
Platform EGO™ Developer’s Guide

Platform EGO version 1.2.3
 December, 2007

 Comments to: doc@platform.com
 Support: support@platform.com

Copyright © 1994-2007 Platform Computing Corporation
All rights reserved.
Although the information in this document has been carefully reviewed, Platform Computing
Corporation (“Platform”) does not warrant it to be free of errors or omissions. Platform reserves the
right to make corrections, updates, revisions or changes to the information in this document.
UNLESS OTHERWISE EXPRESSLY STATED BY PLATFORM, THE PROGRAM DESCRIBED IN
THIS DOCUMENT IS PROVIDED “AS IS” AND WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO
EVENT WILL PLATFORM COMPUTING BE LIABLE TO ANYONE FOR SPECIAL,
COLLATERAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT
LIMITATION ANY LOST PROFITS, DATA, OR SAVINGS, ARISING OUT OF THE USE OF OR
INABILITY TO USE THIS PROGRAM.

We’d like to hear from you You can help us make this document better by telling us what you think of the content, organization,
and usefulness of the information. If you find an error, or just want to make a suggestion for improving
this document, please address your comments to doc@platform.com.
Your comments should pertain only to Platform documentation. For product support, contact
support@platform.com.

Document redistribution
and translation

This document is protected by copyright and you may not redistribute or translate it into another
language, in part or in whole.

Internal redistribution You may only redistribute this document internally within your organization (for example, on an
intranet) provided that you continue to check the Platform Web site for updates and update your
version of the documentation. You may not make it available to your organization over the Internet.

Trademarks ® LSF is a registered trademark of Platform Computing Corporation in the United States and in other
jurisdictions.
™ ACCELERATING INTELLIGENCE, PLATFORM COMPUTING, PLATFORM SYMPHONY,
PLATFORM JOBSCHEDULER, PLATFORM ENTERPRISE GRID ORCHESTRATOR, PLATFORM
EGO, and the PLATFORM and PLATFORM LSF logos are trademarks of Platform Computing
Corporation in the United States and in other jurisdictions.
® UNIX is a registered trademark of The Open Group in the United States and in other jurisdictions.
Microsoft is either a registered trademark or a trademark of Microsoft Corporation in the United
States and/or other countries.
® Windows is a registered trademark of Microsoft Corporation in the United States and other
countries.
Other products or services mentioned in this document are identified by the trademarks or service
marks of their respective owners.

Third-party license
agreements

http://www.platform.com/Company/third.part.license.htm

Third-party copyright
notices

http://www.platform.com/Company/Third.Party.Copyright.htm

3

Contents
1 Introduction to the Platform EGO SDK . 9

Contents . 9
EGO concepts and terms . 10

EGO master . 10
Resources . 10
Consumers . 10
Resource allocation requests . 10
Services . 10
Containers (Activities) . 11

Platform EGO SDK . 12
Major components . 12
ego.conf configuration file . 13
EGO client development tools . 13

Eclipse . 14
EGO API . 15

EGO functionality . 15
EGO API . 16
API calls, callbacks, and notifications . 17
API and Web Service interface reference documentation 18

About Web Services . 19
Web Service components . 19
A closer look at an EGO WSDL and schema . 20
Building a Web Service client . 22

2 Creating EGO Client Projects . 25
What is a client? . 25
Contents . 25

Create a C client project . 26
Create a Web Service project . 27

3 Getting Started with the C Client: A Collection of Tutorials . 29
Before you begin the tutorials . 29
Contents . 29

Locate the code samples . 30
Tutorial 1: Request Information About Hosts in a Cluster . 31

Using this tutorial, you will … . 31
Step 1: Preprocessor directives . 31
Step 2: Implement the principal method . 31
Step 3: Send host information to the console . 34

4

Step 4: Get the host status . 35
Step 5: Format output according to data type . 35
Step 6: Send host summary to the console . 36
Run the client application . 36
Sample output . 37

Tutorial 2: Request Host Allocation in a Cluster with Synchronous Notifications 38
Using this tutorial, you will … . 38
Step 1: Preprocessor directives . 38
Step 2: Implement the principal method . 39
Step 3: Free all resource allocations . 46
Step 4: Print allocation info . 47
Step 5: Print container info . 48
Run the client application . 49
Sample output . 49

Tutorial 3: Request Host Allocation in a Cluster with Asynchronous Callback Notifications 50
Using this tutorial, you will … . 50
Step 1: Preprocessor directives and method declarations 51
Step 2: Implement the principal method . 51
Step 3: Client callback methods . 56
Run the client application . 57
Sample output . 58

Tutorial 4: Request Resource Allocation in a Cluster and Start Containers Using Threads 59
Using this tutorial, you will … . 59
Underlying principles . 59
Step 1: Preprocessor directives and global variable declarations 61
Step 2: Implement the principal method . 61
Step 3: Make resource allocation requests to Platform EGO (resource thread) 66
Step 4: Get resource allocation reply from Platform EGO
and start containers (work thread) . 67
Step 5: Calculate the average host load (monitor thread) 68
Step 6: Client callback methods . 69
Step 7: Calculate the average activity load on the resources 71
Run the client application . 74
Sample output . 74

Tutorial 5: Request Resource Allocation in a Cluster
and Start Containers Based on Host Loading . 77

Using this tutorial, you will … . 77
Underlying principles . 77
Step 1: Preprocessor directives . 78
Step 2: Implement the principal method . 78
Step 3: Add or release resources based on average host load (monitor thread) 83
Step 4: Release resources from Platform EGO . 84
Run the client application . 86
Sample output . 87

5

Tutorial 6: Create an EGO Service . 90
Using this tutorial, you will … . 90
Underlying principles . 90
Step 1: Preprocessor directives and declarations . 91
Step 2: Implement the principal method . 91
Step 3: Create the service . 95
Step 4: Query the service . 96
Step 5: Disable and remove the service . 97
Run the client application . 97

Tutorial 7: Update a DNS Entry in the Service Director . 98
Using this tutorial, you will … . 98
Underlying principles . 98
Step 1: Preprocessor directives and method declarations 99
Step 2: Implement the principal method . 99
Step 3: Create the service definition . 106
Step 4: Create the service . 106
Step 5: Client callback methods . 108
Run the client application . 109

4 Getting Started with the Web Service Client: A Collection of Tutorials . 111
Before you begin the tutorials . 111
Contents . 112

Locate the code samples . 113
Tutorial 1: Request Information About Hosts in a Cluster . 114

Using this tutorial, you will … . 114
Step 1: Import class references . 114
Step 2: Retrieve cluster information . 115
Step 3: Retrieve resource information . 115
Step 4: Print the resource information . 117
Step 5: Call the sample program . 118
Run the client application . 118
Sample output . 119

Tutorial 2: Register, Locate, and Unregister a Client . 120
Using this tutorial, you will … . 120
Step 1: Import class references . 120
Step 2: Retrieve cluster and Resource information . 120
Step 3: Register the client . 120
Step 4: Locate the client . 122
Step 5: Unregister the client . 123
Step 6: Print out the information . 125
Run the client application . 126
Sample output . 127

Tutorial 3: Request a Resource Allocation in a Cluster . 128
Using this tutorial, you will … . 128
Step 1: Import class references . 128
Step 2: Retrieve cluster and Resource information . 128
Step 3: Register the client . 128

6

Step 4: Make a resource allocation request . 128
Step 5: Check the allocation status . 131
Step 6: Create and start an activity on a resource . 131
Step 7: Locate the client . 134
Step 8: Unregister the client . 134
Run the client application . 134
Sample output . 135

Tutorial 4: Monitor an Activity on a Resource . 136
Using this tutorial, you will … . 136
Step 1: Import class references . 136
Step 2: Retrieve cluster and Resource information . 136
Step 3: Register the client . 136
Step 4: Make a resource allocation request . 136
Step 5: Check for notification of resource allocation . 136
Step 6: Create an activity that will run on a requested resource 137
Step 7: Calculate the activity load on the resource . 137
Step 8: Monitor the activity . 138
Step 9: Locate the client . 141
Step 10: Unregister the client . 141
Run the client application . 141
Sample output . 142

Tutorial 5: Modify Resources Based on Load Information . 143
Using this tutorial, you will … . 143
Step 1: Import class references . 143
Step 2: Retrieve cluster information . 143
Step 3: Check that the cluster has enough resources . 144
Step 4: Register the client . 144
Step 5: Make a resource allocation request . 144
Step 6: Check for notification of resource allocation . 144
Step 7: Create an activity that will run on a requested resource 144
Step 8: Check the resource loading . 144
Step 9: Modify the resources . 145
Step 10: Locate the client . 149
Step 11: Unregister the client . 150
Run the client application . 150
Sample output . 151

Tutorial 6: Create an EGO Service . 152
Using this tutorial, you will … . 152
Underlying principles . 152
Step 1: Import class references . 152
Step 2: Retrieve resource information . 152
Step 3: Register the client . 152
Step 4: Locate all clients . 153
Step 5: Query all EGO services . 153
Step 6: Create a service definition . 153
Step 7: Create a Service Controller Client object . 155

7

Step 8: Subscribe to notifications . 155
Step 9: Create and start an EGO service . 156
Step 10: Check for service state changes . 157
Step 11: Stop an EGO service . 157
Step 12: Unsubscribe to service notifications . 158
Run the client application . 159
Sample output . 160

Tutorial 7: Create an EGO Service and Query the Domain Name Server 162
Using this tutorial, you will … . 162
Underlying principles . 162
Step 1: Import class references . 162
Step 2: Register the client . 162
Step 3: Retrieve resource information . 163
Step 4: Locate all clients . 163
Step 5: Query all services . 163
Step 6: Create a service definition . 163
Step 7: Create a Service Controller Client object . 163
Step 8: Create and start an EGO service . 163
Step 9: Query the DNS . 164
Step 11: Stop an EGO service . 164
Run the client application . 164

5 Troubleshooting . 167
Contents . 167
Compiler errors . 168
Connection errors . 168

Index . 171

8

9

C H A P T E R

1
Introduction to the Platform EGO SDK

The Platform Enterprise Grid Orchestrator™ (EGO) is a service that virtualizes a
distributed heterogeneous computing environment enabling users, administrators,
and developers to treat a collection of distributed software and hardware resources
as components of a virtual computer. Platform EGO enables all applications,
services, and workloads to access a shared infrastructure. Like a node operating
system, Platform EGO takes physical resources and virtualizes them creating a
virtual environment. It allocates the resources according to policy and simplifies the
management and improves availability of the entire environment.

Contents
EGO concepts and terms on page 10
Platform EGO SDK on page 12
EGO API on page 15
About Web Services on page 19

10

EGO concepts and terms

EGO master
The bulk of the intelligence in Platform EGO resides on the EGO master, which
receives requests from clients and interacts with the underlying nodes to gather
resource information.
EGO hosts contain the local information collection and execution agents taking
instructions from the EGO master.

Resources
Resources are physical and logical entities that are used by applications in order to
run. A resource of a particular type is associated with attributes. For example, a host
has attributes of memory, CPU utilization, operating system type, etc. Platform
EGO deals with resource allocation at the granularity of physical hosts, logical
sub-divisions of the physical host known as cpu slots, software license features, and
includes an extensible resource model to cover storage space, network bandwidth,
or data sets as resources whose use is controlled under policies

Consumers
A consumer is a generalized notion of something that uses a resource. A consumer
may be an individual user, user group, application, project, department, or an entire
company. Consumers are organized hierarchically to model the nature of an
organization that wants to access compute resources.

Resource allocation requests
An allocation request is a request for a set of resources made by a client to Platform
EGO. The client must identify the originating consumer that this request is for in
order for Platform EGO to apply its policies on resource allocation.
A client for each unique consumer wanting to run work should issue a resource
allocation request; this allows Platform EGO to coordinate the sharing of resources
amongst multiple consumers across different applications. Separate allocation
requests should be made for each application or set of services that needs resources,
since the allocation resource requirements will likely be different between different
applications or sets of services.

Services
Platform EGO is an operating environment for hosting distributed services.
Platform EGO provides a facility to define services that must be running and
manages the lifecycle of their execution. Putting services under EGO management
provides centralized control, virtualization of service placement, and failover.

11

Platform EGO comes with a set of standard services that would be commonly used
within any environment. These include Service Controller, Service Director, web
portal service, calendar service, and logging service. These services can be used
together with application specific services to manage different workloads and
environments.

Containers (Activities)
Services, in general, require some sort of execution context to be established; this
may include a virtual machine (VM) or a J2EE application server, or some OS-level
construct. To abstract this concept we introduce the notion of an activity or
container as a hosting environment for services. The container is the main "unit of
execution" from the point of view of the EGO kernel. Within the context of
Platform EGO, container and activity have the same meaning. The container term
is a legacy of Platform EGO’s native C APIs whereas activity is a term that is favored
within the context of Web Services. This guide uses both terms in keeping with this
philosophy.
The relationship between services and containers is, in general, many to one, i.e.,
multiple services will run in the same container.

12

Platform EGO SDK

The EGO SDK enables developers to create services or applications that run on top
of Platform EGO by accessing its C API or Web Service interface. The SDK is
intended for Independent Software Vendors (ISVs) or system vendors looking to
integrate their applications into the EGO environment. The SDK comes with a full
runtime enabling developers to develop and test in the same environment that
exists in the production version of Platform EGO.

Major components
Here is a list of the major SDK components:
EGO C SDK (com.platform.ego.c plug-in)

header files
vem.api.h
vem.errno.h
vem.common.h
vem.version.h
esc.api.h
esd.h
esdplugin.h

dynamic libraries
libvem.so (EGO stub library)
sec_ego_default.so (EGO security plug-in)
libesc.so (Service Controller library)
esd_ego_default.so (Service Director plug-in)
libxml.so (XML utility library)
libesd.so

static libraries
libvem.a
libesc.a
libxml.a

EGO Web Service SDK
com.platform.ego.soap plug-in

13

Help
EGO Developer’s Guide
C API Reference
Web Service XML Schema Reference
Web Service WSDL files (note: the Web Service WSDL documentation is
embedded in the WSDL files)

Code samples
C client
Java client for web services

ego.conf configuration file
The ego.conf configuration file is required for the client application to connect
to Platform EGO because it contains the master host name and port numbers for
the agents. The location of this file is passed to the API when a request is made to
open a connection to the EGO master. This file is included in the SDK.

EGO client development tools

C API plug-in
The C language integration enables developers to create projects that contain C
language code and make files. This provides the developer with a quick means of
creating a new project suitable for use as an EGO client.

Web Service plug-in
The Java / Web Service language integration is used to create projects that contain
Java language code and build files. This provides the programmer with a quick
means of creating a new project suitable for use as an EGO Web Service client.

14

Eclipse

Eclipse is an open source community whose projects are focused on providing an
extensible development platform and application frameworks for building
software. Eclipse provides extensible tools and frameworks that span the software
development lifecycle, including support for modeling, language development
environments for Java, C/C++ and others, testing and performance, business
intelligence, rich client applications and embedded development. The EGO client
development tools were specifically designed as plug-ins to the Eclipse IDE.

15

EGO API

The EGO Application Programming Interface (API) is a collection of programming
interfaces used by a client application to access EGO functionality. A client can be
either registered or unregistered. Unregistered clients can perform queries for host
and consumer information. Registered clients have access to additional
functionality such as resource allocation and container execution.
Clients can interact with EGO through either the native C API or the Web Service
interface.

EGO functionality
In order to take advantage of what the API has to offer, it is important to understand
the core functions of the EGO kernel. These functions can be categorized as
information, allocation, execution, and administration.

Information
Platform EGO aggregates information from all the hosts in the cluster providing a
single point from which clients can request information about the state of any host.
This includes the state of individual resources, the status of allocation requests, the
consumer hierarchy including current resources assigned to each consumer, as well
as activities that have been started in the distributed environment.

16

Allocation
A critical function of Platform EGO is to manage the allocation requests that come
from different clients. Clients request and release CPU slots through the allocate
and release interfaces identifying the number and type of resources they need based
on various host attributes and the consumer they are being allocated on behalf of.
Based on the availability of resources and the amount of resources a consumer is
entitled to, Platform EGO applies policies to determine how many resources to
allocate to a given request. The client is notified asynchronously as the resources
become available. In this case, CPU slots are identified by the physical host that they
reside on and this host information is passed back to the client.

Execution
Once a client has obtained resources from Platform EGO, it will want to utilize
those resources to perform work. Platform EGO provides a mechanism to allow
clients to execute actions on the resources that have been allocated to them. In the
typical case where compute hosts or CPU slots are the resources, execution action
involves starting, stopping, and controlling execution activities.
Platform EGO instantiates OS-level processes on the hosts representing the
container/activity and sets the execution context around the activity such as
environment variables, working directories, and resource limits. Changes in the
status of the activity on any host are reported asynchronously to the client enabling
the client to handle these changes.

EGO API
This section describes the external interfaces available to a client application for
invoking EGO services.

Client registration interface
Registration is required for clients to be able to request allocations and start
activities. The client must also be registered in order to receive notifications
(callbacks) for events related to the client's allocations, assigned resources, and
activities.

17

Resource allocation interface
The EGO client uses the Resource Allocation Interface to request Platform EGO to
allocate, change, release, replace or list resources. The client must register with
Platform EGO using the client registration interface before being able to use any of
the resource allocation interface operations.

Container management interface
The Container Management Interface supports the execution of activities on hosts
managed by Platform EGO. An EGO client uses this interface to start its activities
once it has the resources it needs through the resource allocation interface. This
interface is also used to suspend, resume, and collect the status of a container.

Policy configuration interface
The Policy Configuration Interface allows for the setting of resource allocation
policies in Platform EGO. The interface allows administrators to define consumers
and place them in the consumer hierarchy. Policies are related to how resources
should be divided between consumers at any given level of the hierarchy.
The policies at each consumer level specify parameters that control the division of
resources among its children.

Resource monitoring interface
This interface supports operations to query information from the EGO master and
cluster managed by the EGO master. The interface can also be used to collect
information pertaining to a group of resources or pertaining to activities that were
started by the EGO kernel.

Client notification interface
This interface supports a number of client notification operations such as
informing the client to shut itself down or to informing the client that a resource
has been added to the allocation. This interface is also used by the EGO kernel to
notify the client of status changes in activities, named resources, or membership in
resource groups.

Administration interface
This interface supports the control and management functions of EGO. This
includes the vast number of operations that enable the cluster administrator to set
up and manage entities such as resource host groups, users, and consumers.

API calls, callbacks, and notifications

API calls
All API calls are synchronous, meaning that a message sent by the client is expected
to have a corresponding reply, i.e., the calling operation code has one and only one
reply code. The client side blocks execution until the matching reply is received.

18

Synchronous call sequence: (callback is received while an API is blocking for reply)
1 During an API call, the function waits for matching reply code.
2 A message is received but API determines that it is not the reply to its call. The

API places this message on a message queue internal to the client library.
3 The function continues to wait until a matching reply code is received. The API

pushes all other messages on the message queue.

EGO callbacks
Some calls to the C API, such as vem_alloc(), may result in asynchronous callbacks.
At the time of registration, a client specifies callback functions that get executed
when certain events occur in Platform EGO. The time when these functions get
executed is not determined by when the functions are supplied so they are
considered asynchronous. These callback messages can occur at any time, even
when the client is waiting for a reply to another call.
Asynchronous callback sequence: (callback received outside of an API call)
1 Client uses vem_select() to determine if there is a pendinging message from

Platform EGO to be processed.
2 Client uses vem_read() to retrieve the pending message.

EGO notifications
Instead of callbacks, the Web Service API uses notifications. Through the Web
Service API, the client specifies a communication endpoint where Platform EGO
sends a message when certain events happen.

API and Web Service interface reference documentation
Reference documentation for the C API and Web Service interface is available
through the Eclipse Help menu.

C API
The C API documentation provides detailed descriptions of the API functions,
structures, enumerations, and preprocessor directives. To access the C API
documentation, select the reference documentation under EGO Developer
Documentation in the Eclipse Help Contents pane.

Web Service interface
The Web Service reference documentation consists of WSDL and schema
information. The WSDLs describe the Web Service interface (operations) and
messages whereas the schemas describe the data types of the input/output
arguments and their structure. To access the Web Service documentation, select the
appropriate reference documentation under EGO Developer Documentation in the
Eclipse Help Contents pane. The WSDL and schema documentation is also
embedded in the individual WSDL and schema files.

19

About Web Services

Web Services provide a standard means of interoperating between different
software applications, running on a variety of platforms and/or frameworks. This
section begins with a description of the major components and concepts of a Web
Service. Later, we describe these concepts within the EGO context.

Web Service components

XML
XML is used in the Web Services architecture as the platform-independent format
for transferring information between the Web Service and the Web Service client.
The XML format ensures uniform data representation and exchange. XML 1.0 was
released as a W3C Recommendation; refer to document REC-xml-19980210 for
further information.

WSDL
The Web Services Description Language (WSDL) describes the message syntax
associated with the invocation and response of a Web Service. A WSDL file is an
XML document that defines the Web Service operations and associated
input/output parameters. In a way, the WSDL can be considered a contract between
the Web Services client and the Web Services server.
Basically, a WSDL document describes three fundamental properties of a Web
Service:

The operations (methods) that the service provides including input arguments
needed to invoke them and the response.
Details of the data formats and protocols required to access the service’s
operations.
Service location details such as a URL.

WSDL 1.1 was suggested in a note to W3C as an XML format for describing Web
Services; refer to http://www.w3.org/TR/2001/NOTE-wsdl-20010315.

XML Schema
XML schemas are used to specify the structure of WSDL documents and the data
type of each element/attribute. XML schemas describe the documents that serve as
the body of the SOAP messages traversing the EGO Web Service interface. XML
Schema was approved as a W3C Recommendation; refer to
http://www.w3.org/TR/xmlschema-1/.

SOAP
SOAP is the protocol used for communication between the Web Service and the
client application. SOAP uses the Hypertext Transfer Protocol (HTTP or HTTPS)
as the underlying protocol for transporting the data. SOAP 1.1 was suggested in a

20

note to W3C as a protocol for exchanging information in a distributed
environment. The EGO Web Services implementation supports SOAP version 1.2;
refer to http://www.w3.org/TR/soap12-part1/.

Web Service gateway
The Web Service gateway is a runtime component of Platform EGO. The gateway
provides a standards-based Web Services interface for Web Service clients to access
EGO functionality. The Web Service client sends its request to the gateway via
SOAP protocol. The gateway calls the EGO C APIs in order to perform the required
operations on behalf of the Web Service client and returns the results.

A closer look at an EGO WSDL and schema
This section looks at some key features of the EGO WSDLs and schemas.

SOAP binding style
SOAP supports two invocation models: Remote Procedure Calls (RPC) and
document style.
In the RPC-style model, clients invoke the Web Service by sending parameters and
receiving return values that are wrapped inside the SOAP body. These procedure
calls are synchronous, which means that the client sends the request and waits for
the response.
In the document style model, the client sends the parameters to the Web Service
within an XML document. The Web Service receives the entire document,
processes it and possibly returns a response message. Using the document style, the
body of the SOAP message is interpreted as straight XML. Hence, this combination
of sending a document with a literal XML infoset as a payload is referred to as
document/literal. This is opposed to the RPC style that uses RPC conventions for
the SOAP body as defined in the SOAP specification. One advantage of using the
document-centric approach is that document messaging rules are more flexible
than the RPC style, which allows for changes to the XML schema without breaking
the calling applications.
The type of binding model that is implemented is determined by an attribute in the
WSDL. The style attribute within the SOAP protocol binding can be set to either
rpc or document. Here is an example of WSDL binding element that is set to
document style.

Here is an example of the encoding technique that is specified on the soap:body
element's use attribute. In this case, it is set to literal.

The Java code samples provided in the SDK use document style binding and that is
why a document must be created for the request and response messages.

<soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>

 <wsdl:input>
 <soap:body parts="RequestAllocationRequest" use="literal"/>
 </wsdl:input>

21

Passing parameters to a Web Service
The following example shows a portion of the WSDL file for the EGO
MonitoringService Web Service and its associated schema file.

The operation name used in the example in this section is ResourceInfo. This
operation takes a single input argument defined as a message of type
ResourceInfoRequestMessage. Now we need to determine the number of
parameters in this message and their data types.

...
<wsdl:types>
<xsd:schema
 targetNamespace="http://www.platform.com/ego/2005/05/wsdl/monitoring"
 elementFormDefault="qualified">
...
<xsd:element name="ResourceInfoRequest">
<xsd:complexType>
<xsd:sequence>
<xsd:element ref="ego:ResourceRequirement" minOccurs="0" />
<xsd:element ref="ego:ResourceName" minOccurs="0" maxOccurs="unbounded" />
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="ResourceInfoResponse">
<xsd:complexType>
<xsd:sequence>
<xsd:element ref="ego:Resource" minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
...
<wsdl:message name="ResourceInfoRequestMessage">
 <wsdl:part element="tns:ResourceInfoRequest" name="ResourceInfoRequest" />
 </wsdl:message>
<wsdl:message name="ResourceInfoResponseMessage">
 <wsdl:part element="tns:ResourceInfoResponse" name="ResourceInfoResponse"
 />
 </wsdl:message>
...
<wsdl:portType name="MonitoringPortType">
...
<wsdl:operation name="ResourceInfo">
<wsdl:input message="tns:ResourceInfoRequestMessage">
</wsdl:input>
<wsdl:output message="tns:ResourceInfoResponseMessage">
</wsdl:output>
 </wsdl:operation>

22

In the message element named ResourceInfoRequestMessage, the part element is
named ResourceInfoRequest. If you look up this message in the types element, you
will find it contains two parameters: ResourceRequirement and ResourceName.

In the schema file, you can see that the ResourceName and ResourceRequirement
parameters have string data types. When you call the ResourceInfo operation, you
pass both parameters as input.

Return values from a Web Service
Web Service operations often return information back to the client application. You
can determine the name and data type of returned information by examining the
WSDL and schema files for the Web Service.
Referring to the previous portion of the WSDL file for the EGO MonitoringService
Web Service, we find that the operation named ResourceInfo returns a message of
type ResourceInfoResponseMessage. In the message element named
ResourceInfoResponseMessage, the part element is named ResourceInfoResponse.
If you look up this message in the types element, you will find it contains a return
argument called Resource. In the schema file, you can see that the Resource
parameter has a complex data type. Complex data types are serialized as XML and
returned from the Web Service as the result. The variable used to store the result
must match the structure of the complex data type.

Building a Web Service client
A Web Services client is an application capable of sending and receiving SOAP
messages. Such an application serializes or deserializes the SOAP messages to a
programming language type system enabling programmatic processing.

<xsd:element name="ResourceName" type="xsd:string">

</xsd:element>

<xsd:element name="ResourceRequirement" type="xsd:string">

</xsd:element>

<xsd:element name="Resource">
<xsd:complexType>
<xsd:sequence>
<xsd:element ref="ego:ResourceState" minOccurs="0"/>
<xsd:element ref="ego:ConsumableAttribute" minOccurs="0"/>
<xsd:element ref="ego:Attribute" minOccurs="0" maxOccurs="unbounded"/>
<xsd:any namespace="##other" minOccurs="0" processContents="lax"/>
</xsd:sequence>
<xsd:attribute name="ResourceName" type="xsd:string" use="required"/>
<xsd:attribute name="ResourceType" type="xsd:anyURI"/>
</xsd:complexType>
</xsd:element>

23

Here is the sequence for invoking a Web Service:
Client serializes the arguments of the method call into the XML payload of the
SOAP message
Send the message to the Web Service
Wait for a response (or timeout)
Deserialize the XML payload in the response message to a local type/structure
Return that type/structure as a value from the method call.

Using Axis2 to Develop Java Web Service Clients
As a client to a Web Service, encoding your requests in XML to the Web Service and
decoding the responses you get back would be tedious (not to mention
implementing the logic that deals with accepting requests and sending responses).
Apache Axis2 is an implementation of the SOAP protocol and it shields the
developer from the details of dealing with SOAP and WSDL. You can use Axis on
the client side to greatly facilitate the development of your client. All code samples
included in this guide were developed with Axis2. Bear in mind that there are
several tools available to aid in the development of a Web Service client and
Platform does not endorse any particular one.
When using Axis2 to write your client, you don't need to deal directly with SOAP
and XML. Axis creates a proxy (or stub) for your clients to abstract away SOAP. All
you need to do is make the method calls on the Web Service proxy as if it were a
local object.

The client calls the stub, the stub translates the call into a SOAP message, and the
stub sends it to the Web Service. The listening server receives the SOAP message
and translates it into a method call at the server. Since the server is written in Java,
the SOAP message is turned into a Java call. The server's return values are translated
back to SOAP and then returned to the stub, which translates the returned SOAP
message into a Java response.

24

A sample Bash shell script is provided that creates client-side classes for consuming
services described in the WSDL files. Run this script from the directory containing
the EGO WSDL files.

#!/bin/bash
Add the location of Java tools to PATH
export PATH=/usr/local/jdk/bin/:$PATH
Set the location of Axis2 binary installation
AXIS2_HOME=/home/ACCOUNT DIRECTORY/axis2-0.92-bin
Build Axis2 classpath
AXIS2_CLASSPATH=.
for i in $AXIS2_HOME/lib/*.jar; do AXIS2_CLASSPATH=$AXIS2_CLASSPATH:$i;
done

Generate the Java classes
for i in *.wsdl; do echo $i; j=`echo $i | sed -e 's/\(.*\)\..*/\1/'`; echo $j ;
java -classpath $AXIS2_CLASSPATH org.apache.axis2.wsdl.WSDL2Java -uri $i $i
done

Compile the generated classes
for i in codegen codegen/databinding/com/platform/www
 codegen/databinding/org/w3/www codegen/databinding/org/xmlsoap/schemas;
do
javac -classpath $AXIS2_CLASSPATH $i/*.java;
javac -classpath $AXIS2_CLASSPATH $i/impl/*.java;
done

Create the Jar file
jar cvf ego.jar ./codegen ./schemaorg_apache_xmlbeans/

Use the generated jar file in classpath of your application
exit 0

25

C H A P T E R

2
Creating EGO Client Projects

What is a client?
A client is an applicaton written in either the C programming language or as a Web
Service, that communicates with Platform EGO through the EGO API for the
purpose of querying for information, requesting and managing computing
resources, and monitoring resource loading, amongst others.

Contents
Create a C client project on page 26
Create a Web Service project on page 27

26

Create a C client project

1 Launch Eclipse.
2 Select File > New > Project.
3 In the New Project dialog, expand Enterprise Grid Orchestrator (EGO) and

select EGO Client (C Application). Click Next.
4 In the EGO C Project dialog, enter a project name. Click Finish (to use default

C project settings) or click Next to adjust the settings. Click Finish when
settings are complete.
Eclipse displays the C/C++ perspective.

27

Create a Web Service project

Prerequisites: In order to develop code compliant with J2SE 5.0, you will need the
J2SE 5.0 Java Runtime Environment (JRE).

1 Launch Eclipse.
2 Select File > New > Project.
3 In the New Project dialog, expand Enterprise Grid Orchestrator (EGO) and

select EGO Web Services Client (Java Application). Click Next.
4 In the EGO Project dialog, enter a project name. Set the JDK Compliance level

to 5.0. Click Finish (to use default Java project settings) or click Next to adjust
the settings. Click Finish when settings are complete. .
Eclipse displays the Java perspective.

28

29

C H A P T E R

3
Getting Started with the C Client: A Collection

of Tutorials

Before you begin the tutorials
Before starting these tutorials, ensure that the EGO C API plug-in is installed in
Eclipse and the EGO runtime has been installed, configured, and running on a host
cluster. The sample programs use host name and port numbers to communicate
with the master host. This data is stored in a configuration file (ego.conf) provided
with the code samples. The configuration file must be updated so that the host
name and port numbers match the values configured in the master host. Consult
your cluster administrator to determine the configuration details of the master
host.

Contents
Locate the code samples on page 30
Tutorial 1: Request Information About Hosts in a Cluster on page 31
Tutorial 2: Request Host Allocation in a Cluster with Synchronous
Notifications on page 38
Tutorial 3: Request Host Allocation in a Cluster with Asynchronous Callback
Notifications on page 50
Tutorial 4: Request Resource Allocation in a Cluster and Start Containers Using
Threads on page 59
Tutorial 5: Request Resource Allocation in a Cluster and Start Containers Based
on Host Loading on page 77
Tutorial 6: Create an EGO Service on page 90
Tutorial 7: Update a DNS Entry in the Service Director on page 98

30

Locate the code samples

1 Launch Eclipse.
2 Select File > New > Project.
3 In the New Project dialog, expand Enterprise Grid Orchestrator Samples

(EGO) and select EGO Client Sample (C Application). Click Next.
4 In the EGO C Sample Project dialog, enter a project name. To use default C

project settings, click Finish, or, to adjust the settings, click Next . Click Finish
when settings are complete.
If Eclipse asks you if you want to open the C/C++ perspective, click Yes.

5 In the Navigator view, expand the project to see the list of code samples.
Note: If the Navigator is not visible, in the Window menu, select Show View >
Navigator.

6 Double-click the sample file.
The sample code appears in the main view.

31

Tutorial 1: Request Information About Hosts in a
Cluster

This tutorial describes the minimum amount of code required to create an
unregistered EGO client that connects to a host cluster.

Using this tutorial, you will …
Open a connection to Platform EGO
Print out cluster info
Initialize structures to hold host information
Retrieve and print out info about all hosts in a cluster
Retrieve and print out host summary (host availability and utilization)
information

Step 1: Preprocessor directives
The first step is to include a reference to the system and API header files. The
samples.h header file contains the declaration of methods that are implemented in
the samples.

Step 2: Implement the principal method
Lines: 4-10: define and initialize a data structure that is used to request a connection
with the EGO host cluster. The data structure contains a reference to a
configuration file where the master host name and port numbers are stored.
Line 17: the data structure is passed as an argument to the vem_open () method,
which opens a connection to the master host. If the connection attempt is
successful, a handle is returned; otherwise the method returns NULL. The handle,
which is unique to each client, acts as a communication channel to the master host
and all subsequent communication occurs through this handle.
Lines 25-33: the vem_name_t structure is initialized with NULL. This structure
holds the cluster name, system name, and version. The vem_uname () method is
passed the communication handle and, if successful, returns a valid vem_name_t
structure (defined as clusterName); otherwise the method returns NULL.

#include <stdlib.h>
#include <stdio.h>
#include "vem.api.h"
#include "samples.h"

32

Lines 34 and 35: the cluster info is printed out and the memory allocated to the
structure (clusterName) is freed.
Lines 37-42: define and initialize a data structure that holds a list of host names. The
hostlist member is initialized with NULL to indicate all hosts should be queried.

Lines 46-49: the vem_getHostInfo () method retrieves information such as
hostname, status, and attributes from all hosts in the cluster. If successful, the
method returns the number of hosts; otherwise it returns a negative value and an
error is flagged.
Lines 52-53: the print_hostInfo () method prints out the host information. Once the
host information is printed, memory allocated to the information is freed.

1 int
2 sample1()
3 {
4 vem_openreq_t orequest;
5 vem_handle_t *vhandle = NULL;
6 /* setup the open request structure with the filename
7 * that includes the cluster information: master host and port
8 */
9 orequest.file = "ego.conf"; // configuration file
10 orequest.flags=0;
11
12 /* this opens a connection to the vemkd using the master host
13 * and port specified in the configuration file. Returns NULL
14 * if unsucessful. All other interactions occur through this
15 * vem_handle_t returned.
16 */
17 vhandle = vem_open(&orequest);
18
19 if (vhandle == NULL) {
20 // error opening
21 fprintf(stderr, "Error opening cluster: %s\n", vem_strerror(vemerrno));
22 return -1;
23 }
24
25 vem_name_t *clusterName = NULL;
26
27 /* Retrieves the identification of the cluster, name and version */
28 clusterName = vem_uname(vhandle);
29 if (clusterName == NULL) {
30 // error connecting
31 fprintf(stderr, "Error connecting to cluster: %s\n", vem_strerror(vemerrno));
32 return -2;
33 }
34 printf(" Connected... %s %s %4.2f\n\n", clusterName->clustername,

clusterName->sysname, clusterName->version);
35 vem_free_uname(clusterName); // free memory
36
37 int hin;
38 vem_hostinforeq_t hinforeq;
39 hinforeq.resreq = " "; // resource string, unimplemented
40 hinforeq.hostlist = NULL; // all hosts
41 vem_hostinfo_t *hinfo = NULL; // out parameter, set by vem_getHostInfo
42 char **attrs = NULL; // out parameter, set by vem_getHostInfo

33

Lines 56-72: the host summary structure is defined and passed to the
vem_getHostSummary () method, which retrieves brief information about host
availability and utilization. If the method call is successful, a positive integer is
returned and the host summary info is printed out and the memory allocated to the
host summary structure is freed. The sample1 program then closes the connection
to the master host and terminates.

43 /* Retrieves information about all hosts in the cluster
44 * returns the number of hosts, negative if unsuccessful
45 */
46 hin = vem_getHostInfo(vhandle, &hinforeq, &hinfo, &attrs);
47 if (hin < 0) {
48 // error
49 fprintf(stderr, "Error getting hostinfo: %s %d\n", vem_strerror(vemerrno), hin);
50 } else {
51 // print the host names and attributes
52 print_hostInfo(hin, hinfo, attrs);
53 vem_free_hostinfo(hinfo, hin, attrs);
54 }
55
56 vem_hostsummary_t hsummary;
57
58 /* get brief information about the host availabilty and utilization (in 10%

intervals)
59 * returns negative on error.
60 */
61 int rc = vem_getHostSummary(vhandle, &hsummary);
62 if (rc < 0) {
63 fprintf(stderr, "Error getting hostsummary: %s\n", vem_strerror(vemerrno));
64 } else {
65 print_hostsummary(&hsummary);
66 vem_clear_hostsummary(&hsummary);
67 }
68
69 /* this closes the connection to the vemkd */
70 vem_close(vhandle);
71 return 0;
72 }

34

Step 3: Send host information to the console
This method prints out the host names and status. Lines 97-107 iterate through the
attrs[] array, printing the attribute names, followed by a for loop that prints out the
attribute value for each host.

73 /**
74 * Prints vem_hostinfo_t type array with hin elements
75 */
76 void
77 print_hostInfo(int hin, vem_hostinfo_t *hinfo, char **attrs)
78 {
79 int i=0, j=0;
80 printf("%-12s\t", "Attribute");
81 for (i=0; i < hin; i++) {
82 printf("%-12s\t", hinfo[i].name);
83 }
84 printf("\n");
85
86
87 printf("%-12s\t", "Status");
88 for (i=0; i < hin; i++) {
89 print_host_status(hinfo[i].status);
90 }
91 printf("\n");
92
93 j=0;
94 while(attrs[j] != NULL) {
95 printf("%-12s\t", attrs[j]);
96 vem_value_t value;
97 for (i=0; i < hin; i++) {
98 value = hinfo[i].attributes[0];
99 int status = value.value.v_int32;
100 if(status != HOST_OK) {
101 value.type = VEM_TYPE_STRING;
102 value.value.v_string = " ";
103 } else {
104 value = hinfo[i].attributes[j];
105 }
106 print_vem_value(&value);
107 }
108 j++;
109 printf("\n");
110 }
111 }

35

Step 4: Get the host status
This method formats the host status message for printing to the console.

Step 5: Format output according to data type
This method formats each attribute value according to its data type so that it is
properly displayed.

void
print_host_status(int status)
{
 switch(status) {
 case HOST_OK: printf("%-12s\t", "Ok"); break;
 case HOST_UNAVAIL: printf("%-12s\t", "Unavailable"); break;
 case HOST_CLOSE: printf("%-12s\t", "Closed"); break;
 case HOST_REMOVED: printf("%-12s\t", "Removed"); break;
 }
}

void
print_vem_value(vem_value_t *vem_value)
{
 switch(vem_value->type) {
 case VEM_TYPE_NULL: printf("%-12s\t", "NULL"); break;
 case VEM_TYPE_CHAR: printf("%-12c\t", vem_value->value.v_char); break;
 case VEM_TYPE_UCHAR: printf("%-12c\t", vem_value->value.v_uchar); break;
 case VEM_TYPE_INT16: printf("%-12d\t", vem_value->value.v_int16); break;
 case VEM_TYPE_UINT16: printf("%-12u\t", vem_value->value.v_uint16); break;
 case VEM_TYPE_INT32: printf("%-12d\t", vem_value->value.v_int32); break;
 case VEM_TYPE_UINT32: printf("%-12u\t", vem_value->value.v_uint32); break;
 case VEM_TYPE_INT64: printf("%-12lld\t", vem_value->value.v_int64); break;
 case VEM_TYPE_UINT64: printf("%-12llu\t", vem_value->value.v_uint64); break;
 case VEM_TYPE_FLOAT32: printf("%-12.2f\t", vem_value->value.v_float32); break;
 case VEM_TYPE_FLOAT64: printf("%-12.2lf\t", vem_value->value.v_float64); break;
 case VEM_TYPE_BOOL: printf("%-12d\t", vem_value->value.v_bool); break;
 case VEM_TYPE_TIME: printf("%-12ld\t", vem_value->value.v_time); break;
 case VEM_TYPE_STRING: printf("%-12s\t", vem_value->value.v_string); break;
 case VEM_TYPE_PTR: printf("%-12p\t", vem_value->value.v_ptr); break;
 }
}

36

Step 6: Send host summary to the console
This method is passed the host summary structure. The method iterates through
the structure's arrays and prints out a list of host status definitions and the number
of hosts corresponding to each status definition. The method also prints out the
utilization intervals, i.e., 10%, 20%, etc., and the number of hosts that correspond
to each interval.

Run the client application
1 Select Run > Run.

The Run dialog appears.
2 In the Configurations list, either select an EGO C Client Application or click

New for a new configuration.
For a new configuration, enter the configuration name.

3 Enter the project name and C/C++ Application name.
4 Click Apply and then Run.

void
print_hostsummary(vem_hostsummary_t *hsummary)
{
int i;
printf("\nHost Summary:\n");
for(i=0; i<hsummary->statusC; i++){
 printf("%-12s %d\n", hsummary->statusV[i], hsummary->statusSummary[i]);
}
printf("\nUT Summary:\n");
for(i=0; i<hsummary->utC; i++){
 printf("%-12s %d\n", hsummary->utV[i], hsummary->utSummary[i]);
}
}

37

Sample output

38

Tutorial 2: Request Host Allocation in a Cluster
with Synchronous Notifications

This tutorial describes how to create a registered EGO client that requests host
allocation in a cluster and starts a container on the host. The client also reads
notifications synchronously from the cluster regarding resource changes.

Using this tutorial, you will …
Open a connection to Platform EGO
Print out cluster information
Check if there are any registered clients connected to Platform EGO
Log on to Platform EGO
Register the client with Platform EGO
Print out allocation and container reply info from a previous connection
Print out host group information
Request resource allocation from Platform EGO and print out the allocation ID
Check for an incoming resource allocation message from Platform EGO on the
open connection and print message
Start a container on Platform EGO and print out the container ID
Check for registered clients connected to Platform EGO and print out
information

Step 1: Preprocessor directives
The first step is to include a reference to the system and API header files. The
samples.h header file contains the declaration of methods that are implemented in
the samples.

#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <string.h>
#include <time.h>
#include "vem.api.h"
#include "samples.h"

39

Step 2: Implement the principal method
Lines 4-8: define and initialize a data structure that is used to request a connection
with the EGO host cluster. The data structure contains a reference to a
configuration file where the master host name and port numbers are stored.
Line 10: pass the data structure as an argument to the vem_open () method, which
opens a connection to the master host. If the connection attempt is successful, a
handle is returned; otherwise the method returns NULL. The handle acts as a
communication channel to the master host and all subsequent communication
occurs through this handle.
Lines 18-19: the vem_name_t structure is initialized with NULL. This structure
holds the cluster name, system name, and version. The vem_uname () method is
passed the communication handle and, if successful, returns a valid vem_name_t
structure (defined as clustername); otherwise the method returns NULL.
Line 26: the cluster info is printed out to the screen.
Lines 29-46: define the client info structure. Use vem_locate() to get all registered
clients. Since NULL is provided as the client name, all registered clients will be
located and the method returns the number of registered clients. Note that Platform
EGO is equipped with a number of default clients (services) such as the Service
Controller, so as a minimum, the info relevant to these clients is printed out and the
associated memory is released.

40

Lines 47-49: authenticate the user to Platform EGO.

Lines 50-63: define the vem_allocation_info_reply_t and
vem_container_info_reply_t structures. If a client gets disconnected and then
re-registers, its existing allocations and containers are returned to these structures.
If the client had never registered before, the structures would be empty. Define and
initialize a structure (rreq) that holds client info for registration purposes. Note that
on line 58, the callback member (cb) is set to NULL. This means that it is the client’s

1 int
2 sample2()
3 {
4 vem_openreq_t orequest;
5 vem_handle_t *vhandle = NULL;
6
7 orequest.file = "ego.conf"; // default libvem.conf
8 orequest.flags=0;
9
10 vhandle = vem_open(&orequest);
11
12 if (vhandle == NULL) {
13 // error opening
14 fprintf(stderr, "Error opening cluster: %s\n", vem_strerror(vemerrno));
15 return -1;
16 }
17
18 vem_name_t *clusterName = NULL;
19 clusterName = vem_uname(vhandle);
20 if (clusterName == NULL) {
21 // error connecting
22 fprintf(stderr, "Error connecting to cluster: %s\n", vem_strerror(vemerrno));
23 return -2;
24 }
25
26 fprintf(stdout, " Connected... %s %s %4.2f\n", clusterName->clustername,
27 clusterName->sysname, clusterName->version);
28
29 vem_clientinfo_t *clients;
30 int rc = vem_locate(vhandle, NULL, &clients);
31 if (rc >=0) {
32 if (rc == 0) {
33 printf("No registered clients exist\n");
34 } else {
35 int i=0;
36 for (i=0; i<rc; i++) {
37 printf("%s %s %s\n", clients[i].name, clients[i].description,
38 clients[i].location);
39 }
40 // free
41 vem_clear_clientinfo(clients);
42 }
43 } else {
44 // error connecting
45 fprintf(stderr, "Error geting clients: %s\n", vem_strerror(vemerrno));
46 }
47 } if (login(vhandle, username, password)<0) {
48 fprintf(stderr, "Error logon: %s\n", vem_strerror(vemerrno));
49 }

41

responsibility to periodically check the open connection via
vem_select()/vem_read() to get incoming messages and take action accordingly.
Register with Platform EGO via the open connection using vem_register().
Lines 64-67: print out information related to the allocation requests and containers.
Once the info is printed out, the memory for the allocations is freed.
Lines 73-79: the method collects the information for the requested hostgroup. In
this case, the requested hostgroup in the input argument is set to NULL, which
means that information about all hostgroups is requested. If the method call is
successful, hostgroup information is printed out to the screen.

50 vem_allocation_info_reply_t aireply;
51 vem_container_info_reply_t cireply;
52 vem_registerreq_t rreq;
53
54 rreq.name = "sample2_client";
55 rreq.description = "Sample2";
56 rreq.flags = VEM_REGISTER_TTL;
57 rreq.ttl = 3;
58 rreq.cb = NULL; // would need to read messages explicitly;
59
60 rc = vem_register(vhandle, &rreq, &aireply, &cireply);
61 if (rc < 0) {
62 fprintf(stderr, "Error registering: %s\n", vem_strerror(vemerrno));
63 }
64 print_vem_allocation_info_reply(&aireply);
65 print_vem_container_info_reply(&cireply);
66 // freeup any previous allocations
67 release_vem_allocation(vhandle, &aireply);
68
69 vem_hostgroupreq_t hgroupreq;
70 hgroupreq.grouplist = NULL;
71 vem_hostgroup_t *hgroup;
72
73 rc = vem_gethostgroupinfo(vhandle, &hgroupreq, &hgroup);
74 if (rc < 0) {
75 fprintf(stderr, "Error getting hostgroup: %s\n", vem_strerror(vemerrno));
76 } else {
77 printf("%s %s %d %d\n", hgroup->groupName, hgroup->members, hgroup->free,
78 hgroup->allocated);
79 }

42

Lines 80-101: initialize the data structure (vem_allocreq_t) that specifies the
allocation request. Method vem_alloc() requests resource allocation using the
allocation request info (vem_allocreq_t structure) as one of the input arguments. If
the request is successful, the allocation ID is printed out to the screen.

Lines 102-123: define and initialize a container specification including the setting
of its resource limits to default values. The container specification essentially
defines a job that the user wants to be executed. The conspec.command method
specifies the actual binary that should be executed. In the sample, we want the
program "sleep" to be executed. The UNIX sleep command takes the number of
seconds to sleep as an input argument.

80 vem_allocreq_t areq;
81 areq.name = "Sample2Alloc";
82 areq.consumer = "/SampleApplications/EclipseSamples”;
83 areq.hgroup = "ComputeHosts";
84 #ifndef WIN32_RESOURCE
85 areq.resreq = "LINUX86";
86 #else
87 areq.resreq = "NTX86";
88 #endif
89 areq.minslots = 1;
90 areq.maxslots = 1;
91 areq.tile = 0;
92 vem_allocation_id_t alocid;
93 vem_allocfreereq_t afree;
94 rc = vem_alloc(vhandle, &areq, &alocid);
95 if (rc < 0) {
96 fprintf(stderr, "Error allocating: %s\n", vem_strerror(vemerrno));
97 goto bailout;
98
99 } else {
100 printf("allocated: %s\n", alocid);
101 }

102 vem_container_spec_t conspec;
103 memset(&conspec, 0, sizeof(vem_container_spec_t));
104 #ifndef WIN32_RESOURCE
105 conspec.command = "sleep 240";
106 conspec.execUser = "lsfadmin"; // "egoadmin";
107 conspec.umask = 0777;
108 conspec.execCwd = "/tmp";
109 conspec.envC = 0;
110 #else
111 // sleep needs to be installed on the cluster NT hosts
112 // or if ping is available, use something like ping -n xxx 127.0.0.1 > nul
113 conspec.command = "sleep 240";
114 conspec.execUser = "lsf\\lsfadmin"; //"egouser"; // "lsfadmin"; // "egoadmin";
115 conspec.umask = 0777;
116 conspec.execCwd = "c:\\";
117 conspec.envC = 0;
118 #endif
119 int i;
120 for (i=0; i<VEM_RLIM_NLIMITS; i++) {
121 conspec.rlimits[i].rlim_cur = VEM_RLIM_DEFAULT;
122 conspec.rlimits[i].rlim_max = VEM_RLIM_DEFAULT;
123 }

43

Lines 124-130: define and initialize various structures and assign container and
allocation IDs.
Lines 132-163: check to see if there is any incoming data on an open connection for
up to 60 seconds (configurable timeout). If successful, the message is read from the
open connection. A switch statement is used to interpret the message code
enumeration and the corresponding message is printed out to the screen. If the
message cannot be read, free the memory for the allocation ID.

Lines 164-168: get the hostname for the allocation and print it out to the screen.
Initialize the workload container request structure (conreq) with the hostname,
container name, and the container specification (conspec).
Lines 170-175: start the workload container on the specified host and, if successful,
print out the container ID.

124 vem_startcontainerreq_t conreq;
125 vem_container_id_t conid = NULL;
126 conreq.allocId = alocid;
127 struct timeval tv;
128 struct vem_message msg;
129 struct vem_allocreply *rep = NULL;
130 struct vem_allocreclaim *reclaim = NULL;
131
132 tv.tv_sec = 60; // 60 seconds timeout
133 rc = vem_select(vhandle, &tv);
134 if(rc < 0) {
135 printf("vem_select error\n");
136 goto cleanup;
137 }
138 if(rc == 0) {
139 printf("vem_select may have problem, please set longer timeout \n");
140 goto cleanup;
141 }
142 rc = vem_read(vhandle, &msg);
143 if(rc < 0) {
144 printf("Read message failed\n");
145 goto cleanup;
146 }
147 switch(msg.code) {
148 case RESOURCE_ADD:
149 rep = (struct vem_allocreply *)msg.content;
150 printf("Got alloc reply for %s %d hosts\n", rep->consumer, rep->nhost);
151 break;
152 case RESOURCE_RECLAIM:
153 reclaim = (struct vem_allocreclaim*)msg.content;
154 printf("vem wants its resources back for allocation %s\n",
155 reclaim->reclaim->consumer);
156 rc = -1;
157 goto cleanup;
158 break;
159 default:
160 printf("unknown message code %d\n", msg.code);
161 goto cleanup;
162 break;
163 } /* switch() */

44

Lines 178-193: use vem_locate() to get all registered clients. Since NULL is
provided as the client name, all registered clients will be located and the method
returns the number of registered clients. Note that Platform EGO is equipped with
a number of default clients (services) such as the Service Controller, so as a

45

minimum, the info relevant to these clients is printed out and the associated
memory is released. If successful, print out the client info and free the associated
memory.

164 char *host = rep->host[0].name;
165 printf("Allocated host: %s\n", host);
166 conreq.hostname = host;
167 conreq.name = "Sample2Container";
168 conreq.spec = &conspec;
169
170 rc = vem_startcontainer(vhandle, &conreq, &conid);
171 if (rc < 0) {
172 fprintf(stderr, "Error starting container: %s\n", vem_strerror(vemerrno));
173 goto cleanup;
174 }
175 printf("Started container %s\n", conid);
176 // Currently no way to get container from id.
177 //print_vem_container(vem_container_t *container);
178 rc = vem_locate(vhandle, NULL, &clients);
179 if (rc >=0) {
180 if (rc == 0) {
181 printf("No registered clients exist\n");
182 } else {
183 int i=0;
184 for (i=0; i<rc; i++) {
185 printf("%s %s %s\n", clients[i].name, clients[i].description,
186 clients[i].location);
187 }
188 vem_clear_clientinfo(clients);
189 }
190 } else {
191 // error connecting
192 fprintf(stderr, "Error geting clients: %s\n", vem_strerror(vemerrno));
193 }
194 // wait for job to finish
195 #ifdef WIN32
196 Sleep(60000);
197 #else
198 sleep(30);
199 #endif

46

Step 3: Free all resource allocations
This method iterates through each allocation, as identified by its allocation ID, and
frees its memory. Freeing an allocation is the same as cancelling it, i.e., all resources
associated with the allocation are released.

200 cleanup:
201 afree.allocId = alocid;
202 rc = vem_allocfree(vhandle, &afree);
203 if (rc < 0) {
204 fprintf(stderr, "Error freeing allocation: %s\n", vem_strerror(vemerrno));
205 }
206 bailout:
207 rc = vem_unregister(vhandle);
208 if (rc < 0) {
209 fprintf(stderr, "Error unregistering: %s\n", vem_strerror(vemerrno));
210 }
211 if (logout(vhandle)<0) {
212 fprintf(stderr, "Error logoff: %s\n", vem_strerror(vemerrno));
213 }
214 // free memory
215 vem_free_containerId(conid);
216 //vem_free_containerSpec(&conspec); // crashes
217
218 leave:
219 vem_free_uname(clusterName);
220 vem_close(vhandle);
221 if(host != NULL)
222 free(host);
223
224 return 0;
225 }

void
release_vem_allocation(vem_handle_t *vhandle, vem_allocation_info_reply_t *aireply)
{
int i;
for(i=0; i<aireply->nallocation; i++){
 // free alocid memory
 vem_allocfreereq_t afree;
 afree.allocId = aireply->allocation[i].allocId;
 int rc = vem_allocfree(vhandle, &afree);
 if (rc < 0) {
 fprintf(stderr, "Error freeing allocation: %s\n", vem_strerror(vemerrno));
 }
}
}

47

Step 4: Print allocation info
These three methods iterate through each allocation, printing out the allocation ID,
allocation request info, host name, host slots, and a list of host attributes.

void
print_vem_allocation_info_reply(vem_allocation_info_reply_t *aireply)
{
int i;
for(i=0; i<aireply->nallocation; i++){
print_vem_allocation(&aireply->allocation[i]);
}
}

void
print_vem_allocation(vem_allocation_t *alloc)
{
printf("AllocId=%s\n", alloc->allocId);
print_vem_allocreq(alloc->allocReq);
 int i, j;
 for(i=0; i<alloc->nhost; i++){
 printf("Name=%s Slots=%d Attributes ",
 alloc->host[i].name,
 alloc->host[i].slots);
 for(j=0; j<alloc->hostattr[i].attrC; j++){
 vem_attribute_t *attr = &alloc->hostattr[i].attrV[j];
 printf("%s=", attr->name);
 print_vem_value(&attr->value_t);
 }
 printf("\n");
 }
}
void
print_vem_allocreq(vem_allocreq_t *allocreq)
{
printf("AllocReq %s %s %s %s %d %d %d\n",
allocreq->name,
allocreq->consumer,
allocreq->hgroup,
allocreq->resreq,
allocreq->maxslots,
allocreq->minslots,
allocreq->flags
);
}

48

Step 5: Print container info
These four methods iterate through each container, printing out the container ID,
state, and other container-related fields. The print_vem_container_state () and
print_vem_container_exit_reason methods () use switch statements to interpret
the meaning of the enumeration members.

void
print_vem_container_info_reply(vem_container_info_reply_t *cireply)
{
int i;
for(i=0; i<cireply->ncontainer; i++){
print_vem_container(cireply->container);
}
}
void
print_vem_container(vem_container_t *container)
{
printf("Container\n");
printf("Id=%s\nState=",container->id);
print_vem_container_state(container->state);
printf("\nName=%s\nAllocId=%s\nConsumer=%s Start=%ld, End=%ld\nHost=%s ExitStatus=%d
ExitReason=",
 container->name,
 container->allocId,
 container->consumer,
 container->startTime,
 container->endTime,
 container->host,
 container->exitStatus);
print_vem_container_exit_reason(container->exitReason);
//TODO add the rest of the fields
// print rest
}
void
print_vem_container_state(vem_container_state_t state)
{
switch(state) {
 case CONTAINER_NULL: printf(" 0, internal state"); break;
 case CONTAINER_START: printf(" 1, start"); break;
 case CONTAINER_RUN: printf(" 2, running"); break;
 case CONTAINER_SUSPEND: printf(" 3, suspend"); break;
 case CONTAINER_FINISH: printf(" 4, finish"); break;
 case CONTAINER_UNKNOWN: printf(" 5, unknown, host unreachable "); break;
 case CONTAINER_ZOMBIE: printf(" 6, zombie, unknown container is terminated");
 break;
 case CONTAINER_MAX_STATE: printf(" Number of container state"); break;
}
}

49

Run the client application
1 Select Run > Run.

The Run dialog appears.
2 In the Configurations list, either select an EGO C Client Application or click

New for a new configuration.
For a new configuration, enter the configuration name.

3 Enter the project name and C/C++ Application name.
4 Click Apply and then Run.

Sample output

void
print_vem_container_exit_reason (vem_container_exit_reason_t rcode)
{
switch(rcode) {
 case ER_NULL: printf(" 0, no reason"); break;
 case ER_SETUP_NO_MEM: printf(" 1, exit bacause of setup fail");break;
 case ER_SETUP_FORK: printf(" 2, fork fail");break;
 case ER_SETUP_PGID: printf(" 3, fail to setpgid"); break;
 case ER_SETUP_ENV: printf(" 4, fail to set env variables");break;
 case ER_SETUP_LIMIT: printf(" 5, fail to set process limits");break;
 case ER_SETUP_NO_USER: printf(" 6, user account doesn't exist");break;
 case ER_SETUP_PATH: printf(" 7, fail to change container cwd");break;
 case ER_SIG_KILL: printf(" 8, terminated by sigkill");break;
 case ER_UNKNOWN: printf(" 9, unknown reason ");break;
 case ER_PEM_UNREACH: printf(" 10, fail to reach pem host");break;
 case ER_PEM_SYN: printf(" 11, vemkd and pem sync issue");break;
case ER_BAD_ALLOC_HOST: printf(" 14, host is not allocated");break;
 case ER_NOSUCH_CLIENT: printf(" 15, client doesn't exist");break;
 case ER_START: printf(" 16, container start fails");break;
 case LAST_EXIT_REASON: printf(" last exit reason ");break;
}
printf("\n");
}

50

Tutorial 3: Request Host Allocation in a Cluster
with Asynchronous Callback Notifications

This tutorial describes how to create a registered EGO client that requests host
allocation in a cluster and starts a container on the host. The sample uses callbacks
for notifications from the cluster about resource change and container/host state
change.

Using this tutorial, you will …
Open a connection to Platform EGO
Print out cluster information
Check if there are any registered clients connected to Platform EGO
Log on to Platform EGO
Register the client with Platform EGO
Print out allocation and container reply info from a previous connection
Print out host group information
Request resource allocation from Platform EGO and print the allocation ID
Start a container on Platform EGO and print container ID
Check for registered clients connected to Platform EGO and print out
information
Implement client callback methods.

51

Step 1: Preprocessor directives and method declarations
The first step is to include a reference to the system and API header files. The
samples.h header file contains the method declarations that are common to all of
the samples. In addition, we declare the methods that are specific to this sample.

Step 2: Implement the principal method
Lines 4-7: define and initialize a data structure that is used to request a connection
with the EGO host cluster. The data structure contains a reference to a
configuration file where the master host name and port numbers are stored.
Line 8: pass the data structure as an argument to the vem_open () method, which
opens a connection to the master host. If the connection attempt is successful, a
handle is returned; otherwise the method returns NULL. The handle acts as a
communication channel to the master host and all subsequent communication
occurs through this handle.
Lines 14-15: the vem_name_t structure (defined as clusterName) is initialized with
NULL. This structure holds the cluster name, system name, and version. The
vem_uname () method is passed the communication handle and, if successful,
returns a valid vem_name_t structure ; otherwise the method returns NULL
Line 21: the cluster info is printed out to the screen.
Lines 22-39: define the client info structure. Use vem_locate() to get all registered
clients. Since NULL is provided as the client name, all registered clients will be
located and the method returns the number of registered clients. Note that Platform

#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <string.h>
#include "vem.api.h"
#include "samples.h"

static int addResourceCB(vem_allocreply_t *areply);
static int reclaimForceCB(vem_allocreclaim_t *areclaim);
static int containerStateChgCB(vem_containerstatechg_t *cschange);
static int hostStateChangeCB(vem_hoststatechange_t *hschange);
// holds allocation information
static vem_allocreply_t *allocReply = NULL;
static char *allocated_host_name = NULL;
static int barrier = 0;
static vem_container_id_t jobContainerId = NULL;
static int jobFinished = 0;

52

EGO is equipped with a number of default clients (services) such as the Service
Controller, so as a minimum, the info relevant to these clients is printed out and the
associated memory is released.

Lines 40-42: authenticate the user to Platform EGO.
Lines 43-47: define and initialize a structure for callback methods. These callback
methods are invoked by Platform EGO when resources are added or reclaimed, or
when a change occurs to host status or a container. When Platform EGO wants to
communicate about these events, it invokes these methods thereby calling back to
the client.
Lines 48-59: Define the vem_allocation_info_reply_t and
vem_container_info_reply_t structures. If a client gets disconnected and then
re-registers, its existing allocations and containers are returned to these structures.
If the client had never registered before, the structures would be empty. Define and
initialize a structure (rreq) that holds client info for registration purposes. (This

1 int
2 sample3()
3 {
4 vem_openreq_t orequest;
5 vem_handle_t *vhandle = NULL;
6 orequest.file = "ego.conf"; // default libvem.conf
7 orequest.flags=0;
8 vhandle = vem_open(&orequest);
9 if (vhandle == NULL) {
10 // error opening
11 fprintf(stderr, "Error opening cluster: %s\n", vem_strerror(vemerrno));
12 return -1;
13 }
14 vem_name_t *clusterName = NULL;
15 clusterName = vem_uname(vhandle);
16 if (clusterName == NULL) {
17 // error connecting
18 fprintf(stderr, "Error connecting to cluster: %s\n", vem_strerror(vemerrno));
19 return -2;
20 }
21 fprintf(stdout, " Connected... %s %s %4.2f\n", clusterName->clustername,

clusterName->sysname, clusterName->version);
22 vem_clientinfo_t *clients;
23 int rc = vem_locate(vhandle, NULL, &clients);
24 if (rc >=0) {
25 if (rc == 0) {
26 printf("No registered clients exist\n");
27 } else {
28 int i=0;
29 for (i=0; i<rc; i++) {
30 printf("%s %s %s\n", clients[i].name, clients[i].description,
31 clients[i].location);
32 }
33 // free
34 vem_clear_clientinfo(clients);
35 }
36 } else {
37 // error connecting
38 fprintf(stderr, "Error geting clients: %s\n", vem_strerror(vemerrno));
39 }

53

includes assigning the client callback structure (cbf) to the callback member of the
rreq structure; see Step 3: Client callback methods on page 56.) Register with
Platform EGO via the open connection using vem_register().

Lines 60-63: print out information related to the allocation requests and containers.
Once the info is printed out, the memory for the allocations is freed.
Lines 65-75: the vem_gethostgroupinfo() method collects the information for the
requested hostgroup. In this case, the requested hostgroup in the input argument is
set to NULL, which means that information about all hostgroups is requested. If the
method call is successful, hostgroup information is printed out to the screen.
Lines 76-96: initialize the data structure (vem_allocreq_t) that specifies the
allocation request. vem_alloc() requests resource allocation using the allocation
request info (vem_allocreq structure) as one of the input arguments. If the request
is successful, the allocation ID is printed out to the screen.

40 if (login(vhandle, username, password)<0) {
41 fprintf(stderr, "Error logon: %s\n", vem_strerror(vemerrno));
42 }
43 vem_clientcallback_t cbf;
44 cbf.addResource = addResourceCB;
45 cbf.reclaimForce = reclaimForceCB;
46 cbf.containerStateChg = containerStateChgCB;
47 cbf.hostStateChange = hostStateChangeCB;
48 vem_allocation_info_reply_t aireply;
49 vem_container_info_reply_t cireply;
50 vem_registerreq_t rreq;
51 rreq.name = "sample3_client";
52 rreq.description = "Sample3";
53 rreq.flags = VEM_REGISTER_TTL;
54 rreq.ttl = 3;
55 rreq.cb = &cbf; // NULL, would need to read messages explicitly;
56 rc = vem_register(vhandle, &rreq, &aireply, &cireply);
57 if (rc < 0) {
58 fprintf(stderr, "Error registering: %s\n", vem_strerror(vemerrno));
59 }

54

Lines 97-121: define and initialize a container specification including the setting of
its resource limits to default values. The container specification essentially defines
a job that the user wants to be executed. The conspec.command method specifies
the actual binary that should be executed. In the sample, we want the program
"sleep" to be executed. The UNIX sleep command takes the number of seconds to
sleep as an input argument.
Lines 122-124: define and initialize various structures and assign container and
allocation IDs.
Lines 126-135: a while loop suspends program execution until a hostname for the
allocation is found. The barrier variable is set when the notification from Platform
EGO arrives after which it can proceed to run a container on the allocated
resource.. The hostname is printed out.

60 print_vem_allocation_info_reply(&aireply);
61 print_vem_container_info_reply(&cireply);
62 // freeup any previous allocations
63 release_vem_allocation(vhandle, &aireply);
64
65 vem_hostgroupreq_t hgroupreq;
66 hgroupreq.grouplist = NULL;
67 vem_hostgroup_t *hgroup;
68 rc = vem_gethostgroupinfo(vhandle, &hgroupreq, &hgroup);
69 if (rc < 0) {
70 fprintf(stderr, "Error getting hostgroup: %s\n",
71 vem_strerror(vemerrno));
72 } else {
73 printf("%s %s %d %d\n", hgroup->groupName, hgroup->members, hgroup->free,
74 hgroup->allocated);
75 }
76 vem_allocreq_t areq;
77 areq.name = "Sample2Alloc";
78 areq.consumer = "/SampleApplications/EclipseSamples";
79 areq.hgroup = "ComputeHosts";
80 #ifndef WIN32_RESOURCE
81 areq.resreq = "LINUX86";
82 #else
83 areq.resreq = "NTX86";
84 #endif
85 areq.minslots = 1;
86 areq.maxslots = 1;
87 areq.flags = VEM_ALLOC_EXCLUSIVE;
88 vem_allocation_id_t alocid;
89 vem_allocfreereq_t afree;
90 rc = vem_alloc(vhandle, &areq, &alocid);
91 if (rc < 0) {
92 fprintf(stderr, "Error allocating: %s\n", vem_strerror(vemerrno));
93 goto bailout;
94 } else {
95 printf("allocated: %s\n", alocid);
96 }

55

Lines 136-138: initialize the workload container request structure (conreq) with the
hostname, container name, and the container specification (conspec).

Lines 139-146: start the workload container on the specified host and, if successful,
print out the container ID.

97 vem_container_spec_t conspec;
98 memset(&conspec, 0, sizeof(vem_container_spec_t));
99
100 #ifndef WIN32_RESOURCE
101 conspec.command = "sleep 120";
102 conspec.execUser = "lsfadmin"; // "egoadmin";
103 conspec.umask = 0777;
104 conspec.execCwd = "/tmp";
105 conspec.envC = 0;
106 #else
107 // sleep needs to be installed on the cluster NT hosts
108 // or if ping is available, use something like ping -n xxx 127.0.0.1 > nul
109 conspec.command = "sleep 120";
110 conspec.execUser = "lsf\\lsfadmin"; //"egouser"; // "lsfadmin"; //
111 "egoadmin";
112 conspec.umask = 0777;
113 conspec.execCwd = "c:\\";
114 conspec.envC = 0;
115 #endif
116
117 int i;
118 for (i=0; i<VEM_RLIM_NLIMITS; i++) {
119 conspec.rlimits[i].rlim_cur = VEM_RLIM_DEFAULT;
120 conspec.rlimits[i].rlim_max = VEM_RLIM_DEFAULT;
121 }
122 vem_startcontainerreq_t conreq;
123 vem_container_id_t conid = NULL;
124 conreq.allocId = alocid;
125 // find the hostname for allocation from the CB fn
126 while (barrier == 0) {
127 // wait until we have a host allocated
128 sleep(1);
129 }
130 if (allocReply == NULL || allocReply->nhost ==0) {
131 fprintf(stderr, "Error allocating host: %s\n", vem_strerror(vemerrno));
132 goto cleanup;
133 }
134 char *host = allocated_host_name;
135 printf("Allocated host: %s\n", host);
136 conreq.hostname = host; // allocReply->host[0].name;
137 conreq.name = "Sample2Container";
138 conreq.spec = &conspec;

56

Lines 147-168: use vem_locate() to get all registered clients. Since NULL is
provided as the client name, all registered clients will be located and the method
returns the number of registered clients. If successful, print out the client info and
free the associated memory.

Step 3: Client callback methods
These callback methods are invoked by Platform EGO when resources are added or
reclaimed, or when a change occurs to host status or a container. When Platform
EGO wants to communicate about these events, it invokes these methods thereby
calling back to the client.
Lines 169-179: this method is called by Platform EGO when resources have been
added to an allocation in order to tell the client which resources have been provided
for its use. This method prints out the allocation and consumer IDs, the number of
hosts allocated, host names and number of slots, and host attributes.
Lines 180-186: this method is called by Platform EGO when resources need to be
reclaimed. Resources may be reclaimed either for policy reasons, or because a
resource has been found to be down or unavailable. The method prints out the host
info including host name and slots for each host being reclaimed.

139 rc = vem_startcontainer(vhandle, &conreq, &conid);
140 if (rc < 0) { fprintf(stderr, "Error starting container: %s\n",
141 vem_strerror(vemerrno));
142 jobContainerId = "INVALID";
143 goto cleanup;
144 }
145 jobContainerId = conid;
146 printf("Started container %s\n", conid);
147 rc = vem_locate(vhandle, NULL, &clients);
148 if (rc >=0) {
149 if (rc == 0) {
150 printf("No registered clients exist\n");
151 } else {
152 int i=0;
153 for (i=0; i<rc; i++) {
154 printf("%s %s %s\n", clients[i].name, clients[i].description,
155 clients[i].location);
156 }
157 vem_clear_clientinfo(clients);
158 }
159 } else {
160 // error connecting
161 fprintf(stderr, "Error geting clients: %s\n", vem_strerror(vemerrno));
162 }
163 // wait for job to be finished
164 while (!jobFinished) {
165 //wait
166 sleep(10);
167 }
168 vem_free_containerId(conid);

57

Lines 187-200: this method is called by Platform EGO in order to communicate
status changes in containers to the clients that started them. The method prints out
the container ID and its associated state; the container state is enumerated in the
vem.common.h file.
Lines 201-207: this method is called by Platform EGO when a host changes state.
The method prints out the host name and its new host state.

Run the client application
1 Select Run > Run.

The Run dialog appears.

169 int
170 addResourceCB(vem_allocreply_t *areply)
171 {
172 printf("addResource Call Back\n");
173 allocReply = areply;
174 allocated_host_name = malloc(strlen(allocReply->host[0].name));
175 strcpy(allocated_host_name, allocReply->host[0].name);
176 barrier = 1;
177 print_vem_allocreply(areply);
178 return 0;
179 }
180 int
181 reclaimForceCB(vem_allocreclaim_t *areclaim)
182 {
183 printf("reclaimForce Call Back\n");
184 print_vem_allocreclaim(areclaim);
185 return 0;
186 }
187 int
188 containerStateChgCB(vem_containerstatechg_t *cschange)
189 {
190 printf("containerStateChg Call Back\n");
191 printf("%s %d\n", cschange->containerId, cschange->newState);
192 while(jobContainerId == NULL) {sleep(1);} // wait until container has been
193 created
194 if(jobContainerId && !strcmp(cschange->containerId, jobContainerId)) {
195 if(cschange->newState == CONTAINER_FINISH) {
196 jobFinished = 1;
197 }
198 }
199 return 0;
200 }
201 int
202 hostStateChangeCB(vem_hoststatechange_t *hschange)
203 {
204 printf("hostStateChange Call Back\n");
205 printf("%s %d\n", hschange->name, hschange->newState);
206 return 0;
207 }

58

2 In the Configurations list, either select an EGO C Client Application or click
New for a new configuration.
For a new configuration, enter the configuration name.

3 Enter the project name and C/C++ Application name.
4 Click Apply and then Run.

Sample output

59

Tutorial 4: Request Resource Allocation in a
Cluster and Start Containers Using Threads

This tutorial describes how to create a registered EGO client that requests resource
allocation in a cluster and starts containers on the hosts. This sample program uses
threads to make the allocation requests to Platform EGO and start containers on
the hosts allocated by Platform EGO.

Using this tutorial, you will …
Open a connection to Platform EGO
Print out cluster information
Check if there are any registered clients connected to Platform EGO
Log on to Platform EGO
Initialize a structure for client callback methods
Register the client with Platform EGO
Print out allocation and container reply info from a previous connection
Print out host group information
Define and initialize structures for the work, resource, and monitor threads
Create and run the three threads
Determine the number of available host slots and make a resource allocation
request for half of them
Store allocation requests in a resource queue and make allocation requests to
Platform EGO
Retrieve the allocation reply from the work queue and start a container on each
host slot
Calculate the average host load
Check for registered clients connected to Platform EGO and print out info
Unregister the client

Underlying principles
This code sample uses global data structures (workloadP, resourcesP, and
monitorP) that are accessible by different threads. Since these data structures are
considered shared resources, a mutex (mutual exclusion) object is used to prevent
simultaneous modification of the data. The mutex object can be locked and

60

unlocked by individual threads, thereby controlling access to the respective data
structure. In conjunction with the mutex object, a condition variable enables
threads to wait for the data to enter a defined state before accessing the data.
This sample implements three threads: resource, work, and monitor, in addition to
the main thread.
The resource thread is responsible for getting the allocation request from the
resource queue and making an allocation request to Platform EGO. Once the
resource thread enters the wait state, the addResourceCB() and
containerStateChgCB() callback methods and finalize() method set the condition
variable that enables the resource thread to resume execution. The resource thread
cycles through the queue until all allocation requests have been processed.
The work thread is responsible for getting the allocation reply from the work queue,
adding the resource to the resource collection structure, and starting a container on
the allocated host slot. Once the work thread enters the wait state, the
add_resources() (called from the main thread) and finalize() methods set the
condition variable that enables the work thread to resume execution. The thread
cycles through the queue until containers have been started on all allocated host
slots.

61

Step 1: Preprocessor directives and global variable declarations
The first step is to include a reference to the system and API header files, followed
by the declaration of global variables and structures that are implemented in the
sample.

Step 2: Implement the principal method
Lines 4-7: define and initialize a data structure that is used to request a connection
with the EGO host cluster. The data structure contains a reference to a
configuration file where the master host name and port numbers are stored.
Line 8: pass the data structure as an argument to the vem_open () method, which
opens a connection to the master host. If the connection attempt is successful, a
handle is returned; otherwise the method returns NULL. The handle acts as a
communication channel to the master host and all subsequent communication
occurs through this handle.
Lines 15-16: the vem_name_t structure (defined as clusterName) is initialized with
NULL. This structure holds the cluster name, system name, and version. The
vem_uname () method is passed the communication handle and, if successful,
returns a valid vem_name_t structure ; otherwise the method returns NULL.
Line 24: the cluster info is printed out to the screen.
Lines 26-43: define the client info structure. Use vem_locate() to get all registered
clients. Since NULL is provided as the client name, all registered clients will be
located and the method returns the number of registered clients. Note that Platform

#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <string.h>
#include <pthread.h>
#include <errno.h>
#include "vem.api.h"
#include "samples.h"

int samples_shutdown = 0;
work_state_t *workloadP;
resource_state_t *resourcesP;
monitor_state_t *monitorP;

62

EGO is equipped with a number of default clients (services) such as the Service
Controller, so as a minimum, the info relevant to these clients is printed out and the
associated memory is released.

Lines 44-47: authenticate the user to Platform EGO.

1 int
2 sample4()
3 {
4 vem_openreq_t orequest;
5 vem_handle_t *vhandle = NULL;
6 orequest.file = "ego.conf";
7 orequest.flags=0;
8 vhandle = vem_open(&orequest);
9 if (vhandle == NULL) {
10 // error opening
11 fprintf(stderr, "Error opening cluster: %s\n", vem_strerror(vemerrno));
12 return -1;
13 }
14
15 vem_name_t *clusterName = NULL;
16 clusterName = vem_uname(vhandle);
17 if (clusterName == NULL) {
18 // error connecting
19 fprintf(stderr, "Error connecting to cluster: %s\n",
20 vem_strerror(vemerrno));
21 return -2;
22 }
23
24 fprintf(stdout, " Connected... %s %s %4.2f\n", clusterName->clustername,
25 clusterName->sysname, clusterName->version);
26 vem_clientinfo_t *clients;
27 int rc = vem_locate(vhandle, NULL, &clients);
28 if (rc >=0) {
29 if (rc == 0) {
30 printf("No registered clients exist\n");
31 } else {
32 int i=0;
33 for (i=0; i<rc; i++) {
34 printf("%s %s %s\n", clients[i].name, clients[i].description,
35 clients[i].location);
36 }
37 // free
38 vem_clear_clientinfo(clients);
39 }
40 } else {
41 // error connecting
42 fprintf(stderr, "Error geting clients: %s\n", vem_strerror(vemerrno));
43 }

63

Lines 48-52: define and initialize a structure for callback methods. These callback
methods are invoked by Platform EGO when resources are added or reclaimed, or
when a change occurs to host status or a container. When Platform EGO wants to
communicate about these events, it invokes these methods thereby calling back to
the client.

Lines 53-67: define the vem_allocation_info_reply_t and
vem_container_info_reply_t structures. If a client gets disconnected and then
re-registers, its existing allocations and containers are returned to these structures.
If the client had never registered before, the structures would be empty. Define and
initialize a structure (rreq) that holds client info for registration purposes. (This
includes assigning the client callback structure (cbf) to the callback member of the
rreq structure.) Register with Platform EGO via the open connection using
vem_register().

Lines 68-71: print out information related to the allocation requests and containers.
Once the info is printed out, the memory for the allocations is freed.

44 if (login(vhandle, username, password)<0) {
45 fprintf(stderr, "Error logon: %s\n", vem_strerror(vemerrno));
46 goto leave;
47 }
48 vem_clientcallback_t cbf;
49 cbf.addResource = addResourceCB;
50 cbf.reclaimForce = reclaimForceCB;
51 cbf.containerStateChg = containerStateChgCB;
52 cbf.hostStateChange = hostStateChangeCB;

53 vem_allocation_info_reply_t aireply;
54 vem_container_info_reply_t cireply;
55 vem_registerreq_t rreq;
56
57 rreq.name = "sample4_client";
58 rreq.description = "Sample4 Client";
59 rreq.flags = VEM_REGISTER_TTL;
60 rreq.ttl = 3;
61 rreq.cb = &cbf;
62
63 rc = vem_register(vhandle, &rreq, &aireply, &cireply);
64 if (rc < 0) {
65 fprintf(stderr, "Error registering: %s\n", vem_strerror(vemerrno));
66 goto leave;
67 }

64

Lines 75-82: the vem_gethostgroupinfo() method collects the information for the
requested hostgroup. In this case, the requested hostgroup in the input argument is
set to NULL, which means that information about all hostgroups is requested. If the
method call is successful, hostgroup information is printed out to the screen.

Lines 83-95: define and initialize structures for the workload, resources and
monitor threads. These structures are global in scope.
Lines 96-105: create and run the three threads.
Line 107-115: get half the number of available host slots and make a corresponding
number of resource allocation requests via the add_resources() method. This
method adds a new allocation request to the resource queue and increments the
queue index (next_item). The add_resources() method also sets the condition
variable, which tells the waiting resource_thread that a new allocation request has
been added to the resource queue. The resource_thread resumes execution and the
resource_mutex object is unlocked.
When a resource is added, the addResourceCB() callback method is executed. The
callback method adds the allocation reply structure to the workload queue at
position next_item and increments the index (next_item). The condition variable

68 print_vem_allocation_info_reply(&aireply);
69 print_vem_container_info_reply(&cireply);
70 // freeup any previous allocations
71 release_vem_allocation(vhandle, &aireply);
72 vem_hostgroupreq_t hgroupreq;
73 hgroupreq.grouplist = NULL;
74 vem_hostgroup_t *hgroup;
75 rc = vem_gethostgroupinfo(vhandle, &hgroupreq, &hgroup);
76 if (rc < 0) {
77 fprintf(stderr, "Error getting hostgroup: %s\n",
78 vem_strerror(vemerrno));
79 } else {
80 printf("%s %s %d %d\n", hgroup->groupName, hgroup->members, hgroup->free,
81 hgroup->allocated);
82 }

65

is set, which tells the waiting work_thread that a new allocation reply has been
added to the workload queue. The work_thread resumes execution and the
work_mutex object is unlocked. The allocation reply is also printed out.

Lines 116-117: pause the main thread for 180 milliseconds. The finalize() method
sets the samples_shutdown flag to 1 and sets the condition variable for all three
threads. The shutdown flag causes the three threads to end execution.
Lines 119-126: block the main thread until all three threads have finished. Clean up
the thread states by destroying the mutex object and condition variable associated
with each thread.
Lines 128-143: use vem_locate() to get all registered clients. Since NULL is
provided as the client name, all registered clients will be located and the method
returns the number of registered clients. Note that Platform EGO is equipped with

83 pthread_t worker_thread, resource_thread, monitor_thread;
84 work_state_t workload;
85 resource_state_t resources;
86 monitor_state_t monitor;
87
88 // globals so that callback functions can find the queues/lock/cond var
89 workloadP = &workload;
90 resourcesP = &resources;
91 monitorP = &monitor;
92
93 initialize_workload(&workload, vhandle);
94 initialize_resources(&resources, vhandle);
95 initialize_monitor(&monitor, vhandle);
96 if (pthread_create(&worker_thread, NULL, work_thread_fn, &workload)) {
97 perror("Error creating worker thread: ");
98 }
99 if (pthread_create(&resource_thread, NULL, resource_thread_fn,
100 &resources)) {
101 perror("Error creating resource thread: ");
102 }
103 if (pthread_create(&monitor_thread, NULL, monitor_thread_fn, &monitor)) {
104 perror("Error creating monitor thread: ");
105 }
106 // Request half of them, one if just one is available
107 int numavailable = getNumberOfHostSlotsAvailable(vhandle);
108 fprintf(stderr, "Available Slots=%d\n", numavailable);
109 if(numavailable > 0) {
110 int num_request = (numavailable / 2) > 1 ? (numavailable / 2): 1; //3;
111 vem_allocreq_t *aloc_spec = get_alloc_spec();
112 // aloc_spec->maxslots = 1;
113 // add to request Q
114 add_resources(num_request, aloc_spec);
115 }

66

a number of default clients (services) such as the Service Controller, so as a
minimum, the info relevant to these clients is printed out and the associated
memory is released.

Step 3: Make resource allocation requests to Platform EGO
(resource thread)

Lock the resource_mutex and wait for the condition variable to be set. Once the
condition variable is set by the addResourceCB() callback method and thread
execution resumes, get the allocation request from the resource queue using the

116 sleep(180);
117 finalize();
118 // wait for worker, resource, monitor threads to finish
119 pthread_join(worker_thread, NULL);
120 pthread_join(resource_thread, NULL);
121 pthread_join(monitor_thread, NULL);
122
123 // clean up thread states
124 finalize_workload(workloadP);
125 finalize_resources(resourcesP);
126 finalize_monitor(monitorP);
127
128 rc = vem_locate(vhandle, NULL, &clients);
129 if (rc >=0) {
130 if (rc == 0) {
131 printf("No registered clients exist\n");
132 } else {
133 int i=0;
134 for (i=0; i<rc; i++) {
135 printf("%s %s %s\n", clients[i].name, clients[i].description,
136 clients[i].location);
137 }
138 vem_clear_clientinfo(clients);
139 }
140 } else {
141 // error connecting
142 fprintf(stderr, "Error geting clients: %s\n", vem_strerror(vemerrno));
143 }
144 bailout:
145 rc = vem_unregister(vhandle);
146 if (rc < 0) {
147 fprintf(stderr, "Error unregistering: %s\n", vem_strerror(vemerrno));
148 }
149 if (logout(vhandle)<0) {
150 fprintf(stderr, "Error logoff: %s\n", vem_strerror(vemerrno));
151 }
152
153 leave:
154 // free memory
155 vem_free_uname(clusterName);
156 vem_close(vhandle);
157
158 return 0;
159 }

67

work_items index. Increment the index. Make an allocation request to Platform
EGO and retrieve and store the allocation ID. Continue this cycle until all the
allocation requests in the resource queue have been processed.

Step 4: Get resource allocation reply from Platform EGO and
start containers (work thread)

Lock the work_mutex and wait for the condition variable to be set. Once the
condition variable is set and thread execution resumes, retrieve the allocation reply
from the work queue using the work_items index. Increment the index and retrieve
the container specification.
The addto_monitor_resource() method is called for each allocated host, which
adds the host name, allocation ID, and allocation state to the resource collection.
The method also increments the resources num counter
(monitorP->resources->num).

void *resource_thread_fn(resource_state_t *resourcesP)
{
while(!samples_shutdown) {
 pthread_mutex_lock(&resourcesP->resource_mutex);
 resourcesP->ready = 1;
 pthread_cond_wait(&resourcesP->resource_cond,
 &resourcesP->resource_mutex);
 fprintf(stderr, "Need to allocate?\n");
 while(resourcesP->work_items < resourcesP->next_item) {
 // deque alocspec
 vem_allocreq_t *aloc_spec =
 resourcesP->queue[resourcesP->work_items++].alocreq;
 vem_allocation_id_t alocid = get_resource(resourcesP->vhandle,
 aloc_spec);
 if(alocid != NULL) {
 // add to the allocated ids
 if(resourcesP->num_resources < MAX_RESOURCES) {
 resourcesP->alocids[resourcesP->num_resources++] = alocid;
 } else {
 // TODO Grow
 fprintf(stderr, "Exceeded Limit\n");
 finalize();
 }
 } else {
 fprintf(stderr, "Could not allocate\n");
 }
 } /* else {
 // no new request, maybe shutdown request
 }*/
 pthread_mutex_unlock(&resourcesP->resource_mutex);
// if done
 }
 // free alocid memory
fprintf(stderr, "ResourceThread Shutdown\n");
 return NULL;
}

68

For each slot in each host, start a container using the allocation ID, host name, and
container specification. If successful, increment the running containers counter.
Unlock the work_mutex.

Step 5: Calculate the average host load (monitor thread)
Lock the monitor_mutex and get the current time. The thread now waits for either
a host state change to be signalled by Platform EGO or the wait time to expire. If a
state change occurs, the corresponding callback method (hostStateChangeCB) is
invoked by Platform EGO, which updates the host state in the resource collection.

void *work_thread_fn(work_state_t *workloadP)
{

 while(!samples_shutdown /* && workloadP->num_containers_running > 0 */) {
 // wait until a resource host is allocated
 pthread_mutex_lock(&workloadP->work_mutex);
 workloadP->ready = 1;
 pthread_cond_wait(&workloadP->work_cond, &workloadP->work_mutex);

 fprintf(stderr, "Received Resource?\n");
 int rc = 0;
 // pick out from queue
 while (workloadP->work_items < workloadP->next_item) {
 vem_allocreply_t * allocReply =
 &workloadP->queue[workloadP->work_items++];
 int i=0, j=0;
 vem_container_spec_t *conspec = get_container_spec();

 for(i=0; i<allocReply->nhost; i++) {

 addto_monitor_resource(monitorP, allocReply->host[i].name,
 allocReply->allocId);

 for(j=0; j<allocReply->host[i].slots; j++) {
 rc= startContainer(workloadP->vhandle, allocReply->allocId,
 allocReply->host[i].name, conspec);
 // if successful
 if (!rc) {
 ++workloadP->num_containers_running;
 }
 }
 }
 } /* else {
 // probably woken up as a container has changed state
 fprintf(stderr, "Nothing to do\n");
 } */
 pthread_mutex_unlock(&workloadP->work_mutex);
 }
 fprintf(stderr, "WorkThread Shutdown\n");
 return NULL;
}

69

The condition variable is then set to reactivate the monitor thread. If the thread
resumes execution due to wait time expiration, the average computer load is
calculated and printed out.

Step 6: Client callback methods
These callback methods are invoked by Platform EGO when resources are added or
reclaimed, or when a change occurs to host status or a container. When Platform
EGO wants to communicate about these events, it invokes these methods thereby
calling back to the client.

void *monitor_thread_fn(monitor_state_t *monitorP)
{
 struct timespec timeout;
 struct timeval now;
 int rc;

 while(!samples_shutdown) {
 // wait until change in host/container status is received
 pthread_mutex_lock(&monitorP->monitor_mutex);
 monitorP->ready = 1;
gettimeofday(&now);
 timeout.tv_sec = now.tv_sec + 30;
 timeout.tv_nsec = now.tv_usec *1000;
rc = pthread_cond_timedwait(&monitorP->monitor_cond,
 &monitorP->monitor_mutex, &timeout);

 // Currently no way to get container from id.
 //print_vem_container(vem_container_t *container);
 if(rc == ETIMEDOUT) {
 vem_hostinfo_t *hinfo = NULL;
 char **attrs;
 int numh;
 double *loads;
 double load = computeAverageLoad(monitorP, &numh, &hinfo, &attrs, &loads);
 fprintf(stderr, "\nMonitor: Avg. Load =%6.2f\n", load);
 if(hinfo != NULL) {
 free(loads);
 vem_free_hostinfo(hinfo, numh, attrs);
 }
 } else {
 // we were signaled
 fprintf(stderr, "Received Event?\n");
 }
 pthread_mutex_unlock(&monitorP->monitor_mutex);

 // update activity information
 }
 fprintf(stderr, "MonitorThread Shutdown\n");
 return NULL;
}

70

The addResourceCB() method locks the work_mutex object. The method then
adds the allocation reply structure to the workload queue at position next_item and
increments the index (next_item). The condition variable is set, which tells the
waiting work_thread that a new allocation reply has been added to the workload
queue. The work_mutex object is unlocked and the allocation reply is printed out.

The containerStateChgCB() method prints out the host name and the new host
state.
The work_mutex is locked and the method cycles through the list of containers and
finds the container ID associated with the state change. If the new state indicates
that the container has finished running, the workloadP->container_state is updated

int
addResourceCB(vem_allocreply_t *areply)
{
printf("addResource Call Back\n");

 pthread_mutex_lock(&workloadP->work_mutex);
 // check if thread is ready?
 while(!workloadP->ready) {
 pthread_mutex_unlock(&workloadP->work_mutex);
 sleep(1);
 pthread_mutex_lock(&workloadP->work_mutex);
 }

 // add to queue
 if(workloadP->next_item < MAX_CONTAINERS) {
 vem_allocreply_clone_deep(&workloadP->queue[workloadP->next_item++],
 areply);
 } else {
 //TODO increase capacity
 fprintf(stderr, "Exceeded limit");
 finalize();
 }
 pthread_cond_signal(&workloadP->work_cond);
 pthread_mutex_unlock(&workloadP->work_mutex);

 print_vem_allocreply(areply);
 return 0;
}

71

with the new state and the total number of running containers is decremented. The
condition variable is set to signal the work_thread to resume execution and the
work_mutex object is unlocked.

The hostStateChangeCB() method prints out the host name and the new host state.
After locking the monitor_mutex, the method calls the update_host_state()
method which, in turn, updates the resource collection with the new host state info.
The condition variable is set, which signals to the waiting monitor_thread to
resume execution.

Step 7: Calculate the average activity load on the resources
In order to determine if a resource is too busy to receive jobs, a load index value is
calculated and compared to a corresponding load threshold parameter. The
following code retrieves and processes the load index value for r1m, the 1-minute
CPU run queue length.
The method cycles through each resource in the resource collection and checks the
allocation status. If the resource is allocated, a counter is incremented that keeps
track of the number of allocated resources. The resource name is also stored
(hostlist array), which is assigned to the hinforeq structure. Since the host list is
used as an input to vem_getHostInfo(), the method will only update info for hosts
in the list, as well as return the number of allocated hosts.
The getLoadAttribute() method cycles through the list of host attributes looking for
the r1m load index. (The r1m load index represents the average number of
processes ready to use the CPU during a one-minute interval.) This method returns

int
containerStateChgCB(vem_containerstatechg_t *cschange)
{
printf("containerStateChg Call Back\n");
printf("%s %d\n", cschange->containerId, cschange->newState);

pthread_mutex_lock(&workloadP->work_mutex);
update_container_state(workloadP, cschange);
 pthread_cond_signal(&workloadP->work_cond);
 pthread_mutex_unlock(&workloadP->work_mutex);

 return 0;
}

int
hostStateChangeCB(vem_hoststatechange_t *hschange)
{
printf("hostStateChange Call Back\n");
printf("%s %d\n", hschange->name, hschange->newState);
pthread_mutex_lock(&monitorP->monitor_mutex);
update_host_state(monitorP, hschange);
 pthread_cond_signal(&monitorP->monitor_cond);
 pthread_mutex_unlock(&monitorP->monitor_mutex);

 return 0;
}

72

the attribute array index corresponding to load index r1m. The value for r1m is
retrieved for each allocated resource and converted to a double data type. These
values are stored in an array as well as added to a variable (load), which is used as
an accumulator. The total sum is then divided by the number of allocated resources
to yield the average load index value of r1m.

double computeAverageLoad(monitor_state_t *monitorP, int *nhostsP, vem_hostinfo_t
hinfoP, char* host_attributesP, double **loadsP)
{
 double load = 0.0;
 double *loads = NULL;

 // assumes caller has acquired the lock
 // finds allocated hosts
 resource_collection_t *resources = monitorP->resources;
 int i, j=0, count=0;
 for(i=0; i<resources->num; i++){
 if(resources->allocstate[i] == RESOURCE_ALLOCATED) {
 count++;
 }
 }
/* No hosts allocated */
 if(count == 0) {
 *nhostsP = 0;
 *host_attributesP = NULL;
 *hinfoP = NULL;
 *loadsP = NULL;
 return 0;
 }
char **hostlist = calloc(count, sizeof(char*));

 for(i=0; i<resources->num; i++){
 if(resources->allocstate[i] == RESOURCE_ALLOCATED) {
 hostlist[j] = resources->names[i];
 j++;
 }
 }

73

int hin;
 vem_hostinforeq_t hinforeq;
 hinforeq.resreq = ""; // resource string, unimplemented
 hinforeq.hostlist = hostlist;
 vem_hostinfo_t *hinfo = NULL; // out parameter, set by vem_getHostInfo
 char **attrs = NULL; // out parameter, set by vem_getHostInfo
hin = vem_getHostInfo(monitorP->vhandle, &hinforeq, &hinfo, &attrs);
if (hin < 0) {
 // error
 fprintf(stderr, "Error getting hostinfo: %s %d\n", vem_strerror(vemerrno),
 hin);
 *nhostsP = hin;
 *host_attributesP = attrs;
 *hinfoP = NULL;
 *loadsP = loads;
 return -1.0;
 } else {
 //TODO are the hosts in hinfo, in the same order as hinforeq?
 print_hostInfo(hin, hinfo, attrs);
 // find load attribute
 int index = get_load_attribute("r1m", attrs);
 loads = calloc(hin, sizeof(double));
 double l;
 for(i=0; i<hin; i++) {
 l = get_load(&hinfo[i], index);
 loads[i] = l;
 load += l;
 }
free(hostlist);
 }
 *nhostsP = hin;
 *hinfoP = hinfo;
 *host_attributesP = attrs;
 *loadsP = loads;
 return (count == 0) ? 0 : load / count;
}

double get_load(vem_hostinfo_t *hinfo, int index)
{
double rv=-1.0;
 vem_value_t value;
 value = hinfo->attributes[index];
 rv = value.value.v_float32;
 return rv;
}

int get_load_attribute(char *load, char **attrs)
{
 int j=-1;
 while(attrs[++j] != NULL) {
 if(!strcmp(load, attrs[j])) {
 return j;
 }
 }
 return j;
}

74

Run the client application
1 Select Run > Run.

The Run dialog appears.
2 In the Configurations list, either select an EGO C Client Application or click

New for a new configuration.
For a new configuration, enter the configuration name.

3 Enter the project name and C/C++ Application name.
4 Click Apply and then Run.

Sample output

75

76

77

Tutorial 5: Request Resource Allocation in a
Cluster and Start Containers Based on Host
Loading

This tutorial describes how to create a registered EGO client that requests resource
allocation in a cluster and starts containers on the hosts. Based on host loading, the
program either adds more resources or releases some.

Using this tutorial, you will …
Open a connection to Platform EGO
Print out cluster information
Check if there are any registered clients connected to Platform EGO
Log on to Platform EGO
Register the client with Platform EGO
Print out allocation and container reply information from a previous
connection
Print out host group information
Determine the number of available host slots and make a resource allocation
request for half of them
Store allocation requests in a resource queue and make allocation requests to
Platform EGO
Retrieve the allocation reply from the work queue and start a container on each
host slot
Add or release a resource depending on host loading
Check for registered clients connected to Platform EGO and print out info
Unregister the client

Underlying principles
Refer to Tutorial 4: Underlying principles on page 59 for a description of the
multi-thread technique used in this sample.

78

Step 1: Preprocessor directives
The first step is to include a reference to the system and API header files. The
samples.h header file contains the method declarations that are common to all of
the samples.

Step 2: Implement the principal method
Lines 4-7: define and initialize a data structure that is used to request a connection
with the EGO host cluster. The data structure contains a reference to a
configuration file where the master host name and port numbers are stored.
Line 8: pass the data structure as an argument to the vem_open () method, which
opens a connection to the master host. If the connection attempt is successful, a
handle is returned; otherwise the method returns NULL. The handle acts as a
communication channel to the master host and all subsequent communication
occurs through this handle.
Lines 16-17: the vem_name_t structure (defined as clusterName) is initialized with
NULL. This structure holds the cluster name, system name, and version. The
vem_uname () method is passed the communication handle and, if successful,
returns a valid vem_name_t structure ; otherwise the method returns NULL
Line 24: the cluster info is printed out to the screen.
Lines 27-43: locate all the registered clients and print out the client info (name,
description, and location). Define the client info structure. Use vem_locate() to get
all registered clients. Since NULL is provided as the client name, all registered
clients will be located and the method returns the number of registered clients. Note

#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <string.h>
#include <pthread.h>
#include <errno.h>
#include <sys/time.h>
#include "vem.api.h"
#include "samples.h"

79

that Platform EGO is equipped with a number of default clients (services) such as
the Service Controller, so as a minimum, the info relevant to these clients is printed
out and the associated memory is released.

Lines 44-47: authenticate the user to Platform EGO.
Lines 48-52: define and initialize a structure for callback methods. These callback
methods are invoked by Platform EGO when resources are added or reclaimed, or
when a change occurs to host status or a container. When Platform EGO wants to
communicate about these events, it invokes these methods thereby calling back to
the client.

1 int
2 sample5()
3 {
4 vem_openreq_t orequest;
5 vem_handle_t *vhandle = NULL;
6 orequest.file = "ego.conf";
7 orequest.flags=0;
8 vhandle = vem_open(&orequest);
9
10 if (vhandle == NULL) {
11 // error opening
12 fprintf(stderr, "Error opening cluster: %s\n", vem_strerror(vemerrno));
13 return -1;
14 }
15
16 vem_name_t *clusterName = NULL;
17 clusterName = vem_uname(vhandle);
18 if (clusterName == NULL) {
19 // error connecting
20 fprintf(stderr, "Error connecting to cluster: %s\n",
21 vem_strerror(vemerrno));
22 return -2;
23 }
24 fprintf(stdout, " Connected... %s %s %4.2f\n", clusterName->clustername,
25 clusterName->sysname, clusterName->version);
26 vem_clientinfo_t *clients;
27 int rc = vem_locate(vhandle, NULL, &clients);
28 if (rc >=0) {
29 if (rc == 0) {
30 printf("No registered clients exist\n");
31 } else {
32 int i=0;
33 for (i=0; i<rc; i++) {
34 printf("%s %s %s\n", clients[i].name, clients[i].description,
35 clients[i].location);
36 }
37 // free
38 vem_clear_clientinfo(clients);
39 }
40 } else {
41 // error connecting
42 fprintf(stderr, "Error geting clients: %s\n", vem_strerror(vemerrno));
43 }

80

Lines 53-67: define the vem_allocation_info_reply_t and
vem_container_info_reply_t structures. If a client gets disconnected and then
re-registers, its existing allocations and containers are returned to these structures.
If the client had never registered before, the structures would be empty. Define and
initialize a structure (rreq) that holds client info for registration purposes. (This
includes assigning the client callback structure (cbf) to the callback member of the
rreq structure.) Register with Platform EGO via the open connection using
vem_register().
Lines 68-71: print out information related to the allocation requests and containers.
Once the info is printed out, the memory for the allocations is freed.
Lines 75-82: the vem_gethostgroupinfo() method collects the information for the
requested hostgroup. In this case, the requested hostgroup in the input argument is
set to NULL, which means that information about all hostgroups is requested. If the
method call is successful, hostgroup information is printed out to the screen.

44 if (login(vhandle, username, password)<0) {
45 fprintf(stderr, "Error logon: %s\n", vem_strerror(vemerrno));
46 goto leave;
47 }
48 vem_clientcallback_t cbf;
49 cbf.addResource = addResourceCB;
50 cbf.reclaimForce = reclaimForceCB;
51 cbf.containerStateChg = containerStateChgCB;
52 cbf.hostStateChange = hostStateChangeCB;
53 vem_allocation_info_reply_t aireply;
54 vem_container_info_reply_t cireply;
55 vem_registerreq_t rreq;
56
57 rreq.name = "sample5_client";
58 rreq.description = "Sample5 Client";
59 rreq.flags = VEM_REGISTER_TTL;
60 rreq.ttl = 3;
61 rreq.cb = &cbf;
62
63 rc = vem_register(vhandle, &rreq, &aireply, &cireply);
64 if (rc < 0) {
65 fprintf(stderr, "Error registering: %s\n", vem_strerror(vemerrno));
66 goto leave;
67 }
68 print_vem_allocation_info_reply(&aireply);
69 print_vem_container_info_reply(&cireply);
70 // freeup any previous allocations
71 release_vem_allocation(vhandle, &aireply);
72 vem_hostgroupreq_t hgroupreq;
73 hgroupreq.grouplist = NULL;
74 vem_hostgroup_t *hgroup;
75 rc = vem_gethostgroupinfo(vhandle, &hgroupreq, &hgroup);
76 if (rc < 0) {
77 fprintf(stderr, "Error getting hostgroup: %s\n",
78 vem_strerror(vemerrno));
79 } else {
80 printf("%s %s %d %d\n", hgroup->groupName, hgroup->members, hgroup->free,
81 hgroup->allocated);
82 }

81

Lines 83-95: define and initialize structures for the workload, resources and
monitor threads. These structures are global in scope.
Lines 97-107: create and run the three threads. Refer to Tutorial 4: Underlying
principles on page 59 for further details of the workload and resource threads.
Lines 109-117: get half the number of available host slots and make a corresponding
number of resource allocation requests via the add_resources() method. This
method adds a new allocation request to the resource queue and increments the
queue index (next_item). The add_resources() method also sets the condition
variable, which tells the waiting resource_thread that a new allocation request has
been added to the resource queue. The resource_thread resumes execution and the
resource_mutex object is unlocked.

When a resource is added, the addResourceCB() callback method is executed. The
callback method adds the allocation reply structure to the workload queue at
position next_item and increments the index (next_item). The condition variable
is set, which tells the waiting work_thread that a new allocation reply has been
added to the workload queue. The work_thread resumes execution and the
work_mutex object is unlocked. The allocation reply is also printed out.

83 pthread_t worker_thread, resource_thread, monitor_thread;
84 work_state_t workload;
85 resource_state_t resources;
86 monitor_state_t monitor;
87
88 // globals so that callback functions can find the queues/lock/cond var
89 workloadP = &workload;
90 resourcesP = &resources;
91 monitorP = &monitor;
92
93 initialize_workload(&workload, vhandle);
94 initialize_resources(&resources, vhandle);
95 initialize_monitor(&monitor, vhandle);
96
97 if (pthread_create(&worker_thread, NULL, work_thread_fn, &workload)) {
98 perror("Error creating worker thread: ");
99 }
100 if (pthread_create(&resource_thread, NULL, resource_thread_fn,
101 &resources)) {
102 perror("Error creating resource thread: ");
103 }
104 if (pthread_create(&monitor_thread, NULL, monitor_thread_extended_fn,
105 &monitor)) {
106 perror("Error creating monitor thread: ");
107 }
108 // Request half of them, one if just one is available
109 int numavailable = getNumberOfHostSlotsAvailable(vhandle);
110 fprintf(stderr, "Available Slots=%d\n", numavailable);
111 if(numavailable > 0) {
112 int num_request = 4; //(numavailable / 2) > 1 ? (numavailable / 2): 1; //3;
113 vem_allocreq_t *aloc_spec = get_alloc_spec();
114 // aloc_spec->maxslots = 1;
115 // add to request Q
116 add_resources(num_request, aloc_spec);
117 }

82

Lines 118-119: pause the main thread for 180 milliseconds. The finalize() method
sets the shutdown flag to 1 and sets the condition variable for all three threads. The
shutdown flag causes the three threads to end execution.
Lines 122-128: block the main thread until all three threads have finished. Clean up
the thread states by destroying the mutex object and condition variable associated
with each thread.
Lines 130-145: use vem_locate() to get all registered clients. Since NULL is
provided as the client name, all registered clients will be located and the method
returns the number of registered clients. If successful, print out the client info and
free the associated memory.

118 sleep(180);
119 finalize();
120 // wait for worker, resource, monitor threads to be finish
121
122 pthread_join(worker_thread, NULL);
123 pthread_join(resource_thread, NULL);
124 pthread_join(monitor_thread, NULL);
125 // clean up thread states
126 finalize_workload(workloadP);
127 finalize_resources(resourcesP);
128 finalize_monitor(monitorP);
129
130 rc = vem_locate(vhandle, NULL, &clients);
131 if (rc >=0) {
132 if (rc == 0) {
133 printf("No registered clients exist\n");
134 } else {
135 int i=0;
136 for (i=0; i<rc; i++) {
137 printf("%s %s %s\n", clients[i].name, clients[i].description,
138 clients[i].location);
139 }
140 vem_clear_clientinfo(clients);
141 }
142 } else {
143 // error connecting
144 fprintf(stderr, "Error geting clients: %s\n", vem_strerror(vemerrno));
145 }
146 bailout:
147 rc = vem_unregister(vhandle);
148 if (rc < 0) {
149 fprintf(stderr, "Error unregistering: %s\n", vem_strerror(vemerrno));
150 }
151 if (logout(vhandle)<0) {
152 fprintf(stderr, "Error logoff: %s\n", vem_strerror(vemerrno));
153 }
154 leave:
155 // free memory
156 vem_free_uname(clusterName);
157 vem_close(vhandle);
158 return 0;
159 }

83

Step 3: Add or release resources based on average host load
(monitor thread)

Lock the monitor_mutex and get the current time. The thread now waits for either
a host state change to be signalled by Platform EGO or the wait time to expire. If a
state change occurs, the corresponding callback method (hostStateChangeCB) is
invoked by Platform EGO, which updates the host state in the resource collection.
The condition variable is then set to reactivate the monitor thread. If the thread
resumes execution due to wait time expiration, the average computer load is
calculated and printed out; refer to Tutorial 4: Step 7: Calculate the average activity
load on the resources on page 71
If the average host load is greater than a predetermined threshold, an additional
resource is allocated via the add_resources() method; refer to Tutorial 4: Step 6:
Client callback methods on page 69 for further details of the add_resources()
method. If the average computer load is less than a predetermined threshold and
the number of allocated hosts is greater than 0, release a resource via the
release_resources() method; refer to the next step.

void *monitor_thread_extended_fn(monitor_state_t *monitorP)
{
 struct timespec timeout;
 struct timeval now;
 int rc;

 while(!samples_shutdown) {
 // wait until change in host/container status is received
 pthread_mutex_lock(&monitorP->monitor_mutex);
 monitorP->ready = 1;

 gettimeofday(&now, NULL);
 timeout.tv_sec = now.tv_sec + 30;
 timeout.tv_nsec = now.tv_usec *1000;

 rc = pthread_cond_timedwait(&monitorP->monitor_cond, &monitorP->monitor_mutex,
&timeout);

 // Currently no way to get container from id.
 //print_vem_container(vem_container_t *container);
 if (rc == ETIMEDOUT) {
 char **attrs = NULL;
 int numh = -1;
 vem_hostinfo_t *hinfo = NULL;
 double *loads = NULL;

84

Step 4: Release resources from Platform EGO
The release_resources() method determines the least loaded host and makes a
request to Platform EGO to release this allocated resource.
Define an array of structures to hold the individual host loads and associated index.
Use the qsort() method to sort the host loads in ascending order.
For each resource to be released and starting with the least loaded host, get the host
name and number of slots.
Get the index of the least loaded host in the resource collection. The
find_host_index() method looks for the matching host name in the resource
collection, and if allocated, returns the index.
Define the release request structure with information such as the allocation ID of
the host to release, as well as number of hosts/slots to release. Pass this structure to
the vem_release() method, which causes Platform EGO to release the resource(s).

 double load = computeAverageLoad(monitorP, &numh, &hinfo, &attrs, &loads);
 fprintf(stderr, "\n Monitor: Avg. Load =%6.2f\n", load);

 // update resources based on load
 int delta = 1;
 vem_allocreq_t *aloc_spec = get_alloc_spec();
 if(load > UPPER_THRESHOLD) {
 add_resources(delta, aloc_spec);
 } else if (load < LOWER_THRESHOLD && numh > 0) {
 release_resources(monitorP->vhandle, delta, aloc_spec, numh, hinfo, attrs,
loads);
 }
 if(hinfo != NULL) {
 vem_free_hostinfo(hinfo, numh, attrs);
 }
 if(loads != NULL) {
 free(loads);
 }
 } else {
 fprintf(stderr, "Received Event?\n");
 }
 pthread_mutex_unlock(&monitorP->monitor_mutex);
 }
 fprintf(stderr, "MonitorThread Shutdown\n");
 return NULL;
}

85

The remove_monitor_resource() method searches in the resource collection for the
name of the host to be released. When a match is found, the host’s allocation state
is updated to released status, i.e., unallocated.

int release_resources(vem_handle_t* vhandle, int delta, vem_allocreq_t *alocreq, int
num_hosts, vem_hostinfo_t *hinfo, char **attrs, double *loads)
{
 // which ones to release? Sort the load and release the ones that are least
 used
 // create a struct of load and index to sort
 int e, index, hindex, i;
 sort_element_t *element_array = calloc(num_hosts, sizeof(sort_element_t));

 for(e=0; e<num_hosts; e++) {
 element_array[e].load = loads[e];
 element_array[e].index = e;
 }
qsort(element_array, num_hosts, sizeof(sort_element_t), sort_fn);
vem_host_t host;
 vem_releasereq_t release;
 resource_collection_t *resources = monitorP->resources;
for(i=0; i<delta; i++) {
 index = element_array[i].index;
 host.name = hinfo[index].name;
 host.slots = 1; // should be made generic
 hindex = find_host_index(resources, hinfo[index].name);
 release.allocId = resources->allocId[hindex];
 release.nhosts = 1;
 release.hosts = &host;
 release.flags = VEM_RELEASE_AUTOADJ;
int rc = vem_release(vhandle, &release);
 if (rc < 0) {
 fprintf(stderr, "Error releasing resource: %s\n",
 vem_strerror(vemerrno));
 }

 //mark them as released in the monitor host list
 if(rc == 0) {
 remove_monitor_resource(monitorP, host.name);
 }
 }
free(element_array);
 return 0;
}

int sort_fn(const void *e1, const void *e2)
{
 sort_element_t *d1 = (sort_element_t *)e1;
 sort_element_t *d2 = (sort_element_t *)e2;
 return (d1->load == d2->load) ? 0 : ((d1->load < d2->load) ? -1 : +1);
}

86

Run the client application
1 Select Run > Run.

The Run dialog appears.
2 In the Configurations list, either select an EGO C Client Application or click

New for a new configuration.
For a new configuration, enter the configuration name.

3 Enter the project name and C/C++ Application name.
4 Click Apply and then Run.

int find_host_index(resource_collection_t *resources, char *hname)
{
int i, index=-1;

if (hname == NULL) return index;

for(i=0; i<resources->num; i++) {
if(!strcmp(hname, resources->names[i]) && (resources->allocstate[i] ==
 RESOURCE_ALLOCATED)) {
return i;
}
}
 return index;
}

void remove_monitor_resource(monitor_state_t *monitorP, char *hostname)
{
fprintf(stderr, "remove host\n");
// assumes the caller acquired the lock
int i;
resource_collection_t *resources = monitorP->resources;
if(hostname == NULL) {
return;
}

for(i=0; i< resources->num; i++){
 if(!strcmp(hostname, resources->names[i]) && (resources->allocstate[i]
 != RESOURCE_RELEASED)) {
 resources->allocstate[i] = RESOURCE_RELEASED;
 }
 }
}

87

Sample output

88

89

90

Tutorial 6: Create an EGO Service

This tutorial describes how to create and run an EGO service.

Using this tutorial, you will …
Open a connection to Platform EGO
Print out cluster information
Check if there are any registered clients connected to Platform EGO
Log on to Platform EGO
Register the client with Platform EGO
Print out allocation and container reply information from a previous
connection
Print out host group information
Create and run an EGO service
Use mutex objects to synchronize service query requests between the client
(main thread) and the service thread
Query for the IP address of the host where the service is running
Update the Service Director with a new entry for service instance location
Disable and remove an EGO service

Underlying principles
This sample uses two threads, main and service, and two sets of mutex objects and
condition variables to synchronize the functions of the service thread. One of the
tasks of the service thread is to create a service. The service thread can also be asked
to query a service by a client; this only happens when the client requests it. This
synchronization is achieved by using the client and service mutexes and condition
variables. The service thread waits on the service condition variable, and when the
client wants to query the service, it signals the service condition variable. Once the
service thread obtains the information, it tells the client that the information is
ready by signaling the client's condition variable.

91

Step 1: Preprocessor directives and declarations
The first step is to include a reference to the system and API header files, followed
by the declaration of global structures that are implemented in the sample.

Step 2: Implement the principal method
Lines 4-7: define and initialize a data structure that is used to request a connection
with the EGO host cluster. The data structure contains a reference to a
configuration file where the master host name and port numbers are stored.
Line 8: pass the data structure as an argument to the vem_open () method, which
opens a connection to the master host. If the connection attempt is successful, a
handle is returned; otherwise the method returns NULL. The handle acts as a
communication channel to the master host and all subsequent communication
occurs through this handle.
Lines 14-15: the vem_name_t structure (defined as clusterName) is initialized with
NULL. This structure holds the cluster name, system name, and version. The
vem_uname () method is passed the communication handle and, if successful,
returns a valid vem_name_t structure ; otherwise the method returns NULL
Line 23: the cluster info is printed out to the screen.
Lines 26-42: locate all the registered clients and print out the client info (name,
description, and location). Define the client info structure. Use vem_locate() to get
all registered clients. Since NULL is provided as the client name, all registered
clients will be located and the method returns the number of registered clients. Note

#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <string.h>
#include <errno.h>
#include <pthread.h>
#include "vem.api.h"
#include "esc.api.h"
#include "samples.h"

static int addResourceCB(vem_allocreply_t *areply);
static int reclaimForceCB(vem_allocreclaim_t *areclaim);
static int containerStateChgCB(vem_containerstatechg_t *cschange);
static int hostStateChangeCB(vem_hoststatechange_t *hschange);
static char *get_service_def_xml();
service_state_t *service_stateP;
esc_service_info_reply_t *service_info_reply;

92

that Platform EGO is equipped with a number of default clients (services) such as
the Service Controller, so as a minimum, the info relevant to these clients is printed
out and the associated memory is released.

Lines 43-47: authenticate the user to Platform EGO.
Lines 48-52: define and initialize a structure for callback methods. These callback
methods are invoked by Platform EGO when resources are added or reclaimed, or
when a change occurs to host status or a container. When Platform EGO wants to
communicate about these events, it invokes these methods thereby calling back to
the client.
Lines 54-68: define the vem_allocation_info_reply_t and
vem_container_info_reply_t structures. If a client gets disconnected and then
re-registers, its existing allocations and containers are returned to these structures.

1 int
2 sample6()
3 {
4 vem_openreq_t orequest;
5 vem_handle_t *vhandle = NULL;
6 orequest.file = "ego.conf";
7 orequest.flags=0;
8 vhandle = vem_open(&orequest);
9 if (vhandle == NULL) {
10 // error opening
11 fprintf(stderr, "Error opening cluster: %s\n", vem_strerror(vemerrno));
12 return -1;
13 }
14 vem_name_t *clusterName = NULL;
15 clusterName = vem_uname(vhandle);
16 if (clusterName == NULL) {
17 // error connecting
18 fprintf(stderr, "Error connecting to cluster: %s\n",
19 vem_strerror(vemerrno));
20 return -2;
21 }
22
23 fprintf(stdout, " Connected... %s %s %4.2f\n", clusterName->clustername,
24 clusterName->sysname, clusterName->version);
25 vem_clientinfo_t *clients;
26 int rc = vem_locate(vhandle, NULL, &clients);
27 if (rc >=0) {
28 if (rc == 0) {
29 printf("No registered clients exist\n");
30 } else {
31 int i=0;
32 for (i=0; i<rc; i++) {
33 printf("%s %s %s\n", clients[i].name, clients[i].description,
34 clients[i].location);
35 }
36 // free
37 vem_clear_clientinfo(clients);
38 }
39 } else {
40 // error connecting
41 fprintf(stderr, "Error geting clients: %s\n", vem_strerror(vemerrno));
42 }

93

If the client had never registered before, the structures would be empty. Define and
initialize a structure (rreq) that holds client info for registration purposes. (This
includes assigning the client callback structure (cbf) to the callback member of the
rreq structure.) Register with Platform EGO via the open connection using
vem_register().

Lines 69-72: print out information related to the allocation requests and containers.
Once the info is printed out, the memory for the allocations is freed.
Lines 77-82: the vem_gethostgroupinfo() method collects the information for the
requested hostgroup. In this case, the requested hostgroup in the input argument is
set to NULL, which means that information about all hostgroups is requested. If the
method call is successful, hostgroup information is printed out to the screen.

43 if (login(vhandle, username, password)<0) {
44 fprintf(stderr, "Error logon: %s\n",
45 vem_strerror(vemerrno));
46 goto leave;
47 }
48 vem_clientcallback_t cbf;
49 cbf.addResource = addResourceCB;
50 cbf.reclaimForce = reclaimForceCB;
51 cbf.containerStateChg = containerStateChgCB;
52 cbf.hostStateChange = hostStateChangeCB;
53
54 vem_allocation_info_reply_t aireply;
55 vem_container_info_reply_t cireply;
56 vem_registerreq_t rreq;
57
58 rreq.name = "sample6_client";
59 rreq.description = "Sample6 Client";
60 rreq.flags = VEM_REGISTER_TTL;
61 rreq.ttl = 3;
62 rreq.cb = &cbf;
63 rc = vem_register(vhandle, &rreq, &aireply, &cireply);
64 if (rc < 0) {
65 fprintf(stderr, "Error registering: %s\n",
66 vem_strerror(vemerrno));
67 goto leave;
68 }

69 print_vem_allocation_info_reply(&aireply);
70 print_vem_container_info_reply(&cireply);
71 // freeup any previous allocations
72 release_vem_allocation(vhandle, &aireply);
73
74 vem_hostgroupreq_t hgroupreq;
75 hgroupreq.grouplist = NULL;
76 vem_hostgroup_t *hgroup;
77 rc = vem_gethostgroupinfo(vhandle, &hgroupreq, &hgroup);
78 if (rc < 0) {
79 fprintf(stderr, "Error getting hostgroup: %s\n", vem_strerror(vemerrno));
80 } else {
81 printf("%s %s %d %d\n", hgroup->groupName, hgroup->members, hgroup->free,

hgroup->allocated);
82 }

94

Lines 83-86: initialize the service_stateP and client_stateP structures. These
structures contain the respective mutex objects and condition variables.
Lines 87-88: create a service definition in XML format. Each service is described by
an XML file that contains information about the service such as the type of
resources required to run the service instances and how to start and monitor them.
Store the service definition in the service_stateP structure.
Lines 89-93: create and run the service_thread. The service thread is responsible for
defining and creating the EGO service.
Lines 94-109: use vem_locate() to get all registered clients. Since NULL is provided
as the client name, all registered clients will be located and the method returns the
number of registered clients. If successful, print out the client info (name,
description, and location) and free the associated memory.

Lines 114-120: lock the service_mutex object and wait until the service is running.
Set the service condition variable to unblock the service thread, which causes the
service thread to query the service.
Lines 124-127: lock the client_mutex object and block the main thread with the
client condition variable. When the service info is available, the service thread
signals the main thread to resume execution using the client condition variable. The
main thread prints out the service info reply.
Line 130: set the shutdown flag, which causes the service thread to disable and
remove the service.

83 service_stateP = calloc(1, sizeof(service_state_t));
84 initialize_service(service_stateP);
85 client_state_t *client_stateP = calloc(1, sizeof(client_state_t));
86 initialize_client(client_stateP);
87 char *xml = get_service_def_xml();
88 service_stateP->xml = xml;
89 pthread_t service_thread;
90 if (pthread_create(&service_thread, NULL, service_thread_fn,
91 service_stateP)) {
92 perror("Error creating service thread: ");
93 }
94 rc = vem_locate(vhandle, NULL, &clients);
95 if (rc >=0) {
96 if (rc == 0) {
97 printf("No registered clients exist\n");
98 } else {
99 int i=0;
100 for (i=0; i<rc; i++) {
101 printf("%s %s %s\n", clients[i].name, clients[i].description,
102 clients[i].location);
103 }
104 vem_clear_clientinfo(clients);
105 }
106 } else {
107 // error connecting
108 fprintf(stderr, "Error geting clients: %s\n", vem_strerror(vemerrno));
109 }

95

Line 134: block execution of the main thread until the service thread has
terminated.

Step 3: Create the service
In this sample, the service definition and creation is handled by the service thread.
The service simply executes the sleep command for 60 milliseconds and then ends.
Lines 137-147: set the EGO_CONFDIR environment variable to the current
working directory so that the Service Controller, which is just another EGO client,
can find the EGO configuration. The configuration is stored in the ego.conf file.
Lines 148-151: define and initialize a security structure. The username and
password variables have been initialized with "egoadmin" from sample # 2.
Lines 153-154: print out the service definition.
Lines 155-163: pass the security structure and the service definition to the
esc_createservice() method. This API call creates a new service object. If startType
is automatic in the service definition, the service is enabled automatically. In this
case, the startType is set to manual so the service must be enabled by the
esc_enableservice() method. This API call starts the service. Once the service is

110 sleep(60);
111 // get service info
112 service_info_reply = calloc(1, sizeof(esc_service_info_reply_t));
113 int succeed=0;
114 while(!succeed) {
115 pthread_mutex_lock(&service_stateP->service_mutex);
116 if (service_stateP->ready && service_stateP->client == NULL) {
117 service_stateP->client = client_stateP;
118 pthread_cond_signal(&service_stateP->service_cond);
119 succeed = 1;
120 }
121 pthread_mutex_unlock(&service_stateP->service_mutex);
122 }
123 fprintf(stderr, "Sent Request to Service:\n");
124 pthread_mutex_lock(&client_stateP->client_mutex);
125 pthread_cond_wait(&client_stateP->client_cond,
126 &client_stateP->client_mutex);
127 print_service_info_reply(service_info_reply);
128 pthread_mutex_unlock(&client_stateP->client_mutex);
129 sleep(60);
130 shutdown = 1;
131 pthread_mutex_lock(&service_stateP->service_mutex);
132 pthread_cond_signal(&service_stateP->service_cond);
133 pthread_mutex_unlock(&service_stateP->service_mutex);
134 pthread_join(service_thread, NULL);

96

started, the Service Controller allocates resources and starts service instances. A
service can be started by esc_enableservice() or by starting a service that depends
on it.

Step 4: Query the service
Lines 165-175: lock the service_mutex object and wait until the service condition
variable is set by the main thread, which is acting like a client requesting service
information. (In order to wait on a condition variable, the associated mutex has to
be locked first. Inside the wait function, the mutex will be automatically unlocked
so anyone can then acquire it. On returning from wait, the mutex is automatically
acquired by the service thread.) When the service thread resumes execution, pass
the name of the service to the esc_queryservice()API method, which gets the
service instance information from the EGO Service Controller.
Lines 176-177: lock the client_mutex object and print out the service information.
Line 178: since the service info has been retrieved, notify the client by setting the
client condition variable. The main thread resumes execution.

135 void *service_thread_fn(service_state_t *service_stateP)
136 {
137 int size=4096;
138 char *buf = calloc(size, sizeof(char));
139 sprintf(buf, "EGO_CONFDIR=");
140 char *cwd = getcwd((buf+12), size-12);
141 int errn = errno;
142 if(cwd != NULL) {
143 putenv(buf);
144 } else {
145 fprintf(stderr, "Error getting CWD: %s\n",
146 strerror(errn));
147 }
148 esc_security_def_t security;
149 security.username = username;
150 security.password = password;
151 security.credential = NULL;
152 char *sname = "sample6_service";
153 char *xml = service_stateP->xml;
154 fprintf(stderr, "%s\n", xml);
155 if(esc_createservice(xml, &security)) {
156 fprintf(stderr, "Error creating service: %s\n",
157 esc_strerror(escerrno));
158 //goto bailout;
159 }
160 if(esc_enableservice(sname, &security)) {
161 fprintf(stderr, "Error enabling service: %s\n",
162 esc_strerror(escerrno));
163 }

97

Lines 179-181: unlock the client and service mutex objects and initialize the client
structure.

Step 5: Disable and remove the service
Lines 182-190: disable the service by calling the esc_disableservice() API method.
The Service Controller stops all service instances and de-allocates resources.
Remove the service by calling the esc_removeservice() API method. The Service
Controller destroys the service object and removes the service definition from the
configuration.

Run the client application
1 Select Run > Run.

The Run dialog appears.
2 In the Configurations list, either select an EGO C Client Application or click

New for a new configuration.
For a new configuration, enter the configuration name.

3 Enter the project name and C/C++ Application name.
4 Click Apply and then Run.

164 while(!shutdown) {
165 pthread_mutex_lock(&service_stateP->service_mutex);
166 service_stateP->ready=1;
167 pthread_cond_wait(&service_stateP->service_cond,
168 &service_stateP->service_mutex);
169
170 fprintf(stderr, "Got Request:\n");
171 if (service_stateP->client == NULL) continue;
172 if(esc_queryservice(sname, service_info_reply)) {
173 fprintf(stderr, "Error geting service info: %s\n",
174 esc_strerror(escerrno));
175 }
176 pthread_mutex_lock(&service_stateP->client->client_mutex);
177 print_service_info_reply(service_info_reply);
178 pthread_cond_signal(&service_stateP->client->client_cond);
179 pthread_mutex_unlock(&service_stateP->client->client_mutex);
180 service_stateP->client = NULL;
181 pthread_mutex_unlock(&service_stateP->service_mutex);

182 if(esc_disableservice(sname, &security)) {
183 fprintf(stderr, "Error disabling service: %s\n",
184 esc_strerror(escerrno));
185 }
186
187 if(esc_removeservice(sname, &security)) {
188 fprintf(stderr, "Error removing service: %s\n",
189 esc_strerror(escerrno));
190 }

98

Tutorial 7: Update a DNS Entry in the Service
Director

This tutorial describes how to create a service and add a DNS entry for the service
in the Platform EGO Service Director.

Using this tutorial, you will …
Open a connection to Platform EGO
Print out cluster information
Check if there are any registered clients connected to Platform EGO
Log on to Platform EGO
Register the client with Platform EGO
Print out allocation and container reply info from a previous connection
Print out host group information
Request resource allocation from Platform EGO and print the allocation ID
Create, run, and query a service
Query for the IP address of the host where the service is running
Update the Service Director with a new entry for service instance location.

Underlying principles
Platform EGO features a plug-in model for the Service Director. There is a default
plug-in that comes with Platform EGO, however different Service Director
elements can be installed. This sample uses the default plug-in, which implements
a DNS server for storing location information about the service instances. At
runtime, the Service Director's shared library can be loaded, and appropriate
methods (declared in the sdplugin.h file) can be looked up and invoked.
In order to communicate with a service on a host cluster, its location must be
known. Due to the nature of distributed computing, the service can be running on
any host. Normally, when a service instance switches into the run state, the Service
Controller sends a notification to the Service Director that includes location
information of the service instance. The Service Director then adds the location
record to its DNS server. In this sample, we create a service called
"Sample7_mysql_service". When this service is running, the Service Director
automatically updates its records to reflect the new service instance. However, to
demonstrate how to manually update the Service Director records, we also create
an alias to this service instance and query the service to reveal its network address.

99

Step 1: Preprocessor directives and method declarations
The first step is to include a reference to the system and API header files, followed
by the declaration of methods and variables that are implemented in the sample.

Step 2: Implement the principal method
Lines 4-7: define and initialize a data structure that is used to request a connection
with the EGO host cluster. The data structure contains a reference to a
configuration file where the master host name and port numbers are stored.
Line 8: pass the data structure as an argument to the vem_open () method, which
opens a connection to the master host. If the connection attempt is successful, a
handle is returned; otherwise the method returns NULL. The handle acts as a
communication channel to the master host and all subsequent communication
occurs through this handle.
Lines 14-15: the vem_name_t structure (defined as clusterName) is initialized with
NULL. This structure holds the cluster name, system name, and version. The
vem_uname () method is passed the communication handle and, if successful,
returns a valid vem_name_t structure ; otherwise the method returns NULL.
Line 23: the cluster info is printed out to the screen.
Lines 26-43: define the client info structure. Use vem_locate() to get all registered
clients. Since NULL is provided as the client name, all registered clients will be
located and the method returns the number of registered clients. Note that Platform

#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <string.h>
#include <errno.h>
#include <pthread.h>
#include <dlfcn.h>
#include <netdb.h>

#include "vem.api.h"
#include "esc.api.h"
#include "samples.h"
#include "esd.h"
#include "esdplugin.h"

static int addResourceCB(vem_allocreply_t *areply);
static int reclaimForceCB(vem_allocreclaim_t *areclaim);
static int containerStateChgCB(vem_containerstatechg_t *cschange);
static int hostStateChangeCB(vem_hoststatechange_t *hschange);
static char *get_service_def_xml();

void printSDEntry(char *sname);
service_state_t *service_stateP;
esc_service_info_reply_t *service_info_reply;

100

EGO is equipped with a number of default clients (services) such as the Service
Controller, so as a minimum, the info relevant to these clients is printed out and the
associated memory is released.

Lines 44-46: authenticate the user to Platform EGO.
Lines 48-52: define and initialize a structure for callback methods. These callback
methods are invoked by Platform EGO when resources are added or reclaimed, or
when a change occurs to host status or a container. When Platform EGO wants to
communicate about these events, it invokes these methods thereby calling back to
the client.

1 int
2 sample7()
3 {
4 vem_openreq_t orequest;
5 vem_handle_t *vhandle = NULL;
6 orequest.file = "ego.conf";
7 orequest.flags=0;
8 vhandle = vem_open(&orequest);
9 if (vhandle == NULL) {
10 // error opening
11 fprintf(stderr, "Error opening cluster: %s\n", vem_strerror(vemerrno));
12 return -1;
13 }
14 vem_name_t *clusterName = NULL;
15 clusterName = vem_uname(vhandle);
16 if (clusterName == NULL) {
17 // error connecting
18 fprintf(stderr, "Error connecting to cluster: %s\n",
19 vem_strerror(vemerrno));
20 return -2;
21 }
22
23 fprintf(stdout, " Connected... %s %s %4.2f\n", clusterName->clustername,
24 clusterName->sysname, clusterName->version);
25
26 vem_clientinfo_t *clients;
27 int rc = vem_locate(vhandle, NULL, &clients);
28 if (rc >=0) {
29 if (rc == 0) {
30 printf("No registered clients exist\n");
31 } else {
32 int i=0;
33 for (i=0; i<rc; i++) {
34 printf("%s %s %s\n", clients[i].name, clients[i].description,
35 clients[i].location);
36 }
37 // free
38 vem_clear_clientinfo(clients);
39 }
40 } else {
41 // error connecting
42 fprintf(stderr, "Error geting clients: %s\n", vem_strerror(vemerrno));
43 }

101

Lines 54-63: define the vem_allocation_info_reply_t and
vem_container_info_reply_t structures. If a client gets disconnected and then
re-registers, its existing allocations and containers are returned to these structures.
If the client had never registered before, the structures would be empty. Define and
initialize a structure (rreq) that holds client info for registration purposes. (This
includes assigning the client callback structure (cbf) to the callback member of the
rreq structure.) Register with Platform EGO via the open connection using
vem_register().

Lines 68-71: print out information related to the allocation requests and containers.
Once the info is printed out, the memory for the allocations is freed.

44 if (login(vhandle, username, password)<0) {
45 fprintf(stderr, "Error logon: %s\n", vem_strerror(vemerrno));
46 goto leave;
47 }
48 vem_clientcallback_t cbf;
49 cbf.addResource = addResourceCB;
50 cbf.reclaimForce = reclaimForceCB;
51 cbf.containerStateChg = containerStateChgCB;
52 cbf.hostStateChange = hostStateChangeCB;
53
54 vem_allocation_info_reply_t aireply;
55 vem_container_info_reply_t cireply;
56 vem_registerreq_t rreq;
57 rreq.name = "sample7_client";
58 rreq.description = "Sample7 Client";
59 rreq.flags = VEM_REGISTER_TTL;
60 rreq.ttl = 3;
61 rreq.cb = &cbf;
62
63 rc = vem_register(vhandle, &rreq, &aireply, &cireply);
64 if (rc < 0) {
65 fprintf(stderr, "Error registering: %s\n", vem_strerror(vemerrno));
66 goto leave;
67 }

102

Lines 73-84: the vem_gethostgroupinfo() method collects the information for the
requested hostgroup. In this case, the requested hostgroup in the input argument is
set to NULL, which means that information about all hostgroups is requested. If the
method call is successful, hostgroup information is printed out to the screen.

Lines 85-88: define and initialize the service_stateP and client_stateP structures.
These structures contain the respective mutex objects and condition variables.
Lines 90-91: get the service definition and store it in the service state structure.
Refer to Step 3: Create the service definition on page 106.
Lines 93-97: create and run the service_thread. The service thread is responsible for
defining and creating the Platform EGO service.

Lines 98-113: use vem_locate() to get all registered clients. Since NULL is provided
as the client name, all registered clients will be located and the method returns the
number of registered clients. If successful, print out the client info (name,
description, and location) and free the associated memory.
Lines 120-123 lock the service_mutex object and wait until the service is running.
Set the service condition variable to unblock the service thread, which causes the
service thread to query the service.

68 print_vem_allocation_info_reply(&aireply);
69 print_vem_container_info_reply(&cireply);
70 // freeup any previous allocations
71 release_vem_allocation(vhandle, &aireply);
72
73 vem_hostgroupreq_t hgroupreq;
74 hgroupreq.grouplist = NULL;
75 vem_hostgroup_t *hgroup;
76
77 rc = vem_gethostgroupinfo(vhandle, &hgroupreq, &hgroup);
78 if (rc < 0) {
79 fprintf(stderr, "Error getting hostgroup: %s\n",
80 vem_strerror(vemerrno));
81 } else {
82 printf("%s %s %d %d\n", hgroup->groupName, hgroup->members, hgroup->free,
83 hgroup->allocated);
84 }

85 service_stateP = calloc(1, sizeof(service_state_t));
86 initialize_service(service_stateP);
87 client_state_t *client_stateP = calloc(1, sizeof(client_state_t));
88 initialize_client(client_stateP);
89
90 char *xml = get_service_def_xml();
91 service_stateP->xml = xml;
92
93 pthread_t service_thread;
94 if (pthread_create(&service_thread, NULL, service_thread_fn,
95 service_stateP)) {
96 perror("Error creating service thread: ");
97 }

103

Lines 129-132: lock the client_mutex object and block the main thread with the
client condition variable. When the service info is available, the service thread
signals the main thread to resume execution using the client condition variable. The
main thread prints out the service info reply.

Lines 134-140: store the service info in the esc_service_info_t structure and retrieve
the number of service instances. Assign the service instance info to the
instance_info structure. Allocate and initialize an array in memory to hold the IP
address associated with each service instance.
Lines 144- 149: for each service instance, retrieve the host name where the service
instance is running and pass it to the gethostbyname() method. The method
returns a pointer to a hostent structure (locationService), the members of which
contain the fields of an entry in the network host database. The hostent structure is
defined in the <netdb.h> header. Extract the host's IP address from the
locationService structure and assign it to the ipAddresses array.
Lines 149-161: pass "mysql", an alias for "Sample7_mysql_service", to the
printSDEntry() method. The method will query the service and print the IP address
of the host that the service is running on. However, since there is currently no entry

98 rc = vem_locate(vhandle, NULL, &clients);
99 if (rc >=0) {
100 if (rc == 0) {
101 printf("No registered clients exist\n");
102 } else {
103 int i=0;
104 for (i=0; i<rc; i++) {
105 printf("%s %s %s\n", clients[i].name, clients[i].description,
106 clients[i].location);
107 }
108 vem_clear_clientinfo(clients);
109 }
110 } else {
111 // error connecting
112 fprintf(stderr, "Error geting clients: %s\n", vem_strerror(vemerrno));
113 }
114 sleep(60);
115
116 // get service info
117 service_info_reply = calloc(1, sizeof(esc_service_info_reply_t));
118 int succeed=0;
119 while(!succeed) {
120 pthread_mutex_lock(&service_stateP->service_mutex);
121 if (service_stateP->ready && service_stateP->client == NULL) {
122 service_stateP->client = client_stateP;
123 pthread_cond_signal(&service_stateP->service_cond);
124 succeed = 1;
125 }
126 pthread_mutex_unlock(&service_stateP->service_mutex);
127 }
128 fprintf(stderr, "Sent Request to Service:\n");
129 pthread_mutex_lock(&client_stateP->client_mutex);
130 pthread_cond_wait(&client_stateP->client_cond,
131 &client_stateP->client_mutex);
132 print_service_info_reply(service_info_reply);
133 pthread_mutex_unlock(&client_stateP->client_mutex);

104

in the Service Director records for a service called "mysql", nothing is printed. (The
printSDEntry() method is used again later in the sample to print out the IP address
after the Service Director records have been properly updated.)

The following paragraphs demonstrate how to manually add a new entry in the
Service Director that provides service instance location information.
Lines 162-167: define and initialize a structure (update) to hold service instance
info that will be used to add a new record in the Service Director.
Lines 169-175: use dlopen() to open a shared library (esd_ego_default.so); this is
the default Service Director plug-in. The dlopen() method returns a handle to the
shared library. Define a structure to initialize all the plug-in variables. Pass the
shared library handle and a function name (esd_plugin_initialize) to dlsym(). The
method looks up the address of the function in the shared library handle obtained
from dlopen.
Lines 179-189: set up the necessary plug-in variables and invoke the initialization
method from the shared library.

134 esc_service_info_t *service_info = &service_info_reply->serviceV[0];
135 if (service_info == NULL) {
136 fprintf (stderr, "Could not get Service Info\n");
137 goto done;
138 }
139 int i, num_instances;
140 num_instances = service_info->instC;
141 int ipaddrC = num_instances;
142 char **ipAddresses = calloc(ipaddrC, sizeof(char*));
143
144 for(i=0; i < num_instances; i++) {
145 esc_service_instance_info_t *instance_info = &service_info->instV[i];
146 char *location = instance_info->host;
147 struct hostent * locationService = gethostbyname(location);
148 ipAddresses[i] = locationService->h_addr_list[0];
149 } char *sname = "mysql";
150 printSDEntry(sname);

151 void
152 printSDEntry(char *sname)
153 {
154 int i=0;
155 struct hostent * dnsService = gethostbyname(sname);
156 fprintf(stderr, "Existing Entry for %s\n", sname);
157 if (dnsService != NULL) {
158 for (i=0; i<dnsService->h_length; i++) {
159 fprintf(stderr, "%s\n", dnsService->h_addr_list[i]);
160 }
161 }

105

Lines 190-191: pass the update structure to the update_service() method. The
method adds a service location entry in the Service Directorconsisting of an alias
(mysql) with the same IP address that was printed by the previous service query in
the service thread; see Tutorial 6: Step 4: Query the service on page 96. The
printSDEntry() method prints out the new service location entry.

162 si_updrec_t update;
163 sd_update_oper_t op = op_add;
164 update.name = sname;
165 update.ipaddrC = ipaddrC;
166 update.ipaddrV = ipAddresses;
167 update.oper = op;
168
169 void * esd_plugin = dlopen("esd_ego_default.so", RTLD_LAZY);
170 if (esd_plugin == NULL) {
171 fprintf (stderr, "%s\n", dlerror());
172 }
173 esd_plugin_initialize_t esd_plugin_init;
174
175 void *fptr = dlsym(esd_plugin, "esd_plugin_initialize");
176 if (fptr == NULL) {
177 fprintf (stderr, "%s\n", dlerror());
178 }
179 * (void **) &esd_plugin_init = fptr;
180
181 esd_utility_funcs_t utility_functions;
182 utility_functions.calloc = calloc;
183 utility_functions.malloc = malloc;
184 utility_functions.free = free;
185 utility_functions.realloc = realloc;
186 utility_functions.strdup = strdup;
187 const char *param = "";
188 esd_plugin_t sd_plugin;
189 (*esd_plugin_init)(&utility_functions, param, &sd_plugin);
190 sd_plugin.update_service(&update);
191 printSDEntry(sname);

106

Step 3: Create the service definition
Create a service definition in XML format. Each service is described by an XML file
that contains information about the service such as the type of resources required
to run the service instances and how to start and monitor them.

Step 4: Create the service
In this sample, service creation is handled by the service thread. The service simply
starts the mySQL program.

char * get_service_def_xml()
{
char *xml =
"<?xml version=\"1.0\" encoding=\"UTF-8\"?>\
<sc:ServiceDefinition xmlns:sc=
\"http://www.platform.com/ego/2005/05/schema/sc\" xmlns:ego=
\"http://www.platform.com/ego/2005/05/schema\" xmlns:xsi=
\"http://www.w3.org/2001/XMLSchema-instance\" xmlns:xsd=
\"http://www.w3.org/2001/XMLSchema\" xsi:schemaLocation=
\"http://www.platform.com/ego/2005/05/schema/sc ../sc.xsd
 http://www.platform.com/ego/2005/05/schema ../ego.xsd\" ServiceName=
\"Sample7_mysql_service\">\
 <sc:Description>\"Sample 7 MySQL Service\"</sc:Description>\
 <sc:MinInstances>1</sc:MinInstances>\
 <sc:MaxInstances>1</sc:MaxInstances>\
 <sc:Priority>10</sc:Priority>\
 <sc:MaxInstancesPerSlot>1</sc:MaxInstancesPerSlot>\
 <sc:ControlPolicy>\
 <sc:StartType>MANUAL</sc:StartType>\
 <sc:MaxRestarts>10</sc:MaxRestarts>\
 <sc:HostFailoverInterval>60s</sc:HostFailoverInterval>\
 </sc:ControlPolicy>\
 <ego:AllocationSpecification>\
 <ego:ConsumerID>/SampleApplications/EclipseSamples</ego:ConsumerID>\
 <!-- The ResourceType specifies a ""compute element"" identified by the
 URI used below -->\
 <ego:ResourceSpecification ResourceType=
\"http://www.platform.com/ego/2005/05/schema/ce\">\
 <ego:ResourceGroupName>ComputeHosts</ego:ResourceGroupName>\
 <ego:ResourceRequirement>LINUX86</ego:ResourceRequirement>\
 </ego:ResourceSpecification>\
 </ego:AllocationSpecification>\
 <sc:ContainerDescription>\
 <ego:Attribute name=\"hostType\" type=\"xsd:string
\">LINUX86</ego:Attribute>\
 <ego:ContainerSpecification>\
 <ego:Command>bin/mysql --user mysql</ego:Command>\
 <ego:RunAsOSUser>root</ego:RunAsOSUser>\
 <ego:WorkingDirectory>/usr/local/mysql</ego:WorkingDirectory>\
 <ego:Umask>0777</ego:Umask>\
 </ego:ContainerSpecification>\
 </sc:ContainerDescription>\
</sc:ServiceDefinition>\";
return xml;
}

107

Lines 194-204: set the EGO_CONFDIR environment variable to the current
working directory so that the Service Controller, which is just another Platform
EGO client, can find the Platform EGO configuration. The configuration is stored
in the ego.conf file.
Lines 205-208: define and initialize a security structure. The username and
password variables have been initialized with "egoadmin" from sample # 2.
Line 210: create a service definition in XML format. Each service is described by an
XML file that contains information about the service such as the type of resources
required to run the service instances and how to start and monitor them.
Lines 212-219: pass the security structure and the service definition to the
esc_createservice() method. This API call creates a new service object. If startType
is automatic in the service definition, the service is enabled automatically. In this
case, the startType is set to manual so the service must be enabled by the
esc_enableservice() method. This API call starts the service. Once the service is
started, the Service Controller allocates resources and starts service instances. A
service can be started by esc_enableservice() or by starting a service that depends
on it.

192 void *service_thread_fn(service_state_t *service_stateP)
193 {
194 int size=4096;
195 char *buf = calloc(size, sizeof(char));
196 sprintf(buf, "EGO_CONFDIR=");
197 char *cwd = getcwd((buf+12), size-12);
198 int errn = errno;
199 if(cwd != NULL) {
200 putenv(buf);
201 } else {
202 fprintf(stderr, "Error getting CWD: %s\n",
203 strerror(errn));
204 }
205 esc_security_def_t security;
206 security.username = username;
207 security.password = password;
208 security.credential = NULL;
209 char *sname = "sample6_service";
210 char *xml = get_service_def_xml();
211
212 if(esc_createservice(xml, &security)) {
213 fprintf(stderr, "Error creating service: %s\n",
214 esc_strerror(escerrno));
215 //goto bailout;
216 }
217 if(esc_enableservice(sname, &security)) {
218 fprintf(stderr, "Error enabling service: %s\n",
219 esc_strerror(escerrno));
220 }

108

Step 5: Client callback methods
These callback methods are invoked by Platform EGO when resources are added or
reclaimed, or when a change occurs to host status or a container. When Platform
EGO wants to communicate about these events, it invokes these methods thereby
calling back to the client.
Lines 221-227: this method is called by Platform EGO when resources have been
added to an allocation in order to tell the client which resources have been provided
for its use. This method prints out the allocation and consumer IDs, the number of
hosts allocated, host names and number of slots, and host attributes.
Lines 229-235: this method is called by Platform EGO when resources need to be
reclaimed. Resources may be reclaimed either for policy reasons, or because a
resource has been found to be down or unavailable. The method prints out the host
info including host name and slots for each host being reclaimed.
Lines 237-243: this method is called by Platform EGO in order to communicate
status changes in containers to the clients that started them. The method prints out
the container ID and its associated state.
Lines 245-251: this method is called by Platform EGO when a host changes state.
The method prints out the host name and its new host state.

221 int
222 addResourceCB(vem_allocreply_t *areply)
223 {
224 printf("addResource Call Back\n");
225 print_vem_allocreply(areply);
226 return 0;
227 }
228
229 int
230 reclaimForceCB(vem_allocreclaim_t *areclaim)
231 {
232 printf("reclaimForce Call Back\n");
233 print_vem_allocreclaim(areclaim);
234 return 0;
235 }
236
237 int
238 containerStateChgCB(vem_containerstatechg_t *cschange)
239 {
240 printf("containerStateChg Call Back\n");
241 printf("%s %d\n", cschange->containerId, cschange->newState);
242 return 0;
243 }
244
245 int
246 hostStateChangeCB(vem_hoststatechange_t *hschange)
247 {
248 printf("hostStateChange Call Back\n");
249 printf("%s %d\n", hschange->name, hschange->newState);
250 return 0;
251 }

109

Run the client application
1 Select Run > Run.

The Run dialog appears.
2 In the Configurations list, either select an EGO C Client Application or click

New for a new configuration.
For a new configuration, enter the configuration name.

3 Enter the project name and C/C++ Application name.
4 Click Apply and then Run.

110

111

C H A P T E R

4
Getting Started with the Web Service Client:

A Collection of Tutorials

Before you begin the tutorials
One fact about Web Service clients is that they can be written in almost any
programming language. In this series of tutorials, the sample code has been
developed in the Java programming language.
Before starting these tutorials, ensure that the EGO Web Service API plug-in is
installed in Eclipse and the Platform EGO runtime has been installed, configured,
and running on a host cluster. The sample programs use a URL or IP address and
port number to communicate with a Web Service gateway in the master host. The
gateway is installed as part of Platform EGO. It comes with a configuration file
called wsg.conf where the port number for the gateway can be defined. By default
the port number is 9090. The default location for the wsg.conf file is
/opt/ego/kernel/conf/. The gateway URL can then be formed by using the
hostname where the gateway is running and the port number, i.e., http://host:port.
This URL is passed as an input argument to the client samples.
Also, try to connect to the Web Service gateway using a browser by entering the
URL or IP address and port number of the gateway. If you cannot connect through
the browser, you will not be able to run the samples.

112

Contents
Locate the code samples on page 113
Tutorial 1: Request Information About Hosts in a Cluster on page 114
Tutorial 2: Register, Locate, and Unregister a Client on page 120
Tutorial 3: Request a Resource Allocation in a Cluster on page 128
Tutorial 4: Monitor an Activity on a Resource on page 136
Tutorial 5: Modify Resources Based on Load Information on page 143
Tutorial 6: Create an EGO Service on page 152
Tutorial 7: Create an EGO Service and Query the Domain Name Server on page
162

113

Locate the code samples

1 Launch Eclipse.
2 Select File > New > Project.
3 In the New Project dialog, expand Enterprise Grid Orchestrator Samples

(EGO) and select EGO Web Services Sample Client (Java Application).
Click Next.

4 In the EGO Sample Project dialog, enter a project name. To use default project
settings, click Finish, or, to adjust the settings, click Next . Note that in order
to run the SDK samples, the compliance level must be set to 5.0 since the
samples use Java 2 Standard Edition (J2SE) 5.0 features. Click Finish when
settings are complete.

5 In the Package Explorer view, expand the project to see the list of code samples.
Note: If the Package Explorer is not visible, select Window > Show View >
Package Explorer.

6 Double-click the sample file.
The sample code appears in the main view.

114

Tutorial 1: Request Information About Hosts in a
Cluster

This tutorial describes the minimum amount of code required to create an
unregistered EGO client that connects to a host cluster.

Using this tutorial, you will …
Open a connection to the EGO Web Service endpoint
Retrieve and print out cluster info
Retrieve and print out resource info

Step 1: Import class references
Import the necessary classes and interfaces that are required by the client to invoke
the Web Service.

115

Step 2: Retrieve cluster information
Check if the client can connect to the MonitoringPortType endpoint in the Web
Service. If successful, the next step is to create an XML document for requesting
cluster information.

The ClusterInfoRequestDocument and ClusterInfoResponseDocument classes
represent XML and the ClusterInfoRequest and ClusterInfoResponse classes
represent the data.
Since client registration is not required for querying host information, security is
not an issue. The Web Service, however, expects security documents so they are
simply instantiated without any security information.
An object of type ClusterInfoRequestDocument is passed to the local proxy
method, ClusterInfo(). The Web Service returns the cluster information and the
result is printed out to the console using the overloaded print() method.

Step 3: Retrieve resource information
The code required to retrieve resource information is similar to retrieving cluster
information. Check if the client can connect to the MonitoringPortType endpoint
in the Web Service. If successful, create a ResourceInfoRequestDocument object

public void clusterInfo() {
if (monitor == null) {
System.err.println("Could not find MonitorPort...");
return;
}
ClusterInfoRequestDocument requestDoc = ClusterInfoRequestDocument.Factory
.newInstance();
ClusterInfoRequest request = requestDoc.addNewClusterInfoRequest();
ClusterInfoResponseDocument responseDoc;
ClusterInfoResponse response;

// no security check needed for cluster info
SecurityDocument sdoc1 = SecurityDocument.Factory.newInstance();
SecurityHeaderType sec1 = sdoc1.addNewSecurity();
SecurityDocument sdoc2 = SecurityDocument.Factory.newInstance();
SecurityHeaderType sec2 = sdoc2.addNewSecurity();
SecurityDocument sdoc3 = SecurityDocument.Factory.newInstance();
SecurityHeaderType sec3 = sdoc3.addNewSecurity();
SecurityDocument sdoc4 = SecurityDocument.Factory.newInstance();
SecurityHeaderType sec4 = sdoc4.addNewSecurity();

try {
responseDoc = monitor.ClusterInfo(requestDoc, sdoc1, sdoc2, sdoc3,
sdoc4);
response = responseDoc.getClusterInfoResponse();
print(response);
} catch (RemoteException rex) {
rex.printStackTrace();
return;
}
}

116

and a ResourceInfoRequest object to hold the request data. Since we want to
retrieve the information from all resources, the ResourceInfoRequest object is
empty.
Create the security documents but leave them empty since security information is
not required for resource queries.
Next, we pass the ResourceInfoRequestDocument and the security documents to
the local proxy method, ResourceInfo(). The result of the operation is returned to
the ResourceInfoResponseDocument object. The data is extracted from the
document into the ResourceInfoResponse object and then printed out to the
console using the overloaded print() method.

public Resource [] resourceInfo(String[] resourceNames) {
if (monitor == null) {
System.err.println("Could not find MonitorPort...");
return null;
}

try {
ResourceInfoRequestDocument rreqDoc = ResourceInfoRequestDocument.Factory
.newInstance();
ResourceInfoRequest rreq = rreqDoc.addNewResourceInfoRequest();
rreq.setResourceNameArray(resourceNames);

ResourceInfoResponseDocument rresDoc = monitor.ResourceInfo(
rreqDoc);
ResourceInfoResponse rres = rresDoc.getResourceInfoResponse();
print(rres);
Resource [] resources = rres.getResourceArray();
return resources;
catch (RemoteException rex) {
rex.printStackTrace();
return null;
}
}

117

Step 4: Print the resource information

public void print(ClusterInfoResponse response) {
ClusterInfo [] cinfos = response.getClusterInfoArray();
for(int i=0; i<cinfos.length; i++) {
ClusterInfo cinfo = cinfos[i];
 System.out.printf("%-12s\t\t%-12s\t\t%-12s%n",
 cinfo.getClusterName(), cinfo.getVersion());
}
}
public void print(ResourceInfoResponse response) {
Resource[] resources = response.getResourceArray();
if(resources != null) {
 // print header
 System.out.printf("%-12s\t\t", "Attribute");
 for(int i=0; i<resources.length; i++) {
 System.out.printf("%-12s\t\t", resources[i].getResourceName());
 }
 System.out.println();
 System.out.printf("%-12s\t\t", "Type");
 for(int i=0; i<resources.length; i++) {
 System.out.printf("%-12s\t\t", resources[i].getResourceType());
 }
 System.out.println();

 System.out.printf("%-12s\t\t", "State");
 for(int i=0; i<resources.length; i++) {
 System.out.printf("%-12s\t\t", resources[i].getResourceState());
 }
 System.out.println();
}
// assumes all resources have same attributes
 Attribute [] attributes = resources[0].getAttributeArray();
 int numAttrs = attributes.length;
for(int j=0; j<numAttrs; j++) {
 System.out.printf("%-12s\t\t", attributes[j].getName());
 for (int i = 0; i < resources.length; i++) {
Resource r = resources[i];
System.out.printf("%-12s\t\t", r.getAttributeArray(j).getStringValue());
 }
 System.out.println();
}
}

118

Step 5: Call the sample program
In this step, we simply create an EGOClient object and call its serviceInfo() method
from the main method.

Run the client application
1 Select Run > Run.

The Run dialog appears.
2 In the Configurations list, either select a Java Application or click New for a

new configuration.
For a new configuration, enter the configuration name.

3 Enter the project name and Main class.
4 Click the Arguments tab and enter the URL of the web service gateway.
5 Click Apply and then Run.

public void print(Resource res) {
String name = res.getResourceName();
String type = res.getResourceType();
Enum state = res.getResourceState();
System.out.printf("%-12s%n%-12s%n%-12s%n",
name, type, state.toString());
Attribute[] attributes = res.getAttributeArray();

for (int i = 0; i < attributes.length; i++) {
Attribute attr = attributes[i];
print(attr);
}
}

public void print(Attribute a) {
String name = a.getName();
String value = a.getStringValue();
System.out.printf("%-12s\t\t%-12s%n", name, value);
}
public void print(ClientInfo cinfo) {
System.out.printf("%-12s\t%-12s\t%-12s%n",
cinfo.getClientName(), cinfo.getClientDescription(),
cinfo.getClientLocation());
}

...
public static void main(String[] args) throws Exception {
if(args==null || args.length <1) {
throw new Exception("Incorrect Arguments");
}
EGOclient client = new EGOclient(args[0]);
client.serviceInfo();
}

119

Sample output

120

Tutorial 2: Register, Locate, and Unregister a
Client

This tutorial describes how to register and unregister the client with the EGO Web
Service.

Using this tutorial, you will …
Open a connection to the EGO Web Service endpoint
Retrieve and print out cluster info
Retrieve and print out resource info
Register the client with Platform EGO and print out the registration response
Locate the client and print out the client info
Unregister the client

Step 1: Import class references
Import the necessary classes and interfaces that are required by the client to invoke
the Web Service.

Step 2: Retrieve cluster and Resource information
The Sample 2 EGOclient class is a subclass of the Sample 1 EGOclient class. Refer
to Tutorial 1: Step 2: Retrieve cluster information on page 115 and Step 3: Retrieve
resource information on page 115.

Step 3: Register the client
Registration is required in order for clients to be able to request allocations and start
activities. The client must also be registered in order to receive notifications for
events related to the client's allocations, assigned resources, and activities.
Check if the client can connect to the RegistrationPortType endpoint. If successful,
create the RegisterRequestDocument (requestDoc) and RegisterRequest (request)
objects. The RegisterRequest object has three member variables: the clientID or
name, which must be unique for each client connected to the cluster; a client
description; and a URI for the notification endpoint. This endpoint implements the
EGO notification WSDL interface. Platform EGO will then send notifications to the
client using this endpoint.
Create the security document. The EGO WSDLs and Web Service gateway support
Web Service Security (WSSE specification). This means that different types of
security information can be passed in the header of SOAP messages sent by the
clients. The samples use the simplest form, i.e., username and password
authentication. The wrappers generated for Java have signatures that provide for

121

multiple types of security information to be included. In this case, we are using just
one security document, which is passed to the register method along with
requestDoc and the logonDoc security document.
The response to a registration request has the following sub-elements:
ClientName - the client name that has been assigned to this registration (this will
be the same as the optional requested ClientName if the registration is accepted).
AllocationInfo - zero or more elements describing the allocations that have been
made previously by this client.
ActivityInfo - zero or more elements describing the activities that have be created
previously by this client.
Print out the client name, and the allocation and activity info from the registration
response.

122

Step 4: Locate the client
The Locate operation is used to retrieve information about clients registered with
Platform EGO.

public void register(String clientId, String clientDescription, String uri)
throws Exception, RemoteException {
this.clientId = clientId;

//the default constructor would use the right endpoint
if (regPort == null) {
try {
 regPort = new RegistrationPortTypeStub(null, targetURL);
} catch (Exception e) {
e.printStackTrace();
 System.err.println("Could not find RegistrationPort...");
 return;
}
}
// create the RegisterRequest Document
RegisterRequestDocument requestDoc = RegisterRequestDocument.Factory
.newInstance();
RegisterRequest request = requestDoc.addNewRegisterRequest();
request.setClientName(clientId);
request.setClientDescription(clientDescription);

URL ntfURL = new URL(uri);
ntfPortNumber = ntfURL.getPort();

 //TODO Hack until we get Addressing/SoapHeaders to work
String uriHack = uri;
request.setNotificationEndpoint(uriHack);
 request.setOptionArray(new String[]{});
// create the RegisterResponse Document
RegisterResponseDocument responseDoc;
// security documents
SecurityDocument sdoc1 = SecurityDocument.Factory.newInstance();
UsernameTokenType usernameTType = getUsernameTokenType(username, password);
 SecurityHeaderType sech1 =
 SecurityHeaderType.Factory.parse(usernameTType.getDomNode());
 sdoc1.setSecurity(sech1);
 sdoc1.dump();
logonDoc = sdoc1;
sdoc1.dump();
requestDoc.dump();
responseDoc = regPort.Register(requestDoc, logonDoc);
RegisterResponse response = responseDoc.getRegisterResponse();
print(response);

handleRecovery(response);
}

123

Check if the client can connect to the RegistrationPortType endpoint. If successful,
create the LocateRequestDocument (lreqDoc) and LocateRequest (lreq) objects.
Set the client ID for the LocateRequest object. If no client ID is given, then all
registered clients will be returned.
Create the security documents. The wrappers generated for Java have signatures
that provide for multiple types of security information to be included. As in the case
of client registration, we are using just one security document. Since the Locate
method signature has more than one document defined, we pass two empty
security documents (sdoc2 and sdoc3) along with lreqDoc and the logonDoc
security document.
The response to a locate client request contains zero or more elements of client info.
Print out the client info from the locate client response.

Step 5: Unregister the client
The Unregister operation is used to terminate an existing EGO registration, which
has the effect of terminating all activities started by this client, and releasing all
current allocations.
Check if the client can connect to the RegistrationPortType endpoint.
Create the UnregisterRequestDocument (requestDoc) and UnregisterRequest
(request) objects. Set the client ID for the UnregisterRequest object.

public void locateClients(String clientId) {
if(this.clientId != clientId) {
System.err.println("This clientId was not registered through this Object...:"
 + clientId);
}
if (regPort == null) {
System.err.println("No RegistrationPort exists...");
return;
}
try {
LocateRequestDocument lreqDoc = LocateRequestDocument.Factory
.newInstance();
LocateRequest lreq = lreqDoc.addNewLocateRequest();
//TODO does empty string mean allClients?
lreq.setClientName(clientId);
SecurityDocument sdoc2 = SecurityDocument.Factory.newInstance();
SecurityHeaderType sec2 = sdoc2.addNewSecurity();
SecurityDocument sdoc3 = SecurityDocument.Factory.newInstance();
SecurityHeaderType sec3 = sdoc3.addNewSecurity();

LocateResponseDocument lresDoc = regPort.Locate(lreqDoc,
logonDoc, sdoc2, sdoc3);
LocateResponse lres = lresDoc.getLocateResponse();
print(lres);
} catch (RemoteException rex) {
rex.printStackTrace();
return;
}
}

124

Create the UnregisterResponseDocument (responseDoc) object. Call the
Unregister method and pass the requestDoc and logonDoc objects as input
arguments.

public void unregister(String clientId) {
if(this.clientId != clientId) {
System.err.println("This clientId was not registered through this Object...:"
 + clientId);
}
if (regPort == null) {
System.err.println("No RegistrationPort exists...");
return;
}

try {
// create the RegisterRequest Document
UnregisterRequestDocument requestDoc = UnregisterRequestDocument.Factory
.newInstance();
UnregisterRequest request = requestDoc.addNewUnregisterRequest();
request.setClientName(clientId);

// create the RegisterResponse Document
UnregisterResponseDocument responseDoc = UnregisterResponseDocument.Factory
.newInstance();

responseDoc = regPort.Unregister(requestDoc, logonDoc);
UnregisterResponse response = responseDoc.getUnregisterResponse();
response.dump();

} catch (RemoteException rex) {
rex.printStackTrace();
}
}

125

Step 6: Print out the information
The following methods iterate through the various arrays to collect and format the
client, activity, and allocation information before printing it out.

public void print(RegisterResponse response) {
String name = response.getClientName();
AllocationInfo [] alocinfos = response.getAllocationInfoArray();
ActivityInfo [] actinfos = response.getActivityInfoArray();

System.out.println("RegisterResponse: " + name);
print(alocinfos); System.out.println();
print(actinfos); System.out.println();
}

public void print(LocateResponse lres) {
ClientInfo[] cinfos = lres.getClientInfoArray();
for (int i = 0; i < cinfos.length; i++) {
ClientInfo cinfo = cinfos[i];
print(cinfo);
}
}

public void print(AllocationInfo [] alocinfos)
{
for(int i=0; i<alocinfos.length; i++) {
AllocationInfo ainfo = alocinfos[i];
String id = ainfo.getAllocationID();
String consumer = ainfo.getConsumerName();
AllocationStatus.Enum status = ainfo.getAllocationStatus();
AllocationSpecification aspec = ainfo.getAllocationSpecification();
Resource [] ress = ainfo.getResourceArray();
System.out.printf("%-12s\t%-12s\t%-12s\t", id, consumer, status);
//TODO print aloc spec
for(int j=0; j<ress.length; j++) {
System.out.printf("%-12s\t", ress[j].getResourceName());
}
System.out.println();
}
}

126

Run the client application
1 Select Run > Run.

The Run dialog appears.
2 In the Configurations list, either select a Java Application or click New for a

new configuration.
For a new configuration, enter the configuration name.

3 Enter the project name and Main class.
4 Click the Arguments tab and enter the following arguments in the given order:

1 URL of the web service gateway
2 Port number (string) for the notification interface
3 Client ID (string)
4 Client description (string).

NOTE: Arguments must be separated by a space.

5 Click Apply and then Run.

public void print(ActivityInfo [] actInfos)
{
for (int i=0; i<actInfos.length; i++) {
ActivityInfo ainfo = actInfos[i];
 String id = ainfo.getActivityID();
ActivityState.Enum state = ainfo.getActivityState();
int exitCode = ainfo.getExitStatus().intValue();
String [] exitReason = ainfo.getExitReasonArray();
Calendar start = ainfo.getStartTime();
Calendar end = ainfo.getEndTime();
ActivityResourceUsage rusage = ainfo.getActivityResourceUsage();
ainfo.getResourceNameArray();
System.out.printf("%-12s\t%-12s\t", id, state.toString());
if(state == ActivityState.FINISH) {
System.out.printf("%-12d\t", exitCode);
for(int j=0; j<exitReason.length; j++) {
 System.out.printf("%-12s\t", exitReason[j]);
}
} else {
System.out.printf("%-12d\t%-12d\t%-12d", start, rusage.getUtime(),
rusage.getStime());
}
System.out.println();
}
}

127

Sample output

128

Tutorial 3: Request a Resource Allocation in a
Cluster

This tutorial describes how to create a registered EGO client that requests a
resource allocation in a cluster and starts an activity on it.

Using this tutorial, you will …
Open a connection to the EGO Web Service endpoint
Retrieve and print out cluster info
Retrieve and print out resource info
Register the client with Platform EGO and print out the registration response
Request a resource allocation
Check for notification of resource allocation
Create an activity that will run on the requested resource
Locate the client and print out the client info
Unregister the client

Step 1: Import class references
Import the necessary classes and interfaces that are required by the client to invoke
the Web Service.

Step 2: Retrieve cluster and Resource information
Refer to Tutorial1: Step 2: Retrieve cluster information on page 115 and Step 3:
Retrieve resource information on page 115.

Step 3: Register the client
Refer to Tutorial 2: Step 3: Register the client on page 120.

Step 4: Make a resource allocation request
The RequestAllocation operation is used by an EGO client to make a request for
resources.
Call the allocate method and pass the number of resources requested as the input
argument. In this case, the number of resources is 1.
Check if the client can connect to the AllocationPortTypeStub endpoint. If
successful, create a resource specification (resourceSpecifications). The resource
specification provides a means for specifying a request for consumable resources
and any constraints on resource selection.

129

Create an allocation specification (alocSpec). This allocation specification
describes a request to Platform EGO for an allocation of resources. The only
required variables for the allocation specification are the consumer name to charge
this allocation to, and the resource specification (resourceSpecifications) of what is
being requested.
Create an allocation request object (alocReq) and link it with the client name and
allocation specification (alocSpec).
Create the security document. The wrappers generated for Java have signatures that
provide for multiple types of security information to be included. As in the case of
client registration, we are using just one security document (logonDoc). Pass it
along with along with alocReqDoc to the RequestAllocation method.
Create an allocated resource object (alocResources). The AllocatedResources class
models the resources that the application has requested and tracks them as it
obtains and uses them. The constructor takes the allocation ID and the number of
resources requested.
The allocation ID is then added to a list of allocation IDs. The
allocidToResourcesMap object is used to map allocation ID to the
AllocatedResources class that tracks it. So given an allocation ID, one can find out
the details about it from the AllocatedResources instance. The alocIds.add and
allocidToResourceMap.put methods update the list of IDs and the map,
respectively.

130

public void allocate(int numberOfResources)
{
if(allocPort == null) {
 try {
 allocPort = new AllocationPortTypeStub(null, targetURL);
 } catch(Exception e) {
e.printStackTrace();
return;
 }}
resourceSpecifications = createResourceSpecification(numberOfResources);
AllocationSpecificationDocument alocSpecDoc =
 AllocationSpecificationDocument.Factory.newInstance();
AllocationSpecification alocSpec =
 alocSpecDoc.addNewAllocationSpecification();
alocSpec.setAllocationName("Sample3Allocation");
alocSpec.setConsumerName("SampleApplications/EclipseSamples");
alocSpec.setResourceSpecificationArray(resourceSpecifications);
RequestAllocationRequestDocument alocReqDoc =
 RequestAllocationRequestDocument.Factory.newInstance();
RequestAllocationRequest alocReq =
 alocReqDoc.addNewRequestAllocationRequest();
alocReq.setClientName(clientId);
alocReq.setAllocationSpecification(alocSpec);
RequestAllocationResponseDocument alocResDoc;
RequestAllocationResponse alocRes;
try {
alocResDoc = allocPort.RequestAllocation(alocReqDoc, logonDoc);
 alocRes = alocResDoc.getRequestAllocationResponse();
 AllocatedResources alocResources = new
 AllocatedResources(alocRes.getAllocationID(),
numberOfResources);
 alocIds.add(alocRes.getAllocationID());
 allocidToResourcesMap.put(alocRes.getAllocationID(), alocResources);
}catch (RemoteException rex) {
System.err.println("Failed to Allocate");
rex.printStackTrace();
return;
}}

protected ResourceSpecification[] createResourceSpecification(int numberOfResources) {
ResourceSpecification [] resSpecs = new ResourceSpecification [1];
 ResourceSpecification resSpec =
 ResourceSpecification.Factory.newInstance();
 resSpec.setMaxResources(new
 BigInteger(Integer.toString(numberOfResources)));
 resSpec.setMinResources(new BigInteger("1"));
 resSpec.setResourceGroupName("ComputeHosts");
 resSpec.setResourceRequirement("LINUX86"); // NTX86
 resSpecs[0] = resSpec;
return resSpecs;
}

131

Step 5: Check the allocation status
This sample implements a notification service that runs as a separate thread in the
background and listens continuously for allocation notification events. When the
checkAddResourceNotification() method is called, the main thread "waits" on the
Notification.notification object, blocking the thread. When a notification arrives,
the thread that handles the notification, "notifies" the Notification.notification
object. This wakes up the main thread that was blocked. A while loop is used so that
if the thread is interrupted, the execution goes back to waiting. The synchronized
keyword ensures that the code block is executed by only one thread at a time.
Once the resource is allocated, print out the resource request details and add them
to the AllocatedResources instance.

Step 6: Create and start an activity on a resource
The StartActivity operation is used by an EGO client to request the execution of an
activity on a resource. Usually resources are allocated to the client via an EGO
allocation request prior to starting an activity . Thus the AllocationID within the
request message is the one returned from a previous RequestAllocation call.

public int checkAddResourceNotification()
{
// wait until we hear about allocation
boolean done = false;
AddResourceRequest arReq = null;
synchronized(Notification.notification) {
 while(!done){
 try {
 Notification.notification.wait();
 arReq = Notification.notification.getAddResourceRequest();
 done = match(arReq); // true
 } catch (InterruptedException ie) {
ie.printStackTrace();
 }
 }
}

// received soap call at notification port
print(arReq);

//TODO Handle multiple AllocationIds
// For multiple resources requested in a single allocation
// the addResource may come individually at different times
// Append to the already recieved ones.
// incrementally use the ones as we obtain them.
 AllocatedResources allocatedResources =
 allocidToResourcesMap.get(arReq.getAllocationID());
 allocatedResources.add(arReq.getResourceArray());

// sendResponse();
 // handled by the NotificationReceiver

 return arReq.getResourceArray().length;
}

132

Call the createActivity method and pass the allocation ID and the number of
activities as input arguments. In this case, the number of activities is 1.
Check if the client can connect to the ActivityPortTypeStub endpoint. If successful,
create an activity specification (actSpec). The activity specification describes the
execution parameters for an activity, such as the command. In this case, the sleep
command is used to simulate activity on the resource.
Create an activity start request object (sactReq). The sactReq object links the
activity specification with the allocation ID and client ID.
Call the StartActivity() method with the start activity request document
(sactReqDoc) and the logon document (logonDoc) as input arguments. The
response message for StartActivity (sactRes) contains the ActivityID assigned by
Platform EGO to this activity. The ActivityID can then be used in other operations
to manage and query the state of the activity.
Create an activity resources object (activityResources). The ActivityResources class
models the resources that the activity is consuming and tracks them as they are
used. The constructor takes the activity ID, allocation ID, and resource name array.
The activityidToResourcesMap object is used to map activity ID to the
ActivityResources class that tracks it. So given an activity ID, you can find out the
details about it from the ActivityResources instance. The
activityidToResourceMap.put method updates the list of IDs and the map.

133

Program execution returns to the main method and waits until the activity, which
is sleep for 120 seconds, is finished so that various notifications about the activity
can be displayed

public void createActivity(String allocationId, int numActivities)
{
this.numActivities = numActivities;

if (activityPort == null) {
try {

 activityPort = new ActivityPortTypeStub(null, targetURL);
} catch(Exception e) {
e.printStackTrace();
return;
}
}

AllocatedResources allocatedResources =
 allocidToResourcesMap.get(allocationId);
String [] resourceNames = allocatedResources.consume();

EnvironmentVariable [] env = new EnvironmentVariable [] {};
Rlimit [] rlimits = new Rlimit[] {};
ActivitySpecificationDocument actSpecDoc =
 ActivitySpecificationDocument.Factory.newInstance();
ActivitySpecification actSpec = actSpecDoc.addNewActivitySpecification();
actSpec.setActivityName("Sample3Job");
actSpec.setCommand("/bin/sleep 120");
actSpec.setEnvironmentVariableArray(env);actSpec.setExecutionUser("lsfadmin");
actSpec.setWorkingDirectory("/tmp");actSpec.setUmask("0777");
actSpec.setRlimitArray(rlimits);

StartActivityRequestDocument sactReqDoc =
 StartActivityRequestDocument.Factory.newInstance();
StartActivityRequest sactReq = sactReqDoc.addNewStartActivityRequest();
sactReq.setActivitySpecification(actSpec);
sactReq.setAllocationID(allocationId);
sactReq.setClientName(clientId);

sactReq.setResourceNameArray(resourceNames);
sactReq.setOptionArray(null);
SecurityDocument sdoc1 = SecurityDocument.Factory.newInstance();
SecurityHeaderType sec1 = sdoc1.addNewSecurity();

StartActivityResponseDocument sactResDoc;
StartActivityResponse sactRes;

134

Step 7: Locate the client
Refer to Tutorial 2: Step 4: Locate the client on page 122.

Step 8: Unregister the client
Refer to Tutorial 2: Step 5: Unregister the client on page 123.

Run the client application
1 Select Run > Run.

The Run dialog appears.
2 In the Configurations list, either select a Java Application or click New for a

new configuration.
For a new configuration, enter the configuration name.

3 Enter the project name and Main class.

for (int i=0; i<numActivities; i++) {
 try {
 sactResDoc = activityPort.StartActivity(sactReqDoc, logonDoc /* sdoc1 */);
 sactRes = sactResDoc.getStartActivityResponse();

 //TODO check if activity started correctly
 activities.add(sactRes.getActivityID());

 // add to the map
 ActivityResources activityResources = new ActivityResources(
 sactRes.getActivityID(), allocationId, resourceNames);
 activityidToResourcesMap.put(sactRes.getActivityID(), activityResources);

 // monitorActivity(activities);
 } catch(RemoteException rex) {
rex.printStackTrace();
//TODO Release Resource
releaseResources(allocationId);
return;
 }
}
}

135

4 Click the Arguments tab and enter the following arguments in the given order:
1 URL of the web service gateway
2 Port number (string) for the notification interface
3 Client ID (string)
4 Client description (string).

NOTE: Arguments must be separated by a space.

5 Click Apply and then Run.

Sample output

136

Tutorial 4: Monitor an Activity on a Resource

This tutorial describes how to create a registered EGO client that monitors an
activity on a resource.

Using this tutorial, you will …
Open a connection to the EGO Web Service endpoint
Retrieve and print out cluster info
Retrieve and print out resource info
Register the client with Platform EGO and print out the registration response
Request a resource allocation
Check for notification of resource allocation
Create an activity that will run on the requested resource
Calculate the activity load on the resource and print it out
Monitor the activity
Locate the client and print out the client info
Unregister the client

Step 1: Import class references
Import the necessary classes and interfaces that are required by the client to invoke
the Web Service.

Step 2: Retrieve cluster and Resource information
Refer to Tutorial 1: Step 2: Retrieve cluster information on page 115 and Step 3:
Retrieve resource information on page 115.

Step 3: Register the client
Refer to Tutorial 2: Step 3: Register the client on page 120.

Step 4: Make a resource allocation request
Refer to Tutorial 3: Step 4: Make a resource allocation request on page 128.

Step 5: Check for notification of resource allocation
Refer to Tutorial 3: Step 5: Check the allocation status on page 131.

137

Step 6: Create an activity that will run on a requested resource
Refer to Tutorial 3: Step 6: Create and start an activity on a resource on page 131.

Step 7: Calculate the activity load on the resource
In order to determine if a resource is too busy to receive jobs, a load index value is
calculated and compared to a corresponding load threshold parameter. The
following code retrieves and processes the load index value for r1m, the 1-minute
CPU run queue length.
The main method contains a While loop that retrieves the average resource load
every 30 seconds. This update interval is implemented by a sleep method prior to
collecting the information. This cycle is repeated four times and then the loop exits.
Pass the activity ID to the getActivityResourceLoad() method. This method collects
the resource names associated with the activity ID. Pass the resource names array
to the calculateActivityLoad() method, which cycles through the array and
retrieves the load attribute index associated with each resource. The
getLoadAttributeIndex() method cycles through the list of resource attributes
looking for the r1m load index. (The r1m load index represents the average number
of processes ready to use the CPU during a one-minute interval.) This method
returns the attribute array index corresponding to load index r1m. The value for
r1m is retrieved and converted to a double data type. This value is stored in a

138

variable (total), which is used as an accumulator. The total sum is then divided by
the number of resources to yield the average load index value of r1m. The activity
ID and the average load index value are printed out.

Step 8: Monitor the activity
Activity information describes the state of an activity within Platform EGO. There
is both EGO meta data described (activity ID, activity state, allocation ID,
consumer name, and activity specification) as well as run time state (start time, end
time, resource name, exit status, exit reason, resource usage, and activity resource
usage).
Pass the activity ID to the monitorActivity() method. Check if the activity ID is
valid and that the client can connect to the MonitoringPortType endpoint. If
successful, call the getActivityInfos() method and pass the activity ID as an
argument.
Use the getActivityInfos() method to create an activity information request object
(aiReq). Call the ActivityInfo() method with the activity info request document
(aiReqDoc) and the logon document (logonDoc) as input arguments. The response

public double getActivityResourceLoad(String activityId)
{
double load = 0;

// for all the resources in this activity compute the average load
ActivityResources activityResources =
 activityidToResourcesMap.get(activityId);
 String [] resourceNames = activityResources.getResources();
Resource [] resources = this.resourceInfo(resourceNames);
load = calculateActivityLoad(resources);
 return load;
}
public double calculateActivityLoad(Resource [] resources)
{
double total=0;
for(int i=0; i<resources.length; i++) {
Resource resource = resources[i];
 int index = getLoadAttributeIndex(resource);
 total += getDoubleValue(resource.getAttributeArray(index));
}
return total/resources.length;
}
public int getLoadAttributeIndex(Resource res)
{
int rv = -1;
Attribute [] attrs = res.getAttributeArray();
for(int i=0; i<attrs.length; i++) {
Attribute attr = attrs[i];
if(attr.getName().equals("r1m")) {
return i;
}
}
return rv;
}

139

message for ActivityInfo (aiRes) contains the activity state information for the
associated activity ID, as described above. Print out the activity and resource load
information, and return control to the monitorActivity() method.

140

Create a For loop that checks the state information for each activity. Once an
activity has been accepted and assigned an activity ID, it can be in one of the
following states: null, start, run, suspend, finish, and unknown. If the activity state
is “run”, the loop will be repeated after one minute. Print out the activity
information.

public void monitorActivity(String[] activityIds)
{
if (activityIds == null) {
return;
}

// use ActivityInfo from the MonitoringPort
if (monitor == null) {
 try {
monitor = new MonitoringPortTypeStub(null, targetURL);
 } catch (Exception ex) {
ex.printStackTrace();
return;
 }
}

boolean done = false;
while(!done) {
// as long as the activity is running
 ActivityInfo [] infos = getActivityInfos(activityIds);
 done = true;
 for (int i=0; i<infos.length; i++) {
 ActivityInfo info = infos[i];
 ActivityState.Enum state = info.getActivityState();
 if(state == ActivityState.RUN) {
 done = false;
 }
 print(info);
 }

 // wait for a minute
 try {
 Thread.sleep(60000);
 } catch(InterruptedException ie) {
 ie.printStackTrace();
 }
}
}

141

Step 9: Locate the client
Refer to Tutorial 2: Step 4: Locate the client on page 122.

Step 10: Unregister the client
Refer to Tutorial 2: Step 5: Unregister the client on page 123.

Run the client application
1 Select Run > Run.

The Run dialog appears.
2 In the Configurations list, either select a Java Application or click New for a

new configuration.
For a new configuration, enter the configuration name.

3 Enter the project name and Main class.

public ActivityInfo [] getActivityInfos(String [] activityIds)
{
if (activityIds == null) {
return null;
}
// use ActivityInfo from the MonitoringPort
if (monitor == null) {
try {
monitor = new MonitoringPortTypeStub(null, targetURL);
} catch (Exception ex) {
ex.printStackTrace();
return null;
}
}
// as long as the activity is running
ActivityInfoRequestDocument aiReqDoc = ActivityInfoRequestDocument.Factory
.newInstance();
ActivityInfoRequest aiReq = aiReqDoc.addNewActivityInfoRequest();
aiReq.setActivityIDArray(activityIds);
aiReq.setOptionArray(null);

ActivityInfoResponseDocument aiResDoc;
ActivityInfoResponse aiRes;
try {
aiResDoc = monitor.ActivityInfo(aiReqDoc, logonDoc);
aiRes = aiResDoc.getActivityInfoResponse();
print(aiRes.getActivityInfoArray());
} catch (RemoteException rex) {
rex.printStackTrace();
return null;
}

ActivityInfo[] infos = aiRes.getActivityInfoArray();
return infos;
}

142

4 Click the Arguments tab and enter the following arguments in the given order:
1 URL of the web service gateway
2 Port number (string) for the notification interface
3 Client ID (string)
4 Client description (string).

NOTE: Arguments must be separated by a space.

5 Click Apply and then Run.

Sample output

143

Tutorial 5: Modify Resources Based on Load
Information

This tutorial describes how to create a registered EGO client that modifies
resources in accordance with changes in resource loading. A minimum of two
resources is required.

Using this tutorial, you will …
Open a connection to the EGO Web Service endpoint
Retrieve and print out cluster info
Check that the cluster has enough resources
Register the client with Platform EGO and print out the registration response
Request a resource allocation
Check for notification of resource allocation
Create an activity that will run on the requested resource
Check the resource loading
Modify the resources
Locate the client and print out the client info
Unregister the client

Step 1: Import class references
Import the necessary classes and interfaces that are required by the client to invoke
the Web Service.

Step 2: Retrieve cluster information
Refer to Tutorial 1: Step 2: Retrieve cluster information on page 115.

144

Step 3: Check that the cluster has enough resources
Pass null as an argument to the resourceInfo() method to retrieve all resources in
the cluster. For this sample, we need at least two resources.

Step 4: Register the client
Refer to Tutorial 2: Step 3: Register the client on page 120.

Step 5: Make a resource allocation request
Refer to Tutorial 3: Step 4: Make a resource allocation request on page 128. In this
sample, we make an allocation request for one resource.

Step 6: Check for notification of resource allocation
Refer to Tutorial 3: Step 5: Check the allocation status on page 131.

Step 7: Create an activity that will run on a requested resource
Refer to Tutorial 3: Step 6: Create and start an activity on a resource on page 131. In
this sample, we create 10 activities on a single resource.

Step 8: Check the resource loading
Wait 40 seconds and pass the activity ID to the getActivityResourceLoad() method.
This method collects the resource names associated with the activity ID. Pass the
resource names array to the calculateAcvtivityLoad() method, which cycles
through the array and retrieves the load attribute index associated with each
resource. The getLoadAttributeIndex() method cycles through the list of resource
attributes looking for the r1m load index. (The r1m load index represents the
average number of processes ready to use the CPU during a one-minute interval.)
This method returns the attribute array index corresponding to load index r1m.
The value for r1m is retrieved and converted to a double data type. This value is

Resource [] resources = client.resourceInfo(null);
int num = 0;
int needed = 2;
if(resources != null) {
 num = resources.length;
}
if (num < needed) {
 System.err.println("Cluster Requirement: Should be run on a cluster with at
 least " +

needed + " resources, it has only "+num);
notification.stop();
return;
}

145

stored in a variable (total), which is used as an accumulator. The total sum is then
divided by the number of resources to yield the average load index value of r1m.
The activity ID and the average load index value are printed out.

Step 9: Modify the resources
Pass the activity ID, delta, loadThreshold, and hysteresis variables as arguments to
the modifyActivity() method. The delta value represents the number of resources
to be added or released based on the load. However if the load is within the
hysteresis range, no change is made; this is to prevent oscillatory behaviour.
Call the getActivityResourceLoad() method to determine the average load on
resources; see description for the getActivityResourceLoad() method in Step 8:
Check the resource loading on page 144. Retrieve the allocation ID from the
ActivityResources object (activityResources).
Check if the average load exceeds the load threshold plus the hysteresis value. If the
average load exceeds the threshold, call the modifyResources() method to add
another resource to the activity allocation; if it doesn’t, call the modifyResources()
method to drop a resource from the activity allocation.

In the modifyResources() method, check if the client can connect to the
AllocationPortType endpoint. If successful, create a resource specification
(resSpec). If a resource needs to be added to the allocation, set the resSpec object so
that the minimum and maximum resources is increased by one; otherwise,
decrease the minimum and maximum resources by one.

public void modifyActivity(String activityId, int delta, double loadThreshold, double
hysterisys)
{
// for any resource that this activity is running on
 // find load, how do you define activity load? on a specefic resource
double load = getActivityResourceLoad(activityId);

 ActivityResources activityResources =
 activityidToResourcesMap.get(activityId);
 String allocationId = activityResources.getAllocationId();

// if greater than loadThreshold + hysterisys/2, release specific resources,
 blklist?
 if(load > (loadThreshold + hysterisys/2)) {
 // load on the resources is high, need to add resources to activity
 allocation
 modifyResources(allocationId, delta, true);
 }

// if less than loadThreshold - hysterisis/2, add resources
 if(load < (loadThreshold + hysterisys/2)) {
 // resources are lightly loaded, can drop resources from allocation
 modifyResources(allocationId, delta, false);
 }
}

146

Create an allocation specification (alocSpec). This allocation specification
describes a request to Platform EGO for an allocation of resources. The only
required variables for the allocation specification are the consumer name to charge
this allocation to, and the resource specification (resSpec) of what is being
requested.
Create a modify allocation request object (malocReq) and link it with the client
name, allocation ID, and allocation specification (alocSpec). Create the security
document and the modify allocation response (malocRes).

147

Call the ModifyAllocation() method with the modify allocation request document
(malocReqDoc) and the logon document (logonDoc) as input arguments. This
method is used to modify the parameters of an existing allocation. If an error
occurs, release the resources associated with the allocation ID by calling the
releaseResources() method.

public void modifyResources(String allocationId, int delta, boolean add)
{
if (allocPort == null) {
try {
allocPort = new AllocationPortTypeStub();
} catch (Exception e) {
e.printStackTrace();
return;
}
}
// release resources
// another possibility is to release specific resources that are loaded
ResourceSpecification[] resSpecs = new ResourceSpecification[1];
ResourceSpecification resSpec = ResourceSpecification.Factory.newInstance();
if (!add) {
resSpec.setMaxResources(new BigInteger(Integer.toString(-delta)));
resSpec.setMinResources(new BigInteger(Integer.toString(-delta)));
} else {
resSpec.setMaxResources(new BigInteger(Integer.toString(delta)));
resSpec.setMinResources(new BigInteger(Integer.toString(delta)));
}
resSpec.setResourceGroupName("ComputeHosts");
resSpec.setResourceRequirement("LINUX86"); // NTX86
// TODO "EGO_ALLOC_EXCLUSIVE"
resSpecs[0] = resSpec;
AllocationSpecificationDocument alocSpecDoc =
 AllocationSpecificationDocument.Factory.newInstance();
AllocationSpecification alocSpec =
 alocSpecDoc.addNewAllocationSpecification();
alocSpec.setAllocationName("Sample3Allocation");
alocSpec.setConsumerName("/SampleApplications/EclipseSamples");
alocSpec.setResourceSpecificationArray(resSpecs);
// alocSpec.setOptionArray(new String[]{"EGO_ALLOC_EXCLUSIVE"}); //TODO
ModifyAllocationRequestDocument malocReqDoc =
 ModifyAllocationRequestDocument.Factory.newInstance();
ModifyAllocationRequest malocReq =
 malocReqDoc.addNewModifyAllocationRequest();

malocReq.setClientName(clientId);
malocReq.setAllocationID(allocationId);
malocReq.setAllocationSpecification(alocSpec);
malocReq.setOptionArray(new String[] { "EGO_REALLOC_DELTA" });
ModifyAllocationResponseDocument malocResDoc;
ModifyAllocationResponse malocRes;

148

Create an AllocatedResources object (allocatedResources) and associate it with the
allocation ID.
Create a release resource request object (rrreq) and link it with the client name,
allocation ID, and the resource entries for all resources. The resource entry consists
of one or more elements describing which resources to remove from the allocation.
They must be part of the existing allocation to be released.
Create the security documents and the release resource response (rrres)

boolean release = false;
try {
malocResDoc = allocPort.ModifyAllocation(malocReqDoc, logonDoc);
malocRes = malocResDoc.getModifyAllocationResponse();
// TODO what is the response?
} catch (RemoteException rex) {
// this could be because we cannot shrink below already allocated
// release the resource explicitly in that case or
releaseResources(allocationId, delta);
release = true;

 // another alternative is to cancel allocation
// return;
}
int changes = 0;
if (add) {
 while (changes < delta){
// TODO start a new thread to wait for Resource notification
changes += checkAddResourceNotification();
createActivity(alocIds.get(0), changes);
 }
}

return;
}

149

Call the ReleaseResource() method with the release resource response document
(rrreqDoc), the logon document (logonDoc), and two security documents as input
arguments. This method is used to release resources from an existing allocation. In
this sample, one resource is released since this was the value of delta, which
represents the number of resources to add or release.

Step 10: Locate the client
Refer to Tutorial 2: Step 4: Locate the client on page 122.

public void releaseResources(String allocationId, int delta)
{
AllocatedResources allocatedResources =
 allocidToResourcesMap.get(allocationId);
Resource [] resources = allocatedResources.getResourcesToRelease(delta);

if (resources == null || resources.length ==0) {
return;
}

ReleaseResourceRequestDocument rrreqDoc =
 ReleaseResourceRequestDocument.Factory.newInstance();
ReleaseResourceRequest rrreq = rrreqDoc.addNewReleaseResourceRequest();
rrreq.setAllocationID(allocationId);
rrreq.setClientName(clientId);
ResourceEntry [] resourceEntries = new ResourceEntry[resources.length];
for(int i=0; i<resources.length; i++){
ResourceEntry entry = ResourceEntry.Factory.newInstance();
entry.setResourceName(resources[i].getResourceName());
entry.setResourceType(resources[i].getResourceType());
resourceEntries[i] = entry;
}
rrreq.setResourceEntryArray(resourceEntries);
rrreq.setOptionArray(new String[]{"EGO_RELEASE_AUTOADJ"});
if(allocPort == null) {
System.err.println("Could not release resource");
return;
}
SecurityDocument sdoc2 = SecurityDocument.Factory.newInstance();
SecurityHeaderType sec2 = sdoc2.addNewSecurity();
SecurityDocument sdoc3 = SecurityDocument.Factory.newInstance();
SecurityHeaderType sec3 = sdoc3.addNewSecurity();

ReleaseResourceResponseDocument rrresDoc;
ReleaseResourceResponse rrres;
try {
 rrresDoc = allocPort.ReleaseResource(rrreqDoc, logonDoc, sdoc2, sdoc3);
 rrres = rrresDoc.getReleaseResourceResponse();
 //TODO what does the response contain?
} catch (RemoteException rex) {
rex.printStackTrace();
return;
}
}

150

Step 11: Unregister the client
Refer to Tutorial 2: Step 5: Unregister the client on page 123.

Run the client application
1 Select Run > Run.

The Run dialog appears.
2 In the Configurations list, either select a Java Application or click New for a

new configuration.
For a new configuration, enter the configuration name.

3 Enter the project name and Main class.
4 Click the Arguments tab and enter the following arguments in the given order:

1 URL of the web service gateway
2 Port number (string) for the notification interface
3 Client ID (string)
4 Client description (string).

NOTE: Arguments must be separated by a space.

5 Click Apply and then Run.

151

Sample output

152

Tutorial 6: Create an EGO Service

This tutorial describes how to create and run an EGO service.

Using this tutorial, you will …
Open a connection to the EGO Web Service endpoint
Retrieve and print out resource info
Register the client with Platform EGO and print out the registration response
Locate all clients and print out the client info
Query all EGO services
Create and run an EGO service
Subscribe to notification of service state changes
Check for service state and instance state changes
Stop the EGO service
Unsubscribe to service notifications

Underlying principles
The sample uses a separate thread to interact with a service. It creates a service and
subscribes to service event notifications, which are sent by the Service Controller
whenever there is a change in service state. The thread waits until a notification
arrives. It also queries the service whenever these notifications occur.

Step 1: Import class references
Import the necessary classes and interfaces that are required by the client to invoke
the Web Service.

Step 2: Retrieve resource information
Refer to Tutorial 1: Step 3: Retrieve resource information on page 115.

Step 3: Register the client
The register operation takes three input parameters: client ID (processedArgs[2]),
description (processedArgs[3]), and the URL for service notification
(processedArgs[4]); this URL, derived from the ProcessArgs() method in sample 2,
is an endpoint that implements the EGO notification WSDL interface. Platform
EGO will then send service notifications to the client using this endpoint. Refer to
Tutorial 2: Step 3: Register the client on page 120 for general information about the
registration process.

153

Step 4: Locate all clients
Refer to Tutorial 2: Step 4: Locate the client on page 122

Step 5: Query all EGO services
Create the QueryServiceRequestDocument (qreqDoc) and QueryServiceRequest
(qReq) objects. The QueryServiceRequest object has one member variable, which
is the service name. In this case, we set the service name to null in order to get
information about all services running on Platform EGO.
The EGO WSDLs and Web Service gateway support Web Service Security (WSSE
specification). This means that different types of security information can be passed
in the header of SOAP messages sent by the clients. The samples use the simplest
form, i.e., username and password authentication. The wrappers generated for Java
have signatures that provide for multiple types of security information to be
included. In this case, we are using just one security document (logonDoc), which
we pass along with qreqDoc to the QueryService method.
The response to a service query request consists of a structure that includes the
number of services, service names, descriptions, states, and host names amongst
others.

Step 6: Create a service definition
The first step in creating an EGO service is to specify a service definition. Each
service is described by a service definition that consists of an XML file containing
information about the service such as the type of resources required to run the
service instances and how to start and monitor them. The serviceDefinition()
method creates an instance of the service definition object. Set all the member
variables that make up a service definition. (Service name and description are
global string variables that have already been initialized.)
Integral parts of the service definition are the activity and allocation specifications.
Define and initialize an activity specification including the setting of its resource
limits to default values. The activity specification essentially defines a job that the

public void queryService(String sname)
{
QueryServiceRequestDocument qreqDoc =
 QueryServiceRequestDocument.Factory.newInstance();
QueryServiceRequest qReq = qreqDoc.addNewQueryServiceRequest();
qReq.setServiceName(sname);
QueryServiceResponseDocument qresDoc;
QueryServiceResponse qres;

try {
 qresDoc = servicePort.QueryService(qreqDoc, logonDoc);
 qres = qresDoc.getQueryServiceResponse();
 print(qres);
} catch(RemoteException rex) {
rex.printStackTrace();
}
}

154

user wants to be executed. The actSpec.setCommand method specifies the actual
binary that should be executed. In the sample, we want the program "sleep" to be
executed. The sleep command takes the number of seconds to sleep (for unix) as an
input argument.
Create an allocation specification. The allocation specification describes a request
to Platform EGO for an allocation of resources. The only required variables for the
allocation specification are the consumer name to charge this allocation to, and the
resource specification of what is being requested.

ServiceDefinition serviceDefinition()
{
ServiceDefinition sdef = ServiceDefinition.Factory.newInstance();
sdef.setDescription(serviceDescription);
sdef.setMaxInstances(2);
sdef.setMinInstances(1);
sdef.setServiceName(serviceName);
sdef.setActivityDescriptionArray(new
 ActivityDescription[]{activityDescription()});
sdef.setAllocationSpecification(allocationSpecification());
sdef.setControlPolicy(controlPolicy());
return sdef;
}

private ActivityDescription activityDescription()
{
EnvironmentVariable [] env = new EnvironmentVariable [] {};
Rlimit [] rlimits = new Rlimit[] {};

ActivityDescription actd = ActivityDescription.Factory.newInstance();
ActivitySpecification actSpec = actd.addNewActivitySpecification();
actSpec.setActivityName("Sample6ServiceActivity");
actSpec.setCommand("/bin/sleep 120");
actSpec.setEnvironmentVariableArray(env);
actSpec.setExecutionUser("lsfadmin");
actSpec.setWorkingDirectory("/tmp");
actSpec.setUmask("0777");
actSpec.setRlimitArray(rlimits);
 return actd;
}
private AllocationSpecification allocationSpecification()
{
AllocationSpecification alocSpec =
 AllocationSpecification.Factory.newInstance();
alocSpec.setAllocationName("Sample6ServiceAllocation");
alocSpec.setConsumerName("SampleApplications/EclipseSamples");
ResourceSpecification [] resourceSpecs;
resourceSpecs = createResourceSpecification(1);
alocSpec.setResourceSpecificationArray(resourceSpecs);
//alocSpec.setOptionArray(new String[]{"EGO_ALLOC_EXCLUSIVE"});
return alocSpec;
}

155

Step 7: Create a Service Controller Client object
Create a ServiceControllerClient object that implements the Runnable interface.
The ServiceControllerClient class implements a run() method that enables you to
subscribe to service notifications, as well as create and query a service. When this
class is instantiated and the run() method is called, a new thread will be spawned.
The stop() method will disable and remove the service, and unsubscribe the client
to notifications.
The following steps describe the run() and stop() methods of the
ServiceControllerClient class in more detail.

Step 8: Subscribe to notifications
In order to receive notifications about service state changes, it is necessary to
subscribe to the notification service.

public class ServiceControllerClient implements Runnable {
private EGOclient egoClient;
private boolean finish;
public ServiceControllerClient(EGOclient egoClient)
{
this.egoClient = egoClient;
}

public void run()
{
String id = egoClient.subscribeNotification(egoClient.notificationEndPoint);
egoClient.createService(egoClient.serviceDefinition());

while(!finish) {
try {
 Notification.notification.wait();
 ServiceStateChange stateChange =
 Notification.notification.getServiceStateChange();
 ServiceInstanceStateChange instanceStateChange =
 Notification.notification.getServiceInstanceStateChange();
} catch(InterruptedException ie) {
 ie.printStackTrace();
}
egoClient.queryService(egoClient.serviceName);
}
}

public void stop()
{
egoClient.controlService(egoClient.serviceName,
 ServiceControlOperation.DISABLE);
egoClient.removeService(egoClient.serviceName);
egoClient.unsubscribeNotification(egoClient.subscriptionID);

finish = true;
this.notify();
}
}

156

The procedure for issuing a notification subscription request is similar to other
requests previously described. Create a subscription request document (nrDoc)
and a subscription request object (nr). Set the notification endpoint to tell the
Service Controller where to send the notification messages. The notification
endpoint is derived from the ProcessArgs() method in Sample 2.
Create a subscription response document (nresDoc), a security document, and a
subscription response object (nres). Pass the request and logon documents to the
ServiceNotificationSubscribe operation. When the operation is invoked, it returns
a subscription ID, which is printed out.

Step 9: Create and start an EGO service
Pass the service definition object to the createService() method. The createService()
method creates a new service object and starts the service based on the service
definition provided. Once the service is started, the Service Controller allocates
resources and starts service instances.
Create the CreateServiceRequestDocument (sreqDoc) and CreateServiceRequest
(sReq) objects. The CreateServiceRequest object has one member variable, which
is the service name. In this case, we set the service name to null in order to get
information about all services running on Platform EGO.

public String subscribeNotification(String endpoint)
{
String id = null;
ServiceNotificationSubscribeRequestDocument nrDoc =
 ServiceNotificationSubscribeRequestDocument.Factory.newInstance();
ServiceNotificationSubscribeRequest nr =
 nrDoc.addNewServiceNotificationSubscribeRequest();
nr.setNotificationEndpoint(endpoint);
ServiceNotificationSubscribeResponseDocument nresDoc;
ServiceNotificationSubscribeResponse nres;
try {
 nresDoc = servicePort.ServiceNotificationSubscribe(nrDoc, logonDoc);
 nres = nresDoc.getServiceNotificationSubscribeResponse();
 print(nres);
 id = nres.getSubscriptionID();
} catch (RemoteException rex) {
rex.printStackTrace();
}
subscriptionID = id;
return id;
}

157

Pass sreqDoc and the logonDoc security document to the CreateService method
and print out the response.

Step 10: Check for service state changes
Once the service has been created and is running, the Service Controller Client
thread will pause execution while it waits for service state change notifications from
the Service Controller. If either a service state change or a service instance state
change occurs, thread execution resumes and retrieves the notification message.
When the state change information is retrieved, the service is queried. Refer to Step
5: Query all EGO services on page 153.

Step 11: Stop an EGO service
Create the respective documents and objects for the ControlService request and
response. Set the service name and control operation for the control service request
object. In this case, set the control operation to disable the service. Create the
security documents and pass the documents with the logon document and
ControlService request document to the ControlService operation. The Service
Controller stops all service instances and de-allocates resources.

public void createService(ServiceDefinition serviceDef)
{
CreateServiceRequestDocument sreqDoc =
 CreateServiceRequestDocument.Factory.newInstance();
CreateServiceRequest sreq = sreqDoc.addNewCreateServiceRequest();
sreq.setServiceDefinition(serviceDef);

CreateServiceResponseDocument sresDoc;
CreateServiceResponse sres;

 try {
 sresDoc = servicePort.CreateService(sreqDoc, logonDoc);
 sres = sresDoc.getCreateServiceResponse();
 print(sres);
 } catch(RemoteException rex) {
 rex.printStackTrace();
 }
}

try {
 Notification.notification.wait();
 ServiceStateChange stateChange =
 Notification.notification.getServiceStateChange();
 ServiceInstanceStateChange instanceStateChange =
 Notification.notification.getServiceInstanceStateChange();
} catch(InterruptedException ie) {
 ie.printStackTrace();
}

158

Remove the service by specifying the service name while invoking the
removeService operation. The Service Controller destroys the service object and
removes the service definition from the configuration.

Step 12: Unsubscribe to service notifications
Create the respective documents and objects for the
ServiceNotificationUnsubscribe request and response. Use the subscription ID
previously obtained during the subscription process to unsubscribe to service
notifications.

public void controlService(String sname, ServiceControlOperation.Enum op)
{
ControlServiceRequestDocument reqDoc =
 ControlServiceRequestDocument.Factory.newInstance();
ControlServiceRequest req = reqDoc.addNewControlServiceRequest();
req.setServiceName(sname);
req.setServiceControlOperation(op);

ControlServiceResponseDocument resDoc;
ControlServiceResponse res;

SecurityDocument sdoc2 = SecurityDocument.Factory.newInstance();
SecurityHeaderType sec2 = sdoc2.addNewSecurity();
SecurityDocument sdoc3 = SecurityDocument.Factory.newInstance();
SecurityHeaderType sec3 = sdoc3.addNewSecurity();
SecurityDocument sdoc4 = SecurityDocument.Factory.newInstance();
SecurityHeaderType sec4 = sdoc4.addNewSecurity();
SecurityDocument sdoc5 = SecurityDocument.Factory.newInstance();
SecurityHeaderType sec5 = sdoc5.addNewSecurity();
SecurityDocument sdoc6 = SecurityDocument.Factory.newInstance();
SecurityHeaderType sec6 = sdoc6.addNewSecurity();
SecurityDocument sdoc7 = SecurityDocument.Factory.newInstance();
SecurityHeaderType sec7 = sdoc7.addNewSecurity();
SecurityDocument sdoc8 = SecurityDocument.Factory.newInstance();
SecurityHeaderType sec8 = sdoc8.addNewSecurity();

try {
resDoc = servicePort.ControlService(reqDoc, logonDoc, sdoc2, sdoc3, sdoc4,
 sdoc5, sdoc6, sdoc7, sdoc8);
res = resDoc.getControlServiceResponse();
print(res);
} catch (RemoteException rex) {
rex.printStackTrace();
}
}

159

Create the security documents and pass the documents with the logon document
and ServiceNotificationUnsubscribe request document to the
ServiceNotificationUnsubscribe operation. The Service Controller will no longer
communicate service state change notifications to the notification endpoint.

Run the client application
1 Select Run > Run.

The Run dialog appears.
2 In the Configurations list, either select a Java Application or click New for a

new configuration.
For a new configuration, enter the configuration name.

3 Enter the project name and Main class.

public void unsubscribeNotification(String id)
{
ServiceNotificationUnsubscribeRequestDocument nrDoc =
 ServiceNotificationUnsubscribeRequestDocument.Factory.newInstance();
ServiceNotificationUnsubscribeRequest nr =
 nrDoc.addNewServiceNotificationUnsubscribeRequest();
nr.setSubscriptionID(id);
ServiceNotificationUnsubscribeResponseDocument nresDoc;
ServiceNotificationUnsubscribeResponse nres;
SecurityDocument sdoc2 = SecurityDocument.Factory.newInstance();
SecurityHeaderType sec2 = sdoc2.addNewSecurity();
SecurityDocument sdoc3 = SecurityDocument.Factory.newInstance();
SecurityHeaderType sec3 = sdoc3.addNewSecurity();
SecurityDocument sdoc4 = SecurityDocument.Factory.newInstance();
SecurityHeaderType sec4 = sdoc4.addNewSecurity();
try {
 nresDoc = servicePort.ServiceNotificationUnsubscribe(nrDoc, logonDoc, sdoc2,
 sdoc3, sdoc4);
 nres = nresDoc.getServiceNotificationUnsubscribeResponse();
 print(nres);
} catch (RemoteException rex) {
rex.printStackTrace();
}
}

160

4 Click the Arguments tab and enter the following arguments in the given order:
1 URL of the web service gateway
2 Port number (string) for the notification interface
3 Client ID (string)
4 Client description (string).

NOTE: Arguments must be separated by a space.

5 Click Apply and then Run.

Sample output

161

162

Tutorial 7: Create an EGO Service and Query the
Domain Name Server

This tutorial describes how to create and run an EGO service, and query the
Domain Name Server (DNS) for host information. The DNS is a standard naming
service under the control of the Service Director.

Using this tutorial, you will …
Open a connection to the EGO Web Service endpoint
Retrieve and print out resource info
Register the client with Platform EGO and print out the registration response
Locate all clients and print out the client info
Query all EGO services
Create a service definition
Create and start an EGO service
Query the DNS
Stop the EGO service

Underlying principles
In order to communicate with a service on a host cluster, its location must be
known. Due to the nature of distributed computing, the service can be running on
any host. Normally, when a service instance switches into the run state, the Service
Controller sends a notification to the Service Director that includes location
information of the service instance. The Service Director then adds the location
record to its DNS server. In this sample, we create a service called "sample6Service".
When this service is running, the Service Director automatically updates its DNS
records to reflect the new service instance.
The service is created from a new thread (see Sample 6). Once the service is
running, we query the Service Controller for service instance information. Then we
query the Service Controller, via the Service Director, for the IP address of the host
that the service in running on.

Step 1: Import class references
Import the necessary classes and interfaces that are required by the client to invoke
the Web Service.

Step 2: Register the client
Refer to Tutorial 2: Step 3: Register the client on page 120.

163

Step 3: Retrieve resource information
Refer to Tutorial 1: Step 3: Retrieve resource information on page 115.

Step 4: Locate all clients
Refer to Tutorial 2: Step 4: Locate the client on page 122.

Step 5: Query all services
Refer to Tutorial 6: Step 5: Query all EGO services on page 153.

Step 6: Create a service definition
Refer to Tutorial 6: Step 6: Create a service definition on page 153.

Step 7: Create a Service Controller Client object
Create a ServiceControllerClient object that implements the Runnable interface.
This object will interact with the Service Controller as a client. The
ServiceControllerClient class contains a run() method that enables you to create
and query a service; refer to Tutorial 6: Step 7: Create a Service Controller Client
object on page 155 for the sample code. Define a new thread (scThread) and pass
the ServiceControllerClient object to it. When the start() method is called, a new
thread will be spawned. The stop() method will disable and remove the service.
Block the main thread for 120 seconds while the service is created and started. As
the service starts, the Service Controller notifies the client of service state changes.
Send a query to the Service Controller to retrieve service info. The response to a
service query request with a null input argument consists of a structure that
includes the total number of services, service names, descriptions, states, and host
names amongst others.

Step 8: Create and start an EGO service
Refer to Tutorial 6: Step 9: Create and start an EGO service on page 156.

ServiceControllerClient scClient = new ServiceControllerClient(client);
Thread scThread = null;
try {
scThread = new Thread(scClient);
 scThread.start();
} catch(Exception e) {}

Thread.sleep(120 *1000);

try {
 client.queryService(null);
} catch(Exception e) {}

164

Step 9: Query the DNS
With the service running, we pass the service name to the getByName() method,
which is a member of the InetAddress class. This method returns an InetAddress
object containing the IP address and name of the host where the service instance is
running. The address is returned by the Service Director’s DNS.

Step 11: Stop an EGO service
Refer to Tutorial 6: Step 11: Stop an EGO service on page 157 for more information
about the stop() method of the ServiceControllerClient class.
Block the main thread for 120 seconds while the service is being stopped. Query the
DNS again. There should no longer be a record in the DNS for the service instance.
The current thread is then blocked until the ServiceControlClient is notified, which
signals the conclusion of the stop() method.

Run the client application
1 Select Run > Run.

The Run dialog appears.
2 In the Configurations list, either select a Java Application or click New for a

new configuration.
For a new configuration, enter the configuration name.

3 Enter the project name and Main class.

InetAddress address = client.queryDNS(client.serviceName);
System.err.println("Service:" + client.serviceName + "Host:" + address.getHostName() +
 "Address:" + address.getHostAddress());

public InetAddress queryDNS(String name)
{
try {
 InetAddress address = InetAddress.getByName(name);
 return address;
} catch (java.net.UnknownHostException uhe) {
uhe.printStackTrace();
}
return null;
}

try {
 scClient.stop();
 } catch(Exception e) {}

Thread.sleep(120 *1000);

// The address must be removed
address = client.queryDNS(client.serviceName);
System.err.println("Service:" + client.serviceName + "Host:" + address.getHostName() +
 "Address:" + address.getHostAddress());

 synchronized(scClient) {scClient.wait();}

165

4 Click the Arguments tab and enter the following arguments in the given order:
1 URL of the web service gateway
2 Port number (string) for the notification interface
3 Client ID (string)
4 Client description (string).

NOTE: Arguments must be separated by a space.

5 Click Apply and then Run.

166

167

C H A P T E R

5
Troubleshooting

This chapter provides some quick checks for isolating problems when trying to run
the samples.

Contents
Compiler errors on page 168
Connection errors on page 168

168

Compiler errors

Wrong compliance level
Error occurs when trying to build the Java project. To run the SDK samples, the
compliance level must be set to 5.0 since the samples use Java 2 Standard Edition
(J2SE) 5.0 features. To change the compliance level, create a new project and set the
compliance level in the EGO Project dialog.

Incorrect number of arguments
Each Java sample requires a specific number of arguments to be passed to its main
method. Click the Arguments tab and enter the arguments. For example, Sample 5
requires the following arguments in the given order:
1 URL of the web service gateway
2 Port number (string) for the notification interface
3 Client ID (string)
4 Client description (string).

Connection errors

NOTE: Users should be familiar with the EGO runtime setup before trying to run the client
samples.

169

Incorrect username or password
Check the EGO runtime setup. The samples use "Admin" as the username and
password when logging on to EGO.

Platform EGO not running
Check that the Platform EGO runtime has been installed, configured, and running
on a host cluster. For C clients, check that the EGO daemon port numbers in the
ego.conf file match the port numbers configured for the EGO master host. The C
samples reads the information in the ego.conf file when opening a connection to
Platform EGO.

Incorrect URL
For Java clients, try to connect to the Web Service Gateway using a browser by
entering the URL or IP address and port number of the gateway. If you cannot
connect through the browser, verify the URL of the gateway and check that it is
running. The gateway is installed as part of Platform EGO. It comes with a
configuration file called wsg.conf where the port number for the gateway can be
defined. By default the port number is 9090. The default location for the wsg.conf
file is /opt/ego/kernel/conf/. The gateway URL can then be formed by using the
host name where the gateway is running and the port number, i.e., http://host:port.
If you can connect to the gateway from a browser but cannot connect to it using the
samples, verify that the URL of the gateway matches the URL that is passed as an
argument to the client sample. This URL consists of an IP address or host name and
a port number.

DNS cannot resolve host name
Verify that the TCP/IP configuration of the client host is properly set up. Check that
it does not have an external DNS server, such as a DNS server from an Internet
service provider (ISP). If the client is configured to use an external DNS server, it
may be unable to resolve internal names. This can also cause problems with
conflicting internal and external namespaces. Likewise, the Web Service gateway
should be properly configured and have an appropriate DNS.

Notification problems
Platform EGO communicates notifications such as allocation request responses
and state changes to the client using a customer designated port number on the
client host. This port number or endpoint implements the EGO notification WSDL
interface. Platform EGO will send notifications to the client using this endpoint. If
the port is busy, i.e., already in use by another application, Platform EGO will be
unable to send the notifications to the client. Verify that the selected port number
is available.

170

171

Index
A
activities

about 11
activity

creating and starting (Java) 131
activity ID (Java) 132
activity load

calculating average (Java) 137
activity specification (Java) 132
ActivityInfoRequestDocument (Java) 138
ActivityInfoResponseDocument (Java) 139
ActivityResources class (Java) 132
AllocatedResources class (Java) 129
allocation ID (Java) 129, 132
allocation specification

creating (Java) 129
allocation specification (Java) 146, 154
allocation status

checking (Java) 131
API calls 17
API functions (C)

esc_createservice 95, 107
esc_disableservice 97
esc_enableservice 95
esc_queryservice 96
esc_removeservice 97
gethostbyname 103
startcontainer 68
vem_alloc 42
vem_gethostgroupinfo 41
vem_getHostInfo 32
vem_getHostSummary 33
vem_locate 39
vem_open 31
vem_read 41
vem_register 53
vem_select 41

API interfaces
administration 17
client notification 17
client registration 16
container management 17

policy configuration 17
resource allocation 17
resource monitoring 17

C
callback methods (C) 56
callbacks 18
ClusterInfoRequestDocument (Java) 115
ClusterInfoResponseDocument (Java) 115
compliance level

Java 168
configuration file 13
connection

open a connection to master host See API func-
tions, vem_open.

consumers
about 10

container specification (C) 42
containers

about 11
CreateServiceRequestDocument (Java) 156
CreateServiceResponseDocument (Java) 157
D
DNS Server 98, 162

cannot resolve host name 169
querying 164

documentation
C API 18
Web Service interface 18

E
Eclipse

about 14
EGO

core functions
allocation 16
execution 16
information 15

EGO_CONFDIR 95
F
formatting

screen output (C) 35

172

H
header files 12
host load

calculating average (C) 69
L
libraries

dynamic 12
static 12

load attribute index (Java) 137, 144
locate clients (C) 45
locate clients (Java) 122
LocateRequestDocument (Java) 123
LocateResponseDocument (Java) 123
M
master host

about 10
modify the number of resources according to
load (Java) 145
monitor an activity (Java) 138
mutex object 60
N
notification problems 169
notifications 18

subscribing to (Java) 155
unsubscribing to (Java) 158

O
opening a connection (Java) 115
P
parameters

passing to a Web Service 21
plug-in

C API 13
Web Service 13

Q
QueryServiceRequestDocument (Java) 153
QueryServiceResponseDocument (Java) 153
R
register a client (Java) 120
RegisterRequestDocument (Java) 120
requesting information

from host (C) 31
requesting information from host (Java) 114
resource allocation requests

about 10
creating (Java) 128

resource loading
checking (Java) 144

resource specification (Java) 145, 154
ResourceInfoRequestDocument (Java) 115
ResourceInfoResponseDocument (Java) 116

resources
about 10

return values
from a Web Service 22

S
SDK

major components 12
service

creating (C) 95
querying (Java) 153, 163
stopping (Java) 157

Service Controller 98, 162
service definition

create (C) 106
create (Java) 153
creating (C) 94

Service Director 98, 104, 105
services

about 10
creating and starting (Java) 156

SOAP
about 19
binding style 20

subscription ID (Java) 156
T
tutorials

C client
getting started 29

Web Service client
getting started 111

U
unregister a client (Java) 123
UnregisterRequestDocument (Java) 123
UnregisterResponseDocument (Java) 124
W
Web Service client

develop with Axis2 23
Web Service gateway

about 20
Web Service project

creating 27
WSDL

about 19
WSSE specification 120
X
XML

about 19
XML schema

about 19

173

	Contents
	EGO concepts and terms
	EGO master
	Resources
	Consumers
	Resource allocation requests
	Services
	Containers (Activities)

	Platform EGO SDK
	Major components
	ego.conf configuration file
	EGO client development tools
	C API plug-in
	Web Service plug-in

	Eclipse
	EGO API
	EGO functionality
	Information
	Allocation
	Execution

	EGO API
	Client registration interface
	Resource allocation interface
	Container management interface
	Policy configuration interface
	Resource monitoring interface
	Client notification interface
	Administration interface

	API calls, callbacks, and notifications
	API calls
	EGO callbacks
	EGO notifications

	API and Web Service interface reference documentation
	C API
	Web Service interface

	About Web Services
	Web Service components
	XML
	WSDL
	XML Schema
	SOAP
	Web Service gateway

	A closer look at an EGO WSDL and schema
	SOAP binding style
	Passing parameters to a Web Service
	Return values from a Web Service

	Building a Web Service client
	Using Axis2 to Develop Java Web Service Clients

	What is a client?
	Contents

	Create a C client project
	Create a Web Service project
	Before you begin the tutorials
	Contents

	Locate the code samples
	Tutorial 1: Request Information About Hosts in a Cluster
	Using this tutorial, you will …
	Step 1: Preprocessor directives
	Step 2: Implement the principal method
	Step 3: Send host information to the console
	Step 4: Get the host status
	Step 5: Format output according to data type
	Step 6: Send host summary to the console
	Run the client application
	Sample output

	Tutorial 2: Request Host Allocation in a Cluster with Synchronous Notifications
	Using this tutorial, you will …
	Step 1: Preprocessor directives
	Step 2: Implement the principal method
	Step 3: Free all resource allocations
	Step 4: Print allocation info
	Step 5: Print container info
	Run the client application
	Sample output

	Tutorial 3: Request Host Allocation in a Cluster with Asynchronous Callback Notifications
	Using this tutorial, you will …
	Step 1: Preprocessor directives and method declarations
	Step 2: Implement the principal method
	Step 3: Client callback methods
	Run the client application
	Sample output

	Tutorial 4: Request Resource Allocation in a Cluster and Start Containers Using Threads
	Using this tutorial, you will …
	Underlying principles
	Step 1: Preprocessor directives and global variable declarations
	Step 2: Implement the principal method
	Step 3: Make resource allocation requests to Platform EGO (resource thread)
	Step 4: Get resource allocation reply from Platform EGO and start containers (work thread)
	Step 5: Calculate the average host load (monitor thread)
	Step 6: Client callback methods
	Step 7: Calculate the average activity load on the resources
	Run the client application
	Sample output

	Tutorial 5: Request Resource Allocation in a Cluster and Start Containers Based on Host Loading
	Using this tutorial, you will …
	Underlying principles
	Step 1: Preprocessor directives
	Step 2: Implement the principal method
	Step 3: Add or release resources based on average host load (monitor thread)
	Step 4: Release resources from Platform EGO
	Run the client application
	Sample output

	Tutorial 6: Create an EGO Service
	Using this tutorial, you will …
	Underlying principles
	Step 1: Preprocessor directives and declarations
	Step 2: Implement the principal method
	Step 3: Create the service
	Step 4: Query the service
	Step 5: Disable and remove the service
	Run the client application

	Tutorial 7: Update a DNS Entry in the Service Director
	Using this tutorial, you will …
	Underlying principles
	Step 1: Preprocessor directives and method declarations
	Step 2: Implement the principal method
	Step 3: Create the service definition
	Step 4: Create the service
	Step 5: Client callback methods
	Run the client application
	Before you begin the tutorials
	Contents

	Locate the code samples
	Tutorial 1: Request Information About Hosts in a Cluster
	Using this tutorial, you will …
	Step 1: Import class references
	Step 2: Retrieve cluster information
	Step 3: Retrieve resource information
	Step 4: Print the resource information
	Step 5: Call the sample program
	Run the client application
	Sample output

	Tutorial 2: Register, Locate, and Unregister a Client
	Using this tutorial, you will …
	Step 1: Import class references
	Step 2: Retrieve cluster and Resource information
	Step 3: Register the client
	Step 4: Locate the client
	Step 5: Unregister the client
	Step 6: Print out the information
	Run the client application
	Sample output

	Tutorial 3: Request a Resource Allocation in a Cluster
	Using this tutorial, you will …
	Step 1: Import class references
	Step 2: Retrieve cluster and Resource information
	Step 3: Register the client
	Step 4: Make a resource allocation request
	Step 5: Check the allocation status
	Step 6: Create and start an activity on a resource
	Step 7: Locate the client
	Step 8: Unregister the client
	Run the client application
	Sample output

	Tutorial 4: Monitor an Activity on a Resource
	Using this tutorial, you will …
	Step 1: Import class references
	Step 2: Retrieve cluster and Resource information
	Step 3: Register the client
	Step 4: Make a resource allocation request
	Step 5: Check for notification of resource allocation
	Step 6: Create an activity that will run on a requested resource
	Step 7: Calculate the activity load on the resource
	Step 8: Monitor the activity
	Step 9: Locate the client
	Step 10: Unregister the client
	Run the client application
	Sample output

	Tutorial 5: Modify Resources Based on Load Information
	Using this tutorial, you will …
	Step 1: Import class references
	Step 2: Retrieve cluster information
	Step 3: Check that the cluster has enough resources
	Step 4: Register the client
	Step 5: Make a resource allocation request
	Step 6: Check for notification of resource allocation
	Step 7: Create an activity that will run on a requested resource
	Step 8: Check the resource loading
	Step 9: Modify the resources
	Step 10: Locate the client
	Step 11: Unregister the client
	Run the client application
	Sample output

	Tutorial 6: Create an EGO Service
	Using this tutorial, you will …
	Underlying principles
	Step 1: Import class references
	Step 2: Retrieve resource information
	Step 3: Register the client
	Step 4: Locate all clients
	Step 5: Query all EGO services
	Step 6: Create a service definition
	Step 7: Create a Service Controller Client object
	Step 8: Subscribe to notifications
	Step 9: Create and start an EGO service
	Step 10: Check for service state changes
	Step 11: Stop an EGO service
	Step 12: Unsubscribe to service notifications
	Run the client application
	Sample output

	Tutorial 7: Create an EGO Service and Query the Domain Name Server
	Using this tutorial, you will …
	Underlying principles
	Step 1: Import class references
	Step 2: Register the client
	Step 3: Retrieve resource information
	Step 4: Locate all clients
	Step 5: Query all services
	Step 6: Create a service definition
	Step 7: Create a Service Controller Client object
	Step 8: Create and start an EGO service
	Step 9: Query the DNS
	Step 11: Stop an EGO service
	Run the client application
	Contents
	Compiler errors
	Wrong compliance level
	Incorrect number of arguments

	Connection errors
	Incorrect username or password
	Platform EGO not running
	Incorrect URL
	DNS cannot resolve host name
	Notification problems

