int    idx;

    char   userName[MAX_LSB_NAME_LEN];



SYNOPSIS

308 Platform LSF API Reference

};

struct signalLog {

    int    userId;

    int    jobId;

    char   *signalSymbol;

    int    runCount;

    int    idx;

    char   userName[MAX_LSB_NAME_LEN];

};

struct queueCtrlLog { /* logged when bqc command is invoked */

int opCode;

char queue[MAX_LSB_NAME_LEN];

int  userId;

    char userName[MAX_LSB_NAME_LEN];

    char message[MAXLINELEN];

};

struct newDebugLog {

    int opCode;

    int level;

    int logclass;

    int turnOff;

    char logFileName[MAXLSFNAMELEN];

    int userId;

 }; 

struct hostCtrlLog { /* logged when dynamic hosts are added to group */ 

int opCode;

char host[MAXHOSTNAMELEN];

 int  userId;

    char userName[MAX_LSB_NAME_LEN];

    char message[MAXLINELEN];

};

struct hgCtrlLog {       /* logged when dynamic hosts are added to group */ 

    int    opCode; 

    char   host[MAXHOSTNAMELEN]; 

    char   grpname[MAXHOSTNAMELEN]; 

    int    userId; 

    char   userName[MAX_LSB_NAME_LEN]; 

    char   message[MAXLINELEN]; 

}; 

struct mbdStartLog {

    char master[MAXHOSTNAMELEN];

    char cluster[MAXLSFNAMELEN];

    int  numHosts;



Platform LSF API Reference 309

    int  numQueues;

}; 

struct mbdDieLog {

    char master[MAXHOSTNAMELEN];

    int  numRemoveJobs;

    int  exitCode;

    char   message[MAXLINELEN];

}; 

struct unfulfillLog {           /* logged before mbatchd dies */

    int  jobId;

    int  notSwitched;

    int  sig;

    int  sig1;

    int  sig1Flags;

    time_t chkPeriod;

    int  notModified;

    int  idx;

    int  miscOpts4PendSig;

}; 

struct jobFinishLog {          /* logged in lsb.acct when a job finished */

    int    jobId;

    int    userId;

    char   userName[MAX_LSB_NAME_LEN];

    int    options;

    int    numProcessors;

    int    jStatus;

    time_t submitTime;

    time_t beginTime;

    time_t termTime;

    time_t startTime;

    time_t endTime;

    char   queue[MAX_LSB_NAME_LEN];

    char   *resReq;

    char   fromHost[MAXHOSTNAMELEN];

    char   *cwd;

    char   *inFile;

    char   *outFile;

    char   *errFile;

    char   *inFileSpool;

    char   *commandSpool;

    char   *jobFile;

    int    numAskedHosts;

    char   **askedHosts;



SYNOPSIS

310 Platform LSF API Reference

    float  hostFactor;

    int    numExHosts;

    char   **execHosts;

    float  cpuTime;

    char   *jobName;

    char   *command;

    struct  lsfRusage lsfRusage;

    char   *dependCond;

    char   *timeEvent;

    char   *preExecCmd;

    char   *mailUser;

    char   *projectName;

    int    exitStatus;

    int    maxNumProcessors;

    char   *loginShell;

    int    idx;

    int    maxRMem;

    int    maxRSwap;

    char   *rsvId;

    char   *sla;

    int    exceptMask;

    char   *additionalInfo;

    int    exitInfo;

    int    warningTimePeriod;

    char   *warningAction;

    char   *chargedSAAP;

    char   *app;

    char   *postExecCmd;

    int    runtimeEstimation;

 char   *jgroup;

};

struct loadIndexLog {

    int  nIdx;

    char **name;

}; 

struct calendarLog {

    int    options;

    int    userId;

    char   *name;

    char   *desc;

    char   *calExpr;

};

struct jobForwardLog {



Platform LSF API Reference 311

    int    jobId;

    char   *cluster;

    int    numReserHosts;

    char   **reserHosts;

    int    idx;

          int    jobRmtAttr;

};

struct jobAcceptLog {

    int         jobId;

    LS_LONG_INT remoteJid;

    char        *cluster;

    int         idx;

    int         jobRmtAttr;

};

struct statusAckLog {

    int jobId;

    int statusNum;

    int    idx;

};

struct jobMsgLog {

    int   usrId;

    int   jobId;

    int   msgId;

    int   type;

    char  *src;

    char  *dest;

    char  *msg;

    int   idx;

};

struct jobMsgAckLog {

    int usrId;

    int jobId;

    int msgId;

    int type;

    char *src;

    char *dest;

    char *msg;

    int    idx;

};

struct jobOccupyReqLog {     

    int userId;

    int jobId;

    int numOccupyRequests;



SYNOPSIS

312 Platform LSF API Reference

    void *occupyReqList;

    int    idx;

    char userName[MAX_LSB_NAME_LEN];

};

struct jobVacatedLog {        

    int userId;

    int jobId;

    int    idx;

    char userName[MAX_LSB_NAME_LEN];

};

struct jobForceRequestLog {

    int     userId;

    int     numExecHosts;

    char**  execHosts;

    int     jobId;

    int     idx;

    int     options;

    char    userName[MAX_LSB_NAME_LEN];

    char   *queue;

};

struct jobChunkLog {

    long         membSize;

    LS_LONG_INT *membJobId;

    long         numExHosts;

    char       **execHosts;

};

struct jobExternalMsgLog {

    int      jobId;

          int      idx;

    int      msgIdx;

    char     *desc;

    int      userId;

    long     dataSize;

    time_t   postTime;

    int      dataStatus;

    char     *fileName;

    char     userName[MAX_LSB_NAME_LEN];

};

struct rsvRes {

    char     *resName; 

    int      count;

    int      usedAmt;



Platform LSF API Reference 313

}; 

struct rsvFinishLog {           /* for advanced reservation */

    time_t        rsvReqTime;

    int           options;

    int         uid;

    char          *rsvId;

    char          *name; 

    int           numReses; 

    struct rsvRes *alloc; 

    char          *timeWindow; 

    time_t        duration; 

    char          *creator;

}; 

struct cpuProfileLog {

    char    servicePartition[MAX_LSB_NAME_LEN];

    int     slotsRequired;

    int     slotsAllocated;

    int     slotsBorrowed;

    int     slotsLent;

};

struct jobRunRusageLog {         /* log the running rusage of a job in the lsb.stream 

file */

    int              jobid;

    int              idx;

    struct jRusage   jrusage;

};

struct slaLog {              /* SLA event */

    char   *name;            

    char   *consumer;        

    int    goaltype;         

    int    state;            

    int    optimum;          

    int    counters[NUM_JGRP_COUNTERS]; 

}; 

struct perfmonLog {              /* performance metrics log in lsb.stream */

    int    samplePeriod;

    int    totalQueries;

    int    jobQuries;

    int    queueQuries;

    int    hostQuries;

    int    submissionRequest;

    int    jobSubmitted;

    int    dispatchedjobs;



PARAMETERS

314 Platform LSF API Reference

    int    jobcompleted;

    int    jobMCSend;

    int    jobMCReceive;

    time_t startTime;

};

struct eventEOSLog {     /* Event end of stream. */

    int   eos;

      };

PARAMETERS
*logPtr The eventRec structure pointed to by logPtr into a log file. 
*log_fp A pointer pointing to the log file name that could be either event a log file or job log 

file. 

 RETURN VALUES
integer:0 The function was successful, and the information of eventRec structure has been 

put into log file pointed by log_fp
integer:-1 Function failed. 

ERRORS
If the function fails, lsberrno is set to indicate the error.

SEE ALSO

Related APIs
lsb_geteventrec() 

Equivalent line command
none

Files
lsb.events

lsb.acct



Platform LSF API Reference 315

lsb_queuecontrol()
Changes the status of a queue.

DESCRIPTION
lsb_queuecontrol() changes the status of a queue.
Any program using this API must be setuid to root if LSF_AUTH is not defined in the 
lsf.conf file. 
If a queue is inactivated by its dispatch window (see lsb.queues), then it cannot be 
re-activated by this call. 

SYNOPSIS
#include <lsf/lsbatch.h>

int lsb_queuecontrol (struct queueCtrlReq *req)

struct queueCtrlReq {

char *queue

int opCode

char *message

PARAMETERS
*queue The name of the queue to be controlled. 
opCode One of the following operation codes: 

QUEUE_OPEN

Open the queue to accept jobs. 
QUEUE_CLOSED

Close the queue so it will not accept jobs. 
QUEUE_ACTIVATE

Activate the queue to dispatch jobs. 
QUEUE_INACTIVATE

Inactivate the queue so it will not dispatch jobs. 
message The message attached by the administrator.

 RETURN VALUES
integer:0 The function was successful. 

integer:-1 Function failed. 

ERRORS
If the function fails, lsberrno is set to indicate the error.



SEE ALSO

316 Platform LSF API Reference

SEE ALSO

Related APIs
lsb_queueinfo() - Returns information about queues

Equivalent line command
none

Files 
lsf.conf



Platform LSF API Reference 317

lsb_queueinfo()
Returns information about batch queues.

DESCRIPTION
lsb_queueinfo() gets information about batch queues. See lsb.queues for more 
information about queue parameters.

SYNOPSIS
#include <lsf/lsbatch.h>

struct queueInfoEnt *lsb_queueinfo(char **queues, 

int *numQueues, char *hosts, char *users, 

int options)

struct queueInfoEnt {

    char   *queue;

    char   *description;

    int    priority;

    short  nice;

    char   *userList;

    char   *hostList;

    char   *hostStr;

    int    nIdx;

    float  *loadSched;

    float  *loadStop;

    int    userJobLimit;

    float  procJobLimit;

    char   *windows;

    int    rLimits[LSF_RLIM_NLIMITS];

    char   *hostSpec;

    int    qAttrib;

    int    qStatus;

    int    maxJobs;

    int    numJobs;

    int    numPEND;

    int    numRUN;

    int    numSSUSP;

    int    numUSUSP;

    int    mig;

    int    schedDelay;

    int    acceptIntvl;

    char   *windowsD;

    char   *nqsQueues;

    char   *userShares;



SYNOPSIS

318 Platform LSF API Reference

    char   *defaultHostSpec;

    int    procLimit;

    char   *admins;

    char   *preCmd;

    char   *postCmd;

    char   *requeueEValues;

    int    hostJobLimit;

    char   *resReq;

    int    numRESERVE;

    int    slotHoldTime;

    char   *sndJobsTo;

    char   *rcvJobsFrom;

    char   *resumeCond;

    char   *stopCond;

    char   *jobStarter;

    char   *suspendActCmd;

    char   *resumeActCmd;

    char   *terminateActCmd;

    int    sigMap[LSB_SIG_NUM];

    char   *preemption;

    int    maxRschedTime;

    int    numOfSAccts;

    struct shareAcctInfoEnt*  shareAccts;

    char   *chkpntDir;

    int    chkpntPeriod;

    int    imptJobBklg;

    int    defLimits[LSF_RLIM_NLIMITS];

    int    chunkJobSize;

    int    minProcLimit;

    int    defProcLimit;

    char   *fairshareQueues;

    char   *defExtSched;

    char   *mandExtSched;

    int    slotShare;

    char   *slotPool;

    int    underRCond;

    int    overRCond;

    float  idleCond;

    int    underRJobs;

    int    overRJobs;

    int    idleJobs;

    int    warningTimePeriod;

    char   *warningAction;



Platform LSF API Reference 319

    char   *qCtrlMsg; 

 char   *acResReq;

    int    symJobLimit;

    char   *cpuReq;

    int    proAttr;

    int    lendLimit;

    int    hostReallocInterval;

    int    numCPURequired;

    int    numCPUAllocated;

    int    numCPUBorrowed;

    int    numCPULent;

    int    schGranularity;

    int    symTaskGracePeriod;

  int    minOfSsm;

    int    maxOfSsm;

    int    numOfAllocSlots;

    char *servicePreemption;

    int    provisionStatus;

    int    minTimeSlice; 

    char   *queueGroup;

    int    numApsFactors;

    struct apsFactorInfo *apsFactorInfoList;

    struct apsFactorMap  *apsFactorMaps;

    struct apsLongNameMap *apsLongNames;

int    maxJobPreempt;

int    maxPreExecRetry;

int    localMaxPreExecRetry;

    int    maxJobRequeue;

int    usePam;

    int    cu_type_exclusive;

    char   cu_str_exclusive;

};

struct shareAcctInfoEnt {

    char   *shareAcctPath;

    int    shares;

    float  priority;

    int    numStartJobs;

    float  histCpuTime;

    int    numReserveJobs;

    int    runTime;

    int    shareAdjustment;

};



PARAMETERS

320 Platform LSF API Reference

PARAMETERS
**queues An array of names of queues of interest. 

*numQueues The number of queue names. 
To get information on all queues, set *numQueues to 0; *numQueues will be updated 
to the actual number of queues when this call returns. 
If *numQueues is 1 and queues is NULL, information on the system default queue is 
returned. 

*hosts The host or cluster names. If hosts is not NULL, then only the queues that are 
enabled for the hosts are of interest. 

*user The name of user. If user is not NULL, then only the queues that are enabled for the 
user are of interest. 

options Reserved for future use; supply 0. 

queueInfoEnt structure fields
The queueInfoEnt structure contains the following fields: 

queue The name of the queue. 
description Describes the typical use of the queue. 

priority Defines the priority of the queue. This determines the order in which the job queues 
are searched at job dispatch time: queues with higher priority values are searched 
first. (This is contrary to UNIX process priority ordering.) 

nice Defines the nice value at which jobs in this queue will be run. 
userList A blank-separated list of names of users allowed to submit jobs to this queue. 
hostList A blank-separated list of names of hosts to which jobs in this queue may be 

dispatched. 
hostStr Original HOSTS string in case "-" is used. 

nIdx The number of load indices in the loadSched and loadStop arrays. 
loadSched & loadStop The queue and host loadSched and loadStop arrays control batch job dispatch, 

suspension, and resumption. 
The values in the loadSched array specify thresholds for the corresponding load 
indices. Only if the current values of all specified load indices of a host are within 
(below or above, depending on the meaning of the load index) the corresponding 
thresholds of this queue, will jobs in this queue be dispatched to the host. The same 
conditions are used to resume jobs dispatched from this queue that have been 
suspended on the host. 
Similarly, the values in the loadStop array specify the thresholds for job 
suspension. If any of the current load index values of a host goes beyond a queue’s 
threshold, jobs from the queue will be suspended. 
For an explanation of the fields in the loadSched and loadStop arrays, see 
lsb_hostinfo(). 

userJobLimit Per-user limit on the number of jobs that can be dispatched from this queue and 
executed concurrently. 



Platform LSF API Reference 321

procJobLimit Per-processor limit on the number of jobs that can be dispatched from this queue 
and executed concurrently. 

windows A blank-separated list of time windows describing the run window of the queue. 
When a queue’s run window is closed, no job from this queue will be dispatched. 
When the run window closes, any running jobs from this queue will be suspended 
until the run window reopens, when they will be resumed. The default is no 
restriction, or always open (i.e., 24 hours a day, seven days a week). 
A time window has the format begin_time–end_time. Time is specified in the 
format [day:]hour[:minute], where all fields are numbers in their respective 
legal ranges: 0(Sunday)-6 for day, 0-23 for hour, and 0-59 for minute. The default 
value for minute is 0 (on the hour); the default value for day is every day of the 
week. The begin_time and end_time of a window are separated by ‘–’, with no 
white space (i.e., blank or TAB) in between. Both begin_time and end_time must 
be present for a time window. 
Note that this run window only applies to batch jobs; interactive jobs scheduled by 
the LSF Load Information Manager (LIM) are controlled by another set of run 
windows. 

rLimits[LSF_RLIM_NLIMITS]

The per-process UNIX hard resource limits for all jobs submitted to this queue (see 
getrlimit() and lsb.queues). The default values for the resource limits are 
unlimited, indicated by -1. The constants used to index the rLimits array and the 
corresponding resource limits are listed below. 
◆ LSF_RLIMIT_CPU CPULIMIT
◆ LSF_RLIMIT_FSIZE FILELIMIT
◆ LSF_RLIMIT_DATA DATALIMIT
◆ LSF_RLIMIT_STACK STACKLIMIT
◆ LSF_RLIMIT_CORE CORELIMIT
◆ LSF_RLIMIT_RSS MEMLIMIT
◆ LSF_RLIMIT_RUN RUNLIMIT
◆ LSF_RLIMIT_PROCESS PROCESSLIMIT
◆ LSF_RLIMIT_SWAP SWAPLIMIT
◆ LSF_RLIMIT_THREAD 
◆ LSF_RLIMIT_NOFILE
◆ LSF_RLIMIT_OPENMAX
◆ LSF_RLIMIT_VMEM

hostSpec A host name or host model name. If the queue CPULIMIT or RUNLIMIT gives a host 
specification, hostSpec will be that specification. Otherwise, if defaultHostSpec 
(see below) is not NULL, hostSpec will be defaultHostSpec. Otherwise, if 
DEFAULT_HOST_SPEC is defined in the lsb.params file, (see lsb.params), 
hostSpec will be this value. Otherwise, hostSpec will be the name of the host with 
the largest CPU factor in the cluster. 

qAttrib The attributes of the queue. The bitwise inclusive OR of some of the following: 
Q_ATTRIB_EXCLUSIVE



PARAMETERS

322 Platform LSF API Reference

This queue accepts jobs which request exclusive execution. 
Q_ATTRIB_DEFAULT

This queue is a default queue of LSF. 
Q_ATTRIB_FAIRSHARE

This queue uses the FAIRSHARE scheduling policy. The user shares are given in 
userShares. (See below.) 
Q_ATTRIB_PREEMPTIVE

This queue uses the PREEMPTIVE scheduling policy. 
Q_ATTRIB_NQS

This is an NQS forward queue. The target NQS queues are given in nqsQueues. (See 
below.) For NQS forward queues, the hostList, procJobLimit, windows, mig and 
windowsD fields are meaningless. 
Q_ATTRIB_RECEIVE

This queue can receive jobs from other clusters.
Q_ATTRIB_PREEMPTABLE

This queue uses a preemptable scheduling policy.
Q_ATTRIB_BACKFILL

This queue uses a backfilling policy.
Q_ATTRIB_HOST_PREFER

This queue uses a host preference policy.
Q_ATTRIB_NONPREEMPTIVE

This queue can’t preempt any other another queue.
Q_ATTRIB_NONPREEMPTABLE

This queue can’t be preempted from any queue.
Q_ATTRIB_NO_INTERACTIVE

This queue does not accept batch interactive jobs. 
Q_ATTRIB_ONLY_INTERACTIVE

This queue only accepts batch interactive jobs. 
Q_ATTRIB_NO_HOST_TYPE

No host type related resource name specified in resource requirement.
Q_ATTRIB_ IGNORE_DEADLINE

This queue disables deadline constrained resource scheduling.
Q_ATTRIB_ CHKPNT

Jobs may run as checkpointable.
Q_ATTRIB_ RERUNABLE

Jobs may run as rerunnable.
Q_ATTRIB_MC_FAST_SCHEDULE

Turn on multicluster fast scheduling policy.



Platform LSF API Reference 323

Q_ATTRIB_ENQUE_INTERACTIVE_AHEAD

Push interactive jobs in front of other jobs in queue.
Q_MC_FLAG

Flags used by MultiCluster.
Q_ATTRIB_LEASE_LOCAL

Lease and local.
Q_ATTRIB_LEASE_ONLY 

Lease only; no local.
Q_ATTRIB_RMT_BATCH_LOCAL 

Remote batch and local.
Q_ATTRIB_RMT_BATCH_ONLY 

Remote batch only.
Q_ATTRIB_RESOURCE_RESERVE 

Memory reservation.
Q_ATTRIB_FS_DISPATCH_ORDER_QUEUE 

Cross-queue fairshare.
Q_ATTRIB_BATCH 

Batch queue/partition.
Q_ATTRIB_ONLINE 

Online partition.
Q_ATTRIB_INTERRUPTIBLE_BACKFILL 

Interruptible backfill.
Q_ATTRIB_APS 

This queue sets an absolute priority scheduling (APS) value.
qStatus The status of the queue. It is the bitwise inclusive OR of some of the following 

values: 
QUEUE_STAT_OPEN

The queue is open to accept newly submitted jobs. 
QUEUE_STAT_ACTIVE

The queue is actively dispatching jobs. The queue can be inactivated and 
reactivated by the LSF administrator using lsb_queuecontrol(). The queue will 
also be inactivated when its run or dispatch window is closed. In this case it cannot 
be reactivated manually; it will be reactivated by the LSF system when its run and 
dispatch windows reopen. 
QUEUE_STAT_RUN

The queue run and dispatch windows are open. 
The initial state of a queue at LSF boot time is open and either active or inactive, 
depending on its run and dispatch windows. 



PARAMETERS

324 Platform LSF API Reference

QUEUE_STAT_NOPERM

Remote queue rejecting jobs.
QUEUE_STAT_DISC

Remote queue status is disconnected.
QUEUE_STAT_RUNWIN_CLOSE

Queue run windows are closed.
maxJobs The maximum number of jobs dispatched by the queue and not yet finished. 
numJobs Number of jobs in the queue, including pending, running, and suspended jobs. 

numPEND Number of pending jobs in the queue. 
numRUN Number of running jobs in the queue. 

numSSUSP Number of system suspended jobs in the queue. 
numUSUSP Number of user suspended jobs in the queue. 

mig The queue migration threshold in minutes. 
schedDelay The number of seconds that a new job waits, before being scheduled. A value of zero 

(0) means the job is scheduled without any delay.
acceptIntvl The  number of seconds for a host to wait after dispatching a job to a host, before 

accepting a second job to dispatch to the same host.
windowsD A blank-separated list of time windows describing the dispatch window of the 

queue. When a queue’s dispatch window is closed, no job from this queue will be 
dispatched. The default is no restriction, or always open (i.e., 24 hours a day, seven 
days a week). 
For the time window format, see window above. 

nqsQueues A blank-separated list of queue specifiers. Each queue specifier is of the form 
queue@host where host is an NQS host name and queue is the name of a queue on 
that host. 

userShares A blank-separated list of user shares. Each share is of the form [user, share] 
where user is a user name, a user group name, the reserved word default or the 
reserved word others, and share is the number of shares the user gets. 

defaultHostSpec The value of DEFAULT_HOST_SPEC in the Queue section for this queue in the 
lsb.queues file. 

procLimit An LSF resource limit used to limit the number of job slots (processors) a (parallel) 
job in the queue will use. A job submitted to this queue must specify a number of 
processors not greater than this limit.

admins A list of administrators of the queue. The users whose names are here are allowed 
to operate on the jobs in the queue and on the queue itself. 

preCmd Queue’s pre-exec command. The command is executed before the real batch job is 
run on the execution host (or on the first host selected for a parallel batch job). 

postCmd Queue’s post-exec command. The command is run when a job terminates.
requeueEValues Jobs that exit with these values are automatically requeued. 



Platform LSF API Reference 325

hostJobLimit The maximum number of job slots a host can process from this queue, including 
job slots of dispatched jobs which have not finished yet and reserved slots for some 
PEND jobs. This limit controls the number of jobs sent to each host, regardless of a 
uniprocessor host or multiprocessor host. Default value for this limit is infinity. 

resReq Resource requirement string used to determine eligible hosts for a job.
numRESERVE Number of reserved job slots for pending jobs.
slotHoldTime The time used to hold the reserved job slots for a PEND job in this queue. 

sndJobsTo Remote MultiCluster send-jobs queues to forward jobs to.
rcvJobsFrom Remote MultiCluster receive-jobs queues that can forward to this queue.
resumeCond Resume threshold conditions for a suspended job in this queue. 

stopCond Stop threshold conditions for a running job in this queue. 
jobStarter Job starter command for a running job in this queue. 

suspendActCmd Command configured for the SUSPEND action. 
resumeActCmd Command configured for the RESUME action. 

terminateActCmd Command configured for the TERMINATE action. 
preemption Preemptive scheduling and preemption policy specified for the queue. 

maxRschedTime Time period for a remote cluster to schedule a job. 
MultiCluster job forwarding model only. Determines how long a MultiCluster job 
stays pending in the execution cluster before returning to the submission cluster. 
The remote timeout limit in seconds is:
MAX_RSCHED_TIME * MBD_SLEEP_TIME=timeout

numOfSAccts,
shareAccts

(Only used for queues with fairshare policy) a share account vector capturing the 
fairshare information of the users using the queue. 
The storage for the array of queueInfoEnt structures will be reused by the next call.  

chkpntDir The directory where the checkpoint files are created. 
chkpntPeriod The checkpoint period in minutes. 
imptJobBklg MultiCluster job forwarding model only. Specifies the MultiCluster pending job 

limit for a receive-jobs queue. This represents the maximum number of 
MultiCluster import jobs that can be pending in the queue; once the limit has been 
reached, the queue stops accepting jobs from remote clusters.

defLimits[LSF_RLIM_NLIMITS]

The default (soft) resource limits for all jobs submitted to this queue (see 
getrlimit() and lsb.queues). 

chunkJobSize The maximum number of jobs allowed to be dispatched together in one job chunk. 
Must be a positive integer greater than 1.

minProcLimit The minimum number of job slots (processors) that a job in the queue will use.
defProcLimit The default (soft) limit on the number of job slots (processors) that a job in the 

queue will use.
fairshareQueues The list of queues for cross-queue fairshare.



PARAMETERS

326 Platform LSF API Reference

defExtSched Default external scheduling options for the queue.
mandExtSched Mandatory external scheduling options for the queue.

slotShare Share of job slots for queue-based fairshare. Represents the percentage of running 
jobs (job slots) in use from the queue. SLOT_SHARE must be greater than zero (0) 
and less than or equal to 100.
The sum of SLOT_SHARE for all queues in the pool does not need to be 100%. It 
can be more or less, depending on your needs.

slotPool Name of the pool of job slots the queue belongs to for queue-based fairshare. A 
queue can only belong to one pool. All queues in the pool must share the same set 
of hosts.
Specify any ASCII string up to 60 characters long. You can use letters, digits, 
underscores (_) or dashes (-). You cannot use blank spaces.

underRCond Specifies a threshold for job underrun exception handling. If a job exits before the 
specified number of minutes, LSF invokes LSF_SERVERDIR/eadmin to trigger the 
action for a job underrun exception.

 overRCond Specifies a threshold for job overrun exception handling. If a job runs longer than 
the specified run time, LSF invokes LSF_SERVERDIR/eadmin to trigger the action 
for a job overrun exception.

 idleCond Specifies a threshold for idle job exception handling. The value should be a number 
between 0.0 and 1.0 representing CPU time/runtime. If the job idle factor is less 
than the specified threshold, LSF invokes LSF_SERVERDIR/eadmin to trigger the 
action for a job idle exception.

underRJobs The number of underrun jobs in the queue.
 overRJobs The number of overrun jobs in the queue.

idleJobs The number of idle jobs in the queue.
 warningTimePeriod Specifies the amount of time before a job control action occurs that a job warning 

action is to be taken. For example, 2 minutes before the job reaches run time limit 
or termination deadline, or the queue's run window is closed, an URG signal is sent 
to the job.
Job action warning time is not normalized.
A job action warning time must be specified with a job warning action in order for 
job warning to take effect.

warningAction Specifies the job action to be taken before a job control action occurs. For example, 
2 minutes before the job reaches run time limit or termination deadline, or the 
queue's run window is closed, an URG signal is sent to the job.
A job warning action must be specified with a job action warning time in order for 
job warning to take effect.
If specified, LSF sends the warning action to the job before the actual control action 
is taken. This allows the job time to save its result before being terminated by the 
job control action.
You can specify actions similar to the JOB_CONTROLS queue level parameter: 
send a signal, invoke a command, or checkpoint the job.



Platform LSF API Reference 327

AcResReq

symJobLimit Limit of running session scheduler jobs.
cpuReq cpu_req for service partition of  session scheduler.
proAttr Indicate whether it would be willing to donate/borrow.

lendLimit The maximum number of hosts to lend.
hostReallocInterval The grace period to lend/return idle hosts.

numCPURequired Number of CPUs required by CPU provision.
numCPUAllocated Number of CPUs actually allocated.
numCPUBorrowed Number of CPUs borrowed.

numCPULent Number of CPUs lent.
schGranularity The scheduling granularity. in milliseconds.

symTaskGracePeriod The grace period for stopping session scheduler tasks.
minOfSsm The minimum number of SSMs.
maxOfSsm The maximum number of SSMs.

numOfAllocSlots The number of allocated slots.
servicePreemption The service preemption policy.

provisionStatus Dynamic CPU provision status.
minTimeSlice The minimum time for preemption and backfill, in seconds.
queueGroup List of queues defined in a queue group for absolute priority scheduling (APS) 

across multiple queues.
numApsFactors The number of calculation factors for absolute priority scheduling (APS).

apsFactorInfo List of calculation factors for absolute priority scheduling (APS).
apsFactorMap The mapping of factors to subfactors for absolute priority scheduling (APS).

apsLongNameMap The mapping of factors to their long names for absolute priority scheduling (APS).
maxJobPreempt Maximum number of job preempted times.

maxPreExecRetry Maximum number of pre-exec retry times.
localMaxPreExecRetry Maximum number of pre-exec retry times for local cluster.

maxJobRequeue Maximum number of job re-queue times.
usePam Use Linux-PAM.

cu_type_exclusive Compute unit type.
cu_str_exclusive A string specified in EXCLUSIVE+CU[<string>].

shareAcctInfoEnt structure fields
The shareAcctInfoEnt structure contains the following fields: 

shareAcctPath The user name or user group name. (See lsb_userinfo() and 
lsb_usergrpinfo().)



PARAMETERS

328 Platform LSF API Reference

shares The number of shares assigned to the user or user group, as configured in the file 
lsb.queues. 

numStartJobs The number of job slots (belonging to the user or user group) that are running or 
suspended in the fairshare queue.

histCpuTime The normalized CPU time accumulated in the fairshare queue by jobs belonging to 
the user or user group, over the time period configured in the file lsb.params. The 
default time period is 5 hours.

priority The priority of the user or user group in the fairshare queue. Larger values represent 
higher priorities. Job belonging to the user or user group with the highest priority 
are considered first for dispatch in the fairshare queue. In general, a user or user 
group with more shares, fewer numStartJobs and less histCpuTime has higher 
priority.

numReserveJobs The number of job slots that are reserved for the PEND jobs belonging to the user or 
user group in the host partition. 

runTime The time unfinished jobs spend in the RUN state.
shareAdjustment The fairshare adjustment value from the fairshare plugin 

(libfairshareadjust.*). The adjustment is enabled and weighted by setting the 
value of FAIRSHARE_ADJUSTMENT_FACTOR in lsb.params.



Platform LSF API Reference 329

 RETURN VALUES
array: queueInfoEnt An array of queueInfoEnt structures which store the queue information and sets 

*numQueues to the size of the array. 
char:NULL Function failed. 

ERRORS
If the function fails, lsberrno is set to indicate the error. If lsberrno is 
LSBE_BAD_QUEUE, (*queues)[*numQueues] is not a queue known to the LSF 
system. Otherwise, if *numQueues is less than its original value, *numQueues is the 
actual number of queues found.

SEE ALSO

Related APIs
lsb_hostinfo() - Get information about job server hosts
lsb_userinfo() - Get information about users
lsb_usergrpinfo() - Get information about user groups

Equivalent command
bqueues

Files 
$LSB_CONFDIR/cluster_name/lsb.queues 



lsb_readjobinfo()

330 Platform LSF API Reference

lsb_readjobinfo()
Returns the next job information record in mbatchd.

DESCRIPTION
lsb_readjobinfo() reads the number of records defined by the more parameter. 
The more parameter receives its value from either lsb_openjobinfo() or 
lsb_openjobinfo_a().  Each time lsb_readjobinfo() is called, it returns one 
record from mbatchd. Use lsb_readjobinfo() in a loop and use more to 
determine how many times to repeat the loop to retrieve job information records.

SYNOPSIS
#include <lsf/lsbatch.h>

#include <time.h>

#include <lsf/lsf.h>

struct jobInfoEnt *lsb_readjobinfo(int *)

struct jobInfoEnt {

    LS_LONG_INT jobId;

    char    *user;

    int     status;

    int     *reasonTb;

    int     numReasons;

    int     reasons;

    int     subreasons;

    int     jobPid;

    time_t  submitTime;

    time_t  reserveTime;

    time_t  startTime;

    time_t  predictedStartTime;

    time_t  endTime;

    time_t  lastEvent;

    time_t  nextEvent;

    int     duration;

    float   cpuTime;

    int     umask;

    char    *cwd;

    char    *subHomeDir;

    char    *fromHost;

    char    **exHosts;

    int     numExHosts;

    float   cpuFactor;

    int     nIdx;

    float   *loadSched;



Platform LSF API Reference 331

    float   *loadStop;

    struct  submit submit;

    int     exitStatus;

    int     execUid;

    char    *execHome;

    char    *execCwd;

    char    *execUsername;

    time_t  jRusageUpdateTime;

    struct  jRusage runRusage;

    int     jType;

    char    *parentGroup;

    char    *jName;

    int     counter[NUM_JGRP_COUNTERS];

    u_short port;

    int     jobPriority;

    int numExternalMsg;

    struct jobExternalMsgReply **externalMsg;

    int     clusterId;

    char   *detailReason;

    float   idleFactor;

    int     exceptMask;

    char   *additionalInfo;

    int     exitInfo;

    int    warningTimePeriod;

    char   *warningAction;

    char   *chargedSAAP;

    char   *execRusage;

    time_t rsvInActive;

    int    numLicense;

    char   **licenseNames;

    float  aps;

    float  adminAps;

    int runTime

    int reserveCnt

    struct reserveItem *items; 

    float  adminFactorVal;

    int    resizeMin

    int    resizeMax

    time_t resizeReqTime

    int    jStartNumExHosts

    char   **jStartExHosts

    time_t lastResizeTime



SYNOPSIS

332 Platform LSF API Reference

};

struct submit {

    int     options;

    int     options2;

    char    *jobName;

    char    *queue;

    int     numAskedHosts;

    char    **askedHosts;

    char    *resReq;

    int     rLimits[LSF_RLIM_NLIMITS];

    char    *hostSpec;

    int     numProcessors;

    char    *dependCond;

    char    *timeEvent;

    time_t  beginTime;

    time_t  termTime;

    int     sigValue;

    char    *inFile;

    char    *outFile;

    char    *errFile;

    char    *command;

    char    *newCommand;

    time_t  chkpntPeriod;

    char    *chkpntDir;

    int     nxf;

    struct xFile *xf;

    char    *preExecCmd;

    char    *mailUser;

    int     delOptions;

    int     delOptions2;

    char    *projectName;

    int     maxNumProcessors;

    char    *loginShell;

    char    *userGroup;

    char    *exceptList;

    int     userPriority;

    char    *rsvId;

    char    *jobGroup;

    char    *sla;

    char    *extsched;

    int     warningTimePeriod;

    char    *warningAction;

    char    *licenseProject;



Platform LSF API Reference 333

    int     options3;

    int     delOptions3;

    char    *app;

    int     jsdlFlag;

    char    *jsdlDoc;

    void    *correlator;

    char    *apsString;

    char    *postExecCmd;

    char    *cwd;

    int     runtimeEstimation;

    char    *requeueEValues;

    int     initChkpntPeriod;

    int     migThreshold;

    char    *notifyCmd;

};

struct jRusage{

int mem;

int swap;

int utime;

int stime;

int npids;

struct pidInfo *pidInfo;

int npgids;

int *pgid;

int nthreads;

};

struct pidInfo{

int pid;

int ppid;

int pgid;

int jobid;

};

struct reserveItem {

    char    *resName; 

    int     nHost; 

    float   *value; 

    int     shared; 

};

PARAMETERS
*more Number of job records in the master batch daemon. 



RETURN VALUES

334 Platform LSF API Reference

RETURN VALUES
jobInfoEnt Function was successful.

The fields in the jobInfoEnt structure have the following meaning: 
jobId

The job ID that the LSF system assigned to the job. 
user

The name of the user who submitted the job. 
status

The current status of the job. Possible values are: 
JOB_STAT_PEND: The job is pending, i.e., it has not been dispatched yet. 
JOB_STAT_PSUSP: The pending job was suspended by its owner or the LSF system 
administrator. 
JOB_STAT_RUN: The job is running. 
JOB_STAT_SSUSP: The running job was suspended by the system because an 
execution host was overloaded or the queue run window closed. (See 
lsb_queueinfo(), lsb_hostinfo(), and lsb.queues.) 
JOB_STAT_USUSP: The running job was suspended by its owner or the LSF system 
administrator. 
JOB_STAT_EXIT: The job has terminated with a non-zero status – it may have been 
aborted due to an error in its execution, or killed by its owner or by the LSF system 
administrator. 
JOB_STAT_DONE: The job has terminated with status 0. 
JOB_STAT_PDONE: Post job process done successfully. 
JOB_STAT_PERR: TPost job process has error. 
JOB_STAT_WAIT: Chunk job waiting its turn to execute. 
JOB_STAT_UNKWN: The slave batch daemon (sbatchd) on the host on which the job 
is processed has lost contact with the master batch daemon (mbatchd). 
reasonTb

Pending or suspending reasons of the job.
numReasons

Length of reasonTb vector.
reasons 

The reason a job is pending or suspended. 
subreasons 

The reason a job is pending or suspended. If status is JOB_STAT_PEND, the values 
of reasons and subreasons are explained by lsb_pendreason(). If status is 
JOB_STAT_PSUSP, the values of reasons and subreasons are explained by 
lsb_suspreason(). 



Platform LSF API Reference 335

When reasons is PEND_HOST_LOAD or SUSP_LOAD_REASON, subreasons 
indicates the load indices that are out of bounds. If reasons is 
PEND_HOST_LOAD, subreasons is the same as busySched in the hostInfoEnt 
structure; if reasons is SUSP_LOAD_REASON, subreasons is the same as busyStop 
in the hostInfoEnt structure. (See lsb_hostinfo().) 
jobPid 

The job process ID.
submitTime

The time the job was submitted, in seconds since 00:00:00 GMT, Jan. 1, 1970. 
reserveTime 

Time when job slots are reserved 
startTime

The time that the job started running, if it has been dispatched. 
PredictedStartTime

Job's predicted start time
endTime

The termination time of the job, if it has completed. 
LastEvent

Last time event.
nextEvent

Next time event.
duration

Duration time (minutes).
cpuTime

The CPU time that the job has used. 
umask

The file creation mask when the job was submitted. 
cwd

The current working directory when the job was submitted. 
subHomeDir

Home directory on submission host. 
fromHost

The name of the host from which the job was submitted.
exHosts

The array of names of hosts on which the job executes. 
numExHosts

The number of hosts on which the job executes. 
cpuFactor



RETURN VALUES

336 Platform LSF API Reference

The CPU factor for normalizing CPU and wall clock time limits. 
nIdx

The number of load indices in the loadSched and loadStop arrays. 
loadSched & loadStop

The loadSched and loadStop arrays are assigned to the job according to those of 
the queue and hosts to control job suspension and resumption. 
The values in the loadSched array specify the thresholds for the corresponding 
load indices. Only if the current values of all specified load indices of a host are 
within (below or above, depending on the meaning of the load index) their 
corresponding thresholds may the suspended job be resumed on this host. 
Similarly, the values in the loadStop array specify the thresholds for job 
suspension; if any of the current load index values of the host crosses its threshold, 
the job will be suspended. 
For an explanation of the entries in the loadSched and loadStop arrays, see 
lsb_hostinfo(). 
submit

Structure for lsb_submit() call.
exitStatus

Job exit status.
execUid

Mapped UNIX user ID on the execution host.
execHome

Home directory for the job on the execution host.
execCwd

Current working directory for the job on the execution host.
execUsername

Mapped user name on the execution host.
jRusageUpdateTime

Time of the last job resource usage update.
jRusage

Contains resource usage information for the job.
jType

Job type.
parentGroup

The parent job group of a job or job group.
jName

if jType is JGRP_NODE_GROUP, then it is the job group name. Otherwise, it is the 
job name.
counter[NUM_JGRP_COUNTERS]



Platform LSF API Reference 337

Index into the counter array. Only used for job arrays:
◆ JGRP_COUNT_NJOBS—total jobs in the array
◆ JGRP_COUNT_PEND—number of pending jobs in the array
◆ JGRP_COUNT_NPSUSP—number of held jobs in the array
◆ JGRP_COUNT_NRUN—number of running jobs in the array
◆ JGRP_COUNT_NSSUSP—number of jobs suspended by the system in the 

array
◆  JGRP_COUNT_NUSUSP—number of jobs suspended by the user in the array
◆ JGRP_COUNT_NEXIT—number of exited jobs in the array
◆ JGRP_COUNT_NDONE—number of successfully completed jobs 
◆ JGRP_COUNT_NJOBS_SLOTS—total slots in the array
◆ JGRP_COUNT_PEND_SLOTS—number of pending slots in the array
◆ JGRP_COUNT_RUN_SLOTS—number of running slots in the array
◆ JGRP_COUNT_SSUSP_SLOTS—number of slots suspended by the system in 

the array
◆  JGRP_COUNT_USUSP_SLOTS— number of slots suspended by the user in 

the array
◆ JGRP_COUNT_RESV_SLOTS—number of reserverd slots in the array
port

Service port of the job.
jobPriority

Job dynamic priority.
numExternalMsg

The number of external messages in the job.
jobExternalMsgReply

This structure contains the information required to define an external message 
reply.
clusterId

MultiCluster cluster ID. If clusterId is greater than or equal to 0, the job is a pending 
remote job, and lsb_readjobinfo checks for host_name@cluster_name. If host 
name is needed, it should be found in jInfoH->remoteHosts. If the remote host 
name is not available, the constant string remoteHost is used. 
detailReason

Detailed reason field.
idleFactor

Idle factor for job exception handling. If the job idle factor is less than the specified 
threshold, LSF invokes LSF_SERVERDIR/eadmin to trigger the action for a job idle 
exception.
exceptMask

Job exception handling mask.



RETURN VALUES

338 Platform LSF API Reference

additionalInfo

Placement information of LSF HPC jobs.
exitInfo

Job termination reason. See lsbatch.h.
warningTimePeriod

Job warning time period in seconds; -1 if unspecified.
warningAction

Job warning action, SIGNAL | CHKPNT | command; NULL if unspecified.
chargedSAAP

SAAP charged for job.
execRusage

The rusage satisfied at job runtime.
rsvInActive

The time when advance reservation expired or was deleted.
numLicense

The number of licenses reported from License Scheduler.
licenseNames

License Scheduler license names.
aps

Absolute priority scheduling (APS) priority value.
adminAps

Absolute priority scheduling (APS) string set by administrators to denote static 
system APS value
adminFactorVal

Absolute priority scheduling (APS) string set by administrators to denote ADMIN 
factor APS value.
runTime

The real runtime on the execution host.
reserveCnt

How many kinds of resource are reserved by this job
reserveItem

The reserveItem structure contains the following fields:
resname: Name of the resource to reserve.
items : Details reservation information for each kind of resource.
value: Amount of reservation is made on each host. Some hosts may reserve 0.
nhost: The number of  hosts to reserve this resource.
shared: Flag for shared or host-base resource.



Platform LSF API Reference 339

resizeMin: Pending resize min. 0, if no resize pending.
resizeMax: Pending resize max. 0, if no resize pending.
resizeReqTime: Time when pending request was issued.
 jStartNumExHosts: Number of hosts when job starts.
jStartExHosts: Host list when job starts.
lastResizeTime: Last time when job allocation changed.
The fields in the submit structure: 

submit submit uses the submit structure provided by the invoker of lsb_submit(). 
See lsb_submit() on page 377 for descriptions of the submit structure fields. 
The fields in the runRusage structure have the following meaning: 

runRusage runRusage uses the jRusage structure to provide the total resident memory usage 
in KB, total virtual memory usage inKB, cumulative total CPU time in seconds and 
a list of currently active process group IDs and process IDs in a job. 
The jRusage structure contains the following fields:
mem

Total resident memory usage in KB of all currently running processes in given 
process groups.
swap

Total virtual memory usage in KB of all currently running processes in given proces 
groups.
utime

Cumulative total user time in seconds.
stime

Cumulative total system time in seconds.
npids

Number of currently active processesin given process groups.
npgids

Number of currently active process groups
pgid

Array of currently active process group ids
nthreads

Number of currently active threads in given process groups.
The fields in the pidInfo structure have the following meaning: 
pidInfo

Structure containing information about an active process.
pid

Process id.
ppid



ERRORS

340 Platform LSF API Reference

Parent’s process id.
pgid

Process group id.
jobid

Process Cray job ID (only on Cray).

ERRORS
If there are no more records, then lsberrno is set to LSBE_EOF. 

SEE ALSO

Related API
lsb_openjobinfo() - Opens a job information connection tombatchd
lsb_openjobinfo_a() - Provides the name and number of jobs and hosts 
inmbatchd
lsb_closejobinfo() - Closes job information connection with mbatchd
lsb_hostinfo() - Returns informaton about job server hosts
lsb_pendreason() - Explains why a job is pending
lsb_queueinfo() - Returns information about batch queues
lsb_suspreason() - Explains why a job was suspended

Equivalent line command
none

Files
lsb.queues



Platform LSF API Reference 341

lsb_readjobinfo_cond()
Returns the next job information record for condensed host groups in mbatchd.

DESCRIPTION
lsb_readjobinfo_cond() reads the number of records defined by the more 
parameter. The more parameter receives its value from either lsb_openjobinfo() 
or lsb_openjobinfo_a().  Each time lsb_readjobinfo_cond() is called, it 
returns one record from mbatchd. Use lsb_readjobinfo_cond() in a loop and use 
more to determine how many times to repeat the loop to retrieve job information 
records.
lsb_readjobinfo_cond() differs from lsb_readjobinfo() in that if jInfoHExt 
is not NULL, lsb_readjobinfo_cond() substitutes hostGroup (if it is a condensed 
host group) for job execution hosts.

SYNOPSIS
#include <lsf/lsbatch.h>

#include <time.h>

#include <lsf/lsf.h>

struct jobInfoEnt *lsb_readjobinfo_cond(int *more,

struct jobInfoHeadExt *jInfoHExt);

struct_jobInfoEnt {

    LS_LONG_INT jobId;

    char    *user;

    int     status;

    int     *reasonTb;

    int     numReasons;

    int     reasons;

    int     subreasons;

    int     jobPid;

    time_t  submitTime;

    time_t  reserveTime;

    time_t  startTime;

    time_t  predictedStartTime;

    time_t  endTime;

    time_t  lastEvent;

    time_t  nextEvent;

    int     duration;

    float   cpuTime;

    int     umask;

    char    *cwd;

    char    *subHomeDir;

    char    *fromHost;



SYNOPSIS

342 Platform LSF API Reference

    char    **exHosts;

    int     numExHosts;

    float   cpuFactor;

    int     nIdx;

    float   *loadSched;

    float   *loadStop;

    struct  submit submit;

    int     exitStatus;

    int     execUid;

    char    *execHome;

    char    *execCwd;

    char    *execUsername;

    time_t  jRusageUpdateTime;

    struct  jRusage runRusage;

    int     jType;

    char    *parentGroup;

    char    *jName;

    int     counter[NUM_JGRP_COUNTERS];

    u_short port;

    int     jobPriority;

    int numExternalMsg;

    struct jobExternalMsgReply **externalMsg;

    int     clusterId;

    char   *detailReason;

    float   idleFactor;

    int     exceptMask;

    char   *additionalInfo;

    int     exitInfo;

    int    warningTimePeriod;

    char   *warningAction;

    char   *chargedSAAP;

    char   *execRusage;

    time_t rsvInActive;

    int    numLicense;

    char   **licenseNames;

    float  aps;

    int runTime

    int reserveCnt

    struct reserveItem *items; 

    float  adminFactorVal;

    int    resizeMin

    int    resizeMax

    time_t resizeReqTime



Platform LSF API Reference 343

    int    jStartNumExHosts

    char   **jStartExHosts

    time_t lastResizeTime

struct reserveItem *items; 

};

struct submit {

    int     options;

    int     options2;

    char    *jobName;

    char    *queue;

    int     numAskedHosts;

    char    **askedHosts;

    char    *resReq;

    int     rLimits[LSF_RLIM_NLIMITS];

    char    *hostSpec;

    int     numProcessors;

    char    *dependCond;

    char    *timeEvent;

    time_t  beginTime;

    time_t  termTime;

    int     sigValue;

    char    *inFile;

    char    *outFile;

    char    *errFile;

    char    *command;

    char    *newCommand;

    time_t  chkpntPeriod;

    char    *chkpntDir;

    int     nxf;

    struct xFile *xf;

    char    *preExecCmd;

    char    *mailUser;

    int     delOptions;

    int     delOptions2;

    char    *projectName;

    int     maxNumProcessors;

    char    *loginShell;

    char    *userGroup;

    char    *exceptList;

    int     userPriority;

    char    *rsvId;

    char    *jobGroup;

    char    *sla;



SYNOPSIS

344 Platform LSF API Reference

    char    *extsched;

    int     warningTimePeriod;

    char    *warningAction;

    char    *licenseProject;

    int     options3;

    int     delOptions3;

    char    *app;

    int     jsdlFlag;

    char    *jsdlDoc;

    void    *correlator;

    char    *apsString;

    char    *postExecCmd;

    char    *cwd;

    int     runtimeEstimation;

    char    *requeueEValues;

    int     initChkpntPeriod;

    int     migThreshold;

    char    *notifyCmd;

};

struct jRusage{

int mem;

int swap;

int utime;

int stime;

int npids;

struct pidInfo;

int npgids;

int *pgid;

int nthreads;

};

struct pidInfo {

int pid;

int ppid;

int pgid;

int jobid;

};

struct reserveItem {

    char    *resName; 

    int     nHost; 

    float   *value; 

    int     shared; 

};



Platform LSF API Reference 345

PARAMETERS
*more Number of job records in the master batch daemon. 

*jInfoHExt Job information header info for the condensed host group.

RETURN VALUES
jobInfoEnt Function was successful.

The fields in the jobInfoEnt structure have the following meaning: 
jobId

The job ID that the LSF system assigned to the job. 
user

The name of the user who submitted the job. 
status

The current status of the job. Possible values are: 
JOB_STAT_PEND

The job is pending, i.e., it has not been dispatched yet. 
JOB_STAT_PSUSP

The pending job was suspended by its owner or the LSF system administrator. 
JOB_STAT_RUN

The job is running. 
JOB_STAT_SSUSP

The running job was suspended by the system because an execution host was 
overloaded or the queue run window closed. (See lsb_queueinfo(), lsb_hostinfo(), 
and lsb.queues.) 
JOB_STAT_USUSP: The running job was suspended by its owner or the LSF system 
administrator. 
JOB_STAT_EXIT: The job has terminated with a non-zero status – it may have been 
aborted due to an error in its execution, or killed by its owner or by the LSF system 
administrator. 
JOB_STAT_DONE: The job has terminated with status 0. 
JOB_STAT_UNKWN: The slave batch daemon (sbatchd) on the host on which the 
job is processed has lost contact with the master batch daemon (mbatchd). 
reasonTb

Pending or suspending reasons of the job.
numReasons

Length of reasonTb vector.
reasons

The reason a job is pending or suspended. 



RETURN VALUES

346 Platform LSF API Reference

If status is JOB_STAT_PEND, the values of reasons and subreasons are explained 
by lsb_pendreason(). If status is JOB_STAT_PSUSP, the values of reasons and 
subreasons are explained by lsb_suspreason().
When reasons is PEND_HOST_LOAD or SUSP_LOAD_REASON, subreasons 
indicates the load indices that are out of bounds. If reasons is 
PEND_HOST_LOAD, subreasons is the same as busySched in the hostInfoEnt 
structure; if reasons is SUSP_LOAD_REASON, subreasons is the same as busyStop 
in the hostInfoEnt structure. (See lsb_hostinfo().) 
submitTime

The time the job was submitted, in seconds since 00:00:00 GMT, Jan. 1, 1970. 
reserveTime 

Time when job slots are reserved.
startTime

The time that the job started running, if it has been dispatched. 
PredictedStartTime

Job's predicted start time.
endTime

The termination time of the job, if it has completed. 
LastEvent

Last time event.
nextEvent

Next time event.
duration

Duration time (in minutes).
cpuTime

The CPU time that the job has used. 
umask

The file creation mask when the job was submitted. 
cwd

The current working directory when the job was submitted. 
subHomeDir

Home directory on submission host. 
fromHost

The name of the host from which the job was submitted. 
exHosts

The array of names of hosts on which the job executes. 
numExHosts

The number of hosts on which the job executes. 



Platform LSF API Reference 347

cpuFactor

The CPU factor for normalizing CPU and wall clock time limits. 
nIdx

The number of load indices in the loadSched and loadStop arrays. 
loadSched & loadStop

The loadSched and loadStop arrays are assigned to the job according to those of 
the queue and hosts to control job suspension and resumption. 
The values in the loadSched array specify the thresholds for the corresponding 
load indices. Only if the current values of all specified load indices of a host are 
within (below or above, depending on the meaning of the load index) their 
corresponding thresholds may the suspended job be resumed on this host. 
Similarly, the values in the loadStop array specify the thresholds for job 
suspension; if any of the current load index values of the host crosses its threshold, 
the job will be suspended. 
For an explanation of the entries in the loadSched and loadStop arrays, see 
lsb_hostinfo(). 
submit

Structure for lsb_submit() call.
exitStatus

Job exit status.
execUid

Mapped UNIX user ID on the execution host.
execHome

Home directory for the job on the execution host.
execCwd

Current working directory for the job on the execution host.
execUsername

Mapped user name on the execution host.
jRusageUpdateTime

Time of the last job resource usage update.
jRusage

Contains resource usage information for the job.
jType

Job type.
parentGroup

The parent job group of a job or job group.
jName

if jType is JGRP_NODE_GROUP, then it is the job group name. Otherwise, it is the 
job name.



RETURN VALUES

348 Platform LSF API Reference

counter[NUM_JGRP_COUNTERS]

Index into the counter array. Only used for job arrays:
◆ JGRP_COUNT_NJOBS—total jobs in the array
◆ JGRP_COUNT_PEND—number of pending jobs in the array
◆ JGRP_COUNT_NPSUSP—number of held jobs in the array
◆ JGRP_COUNT_NRUN—number of running jobs in the array
◆ JGRP_COUNT_NSSUSP—number of jobs suspended by the system in the 

array
◆  JGRP_COUNT_NUSUSP—number of jobs suspended by the user in the array
◆ JGRP_COUNT_NEXIT—number of exited jobs in the array
◆ JGRP_COUNT_NDONE—number of successfully completed jobs 
◆ JGRP_COUNT_NJOBS_SLOTS—total slots in the array
◆ JGRP_COUNT_PEND_SLOTS—number of pending slots in the array
◆ JGRP_COUNT_RUN_SLOTS—number of running slots in the array
◆ JGRP_COUNT_SSUSP_SLOTS—number of slots suspended by the system in 

the array
◆  JGRP_COUNT_USUSP_SLOTS— number of slots suspended by the user in 

the array
◆ JGRP_COUNT_RESV_SLOTS—number of reserverd slots in the array
port

Service port of the job.
jobPriority

Job dynamic priority.
numExternalMsg

The number of external messages in the job.
jobExternalMsgReply

This structure contains the information required to define an external message 
reply.
clusterId

MultiCluster cluster ID. If clusterId is greater than or equal to 0, the job is a pending 
remote job, and lsb_readjobinfo checks for host_name@cluster_name. If host 
name is needed, it should be found in jInfoH->remoteHosts. If the remote host 
name is not available, the constant string remoteHost is used. 
detailReason

Detailed reason field.
idleFactor

Idle factor for job exception handling. If the job idle factor is less than the specified 
threshold, LSF invokes LSF_SERVERDIR/eadmin to trigger the action for a job idle 
exception.
exceptMask



Platform LSF API Reference 349

Job exception handling mask.
additionalInfo

Placement information of LSF HPC jobs.
exitInfo

Job termination reason. See lsbatch.h.
warningTimePeriod

Job warning time period in seconds; -1 if unspecified.
warningAction

Job warning action, SIGNAL | CHKPNT | command; NULL if unspecified.
chargedSAAP

SAAP charged for job.
execRusage

The rusage satisfied at job runtime.
rsvInActive

The time when advance reservation expired or was deleted.
numLicense

The number of licenses reported from License Scheduler.
licenseNames

License Scheduler license names.
aps

Absolute priority scheduling (APS) priority value.
adminAps

Absolute priority scheduling (APS) string set by administrators to denote static 
system APS value
adminFactorVal

Absolute priority scheduling (APS) string set by administrators to denote ADMIN 
factor APS value.
runTime

The real runtime on the execution host.
runTime

The real runtime on the execution host.
reserveCnt

How many kinds of resource are reserved by this job
reserveItem

The reserveItem structure contains the following fields:
resname: Name of the resource to reserve.
items : Details reservation information for each kind of resource.



RETURN VALUES

350 Platform LSF API Reference

value: Amount of reservation is made on each host. Some hosts may reserve 0.
nhost: The number of  hosts to reserve this resource.
shared: Flag for shared or host-base resource
resizeMin: Pending resize min. 0, if no resize pending.
resizeMax: Pending resize max. 0, if no resize pending.
resizeReqTime: Time when pending request was issued.
 jStartNumExHosts: Number of hosts when job starts.
jStartExHosts: Host list when job starts.
lastResizeTime: Last time when job allocation changed.
The fields in the submit structure:

submit submit uses the submit structure provided by the invoker of lsb_submit(). 
See lsb_submit() on page 377 for descriptions of the submit structure fields. 
The fields in the runRusage structure have the following meaning:

runRusage runRusage uses the jRusage structure to provide the total resident memory usage 
in KB, total virtual memory usage in KB, cumulative total CPU time in seconds and 
a list of currently active process group IDs and process IDs in a job. 
The jRusage structure contains the following fields:
mem

Total resident memory usage in KB of all currently running processes in given 
process groups.
swap

Total virtual memory usage in KB of all currently running processes in given proces 
groups.
utime

Cumulative total user time in seconds.
stime

Cumulative total system time in seconds.
npids

Number of currently active processesin given process groups.
npgids

Number of currently active process groups.
pgid

Array of currently active process group ids.
nthreads

Number of currently active threads in given process groups.
The fields in the pidInfo structure have the following meaning:
pidInfo

Structure containing information about an active process.



Platform LSF API Reference 351

pid

Process id.
ppid

Parent’s process id.
pgid

Process group id.
jobid

Process Cray job id (only on Cray).

ERRORS
If there are no more records, then lsberrno is set to LSBE_EOF. 

SEE ALSO

Related API
lsb_openjobinfo() - Opens a job information connection to mbatchd
lsb_openjobinfo_a() - Provides the name and number of jobs and hosts in 
mbatchd

lsb_closejobinfo() - Closes job information connection with mbatchd
lsb_hostinfo() - Returns informaton about job server hosts
lsb_pendreason() - Explains why a job is pending
lsb_queueinfo() - Returns information about batch queues
lsb_readjobinfo() - Returns the next job information record in mbatchd
lsb_suspreason() - Explains why a job was suspended

Equivalent line command
none

Files
lsb.queues



lsb_readjobmsg()

352 Platform LSF API Reference

lsb_readjobmsg()
Reads messages and data posted to a job.

DESCRIPTION
Use lsb_readjobmsg() to open a TCP connection, receive attached messages and 
data from the mbatchd, and display the messages posted by lsb_postjobmsg().
By default, lsb_readjobmsg() displays the message “no description” or the 
message at index position 0 of the specified job. To read other messages, choose 
another index position. The index is populated by lsb_postjobmsg().
If a data file is attached to a message and the flag EXT_ATTA_READ is set, 
lsb_readjobmsg() gets the message and copies its data file to the default directory 
JOB_ATTA_DIR, overwriting the specified file if it already exists. If there is no file 
attached, the system reports an error. 
Users can only read messages and data from their own jobs. Root and LSF 
administrators can also read messages of jobs submtted by other users, but they 
cannot read data files attached to jobs owned by other users.
You can read messages and data from a job until it is cleaned from the system. You 
cannot read messages and data from done or exited jobs.

SYNOPSIS
#include <lsf/lsbatch.h>
#include <time.h>

int lsb_readjobmsg(struct jobExternalMsgReq *jobExternalMsg, 
struct jobExternalMsgReply *jobExternalMsgReply)

struct jobExternalMsgReq {
int options;
LS_LONG_INT jobId;
char *jobName;
int msgIdx;
char *desc;
int userId;
long dataSize;
time_t postTime;
char *userName;

};

struct jobExternalMsgReply {
LS_LONG_INT jobId;
int msgIdx;
char *desc;
int userId;
long dataSize;
time_t postTime;
int dataStatus;
char *jobName;

};



Platform LSF API Reference 353

PARAMETERS
jobExternalMsg This structure contains the information required to define an external message of a 

job.
options Specifies if the message has an attachment to be read.

<lsf/lsbatch.h> defines the following flags constructed from bits. These flags 
correspond to options. 
EXT_MSG_READ

Read the external job message. There is no attached data file.
EXT_ATTA_READ

Read the external job message and data file posted to the job.
If there is no data file attached, the error message “The attached data of the message 
is not available” is displayed, and the external job message is displayed.

jobId The system generated job Id of the job.
msgIdx The message index. A job can have more than one message. Use msgIdx in an array 

to index messages. 
desc Text description of the message

userId The userId of the author of the message.
dataSize The size of the data file. If no data file is attached, the size is 0.

postTime The time the author posted the message.
userName The author of the message.

jobExternalMsgReply This structure contains the information required to define an external message 
reply.

jobId The system generated job Id of the job associated with the message.
msgIdx The message index. A job can have more than one message. Use msgIdx in an array 

to index messages. 
desc The message you want to read.

userId The user Id of the author of the message.
dataSize The size of the data file attached. If no data file is attached, the size is 0.

postTime The time the message was posted.
dataStatus The status of the attached data file. The status of the data file can be one of the 

following:
EXT_DATA_UNKNOWN

Transferring the message’s data file.
EXT_DATA_NOEXIST

The message does not have an attached data file.
EXT_DATA_AVAIL

The message’s data file is available.



RETURN VALUES

354 Platform LSF API Reference

EXT_DATA_UNAVAIL

The message’s data file is corrupt.

RETURN VALUES
integer:value The successful function returns a socket number. 

integer:0 The EXT_ATTA_READ bit of options is not set or there is no attached data.
integer:-1 The function failed.

ERRORS
If the function fails, lserrno is set to indicate the error.

SEE ALSO

Related APIs
lsb_postjobmsg() - Sends messages and attaches data files to a jobs

Equivalent line command
bread 

Files
lsb.params 
JOB_ATTA_DIR 
LSB_SHAREDIR/info/ 



Platform LSF API Reference 355

lsb_readframejob()
Returns all frame jobs information which matchs the specified parameters and fills 
related information into the frame job information table.

DESCRIPTION
lsb_readframejob() gets all frame jobs information that matches the specified 
parameters and fills related information into the frame job information table. 
lsb_readframejob is a wrapper of lsb_openjobinfo(), lsb_readjobinfo(), and 
lsb_closejobinfo(). Memory allocated in frameJobInfoTbl will be freed by 
user. 
The fields in the frameJobInfo structure have the following meaning: 

jobGid The job ID that the LSF system assigned to the frame job array. 
maxJob The max job number in one frame job array. 

userName The user submitted the frame job array. 
jobName The full job name of the frame job array. frameElementPtr The pointer to frame 

job array table.
The fields in the frameElementInfo structure have the following meaning: 

jobindex The job index in the frame job array. 
jobState The job status. 

start The start frame of this frame job. 
end The end frame of this frame job. 

step The step of this frame job. 
chunk The chunk size of this frame job. 

SYNOPSIS
#include <lsf/lsbatch.h>
int lsb_readframejob(LS_LONG_INT jobId, char *frameName, 

char *user, char *queue, char *host, int options, 
struct frameJobInfo **frameJobInfoTbl)

struct frameJobInfo {
/* jobid of the job array */

int jobGid;
/* job number in a job array */

int maxJob;
/* user name */

char userName[MAX_LSB_NAME_LEN];
/* full job name */

char jobName[MAXLINELEN];
/* pointer to job array table */

struct frameElementInfo *frameElementPtr;
};

struct frameElementInfo {
/* job index in a job array */



PARAMETERS

356 Platform LSF API Reference

int jobindex;
/* job status */

int jobState;
/* start frame */

int start;
/* end frame */

int end;
/* step size */

int step;
/* chunk size */

int chunk;
};

PARAMETERS
jobId Get information about the frame jobs with the given job ID. If jobID is 0, get 

information about frame jobs which satisfy the other specifications. If a job in a job 
array is to be modified, use the array form jobID[i] where jobID is the job array 
name, and i is the index value.

*frameName Get information about frame jobs with the given frame name. 
*user Get information about frame jobs submitted by the named user or user group, or 

by all users if user is all. If user is NULL, the user invoking this routine is assumed. 
*queue Get information about frame jobs belonging to the named queue. If queue is NULL, 

jobs in all queues of the batch system will be considered. 
*host Get information about frame jobs on the named host, host group or cluster name. 

If host is NULL, jobs on all hosts of the batch system will be considered. 
options <lsf/lsbatch.h> defines the following flags constructed from bits. Use the bitwise 

OR to set more than one flag. 
**frameJobInfoTbl The result of all frame jobs information. 

RETURN VALUES
integer:Length of frame job information table

Function was successful.
integer:-1

Function failed.

ERRORS
If the function fails, lsberrno is set to indicate the error. 

SEE ALSO

Related API
lsb_openjobinfo() 
lsb_readjobinfo() 
lsb_closejobinfo() 



Platform LSF API Reference 357

Equivalent line command
none

Files
none



lsb_readstream()

358 Platform LSF API Reference

lsb_readstream() 
Reads a current version eventRec structure from the lsb_stream file.

DESCRIPTION
lsb_readstream() reads an eventrRec from the open streamFile

SYNOPSIS
#include <lsf/lsbatch.h>

struct EventRec lsb_readstream(int *nline)

See lsb_geteventrec() for details on the eventRec structure.

PARAMETERS
* nline Line number in the stream file to be read.

See lsb_geteventrec() for details on the eventRec structure. 

RETURN VALUES
integer:0 The function was successful.

integer:-1 The function failed.

ERRORS
On failure, lsberrno is set to indicate the error. 

SEE ALSO

Related APIs
lsb_closestream(): Close the stream file.
lsb_geteventrec(): Get eventRec structure from an event log file.
lsb_openstream(): Open the stream file.
lsb_puteventrec(): Puts information of an eventRec structure into a log file.
lsb_readstreamline(): Read a line from the stream file.
lsb_streamversion(): Version of the current event type supported by mbatchd.
lsb_writestream(): Write an event to the stream file.

Equivalent line command
None

Files

lsb.params



Platform LSF API Reference 359



lsb_readstreamline()

360 Platform LSF API Reference

lsb_readstreamline()
Reads a current version eventRec structure from the lsb_stream file.

DESCRIPTION
lsb_readstreamline() reads an eventrRec from the open streamFile

SYNOPSIS
#include <lsf/lsbatch.h>

struct EventRec lsb_readstreamline(const char *line)

See lsb_geteventrec() and lsb_puteventrec() for details on the eventRec structure.

PARAMETERS
* line Line number in the stream file to be read.

See lsb_puteventrec() and lsb_geteventrec() for details on the eventRec structure.  
Additionally, there are three additional event types supported.

RETURN VALUES
integer:0 The function was successful.

integer:-1 The function failed.

ERRORS
On failure, lsberrno is set to indicate the error. 

SEE ALSO

Related APIs
lsb_closestream(): Close the stream file.
lsb_geteventrec(): Get eventRec structure from an event log file.
lsb_openstream(): Open the stream file.
lsb_puteventrec(): Puts information of an eventRec structure into a log file.
lsb_readstream(): Read from the stream file.
lsb_streamversion(): Version of the current event type supported by mbatchd.
lsb_writestream(): Write an event to the stream file.

Equivalent line command
None

Files

lsb.params



Platform LSF API Reference 361

lsb_reconfig()
Dynamically reconfigures an LSF batch system.

DESCRIPTION
lsb_reconfig() dynamically reconfigures an LSF batch system to pick up new 
configuration parameters and changes to the job queue setup since system startup 
or the last reconfiguration (see lsb.queues). 
To restart a slave batch daemon, use lsb_hostcontrol(). This call is successfully 
invoked only by root or by the LSF administrator.
Any program using this API must be setuid to root if LSF_AUTH is not defined in 
the lsf.conf file. 

SYNOPSIS
#include <lsf/lsbatch.h>
int lsb_reconfig(void)

RETURN VALUES
integer:0 Function was successful.

integer:-1 Function failed.

ERRORS
If the function fails, lsberrno is set to indicate the error. 

SEE ALSO

Related API
lsb_openjobinfo() 

Equivalent line command
badmin reconfig

Files
${LSF_ENVDIR-/etc}/lsf.conf 



lsb_removereservation()

362 Platform LSF API Reference

lsb_removereservation()
Removes a reservation.

DESCRIPTION
Use lsb_removereservation() to remove a reservation. mbatchd removes the 
reservation with the specified reservation ID.

SYNOPSIS
#include <lsf/lsf.h>

int lsb_removereservation(char *rsvId)

struct rmRsvRequest {

    char    *rsvId;

};

PARAMETERS
*rsvId Reservation ID of the reservation that you wish to remove.

RETURN VALUES
integer:0 The reservation was removed successfully.

integer:-1 The reservation removal failed.

ERRORS
On failure, lsberrno is set to indicate the error. 

SEE ALSO

Related APIs
lsb_addreservation() - Makes a reservation
lsb_modreservation() - Modifies a reservation
lsb_reservationinfo() - Retrieves reservation information

Equivalent line command
brsvdel

Files:
none



Platform LSF API Reference 363

lsb_requeuejob()
Requeues job arrays, jobs in job arrays, and individual jobs.

DESCRIPTION
Use lsb_requeuejob()to requeue job arrays, jobs in job arrays, and individual jobs 
that are running, pending, done, or exited. In a job array, you can requeue all the 
jobs or requeue individual jobs of the array.
lsb_requeuejob()requeues jobs as if the jobs were in an array. A job not in an 
array is considered to be a job array composed of one job.
Jobs in a job array can be requeued independently of each other regardless of any 
job’s status (running, pending, exited, done). A requeued job is requeued to the 
same queue it was originally submitted from or switched to. The job submission 
time does not change so a requeued job is placed at the top of the queue. Use 
lsb_movejob() to place a job at the bottom or any other position in a queue.
If a clean period is reached before lsb_requeuejob() is called, the cleaned jobs 
cannot be requeued. Set the variable CLEAN_PERIOD in your lsb.params file to 
determine the amount of time that job records are kept in MBD core memory after 
jobs have finished or terminated. 
To requeue a job assign values to the data members of the jobrequeue data 
structure, process command line options in case the user has specified a different 
job, and call lsb_requeue() to requeue the job array.
Assign values to the jobID, status, and options data members of the jobrequeue data 
structure. Assign the job identification number to jobID. Assign JOB_STAT_PEND 
or JOB_STAT_PSUSP to status. Assign REQUEUE_DONE, REQUEUE_EXIT, and 
or REQUEUE_RUN to requeue running jobs.

SYNOPSIS
#include <lsf/lsbatch.h>

int lsb_requeuejob(struct jobrequeue *)

struct jobrequeue {
LS_LONG_INT jobId;
int status;
int options;

};

PARAMETERS
jobrequeue This structure contains the information required to requeue a job.

jobId Specifies the jobid of a single job or an array of jobs.
status Specifies the lsbatch status of the requeued job after it has been requeued. The job 

status can be JOB_STAT_PEND or JOB_STATE_PSUSP. The default status is 
JOB_STAT_PEND.

options Specifies the array elements to be requeued.



RETURN VALUES

364 Platform LSF API Reference

<lsf/lsbatch.h> defines the following flags constructed from bits. These flags 
correspond to the following options: 
REQUEUE_DONE

Requeues jobs that have finished running. Jobs that have exited are not re-run. 
Equivalent to brequeue -d command line option.
REQUEUE_EXIT

Requeues jobs that have exited. Finished jobs are not re-run. Equivalent to 
brequeue -e command line option.
REQUEUE_RUN

Requeues running jobs and puts them in PEND state. Equivalent to brequeue -r 
command line option.

RETURN VALUES
integer:0 The function is successful. 

integer:-1 The function failed.

ERRORS
If the function fails, lsberrno is set to indicate the error.

SEE ALSO

Related APIs
lsb_movejob() - Changes the position of a pending job in a queue
lsb_pendreason() - Explains why a job is pending

Equivalent line command
brequeue -d

brequeue -e

brequeue -a

brequeue -r

brequeue -H

Files
lsb.params

LSB_SHAREDIR 



Platform LSF API Reference 365

lsb_reservationinfo()
Retrieve reservation information to display active advance reservations.

DESCRIPTION
Use lsb_reservationinfo() to retrieve reservation information from mbatchd. 
This function allocates memory that the caller should free. If the 
lsb_reservationinfo() function succeeds, it returns the reservation records 
pertaining to a particular reservation ID (rsvId) as an array of rsvInfoEnt structs.
If rsvId is NULL, all reservation information will be returned. If a particular rsvId 
is specified:
◆ If found, the reservation record pertaining to a particular rsvId is returned
◆ If not found, the number of reservation records is set to zero and the lsberrno 

is set appropiately

SYNOPSIS
#include <lsf/lsf.h>

struct rsvInfoEnt *lsb_reservationinfo(char *rsvId, int *numEnts,

int options)

struct rsvInfoEnt {

int options;

char *rsvId;

char *name;

int numRsvHosts;

struct hostRsvInfoEnt *rsvHosts;

char *timeWindow;

int numRsvJobs;

LS_LONG_INT *jobIds;

int *jobStatus;

char *desc;

char **disabledDurations;

int state;

char *nextInstance;

char *creator

};

struct hostRsvInfoEnt {

char *host;

int numCPUs;

int numSlots;

int numRsvProcs;

int numUsedProcs;



PARAMETERS

366 Platform LSF API Reference

};

PARAMETERS
*rsvId Reservation ID of the requested reservation.

*numEnts Number of reservation entries that mbatchd returns.
options The parameter options is currently ignored.

RsvInfoEnt structure
options Reservation options.

*rsvId Reservation ID returned from mbatchd. If the reservation fails, this is NULL. The 
memory for rsvid is allocated by the caller.

name LSF user group name for the reservation. See the -g option of brsvadd.
numRsvHosts Number of hosts reserved.

timeWindow Active time window for a recurring reservation. See the -t option of brsvadd.
numRsvJobs Number of jobs running in the reservation.

*jobIds Job IDs of jobs running in the reservation.
*jobStatus Status of jobs running in the reservation.

desc description for the reservation to be created. The description must be provided as a 
double quoted text string. The maximum length is 512 characters. Equivalent to the 
value of brsvadd -d.

**disabledDurations Null-terminated list of disabled durations.
state The current state of the reservation - active or inactive.

*nextInstance The time of the next instance of a recurring reservation.
*creator Creator of the reservation.

hostRsvInfoEnt structure
host Host name.

numCPUs Number of CPUs reserved on the host.
numSlots Number of job slots reserved on the host.

numRsvProcs Number of processors reserved on the host.
numUsedProcs Number of processors in use on the host.

RETURN VALUES
array:rsvInfoEnt The information retrieval is successful.

struct:NULL The information retrieval failed.

ERRORS
On failure, lsberrno is set to indicate the error. 



Platform LSF API Reference 367

SEE ALSO

Related APIs
lsb_addreservation() - Makes a reservation
lsb_modreservation() - Modifies a reservation
lsb_removereservation() - Removes a reservation

Equivalent line command
brsvs

Files:
none



lsb_resize_cancel()

368 Platform LSF API Reference

lsb_resize_cancel()
Cancels a pending job resize allocation request.

DESCRIPTION
Use lsb_resize_cancel() to cancel a pending allocation request for a resizable 
job. A running job can only have one pending request at any particular time. If one 
request is still pending, additional requests are rejected with a proper error code. 

SYNOPSIS
#include <lsf/lsbatch.h>

int lsb_resize_cancel(LS_LONG_INT jobId);

jobId LSF job ID

RETURN VALUES
On  success, returns zero. 
On failure, returns -1.

ERRORS
lsberrno is set to indicate the error.

SEE ALSO

Related APIs
lsb_resize_release() - Releases part of the allocation of a running resizable job

Equivalent line command
bresize cancel job_ID

Files
none



Platform LSF API Reference 369

lsb_resize_release()
Releases part of the allocation of a running resizable job.

DESCRIPTION
Use lsb_resize_release() to release part of a running job allocation. 
A running job can only have one pending request at any particular time. If one 
request is still pending, additional requests are rejected with a proper error code. 
If a notification command is defined through job submission, application profile, 
or the lsb_resize_release() API, the notification command is invoked on the 
first execution host of the job allocation once allocation resize requests have been 
satisfied.

SYNOPSIS
#include <lsf/lsbatch.h>

#define LSB_RESIZE_REL_NONE         0x0

#define LSB_RESIZE_REL_ALL          0x01

#define LSB_RESIZE_REL_CANCEL       0x02

#define LSB_RESIZE_REL_NO_NOTIFY    0x04

lsb_resize_release(struct job_resize_release *req);

struct job_resize_release {

     LS_LONG_INT jobId;

     int         options;

     int         nHosts;

     char        **hosts;

     int         *slots;

     char        *notifyCmd;

};

PARAMETERS
The job_resize_release struct contains the following fields:

options options is constructed from the bitwise inclusive OR of zero or more of the 
following flags, as defined in lsbatch.h:
◆  LSB_RESIZE_REL_ALL means release all slots—In this case, nHosts, hosts 

and slots indicate the slots that are not released
◆ LSB_RESIZE_REL_CANCEL means cancel any pending resize request
◆ LSB_RESIZE_REL_NO_NOTIFY means execute no resize notification 

command
◆ LSB_RESIZE_REL_NONE means release no slots

nHosts number of hosts in the hosts list, if no hosts are to be specified this should be zero
hosts specified hosts list, nHosts number of elements



RETURN VALUES

370 Platform LSF API Reference

slots slots list, each element specifies the number of slots per corresponding host (0 
implies all), nHosts number of elements

notifyCmd name and location of notification command
jobId LSF job ID

RETURN VALUES
On  success, returns zero. 
On failure, returns -1.

ERRORS
lsberrno is set to indicate the error.

SEE ALSO

Related APIs
lsb_resize_cancel() - Cancels a pending job resize allocation request 

Equivalent line command
release  [-c]  [-rnc resize_notification_cmd | -rncn]  released_host_specification  
job_ID

Files
none



Platform LSF API Reference 371

lsb_runjob()
Starts a batch job immediately on a set of specified host().

DESCRIPTION
lsb_runjob() starts a batch job immediately on a set of specified host(). The job 
must have been submitted and is in PEND or FINISHED status. Only the LSF 
administrator or the owner of the job can start the job. If the options is set to 
RUNJOB_OPT_NOSTOP, then the job will not be suspended by the queue’s RUNWINDOW, 
loadStop and STOP_COND and the hosts’ RUNWINDOW and loadStop conditions. By 
default, these conditions apply to the job as do to other normal jobs. 
Any program using this API must be setuid to root if LSF_AUTH is not defined in the 
lsf.conf file. 

SYNOPSIS
truct runJobRequest {

    LS_LONG_INT jobId;    /* jobid of the requested job */

    int     numHosts;     /* The number of hosts */

    char    **hostname;   /* Vector of hostnames */

#define RUNJOB_OPT_NORMAL     0x01

#define RUNJOB_OPT_NOSTOP     0x02

#define RUNJOB_OPT_PENDONLY   0x04 /* pending jobs only, no finished jobs */

#define RUNJOB_OPT_FROM_BEGIN 0x08 /* chkpnt job only, from beginning */

#define RUNJOB_OPT_FREE       0x10 /* brun to use free CPUs only */

#define RUNJOB_OPT_IGNORE_RUSAGE  0x20 /* brun ignoring rusage */

    int     options;      /* Run job request options */

 int     *slots;       /* Vector of number of slots per host */

};

PARAMETERS
*runReq The job-starting request. 

RETURN VALUES
integer:0 Function was successful.

integer:-1 Function failed.

ERRORS
If the function fails, lsberrno is set to indicate the error. 

SEE ALSO

Related API
none



SEE ALSO

372 Platform LSF API Reference

Equivalent line command
brun

Files
lsf.conf



Platform LSF API Reference 373

lsb_sharedresourceinfo()
Returns the requested shared resource information in dynamic values.

DESCRIPTION
lsb_sharedresourceinfo() returns the requested shared resource information in 
dynamic values. The result of this call is a chained data structure as defined in 
<lsf/lsbatch.h>, which contains requested information. 

SYNOPSIS
#include <lsf/lsbatch.h>
LSB_SHARED_RESOURCE_INFO_T *lsb_sharedresourceinfo(

char **resources, 
int *numResources, 
char *hostName, int options)

typedef struct lsbSharedResourceInfo {
char *resourceName;
int nInstances;
LSB_SHARED_RESOURCE_INST_T *instances;

} LSB_SHARED_RESOURCE_INFO_T;

typedef struct lsbSharedResourceInstance {
char *totalValue;
char *rsvValue;
int nHosts;
char **hostList;

} LSB_SHARED_RESOURCE_INST_T;

PARAMETERS
**resources resources is an NULL terminated string array storing requesting resource names. 

Setting resources to point to NULL returns all shared resources. 
*numResources numResources is an input/output parameter. On input it indicates how many 

resources are requested. Value 0 means requesting all shared resources. On return 
it contains qualified resource number. 

*hostName hostName is a string containing a host name. Only shared resource available on the 
specified host will be returned. If hostName is a NULL, shared resource available on 
all hosts will be returned. 

options options is reserved for future use. Currently, it should be set to 0. 

RETURN VALUES
pointer: On success, lsb_sharedresourceinfo() returns a pointer to an 

LSB_SHARED_RESOURCE_INFO_T structure, which contains complete shared 
resource information.

char:NULL Function failed.



ERRORS

374 Platform LSF API Reference

ERRORS
If the function fails, lsberrno is set to indicate the error. 

SEE ALSO

Related API
ls_sharedresourceinfo() 

Equivalent line command
none

Files
$LSF_CONFDIR/lsf.shared

$LSF_CONFDIR/lsf.cluster.cluster_name



Platform LSF API Reference 375

lsb_signaljob()
Sends a signal to a job.

DESCRIPTION
Use lsb_signaljob() when migrating a job from one host to another. Use 
lsb_signaljob() to stop or kill a job on a host before using lsb_mig() to migrate 
the job. Next, use lsb_signaljob() to continue the stopped job at the specified 
host.
Generally, use lsb_signaljob() to apply any UNIX signal to a job or process.
Any program using this API must be setuid to root if LSF_AUTH is not defined in the 
lsf.conf file. 

SYNOPSIS
#include <lsf/lsbatch.h>

int lsb_signaljob (LS_LONG_INT jobId, int sigValue)

PARAMETERS
jobId The job to be signaled. If a job in a job array is to be signaled, use the array form

jobID[ i ] where jobID is the job array name, and i is the index value.
sigValue SIGSTOP, SIGCONT, SIGKILL or some other UNIX signal. 

RETURN VALUES
integer:0 The function was successful.

integer:-1 The function failed.

ERRORS
If the function fails, lsberrno is set to indicate the error. 

SEE ALSO

Related APIs
lsb_chkpntjob() - checkpoints a job
lsb_forcekilljob() - kills a job
lsb_mig() - migrates a job to another host

Equivalent line command
bkill - sends a signal to kill, suspend, or resume unfinished jobs
bstop - suspends unfinished jobs
bresume - resumes a suspended job

Files
${LSF_ENVDIR-/etc}/lsf.conf



lsb_streamversion()

376 Platform LSF API Reference

lsb_streamversion()
Version of the current event type supported by mbatchd.

DESCRIPTION
lsb_streamversion() returns the event version number of mbatchd, which is the 
version of the events to be written to the stream file.
This API function is inside liblsbstream.so.

SYNOPSIS
#include <lsf/lsbatch.h>

char * lsb_streamversion(void)

PARAMETERS
none

RETURN VALUES
char* Pointer to a string of the current event version in mbatchd, also known as 

THIS_VERSION.

ERRORS
If the function fails, lsberrno is set to indicate the error. 

SEE ALSO

Related APIs
lsb_closestream(): Close the stream file.
lsb_geteventrec(): Get eventRec structure from an event log file.
lsb_openstream(): Open the stream file.
lsb_puteventrec(): Puts information of an eventRec structure into a log file.
lsb_readstreamline(): Read a line from the stream file.
lsb_writestream(): Write an event to the stream file.
lsb_readstream(): Read from the stream file.

Equivalent line command
None

Files

lsb.params



Platform LSF API Reference 377

lsb_submit()
Submits or restarts a job in the batch system.

DESCRIPTION
lsb_submit() submits or restarts a job in the batch system according to the 
jobSubReq specification. 

SYNOPSIS
#include <lsf/lsbatch.h>

LS_LONG_INT lsb_submit (struct submit *jobSubReq, 

struct submitReply *jobSubReply)

struct submit {

    int     options;

    int     options2;

    char    *jobName;

    char    *queue;

    int     numAskedHosts;

    char    **askedHosts;

    char    *resReq;

    int     rLimits[LSF_RLIM_NLIMITS];

    char    *hostSpec;

    int     numProcessors;

    char    *dependCond;

    char    *timeEvent;

    time_t  beginTime;

    time_t  termTime;

    int     sigValue;

    char    *inFile;

    char    *outFile;

    char    *errFile;

    char    *command;

    char    *newCommand;

    time_t  chkpntPeriod;

    char    *chkpntDir;

    int     nxf;

    struct xFile *xf;

    char    *preExecCmd;

    char    *mailUser;

    int     delOptions;

    int     delOptions2;

    char    *projectName;

    int     maxNumProcessors;



PARAMETERS

378 Platform LSF API Reference

    char    *loginShell;

    char    *userGroup;

    char    *exceptList;

    int     userPriority;

    char    *rsvId;

    char    *jobGroup;

    char    *sla;

    char    *extsched;

    int     warningTimePeriod;

    char    *warningAction;

    char    *licenseProject;

    int     options3;

    int     delOptions3;

    char    *app;

    int     jsdlFlag;

    char    *jsdlDoc;

    void    *correlator;

    char    *apsString;

    char    *postExecCmd;

    char    *cwd;

    int     runtimeEstimation;

    char    *requeueEValues;

    int     initChkpntPeriod;

    int     migThreshold;

    char    *notifyCmd;

};

struct submitReply {

char *queue;

LS_LONG_INT badJobId;

char *badJobName;

int badReqIndx;

};

PARAMETERS
jobSubReq Describes the requirements for job submission to the batch system. A job that does 

not meet these requirements is not submitted to the batch system and an error is 
returned.

jobSubReply Describes the results of the job submission to the batch system.

structure jobSubReq
The submit structure contains the following fields: 



Platform LSF API Reference 379

options <lsf/lsbatch.h> defines the following flags constructed from bits. These flags 
correspond to some of the options of the bsub command  line. Use the bitwise OR 
to set more than one flag. 
SUB_JOB_NAME

Flag to indicate jobName parameter has data. Equivalent to bsub -J command line 
option existence.
SUB_QUEUE

Flag to indicate queue parameter has data. Equivalent to bsub -q command line 
option existence.
SUB_HOST

Flat to indicate numAskedHosts parameter has data. Equivalent to bsub -m 
command line option existence.
SUB_IN_FILE

Flag to indicate inFile parameter has data. Equivalent to bsub -i command line 
option existence.
SUB_OUT_FILE

Flag to indicate outFile parameter has data. Equivalent to bsub -o command line 
option existence.
SUB_ERR_FILE

Flag to indicate errFile parameter has data. Equivalent to bsub -e command line 
option existence.
SUB_EXCLUSIVE

Flag to indicate execution of a job on a host by itself requested. Equivalent to bsub 
-x command line option existence. 
SUB_NOTIFY_END 

Flag to indicate whether to send mail to the user when the job finishes. Equivalent 
to bsub -N command line option existence.
SUB_NOTIFY_BEGIN 

Flag to indicate whether to send mail to the user when the job is dispatched. 
Equivalent to bsub -B command line option existence.
SUB_USER_GROUP

Flag to indicate userGroup name parameter has data. Equivalent to bsub -G 
command line option existence.
SUB_CHKPNT_PERIOD

Flag to indicatechkpntPeriod parameter has data . Equivalent to bsub -k 
command line option existence.
SUB_CHKPNT_DIR

Flag to indicate chkpntDir parameter has data. Equivalent to bsub -k command 
qwreqwqwline option existence.
SUB_CHKPNTABLE

Indicates the job is checkpointable. Equivalent to bsub -k command line option.



PARAMETERS

380 Platform LSF API Reference

SUB_RESTART_FORCE 

Flag to indicate whether to forces the job to restart even if non-restartable 
conditions exist. These conditions are operating system specific. Equivalent to 
brestart() -f command line option existence.
SUB_RESTART

Flag to indicate restart of a checkpointed job. Only jobs that have been successfully 
checkpointed can be restarted. Jobs are re-submitted and assigned a new job ID. By 
default, jobs are restarted with the same output file, file transfer specifications, job 
name, window signal value, checkpoint directory and period, and rerun options as 
the original job. To restart a job on another host, both hosts must be binary 
compatible, run the same OS version, have access to the executable, have access to 
all open files (LSF must locate them with an absolute path name), and have access 
to the checkpoint directory. Equivalent to bsub -k command line option existence.
SUB_RERUNNABLE

Indicates the job is re-runnable. If the execution host of the job is considered down, 
the batch system will re-queue this job in the same job queue, and re-run it from 
the beginning when a suitable host is found. Everything will be as if it were 
submitted as a new job, and a new job ID will be assigned. The user who submitted 
the failed job will receive a mail notice of the job failure, requeueing of the job, and 
the new job ID.
For a job that was checkpointed before the execution host went down, the job will 
be restarted from the last checkpoint. Equivalent to bsub -r command line option 
existence.
SUB_WINDOW_SIG

Flag to indicate sigValue parameter has data. Sends a signal as the queue window 
closes. 
SUB_HOST_SPEC

Flag to indicate hostSpec parameter has data.
SUB_DEPEND_COND

Flag to indicate dependCond parameter has data. Equivalent to bsub -w command 
line option existence.
SUB_RES_REQ

Flag to indicate resReq parameter has data. Equivalent to bsub -R command line 
option existence.
SUB_OTHER_FILES

Flag to indicate nxf parameter and structure xf have data. 
SUB_PRE_EXEC

Flag to indicate preExecCmd parameter has data. Equivalent to bsub -E command 
line option existence.
SUB_LOGIN_SHELL

Flag to indicate loginShell parameter has data. 
Equivalent to bsub -L command line option existence.



Platform LSF API Reference 381

SUB_MAIL_USER

Flag to indicate mailUser parameter has data.
SUB_MODIFY

Flag to indicate newCommand parameter has data. Equivalent to bmod 
bsub_options existence.
SUB_MODIFY_ONCE

Flag to indicate modify option once.
SUB_PROJECT_NAME

Flag to indicate ProjectName parameter has data . Equivalent to bsub -P 
command line option existence.
SUB_INTERACTIVE

Indicates that the job is submitted as a batch interactive job. When this flag is given, 
lsb_submit() does not return unless an error occurs during the submission 
process. When the job is started, the user can interact with the job’s standard input 
and output via the terminal. See the -I option in bsub for the description of a batch 
interactive job. Unless the SUB_PTY flag is specified, the job will run without a 
pseudo-terminal. Equivalent to bsub -I command line option.
SUB3_INTERACTIVE_SSH

Protects the sessions of interactive jobs with SSH encryption. Equivalent to bsub 
-IS|-ISp|-ISs.
SUB3_XJOB_SSH

Protect the sessions of interactive x-window job with SSH encryption. Equivalent 
to bsub -IX.
SUB_PTY

Requests pseudo-terminal support for a job submitted with the 
SUB_INTERACTIVE flag. This flag is ignored if SUB_INTERACTIVE is not 
specified. A pseudo-terminal is required to run some applications (e.g., vi). 
Equivalent to bsub -Ip command line option.
SUB_PTY_SHELL

Requests pseudo-terminal shell mode support for a job submitted with the 
SUB_INTERACTIVE and SUB_PTY flags. This flag is ignored if 
SUB_INTERACTIVE and SUB_PTY are not specified. This flag should be 
specified for submitting interactive shells, or applications which redefine the ctrl-C 
and ctrl-Z keys (e.g., jove). Equivalent to bsub -Is command line option.
SUB_EXCEPT

Exception handler for job.
SUB_TIME_EVENT

Specifies time_event.
options2 Extended bitwise inclusive OR of some of the following flags: 

SUB2_HOLD



PARAMETERS

382 Platform LSF API Reference

Hold the job after it is submitted. The job will be in PSUSP status. Equivalent to 
bsub -H command line option.
SUB2_MODIFY_CMD

New cmd for bmod.
SUB2_BSUB_BLOCK

Submit a job in a synchronous mode so that submission does not return until the 
job terminates. Note once this flag is set, the lsb_submit() will never return if the 
job is accepted by LSF. Programs that wishes to know the status of the submission 
needs to fork, with the child process invoking the API call in the blocking mode and 
the parent process wait on the child process (see wait() for details. 
SUB2_HOST_NT

Submit from NT.
SUB2_HOST_UX

Submit fom UNIX.
SUB2_QUEUE_CHKPNT

Submit to a chkpntable queue.
SUB2_QUEUE_RERUNNABLE

Submit to a rerunnble queue.
SUB2_IN_FILE_SPOOL

Spool job command.
SUB2_JOB_CMD_SPOOL

Inputs the specified file with spooling.
SUB2_JOB_PRIORTY

Submits job with priority.
SUB2_USE_DEF_PROCLIMIT

Job submitted wihtout -n, use queue’s default proclimit.
SUB2_MODIFY_RUN_JOB

bmod -c/-M/-W/-o/-e 
SUB2_MODIFY_PEND_JOB

bmod options only to pending jobs.
SUB2_WARNING_TIME_PERIOD

Job action warning time. Equivalent to bsub or bmod -wt.
SUB2_WARNING_ACTION

Job action to be taken before a job control action occurs. Equivalent to bsub or 
bmod -wa.
SUB2_USE_RSV

Use an advance reservation created with the brsvadd command. Equivalent to 
bsub -U.
SUB2_TSJOB



Platform LSF API Reference 383

Windows Terminal Services job
SUB2_LSF2TP  Deprecated

Parameter is deprecated
SUB2_JOB_GROUP

Submit into a job group
SUB2_SLA

Submit into a service class
SUB2_EXTSCHED

Submit with -extsched options
SUB2_LICENSE_PROJECT

License Scheduler project
SUB2_OVERWRITE_OUT_FILE

Overwrite the standard output of the job. Equivalent to bsub -oo.
SUB2_OVERWRITE_ERR_FILE

Overwrites the standard error output of the job. Equivalent to bsub -eo.
SUB3_RUNTIME_ESTIMATION

Use in conjunction with SUB3_RUNTIME_ESTIMATION_ACC and 
SUB3_RUNTIME_ESTIMATION_PERC.
SUB3_RUNTIME_ESTIMATION_ACC

Runtime estimate that is the accumulated run time plus the runtime estimate. 
Equivalent to bmod -We+. Use in conjunction with 
SUB3_RUNTIME_ESTIMATION.
SUB3_RUNTIME_ESTIMATION_PERC

Runtime estimate in percentage of completion. Equivalent to bmod -Wep. Two digits 
after the decimal point are suported. The highest eight bits of runtimeEstimation in 
the submit structure are used for the integer; the remaining bits are used for the 
fraction. Use in conjunction with SUB3_RUNTIME_ESTIMATION.

jobName The job name. If jobName is NULL, command is used as the job name. 
queue Submit the job to this queue. If queue is NULL, submit the job to a system default 

queue. 
numAskedHosts The number of invoker specified candidate hosts for running the job. If 

numAskedHosts is 0, all qualified hosts will be considered. 
askedHosts The array of names of invoker specified candidate hosts. The number of hosts is 

given by numAskedHosts. 
resReq The resource requirements of the job. If resReq is NULL, the batch system will try to 

obtain resource requirements for command from the remote task lists (see 
ls_task()). If the task does not appear in the remote task lists, then the default 
resource requirement is to run on host() of the same type. 

rLimits[LSF_RLIM_NLIMITS]



PARAMETERS

384 Platform LSF API Reference

Limits on the consumption of system resources by all processes belonging to this 
job. See getrlimit() for details. If an element of the array is -1, there is no limit 
for that resource. For the constants used to index the array, see lsb_queueinfo(). 

hostSpec Specify the host model to use for scaling rLimits[LSF_RLIMIT_CPU] and 
rLimits[LSF_RLIMIT_RUN]. (See lsb_queueinfo()). If hostSpec is NULL, the 
local host is assumed. 

numProcessors The initial number of processors needed by a (parallel) job. The default is 1. 
timeEvent Time event string. 

dependCond The job dependency condition.
beginTime Dispatch the job on or after beginTime, where beginTime is the number of seconds 

since 00:00:00 GMT, Jan. 1, 1970 (See time(), ctime()). If beginTime is 0, start the 
job as soon as possible. 

termTime The job termination deadline. If the job is still running at termTime, it will be sent 
a USR2 signal. If the job does not terminate within 10 minutes after being sent this 
signal, it will be ed. termTime has the same representation as beginTime. If 
termTime is 0, allow the job to run until it reaches a resource limit. 

sigValue Applies to jobs submitted to a queue that has a run window (See 
lsb_queueinfo()). Send signal sigValue to the job 10 minutes before the run 
window is going to close. This allows the job to clean up or checkpoint itself, if 
desired. If the job does not terminate 10 minutes after being sent this signal, it will 
be suspended. 

inFile The path name of the job’s standard input file. If inFile is NULL, use /dev/null as 
the default. 

outFile The path name of the job’s standard output file. If outFile is NULL, the job’s output 
will be mailed to the submitter. 

errFile The path name of the job’s standard error output file. If errFile is NULL, the 
standard error output will be merged with the standard output of the job. 

command The command line of the job. 
newCommand New command line for bmod. 
chkpntPeriod The job is checkpointable with a period of chkpntPeriod seconds. The value 0 

disables periodic checkpointing. 
chkpntDir The directory where the chk directory for this job checkpoint files will be created. 

When a job is checkpointed, its checkpoint files are placed in chkpntDir/chk. 
chkpntDir can be a relative or absolute path name. 

nxf The number of files to transfer. 
xf The array of file transfer specifications. (The xFile structure is defined in 

<lsf/lsbatch.h>.) 
preExecCmd The job pre-execution command. 

mailUser The user that results are mailed to. 
delOptions Delete options in options field .

delOptions2 Extended delete options in options2 field .



Platform LSF API Reference 385

projectName The name of the project the job will be charged to. 
maxNumProcessors Maximum number of processors the required to run the job. 

loginShell Specified login shell used to initialize the execution environment for the job (see the 
-L option of bsub). 

userGroup The name of the LSF user group (see lsb.users) to which the job will belong. (see 
the -G option of bsub) 

exceptList Passes the exception handlers to mbatchd during a job. (see the -X option of bsub). 
Specifies execption handlers that tell the system how to respond to an exceptional 
condition for a job. An action is performed when any one of the following 
exceptions is detected:
◆ missched - A job has not been scheduled within the time event specified in the 

-T option.
◆ overrun - A job did not finish in its maximum time (maxtime).
◆ underrun - A job finished before it reaches its minimum running time 

(mintime).
◆ abend - A job terminated abnormally. Test an exit code that is one value, two or 

more comma separated values, or a range of values (two values separated by a 
‘-’ to indivate a range). If the job exits with one of the tested values, the abend 
condition is detected.

◆ startfail - A job did not start due to insufficient system resources.
◆ cantrun - A job did not start because a dependency condition (see the -w option 

of bsub) is invalid, or a startfail exception occurs 20 times in a row and the job 
is suspended. For jobs submitted with a time event (see the -T option of bsub), 
the cantrun exception condition can be detected once in each time event.

◆ hostfail - The host running a job becomes unavailable.
When one or more of the above exceptions is detected, you can specify one of the 
following actions to be taken:
◆ alarm - Triggers an alarm incident (see balarms(1)). The alarm can be viewed, 

acknowledged and resolved.
◆ setexcept - Causes the exception event event_name to be set. Other jobs waiting 

on the exception event event_name specified through the -w option can be 
triggered. event_name is an arbitrary string.

◆ rerun - Causes the job to be rescheduled for execution. Any dependencies 
associated with the job must be satisfied before re-execution takes place. The 
rerun action can only be specified for the abend and hostfail exception 
conditions. The startfail exception condition automatically triggers the rerun 
action.

◆ kill - Causes the current execution of the job to be terminated. This action can 
only be specified for the overrun exception condition.

userPriority User priority for fairshare scheduling.
rsvId Reservation ID for advance reservation.

jobGroup Job group under which the job runs.



PARAMETERS

386 Platform LSF API Reference

sla SLA under which the job runs.
extsched External scheduler options.

 warningTimePeriod warning time period in seconds. -1 if unspecified.
warningAction warning action: SIGNAL, or CHKPNT, or command. NULL if unspecified.
licenseProject License Scheduler project name.

 options3 Extended bitwise inclusive OR of options flags:
SUB3_APP

Application profile name. Equivalent to bsub -app.
SUB3_APP_RERUNNABLE

Job rerunable because of application profile
SUB3_ABSOLUTE_PRIORITY

Job modified with absolute priority. . Equivalent to bmod -aps.
SUB3_DEFAULT_JOBGROUP

Submit into a default job group. Equivalent to bsub -g.
SUB3_POST_EXEC

Run the specified post-execution command on the execution host after the job 
finishes. Equivalent to bsub -Ep.
SUB3_USER_SHELL_LIMITS

Pass user shell limits to execution host. Equivalent to bsub -ul.
SUB3_CWD

Current working directory specified on on the command line with bsub -cwd

SUB3_RUNTIME_ESTIMATION

Runtime estimate. Equivalent to bsub -We.
SUB3_NOT_RERUNNABLE

Job is not rerunnable. Equivalent to bsub -rn.
SUB3_JOB_REQUEUE

Job level requeue exit values.
SUB3_INIT_CHKPNT_PERIOD

Initial checkpoint period. Equivalent to bsub -k initial_checkpoint_period.
SUB3_MIG_THRESHOLD

Job migration threshold. Equivalent to bsub -mig migration_threshold.
SUB3_APP_CHKPNT_DIR 

Checkpoint dir was set by application profile.
SUB3_BSUB_CHK_RESREQ 

Bsub only checks the reqreq syntax.
SUB3_BSUB_CHK_RESREQ



Platform LSF API Reference 387

Value of BSUB_CHK_RESREQ environment variable, used for select section 
resource requirement string syntax checking with bsub -R.
SUB3_AUTO_RESIZE

SUB3_RESIZE_NOTIFY_CMD

 delOptions3 Extended delete options in options3 field.
app Application profile under which the job runs.

jsdlFlag -1 if no -jsdl and -jsdl_strict options:
◆ 0 -jsdl_strict option
◆ 1 -jsdl option

jsdlDoc JSDL file name.
apsString Absolute priority scheduling string set by administrators to denote static system 

APS value or ADMIN factor APS value. This field is ignored by lsb_submit(). 
postExecCmd Post-execution commands specified by -Ep option of bsub and bmod.

cwd Current working directory specified by -cwd option of bsub and bmod.
runtimeEstimation Runtime estimate specified by -We option of bsub and bmod.

requeueEValues Job-level requeue exit values specified by -Q option of bsub and bmod. 
initChkpntPeriod Initial checkpoint period specified by -k option of bsub and bmod.

migThreshold Job migration threshold specified by -mig option of bsub and bmod.
notifyCmd Job resize notification command to be invoked on the first execution host when a 

resize request has been satisfied.

submitReply structure
The submitReply structure contains the following fields:
queue

The queue the job was submitted to. 
badJobId

dependCond contained badJobId but badJobId does not exist in the system. 
badJobName

dependCond contained badJobName but badJobName does not exist in the system. 
If the environment variable BSUB_CHK_RESREQ is set, the value of lsberrno is 
either LSBE_RESREQ_OK or LSBE_RESREQ_ERR, depending on the result of 
resource requirement string checking. The badJobName field contains the detailed 
error message.
badReqIndx



RETURN VALUES

388 Platform LSF API Reference

If lsberrno is LSBE_BAD_HOST, (**askedHosts)[badReqIndx] is not a host 
known to the system. If lsberrno is LSBE_QUEUE_HOST, 
(**askedHosts)[badReqIndx] is not a host used by the specified queue. If 
lsberrno is LSBE_OVER_LIMIT, (*rLimits)[badReqIndx] exceeds the queue’s 
limit for the resource. 

RETURN VALUES
character:job ID The function was successful, and sets the queue field of jobSubReply to the name 

of the queue that the job was submitted to.
If the environment variable BSUB_CHK_RESREQ is set, lsb_submit() returns a 
jobid less than zero (0). 

integer:-1 Function failed.

ERRORS
If the function fails, lsberrno is set to indicate the error. 
If the environment variable BSUB_CHK_RESREQ is set, the value of lsberrno is 
either LSBE_RESREQ_OK or LSBE_RESREQ_ERR, depending on the result of 
resource requirement string checking. The badJobName field in the submitReply 
structure contains the detailed error message.

SEE ALSO

Related API
lsb_modify() - Modifies a submitted job’s parameters
ls_info() - Returns a pointer to an lsInfo structure
lsb_queueinfo() - Returns information about batch queues

Equivalent line command
bsub

brestart

Files
${LSF_ENVDIR/etc}/lsf.conf



Platform LSF API Reference 389

lsb_submitframe()
Submits a frame job to the batch system.

DESCRIPTION
lsb_submitframe() submits a frame job to the batch system according to the 
jobSubReq specification and frameExp. 
Any program using this API must be setuid to root if LSF_AUTH is not defined in the 
lsf.conf file. 

SYNOPSIS
#include <lsf/lsbatch.h>

int lsb_submitframe (struct submit *jobSubReq, char *frameExp,

struct submitReply *jobSubReply)

struct submit {

    int     options;

    int     options2;

    char    *jobName;

    char    *queue;

    int     numAskedHosts;

    char    **askedHosts;

    char    *resReq;

    int     rLimits[LSF_RLIM_NLIMITS];

    char    *hostSpec;

    int     numProcessors;

    char    *dependCond;

    char    *timeEvent;

    time_t  beginTime;

    time_t  termTime;

    int     sigValue;

    char    *inFile;

    char    *outFile;

    char    *errFile;

    char    *command;

    char    *newCommand;

    time_t  chkpntPeriod;

    char    *chkpntDir;

    int     nxf;

    struct xFile *xf;

    char    *preExecCmd;

    char    *mailUser;

    int     delOptions;



PARAMETERS

390 Platform LSF API Reference

    int     delOptions2;

    char    *projectName;

    int     maxNumProcessors;

    char    *loginShell;

    char    *userGroup;

    char    *exceptList;

    int     userPriority;

    char    *rsvId;

    char    *jobGroup;

    char    *sla;

    char    *extsched;

    int     warningTimePeriod;

    char    *warningAction;

    char    *licenseProject;

    int     options3;

    int     delOptions3;

    char    *app;

    int     jsdlFlag;

    char    *jsdlDoc;

    void    *correlator;

    char    *apsString;

    char    *postExecCmd;

    char    *cwd;

    int     runtimeEstimation;

    char    *requeueEValues;

    int     initChkpntPeriod;

    int     migThreshold;

};

struct submitReply {

char *queue;

LS_LONG_INT badJobId;

char *badJobName;

int badReqIndx;

};

PARAMETERS
*jobSubReq Describes the requirements for job submission to the batch system. A job that does 

not meet these requirements is not submitted to the batch system and an error is 
returned.
See lsb_submit() on page 377 for descriptions of the submit structure fields. 

*frameExp The syntax of frameExp is:
frame_name[indexlist] 



Platform LSF API Reference 391

frame_name is any name consisting of alphanumerics, periods, forward slashes, 
dashes or underscores. indexlist is a list of one or more frame indexes, separated 
by commas. These indexes can each be either a single integer or a range, specified 
in the following format:
start-end[xstep[:chunk]]

start, end, step, and chunk are integers, but chunk must be positive. If step and 
chunk are ommitted, the default value is 1.
An example of a valid expression for frameExp is:
Frame_job_1[5,10-15,20-30x2:3]

*jobSubReply Describes the results of the job submission to the batch system.
See lsb_submit() on page 377 for descriptions of the submitReply structure fields.

RETURN VALUES
char:Job ID The function was successful, and sets the queue field of jobSubReply to the name 

of the queue that the job was submitted to.
int:-1 Function failed.

ERRORS
If the function fails, lsberrno is set to indicate the error and jobSubReply gives 
additional information about the error.

SEE ALSO

Related API
none

Equivalent line command
none

Files
${LSF_ENVDIR-/etc}/lsf.conf



lsb_suspreason()

392 Platform LSF API Reference

lsb_suspreason()
Explains why a job was suspended.

DESCRIPTION
Using the SBD, lsb_suspreason() explains why system-suspended and 
user-suspended jobs were suspended.

SYNOPSIS
#include <lsf/lsbatch.h>

char *lsb_suspreason(int reasons, int subreasons, 
struct loadIndexLog *ld)

struct loadIndexLog {
int nIdx;
char **name;

};

PARAMETERS
reasons Reasons a job suspends:

SUSP_HOST_LOCK

The LSF administrator has locked the execution host.
SUSP_LOAD_REASON

A load index exceeds its threshold. The subreasons field indicates which indices. 
SUSP_MBD_PREEMPT

The job was preempted by mbatchd because of a higher priorty job.
SUSP_QUEUE_WINDOW

The run window of the queue is closed.
SUSP_RESCHED_PREEMPT

Suspended after preemption. The system needs to re-allocate CPU utilization by 
job priority.
SUSP_SBD_PREEMPT

Preempted by sbatchd. The job limit of the host/user has been reached.
SUSP_USER_RESUME

The job is waiting to be re-scheduled after being resumed by the user.
SUSP_USER_STOP

The user suspended the job. 
SUSP_ADMIN_STOP

The job was suspened by root or the LSF administrator. 
SUSP_SBD_STARTUP

The job is suspended while the sbatchd is restarting.



Platform LSF API Reference 393

SUSP_HOST_LOCK_MASTER

The execution host is locked by the master LIM. 
SUSP_QUE_STOP_CONDITION

The suspend conditions of the queue, as specified by the STOP_COND parameter in 
lsb.queues, are true.
SUSP_QUE_RESUME_CONDITION

The resume conditions of the queue, as specified by the RESUME_COND 
parameter in lsb.queues, are false.
SUSP_RES_RESERVE

The job is terminated due to resource limit. 
SUSP_RES_LIMIT

The job’s requirements for resource reservation are not satisfied.
SUSP_PG_IT

The job was suspended due to the paging rate and the host is not idle yet. 
SUSP_REASON_RESET

Resets the previous reason.
SUSP_MBD_LOCK

The job is locked by the mbatchd.
SUSP_LOAD_UNAVAIL

Load information on the execution hosts is unavailable.
subreasons If reasons is SUSP_LOAD_REASON, subreasons indicates the load indices that 

are out of bounds. The integer values for the load indices are found in lsf.h.
If reasons is SUSP_RES_LIMIT, subreasons indicates the job’s requirements for 
resource reservation are not satisfied. The integer values for the job’s requirements 
for resource reservation are found in lsbatch.h.
Subreasons a job suspends if reasons is SUSP_LOAD_REASON:
R15S

15 second CPU run queue length
R1M

1 minute CPU run queue length
R15M

15 minute CPU run queue length
UT

1 minute CPU utilization
PG

Paging rate
IO

Disk IO rate



RETURN VALUES

394 Platform LSF API Reference

LS

Number of log in sessions
IT

Idle time
TMP

Available temporary space
SWP

Available swap space
MEM

Available memory
USR1

USR1 is used to describe unavailable or out of bounds user defined load 
information of an external dynamic load indice on execution hosts.
USR2

USR2 is used to describe unavailable or out of bounds user defined load 
information of an external dynamic load indice on execution hosts.
Subreasons a job suspends if reasons is SUSP_RES_LIMIT:
SUB_REASON_RUNLIMIT

The run limit was reached.
SUB_REASON_DEADLINE

The deadline was reached.
SUB_REASON_PROCESSLIMIT

The process limit was reached.
SUB_REASON_CPULIMIT

The CPU limit was reached.
SUB_REASON_MEMLIMIT

The memory limit was reached.
ld When reasons is SUSP_LOAD_REASON, ld is used to determine the name of any 

external load indices. ld uses the most recent load index log in the lsb.events file. 
The loadIndexLog structure contains the following fields:
nIdx

Number of load indices.
names

Names of load indices.

RETURN VALUES
char: reasons Returns the suspending reason string.

char:NULL The function failed. The reason code is bad.



Platform LSF API Reference 395

ERRORS
No error handling

SEE ALSO

Related API
lsb_pendreason() - Explains why a job is pending

Equivalent line command
bjobs -s

Environment Variable
LSB_SUSP_REASONS

Files
lsb.queues

lsb.events



lsb_switchjob()

396 Platform LSF API Reference

lsb_switchjob()
Switches an unfinished job to another queue.

DESCRIPTION
lsb_switchjob() switches an unfinished job to another queue. Effectively, the job 
is removed from its current queue and re-queued in the new queue. 
The switch operation can be performed only when the job is acceptable to the new 
queue. If the switch operation is unsuccessful, the job will stay where it is. 
A user can only switch his/her own unfinished jobs, but root and the LSF 
administrator can switch any unfinished job. 
Any program using this API must be setuid to root if LSF_AUTH is not defined in the 
lsf.conf file. 

SYNOPSIS
#include <lsf/lsbatch.h>
int lsb_switchjob (LS_LONG_INT jobId, char *queue)

PARAMETERS
jobId The job to be switched. If an element of a job array is to be switched, use the array 

form jobID[i] where jobID is the job array name, and i is the index value.
*queue The new queue for the job. 

RETURN VALUES
integer:0 The function was successful. 

integer:-1 Function failed.

ERRORS
If the function fails, lsberrno is set to indicate the error.

SEE ALSO

Related API
none

Equivalent line command
bswitch

Files
${LSF_ENVDIR-/etc}/lsf.conf



Platform LSF API Reference 397

lsb_sysmsg()
Returns a pointer to static data.

DESCRIPTION
lsb_sysmsg() returns a pointer to static data which stores the batch error message 
corresponding to lsberrno. The global variable lsberrno maintained by LSBLIB 
holds the error number from the most recent LSBLIB call that caused an error. If 
lsberrno == LSBE_SYS_CALL, then the system error message defined by errno is 
also returned. If lsberrno == LSBE_LSLIB, then the error message returned by 
ls_sysmsg() is returned. 

SYNOPSIS
#include <lsf/lsbatch.h>
extern int lsberrno;

char *lsb_sysmsg (void)

RETURN VALUES
char: errno/ls_sysmsg()

If lsberrno == LSBE_SYS_CALL, then the system error message defined by errno 
is also returned. If lsberrno == LSBE_LSLIB, then the error message returned by 
ls_sysmsg() is returned. 

char:NULL

Function failed.

ERRORS
If the function fails, lsberrno is set to indicate the error. 

SEE ALSO

Related API
ls_perror() 
ls_sysmsg() 

Equivalent line command
none

Files
none



lsb_usergrpinfo()

398 Platform LSF API Reference

lsb_usergrpinfo()
Returns LSF user group membership.

DESCRIPTION
lsb_usergrpinfo() gets LSF user group membership. 
LSF user group is defined in the configuration file lsb.users.
The storage for the array of groupInfoEnt structures will be reused by the next call. 

SYNOPSIS
#include <lsf/lsbatch.h>

struct groupInfoEnt *lsb_usergrpinfo (char **groups, 
int *numGroups, int options)

struct groupInfoEnt {

char *group;

char *memberList;

char *adminMemberList;

int  *numUserShares;

struct userShares;

int  options;

char *pattern;

char *neg_pattern;

int  cu_type;

};

PARAMETERS
**groups An array of group names. 

*numGroups The number of group names. *numGroups will be updated to the actual number of 
groups when this call returns. 

options The bitwise inclusive OR of some of the following flags: 
GRP_RECURSIVE

Expand the group membership recursively. That is, if a member of a group is itself 
a group, give the names of its members recursively, rather than its name, which is 
the default. 
GRP_ALL

Get membership of all groups. 

groupInfoEnt structure fields
group Group name.

memberList ASCII list of member names.



Platform LSF API Reference 399

adminMemberList ASCII list of admin member names.
numUserShares The number of users with shares.

userShares The user shares representation.
options The bitwise inclusive OR of some of the following:

GRP_NO_CONDENSE_OUTPUT

0x01 Group output is in regular (uncondensed) format.
GRP_CONDENSE_OUTPUT

0x02 Group output is in condensed format.
GRP_HAVE_REG_EXP

0x04
GRP_SERVICE_CLASS

0x08 Group is a service class.
GRP_IS_CU

0x10 Group is a compute unit.
pattern Host membership pattern.

neg_pattern Negation membership pattern.
cu_type Compute unit type.

RETURN VALUES
array:groupInfoEnt On success, returns an array of groupInfoEnt structures which hold the group 

name and the list of names of its members. If a member of a group is itself a group 
(i.e., a subgroup), then a ’/’ is appended to the name to indicate this. *numGroups is 
the number of groupInfoEnt structures returned. 

char:NULL Function failed.

ERRORS
On failure, returns NULL and sets lsberrno to indicate the error. If there are invalid 
groups specified, the function returns the groups up to the invalid ones. It then set 
lsberrno to LSBE_BAD_GROUP, that is the specified (*groups)[*numGroups] is not 
a group known to the LSF system. If the first group is invalid, the function returns 
NULL.

SEE ALSO

Related APIs
lsb_hostgrpinfo() 

Equivalent line command
none

Files
$LSB_CONFDIR/cluster_name/lsb.hosts



SEE ALSO

400 Platform LSF API Reference

$LSB_CONFDIR/cluster_name/lsb.users



Platform LSF API Reference 401

lsb_userinfo()
Returns the maximum number of job slots that a user can use simultaneously on 
any host and in the whole local LSF cluster.

DESCRIPTION
lsb_userinfo() gets the maximum number of job slots that a user can use 
simultaneously on any host and in the whole local LSF cluster, as well as the current 
number of job slots used by running and suspended jobs or reserved for pending 
jobs. The maximum numbers of job slots are defined in the LSF configuration file 
lsb.users (see lsb.users). The reserved user name default, defined in the 
lsb.users configuration file, matches users not listed in the lsb.users file who 
have no jobs started in the system.
The returned array will be overwritten by the next call.  

SYNOPSIS
#include <lsf/lsbatch.h>
struct userInfoEnt *lsb_userinfo(char **users, int *numUsers)

struct userInfoEnt {
char *user; int procJobLimit;
int maxJobs;
int numStartJobs;
int numJobs;
int numPEND;
int numRUN;
int numSSUSP;
int numUSUSP;
int numRESERVE;

int maxPendJobs; 
};

PARAMETERS
**users An array of user names. 

*numUsers The number of user names. 
To get information about all users, set *numUsers = 0; *numUsers will be updated 
to the actual number of users when this call returns. To get information on the 
invoker, set users = NULL, *numUsers = 1. 
The userInfoEnt structures contain the following fields: 

user The name of the user or user group. 
procJobLimit The maximum number of job slots the user or user group can use on each 

processor. The job slots can be used by started jobs or reserved for PEND jobs. 
maxJobs The maximum number of job slots that the user or user group can use 

simultaneously in the local LSF cluster. The job slots can be used by started jobs or 
reserved for PEND jobs. 



RETURN VALUES

402 Platform LSF API Reference

numStartJobs The current number of job slots used by running and suspended jobs belonging to 
the user or user group. 

numJobs The total number of job slots in the LSF cluster for the jobs submitted by the user 
or user group. 

numPEND The number of job slots the user or user group has for pending jobs. 
numRUN The number of job slots the user or user group has for running jobs. 

numSSUSP The number of job slots for the jobs belonging to the user or user group that have 
been suspended by the system. 

numUSUSP The number of job slots for the jobs belonging to the user or user group that have 
been suspended by the user or the LSF system administrator. 

numRESERVE The number of job slots reserved for the pending jobs belonging to the user or user 
group. 

maxPendJobs The maximum number of pending jobs allowed. 

RETURN VALUES
array:userInfoEnt The function was successful, and *numUsers is set to the number of userInfoEnt 

structures returned. 
character:NULL Function failed.

ERRORS
If the function fails, lsberrno is set to indicate the error. If lsberrno is 
LSBE_BAD_USER, (*users)[*numUsers] is not a user known to the LSF system. 
Otherwise, if *numUsers is less than its original value, *numUsers is the actual 
number of users found. 

SEE ALSO

Related API lsb_hostinfo() - Get information about job server hosts
lsb_queueinfo() - Get information about job queues

Equivalent line 
command

busers

Files $LSB_CONFDIR/cluster_name/lsb.users



Platform LSF API Reference 403



lsb_writestream()

404 Platform LSF API Reference

lsb_writestream() 
Writes a current version eventRec structure into the lsb_stream file.

DESCRIPTION
lsb_writestream() writes an eventrRec to the open streamFile.
This API function is inside liblsbstream.so.

SYNOPSIS
#include <lsf/lsbatch.h>

int lsb_writestream(struct eventRec *)

See lsb_geteventrec() for details on the eventRec structure.

PARAMETERS
*eventRec Pointer to the eventRec structure.

See lsb_geteventrec() for details on the eventRec structure.

RETURN VALUES
integer:0 The function was successful.

integer:-1 The function failed.

ERRORS
If the function fails, lsberrno is set to indicate the error. 

SEE ALSO

Related APIs
lsb_closestream(): Close the stream file.
lsb_geteventrec(): Get eventRec structure from an event log file.
lsb_openstream(): Open the stream file.
lsb_puteventrec(): Puts information of an eventRec structure into a log file.
lsb_readstreamline(): Read a line from the stream file.
lsb_streamversion(): Version of the current event type supported by mbatchd.
lsb_readstream(): Read from the stream file.

Equivalent line command
None

Files

lsb.params



Platform LSF API Reference 405


	Platform™ LSF™ API Reference
	lslib
	lsblib
	glb_close_all()
	glb_groupinfolist()
	glb_info()
	glb_init_all()
	glb_jobinfo()
	glb_param()
	glb_perror()
	glb_userinfo()
	glb_workloadinfo()
	ls_chdir()
	ls_clusterinfo()
	ls_connect()
	ls_conntaskport()
	ls_deleteltask()
	ls_deletertask()
	ls_donerex()
	ls_eligible()
	ls_errlog()
	ls_fdbusy()
	ls_findmyconnections()
	ls_getclustername()
	ls_gethostfactor()
	ls_gethostinfo()
	ls_gethostmodel()
	ls_gethosttype()
	ls_getmastername()
	ls_getmnthost()
	ls_getmodelfactor()
	ls_getmyhostname2()
	ls_getmyhostname()
	ls_getstdin()
	ls_info()
	ls_initrex()
	ls_insertltask()
	ls_insertrtask()
	ls_isconnected()
	ls_limcontrol()
	ls_listltask()
	ls_listrtask()
	ls_load()
	ls_loadadj()
	ls_loadinfo()
	ls_loadofhosts()
	ls_lockhost()
	ls_perror()
	ls_placeofhosts()
	ls_placereq()
	ls_rclose()
	ls_readconfenv()
	ls_readrexlog()
	ls_rescontrol()
	ls_resreq()
	ls_rexecv()
	ls_rexecve()
	ls_rfcontrol()
	ls_rfstat()
	ls_rgetmnthost()
	ls_rkill()
	ls_rlseek()
	ls_ropen()
	ls_rread()
	ls_rstat()
	ls_rsetenv()
	ls_rtask()
	ls_rtaske()
	ls_rwait()
	ls_rwaittid()
	ls_rwrite()
	ls_setstdin()
	ls_sharedresourceinfo()
	ls_stdinmode()
	ls_stoprex()
	ls_sysmsg()
	ls_unlockhost()
	lsb_addreservation()
	lsb_calendarinfo()
	lsb_calendarop()
	lsb_chkpntjob()
	lsb_closejobinfo()
	lsb_closestream()
	lsb_deletejob()
	lsb_freeLimitInfoEnt()
	lsb_getalloc()
	lsb_geteventrec()
	lsb_geteventrecbyline()
	lsb_getjobdepinfo()
	lsb_hostcontrol()
	lsb_hostgrpinfo()
	lsb_hostinfo()
	lsb_hostinfo_cond()
	lsb_hostinfo_ex()
	lsb_hostpartinfo()
	lsb_init()
	lsb_jsdl2submit()
	lsb_killbulkjobs()
	lsb_launch()
	lsb_limitInfo()
	lsb_mig()
	lsb_modify()
	lsb_modreservation()
	lsb_movejob()
	lsb_openjobinfo()
	lsb_openjobinfo_a()
	lsb_openjobinfo_a_ext()
	lsb_openstream()
	lsb_parameterinfo()
	lsb_peekjob()
	lsb_pendreason()
	lsb_perror()
	lsb_postjobmsg()
	lsb_puteventrec()
	lsb_queuecontrol()
	lsb_queueinfo()
	lsb_readjobinfo()
	lsb_readjobinfo_cond()
	lsb_readjobmsg()
	lsb_readframejob()
	lsb_readstream()
	lsb_readstreamline()
	lsb_reconfig()
	lsb_removereservation()
	lsb_requeuejob()
	lsb_reservationinfo()
	lsb_resize_cancel()
	lsb_resize_release()
	lsb_runjob()
	lsb_sharedresourceinfo()
	lsb_signaljob()
	lsb_streamversion()
	lsb_submit()
	lsb_submitframe()
	lsb_suspreason()
	lsb_switchjob()
	lsb_sysmsg()
	lsb_usergrpinfo()
	lsb_userinfo()
	lsb_writestream()


