
Using Platform LSF Session Scheduler

Platform LSF™
Version 7.0 Update 6

Release date: July 2009
Last modified: July 17, 2009

Copyright © 1994-2009 Platform Computing Inc.

Although the information in this document has been carefully reviewed, Platform Computing Corporation (“Platform”) does not
warrant it to be free of errors or omissions. Platform reserves the right to make corrections, updates, revisions or changes to the
information in this document.

UNLESS OTHERWISE EXPRESSLY STATED BY PLATFORM, THE PROGRAM DESCRIBED IN THIS DOCUMENT IS
PROVIDED “AS IS” AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO
EVENT WILL PLATFORM COMPUTING BE LIABLE TO ANYONE FOR SPECIAL, COLLATERAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION ANY LOST PROFITS, DATA, OR SAVINGS, ARISING
OUT OF THE USE OF OR INABILITY TO USE THIS PROGRAM.

We’d like to hear
from you

You can help us make this document better by telling us what you think of the content, organization, and usefulness of the information.
If you find an error, or just want to make a suggestion for improving this document, please address your comments to
doc@platform.com.

Your comments should pertain only to Platform documentation. For product support, contact support@platform.com.

Document
redistribution and
translation

This document is protected by copyright and you may not redistribute or translate it into another language, in part or in whole.

Internal
redistribution

You may only redistribute this document internally within your organization (for example, on an intranet) provided that you continue
to check the Platform Web site for updates and update your version of the documentation. You may not make it available to your
organization over the Internet.

Trademarks LSF is a registered trademark of Platform Computing Corporation in the United States and in other jurisdictions.

ACCELERATING INTELLIGENCE, PLATFORM COMPUTING, PLATFORM SYMPHONY, PLATFORM JOBSCHEDULER,
PLATFORM ENTERPRISE GRID ORCHESTRATOR, PLATFORM EGO, and the PLATFORM and PLATFORM LSF logos are
trademarks of Platform Computing Corporation in the United States and in other jurisdictions.

UNIX is a registered trademark of The Open Group in the United States and in other jurisdictions.

Linux is the registered trademark of Linus Torvalds in the U.S. and other countries.

Microsoft is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other countries.

Windows is a registered trademark of Microsoft Corporation in the United States and other countries.

Intel, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and
other countries.

Other products or services mentioned in this document are identified by the trademarks or service marks of their respective owners.

Third-party
license
agreements

http://www.platform.com/Company/third.part.license.htm

Contents
1 Installing Platform LSF Session Scheduler .. 5

About Platform LSF Session Scheduler .. 6
Install Platform LSF Session Scheduler .. 9

2 Using Platform LSF Session Scheduler ... 11
How Session Scheduler Runs Tasks .. 12
Running and monitoring Session Scheduler jobs ... 16
Resizable jobs ... 19
Troubleshooting .. 22

3 Platform LSF Session Scheduler Reference .. 29
ssacct .. 30
ssched ... 34
Environment variables .. 39
lsb.params .. 41

Using Platform LSF Session Scheduler 3

4 Using Platform LSF Session Scheduler

1
Installing Platform LSF Session Scheduler

C H A P T E R

Using Platform LSF Session Scheduler 5

About Platform LSF Session Scheduler
While traditional Platform LSF job submission, scheduling, and dispatch methods such as job arrays or job chunking
are well suited to a mix of long and short running jobs, or jobs with dependencies on each other, Session Scheduler is
ideal for large volumes of independent jobs with short run times.

As clusters grow and the volume of workload increases, the need to delegate scheduling decisions increases. Session
Scheduler improves throughput and performance of the LSF scheduler by enabling multiple tasks to be submitted as
a single LSF job.

The LSF Session Scheduler implements a hierarchal, personal scheduling paradigm that provides very low-latency
execution. With very low latency per job, Session Scheduler is ideal for executing very short jobs, whether they are a
list of tasks, or job arrays with parametric execution.

The Session Scheduler provides users with the ability to run large collections of short duration tasks within the allocation
of an LSF job using a job-level task scheduler that allocate resources for the job once, and reuses the allocated resources
for each task.

Each Session Scheduler is dynamically scheduled in a similar manner to a parallel job. Each instance of the ssched
command then manages its own workload within its assigned allocation. Work is submitted as a task array or a task
definition file.

Session Scheduler satisfies the following goals for running a large volume of short jobs:

• Minimize the latency when scheduling short jobs
• Improve overall cluster utilization and system performance
• Allocate resources according to LSF policies
• Support existing LSF pre-execution, post-execution programs, job starters, resources limits, etc.
• Handle thousands of users and more than 50000 short jobs per user

Session Scheduler system requirements
Supported
operating
systems

Session Scheduler is delivered in the following distributions:

• lsf7Update5_ssched_linux2.4-glibc2.2-x86_64.tar.Z
• lsf7Update5_ssched_linux2.4-glibc2.3-x86.tar.Z
• lsf7Update5_ssched_linux2.6-glibc2.3-x86.tar.Z
• lsf7Update5_ssched_linux2.6-glibc2.3-x86_64.tar.Z

Required
libraries

Note: These libraries may not be installed by default by all Linux
distributions.

On Linux 2.4 (x86 and x86_64), the following external libraries are
required:

• libstdc++.so.5
• libpthread-0.60.so or later
• libgcc_s.so.1

On Linux 2.6 (x86), the following external libraries are required:

• libstdc++.so.5
• libpthread-2.3.4.so or later

Installing Platform LSF Session Scheduler

6 Using Platform LSF Session Scheduler

On Linux 2.6 (x86_64), the following external libraries are required:

• libstdc++.so.5
• libpthread-2.3.4.so or later
• libxml2.so.2

Compatible
Linux
distributions

Certified compatible distributions include:

• Red Hat Enterprise Linux AS 3 or later
• SUSE Linux Enterprise Server 10

Platform LSF Session Scheduler requires Platform LSF 7 Update 3 or later

Session Scheduler terminology
Job A traditional LSF job that is individually scheduled and dispatched to

sbatchd by mbatchd and mbschd

Task Similar to a job, a unit of workload that describes an executable and its
environment that runs on an execution node. Tasks are managed and
dispatched by the Session Scheduler.

Job Session An LSF job that is individually scheduled by mbatchd, but is not dispatched
as an LSF job. Instead, a running Session Scheduler job session represents an
allocation of nodes for running large collections of tasks

Scheduler The component that accepts and dispatches tasks within the nodes allocated
for a job session.

Session Scheduler architecture

Session Scheduler jobs are submitted, scheduled, and dispatched like normal LSF jobs.

When the Session Scheduler begins running, it starts a Session Scheduler execution agent on
each host in its allocation.

Installing Platform LSF Session Scheduler

Using Platform LSF Session Scheduler 7

The Session Scheduler then reads in the task definition file, which contains a list of tasks to
run. Tasks are sent to an execution agent and run. When a task finishes, the next task in the
list is dispatched to the available host. This continues until all tasks have been run.

Tasks submitted through Session Scheduler bypass the LSF mbatchd and mbschd. The LSF
mbatchd is unaware of individual tasks.

Session Scheduler components
Session Scheduler comprises the following components.

Session Scheduler command (ssched)
The ssched command accepts and dispatches tasks within the nodes allocated for a job
session. It reads the task definition file and sends tasks to the execution agents. ssched also
logs errors, performs task accounting, and requeues tasks as necessary.

sservice and sschild
These components are the execution agents. They run on each remote host in the allocation.
They set up the task execution environment, run the tasks, and enable task monitoring and
resource usage collection.

Session Scheduler performance
Session Scheduler has been tested to support up to 50,000 tasks. Based on performance tests,
the best maximum allocation size (specified by bsub -n) depends on the average runtime of
the tasks. Here are some typical results:

Average Runtime (seconds) Recommended maximum allocation size (slots)

0 12

5 64

15 256

30 512

Directions for future development
Future enhancements to Session Scheduler may include:

• Users can list the currently running tasks
• Individual tasks can be removed or killed
• Additional tasks can be dynamically added to a Session Scheduler job

Installing Platform LSF Session Scheduler

8 Using Platform LSF Session Scheduler

Install Platform LSF Session Scheduler
• Use the lsfinstall script to install the Session Scheduler package when you install LSF.

Installing Platform LSF Session Scheduler

Using Platform LSF Session Scheduler 9

Installing Platform LSF Session Scheduler

10 Using Platform LSF Session Scheduler

2
Using Platform LSF Session Scheduler

C H A P T E R

Using Platform LSF Session Scheduler 11

How Session Scheduler Runs Tasks
Once a Session Scheduler session job has been dispatched and starts running, Session Scheduler parses the task definition
file specified on the ssched command. Each line of the task definition file is one task. Tasks run on the hosts in the
allocation in any order. Dependencies between tasks are not supported.

Session Scheduler status is posted to the Session Scheduler session job through the LSF bpost command. Use
bread or bjobs -l to view Session Scheduler status. The status includes the current number of pending, running
and completed tasks. LSF administrators can configure how often the status is updated.

When all tasks are completed, the Session Scheduler exits normally.

ssched runs under the submission user account. Any processes it creates, either locally or remotely, also run under
the submission user account. Session Scheduler does not require any privileges beyond those normally granted a user.

Session Scheduler job sessions
The Session Scheduler session job is compatible with all currently supported LSF job
submission and execution parameters, including pre-execution, post-execution, job-starters,
I/O redirection, queue and application profile configuration.

Run limits are interpreted and enforced as normal LSF parallel jobs. Application-level
checkpointing is also supported. Job chunking is not relevant to Session Scheduler jobs since
a single Session Scheduler session is generally long running and should not be chunked.

If the Session Scheduler session is killed (bkill) or requeued (brequeue), the Session
Scheduler kills all running tasks, execution agents, and any other processes it has started, both
local and remote. The session scheduler also cleans up any temporary files created and then
exits. If the session scheduler is then requeued and restarted, all tasks are rerun.

If the Session Scheduler session is suspended (bstop), the Session Scheduler and all local and
remote components will be stopped until the session is resumed (bresume).

Session Scheduler tasks
ssched and sservice and sschild execution agents ensure that the user submission
environment variables are set correctly for each task. In order to minimize the load on the
LSF, mbatchd does not have any knowledge of individual tasks.

Task definition file format
The task definition file is an ASCII file. Each line represents one task, or an array of tasks. Each
line has the following format.
[task_options] command [arguments]

Session and task accounting
Jobs corresponding to the Session Scheduler session have one record in lsb.acct. This record
represents the aggregate resource usage of all tasks in the allocation.

If task accounting is enabled with SSCHED_ACCT_DIR in lsb.params, Session Scheduler
creates task accounting files for each Session Scheduler session job and appends an accounting
record to the end of the file. This record follows a similar format to the LSF accounting file
lsb.acct format, but with additional fields/

The accounting file is named jobID.ssched.acct. If no directory is specified, accounting
records are not written.

Using Platform LSF Session Scheduler

12 Using Platform LSF Session Scheduler

The Session Scheduler accounting directory must be accessible and writable from all hosts in
the cluster. Each Session Scheduler session (each ssched instance) creates one accounting
file. Each file contains one accounting entry for each task. Each completed task index has one
line in the file. Each line records the resource usage of one task.

Task accounting file format
Task accounting records have a similar format as the lsb.acct JOB_FINISH event record.
See the Platform LSF Configuration Reference for more information about JOB_FINISH event
fields.

Field Description

Event type (%s) TASK_FINISH

Version Number (%s) 7.05

Event Time (%d) Time the event was logged (in seconds since the epoch)

jobId (%d) ID for the job

userId (%d) UNIX user ID of the submitter

options (%d) Always 0

numProcessors (%d) Always 1

submitTime (%d) Task enqueue time

beginTime (%d) Always 0

termTime (%d) Always 0

startTime (%d) Task start time

userName (%s) User name of the submitter

queue (%s) Always empty

resReq (%s) Always empty

dependCond (%s) Always empty

preExecCmd (%s) Task pre-execution command

fromHost (%s) Submission host name

cwd (%s) Execution host current working directory (up to 4094
characters)

inFile (%s) Task input file name (up to 4094 characters)

outFile (%s) Task output file name (up to 4094 characters)

errFile (%s) Task error output file name (up to 4094 characters)

jobFile (%s) Task script file name

numAskedHosts (%d) Always 0

Using Platform LSF Session Scheduler

Using Platform LSF Session Scheduler 13

Field Description

askedHosts (%s) Always empty

numExHosts (%d) Always 1

execHosts (%s) Name of task execution host

jStatus (%d) 64 indicates task completed normally. 32 indicates task exited
abnormally

hostFactor (%f) CPU factor of the task execution host

jobName (%s) Always empty

command (%s) Complete batch task command specified by the user (up to
4094 characters)

lsfRusage (%f) All rusage fields contain resource usage information for the
task

mailUser (%s) Always empty

projectName (%s) Always empty

exitStatus (%d) UNIX exit status of the task

maxNumProcessors (%d) Always 1

loginShell (%s) Always empty

timeEvent (%s) Always empty

idx (%d) Session Job Index

maxRMem (%d) Always 0

maxRSwap (%d) Always 0

inFileSpool (%s) Always empty

commandSpool (%s) Always empty

rsvId (%s) Always empty

sla (%s) Always empty

exceptMask (%d) Always 0

additionalInfo (%s) Always empty

exitInfo (%d) Always 0

warningAction (%s) Always empty

warningTimePeriod (%d) Always 0

chargedSAAP (%s) Always empty

licenseProject (%s) Always empty

Using Platform LSF Session Scheduler

14 Using Platform LSF Session Scheduler

Field Description

options3 (%d) Always 0

app (%s) Always empty

taskID (%d) Task ID

taskIdx (%d) Task index

taskName (%s) Task name

taskOptions (%d) Bit mask of task options:

• TASK_IN_FILE (0x01)—specify input file
• TASK_OUT_FILE (0x02)—specify output file
• TASK_ERR_FILE (0x04)—specify error file
• TASK_PRE_EXEC (0x08)—specify pre-exec command
• TASK_POST_EXEC (0x10)—specify post-exec command
• TASK_NAME (0x20)—specify task name

taskExitReason (%d) Task exit reason:

• TASK_EXIT_NORMAL = 0— normal exit
• TASK_EXIT_INIT = 1—generic task initialization failure
• TASK_EXIT_PATH = 2—failed to initialize path
• TASK_EXIT_NO_FILE = 3—failed to create task file
• TASK_EXIT_PRE_EXEC = 4— task pre-exec failed
• TASK_EXIT_NO_PROCESS = 5—fork failed
• TASK_EXIT_XDR = 6—xdr communication error
• TASK_EXIT_NOMEM = 7— no memory
• TASK_EXIT_SYS = 8—system call failed
• TASK_EXIT_TSCHILD_EXEC = 9—failed to run sschild
• TASK_EXIT_RUNLIMIT = 10—task reaches run limit
• TASK_EXIT_IO = 11—I/O failure
• TASK_EXIT_RSRC_LIMIT = 12—set task resource limit

failed

Using Platform LSF Session Scheduler

Using Platform LSF Session Scheduler 15

Running and monitoring Session Scheduler
jobs
Create a Session Scheduler session and run tasks

1. Create task definition file.

For example:
cat my.tasks
sleep 10

hostname

uname

ls

2. Use bsub with the ssched application profile to submit a Session Scheduler job with the
task definition.
bsub -app ssched bsub_options ssched [task_options] [-tasks
task_definition_file] [command [arguments]]

For example:
bsub -app ssched ssched -tasks my.tasks

When all tasks finish, Session Scheduler exits, all temporary files are deleted, the session job
is cleaned from the system, and Session Scheduler output is captured and included in the
standard LSF job e-mail.

You can also submit a Session Scheduler job without a task definition file to specify a single
task.

Note:
The submission directory path can contain up to 4094 characters.

See the ssched command reference for detailed information about all task options.

Submit a Session Scheduler job as a parallel LSF job
1. Use the -n option of bsub to submit a Session Scheduler job as a parallel LSF job.

bsub -app ssched -n num_hosts ssched [task_options] [-tasks
task_definition_file] [command [arguments]]

For example:
bsub -app ssched -n 2 ssched -tasks my.tasks

Submit task array jobs
1. Use the -J option to submit a task array via the command line, and no task definition file

is needed:
-J task_name[index_list]

The index list must be enclosed in square brackets. The index list is a comma-separated
list whose elements have the syntax start[-end[:step]] where start, end and step are positive

Using Platform LSF Session Scheduler

16 Using Platform LSF Session Scheduler

integers. If the step is omitted, a step of one (1) is assumed. The task array index starts at
one (1).

All tasks in the array share the same option parameters. Each element of the array is
distinguished by its array index.

See the ssched command reference for detailed information about all task options.

Submit tasks with automatic task requeue
1. Use the -Q option to specify requeue exit values for the tasks:

-Q "exit_code ..."

-Q enables automatic task requeue and sets the LSB_EXIT_REQUEUE environment
variable. Use spaces to separate multiple exit codes. LSF does not save the output from the
failed task, and does not notify the user that the task failed.

If a job is killed by a signal, the exit value is 128+signal_value. Use the sum of 128 and the
signal value as the exit code in the parameter. For example, if you want a task to rerun if
it is killed with a signal 9 (SIGKILL), the exit value is 128+9=137.

The SSCHED_REQUEUE_LIMIT setting limits the number of times a task can be
requeued.

See the ssched command reference for detailed information about all task options.

Monitor Session Scheduler jobs
1. Run bjobs -ss to get summary information for Session Scheduler jobs and tasks.

JOBID OWNER JOB_NAME NTASKS PEND DONE RUN EXIT

1 lsfadmin job1 10 4 4 2 0

2 lsfadmin job2 10 10 0 0 0

3 lsfadmin job3 10 10 0 0 0

Information displays about your session scheduler job, including Job ID, the owner, the
job name, the number of total tasks, and the number of tasks in any of the following states:
pend, run, done, exit.

2. Use bjobs -l -ss or bread to track the progress of the Session Scheduler job.

Kill a Session Scheduler session
1. Use bkill to kill the Session Scheduler session. All temporary files are deleted, and the

session job is cleaned from the system.

Check your job submission
1. Use the -C option to sanity-check all parameters and the task definition file.

ssched exits after the check is complete. An exit code of 0 indicates no errors were found.
A non-zero exit code indicates errors. You can run ssched -C outside of LSF.

See the ssched command reference for detailed information about all task options.

Using Platform LSF Session Scheduler

Using Platform LSF Session Scheduler 17

Example output of ssched -C:
ssched -C -tasks my.tasks
Error in tasks file line 1: -XXX 123 sleep 0

Unsupported option: -XXX

Error in tasks file line 2: -o my.out

A command must be specified

Only the ssched parameters are checked, not the ssched task command itself. The task
command must exist and be executable. ssched -C cannot detect whether the task command
exists or is executable. To check a task definitions file, remember to specify the -tasks option.

Enable recoverable Session Scheduler sessions
By default, Session Scheduler sessions are unrecoverable. In the event of a system crash, the
session job must be resubmitted and all tasks are resubmitted and rerun.

However, the Session Scheduler supports application-level checkpoint/restart using Platform
LSF's existing facilities. If the user specifies a checkpoint directory when submitting the session
job, the job can be restarted using brestart. After a restart, only those tasks that have not
yet completed are resubmitted and run.

1. To enable recoverable sessions, when submitting the session job:
a) Provide a writable directory on a shared file system.
b) Specify the ssched checkpoint method with the bsub -k option.

You do not need to call bchkpnt. The Session Scheduler automatically checkpoints itself after
each task completes.

For example:
bsub -app ssched -k "/share/scratch method=ssched" -n 8
ssched -tasks simpton.tasks

Job <123> is submitted to default queue <normal>.

...

brestart /share/scratch 123

Using Platform LSF Session Scheduler

18 Using Platform LSF Session Scheduler

Resizable jobs
Enabling resizable jobs allows Session Scheduler to run jobs with minimum and maximum slots requested and
dynamically use the number of slots available at any given time.

Session Scheduler automatically releases idle resources for all resizable jobs. The typical use case is a "long tail" scenario,
where all short running tasks complete within one session except a few long running tasks. Those long running tasks
occupy a small number of hosts, leaving most of the originally allocated resources idle. Session Scheduler automatically
detects those idle resources, shuts down the execution agents running on those hosts and releases resources back to
LSF.

When additional resources are added to Session Scheduler, it recognizes those resources and makes use of them to run
tasks.

Resizable Job

A job whose job slot allocation can grow and shrink during its run time. The allocation
change request may be triggered automatically or by the bresize command.

When users run the bresize release command to forcibly release resources from
Session Scheduler, it recognizes those released resources and shuts down the execution
agents running on those hosts.

Autoresizable job

A resizable job with a minimum and maximum slot request. LSF automatically
schedules and allocates additional resources to satisfy job maximum request as the job
runs.

Configuring resizable jobs
Session Scheduler jobs are resizable when the parameter RESIZABLE_JOBS=Y in the ssched application profile.

Session Scheduler jobs are autoresizable when the parameter RESIZABLE_JOBS=AUTO in the ssched application
profile, or when RESIZABLE_JOBS=Y in the ssched application profile and jobs are submitted with the bjobs option
-ar.

Session Scheduler jobs are not resizable when the parameter RESIZABLE_JOBS in the ssched application profile is
commented out.

When the bresize release command is run on Session Scheduler jobs, the parameter
DJOB_RESIZE_GRACE_PERIOD=seconds in the ssched application profile configures a time interval for Session
Scheduler to react and take necessary actions such as shutting down execution agents.

Examples
Adding new resources

For an autoresizable job, new resources are added in when they become available.
Consider the example where RESIZABLE_JOBS=AUTO in the ssched application
profile:

bsub -app ssched -n 1,3 ssched -tasks ./my.tasks

Using Platform LSF Session Scheduler

Using Platform LSF Session Scheduler 19

The autoresizable job is requesting 3 hosts and only 1 is available. The job starts
running on 1 host and pends on 2 more. When the additional hosts are free, the job
allocation changes to 3 hosts automatically. Selected output from bhist:
Dispatched to <host1>;

Starting (Pid 24721);

"Tasks:PEND=3 RUN=0 DONE=0 EXIT=0"

"Tasks:PEND=2 RUN=1 DONE=0 EXIT=0"

"Tasks:PEND=2 RUN=1 DONE=0 EXIT=0"

Additional allocation on 1 Hosts/Processors <host2>

Resize notification acceptedExternal Message "Tasks:PEND=2 RUN=1 DONE=0
EXIT=0"

Additional allocation on 1 Hosts/Processors <host03>Resize notification
accepted

External Message "Tasks:PEND=1 RUN=2 DONE=0 EXIT=0"

External Message "Tasks:PEND=0 RUN=3 DONE=0 EXIT=0"

Releasing resources

Idle resources are released for both resizable and autoresizable jobs. For example,
RESIZABLE_JOBS=Y in the ssched application profile and an autoresizable job is
submitted:

bsub -ar -app ssched -n 1,3 ssched -tasks ./my.longtail

The autoresizable job is requesting 1 to 3 hosts and 3 are available so the job starts
running on 3 right away. This longtail job has many short tasks and only a few long
ones, and is soon finished running on 2 of the 3 hosts. Session Scheduler sees the 2 idle
hosts and releases them from the allocation. Selected output from bhist:
Submitted from host <host11>, to Queue <normal>, CWD <$HOME>, 3 Processors
Requested

Dispatched to 3 Hosts/Processors <host01> <host02> <host03>;

"Tasks:PEND=3 RUN=0 DONE=0 EXIT=0"

"Tasks:PEND=0 RUN=3 DONE=0 EXIT=0"

After two tasks are done, Session Scheduler releases two hosts:
Release allocation on 2 Hosts/Processors <host02> <host03> by user or
administrator <user01>, Cancel pending allocation request;

Resize notification accepted;

"Tasks:PEND=0 RUN=1 DONE=2 EXIT=0"

Releasing resources using bresize

Resources can be released on demand for both resizable and autoresizable jobs. For
example, DJOB_RESIZE_GRACE_PERIOD=30 in RESIZABLE_JOBS=Y in the ssched
application profile and a resizable job is submitted:

bsub -app ssched -n 1,3 ssched -tasks ./my.longtail

Job <5> is submitted to the default queue <normal>

The resizable job starts running on host02, host03, and host04. The following command releases
host02 from the job:

Using Platform LSF Session Scheduler

20 Using Platform LSF Session Scheduler

bresize release "host02" 5

Session Scheduler shuts down the execution agent on host02. The job continues to run on host03
and host04.

Selected output from bhist:
Submitted from host <delpe07.lsf.platform.com>, to Queue <normal>, CWD <$HOME>,
3 Processors Requested;

Dispatched to 3 Hosts/Processors <host02> <host03> <host04>;

"Tasks:PEND=3 RUN=0 DONE=0 EXIT=0"

"Tasks:PEND=0 RUN=3 DONE=0 EXIT=0"

Release allocation on 1 Hosts/Processors <host02> by user or administrator
<user01>

Resize notification accepted

"Tasks:PEND=1 RUN=2 DONE=0 EXIT=0"

Using Platform LSF Session Scheduler

Using Platform LSF Session Scheduler 21

Troubleshooting
Use any of the following methods to troubleshoot your Session Scheduler jobs.

ssched environment variables
Before submitting the ssched command, You can set the following environment variables to enable additional
debugging information:

SSCHED_DEBUG_LOG_MASK=[LOG_INFO |
LOG_DEBUG | LOG_DEBUG1 | ...]

Controls the amount of logging

SSCHED_DEBUG_CLASS=ALL or
SSCHED_DEBUG_CLASS=[LC_TRACE]
[LC_FILE] [...]

• Filters out some log classes, or shows all log classes
• By default, no log classes are shown

SSCHED_DEBUG_MODULES=ALL or
SSCHED_DEBUG_MODULES=[ssched]
[libvem.so] [sservice] [sschild]

• Enables logging on some or all components
• By default, logging is disabled on all components
• libvem.so controls logging by the libvem.so loaded by

the SD, SSM and ssched
• Enabling debugging of the Session Scheduler automatically

enables logging by the libvem.so loaded by the Session
Scheduler

SSCHED_DEBUG_REMOTE_HOSTS=ALL or
SSCHED_DEBUG_REMOTE_HOSTS=
[hostname1] [hostname2] [...]

• Enables logging on some/all hosts
• By default, logging is disabled on all remote hosts

SSCHED_DEBUG_REMOTE_FILE=Y • Directs logging to /tmp/ssched/job_ID.job_index/
instead of stderr on each remote host

• Useful if too much debugging info is slowing down the
network connection

• By default, debugging info is sent to stderr

ssched debug options
The ssched options -1, -2, and -3 are shortcuts for the following environment variables.

ssched -1 Is a shortcut for:

• SSCHED_DEBUG_LOG_MASK=LOG_WARNING
• SSCHED_DEBUG_CLASS=ALL
• SSCHED_DEBUG_MODULES=ALL

ssched -2 Is a shortcut for:

• SSCHED_DEBUG_LOG_MASK=LOG_INFO
• SSCHED_DEBUG_CLASS=ALL
• SSCHED_DEBUG_MODULES=ALL

ssched -3 Is a shortcut for:

Using Platform LSF Session Scheduler

22 Using Platform LSF Session Scheduler

• SSCHED_DEBUG_LOG_MASK=LOG_DEBUG
• SSCHED_DEBUG_CLASS=ALL
• SSCHED_DEBUG_MODULES=ALL

Example output of ssched -2:
Nov 20 14:35:01 2008 4546 6 7.05 SSCHED_UPDATE_SUMMARY_INTERVAL = 1

Nov 20 14:35:01 2008 4546 6 7.05 SSCHED_UPDATE_SUMMARY_BY_TASK = 0

Nov 20 14:35:01 2008 4546 6 7.05 SSCHED_REQUEUE_LIMIT = 1

Nov 20 14:35:01 2008 4546 6 7.05 SSCHED_RETRY_LIMIT = 1

Nov 20 14:35:01 2008 4546 6 7.05 SSCHED_MAX_TASKS = 10

Nov 20 14:35:01 2008 4546 6 7.05 SSCHED_MAX_RUNLIMIT = 600

Nov 20 14:35:01 2008 4546 6 7.05 SSCHED_ACCT_DIR = /home/user1/ssched

Nov 20 14:35:03 2008 4546 6 7.05 Task <1[1]> submitted. Command <sleep 0>;

Nov 20 14:35:03 2008 4546 6 7.05 Task <1[2]> submitted. Command <sleep 0>;

Nov 20 14:35:03 2008 4546 6 7.05 Task <1[3]> submitted. Command <sleep 0>;

Nov 20 14:35:03 2008 4546 6 7.05 Task <1[4]> submitted. Command <sleep 0>;

Nov 20 14:35:03 2008 4546 6 7.05 Task <1[5]> submitted. Command <sleep 0>;

Nov 20 14:35:05 2008 4546 6 7.05 Task <1[1]> done successfully. The CPU time used is 0.030993
seconds;

Nov 20 14:35:05 2008 4546 6 7.05 Task <1[2]> done successfully. The CPU time used is 0.039992
seconds;

Nov 20 14:35:05 2008 4546 6 7.05 Task <1[3]> done successfully. The CPU time used is 0.033993
seconds;

Nov 20 14:35:05 2008 4546 6 7.05 Task <1[4]> done successfully. The CPU time used is 0.026994
seconds;

Nov 20 14:35:05 2008 4546 6 7.05 Task <1[5]> done successfully. The CPU time used is 0.036992
seconds;

Task Summary

Submitted: 5

Done: 5

Using Platform LSF Session Scheduler

Using Platform LSF Session Scheduler 23

Example output of ssched -2 with requeue
Nov 20 14:35:47 2008 4748 6 7.05 SSCHED_UPDATE_SUMMARY_INTERVAL = 1

Nov 20 14:35:47 2008 4748 6 7.05 SSCHED_UPDATE_SUMMARY_BY_TASK = 0

Nov 20 14:35:47 2008 4748 6 7.05 SSCHED_REQUEUE_LIMIT = 1

Nov 20 14:35:47 2008 4748 6 7.05 SSCHED_RETRY_LIMIT = 1

Nov 20 14:35:47 2008 4748 6 7.05 SSCHED_MAX_TASKS = 10

Nov 20 14:35:47 2008 4748 6 7.05 SSCHED_MAX_RUNLIMIT = 600

Nov 20 14:35:47 2008 4748 6 7.05 SSCHED_ACCT_DIR = /home/user1/ssched

Nov 20 14:35:49 2008 4748 6 7.05 Task <1> submitted. Command <exit 1>;

Nov 20 14:35:50 2008 4748 6 7.05 Task <1> exited with status 1.

Nov 20 14:35:50 2008 4748 6 7.05 Task <1> submitted. Command <exit 1>;

Nov 20 14:35:50 2008 4748 6 7.05 Task <1> exited with status 1.

Task Summary

Submitted: 1

Requeued: 1

Done: 0

Exited: 2

 Execution Errors: 2

 Dispatch Errors: 0

 Other Errors: 0

Task Error Summary

Execution Error

Task ID: 1

Submit Time: Tue Nov 20 14:35:49 2008

Start Time: Tue Nov 20 14:35:50 2008

End Time: Tue Nov 20 14:35:50 2008

Exit Code: 1

Exit Reason: Normal exit

Exec Hosts: ibm03

Exec Home: /home/user1

Exec Dir: /home/user1/src/lsf7ss/ssched/ssched

Command: exit 1

Action: Requeue exit value match; task will be requeued

Execution Error

Task ID: 1

Submit Time: Tue Nov 20 14:35:50 2008

Start Time: Tue Nov 20 14:35:50 2008

End Time: Tue Nov 20 14:35:50 2008

Exit Code: 1

Exit Reason: Normal exit

Exec Hosts: ibm03

Exec Home: /home/user1

Exec Dir: /home/user1/src/lsf7ss/ssched/ssched

Command: exit 1

Action: Task requeue limit reached; task will not be requeued

Using Platform LSF Session Scheduler

24 Using Platform LSF Session Scheduler

Example output of ssched -2 with retry
Nov 20 14:37:04 2008 5049 6 7.05 SSCHED_UPDATE_SUMMARY_INTERVAL = 1

Nov 20 14:37:04 2008 5049 6 7.05 SSCHED_UPDATE_SUMMARY_BY_TASK = 0

Nov 20 14:37:04 2008 5049 6 7.05 SSCHED_REQUEUE_LIMIT = 1

Nov 20 14:37:04 2008 5049 6 7.05 SSCHED_RETRY_LIMIT = 1

Nov 20 14:37:04 2008 5049 6 7.05 SSCHED_MAX_TASKS = 10

Nov 20 14:37:04 2008 5049 6 7.05 SSCHED_MAX_RUNLIMIT = 600

Nov 20 14:37:04 2008 5049 6 7.05 SSCHED_ACCT_DIR = /home/user1/ssched

Nov 20 14:37:06 2008 5049 6 7.05 Task <1> submitted. Command <sleep 0>;

Nov 20 14:37:08 2008 5049 6 7.05 Task <1> had a dispatch error.

Nov 20 14:37:08 2008 5049 6 7.05 Task <1> submitted. Command <sleep 0>;

Nov 20 14:37:08 2008 5049 6 7.05 Task <1> had a dispatch error.

Task Summary

Submitted: 1

Done: 0

Exited: 1

 Execution Errors: 0

 Dispatch Errors: 1

 Other Errors: 0

Task Error Summary

Dispatch Error

Task ID: 1

Submit Time: Tue Nov 20 14:37:06 2008

Failure Reason: Pre-execution command failed

Command: sleep 0

Pre-Exec: exit 1

Start time: Tue Nov 20 14:37:07 2008

Execution host: ibm03

Action: Task will be retried

Dispatch Error

Task ID: 1

Submit Time: Tue Nov 20 14:37:08 2008

Failure Reason: Pre-execution command failed

Command: sleep 0

Pre-Exec: exit 1

Start time: Tue Nov 20 14:37:08 2008

Execution host: ibm03

Action: Task retry limit reached; task will not be retried

Note:

Using Platform LSF Session Scheduler

Using Platform LSF Session Scheduler 25

The "Task Summary" and "Summary of Errors" sections are sent to stdout. All
other output is sent to stderr.

Send SIGUSR1 signal
After the tasks have been submitted to the Session Scheduler and started, users can enable additional debugging by
Session Scheduler components by sending a SIGUSR1 signal.

To enable additional debugging by the ssched and libvem components, send a SIGUSR1 to the ssched_real process.
This enables the following:

• SSCHED_DEBUG_LOG_MASK=LOG_DEBUG
• SSCHED_DEBUG_CLASS=ALL
• SSCHED_DEBUG_MODULES=ALL

The additional log messages are sent to stderr.

To enable additional debugging by the sservice and sschild components, send a SIGUSR1 on the remote host to
the sservice process. This enables the following:

• SSCHED_DEBUG_LOG_MASK=LOG_DEBUG
• SSCHED_DEBUG_CLASS=ALL
• SSCHED_DEBUG_MODULES=ALL
• SSCHED_DEBUG_REMOTE_HOSTS=ALL
• SSCHED_DEBUG_REMOTE_FILE=Y

The debug messages are saved to a file in /tmp/ssched/. You are responsible for deleting this file when it is no longer
needed.

Send SIGUSR2 signal
If a SIGUSR1 signal is sent, SIGUSR2 restores debugging to its original level.

Known issues and limitations
General issues

• The Session Scheduler caches host info from LIM. If the host factor of a host is changed
after the Session Scheduler starts, the Session Scheduler will not see the updated host factor.
The host factor is used in the task accounting log.

• Session Scheduler does not support per task memory or swap utilization tracking from
ssacct. Run bacct to see aggregate memory and swap utilization.

• When specifying a multiline command line as a ssched command line parameter, you
must enclose the command in quotes. A multiline command line is any command
containing a semi-colon (;). For example:
ssched -o my.out "hostname; ls"

When specifying a multiline command line as a parameter in a task definition file, you
must NOT use quotes. For example:
cat my.tasks

-o my.out hostname; ls
• If you submit a shell script containing multiple ssched commands, bjobs -l only shows

the task summary for the currently running ssched instance. Enable task accounting and

Using Platform LSF Session Scheduler

26 Using Platform LSF Session Scheduler

examine the accounting file to see information for tasks from all ssched instances in the
shell script.

• Submitting a large number of tasks as part of one session may cause a slight delay between
when the Session Scheduler starts and when tasks are dispatched to execution agents. The
Session Scheduler must parse and submit each task before it begins dispatching any tasks.
Parsing 50,000 tasks can take up to 2 minutes before dispatching starts.

• After all tasks have completed, the Session Scheduler will take some time to terminate all
execution agents and to clean up temporary files. A minimum of 20 seconds is normal,
longer for larger allocations.

• Session Scheduler handles the following signals: SIGINT, SIGTERM, SIGUSR1, SIGSTOP,
SIGTSTP, and SIGCONT. All other signals cause ssched to exit immediately. No
summary is output and task accounting information is not saved. The signals Session
Scheduler handles will be expanded in future releases.

Using Platform LSF Session Scheduler

Using Platform LSF Session Scheduler 27

Using Platform LSF Session Scheduler

28 Using Platform LSF Session Scheduler

3
Platform LSF Session Scheduler Reference

C H A P T E R

Using Platform LSF Session Scheduler 29

ssacct
displays accounting statistics about finished Session Scheduler jobs

Synopsis
ssacct [-l] job_ID [task_ID | "task_ID[index]"]

ssacct [-l] "job_ID[index]" [task_ID | "task_ID[index]"]

ssacct [-l] -f log_file [job_ID [task_ID | "task_ID[index]"]]

ssacct [-l] -f log_file ["job_ID[index]"] [task_ID | "task_ID[index]"]]

ssacct [-h] | [-V]

Description
By default, displays accounting statistics for all finished jobs submitted by the user who invoked
the command.

Options
-l

Long format. Displays additional accounting statistics.
-f log_file

Searches the specified job log file for accounting statistics. Specify either an absolute
or relative path.

By default, ssacct searches for accounting files in SSCHED_ACCT_DIR in
lsb.params. Use this option to parse a specific file in a different location. You can
specify a log file name, or a job ID, or both a log file and a job ID. The following are
correct:
ssacct -f log_file job_ID

ssacct -f log_file

ssacct job_ID

The specified file path can contain up to 4094 characters for UNIX, or up to 255
characters for Windows.

job_ID | "job_ID[index]"

Displays information about the specified jobs or job arrays.
task_ID | "task_ID[index]"

Displays information about the specified tasks or task arrays.
-h

Prints command usage to stderr and exits.
-V

Prints Session Scheduler release version to stderr and exits.

Platform LSF Session Scheduler Reference

30 Using Platform LSF Session Scheduler

Output
Summary (default format)

Statistics on all tasks in the session. The following fields are displayed:

• Total number of done tasks
• Total CPU time in seconds consumed
• Average CPU time in seconds consumed
• Maximum CPU time in seconds of a task
• Minimum CPU time in seconds of a task
• Total wait time in seconds
• Average wait time in seconds
• Maximum wait time in seconds
• Minimum wait time in seconds
• Average turnaround time (seconds/task)
• Maximum turnaround time (seconds/task)
• Minimum turnaround time (seconds/task)
• Average hog factor of a job (CPU time/turnaround time)
• Maximum hog factor of a task (CPU time/turnaround time)
• Minimum hog factor of a task (CPU time/turnaround time)

The total, average, minimum, and maximum statistics are on all specified tasks.

The wait time is the elapsed time from job submission to job dispatch.

The turnaround time is the elapsed time from job submission to job completion.

The hog factor is the amount of CPU time consumed by a job divided by its turnaround time.

Long Format (-l)
In addition to the fields displayed by default in SUMMARY, -l displays the following fields:

CPU_T
CPU time in seconds used by the task

WAIT
Wall clock time in seconds between when the task was submitted to the Session Scheduler and
when it has been dispatched to an execution host

TURNAROUND
Wall clock time in seconds between when the task was submitted to the Session Scheduler and
when it has completed running

STATUS
Status that indicates the job was either successfully completed (done) or exited (exit)

HOG_FACTOR
Average hog factor, equal to CPU time /turnaround time

Platform LSF Session Scheduler Reference

Using Platform LSF Session Scheduler 31

Examples
Default format
ssacct 108 1[1]
Accounting information about tasks that are:

 - submitted by all users.

 - completed normally or exited.

 - executed on all hosts.

--

SUMMARY: (time unit: second)

 Total number of done tasks: 1 Total number of exited tasks: 0

 Total CPU time consumed: 0.0 Average CPU time consumed: 0.0

 Maximum CPU time of a task: 0.0 Minimum CPU time of a task: 0.0

 Total wait time: 2.0

 Average wait time: 2.0

 Maximum wait time: 2.0 Minimum wait time: 2.0

 Average turnaround time: 3 (seconds/task)

 Maximum turnaround time: 3 Minimum turnaround time: 3

 Average hog factor of a task: 0.01 (cpu time / turnaround time)

 Maximum hog factor of a task : 0.01 Minimum hog factor of a task: 0.01

Platform LSF Session Scheduler Reference

32 Using Platform LSF Session Scheduler

Long format (-l)
ssacct -l 108 1[1]
Accounting information about tasks that are:

 - submitted by all users.

 - completed normally or exited.

 - executed on all hosts.

--

Job <108>, Task <1>, User <user1>, Status <Done> Command <myjob>

Thu Nov 1 13:48:03 2007: Submitted from host <hostA>;

Thu Nov 1 13:48:05 2007: Dispatched to <hostA>, Execution CWD </home/user1/src

Thu Nov 1 13:48:06 2007: Completed <done>.

Accounting information about this job:

 CPU_T WAIT TURNAROUND STATUS HOG_FACTOR

 0.03 2 3 done 0.0113

--

SUMMARY: (time unit: second)

 Total number of done tasks: 1 Total number of exited tasks: 0

 Total CPU time consumed: 0.0 Average CPU time consumed: 0.0

 Maximum CPU time of a task: 0.0 Minimum CPU time of a task: 0.0

 Total wait time: 2.0

 Average wait time: 2.0

 Maximum wait time: 2.0 Minimum wait time: 2.0

 Average turnaround time: 3 (seconds/task)

 Maximum turnaround time: 3 Minimum turnaround time: 3

 Average hog factor of a task: 0.01 (cpu time / turnaround time)

 Maximum hog factor of a task : 0.01 Minimum hog factor of a task: 0.01

Files
Reads job_ID.ssched.acct

See also
ssched, lsb.params

Platform LSF Session Scheduler Reference

Using Platform LSF Session Scheduler 33

ssched
submit tasks through Platform LSF Session Scheduler

Synopsis
ssched [options] command

ssched [options] -tasks task_definition_file

ssched [options] -tasks task_definition_file command

ssched [-h | -V]

Description
Options can be specified on the ssched command line or on a line in a task definition file. If
specified on the command line, the option applies to all tasks, whether specified on the
command line or in a file. Options specified in a file apply only to the command on that line.
Options in the task definition file override the same option specified on the command line.

ssched exit codes
Exit Code Meaning

0 All tasks completed normally

1 An unspecified error occurred

3 All tasks completed, but some tasks have a non-zero exit code

4 Error parsing ssched command line parameters or tasks definition file. No tasks were run.

5 Exceeded the SSCHED_MAX_TASKS limit

6 License expired

Task Definition File Format
The task definition file is an ASCII file. Each line represents one task, or an array of tasks. Each
line has the following format:
[task_options] command [arguments]

Options list
Command options

-1 | -2 | -3

-C

-p

Platform LSF Session Scheduler Reference

34 Using Platform LSF Session Scheduler

Task options
-E "pre_exec_command [argument ...]"

-Ep "post_exec_command [argument ...]"

-e err_file

-i input_file

-J task_name[index_list]

-j "starter [starter] [%USRCMD] [starter]"

-M mem_limit

-o out_file

-Q "exit_code ..."

-W [minutes:]seconds

-h

-V

Option descriptions
Command options
-1 | -2 | -3

Enables increasing amounts of debug output
-C

Sanity check all parameters and the task definition file. Exit immediately after the check
is complete. An exit code of 0 indicates no errors were found. Any non-zero exit code
indicates an error. ssched -C can be run outside of LSF.

-p

Do not delete the temporary working directory. This option is useful when diagnosing
errors.

Task options
-E "pre_exec_command [arguments ...]"

Runs the specified pre-execution command on the execution host before actually
running the task.

The task pre-execution behavior mimics the behavior of LSF job pre-execution.
However, the task pre-execution command cannot run as root.

The standard input and output for the pre-execution command are directed to the
same files as the job. The pre-execution command runs under the same user ID,
environment, home, and working directory as the job. If the pre-execution command
is not in the user’s usual execution path (the $PATH variable), the full path name of
the command must be specified.

-Ep "post_exec_command [arguments ...]"

Platform LSF Session Scheduler Reference

Using Platform LSF Session Scheduler 35

Runs the specified post-execution command on the execution host after the task
finishes.

The task post-execution behavior mimics the behavior of LSF job post-execution.
However, the task post-execution command cannot run as root.

If the post-execution command is not in the user’s usual execution path (the
$PATH variable), the full path name of the command must be specified.

-e error_file

Specify a file path. Appends the standard error output of the job to the specified file.

If the parameter LSB_STDOUT_DIRECT in lsf.conf is set to Y or y, the standard
error output of a task is written to the file you specify as the job runs. If
LSB_STDOUT_DIRECT is not set, standard error output of a task is written to a
temporary file and copied to the specified file after the task finishes.

You can use the special characters %J, %I, %T, %X in the name of the input file. %J is
replaced by the job ID. %I is replaced by the job array index, %T is replaced with the
task ID, and %X is replaced by the task array index.

If the current working directory is not accessible on the execution host after the job
starts, Session Scheduler writes the standard error output file to /tmp/.

Note:
The file path can contain up to 4094 characters including the
directory, file name, and expanded values for %J, %I, %T
and %X

-i input_file

Gets the standard input for the job from specified file. Specify an absolute or relative
path. The input file can be any type of file, though it is typically a shell script text file.

If -i is not specified, standard input defaults to /dev/null.

You can use the special characters %J, %I, %T, %X in the name of the input file. %J is
replaced by the job ID. %I is replaced by the job array index, %T is replaced with the
task ID, and %X is replaced by the task array index.

Note:
The file path can contain up to 4094 characters including the
directory, file name, and expanded values for %J, %I, %T
and %X

-J task_name[index_list]

Specifies the indices of the task array. The index list must be enclosed in square
brackets. The index list is a comma-separated list whose elements have the syntax start
[-end[:step]] where start, end and step are positive integers. If the step is omitted, a
step of one is assumed. The task array index starts at one.

Platform LSF Session Scheduler Reference

36 Using Platform LSF Session Scheduler

All tasks in the array share the same option parameters. Each element of the array is
distinguished by its array index.

-j "starter [starter] [%USRCMD] [starter] "

Task job starter. Creates a specific environment for submitted tasks prior to execution.

The job starter is any executable that can be used to start the task (that is, it can accept
the task as an input argument). Optionally, additional strings can be specified.

By default, the user commands run after the job starter. A special string, %
USRCMD, can be used to represent the position of the user's task in the job starter
command line. The %USRCMD string may be followed by additional commands.

-o output_file

Specify a file path. Appends the standard output of the task to the specified file. The
default is to output to the same stdout as the ssched command.

If only a file name is specified, LSF writes the output file to the current working
directory. If the current working directory is not accessible on the execution host after
the task starts, LSF writes the standard output file to /tmp/.

If the parameter LSB_STDOUT_DIRECT in lsf.conf is set to Y or y, the standard
output of a task is written to the file you specify as the task runs. If
LSB_STDOUT_DIRECT is not set, it is written to a temporary file and copied to the
specified file after the task finishes.

You can use the special characters %J, %I, %T, %X in the name of the input file. %J is
replaced by the job ID. %I is replaced by the job array index, %T is replaced with the
task ID, and %X is replaced by the task array index.

Note:
The file path can contain up to 4094 characters including the
directory, file name, and expanded values for %J, %I, %T
and %X

-M mem_limit

Sets a per-process (soft) memory limit for all the processes that belong to the task (see
getrlimit(2)).

By default, the limit is specified in KB. Use LSF_UNIT_FOR_LIMITS in lsf.conf to
specify a larger unit for the limit (MB, GB, TB, PB, or EB).

You should only set a task level memory limit if it less than the job limit.
-Q "exit_code ..."

Task requeue exit values. Enables automatic task requeue and sets the
LSB_EXIT_REQUEUE environment variable. Separate multiple exit codes with
spaces. The output from the failed run is not saved, and the user is not notified by LSF.

-W [minutes:]seconds

Platform LSF Session Scheduler Reference

Using Platform LSF Session Scheduler 37

Sets the run time limit of the task. If a task runs longer than the specified run limit, the
task is sent a SIGKILL signal.

The run limit is in the form of [minutes:]seconds. The seconds can be specified as a
number greater than 59. For example, three and a half minutes can either be specified
as 3:30, or 210. The run limit you specify is the absolute run time.

-tasks task_definition_file

Specify tasks through a task definition file.
command [argument]

The command can be anything that is provided to a UNIX Bourne shell (see sh(1)).
The command is assumed to begin with the first word that is not part of a option. All
arguments that follow command are provided as the arguments to the command.

The job command can be up to 4094 characters long.
-h

Prints command usage to stderr and exits.
-V

Prints release version to stderr and exits.

See also
ssacct, lsb.params

Platform LSF Session Scheduler Reference

38 Using Platform LSF Session Scheduler

Environment variables
By default, all environment variables that are set as part of the session are available in each tasks's execution environment.

See the Platform LSF Configuration Reference for more information about LSF environment variables.

Variables for the execution host of each task
The following environment variables are reset according to the execution host of each task:

• EGO_SERVERDIR
• LSB_TRAPSIGS
• LSF_SERVERDIR
• HOSTTYPE
• LSB_HOSTS
• LSF_BINDIR
• EGO_BINDIR
• PWD
• HOME
• LSB_ERRORFILE
• LSB_OUTPUTFILE
• TMPDIR
• LSF_LIBDIR
• EGO_LIBDIR
• LSB_MCPU_HOSTS
• PATH (prepend LSF_BINDIR)
• LD_LIBRARY_PATH (prepend LSF_LIBDIR and EGO_LIBDIR)

Environment variables NOT available in the task environment
• LSB_JOBRES_PID
• LSB_EEXEC_REAL_UID
• LS_EXEC_T
• LSB_INTERACTIVE
• LSB_CHKFILENAME
• SPOOLDIR
• LSB_ACCT_FILE
• LSB_EEXEC_REAL_GID
• LSB_CHKPNT_DIR
• LSB_CHKPNT_PERIOD
• LSB_JOB_STARTER
• LSB_EXIT_REQUEUE
• LSB_DJOB_RU_INTERVAL
• LSB_DJOB_HB_INTERVAL
• LSB_DJOB_HOSTFILE
• LSB_JOBEXIT_INFO
• LSB_JOBPEND
• LSB_EXECHOSTS

Platform LSF Session Scheduler Reference

Using Platform LSF Session Scheduler 39

Environment variables corresponding to the session job
• LSB_JOBID
• LSB_JOBINDEX
• LSB_JOBINDEX_STEP
• LSB_JOBINDEX_END
• LSB_JOBPID
• LSB_JOBNAME
• LSB_JOBFILENAME

Environment variables set individually for each task
• LSB_TASKID—The current task ID
• LSB_TASKINDEX—The current task index

Platform LSF Session Scheduler Reference

40 Using Platform LSF Session Scheduler

lsb.params
The lsb.params file defines parameters used by the Session Scheduler system. This file contains only one section,
named Parameters. The file is optional. If not present, the LSF-defined defaults are assumed.

Note:
This chapter describes only the subset of parameters used by Session Scheduler
for Platform LSF 7. See the Platform LSF Configuration Reference for all
lsb.params parameters.

This file is installed by default in LSB_CONFDIR/cluster_name/configdir.

Changing lsb.params configuration
After making any changes to lsb.params, run badmin reconfig to reconfigure
mbatchd.

Parameters Section
This section and all the keywords in this section are optional. If keywords are not present, the
default values are assumed.

Session Scheduler Parameters
• SSCHED_ACCT_DIR
• SSCHED_MAX_RUNLIMIT
• SSCHED_MAX_TASKS
• SSCHED_REQUEUE_LIMIT
• SSCHED_RETRY_LIMIT
• SSCHED_UPDATE_SUMMARY_BY_TASK
• SSCHED_UPDATE_SUMMARY_INTERVAL

SSCHED_ACCT_DIR
Syntax

SSCHED_ACCT_DIR=directory

Description
A universally accessible and writable directory that will store Session Scheduler task
accounting files. Each Session Scheduler session (each ssched instance) creates one
accounting file. Each file contains one accounting entry for each task. The accounting file is
named job_ID.ssched.acct. If no directory is specified, accounting records are not
written.

Valid values
Specify any string up to 4096 characters long

Default
Not defined. No task accounting file is created.

Platform LSF Session Scheduler Reference

Using Platform LSF Session Scheduler 41

SSCHED_MAX_RUNLIMIT
Syntax

SSCHED_MAX_RUNLIMIT=seconds

Description
Maximum run time for a task. Users can override this value with a lower value. Specify a value
greater than or equal to zero (0).

Recommended value
For very short-running tasks, a reasonable value is twice the typical runtime. Because LSF does
not release slots allocated to the session until all tasks are completed and ssched exits, you
should avoid setting a large value for SSCHED_MAX_RUNLIMIT.

Valid values
Specify a positive integer between 0 and 2147483645

Default
600 seconds (10 minutes)

SSCHED_MAX_TASKS
Syntax

SSCHED_MAX_TASKS=integer

Description
Maximum number of tasks that can be submitted to Session Scheduler. Session Scheduler exits
if this limit is reached. Specify a value greater than or equal to zero (0).

Valid values
Specify a positive integer between 0 and 2147483645

Default
50000 tasks

SSCHED_REQUEUE_LIMIT
Syntax

SSCHED_REQUEUE_LIMIT=integer

Description
Number of times Session Scheduler tries to requeue a task as a result of the
REQUEUE_EXIT_VALUES (ssched -Q) setting. SSCHED_REQUEUE_LIMIT=0 means
never requeue. Specify a value greater than or equal to zero (0).

Platform LSF Session Scheduler Reference

42 Using Platform LSF Session Scheduler

Valid values
Specify a positive integer between 0 and 2147483645

Default
3 requeue attempts

SSCHED_RETRY_LIMIT
Syntax

SSCHED_RETRY_LIMIT=integer

Description
Number of times Session Scheduler tries to retry a task that fails during dispatch or setup.
SSCHED_RETRY_LIMIT=0 means never retry. Specify a value greater than or equal to zero
(0).

Valid values
Specify a positive integer between 0 and 2147483645

Default
3 retry attempts

SSCHED_UPDATE_SUMMARY_BY_TASK
Syntax

SSCHED_UPDATE_SUMMARY_INTERVAL=integer

Description
Update the Session Scheduler task summary via bpost after the specified number of tasks
finish. Specify a value greater than or equal to zero (0).

If both SSCHED_UPDATE_SUMMARY_INTERVAL and
SSCHED_UPDATE_SUMMARY_BY_TASK are set to zero (0), bpost is not run.

Valid values
Specify a positive integer between 0 and 2147483645

Default
0

See also
SSCHED_UPDATE_SUMMARY_INTERVAL

Platform LSF Session Scheduler Reference

Using Platform LSF Session Scheduler 43

SSCHED_UPDATE_SUMMARY_INTERVAL
Syntax

SSCHED_UPDATE_SUMMARY_INTERVAL=seconds

Description
Update the Session Scheduler task summary via bpost after the specified number of seconds.
Specify a value greater than or equal to zero (0).

If both SSCHED_UPDATE_SUMMARY_INTERVAL and
SSCHED_UPDATE_SUMMARY_BY_TASK are set to zero (0), bpost is not run.

Valid values
Specify a positive integer between 0 and 2147483645

Default
60 seconds

See also
SSCHED_UPDATE_SUMMARY_BY_TASK

See Also
ssacct, ssched

Platform LSF Session Scheduler Reference

44 Using Platform LSF Session Scheduler

Index
B

bkill command
kill the Session Scheduler session 17

C

check ssched parameters 17
CPU_T

ssacct -l 31

H

HOG_FACTOR
ssacct -l 31

J

job submission
check ssched parameters 17

L

lsb.params file
description 41

S

sanity-check ssched parameters 17
session jobs

kill the session (bkill) 17
Session Scheduler session

kill the session (bkill) 17
ssched command

check parameters 17
SSCHED_ACCT_DIR

lsb.params file 41
SSCHED_MAX_RUNLIMIT

lsb.params file 42
SSCHED_MAX_TASKS

lsb.params file 42
SSCHED_REQUEUE_LIMIT

lsb.params file 42
SSCHED_RETRY_LIMIT

lsb.params file 43
SSCHED_UPDATE_SUMMARY_INTERVAL

lsb.params file 43, 44
STATUS

ssacct -l 31

T

task submission
check ssched parameters 17

TURNAROUND
ssacct -l 31

W

WAIT
ssacct -l 31

Using Platform LSF Session Scheduler 45

	Contents
	Copyright
	Installing Platform LSF Session Scheduler
	About Platform LSF Session Scheduler
	Session Scheduler system requirements
	Session Scheduler terminology
	Session Scheduler architecture
	Session Scheduler components
	Session Scheduler performance
	Directions for future development

	Install Platform LSF Session Scheduler

	Using Platform LSF Session Scheduler
	How Session Scheduler Runs Tasks
	Session Scheduler job sessions
	Session Scheduler tasks
	Session and task accounting

	Running and monitoring Session Scheduler jobs
	Create a Session Scheduler session and run tasks
	Submit a Session Scheduler job as a parallel LSF job

	Submit task array jobs
	Submit tasks with automatic task requeue
	Monitor Session Scheduler jobs
	Kill a Session Scheduler session
	Check your job submission
	Enable recoverable Session Scheduler sessions

	Resizable jobs
	Troubleshooting
	Known issues and limitations

	Platform LSF Session Scheduler Reference
	ssacct
	Description
	Options
	Output
	Summary (default format)
	Long Format (-l)

	Examples
	Default format
	Long format (-l)

	Files
	See also

	ssched
	Description
	Options list
	Option descriptions
	See also

	Environment variables
	lsb.params
	Changing lsb.params configuration
	Parameters Section
	Session Scheduler Parameters
	SSCHED_ACCT_DIR
	SSCHED_MAX_RUNLIMIT
	SSCHED_MAX_TASKS
	SSCHED_REQUEUE_LIMIT
	SSCHED_RETRY_LIMIT
	SSCHED_UPDATE_SUMMARY_BY_TASK
	SSCHED_UPDATE_SUMMARY_INTERVAL

	See Also

	Index

