

Vertica® Analytic Database 4.1, Revision 1

Administrator's Guide
Copyright© 2006-2011 Vertica Systems, Inc.

Date of Publication: January 7, 2011

CONFIDENTIAL

-ii-

Contents

Technical Support 1

About the Documentation 2

Where to Find the Vertica Documentation ... 2
Reading the Online Documentation .. 2
Printing Full Books ... 4
Suggested Reading Paths .. 4
Where to Find Additional Information ... 6
Typographical Conventions .. 7

Preface 9

Administration Overview 10

Configuring the Database 11

Configuration Procedure ... 11
Prepare Disk Storage Locations... 12
Prepare the Logical Schema Script .. 14
Prepare Data Files .. 14
Prepare Load Scripts .. 15
Create an Optional Sample Query Script ... 15
Create an Empty Database ... 16
Create the Logical Schema .. 17
Perform a Partial Data Load .. 17
Test the Database ... 18
Optimize Query Performance .. 18
Complete the Data Load .. 18
Test the Optimized Database ... 18
Set Up Incremental (Trickle) Loads .. 19
Implement Security ... 19
Implement Locales for International Data Sets ... 19
Change Transaction Isolation Levels ... 25

Configuration Parameters ... 25
General Parameters .. 25
Tuple Mover Parameters ... 27
Internationalization Parameters ... 29
Epoch Management Parameters .. 30
Monitoring Parameters .. 32
Profiling Parameters .. 33
Query Repository Parameters .. 33
Security Parameters ... 35
Kerberos Authentication Parameters ... 35

Designing a Logical Schema .. 37
Data Warehouse Schema Types .. 37

-iii-

 Contents

Using Multiple Schemas .. 40
Creating Tables .. 45
Adding Constraints .. 49
Removing Constraints ... 54
Enforcing Constraints .. 55
Analyzing Constraints (Detecting Constraint Violations) ... 55
Using Sequences .. 60
Implementing Views.. 74
Altering Tables .. 76

Creating a Physical Design ... 77
Using the Database Designer ... 77
Creating Custom Designs .. 91

Implementing Security .. 112
Implementing Client Authentication ... 114
Implementing SSL ... 130
Implementing Database Authorization .. 136

Operating the Database 140

Managing Your License Key .. 140
Starting the Database .. 142
Stopping the Database .. 142
Loading and Modifying Data .. 144

Bulk Loading ... 144
Trickle Loading ... 148
Using the COPY Command .. 148
Tuple Mover .. 165
Collecting Statistics ... 172

Bulk Deleting and Purging Data ... 176
Best Practices for DELETE and UPDATE .. 177
Purging Deleted Data... 180

Partitioning Tables .. 183
Defining Partitions ... 184
Dropping Partitions ... 186
Partitioning and Segmenting Data ... 188
Partitioning and Data Storage .. 189
Managing Partitions ... 190
Auto Partitioning ... 192
Partition Elimination.. 194

Monitoring the Database ... 197
Monitoring the Log Files ... 197
Rotating the Log Files ... 197
Using the SQL Monitoring API ... 199
Monitoring Processes .. 205
Monitoring Events ... 205
Monitoring Linux Resource Usage .. 215
Monitoring Vertica Using Ganglia .. 218

Recovering the Database .. 233
Failure Recovery ... 235
Restarting Vertica on a Host .. 247
Restarting the Database ... 248
Recovering the Cluster from a Backup .. 251

-iv-

Administrator's Guide

Monitoring Recovery ... 251
Exporting a Catalog ... 251

Backup and Restore .. 252
When to Back Up the Database ... 252
Backing Up the Database .. 253
Restoring the Database from a Backup.. 255
Restoring to the Same Cluster ... 255
Restoring the Database .. 256
Copying a Database to Another Cluster .. 258
Best Practices for Disaster Recovery ... 261

Managing Nodes ... 263
Adding Nodes .. 264
Rebalancing Data Across Nodes ... 268
Removing Nodes ... 271
Replacing Nodes .. 275
Modifying Database Designs for Updated Nodes ... 279
Testing Modified Database Designs .. 282

Managing Disk Space ... 283
Adding Disk Space to a Node .. 283
Adding Disk Space Across the Cluster .. 284
Replacing Failed Disks .. 285
Creating and Configuring Storage Locations .. 286
Reclaiming Disk Space .. 290

Managing Workloads .. 292
The Resource Manager .. 293
Resource Manager Impact on Query Execution .. 293
Resource Pool Architecture ... 294
Monitoring Resource Pools and Resource Usage by Queries .. 297
User Profiles .. 299
Best Practices for Workload Management .. 301
Managing System Resource Usage ... 312

Load Balancing ... 316
Configuring Vertica Nodes .. 317
Configuring the Directors .. 320
Connecting to the Virtual IP (VIP) .. 323
Monitoring Which Nodes Are Connected ... 323
Determining Where Connections Are Going ... 324
Virtual IP Connection Problems .. 326
Troubleshooting Keepalived Issues ... 327

Using the Administration Tools 329

Using the Graphical User Interface ... 330
K-Safety Support in Administration Tools ... 332
Notes for Remote Terminal Users .. 333
Using the Online Help .. 333
Password Authentication .. 334
Distributing Changes Made to the Administration Tools Metadata.. 334
Administration Tools Reference ... 336

Viewing Database Cluster State .. 336
Connecting to the Database ... 337
Starting a Database .. 337
Stopping a Database .. 338

-v-

 Contents

Restarting Vertica on Host .. 341
Configuration Menu Item .. 342
Advanced Menu Options ... 346

Writing Administration Tools Scripts ... 351

Using vsql 358

Connecting From the Administration Tools ... 359
Connecting from the Command Line.. 360

Command Line Options... 360
Connecting From a Non-Cluster Host ... 365

Meta-Commands ... 366
! [COMMAND] ... 366
? ... 366
a ... 368
b ... 368
c (or \connect) [dbname [username]] ... 368
C [STRING] .. 368
cd [DIR] ... 368
The \d [PATTERN] meta-commands .. 368
e \edit [FILE] ... 375
echo [STRING] ... 376
f [string] ... 376
g ... 376
H .. 376
h \help [command] ... 376
i FILE .. 377
l .. 377
locale ... 377
o ... 378
p ... 378
password [USER] .. 378
pset NAME [VALUE] ... 379
q ... 380
qecho [STRING] ... 380
r .. 380
s [FILE] ... 381
set [NAME [VALUE [...]]].. 381
t .. 381
T [STRING]... 381
timing... 382
unset [NAME] ... 382
w [FILE] .. 382
x ... 382
z ... 382

Variables ... 382
AUTOCOMMIT .. 383
DBNAME .. 384
ECHO .. 384
ECHO_HIDDEN ... 384
ENCODING .. 385
HISTCONTROL ... 385

-vi-

Administrator's Guide

HISTSIZE .. 385
HOST... 385
IGNOREEOF .. 385
ON_ERROR_STOP .. 385
PORT ... 385
PROMPT1 PROMPT2 PROMPT3 ... 385
QUIET ... 386
SINGLELINE .. 386
SINGLESTEP.. 386
USER ... 386
VERBOSITY ... 386
VSQL_HOME ... 386

Prompting ... 387
Command Line Editing ... 388
Environment ... 389
Locales .. 389
Files .. 390
Exporting Data Using vsql .. 390
Copying Data Using vsql .. 392
Notes for Windows Users ... 393
Output Formatting Examples .. 393

Appendix: Locales 395

Locale Specification ... 397
Long Form ... 397
Short Form ... 403

Supported Locales .. 404
Locale Restrictions and Workarounds .. 416

Index 419

Copyright Notice 429

-1-

Technical Support

To submit problem reports, questions, comments, and suggestions, use the Technical Support
page on the Vertica Systems, Inc., Web site.

Note: You must be a registered user in order to access the support page.

1 Go to http://www.vertica.com/support (http://www.vertica.com/support).

2 Click My Support.

You can also email verticahelp@vertica.com.

Before you report a problem, run the Diagnostics Utility described in the Troubleshooting Guide

and attach the resulting .zip file to your ticket.

http://www.vertica.com/support
http://www.vertica.com/support
mailto:verticahelp@vertica.com

-2-

About the Documentation

This section describes how to access and print Vertica documentation. It also includes suggested
reading paths (page 4).

Where to Find the Vertica Documentation
You can read or download the Vertica documentation for the current release of Vertica® Analytic
Database from the Product Documentation Page
http://www.vertica.com/v-zone/product_documentation. You must be a registered user to
access this page.

The documentation is available as a compressed tarball (.tar) or a zip archive (.zip) file. When

you extract the file on the database server system or locally on the client, contents are placed in a

/vertica41_doc/ directory.

Note: The documentation on the Vertica Systems, Inc., Web site is updated each time a new
release is issued. If you are using an older version of the software, refer to the documentation
on your database server or client systems.

See Installing Vertica Documentation in the Installation Guide.

Reading the Online Documentation

Reading the HTML documentation files

The Vertica documentation files are provided in HTML browser format for platform independence.
The HTML files require only a browser that displays frames properly with JavaScript enabled. The
HTML files do not require a Web (HTTP) server.

The Vertica documentation is supported on the following browsers:

 Mozilla FireFox

 Internet Explorer

 Apple Safari

 Opera

 Google Chrome (server-side installations only)

The instructions that follow assume you have installed the documentation on a client or server
machine.

Mozilla Firefox

1 Open a browser window.

2 Choose one of the following methods to access the documentation:

 Select File > Open File, navigate to ..\HTML-WEBHELP\index.htm, and click Open.

 OR drag and drop index.htm into a browser window.

http://www.vertica.com/v-zone/product_documentation

-3-

 About the Documentation

 OR press CTRL+O, navigate to index.htm, and click Open.

Internet Explorer

Use one of the following methods:

1 Open a browser window.

2 Choose one of the following methods to access the documentation:

 Select File > Open > Browse, navigate to ..\HTML-WEBHELP\index.htm, click Open,

and click OK.

 OR drag and drop index.htm into the browser window.

 OR press CTRL+O, Browse to the file, click Open, and click OK.

Note: If a message warns you that Internet Explorer has restricted the web page from running
scripts or ActiveX controls, right-click anywhere within the message and select Allow Blocked
Content.

Apple Safari

1 Open a browser window.

2 Choose one of the following methods to access the documentation:

 Select File > Open File, navigate to ..\HTML-WEBHELP\index.htm, and click Open.

 OR drag and drop index.htm into the browser window.

 OR press CTRL+O, navigate to index.htm, and click Open.

Opera

1 Open a browser window.

2 Position your cursor in the title bar and right click > Customize > Appearance, click the
Toolbar tab and select Main Bar.

3 Choose one of the following methods to access the documentation:

 Open a browser window and click Open, navigate to ..\HTML-WEBHELP\index.htm,

and click Open.

 OR drag and drop index.htm into the browser window.

 OR press CTRL+O, navigate to index.htm, and click Open.

Google Chrome

Google does not support access to client-side installations of the documentation. You'll have to
point to the documentation installed on a server system.

1 Open a browser window.

2 Choose one of the following methods to access the documentation:

In the address bar, type the location of the index.htm file on the server. For example:
file://<servername>//vertica41_doc//HTML/Master/index.htm

 OR drag and drop index.htm into the browser window.

 OR press CTRL+O, navigate to index.htm, and click Open.

-4-

Administrator's Guide

Notes

The .tar or .zip file you download contains a complete documentation set.

The documentation page of the Downloads Web site
http://www.vertica.com/v-zone/download_vertica is updated as new versions of Vertica are
released. When the version you download is no longer the most recent release, refer only to the
documentation included in your RPM.

The Vertica documentation contains links to Web sites of other companies or organizations that
Vertica does not own or control. If you find broken links, please let us know.

Report any script, image rendering, or text formatting problems to Technical Support (on page
1).

Printing Full Books
Vertica also publishes books as Adobe Acrobat™ PDF. The books are designed to be printed on
standard 8½ x 11 paper using full duplex (two-sided) printing.

Note: Vertica manuals are topic driven and not meant to be read in a linear fashion. Therefore,
the PDFs do not resemble the format of typical books. Each topic starts a new page, so some of
the pages are very short, and there are blank pages between each topic.

Open and print the PDF documents using Acrobat Acrobat Reader. You can download the latest
version of the free Reader from the Adobe Web site
(http://www.adobe.com/products/acrobat/readstep2.html).

The following list provides links to the PDFs.

 Release Notes

 Concepts Guide

 Installation Guide

 Getting Started Guide

 Administrator's Guide

 Programmer's Guide

 SQL Reference Manual

 Troubleshooting Guide

Suggested Reading Paths
This section provides a suggested reading path for various users. Vertica recommends that you
read the manuals listed under All Users first.

All Users

 Release Notes — Release-specific information, including new features and behavior changes
to the product and documentation

 Concepts Guide — Basic concepts critical to understanding Vertica

http://www.vertica.com/v-zone/download_vertica
http://www.adobe.com/products/acrobat/readstep2.html

-5-

 About the Documentation

 Getting Started Guide — A tutorial that takes you through the process of configuring a Vertica
database and running example queries

 Troubleshooting Guide — General troubleshooting information

System Administrators

 Installation Guide — Platform configuration and software installation

 Release Notes — Release-specific information, including new features and behavior changes
to the product and documentation

Database Administrators

 Installation Guide — Platform configuration and software installation

 Administrator's Guide — Database configuration, loading, security, and maintenance

Application Developers

 Programmer's Guide — Connecting to a database, queries, transactions, and so on

 SQL Reference Manual — SQL and Vertica-specific language information

-6-

Where to Find Additional Information
Visit the Vertica Systems, Inc. Web site (http://www.vertica.com) to keep up to date with:

 Downloads

 Frequently Asked Questions (FAQs)

 Discussion forums

 News, tips, and techniques

 Training

http://www.vertica.com/

-7-

 7

Typographical Conventions
The following are the typographical and syntax conventions used in the Vertica documentation.

Typographical Convention Description

Bold Indicates areas of emphasis, such as a special menu command.

Button Indicates the word is a button on the window or screen.

Code SQL and program code displays in a monospaced (fixed-width) font.

Database objects Names of database objects, such as tables, are shown in san-serif
type.

Emphasis Indicates emphasis and the titles of other documents or system files.

monospace Indicates literal interactive or programmatic input/output.

monospace italics Indicates user-supplied information in interactive or programmatic
input/output.

UPPERCASE Indicates the name of a SQL command or keyword. SQL keywords

are case insensitive; SELECT is the same as Select, which is the

same as select.

User input Text entered by the user is shown in bold san serif type.

 indicates the Return/Enter key; implicit on all user input that includes
text

Right-angle bracket > Indicates a flow of events, usually from a drop-down menu.

Click Indicates that the reader clicks options, such as menu command
buttons, radio buttons, and mouse selections; for example, "Click OK
to proceed."

Press Indicates that the reader perform some action on the keyboard; for
example, "Press Enter."

Syntax Convention Description

Text without brackets/braces Indicates content you type as shown.

< Text inside angle brackets > Placeholder for which you must supply a value. The variable is usually
shown in italics. See Placeholders below.

[Text inside brackets] Indicates optional items; for example, CREATE TABLE
[schema_name.]table_name

The brackets indicate that the schema_name is optional. Do not type
the square brackets.

{ Text inside braces } Indicates a set of options from which you choose one; for example:

QUOTES { ON | OFF } indicates that exactly one of ON or OFF must

-8-

Administrator's Guide

be provided.You do not type the braces: QUOTES ON

Backslash \ Continuation character used to indicate text that is too long to fit on a
single line.

Ellipses ... Indicate a repetition of the previous parameter. For example,

option[,...] means that you can enter multiple,

comma-separated options.

Note: Showing an ellipses in code examples might also mean that
part of the text has been omitted for readability, such as in multi-row
result sets.

 Indentation Is an attempt to maximize readability; SQL is a free-form language.

Placeholders Items that must be replaced with appropriate identifiers or
expressions are shown in italics.

Vertical bar | Is a separator for mutually exclusive items. For example: [ASC |
DESC]

Choose one or neither. You do not type the square brackets.

-9-

Preface

This document describes how to set up and maintain a Vertica database. You might find that these
tasks are extremely simple in Vertica compared to other database management systems.

Prerequisites

This document assumes that you have already:

 Become familiar with the concepts discussed in the Concepts Guide.

 Performed the procedures described in the Installation Guide.

 Constructed a hardware platform.

 Installed Linux.

 Installed Vertica (configured a cluster of hosts).

 Followed the Tutorial in the Getting Started Guide to experiment with setting up an example
database.

Audience

This document is intended for anyone with responsibility for configuring, loading, securing, and
maintaining a Vertica database.

For More Information

There is a great deal of published literature available about dimensional modeling and data
warehouse design in general.

-10-

Administration Overview

This document describes the functions performed by a Vertica database administrator (DBA).
Perform these tasks using only the dedicated database administrator account that was created
when you installed Vertica. The examples in this documentation set assume that the
administrative account name is dbadmin.

 To perform certain cluster configuration and administration tasks, the DBA (users of the
administrative account) must be able to supply the root password for those hosts. If this
requirement conflicts with your organization's security policies, these functions must be
performed by your IT staff.

 If you perform administrative functions using a different account than the one provided during
installation, Vertica encounters file ownership problems.

 If you share the administrative account password, make sure that only one user runs the
Administration Tools at any time. Otherwise, automatic configuration propagation does not
work correctly.

 The Administration Tools require that the calling user's shell be /bin/bash. Other shells give

unexpected results and are not supported.

-11-

Configuring the Database

This section provides information about:

 The Vertica® Analytic Database Configuration procedure (page 11)

 Configuration parameters (page 25)

 Designing a logical schema (page 37)

 Creating the physical schema (page 77)

 Implementing security (page 19)

 Implementing locales (page 19) for international data sets

Note: Before you begin this section, Vertica strongly recommends that you follow the Tutorial
in the Getting Started Guide to quickly familiarize yourself with creating and configuring a
fully-functioning n example database.

Configuration Procedure
This section describes the tasks required to set up a Vertica database. It assumes that you have
obtained a valid license key file, installed the Vertica rpm package, and run the installation script
as described in the Installation Guide.

You'll complete the configuration procedure using the:

 Administration Tools

Note: If you are unfamiliar with Dialog-based user interfaces, read Using the Graphical User
Interface (page 330) before you begin. See also the Administration Tools Reference (page
336) for details.

 vsql interactive interface

 The Database Designer, described fully in Creating a Physical Design (page 77)

IMPORTANT NOTES

Follow the configuration procedure in the order presented in this book.

Vertica strongly recommends that you follow the Tutorial in the Getting Started Guide to
experiment with creating and configuring a database before you begin this section.

The generic configuration procedure described here can be used several times during the
development process and modified each time to fit changing goals. You can omit steps such as
preparing actual data files and sample queries, and run the Database Designer without optimizing
for queries. For example, you can create, load, and query a database several times for
development and testing purposes, then one final time to create and load the production
database.

-12-

Administrator's Guide

Prepare Disk Storage Locations

Preparing the disk storage locations for Vertica involves choosing the disk directory paths that
contain the catalog and data files (physical schema) for each host in the cluster. These are
referred to as catalog path and data path respectively.

You can use a single directory to contain both the catalog and data files or you can use separate
directories. If you use separate directories, they can be on different drives. The directories can be
either on drives local to the host or can be on a shared storage, such as an external disk enclosure
or a SAN.

Notes

 The topics in this section are intentionally included in both the Vertica Installation Guide and
Administrator's Guide because the choice of disk storage locations for a database can be
made at installation time, database configuration time, or later during the operation of the
database

 The catalog and data directory pathnames must be identical on each host in the cluster, and
the directories must be owned by the Database Administrator.

 The choice of disk storage locations for a database can be made at installation time, database
configuration time, or later during the operation of the database.

Disk Space Requirements for Vertica

In addition to actual data stored in the database, disk space is required by a number of data
reorganization operations in Vertica, such as mergeout and managing nodes (page 263) in the
cluster. For best results, Vertica recommends that disk utilization per node be no more than sixty
percent (60%) for a K-Safe=1 database to allow such operations to proceed.

In addition, disk space is temporarily required by certain query execution operators, such as hash
joins and sorts, in the case when they have to spill to disk. Such operators might be encountered
during queries, recovery, refreshing projections, and so on. The amount of disk space needed in
this manner (known as temp space) depends on the nature of the queries, amount of data on the
node and number of concurrent users on the system. By default, any unused space on the data
disk can be used as temp space, however, it is possible and recommended to provision temp
space separate from data disk space. See Configuring Disk Usage to Optimize Performance
(page 13).

Specifying Disk Storage at Installation Time

When you install Vertica, the data_directory parameter in the install_vertica script lets

you specify a directory to contain database data and catalog files. The default is the Database
Administrator's default home directory:

/home/dbadmin

There is no requirement that you use this directory. It is created for your convenience. However, if
you choose a different location, make sure that the location exists on each host in the cluster and
is owned by the Database Administrator before you create a database.

-13-

 Configuring the Database

Specifying Disk Storage at Database Creation Time

When you invoke the Create Database (page 342) command in the Administration Tools, the
following dialog allows you to specify the catalog and data locations. These locations much exist
on each host in the cluster and must be owned by the Database Administrator.

When you click OK, Vertica automatically creates the following subdirectories:

catalog-pathname/database-name/node-name_catalog/

data-pathname/database-name/node-name_data/

For example, if you use the default value (the Database Administrator's home directory) of

/home/dbadmin for the Stock Exchange example database, the catalog and data directories

would be as follows, on each node in the cluster:

/home/dbadmin/Stock_Schema/stock_schema_node1_host01_catalog

/home/dbadmin/Stock_Schema/stock_schema_node1_host01_data

Notes

 Catalog and data path names must contain only alphanumeric characters and cannot have
leading space characters. Failure to comply with these restrictions will result in database
creation failure.

 Vertica refuses to overwrite a directory if it appears to be in used by another database.
Therefore, if you created a database for evaluation purposes, dropped the database, and want
to reuse the database name, make sure that the disk storage location previously used has
been completely cleaned up.

Configuring Disk Usage to Optimize Performance

Once you have created your initial storage location, you can add additional storage locations to
the database later. Not only does this provide additional space, it lets you control disk usage and
increase I/O performance by isolating files that have different I/O or access patterns. For
example, consider:

 Isolating execution engine temporary files from data files by creating a separate storage
location for temp space.

 Creating a tiered disk architecture in which projections are stored on different disks based on
predicted or measured access patterns.

See Creating and Configuring Storage Locations (page 286) for details.

-14-

Administrator's Guide

Using Shared Storage with Vertica

If using shared SAN storage, you will need to extra care to ensure that there is no contention
among the nodes for disk space or bandwidth.

 Each host must have its own catalog and data locations. In other words, hosts cannot share
catalog or data locations.

 Configure the storage so that there is enough I/O bandwidth for each nodes to access the
storage independently.

 For latest information on SAN configuration and recommended hardware configurations, visit
the Online Training http://www.vertica.com/v-zone/training section of the Vertica
Systems, Inc. Web site.

Contact Technical Support (on page 1) if you need a consultation.

Prepare the Logical Schema Script

Designing a logical schema for a Vertica database is no different from designing one for any other
SQL database. See Designing a Logical Schema (page 37) for details.

To create your logical schema, you must prepare a SQL script (plain text file, typically with an

extension of .sql) that:

1 Creates additional schemas (as necessary). See Using Multiple Schemas (page 40).

2 Creates the tables and column constraints in your database using the CREATE TABLE
command.

3 Defines the necessary table constraints using the ALTER TABLE command.

4 Defines any views on the table using the CREATE VIEW command.

You can generate a script file using:

 A schema designer application.

 A schema extracted from an existing database.

 A text editor.

 One of the example database example-name_define_schema.sql scripts as a template.

(See the example database directories in /opt/vertica/examples.)

In your script file, make sure that:

 Each statement ends with a semicolon.

 You use only data types supported by Vertica. See the SQL Reference Manual for details.

Once you have created a database, you can test your schema script by executing it as described
in Create the Logical Schema (page 17). If you encounter errors, drop all tables, correct the
errors, and run the script again.

Prepare Data Files

Prepare two sets of data files:

 Test data files. Use test files to test the database after the partial data load. If possible, use part
of the actual data files to prepare the test data files.

http://www.vertica.com/v-zone/training

-15-

 Configuring the Database

 Actual data files. Once the database has been tested and optimized, use your data files for
your initial bulk load (page 144).

How to Name Data Files

Name each data file to match the corresponding table in the logical schema. Case does not
matter.

Use the extension .tbl or whatever you prefer. For example, if a table is named

Stock_Dimension, name the corresponding data file stock_dimension.tbl. When using

multiple data files, append _nnn (where nnn is a positive integer in the range 001 to 999) to the file

name. For example, stock_dimension.tbl_001, stock_dimension.tbl_002, and so on.

Prepare Load Scripts

Note: You can postpone this step if your goal is to test a logical schema design for validity.

Prepare SQL scripts that use the COPY...DIRECT statement via vsql or the LCOPY...DIRECT
statement through ODBC to load data directly into physical storage.

You need scripts that load the:

 Large tables

 Small tables

Vertica Systems, Inc. recommends that you load large tables using multiple files. To test the load
process, use files of 10GB to 50GB in size. This size provides several advantages:

 You can use one of the data files as a sample data file for the Database Designer.

 You can load just enough data to perform a partial data load (page 17) before you load the
remainder.

 If a single load fails and rolls back, you do not lose an excessive amount of time.

 Once the load process is tested, for multi-terabyte tables, break up the full load in file sizes of
250-500GB.

See the Loading and Modifying Data (page 144) and the following additional topics for details:

 Bulk Loading (page 144)

 Using Load Scripts (page 148)

 Using Parallel Load Streams (page 149)

 Loading Data into Pre-join Projections (page 153)

 Enforcing Constraints (page 55)

 About Load Errors (page 157)

Tip: You can use the load scripts included in the example databases in the Getting Started
Guide as templates.

Create an Optional Sample Query Script

The purpose of a sample query script is to test your schema and load scripts for errors.

-16-

Administrator's Guide

Include a sample of queries your users are likely to run against the database. If you don't have any
real queries, just write simple SQL that collects counts on each of your tables. Alternatively, you
can skip this step.

Create an Empty Database
1 Run the Administration Tools from your Administration Host as follows:

$ /opt/vertica/bin/admintools

If you are using a remote terminal application such as PuTTY or a Cygwin bash shell, see
Notes for Remote Terminal Users (page 333).

2 If this is the first time you have run the Administration Tools, accept the license agreement and
specify the location of your license file. See Managing Your License Key (page 140) for more
information.

3 On the Main Menu, click Configuration Menu, and click OK.

4 On the Configuration Menu, click Create Database, and click OK.

5 Enter the name of the database and an optional comment, and click OK.

6 Establish the superuser password for your database.

 To provide a password enter the password and click OK. Confirm the password by entering
it again, and then click OK.

 If you don't want to provide the password, leave it blank and click OK. If you don't set a
password, Vertica prompts you to verify that you truly do not want to establish a superuser
password for this database. Click Yes to create the database without a password or No to
establish the password.

Caution: If you do not enter a password at this point, the superuser password is set to empty.
Unless the database is for evaluation or academic purposes, Vertica Systems, Inc. strongly
recommends that you enter a superuser password.

7 Select the hosts to include in the database from the list of hosts specified when Vertica was

installed (install_vertica -s), and click OK.

8 Specify the directories in which to store the data and catalog files, and click OK.

Catalog and data pathnames must contain only alphanumeric characters and cannot have
leading spaces. Failure to comply with these restrictions could result in database creation
failure.

For example:

Catalog pathname: /home/dbadmin

Data Pathname: /home/dbadmin

9 Review the Current Database Definition screen to verify that it represents the database you
want to create, and then click Yes to proceed or No to modify the database definition.

If you clicked Yes, Vertica creates the database you defined and then displays a message to
indicate that the database was successfully created.

Note: For databases created with 3 or more nodes, Vertica automatically sets K-safety to 1 to
ensure that the database is fault tolerant in case a node fails. For more information, see the
Failure Recovery (page 235) topic in Administrator's Guide and SELECT
MARK_DESIGN_KSAFE in the SQL Reference Manual.

10 Click OK to acknowledge the message.

-17-

 Configuring the Database

If you receive an error message, see Startup Problems (page 241).

Create the Logical Schema
1 Connect to the database.

In the Administration Tools Main Menu, click Connect to Database and click OK.

See Connecting to the Database for details.

The vsql welcome script appears:

Welcome to the vsql, Vertica_Database v4.1.x interactive terminal.

Type: \h for help with SQL commands

 \? for help with vsql commands

 \g or terminate with semicolon to execute query

 \q to quit

vmartdb=>

2 Run the logical schema script

Using the \i meta-command (see "i FILE" on page 377) in vsql to run the SQL logical
schema script (page 14) that you prepared earlier.

3 Disconnect from the database

Use the \q meta-command (see "q" on page 380) in vsql to return to the Administration Tools.

Perform a Partial Data Load

Vertica recommends that for large tables, you perform a partial data load and then test your
database before completing a full data load. This load should load a representative amount of
data.

1 Load the small tables.

Load the small table data files using the SQL load scripts (page 15) and data files (page 14)
you prepared earlier.

2 Partially load the large tables.

Load 10GB to 50GB of table data for each table using the SQL load scripts (page 15) and
data files (page 14) that you prepared earlier.

Vertica automatically creates a superprojection for each table that is loaded. This ensures that all
SQL queries can be answered, and it is suitable for testing the database. Once you've tested the
database, you can use Database Designer to optimize it further as needed. (For more information
about projections, see Physical Schema in the Concepts Guide.)

-18-

Administrator's Guide

Test the Database

Test the database to verify that it is running as expected.

Check queries for syntax errors and execution times.

1 Use the vsql \timing meta-command (see "timing" on page 382) to enable the display of
query execution time in milliseconds.

2 Execute the SQL sample query script that you prepared earlier.

3 Execute several ad hoc queries.

Optimize Query Performance

Optimizing the database consists of optimizing for compression and tuning for queries. (See
Creating a Physical Design (page 77).)

To optimize the database, use the Database Designer to create and deploy a design for optimizing
the database.

See the Tutorial for an example of using the Database Designer.

Complete the Data Load
1 Monitor system resource usage

Continue to run the top, free, and df utilities and watch them while your load scripts are running
(as described in Monitoring Linux Resource Usage (page 215)). You can do this on any or
all nodes in the cluster. Make sure that the system is not swapping excessively (watch kswapd
in top) or running out of swap space (watch for a large amount of used swap space in free).

2 Complete the large table loads

Run the remainder of the large table load scripts.

Test the Optimized Database

In order to test your optimized design, you can check query execution times:

1 Use the vsql \timing (see "timing" on page 382) meta-command to enable the display of

query execution time in milliseconds.

Execute a SQL sample query script to test your schema and load scripts for errors.

Note: Include a sample of queries your users are likely to run against the database. If you don't
have any real queries, just write simple SQL that collects counts on each of your tables.
Alternatively, you can skip this step.

2 Execute several ad hoc queries

1. Run Administration Tools and select Connect to Database.

2. Use the \i meta-command (see "i FILE" on page 377) to execute the query script; for
example:

vmartdb=> \i vmart_query_01.sql

-19-

 Configuring the Database

Once the database has been optimized, it should run queries efficiently. However, you might
discover additional queries that you want to optimize. If this is the case, modify and update the
design. See Modifying Designs and Creating a Query-specific Design Using the Database
Designer (page 87) in the Administrator's Guide.

Set Up Incremental (Trickle) Loads

Once you have a working database, you can use trickle loading to load new data while concurrent
queries are running.

Trickle load is accomplished by using the COPY command (without the DIRECT keyword) to load
10k to 100k rows per transaction into the WOS. This allows Vertica to batch multiple loads when
it writes data to disk. The COPY command loads data into the WOS and automatically overflow to
the ROS if the WOS is full.

See the following sections in this guide for details:

 Trickle Loading (page 148)

 Loading data through ODBC

 Loading data through JDBC

See Also

COPY in the SQL Reference Manual

Implement Security

Once you have created the database, implement security before allowing users access to it. See
Implementing Security (page 112).

Implement Locales for International Data Sets

The locale is a parameter that defines the user's language, country, and any special variant
preferences, such as collation. Vertica uses the locale to determine the behavior of various string
functions as well for collation for various SQL commands that require ordering and comparison; for
example, GROUP BY, ORDER BY, joins, the analytic ORDER BY clause, and so forth.

By default, the locale for the database is en_US@collation=binary (English US). You can

establish a new default locale that is used for all sessions on the database, as well as override
individual sessions with different locales. Additionally the locale can be set through ODBC,
JDBC, and ADO.net.

The locale used by the database session is not derived from the operating system; for instance
LANG variable. Vertica uses the ICU library for locale support; thus, you must specify the locale
using the ICU Locale syntax.

Notes

 Even though ICU locales can normally specify collation, currency, and calendar preferences,

Vertica supports only the collation component. The SET DATESTYLE TO ... command

provides some aspects of the calendar; only dollars are supported for currency. Any keywords
not relating to collation are rejected.

-20-

Administrator's Guide

 Projections are always collated using the en_US@collation=binary collation regardless of

the session collation. Any locale-specific collation is applied at query time.

 The maximum length parameter for VARCHAR and CHAR data type refers to the number of
octets (bytes) that can be stored in that field and not number of characters. When using
multi-byte UTF-8 characters, size fields to accommodate from 1 to 4 bytes per character,
depending on the data.

See Also

Supported Locales (page 404) in the Appendix (page 395)

SET in the SQL Reference Manual

ICU User Guide http://userguide.icu-project.org/locale (external link)

Specify the Default Locale for the Database

The default locale configuration parameter sets the initial locale for every database session once
the database has been restarted. Sessions may override this value.

To set the local for the database, use the configuration parameter as follows:

SELECT SET_CONFIG_PARAMETER('DefaultSessionLocale' ,

'<ICU-locale-identifier>');

For example:

mydb=> SELECT SET_CONFIG_PARAMETER('DefaultSessionLocale','en_GB');

 SET_CONFIG_PARAMETER

 Parameter set successfully

(1 row)

Override the Default Locale for a Session

To override the default locale for a specific session, use one of the following commands:

 The vsql command \locale (see "locale" on page 377) <ICU-locale-identifier>.

For example:

\locale en_GB

INFO: Locale: 'en_GB'

INFO: English (United Kingdom)

INFO: Short form: 'LEN'

 The statement SET LOCALE TO <ICU-locale-identifier>.

SET LOCALE TO en_GB;

SET LOCALE TO en_GB;

INFO: Locale: 'en_GB'

INFO: English (United Kingdom)

INFO: Short form: 'LEN'

You can also use the short form (page 403) of a locale in either of these commands:

SET LOCALE TO LEN;

INFO: Locale: 'en'

INFO: English

http://userguide.icu-project.org/locale

-21-

 Configuring the Database

INFO: Short form: 'LEN'

\locale LEN

INFO: Locale: 'en'

INFO: English

INFO: Short form: 'LEN'

You can use these commands to override the locale as many times as needed within a session.
The session locale setting applies to any subsequent commands issued in the session.

See Also

SET in the SQL Reference Manual

Best Practices for Working with Locales

It is important to understand the distinction between the locale settings on the database server and
locale settings at the client application level. The server locale settings impact only the collation
behavior for server-side query processing. The client application is responsible for ensuring that
the correct locale is set in order to display the characters correctly. Below are the best practices
recommended by Vertica to ensure predictable results:

Server locale

Server session locale should be set using the set as described in Specify the Default Locale for
the Database (page 20). If using different locales in different session, set the server locale at the
start of each session from your client.

vsql client

 If there is no default session locale at database level, the server locale for the session should
be set to the desired locale, as described in Override the Default Locale for a Session (page
20).

 The locale setting in the terminal emulator where vsql client is run should be set to be
equivalent to session locale setting on server side (ICU locale) so data is collated correctly on
the server and displayed correctly on the client.

 All input data for vsql should be in UTF-8 and all output data is encoded in UTF-8

 Non UTF-8 encodings and associated locale values should not be used because they are not
supported.

 Refer to the documentation of your terminal emulator for instructions on setting locale and
encoding.

ODBC clients

 ODBC applications can be either in ANSI or Unicode mode. If Unicode, the encoding used by
ODBC is UCS-2. If the user application is ANSI, the data must be in single-byte ASCII, which is
compatible with UTF-8 used on the database server. The ODBC driver converts UCS-2 to
UTF-8 when passing to the Vertica server and converts data sent by the Vertica server from
UTF-8 to UCS-2.

 If the user application is not already in UCS-2, the application is responsible for converting the
input data to UCS-2, or unexpected results could occur. For example:

-22-

Administrator's Guide

 On non-UCS-2 data passed to ODBC APIs, when it is interpreted as UCS-2, it could result
in an invalid UCS-2 symbol being passed to the APIs, resulting in errors.

 The symbol provided in the alternate encoding could be a valid UCS-2 symbol; in this case,
incorrect data is inserted into the database.

 If there is no default session locale at database level, ODBC applications should set the

desired server session locale using SQLSetConnectAttr (if different from database wide

setting) in order to get expected collation and string functions behavior on the server.

JDBC and ADO.NET clients

 JDBC and ADO.NET applications use a UTF-16 character set encoding and are responsible
for converting any non-UTF-16 encoded data to UTF-16. The same cautions apply as for
ODBC if this encoding is violated.

 The JDBC and ADO.NET drivers convert UTF-16 data to UTF-8 when passing to the Vertica
server and convert data sent by Vertica server from UTF-8 to UTF-16.

 If there is no default session locale at the database level, JDBC and ADO.NET applications

should set the correct server session locale by executing the SET LOCALE TO command in

order to get expected collation and string functions behavior on the server. See the SET
command in the SQL Reference Manual.

-23-

 Configuring the Database

Notes and Restrictions

Session related:

 The locale setting is session scoped and applies to queries only (no DML/DDL) run in that
session. You cannot specify a locale for an individual query.

 The default locale for new sessions can be set using a configuration parameter

Query related:

The following restrictions apply when queries are run with locale other than the default
en_US@collation=binary:

 Multicolumn NOT IN subqueries are not supported when one or more of the left-side NOT IN
columns is of CHAR or VARCHAR data type. For example:

=> CREATE TABLE test (x VARCHAR(10), y INT);

=> SELECT ... FROM test WHERE (x,y) NOT IN (SELECT ...);

 ERROR: Multi-expression NOT IN subquery is not supported because a left

hand expression could be NULL

Note: An error is reported even if columns test.x and test.y have a "NOT NULL" constraint.

 Correlated HAVING clause subqueries are not supported if the outer query contains a GROUP

BY on a CHAR or a VARCHAR column. In the following example, the GROUP BY x in the outer

query causes the error:

=> DROP TABLE test CASCADE;

=> CREATE TABLE test (x VARCHAR(10));

=> SELECT COUNT(*) FROM test t GROUP BY x HAVING x

 IN (SELECT x FROM test WHERE t.x||'a' = test.x||'a');

 ERROR: subquery uses ungrouped column "t.x" from outer query

 Subqueries that use analytic functions in the HAVING clause are not supported. For example:

=> DROP TABLE test CASCADE;

=> CREATE TABLE test (x VARCHAR(10));

=> SELECT MAX(x)OVER(PARTITION BY 1 ORDER BY 1)

 FROM test GROUP BY x HAVING x IN (

 SELECT MAX(x) FROM test);

 ERROR: Analytics query with having clause expression that involves

aggregates

 and subquery is not supported

 The operators LIKE/ILIKE do not currently respect UTF-8 character boundaries. Therefore,
expressions such as 'SS' LIKE 'ß' and 'SS' ILIKE 'ß' always return false even in locales where
'SS' = 'ß' return true.

DML/DDL related:

 SQL identifiers (such as table names, column names, and so on) are restricted to ASCII
characters. For example, the following CREATE TABLE statement fails because it uses the
non-ASCII ß in the table name:

=> CREATE TABLE straße(x int, y int);

 ERROR: Non-ASCII characters are not supported in names

-24-

Administrator's Guide

 Projection sort orders are made according to the default en_US@collation=binary collation.
Thus, regardless of the session setting, issuing the following command creates a projection

sorted by col1 according to the binary collation:

=> CREATE PROJECTION p1 AS SELECT * FROM table1 ORDER BY col1;

Note that in such cases, straße and strasse would not be near each other on disk.

Sorting by binary collation also means that sort optimizations do not work in locales other than
binary. Vertica returns the following warning if you create tables or projections in a non-binary
locale:

WARNING: Projections are always created and persisted in the default

Vertica locale. The current locale is de_DE

 When creating pre-join projections, the projection definition query does not respect the locale or
collation setting. This means that when you insert data into the fact table of a pre-join projection,
referential integrity checks are not locale or collation aware.

For example:

\locale LDE_S1 -- German

=> CREATE TABLE dim (col1 varchar(20) primary key);

=> CREATE TABLE fact (col1 varchar(20) references dim(col1));

=> CREATE PROJECTION pj AS SELECT * FROM fact JOIN dim

 ON fact.col1 = dim.col1 UNSEGMENTED ALL NODES;

=> INSERT INTO dim VALUES('ß');

=> COMMIT;

The following INSERT statement fails with a "nonexistent FK" error even though 'ß' is in the dim
table, and in the German locale 'SS' and 'ß' refer to the same character.

=> INSERT INTO fact VALUES('SS');

 ERROR: Nonexistent foreign key value detected in FK-PK join (fact x

dim)

 using subquery and dim_node0001; value SS

=> => ROLLBACK;

=> DROP TABLE dim, fact CASCADE;

 When the locale is non-binary, the collation function is used to transform the input to a binary
string which sorts in the proper order.

This transformation increases the number of bytes required for the input according to this
formula:

result_column_width = input_octet_width * CollationExpansion + 4

CollationExpansion defaults to 5 and should be changed only under the supervision of Vertica
Technical Support (on page 1).

 CHAR fields are displayed as fixed length, including any trailing spaces. When CHAR fields are
processed internally, they are first stripped of trailing spaces. For VARCHAR fields, trailing
spaces are usually treated as significant characters; however, trailing spaces are ignored when
sorting or comparing either type of character string field using a non-BINARY locale.

-25-

 Configuring the Database

Change Transaction Isolation Levels

By default, Vertica uses the READ COMMITTED isolation level for every session. If you prefer, you

can change the default isolation level for the database or for a specific session.

To change the isolation level for a specific session, use the SET SESSION CHARACTERISTICS

command.

To change the isolation level for the database, use the TransactionIsolationLevel

configuration parameter. Once modified, Vertica uses the new transaction level for every new
session.

The following examples set the default isolation for the database to SERIALIZABLE and then

back to READ COMMITTED:

=> SELECT SET_CONFIG_PARAMETER('TransactionIsolationLevel','SERIALIZABLE');

=> SELECT SET_CONFIG_PARAMETER('TransactionIsolationLevel','READ COMMITTED');

Notes

 The default isolation value for databases created prior to 4.0 was SERIALIZABLE. See Read
Committed and Simplification of Epoch Management in Release Notes for 4.0

 The change to isolation level only applies to future sessions. Existing sessions and their
transactions continue to use the original isolation level.

 A transaction retains its isolation level until it completes, even if the session's transaction
isolation level has changed mid-transaction. Vertica internal processes (such as the Tuple

Mover and Refresh operations) and DDL operations are run at SERIALIZABLE isolation to

ensure consistency.

See Also

Transactions in the Concepts Guide for an overview of how Vertica uses session-scoped isolation
levels

Configuration Parameters (page 25) in the Administrator's Guide

Configuration Parameters
The following tables describe parameters for configuring Vertica.

IMPORTANT: Before you modify a parameter, review the entire documentation for the
parameter to determine the context under which you can modify it.

See Also

CONFIGURATION_PARAMETERS in the SQL Reference Manual

SET_CONFIG_PARAMETER in the SQL Reference Manual

General Parameters

The following table describes the general parameters for configuring Vertica.

-26-

Administrator's Guide

Parameters Description Default Example

AnalyzeRowCountInterval Automatically runs every 60
seconds to collect the
number of rows in the
projection and aggregates
row counts calculated during
loads. See Collecting
Statistics (page 172).

60 seconds
SELECT SET_CONFIG_PARAMETER

('AnalyzeRowCountInterval',

 3600);

CompressNetworkData When enabled (set to value
1), Vertica will compress all
of the data it sends over the
network. This speeds up
network traffic at the expense
of added CPU load. You can
enable this if you find that the
network is throttling your
database performance.

0
SELECT SET_CONFIG_PARAMETER

('CompressNetworkData',1);

MaxClientSessions Determines the maximum
number of client sessions
that can be run on the
database.

Tip: Setting this parameter to

0 is useful for preventing new
client sessions from being
opened while you are
shutting down the database.
Be sure to restore the
parameter to its original
setting once you've restarted
the database. See the
section "Interrupting and
Closing Sessions" in
Managing Sessions (page
313).

50

(with 5
additional
administrative
logins)

SELECT SET_CONFIG_PARAMETER

('MaxClientSessions', 100);

TopKHeapMaxMem Controls how much memory
can be used for

TopK(Heap). If K tuples can

fit into the space allocated by
this parameter (default
80MB), the optimizer uses

TopK(Heap); otherwise no

TopK is used (the query is
sorted).

Note: Once the optimizer

chooses TopK(Heap), the

Resource Manager can

reject the plan if the TopK

operator requires too much

80MB
SELECT SET_CONFIG_PARAMETER

('TopKHeapMaxMem ', '70');

-27-

 Configuring the Database

memory. To prevent the
query from being rejected,
you can lower the parameter

TopKHeapMaxMem, but be

careful in changing the
setting. Too low and no TopK
used (you lose the
optimization); too high and
the query could get rejected.
In most cases, the default
setting of 80MB should work.

TransactionIsolationLevel Changes the isolation level
for the database. Once
modified, Vertica uses the
new transaction level for
every new session. Existing
sessions and their
transactions continue to use
the original isolation level.
See Change Transaction
Isolation Levels (page 25).

READ
COMMITTED

SELECT SET_CONFIG_PARAMETER

('TransactionIsolationLevel'

,'SERIALIZABLE');

TransactionMode Controls whether
transactions are read/write or
read-only. Read/write is the
default. Existing sessions
and their transactions
continue to use the original
isolation level.

READ WRITE
SELECT SET_CONFIG_PARAMETER

('TransactionMode'

,'READ ONLY');

Tuple Mover Parameters

These parameters control how the Tuple Mover operates.

Parameters Description Default Example

ActivePartitionCount Sets the number of partitions that
are to be loaded at the same time.
By default, the Tuple Mover
assumes that data is only inserted
into the most recent partition of a
partitioned table. If this is not the
case, then set this parameter to
the number of partitions that are
receiving data at the same time.

Note: this parameter's value is

ignored if
EnableStrataBasedMrgOutPo

1
SELECT SET_CONFIG_PARAMETER

('ActivePartitionCount',

 2);

-28-

Administrator's Guide

licy is disabled.

See Table Partitioning.

EnableStrataBasedMrgOut
Policy

When set to 1 (the default)
enables Vertica 4.0 mergeout
behavior. Set this parameter to
disabled (value 0) if you want to
revert back to 3.5 mergeout
behavior.

Note: This parameter is

deprecated and will be removed in
a future release. Avoid using it
except under the guidance of
Technical Support (on page 1).

1
SELECT SET_CONFIG_PARAMETER

('EnableStrataBasedMrgOutPolicy'

, 0);

MaxMrgOutROSSizeMB Sets the largest size in MB that a
mergeout job can make on a
non-partitioned ROS. By setting
this to a small value, you can
prevent the Tuple Mover from
trying to merge large ROS
containers, which requires more
time to process. Raise this value
during periods of lower activity, so
the Tuple Mover can consolidate
the larger ROS containers.

100
SELECT SET_CONFIG_PARAMETER

('MaxMrgOutROSSizeMB', 150);

MergeOutInterval The number of seconds the Tuple
Mover waits between checks for
new ROS files to merge out. If
ROS containers are added
frequently, this value might need
to be decreased.

600
SELECT SET_CONFIG_PARAMETER

('MergeOutInterval',1200);

MergeOutPolicySizeList A list of the file sizes, in bytes, that
a ROS file must reach before the
Tuple Mover selects it for
mergeout. This parameter has an
effect only if
EnableStrataBasedMrgOutPo

licy is disabled.

Note: This parameter is

deprecated and will be removed in
a future release. Avoid using it
except under the guidance of
Technical Support.

10, 100, 1000,
10000,
100000,
1000000,
10000000,
100000000,
1000000000,
10000000000,
10000000000
0,
50000000000
0,
10000000000
00

MoveOutInterval The number of seconds the Tuple
mover waits between checks for
new data in the WOS to move to
ROS.

300
SELECT SET_CONFIG_PARAMETER

('MoveOutInterval',600);

MoveOutMaxAgeTime Forces the WOS to be written to 30
SELECT SET_CONFIG_PARAMETER

('MoveOutMaxAgeTime', 20);

-29-

 Configuring the Database

disk at the specified interval (in
seconds). The default is 30.

Tip: If you have been running the

force_moveout.sh script, you

no longer need to run it.

MoveOutSizePct The percentage of the WOS that
can be filled with data before the
Tuple Mover performs a moveout
operation.

0
SELECT SET_CONFIG_PARAMETER

('MoveOutSizePct', 50);

Internationalization Parameters

The following table describes the internationalization parameters for configuring Vertica.

Parameters Description Default Example

DefaultSessionLocale Sets the default session
startup locale for the
database. This parameter
does not take effect until the
database is restarted.

en_US@collation=

binary

SELECT SET_CONFIG_PARAMETER

('DefaultSessionLocale',

'en_GB');

EscapeStringWarning Issues a warning when back
slashes are used in a string
literal. This is provided to
help locate back slashes that
are being treated as escape
characters so they can be
fixed to follow the Standard
conforming string syntax
instead.

1
SELECT SET_CONFIG_PARAMETER

('EscapeStringWarning','1');

StandardConformingStri
ngs

In Vertica 4.0, determines
whether ordinary string
literals ('...') treat
backslashes (\) as string
literals or escape characters.
When set to '1', backslashes
are treated as string literals,
when set to '0', back
slashes are treated as
escape characters.

Tip: To treat backslashes as

escape characters, use the
Extended string syntax:

(E'...');

See String Literals
(Character) in the SQL
Reference Manual.

1
SELECT SET_CONFIG_PARAMETER

('StandardConformingStrings'

,'0');

-30-

Administrator's Guide

Epoch Management Parameters

The following table describes the epoch management parameters for configuring Vertica.

Parameters Description Default Example

AdvanceAHMInterval Determines how frequently (in
seconds) Vertica checks the
history retention status. By default
the AHM interval is set to 180
seconds (3 minutes).

Note: AdvanceAHMInterval
cannot be set to a value less than

the EpochMapInterval.

180
SELECT SET_CONFIG_PARAMETER

('AdvanceAHMInterval',

'3600');

AdvanceEpochInterv
al

When EpochAdvancementMode

is set to

AdvanceEpochInterval, this

parameter determines the length
of the epoch interval in seconds.
When this interval has passed, the
epoch is advanced.

This parameter is ignored by
default.

Tip: Decreasing this interval

increases the number of epochs
saved on disk. Therefore, you
might want to reduce the

HistoryRetentionTime

parameter to limit the number of
history epochs that Vertica retains.

180
SELECT SET_CONFIG_PARAMETER

('AdvanceEpochInterval',

'60');

DefaultIntervalStyle Sets the default style of interval to
use. If set to 1, the interval is in

UNITS. If the parameter is set to 0,

the interval is in PLAIN style (the

SQL standard).

1
SELECT SET_CONFIG_PARAMETER

('DefaultIntervalStyle',

'0');

EpochAdvancement
Mode

Determines when epochs are
advanced. Setting this parameter
requires that you restart the
database.

Epochs can be advanced based
on the following settings:

 DML— When data is
inserted, updated, or
deleted

DML
SELECT SET_CONFIG_PARAMETER

('EpochAdvancementMode',

'ADVANCEEPOCHINTERVAL');

-31-

 Configuring the Database

 ADVANCEEPOCHINTER
VAL — When a
prescribed period of time
has passed. See
AdvanceEpochInterval for
information about setting
the epoch interval. This
setting is provided for
compatibility with releases
of Vertica prior to 4.0.

EpochMapInterval Determines the granularity of
mapping between epochs and
time available to historical queries.

When a historical queries AT

TIME T is issued, Vertica maps it

to an epoch within a granularity of
EpochMapInterval seconds. It
similarly affects the time reported
for Last Good Epoch during
manual recovery (page 235).
Note that it does not affect internal
precision of epochs themselves.

By default, EpochMapInterval is
set to 180 seconds (3 minutes).

Tip: Decreasing this interval

increases the number of epochs
saved on disk. Therefore, you
might want to reduce the
HistoryRetentionTime parameter
to limit the number of history
epochs that Vertica retains.

180
SELECT SET_CONFIG_PARAMETER

('EpochMapInterval',

'300');

HistoryRetentionTime Determines how long deleted data
is saved (in seconds) as a
historical reference. The default is
0, which means that Vertica saves
historical data only when nodes
are down. Once the specified time
has passed since the delete, the
data is eligible to be purged. Use
the -1 setting if you prefer to use

HistoryRetentionEpochs for

determining which deleted data
can be purged.

Note: The default setting of 0

effectively prevents the use of the
Administration Tools 'Roll Back
Database to Last Good Epoch'
option because the AHM remains
close to the current epoch and a
rollback is not permitted to an
epoch prior to the AHM.

0
SELECT SET_CONFIG_PARAMETER

('HistoryRetentionTime',

'240');

-32-

Administrator's Guide

Tip: If you rely on the Roll Back

option to remove recently loaded
data, consider setting a day-wide
window for removing loaded data;
for example:

SELECT

SET_CONFIG_PARAMETER

('HistoryRetentionTime',

'86400');

HistoryRetentionEpoc
hs

Specifies the number of historical
epochs to save, and therefore, the
amount of deleted data.

Unless you have a reason to limit
the number of epochs, Vertica
recommends that you specify the
time over which delete data is
saved. The -1 setting disables this
configuration parameter.

If both History parameters are

specified,

HistoryRetentionTime takes

precedence, and if both
parameters are set to -1, all
historical data is preserved.

See Setting a Purge Policy
(page 181).

-1
SELECT SET_CONFIG_PARAMETER

('HistoryRetentionEpochs',

'40');

Monitoring Parameters

The following table describes the monitoring parameters for configuring Vertica.

Parameters Description Default Example

SnmpTrapDestinations
List

Defines where Vertica send
traps for SNMP. See
Configuring Reporting for
SNMP (page 212).

none
SELECT SET_CONFIG_PARAMETER

('SnmpTrapDestinationsList'

,

'localhost 162 public');

SnmpTrapsEnabled Enables event trapping for
SNMP. See Configuring
Reporting for SNMP (page
212).

0
SELECT SET_CONFIG_PARAMETER

('SnmpTrapsEnabled', 1);

SnmpTrapEvents Define which events Vertica
traps through SNMP. See
Configuring Reporting for
SNMP (page 212).

Low Disk Space,
Read Only File
System, Loss of K
Safety, Current
Fault Tolerance at
Critical Level, Too

SELECT SET_CONFIG_PARAMETER

('SnmpTrapEvents', 'Low Disk

Space, Recovery Failure');

-33-

 Configuring the Database

Many ROS
Containers, WOS
Over Flow, Node
State Change,
Recovery Failure,
and Stale
Checkpoint

SyslogEnabled Enables event trapping for
syslog. See Configuring
Reporting for Syslog (page
210).

0
SELECT SET_CONFIG_PARAMETER

('SyslogEnabled', 1);

SyslogEvents Defines events that generate
a syslog entry. See
Configuring Reporting for
Syslog (page 210).

none
SELECT SET_CONFIG_PARAMETER

('SyslogEvents', 'Low Disk

Space, Recovery Failure');

SyslogFacility Defines which SyslogFacility
Vertica uses. See
Configuring Reporting for
Syslog (page 210).

user
SELECT SET_CONFIG_PARAMETER

('SyslogFacility' , 'ftp');

Profiling Parameters

The following table describes the profiling parameters for configuring Vertica. See Profiling
Database Performance for more information on profiling queries.

Parameters Description Default Example

GlobalEEProfiling Enables profiling for query
execution runs in all sessions,
on all nodes.

0
SELECT SET_CONFIG_PARAMETER

('GlobalEEProfiling',1);

GlobalQueryProfiling Enables query profiling for all
sessions on all nodes.

0
SELECT SET_CONFIG_PARAMETER

('GlobalQueryProfiling',1);

GlobalSessionProfiling Enables session profiling for all
sessions on all nodes.

0
SELECT SET_CONFIG_PARAMETER

('GlobalSessionProfiling',1)

;

See Also

Profiling Database Performance in the Troubleshooting Guide

Query Repository Parameters

Vertica provides a query repository to collect information about all the SQL queries Vertica
processes.The following table describes the parameters for configuring the query repository. For
more information see Collecting Query Information in the Troubleshooting Guide.

-34-

Administrator's Guide

Parameters Description Default Setting Example

CleanQueryRepoInterval Determines how frequently, in
seconds, query data is cleared
from the query repository. The
default is 1 day (86,400
seconds). How much query
data is retained is governed by
QueryRepoRetentionTime
parameter (see below).

86400
SELECT SET_CONFIG_PARAMETER

('CleanQueryRepoInterval',

'43200');

QueryRepoMemoryLimit Determines the maximum
memory available for the query
repository and for storing
database profiling data. The
default is 67108864 bytes
(64MB). When the cache
becomes full, query repository
data is dumped to a persistent
database table. Profiling data is
cleared from the cache. See
Configuring Query Repository
and Profiling Database
Performance.

67108864
SELECT SET_CONFIG_PARAMETER

('QueryRepoMemoryLimit',

'32108854');

QueryRepoRetentionTim
e

Determines the maximum
number of days worth of query
data to save in the query
repository. The data is purged
according to this parameter
ever ClearQueryRepoInterval
seconds.

See Configuring Query
Repository and Managing and
Viewing Query Repository.

7
SELECT SET_CONFIG_PARAMETER

('QueryRepoRetentionTime',

'0');

QueryRepositoryEnabled Enables the query repository to
collect and save query data for
all sessions. It also enables
query profiling on a global level
if it is not already enabled. By
default this parameter is off (0).
Disable the query repository by
setting this parameter to 0.

Warning: Disabling this

parameter does not disable
query profiling. If you are
concerned about the amount of
memory used by query
profiling, either disable it
globally or occasionally clear
the query profiling data. See
Profiling Database

0
SELECT SET_CONFIG_PARAMETER

('QueryRepositoryEnabled',

'1');

-35-

 Configuring the Database

Performance.

SaveQueryRepoInterval Determines how frequently, in
seconds, query data is saved to
the query repository. The
default is five minutes (300
seconds).

Note: This parameter cannot

be set to less than 300.

300
SELECT SET_CONFIG_PARAMETER

('SaveQueryRepoInterval',

'600');

Security Parameters

The following table describes the parameters for configuring the client authentication method and
enabling SSL for Vertica.

Parameters Description Default Setting Example

ClientAuthentication Configures client authentication.
By default, Vertica uses user
name and password (if supplied)
to grant access to the database.

The preferred method for
establishing client
authentication is to use the
Administration Tools. See
Implementing Client
Authentication (page 114) and
Creating Records (page 118).

local all trust
SELECT SET_CONFIG_PARAMETER

('ClientAuthentication',

'hostnossl dbadmin

0.0.0.0/0 trust');

EnableSSL Configures SSL for the server.
See Implementing SSL (page
130).

0
SELECT SET_CONFIG_PARAMETER

('EnableSSL', '1');

Kerberos Authentication Parameters

The following parameters set up authentication using Kerberos. See Configuring
Authentication Through Kerberos and GSS (page 123) for details.

Parameter Description

KerberosRealm A string that provides the Kerberos domain name. Usually it consists
of all uppercase letters.

Example: KerberosRealm=VERTICA.COM

KerberosHostname A string that provides the Kerberos host name for the KDC server
where Kerberos is running. This parameter is optional. If not
specified, Vertica uses the return value from the function

-36-

Administrator's Guide

gethostname().

Example: KerberosHostname=Host1

KerberosKeytabFile A string that provides the location of the keytab file. By default, the

keytab file is located in /etc/krb5.keytab.

The keytab file requires read and write permission only for the file
owner who is running the process. Under Linux, for example, file
permissions would be: 0600.

Example: KerberosKeytabFile=/etc/krb5.keytab

KerberosServiceName A string that provides the Kerberos service name. By default, the

service name is 'vertica'. To construct the principal, follow the

format:

KerberosServiceName/Kerberos Hostname@Kerberos

Realm

Example: KerberosServiceName='vertica'

-37-

 37

Designing a Logical Schema
Designing a logical schema for a Vertica database is no different than designing for any other SQL
database. A logical schema consists of objects such as Schemas, Tables, Views and Referential
Integrity constraints that are visible to SQL users.

Vertica supports any relational schema design of your choice. A common practice in data
warehouses is to use a Star or a Snowflake schema, hence this document explains the basic
concepts of designing Star or Snowflake schema. If you would like assistance with logical
schema design, contact Technical Support (page 1) for a consultation or refer to the published
literature on Data modeling.

To implement your logical schema design, write a SQL script (plain text file) that creates the tables
in your database and defines the required referential integrity constraints. You use vsql to run this
script to create the actual logical schema of your database.

Data Warehouse Schema Types

Typical schema designs used in Data Warehousing, such as a star schema (page 37) or
snowflake schema design produce excellent performance on Vertica. These designs are
discussed in a separate topic below. Note that it is not required that your schema be a star or
snowflake as Vertica supports any arbitrary relational schema design.

Porting an Existing Schema

You might need to reconstruct the CREATE TABLE and CREATE VIEW statements, etc., that
define an existing schema. An ETL tool can do this for you or your source database system might
have a way to generate DDL. For example:

 DB2 has the db2look tool.

 Oracle has the DBMS_METADATA package.

 In case you are migrating from one Vertica database to another, use the EXPORT_CATALOG
function.

Keep in mind that these tools (especially from Oracle) tend to use proprietary data types and
additional storage clauses, so some edits are needed before they can be used with Vertica.

Star Schema

Sometimes called a star join schema, a star schema is the simplest data warehouse schema. In a
star schema design there is a central fact table with a large number of records, optionally
surrounded by a collection of dimension tables, each with a lesser number of records. Every
dimension table participates in a 1::n join with the fact table.

-38-

Administrator's Guide

The table that represents quantitative or factual data. For example, in a business, a fact table
might represent orders.

A fact table is often located at the center of a star schema or snowflake schema and might also be
referred to as the anchor table. It typically has a large number of records and is surrounded by a
collection of dimension tables, each with fewer records. The fact table participates in a join with
every dimension table. It can contain data but generally contains many join columns (with optional
FOREIGN KEY constraints), each of which corresponds to the primary key column of a dimension
table.

Sometimes called a lookup or reference table, a dimension table is one of a set of companion
tables to a large (fact/anchor) table in a star schema. It contains the PRIMARY KEY column
corresponding to the join columns in fact tables. For example, a business might use a dimension
table to contain item codes and descriptions.

Dimension tables can be connected to other dimension tables to form a hierarchy of dimensions in
a snowflake schema.

The Retail Sales Example Database in the Getting Started Guide is an example of a star schema.

Snowflake Schema

A snowflake schema is the same as a star schema except that a dimension table can be
normalized (hierarchically decomposed) into additional dimension tables. Every dimension table
participates in a 1::n join with the fact table or another dimension table.

-39-

 Configuring the Database

In a snowflake schema, the fact table used in a query or projection is called the anchor table. A
query or projection based on that anchor table can include columns from any table in the schema,
as shown below.

In a snowflake schema, if a query only includes joins between snowflake dimensions, then the
anchor table is the top-most dimension in the hierarchy. In the diagram below, imagine a query on
the tables within the box and note its anchor table.

-40-

Administrator's Guide

Using Multiple Schemas

Using a single schema is effective if there is only one database user or if a few users cooperate in
sharing the database. In many cases, however, it makes sense to use additional schemas to allow
users and their applications to create and access tables in separate namespaces. For example,
using additional schemas allows:

 Many users to access the database without interfering with one another.

Individual schemas can be configured to grant specific users access to the schema and its
tables while restricting others.

 Third-party applications to create tables that have the same name in different schemas,
preventing table collisions.

Unlike other RDBMS, a schema in a Vertica database is not a collection of objects bound to one
user.

Multiple Schema Examples

This section provides examples of when and how you might want to use multiple schemas to
separate database users. These examples fall into two categories: using multiple private schemas
and using a combination of private schemas (i.e. schemas limited to a single user) and shared
schemas (i.e. schemas shared across multiple users).

Using Multiple Private Schemas

Using multiple private schemas is an effective way of separating database users from one another
when sensitive information is involved. Typically a user is granted access to only one schema and
its contents, thus providing database security at the schema level. Database users can be running
different applications, multiple copies of the same application, or even multiple instances of the
same application. This enables you to consolidate applications on one database to reduce
management overhead and use resources more effectively. The following examples highlight
using multiple private schemas.

 Using Multiple Schemas to Separate Users and Their Unique Applications

In this example, both database users work for the same company. One user (HRUser) uses a
Human Resource (HR) application with access to sensitive personal data, such as salaries,
while another user (MedUser) accesses information regarding company healthcare costs
through a healthcare management application. HRUser should not be able to access company
healthcare cost information and MedUser should not be able to view personal employee data.

To grant these users access to data they need while restricting them from data they should not
see, two schemas are created with appropriate user access, as follows:

 HRSchema—A schema owned by HRUser that is accessed by the HR application.

 HealthSchema—A schema owned by MedUser that is accessed by the healthcare
management application.

-41-

 Configuring the Database

 Using Multiple Schemas to Support Multitenancy

This example is similar to the last example in that access to sensitive data is limited by
separating users into different schemas. In this case, however, each user is using a virtual
instance of the same application.

An example of this is a retail marketing analytics company that provides data and software as
a service (SaaS) to large retailers to help them determine which promotional methods they use
are most effective at driving customer sales.

In this example, each database user equates to a retailer, and each user only has access to its
own schema. The retail marketing analytics company provides a virtual instance of the same
application to each retail customer, and each instance points to the user‘s specific schema in
which to create and update tables. The tables in these schemas use the same names because
they are created by instances of the same application, but they do not conflict because they
are in separate schemas.

Example of schemas in this database could be:

 MartSchema—A schema owned by MartUser, a large department store chain.

 PharmSchema—A schema owned by PharmUser, a large drug store chain.

-42-

Administrator's Guide

 Using Multiple Schemas to Migrate to a Newer Version of an Application

Using multiple schemas is an effective way of migrating to a new version of a software
application. In this case, a new schema is created to support the new version of the software,
and the old schema is kept as long as necessary to support the original version of the software.
This is called a ―rolling application upgrade.‖

For example, a company might use a HR application to store employee data. The following
schemas could be used for the original and updated versions of the software:

 HRSchema—A schema owned by HRUser, the schema user for the original HR
application.

 V2HRSchema—A schema owned by V2HRUser, the schema user for the new version of
the HR application.

Using Combinations of Private and Shared Schemas

The previous examples illustrate cases in which all schemas in the database are private and no
information is shared between users. However, users might want to share common data. In the
retail case, for example, MartUser and PharmUser might want to compare their per store sales of
a particular product against the industry per store sales average. Since this information is an
industry average and is not specific to any retail chain, it can be placed in a schema on which both
users are granted USAGE privileges. (For more information about schema privileges, see
Schema Privileges (page 136).)

Example of schemas in this database could be:

 MartSchema—A schema owned by MartUser, a large department store chain.

 PharmSchema—A schema owned by PharmUser, a large drug store chain.

 IndustrySchema—A schema owned by DBUser (from the retail marketing analytics company)
on which both MartUser and PharmUser have USAGE privileges. It is unlikely that retailers
would be given any privileges beyond USAGE on the schema and SELECT on one or more of
its tables.

-43-

 Configuring the Database

Creating Schemas

You can create as many schemas as necessary for your database. For example, you could create
a schema for each database user. However, schemas and users are not synonymous as they are
in Oracle.

By default, only the superuser can create a schema or give a user the right to create a schema.
(See GRANT (Database) in the SQL Reference Manual.)

To create a schema use the CREATE SCHEMA statement, as described in the SQL Reference
Manual.

Referencing Objects When Multiple Schemas are Used

Once two or more schemas have been created, a reference to an object such as a table or a view
within a SQL statement or a function must identify the schema in which the object resides. Users
can refer to an object by:

 Writing a qualified name that consists of the schema name and object name separated by a

dot. For example: Schema1.MyTable.

 Using a search path that includes the desired schemas when an object reference is
unqualified. Vertica will automatically search the specified schemas to find the object. See
Setting Schema Search Paths (page 44).

-44-

Administrator's Guide

Setting Schema Search Paths

If a user provides an unqualified reference to a table within a SQL statement or a function, the
schema search path determines which schemas Vertica searches to locate the table and in which
order it searches these schemas. Schemas are searched in the order determined by the SET
search_path statement. If, for example, the search path is set to Schema1, Schema2, Vertica
searches for the table in Schema1 first. If it can‘t locate the table, it then searches Schema2. If it
can‘t locate the table in any of the schemas in the search path, it halts the search and report an
error even if the table exists in another schema.

Note: The user must be granted access to the schemas in the search path for Vertica to be able
to search for tables within them. If the user doesn't have access to a schema n the search path,
Vertica skips to the next schema in the search path, if one exists.

The first schema in the search path is called the current schema. The current schema is the
location where tables are created if the CREATE TABLE name statement does not specify a
schema name.

By default, the search path for all users is "$user", public, v_catalog, v_monitor,

v_internal.

mydb=> SHOW SEARCH_PATH;

 name | setting

-------------+---

 search_path | "$user", public, v_catalog, v_monitor, v_internal

(1 row)

$user is a placeholder that resolves to the user name, and public references the public

schema. v_catalog and v_monitor refer to Vertica system tables. v_internal is for internal use.

The search path means that Vertica looks in the user‘s schema first, assuming that each user has
a separate schema that uses the same name as their user name. If the schema doesn't exist or it
cannot find the table, Vertica then looks in the public schema, as well as the v_catalog and
v_monitor built-in schemas.

Tip: The SET search_path statement is equivalent in function to the CURRENT_SCHEMA
statement found in some other databases.

To see the current search path, use the SHOW SEARCH_PATH statement. To view the current
schema, use SELECT CURRENT_SCHEMA(). The function SELECT CURRENT_SCHEMA()
also shows the resolved name of $User.

Examples:

USER1 uses the following statement to set the search path to COMMON,

$USER, PUBLIC: mydb=> SET SEARCH_PATH TO COMMON, $USER, PUBLIC;

Vertica returns the following output:

Statement/Function Output

SHOW SEARCH_PATH; COMMON, $USER, PUBLIC

SELECT CURRENT_SCHEMA(); COMMON

-45-

 Configuring the Database

USER1 uses the following statement to set the search path to $USER,

COMMON, PUBLIC: mydb=> SET SEARCH_PATH TO $USER, COMMON, PUBLIC;

Vertica returns the following output for SELECT CURRENT_SCHEMA() if schema USER1
exists:

mydb=> USER1

If schema USER1 does not exist, the output for SELECT CURRENT_SCHEMA() is:

mydb=> COMMON

See Also

SQL System Tables in the SQL Reference Manual

Creating Objects that Span Multiple Schemas

Vertica supports views or pre-join projections that reference tables across multiple schemas. For
example, a user might need to compare employee salaries to industry averages. In this case, the
application would query a shared schema (IndustrySchema) for salary averages in addition to its
own private schema (HRSchema) for company-specific salary information.

Best Practice: When creating objects that span schemas, use qualified table names. This
naming convention avoids confusion if the query path or table structure within the schemas
changes at a later date.

Creating Tables

In Vertica you can create both base tables and temporary tables, depending on what you are
trying to accomplish. For example, base tables are created in the Vertica logical schema while
temporary tables are useful for dividing complex query processing into multiple steps.

-46-

Administrator's Guide

Creating Base Tables

The CREATE TABLE statement creates a table in the Vertica logical schema. The example
databases described in the Getting Started Guide include sample SQL scripts that demonstrate
this procedure. For example:

CREATE TABLE vendor_dimension (

 vendor_key INTEGER NOT NULL PRIMARY KEY,

 vendor_name VARCHAR(64),

 vendor_address VARCHAR(64),

 vendor_city VARCHAR(64),

 vendor_state CHAR(2),

 vendor_region VARCHAR(32),

 deal_size INTEGER,

 last_deal_update DATE

);

Automatic Projection Creation

To get your database up and running quickly, Vertica automatically creates a default projection for
each table created through the CREATE TABLE and CREATE TEMPORARY TABLE statements.
The timing of when the projection is created depends on how you use the CREATE TABLE
statement:

 If you create a table without providing the projection-related clauses, a superprojection is
automatically created for the table when an INSERT, COPY, or LCOPY command is issued to
load data into the table for the first time. The projection is created in the same schema as the
table. Once Vertica has created the projection, it loads the data.

 If you use CREATE TABLE AS SELECT to create a table from the results of a query, the table
is created first and a projection is created immediately after, using some of the properties of
the underlying SELECT query.

 (Advanced users only) If you use any of the following parameters, the default projection is
created immediately upon table creation using the specified properties:

 column-definition (ENCODING encoding-type and ACCESSRANK integer)

 ORDER BY table-column

 hash-segmentation-clause

 range-segmentation-clause

 UNSEGMENTED { NODE node | ALL NODES }

 KSAFE

Note: Before you define a superprojection in the above manner, read Creating Custom
Designs (page 91) in the Administrator's Guide.

Characteristics of Default Automatic Projections

A default projection has the following characteristics:

 It is a superprojection.

 It uses the default encoding-type AUTO.

-47-

 Configuring the Database

 If the table has one or more primary keys defined, the projection is sorted by these columns.
Otherwise, the projection is sorted in the same order as defined in the table column-definition
list.

 If the K-safety for the database is zero (K-Safety=0), the projection is unsegmented on the
initiator node. If K-Safety is greater than zero (K-Safety>0), the superprojection is replicated
(unsegmented) on all nodes. See Segmentation in the Concepts Guide.

 If the projection was created through the CREATE TABLE AS SELECT statement, the
projection uses the sort order, segmentation, and encoding specified for the columns in the
query table.

Default automatic projections let you get your database up and running quickly; however, they
might not necessarily provide the best performance. Vertica recommends that you start with these
projections and then use the Database Designer to optimize your database. The Database
Designer creates projections that optimize your database based on the characteristics of the data
and, optionally, the queries you use.

See Also

Projections in the Concepts Guide

CREATE TABLE in the SQL Reference Manual

Creating Temporary Tables

You create temporary tables using the CREATE TEMPORARY TABLE statement. A common use
case for a temporary table is to divide complex query processing into multiple steps. Typically, a
reporting tool holds intermediate results while reports are generated (for example, first get a result
set, then query the result set, and so on). You can also write subqueries.

Note: The default is ON COMMIT DELETE ROWS, where data is discarded at the end of the

transaction or session.

Global Temporary Tables

Global temporary tables are created in the public schema, and they are visible to all users and
sessions. However, the contents (data) of a global table are private to the transaction or session in
which the data was inserted. Data is automatically removed when the transaction commits, rolls
back, or the session ends. This allows two users to use the same temporary table, concurrently,
but see only data specific to his or her own transactions for the duration of those transactions or
sessions.

The definition of a global temporary table persists in the database catalogs until explicitly removed
by using the DROP TABLE statement.

Local Temporary Tables

A local temporary table is created in the V_TEMP_SCHEMA namespace and is transparently

inserted into the user's search path. It is visible only to the user who creates the table for the
duration of the session in which it is created. When the session ends, the table definition is
automatically dropped from the database catalogs.

-48-

Administrator's Guide

Note that You cannot add projections to non-empty, session-scoped temporary tables with ON
COMMIT PRESERVE ROWS specified. Be sure that projections exist before you load data. See
the "Automatic Projection Creation" in the CREATE TABLE statement. Also, although adding
projections is allowed for tables with ON COMMIT DELETE ROWS specified, be aware that you
could lose all the data.

Automatic Projection Creation and Characteristics

When you use the CREATE TEMPORARY TABLE command, the table is created first and the default

superprojection is created immediately after unless you specify NO PROJECTION.

A default projection has the following characteristics:

 It uses the default encoding-type AUTO.

 It is automatically unsegmented on the initiator node and pinned if you do not specify a
segmentation clause (hash-segmentation-clause, range-segmentation-clause, or

UNSEGMENTED).

 If the table has one or more primary keys defined, the projection is sorted by these columns.
Otherwise, the the projection is sorted in the same order as defined in the table
column-definition list.

 Temp tables are not recoverable, so the superprojection is not K-Safe (K-SAFE=0), and you

cannot make the table K-safe.

Advanced users can modify the default projection created through the CREATE TEMPORARY

TABLE statement by defining any or all of the following parameters:

 column-definition (ENCODING encoding-type and ACCESSRANK integer)

 ORDER BY table-column

 hash-segmentation-clause

 range-segmentation-clause

 UNSEGMENTED { NODE node | ALL NODES }

 NO PROJECTION

Note: Before you define the superprojection in this manner, read Creating Custom Designs
(page 91) in the Administrator's Guide.

See Also

Projections in the Concepts Guide

CREATE TEMPORARY TABLE in the SQL Reference Manual

-49-

 Configuring the Database

Adding Constraints

Constraints specify rules on data that can go into a table. Constraints are specified on columns
and tables using the following SQL commands:

 CREATE TABLE lets you define a column-constraint on a single column or multiple columns

 ALTER TABLE lets you define (or drop) a table-constraint on single columns or on multiple
columns (also called a compound key)

The examples that follow illustrate several ways of defining constraints on single and multiple
columns. For additional details, see:

 PRIMARY KEY constraints (page 51)

 FOREIGN KEY constraints (page 52)

 UNIQUE constraints (page 53)

 NOT NULL constraints (page 54)

Defining single-column constraints

The following example defines a PRIMARY KEY constraint on a single column in a dimension

table, assigning a constraint name of dim1PK:

CREATE TABLE dim1 (

 c1 INTEGER CONSTRAINT dim1PK PRIMARY KEY,

 c2 INTEGER

);

Constraint names are optional, so you could write the same statement as follows:

CREATE TABLE dim1 (

 c1 INTEGER NOT NULL PRIMARY KEY,

 c2 INTEGER

);

Note: Vertica recommends naming constraints so they are easier to identify and/or remove, if
necessary.

A column can have more than one constraint. Write the constraints one after another. For
example, the following SQL statement enforces both NOT NULL and PK constraints on on the

customer_key column, which means the column cannot accept NULL values, and the column is

also the primary key.

CREATE TABLE customer_dimension (

 customer_key INTEGER NOT NULL PRIMARY KEY,

 customer_name VARCHAR(256),

 customer_address VARCHAR(256),

 ...

);

The following syntax defines a FOREIGN KEY constraint on a single column in a fact table,

assigning a constraint name of fact1dim1PK:

CREATE TABLE fact1 (

 c1 INTEGER CONSTRAINT fact1dim1FK REFERENCES dim1,

 c2 INTEGER

-50-

Administrator's Guide

);

Note that a FOREIGN KEY constraint can be specified solely by referencing the table that
contains the primary key. The columns in the referenced table do not need to be explicitly
specified.

Defining multicolumn constraints

The following example defines a PRIMARY KEY constraint on multiple columns:

CREATE TABLE dim (

 c1 INTEGER NOT NULL,

 c2 INTEGER NOT NULL,

 PRIMARY KEY (c1, c2)

);

To specify multi-column (compound) keys, you can use an ALTER TABLE statement in addition to
a CREATE TABLE statement.

CREATE TABLE dim2 (

 c1 INTEGER NOT NULL,

 c2 INTEGER NOT NULL,

 c3 INTEGER NOT NULL,

 c4 INTEGER UNIQUE

);

ALTER TABLE dim2

 ADD CONSTRAINT dim2PK PRIMARY KEY (c1, c2);

You could also define a compound PRIMARY KEY using just the CREATE TABLE statement:

CREATE TABLE dim2 (

 c1 INTEGER NOT NULL,

 c2 INTEGER NOT NULL,

 c3 INTEGER NOT NULL,

 c4 INTEGER UNIQUE,

 PRIMARY KEY (c1, c2)

);

The matching FOREIGN KEY constraint to table dim2 is specified as follows:

CREATE TABLE fact2 (

 c1 INTEGER,

 c2 INTEGER,

 c3 INTEGER NOT NULL,

 c4 INTEGER UNIQUE

);

ALTER TABLE fact2

 ADD CONSTRAINT fact2FK FOREIGN KEY (c1, c2) REFERENCES dim2(c1, c2);

A FOREIGN KEY constraint can be specified solely by a reference to the table that contains the
PRIMARY KEY. In the ADD CONSTRAINT command above, the REFERENCES column names

are optional; you could just enter REFERENCES dim2.

-51-

 Configuring the Database

Enforcing Constraints

In order to maximize query performance, Vertica checks for constraint violations when queries are
run, not when data is loaded. One exception is that PRIMARY and FOREIGN KEY violations are
detected when loading into the fact table of a pre-join projection. For more details see Enforcing
Constraints (page 55).

To enforce constraints, you can load data without committing it using the COPY with NO COMMIT
option and then perform a post-load check using the ANALYZE_CONSTRAINTS function. If
constraint violations are found, you can roll back the load because you have not committed it. For
more details see Analyzing Constraints (Detecting Constraint Violations) (page 55).

See Also

ALTER TABLE, CREATE TABLE, and COPY NO COMMIT, statements in the SQL Reference
Manual

ANALYZE_CONSTRAINTS function in the SQL Reference Manual

PRIMARY KEY Constraints

A primary key (PK) is a single column or combination of columns (called a compound key) that
uniquely identifies each row in a table. A PRIMARY KEY constraint contains unique, non-null
values.

The following example specifies a single column, customer_key, as the PRIMARY KEY.

CREATE TABLE customer_dimension (

 customer_key INTEGER NOT NULL PRIMARY KEY,

 customer_name VARCHAR(256),

 customer_address VARCHAR(256),

 customer_city VARCHAR(64),

 customer_state CHAR(2),

 household_id INTEGER UNIQUE

);

Note: If you specify a PK constraint using ALTER TABLE, the system returns the following

informational, which is for information only: WARNING: Column customer_key definition
changed to NOT NULL

Primary keys can also constrain more than one column:

CREATE TABLE customer_dimension (

 customer_key INTEGER NOT NULL,

 customer_name VARCHAR(256),

 customer_address VARCHAR(256),

 customer_city VARCHAR(64),

 customer_state CHAR(2),

 household_id INTEGER UNIQUE

 PRIMARY KEY (customer_key, household_id)

);

-52-

Administrator's Guide

FOREIGN KEY Constraints

A foreign key (FK) is a column that is used to join a table to other tables to ensure referential
integrity of the data. A FOREIGN KEY constraint is a rule that states that a column cannot be null
and can contain only values from the PRIMARY KEY column on a specific dimension table.

Notes

In Vertica, the fact table's join columns are required to have FOREIGN KEY constraints in order to
participate in pre-join projections.

If the fact table join column has a FOREIGN KEY constraint, outer join queries produce the same
result set as inner join queries.

FOREIGN KEY constraint can be specified solely by referencing the table that contains the
primary key. The columns in the referenced table do not need to be explicitly specified.

Examples

Assume you have created a table that stores inventory data:

CREATE TABLE inventory_fact (

 date_key INTEGER NOT NULL,

 product_key integer not null,

 product_version INTEGER NOT NULL,

 warehouse_key INTEGER NOT NULL,

 qty_in_stock INTEGER

);

Now you have created a table that stores information about warehouses. To ensure referential

integrity, you define a FOREIGN KEY constraint on the inventory_fact table that references

the warehouse_dimension table:

CREATE TABLE warehouse_dimension (

 warehouse_key INTEGER NOT NULL PRIMARY KEY,

 warehouse_name VARCHAR(20),

 warehouse_address VARCHAR(256),

 warehouse_city VARCHAR(60),

 warehouse_state CHAR(2),

);

ALTER TABLE inventory_fact

 ADD CONSTRAINT fk_inventory_warehouse FOREIGN KEY (warehouse_key)

 REFERENCES warehouse_dimension (warehouse_key);

In this example, the inventory_fact table is the referencing table and the

warehouse_dimension table is the referenced table.

You can also shorten the second CREATE TABLE statement and eliminate the ALTER TABLE
statement. In the absence of a column list, the PRIMARY KEY of the referenced table is used as
the referenced column or columns.

CREATE TABLE warehouse_dimension (

 warehouse_key INTEGER NOT NULL PRIMARY KEY REFERENCES warehouse_dimension,

 warehouse_name VARCHAR(20),

 warehouse_address VARCHAR(256),

 warehouse_city VARCHAR(60),

-53-

 Configuring the Database

 warehouse_state CHAR(2),

);

A FOREIGN KEY can also constrain and reference a group of columns:

CREATE TABLE t1 (

 c1 INTEGER PRIMARY KEY,

 c2 INTEGER,

 c3 INTEGER,

 FOREIGN KEY (c2, c3) REFERENCES other_table (c1, c2)

);

Note: The number and data type of the constrained columns must match the number and type
of the referenced columns.

UNIQUE Constraints

UNIQUE constraints ensure that the data contained in a column or a group of columns is unique
with respect to all the rows in the table.

When written as a column-constraint, the syntax is:

CREATE TABLE product_dimension (

 product_key INTEGER NOT NULL CONSTRAINT product_key_UK UNIQUE,

 sku_number CHAR(32),

 product_cost INTEGER

 ...

);

Notice that the above syntax names the UNIQUE constraint product_key_UK.

When written as a table-constraint, the syntax is:

CREATE TABLE product_dimension (

 product_key INTEGER NOT NULL

 sku_number CHAR(32),

 product_cost INTEGER,

 UNIQUE (product_key)

);

You can also use the ALTER TABLE statement to specify a UNIQUE constraint. In this example,

name the constraint product_key_UK:

ALTER TABLE product_dimension

 ADD CONSTRAINT product_key_UK UNIQUE (product_key);

You can also use the ALTER TABLE statement to specify multiple columns:

ALTER TABLE dim1

 ADD CONSTRAINT constraint_name_unique UNIQUE (c1, c2);

If a UNIQUE constraint refers to a group of columns, separate the columns list using commas:

CREATE TABLE dim1 (

 c1 INTEGER,

 c2 INTEGER,

 c3 INTEGER,

 UNIQUE (c1, c2)

);

-54-

Administrator's Guide

The column listing specifies that the combination of values in the indicated columns is unique
across the whole table, though any one of the columns need not be (and ordinarily isn't) unique.

NOT NULL Constraints

A NOT NULL constraint specifies that a column must NOT contain a null value. This means that
new rows cannot be inserted or updated unless you specify a value for this column.

The following SQL statement enforces a NOT NULL constraint on on the customer_key column,

which means the column cannot accept NULL values.

CREATE TABLE customer_dimension (

 customer_key INTEGER NOT NULL PRIMARY KEY,

 customer_name VARCHAR(256),

 customer_address VARCHAR(256),

 ...

);

Notes:

 A NOT NULL constraint is always written as a column-constraint

 NOT NULL constraints are not named.

Removing Constraints

To drop named constraints, use the ALTER TABLE command, such as in the following example,

which drops constraint factfk2:

=> ALTER TABLE fact2 DROP CONSTRAINT fact2fk;

To drop unnamed constraints, query the system table TABLE_CONSTRAINTS, which returns
both system-generated and user-named constraint names:

=> SELECT * FROM TABLE_CONSTRAINTS;

In the following output, notice the system-generated constraint name of C_PRIMARY versus the

user-defined constraint name of fk_inventory_date:

-[RECORD 1]--------+--------------------------

constraint_id | 45035996273707984

constraint_name | C_PRIMARY

constraint_schema_id | 45035996273704966

constraint_key_count | 1

foreign_key_count | 0

table_id | 45035996273707982

foreign_table_id | 0

constraint_type | p

-[...]---------+--------------------------

-[RECORD 9]--------+--------------------------

constraint_id | 45035996273708016

constraint_name | fk_inventory_date

constraint_schema_id | 0

constraint_key_count | 1

foreign_key_count | 1

table_id | 45035996273708014

foreign_table_id | 45035996273707994

-55-

 Configuring the Database

constraint_type | f

Once you know the name of the constraint, you can then drop it using the ALTER TABLE
command.

Notes

 Non-null constraints do not have names and cannot be dropped.

 Constraints cannot be dropped on tables that have projections.

See Also

ANALYZE_CONSTRAINTS, ALTER TABLE, CREATE TABLE, and COPY with NO COMMIT in
the SQL Reference Manual

Enforcing Constraints

Enforcing Primary Key Constraints

Vertica does not enforce uniqueness of primary keys when they are loaded into a table. However,
when data is loaded into a table with a pre-joined dimension, or when the table is joined to a
dimension table during a query, a key enforcement error could result if there is not exactly one
dimension row that matches each foreign key value.

Note: Consider using sequences or auto-incrementing columns for primary key columns, which
guarantees uniqueness and avoids the constraint enforcement problem and associated
overhead. For more information see Using Sequences (page 60).

Enforcing Foreign Key Constraints

A table's foreign key constraints are enforced during data load only if there is a pre-join projection
that has that table as its anchor table. If there is no such pre-join projection then it is possible to
load data that causes a constraint violation. Subsequently a constraint violation error can happen
when:

 An inner join query is processed

 An outer join is treated as an inner join due to the presence of foreign key

 A new pre-join projection anchored on the table with the foreign key constraint is refreshed

To detect constraint violations you can load data without committing it using the COPY NO
COMMIT option and then perform a post-load check using the ANALYZE_CONSTRAINTS
function. If constraint violations are found, you can roll back the load because you have not
committed it. For more details see Analyzing Constraints (Detecting Constraint Violations)
(page 55).

Analyzing Constraints (Detecting Constraint Violations)

The ANALYZE_CONSTRAINTS() function analyzes and reports on constraint violations within the
current schema search path. You can check for constraint violations by passing an empty
argument (which returns violations on all tables within the current schema), by passing a single
table argument, or by passing two arguments containing a table name and a column or list of
columns.

-56-

Administrator's Guide

Given the following inputs, Vertica returns one row, indicating one violation, because the same
primary key value (10) was inserted into table t1 twice:

CREATE TABLE t1(c1 INT);

ALTER TABLE t1 ADD CONSTRAINT pk_t1 PRIMARY KEY (c1);

CREATE PROJECTION t1_p (c1) AS SELECT * FROM t1 UNSEGMENTED ALL NODES;

INSERT INTO t1 values (10);

INSERT INTO t1 values (10); --Duplicate primary key value

SELECT ANALYZE_CONSTRAINTS('t1');

 Schema Name | Table Name | Column Names | Constraint Name | Constraint Type | Column Values

-------------+------------+--------------+-----------------+-----------------+---------------

 public t1 c1 pk_t1 PRIMARY ('10')

(1 row)

If the second INSERT statement above had contained any different value, the result would have
been 0 rows (no violations).

In this example, create a table that contains 3 integer columns, one a unique key and one a
primary key:

CREATE TABLE fact_1(

 f INTEGER,

 f_UK INTEGER UNIQUE,

 f_PK INTEGER PRIMARY KEY

);

Try issuing a command that refers to a nonexistent column:

SELECT ANALYZE_CONSTRAINTS('f_BB', 'f2');

ERROR: 'f_BB' is not a table name in the current search path

Insert some values into table fact_1 and commit the changes:

INSERT INTO fact_1 values (1, 1, 1);

COMMIT;

Now issue the ANALYZE_CONSTRAINTS command on table fact_1. No constraint violations

are expected and none are found:

SELECT ANALYZE_CONSTRAINTS('fact_1');

 Schema Name | Table Name | Column Names | Constraint Name | Constraint Type | Column Values

-------------+------------+--------------+-----------------+-----------------+---------------

(0 rows)

Now insert duplicate unique and primary key values and run ANALYZE_CONSTRAINTS on table

fact_1 again. The system shows two violations: one against the primary key and one against the

unique key:

INSERT INTO fact_1 VALUES (1, 1, 1);

COMMIT;

SELECT ANALYZE_CONSTRAINTS('fact_1');

 Schema Name | Table Name | Column Names | Constraint Name | Constraint Type | Column Values

-------------+------------+--------------+-----------------+-----------------+---------------

 public | fact_1 | f_pk | - | PRIMARY | ('1')

 public | fact_1 | f_uk | - | UNIQUE | ('1')

(2 rows)

The following command looks for constraint validation on only the unique key in table fact_1:

SELECT ANALYZE_CONSTRAINTS('fact_1', 'f_UK');

 Schema Name | Table Name | Column Names | Constraint Name | Constraint Type | Column Values

-------------+------------+--------------+-----------------+-----------------+---------------

 public | fact_1 | f_uk | C_UNIQUE | UNIQUE | ('1')

(1 row)

-57-

 Configuring the Database

The following example shows that you can specify the same column more than once; the function,
however, returns the violation once only:

SELECT ANALYZE_CONSTRAINTS('fact_1', 'f_PK, F_PK');

 Schema Name | Table Name | Column Names | Constraint Name | Constraint Type | Column Values

-------------+------------+--------------+-----------------+-----------------+---------------

 public | fact_1 | f_pk | C_PRIMARY | PRIMARY | ('1')

(1 row)

The following example creates a new dimension table, dim_1, and inserts a foreign key and

different (character) data types:

CREATE TABLE dim_1 (b VARCHAR(3), b_PK VARCHAR(4), b_FK INTEGER REFERENCES fact_1(f_PK));

Alter the table to create a multicolumn unique key and multicolumn foreign key and create
superprojections:

ALTER TABLE dim_1 ADD CONSTRAINT dim_1_multiuk PRIMARY KEY (b, b_PK);

The following command inserts a missing foreign key (0) in table dim_1 and commits the

changes:

INSERT INTO dim_1 VALUES ('r1', 'Xpk1', 0);

COMMIT;

Checking for constraints on table dim_1 detects a foreign key violation:

SELECT ANALYZE_CONSTRAINTS('dim_1');

 Schema Name | Table Name | Column Names | Constraint Name | Constraint Type | Column Values

-------------+------------+--------------+-----------------+-----------------+---------------

 public | dim_1 | b_fk | C_FOREIGN | FOREIGN | ('0')

(1 row)

Now add a duplicate value into the unique key and commit the changes:

INSERT INTO dim_1 values ('r2', 'Xpk1', 1);

INSERT INTO dim_1 values ('r1', 'Xpk1', 1);

COMMIT;

Checking for constraint violations on table dim_1 detects the duplicate unique key error:

SELECT ANALYZE_CONSTRAINTS('dim_1');

 Schema Name | Table Name | Column Names | Constraint Name | Constraint Type | Column Values

-------------+------------+--------------+-----------------+-----------------+----------------

 public | dim_1 | b, b_pk | dim_1_multiuk | PRIMARY | ('r1', 'Xpk1')

 public | dim_1 | b_fk | C_FOREIGN | FOREIGN | ('0')

(2 rows)

Now create a table with multicolumn foreign key and create the superprojections:

CREATE TABLE dim_2(z_fk1 VARCHAR(3), z_fk2 VARCHAR(4));

ALTER TABLE dim_2 ADD CONSTRAINT dim_2_multifk FOREIGN KEY (z_fk1, z_fk2) REFERENCES dim_1(b, b_PK);

Now insert a foreign key that matches a foreign key in table dim_1 and commit the changes:

INSERT INTO dim_2 VALUES ('r1', 'Xpk1');

COMMIT;

Checking for constraints on table dim_2 detects no violations:

SELECT ANALYZE_CONSTRAINTS('dim_2');

 Schema Name | Table Name | Column Names | Constraint Name | Constraint Type | Column Values

-------------+------------+--------------+-----------------+-----------------+---------------

(0 rows)

Add a value that does not match and commit the change:

INSERT INTO dim_2 values ('r1', 'NONE');

-58-

Administrator's Guide

COMMIT;

Checking for constraints on table dim_2 detects a foreign key violation:

SELECT ANALYZE_CONSTRAINTS('dim_2');

 Schema Name | Table Name | Column Names | Constraint Name | Constraint Type | Column Values

-------------+------------+--------------+-----------------+-----------------+----------------

 public | dim_2 | z_fk1, z_fk2 | dim_2_multifk | FOREIGN | ('r1', 'NONE')

(1 row)

Now analyze all constraints on all tables:

SELECT ANALYZE_CONSTRAINTS('');

 Schema Name | Table Name | Column Names | Constraint Name | Constraint Type | Column Values

-------------+------------+--------------+-----------------+-----------------+---------------

 public | dim_1 | b, b_pk | dim_1_multiuk | PRIMARY | ('r1', 'Xpk1')

 public | dim_1 | b_fk | C_FOREIGN | FOREIGN | ('0')

 public | dim_2 | z_fk1, z_fk2 | dim_2_multifk | FOREIGN | ('r1', 'NONE')

 public | fact_1 | f_pk | C_PRIMARY | PRIMARY | ('1')

 public | fact_1 | f_uk | C_UNIQUE | UNIQUE | ('1')

(5 rows)

To quickly clean up your database, issue the following command:

DROP TABLE fact_1 cascade;

DROP TABLE dim_1 cascade;

DROP TABLE dim_2 cascade;

Fixing Constraint Violations

Use the function DISABLE_DUPLICATE_KEY_ERROR to suppress error messaging when
Vertica finds duplicate PRIMARY KEY/UNIQUE KEY values at run time. Queries execute as
though no constraints are defined on the schema, and the effects are session scoped.

CAUTION: When called, DISABLE_DUPLICATE_KEY_ERROR() suppresses data integrity
checking and can lead to incorrect query results. Use this function only after you insert
duplicate primary keys into a dimension table in the presence of a pre-join projection. Then
correct the violations and turn integrity checking back on with
REENABLE_DUPLICATE_KEY_ERROR().

The following series of commands create a table named dim and the corresponding projection:

CREATE TABLE dim (pk INTEGER PRIMARY KEY, x INTEGER);

CREATE PROJECTION dim_p (pk, x) AS SELECT * FROM dim ORDER BY x UNSEGMENTED ALL

NODES;

The next two statements create a table named fact and the pre-join projection that joins fact to

dim.

CREATE TABLE fact(fk INTEGER REFERENCES dim(pk));

CREATE PROJECTION prejoin_p (fk, pk, x) AS SELECT * FROM fact, dim WHERE pk=fk ORDER

BY x;

The following statements load values into table dim. Notice the last statement inserts a duplicate

primary key value of 1:

INSERT INTO dim values (1,1);

INSERT INTO dim values (2,2);

INSERT INTO dim values (1,2); --Constraint violation

COMMIT;

-59-

 Configuring the Database

Table dim now contains duplicate primary key values, but you cannot delete the violating row

because of the presence of the pre-join projection. Any attempt to delete the record results in the
following error message:

ROLLBACK: Duplicate primary key detected in FK-PK join Hash-Join (x dim_p), value

1

In order to remove the constraint violation (pk=1), use the following sequence of commands,

which puts the database back into the state just before the duplicate primary key was added.

To remove the violation:

1 First save the original dim rows that match the duplicated primary key.

CREATE TEMP TABLE dim_temp(pk integer, x integer);

INSERT INTO dim_temp SELECT * FROM dim WHERE pk=1 AND x=1; -- original

dim row

2 Temporarily disable error messaging on duplicate constraint values:

SELECT DISABLE_DUPLICATE_KEY_ERROR();

Caution: Remember that issuing this command suppresses the enforcement of data integrity
checking.

3 Remove the the original row that contains duplicate values:

DELETE FROM dim WHERE pk=1;

4 Allow the database to resume data integrity checking:

SELECT REENABLE_DUPLICATE_KEY_ERROR();

5 Reinsert the original values back into the dimension table:

INSERT INTO dim SELECT * from dim_temp;

COMMIT;

6 Validate your dimension and fact tables.

If you receive the following error message, it means that the duplicate records you want to delete
are not identical. That is, the records contain values that differ in at least one column that is not a
primary key; for example, (1,1) and (1,2).

ROLLBACK: Delete: could not find a data row to delete (data integrity violation?)

The difference between this message and the rollback message in the previous example is that a
fact row contains a foreign key that matches the duplicated primary key, which has been inserted.
Thus, a row with values from the fact and dimension table is now in the prejoin projection. In order
for the DELETE statement (Step 3 in the following example) to complete successfully, extra
predicates are required to identify the original dimension table values (the values that are in the
prejoin).

This example is nearly identical to the previous example, except that an additional INSERT
statement joins the fact table to the dimension table by a primary key value of 1:

INSERT INTO dim values (1,1);

INSERT INTO dim values (2,2);

INSERT INTO fact values (1); -- New insert statement joins fact with dim on
primary key value=1

INSERT INTO dim values (1,2); -- Duplicate primary key value=1

COMMIT;

-60-

Administrator's Guide

To remove the violation:

1 First save the original dim and fact rows that match the duplicated primary key:

CREATE TEMP TABLE dim_temp(pk integer, x integer);

CREATE TEMP TABLE fact_temp(fk integer);

INSERT INTO dim_temp SELECT * FROM dim WHERE pk=1 AND x=1; -- original

dim row

INSERT INTO fact_temp SELECT * FROM fact WHERE fk=1;

2 Temporarily suppresses the enforcement of data integrity checking:

SELECT DISABLE_DUPLICATE_KEY_ERROR();

3 Remove the duplicate primary keys. These steps implicitly remove all fact rows with the
matching foreign key, as well.

a) Remove the the original row that contains duplicate values:

DELETE FROM dim WHERE pk=1 AND x=1;

Note: The extra predicate (x=1) specifies removal of the original (1,1) row, rather than the

newly inserted (1,2) values that caused the violation.

b) Remove all remaining rows:

DELETE FROM dim WHERE pk=1;

4 Turn on integrity checking:

SELECT REENABLE_DUPLICATE_KEY_ERROR();

5 Reinsert the original values back into the fact and dimension table:

INSERT INTO dim SELECT * from dim_temp;

INSERT INTO fact SELECT * from fact_temp;

COMMIT;

6 Validate your dimension and fact tables.

Reenabling error reporting

Use the REENABLE_DUPLICATE_KEY_ERROR() function to restore the default behavior of
error reporting and reverse the effects of DISABLE_DUPLICATE_KEY_ERROR().

Effects are session scoped.

Using Sequences

Sequences are database objects that generate unique numbers in sequential order. They are
most often used when an application requires a unique identifier in a table; for example you can
use sequences as primary/unique keys because sequences are always unique. Once a sequence
returns a value, it never returns that same value again.

When a sequence number is generated, the sequence is incremented or decremented
irrespective of any committed or rolled back transactions.The increment or decrement value is
specified when the sequence is created. The default is 1.

-61-

 Configuring the Database

Sequence number values are accessed by calling the NEXTVAL
(http://www.postgresql.org/docs/8.0/static/app-vacuumdb.html) function, which
increments/decrements the current sequence and returns the next value, and CURRVAL function,
which returns the current value. These functions can also be used in INSERT and COPY
expressions.

Auto increment is a setting available for numeric column types to automatically assign the next
incremental sequence value for that column when a new row is added to the table.

Sequences can be dropped and altered to change the parameters of the sequence. It is possible
to rename a sequence within the same schema and move a sequence between schemas.

Sequence DDL commands and functions

For details, see the following related statements and functions in the SQL Reference Manual:

 To create a sequence, run the CREATE SEQUENCE statement.

 To alter a sequence, run the ALTER SEQUENCE statement to define a new sequence number
generator.

 To drop a sequence, run the DROP SEQUENCE statement. This is useful when a sequence is
no longer needed.

 To grants privileges on a sequence generator to a user, run the GRANT SEQUENCE
statement. See also Sequence Privileges (page 138).

Sequences are used via two functions:

 CURRVAL — For a sequence generator, returns the LAST value across all nodes returned by
a previous invocation of NEXTVAL in the same session. If there were no calls to NEXTVAL, an
error is returned; for example:

ERROR: Sequence seq2 has not been accessed in the session

 NEXTVAL — Advances the sequence and returns the new value from the sequence. This
value is incremented for ascending sequences and decremented for descending sequences.

Identity and auto-increment columns

Identity and auto-increment columns are defined through column constraints in the CREATE
TABLE statement and are incremented each time a row is added to the table. The identity value is
never rolled back even if the transaction that tries to insert a value into the table is not committed.

The LAST_INSERT_ID function returns the last value generated for an auto-increment or identity
column.

Notes

 While sequences are guaranteed to be unique, the sequence values are not guaranteed to be
in ascending order. For example, if you use numbers on one node that are lower than the
numbers used by other nodes, the newly assigned sequence values are not necessarily higher
than the numbers assigned on other nodes.

 Sequence values are not guaranteed to be contiguous, which means there could be gaps in
the values.

http://www.postgresql.org/docs/8.0/static/app-vacuumdb.html

-62-

Administrator's Guide

Creating Sequences

Create a sequence using the CREATE SEQUENCE statement. All of the parameters (besides a
sequence name) are optional.

The following example creates an ascending sequence called sequential, starting at 101:

=> CREATE SEQUENCE my_seq START 101;

After a sequence is created, use the sequence functions NEXTVAL and CURRVAL to operate on
the sequence. These functions provide simple, multiuser-safe methods for obtaining successive
sequence values from sequence objects.

Note:

CURRVAL returns a sequence's most recent value, so if you run CURRVAL before
NEXTVAL, the system returns an error:

ERROR: Sequence my_seq has not been accessed in the session

NEXTVAL must be called at least one time in a session to provide a value for
CURRVAL. A cache is created when NEXTVAL is called.

The following command generates the first number for this sequence:

=> SELECT NEXTVAL('my_seq');

 nextval

 101

(1 row)

The following command returns the current value of this sequence. Since no other operations
have been performed on the newly-created sequence, the function returns the expected value of
101:

=> SELECT CURRVAL('my_seq');

 currval

 101

(1 row)

The following command increments the value for this sequence by one (1):

=> SELECT NEXTVAL('my_seq');

 nextval

 102

(1 row)

Calling the CURRVAL again function returns only the current value:

=> SELECT CURRVAL('my_seq');

 currval

 102

-63-

 Configuring the Database

(1 row)

The following example shows how to use the my_sequence sequence in an INSERT statement.

=> CREATE TABLE customer (

 lname VARCHAR(25),

 fname VARCHAR(25),

 membership_card INTEGER,

 ID INTEGER

);

=> INSERT INTO customer VALUES ('Hawkins' ,'John', 072753, NEXTVAL('my_seq'));

Now query the table you just created. Notice that the ID column has been incremented 1 value to
103:

=> SELECT * FROM customer;

 lname | fname | membership_card | ID

---------+-------+-----------------+-----

 Hawkins | John | 72753 | 103

(1 row)

The following example shows how to use a sequence as the default value for an INSERT
command:

=> CREATE TABLE customer2(

 ID INTEGER DEFAULT NEXTVAL('my_seq'),

 lname VARCHAR(25),

 fname VARCHAR(25),

 membership_card INTEGER

);

=> INSERT INTO customer2 VALUES (default,'Carr', 'Mary', 87432);

Now query the table you just created. The ID column has been incremented by (1) again to 104:

=> SELECT * FROM customer2;

 ID | lname | fname | membership_card

-----+-------+-------+-----------------

 104 | Carr | Mary | 87432

(1 row)

The following example shows how to use NEXTVAL in a SELECT statement:

=> SELECT NEXTVAL('my_seq'), lname FROM customer2;

 NEXTVAL | lname

---------+-------

 105 | Carr

(1 row)

As you can see, each time NEXTVAL is called, the value increments by 1.

The following example shows how to use CURRVAL in a SELECT statement:

=> SELECT CURRVAL('my_seq'), lname FROM customer2;

 CURRVAL | lname

---------+-------

 105 | Carr

(1 row)

The value doesn't change above because the CURRVAL function returns only the current value.

-64-

Administrator's Guide

Altering Sequences

The ALTER SEQUENCE statement lets you change the attributes of a previously-defined
sequence. Changes take effect in the next session. Any parameters not specifically set in the
ALTER SEQUENCE command retain their previous settings.

Note: Using ALTER SEQUENCE to set a START value below the CURRVAL can result in
duplicate keys.

Examples

The following example modifies an ascending sequence called sequential to start at 105:

ALTER SEQUENCE sequential RESTART WITH 105;

The following example moves a sequence from one schema to another:

ALTER SEQUENCE [public.]sequence SET SCHEMA vmart;

The following example renames a sequence in the Vmart schema:

ALTER SEQUENCE [vmart.]sequence RENAME TO serial;

Remember that changes occur only after you start a new session. For example, if you create a

sequence named my_sequence and start the value at 10, each time you call the NEXTVAL

function, you increment by 1, as in the following series of commands:

CREATE SEQUENCE my_sequence START 10;

SELECT NEXTVAL('my_sequence');

 nextval

 10

(1 row)

SELECT NEXTVAL('my_sequence');

 nextval

 11

(1 row)

Now issue the ALTER SEQUENCE statement to assign a new value starting at 50:

ALTER SEQUENCE my_sequence START 50;

When you call the NEXTVAL function, the sequence is incremented again by 1 value:

 NEXTVAL

 12

(1 row)

The sequence starts at 50 only after restarting the session:

SELECT NEXTVAL('my_sequence');

 NEXTVAL

 50

(1 row)

-65-

 Configuring the Database

Distributed Sequences

The CACHE parameter is used to control the efficiency of a sequence. In other databases, when
NEXTVAL is called, the state of the sequence is cached within a session. The state is available
across statements and transactions. In Vertica, a session is distributed across all nodes. When the
NEXTVAL() function is called on two different nodes when executing a SQL statement, each node
creates and maintains its own cache of values per session.

The current value of a sequence is calculated as follows:

 At the end of every statement, the state of all sequences used in the session is sent back to the
initiator node.

 The initiator node calculates the maximum CURRVAL of each sequence across all states on
all nodes.

 This maximum value is used as CURRVAL in subsequent statements until another NEXTVAL
is invoked.

The behavior of sequences across Vertica nodes is explained in the following examples.

Note: IDENTITY and AUTO_INCREMENT columns behave in a similar manner.

Example 1: The following example, which illustrates sequence distribution, assumes a 3-node
cluster with node01 as the initiator node.

First create a simple table called dist:

CREATE TABLE dist (i INT, j VARCHAR);

Create a projection called oneNode and segment by column i on node01:

CREATE PROJECTION oneNode AS SELECT * FROM dist

SEGMENTED BY i NODES node01;

Create a second projection called twoNodes and segment column x by modularhash on node02
and node03:

CREATE PROJECTION twoNodes AS SELECT * FROM dist

SEGMENTED BY MODULARHASH(i) NODES node02, node03;

Create a third projection called threeNodes and segment column i by modularhash on all nodes
(1-3):

CREATE PROJECTION threeNodes as SELECT * FROM dist

SEGMENTED BY MODULARHASH(i) ALL NODES;

Insert some values:

COPY dist FROM STDIN;

1|ONE

2|TWO

3|THREE

4|FOUR

5|FIVE

6|SIX

\.

Query the STORAGE_CONTAINERS table to return the projections on each node:

-66-

Administrator's Guide

SELECT node_name, projection_name, total_row_count FROM storage_containers;
 node_name | projection_name | total_row_count

-----------+-----------------+-----------------

 node0001 | oneNode | 6 --Contains rows with i=(1,2,3,4,5,6)

 node0001 | threeNodes | 2 --Contains rows with i=(3,6)

 node0002 | twoNodes | 3 --Contains rows with i=(2,4,6)

 node0002 | threeNodes | 2 --Contains rows with i=(1,4)

 node0003 | twoNodes | 3 --Contains rows with i=(1,3,5)

 node0003 | threeNodes | 2 --Contains rows with i=(2,5)

(6 rows)

The following table shows the segmentation of rows for projection oneNode:

1 ONE Node01

2 TWO Node01

3 THREE Node01

4 FOUR Node01

5 FIVE Node01

6 SIX Node01

The following table shows the segmentation of rows for projection twoNodes:

1 ONE Node03

2 TWO Node02

3 THREE Node03

4 FOUR Node02

5 FIVE Node03

6 SIX Node02

The following table shows the segmentation of rows for projection threeNodes:

1 ONE Node02

2 TWO Node03

3 THREE Node01

4 FOUR Node02

5 FIVE Node03

6 SIX Node01

Create a sequence and specify a cache of 10. The sequence will cache up to 10 values in memory
for performance. As per the CREATE SEQUENCE statement, the minimum value is 1 (only one
value can be generated at a time, for example, no cache).

Cache operations:

 In each session, every node maintains its own cache of the sequence state and once those
values are consumed, a catalog lock is taken in order to obtain a new set of cached values.

 It is possible for one session to allocate a cache and use it slowly while another statement
requests and loads many values. Therefore, the values returned from NEXTVAL in one
statement could be distant from the values returned in another statement.

 Regardless of the number of calls to NEXTVAL and CURRVAL, sequences are incremented
only once per row. This means multiple calls to NEXTVAL within the same row return the same
value. If joins are used, a sequence is incremented one time for each composite row output by
the join.

 If a statement fails after NEXTVAL is called (thereby consuming a sequence value from the
cache), the value is lost.

-67-

 Configuring the Database

 If a disconnect occurs (for example, dropped session), any remaining values in the cache that
have not been returned through NEXTVAL (unused) are lost.

 To recover the lost sequence values, you could run an ALTER SEQUENCE command to
define a new sequence number generator, which resets the counter to the correct value.

Example 2: Create a sequence named s1 and specify a cache of 10:

CREATE SEQUENCE s1 cache 10;

SELECT s1.nextval, s1.currval, s1.nextval, s1.currval, j FROM oneNode;

 nextval | currval | nextval | currval | j

---------+---------+---------+---------+-------

 1 | 1 | 1 | 1 | ONE

 2 | 2 | 2 | 2 | TWO

 3 | 3 | 3 | 3 | THREE

 4 | 4 | 4 | 4 | FOUR

 5 | 5 | 5 | 5 | FIVE

 6 | 6 | 6 | 6 | SIX

(6 rows)

The following table illustrates the current state of the sequence for that session. It holds the current
value, values remaining (the difference between the current value (6) and the cache (10)), and
cache activity. There is no cache activity on node02 or node03.

Sequence Cache State Node01 Node02 Node03

Current value 6 NO CACHE NO CACHE

Remainder 4 NO CACHE NO CACHE

Example 3: Return the current values from twoNodes:

SELECT s1.currval, j FROM twoNodes;

 currval | j

---------+-------

 6 | ONE

 6 | THREE

 6 | FIVE

 6 | TWO

 6 | FOUR

 6 | SIX

(6 rows)

Example 4: Now call NEXTVAL from threeNodes. The assumption is that node02 holds the cache
before node03:

SELECT s1.nextval, j from threeNodes;

 nextval | j

---------+-------

 101 | ONE

 201 | TWO

 7 | THREE

 102 | FOUR

 202 | FIVE

-68-

Administrator's Guide

 8 | SIX

(6 rows)

The following table illustrates the sequence cache state with values on node01, node02, and
node03:

Sequence Cache State Node01 Node02 Node03

Current value 8 102 202

Left 2 8 8

Example 5: Insert values from twoNodes into the destination table:

SELECT s1.currval, j FROM twoNodes;

 nextval | j

---------+-------

 202 | ONE

 202 | TWO

 202 | THREE

 202 | FOUR

 202 | FIVE

 202 | SIX

(6 rows)

The following table illustrates the sequence cache state:

Sequence Cache State Node01 Node02 Node03

Current value 6 102 202

Left 4 8 8

Example 6: The following command runs on node02 only:

SELECT s1.nextval, j FROM twoNodes WHERE i = 2;

 nextval | j

---------+-----

 103 | TWO

(1 row)

The following table illustrates the sequence cache state:

Sequence Cache State Node01 Node02 Node03

Current value 6 103 202

Left 4 7 8

Example 7: The following command calls the current value from twoNodes:

SELECT s1.currval, j FROM twoNodes;

 currval | j

-69-

 Configuring the Database

---------+-------

 103 | ONE

 103 | TWO

 103 | THREE

 103 | FOUR

 103 | FIVE

 103 | SIX

(6 rows)

Example 8: This example assume that node02 holds the cache before node03:

SELECT s1.nextval, j FROM twoNodes;

 nextval | j

---------+-------

 203 | ONE

 104 | TWO

 204 | THREE

 105 | FOUR

 205 | FIVE

 106 | SIX

(6 rows)

The following table illustrates the sequence cache state:

Sequence Cache State Node01 Node02 Node03

Current value 6 106 205

Left 4 6 5

Example 9: The following command calls the current value from oneNode:

SELECT s1.currval, j FROM twoNodes;

 currval | j

---------+-------

 205 | ONE

 205 | TWO

 205 | THREE

 205 | FOUR

 205 | FIVE

 205 | SIX

(6 rows)

Example 10: This example calls the NEXTVAL function on oneNode:

SELECT s1.nextval, j FROM oneNode;

 nextval | j

---------+-------

 7 | ONE

 8 | TWO

 9 | THREE

 10 | FOUR

 301 | FIVE

 302 | SIX

(6 rows)

-70-

Administrator's Guide

The following table illustrates the sequence cache state:

Sequence Cache State Node01 Node02 Node03

Current value 302 106 205

Left 8 4 5

Example 11: In this example, twoNodes is the outer table and threeNodes is the inner table to a
merge join. threeNodes is resegmented as per twoNodes.

SELECT s1.nextval, j FROM twoNodes JOIN threeNodes ON twoNodes.i = threeNodes.i;

SELECT s1.nextval, j FROM oneNode;

 nextval | j

---------+-------

 206 | ONE

 107 | TWO

 207 | THREE

 108 | FOUR

 208 | FIVE

 109 | SIX

(6 rows)

The following table illustrates the sequence cache state:

Sequence Cache State Node01 Node02 Node03

Current value 302 109 208

Left 8 1 2

Example 12: This next example shows how sequences work with buddy projections.

--Same session

DROP TABLE t CASCADE;

CREATE TABLE t (i INT, j varchar(20));

CREATE PROJECTION threeNodes AS SELECT * FROM t

SEGMENTED BY MODULARHASH(i) ALL NODES KSAFE 1;

COPY t FROM STDIN;

1|ONE

2|TWO

3|THREE

4|FOUR

5|FIVE

6|SIX

\.

SELECT node_name, projection_name, total_row_count FROM storage_containers;

 node_name | projection_name | total_row_count

-----------+-----------------+-----------------

 node01 | threeNodes_b0 | 2

 node03 | threeNodes_b0 | 2

 node02 | threeNodes_b0 | 2

 node02 | threeNodes_b1 | 2

 node01 | threeNodes_b1 | 2

 node03 | threeNodes_b1 | 2

-71-

 Configuring the Database

(6 rows)

The following function call assumes that node02 is down. It is the same session. Node03 takes up
the work of node02:

SELECT s1.nextval, j FROM t;

 nextval | j

---------+-------

 401 | ONE

 402 | TWO

 305 | THREE

 403 | FOUR

 404 | FIVE

 306 | SIX

(6 rows)

The following table illustrates the sequence cache state:

Sequence Cache State Node01 Node02 Node03

Current value 306 110 404

Left 4 0 6

Example 13: This example starts a new session.

DROP TABLE t CASCADE;

CREATE TABLE t (i INT, j VARCHAR);

CREATE PROJECTION oneNode AS SELECT * FROM t SEGMENTED BY i NODES node01;

CREATE PROJECTION twoNodes AS SELECT * FROM t SEGMENTED BY MODULARHASH(i) NODES

node02, node03;

CREATE PROJECTION threeNodes AS SELECT * FROM t SEGMENTED BY MODULARHASH(i) ALL

NODES;

INSERT INTO t values (nextval('s1'), 'ONE');

SELECT * FROM t;

 i | j

-----+-------

 501 | ONE

(1 rows)

The following table illustrates the sequence cache state:

Sequence Cache State Node01 Node02 Node03

Current value 501 NO CACHE NO CACHE

Left 9 0 0

Example 14:

INSERT INTO t SELECT s1.nextval, 'TWO' FROM twoNodes;

SELECT * FROM t;

 i | j

-----+-------

-72-

Administrator's Guide

 501 | ONE --stored in node01 for oneNode, node02 for twoNodes, node02 for

threeNodes

 601 | TWO --stored in node01 for oneNode, node03 for twoNodes, node01 for

threeNodes

(2 rows)

The following table illustrates the sequence cache state:

Sequence Cache State Node01 Node02 Node03

Current value 501 601 NO CACHE

Left 9 9 0

Example 15:

INSERT INTO t select s1.nextval, 'TRE' from threeNodes;

SELECT * FROM t;

 i | j

-----+-------

 501 | ONE --stored in node01 for oneNode, node02 for twoNodes, node02 for

threeNodes

 601 | TWO --stored in node01 for oneNode, node03 for twoNodes, node01 for

threeNodes

 502 | TRE --stored in node01 for oneNode, node03 for twoNodes, node03 for

threeNodes

 602 | TRE --stored in node01 for oneNode, node02 for twoNodes, node02 for

threeNodes

(4 rows)

The following table illustrates the sequence cache state:

Sequence Cache State Node01 Node02 Node03

Current value 502 602 NO CACHE

Left 9 9 0

Example 16:

INSERT INTO t SELECT s1.currval, j FROM threeNodes WHERE i != 502;

select * from t;

 i | j

-----+-------

 501 | ONE --stored in node01 for oneNode, node02 for twoNodes, node02 for

threeNodes

 601 | TWO --stored in node01 for oneNode, node03 for twoNodes, node01 for

threeNodes

 502 | TRE --stored in node01 for oneNode, node03 for twoNodes, node03 for

threeNodes

 602 | TRE --stored in node01 for oneNode, node02 for twoNodes, node02 for

threeNodes

 602 | ONE --stored in node01 for oneNode, node02 for twoNodes, node02 for

threeNodes

 502 | TWO --stored in node01 for oneNode, node03 for twoNodes, node03 for

threeNodes

-73-

 Configuring the Database

 602 | TRE --stored in node01 for oneNode, node02 for twoNodes, node02 for

threeNodes

(7 rows)

The following table illustrates the sequence cache state:

Sequence Cache State Node01 Node02 Node03

Current value 502 602 NO CACHE

Left 9 9 0

Example 17:

INSERT INTO t VALUES (s1.currval + 1, 'QUA');

SELECT * FROM t;

 i | j

-----+-------

 501 | ONE --stored in node01 for oneNode, node02 for twoNodes, node02 for

threeNodes

 601 | TWO --stored in node01 for oneNode, node03 for twoNodes, node01 for

threeNodes

 502 | TRE --stored in node01 for oneNode, node03 for twoNodes, node03 for

threeNodes

 602 | TRE --stored in node01 for oneNode, node02 for twoNodes, node02 for

threeNodes

 602 | ONE --stored in node01 for oneNode, node02 for twoNodes, node02 for

threeNodes

 502 | TWO --stored in node01 for oneNode, node03 for twoNodes, node03 for

threeNodes

 602 | TRE --stored in node01 for oneNode, node02 for twoNodes, node02 for

threeNodes

 603 | QUA

(8 rows)

The following table illustrates the sequence cache state:

Sequence Cache State Node01 Node02 Node03

Current value 502 602 NO CACHE

Left 9 9 0

Loading Sequences

The following example shows how to use a sequence as the default value for an INSERT
command:

CREATE TABLE customer2(

 ID INTEGER DEFAULT NEXTVAL('my_seq'),

 lname VARCHAR(25),

 fname VARCHAR(25),

 membership_card INTEGER

-74-

Administrator's Guide

);

INSERT INTO customer2 VALUES (default,'Carr', 'Mary', 87432);

Now query the table you just created. The ID column has been incremented by (1) again to 104:

SELECT * FROM customer2;

 ID | lname | fname | membership_card

-----+-------+-------+-----------------

 104 | Carr | Mary | 87432

(1 row)

Dropping Sequences

Use DROP SEQUENCE to remove a sequence.

Notes:

 You cannot drop a sequence upon which another objects depends unless CASCADE is
specified.

 The CASCADE keyword is not supported. Sequences used in a default expression of a
column cannot be dropped until all references to the sequence are removed from the default
expression.

Example

The following command drops the sequence named my_sequence:

=> DROP SEQUENCE my_sequence;

Implementing Views

A view is a stored query that dynamically accesses and computes data from the database at
execution. It differs from a projection in that it is not materialized: it does not store data on disk.
This means that it doesn't need to be refreshed whenever the data in the underlying tables
change, but it does require additional time to access and compute data.

Views are read-only and they support references to tables, temp tables, and other views. They
do not support inserts, deletes, or updates. You can use a view as an abstraction mechanism to:

 Hide the complexity of SELECT statements from users for support or security purposes. For

example, you could create a view that selects specific columns from specific tables to ensure
that users have easy access to the information they need while restricting them from
confidential information.

 Encapsulate the details of the structure of your tables, which could change as your application
evolves, behind a consistent user interface.

See Also

Flattening FROM Clause Subqueries and Views in the Programmer's Guide

Creating Views

A view contains one or more SELECT statements that reference any combination of one or more
tables, temp tables, or views. Additionally, views can specify the column names used to display
results.

-75-

 Configuring the Database

The user who creates the view must be a superuser or have the following privileges:

 CREATE on the schema in which the view is created.

 SELECT on all the tables and views referenced within the view's defining query.

 USAGE on all the schemas that contain the tables and views referenced within the view's
defining query.

To create a view:

1 Use the CREATE VIEW statement to create the view.

2 Use the GRANT (View) statement to grant users the privilege to use the view.

Note: Once created, a view cannot be actively altered. It can only be deleted and recreated.

Using Views

Views can be used in the FROM clause of any SQL query or subquery. At execution, Vertica
internally substitutes the name of the view used in the query with the actual contents of the view.

The following example defines a view (ship) and illustrates how a query that refers to the view is

transformed internally at execution.

 New view

=> CREATE VIEW ship AS SELECT * FROM public.shipping_dimension;

 Original query

=> SELECT * FROM ship;

 Transformed query

=> SELECT * FROM (SELECT * FROM public.shipping_dimension) AS ship;

Tip: To use a view, a user must be granted SELECT permissions on the view. See GRANT
(View).

The following example creates a view named myview that sums all individual incomes of

customers listed in the store.store_sales_fact table by state. The results are grouped in

ascending order by state.

=> CREATE VIEW myview AS

 SELECT SUM(annual_income), customer_state

 FROM public.customer_dimension

 WHERE customer_key IN

 (SELECT customer_key

 FROM store.store_sales_fact)

 GROUP BY customer_state

 ORDER BY customer_state ASC;

The following example uses the myview view with a WHERE clause that limits the results to

combined salaries of greater than 2,000,000,000.

=> SELECT * FROM myview where sum > 2000000000;

 SUM | customer_state

-------------+----------------

 2723441590 | AZ

-76-

Administrator's Guide

 29253817091 | CA

 4907216137 | CO

 3769455689 | CT

 3330524215 | FL

 4581840709 | IL

 3310667307 | IN

 2793284639 | MA

 5225333668 | MI

 2128169759 | NV

 2806150503 | PA

 2832710696 | TN

 14215397659 | TX

 2642551509 | UT

(14 rows)

Notes

If Vertica does not have to evaluate an expression that would generate a runtime error in order to
answer a query, the run-time error might not occur. See the following sequence of commands for
an example of this scenario.

If you run a query like the following, Vertica returns an error:

=> SELECT TO_DATE('F','dd mm yyyy') FROM customer_dimension;

 ERROR: Invalid input for DD: "F"

Now create a view using the same query. Note that the view gets created when you would expect
it to return the same error:

=> CREATE VIEW temp AS SELECT TO_DATE('F','dd mm yyyy') FROM customer_dimension;

CREATE VIEW

The view, however, cannot be used in all queries without generating the same error message. For
example, the following query returns the same error, which is what you would expect:

=> SELECT * FROM temp;

 ERROR: Invalid input for DD: "F"

When you then issue a COUNT command, the returned rowcount is correct:

=> SELECT COUNT(*) FROM temp;

 count

 100

(1 row)

This behavior works as intended. You might want to create views that contain subqueries, where
not every row is intended to pass the predicate.

See Also

Flattening Subqueries and Views in the FROM Clause in the Programmer's Guide

Altering Tables

You can use the ALTER TABLE statement to:

 Add new columns to tables

-77-

 Configuring the Database

Add table constraints Adding a new column to a table:

 Automatically adds the new column with a unique column name to all superprojections of the
table

 Populates the column according to the column-constraint (DEFAULT for example).

 Does not affect the K-safety of the physical schema design.

For more information about ALTER TABLE, see the SQL Reference Manual.

Creating a Physical Design
Data in Vertica is physically stored in projections. When you initially load data into a table using
INSERT, COPY, or LCOPY, Vertica creates a default superprojection for the table. This
superprojection ensures that all of the data is available for queries. However, these default
superprojections might not optimize database performance, resulting in slow query performance
and low data compression.

To improve performance, you should create a physical design for your database that will optimize
both query performance and data compression. You can create this design by hand or by using
the Database Designer.

Vertica recommends that you load sample data and then use the Database Designer to optimize
your database. Database Designer recommends new projections that optimize your database
based on its data statistics and the queries you provide.

Using the Database Designer

The Database Designer analyzes a logical schema definition, sample queries, and sample data,
and creates a physical schema (a set of projections) in the form of a SQL script that can be
deployed automatically or manually. The script creates a minimal set of projections to ensure
K-Safety.

The Database Designer can create a comprehensive design, which replaces the existing design
for your database, or a query-specific design, which adds projections to your design to optimize a
single query (see Design Types (page 78) for details).

The Database Designer needs representative data to analyze in order to create the most efficient
projections for your database. You should load a moderate amount of data for each table into the
database before running the Database Designer. Loading too much data (over 10GB or so per
table) significantly slows the design process and is unlikely to result in a better design.

If you already have queries that you will want to run on your data, you can also supply them to the
Database Designer so it can attempt to optimize the projections for them.

In most cases, the sophisticated algorithms used by the Database Designer result in a design that
provides excellent query performance within physical constraints while using disk space
efficiently.

Vertica recommends that you first create a design using the Database Designer. If you find that
the performance of this design is not adequate, you can design custom projections (page 91)
with assistance from Vertica.

-78-

Administrator's Guide

Design Types

The Database Designer provides two design types: comprehensive and query specific. The
design you choose depends on what you are trying to accomplish.

Comprehensive Design

A comprehensive design creates an initial or replacement design for all the tables in the specified
schemas. You should create a comprehensive design when you are creating a new database. You
can also create a new comprehensive design for an existing database if you want to optimize its
performance.

To help the Database Designer create an efficient design, load representative data into the
database before you begin the comprehensive design process. You can also supply the Database
Designer with queries you will be performing on your data so that the Database Designer can
optimize the design for them. The Database Designer considers only the first 100 queries you
supply to it; if you have more than 100 queries, ensure that the sample you supply is
representative of all the types of queries you plan to run on your database.

The comprehensive design flow lets you select several options that control how the Database
Designer generates the design and what it does with it:

 Optimize with queries: Lets you supply queries for which the Database Designer should
optimize the design.

 Update statistics: Collects or refreshes statistics about the data in the database. Accurate
statistics help the Database Designer optimize the compression and query performance of the
database. By selecting this option, database statistics are updated to maximize design quality.

Note: Updating statistics takes time and resources. If the current statistics are up to date, this
step is unnecessary. When in doubt, update the statistics.

 Deploy design: Deploys the new database design to your database. During deployment, new
projections are added, some existing projections might be retained, and any unnecessary
existing projections are removed. Any new projections are refreshed so they are populated
with data. If you decide not to deploy the design, Database Designer saves the SQL script for
the new design so you can review it and deploy it manually later.

The Database Designer also lets you choose how you want your database optimized:

 Optimized for query performance, so that the queries run faster. This could result in a larger
database storage footprint because additional projections might be created.

 Optimized for load performance, so the size of the database is minimized. This could result in
slower query performance.

 Balanced optimization, which balances between database size and query performance.

For details, see Deploying Designs Using the Database Designer in this guide.

Query-specific Design

A query-specific design creates an enhanced design with additional projections that are optimized
specifically for the query you provide. Create a query-specific design when you have a query that
you want to optimize.

The query-specific design process lets you specify the following options:

-79-

 Configuring the Database

 Update statistics: Collects or refreshes statistics about the data in the database. Accurate
statistics help the Database Designer optimize the compression and query performance of the
database. By selecting this option, database statistics are updated to maximize design quality.

Note: Updating statistics takes time and resources, so if the current statistics are up to date,
this is unnecessary. When in doubt, update the statistics.

 Deploy design: Deploys the new database design. New projections are added to the database
and refreshed so they are populated with data. No existing projections are affected by the
deployment.

For details, see Creating a Query-specific Design Using the Database Designer in this guide.

Creating a Comprehensive Design Using the Database Designer

You'll want to create a comprehensive design for a new database after you have loaded
representative data into it. You can also use the comprehensive design process to redesign a
database whenever you need (for example, after you have made significant changes to the
database's schemas). The Database Designer creates a complete initial or replacement physical
schema design based on data statistics and queries. It can create segmented superprojections for
large tables when deploying to multiple node clusters, and replicated superprojections for smaller
tables.

Note: If you just have a query for which you want to optimize your existing database design,
you should use the Database Designer to create a query-specific design. See Creating a
Query-specific Design Using the Database Designer (page 87)for details.

This procedure guides you through creating a comprehensive design and assumes you have
already performed the following prerequisite steps:

 Set up the example environment

 Created the example database

 Defined the database schema

 Loaded the data

If you have not performed the above steps, refer to the Tutorial in the Getting Started Guide.

1 Type \q to exit the vsql session and return to the Main Menu in the Administration Tools.

Alternatively, restart the Administrative Tools:

$ /opt/vertica/bin/admintools

2 From the Main Menu, click Configuration Menu and click OK.

3 From the Configuration Menu, click Run Database Designer, and and click OK.

4 Select vmartdb as the database and click OK.

If you are asked to enter the password for the database, click OK to bypass. No password
was assigned in Step 2: Create the Example Database, so you do not need to enter one now.

5 Click OK to accept the default directory for storing Database Designer output and log files.
Note this location.

Note: If you choose to not deploy your design now, the Database Designer saves the SQL
script to implement the design in this directory where you can review and manually deploy it
later.

-80-

Administrator's Guide

6 In the Database Designer window, enter a name for the design (this example uses
vmart_design) and click OK.

7 In the Design Type window, click Comprehensive to create a complete initial design, and
click OK.

8 Select the schemas for your design, and click OK.

If you include a schema that contains tables without data, the Administration Tools returns a
message notifying you that designing for tables without data could be suboptimal. You can
choose to continue, but Vertica recommends that you click Cancel and deselect the schemas
that contain empty tables before you proceed.

-81-

 Configuring the Database

Note: In this example, the Vmart design is a multi-schema database, so be sure to select all
three options: public, store, and online_sales

9 In the Design Options window, accept the default of all three options described below and
click OK.

Generally, you want to accept the default of enabling all three because the Database Designer
is best positioned to generate a new comprehensive design and create a complete set of
projections for the tables in the selected schema. The three options are:

 Optimize with queries: Efficiency of the design is substantially improved if the Database
Designer can access sample queries.

Supplying the Database Designer with queries is especially important if you want to
optimize the database design for query performance.

 Update statistics: Accurate statistics help the Database Designer choose the best strategy
for data compression. If you select this option, the database statistics are updated to
maximize design quality.

Note that updating statistics takes time and resources, so if the current statistics are up to
date, this step is unnecessary. When in doubt, update statistics.

 Deploy design: The new design will be automatically deployed, which means that during
deployment, new projections are added, some existing projections might be retained, and
any unnecessary existing projections are removed. Any new projections are refreshed so
that they are populated with data.

-82-

Administrator's Guide

Note: For large databases, a full design session could take a long time, yet it is best to allow
this process to complete uninterrupted. If the session must be canceled, use CTRL+C.

10 If you selected the Optimize with queries option, you are prompted for the query file. Type the
full path to the file containing the queries that will be run on your database. In this example it is:

/examples/VMart_Schema/vmart_queries.sql

11 Choose the K-safety value you want. In this example, it is 1. Click OK.

-83-

 Configuring the Database

Note: There will be no K-safe form if you are creating a comprehensive design on a single
node. In that case, you can skip this step.

12 Choose the Database Designer's priority for the design (in this procedure choose Balanced)
and click OK.

The options are:

 Balanced query/load performance tells the Database Designer to create a design that is
balanced between database size and query performance.

 Query load performance creates a design focused on faster query performance, which
might recommend additional projections. These projections could result in a larger
database storage size.

 Load performance is optimized for loads, minimizing size of the database, potentially at the
expense of query performance.

13 When the informational message displays, click Proceed.

The Database Designer:

 Sets up the design session

 Examines table data

 Loads queries from the query file you provided

 Creates the design

-84-

Administrator's Guide

 Deploys the design or saves a SQL file containing the design, depending on what you
selected for the Deploy design option in step 9.

-85-

 Configuring the Database

You can watch the progress on the terminal window. The following image is just an example
and might not match exactly what you see:

-86-

Administrator's Guide

-87-

 Configuring the Database

14 When the Database Designer finishes, press Enter to return to the Administration Tools menu.

Note: The Database Designer creates a backup of the current design of your database before
deploying the new design. This backup is stored in the output directory you entered in step 5,

and is named design_name_projection_backup_nnnnnnnnnn.sql

See Also

Connect to the Database and Run a Simple Query in the Getting Started Guide

Creating a Query-specific Design Using the Database Designer

If you used the Tutorial in the Getting Started Guide, you have already created a comprehensive
design.

If you have a new query file that you want to optimize, you can create an enhanced design with
additional projections that are tuned it. The query-specific design that you create in this procedure
will be optimized to balance query performance and compression for the provided query.

1 Log in to a terminal using the database administrator account that was created during product
installation.

The default account name is dbadmin.

2 Start the Administrative Tools:

$ /opt/vertica/bin/admintools

3 If the database is not already running, on the Main Menu select Start Database and click OK.

4 Click Configuration Menu and click OK.

5 From the Configuration Menu, click Run Database Designer, and then and click OK.

6 Select your database and click OK.

Note: This procedure assumes you are optimizing the vmartdb database you created in the

Tutorial.

If you are asked to enter the password for the database, enter it and click OK. In the case of
the vmart database, no password was assigned in Step 2: Create the Example Database, so
you should not be prompted for one now.

7 Click OK to accept the default directory for storing Database Designer output and log files.
Note this location.

8 In the Database Designer window, enter a name for the design and click OK. For this

example, just click OK to accept the default vmart_design name.

-88-

Administrator's Guide

9 In the Design Type window, click Query-specific and click OK.

10 In the Design Options window, select the options you want and click OK.

 Update statistics: Accurate statistics help the Database Designer choose the best strategy
for data compression. If you select this option, the database statistics are updated to
maximize design quality.

Note that updating statistics takes time and resources, so if the current statistics are up to
date, this step is unnecessary. When in doubt, update statistics.

 Deploy design: The new design will be automatically deployed, which means that during
deployment, new projections are added, some existing projections might be retained, and
any unnecessary existing projections are removed. Any new projections are refreshed so
that they are populated with data.

Note: For large databases a full design session could take a long time, yet it is best to allow
this process to complete uninterrupted. If the session must be canceled, use CTRL+C.

11 You are prompted for the query file. Type the full path to the file containing the queries that will
be run on your database. In this example it is:

-89-

 Configuring the Database

/examples/vmart/vmart_queries2.sql

12 Accept the default or enter a new value for the K-safety value (in this case 1) and click OK.

Note: There will be no K-safe form if you are creating a comprehensive design on a single
node. In that case, you can skip this step.

13 When the informational message displays, click Proceed.

The Database Designer:

 Sets up the design session.

 Examines table data.

 Loads the query file that you provided.

 Creates the design.

 Creates and refreshes any new projections called for by the design if you selected to
deploy the design in step 10. Otherwise, it saves a SQL script containing the design.

Note: A message that the Database Designer did not optimize projections means that the auto
projections created in the initial design were already optimized, so the Database Designer
makes no new suggestions.

14 When the Database Designer finishes, press Enter to return to the Administration Tools menu.

-90-

Administrator's Guide

Deploying Designs

Vertica recommends that you test your design on a non-production server before you deploy it to
your production server.

The method you use to deploy a design depends on the method you used to create the design:

 Letting the Database Designer deploy your design at design time

 Manually deploying (page 90) your design at a later time

Deploying Designs Manually

If you chose not to deploy your design through the Database Designer at design time, you can
deploy it later manually. You can either run a deployment script or you can follow a series of steps.

Deploying a design using the deployment script:

1 Be sure that the environment consists of a database loaded with a logical schema.

To deploy the projections to a test or production environment, use the \i meta-command (see
"i FILE" on page 377) in vsql to run the SQL script.

2 Run the Database Designer deployment script:

<design name>_deploy.sql

Where <design_name> is the name of the database design.

Deploying a design manually:

1 Use the START_REFRESH function to update the newly-created projections to the same level
as the existing projections. See Refreshing Projections (page 280).

You can also use the REFRESH function which invokes refresh synchronously, rather than as
a background process.

2 Use the MAKE_AHM_NOW function to set the Ancient History Mark (AHM) to the greatest
allowable epoch (now).

3 Optionally use the DROP PROJECTION function to drop the temporary projections that were
created for the temporary design. See Dropping Projections (page 281).

Note: You can keep the temporary projections, but they could reduce query processing speed
if they remain in the database.

4 Run the ANALYZE_STATISTICS function on all projections in the database. This function
collects and aggregates data samples and storage information from all nodes on which a
projection is stored, then writes statistics into the catalog. For example:

vmartdb=> SELECT ANALYZE_STATISTICS ('');

-91-

Creating Custom Designs

Vertica Systems, Inc. strongly recommends that you use the physical schema design produced by
Database Designer, which provides K-Safety, excellent query performance, and efficient use of
storage space. If you find one of your queries is not running as efficiently as you would like, you
can use the Database Designer query-specific design process to optimize the database design for
the query.

If the projections created by Database Designer still do not meet your needs, you can write custom
projections from scratch or based on projection designs created by the Database Designer.

If you are unfamiliar with writing custom projections, Vertica Systems, Inc. suggests that you start
by modifying an existing design generated by Database Designer.

The Design Process

The process for customizing an existing design or creating a new one entails:

1 Planning the design or design modification.

As with most successful projects, a good design requires some up-front planning. See
Planning Your Design (page 91).

2 Creating or modifying projections.

See Design Fundamentals (page 95) for an overview of the CREATE PROJECTION
statement and guidelines for creating common projections. Also refer to the CREATE
PROJECTION statement in the SQL Reference Manual.

3 Deploying the projections to a test environment. See Writing and Deploying Custom
Projections (page 95).

4 Testing the projections.

5 Modifying the projections as necessary.

6 Once you have finalized the design, deploying the projections to the production environment.

Planning Your Design

The syntax for creating a design is easy for anyone who is familiar with SQL. As with any
successful project, however, a successful design requires some initial planning. Before you create
your first design, be sure you:

 Are familiar with standard design requirements and that you plan your design to include them.
See Design Requirements (page 91).

 Determine how many projections you need to include in the design. See Determining the
Number of Projections to Use (page 92).

 Determine the type of compression and encoding to use for columns. See Maximizing
Performance Through Compression and Encoding.

 Determine whether or not you want the database to be K-Safe. Vertica recommends that all
production databases have a minimum K-Safety of one (K=1). Up to K=2 is possible. See
Designing for K-Safety (page 92).

Design Requirements

A physical schema design is a script that contains CREATE PROJECTION statements. These
statements determine which columns are included in projections and how they are optimized.

-92-

Administrator's Guide

If you use the Database Designer as a starting point, it automatically creates designs that meet all
fundamental design requirements. If you intend to create or modify designs manually, be aware
that all designs must meet the following requirements:

 Every design must create at least one superprojection for every table in the database that are
used by the client application. These projections provide complete coverage that enables
users to perform ad-hoc queries as needed. They can contain joins and they are usually
configured to maximize performance through sort order, compression, and encoding.

 Query-specific projections are optional. If you are satisfied with the performance provided
through superprojections, you do not need to create additional projections. However you can
maximize performance by tuning for specific query work loads.

 Vertica recommends that all production databases have a minimum K-Safety of one (K=1) to
support high availability and recovery. (Up to K=2 is possible.) See High Availability Through
Projections in the Concepts Guide and Designing for K-Safety (page 92).

Determining the Number of Projections to Use

In many cases, a design that consists of a set of superprojections (and their buddies) provides
satisfactory performance through compression and encoding. This is especially true if the sort
orders for the projections have been used to maximize performance for one or more query
predicates (WHERE clauses).

However, you might want to add additional query-specific projections to increase the performance
of one or more specific queries because they run slowly, are used frequently, or are run as part of
business critical reporting. The number of additional projections (and their buddies) that you
create should be determined by:

 Your organization's needs.

 The amount of disk space you have available on each node in the cluster.

 The amount of time available for loading data into the database.

As the number of projections that are tuned for specific queries increases, the performance of
these queries increases as well. However, the amount of disk space used and the amount of time
required to load data increases as well. Therefore, you should create and test designs to
determine the optimum number of projections for your database configuration. On average,
organizations that choose to implement query-specific projections achieved optimal performance
through the addition of a few query-specific projections.

Designing for K-Safety

Before creating custom physical schema designs, determine whether you want the database to be
K-safe and adhere to the appropriate design requirements for K-Safe databases or databases with
no K-Safety. Vertica Systems, Inc. recommends that all production databases have a minimum
K-Safety of one (K=1). Up to K=2 is possible. Non-production databases do not have to be K-Safe.
You can start by creating a physical schema design with no K-Safety, and then modify it to be
K-Safe at a later point in time. See High Availability and Recovery and High Availability Through
Projections in the Concepts Guide for an explanation of how Vertica implements high availability
and recovery through replication and segmentation.

-93-

 Configuring the Database

Requirements for a K-Safe Physical Schema Design

Database Designer automatically generates designs with a K-Safety of one (K=1) for clusters that
contain at least three nodes. (If your cluster has one or two nodes, it generates designs with a
K-Safety of zero (K=0).) Therefore, you can modify a design created for a three-node (or greater)
cluster and the K-Safe requirements will already have been completed for you.

If you choose to write custom projections, be aware that your physical schema design must meet
the following requirements to be able to successfully recover the database in the event of a failure:

 Projections that are based on a fact table or a pre-join of fact and dimension tables should be
segmented across all nodes. Refer to Designing for Segmentation (page 93) and
Designing Segmented Projections for K-Safety (page 101).

 In general, dimension table projections must be replicated on all nodes. For a snowflake, all
dimension tables within the snowflake must be replicated. If, however, a projection for a large
dimension table is similar in size to a fact table, it can be segmented. See Designing
Replicated Projections for K-Safety (page 100).

 Segmented projections must have K buddy projections (projections that have identical
columns and segmentation criteria, except that corresponding segments are placed on
different nodes).

Requirements for a Physical Schema Design with No K-Safety

If you choose to use Database Designer to generate an comprehensive design that you can
modify and you do not want the design to be K-Safe, set K-safety level to 0 (zero).

If you want to start from scratch, do the following to establish minimal projection requirements for a
functioning database with no K-Safety (K=0).

1 Define at least one superprojection for each table in the logical schema.

2 Replicate (define an exact copy of) each dimension table superprojection on each node.

Designing for Segmentation

If you are creating segmented nodes to ensure high availability and recovery, you need to
determine:

 Which segmentation method to use.

 Which columns to use to segment the projection.

 Which nodes on which to distribute segments.

Determining the segmentation method

Vertica provides two methods for segmenting projections: hash and range.

-94-

Administrator's Guide

 Hash segmentation is the preferred method of segmentation. It allows you to segment a
projection based on a built-in hash function that provides even distribution of data across
multiple nodes, resulting in optimal query execution. In a projection, the data to be hashed
consists of one or more column values, each having a large number of unique values and an
acceptable amount of skew in the value distribution. Primary key columns that meet the criteria
could be an excellent choice for hash segmentation. Refer to the CREATE PROJECTION
command in the SQL Reference Manual for detailed information about using hash
segmentation in a projection.

 Range segmentation allows you to specify a list of nodes, each of which stores a specific
range of data values, except for the MAXVALUE node, which has no upper limit. Refer to the
CREATE PROJECTION command in the SQL Reference Manual for detailed information
about using range segmentation in a projection.

Unlike hash segmentation, range does not automatically distribute data evenly across some or
all nodes in a cluster. Therefore, range segmentation is not typically used. Use range
segmentation only when your projection includes a column that is known to contain data
suitable for use as a segmentation expression. In other words, avoid using columns that
distribute data in a way that causes skewed distribution and execution. This causes some
nodes to work harder than others because they are consistently storing more data. This
includes data that does not yet exist but can cause skew if loaded in the future.

In particular, avoid using a date/time column for range segmentation because it causes
temporal skew. For example, consider a fact table in which each row contains a timestamp
representing that point in time at which the fact was established. In that case, all new fact table
rows would be stored on the MAXVALUE node, causing skew that would increase over time
and, thus, would have a negative effect on query performance.

Determining the columns to use for segmentation

The columns to use vary depending upon the type of segmentation method you intend to use.

 Columns for Hash Segmentation

If you decide to use hash segmentation, choose one or more columns that have a large
number of unique data values and acceptable skew in their data distribution. Primary key
columns that meet the criteria could be an excellent choice for hash segmentation. The
columns must be unique across all the tables being used in a query.

 Columns for Range Segmentation

If you decide to use range segmentation, choose one column to use for segmentation that:

 Uses an INTEGER or FLOAT data type.

 Has a known range of data values.

 Has an even distribution of data values.

 Has a large number of unique data values.

 Is unique across all columns in a query.

Avoid columns that:

 Are foreign keys.

 Are used in query predicates.

 Have a date/time data type.

 Have correlations with other columns due to functional dependencies.

-95-

 Configuring the Database

Note: Segmenting on DATE/TIME data types is valid, but guaranteed to produce temporal
skew in the data distribution and is not recommended. If you choose this option, do not use
TIME or TIMETZ because their range is only 24 hours.

Determining the nodes on which to distribute projection segments

Typically, segments are distributed across all nodes in the database to ensure high availability and
recovery. However, you can choose specific nodes on which to store projections segments. Be
sure to store segments on enough nodes to ensure a K-Safety value of one (1) or two (2).

Design Fundamentals

Writing and Deploying Custom Projections

Although you can write custom projections from scratch, Vertica Systems, Inc. recommends that
you use Database Designer to create a design to use as a starting point. This ensures that you
have projections that meet basic requirements.

Before you write custom projections, be sure to review the topics in Planning Your Design (page
91) carefully. Failure to follow these considerations can result in non-functional projections.
Vertica Systems, Inc. strongly recommends that you contact Technical Support (on page 1) to
inspect your customized physical schema design to ensure its integrity before you run it.

To manually modify or create a projection:

1 Create a script to contain the projection.

2 Use the CREATE PROJECTION command described in the SQL Reference Manual.

3 Use the \i meta-command (see "i FILE" on page 377) in vsql to run the script.

Note: The environment must consist of a database loaded with a logical schema.

4 For a K-Safe database, use the function SELECT get_projections('table_name') to

verify that the projections were properly created. Good projections are noted as being "safe."
This means that the projection has enough buddies to be K-Safe.

5 If you added the new projection to a database that already has projections that contain data,
you need to update the newly-created projection to work with the existing projections. By
default, the new projection is out-of-date (not available for query processing) until you refresh
it.

Vertica internal operations (mergeout, refresh, and recovery) maintain partition separation except
in certain cases:

 Recovery of a projection when the buddy projection from which the partition is recovering is
identically sorted. If the projection is undergoing a full rebuild, it is recovered one ROS
container at a time. The projection ends up with a storage layout identical to its buddy and is,
therefore, properly segmented.

Note: In the case of a partial rebuild, all recovered data goes into a single ROS container and
must be partitioned manually.

 Manual tuple mover operations often output a single storage container, combining any existing

partitions; for example, after executing any of the PURGE() operations.

See Refreshing Projections (page 280).

1 Use the MAKE_AHM_NOW function to set the Ancient History Mark (AHM) to the greatest
allowable epoch (now).

-96-

Administrator's Guide

2 Use the DROP_PROJECTION function to drop the any previous projections which are no
longer needed. See Dropping Projections (page 281).

These projections can waste disk space and reduce load speed if they remain in the database.

3 Run the ANALYZE_STATISTICS function on all projections in the database. This collects and
aggregates data samples and storage information from all nodes on which a projection is
stored, then writes statistics into the catalog. For example:

=>SELECT ANALYZE_STATISTICS ('');

Anatomy of a Projection

The CREATE PROJECTION statement specifies individual projections. The following sample
depicts the elements of a projection.

The previous example contains the following significant elements:

Column list and encoding

Lists every column within the projection and defines the encoding for each columns. Unlike
traditional database architectures, Vertica operates on encoded data representations. Therefore,
Vertica encourages you to use data encoding because it results in less disk I/O.

Base query

Identifies all the columns to incorporate in the projection through column name and table name
references. The base query for fact table projections can contain PK/FK joins to dimension tables.

-97-

 Configuring the Database

Sort order

The ORDER BY clause specifies a projection's sort order, which localizes logically-grouped
values so that a disk read can pick up many results at once. The sort order optimizes for a specific
query or commonalities in a class of queries based on the query predicate. The best sort orders

are determined by the WHERE clauses. For example, if a projection's sort order is (x, y), and

the query's WHERE clause specifies (x=1 AND y=2), all of the needed data is found together in

the sort order, so the query runs almost instantaneously.

You can also optimize a query by matching the projection's sort order to the query's GROUP BY
clause. If you do not specify a sort order, Vertica uses the order in which columns are specified in
the column definition as the projection's sort order.

Segmentation

The segmentation clause determines whether a projection is segmented or replicated across
nodes within the database. Replication stores identical copies of projections for dimension tables
across all nodes in the cluster. This ensures high availability and recovery. Segmentation
distributes contiguous pieces of projections, called segments, for fact and large dimension tables
across database nodes. This maximizes database performance by distributing the load.

Designing Superprojections

Superprojections have the following requirements:

 They must contain every column within the table.

 For a K-Safe design, super projections must either be replicated on all nodes within the
database cluster (for dimension tables) or paired with buddies and segmented across all
nodes (for fact tables and large dimension tables). See Physical Schema and High
Availability Through Projections in the Concepts Guide for an overview of projections and how
they are stored and Designing for K-Safety (page 92) for design specifics.

To provide maximum usability, superprojections need to minimize storage requirements while
maximizing query performance. To achieve this, the sort order for columns in superprojections are
based on storage requirements and commonly-used queries.

Minimizing Storage Requirements

Minimizing storage not only saves on physical resources, it increases performance by requiring
the database to perform less disk I/O. To minimize storage space for a projection:

 Analyze the type of data stored in each projection column and choose the most effective
encoding method. See the CREATE PROJECTION statement and encoding-type within the
SQL Reference Manual.

The Vertica optimizer gives Run Length Encoding (RLE) preference, so be sure to use it
whenever appropriate. Run Length Encoding (RLE) replaces sequences (runs) of identical
values with a single pair that contains the value and number of occurrences. Therefore, use it
only when the run length is large, such as when low-cardinality columns are sorted.

 Prioritize low cardinality columns in the column sort order. This minimizes the number of rows
that Vertica stores and accesses to retrieve query results.

-98-

Administrator's Guide

For more information about minimizing storage requirements, see Choosing Sort-orders for
Low Cardinality Predicates (page 102) and Choosing Sort-orders for High Cardinality
Predicates (page 103).

Maximizing Query Performance

In addition to minimizing storage requirements, the column sort order facilitates the most
commonly-used queries for the table. This means that the column sort order prioritizes the
lowest-cardinality columns that are actually used in queries, not the lowest cardinality columns.
See Choosing Sort-orders for Low Cardinality Predicates (page 102) for examples that take
into account both storage and query requirements.

Projections within a buddy set can all have different sort orders. This enables you to maximize
query performance for groups of queries with common WHERE clauses, but different sort orders.
If, for example, you have a three node cluster, your buddy set would contain three interrelated
projections, each of which could have its own sort order.

In a database with a K-Safety of one (1) or two (2), buddy projections are used for data recovery. If
a node fails, it queries the other nodes to recover data through buddy projections. (See How
Result Sets are Stored in the Concepts Guide.) If a projection's buddies use different sort orders, it
takes longer to recover the projection because the data has to be resorted during recovery to
match the sort order of the projection. Therefore, consider using identical sort orders for tables that
are rarely queried or that are repeatedly accessed by the same query, and use multiple sort orders
for tables that are accessed by queries with common WHERE clauses, but different sort orders.

If you have queries that access multiple tables or you want to maintain the same sort order for
projections within buddy sets, create query-specific projections. Designs that contain projections
for specific queries are called optimized designs.

Designing for Group By Queries

Database Designer does not optimize for Group By queries. Thus, projections created through
Database Designer do not take advantage of the Group By Pipeline execution technique.

In cases in which a large amount of data is being grouped, possibly due to non-selective
predicates or the absence of predicates altogether, this technique may be preferable because it
requires significantly less RAM than Group By Hash and it reduces disk I/O. This is due to the fact
that Group By Hash requires Vertica to create a hash table to process the aggregates and group
by expressions.

To apply this optimization, use the same projection column sort order as is used by the GROUP
BY clause in the query statement.

Note: Using the Group By Pipeline optimization might defeat other optimizations based on the
predicate, especially if the predicate is very selective. Therefore, use it with care and only when
required.

Example Group By Query

The following query sums all the deals made for each customer in the Deal table and then groups
them by the Customer column.

SELECT Customer, SUM(DealPrice)

 FROM Deal

-99-

 Configuring the Database

 GROUP BY Customer;

Column Descriptions

The columns from the Deal table contain the following values:

Deal_ID DealDate DealPrice Customer

1 2005-01-01 500 Carr

2 2004-01-01 300 Gupta

3 2003-02-05 1000 Carr

4 2007-03-28 1200 Lee

5 2007-03-30 400 Frank

6 2003-02-16 1800 Gupta

Result Set

The result set for the query is:

Customer Sum(DealPrice)

Carr 1500

Frank 400

Gupta 2100

Lee 1200

Projection Column Sort Order

To optimize for this query, set the sort order for the projection to the Customer Column:

ORDER BY Customer

Projection Column Sort Order for Multiple Columns

To optimize for a query that uses a Group By statement on more than one column, sort the
projection using the same columns and in the same order. If you want to sort the projection using
additional columns that are not present in the Group By statement, place them at the end of the
sort order.

The following query uses the Group By statement to group the result sets by both the Customer
and DealDate columns:

SELECT Customer, DealDate, SUM(DealPrice)

 FROM Deal

 GROUP BY Customer, DealDate;

To set the projection column sort order for this query:

ORDER BY Customer, DealDate

-100-

Administrator's Guide

Designing Replicated Projections for K-Safety

If you are creating or modifying a design for a K-Safe database, you need to ensure that
projections for dimension tables are replicated on each node in the database. (For an overview of
replicated projections, see Projection Replication in the Concepts Guide.)

You can accomplish this using a single CREATE PROJECTION command for each dimension
table. The UNSEGMENTED ALL NODES syntax within the segmentation clause automatically
creates an unsegmented projection on each node in the database, as follows:

UNSEGMENTED ALL NODES;

When you run your design script, Vertica generates a list of nodes based on the number of nodes
in the database and replicates the projection accordingly. Replicated projections have the name:

projection-name_node-name

If, for example, the nodes are named NODE01, NODE02, and NODE03, the projections are

named ABC_NODE01, ABC_NODE02, and ABC_NODE03.

Note: This naming convention could affect functions that provide information about projections,
for example, GET_PROJECTIONS or GET_PROJECTION_STATUS, where you must provide

the name ABC_NODE01 instead of just ABC. To view a list of the nodes in a database, use the

View Database (page 344) command in the Administration Tools.

The following script uses the UNSEGMENTED ALL SITES syntax to create one unsegmented
superprojection for the store_dimension table on each node.

CREATE PROJECTION store_dimension(

 C0_store_dimension_floor_plan_type ENCODING RLE ,

 C1_store_dimension_photo_processing_type ENCODING RLE ,

 C2_store_dimension_store_key ,

 C3_store_dimension_store_name ,

 C4_store_dimension_store_number ,

 C5_store_dimension_store_street_address ,

 C6_store_dimension_store_city ,

 C7_store_dimension_store_state ,

 C8_store_dimension_store_region ,

 C9_store_dimension_financial_service_type ,

 C10_store_dimension_selling_square_footage ,

 C11_store_dimension_total_square_footage ,

 C12_store_dimension_first_open_date ,

 C13_store_dimension_last_remodel_date)

AS SELECT T_store_dimension.floor_plan_type,

 T_store_dimension.photo_processing_type,

 T_store_dimension.store_key,

 T_store_dimension.store_name,

 T_store_dimension.store_number,

 T_store_dimension.store_street_address,

 T_store_dimension.store_city,

 T_store_dimension.store_state,

 T_store_dimension.store_region,

 T_store_dimension.financial_service_type,

 T_store_dimension.selling_square_footage,

 T_store_dimension.total_square_footage,

 T_store_dimension.first_open_date,

-101-

 Configuring the Database

 T_store_dimension.last_remodel_date

FROM store_dimension T_store_dimension

ORDER BY T_store_dimension.floor_plan_type,

T_store_dimension.photo_processing_type

UNSEGMENTED ALL NODES;

Note: Large dimension tables can be segmented. A dimension table is considered to be large
when it is approximately the same size as a fact table.

Designing Segmented Projections for K-Safety

If you are creating or modifying a design for a K-Safe database, you need to create K-Safe
projections for fact tables and large dimension tables. (A dimension table is considered to be large
if it is similar in size to a fact table.) This entails:

 Creating a segmented projection for each fact and large dimension table.

 Creating segmented buddy projections for each of these projections. The total number of
projections in a buddy set must be two (2) for a K=1 database or three (3) for a a K=2
database.

For an overview of segmented projections and their buddies, see Projection Segmentation in the
Concepts Guide. For information about designing for K-Safety, see Designing for K-Safety
(page 92) and Designing for Segmentation (page 93).

Segmenting Projections

To segment a projection, use the segmentation clause to specify the:

 Segmentation method to use.

 Column to use to segment the projection.

 Nodes on which to segment the projection. You can segment projections across all the nodes,
or just the number of nodes necessary to maintain K-Safety, either three (3) for a K=1
database or five (5) for a K=2 database.

See the CREATE PROJECTION statement in the SQL Reference Manual.

The following segmentation clause uses hash segmentation to segment the projection across all
nodes based on the T_retail_sales_fact.pos_transaction_number column:

CREATE PROJECTION retail_sales_fact_P1...

SEGMENTED BY HASH(T_retail_sales_fact.pos_transaction_number) ALL NODES;

Creating Buddy Projections

To create a buddy projection, copy the original projection and modify it as follows:

 Rename it to something similar to the name of the original projection. For example, a
projection named retail_sales_fact_P1 could have buddies named retail_sales_fact_P1_B1
and retail_sales_fact_P1_B2.

 Modify the sort order as needed.

 Create an offset to store the segments for the buddy on different nodes. For example the first
buddy in a projection set would have an offset of one (OFFSET1;) the second buddy in a
projection set would have an offset of two (OFFSET2;), and so on.

For example, to create a buddy for the projection created in the previous example:

-102-

Administrator's Guide

CREATE PROJECTION retail_sales_fact_P1_B1...

SEGMENTED BY HASH(T_retail_sales_fact.pos_transaction_number) ALL NODES OFFSET 1;

Maximizing Projection Performance
Choosing Sort-orders for Low Cardinality Predicates

When dealing with predicates on low-cardinality columns, you can use the combination of RLE
and Sorting to reduce disk I/O. This is achieved by bucketing data such that all rows that
correspond to the same value are clustered together on disk. The following example shows how
RLE is combined with the column sort order to minimize storage requirements and maximize
query performance.

Example Query

SELECT name FROM students

 WHERE gender = ‘M’ AND pass_fail = ‘P’ AND class = ‘senior’;

Column Descriptions

The columns from the students table contain the following values and encoding types:

Column # of Values Encoded With

gender 2 (M or F) RLE

pass_fail 2 (P or F) RLE

class 4 (freshman, sophomore, junior,
or senior)

RLE

name 10000 (too many to list) Auto

Optimal Sort Order

The fastest way to access the names of students who are male, have passed their grade level,
and are seniors is to work through the low cardinality columns with the smallest number of values
before the high cardinality columns. The following example illustrates a column sort order that
minimizes storage and maximizes query performance for the example query.

ORDER BY = student.gender,student.class,student.pass_fail,student.name

This example creates the following buckets:

-103-

 Configuring the Database

This query operates efficiently because only a subset of buckets (highlighted in blue) is evaluated
for each condition in the where clause.

Sub-optimal Sort Order

The following example shows a sort order that starts with the name column. This sort order
maximizes the number of rows that are stored and minimizes query performance because the
students' gender, pass/fail status, and class must be evaluated for every name.

ORDER BY = student.name,student.gender,student.pass_fail,student.class,

Choosing Sort-orders for High Cardinality Predicates

In some cases, your query predicate might require you to prioritize a high cardinality column in the
projection's sort order. For example, you might have predicates based on phone numbers or
timestamps. To avoid establishing a sub-optimal projection, you can insert a new column into the
table and the projection. This pseudo column artificially creates a low cardinality bucket that you
can then prioritize in the projection's sort order.

To be effective, the number of unique values in the column you insert should be almost equal to
the square root of the number of values in the original high cardinality column. Use SELECT
DISTINCT to determine the number of unique values in the high cardinality column. See the
SELECT statement in the SQL Reference Manual.

The following example illustrates this concept.

Query Without Bucketing

The following query requires a full column scan on the high cardinality column (Number) because
the sort order is prioritized on the Number column:

SELECT Address

 FROM cdr_table WHERE Number=‘9788876542’;

Query With Bucketing

Inserting the low cardinality column Area_Code and prioritizing it in the projection's sort order
enables a partial scan of the Number column.

SELECT Address

-104-

Administrator's Guide

 FROM cdr_table WHERE Area_Code=‘978’ AND Number=‘9788876542’;

Prioritizing Column Access Speed

If you measure and set the performance of storage locations within your cluster, Vertica uses this
information to determine where to store columns based on their rank. See Setting Location
Performance (page 288).

How Columns are Ranked

Vertica stores columns that are included in the sort order of projections on the fastest disks and
columns that are not included within the sort order of projections on slower disks. It accomplishes
this by ranking columns for each projection as follows:

 Columns in the sort order are given the highest priority (numbers>1000).

 The last column in the sort order is given the rank number 1001.

 The next to the last column in the sort order is given the rank number 1002, and so on until the
first column in the sort order is given 1000 + # of sort columns.

 The remaining columns are given numbers from 1000 - 1, starting with 1000 and working down
from there.

Then it stores these columns on disk as follows:

Columns are stored on disk from the highest ranking to the lowest ranking in which the highest
ranking columns are placed on the fastest disks and the lowest ranking columns are placed on the
slowest disks.

Overriding Default Column Ranking

You can modify which columns are stored on fast disks by manually overriding the default ranks
for these columns. To accomplish this, set the ACCESSRANK keyword in the column list. Be sure
to use an integer that is not already being used for another column. For example, if you want to
give a column the fastest access rank, be sure to use a number that is significantly higher than
1000 + the number of sort columns. This allows you to enter more columns over time without
bumping into the access rank you set.

The following example sets the access rank for the C1_retail_sales_fact_store_key column to
1500.

-105-

 Configuring the Database

CREATE PROJECTION retail_sales_fact_P1 (

 C1_retail_sales_fact_store_key ENCODING RLE ACCESSRANK 1500,

 C2_retail_sales_fact_pos_transaction_number ,

 C3_retail_sales_fact_sales_dollar_amount ,

 C4_retail_sales_fact_cost_dollar_amount)

-106-

 106

Projection Examples

This sections provides examples that show how to create projections:

 For a new database where K-Safety=2 (page 107)

 When adding a node to an existing database (page 110)

-107-

 107

New K-Safe=2 Database

In this example, projections are created for a new five node database with a K-Safety of two (2). To
simplify the example, this database contains only two tables: retail_sale_fact and
store_dimension. Creating projections for this database consists of creating the following
segmented and unsegmented (replicated) superprojections:

 Segmented projections

To support K-Safety=2, the database requires three segmented projections (one projection
and two buddy projections) for each fact table. In this case, it requires three segmented
projections for the retail_sale_fact table:

Projection Description

P1 The primary projection for the retail_sale_fact table.

P1_B1 The first buddy projection for P1. This buddy is
required to provide K-Safety=1.

P1_B2 The second buddy projection for P1. This buddy is
required to provide K-Safety=2.

 Unsegmented Projections

To support the database, one unsegmented superprojection must be created for each
dimension table on each node. In this case, one unsegmented superprojection must be
created on each node for the store_dimension table:

Node Unsegmented Projection

Node01 store_dimension_Node01

Node02 store_dimension_Node02

Node03 store_dimension_Node03

Node04 store_dimension_Node04

Node05 store_dimension_Node05

Creating Segmented Projections Example

The following SQL script creates the P1 projection and its buddies, P1_B1 and P1_B2, for the
retail_sales_fact table. The following syntax is significant:

 CREATE PROJECTION creates the named projection (retail_sales_fact_P1,
retail_sales_fact_ P1_B1, or retail_sales_fact_P1_B2).

 ALL NODES automatically segments the projections across all five nodes in the cluster without
specifically referring to each node.

 HASH evenly distributes the data across these nodes.

-108-

Administrator's Guide

 OFFSET ensures that the same data is not stored on the same nodes for each of the buddies.
The first buddy uses OFFSET 1 to shift the storage locations by one and the second buddy
uses OFFSET 2 to shift the storage locations by two. This is critical to ensure K-safety.

CREATE PROJECTION retail_sales_fact_P1 (

 C1_retail_sales_fact_store_key ENCODING RLE ,

 C2_retail_sales_fact_pos_transaction_number ,

 C3_retail_sales_fact_sales_dollar_amount ,

 C4_retail_sales_fact_cost_dollar_amount)

AS SELECT T_retail_sales_fact.store_key,

 T_retail_sales_fact.pos_transaction_number,

 T_retail_sales_fact.sales_dollar_amount,

 T_retail_sales_fact.cost_dollar_amount

FROM retail_sales_fact T_retail_sales_fact

ORDER BY T_retail_sales_fact.store_key

SEGMENTED BY HASH(T_retail_sales_fact.pos_transaction_number) ALL NODES;

--

-- Projection # : 6

-- Projection storage (KBytes) : 4.8e+06

-- Note: This is a super projection for table: retail_sales_fact

CREATE PROJECTION retail_sales_fact_P1_B1 (

 C1_retail_sales_fact_store_key ENCODING RLE ,

 C2_retail_sales_fact_pos_transaction_number ,

 C3_retail_sales_fact_sales_dollar_amount ,

 C4_retail_sales_fact_cost_dollar_amount)

AS SELECT T_retail_sales_fact.store_key,

 T_retail_sales_fact.pos_transaction_number,

 T_retail_sales_fact.sales_dollar_amount,

 T_retail_sales_fact.cost_dollar_amount

FROM retail_sales_fact T_retail_sales_fact

ORDER BY T_retail_sales_fact.store_key

SEGMENTED BY HASH(T_retail_sales_fact.pos_transaction_number) ALL NODES

OFFSET 1;

--

-- Projection # : 6

-- Projection storage (KBytes) : 4.8e+06

-- Note: This is a super projection for table: retail_sales_fact

CREATE PROJECTION retail_sales_fact_P1_B2 (

 C1_retail_sales_fact_store_key ENCODING RLE ,

 C2_retail_sales_fact_pos_transaction_number ,

 C3_retail_sales_fact_sales_dollar_amount ,

 C4_retail_sales_fact_cost_dollar_amount)

AS SELECT T_retail_sales_fact.store_key,

 T_retail_sales_fact.pos_transaction_number,

 T_retail_sales_fact.sales_dollar_amount,

 T_retail_sales_fact.cost_dollar_amount

FROM retail_sales_fact T_retail_sales_fact

ORDER BY T_retail_sales_fact.store_key

SEGMENTED BY HASH(T_retail_sales_fact.pos_transaction_number) ALL NODES

OFFSET 2;

--

-109-

 Configuring the Database

Creating Unsegmented Projections Example

The following script uses the UNSEGMENTED ALL NODES syntax to create one unsegmented
superprojection for the store_dimension table on each node.

CREATE PROJECTION store_dimension (

 C0_store_dimension_floor_plan_type ENCODING RLE ,

 C1_store_dimension_photo_processing_type ENCODING RLE ,

 C2_store_dimension_store_key ,

 C3_store_dimension_store_name ,

 C4_store_dimension_store_number ,

 C5_store_dimension_store_street_address ,

 C6_store_dimension_store_city ,

 C7_store_dimension_store_state ,

 C8_store_dimension_store_region ,

 C9_store_dimension_financial_service_type ,

 C10_store_dimension_selling_square_footage ,

 C11_store_dimension_total_square_footage ,

 C12_store_dimension_first_open_date ,

 C13_store_dimension_last_remodel_date)

AS SELECT T_store_dimension.floor_plan_type,

 T_store_dimension.photo_processing_type,

 T_store_dimension.store_key,

 T_store_dimension.store_name,

 T_store_dimension.store_number,

 T_store_dimension.store_street_address,

 T_store_dimension.store_city,

 T_store_dimension.store_state,

 T_store_dimension.store_region,

 T_store_dimension.financial_service_type,

 T_store_dimension.selling_square_footage,

 T_store_dimension.total_square_footage,

 T_store_dimension.first_open_date,

 T_store_dimension.last_remodel_date

FROM store_dimension T_store_dimension

ORDER BY T_store_dimension.floor_plan_type,

T_store_dimension.photo_processing_type

UNSEGMENTED ALL NODES;

-110-

 110

Add Node to a Database

In this example, a fourth node (Node04) is being added to a three-node database. The database
contains two tables: retail_sale_fact and store_dimension. It also contains the following
segmented and unsegmented (replicated) superprojections:

 Segmented projections

P1 and its buddy, B1, are projections for the retail_sale_fact table. They were created using
the ALL NODES syntax, so Vertica automatically segmented the projections across all three
nodes.

 Unsegmented Projections

Currently three unsegmented superprojections exist for the store_dimension table, one for
each node, as follows:

Node Unsegmented Projection

Node01 store_dimension_Node01

Node02 store_dimension_Node02

Node03 store_dimension_Node03

To support an additional node, replacement projections need to be created for the segmented
projections, P1 and B1. The new projections could be called P2 and B2, respectively. Additionally,
an unsegmented superprojection (store_dimension_Node04) needs to be created for the
dimension table on the new node (Node04).

Creating Segmented Projections Example

The following SQL script created the original P1 projection and its buddy, B1, for the
retail_sales_fact table. Since the script uses the ALL NODES syntax, creating a new projection
that includes the fourth node is as easy as copying the script and changing the names of the
projection and its buddy to unique names (for example, P2 for the projection and P2_B2 for its
buddy). The names that need to be changed are highlighted within the example.

CREATE PROJECTION retail_sales_fact_P1 (

 C1_retail_sales_fact_store_key ENCODING RLE ,

 C2_retail_sales_fact_pos_transaction_number ,

 C3_retail_sales_fact_sales_dollar_amount ,

 C4_retail_sales_fact_cost_dollar_amount)

AS SELECT T_retail_sales_fact.store_key,

 T_retail_sales_fact.pos_transaction_number,

 T_retail_sales_fact.sales_dollar_amount,

 T_retail_sales_fact.cost_dollar_amount

FROM retail_sales_fact T_retail_sales_fact

ORDER BY T_retail_sales_fact.store_key

SEGMENTED BY HASH(T_retail_sales_fact.pos_transaction_number) ALL NODES;

--

-- Projection # : 6

-- Projection storage (KBytes) : 4.8e+06

-- Note: This is a super projection for table: retail_sales_fact

CREATE PROJECTION retail_sales_fact_P1_B1 (

-111-

 Configuring the Database

 C1_retail_sales_fact_store_key ENCODING RLE ,

 C2_retail_sales_fact_pos_transaction_number ,

 C3_retail_sales_fact_sales_dollar_amount ,

 C4_retail_sales_fact_cost_dollar_amount)

AS SELECT T_retail_sales_fact.store_key,

 T_retail_sales_fact.pos_transaction_number,

 T_retail_sales_fact.sales_dollar_amount,

 T_retail_sales_fact.cost_dollar_amount

FROM retail_sales_fact T_retail_sales_fact

ORDER BY T_retail_sales_fact.store_key

SEGMENTED BY HASH(T_retail_sales_fact.pos_transaction_number) ALL NODES

OFFSET 1;

--

Creating Unsegmented Projections Example

The following script used the ALL NODES syntax to create the original three unsegmented
superprojections for the store_dimension table, one per node.

The following syntax is significant:

 CREATE PROJECTION creates a superprojection called store_dimension.

 ALL NODES automatically places a complete copy of the superprojection on each of the three
original nodes.

CREATE PROJECTION store_dimension (

 C0_store_dimension_floor_plan_type ENCODING RLE ,

 C1_store_dimension_photo_processing_type ENCODING RLE ,

 C2_store_dimension_store_key ,

 C3_store_dimension_store_name ,

 C4_store_dimension_store_number ,

 C5_store_dimension_store_street_address ,

 C6_store_dimension_store_city ,

 C7_store_dimension_store_state ,

 C8_store_dimension_store_region ,

 C9_store_dimension_financial_service_type ,

 C10_store_dimension_selling_square_footage ,

 C11_store_dimension_total_square_footage ,

 C12_store_dimension_first_open_date ,

 C13_store_dimension_last_remodel_date)

AS SELECT T_store_dimension.floor_plan_type,

 T_store_dimension.photo_processing_type,

 T_store_dimension.store_key,

 T_store_dimension.store_name,

 T_store_dimension.store_number,

 T_store_dimension.store_street_address,

 T_store_dimension.store_city,

 T_store_dimension.store_state,

 T_store_dimension.store_region,

 T_store_dimension.financial_service_type,

 T_store_dimension.selling_square_footage,

 T_store_dimension.total_square_footage,

 T_store_dimension.first_open_date,

 T_store_dimension.last_remodel_date

FROM store_dimension T_store_dimension

-112-

Administrator's Guide

ORDER BY T_store_dimension.floor_plan_type,

T_store_dimension.photo_processing_type

UNSEGMENTED ALL NODES;

To create another copy of the superprojection on the fourth node (Node04), the best approach is
to create a copy of that projection on Node04 only. This means avoiding the ALL NODES syntax.
The following script shows how to create the fourth superprojection.

The following syntax is significant:

 CREATE PROJECTION creates a superprojection called store_dimension_Node04.

 UNSEGMENTED SITE Node04 creates the projection on just Node04.
CREATE PROJECTION store_dimension_Node04 (

 C0_store_dimension_floor_plan_type ENCODING RLE ,

 C1_store_dimension_photo_processing_type ENCODING RLE ,

 C2_store_dimension_store_key ,

 C3_store_dimension_store_name ,

 C4_store_dimension_store_number ,

 C5_store_dimension_store_street_address ,

 C6_store_dimension_store_city ,

 C7_store_dimension_store_state ,

 C8_store_dimension_store_region ,

 C9_store_dimension_financial_service_type ,

 C10_store_dimension_selling_square_footage ,

 C11_store_dimension_total_square_footage ,

 C12_store_dimension_first_open_date ,

 C13_store_dimension_last_remodel_date)

AS SELECT T_store_dimension.floor_plan_type,

 T_store_dimension.photo_processing_type,

 T_store_dimension.store_key,

 T_store_dimension.store_name,

 T_store_dimension.store_number,

 T_store_dimension.store_street_address,

 T_store_dimension.store_city,

 T_store_dimension.store_state,

 T_store_dimension.store_region,

 T_store_dimension.financial_service_type,

 T_store_dimension.selling_square_footage,

 T_store_dimension.total_square_footage,

 T_store_dimension.first_open_date,

 T_store_dimension.last_remodel_date

FROM store_dimension T_store_dimension

ORDER BY T_store_dimension.floor_plan_type,

T_store_dimension.photo_processing_type

UNSEGMENTED NODE Node04;

Implementing Security
In Vertica, there are three primary security concerns:

 Client authentication that prevents unauthorized access to the database.

 Connection encryption that prevents the interception of data, as well as authenticating the the
identity of the server and the client.

-113-

 Configuring the Database

 Client authorization that controls what users can access and change in the database.

Database Authentication

To gain access to Vertica, a user or client application must supply the name of a valid user
account. While you can configure Vertica to just require a user name, you will usually require an
additional means of authentication, such as a password. There are several ways to implement this
added authentication:

 Password authentication (page 115) using passwords stored in the database.

 Authentication using outside means (page 118), such as LDAP or Kerberos.

Different authentication methods can be used based on the based on the connection type, client
IP address range, and user name for the client that is attempting to access the server.

Connection Encryption

To secure the connection between the client and the server, you can configure Vertica and
database clients to use Secure Socket Layer (SSL) to communicate. Vertica uses SSL to:

 Authenticate the server, so the client can confirm the server's identity. Vertica supports mutual
authentication in which the server can also confirm the identity of the client. This authentication
helps prevent "man-in-the-middle" attacks.

 Encrypt data sent between the client and database server to significantly reduce the likelihood
that the data can be read if the connection between the client and server is compromised.

 Verify that data sent between the client and server has not been altered during transmission.

See Implementing SSL (page 130).

Controlling Database Authorization

Database users should have access to just the database resources they need to perform their
tasks. For example, some users may only need to perform queries on certain sets of data. To
prevent unauthorized access to additional data, their access should be limited to just the data that
they need to perform their queries. Also, they should only be able to read the data, not modify or
insert new data. Other users may need less restrictive access, such as the right to create and
modify schemas, tables, and views. Users may also need the ability to grant other users access to
database resources. All of these authorizations are set through a collection of statements that
control the resources users can access. For more information about the privileges associated
with these resources, see:

 Schema Privileges (page 136)

 Table Privileges (page 137)

 View Privileges (page 137)

 Projection Privileges (page 138)

 External Procedure Privileges (page 138)

 Metadata Privileges (page 139)

-114-

Administrator's Guide

Use the GRANT statements (GRANT (Database), GRANT (Schema), GRANT (Table), GRANT
(View), and GRANT (Procedure)) to assign privileges to users and the Revoke statements
REVOKE (Database), (REVOKE (Schema), (REVOKE (Table), (REVOKE (View), and REVOKE
(Procedure)) to repeal them. See the SQL Reference Manual for more information about these
statements.

Implementing Client Authentication

This section describes the authentication methods supported at the database server layer. For
communication layer authentication between server and client, refer to Implementing SSL (page
130).

When attempting to connect to a database server, the client application is required to provide the
user name for the account established for its use on the server. Vertica uses client authentication
to determine whether the client application (or the user who is running the client application) is
permitted to connect to the server using the database user name provided. Vertica supports the
following client authentication methods:

 trust — Authenticates clients based on valid user names only. You might want to implement
trust if a user connection has already been authenticated through some external means such
as SSL or a fire wall.

 reject — Rejects the connection and prevents additional records from being evaluated for the
client. Use this setting to filter out clients that match this record. For example, this is useful for
rejecting specific clients based on user name or IP address.

 krb5 — Authenticates the client using Kerberos version 5. This is useful if users have already
been provisioned for Kerberos.

 gss — Authenticates the client using GSS-encoded Kerberos tokens. (Vertica follows RFC
1964.) This is useful if your application uses the Generic Security Services Application
Programming Interface (GSS-API).

 ldap — Authenticates the client using Lightweight Directory Access Protocol (LDAP). This is
useful if your application uses LDAP to query directory services.

 md5 — Requires the client to supply an MD5-hashed password across the network for
authentication. By default, all account passwords are encrypted using Message-Digest
algorithm 5 (MD5). The server provides the client with salt (random bytes included in the hash
to prevent replay attacks).

 password — Requires the client to supply the password in clear text. Do not use this setting on
untrusted networks.

The method Vertica uses to authenticate a particular client connection can be automatically
selected on the basis of the connection type, client IP address, and user name.

Note: If you do not choose a client authentication method, Vertica defaults to using user name
and password (if supplied) to grant access to the database.

-115-

 Configuring the Database

Password Authentication

The simplest method of authenticating a client is to assign the user account a password in Vertica.
If a user account has a password set, then a user or client using the account to connect to the
database must supply the correct password. If the user account does not have a password set and
Vertica is not configured to use another form of client authentication, the user account is always
allowed to log in.

Passwords are stored in the database in an encrypted format to prevent others from potentially
stealing them. However, the transmission of the password to Vertica is in plain text. This means it
is possible for a "man in the middle" attack to intercept the password. In order to secure the login,
you should consider implementing SSL security (page 130) or MD5 authentication.

Passwords are assigned to user accounts when they are created or afterwards (see the CREATE
USER and ALTER USER statements in the SQL Reference Manual). Passwords can be changed
using ALTER USER or the vsql \password (page 378) command. The superuser can set any user
account's password. Users can change their own passwords.

To make password authentication more effective, you can enforce password policies that control
how often users are forced to change passwords and the required content of a password. These
policies are set using Profiles (page 115).

Profiles

You set password policies using profiles. A profile is a group of parameters that set requirements
for user's passwords. You assign users to a profile to set their password policy.

A profile controls:

 How often users must change their passwords.

 How many times users must change their passwords before they can reuse an old password.

 How many times users can fail to log in before their account is locked.

 The required length and content of the password (maximum and minimum amount of
characters and the minimum number of letters, capital letters, lowercase letters, digits, and
symbols that must be in a password).

You can create multiple profiles to enforce different password policies for different users. For
example, you may choose to create one profile for interactive users that requires them to
frequently change their passwords and another profile for user accounts that applications use to
access the database that aren't required to change passwords.

You create profiles using the CREATE PROFILE statement and change them using ALTER
PROFILE. You can assign a user to a profile when you create the user (CREATE USER) and
afterwards the using the ALTER USER statement. A user is assigned to just one profile at a time.

When the database is created, it contains an initial profile named DEFAULT. This is the profile that
users are assigned if you do not explicitly assign them a profile when creating them. They are also
assigned to the DEFAULT profile if you drop the profile to which they are currently assigned. You
can change the policy parameters in the DEFAULT profile, but you cannot delete it.

-116-

Administrator's Guide

Note: When upgrading from versions of Vertica prior to 4.1, a DEFAULT profile is added to
each database, and all users are assigned to it.

The profiles you create can inherit some or all of their policy parameters from the DEFAULT
profile. When creating a profile using the CREATE PROFILE statement, any parameter you set to
the special value DEFAULT or any parameter to which you do not assign a value inherits its value
from the DEFAULT profile. Making a change to a parameter in the the DEFAULT profile changes
that parameter's value in every profile that inherited the parameter from DEFAULT.

When you assign users to a profile (or alter an existing profile that has users assigned to it), the
profile's policies for password content (maximum and minimum length and number of specific
types of characters) do not have an immediate effect on the users—Vertica does not test user's
passwords to ensure they comply with the new password criteria. These settings only affect the
users the next time they change their password. If you want to ensure users comply with the new
password policy, you can use the ALTER USER statement to expire user passwords. Users with
expired passwords are prompted to their change passwords when they next log in.

Note: Only the profile settings for how many failed login attempts trigger account locking and
how long accounts are locked have an effect on external password authentication methods
such as LDAP or Kerberos. All password complexity, reuse, and lifetime settings only have an
effect on passwords managed by Vertica.

Password Expiration

You can use profiles to control how often users must change their passwords. Initially, the
DEFAULT profile is set so that passwords never expire. You can change this default value, or you
can create additional profiles that set time limits for passwords and assign users to them.

When a password expires, the user is required to change his or her password when next logging
in, unless the profile to which the user is assigned has a PASSWORD_GRACE_TIME set. In that
case, the user is allowed to log in after the expiration, but will be warned about the password
expiration. Once the grace period elapses, the user is forced to change passwords, unless he or
she has manually changed the password during the grace period.

Password expiration has no effect on any of the user's current sessions.

Note: You can expire a user's password immediately using the ALTER USER statement's

PASSWORD EXPIRE argument. Expiring a password useful when you want to force users to

comply with a change to their password policy, or when setting a new password for users who
have forgotten their old one.

Account Locking

One password policy you can set in a profile is how many consecutive failed login attempts (giving
the wrong password when trying to log in) a user account is allowed before the user account is

locked. You set this value using the FAILED_LOGIN_ATTEMPTS parameter in the CREATE

PROFILE or ALTER PROFILE statement.

Vertica locks any user account that has more sequential failed login attempts than the than the

value to which you set FAILED_LOGIN_ATTEMPTS. A locked account is not allowed to log in,

even if the user supplies the correct password.

There are two ways an account can be unlocked:

-117-

 Configuring the Database

 Manually unlocked by the superuser using the ALTER USER command.

 Vertica automatically unlocks the account after the number of days set in the
PASSWORD_LOCK_TIME parameter of the user's profile have passed. However, if this
parameter is set to UNLIMITED, account is never automatically unlocked and must be
manually unlocked).

This locking mechanism helps prevent dictionary-style brute-force attempts to crack users'
passwords.

Note: The superuser account cannot be locked, since it is the only user that can unlock
accounts. For this reason, you should ensure that you choose a very secure password for the
superuser account. See Password Guidelines (page 117) for suggestions on choosing a
secure password.

The following examples demonstrates failing to login to an account whose profile is set to lock
accounts that fail to login after three tries:

> vsql -U dbuser

Password:

vsql: FATAL: Invalid username or password

> vsql -U dbuser

Password:

vsql: FATAL: Invalid username or password

> vsql -U dbuser

Password:

vsql: FATAL: The user account "dbuser" is locked due to too many invalid logins

HINT: Please contact the database administrator

> vsql -U dbuser

Password:

vsql: FATAL: The user account "dbuser" is locked due to too many invalid logins

HINT: Please contact the database administrator

In the last attempt, the correct password is given for the dbuser account.

Password Guidelines

For passwords to be effective, they must be hard to guess by both dictionary-style brute-force
attacks and by having knowledge of the password holder (family names, dates of birth, etc.). You
can use profiles to enforce some good password practices (password length and required
content), but others (such as the use of personal information) are something you will need to
communicate to database users.

Consider these guidelines published by the Internet Engineering Task Force (IETF) when creating
passwords:

 Use a password with mixed-case characters.

 Use a password containing non-alphabetic characters (for example, digits and punctuation).

 Use a password that is easy to remember, so that you don't need to write it down.

 Use a password that you can type quickly without having to look at the keyboard.

Avoid the following:

 Do not use your login or user name in any form (as-is, reversed, capitalized, doubled, and so
on).

-118-

Administrator's Guide

 Do not use your first, middle, or last name in any form.

 Do not use your spouse's, significant other's, children's, friend's, or pet's name in any form.

 Do not use other information easily obtained about you, including your date of birth, license
plate number, telephone number, social security number, make of your automobile, house
address, and so on.

 Do not use a password of all digits or all the same letter.

 Do not use a word contained in English or foreign language dictionaries, spelling lists, acronym
or abbreviation lists, or other lists of words.

 Do not use a password containing fewer than six characters.

 Do not give your password to another person for any reason.

Configuring External Authentication Methods in vertica.conf file

External authentication methods are configured using records inserted into the vertica.conf

file through the Administration Tools. To provide options for client sessions that might require a
variety of authentication settings, Vertica supports using multiple records. Each record establishes
the authentication method to use based on the connection type, client IP address range, and user
name for the client that is attempting to access the database. For example, you could use multiple
records to have application logins authenticated using Vertica-based passwords, and interactive
users authenticated using LDAP.

The first record with a matching connection type, client address, and user name is used to perform
the authentication for that connection.

If the authentication fails, access is denied. Access is also denied if no records match the client
session. If, however, there are no records, Vertica reverts to using the user name and password (if
created) to control access to the database.

Creating Records

To make it easier to implement external authentication methods, Vertica provides an editing
environment within the Administration Tools that enables you to create, edit, and maintain
authentication records. It also verifies that the records are correctly formed, inserts them into the

configuration file, vertica.conf, and implements them cluster-wide.

The actual editing of the records is performed by the text editor set in your Linux or UNIX account's
VISUAL or EDITOR environment variable. If no environmental variables are set, the editor Vertica
uses is vim (vi).

Note: Vertica Systems, Inc. does not recommend editing vertica.conf directly, since Admin

Tools performs error checking on your entries before adding them to the vertica.conf.

To configure client authentication, all the hosts in the cluster must be up. Once you have verified
that the hosts are all running, use the Administration Tools to create authentication records for
various client sessions.

Creating and Editing Records

To create or edit records:

1 On the Main Menu in the Administration Tools, select Configuration Menu, and click OK.

-119-

 Configuring the Database

2 On the Configuration Menu, select Edit Authentication, and click OK.

3 Select the database for which you want to establish client authentication and click OK.

The editor is displayed where you can specify the authentication method used for various
sessions.

4 Enter one or more records.

See Creating Records (page 119) for a description of the content required to create a record.
See also Formatting Rules for Records (page 121).

5 When you have finished entering records, exit the editor. For example, in vi, press the Esc key
and type :wq to complete your editing session.

6 The authentication tool verifies that the records are correctly formed and does one of the
following:

 If the records are properly formed, they are inserted into the vertica.conf file and you

are prompted to restart the database. Click OK and go to step 7.

 If the records are not properly formed, the display indicates why they weren't properly
formed and gives you the opportunity to: edit your errors (e), abort without saving your
changes (a), or save and implement your changes anyway (s). Saving your changes is not
generally recommended because it can cause client authentication to fail.

7 Restart the database (page 142).

Using GNU Emacs as the Editor of Choice

To switch the editor from vi to GNU Emacs, enter the following before running the Administration
Tools:

export EDITOR=/usr/bin/emacs

Record Content

To specify a record, enter the following:

ClientAuthentication = <connection type> <user name> <address> <method>

Where:

 <connection type> is the method the client uses to connect to an instance. Valid values

are:

 local — Matches connection attempts made using local domain sockets. When using the
local connection type, do not specify the <address> parameter.

 host — Matches connection attempts made using TCP/IP. Connection attempts can be
made using a plain (non-SSL) or SSL-wrapped TCP socket.

 hostssl — Matches a SSL TCP connection only.

 hostnossl — Matches a plain TCP socket only.

For client connections: Avoid using -h hostname from the client if a "local" connection type

is specified and you want to match the client authentication entry. See the vsql command line
option h hostname (page 362).

 <user name> identifies the client's user name. Valid user names are:

 all — Matches all users.

 One or more specific user names.

-120-

Administrator's Guide

User Name accepts either a single value or concatenated values. To concatenate values,

use a plus sign between the values. For example: user1+user2

 <address> identifies the client machine IP address range. Use a format of <IP

Address>/<netmask value>. IP address must be specified numerically, not as domain or host
names. Vertica supports the following formats:

 w.x.y.z/mask format (For example, 10.10.0.25/24.)

The mask length indicates the number of high-order bits of the client IP address that must
match. Do not insert any white space between the IP address, the slash (/), and the
Classless Inter-Domain Routing (CIDR) mask length.

 Separate dotted-IP address and mask values (For example, 10.10.0.25 255.255.255.0.)

Note: If working with a cluster with multiple nodes, be aware that any IP/netmask settings in
host-based ClientAuthentication parameters (host, hostssl, or hostnossl) must match all nodes
in the cluster. This allows the database owner to authenticate with and administer every node
in the cluster. For example, specifying 10.10.0.8/30 would allow a CIDR address range of
10.10.0.8 - 10.10.0.11.

 Method identifies the authentication method to be used for clients that match this record. Use
one of the following:

 trust — Authenticates clients based on valid user names only. You might want to
implement trust if a user connection has already been authenticated through some external
means such as SSL or a fire wall.

 reject — Rejects the connection and prevents additional records from being evaluated for
the client. Use this setting to filter out clients that match this record. For example, this is
useful for rejecting specific clients based on user name or IP address.

 krb5 — Authenticates the client using Kerberos version 5. This is useful if users have
already been provisioned for Kerberos.

 gss — Authenticates the client using GSS-encoded Kerberos tokens. (Vertica follows RFC
1964.) This is useful if your application uses the GSS API.

 ldap — Authenticates the client using Lightweight Directory Access Protocol (LDAP). This
is useful if your application uses LDAP to query directory services.

 md5 — Requires the client to supply an MD5-hashed password across the network for
authentication. By default, all account passwords are encrypted using md5. The server
provides the client with salt (random bytes included in the hash to prevent replay attacks).

 password — Requires the client to supply the password in clear text. Do not use this setting
on untrusted networks.

Note for client connections: Use -h hostname from the client if either a "gss" or "krb5"
(Kerberos) connection method is specified. See the vsql command line option h hostname
(page 362).

Specifying Records for LDAP

If you specify LDAP as the authentication method, you need to include the URL for LDAP in the
ClientAuthentication parameter.

-121-

 Configuring the Database

Examples

The following example uses the Administration Tools to specify LDAP as the authentication
method:

ClientAuthentication = host all 10.0.0.0/8 ldap

"ldap://summit.vertica.com/;cn=;,dc=vertica,dc=com"

Where:

 The URL for the LDAP server is ldap://summit.vertica.com.

For connections over SSL, you can use S_HTTP. For example: ldaps://.

 For vsql, the prefix (cn=) and suffix (,dc=vertica,dc=com) are used to construct the entire
Distinguished Name (DN) for the user. This means that the client only has to supply the user
name.

For example the DN for user "jsmith" would be: cn=jsmith,dc=vertica,dc=com.

For ODBC, the SQLConnect function sends the user name and password combination to the
database for authentication. If the client IP address and user name combination matches an

LDAP ClientAuthentication entry in vertica.conf, the LDAP server is contacted.

For JDBC, the java.sql.DriverManager.getConnection() function passes the user name and
password combination to the database for authentication. If the client IP address and user
name combination matches an LDAP ClientAuthentication entry in vertica.conf, the LDAP
server is contacted.

The following example uses a configuration parameter to specify the same LDAP authentication
method:

=> SELECT SET_CONFIG_PARAMETER('ClientAuthentication',

 'host all 10.0.0.0/8 ldap

"ldap://summit.vertica.com;cn=;,dc=vertica,dc=com"');

Formatting Rules for Records

When specify one or more records, follow these rules:

 Only one record is allowed per line.

 Do not use a carriage return to force records to span lines. A single record must be on one line
unless it runs out of space and spills onto a second line.

 Fields that make up the record can be separated by white space or tabs.

 Other than IP addresses and mask columns, field values cannot contain white space.

See Example Records (page 121).

Example Records

The following examples illustrate how to specify client authentication through the Administration
Tools. For examples of using configuration parameters to modify records, see Modifying
Records (page 122).

Specifying One Record

The following example specifies a record for the trust method:

ClientAuthentication = hostnossl dbadmin 0.0.0.0/0 trust

-122-

Administrator's Guide

Specifying One Record that Uses the LDAP Method

The following example specifies a record for the LDAP method:

ClientAuthentication = host all 10.0.0.0/8 ldap

"ldap://summit.vertica.com;cn=;,dc=vertica,dc=com"

Specifying Three Records

The following example specifies three records. Note that each record is placed on

a separate line:

ClientAuthentication = hostnossl dbadmin 0.0.0.0/0 trust

ClientAuthentication = hostnossl all 0.0.0.0/0 md5

ClientAuthentication = local all trust

Modifying Records

To modify records, you can either use the Administration Tools to edit an existing record or use a
configuration parameter.

Using the Administration Tools

The advantages of using this tool are:

 You do not have to connect to the database.

 The editor verifies that records are correctly formed.

 The editor maintains records, so they are available to you for editing at another point in time.

Note: You must restart the database to implement your changes.

For information about using the Administration Tools to create and edit records, see Creating
Records (page 118).

Using a Configuration Parameter

The advantage of using a configuration parameter is that the changes are implemented
immediately across all nodes within the database cluster. You do not need to restart the database.

However, all the database nodes must be up and you must connect to the database prior to setting
this parameter. Additionally, this method does not verify that records are correctly formed and it
does not maintain the records so they can be modified at a later point.

To configure client authentication through a connection parameter, use the set_config_parameter
function as follows:

SELECT SET_CONFIG_PARAMETER('ClientAuthentication,' '<connection type> <user

name> <address> <method>');

When specifying records be sure to adhere to the following guidelines:

 Fields that make up the record can be separated by white space or tabs.

 Other than IP addresses and mask columns, field values cannot contain white space.

For more information, see Record Content (page 119).

-123-

 Configuring the Database

Examples

The following example specifies a record for the trust method:

SELECT SET_CONFIG_PARAMETER('ClientAuthentication',

'hostnossl dbadmin 0.0.0.0/0 trust');

The following example specifies a record for the LDAP method:

SELECT SET_CONFIG_PARAMETER('ClientAuthentication',

'host all 10.0.0.0/8 ldap "ldap://summit.vertica.com;cn=;,dc=vertica,dc=com"');

The following example specifies three records. Note that each record is separated by a comma:

SELECT SET_CONFIG_PARAMETER('ClientAuthentication',

'hostnossl dbadmin 0.0.0.0/0 trust, hostnossl all 0.0.0.0/0 md5, local all trust');

Authenticating Using LDAP or Kerberos

Instead of using Vertica's own password features, you can choose to authenticate users via an
external means, such as an LDAP or Kerberos server.

Before configuring Vertica to use an external client authentication system, you must first set up the
service you want to use. See the documentation for your authentication service.

General Prerequisites

If an authentication method requires access to a remote server (such as Kerberos and LDAP), the
server must be available or clients cannot be authenticated using this method. If clients cannot be
authenticated, do not grant them access to the database.

Kerberos Prerequisites

 Both the client identity and the Vertica server must be configured as Kerberos principals in the
centralized user store or Kerberos Key Distribution Center (KDC).

 To participate in authentication through Kerberos, ODBC and JDBC clients must contain code
written directly to the Kerberos API. It is not sufficient for them to pass a username/domain
name and password to the server. (See Kerberos Client Code Example Written in C (page
127) and Kerberos Client Code Example Written in JAVA (page 124).) vsql does not have
this restriction because it is already Kerberos-aware.

LDAP Prerequisites

The LDAP directory must contain a record for each client identity.

Configuring Authentication Through Kerberos and GSS

To enable authentication through Kerberos or GSS, Kerberos- and GSS- enabled clients require
knowledge about the authentication protocol in use. If you are using Kerberos or GSS as an
authentication method, specify the following parameters.

Parameter Description

KerberosRealm A string that provides the Kerberos domain name. Usually it consists
of all uppercase letters.

Example: KerberosRealm=VERTICA.COM

-124-

Administrator's Guide

KerberosHostname A string that provides the Kerberos host name for the KDC server
where Kerberos is running. This parameter is optional. If not
specified, Vertica uses the return value from the function
gethostname().

Example: KerberosHostname=Host1

KerberosKeytabFile A string that provides the location of the keytab file. By default, the

keytab file is located in /etc/krb5.keytab.

The keytab file requires read and write permission only for the file
owner who is running the process. Under Linux, for example, file
permissions would be: 0600.

Example: KerberosKeytabFile=/etc/krb5.keytab

KerberosServiceName A string that provides the Kerberos service name. By default, the

service name is 'vertica'. To construct the principal, follow the

format:

KerberosServiceName/Kerberos Hostname@Kerberos

Realm

Example: KerberosServiceName='vertica'

Note: The same parameters and syntax apply for both Kerberos and GSS.

To specify a parameter, set the configuration parameter, as follows:

ClientAuthentication = Kerberos_Parameter Value

Where:

 Kerberos_Parameter is one of the following: KerberosRealm, KerberosHostname,
KerberosKeytabFile, or KerberosServiceName.

 Value is the value of the parameter.

Example

ClientAuthentication = KerberosRealm .VERTICA.COM

Kerberos Client Code Example Written in Java

To participate in authentication through Kerberos, JDBC clients must contain code written to
directly to the Kerberos API. It is not sufficient for them to pass a username/domain name and
password to the server. The following example Java client code is written directly to the Kerberos
API to initialize the Kerberos context and authenticate using Kerberos. It is provided for the MIT
implementation of Kerberos only.

import org.ietf.jgss.Oid;

import org.ietf.jgss.GSSContext;

import org.ietf.jgss.GSSCredential;

import org.ietf.jgss.GSSException;

import org.ietf.jgss.GSSManager;

import org.ietf.jgss.GSSName;

/**

* This sample code indicates how to create a custom Java application

* (perhaps in concert with JDBC) to use Kerberos GSS authentication

* with the Vertica analytic database.

*

-125-

 Configuring the Database

* Note that GSSAPI applications must have access to a previously-

* created authentication token. In this case, the user must run

* kinit to create a Kerberos TGT (ticket granting ticket) prior to

* invoking this client.

*/

public class SampleGSSClient

{

private static String GSS_API_KRB_OID_STR = "1.2.840.113554.1.2.2";

private static Oid GSS_API_KRB_OID;

private static GSSManager _manager;

private String _host;

private String _port;

private String _username;

private String _dbname;

private int port;

public static void main (String[] args)

{

if (args.length != 4)

{

System.err.println ("Usage: SampleGSSClient <host> 5433 <username>

<databasename>");

return;

}

try {

GSS_API_KRB_OID = new Oid(GSS_API_KRB_OID_STR);

} catch (GSSException ge) {

System.err.println ("Could not instantiate Kerberos GSSAPI Oid; out-of-date

JRE?");

ge.printStackTrace();

return;

}

_manager = GSSManager.getInstance ();

SampleGSSClient client = new SampleGSSClient ();

client._host = args[0];

client._port = args[1];

client._username = args[2];

client._dbname = args[3];

client.go();

}

/**

* Main entry point for GSSAPI functionality.

*/

private void go()

{

try {

GSSContext ctx = getGSSContext();

ctx.requestConf(true);

ctx.requestInteg(true);

ctx.requestReplayDet(true);

if (!establishContext(ctx))

{

System.err.println("");

return;

-126-

Administrator's Guide

}

} catch (GSSException ge) {

System.err.println("Failed to create GSS context: " + ge);

ge.printStackTrace();

}

return;

}

/**

*

*/

private GSSContext getGSSContext() throws GSSException

{

GSSCredential clientcred = getGSSCredential();

if (clientcred == null)

{

return null;

}

System.out.println("Created GSS credential: " + clientcred);

GSSName server = getGSSServerName();

if (server == null)

{

return null;

}

System.out.println("Created GSS server name: " + server);

return _manager.createContext (server,

GSS_API_KRB_OID,

clientcred,

GSSCredential.DEFAULT_LIFETIME);

}

/**

*

*/

private GSSCredential getGSSCredential () throws GSSException

{

GSSName client = getGSSClientName();

if (client == null)

{

return null;

}

System.out.println("Created GSS client name: " + client);

return _manager.createCredential (client,

GSSCredential.INDEFINITE_LIFETIME,

GSS_API_KRB_OID,

GSSCredential.INITIATE_ONLY);

}

/**

*

*/

private GSSName getGSSClientName () throws GSSException

{

return _manager.createName (_username,

GSSName.NT_USER_NAME);

}

/**

-127-

 Configuring the Database

* This class creates the server Kerberos principal, which

* is usually of the form:

* <service name>/<hostname>@<realm name>

*

* Note that these three parameters correspond, respectively,

* to the KerberosServiceName, KerberosHostname, and KerberosRealm

* parameters. For this example, we use the default service

* name value of "vertica".

*/

private GSSName getGSSServerName () throws GSSException

{

return _manager.createName ("vertica/" + _host,

GSSName.NT_HOSTBASED_SERVICE,

GSS_API_KRB_OID);

}

/**

*

*/

private boolean establishContext (GSSContext ctx) throws GSSException

{

byte[] token = new byte[0];

while (!ctx.isEstablished())

{

token = ctx.initSecContext(token,

0, // offset

token.length); // length

if (token != null)

{

System.out.println("Sending token: " + token);

}

}

return true;

}

} // end SampleGSSClient

Kerberos Client Code Example Written in C

To participate in authentication through Kerberos, ODBC clients must contain code written to
directly to the Kerberos API. It is not sufficient for them to pass a username/domain name and
password to the server. The following example C client code is written directly to the Kerberos API
to initialize the Kerberos context and authenticate using Kerberos. It is provided for the MIT
implementation of Kerberos only.

#include <krb5.h>

#include <com_err.h> /* Optional error code -> error string handling */

static krb5_context k5ctx;

static krb5_keytab k5keytab;

statuc krb5_ccache k5cache;

static krb5_principal k5princ;

static char* k5name = NULL;

/*

 * To initialize your Kerberos context:

*/

-128-

Administrator's Guide

int

krb5_init(const char* hostname,

 const char* realm,

 const char* keytab)

{

 krb5_error_code k5err;

 if (!keytab || !hostname || !realm)

 {

 /* Error handling */

 }

 k5err = krb5_init_context(&k5ctx);

 if (k5err)

 {

 /* Error handling */

 }

 k5err = krb5_cc_default(k5ctx, &k5cache);

 if (k5err)

 {

 krb5_free_context(k5ctx);

 /* Error handling */

 }

 k5err = krb5_cc_get_principal(k5ctx, k5cache, &k5princ);

 if (k5err)

 {

 krb5_cc_close(k5ctx, k5cache);

 krb5_free_context(k5ctx);

 /* Error handling */

 }

 k5err = krb5_kt_resolve(k5ctx, keytab, &k5keytab);

 if (k5err)

 {

 krb5_free_context(k5ctx);

 /* Error handling */

 }

 k5err = krb5_unparse_name(k5ctx, k5princ, &k5name);

 if (k5err)

 {

 krb5_free_principal(k5ctx, k5princ);

 krb5_cc_close(k5ctx, k5cache);

 krb5_free_context(k5ctx);

 /* Error handling */

 }

 /*

 * Optionally call krb5_an_to_ln, assuming your principal

 * identifier before either '/' or '@' is your database username.

 */

 return 0;

}

-129-

 Configuring the Database

/*

 * To authenticate using Kerberos; assumes prior initialization above.

*/

int

krb5_auth(int socket, const char* hostname, const char* svcname) {

 int flags;

 krb5_auth_context k5authctx;

 krb5_principal k5srvprinc;

 krb5_error_code k5err;

 krb5_error* k5errstr;

 /* MIT Kerberos requires a non-blocking socket */

 flags = fcntl(socket, F_GETFL);

 flags |= O_NONBLOCK;

 if (fcntl(socket, flags))

 {

 /* Error handling */

 }

 k5err = krb5_sname_to_principal(k5ctx,

 hostname,

 svcname,

 KRB5_NT_SRV_HST,

 &k5srvprinc);

 if (k5err)

 {

 /* Error handling

 }

 k5err = krb5_sendauth(k5ctx,

 &k5authctx,

 (krb5_pointer)&socket,

 PG_KRB_SRVNAM,

 svcname,

 server,

 AP_OPTS_MUTUAL_REQUIRED,

 NULL, /* Don't need to

supply any other authentication data */

 0, /* Don't

need to supply creds; use credential cache; this assumes prior kinit execution */

 k5cache,

 &k5errstr,

 NULL, /* Don't need

apreq material */

 NULL); /* Don't need

returned creds */

 krb5_free_principal(k5ctx, k5svrprinc);

 flags &= ~O_NONBLOCK;

 fcntl(socket, flags); /* Assumes will succeed */

 if (k5err || k5errstr)

 {

-130-

Administrator's Guide

 krb5_free_principal(k5ctx, k5svrprinc);

 /* Error handling */

 if (k5errstr)

 krb5_free_error(k5ctx, k5errstr);

 }

 return 0;

}

Implementing SSL

Vertica supports Secure Socket Layer (SSL) v3/Transport Layer Security (TLS) 1.0 traffic between
the database and its clients. SSL/TLS provides for the privacy and integrity of data exchanged
between Vertica and its clients. Vertica supports the following under SSL/TLS:

 SSL Server Authentication — Allows the client to confirm the server's identity by verifying
that the server's certificate and public key are valid and were issued by a certificate authority
(CA) listed in the client's list of trusted CAs. See "Required Prerequisites for SSL Server
Authentication and SSL encryption" section under SSL Prerequisites (page 130) and
Configuring SSL (page 134).

 SSL Client Authentication — (Optional) Allows the server to confirm the client's identity by
verifying that the client's certificate and public key are valid and were issued by a certificate
authority (CA) listed in the server's list of trusted CAs. Client authentication is optional because
Vertica can achieve authentication at the application protocol level through user name and
password credentials. See "Additional Prerequisites for SSL Server and Client Mutual
Authentication" section under SSL Prerequisites (page 130).

 Encryption — Encrypts data sent between the client and database server to significantly
reduce the likelihood that the data can be read if the connection between the client and server
is compromised. Encryption works both ways whether or not SSL Client Authentication is
enabled. See "Required Prerequisites for SSL Server Authentication and SSL encryption"
section under SSL Prerequisites (page 130) and Configuring SSL (page 134).

 Data Integrity — Verifies that data sent between the client and server has not been altered
during transmission.

Note: For server authentication, Vertica supports using RSA with ephemeral Diffie-Hellman
(DH). DH is the key agreement protocol.

SSL Prerequisites

Before you implement SSL security, obtain the appropriate certificate signed by a certificate
authority (CA) and private key files and then copy them to your system. (See the OpenSSL
(http://www.openssl.org) documentation.) These files must be in Privacy-Enhanced Mail (PEM)
format.

Required Prerequisites for SSL Server Authentication & SSL encryption

Follow these steps to set up SSL authentication of the server by the clients, which is also required
in order to provide encrypted communication between server and client.

1 On each server host in the cluster, copy the server certificate file (server.crt) and private

key (server.key) to the Vertica catalog directory. (See Distributing Certifications and

Keys (page 133).)

http://www.openssl.org/

-131-

 Configuring the Database

The public key contained within the certificate and the corresponding private key allow the SSL
connection to encrypt the data and ensure its integrity.

Note: The server.key file must have read and write permissions for the dbadmin user only.

Do not provide any additional permissions or extend them to any other users. Under Linux, for
example, file permissions would be 0600.

2 On each client, if you want clients to be able to verify the server's certificate, copy the

root.crt file to the client. If you are using vsql, copy the file to: /home/dbadmin/.vsql/.

This ability is not available for ODBC client at this time.

The root.crt file contains either the server's certificate or the CA that issued the server

certificate.

Note: If you do not perform this step, the SSL connection is set up and ensures message
integrity and confidentiality via encryption; however, the client cannot authenticate the server
and is, therefore, susceptible to problems where a fake server with the valid certificate file

masquerades as the real server. If the root.crt is present but does not match the CA used

to sign the certificate, the database will not start.

Additional Prerequisites for SSL Server and Client Mutual Authentication (Optional)

Follow these additional steps to optionally configure authentication of clients by the server.

Setting up client authentication by the server is optional because the server can use alternative
techniques, like database-level password authentication, to verify the client's identity. Follow these
steps only if you want to have both server and client mutually authenticate themselves with SSL
keys.

1 On each server host in the cluster, copy the root.crt file to the Vertica catalog directory.

(See Distributing Certifications and Keys (page 133).)

The root.crt file has the same name on the client and server. However, these files do not

need to be identical. They would be identical only if the client and server certificates were used
by the same root certificate authority (CA).

2 On each client, copy the client certificate file (client.crt) and private key (client.key) to

the client. If you are using vsql, copy the files to: /home/dbadmin/.vsql/.

If you are using either ODBC or JDBC, you can place the files anywhere on your system and
provide the location in the connection string (ODBC/JDBC) or ODBCINI (ODBC only). See
Configuring SSL for ODBC clients (page 134) and Configuring SSL for JDBC clients
(page 135).

Note: If you're using ODBC, the private key file (client.key) must have read and write

permissions for the dbadmin user only. Do not provide any additional permissions or extend
them to any other users. Under Linux, for example, file permissions would be 0600.

Generating Certifications and Keys

For testing purposes, you can create and use simple self-signed certificates. For production, you
need to use certificates signed by a certificate authority (CA) so the client can verify the server's
identity.

-132-

Administrator's Guide

This section illustrates how to create certificate authority (CA) keys and self-signed certificates for
testing purposes. It uses the CA private keys to sign "normal" certificates and to generate the
server's and client's private key files. For detailed information about creating signed certificates,
refer to the OpenSSL (http://www.openssl.org) documentation.

The server and client keys can be rooted in different CAs.

1 Create the CA private key:

$>openssl genrsa -des3 -out servercakey.pem

The output file name can vary.

2 Create the CA public certificate:

$>openssl req -new -x509 -key servercakey.pem -out root.crt

The output file name can vary.

Important: The following is an example of the certificate's contents. When you create a
certificate, there must be one unique name (a Distinguished Name (DN)), which is different for

each certificate that you create. The examples in this procedure use the Organizational

Unit Name for the DN.

Country Name (2 letter code) [GB]:US

State or Province Name (full name) [Berkshire]:Massachusetts

Locality Name (e.g., city) [Newbury]:Billerica

Organization Name (e.g., company) [My Company Ltd]:Vertica

Organizational Unit Name (e.g., section) []:Support_CA

Common Name (e.g., your name or your server's hostname) []:myhost

Email Address []:myhost@vertica.com

3 Create the server's private key file:

$>openssl genrsa -out server.key

Note that Vertica supports only unencrypted key files, so there is no -des3 argument.

4 Create the server certificate request:

$>openssl req -new -out reqout.txt -key server.key

This step was not required for the CA because CA certificates are self-signed.

You are prompted to enter information that is incorporated into your certificate request. In this

example, the Organizational Unit Name contains the unique DN (Support_server):

Country Name (2 letter code) [GB]:US

State or Province Name (full name) [Berkshire]:Massachusetts

Locality Name (e.g., city) [Newbury]:Billerica

Organization Name (e.g., company) [My Company Ltd]:Vertica

Organizational Unit Name (e.g., section) []:Support_server

Common Name (e.g., your name or your server's hostname) []:myhost

Email Address []:myhost@vertica.com

5 Use the CA private key file to sign the server's certificate:

$>openssl x509 -req -in reqout.txt -days 3650 -sha1 -CAcreateserial -CA

root.crt -CAkey servercakey.pem -out server.crt

6 Create the client's private key file:

$>openssl genrsa -out client.key

Vertica supports only unencrypted key files, so there is no -des3 argument.

http://www.openssl.org/

-133-

 Configuring the Database

7 Create the client certificate request:

$>openssl req -new -out reqout.txt -key client.key

This step was not required for the CA because CA certificates are self-signed.

You are prompted to enter information that is incorporated into your certificate request. In this

example, the Organizational Unit Name contains the unique DN (Support_client):

Country Name (2 letter code) [GB]:US

State or Province Name (full name) [Berkshire]:Massachusetts

Locality Name (e.g., city) [Newbury]:Billerica

Organization Name (e.g., company) [My Company Ltd]:Vertica

Organizational Unit Name (e.g., section) []:Support_client

Common Name (e.g., your name or your server's hostname) []:myhost

Email Address []:myhost@vertica.com

8 Use the CA private key file to sign the client's certificate:

$>openssl x509 -req -in reqout.txt -days 3650 -sha1 -CAcreateserial -CA

root.crt -CAkey servercakey.pem -out client.crt

JDBC Certificates

If you are using JDBC, perform the following steps after you have generated the key and
self-signed certificate:

1 Convert the Vertica server certificate to a form that JAVA understands:

openssl x509 -in server.crt -out server.crt.der -outform der

2 Create a new truststore and imported the certificate into it:

keytool -keystore verticastore -alias verticasql -import -file

server.crt.der

Distributing Certifications and Keys

Once you have created the prerequisite certifications and keys for one host, you can easily
distribute them cluster-wide by using the Administration Tools. Client files cannot be distributed
through Administration Tools.

To distribute certifications and keys to all hosts in a cluster:

1 Log on to a host that contains the certifications and keys you want to distribute and start the
Administration Tools.

See Using the Administration Tools (page 329) for information about accessing the
Administration Tools.

2 On the Main Menu in the Administration Tools, select Configuration Menu, and click OK.

3 On the Configuration Menu, select Distribute Config Files, and click OK.

4 Select SSL Keys and click OK.

5 Select the database where you want to distribute the files and click OK.

6 Fill in the fields with the directory /home/dbadmin/.vsql/ using the root.crt,

server.crt and server.key files to distribute the files.

7 Configure SSL (page 134).

-134-

Administrator's Guide

Configuring SSL

Configure SSL for each server in the cluster.

To enable SSL:

1 Ensure that you have performed the steps listed in SSL Prerequisites (page 130) minimally
for server authentication and encryption, and optionally for mutual authentication.

2 Set the EnableSSL parameter to 1. By default, EnableSSL is set to 0 to disable it.

=> SELECT SET_CONFIG_PARAMETER('EnableSSL', '1');

Note: Vertica fails to start if SSL has been enabled and the server certificate files

(server.crt, server.key) are not in the expected location.

3 Restart the database (page 142).

4 If you are using either ODBC or JDBC, configure SSL for the appropriate client:

 Configuring SSL for ODBC Clients (page 134)

 Configuring SSL for JDBC Clients (page 135)

vsql automatically attempts to make connections using SSL. If a connection fails, vsql attempts
to make a second connection over clear text.

See Also

Configuration Parameters (page 25) in the Administrator's Guide

Configuring SSL for ODBC Clients

Configuring SSL for ODBC clients requires that you set the SSLMode parameter. If you want to
configure optional SSL client authentication, you also need to configure the SSLKeyFile and
SSLCertFile parameters.

The method you use to configure the DSN depends on the type of client operating system you are
using:

 Linux and UNIX — Enter the parameters in the odbc.ini file. See Creating an ODBC DSN

for Linux and Solaris Clients.

 Microsoft Windows — Enter the parameters in the Windows Registry. See Creating an ODBC
DSN for Windows Clients.

SSLMode Parameter

Set the SSLMode parameter to one of the following for the DSN:

 always — Requires the server to use SSL. If the server cannot provide an encrypted channel,
the connection fails.

 prefer (the default) — Prefers the server to use SSL. If the server does not offer an encrypted
channel, the client requests one. The first connection to the database tries to use SSL. If that
fails, a second connection is attempted over a clear channel.

 allow — Makes a connection to the server whether the server uses SSL or not. The first
connection to the database tries to use SSL. If that fails, a second connection is attempted
over a clear channel.

-135-

 Configuring the Database

 disable — Never connects to the server using SSL. This setting is typically used for
troubleshooting.

SSLKeyFile Parameter

To configure optional SSL client authentication, set the SSLKeyFile parameter to the file path and
name of the client's private key. This key can reside anywhere on the client.

SSLCertFile Parameter

To configure optional SSL client authentication, set the SSLCertFile parameter to the file path and
name of the client's public certificate. This file can reside anywhere on the client.

Configuring SSL for JDBC Clients

To configure JDBC:

1 Enable the driver for SSL.

2 Configure troubleshooting if desired.

To enable the driver for SSL

For JDBC, the driver must be enabled for SSL. Use a connection parameter when connecting to
the database to force a connection using SSL. You can specify a connection parameter within a
connection URL or by using an additional properties object parameter to
DriverManager.getConnection.

 Using a Connection URL

The following example forces a connection using SSL by setting the ssl connection parameter
to true:

String url = "jdbc:vertica://VerticaHost://DatabaseName?user=username"

+

 "&password=password&ssl=true";

Connection conn = DriverManager.getConnection (url);

Note: If the server is not SSL enabled, the connection fails. This differs from vsql, which can try
an unencrypted connection.

 Using an Additional Properties Object Parameter

The following code fragment forces a connection using SSL by establishing an ssl connection
property:

String url = "jdbc:vertica://VerticaHost/DatabaseName";

Properties props = new Properties();

props.setProperty("user", "username"); props.setProperty("password",

"password");

props.setProperty("ssl", "true");

Connection conn = new Connection(url, props);

Note: For compatibility with future versions, specify a value, even though the ssl property does
not require that a value be associated with it. Specifying a ssl property, even without a value of
"true," automatically forces a connection using SSL.

-136-

Administrator's Guide

To configure troubleshooting

To enable troubleshooting, configure the keystore file that contains trusted certificate authority
(CA) certificates:

-Djavax.net.debug=ssl

-Djavax.net.ssl.trustStore=<keystore file> In the above command:

 Configuring -Djavax.net.debug=ssl is optional.

 The keystore file is the same keystore that was updated as part of Generating Certifications
and Keys (page 131) (JDBC Certificates). Normally, the keystore file is $HOME/.keystore.
The keytool utility takes server.crt.der and places it in the keystore.

For details, see "Customizing the Default Key and Trust Stores, Store Types, and Store
Passwords" on the java.sun.com
http://java.sun.com/j2se/1.5.0/docs/guide/security/jsse/JSSERefGuide.html#CustomizingS
tores web site.

Implementing Database Authorization

Database authorization controls what a user account has access to in the database. The
superuser can grant several types of privileges to users, allowing them to access and manipulate
schemas, tables, projections, sequences, external procedures, and metadata.

Schema Privileges

A schema is a namespace for tables that also provides security. By default, only the superuser can
create a schema or give a user the right to create a schema. (See GRANT (Database).)

Note: Unlike other RDBMSs, a schema in a Vertica database is not a collection of objects
bound to one user.

Only the superuser and the schema owner (typically the person who creates a schema) have
access to create objects within the schema. Additionally, only the schema owner and super user
can drop or alter a schema. See DROP SCHEMA and ALTER SCHEMA.

Note: The schema owner is typically the user who creates the schema. However, the super
user can create a schema and assign ownership of the schema to a different user at creation.

All other access to the schema and its objects must be explicitly granted to specific users by the
super user or schema owner as needed. This prevents unauthorized users from accessing the
schema and its objects. A user can be granted one of the following privileges through the GRANT
SCHEMA statement:

Privilege Description

USAGE Allows the user access to look up metadata (e.g. system tables) for
those objects contained within the schema for which the user has
been granted at least one privilege to select or modify. See Metadata
Privileges (page 139) and the GRANT TABLE, GRANT VIEW, and
GRANT PROCEDURE statements.

http://java.sun.com/j2se/1.5.0/docs/guide/security/jsse/JSSERefGuide.html#CustomizingStores
http://java.sun.com/j2se/1.5.0/docs/guide/security/jsse/JSSERefGuide.html#CustomizingStores

-137-

 Configuring the Database

Tip: Usage by itself does not allow the user the access to select or

modify the data in the objects. To select or modify the data in any
individual object, the user must additionally be granted the specific
privilege pertaining to desired type of access, for example, SELECT
or DELETE.

CREATE Allows the user read access to the schema and the right to create
tables and views within the schema.

Note: The PUBLIC schema is present in any newly created Vertica database. However, only
the superuser has access to it by default. Newly created users have USAGE privilege on
PUBLIC but must be explicitly granted CREATE and individual object privileges for them to be
able to create or see tables in the PUBLIC schema.

See the GRANT SCHEMA statement in the SQL Reference Manual for more information about all
available schema privileges.

See Projection Privileges (page 138) for the schema privilege requirements to create
projections.

Table Privileges

Access to tables is strictly controlled. By default, only the super user has access to all tables, and
the super user has full privileges on these tables. The person who creates a table (the table
owner) also has full privileges on the table he or she creates. The ability to drop or alter a table is
reserved for the super user or table owner. See ALTER TABLE and DROP TABLE.

All other users, including the schema owner, must be explicitly granted specific privileges on
individual tables within the schema by either the super user or the users who create these tables.
See the GRANT TABLE statement for a complete description of all the privileges that can be
assigned to users and the operations they allow.

To create a table, a user must be a superuser or have the following privileges:

 CREATE on the schema in which the table is created.

To view the metadata or to query the data in another user's table, a user must be a superuser or
have the following privileges:

 USAGE on the schema containing the table.

 (At least) SELECT on the table.

To see which privileges have been assigned, use the following command:

=> SELECT * FROM GRANTS;

View Privileges

Access to views is strictly controlled. By default, only the super user has access to all views, and
the super user has full privileges on these views. The person who creates a view (the view owner)
also has full privileges on the view he or she creates.

To create a view, the user must be a superuser or have the following privileges:

 CREATE on the schema in which the view is created.

-138-

Administrator's Guide

 SELECT on all the tables and views referenced within the view's defining query.

 USAGE on all the schemas that contain the tables and views referenced within the view's
defining query

To drop a view, the user must be a superuser or the person who created it.

Since a view is a stored query but does not have stored data, it is read-only. That means the only
privilege that applies to using a view is SELECT. By default, only the superuser and the user who
creates a view has SELECT privilege on a view. All other users must be granted SELECT on a
view by either the superuser or the user who created the view. See the GRANT View statement for
more information.

To see which privileges have been assigned, use the following command:

=> SELECT * FROM GRANTS;

Projection Privileges

To create a projection, the user must be a superuser or have the following privileges:

 CREATE on the schema in which the projection is created

 SELECT on all the tables referenced by the projection

 USAGE on all the schemas that contain the tables referenced by the projection

Note: When a user issues a query, Vertica checks that the user has SELECT privilege on the
tables in the query and automatically chooses the appropriate projection. No separate
privileges are required to be granted on the projection object.

Sequence Privileges

Access to sequences is strictly controlled. By default, only the super user has access to all
sequences, and the super user has full privileges on these sequences. The person who creates a
sequence (the sequence owner) also has full privileges on the sequence he or she creates.

All other users, including the schema owner, must be granted privileges to use individual
sequences within the schema by either the super user or the users who create these sequences.
See the GRANT_SEQUENCE statement for a complete description of all the privileges that can
be assigned to users. Additionally, all users must have USAGE privileges on the schema that the
sequence belongs to.

To see which privileges have been assigned, use the following command:

=> SELECT * FROM GRANTS;

The ability to drop or alter a sequence is reserved for the super user or sequence owner. See
ALTER SEQUENCE and DROP SEQUENCE.

External Procedure Privileges

Only the superuser is allowed to create or drop an external procedure. By default, users cannot
execute external procedures. However, the superuser can grant users this right. Additionally,
users must have USAGE privileges on the schema that contains the procedure.

See the GRANT Procedure statement for more information.

Note: A procedure cannot be executed as root.

-139-

 Configuring the Database

Metadata Privileges

Superuser has unrestricted access to all database metadata. Users have significantly reduced
access to metadata based on their privileges, as follows:

Type of Metadata User Access

Catalog objects:

 Tables

 Columns

 Constraints

 Sequences

 External Procedures

 Projections

 ROS containers

 WOS

Users must possess USAGE privilege on the schema and any type of
access (SELECT) or modify privilege on the object to see catalog
metadata about the object. See also Schema Privileges (page 136).

For internal objects like Projections, ROS containers and WOS that
don't have access privileges directly associated with them, the user
must possess the requisite privileges on the associated Schema and
Table object(s) instead. For example, to see whether a table has any
data in the WOS, you need to have USAGE on the table schema and
at least SELECT on the table itself. See also Table Privileges (page
137) and Projection Privileges (page 138).

User sessions and functions, and
system tables related to these
sessions

Users can access only information about their own, current sessions.

The following functions provide restricted functionality to users:

 CURRENT_DATABASE

 CURRENT_SCHEMA

 CURRENT_USER

 HAS_TABLE_PRIVILEGE

 SESSION_USER (same as CURRENT_USER)

The system table, SESSIONS, provides restricted functionality to
users.

-140-

Operating the Database

Managing Your License Key
Vertica license keys provide full product functionality for a specific period of time or forever if you
purchase a perpetual license. There is a grace period during which Vertica continues to work after
the license has expired. The length of the grace period depends on the license.

Obtaining a License Key File

To obtain a license key, request one from Technical Support (on page 1).

Tips: Do not open the license key file in an editor or e-mail client as special characters may be
introduced, which though not visible, would invalidate the license. Similarly, take care when
copying between Windows and Linux. Check that the copied file size is identical to that of the
one you received from Vertica. For ease of installation, Vertica recommends copying the
license file to /tmp/vlicense.key on the Administration host.

Installing a New or Upgrade Installation License Key

1 Obtain a license key as described above.

2 Install Vertica as described in the Installation Guide.

The first time you log in as the Database Administrator and run the Vertica Administration
Tools, the user interface displays the EULA (license agreement).

3 Type "accept" to proceed. (Do not type the double quotes.)

4 A form asking for the path to the license key file that you downloaded from the Vertica

Systems, Inc. Web site. The default path is /tmp/vlicense.key. If this is correct, click OK.

Otherwise, enter the absolute path of the file in the bottom field of the form and click OK.

Installing a Renewal License Key

When a license is nearing expiration Vertica logs warning messages indicating the expiration date.
When a license expires (the grace period has expired) Vertica logs an invalid license error and
stops running queries. In that case:

1 Obtain a license key as described above.

2 Start a database.

-141-

 Operating the Database

3 In the Administration Tools, select Advanced > Upgrade License Key and click OK.

Examining Your License Key

Use the SQL DISPLAY_LICENSE function described in the SQL Reference Manual to display the
license information. For example:

=> SELECT DISPLAY_LICENSE();

 display_license

--

 Vertica Systems, Inc.

1/1/2008

12/31/2008

30

50TB

(1 row)

-142-

 142

Starting the Database
Starting a K-safe database is supported when up to K nodes are down or unavailable. See Failure
Recovery (page 235) for a discussion on various scenarios encountered during database
shutdown, startup and recovery.

To start a Vertica database:

1 Use View Database Cluster State (page 336) to make sure that all nodes are down and that
no other database is running. If all nodes are not down, see Shutdown Problems (page 237).

2 Open the Administration Tools. See Using the Administration Tools (page 329) for
information about accessing the Administration Tools.

3 On the Main Menu, select Start Database,and then select OK.

4 Select the database to start, and then click OK.

Warning: Vertica Systems, Inc. strongly recommends that you start only one database at a
time. If you start more than one database at any time, the results are unpredictable. Users
could encounter resource conflicts or perform operations in the wrong database.

5 Enter the database password, and then click OK.

6 When prompted that the database started successfully, click OK.

7 Check the log files to make sure that no startup problems occurred. See Monitoring Vertica
Using Ganglia (page 218).

If the database does not start successfully, see Startup Problems (page 241).

Stopping the Database
Stopping a K-safe database is supported when up to K nodes are down or unavailable. See
Failure Recovery (page 235) for a discussion on various scenarios encountered during database
shutdown, startup and recovery.

To stop a running Vertica database:

1 Use View Database Cluster State (page 336) to make sure that all nodes are up. If all nodes
are not up, see Restarting a Node (page 341).

2 Inform all users having open connections that the database is going to shut down and instruct
them to close their sessions.

Tip: A simple way to prevent new client sessions from being opened while you are shutting
down the database is to set the MaxClientSessions (page 25) configuration parameter to 0.
Be sure to restore the parameter to its original setting once you've restarted the database.

=> SELECT SET_CONFIG_PARAMETER ('MaxClientSessions', 0);

3 Close any remaining user sessions. (Use the CLOSE_SESSION and
CLOSE_ALL_SESSIONS functions.)

4 Open the Administration Tools. See Using the Administration Tools (page 329) for
information about accessing the Administration Tools.

5 On the Main Menu, select Stop Database, and then click OK.

6 Select the database you want to stop, and click OK.

-143-

 Operating the Database

7 Enter the password if asked, and click OK.

8 When prompted that the database has been successfully stopped, click OK.

If the database does not stop successfully, see Shutdown Problems (page 237).

-144-

 144

Loading and Modifying Data
Vertica's hybrid storage model provides a great deal of flexibility for loading and modifying data.

Bulk Loading

This section describes different methods for bulk loading data into a Vertica database.

Performing the Initial Database Load

Use COPY...DIRECT from vsql to load the database for the first time.

Tip: If you have a Star schema (page 37), load the dimension tables before you load the fact
tables.

Extracting Data from an Existing Database

If possible, export the data in text form to a local file or attached disk.

ETL products typically use ODBC or JDBC to extract data, which gives them program-level access
to modify column values, as needed, for the load files.

Database systems provide a variety of export methods.

-145-

 Operating the Database

Tip: Oracle does not provide a tool that can export to text. To export data, run a SELECT query
in Oracle‘s SQL*Plus command line query tool using a specified column delimiter, suppressed
headers, and so forth. Redirect the output to a local file.

Smaller tables generally fit into a single load file. Split any large tables into 250-500GB load files.
For example, a 10 TB fact table would require 20-40 load files.

Tip: When working with large data size, Vertica recommends that you test the load process
using smaller load files as described in Configuration Procedure (page 11) to avoid
compatibility or file formatting issues.

Choose a column-value delimiter character that does not appear in any CHAR(N) or
VARCHAR(N) data values. The vertical bar (|) might be a good choice and is the default. You can
use a query on the source database to test for the existence of a certain character in a column. For
example:

SELECT COUNT(*) FROM T WHERE X LIKE '%|%'

If only a few rows contain |, you can eliminate them from the load file using a WHERE clause and
load them separately using a different delimiter.

Tip: Oracle has a REGEX_REPLACE function that can substitute one substring with another,
but this slows down the unload operation significantly. A better approach is to use a WHERE
clause to avoid problem rows in the main load file, and the negated WHERE clause with
REGEX_REPLACE for just the problem rows.

Moving Data from an Existing Database to Vertica Nodes

To move data from an existing database to Vertica, consider using:

 USB 2.0 (or possibly SATA) disks.

 A fast local network connection.

Deliver chunks of data to the different Vertica nodes by connecting the transport disk or by writing
files from network copy.

Loading From a Local Hard Disk

USB 2.0 disks can deliver data at about 30 MB per second, or 108 GB per hour, which is fast
enough. USB 2.0 disks are easy to use for transporting data from Linux to Linux. Set up an ext3
filesystem on the disk and write large files there. Linux 2.6 has USB plug-and-play support, so a
USB 2.0 disk is instantly usable on various Linux systems.

For other variants of UNIX, if there is no common filesystem format available, you can use the
disk without a filesystem for a single large file. For example:

$ cp bigfile /dev/sdc1

Even without a filesystem on the disk, plug-and-play support still works on Linux to provide a
device node for the disk. To find out the assigned device, plug in the disk and enter:

$ dmesg | tail -40

SATA disks are usually internal, but can be external, or unplugged safely internally.

-146-

Administrator's Guide

Loading Over the Network

A 1Gbps (gigabit per second) network can deliver about 50 MB/s, or 180GB/hr. Vertica can load
about 30-50GB/hour/node for a 1-safe projection design. Thus use a dedicated 1Gbps LAN.
Slower LANs are proportionally slower, and non-local networks are probably untenable because
the delays over distance slow down the TCP protocol to a small fraction of its apparent bandwidth,
even without competing traffic.

Note: The actual load rates you obtain might be higher or lower depending on the properties of
the data, number of columns, number of projections, and hardware and network speeds. Load
speeds can be further improved by using multiple parallel streams.

Loading From Windows

For loading files directly from Windows to Linux, use NTFS. Although Red Hat Linux as originally
installed can read Windows FAT32 file systems, this is not recommended.

Using the COPY and LCOPY Statements

The COPY and LCOPY statements are typically used to write multiple rows into physical storage.
By default, COPY and LCOPY:

 Load data into WOS and if the WOS is full, writes the data directly to ROS. Use the default
COPY behavior for smaller bulk loads and trickle loads (page 148) (more than one per day).
For large data files (>100MB), Vertica recommends loading data directly into the ROS using
the DIRECT option.

 Commit the current transaction and commit themselves.

Note: LCOPY is not a SQL command but a programmatic interface to COPY available only via
ODBC, where the input data file is placed on the client machine and not the database server
nodes.

Loading Data Directly to ROS

To load data directly into the ROS, use the DIRECT keyword with the COPY or LCOPY statement.

COPY a FROM stdin DIRECT;

Note: A large initial bulk load could temporarily affect query performance while Vertica
organizes the data.

Loading Data without Committing it

Use the NO COMMIT keyword with the COPY statement to prevent the current transaction from committing.
This is useful for executing multiple COPY commands in a single transaction. For example, all the rows in
the following sequence commit in the same transaction.

 COPY... NO COMMIT;

 COPY... NO COMMIT;

 COPY... NO COMMIT;

COMMIT;

-147-

 Operating the Database

Tip: Use the NO COMMIT keyword to incorporate detection of constraint violations into the
load process. Vertica checks for constraint violations when queries are run, not when data is
loaded. To avoid constraint violations, load data without committing it and then test it using
ANALYZE_CONSTRAINTS. If you find any constraint violations, you can roll back the load
because you have not committed it. See Analyzing Constraints (Detecting Constraint
Violations) (page 55) for detailed instructions.

Using COPY Interactively

The recommended way to use COPY is in script files, as described in Using Load Scripts (page
148). You can, however, use this command interactively by piping a text file to vsql and executing
COPY with the standard input stream as the input file. For example:

$ cat fact_table.tbl | vsql -c "COPY FACT_TABLE FROM STDIN DELIMITER '|' DIRECT"

$ cat fact_table.tbl | vsql -c "COPY FACT_TABLE FROM STDIN DELIMITER '|' DIRECT"

Tracking Load Status

To view load metrics for each load stream on each node, use the system table LOAD_STREAMS.
You can also use the GET_NUM_ACCEPTED_ROWS and GET_NUM_REJECTED_ROWS
functions to obtain the number of accepted and rejected rows for the last completed load within the
current session.

Note: When using multiple long running COPY operations, use the optional STREAM NAME
parameter of COPY to make it easy to identify each operation in the LOAD_STREAMS table.

If you're using an ODBC or JDBC client, you can obtain the following data for the last completed
load:

 The number of rows that were accepted or rejected.

 The row numbers for every rejected row.

See the Programmer's Guide for client-specific documentation.

-148-

 148

Trickle Loading

Once you have a working database and have bulk loaded your initial data, you can use trickle
loading to load additional data on an ongoing basis. By default, Vertica uses the transaction

isolation level of READ COMMITTED, which allows users to see the most recently committed data

without holding any locks. This allows new data to be loaded while concurrent queries are running.

See Change Transaction Isolation Levels (page 25).

Using INSERT, UPDATE, and DELETE

The SQL data manipulation language (DML) commands INSERT, UPDATE, and DELETE
perform the same functions that they do in any ACID compliant database. The INSERT statement
is typically used to load individual rows into physical memory or load a table using INSERT AS
SELECT. UPDATE and DELETE are used to modify the data.

You can intermix the INSERT, UPDATE, and DELETE commands. Vertica follows the SQL-92
transaction model. In other words, you do not have to explicitly start a transaction but you must
use a COMMIT or ROLLBACK command (or COPY) to end a transaction. Canceling a DML
statement causes the effect of the statement to be rolled back.

Vertica differs from traditional databases in two ways:

 DELETE does not actually delete data from disk storage; it marks rows as deleted so that they
can be found by historical queries.

 UPDATE writes two rows: one with new data and one marked for deletion.

Like COPY, by default, INSERT, UPDATE and DELETE commands write the data to the WOS
and on overflow write to the ROS. For large INSERTS or UPDATES, you can use the DIRECT
keyword to force the Vertica write rows directly to the ROS. Loading large number of rows as
single row inserts are not recommended for performance reasons. Use COPY instead.

WOS Overflow

Loading data into the WOS is a tradeoff of speed versus potential memory overflow. Writing to the
WOS is much faster than writing to the ROS, but writing too much data too quickly can overrun the
amount of memory available. When that happens, Vertica automatically spills to the ROS until the
Tuple Mover can catch up and move data from the WOS to the ROS.

Using the COPY Command

This section describes how to use the COPY command to design your load process. For detailed
syntax of the various options see the SQL Reference Manual.

Using Load Scripts

This section describes how to write and run a load script using the COPY command using the
simplest text-delimited file format.

Writing a Load Script

The COPY command requires an absolute path for a data file. It does not accept relative paths.
However, you can specify the locations of your data files relative to your Linux working directory
using vsql variables.

-149-

 Operating the Database

1 Create a vsql variable containing your Linux current directory.

\set t_pwd `pwd`

2 Create another vsql variable that uses a path relative to the Linux current directory variable for
a specific data file.

\set input_file '\'':t_pwd'/Date_Dimension.tbl\''

3 Use the second variable in the COPY statement.

COPY Date_Dimension FROM :input_file DELIMITER '|';

4 Repeat steps 2 and 3 for all data files. Load the dimension tables before the fact table.

Running a Load Script

You can run a load script on any host, as long as the data files are on that host.

1 Change your Linux working directory to the location of the data files.

$ cd /opt/vertica/doc/retail_example_database

2 Run the Administration Tools.

$ /opt/vertica/bin/admintools

3 Connect to the database.

4 Run the load script.

For information about other load formats see Advanced formats for Loading Data (page 157).

Using Parallel Load Streams

You can use multiple parallel load streams to load a Vertica database. There are two options:

 Issue multiple separate COPY commands that load different files from different nodes.

This option lets you use vsql, ODBC, or JDBC. You can also use server-side files or client-side
files (LCOPY).

 Issue a single multi-node COPY command that loads different files from different nodes by

specifying the <nodename> for each file.

This option is possible only using the vsql command, and not all options of COPY are

supported; however, significantly higher performance and efficient resource usage can result
from this option.

See COPY in the SQL Reference Manual for details.

The optimal number of load streams depends on several factors, including the number of nodes,
the physical and logical schemas, host processors, memory, disk space, and so forth. Too many
load streams can cause systems to run out of memory. See Best Practices for Workload
Management (page 301) for advice on configuring load streams.

Loading Data into Character Data Types

Character Set

Vertica expects data files to be in the Unicode UTF-8 format. ASCII data is compatible with UTF-8
and can be loaded, however, character sets like ISO 8859-1 (Latin1), which are not compatible
with UTF-8 are not supported.

1 Use the file command to check the type of a data file. For example:

-150-

Administrator's Guide

$ file Date_Dimension.tbl

Date_Dimension.tbl: ASCII text

The file command could indicate ASCII TEXT even though the file contains multibyte
characters.

2 Use the wc command to check for this problem. For example:

$ wc Date_Dimension.tbl

 1828 5484 221822 Date_Dimension.tbl

If the wc command returns an error such as Invalid or incomplete multibyte or wide

character, the data file is using an incompatible character set.

Using Escaped Characters as Literals

Use the escape character to escape data characters that would otherwise be taken as special
characters. In particular, the following characters must be preceded by a the escape character if
they appear as part of a column value:

 The COPY ... DELIMITER character. Default is the vertical bar character (|).

 The COPY ... NULL string. Default is an empty string ('').

 The backslash character itself

 Newline and other control characters

By default, the escape character is the backslash character (\). To change the escape character,
use the ESCAPE AS parameter with the COPY statement. See COPY in the SQL Reference
Manual.

Examples

In the examples that follow, the DELIMITER is comma for readability.

,1,2,3,

,1,2,3

1,2,3,

Leading and trailing delimiters are ignored. Thus, the rows all have three
columns.

123,'\\n',\\n,

456
Using a non-default null string, the row would be interpreted as:

123

newline

\n

456

123,this\, that\, or the other,something else,456

 The row would be interpreted as:

123

this, that, or the other

something else

456

Loading Data into Binary Data Types

Binary data types are similar to character data types except in how values are padded and
translated on input, and also in the functions, operators, and casts supported.

-151-

 Operating the Database

On input, strings are translated from hexadecimal representation to a binary value using the
HEX_TO_BINARY function. Strings are translated from bitstring representation to binary values
using the BITSTRING_TO_BINARY function. Both functions take a VARCHAR argument and
return a VARBINARY value.

The following formats are also allowed to load binary data:

 Hexadecimal: A prefix of '0x' is a good indicator that the value is hexadecimal, not decimal.

(Not all hexadecimal values use A-F; for example, 5396). The 0x prefix is ignored when the
copy operation loads the inputs, so it is optional. Hexadecimal is similar in format to the
HEX_TO_BINARY function.

If there are an odd number of characters in the hexadecimal value, the first character is treated
as the low nibble of the first (furthest to the left) byte.

 Octal: Requires that each byte be represented by an octal code, which is exactly three digits.
The first digit must be in the range [0,3] and the second and third must both be in the range
[0,7].

If the length of an octal value is not a multiple of three, or if one of the three digits is not in the
proper range, then the value is invalid and the row in which the value appears is rejected.

 Bitstring: Each character must be a zero or one. Bitstring is similar in format to the
BITSTRING_TO_BINARY function.

If the bitstring value is not a multiple of eight, then the first n characters are treated as the low
bits of the first (furthest to the left) byte, where n is the remainder of the value's length divided
by eight. The bitstring format is not used as often as hexadecimal or octal formats.

Notes

There is no copy format that loads binary data byte for byte because the column and record
separators that appear in the data would have to be escaped. Binary data can be translated into
the formats that Vertica supports.

The hexadecimal, octal, and bitstring formats can be used to load binary columns only. These
column formats are specified using the COPY command's FORMAT argument:

 COPY t1 (oct FORMAT 'octal', hex FORMAT 'hex', ...) FROM STDIN delimiter ',';

The same default format used to input binary data is used to load binary data. The '\'

(backslash) character is the COPY operator's escape character, so octal inputs must be escaped.

For example, the byte '\141' must appear as '\\141'.

You can also use the escape character to represent the (decimal) byte 92 by escaping it twice; for

example, '\\\\'. Note that vsql inputs the escaped backslash as four backslashes. Equivalent

inputs are hex value '0x5c' and octal value '\134' (134 = 1 x 8^2 + 3 x 8^1 + 4 x 8^0 = 92).

A delimiter value can be loaded if you escape it with a backslash. For example, given delimiter

'|', '\\001\|\\002' is loaded as {1,124,2}, which can also be represented in octal format

as '\\001\\174\\002'.

If you supply an invalid octal value, the system returns an error; for example:

SELECT '\\000\\387'::binary(8);

ERROR: invalid input syntax for type binary

-152-

Administrator's Guide

Rows that contain binary values with invalid octal representations are also rejected. For example,

'\\008' is rejected because of the base-8 numbering system. Octal numbering processes as

000, 001, 002, 003, 004, 005, 006, 007, and then numbering restarts at 010.'\\ 008' does not

exist.

If you insert a value with more bytes than fit into the target column, the system returns an error. For

example, where column c1 is VARBINARY(1):

=> INSERT INTO t (c1) values ('ab');

 ERROR: 2-byte value too long for type Varbinary(1)

If you implicitly or explicitly cast a value with more bytes than fit the target data type, the value is
silently truncated. For example:

=> SELECT 'abcd'::binary(2);

 binary

 ab

(1 row)

Examples

The following example shows VARBINARY HEX_TO_BINARY(VARCHAR) and VARCHAR

TO_HEX(VARBINARY) usage.

Table t and and its projection are created with binary columns:

=> CREATE TABLE t (c BINARY(1));

=> CREATE PROJECTION t_p (c) AS SELECT c FROM t;

Insert minimum and maximum byte values, including an IP address represented as a character
string:

=> INSERT INTO t values(HEX_TO_BINARY('0x00'));

=> INSERT INTO t values(HEX_TO_BINARY('0xFF'));

=> INSERT INTO t values (V6_ATON('2001:DB8::8:800:200C:417A'));

Binary values can be formatted in hexadecimal on output using the TO_HEX function:

=> SELECT TO_HEX(c) FROM t;

to_hex

 00

 ff

 20

(3 rows)

The next example illustrates the use of the three alternative load formats.

Create a table with columns that represent the three load formats and then insert the same value,

byte sequence {0x61,0x62,0x63,0x64,0x65}.

=> CREATE TABLE t(oct VARBINARY(5), hex VARBINARY(5), bitstring VARBINARY(5));

Create a projection for table t:

=> CREATE PROJECTION t_p(oct, hex, bitstring) AS SELECT * FROM t;

-153-

 Operating the Database

Issue the COPY command and specify the format for the binary columns. Note that the copy is
from STDIN, not a file.

=> COPY t (oct FORMAT 'octal',

>> hex FORMAT 'hex',

>> bitstring FORMAT 'bitstring')

>> FROM STDIN delimiter ',';

>> Enter the data to be copied, which you end with a backslash and a period on a

line by itself:

>> 141142143144145,0x6162636465,0110000101100010011000110110010001100101

>> \.

And now issue the SELECT statement to see the results:

=> SELECT * FROM t;

oct | hex | bitstring

-------+-------+-----------

abcde | abcde | abcde

(1 row)

See Also

COPY in the SQL Reference Manual

Binary Data Types and Formatting Functions in the SQL Reference Manual

ASCII (http://en.wikipedia.org/wiki/Ascii) topic in Wikipedia for a quick reference table on these
load format values.

Loading Data into Pre-join Projections

A pre-join projection stores rows of a fact table joined with rows of dimension tables. To insert a
row into the fact table of a pre-join projection, the associated values of the dimension table's
columns must be looked up. Thus, an insert into a pre-join projection shares some of the qualities
of a query. The following sections describe the behaviors associated with loading into pre-join
projections.

Foreign and Primary Key Constraints

To ensure referential integrity, foreign and primary key constraints are enforced on inserts into fact
tables of pre-join projections. If a fact row attempts to reference a row that does not exist in the
dimension table, the load is automatically rolled back. The load is also rolled back if a fact row
references more than one dimension row.

The following tables and SQL examples highlight these concepts.

 Fact Table: Employees

 Dimension Table: HealthPlans

Pre-join Projection: Joins Employees to HealthPlans using the PlanID column
CREATE PROJECTION EMP_HEALTH (EmployeeID, FirstName, LastName, Type)

AS (SELECT EmployeeID, FirstName, LastName, Type

 FROM Employees, HealthPlans

 WHERE Employees.HealthPlanID = HealthPlans.PlanID)

Employees (Fact Table)

http://en.wikipedia.org/wiki/Ascii

-154-

Administrator's Guide

 EmployeeID(PK) FirstName LastName PlanID(FK)

---------------+-----------+----------+------------

 1000 | David | Taylor | 01

 1001 | Sunil | Ray | 02

 1002 | Janet | Hildreth | 02

 1003 | Pequan | Lee | 01

HealthPlans (Dimension Table)

 PlanID(PK) Description Type

-----------+-------------+-------

 01 | PlanOne | HMO

 02 | PlanTwo | PPO

The following sequence of commands generate a missing foreign key error that results in a
rollback because the reference is to a non-existent dimension row.

INSERT INTO Employees (EmployeeID, First, Last, PlanID) VALUES (1004, 'Ben',

'Smith', 04);

The following sequence of commands generate a foreign key error that results in a rollback
because a duplicate row in the HealthPlans dimension table is referenced by an insert in the
Employees fact table. The error occurs when the Employees fact table references the HealthPlans
dimension table.

INSERT INTO HealthPlan VALUES(02, 'MyPlan', 'PPO');

INSERT INTO Employee VALUES(1005, 'Juan', 'Hernandez', 02);

Concurrent Loads into Pre-join projections

Vertica supports concurrent inserts where two transactions can simultaneously insert rows into the
same table. A transaction inserting records into a pre-join projection can run concurrently with
another transaction inserting records into either the fact table or a dimension table of the pre-join
projection. A load into a pre-join projection cannot run concurrently with updates or deletes on
either the fact or the dimension tables.

When concurrently loading fact and dimension tables, the state of the dimension tables is fixed at
the start of the insert or load into the fact table. Rows that are added to a dimension table after the
start of an insert or load into a fact table are not available for joining because they are not visible to
the fact table. The client is responsible for ensuring that all values in dimension tables are present
before issuing the insert or load statement.

The following examples illustrate these behaviors.

 Fact Table: Sales

 Dimension Table: Employees

 Pre-join Projection: sales join employees on sales.seller=employees.empno

Success

Session A Session B Description
INSERT INTO EMPLOYEES

 (EMPNO, NAME) VALUES

 (1, 'Bob');

-155-

 Operating the Database

COPY INTO SALES (AMT,

 SELLER)

5000 | 1

3500 | 1

.

.

.

 Records loaded by this
COPY command all refer
to Bob's sales (SELLER =
1)

 INSERT INTO EMPLOYEES

 (EMPNO, NAME)VALUES

 (2,'Frank');

7234 | 1 COPY INTO SALES

 (AMT,SELLER)

50 | 2

75 | 2

.

.

.

Records loaded by this
COPY command all refer
to Frank's sales (SELLER
= 2).

COMMIT; COMMIT; Both transactions are
successful.

Failure

Session A Session B Description
INSERT INTO EMPLOYEES

(EMPNO, NAME)

1 | Bob

2 | Terry COPY INTO SALES

 (AMT,SELLER)

5000 | 1

The transaction in
Session B fails because
the value inserted into the
dimension table in
Session A was not visible
before the COPY into the
pre-join in Session B was
initiated.

Specifying Default Values for Columns

If a column is used in an insert or bulk load operation and no value is specified for it, the value of
the column defaults to null. However, you can specify your own defaults for table columns by using
variable-free expressions set through column constraints when you create or alter a table. See the
DEFAULT key word in COPY in the SQL Reference Manual.

Transforming Data During Loads

To promote a consistent database and reduce the need for scripts to transform data at the source,
Vertica supports the transformation of data when it is loaded into the target database. This is
useful for computing values to be inserted into a column in the target database from other columns
in the source.

To transform data, use the following syntax to specify the target column, for which you want to
compute values, as an expression:

COPY [schema-name.]table[(

-156-

Administrator's Guide

 [Column as Expression] / column[FORMAT 'format']

 [,...])]

FROM ...

The following example computes and loads values for the year, month, and day columns in the
target database based on the timestamp column in the source input. It also loads the parsed
column, timestamp, from the source input to the target database.

CREATE TABLE t (

 year VARCHAR(10),

 month VARCHAR(10),

 day VARCHAR(10),

 k timestamp

);

CREATE PROJECTION tp (

 year,

 month,

 day,

 k)

AS SELECT * from t;

COPY t(year AS TO_CHAR(k, 'YYYY'),

 month AS TO_CHAR(k, 'Month'),

 day AS TO_CHAR(k, 'DD'),

 k FORMAT 'YYYY-MM-DD') FROM STDIN NO COMMIT;

2009-06-17

1979-06-30

2007-11-26

\.

SELECT * FROM t;

 year | month | day | k

------+-----------+-----+---------------------

 2009 | June | 17 | 2009-06-17 00:00:00

 1979 | June | 30 | 1979-06-30 00:00:00

 2007 | November | 26 | 2007-11-26 00:00:00

(3 rows)

See also Using Sequences (page 60) for how to generate an auto-incrementing value for
columns.

See the COPY statement in the SQL Reference Manual for detailed information regarding
requirements, restrictions, and usage.

Ignoring Columns and Fields in the Load File

When performing a load, you can instruct Vertica not to load a column and the fields it contains if
the column does not exist in the destination table. This is useful for:

 Omitting columns that you do not want to transfer into a table.

 Transforming data from a source column and then loading the transformed data to a
destination table without loading the original, untransformed source column (parsed column).
(See Transforming Data During Loads (page 155) in this guide and the COPY command in
the SQL Reference Manual.)

-157-

 Operating the Database

To skip a column, designate it as a filler column by using the FILLER key word in the COPY
statement, as follows:

COPY [schema-name.]table[(

 [Expression as column] / column[FORMAT 'format'] [FILLER datatype]

 [,...])]

FROM ...

The following example derives and loads the value for the timestamp column in the target
database from the year, month, and day columns in the source input. The year, month, and day
columns are not loaded because the FILLER key word skips them.

CREATE TABLE t (k TIMESTAMP);

CREATE PROJECTION tp (k) AS SELECT * FROM t;

COPY t(year FILLER VARCHAR(10),

 month FILLER VARCHAR(10),

 day FILLER VARCHAR(10),

 k AS TO_DATE(YEAR || MONTH || DAY, 'YYYYMMDD'))

FROM STDIN NO COMMIT;

2009|06|17

1979|06|30

2007|11|26

\.

SELECT * FROM t;

 k

 2009-06-17 00:00:00

 1979-06-30 00:00:00

 2007-11-26 00:00:00

(3 rows)

See the COPY statement in the SQL Reference Manual for detailed information regarding
requirements, restrictions, and usage.

About Load Errors

Depending upon the type of error encountered, Vertica either rejects the row or rolls back the
entire load:

 Reject rows — When Vertica encounters an error parsing records in the input file, it rejects
the offending row and continues to load the database. For example, Vertica rejects a row if it
contains any of the following: incompatible data types, missing fields, or missing delimiters.

 Load rollback — The following types of errors result in a load rollback:

 Server-side errors (such as lack of memory)

 Violations of primary key or foreign key constraints

 Loading NULL data into a not NULL column

When an error results in a load rollback, the load is aborted and the data is rolled back. The
result is that no data is loaded.

If you specify ABORT ON ERROR with the COPY command, the load is automatically canceled
and rolled back immediately if any row is rejected or an error occurs.

Advanced Formats for Loading Data

Vertica provides three formats to load data:

-158-

Administrator's Guide

 In a text format with delimiters, which is the default COPY command. Binary data types are
translated on input. See Using Load Scripts (page 148) and Loading Data into Binary Data
Types (page 150) for examples.

 In a native binary format using the NATIVE keyword to COPY command.

 In a native varchar format using the NATIVE VARCHAR keyword to COPY command.

See also COPY in the SQL Reference Manual, NATIVE and NATIVE VARCHAR keywords.

Native (Binary) Format

Loading data through a binary-format file is often faster than normal text mode, because it does
not require the use and processing of delimiters, so it saves the database the extra work of
converting integers, dates, and timestamps from text to their native storage format. Native (binary)
format data files can be bigger than their text equivalents; however, you can reduce the space
usage by compressing binary data using gzip or bzip. Native (binary) format loading can be used
when developing plug-ins to ETL applications, as well as by batch inserts issued from ODBC and
JDBC.

Binary-format files must meet exacting specifications. See Creating Native-format Files to Load
Data (page 158).

Native Varchar Format

The Native Varchar format uses a similar file format to native binary, but all fields are represented
as strings in CHAR or VARCHAR. Conversion to the actual table data type is done on the
database server; thus, NATIVE VARCHAR does not provide the same efficiency as NATIVE
BINARY. However, NATIVE VARCHAR provides the convenience of not having to use delimiters
or escape special characters, such as quotes, which can make working with client applications
easier.

See Creating Native-Format Files to Load Data (page 158) for the file specifications.

Batch inserts done via the Vertica ODBC and JDBC drivers automatically use either the NATIVE
BINARY or NATIVE VARCHAR formats. NATIVE BINARY is used if the application data types
match the actual table data types exactly (including maximum lengths of CHAR/VARCHAR and
precision/scale of numeric data types), which provides best possible load performance. If there is
any data type mismatch, NATIVE VARCHAR is used.

Note: Concatenated BZIP and GZIP files are not supported for NATIVE (Binary) and NATIVE
VARCHAR formats.

Creating Native-Format Files to Load Data

COPY NATIVE requires a load file to use the following format, consisting of a file header followed
by a sequence of records to be loaded.

Note: All integers are in little-endian format.

File Header

The file header described in Table 1 consists of 15 bytes of fixed fields, followed by a
variable-length header extension area.

Table 1: Format specification for file header

-159-

 Operating the Database

Offset Length (bytes) Field Comments

0 11 Signature 11-byte sequence NATIVE\n\377\r\n\0. The signature

is designed to allow easy identification of files that have
been corrupted by a non-8-bit-clean transfer. The
signature is changed by end-of-line-translation filters,
dropped zero bytes, dropped high bits, or parity changes.

11 4 Header area length 32-bit integer, which is the length in bytes of remainder of
header, not including Signature and self.

15 2 Version 16-bit integer, which is the version number of the file
format. The only valid value in Vertica 4.0 is the integer 1.
Future changes to the format would be assigned different
numbers to maintain backward compatibility.

17 1 Filled The value is 0.

N/A 2 NumFields 16-bit integer that contains the number of fields in each
record in the file.

N/A 4*

NumFields

Field Lengths Array of 32-bit integers, with the size of the fields to be
loaded. For variable-length fields, use -1 as a 32-bit
integer (0xFF 0xFF 0xFF 0xFF).

Records

Following the file header is a sequence of records to be stored in the file. Each record starts with a
header described in Table 2.

Table 2: Format specification for the header of each record

Length (bytes) Name Comments

4 Row Size A 32-bit integer, which is the length of the record. It
includes the size of data only.

CEILING(NumFields /

(sizeof(uint8)*8));
Null bits A variable-length array of unsigned 8-bit integers,

interpreted as a sequence of bits, where the ith bit, if set,
indicates that the ith field in the row has NULLs. The first
field is represented in the most significant bit of the 0th
entry in the array. If a field is NULL, then there should be
no data for the field in the row; that is, data takes up 0
bytes in the row, regardless of data type.

Following the record header, the actual record is stored. The format of each field typically depends
on the data type of the corresponding column in the database (unless it is a filler used to derive an
expression to be stored in the actual column). Table 3 describes the format used for each data
type.

-160-

Administrator's Guide

Note: Some of the data types support different lengths. For example, integers are supported
in 1, 2, 4, and 8-byte lengths. However, these are not variable-length data types; you cannot
change the length of an integer field within different records in a file. If a field is represented as
a 2-byte integer, then the length must be set to 2 in the Field Lengths section in the file header,
and every record in the file should have a 2-byte integer for this field. In contrast, VARCHAR
and VARBINARY data types are variable-length data types, where each record can have a
different sized data value for the field.

Table 3: Specification of data fields of various data types

Data Type Length (bytes) Comments

INTEGER 1, 2, 4, 8 8, 16, 32, and 64-bit integers are supported.

BOOLEAN 1 Boolean needs only 1 byte.

FLOAT 8 Encoded in IEEE-754 format.

CHAR Fixed-length string The length should be specified in the file header in the
Field Lengths entry for the field.

 Unlike the VARCHAR data type, the data should
not be preceded by a length field.

 The field in the record should contain length
number of bytes.

 Strings shorter than the specified length must be
right-padded with spaces.

 Strings should not be null-terminated.

 Character encoding should be UTF-8.

Note: For strings containing multi-byte characters, the
length should be calculated using number of bytes and
not number of characters.

VARCHAR 4-byte integer
(length) + data

File header should contain –1 in the Field Lengths entry

for this field.

 In each record, a VARCHAR string must be
preceded by a 32-bit integer denoting the length
of the string.

 The string should not be null-terminated.

 Character encoding should be UTF-8.

Note: For strings containing multi-byte characters, the

length should be calculated using number of bytes and
not number of characters.

DATE 8 64-bit integer containing the Julian day since Jan 01 2000
(J2451545)

TIME 8 64-bit integer with number of microseconds since
midnight in the UTC time zone.

-161-

 Operating the Database

TIMETZ 8 64-bit integer where

 Upper 40 bits contain the number of
microseconds since midnight.

 24 bits contain time zone as the UTC offset in
microseconds calculated as follows: Time zone
is logically from -24hrs to +24hrs from UTC.
Instead it is represented here as a number
between 0hrs to 48hrs. Therefore, 24hrs should
be added to the actual time zone to calculate it.

TIMESTAMP 8 64-bit integer with number of microseconds since Julian
day: Jan 01 2000 00:00:00.

TIMESTAMPTZ 8 A 64-bit integer that contains the number of
microseconds since Julian day: Jan 01 2000 00:00:00 in
the UTC timezone.

INTERVAL 8 64-bit integer with the number of microseconds in the
interval.

BINARY Constant length per
file

Similar to CHAR. The length should be specified in the
file header in the Field Lengths entry for the field. The
field in the record must contain length number of bytes. If
the value is smaller than the specified length, it must be
right padded with INT(0).

VARBINARY 4-byte integer +
data

Stored just like VARCHAR but data is interpreted as
bytes rather than UTF-8 characters.

NUMERIC (precision, scale)
 precision /
19 + 1

A constant-length data type. Length is determined by the
precision, assuming that a 64-bit unsigned integer can
store roughly 19 decimal digits. The data consists of a
sequence of 64-bit integers, each stored in little-endian
format, with the most significant integer first. Data in the
integers is stored in base 2^64. 2's complement is used
for negative numbers.

If there is a scale, then the numeric is stored as numeric *
10^scale; that is, all real numbers are stored as integers,
ignoring the decimal point. It is required that the scale
matches that of the target column in the database table.
Another option is to use FILLER columns to coerce the
numeric to the scale of the target column.

Notes

You cannot mix binary and ASCII source files in the same COPY statement.

Example

The example below shows a table with all possible data types and a sample row of data. Table 4
shows what the binary load file should look like (each byte of data is show in octal).

=> CREATE TABLE allTypes (

 intcol INTEGER,

 floatcol FLOAT,

 charcol CHAR(10),

-162-

Administrator's Guide

 varcharcol VARCHAR,

 boolcol BOOLEAN,

 datecol DATE,

 timestampcol TIMESTAMP,

 timestampTzcol TIMESTAMPTZ,

 timecol TIME,

 timeTzcol TIMETZ,

 varbincol VARBINARY,

 bincol BINARY,

 numcol NUMERIC,

 intervalcol INTERVAL

);

=> COPY allTypes FROM stdin delimiter '|' DIRECT;
 1|-1.11|one|ONE|1|1999-01-08|1999-02-23 03:11:52.35|1999-01-08

07:04:37|07:09:23|15:12:34|abcd|abcd|1234532|03:03:03

 2|-1.11|two|TWO|1|1999-01-08|1999-02-23 03:11:52.35|1999-01-08

07:04:37|07:09:23|15:12:34|abcd|abcd|1234532|03:03:03

 \.

=> \pset expanded

=> SELECT * from allTypes;

-[RECORD 1]--+------------------------

intcol | 1

floatcol | -1.11

charcol | one

varcharcol | ONE

boolcol | t

datecol | 1999-01-08

timestampcol | 1999-02-23 03:11:52.35

timestampTzcol | 1999-01-08 07:04:37-05

timecol | 07:09:23

timeTzcol | 15:12:34-04

varbincol | abcd

bincol | a

numcol | 1234532.000000000000000

intervalcol | 03:03:03

-[RECORD 2]--+------------------------

intcol | 2

floatcol | -1.11

charcol | two

varcharcol | TWO

boolcol | t

datecol | 1999-01-08

timestampcol | 1999-02-23 03:11:52.35

timestampTzcol | 1999-01-08 07:04:37-05

timecol | 07:09:23

timeTzcol | 15:12:34-04

varbincol | abcd

bincol | a

numcol | 1234532.000000000000000

intervalcol | 03:03:03

Description Contents

File Header NATIVE \n 377 \r \n\0

-163-

 Operating the Database

Header Length = \0 \0 \0

Header Version 001 \0

Filler \0

NumFields 016 \0

Field Length (intcol) \b \0 \0 \0

Field Length (Float) \b \0 \0 \0

Field Length (Char(10)) \n \0 \0 \0

Field Length (Varchar(10)) 377 377 377 377

Field Length (Boolcol) 001 \0 \0 \0

Field Length (Datecol) \b \0 \0 \0

Field Length (Timestampcol) \b \0 \0 \0

Field Length (TimestampTZcol) \b \0 \0 \0

Field Length (Timecol) \b \0 \0 \0

Field Length (TimeTZcol) \b \0 \0 \0

Field Length (varbinary) 377 377 377 377

Field Length (binary) 003 \0 \0 \0

Field Length (Numeric) 003 \0 \0 \0

Field Length (Interval) \b \0 \0 \0

Row Size ~ \0 \0 \0

Null Bits \0 \0

Int8col (1) 001 \0 \0 \0 \0 \0 \0 \0

Float (-1.11) 303 365 (\ 217 302 361 277

Char(10) (ONE) o n e 7 spaces here

Varchar(10) (ONE) 003 \0 \0 \0 O N E

Boolcol(10) (ONE) 001

Datecol(1999-01-08) 377 377 377 377 377 377 376 232

Timestampcol (1999-02-23
03:11:52.35)

377 377 347 ~ O 256 . #

TimestampTzcol (1999-01-08 07:04:37) 377 377 343 350 d > 037 @

Timecol (07:09:23) \0 \0 \0 005 377 230 . 300

TimeTZCol (15:12:34) 020 360 y 360 200 001 227 320

Varbinary (abcd) \0 \0 \0 002 253 315

Binary(3) (abcd) 253 315 \0

Numeric (1234532) \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0

\0 \0 \0 \0 \0 \0 \0 \0 \0 022 326 d

-164-

Administrator's Guide

Interval (03:03:03) \0 \0 \0 002 216 243 G 300

See Also

COPY in the SQL Reference Manual

-165-

 165

Tuple Mover

Runs in the background, optimizing the data layout. Tasks include moving data from memory
(WOS) to disk (ROS), combining small ROS containers into larger ones, and purging deleted data.
Under ordinary circumstances, the operations performed by the Tuple Mover (TM) are automatic
and transparent, and are therefore of little or no concern to the database administrator. However,
when loading data, certain conditions require that you stop the Tuple Mover, perform some
operations manually, and restart it.

This section discusses Tuple Mover operations (page 165) and how to perform TM tasks
manually (page 171).

Understanding the Tuple Mover

The Tuple Mover performs two operations:

 Moveout (page 166)

 Mergeout (page 167)

Each of these operations occurs at different intervals across all nodes.

-166-

Administrator's Guide

Moveout

Moveout operations move all epochs but the current epoch from memory (WOS) into a new ROS
container. A moveout "flushes" all historical data from the WOS to the ROS.

The following illustration shows the effect of a projection moveout on a single node:

ROS Containers

Subsets of the Read Optimized Store (ROS) and sometimes referred to as ROSs, ROS containers
are created by changes to the data stored within a projection as a result of bulk loads and DML.
The Tuple Mover periodically merges ROS containers to maximize performance.

There is not necessarily a one-to-one correspondence between ROS containers and projection
segments. For example, consider the following projection:

CREATE PROJECTION P1 (A, B, C, D) AS

SELECT A, B, C, D

FROM T1

SEGMENTED BY D

NODE S1 VALUES LESS THAN 5

NODE S2 VALUES LESS THAN MAXVALUE;

Inserting a tuple with a segmentation column value of 9 creates a new ROS container on node S2
but not on node S1.

-167-

 Operating the Database

Mergeout

A mergeout is the process of consolidating ROS containers and purging deleted records. Subsets
of the Read Optimized Store (ROS) and sometimes referred to as ROSs, ROS containers are
created by changes to the data stored within a projection as a result of bulk loads and DML. The
Tuple Mover periodically merges ROS containers to maximize performance.

Over time, the number of ROS containers increases to a degree that it becomes necessary to
merge some of them in order to avoid performance degradation. At that point, the Tuple Mover
performs an automatic mergeout, which combines two or more ROS containers into a single
container. This process can be thought of as "defragmenting" the ROS.

The following illustration shows the effect of a projection mergeout on a single node:

Tuning the Tuple Mover

The Tuple Mover comes preconfigured to work for most common workloads. However there are a
few cases where you might need to tune behavior by changing its configuration parameters. The
following section explains these parameters, and the remainder of this section explains how to use
them to tune the Tuple Mover for several situations.

-168-

Administrator's Guide

Tuple Mover Configuration Parameters

The following configuration parameters control how the Tuple Mover operates. You can use them
to tweak its operation to suit your needs, as described in the following sections.

Parameters Description Default Example

ActivePartitionCount Sets the number of partitions that
are to be loaded at the same time.
By default, the Tuple Mover
assumes that data is only inserted
into the most recent partition of a
partitioned table. If this is not the
case, then set this parameter to
the number of partitions that are
receiving data at the same time.

Note: this parameter's value is

ignored if
EnableStrataBasedMrgOutPo

licy is disabled.

See Table Partitioning.

1
SELECT SET_CONFIG_PARAMETER

('ActivePartitionCount',

 2);

EnableStrataBasedMrgOut
Policy

When set to 1 (the default)
enables Vertica 4.0 mergeout
behavior. Set this parameter to
disabled (value 0) if you want to
revert back to 3.5 mergeout
behavior.

Note: This parameter is

deprecated and will be removed in
a future release. Avoid using it
except under the guidance of
Technical Support (on page 1).

1
SELECT SET_CONFIG_PARAMETER

('EnableStrataBasedMrgOutPolicy'

, 0);

MaxMrgOutROSSizeMB Sets the largest size in MB that a
mergeout job can make on a
non-partitioned ROS. By setting
this to a small value, you can
prevent the Tuple Mover from
trying to merge large ROS
containers, which requires more
time to process. Raise this value
during periods of lower activity, so
the Tuple Mover can consolidate
the larger ROS containers.

100
SELECT SET_CONFIG_PARAMETER

('MaxMrgOutROSSizeMB', 150);

MergeOutInterval The number of seconds the Tuple
Mover waits between checks for
new ROS files to merge out. If
ROS containers are added
frequently, this value might need
to be decreased.

600
SELECT SET_CONFIG_PARAMETER

('MergeOutInterval',1200);

-169-

 Operating the Database

MergeOutPolicySizeList A list of the file sizes, in bytes, that
a ROS file must reach before the
Tuple Mover selects it for
mergeout. This parameter has an
effect only if
EnableStrataBasedMrgOutPo

licy is disabled.

Note: This parameter is

deprecated and will be removed in
a future release. Avoid using it
except under the guidance of
Technical Support.

10, 100, 1000,
10000,
100000,
1000000,
10000000,
100000000,
1000000000,
10000000000,
10000000000
0,
50000000000
0,
10000000000
00

MoveOutInterval The number of seconds the Tuple
mover waits between checks for
new data in the WOS to move to
ROS.

300
SELECT SET_CONFIG_PARAMETER

('MoveOutInterval',600);

MoveOutMaxAgeTime Forces the WOS to be written to
disk at the specified interval (in
seconds). The default is 30.

Tip: If you have been running the

force_moveout.sh script, you

no longer need to run it.

30
SELECT SET_CONFIG_PARAMETER

('MoveOutMaxAgeTime', 20);

MoveOutSizePct The percentage of the WOS that
can be filled with data before the
Tuple Mover performs a moveout
operation.

0
SELECT SET_CONFIG_PARAMETER

('MoveOutSizePct', 50);

Resource Pool Settings

The Tuple Mover draws its resources from the TM resource pool. Adding more resources and

more concurrency to this pool can make the Tuple Mover more effective in dealing with high load
rates. The concurrency setting determines how many merges can occur at once. The Tuple Mover
dedicates some threads to aggressively address small ROS containers as a side effect of this
setting, as some threads are reserved to work only on merges of ROS containers in the lower
strata.

=> ALTER RESOURCE POOL tm MEMORYSIZE '4096M' PLANNEDCONCURRENCY 4 MAXCONCURRENCY

5;

The settings for the WOSDATA resource pool also indirectly effect the Tuple Mover. In automatic

mode, INSERT and COPY commands use the concurrency setting to determine whether data is
small enough to store in WOS or if it should be written to ROS. Therefore, set this value to be the
number of concurrent loads you expect to perform into your database. This pool also determines
how much RAM can be used by the WOS.

=> ALTER RESOURCE POOL wosdata MAXMEMORYSIZE '4M' PLANNEDCONCURRENCY 3;

See Managing Workloads (page 292) and Resource Pool Architecture (page 294) in this guide
and ALTER RESOURCE POOL and Built-in Pools in the SQL Reference Manual.

-170-

Administrator's Guide

Loading Data

Vertica automatically decides whether the data should be placed in WOS or stored directly in ROS
containers based on the amount of data processed by a COPY or INSERT command. Vertica
stores large loads directly to disk and stores smaller loads in memory, which it later moves to disk.

For low-latency access to data, use small loads. The automatic Tuple Mover settings are the best
option for handling such smaller loads. One exception is for single-node deployments, where a
system failure would cause in-memory data to be lost. In this case, you might want to force all data
loads to go directly to disk.

For high load rates, you might want the Tuple Mover to check for jobs more frequently by changing

the MergeOutInterval and MoveOutInterval configuration parameters. Reduce the

MoveOutInterval if you expect the peak load rate to fill the WOS quickly. Reduce

MergeOutInterval if you anticipate performing many DIRECT loads or inserts.

See COPY [DIRECT] and INSERT in the SQL Reference Manual

Using More Threads

If your database is receiving a large volume of data to load or if it is performing many DIRECT
loads or inserts, you should consider allowing the Tuple Mover to perform multiple operations

concurrently by increasing the TM resource pool until the it can keep up with the anticipated peak

load rate. For example:

=> ALTER RESOURCE POOL tm MEMORYSIZE '4096M' PLANNEDCONCURRENCY 4 MAXCONCURRENCY

5;

See ALTER RESOURCE POOL and Built-in Pools in the SQL Reference Manual.

Active Data Partitions

By default, the Tuple Mover assumes that all loads and updates for partitioned tables are going to
the same "active" partition. For example, if a table is partitioned by month, the Tuple Mover
expects that after the start of a new month, no data is loaded into the partition for the prior month.

If loads and updates occur to more than one partition, set the ActivePartitionCount

parameter to reflect the number of partitions that will be loading data. For example, if your
database receives data for the current month as well as updates to the prior month, set

ActivePartitionCount to 2. For tables partitioned by non-temporal attributes, set

ActivePartitionCount to reflect the number of partitions that will be loaded simultaneously.

See Table Partitioning in this guide.

Scheduling Large Tuple Mover Operations

Tuple Mover uses more disk, CPU, and memory resources when it merges larger ROS containers.
You might want to postpone large merge operations during periods of peak query activity, such as
during business or trading hours, to keep the system more responsive to queries. You limit the
size of ROS containers the Tuple Mover is allowed to merge by setting the configuration

parameter MaxMrgOutROSSizeMB to a small value (for example 5GB) during the peak times.

This limits the Tuple Mover to merging smaller ROS containers, which consumes less disk space

and CPU. Reset the value of MaxMrgOutROSSizeMB during off hours to allow the Tuple Mover to

merge the larger ROS containers.

-171-

 Operating the Database

Reverting to Vertica Version 3.5 Tuple Mover Behavior

The Tuple Mover in Vertica 4.1 handles many situations much more effectively than the Tuple
Mover in version 3.5, primarily due to its use of multiple threads. However, if you have have
invested considerable time tuning the Tuple Mover in version 3.5, you can force the Tuple Mover

to use the older behavior by setting the EnableStrataBasedMrgOutPolicy configuration

parameter to 0. When the strata-based mergeout policy is disabled, the Tuple Mover uses the

version 3.5 configuration parameter MergeOutPolicySizeList. The Tuple Mover ignores this

parameter when EnableStrataBasedMrgOutPolicy is enabled.

Note: Both EnableStrataBasedMrgOutPolicy and MergeOutPolicySizeList are

deprecated and will be removed in a future version. Use these parameters only until you can
tune your database to use the new Tuple Mover behavior.

See Also

Best Practices for Workload Management (page 301)

Performing Tuple Mover Operations Manually

Vertica recommends that you use the Tuple Mover at all times. However, if you are directed to do
so by Technical Support (on page 1), use the following sequence of operations.

Note: Running the Tuple Mover while performing manual moveout/mergeout operations
concurrently is not supported.

1 Use the manageTupleMover script to stop the Tuple Mover.

From the command line:

$ /opt/vertica/bin/manageTupleMover stop wait

From vsql:

\! /opt/vertica/bin/manageTupleMover stop wait

2 Perform manual tuple mover operations as instructed by Technical Support (on page 1):

 SELECT DO_TM_TASK

 ALTER PROJECTION

 SELECT ANALYZE_STATISTICS

See the SQL Reference Manual for descriptions of these commands.

3 Restart the Tuple Mover.

From the command line:

$ /opt/vertica/bin/manageTupleMover start

From vsql:

\! /opt/vertica/bin/manageTupleMover start

4 Restart the database if directed to do so.

-172-

Collecting Statistics

The Vertica cost-based query optimizer relies on representative statistics on the data. These
statistics are used in the optimizer's algorithms to choose between multiple available plans in
which to execute a query. Various optimizer decisions rely on having up-to-date statistics,
including:

 Choosing between multiple eligible projections to answer the query

 Choosing the best order in which to perform joins

 Choosing between plans involving different algorithms, such as HASH JOIN versus MERGE

JOIN or HASH GROUP BY versus PIPELINED GROUP BY

 Choosing between distribution algorithms; for example, broadcast and re-segmentation

Without reasonably accurate statistics, the optimizer could choose a suboptimal projection or a
suboptimal join order for a query. See Statistics Collection Guidelines (page 172).

See Also

ANALYZE_STATISTICS, DROP_STATISTICS, EXPORT_STATISTICS, and
IMPORT_STATISTICS in the SQL Reference Manual

Statistics Used by the Query Optimizer

Vertica uses the estimated values of the following statistics in its cost model:

 Number of rows in the projection (or table)

 Number of distinct values of each column

 Minimum/maximum values of each column

 An equi-height histogram of the distribution of values each column

 Space occupied by the column on disk

Notes

 The Vertica query optimizer and the Database Designer both use the same set of statistics.

 When there are ties, the optimizer chooses the projection that was created earlier.

Statistics Collection Guidelines

Vertica provides two ways to collect statistics:

ANALYZE ROW COUNT

The ANALYZE ROW COUNT operation is automatically invoked every 60 seconds to collect a

minimal set of statistics for each projection. This lightweight operation aggregates row counts
calculated during loads. For example, to set the interval to 1 hour (3600 seconds), issue the
following command:

=> SELECT SET_CONFIG_PARAMETER('AnalyzeRowCountInterval', 3600);

To reset the interval to the default of 1 minute (60 seconds):

=> SELECT SET_CONFIG_PARAMETER('AnalyzeRowCountInterval', 60);

-173-

 Operating the Database

See Configuration Parameters (page 25) in the Administrator's Guide for additional information.
This function can be invoked manually, if needed, using the DO_TM_TASK('analyze_row_count')
function.

ANALYZE_STATISTICS

The ANALYZE_STATISTICS function computes full statistics and must be explicitly invoked by
the user. It can invoked on all objects or on a per-table or per-projection basis, although there is no
benefit to running it per projection.

Notes

 Even if ANALYZE_STATISTICS() is invoked on a projection, it calculates the statistics using

the same procedure it used for the table object, so it is more efficient to invoke

ANALYZE_STATISTICS() on the table object.

 Statistics computation is a cluster-wide operation, which accesses data using a historical
query (at epoch latest) without any locks. Once computed, statistics are stored in the catalog
and replicated on all nodes. This operation requires an exclusive lock on the catalog for a very
short duration, similar to a DDL operation.

How Statistics are Computed

Vertica does not compute statistics incrementally, nor does it update full statistics during load
operations.

For large tables exceeding 250,000 rows, histograms for minimum, maximum, and column value
distribution are calculated on a sampled subset of rows. The default maximum number of samples
for each column is approximately 2^17 (131702) samples or the number of rows that fits within
1GB of memory, whichever is smaller; for example, the number of samples used for large
VARCHAR columns could be less.

Notes

 Vertica does not provide a configuration setting to change the number of samples.

 Statistic collection functions consider data in the ROS but not in the WOS.

Best Practices for Statistics Collection

The query optimizer requires representative statistics; however, for most applications statistics do
not have to be accurate to the minute. DO_TM_TASK('analyze_row_count') collects partial
statistics automatically by default and can be sufficient for many optimizer choices. For example,
the following command analyzes the row count on the Vmart Schema database:

=> SELECT DO_TM_TASK('analyze_row_count');

 DO_TM_TASK

row count analyze for projection 'call_center_dimension_DBD_27_seg_temp_init_temp_init'

row count analyze for projection 'call_center_dimension_DBD_28_seg_temp_init_temp_init'

row count analyze for projection 'online_page_dimension_DBD_25_seg_temp_init_temp_init'

row count analyze for projection 'online_page_dimension_DBD_26_seg_temp_init_temp_init'

row count analyze for projection 'online_sales_fact_DBD_29_seg_temp_init_temp_init'

row count analyze for projection 'online_sales_fact_DBD_30_seg_temp_init_temp_init'

row count analyze for projection 'customer_dimension_DBD_1_seg_temp_init_temp_init'

row count analyze for projection 'customer_dimension_DBD_2_seg_temp_init_temp_init'

row count analyze for projection 'date_dimension_DBD_7_seg_temp_init_temp_init'

row count analyze for projection 'date_dimension_DBD_8_seg_temp_init_temp_init'

-174-

Administrator's Guide

row count analyze for projection 'employee_dimension_DBD_11_seg_temp_init_temp_init'

row count analyze for projection 'employee_dimension_DBD_12_seg_temp_init_temp_init'

row count analyze for projection 'inventory_fact_DBD_17_seg_temp_init_temp_init'

row count analyze for projection 'inventory_fact_DBD_18_seg_temp_init_temp_init'

row count analyze for projection 'product_dimension_DBD_3_seg_temp_init_temp_init'

row count analyze for projection 'product_dimension_DBD_4_seg_temp_init_temp_init'

row count analyze for projection 'promotion_dimension_DBD_5_seg_temp_init_temp_init'

row count analyze for projection 'promotion_dimension_DBD_6_seg_temp_init_temp_init'

row count analyze for projection 'shipping_dimension_DBD_13_seg_temp_init_temp_init'

row count analyze for projection 'shipping_dimension_DBD_14_seg_temp_init_temp_init'

row count analyze for projection 'vendor_dimension_DBD_10_seg_temp_init_temp_init'

row count analyze for projection 'vendor_dimension_DBD_9_seg_temp_init_temp_init'

row count analyze for projection 'warehouse_dimension_DBD_15_seg_temp_init_temp_init'

row count analyze for projection 'warehouse_dimension_DBD_16_seg_temp_init_temp_init'

row count analyze for projection 'store_dimension_DBD_19_seg_temp_init_temp_init'

row count analyze for projection 'store_dimension_DBD_20_seg_temp_init_temp_init'

row count analyze for projection 'store_orders_fact_DBD_23_seg_temp_init_temp_init'

row count analyze for projection 'store_orders_fact_DBD_24_seg_temp_init_temp_init'

row count analyze for projection 'store_sales_fact_DBD_21_seg_temp_init_temp_init'

row count analyze for projection 'store_sales_fact_DBD_22_seg_temp_init_temp_init'

(1 row)

Running full ANALYZE_STATISTICS on a table is an efficient but potentially long-running

operation that analyzes each unique column exactly once across all projections. It can be run
concurrently with queries and loads in a production environment; however given that it takes
resources (CPU and memory) from queries and loads, Vertica recommends that you run it only
when necessary.

A good rule of thumb is to run full ANALYZE_STATISTICS on a particular table whenever:

 The table is first bulk loaded (page 144).

 A new projection using that table is created and refreshed (page 280).

 Number of rows in the table changes by 50%.

 MIN/MAX values in the tables changes by 50%.

 New primary key values are added to tables with referential integrity constraints. Both the
primary key and foreign key tables should be reanalyzed.

 Relative size of a table, compared to tables it is being joined to, has changed materially; for
example, the table is now only five times larger than the other when previously it was 50 times
larger.

 There is a significant deviation in the distribution of data, which would necessitate recalculation
of histograms. For example, there is an event that caused abnormally high levels of trading for
a particular stock. This is application specific.

 There is a down-time window when the database is not in active use.

Once your system is running well, Vertica recommends that you save exported statistics for all
tables. In the unlikely scenario that statistics changes impact optimizer plans, particularly after an
upgrade, you can always revert back to the exported statistics. See Importing and Exporting
Statistics (page 174) for details.

Importing and Exporting Statistics

Use the EXPORT_STATISTICS() function to export statistics to a file.

The IMPORT_STATISTICS() function can be used to import saved statistics from a file into the

catalog where the saved statistics override existing statistics for all projections on the table.

-175-

 Operating the Database

The IMPORT and EXPORT functions are lightweight because they operate only on metadata.

Removing Statistics

Use the DROP_STATISTICS() function to remove statistics.

Caution: Once dropped, it can be very time consuming to regenerate statistics.

Troubleshooting Issues Using Statistics

To help expedite the resolution of your issue, include the system diagnostics, schema (or table

and projection definitions), output of the EXPLAIN plan, and the output of

EXPORT_STATISTICS().

1 Run the Diagnostics Utility using the following command.

/opt/vertica/bin/diagnostics [command ...]

2 Send the resulting .zip file from the Diagnostics Utility command to Technical Support (on

page 1).

3 Run the following two commands in vsql, which send the output files to /tmp/export.sql

and /tmp/stats.xml, respectively:

=> SELECT EXPORT_CATALOG('/tmp/export.sql', 'design');

=> SELECT EXPORT_STATISTICS('/tmp/stats.xml');

-176-

 176

Bulk Deleting and Purging Data
Vertica provides multiple techniques to remove data from the database in bulk.

Command Description

DROP TABLE Permanently removes a table and its definition. Optionally removed associated
views and projections as well.

DELETE FROM
TABLE

Marks rows with delete vectors and stores them so data can be rolled back to a
previous epoch. The data must be eventually purged before the database can
reclaim disk space. See Purging Deleted Data (page 180).

TRUNCATE TABLE Removes all storage and history associated with a table. The table structure is
preserved for future use. The results of this command cannot be rolled back.

DROP_PARTITION Removes one partition from a partitioned table. Each partition contains a related
subset of data in the table. Partitioned data can be efficiently dropped, as well as
providing query performance benefits. See Partitioning Tables (page 183).

The following table provides a quick reference for the different delete operations you can use. The
"Saves History" column indicates whether data can be rolled back to an earlier epoch and queried
at a later time.

Syntax Performance Commits Tx Saves History

DELETE FROM base_table Normal No Yes

DELETE FROM temp_table High No No

DELETE FROM base_table WHERE Normal No Yes

DELETE FROM temp_table WHERE Normal No Yes

DELETE FROM temp_table WHERE

 temp_table ON COMMIT PRESERVE

 ROWS

Normal No Yes

DELETE FROM temp_table WHERE

 temp_table ON COMMIT DELETE

 ROWS

High Yes No

DROP base_table High Yes No

TRUNCATE base_table High Yes No

TRUNCATE temp_table High Yes No

DROP PARTITION High Yes No

Choosing the right technique for deleting data

 If your goal is to delete both table data and its definitions and start from scratch, use the DROP
TABLE [CASCADE] command.

-177-

 Operating the Database

 If your goal is to drop data but preserve table definitions so you can quickly and easily reload
data, use TRUNCATE TABLE. Note that unlike DELETE, TRUNCATE does not have to mark
each row with delete vectors, so it runs much more quickly.

 If you plan to perform bulk delete operations on a regular basis, Vertica recommends using
Partitioning.

 If your perform occasional small deletes or updates and would like the option to roll back or
review history, use DELETE FROM TABLE. See Best Practices for DELETE and UPDATE
(page 177).

For details on syntax and usage, see DELETE, DROP TABLE, TRUNCATE TABLE, CREATE
TABLE and DROP_PARTITION in the SQL Reference Manual.

Best Practices for DELETE and UPDATE

Vertica is optimized for query intensive workloads, so deletes and updates might not achieve the
same level of performance as queries. Deletes and updates go to the WOS by default, but if the
data is sufficiently large and would not fit in memory, Vertica automatically switches to using the
ROS. See Using INSERT, UPDATE, and DELETE (page 148).

The topics that follow discuss best practices when using delete and update operations in Vertica.

Performance Considerations for Deletes and Updates

Query Performance after Large Deletes

A large number of (un-purged) deleted rows could negatively affect query and recovery
performance.

To eliminate the rows that have been deleted from the result, a query must do extra processing. It
has been observed if 10% or more of the total rows in a table have been deleted, the performance
of a query on the table slows down. However your experience may vary depending upon the size
of the table, the table definition, and the query. The same problem can also happen during the
recovery. To avoid this, the delete rows need to be purged in Vertica. For more information, see
Purge Procedure.

See Optimizing Deletes and Updates for Performance (page 178) for more detailed tips to help
improve delete performance.

Concurrency

Deletes and updates take exclusive locks on the table. Hence, only one delete or update
transaction on that table can be in progress at a time and only when no loads (or INSERTs) are in
progress. Deletes and updates on different tables can be run concurrently.

Pre-join Projections

Avoid pre-joining dimension tables that are frequently updated. Deletes and updates to Pre-join
projections cascade to the fact table causing a large delete or update operation.

-178-

Administrator's Guide

Optimizing Deletes and Updates for Performance

The process of optimizing a design for deletes and updates is the same. Some simple steps to
optimize a projection design or a delete or update statement can increase the query performance
by tens to hundreds of times. The following section details several proposed optimizations to
significantly increase delete and update performance.

Note: For large bulk deletion, Vertica recommends using Partitioned Tables (page 183)
where possible because it can provide the best delete performance and also improve query
performance.

Designing Delete- or Update-Optimized Projections

When all columns required by the delete or update predicate are present in a projection, the
projection is optimized for deletes and updates. Delete and update operations on such projections
are significantly faster than on non-optimized projections. Both simple and pre-join projections can
be optimized.

Example

CREATE TABLE t (a integer, b integer, c integer);

CREATE PROJECTION p1 (a ENCODING RLE,b,c) as select * from t order by a;

CREATE PROJECTION p2 (a, c) as select a,c from t order by c, a;

In the following example, both p1 and p2 are eligible for delete and update optimization because
the a column is available:

DELETE from t WHERE a = 1;

In the following example, only p1 is eligible for delete and update optimization because the b
column is not available in p2:

DELETE from t WHERE b = 1;

Delete and Update Considerations for Sort Order of Projections

You should design your projections so that frequently used delete or update predicate columns
appear in the SORT ORDER of all projections for large deletes and updates.

For example, suppose most of the deletes you perform on a projection look like the following
example:

DELETE from t where time_key < '1-1-2007'

To optimize the deletes, you would make ―time_key‖ appear in the ORDER BY clause of all your

projections. This schema design enables Vertica to optimize the delete operation.

Further, add additional sort columns to the sort order such that each combination of the sort key
values uniquely identifies a row or a small set of rows. See Choosing Sort-orders for Low
Cardinality Predicates (page 102). You can use the EVALUATE_DELETE_PERFORMANCE
function to analyze projections for sort order issues.

The following three examples demonstrate some common scenarios for delete optimizations.
Remember that these same optimizations work for optimizing for updates as well.

-179-

 Operating the Database

In the first scenario, the data is deleted given a time constraint, in the second scenario the data is
deleted by a single primary key and in the third scenario the original delete query contains two
primary keys.

Scenario 1: Delete by Time

This example demonstrates increasing the performance of deleting data given a date range. You
may have a query that looks like this:

delete from trades

where trade_date between '2007-11-01' and ‘2007-12-01’;

To optimize this query, start by determining whether all of the projections can perform the delete in
a timely manner. Issue a SELECT COUNT(*) on each projection, given the date range and notice
the response time. For example:

SELECT COUNT(*) FROM [projection name i.e., trade_p1, trade_p2]

WHERE trade_date BETWEEN '2007-11-01' AND '2007-12-01;

If one query is slow, check the uniqueness of the trade_date column and determine if it needs

to be in the projection‘s ORDER BY clause and/or can be Run Length Encoded (RLE). RLE
replaces sequences of the same data values within a column by a single value and a count
number.

If the number of unique columns is unsorted, or the average number of repeated rows is less than

ten, trade_date is too close to being unique and cannot be RLE. If you find this to be the case,

add a new column to minimize the search scope.

In this example, add a column for trade year = 2007. However, first determine if the trade_year

returns a manageable result set. The following query returns the data grouped by trade year.

SELECT DATE_TRUNC('year', trade_date),count(*)

FROM trades

GROUP BY DATE_TRUNC('year',trade_date);

Assuming that trade_year = 2007 is near 8k (8k integer is 64k), a column for trade_year can be

added to the trades table. The final DELETE statement then becomes:

DELETE FROM trades

WHERE trade_year = 2007

AND trade_date BETWEEN '2007-11-01' AND '2007-12-01';

Vertica makes the populating of extra columns easier with the ability to define them as part of the
COPY statement.

Scenario 2: Delete by a Single Primary Key

This example demonstrates increasing the performance of deleting data given a table with a single
primary key. Suppose you have the following query:

DELETE FROM [table]

WHERE pk IN (12345, 12346, 12347,...);

You begin optimizing the query by creating a new column called ‘buckets’, which is assigned

the value of one the primary key column divided by 10k; in the above example, buckets=(int)
pk/10000. This new column can then be used in the query to limit the search scope. The optimized
delete would be:

-180-

Administrator's Guide

DELETE FROM [table]

WHERE bucket IN (1,...)

AND pk IN (12345, 12346, 12347,...);

Scenario 3: Delete by Multiple Primary Keys

This example demonstrates deleting data given a table with multiple primary keys. Suppose you
have the following query:

DELETE FROM [table]

WHERE (pk1, pk2) IN ((12345,5432),(12346,6432),(12347,7432), ...);

Similar to the previous example, you create a new column called ‘buckets’, which is assigned

the value of one of the primary key column values divided by 10k; in the above example,
buckets=(int) pk1/10000. This new column can then be used in the query to limit the search
scope.

In addition, you can further optimize the original search by reducing the primary key IN list from

two primary key columns to one column by creating a second column. For example, you could
create a new column named ‗pk1-2‘ that contains the concatenation of the two primary key
columns. For example, pk1-2 = ‗pk1‘ || ‗-‗ || ‗pk2‘.

Your optimized delete statement would then be:

DELETE FROM [table]

WHERE bucket IN (1,. . .)

AND pk1-2 IN (‘12345-5432’, ‘12346-6432’, ‘12347-7432’,...);

Caution: Remember that Vertica does not remove deleted data immediately but keeps it as
history for the purposes of historical query. A large amount of history can result in slower query
performance. See Purging Deleted Data (page 180) for information on how to configure the
appropriate amount of history to be retained.

Purging Deleted Data

In Vertica, delete operations do not remove rows from physical storage. Unlike most databases,
the DELETE command in Vertica marks rows as deleted so that they remain available to historical
queries. These deleted rows are called historical data. Retention of historical data also applies to
the UPDATE command, which is actually a combined DELETE and INSERT operation.

The cost of retaining deleted data in physical storage can be measured in terms of:

 Disk space for the deleted rows and delete markers

 A performance penalty for reading and skipping over deleted data

A purge operation permanently removes deleted data from physical storage so that the disk space
can be reused. Vertica gives you the ability to control how much deleted data is retained in the
physical storage used by your database by performing a purge operation using one of the
following techniques:

 Setting a Purge Policy (page 181)

 Manually purging data (page 182)

Both methods set the Ancient History Mark (AHM), which is an epoch that represents the time until
which history is retained. History older than the AHM are eligible for purge.

-181-

 Operating the Database

Note: Large delete and purge operations in Vertica could take a long time to complete, so use
them sparingly. If your application requires deleting data on a regular basis, such as by month
or year, Vertica recommends that you design tables that take advantage of table partitioning
(page 183). If partitioning tables is not suitable, consider the procedure described in
Rebuilding a Table (page 290). The ALTER TABLE..RENAME command lets you build a
new table from the old table, drop the old table, and rename the new table in its place.

Setting a Purge Policy

The preferred method for purging data is to establish a policy that determines which deleted data
is eligible to be purged. Eligible data is automatically purged when the Tuple Mover performs
mergeout operations.

Vertica provides two methods for determining when deleted data is eligible to be purged:

 Specifying the time for which delete data is saved

 Specifying the number of epochs that are saved

Specifying the time for which delete data is saved

Specifying the time for which delete data is saved is the preferred method for determining which
deleted data can be purged. By default, Vertica saves historical data only when nodes are down.

To change the the specified time for saving deleted data, use the HistoryRetentionTime

configuration parameter (page 30):

=> SELECT SET_CONFIG_PARAMETER('HistoryRetentionTime', '{ <seconds> | -1 }');

In the above syntax:

 seconds is the amount of time (in seconds) for which to save deleted data.

 -1 indicates that you do not want to use the HistoryRetentionTime configuration

parameter to determine which deleted data is eligible to be purged. Use this setting if you

prefer to use the other method (HistoryRetentionEpochs) for determining which deleted

data can be purged.

The following example sets the history epoch retention level to 240 seconds:

=> SELECT SET_CONFIG_PARAMETER('HistoryRetentionTime', '240');

Specifying the number of epochs that are saved

Unless you have a reason to limit the number of epochs, Vertica recommends that you specify the
time over which delete data is saved.

To specify the number of historical epoch to save through the HistoryRetentionEpochs

configuration parameter:

1 Turn off the HistoryRetentionTime configuration parameter:

=> SELECT SET_CONFIG_PARAMETER('HistoryRetentionTime', '-1');

2 Set the history epoch retention level through the HistoryRetentionEpochs configuration

parameter:

-182-

Administrator's Guide

=> SELECT SET_CONFIG_PARAMETER('HistoryRetentionEpochs',

'{<num_epochs>|-1}');

 num_epochs is the number of historical epochs to save.

 -1 indicates that you do not want to use the HistoryRetentionEpochs configuration

parameter to trim historical epochs from the epoch map. By default,

HistoryRetentionEpochs is set to -1.

The following example sets the number of historical epochs to save to 40:

=> SELECT SET_CONFIG_PARAMETER('HistoryRetentionEpochs', '40');

Modifications are immediately implemented across all nodes within the database cluster. You do
not need to restart the database.

Note: If both HistoryRetentionTime and HistoryRetentionEpochs are specified,

HistoryRetentionTime takes precedence.

See Epoch Management Parameters (page 30) for additional details.

Disabling Purge

If you want to preserve all historical data, set the value of both historical epoch retention
parameters to -1, as follows:

=> SELECT SET_CONFIG_PARAMETER('HistoryRetentionTime', '-1');

=> SELECT SET_CONFIG_PARAMETER('HistoryRetentionEpochs', '-1');

Manually Purging Data

Manually purging deleted data consists of the following series of steps:

1 Determine the point in time to which you want to purge deleted data.

2 Set the Ancient History Mark (AHM) to this point in time using one of the following SQL
functions (described in the SQL Reference Manual):

 SET_AHM_TIME() sets the AHM to the epoch that includes the specified TIMESTAMP
value on the initiator node.

 SET_AHM_EPOCH() sets the AHM to the specified epoch.

 GET_AHM_TIME() returns a TIMESTAMP value representing the AHM.

 GET_AHM_EPOCH() returns the number of the epoch in which the AHM is located.

 MAKE_AHM_NOW() sets the AHM to the greatest allowable value (now), and lets you drop
pre-existing projections. This purges all deleted data.

When you use SET_AHM_TIME or GET_AHM_TIME, keep in mind that the timestamp you
specify is mapped to an epoch, which has (by default) a three-minute granularity. Thus, if you
specify an AHM time of '2008-01-01 00:00:00.00' the resulting purge could permanently
remove as much as the first three minutes of 2008, or could fail to remove the last three
minutes of 2007.

Note: The system prevents you from setting the AHM beyond the point at which it would
prevent recovery in the event of a node failure.

3 Manually initiate a purge using one of the following SQL functions (described in the SQL
Reference Manual):

 PURGE_PROJECTION() purges a specified projection.

-183-

 Operating the Database

 PURGE_TABLE() purges all projections on the specified table.

 PURGE() purges all projections in the physical schema.

The Tuple Mover performs a mergeout operation to purge the data.

Notes:

 Manual purge operations can take a long time.

 For purge operation on a non-partitioned table, all ROS containers are combined into a single
container. Non-partitioned tables cannot be re-partitioned into multiple ROS containers.

 A purge operation on a partitioned table also results in a single ROS. To re-partition a
partitioned table into multiple ROS containers, use the PARTITION_TABLE() function.

 If you have partitioned tables that need to be explicitly purged, use MERGE_PARTITIONS()
instead of PURGE(), targeting any partitions with large numbers of deleted rows. Use the

deleted_row_count column in the STORAGE_CONTAINERS system table to find the

partitions that need to be merged for the purge effect.

Partitioning Tables
Vertica supports data partitioning at the table level, which divides one large table into smaller
pieces. Partitions are a property of the table.

A common use for partitions is to split a table that contains decades of data by year. Partitioning
this data lets you quickly rotate out old data.

Table partitioning applies to all projections of a given table. It is used to segregate the data within
each node to facilitate dropping partitions, by letting you discard old partitions of data to make
room for new data (rolling window). Partitions can improve parallelism during query execution and
also enable some optimizations that can improve query performance.

The basic operations for working with partitions are described in the sections that follow:

 Defining partitions (page 184)

 Loading data (page 144), and engaging in other normal operations

 Forcing partitioned data, if needed, and dropping partitions (page 186)

There is a distinction between partitioning at the table level and the segmentation (hash or range)
associated with a projection. Table partitioning segregates data into different partitions within each
node, while segmentation distributes data for a projection across multiple nodes in a cluster.
Different projections on the same table have identical partitioning but can have different
segmentation clauses. Both methods provide opportunities for parallelism during query
processing. In short:

 Segmentation—defined by the projection for distributed computing.

 Partitioning—defined by the table for fast data purges and query performance. An added
bonus is that a partition can be dropped.

See also Partitioning and Segmenting Data (page 188) in this book and Projection
Segmentation in the Concepts Guide.

-184-

Administrator's Guide

Tip: Partitioning tables allows for fast data deletion. When a storage container contains data for
a single partition, that storage can just be thrown away when the partition is dropped using the
DROP_PARTITION() function.

Vertica provides the following functions that let you manage your partitions and obtain additional
information about them. See the SQL Reference Manual for details:

 DROP_PARTITION drops all data belonging to the partition with the specified partition value.

 PARTITIONS system table displays partition metadata, one row per partition key per ROS
container.

 MERGE_PARTITIONS merges ROSs that have data belonging to partitions in a specified
partition key range.

 PARTITION_PROJECTION forces a split of ROS containers of the specified projection.

 PARTITION_TABLE forces the system to break up any ROSs that contain multiple distinct
values of the partitioning expression.

Defining Partitions

The first step in defining data partitions is to establish the relationship between the data and

partitions. To illustrate, consider the following table called trade, which contains unpartitioned

data for trade date, ticker symbol, and trade time.

Table 1: Unpartitioned data

 tdate | tsymbol | ttime

------------+---------+----------

 2006-01-02 | AAA | 13:00:00

 2007-02-04 | BBB | 14:30:00

 2008-09-18 | AAA | 09:55:00

 2007-05-06 | AAA | 11:14:30

 2006-12-22 | BBB | 15:30:00

(5 rows)

If you wanted to discard data once a year, a logical way to partition the table would be by year. The

partition expression PARTITION BY EXTRACT(year FROM tdate) provides the partitioning

shown in Table 2:

Table 2: Data partitioned by year

2006 2007 2008
 tdate tsymbol ttime

---------+---------+---------

01/02/06 | AAA | 13:00:00

12/22/06 | BBB | 15:30:00

 tdate tsymbol ttime

---------+---------+---------

02/04/07 | BBB | 14:30:00

05/06/07 | AAA | 11:14:30

 tdate tsymbol ttime

---------+---------+---------

09/18/08 | AAA | 09:55:00

Unlike some databases, which require that partition boundaries be defined explicitly in the
CREATE TABLE statement, Vertica selects a partition for each row based on the result of a
partitioning expression provided in the CREATE TABLE statement. Partitions do not have explicit
names associated with them. Vertica internally creates a partition for each distinct value in the
PARTITION BY expression.

After you specify a partition expression, Vertica processes the data by applying the partition
expression to each row and then assigning partitions.

-185-

 Operating the Database

The following syntax generates the partitioning for this example, with results shown in Table 3. It

creates a table called trade and partitions it by year. For additional information, see CREATE

TABLE in the SQL Reference Manual.

CREATE TABLE trade (

 tdate DATE NOT NULL,

 tsymbol VARCHAR(8) NOT NULL,

 ttime TIME)

PARTITION BY EXTRACT (year FROM tdate);

CREATE PROJECTION trade_p (tdate, tsymbol, ttime) AS

SELECT * FROM trade

ORDER BY tdate, tsymbol, ttime UNSEGMENTED ALL NODES;

INSERT INTO trade VALUES ('01/02/06' , 'AAA' , '13:00:00');

INSERT INTO trade VALUES ('02/04/07' , 'BBB' , '14:30:00');

INSERT INTO trade VALUES ('09/18/08' , 'AAA' , '09:55:00');

INSERT INTO trade VALUES ('05/06/07' , 'AAA' , '11:14:30');

INSERT INTO trade VALUES ('12/22/06' , 'BBB' , '15:30:00');

Table 3: Partitioning expression and results

Restrictions on Partitioning Expressions

 The partitioning expression can reference one or more columns from the table.

 The partitioning expression cannot evaluate to NULL for any row, so do not include nullable
columns in the CREATE TABLE..PARTITION BY expression.

 SQL functions used in the partitioning expression must be immutable, which means they
return the exact same value regardless of when it is invoked and independently of session or
environment settings, such as LOCALE. For example, the TO_CHAR function is dependent on
locale settings and cannot be used. RANDOM produces different values on each invocation
and cannot be used.

 Vertica functions cannot be used in partitioning expressions.

 Single quotes are optional for INT and FLOAT data types when specifying arguments in
CREATE TABLE. Quotes are required for all other data types.

 All projections anchored on a table must include all columns referenced in the PARTITION BY
expression; this allows the partition to be calculated.

 You cannot modify partition expressions once a partitioned table is created. If you want
modified partition expressions, create a new table with a new PARTITION BY clause, and then
INSERT...SELECT from the old table to the new table. Once your data is partitioned the way
you want it, you can safely drop the old table.

-186-

Administrator's Guide

Best Practices for Partitioning

 Try to minimize the number of partitions you create. The maximum recommended number of
partitions varies with the number of columns in the table, as well as system RAM. Vertica
recommends a maximum of 20 partitions and, ideally, no more than 12.

 Do not apply partitioning to tables used as dimension tables in pre-join projections. You can
apply partitioning to tables used as large single (fact) tables in pre-join projections.

Dropping Partitions

Internally, Vertica attempts to keep data from different partitions segregated into different ROS
containers. This separation makes it easier to drop partitions, as ROS containers that have data
from the partition are also dropped.

Occasionally a ROS container could contain rows that belong to more than one partition, such as
after a MERGE_PARTITIONS operation. The table below, for example, shows three ROS
containers, two of which contain data for the appropriate partition (2007 and 2008, respectively)
and one ROS container with both 2007 and 2008 data:

 ROS 1 ROS 1 ROS 3 ROS 3 ROS 2

2007 data

 tdate

08/15/07

09/01/07

09/12/07

10/02/07

 tdate

08/15/07

09/01/07

09/12/07

10/02/07

2008 data

 tdate

03/06/08

03/10/08

04/12/08

05/30/08

 tdate

03/06/08

03/10/08

04/12/08

05/30/08

2007 and
2008 data

 tdate

12/22/07

12/29/07

01/03/08

02/04/08

To drop the 2007 partition from ROS2, use the DROP_PARTITION() function, which forces the
partition of data into two ROS containers (one for 2007 and one for 2008) and then drops the
specified partition.

Notes and Restrictions

Any of the following operations could result in a ROS container with mixed partitions:

 Manual invocation of certain Tuple Mover operations, including:

 DO_TM_TASK, which runs a Tuple Mover task (moveout) on n number of projections
defined over the specified table.

 MERGE_PARTITIONS, which merges ROS containers that have data belonging to
partitions in a specified partition key range.

 PURGE(), which purges all projections in the physical schema. Remember that the

PURGE() function creates a single ROS container.

 Refresh and recovery operations operations can generate ROS containers with mixed
partitions under some conditions. See Auto Partitioning (page 192).

The number of partitions that contain data is restricted by the number of ROS containers that can
comfortably exist in the system.

In general, if a ROS container has data that belongs to n+1 partitions and you want to drop a
specific partition, the DROP_PARTITION operation:

1 Forces the partition of data into two containers where

-187-

 Operating the Database

 one container holds the data that belongs to the partition that is to be dropped

 another container holds the remaining n partitions

2 Drops the specified partition.

You can also use the MERGE_PARTITIONS function to merges ROS containers that have data

belonging to partitions in a specified partition key range; for example, [partitionKeyFrom,

partitionKeyTo].

DROP_PARTITION forces a moveout if there is data in the WOS (WOS is not partition aware).

DROP_PARTITION acquires an exclusive lock on the table to prevent DELETE | UPDATE |
INSERT | COPY statements from affecting the table, as well as any SELECT statements issued at
SERIALIZABLE isolation level.

Users must be the table owner to drop a partition. They must have MODIFY (INSERT | UPDATE
| DELETE) permissions in order to:

 Partition a projection/table

 Merge partitions

 Run mergeout, moveout or purge operations on a projection

DROP_PARTITION operations cannot be performed on tables with projections that are not up to
date (have not been refreshed).

Examples

Using the example schema in Defining Partitions (page 184), the following command explicitly

drops the 2006 partition key from table trade:

 SELECT DROP_PARTITION('trade', 2006);

 DROP_PARTITION

 Partition dropped

(1 row)

Here, the partition key is specified:

SELECT DROP_PARTITION('trade', EXTRACT('year' FROM '2006-01-01'::date));

 DROP_PARTITION

 Partition dropped

(1 row)

The following example creates a table called dates and partitions the table by year:

CREATE TABLE dates (

 year INTEGER NOT NULL,

 month VARCHAR(8) NOT NULL)

PARTITION BY year * 12 + month;

The following statement drops the partition using a constant for Oct 2007 (2007*12 + 10 = 24094):

 SELECT DROP_PARTITION('dates', '24094');

 DROP_PARTITION

 Partition dropped

-188-

Administrator's Guide

(1 row)

Alternatively, the expression can be placed in line: SELECT DROP_PARTITION('dates',
2007*12 + 10);

See Also

DROP_PARTITION in the SQL Reference Manual

Partitioning and Segmenting Data

Partitioning and segmentation have completely separate functions in Vertica. It is important to
clarify the differences because the concepts are similar, and these terms are often used
interchangeably for other databases.

In Vertica, segmentation defines how data is spread among cluster nodes, while partitioning
specifies how data is organized within the individual nodes. Segmentation is defined by the
projection, and partitioning is defined by the table. Logically, the partition clause is applied after the
segmented by clause. See CREATE TABLE in the SQL Reference Manual for details.

Segmentation and partitioning have opposite goals regarding data localization. Partitioning
attempts to introduce hot spots within the node, allowing for a convenient way to drop data and
reclaim the disk space. Segmentation (by hash) distributes the data evenly across all nodes in a
Vertica cluster.

Partitioning by year, for example, makes sense if you intend to retain and drop data at the
granularity of a year. On the other hand, segmenting the data by year would be an extremely bad
choice, as the node holding data for the current year would likely answer far more queries than the
other nodes.

The following table shows segmentation and partitioning combined with the following flow:

1 Example table data

2 Data segmented by HASH(order_id)

3 Data segmented across four nodes

4 Data partitioned by year on a single node

-189-

 Operating the Database

Note: In the following example, the partitioning process occurs on all four nodes, but the
illustration shows partitioned data on just one node for simplicity

See Also

Reclaiming Disk Space (page 290)

Using Identically Segmented Projections in the Programmer's Guide

Projection Segmentation in the Concepts Guide

CREATE TABLE in the SQL Reference Manual

Partitioning and Data Storage

Partitions and ROS Containers

 Data is automatically split into partitions during load / refresh / recovery operations.

 The Tuple Mover maintains physical separation of partitions.

 Each ROS container contains data for a single partition, though there can be multiple ROS
containers for a single partition.

Partition Pruning

When a query predicate includes one more more columns in the partitioning clause, queries look
only at relevant ROS containers. See Partition Elimination (page 194) for details.

-190-

Administrator's Guide

Managing Partitions

Vertica provides several functions that let you manage and monitor your partitions.

Note: Partitioning functions take immutable functions only, in order that the same information
be available across all nodes.

PARTITION_TABLE

The PARTITION_TABLE() function physically separates partitions into separate containers. Only
ROS containers with more than one distinct value participate in the split.

Vertica internal operations (mergeout, refresh, and recovery) maintain partition separation except
in certain cases:

 Recovery of a projection when the buddy projection from which the partition is recovering is
identically sorted. If the projection is undergoing a full rebuild, it is recovered one ROS
container at a time. The projection ends up with a storage layout identical to its buddy and is,
therefore, properly segmented.

Note: In the case of a partial rebuild, all recovered data goes into a single ROS container and
must be partitioned manually.

 Manual tuple mover operations often output a single storage container, combining any existing

partitions; for example, after executing any of the PURGE() operations.

The following example creates a simple table called states and partitions data by state.

=> CREATE TABLE states (

 year INTEGER NOT NULL,

 state VARCHAR NOT NULL)

 PARTITION BY state;

=> CREATE PROJECTION states_p (state, year) AS

 SELECT * FROM states

 ORDER BY state, year UNSEGMENTED ALL NODES;

Now issue the command to partition table states:

=> SELECT PARTITION_TABLE('states');

 PARTITION_TABLE

partition operation for projection 'states_p_node0004'

partition operation for projection 'states_p_node0003'

partition operation for projection 'states_p_node0002'

partition operation for projection 'states_p_node0001'

(1 row)

MERGE_PARTITIONS

The MERGE_PARTITIONS() function merges partitions between the specified values to a single
ROS container. For example:

MERGE_PARTITIONS (table_name , partition_key_from , partition_key_to)

-191-

 Operating the Database

The edge values of the partition key are included in the range, and partition_key_from must

be less than or equal to partition_key_to. Inclusion of partitions in the range is based on the

application of less than(<)/greater than(>) operators of the corresponding data type.

Note: No restrictions are placed on a partition key's data type.

If partition_key_from is the same as partition_key_to, all ROS containers of the

partition key are merged into one ROS.

Users must be the table owner to drop a partition. They must have MODIFY (INSERT | UPDATE
| DELETE) permissions in order to:

 Partition a projection/table

 Merge partitions

Run mergeout, moveout or purge operations on a projection The following series of statements
show how to merge partitions:

=> SELECT MERGE_PARTITIONS('T1', '200', '400');

=> SELECT MERGE_PARTITIONS('T1', '800', '800');

=> SELECT MERGE_PARTITIONS('T1', 'CA', 'MA');

=> SELECT MERGE_PARTITIONS('T1', 'false', 'true');

=> SELECT MERGE_PARTITIONS('T1', '06/06/2008', '06/07/2008');

=> SELECT MERGE_PARTITIONS('T1', '02:01:10', '04:20:40');

=> SELECT MERGE_PARTITIONS('T1', '06/06/2008 02:01:10', '06/07/2008 02:01:10');

=> SELECT MERGE_PARTITIONS('T1', '8 hours', '1 day 4 hours 20 seconds');

PARTITIONS

You can also displays partition metadata, one row per partition key, per ROS container, via the
PARTITIONS system table.

Given a projection named p1 with three ROS containerS (RC1, RC2 and RC3), the values are

defined as follow:

 COLUMN NAME RC1 RC2 RC3

----------------+--------------------+--------------------+--------------------

 PARTITION_KEY | (20,30,40) | (20) | (30,60)

 ROS_ID | 45035986273705000 | 45035986273705001 | 45035986273705002

 SIZE | 1000 | 20000 | 30000

 ROW_ROW_COUNT | 100 | 200 | 300

 NODE_NAME | node01 | node01 | node01

The PARTITIONS function returns six rows:

=> SELECT PARTITION_KEY, PROJECTION_NAME, ROS_ID, ROS_SIZE_BYTES, ROS_ROW_COUNT,NODE_NAME

 FROM PARTITIONS;

PARTITION_KEY | PROJECTION_NAME | ROS_ID | ROS_SIZE_BYTES | ROS_ROW_COUNT | NODE_NAME

-------------+-----------------+--------------------+----------------+---------------+-----------

 20 | p1 | 45035986273705000 | 10000 | 100 | node01

 30 | p1 | 45035986273705000 | 10000 | 100 | node01

 40 | p1 | 45035986273705000 | 10000 | 100 | node01

 20 | p1 | 45035986273705001 | 20000 | 200 | node01

 30 | p1 | 45035986273705002 | 30000 | 300 | node01

 60 | p1 | 45035986273705002 | 30000 | 300 | node01

-192-

Administrator's Guide

Notes

There are just a few more things worth mentioning in helping you manage your partitions.

 To prevent too many ROS containers, be aware that delete operations must open all the
containers; thus, ideally create fewer than 20 partitions and avoid creating more than 50.

You can use the MERGE_PARTITIONS() function to merge old partitions to a single ROS
container.

 Non-deterministic functions cannot be used in the PARTITION BY expression. One example is
TIMESTAMP WITH TIME ZONE, because the value depends on user settings.

 A dimension table in a pre-join projection cannot be partitioned.

Auto Partitioning

Vertica attempts to keep data from each partition stored separately. Auto partitioning occurs when
data is written to disk, such as during COPY DIRECT or moveout operations.

Separate storage provides two benefits: Partitions can be dropped quickly, and partition
elimination (page 194) can eliminate storage that need not participate in a query plan.

Vertica internal operations (mergeout, refresh, and recovery) maintain partition separation except
in certain cases:

 Recovery of a projection when the buddy projection from which the partition is recovering is
identically sorted. If the projection is undergoing a full rebuild, it is recovered one ROS
container at a time. The projection ends up with a storage layout identical to its buddy and is,
therefore, properly segmented.

Note: In the case of a partial rebuild, all recovered data goes into a single ROS container and
must be partitioned manually.

 Manual tuple mover operations often output a single storage container, combining any existing

partitions; for example, after executing any of the PURGE() operations.

Notes

 If you use INSERT...SELECT into a partitioned table, Vertica sorts the data before writing it to
disk, even if the source of the SELECT has the same sort order as the destination.

 Refer to Partitioning Errors in the Troubleshooting Guide if the system returns 'Too many ROS'
errors.

Examples

The examples that follow use this simple schema. First create a table named t1 and partition the

data on the c1 column:

CREATE TABLE t1 (

 c1 INT NOT NULL,

-193-

 Operating the Database

 c2 INT NOT NULL)

SEGMENTED BY c1 ALL NODES

PARTITION BY c2;

Create two identically-segmented buddy projections:

CREATE PROJECTION t1_p AS SELECT * FROM t1 SEGMENTED BY HASH(c1) ALL NODES OFFSET 0;

CREATE PROJECTION t1_p1 AS SELECT * FROM t1 SEGMENTED BY HASH(c1) ALL NODES OFFSET 1;

Now insert some data:

INSERT INTO t1 VALUES(10,15);

INSERT INTO t1 VALUES(20,25);

INSERT INTO t1 VALUES(30,35);

INSERT INTO t1 VALUES(40,45);

Query the table to verify the inputs:

SELECT * FROM t1;

 c1 | c2

 10 | 15

 20 | 25

 30 | 35

 40 | 45

(4 rows)

Now perform a moveout operation on the projections in the table:

SELECT DO_TM_TASK('moveout','t1');

 do_tm_task

 moveout for projection 't1_p1'

 moveout for projection 't1_p'

(1 row)

Query the PARTITIONS system table, and you'll see that the four partition keys reside on two

nodes, each in its own ROS container (see the ros_id column). The PARTITION BY clause was

used on column c2, so Vertica auto partitioned the input values during the COPY operation:

SELECT partition_key, projection_name, ros_id, ros_size_bytes, ros_row_count, node_name

FROM PARTITIONS WHERE projection_name like 't1_p1';

 partition_key | projection_name | ros_id | ros_size_bytes | ros_row_count | node_name

---------------+-----------------+-------------------+----------------+---------------+----------

 15 | t1_p1 | 49539595901154617 | 78 | 1 | node0002

 25 | t1_p1 | 54043195528525081 | 78 | 1 | node0003

 35 | t1_p1 | 54043195528525069 | 78 | 1 | node0003

 45 | t1_p1 | 49539595901154605 | 79 | 1 | node0002

(4 rows)

Vertica does not auto partition when you refresh with the same sort order. If you create a new
projection, Vertica returns a message telling you to refresh the projections; for example:

CREATE PROJECTION t1_p2 AS SELECT * FROM t1 SEGMENTED BY HASH(c1) ALL NODES OFFSET 2;

 WARNING: Projection <public.t1_p2> is not available for query processing.

Execute the select

 start_refresh() function to copy data into this projection.

 The projection must have a sufficient number of buddy projections and all nodes

 must be up before starting a refresh.

Run the START_REFRESH function:

-194-

Administrator's Guide

SELECT START_REFRESH();

 start_Refresh

--

 Starting refresh background process.

(1 row)

Query the PARTITIONS system table again. The partition keys now reside in two ROS containers,

instead of four, which you can tell by looking at the values in the ros_id column. The

ros_row_count column holds the number of rows in the ROS container:

SELECT partition_key, projection_name, ros_id, ros_size_bytes, ros_row_count, node_name

FROM PARTITIONS WHERE projection_name like 't1_p2';

 partition_key | projection_name | ros_id | ros_size_bytes | ros_row_count | node_name

---------------+-----------------+-------------------+----------------+---------------+----------

 15 | t1_p2 | 54043195528525121 | 80 | 2 | node0003

 25 | t1_p2 | 58546795155895541 | 77 | 2 | node0004

 35 | t1_p2 | 58546795155895541 | 77 | 2 | node0004

 45 | t1_p2 | 54043195528525121 | 80 | 2 | node0003

(4 rows)

The following command more specifically queries ROS information for the partitioned tables. In
this example, the query counts two ROS containers each on two different nodes for projection

t1_p2:

SELECT ros_id, node_name, COUNT(*) FROM PARTITIONS

WHERE projection_name LIKE 't1_p2' GROUP BY ros_id, node_name;

 ros_id | node_name | COUNT

-------------------+-----------+-------

 54043195528525121 | node0003 | 2

 58546795155895541 | node0004 | 2

(2 rows)

This command returns a result of four ROS containers on two different nodes for projection

t1_p1:

SELECT ros_id,node_name, COUNT(*) FROM PARTITIONS

WHERE projection_name LIKE 't1_p1' GROUP BY ros_id, node_name;

 ros_id | node_name | COUNT

-------------------+-----------+-------

 49539595901154605 | node0002 | 1

 49539595901154617 | node0002 | 1

 54043195528525069 | node0003 | 1

 54043195528525081 | node0003 | 1

(4 rows)

See Also

DO_TM_TASK and PARTITIONS and START_REFRESH in the SQL Reference Manual

Partition Elimination

Vertica eliminates unneeded ROS containers (of partitioned tables) from being processed by
queries, by comparing query predicates to partition-related metadata that is associated with the
ROS containers. What this means is that Vertica eliminates a scan on partitions where there can
be no matching values.

This pruning occurs at query time and requires a query predicate on the partitioning column.

-195-

 Operating the Database

Each ROS of each partition expression column keeps track of the minimum and maximum values
of data stored in that ROS. Those values are then used to potentially eliminate ROS containers
from query planning. For example, if a ROS does not contain data that satisfies a given query, that
ROS is eliminated from query planning. After non-participating ROS containers are eliminated,
queries that use partitioned tables run more quickly.

Assume a table that is partitioned by year (2007, 2008, 2009) into three ROS containers, one for
each year. Given the following series of commands, the two ROS containers that contain data for
2007 and 2008 fall outside the boundaries of the requested year (2009) and can be eliminated.

PARTITION BY EXTRACT(year FROM date);

SELECT ... WHERE date = '12-2-2009';

Making past partitions eligible for elimination

On any database that has been upgraded from version 3.5 and prior to Vertica 4.1, ROS
containers are ineligible for partition elimination because they do not contain the
minimum/maximum partition key values required. These ROS containers need to be recreated or
merged by the Tuple Mover.

The following optional procedure lets you take advantage of making past partitions eligible for
elimination.

The easiest way to guarantee that all ROS containers are eligible is to:

1 Create a new fact table with the same projections as the existing table.

2 Use INSERT..SELECT to populate the new table.

3 Drop the original table and rename the new table.

If there is not enough disk space for a second copy of the fact table, an alternative is to:

1 Verify that the Tuple Mover has finished all post-upgrade work; for example, when the
following command shows no mergeout activity:

SELECT * FROM TUPLE_MOVER_OPERATIONS;

2 Identify which partitions need to be merged to get the ROS minimum/maximum values:

SELECT DISTINCT table_schema, projection_name, partition_key

FROM partitions p LEFT OUTER JOIN vs_ros_min_max_values v

ON p.ros_id = v.delid

WHERE v.min_value IS null;

3 Insert a record into each partition that has ineligible ROS containers and commit.

4 Delete each inserted record and commit again.

At this point, the Tuple Mover automatically merges ROS containers from past partitions.

-196-

Administrator's Guide

To verify the merge occurred:

1 Query the TUPLE_MOVER_OPERATIONS table again:

SELECT * FROM TUPLE_MOVER_OPERATIONS;

2 Check again for any partitions that need to be merged:

SELECT DISTINCT table_schema, projection_name, partition_key

FROM partitions p LEFT OUTER JOIN vs_ros_min_max_values v

ON p.ros_id = v.rosid

WHERE v.min_value IS null;

Examples

Assume a table that is partitioned by time and queries that restrict data on time.

CREATE TABLE time (

 tdate DATE NOT NULL,

 tnum INTEGER)

PARTITION BY EXTRACT(year FROM tdate);

CREATE PROJECTION time_p (tdate, tnum) AS

SELECT * FROM time

ORDER BY tdate, tnum UNSEGMENTED ALL NODES;

Note: Projection sort order has no effect on partition elimination.

INSERT INTO time VALUES ('03/15/04' , 1);

INSERT INTO time VALUES ('03/15/05' , 2);

INSERT INTO time VALUES ('03/15/06' , 3);

INSERT INTO time VALUES ('03/15/06' , 4);

The data inserted in the previous series of commands would be loaded into three ROS containers,
one per year, since that is how the data is partitioned:

SELECT * FROM time ORDER BY tnum;

 tdate | tnum

------------+------

 2004-03-15 | 1 --ROS1 (min 03/01/04, max 03/15/04)

 2005-03-15 | 2 --ROS2 (min 03/15/05, max 03/15/05)

 2006-03-15 | 3 --ROS3 (min 03/15/06, max 03/15/06)

 2006-03-15 | 4 --ROS3 (min 03/15/06, max 03/15/06)

(4 rows)

In the first query, Vertica eliminates ROS2 because it is only looking for year 2004:

SELECT COUNT(*) FROM time WHERE tdate = '05/07/2004';

In the next query, Vertica eliminates both ROS1 and ROS3:

SELECT COUNT(*) FROM time WHERE tdate = '10/07/2005';

This query has an additional predicate on the tnum column for which no minimum/maximum

values are maintained. In addition, the use of logical operator OR is not supported, so no ROS
elimination occurs:

SELECT COUNT(*) FROM time WHERE tdate = '05/07/2004' OR tnum = 7;

-197-

Monitoring the Database
This section describes some of the ways in which you can monitor the health of your Vertica
database.

Monitoring the Log Files

When a Database is Running

When a Vertica database is running, each node in the cluster writes messages into a file named

vertica.log. For example, the Tuple Mover and the transaction manager write INFO messages

into vertica.log at specific intervals even when there is no WOS activity.

To monitor a running database in real time:

1 Log in to the database administrator account on any or all nodes in the cluster.

2 In a terminal window (such as vsql) enter:

$ tail -f catalog-path/database-name/node-name_catalog/vertica.log

catalog-path
The catalog pathname specified when you created the
database.

See Creating a Database (page 342) in the
Administrator's Guide.

database-name
The database name (case sensitive)

node-name
The node name, as specified in the database definition.

See Viewing a Database (page 344) in the
Administrator's Guide.

When the Database / Node is starting up

During startup before the vertica log has been initialized to write messages, each node in the

cluster writes messages into a file named dbLog. This log is useful to diagnose situations where

database fails to start before it can write messages into vertica.log. The dblog can be found

at the following path, using catalog-path and database-name as described above:

catalog-path/database-name/dbLog

See Also

Rotating the Log Files (page 197)

Rotating the Log Files

The logrotate utility, which is included with most Linux distributions, helps simplify log file
administration on systems that generate many log files. Logrotate allows for automatic rotation,
compression, removal, and mailing of log files and can be configured to perform these tasks at
specific intervals or when the log file reaches a particular size.

-198-

Administrator's Guide

If logrotate is present when Vertica is installed (which is typical for most Linux distributions), then
Vertica automatically sets logrotate to look for configuration files in the

/opt/vertica/config/logrotate directory. The utility also creates the file vertica in the

/etc/logrotate.d/ directory, which includes the line:

include /opt/vertica/config/logrotate

If logrotate is not present but installed at a later time, either reinstall the Vertica RPM on every

node in the cluster or add a file in the /etc/logrotate.d/ directory that instructs logrotate to

include the logrotate directory contents. For example:

1 Create the file /etc/logrotate.d/vertica.

2 Add the following line:

include /opt/vertica/config/logrotate

When a database is created, Vertica creates database-specific logrotate configurations which are
used by the logrotate utility. For example, a file

/opt/vertica/config/logrotate/<dbname> is created for each individual database.

Using Administration Tools Lograte Utility

The administration tools provide a logrotate option to help configure logrotate scripts for a
database and to distribute it across the cluster. Only a few basic options are supported - how often
to rotate logs, low large the log can get before rotation and how long to keep the logs. For other
options, you can manually create logrotate scripts as described later in this topic.

Example:

The following example sets up log rotation on a weekly schedule and keeps for 3 months (12 logs).

$ admintools -t logrotate -d <dbname> -r weekly -k 12

See Writing Administration Tools Scripts (page 351) for full usage description.

Manually Rotating Logs

To perform manual log rotation, use the following procedure to implement a custom log rotation
process. No log messages are lost during the procedure.

1 Rename or archive the vertica.log file that is produced. For example:

$ mv vertica.log vertica.log.1

2 Send the Vertica process the USR1 signal. For example:

$ killall -USR1 vertica

 or

$ ps -ef | grep -i vertica

$ kill -USR1 process-id

Manually Creating Logrotate Scripts

If your needs are not met by the administration tools logrotate utility, you may create your own
scripts. The following script is an example:

/mydb/site01_catalog/vertica.log {

-199-

 Operating the Database

 # rotate weekly

 weekly

 # and keep for 52 weeks

 rotate 52

 # no complaining if vertica did not start yet

 missingok

 # compress log after rotation

 compress

 # no creating a new empty log, vertica will do that

 nocreate

 # if set, only rotates when log size is greater than X

 size 10M

 # delete files after 90 days (not all logrotate pkgs support this keyword)

 # maxage 90

 # signal vertica to reopen and create the log

 postrotate

 kill -USR1 `head -1 /mydb/site01_catalog/vertica.pid 2> /dev/null` 2>

/dev/null || true

 endscript

 }

The following script is an example of the typical default setting for the dbLog file:

/mydb/dbLog {

 # rotate weekly

 weekly

 # and keep for 52 weeks

 rotate 52

 # no complaining if vertica did not start yet

 missingok

 # compress log after rotation

 compress

 # this log is stdout, so rotate by copying it aside and truncating

 copytruncate

 }

For details about additional settings, issue the man logrotate command.

See Also

Monitoring the Log Files (page 197)

Using the SQL Monitoring API

Vertica provides an API (application programming interface) for monitoring various features and
functions within a database in the form of system tables. You can write queries against system

tables with full SELECT support the same way you perform query operations on base and

temporary tables. Queries against system tables may use expressions, predicates, aggregates,
analytics, subqueries, joins, and historical query syntax. It is also possible to save the results of a

system table query into a user table for future analysis using, for example, INSERT INTO
<user_table> SELECT * FROM <system_table>;

System tables are grouped into the following schemas:

 V_CATALOG — information about persistent objects in the catalog

-200-

Administrator's Guide

 V_MONITOR — information about transient system state

These schemas reside in the default search path so there is no need to specify schema.table in

your queries unless you change the search path (page 44) to exclude V_MONITOR or

V_CATALOG or both.

Notes and Restrictions

 You can use external monitoring tools or scripts to query the system tables and act upon the
information, as necessary. For example, when a host failure causes the K-safety level to fall
below a desired level, the tool or script can notify the database administrator and/or
appropriate IT personnel of the change, typically in the form of an e-mail.

Note: When a cluster is a recovering state, the database refuses connection requests and
cannot be monitored using the SQL monitoring API.

 To view all of the system tables issue the following command:

=> SELECT * FROM system_tables;

 DDL and DML operations are not supported on system tables.

 With the exception of the PROJECTION_REFRESHES table, system tables do not hold

historical data.

 Vertica reserves some memory to help monitor busy systems. Using simple system table

queries makes it easier to troubleshoot issues. See also sysquery and sysdata pools

under Built-in pools topic in SQL Reference Manual.

 In V_CATALOG.TABLES, columns TABLE_SCHEMA and TABLE_NAME are case sensitive

when equality (=) predicates are used in queries. For example, given the following schema:

=> CREATE SCHEMA SS;

=> CREATE TABLE SS.TT (c1 int);

=> INSERT INTO ss.tt VALUES (1);

If you run a query using the = predicate, Vertica returns 0 rows:

=> SELECT table_schema, table_name FROM v_catalog.tables WHERE

table_schema ='ss';

 table_schema | table_name

--------------+------------

(0 rows)

Use the case-insensitive ILIKE predicate to return the expected results:

=> SELECT table_schema, table_name FROM v_catalog.tables WHERE

table_schema ILIKE 'ss';

 table_schema | table_name

--------------+------------

 SS | TT

(1 row)

List of System Tables

The system tables that make up the monitoring API are listed here for convenience and are
described fully in the SQL Reference Manual. You may also use the following command to view all
the system tables and their schema:

=> SELECT * FROM system_tables;

-201-

 Operating the Database

Monitor Tables Description Schema

ACTIVE_EVENTS Displays all the active events in the cluster. V_MONITOR

COLUMN_STORAGE Returns the amount of disk storage used by each
column of each projection on each node.

V_MONITOR

COLUMNS Provides information about columns. V_CATALOG

CONFIGURATION_PARAMETE
RS

Provides information about configuration
parameters currently in use by the system.

V_MONITOR

CURRENT_SESSION Returns information about the current active
session.

V_MONITOR

DELETE_VECTORS Holds information on deleted rows to speed up the
delete process.

V_MONITOR

DISK_RESOURCE_REJECTIO
NS

Returns requests for resources that are rejected due
to disk space shortages.

V_MONITOR

DISK_STORAGE Returns the amount of disk storage used by the
database on each node.

V_MONITOR

DUAL A single-column "dummy" table with one record
whose value is X.

V_CATALOG

EVENT_CONFIGURATIONS Returns configuration information about current
events.

V_MONITOR

EXECUTION_ENGINE_PROFIL
ES

Returns information regarding query execution
runs.

V_MONITOR

FOREIGN_KEYS Provides foreign key information. V_CATALOG

GRANTS Provides grant information. V_CATALOG

HOST_RESOURCES Returns information about host profiling. V_MONITOR

LOAD_STREAMS Returns load metrics for each load stream on each
node.

V_MONITOR

LOCKS Monitors lock grants and requests for all nodes. V_MONITOR

NODE_RESOURCES Provides a snapshot of the node. This is useful for
regularly polling the node with automated tools or
scripts.

V_MONITOR

PARTITIONS Displays partition metadata, one row per partition
key, per ROS container.

V_MONITOR

PASSWORDS Contains password information. V_CATALOG

PRIMARY_KEYS Provides primary key information. V_CATALOG

PROFILE_PARAMETERS Defines what user profiles conatin. V_CATALOG

PROFILES Provides user profile information. V_CATALOG

PROJECTION_COLUMNS Provides projection column information. V_CATALOG

-202-

Administrator's Guide

PROJECTION_REFRESHES Returns information about refresh operations for
projections.

V_MONITOR

PROJECTION_STORAGE Returns the amount of disk storage used by each
projection on each node.

V_MONITOR

PROJECTIONS Provides information about projections. V_CATALOG

QUERY_METRICS Monitors the sessions and queries executing on
each node.

V_MONITOR

QUERY_PROFILES Provides information regarding queries that have
run.

V_MONITOR

RESOURCE_ACQUISITIONS Provides details of resources (memory, open file
handles, threads) acquired by each running request
for each resource pool in the system.

V_MONITOR

RESOURCE_ACQUISITIONS_H
ISTORY

Provides details of resources (memory, open file
handles, threads) acquired by any profiled query for
each resource pool in the system.

V_MONITOR

RESOURCE_POOL_STATUS Provides resource pool usage information. V_MONITOR

RESOURCE_POOLS Provides configuration of resource pools, both
user-defined and built-in.

V_CATALOG

RESOURCE_QUEUES Provides information about queries waiting for
resources

V_MONITOR

RESOURCE_REJECTIONS Returns requests for resources that are rejected by
the resource manager.

V_MONITOR

RESOURCE_USAGE Returns system resource management on each
node.

V_MONITOR

SESSION_PROFILES Provides basic session parameters and lock time
out data.

V_MONITOR

SESSIONS Monitors external sessions. V_MONITOR

STORAGE_CONTAINERS Monitors information about each storage container
in the database.

V_MONITOR

STRATA Provides information of strata used in Tuple Mover,
one row per stratum. (Vertica Internal use only)

V_MONITOR

STRATA_STRUCTURES Provides information of strata structures used in
Tuple Mover, one row per strata structure. (Vertica
Internal use only)

V_MONITOR

SYSTEM Monitors the overall state of the database. V_MONITOR

SYSTEM_TABLES Displays a list of all system table names. V_CATALOG

TABLE_CONSTRAINTS Provides information about table constraints. V_CATALOG

TABLES Provides information about all tables in the
database.

V_CATALOG

TUPLE_MOVER_OPERATIONS Monitors the status of the Tuple Mover on each
node.

V_MONITOR

-203-

 Operating the Database

TYPES Provides information about supported data types. V_CATALOG

USER_FUNCTIONS Returns metadata about user-defined SQL Macros,
which store commonly used SQL expressions in a
function.

V_CATALOG

USER_PROCEDURES Provides information about external procedures that
have been defined for Vertica

V_CATALOG

USERS Provides information about users. V_CATALOG

VIEW_COLUMNS Provides view attribute information. V_CATALOG

VIEWS Provides information about all views within the
system.

V_CATALOG

WOS_CONTAINER_STORAGE Monitors information about WOS storage, which is
divided into regions.

V_MONITOR

Examples

The following query uses the vmart schema to obtain the number of rows and size occupied by
each table in the database.

=> SELECT t.table_name AS table_name,

 SUM(ps.wos_row_count + ps.ros_row_count) AS row_count,

 SUM(ps.wos_used_bytes + ps.ros_used_bytes) AS byte_count

 FROM tables t

 JOIN projections p ON t.table_id = p.anchor_table_id

 JOIN projection_storage ps on p.projection_name = ps.projection_name

 WHERE (ps.wos_used_bytes + ps.ros_used_bytes) > 500000

 GROUP BY t.table_name

 ORDER BY byte_count DESC;

 table_name | row_count | byte_count

--------------------+-----------+------------

 online_sales_fact | 200000 | 11920371

 store_sales_fact | 200000 | 7621694

 product_dimension | 240000 | 7367560

 customer_dimension | 200000 | 6981564

 store_orders_fact | 200000 | 5126330

(5 rows)

The rest of the examples show simple ways to use system tables in queries.

=> SELECT table_name FROM columns WHERE data_type ILIKE 'Numeric' GROUP BY

table_name;

 table_name

 n1

(1 row)

=> SELECT current_epoch, designed_fault_tolerance, current_fault_tolerance FROM

SYSTEM;

 current_epoch | designed_fault_tolerance | current_fault_tolerance

---------------+--------------------------+-------------------------

 492 | 1 | 1

(1 row)

-204-

Administrator's Guide

=> SELECT node_name, total_user_session_count, executed_query_count FROM

query_metrics;

 node_name | total_user_session_count | executed_query_count

-----------+--------------------------+----------------------

 node01 | 53 | 42

 node02 | 53 | 0

 node03 | 42 | 120

 node04 | 53 | 0

(4 rows)

=> AT EPOCH LATEST SELECT table_schema FROM primary_keys;

 table_schema

 public

 public

 public

 public

 public

 public

 public

 public

 public

 store

 online_sales

 online_sales

(12 rows)

Configuring PROJECTION_REFRESHES History

Information about a refresh operation—whether successful or unsuccessful—is maintained in the
PROJECTION_REFRESHES system table until either the
CLEAR_PROJECTION_REFRESHES() function is executed or the storage quota for the table is

exceeded. The PROJECTION_REFRESHES.IS_EXECUTING column returns a boolean value that

indicates whether the refresh is currently running (t) or occurred in the past (f).

To immediately purge this information, use the CLEAR_PROJECTION_REFRESHES() function:

=> SELECT clear_projection_refreshes();

 clear_projection_refreshes

 CLEAR

(1 row)

Note: Only the rows where the PROJECTION_REFRESHES.IS_EXECUTING column equals

false are cleared.

See Also

CLEAR_PROJECTION_REFRESHES and PROJECTION_REFRESHES in the SQL Reference
Manual

-205-

 Operating the Database

Querying Case-sensitive data in System Tables

Some system table data may be stored in mixed case. For instance, Vertica stores mixed-case
identifier names as they were specified in the CREATE statement, even though the case is
ignored when they are referenced in queries. See Identifiers. When these object names appear as
data in the system tables, it is error prone to retrieve them with the equality (=) predicate because
the case must match exactly to what is stored. It is much easier to use the case-insensitive
operator ILIKE instead.

Example:

Given the following schema:

=> CREATE SCHEMA SS;

=> CREATE TABLE SS.TT (c1 int);

=> CREATE PROJECTION SS.TTP1 AS SELECT * FROM ss.tt UNSEGMENTED ALL NODES;

=> INSERT INTO ss.tt VALUES (1);

If you run a query using the = predicate, Vertica returns 0 rows:

=> SELECT table_schema, table_name FROM v_catalog.tables WHERE table_schema ='ss';

table_schema | table_name

--------------+------------

(0 rows)

Using the case-insensitive ILIKE predicate returns the expected results:

=> SELECT table_schema, table_name FROM v_catalog.tables WHERE table_schema ILIKE

'ss';

 table_schema | table_name

--------------+------------

 SS | TT

(1 row)

Monitoring Processes

You can use ps to monitor the database and Spread processes running on each node in the
cluster. For example:

$ ps aux | grep /opt/vertica/bin/vertica

$ ps aux | grep /opt/vertica/sbin/spread

You should see exactly one Vertica process and exactly one Spread process on each node. To
monitor Administration Tools and connector processes:

$ ps aux | grep vertica

There could be many connection processes but, at most, one Administration Tools process.

Monitoring Events

To help you monitor your database system, Vertica traps and logs significant events that impact
database performance and functionality if you do not address their root causes. This section
describes where events are logged, the types of events that Vertica logs, how to respond to these
events, the information that Vertica provides for these events, and how to configure event
monitoring.

-206-

Administrator's Guide

Event Logging Mechanisms

Vertica posts events to the following:

Mechanism Description

vertica.log All events are automatically posted to vertica.log. See Monitoring

the Log Files (page 197).

ACTIVE_EVENTS This SQL system table provides information about all open events.
See Using the SQL Monitoring API (page 199) and
ACTIVE_EVENTS.

SNMP To post traps to SNMP, enable global reporting in addition to each
individual event you want trapped. See Configuring Event Reporting
(page 210).

Syslog To log events to syslog, enable event reporting for each individual
event you want logged. See Configuring Event Reporting (page
210).

Event Types

Event names are sensitive to case and spaces. Vertica logs the following events:

Event Name Event
Type

Description Action

Low Disk Space 0 The database is running out of
disk space or a disk is failing
or there is a I/O hardware
failure.

It is imperative that you add more disk
space or replace the failing disk or
hardware as soon as possible.

Check dmesg to see what caused the

problem.

Also, use the
DISK_RESOURCE_REJECTIONS
system table to determine the types of disk
space requests that are being rejected and
the hosts on which they are being rejected.
See Managing Disk Space (page 283)
within the Database Administrator‘s Guide
for more information about low disk space.

Read Only File
System

1 The database does not have
write access to the file system
for the data or catalog paths.
This can sometimes occur if
Linux remounts a drive due to
a kernel issue.

Modify the privileges on the file system to
give the database write access.

Loss Of K Safety 2 The database is no longer
K-Safe because there are
insufficient nodes functioning
within the cluster. Loss of
K-Safety causes the database

If a system shuts down due to loss of
K-Safety, you need to recover the system.
See Failure Recovery (page 235) in the
Troubleshooting Guide.

-207-

 Operating the Database

to shut down.

In a four-node cluster, for
example, K-Safety=1. If one
node fails, the fault tolerance
is at a critical level. If two
nodes fail, the system loses
K-Safety.

Current Fault
Tolerance at Critical
Level

3 One or more nodes in the
cluster have failed. If the
database loses one more
node, it is no longer K-Safe
and it shuts down. (For
example, a four-node cluster
is no longer K-safe if two
nodes fail.)

Restore any nodes that have failed or
been shut down.

Too Many ROS
Containers

4 Due to heavy data load
conditions, there are too many
ROS containers. This occurs
when the Tuple Mover falls
behind in performing
mergeout operations. The
resulting excess number of
ROS containers can exhaust
all available system
resources. To prevent this,
Vertica automatically rolls
back all transactions that
would load data until the Tuple
Mover has time to catch up.

See Too many ROS containers in the
Troubleshooting Guide for more
information about what causes excess
ROS containers and how to process them.

WOS Over Flow 5 The WOS cannot hold all the
data that you are attempting to
load. This means that the
copy fails and the transaction
rolls back.

Note: This event does not

occur in Vertica 4.0.

Consider loading the data to disk (ROS)
instead of memory (WOS) or splitting the
fact table load file into multiple pieces and
then performing multiple loads in
sequence.

You might also consider making the Tuple
Mover's moveout operation more
aggressive. See Tuning the Tuple Mover
(page 167) in Administrator's Guide.

Node State Change 6 The node state has changed. Check the status of the node.

Recovery Failure 7 The database was not
restored to a functional state
after a hardware or software
related failure.

The reason for recovery failure can vary.
See the event description for more
information about your specific situation.

Recovery Error 8 The database encountered an
error while attempting to
recover. If the number of
recovery errors exceeds Max
Tries, the Recovery Failure
event is triggered. See
Recovery Failure within this

The reason for a recovery error can vary.
See the event description for more
information about your specific situation.

-208-

Administrator's Guide

table.

Recovery Lock Error 9 A recovering node could not
obtain an S lock on the table.

If you have a continuous
stream of COPY commands in
progress, recovery might not
be able to obtain this lock
even after multiple re-tries.

Either momentarily stop the loads or pick a
time when the cluster is not busy to restart
the node and let recovery proceed.

Recovery Projection
Retrieval Error

10 Vertica was unable to retrieve
information about a projection.

The reason for a recovery projection
retrieval error can vary. See the event
description for more information about
your specific situation.

Refresh Error 11 The database encountered an
error while attempting to
refresh.

The reason for a refresh error can vary.
See the event description for more
information about your specific situation.

Refresh Lock Error 12 The database encountered a
locking error during refresh.

The reason for a refresh error can vary.
See the event description for more
information about your specific situation.

Tuple Mover Error 13 The database encountered an
error while attempting to move
the contents of the Write
Optimized Store (WOS) into
the Read Optimized Store
(ROS).

The reason for a Tuple Mover error can
vary. See the event description for more
information about your specific situation.

Timer Service Task
Error

14 An error occurred in an
internal scheduled task.

Internal use only

Stale Checkpoint 15 Data in the WOS has not been
completely moved out in a
timely manner. An UNSAFE
shutdown could require
reloading a significant amount
of data.

Be sure that Moveout operations are
executing successfully. Check the

vertica.log files for errors related to

Moveout. Contact Technical Support (on
page 1) for assistance.

Event Data

To help you interpret and solve the issue that triggered an event, each event provides a variety of
data depending upon the event logging mechanism used. The following table describes the event
data and indicates where it is used.

vertica.log ACTIVE_EVENTS
(column names)

SNMP Syslog Description

N/A NODE_NAME N/A N/A The node where the event
occurred.

Event Code EVENT_CODE Event Type Event Code A numeric ID that indicates
the type of event. See Event
Types in the previous table
for a list of event type

-209-

 Operating the Database

codes.

Event Id EVENT_ID Event OID Event Id A unique numeric ID that
identifies the specific event.

Event Severity EVENT_

SEVERITY

Event
Severity

Event Severity The severity of the event
from highest to lowest.
These events are based on
standard syslog severity
types:

0 – Emergency

1 – Alert

2 – Critical

3 – Error

4 – Warning

5 – Notice

6 – Info

7 – Debug

PostedTimestamp EVENT_

POSTED_

TIMESTAMP

N/A PostedTimestamp The year, month, day, and
time the event was
reported. Time is provided
as military time.

ExpirationTimestamp EVENT_

EXPIRATION

N/A ExpirationTimestamp The time at which this event
expires. If the same event is
posted again prior to its
expiration time, this field
gets updated to a new
expiration time.

EventCodeDescriptio
n

EVENT_CODE_

DESCRIPTION

Description EventCodeDescriptio
n

A brief description of the
event and details pertinent
to the specific situation.

ProblemDescription EVENT_PROBL
EM_DESCRIPTI
ON

Event Short
Description

ProblemDescription A generic description of the
event.

N/A REPORTING_

NODE

Node Name N/A The name of the node within
the cluster that reported the
event.

DatabaseName N/A Database
Name

DatabaseName The name of the database
that is impacted by the
event.

N/A N/A Host Name Hostname The name of the host within
the cluster that reported the
event.

N/A N/A Event Status N/A The status of the event. It
can be either:

1 – Open

2 – Clear

-210-

Administrator's Guide

Configuring Event Reporting

Event reporting is automatically configured for vertica.log, and current events are

automatically posted to the ACTIVE_EVENTS system table. You can also configure Vertica to
post events to syslog (page 210) and SNMP (page 212).

Configuring Reporting for syslog

Syslog is a network-logging utility that issues, stores, and processes meaningful log messages. It
is designed so DBAs can keep machines up and running, and it is a useful way to get
heterogeneous data into a single data repository.

To log events to syslog, enable event reporting for each individual event you want logged.

Messages are logged, by default, in /var/log/messages.

Configuring event reporting to syslog consists of:

1 Enabling Vertica to trap events for syslog.

2 Defining which events Vertica traps for syslog.

Vertica strongly suggests that you trap the Stale Checkpoint event.

3 Defining which syslog facility to use.

Enabling Vertica to Trap Events for syslog

To enable event trapping for syslog, issue the following SQL command:

=> SELECT SET_CONFIG_PARAMETER('SyslogEnabled', 1);

 SET_CONFIG_PARAMETER

 Parameter set successfully

(1 row)

To disable event trapping for syslog, issue the following SQL command:

=> SELECT SET_CONFIG_PARAMETER('SyslogEnabled', 0);

 SET_CONFIG_PARAMETER

 Parameter set successfully

(1 row)

Defining Events to Trap for Syslog

To define events that generate a syslog entry, issue the following SQL command:

=> SELECT SET_CONFIG_PARAMETER('SyslogEvents', 'Event_Name' , 'Event_Name');

 SET_CONFIG_PARAMETER

 Parameter set successfully

(1 row)

Where Event_Name is one of the following events:

 Low Disk Space

-211-

 Operating the Database

 Read Only File System

 Loss Of K Safety

 Current Fault Tolerance at Critical Level

 Too Many ROS Containers

 WOS Over Flow

 Node State Change

 Recovery Failure

 Recovery Error

 Recovery Lock Error

 Recovery Projection Retrieval Error

 Refresh Error

 Refresh Lock Error

 Tuple Mover Error

 Timer Service Task Error

Stale Checkpoint The following example generates a syslog entry for low disk space and recovery
failure:

=> SELECT SET_CONFIG_PARAMETER('SyslogEvents', 'Low Disk Space, Recovery

Failure');

 SET_CONFIG_PARAMETER

 Parameter set successfully

(1 row)

Defining the SyslogFacility to Use for Reporting

The syslog mechanism allows for several different general classifications of logging messages,

called facilities. Typically, all authentication-related messages are logged with the auth (or

authpriv) facility. These messages are intended to be secure and hidden from unauthorized

eyes. Normal operational messages are logged with the daemon facility, which is the collector that

receives and optionally stores messages.

The SyslogFacility directive allows all logging messages to be directed to a different facility than
the default. When the directive is used, all logging is done using the specified facility, both
authentication (secure) and otherwise.

To define which SyslogFacility Vertica uses, issue the following SQL command:

=> SELECT SET_CONFIG_PARAMETER('SyslogFacility' , 'Facility_Name');

Where the facility-level argument <Facility_Name> is one of the following:

 auth uucp (UUCP subsystem)

 authpriv (Linux only) local0 (local use 0)

 cron local1 (local use 1)

 daemon local2 (local use 2)

 ftp (Linux only) local3 (local use 3)

 lpr (line printer subsystem) local4 (local use 4)

-212-

Administrator's Guide

 mail (mail system) local5 (local use 5)

 news (network news
subsystem)

 local6 (local use 6)

 user (default system) local7 (local use 7)

See Also

Event Reporting Examples (page 214) and Configuration Parameters (page 25) in the
Administrator's Guide

Configuring Reporting for SNMP

Configuring Event Reporting for SNMP consists of:

1 Configuring Vertica to enable event trapping for SNMP as described below.

2 Importing the Vertica MIB file into the SNMP monitoring device.

The Vertica MIB file allows the SNMP trap receiver to understand the traps it receives from
Vertica. This, in turn, allows you to configure the actions it takes when it receives traps.

Vertica supports the SNMP V1 trap protocol, and it is located in

/opt/vertica/sbin/VERTICA-MIB. See the documentation for your SNMP monitoring

device for more information about importing MIB files.

3 Configuring the SNMP trap receiver to handle traps from Vertica.

SNMP trap receiver configuration differs greatly from vendor to vendor. As such, the directions
presented here for configuring the SNMP trap receiver to handle traps from Vertica are
generic.

Vertica traps are single, generic traps that contain several fields of identifying information.
These fields equate to the event data described in Monitoring Events (page 205). However,
the format used for the field names differs slightly. Under SNMP, the field names contain no
spaces. Also, field names are pre-pended with ―vert‖. For example, Event Severity becomes
vertEventSeverity.

When configuring your trap receiver, be sure to use the same hostname, port, and community
string you used to configure event trapping in Vertica.

Examples of network management providers:

 HP Software Network Node Manager; openview.hp.com/products/nnm/index.html

 IBM Tivoli

 AdventNet

 Net-SNMP (Open Source)

 Nagios (Open Source)

 Open NMS (Open Source)

Configuring Event Trapping in Vertica

Configuring Vertica to trap events for SNMP consists of:

1 Enabling Vertica to trap events.

2 Defining where Vertica sends traps.

-213-

 Operating the Database

3 Defining which events Vertica traps if you do not want all the events trapped (the default).

Vertica strongly suggests that you trap the Stale Checkpoint event even if you decide to reduce
the number events Vertica traps.

Note: Once you have performed steps 1 and 2 to enable event trapping and identify the
location where traps are sent, Vertica automatically traps the following events: Low Disk
Space, Read Only File System, Loss of K Safety, Current Fault Tolerance at Critical Level, Too
Many ROS Containers, WOS Over Flow, Node State Change, Recovery Failure, and Stale
Checkpoint. Perform step 3 only if you want to redefine the events Vertica traps.

To enable event trapping for SNMP, use the following SQL command:

SELECT SET_CONFIG_PARAMETER('SnmpTrapsEnabled', 1);

To define where Vertica send traps, use the following SQL command:

SELECT SET_CONFIG_PARAMETER('SnmpTrapDestinationsList', 'host_name port

CommunityString');

Where host_name and port identify the computer where SNMP resides, and CommunityString
acts like a password to control Vertica's access to the server.

For example:

SELECT SET_CONFIG_PARAMETER('SnmpTrapDestinationsList', 'localhost 162 public'

);

To define which events Vertica traps, use the following SQL command:

SELECT SET_CONFIG_PARAMETER('SnmpTrapEvents', 'Event_Name, Event_Name');

Where Event_Name is one of the following events:

 Low Disk Space

 Read Only File System

 Loss Of K Safety

 Current Fault Tolerance at Critical Level

 Too Many ROS Containers

 WOS Over Flow

 Node State Change

 Recovery Failure

 Recovery Error

 Recovery Lock Error

 Recovery Projection Retrieval Error

 Refresh Error

 Tuple Mover Error

 Stale Checkpoint

Note: These values are case sensitive.

The following is an example that uses two different event names:

$ SELECT SET_CONFIG_PARAMETER('SnmpTrapEvents', 'Low Disk Space, Recovery

Failure');

-214-

Administrator's Guide

Verifying SNMP Configuration

To create a set of test events that checks SNMP configuration:

1 Set up SNMP trap handlers to catch Vertica events.

2 Test your setup with the following command:

SELECT SNMP_TRAP_TEST();

 SNMP_TRAP_TEST

 Completed SNMP Trap Test

(1 row)

See Also

Configuration Parameters (page 25) in the Administrator's Guide

Event Reporting Examples

Vertica.log

The following example illustrates a Too Many ROS Containers event posted and cleared within
vertica.log:

08/14/08 15:07:59 thr:nameless:0x45a08940 [INFO] Event Posted:

Event Code:4 Event Id:0 Event Severity: Warning [4] PostedTimestamp:

2008-08-14 15:07:59.253729 ExpirationTimestamp: 2008-08-14 15:08:29.253729

EventCodeDescription: Too Many ROS Containers ProblemDescription:

Too many ROS containers exist on this node. DatabaseName: QATESTDB

Hostname: fc6-1.verticacorp.com

08/14/08 15:08:54 thr:Ageout Events:0x2aaab0015e70 [INFO] Event Cleared:

Event Code:4 Event Id:0 Event Severity: Warning [4] PostedTimestamp:

2008-08-14 15:07:59.253729 ExpirationTimestamp: 2008-08-14 15:08:53.012669

EventCodeDescription: Too Many ROS Containers ProblemDescription:

Too many ROS containers exist on this node. DatabaseName: QATESTDB

Hostname: fc6-1.verticacorp.com

SNMP

The following example illustrates a Too Many ROS Containers event posted to SNMP:

Version: 1, type: TRAPREQUEST

Enterprise OID: .1.3.6.1.4.1.31207.2.0.1

Trap agent: 72.0.0.0

Generic trap: ENTERPRISESPECIFIC (6)

Specific trap: 0

.1.3.6.1.4.1.31207.1.1 ---> 4

.1.3.6.1.4.1.31207.1.2 ---> 0

.1.3.6.1.4.1.31207.1.3 ---> 2008-08-14 11:30:26.121292

.1.3.6.1.4.1.31207.1.4 ---> 4

.1.3.6.1.4.1.31207.1.5 ---> 1

.1.3.6.1.4.1.31207.1.6 ---> site01

.1.3.6.1.4.1.31207.1.7 ---> suse10-1

.1.3.6.1.4.1.31207.1.8 ---> Too many ROS containers exist on this node.

.1.3.6.1.4.1.31207.1.9 ---> QATESTDB

-215-

 Operating the Database

.1.3.6.1.4.1.31207.1.10 ---> Too Many ROS Containers

Syslog

The following example illustrates a Too Many ROS Containers event posted and cleared within
syslog:

Aug 14 15:07:59 fc6-1 vertica: Event Posted: Event Code:4 Event Id:0 Event Severity:

Warning [4] PostedTimestamp: 2008-08-14 15:07:59.253729 ExpirationTimestamp:

2008-08-14 15:08:29.253729 EventCodeDescription: Too Many ROS Containers

ProblemDescription:

Too many ROS containers exist on this node. DatabaseName: QATESTDB Hostname:

fc6-1.verticacorp.com

Aug 14 15:08:54 fc6-1 vertica: Event Cleared: Event Code:4 Event Id:0 Event

Severity:

Warning [4] PostedTimestamp: 2008-08-14 15:07:59.253729 ExpirationTimestamp:

2008-08-14 15:08:53.012669 EventCodeDescription: Too Many ROS Containers

ProblemDescription:

Too many ROS containers exist on this node. DatabaseName: QATESTDB Hostname:

fc6-1.verticacorp.com

Monitoring Linux Resource Usage

It is recommended to monitor system resource usage on any or all nodes in the cluster.

Note:

Vertica recommends that you install pstack and sysstat to help monitor Linux resources.

The SYSSTAT package contains utilities for monitoring system performance and usage
activity, such as sar, as well as tools you can schedule via cron to collect performance and
activity data. See the SYSSTAT Web page
http://pagesperso-orange.fr/sebastien.godard/ for details.

The pstack utility lets you print a stack trace of a running process. See the PSTACK man page
http://linux.die.net/man/1/pstack for details.

1 Log in to the database administrator account on any node.

2 Run the top utility

$ top

http://pagesperso-orange.fr/sebastien.godard/
http://linux.die.net/man/1/pstack

-216-

Administrator's Guide

A high CPU percentage in top indicates that Vertica is CPU-bound. For example:

Some possible reasons for high CPU usage are:

 The Tuple Mover runs automatically and thus consumes CPU time even if there are no
connections to the database. If you believe this to be a problem, contact Technical
Support (on page 1).

 The pdflush process (a set of worker threads for writing back dirty filesystem data) is
consuming a great deal of cpu time, possibly driving the load way up. Adding RAM appears
to make the problem worse. Log in to root and change the Linux parameter swappiness to
0.

echo 0 > /proc/sys/vm/swappiness

 Some information sources:

TechRepublic
http://techrepublic.com.com/5206-6230-0.html?forumID=36&threadID=175191&start
=0

Red Hat https://bugzilla.redhat.com/bugzilla/show_bug.cgi?id=150653

Indiana University Unix Systems Support Group
http://www.ussg.iu.edu/hypermail/linux/kernel/0404.3/0744.html

3 Run the iostat utility. A high idle time in top at the same time as a high rate of blocks read in

iostat indicates that Vertica is disk-bound. For example:

$ /usr/bin/iostat

Linux 2.6.9-22.ELsmp (qa0) 07/13/2007

avg-cpu: %user %nice %sys %iowait %idle

 0.83 0.00 0.13 0.02 99.03

Device: tps Blk_read/s Blk_wrtn/s Blk_read

Blk_wrtn

hda 0.37 3.40 10.37 2117723

6464640

sda 0.46 1.94 18.96 1208130

11816472

sdb 0.26 1.79 15.69 1114792

9781840

http://techrepublic.com.com/5206-6230-0.html?forumID=36&threadID=175191&start=0
http://techrepublic.com.com/5206-6230-0.html?forumID=36&threadID=175191&start=0
https://bugzilla.redhat.com/bugzilla/show_bug.cgi?id=150653
http://www.ussg.iu.edu/hypermail/linux/kernel/0404.3/0744.html

-217-

 Operating the Database

sdc 0.24 1.80 16.06 1119304

10010328

sdd 0.22 1.79 15.52 1117472

9676200

md0 8.37 7.31 66.23 4554834

41284840

-218-

Monitoring Vertica Using Ganglia

The Vertica® Analytic Database is integrated with Ganglia, a web-based administration console
and monitoring tool that lets you observe the status of a Vertica cluster and its running databases
from your client's browser.

Ganglia Architecture

Ganglia architecture comprises the components listed in this section.

gmond

The Ganglia MONitor Daemon is a data-collecting agent that must be installed on every node in a
cluster. Gmond gathers metrics about the local node and sends information to other nodes via
XML to a browser window. Gmond is portable and collects system metrics, such as CPU, memory,

disk, network and process data. The Gmond configuration file /etc/gmond.conf controls the

Gmond daemon and resides on each node where Gmond is installed.

gmetad

The Ganglia METAdata Daemon is a data-consolidating agent that provides a query mechanism
for collecting historical information about groups of machines. Gmetad is typically installed on a
single, task-oriented server (the monitoring node), though very large clusters could require more
than one Gmetad daemon. Gmetad collects data from other Gmetad and Gmond sources and
stores their state in indexed RRDtool (round-robin) databases, where a Web interface reads and

returns information about the cluster. The Gmetad configuration file /etc/gmetad.conf

controls the Gmetad daemon and resides on the monitoring node.

RRDtool

RRDTool is an open-source data logging and graphing system that Ganglia uses to store the
collected data and to render the graphs for Web-based reports. Cron jobs that run in the
background to collect information from Vertica monitoring system tables are stored in the RRD
database.

PHP-based Web interface

The PHP-based Web interface comprises a collection of scripts that are used by the Ganglia Web
reporting front end and by the Vertica extensions. The Web server starts these scripts, which then
collect Vertica-specific metrics from the RRD database and generate the XML graphs. These
scripts provide access to Vertica health across the cluster, as well as on each host.

Web server

The Web server uses lighttpd, a lightweight http server and can be any Web server that supports
PHP, SSL, and XML. The Ganglia web front end displays the data stored by Gmetad in a graphical
web interface using PHP.

Advanced tools

Gmetric, an executable, is added during Ganglia installation. Gmetric provides additional statistics
and is used to store user-defined metrics, such as numbers or strings with units.

The following diagram illustrates Ganglia architecture on a four-node cluster.

-219-

 Operating the Database

Ganglia Prerequisites

To use the Vertica-Ganglia monitoring package, the following must be installed on the server:

 Vertica® Analytic Database (available as a download on the Vertica Downloads page
http://www.vertica.com/v-zone/download_vertica)

 Required package dependencies for all Linux distributions:

 php5

 php5-gd

 ganglia-gmetad

 ganglia-gmond

 rrdtool

Other packages might be required for Ganglia to work properly. These dependencies come
preinstalled on most Linux distributions, though some could be missing on older Linux distributions
and use php4 instead of php5. See Required Packages (page 220).

This guide describes the primary required packages and dependencies, but it cannot account for
all possible missing dependencies on all distributions. In the event the packages cannot be
installed, the install script fails with an error message. See Installing the Vertica Monitoring
Package (page 221) for information on obtaining missing dependencies.

http://www.vertica.com/v-zone/download_vertica

-220-

Administrator's Guide

What's in the Package

The Vertica Monitoring package contains the following files:

 install-vertica-ganglia — Provided as an assistant to the installer for the prerequisites

packages. This script attempts to install dependencies from your configured package
repositories or from a small set of packages available from vertica.com.

 vertica-ganglia-<version>.<arch>.rpm — The distribution-specific version of the

vertica-ganglia monitoring component.

Important Notes:

Before you download the Vertica Monitoring package, make sure the version of the rpm matches
the Vertica installation on your server. For example:

 Vertica 4.1.x databases require vertica-ganglia-4.1.x (ganglia only package)

 Vertica 4.0.x databases require vertica-ganglia-4.0.x (ganglia only package)

 Vertica 3.5.x databases require vertica-ganglia-3.5.x (ganglia only package)

 Vertica 3.0.x databases require vertica-web-3.0.x (ganglia-webmin package)

Note: See Upgrading the Vertica Monitoring Package (page 232) for required upgrade
paths, particularly if you are upgrading from the ganglia-webmin package to a ganglia-only
package.

Before you install the Vertica Monitoring Package, you must install php5, if it is not installed
already. See the Required Packages (page 220).

RHEL5 users: A Red Hat subscription is required to access and download dependencies from the
Red Hat site. See the Red Hat Web site http://www.redhat.com/licenses/rhel_us_3.html for
details.

Required Packages

A number of dependencies must be installed before you can install the vertica-ganglia

package, either from your distribution's package repository or manually.

http://www.redhat.com/licenses/rhel_us_3.html

-221-

 Operating the Database

IMPORTANT!

If the server does not have an Internet connection at the time you install the

vertica-ganglia package, you must obtain the required dependencies

manually, using the package manager for your distribution (yum on Red Hat, for
example, or yast on SUSE) before you proceed. Read Servers without Internet
Access (page 224) before you begin the install process.

Vertica does not provide installation instructions for the individual packages. See
their respective Web sites for details. Some links have been provided for your
convenience and have been validated at the time of publication. Note that these
links could change over time.

RHEL5 users: A Red Hat subscription is required to access and download
dependencies from the Red Hat site. See the Red Hat Web site
http://www.redhat.com/licenses/rhel_us_3.html for details.

The following top-level package dependencies are required for all Linux distributions and should
be installed in the order listed. Additional package dependencies could be required, depending on
how the top-level package was built.

 php5

 php5-gd

 ganglia-gmetad

 ganglia-gmond

 rrdtool

Due to variations in the exact version available for each Linux distribution, specific version
numbers are not listed for each package. Vertica recommends that you install the latest version for

your distribution. The provided install-vertica-ganglia script attempts to install the

dependencies automatically, if possible. However due to your specific repository configuration,
you might need to install additional packages manually. This guide makes some attempt to help
you resolve those missing dependencies but cannot account for every possible scenario on all
distributions.

In general, the basic flow for resolving dependencies is to install php5, run the

install-vertica-ganglia script (except on SuSE), install missing dependencies that the

script could not resolve, and run the install-vertica-ganglia script again.

For distribution-specific instructions, see the following topics:

 RHEL5 (page 222)

 SUSE SLE 10 and 11 (page 223)

Installing the Vertica Monitoring Package

On all Linux distributions, the following is the basic installation path:

1 Obtain the required packages/dependencies.

2 Install the Vertica Monitoring Package.

http://www.redhat.com/licenses/rhel_us_3.html

-222-

Administrator's Guide

3 Install gmetad and gmond on the monitoring node.

4 Install gmond on all nodes in the Vertica cluster.

IMPORTANT!

To download the Vertica Monitoring Package and readily access the required
packages/dependencies, the distribution-specific instructions that follow
assume a server with Internet access. If the server does not have an Internet
connection, see Servers without Internet Access (page 224) and then refer to
the instructions for your particular distribution.

Plan to install the Vertica Monitoring package on the same node on which
Vertica runs (the monitoring node).

RHEL5

Plan to install the Vertica Monitoring package on the same node on which Vertica runs (the
monitoring node).

Installing the Vertica Monitoring package:

1 IMPORTANT: Before you proceed, read Ganglia Prerequisites (page 219) and Required
Packages (page 220).

2 Log in as root or sudo on the target server:

su - root

3 Download the Vertica Monitoring package

(vertica-ganglia-<version>.<arch>.tar.gz) from the Vertica Downloads page

http://www.vertica.com/v-zone/download_vertica and save the package to a location on

the server; for example to /tmp.

Note: Scroll to the bottom of the Downloads page to the section, "Other Software for Use with
Vertica Analytic Database 4.1"

4 Change directory to the location of the rpm:

cd /tmp

5 Extract the Vertica Monitoring package:

tar xzvf vertica-ganglia-<version>.<arch>.tar.gz

In the above command, substitute the version and architecture variables with file information
from the download; for example:

tar xzvf vertica-ganglia-4.1.xx.x86_64.RHEL5.tar.gz

6 Run the install-vertica-ganglia script to aid the installer in finding and installing any

missing dependencies.

./install-vertica-ganglia vertica-ganglia-<version>.<arch>.rpm

The above command:

 Installs the Ganglia Web front end.

http://www.vertica.com/v-zone/download_vertica

-223-

 Operating the Database

 Installs gmetad and gmond on the monitoring node.

 Creates a /tmp/vertica-web-download directory on the monitoring node, which

contains files you need to perform additional installation and configuration operations,
including:

– ganglia-gmetad.rpm, installer package for the data consolidator

– ganglia-gmond.rpm, installer package for the data collector

7 Verify that the packages are installed:

rpm -qa | grep ganglia

Output should be:

ganglia-gmond

ganglia-gmetad

vertica-ganglia

8 If Step 6 found missing dependencies that the script could not resolve, install those packages
manually. Refer to Required Packages (page 220), and then run the script again:

./install-vertica-ganglia vertica-ganglia-<version>.<arch>.rpm

The following is an example of a failed dependency:

error: Failed dependencies:

 ganglia-gmetad is needed by vertica-ganglia-1.1.0-1.noarch

 ganglia-gmond is needed by vertica-ganglia-1.1.0-1.noarch

 php is needed by vertica-ganglia-1.1.0-1.noarch

 php-gd is needed by vertica-ganglia-1.1.0-1.noarch

9 Proceed to Configuring Ganglia (page 225).

SuSE SLE 10 and SLE 11

Several packages are not readily available for SuSE SLE 10 and 11 distributions. You can obtain
them from your distribution's media or from publicly-available repositories. See the searchable list
on the openSUSE Build Service http://software.opensuse.org/search Web page.

Plan to install the Vertica Monitoring package on the same node on which Vertica runs (the
monitoring node).

Installing the Vertica Monitoring package:

1 IMPORTANT: Before you proceed, read Ganglia Prerequisites (page 219) and Required
Packages (page 220).

2 Log in as root or sudo on the target server:

su - root

3 Download the Vertica Monitoring package

(vertica-ganglia_<version>.<arch>.tar.gz) from the Vertica Downloads page

http://www.vertica.com/v-zone/download_vertica and save the package to a location on

the server; for example to /tmp.

Note: Scroll to the bottom of the Downloads page to the section, "Other Software for Use with
Vertica Analytic Database 4.0"

4 Change directory to the location of the rpm:

5 # cd /tmp

http://software.opensuse.org/search
http://www.vertica.com/v-zone/download_vertica

-224-

Administrator's Guide

6 Install the required dependencies in the following order:

 libapr1

 rrdtool

 libmm14-1

 php5

 php5-gd

 php5-fastcgi

 libconfuse0

 libganglia

 ganglia-gmond

 ganglia-gmetad

7 Extract the Vertica Monitoring package:

tar xzvf vertica-ganglia-<version>.<arch>.tar.gz

In the above command, substitute the version and architecture variables with file information
from the download; for example:

tar xzvf vertica-ganglia-4.0.12.x86_64.RHEL5.tar.gz

8 Install the Vertica Monitoring package.

rpm -Uvh vertica-ganglia-<version>.<arch>.tar.gz

9 Proceed to Configuring Ganglia (page 225).

Servers without Internet Access

IMPORTANT!

This procedure is for servers that do not have an Internet connection; thus the
required packages must be obtained manually, as described in this topic.

Vertica does not provide installation instructions for the individual packages. See
their respective Web sites for details. Links are provided below for your
convenience, though they could change between Vertica releases.

RHEL4 and RHEL5 users: A Red Hat subscription is required to access and
download dependencies from the Red Hat site. See the Red Hat Web site
http://www.redhat.com/licenses/rhel_us_3.html for details.

Plan to install the Vertica Monitoring package on the same node on which Vertica runs (the
monitoring node).

Installing the Vertica Monitoring package on a server without Internet access:

1 IMPORTANT: Before you proceed, read Ganglia Prerequisites (page 219) and Required
Packages (page 220).

http://www.redhat.com/licenses/rhel_us_3.html

-225-

 Operating the Database

2 On any workstation with Internet access, download the dependencies for your distribution and
transfer them to the target system (the monitoring node).

Note: gmond is required on all nodes, so make note of the directory to which you downloaded
the package; for example, /tmp.

3 Log in as root or sudo on the target server:

su - root

4 Change directory to the location of the rpm:

cd /tmp

5 Using your distributions package management system, install the dependencies in the
required order. For example:

 php5

 php5-gd

 ganglia-gmetad

 ganglia-gmond

 rrdtool

6 Extract the vertica-ganglia package:

tar xzf vertica-ganglia-<version>.<arch>.tar.gz

7 Install the vertica-ganglia package:

rpm –Uvh vertica-ganglia-<version>.<arch>.rpm

8 Verify that the packages are installed:

./install-vertica-ganglia vertica-ganglia-<version>.<arch>.rpm

9 If Step 7 found missing dependencies, you must install those packages now. Refer to
Required Packages (page 220), and then run the script again:

./install-vertica-ganglia vertica-ganglia-<version>.<arch>.rpm

The following is an example of a failed dependency:

error: Failed dependencies:

 ganglia-gmetad is needed by vertica-ganglia-1.1.0-1.noarch

 ganglia-gmond is needed by vertica-ganglia-1.1.0-1.noarch

 php is needed by vertica-ganglia-1.1.0-1.noarch

 php-gd is needed by vertica-ganglia-1.1.0-1.noarch

10 Proceed to Configuring Ganglia (page 225).

Configuring Ganglia

In the previous installation procedure, the final step installed gmetad and gmond on the monitoring
node.

During configuration, you:

1 Install gmond (page 226) on all nodes in the Vertica cluster

2 Modify the gmetad configuration file (page 226) on the monitoring node

3 Modify the gmond configuration file (page 227) on the monitoring node and on all nodes in
the Vertica cluster.

-226-

Administrator's Guide

Installing Gmond on All Nodes

IMPORTANT!

gmond must be installed on every node in the cluster.

1 On the monitoring node, change directory to the location of the ganglia-gmond package (or

to the location where you manually did the install):

cd /tmp/vertica-web-downloads

2 Copy the ganglia-gmond package to all nodes in the Vertica cluster:

scp ./ganglia-gmond.rpm <hostname>:/tmp/ganglia-gmond.rpm

3 Install gmond on all nodes:

rpm –Uvh ./ganglia-gmond.rpm

The configuration file gmond.conf is created in /etc.

Configuring Gmetad on the Monitoring Node

The role of gmetad is to request summary information from gmond and save it. The saved data is
used by the Web interface to produce the graphs, and the behavior of gmetad is controlled by a

single configuration file, /etc/gmetad.conf.

The following procedure assumes you have already installed the Vertica Monitoring package
(page 221).

1 On the monitoring node, use the text editor of your choice to open the gmetad.conf file:

vi /etc/gmetad.conf

Note: The path on SuSE is /etc/ganglia.

2 Scroll or search for the keyword data_source and specify at least one data source name to

include at least the monitoring node.

The data_source keyword specifies the host where tcp_accept_channel is defined and its port.
The format of the data_source line is:

"<data source name>" <host 1> <host 2> .. <host n>. For example:

data_source "Vertica_Cluster" 192.168.0.1 192.168.0.2 192.168.0.3 192.168.0.4

 Vertica recommends that you use IP addresses instead of host names.

 You can list only a few hosts in the data_source setting. Listing numerous hosts does not

mean that gmetad polls all of them for data. If gmetad cannot get data from the first host in
the list you provide, it tries the next one. The order in which you list hosts does not matter.

 If you do not specify a port number, gmetad assumes the default Ganglia port is 8649.

 The data source name is case sensitive.

3 Add gmetad to the list of services to run:

/sbin/chkconfig --add gmetad

4 Configure the system-run levels on which to start gmetad:

/sbin/chkconfig --level 2345 gmetad on

5 Verify the configuration:

/sbin/chkconfig --list gmetad

-227-

 Operating the Database

GMETAD 0:off 1:off 2:on 3:on 4:on 5:on 6:off

6 Restart gmetad to make the changes effective:

/etc/init.d/gmetad restart

Note: If gmetad is not already running, the shutdown phase shows a FAILED message, which
you can safely ignore.

Configuring Gmond on All Nodes

The role of gmond is to collect, send, and receive data. Once gmond has been installed on each
node in the Vertica cluster, edit the configuration file on each node, as described in this section.

TIPS:

 You can edit gmond.conf on each node, or you can edit the file on the monitoring node and

then copy gmond.conf to /etc on all other nodes in the cluster.

 On SuSE systems, the path is /etc/ganglia/.

 Remember to restart the service each time you edit the configuration file.

About the gmond.conf file

There are three important settings in the gmond.conf file. For details on all available settings,

refer to the gmond.conf Linux man page http://linux.die.net/man/5/gmond.conf, which is
documented below, in part, for your convenience.

 udp_send_channel. You can define as many udp_send_channel sections as you like

within the limitations of memory and file descriptors. If gmond is configured to be mute, then

these sections are ignored. The udp_send_channel has a total of five attributes:

mcast_join, mcast_if, host, port, and ttl.

Note: All nodes require a udp_send_channel section, which notifies gmond where to send

the data it has collected about the local node – even if the data it collects is about itself only.
You can configure this setting to broadcast the information or send it to a particular host and
port. If you specify a particular host, you might want all nodes to send data to the same
location. You can also have each node send the same information to more than one location
for redundancy.

 udp_recv_channel. You can specify as many udp_recv_channel sections as you like

within the limits of memory and file descriptors, but at least one node must have a

udp_recv_channel section. The udp_recv_channel section has the following attributes:

mcast_join, bind, port, mcast_if, and family.

Data received by this section forms a snapshot of the state of all nodes. You can configure this
setting to receive the data via broadcast or to receive it on a particular IP interface and port.
More than one node could be receiving the same data.

If Ganglia is in use on multiple clusters in your network, you might need to filter which hosts are

being reported on by configuring the udp_recv_channel block in the gmond.conf file to

use an access control list. For example:

udp_recv_channel {

http://linux.die.net/man/5/gmond.conf

-228-

Administrator's Guide

 mcast_join = 239.2.11.71

 bind = 239.2.11.71

 port = 8649

 acl {

 default = "deny"

 access {

 ip = 192.168.0.4

 mask = 32

 action = "allow"

 }

 }

}

 tcp_accept_channel. You can specify as many tcp_accept_channel sections as you

like within the limitations of memory and file descriptors. If gmond is configured to be mute,

then these sections are ignored. The tcp_accept_channel has the following attributes:

bind, port, interface, family, and timeout.

In order to get the most use out of Ganglia, at least one node that has udp_recv_channel

defined must have a tcp_accept_channel setting, as well. This setting describes a

particular IP interface and port where a query can be sent. gmond returns an XML string of the
summary information it has collected.

Edit the gmond.conf file

Perform the following steps on each node where gmond is installed, starting with the monitoring
node.

1 On the monitoring node, use the text editor of your choice to open the gmond.conf file:

vi /etc/gmond.conf

2 Change the name of the cluster to the (case-sensitive) name you specified in gmetad.conf.

cluster {

name = "Vertica_Cluster"

owner = "unspecified"

latlong = "unspecified"

url = "unspecified"

}

3 Add gmond to the list of services to run:

/sbin/chkconfig --add gmond

4 Configure the system-run levels on which to start gmond:

/sbin/chkconfig --level 2345 gmond on

5 Verify the configuration:

/sbin/chkconfig --list gmond

GMOND 0:off 1:off 2:on 3:on 4:on 5:on 6:off

6 Restart gmond to make the changes effective:

/etc/init.d/gmond restart

Note: If gmond is not already running, the shutdown phase shows a FAILED message, which
you can safely ignore.

-229-

 Operating the Database

7 Run the following command to return an XML description of the state of the nodes in your
cluster:

telnet localhost 8649

You can also use localhost 8651.

8 Edit gmond.conf on each node, or you can edit the file on the monitoring node and then copy

gmond.conf to /etc on all other nodes in the cluster.

Tip: Restart the service each time you edit the configuration file.

Multicast IP Support

The server and network must be multicast-enabled to run Ganglia. To check, run

/sbin/ifconfig on the server. If the network interface is flagged with MULTICAST, it is

enabled.

If your machines are all on the same switch

If your machines are all on the same switch, proceed to Edit the gmond.conf file (page 228).

Note: Vertica recommends that all machines be on the same switch.

If the machines in the cluster are separated by a router

If the machines in the cluster are separated by a router, you must set the multicast Time-To-Live

(TTL) option in /etc/gmond.conf higher than the default of 1.

1 Edit the mcast ttl setting to be one greater than the number of hops (routers) between the

hosts.

2 Make sure that the routers are configured to pass along the multicast traffic. See the Ganglia
documentation http://sourceforge.net/apps/trac/ganglia/wiki for details.

Configuring the Vertica Monitoring Package

This section describes how to configure the Vertica-specific extension files that are required for
the Web-reporting front end.

Configuring and Starting lighttpd

The Vertica Monitoring package includes lighttpd, a lightweight http server. The package also

installs the startup script verttpd to /etc/init.d.

1 On the node where gmetad is installed (the monitoring node), copy the lighttpd.conf file

into the Vertica user directory for each user responsible for running the service, for example
dbadmin:

cp /opt/vertica/www/conf/lighttpd.conf /opt/vertica/config/users/dbadmin

2 Start the service:

/etc/init.d/verttpd start

By default, the server starts on port 9090, but you can modify this setting in the lighttpd
configuration file.

3 Access the URL to verify if the lighttpd is installed

http://xx.xx.xx.xx:9090/

http://sourceforge.net/apps/trac/ganglia/wiki
http://xx.xx.xx.xx:9090/

-230-

Administrator's Guide

where x is IP address (or host name) of the machine. Alternatively, specify the machine IP
address on which lighttpd is installed.

If you encounter issues with lighttpd installation, see the Lighttpd documentation
http://redmine.lighttpd.net/projects/lighttpd/wiki.

When the browser finishes loading, it displays the Vertica Console page with a link to
Monitoring Tools (Ganglia).

Configuring Vertica Extension Files

Before you can monitor Vertica, you need to configure the Vertica extension files

vertica-dashboard.xml and verticadefines.php. These file reside in the

/opt/vertica/www/htdocs/ganglia/verticaDashboard folder.

Note: The default settings in verticadefines.php are adequate in most environments.

Configuration is now complete, and you can monitor the health of your Vertica cluster by Clicking
Vertica Monitoring from the Console page.

Edit the vertica-dashboard.xml file

The following procedure assumes you are still in the

/opt/vertica/www/htdocs/ganglia/verticaDashboard folder.

1 Using the text editor of your choice, open vertica-dashboard.xml:

vi vertica-dashboard.xml

2 Configure the following variables:

 database. Insert an XML tag that specifies the name of the database to be monitored,

along with the password, if required. These variables are case sensitive. For example:

<databases>

 <database name="YourDBName" password=""></database>

</databases>

 hostdetails. Specify complete details about the host that maps the host name used by

both Vertica and Ganglia:

– Name, exactly as known by Vertica

– Local IP address

– Public IP address

– Fully-qualified domain name (this is the name of the host as understood by Vertica)

Ensure that the information is correct or Vertica PHP scripts fails to locate the RRD
databases and cannot display statistics. The following is an example.

<clusterdetails>

 <hostdetails name="host01" localip="10.0.0.1"

publicip="xx.xx.xx.xx"

 fqdn="host01.vertica.com"></hostdetails>

</clusterdetails>

You need a <hostdetails/> block for each host in the cluster. If the hosts are on a

private network, the hostdetails can be the privateip. List private network details

under localip and public network details under publicip.

http://redmine.lighttpd.net/projects/lighttpd/wiki

-231-

 Operating the Database

 gmetric. This executable is added during Ganglia installation and is used to store the data

of the user-defined metrics:

<gmetric path="/usr/bin/gmetric"></gmetric>

 cron-hostname. Use the same name that Ganglia uses to refer to this node; for example:

<cron-hostname name="host01.vertica.com"></cron-hostname>

Vertica cron jobs run on the machine where the Web front end runs.

cron-hostname collects information about Vertica from system tables in Vertica.

To identify the name ganglia refers to on the node, check the

/var/lib/ganglia/rrds/<cluster_name> folders for a list of node names. Use the

monitoring node name in the cron-hostname setting.

 debug. Set the debug enable to 1 if you want to enable the logging for cron jobs and for

PHP scripts, specify the directory where the logs are collected, and provide the path where
the lighttpd user has the sufficient privileges; for example:

<debug enable="1" path="/tmp/vertica-ganglia/"></debug>

 fqdn: Use the ganglia name identified as above with (or without) domain name

qualification.

3 Log in as dbadmin (not root or the system returns errors), and verify that gmond is running on

all the hosts where Vertica is installed and that information about all hosts is present in order to
view the complete statistics about all the hosts:

$ /opt/vertica/bin/admintools –t list_db –d database_name

Note: An optional --no-log option, which must appear before -t, allows the Administration

Tools to run silently (i.e., without logging anything). This setting is useful if, for example, you
are running Ganglia dashboard scripts that run the Administrative Tools scripts frequently,

which could cause the size of the adminTools-dbadmin.log file to rapidly increase. If you

add the --no-log switch to vertica-dashboard.xml, logging is disabled.

4 Save and exit vertica-dashboard.xml.

Edit the verticadefines.php file [Optional]

This procedure is optional and included in the event you decide to edit the

verticadefines.php file. In most environments, the default settings are adequate.

1 Using the text editor of your choice, open verticadefines.php:

vi verticadefines.php

2 Configure the following variables.

 vertica_path. Location of the Vertica installation with a default value of

/opt/vertica/.

 admintools_path. Location of the admintools installation with a default value of
/opt/vertica/bin/admintools.

 gangliadefault_url. URL where the default Ganglia PHP scripts run; for example,

/ganglia. The gangliadefault_url setting needs to be changed only if the defaults

are not used.

 refresh_time. Time in seconds after which the Web page refreshes and displays Vertica

statistics. The default is 300 seconds (5 minutes).

-232-

Administrator's Guide

3 Save and exit verticadefines.php.

Add a cron job

In this procedure, create a cron job, which collects data from Vertica by running queries against
system tables and returning system statistics in a graphical format.

1 Log in as the DBA user (not as root):

su dbadmin

2 Using the text editor of your choice, insert the following line into the crontab for the DBA user:

crontab –e

3 Add the following line.

IMPORTANT! Despite how the following code fragment appears in the HTML or PDF output of
this document, it is one long line that must not contain returns. If you copy the code from this
document, paste it first into the text editor of your choice and remove all carriage returns before
you add the line to your cron job. Also manually delete and retype the dash between
vertica-dashbard to prevent the dash from becoming UTF-8 encoded.

*/1 * * * * php /opt/vertica/www/htdocs/ganglia/verticaDashboard/

cronjobs/vertica-dashboard.php -i /opt/vertica/www/htdocs/ganglia/

verticaDashboard/ -c /opt/vertica/www/htdocs/ganglia/

verticaDashboard/vertica-dashboard.xml >

/tmp/vertica-ganglia/cronlogs.log 2>&1

The cron job is now configured to collect data from Vertica in one-minute increments. The -i

switch represents the location of verticaDashboard, and the -c switch represents the location of

the configuration file.

You are now ready to use Ganglia to monitor your Vertica cluster.

Upgrading the Vertica Monitoring Package

IMPORTANT

You cannot upgrade the Vertica-Ganglia Monitoring Package from the vertica-web
package to the vertica-ganglia package

(vertica-web-3.0.0-20090511050007.x86_64.RHEL5.rpm to

vertica-ganglia-4.0.5-20091105151816.x86_64.RHEL5.rpm).

The vertica-web rpm was the Webmin/Ganglia combination rpm that was introduced in
Vertica 3.0, but in Vertica 3.0.7, the Ganglia and Webmin packages were separated into
separate installation packages.

If you have the Vertica 3.0.7 Ganglia rpm installed, you can successfully upgrade to 4.0
Ganglia because it is a Ganglia-to-Ganglia upgrade, not a Webmin/Ganglia-to-Ganglia
upgrade.

If you installed Ganglia after you installed Vertica 3.0.7:

Follow the installation instructions provided in Installing the Vertica Monitoring Package (page
221).

-233-

 Operating the Database

If you installed Ganglia before you installed Vertica 3.0.7:

1 Back up the vertica-dashboard.xml file by copying the file to a separate directory, such

as tmp:

cp /opt/vertica/www/htdocs/ganglia/verticaDashboard/vertica-dashboard.xml

/tmp

2 Uninstall the webmin-ganglia combined rpm; for example:

rpm --erase vertica-web-<version>.<arch>.rpm

Note: In the above command, replace <version> with the current version of the rpm and

<arch> with your system architecture (e.g., x86_64.RHEL5).

3 Download the current Ganglia rpm from the Vertica Download Web site
http://www.vertica.com/v-zone/download_vertica.

4 Install the Vertica-Ganglia rpm by following the instructions provided in Installing the Vertica
Monitoring Package (page 221).

5 Restore the vertica-dashboard.xml file; for example:

cp /tmp/vertica-dashboard.xml

/opt/vertica/www/htdocs/ganglia/verticaDashboard

Uninstalling the Vertica Monitoring Package

Depending on which version of the Ganglia package you installed, choose one of the following
paths:

If you installed the Webmin-Ganglia combined rpm (vertica-web) provided in Vertica 3.0:

rpm --erase vertica-web-<version>.<arch>.rpm

In the above command, replace <version> with the version of the rpm (for example,

3.0.0-20090511050007) and <arch> with your system architecture (for example,

x86_64.RHEL5).

If you installed Vertica-Ganglia rpm (vertica-ganglia) provided in Vertica 3.0.7 or later:

rpm --erase vertica-ganglia-<version>.<arch>.rpm

In the above command, replace <version>.<arch> with the version of the rpm and your

system architecture; for example, vertica-ganglia-4.0.12.x86_64.RHEL5.tar.gz.

Recovering the Database
Recovering a database can consist of any of the following:

 Restarting Vertica on a Host (page 247).

 Restarting the database (page 248).

 Recovering the Cluster from a Backup (page 251).

 Replacing Failed Disks (page 285).

 Copying a Database to Another Cluster (page 258).

 Exporting a Catalog (page 251) for support purposes.

http://www.vertica.com/v-zone/download_vertica

-234-

Administrator's Guide

You can monitor a recovery (page 251) in progress by viewing log messages posted to the

vertica.log file on each host.

See Also

Failure Recovery (page 235).

-235-

Failure Recovery

Failure recovery is the process of restoring the database to a fully-functional state after one or
more nodes in the system has experienced a software or hardware related failure. Vertica
recovers nodes by querying replicas of the data stored on other nodes. For example, a hardware
failure could cause a node to lose database objects or to miss changes made to the database
(INSERTs, UPDATEs, and so on) while offline. When the node comes back online, it recovers lost
objects and catches up with changes by querying the other nodes.

Vertica uses the concept of K-Safety for failure recovery. The K value represents the maximum
number of nodes in a database that can fail and recover with no loss of data. In Vertica, the value
of K can be zero (0), one (1), or two (2). The Physical Schema design must meet certain
requirements. To create designs that are K-Safe, Vertica recommends using the Database
Designer.

The following table illustrates the number of nodes that can be down when the value of K is one (1)
or two (2).

K Value Nodes Nodes DOWN State of Database

1 3 or more 0 Safe.

1

2 Unsafe. Automatic shutdown.

2 5 or more 0 Safe.

1

2

3 Unsafe. Automatic shutdown.

Note: You can monitor the cluster state through the View Database Cluster state menu
option.

Recovery Scenarios

Recovery comes into play when a node or the database is started. Depending upon how the node
or database was shut down, there are three possibilities for a K-Safe database:

 Recovery after failure of up to K Nodes: This means that either one node has failed, for a
database with a K value of one (1), or as many as two nodes have failed, for a database with a
K value of two (2). Even in this state, the surviving 'UP' nodes of the database enable it to be
fully operational and available for commands. The failed nodes can be restarted through the
Administration Tools (page 336) using the Restart Vertica on host (page 341) option. The
nodes being restarted show a status of ‗RECOVERING‘ while they rebuild some of the data
from the remaining nodes and, once finished, transition to an UP status. Transactions can
continue to commit during the recovery process, except for a short period at the end of the
recovery.

-236-

Administrator's Guide

 Recovery after a Clean Shutdown: The database had been shut down cleanly via the
Administration Tools Stop Database option. In this case, the database should be restarted
using the Start Database (page 248) option. Upon restart all nodes that were 'UP' at the time
of shutdown immediately transition to 'UP'. It is possible that at the time of shutdown, the
database could have had at most K(1) or K(2) nodes down. These nodes go through the
'RECOVERING' state as described in 'Recovery after failure of up to K nodes" case above.

 Recovery after an Unclean Shutdown (Manual Recovery): The database was not shut
down cleanly, which means that the database lost more than K nodes and possibly did not
write all the data from the WOS to disk. This could happen due to an various reasons; for
example:

 An unexpected event, such as a power failure that causes all nodes to reboot

 Vertica processes on the nodes exited due to a software or hardware failure

 Additional nodes failed during recovery, violating k-safety

When the database is started through the Administration Tools Start Database option,
recovery determines that a normal startup is not possible. It goes on to determine a point in
time in which the data was consistent on all nodes. This is called the Last Good Epoch. As part
of Start Database processing, the administrator is prompted to accept recovery with the
suggested epoch. If accepted, the database recovers and any data changes made after the
Last Good Epoch are lost. If not accepted, startup is aborted and the database is not started on
any of the nodes.

Instead of accepting the given epoch, the administrator can instead choose to recover from a
backup (page 251) or select an epoch for an even earlier point using the Roll Back Database
to Last Good Epoch option in the Administration Tools Advanced Menu. This is useful in
special situations, for example if the failure occurs during a batch of loads, for which it is easier
to go back to the beginning of the batch, rather than starting in the middle, even though some
of the work must be repeated. In most scenarios, it is sufficient and recommended to accept
the given epoch.

Notes

 In Vertica 4.1, the default for the HistoryRetentionTime configuration parameter changed

to 0, which means that Vertica only keeps historical data when nodes are down. This default
setting effectively prevents the use of the Administration Tools 'Roll Back Database to Last
Good Epoch' option because the AHM remains close to the current epoch and a rollback is not
permitted to an epoch prior to the AHM. If you rely on the Roll Back option to remove recently
loaded data, consider setting a day-wide window for removing loaded data; for example:

=> SELECT SET_CONFIG_PARAMETER ('HistoryRetentionTime', '86400');

See Epoch Management Parameters (page 30) in the Administrator's Guide.

 Starting in 4.0, manual recovery is possible even if up to K nodes are out of commission; for
example, physically removed for repair or not reachable at the time of recovery. Once the
nodes are back in commission, they recover and rejoin the cluster, as described in the
"Recovery after failure of up to K nodes" section above.

 IMPORTANT: When a node is down, it can take a full minute or more for the Vertica processes
to time out during its attempt to form a cluster when manual recovery is needed. Wait
approximately one minute until the system returns the manual recovery prompt. Do not press
CTRL-C during database startup.

-237-

 Operating the Database

For information on troubleshooting recovery problems, refer to the following sections in the
Troubleshooting Guide:

 Startup Problems (page 241)

 Shutdown Problems (page 237)

See Also

High Availability and Recovery in the Concepts Guide.

Shutdown Problems

A Database shuts down when one of the following events occurs:

 The administrator uses the Stop Database (page 338) command.

 The cluster becomes unsafe and the database shuts down to prevent data loss.

If a problem prevents the database from shutting down, the Administration Tools display a dialog
containing the following error message:

Database ... did not appear to stop...

The message is followed by a description of the problem. This section describes some of the
known problems that can occur when stopping a database.

... large moveout is in progress

If there is a Tuple Mover operation in progress, the Administration Tools displays a message
similar to the one shown below:

This particular message indicates that the Tuple Mover needs more time to complete a moveout
operation, which is an internal session. (See Managing Sessions (page 313) in the
Administrator's Guide for more information.)

Note: Vertica Systems, Inc. recommends that you wait as long as possible before taking
action. You can cause data loss by, for example, interrupting a database that is still performing
a moveout.

1 If you cannot wait any longer, disconnect and select Advanced > Stop Vertica on Host (page
347) from the Administration Tools.

2 If Stop Vertica on Node fails, select Advanced > Killing a Vertica Process on Host (page
348).

This forces the cluster to go through recovery at startup.

-238-

Administrator's Guide

... users are connected

Error

If users are connected during shutdown operations, the Administration Tools displays a message
similar to the following:

 Database Stock_Schema did not appear to stop in the allotted time.

 NOTICE: Cannot shut down while users are connected

 shutdown

 Shutdown: aborting shutdown

 (1 row)

 If you need to force a database shutdown, use the

 'Stop Vertica on Node' command in the Advanced menu,

 selecting the appropriate nodes to stop.

Description

The message indicates that there are active user connections (sessions). See Managing
Sessions (page 313) in the Administrator's Guide for more information.

Resolution

The following examples were taken from a different database.

1 To see which users are connected, connect to the database and query the SESSIONS

system table described in the SQL Reference Manual. For example:

=> \pset expanded

Expanded display is on.

=> SELECT * FROM SESSIONS;

 -[RECORD 1]

 node_name | site01

 user_name | dbadmin

 client_hostname | 127.0.0.1:57141

 login_timestamp | 2009-06-07 14:41:26

 session_id | rhel4-1-30361:0xd7e3e:994462853

 transaction_start | 2009-06-07 14:48:54

 transaction_id | 45035996273741092

 transaction_description | user dbadmin (select * from session;)

 statement_start | 2009-06-07 14:53:31

 statement_id | 0

 last_statement_duration | 1

 current_statement | select * from sessions;

 ssl_state | None

 authentication_method | Trust

 -[RECORD 2]

 node_name | site01

 user_name | dbadmin

 client_hostname | 127.0.0.1:57142

 login_timestamp | 2009-06-07 14:52:55

 session_id | rhel4-1-30361:0xd83ac:1017578618

 transaction_start | 2009-06-07 14:53:26

 transaction_id | 45035996273741096

 transaction_description | user dbadmin (COPY ClickStream_Fact FROM

'/data/clickstream/1g/ClickStream_Fact.tbl' DELIMITER '|' NULL '\\n' DIRECT;)

 statement_start | 2009-06-07 14:53:26

 statement_id | 17179869528

-239-

 Operating the Database

 last_statement_duration | 0

 current_statement | COPY ClickStream_Fact FROM '/data/clickstream/1g/ClickStream_Fact.tbl'

DELIMITER '|' NULL '\\n' DIRECT;

 ssl_state | None

 authentication_method | Trust

The current statement column of Record 1 shows that session is the one you are using to
query the system table. Record 2 shows the session that must end before the database can be
shut down.

2 If a statement is running in a session, that session must be closed. Use the function

CLOSE_SESSION or CLOSE_ALL_SESSIONS described in the SQL Reference Manual.

Note: CLOSE_ALL_SESSIONS is the more common command because it forcefully

disconnects all user sessions.

 => SELECT * FROM SESSIONS;

 -[RECORD 1]

 node_name | site01

 user_name | dbadmin

 client_hostname | 127.0.0.1:57141

 client_pid | 17838

 login_timestamp | 2009-06-07 14:41:26

 session_id | rhel4-1-30361:0xd7e3e:994462853

 client_label |

 transaction_start | 2009-06-07 14:48:54

 transaction_id | 45035996273741092

 transaction_description | user dbadmin (select * from sessions;)

 statement_start | 2009-06-07 14:53:31

 statement_id | 0

 last_statement_duration_us | 1

 current_statement | select * from sessions;

 ssl_state | None

 authentication_method | Trust

 -[RECORD 2]

 node_name | site01

 user_name | dbadmin

 client_hostname | 127.0.0.1:57142

 client_pid | 17839

 login_timestamp | 2009-06-07 14:52:55

 session_id | rhel4-1-30361:0xd83ac:1017578618

 client_label |

 transaction_start | 2009-06-07 14:53:26

 transaction_id | 45035996273741096

 transaction_description | user dbadmin (COPY ClickStream_Fact FROM

 '/data/clickstream/1g/ClickStream_Fact.tbl'

 DELIMITER '|' NULL '\\n' DIRECT;)

 statement_start | 2009-06-07 14:53:26

 statement_id | 17179869528

 last_statement_duration_us | 0

 current_statement | COPY ClickStream_Fact FROM

 '/data/clickstream/1g/ClickStream_Fact.tbl'

 DELIMITER '|' NULL '\\n' DIRECT;

 ssl_state | None

 authentication_method | Trust

 => SELECT CLOSE_SESSION('rhel4-1-30361:0xd83ac:1017578618');
 -[RECORD 1]

 close_session | Session close command sent. Check sessions for progress.

 => SELECT * FROM SESSIONS;

 -[RECORD 1]

 node_name | site01

 user_name | dbadmin

-240-

Administrator's Guide

 client_hostname | 127.0.0.1:57141

 client_pid | 17838

 login_timestamp | 2009-06-07 14:41:26

 session_id | rhel4-1-30361:0xd7e3e:994462853

 client_label |

 transaction_start | 2009-06-07 14:48:54

 transaction_id | 45035996273741092

 transaction_description | user dbadmin (select * from sessions;)

 statement_start | 2009-06-07 14:54:11

 statement_id | 0

 last_statement_duration_us | 98

 current_statement | select * from sessions;

 ssl_state | None

 authentication_method | Trust

3 Query the SESSIONS table again. For example, two columns have changed:

 stmtid is now 0, indicating that no statement is in progress.

 stmt_duration now indicates how long the statement ran in milliseconds before being
interrupted.

The SELECT statements that call these functions return when the interrupt or close message
has been delivered to all nodes, not after the interrupt or close has completed.

4 Query the SESSIONS table again. When the session no longer appears in the SESSION table,
disconnect and run the Stop Database (page 338) command.

Controlling Sessions

The database administrator must be able to disallow new incoming connections in order to shut
down the database. On a busy system, database shutdown is prevented if new sessions connect
after the CLOSE_SESSION or CLOSE_ALL_SESSIONS() command is invoked — and before the
database actually shuts down.

One option is for the administrator to issue the SHUTDOWN('true') command, which forces the

database to shut down and disallow new connections. See SHUTDOWN in the SQL Reference
Manual.

Another option is to modify the MaxClientSessions parameter from its original value to 0, in

order to prevent new non-dbadmin users from connecting to the database.

1 Determine the original value for the MaxClientSessions parameter by querying the

V_MONITOR.CONFIGURATIONS_PARAMETERS system table:

=> SELECT CURRENT_VALUE FROM CONFIGURATION_PARAMETERS WHERE

parameter_name='MaxClientSessions';

 CURRENT_VALUE

 50

(1 row)

2 Set the MaxClientSessions parameter to 0 to prevent new non-dbadmin connections:

=> SELECT SET_CONFIG_PARAMETER('MaxClientSessions', 0);

Note: The previous command allows up to five administrators to log in.

3 Issue the CLOSE_ALL_SESSIONS() command to remove existing sessions:

=> SELECT CLOSE_ALL_SESSIONS();

4 Query the SESSIONS table:

-241-

 Operating the Database

=> SELECT * FROM SESSIONS;

When the session no longer appears in the SESSIONS table, disconnect and run the Stop

Database (page 338) command.

5 Restart the database.

6 Restore the MaxClientSessions parameter to its original value:

=> SELECT SET_CONFIG_PARAMETER('MaxClientSessions', 50);

See Also

CLOSE_SESSION, CLOSE_ALL_SESSIONS, CONFIGURATION_PARAMETERS, and
SESSIONS in the SQL Reference Manual

Managing Sessions (page 313) and Configuration Parameters (page 25) in the Administrator's
Guide

No running statement, that session is idle

Error

No running statement, that session is idle

Description

The INTERRUPT_STATEMENT function failed. The session exists but is not running a statement
and the session ID can't be found.

Resolution

Not required.

Startup Problems

This section describes some of the known problems that can occur when starting a database.
Startup fails on one or more nodes either due to communication problems between nodes or when
recovery fails to recover the data on the node(s) for any reason.

Note: If a database fails to start before it can write messages into vertica.log, check the file

catalog-path/database-name/dbLog.

Startup successful, but some nodes are recovering

Error

Startup successful, but some nodes are recovering. You can use the

View Database Cluster State option to check progress.

Press RETURN to continue

Description

This message typically indicates an abnormal shutdown of one or more nodes. If any nodes in the
database are UP, the database is fully operational. Note however that if you start load
processing on the database the recovery node could take additional time to become operational

-242-

Administrator's Guide

Resolution

None required

Error starting database, no nodes are up

Error

Error starting database, no nodes are up

Press RETURN to continue

Description

An unknown problem is preventing the database from starting.

Resolution

Reboot the hosts and try to start the database. If unsuccessful, run diagnostics and contact
Technical Support (on page 1).

Database startup successful, but it could be incomplete

Error

Database startup successful, but it may be incomplete.

Description

Some nodes are in a transitional state: not up but not recovering.

Resolution

If this error persists, try using the Stop Vertica on Host (page 347) command in the Advanced
(page 346) menu to stop Vertica on all nodes. Then use the Roll Back Database With Catalog
Version command.

Error

Database startup successful, but it may be incomplete.

Some nodes remain in a transitional state.

See Database Cluster State in Main Menu for details.

Press RETURN to continue

Description

This message indicates that the Database Administrator chose not to wait when prompted and
that the database cannot start.

Resolution

If this error persists, contact Technical Support (on page 1).

Database did not start cleanly on initiator node!

Error

ERROR: Database did not start cleanly on initiator node!

Stopping all nodes

-243-

 Operating the Database

Issuing shutdown command to database

Description

Configuration problems can cause this error.

Resolution

1 Check hostname resolution as described in Configure Hostname Resolution section of the
Installation Guide.

2 Examine /etc/hosts on each node and specify a fully qualified domain name and an

unqualified hostname. For example:

192.168.1.99 node01.fqdname.com node01

3 Verify that there is no firewall running.

TIMEOUT ERROR: Could not login with SSH

Error

TIMEOUT ERROR: Could not login with SSH. Here is what SSH said:

Last login: Sat Dec 15 18:05:35 2007 from node01

Description

Installing Vertica on a host that is missing the mount point /dev/pts could result in the error

when creating a database.

Resolution

Make sure that /dev/pts is mounted.

Good epoch logs are available on all nodes

Error

Database startup failed. Good epoch logs are available on all nodes.

WARNING: if you say 'yes.' changes made to the database after

'2007-07-04 03:58:03-04' (epoch 265) will be permanently lost.

Do you really want to restart the database from '2007-07-04 03:58:03-04' (epoch

265)?

Explanation

A startup attempt failed due to database inconsistency across the cluster. Vertica has
determined that it can probably restart and continue running at an earlier epoch.

Workaround

Restarting from the suggested epoch erases any changes made to the database subsequent to
that epoch, across the cluster. It is likely that these changes were incomplete and erasing them
allows the cluster to proceed normally using the data saved prior to the epoch.

-244-

Administrator's Guide

No good epoch log available on node

Error

Database startup failed. No good epoch log available on node stock_multi_node_0.

Please run diagnostics and contact Vertica

Description

There are a number of possible reasons for this error message, including an abnormal startup or
shutdown. Every node in the cluster must be started with the same recovery epoch.
Non-matching recovery epochs occur when a cluster has experienced an unsafe shutdown.

Resolution

1 Make sure that all nodes are powered on.

2 Start the database (page 337) again.

3 Make sure that all nodes have Spread running. If necessary, restart Spread where it is not
running and start the database (page 337).

4 On each node that did not start up, examine dbLog (page 197) for the cause of the failure.

5 If the cause cannot be determined, it is likely that a node has no catalog version or epoch log
from which to recover. Run diagnostic tests (see Using Diagnostic Tools) and contact
Technical Support (on page 1).

Nodes stuck in INITIALIZING state

Error

In rare cases, some or all nodes can get stuck in the INITIALIZING state when trying to start the
database.

Description

This issue is known to happen due to network configuration problems, corrupted catalogs or disks,
missing database directories or some other fatal problem in the database setup. Incorrect use of
the Administration Tools Advanced Menu options could also lead to this condition.

Resolution

1 Open the Administration Tools.

2 Select Advanced > Stopping Vertica on Host (page 347) to stop all nodes.

3 Go back to the Main Menu and click Start Database (page 337).

4 If the error persists, run diagnostics and contact Technical Support (on page 1)

Node does not recover because of lock timeouts

Error

Upon starting a node, it stays in RECOVERING state for a long time and eventually shuts down
again. Examination of the vertica.log on the node reveals an error:

Locking failure: Timed out S locking Table.

-245-

 Operating the Database

Description

The final stage of recovering a node requires a S lock on the table. If you have a continuous
stream of COPY commands in progress, recovery might not be able to get this lock even after
multiple re-tries.

Resolution

If you see this situation, either momentarily stop the loads or pick a time when the cluster is not
busy to restart the node and let recovery proceed.

Spread Problems

This section describes some of the known problems that can occur when using spread.

Spread is not running

Error

admintools View Cluster State shows "Could not connect to spread.

Spread is configured as part of database creation".

spread dead but pid file exists

Resolution

Verify that spread is not running and then restart the spread daemon.

1 Verify that spread is not running:

ps ax | grep spread

2 Examine /tmp/spread*.log and /var/log/spreadd.log for problems. Permission

problems and syntax problems are identified in these log files.

3 Issue the ifconfig command to check the current IP addresses of the hosts and verify that

those IP addresses are listed in /opt/vertica/config/vspread.conf.

4 Check for Vertica processes that might be running, even though spread is down:

ps ax | grep vertica

5 Kill the Vertica process. Alternatively, use the Admintools Advanced Menu > Kill Vertica
Process on Host.

6 Restart spread:

1. Log in as root:

$ su - root

password: <root-password>

You can use sudo (if enabled) if you do not have the root password.

2. Restart the spread daemon:

/etc/init.d/spreadd restart

3. Ensure the daemon is running:

ps ax | grep spread

-246-

Administrator's Guide

Administration Tools shows node state as UNKNOWN

Error

The Administration Tools 'View Cluster State' shows one or more nodes with an UNKNOWN status

Description

Under certain conditions, Vertica nodes can go into the UNKNOWN state yet still be processing. In

most cases, after some time, they return to UP status. However, if you see a persistent UNKNOWN

state that does not resolve to an UP state after several minutes, follow the instructions in this

section.

Resolution

Likely cause of this issue is a sub-optimally configured I/O subsystem leading to high contention
that causes Vertica to be unresponsive to messages from the spread daemon. You might notice
this problem occurs more readily when running several large join queries that spill to disk. Check
for high I/O waits and other symptoms of I/O problems and if unable to resolve, contact Technical
Support (on page 1) with I/O statistics and sar data.

See Also

Spread is not running (page 245) for restarting spread

Diagnosing spread problems

Spread Panic

Error

Error while starting/enabling multicasting to all hosts

Spread panic during re-init on the following hosts: ['vertica01']

Description

Vertica automatically sets up a spread configuration for the cluster when you use the Create
Database (page 342) command in the Administration Tools, and starts spread. Various other
configuration errors can cause the spread startup to fail.

Resolution

Do not attempt to change the spread configuration. Contact Technical Support (on page 1).

Spread Dead but pid File Exists

Error

spread dead but pid file exists

Description

If spread ends abnormally, the pid and lock file are left behind.

-247-

 Operating the Database

Resolution

Restart spread.

1 Log in as root:

$ su - root

password: <root-password>

You can use sudo (if enabled) if you do not have the root password.

2 Restart the spread daemon:

/etc/init.d/spreadd restart

3 Ensure the daemon is running:

ps ax | grep spread

To diagnose issues related to starting Spread, "status" option has been enhanced to provide
guidance .

Example

The following example checks on the spread status.

 $ sudo /etc/init.d/spreadd status

spread is stopped

If you are having trouble starting spread, check /opt/vertica/config/vspread.conf and

spread logs in /tmp/spread_* and /var/log/spreadd.log.

 $ sudo /etc/init.d/spreadd start

Starting spread daemon: spread (pid 24290) is running...

 [OK]

 $ sudo /etc/init.d/spreadd status

spread (pid 24290) is running...

Restarting Vertica on a Host

When one node in a running database cluster fails, or if any files from the catalog or data
directories are lost from any one of the nodes, you can check the status of failed nodes using the
Administration Tools.

1 Run Administration Tools.

2 From the Main Menu, select Restart Vertica on Host and click OK.

3 Select the database host you want to recover and click OK.

Note: You might see additional nodes in the list, which are used internally by the
Administration Tools. You can safely ignore these nodes.

4 Verify recovery state by selecting View Database Cluster State from the Main Menu.

After the database is fully recovered, you can check the status at any time by selecting View
Database Cluster State from the Administration Tools Main Menu.

-248-

Administrator's Guide

Restarting the Database

If you lose the Vertica process on more than one node (for example, due to power loss), or if the
servers are shut down without properly shutting down the Vertica database first, the database
cluster indicates that it did not shut down gracefully the next time you start it.

The database automatically detects when the cluster was last in a consistent state and then shuts
down, at which point an administrator can restart it.

From the Main Menu in the Administration Tools:

1 Verify that the database has been stopped by clicking Stop Database.

A message displays: No databases owned by <dbadmin> are running

2 Start the database by selecting Start Database from the Main Menu.

3 Select the database you want to restart and click OK.

-249-

 Operating the Database

If you are starting the database after an unclean shutdown, messages display, which indicate
that the startup failed. Press RETURN to continue with the recovery process.

An epoch represents committed changes to the data stored in a database between two
specific points in time. When starting the database, Vertica searches for last good epoch.

-250-

Administrator's Guide

4 Upon determining the last good epoch, you are prompted to verify that you want to start the
database from the good epoch date. Select Yes to continue with the recovery.

Caution: If you do not want to start from the last good epoch, you may instead restore the data
from a backup and attempt to restart the database. For this to be useful, the backup must be
more current than the last good epoch.

Vertica continues to initialize and recover all data prior to the last good epoch.

If recovery takes more than a minute, you are prompted to answer <Yes> or <No> to "Do you
want to continue waiting?"

When all the nodes' status have changed to RECOVERING or UP, selecting <No> lets you exit
this screen and monitor progress via the Administration Tools Main Menu. Selecting <Yes>
continues to display the database recovery window.

-251-

 Operating the Database

Note: Be sure to reload any data that was added after the last good epoch date to which you
have recovered.

Recovering the Cluster from a Backup

To recover a cluster from a backup, refer to the following topics in this guide:

 Backing Up the Database (page 253)

 Restoring the Database From a Backup (page 255)

Monitoring Recovery

During recovery, Vertica adds logging information to the vertica.log on each host.

You can monitor your recovery progress by viewing these messages. Recovery status messages

are identified by the string '[Recover]'. For example:

$ tail -f catalog-path/database-name/node-name_catalog/vertica.log

01/23/08 10:35:31 thr:Recover:0x2a98700970 [Recover] <INFO> Changing

host node01 startup state from INITIALIZING to RECOVERING

01/23/08 10:35:31 thr:CatchUp:0x1724b80 [Recover] <INFO> Recovering to

specified epoch 0x120b6

01/23/08 10:35:31 thr:CatchUp:0x1724b80 [Recover] <INFO> Running 1 split

queries

01/23/08 10:35:31 thr:CatchUp:0x1724b80 [Recover] <INFO> Running query:

ALTER PROJECTION proj_tradesquotes_0 SPLIT node01 FROM 73911;

When recovery has completed:

1 Launch Administration Tools.

2 From the Main Menu, select View Database Cluster State and click OK.

The utility reports your node's status as UP.

See Also

Monitoring the Database (page 197)

Exporting a Catalog

When you export a catalog you can quickly move a catalog to another cluster. Exporting a catalog
transfers schemas, tables, constraints, projections, and views. System tables are not exported.

Exporting catalogs can also be useful for support purposes.

See the EXPORT_CATALOG function in the SQL Reference Manual for details.

-252-

 252

Backup and Restore
Vertica provides utilities to backup and restore the database in various ways.

You can perform full backups as well as incremental backups. A backup could be restored back to
the original database or used to create a new cluster for Disaster Recovery (DR) purposes.

When to Back Up the Database

In addition to any guidelines established by the IT department within your company, Vertica
recommends that you back up your database:

 Before you upgrade Vertica to another release.

 Before you drop a partition.

 After you load a large volume of data.

 Before and after you add a node to your database cluster.

-253-

 253

Backing Up the Database

Vertica provides a utility to perform full and incremental database backups using a script called

backup.sh. This file is located in /opt/vertica/scripts and uses the file synchronization

utility, rsync, to intelligently copy only the files that have been added and remove the unused ones.

Vertica never modifies data files; it adds files to and deletes them from the database.

Requirements

 rsync 3.0 or later must be installed on the database nodes.

 The script must be run on one of the database nodes you intend to back up.

 The script must be run as the Linux user who is the database administrator and who has
passwordless SSH access from each of the source nodes to the backup node.

 The nodes being backed up must be resolvable using their public IP address from the backup
node. (See Configure Hostname Resolution in the Installation Guide.)

 The source database must be UP; otherwise the script generates errors.

Syntax

backup.sh -s source_host1, source_host2, source_host3

 -i initiator_host

 -b backup_host

 -B backup_dir

 -D database_directory_path

 [-d database_name]

 [-p database_port]

 [-u dbadmin_user]

 [-w dbadmin_password]

 [-S snapshot_name]

 [-T temporary_directory_path]

Parameters

-s The hosts from the source database to include in the backup.

-i The host to initiate any SQL issued by the backup.

-b The host on which to copy the backup files.

-B The directory path on which to copy the backup files.

-D The absolute path to the parent directory that contains the subdirectories for each node's
catalog. You can find this path by viewing the database details (in adminTools, select
Advanced > View Database (page 344)). The path you need is shown under Catalog
Directory, minus the last directory in the path (which is where the catalogs for the
individual nodes are stored). For example, if the path shown under Category Directory is

/data/dbs/vmart/v_vmart_node001_catalog, then the path you want is

/data/dbs/vmart/.

-d The name of the database (optional).

-p The database port (optional).

-254-

Administrator's Guide

-u The user name for the database administrator (optional, if not specified, uses current
user).

-w The password for the database administrator (optional, if not specified, will be prompted).

-S The snapshot name used to identify files that are used in the process of moving the
database. If you do not supply this parameter, the script creates a name based on the
current date.

Important: This value of the parameter is output by the script and is required by the

restore process. Keep a record of it or create your own naming convention. For example,
you could incorporate the date into the name. For incremental backups you must provide
the same snapshot every time you run the backup script.

Notes

 The list of host names for -s must not have any spaces between them.

 The backup directory path must have write permissions by the administrator user.

 If you are using external procedures owned by users other than the administrator user, the

backup.sh script might not be able to retain the SUID permissions of the backup files. Upon

restore, you must restore the permissions of the procedures manually. See Requirements for
External Procedures in Programmer's Guide. The output of the restore script alerts you to such
discrepancies.

Incremental Backups

The same backup.sh script can also be run repeatedly using the same parameters each time to

create incremental backups. The catalog is copied anew each time, but only the data files that
have changed are copied.

Example

The following example backs up all the nodes of a database presumed to be located at

/examples/vmartdb on hosts named wombat-5 through wombat-8 to a directory

/scratch/qa/backup on host named raster-f1.

/opt/vertica/scripts/backup.sh -s wombat-5,wombat-6,wombat-7,wombat-8

-i wombat-5 -b raster-f1 -D /examples/vmartdb -B /scratch_b/qa/backup

The following shows excerpts from the output of the backup.sh script. Note in particular the
SNAPSHOT output by the script. The restore process requires this information. The 'Literal data'
and 'Matched data' lines show whether the backup is full or incremental. In the case of an
incremental backup, 'Matched data' is a subset of 'Literal data'.

SOURCE_HOSTS = wombat-5 wombat-6 wombat-7 wombat-8

INITIATOR_HOST = wombat-5

PORT = 5433

BACKUP_HOST = raster-f1

BACKUP_DIR = /scratch_b/qa/backup

DATABASE_DIR = /examples/vmartdb

SNAPSHOT = snap-2010-04-30-1342

TEMP_DIR = /tmp

...

Number of files: 761

Number of files transferred: 384

-255-

 Operating the Database

Total file size: 115.18M bytes

Total transferred file size: 115.18M bytes

Literal data: 115.18M bytes

Matched data: 0 bytes

File list size: 16.77K

File list generation time: 0.031 seconds

File list transfer time: 0.000 seconds

Total bytes sent: 10.57K

Total bytes received: 115.23M

...

Restoring the Database from a Backup

The method you use to restore a database from a backup depends on the reason you want to
restore the database and the location where you want to restore it:

Restoring a database to the same cluster

This method is useful if you need to restore the database to an earlier time or recover data lost
after events such as hardware corruption or human error.

See Restoring to the Same Cluster (page 255).

Restoring a database to a host that has failed and been repaired

You might chose this method it you are concerned that the host machine might lose a disk. In this
case the machine has the same name and IP address. Once you have replaced the disk, you
could restore the data on the disk to the most recent backup and then let the host automatically
query other hosts to recover changes since the last backup. This method is faster than letting the
host completely restore itself.

See Replacing Nodes (page 275).

Restoring the database to replacement node within the same cluster

This method is useful for swapping an existing host for a new host. Once you have swapped the
host, you could restore the data to the most recent backup and then let the host automatically
query other hosts to recover changes made since the last backup.

See Replacing Nodes (page 275).

Restoring to the Same Cluster

Restoring a database on the same cluster from a backup consists of following these general steps:

1 Stopping the database (page 142) you intend to restore.

Note: If you restore data to a single node, the node has already stopped. You do not need to
stop the database.

2 Restoring the database (page 256).

3 Starting the database (page 142) from the Administration Tools.

Note: If you restored all the nodes using the backup, use Manual Recovery (page 235).
Administration Tools returns the message, "Database startup failed," after you attempt to
restart the database and then offers to restart the database from an earlier epoch. Click Yes.

-256-

Administrator's Guide

4 After the database starts, connect to it through the Administration Tools and verify that it was
successfully restored by running some queries.

Restoring the Database

Vertica provides a restore.sh script to restore the database from the backup created by

backup.sh. The script is located in /opt/vertica/scripts.

Requirements

 The script must be run on one of the nodes of the database being backed up.

 The script requires rsync 3.0 or later to be installed on the database nodes.

 The script must be run as the Linux user who is the database administrator. The hosts being
restored must be resolvable using their public IP address from the backup host. (See
Configure Hostname Resolution in Installation Guide for requirements on hostname
resolution.) The Linux user for the database administrator must have passwordless ssh
access from each of the hosts being restored to the backup host.

 The backup must have been created using the backup.sh script. It is important to note the

snapshot name used by the backup script for use in restore operations.

 The database is being restored to the same cluster. See Copying a Database to Another
Cluster (page 258) for restore to a different cluster.

 The database being restored must be shut down; otherwise the results could be unexpected.

Syntax

restore.sh -s host01, host02, host03

 -b backup_host

 -B backup_dir

 -D database_directory_path

 -S snapshot_name

 [-T temporary_directory_path]

 [-c]

 [-q]

Parameters

-s The hosts to be included in the restore

-b The host to copy the backup files from

-B The directory path to copy the backup files from

-D The absolute path to the parent directory that contains the subdirectories for each node's
catalog. You can find this path by viewing the database details (in adminTools, select
Advanced > View Database (page 344)). The path you need is shown under Catalog
Directory, minus the last directory in the path (which is where the catalogs for the
individual nodes are stored). For example, if the path shown under Category Directory is

/data/dbs/vmart/v_vmart_node001_catalog, then the path you want is

/data/dbs/vmart/.

-T The directory path to use for temporary files during restore

-257-

 Operating the Database

-c If provided, vertica.conf file will also be restored.

-q If provided, uses quiet mode, which means the script will not ask for confirmation before
starting the restore process

-S The snapshot name used to identify files to restore. This is the snapshot name used when
creating the backup or generated as output of the backup.sh script

Notes

 The list of host names for -s must not have any spaces between them.

 The Linux user for the administrator must have passwordless ssh access from the backup host
to each of the source hosts.

 By default, restore.sh does not restore the vertica.conf file. This is useful if you have

modified the database configuration since the database was backed up. Use the restore.sh

script with the -c switch to restore the vertica.conf file. For example: restore.sh -c.

Certain files names are allowed to be present in the top-level catalog directory for a successful
bootstrap/restore. Any other files cause the bootstrap/restore to fail, so be sure no files are
present, with the exception of the following files, which are allowed and/or needed:

 Anything starting with vertica.log

 Epoch.log

 vertica.pid

 not-yet-initialized

 global

 ErrorReport.txt

 SAL

 tmp

 CopyErrorLogs

 Snapshots

 Anything starting with Catalog-old-

 bootstrap-catalog.log

 Anything ending in .conf

 If you are using external procedures owned by users other than the administrator user, the

backup.sh script might not have been able to retain the SUID permissions of the procedure

executable files. Upon restore, you will need to restore the permissions of the procedure files
manually. See Requirements for External Procedures in Programmer's Guide. The output of
the backup script will alert you to such discrepancies.

Example

The following example restores the database backed up in the example in Backing Up the
Database (page 253). Notice the -S switch that specifies the snapshot.

/opt/vertica/scripts/restore.sh -s wombat-5,wombat-6,wombat-7,wombat-8

-b raster-f1 -B /scratch_b/qa/backup -D /examples/vmartdb -S snap-2010-04-30-1342

-258-

Administrator's Guide

RESTORE_HOSTS = wombat-5 wombat-6 wombat-7 wombat-8

BACKUP_HOST = raster-f1

BACKUP_DIR = /scratch_b/qa/backup

DATABASE_DIR = /examples/vmartdb

SNAPSHOT = snap-2010-04-30-1342

TEMP_DIR = /tmp

RESTORE_VERTICA_CONF = no

About to begin restore on host wombat-5 by removing catalog

/examples/vmartdb/v_vmartdb_node0013_catalog/Catalog

Continue with restore? [y/n] y

Begin restore on host wombat-5

Number of files: 746

Number of files transferred: 0

Total file size: 115.16M bytes

Total transferred file size: 0 bytes

Literal data: 0 bytes

Matched data: 0 bytes

File list size: 16374

File list generation time: 0.027 seconds

File list transfer time: 0.000 seconds

Total bytes sent: 45

Total bytes received: 16.40K

sent 45 bytes received 16.40K bytes 32.89K bytes/sec

total size is 115.16M speedup is 7003.01

creating directory /examples/vmartdb/v_vmartdb_node0013_catalog/global

... ok

creating configuration files ... ok

Catalog successfully bootstrapped

About to begin restore on host wombat-6 by removing catalog

...

Copying a Database to Another Cluster

To copy a database from one cluster to another, use the copy_vertica_database.sh script.

This script is included in the server RPM located in the /opt/vertica/scripts directory.

Requirements

 The script must be run on one of the nodes of the database being backed up.

 The script requires that rsync 3.0 or later be installed on the database nodes.

 The script must be run as the Linux user who is the database administrator.

 The hosts being copied must be resolvable using their public IP address from the target hosts.
(See Configure Hostname Resolution in Installation Guide for requirements on hostname
resolution.)

 The Linux user for the database administrator must have passwordless SSH access from each
of the source hosts to the corresponding target hosts.

-259-

 Operating the Database

 The source database must be UP; otherwise the script gets errors.

Before using this script be sure to:

 Create a target database on another cluster.

The target database must use the same name as the source database, contain the same
number of nodes and must have at least as much disk space as the source cluster. If the
source database uses additional locations for storage (such as mount points), the target
database requires an equivalent setup. Be sure to create a temporary directory on each node
in the target cluster and assign them all the same name. The name must match the name used
for the temporary directories on the source database.

 Stop the database on the target cluster.

It does not matter whether the target database already contains data before you perform the copy
operation.

Syntax

copy_vertica_database.sh

 -s source_node

 -t target_node

 -d database_name

 | -D database_directory_path

 [-S snapshot_name]

 [-T temporary_directory]

 [-u dbadmin_name]

 [-w dbadmin_password]

 [-o output_file]

Parameters

-s The name of one of the nodes in the cluster containing the data to be copied. You need
specify only one node; the script automatically determines the names of the remaining
nodes in the cluster.

-t The name of a node in the cluster to which the data will be copied. The script determines
the name of the remaining nodes in the cluster automatically. The target nodes are
automatically paired with the nodes in the source cluster. For example, when copying a
database from a cluster containing nodes named node01, node02, and node03 to a
cluster containing nodes named node_a, node_b, and node_c, node01 is automatically
paired with node_a, node02 is paired with node_b, and so on.

-d The name of the database to copy. You must either supply the database name using this

parameter, or give the path to the database files using the -D parameter.

-D The absolute path to the parent directory that contains the subdirectories for each node's
catalog. You can find this path by viewing the database details (in adminTools, select
Advanced > View Database (page 344)). The path you need is shown under Catalog
Directory, minus the last directory in the path (which is where the catalogs for the
individual nodes are stored). For example, if the path shown under Category Directory is

/data/dbs/vmart/v_vmart_node001_catalog, then the path you want is

/data/dbs/vmart/. You must use either this parameter or the -d parameter to tell the

script which database to copy.

-260-

Administrator's Guide

-S The snapshot name used to identify files that are used in the process of copying the
database. If you don't supply this parameter, the script creates a name based on the
current date.

Tip: To get a full copy, use a unique name each time you run the script. For example, you

could incorporate the date into the name. To get an incremental copy, use the same
name every time you run the script.

-T The temporary directory that resides on each node in the target cluster in which to store
scripts and logs. This directory must exist on all of the nodes.

-u The user name for the database administrator.

-w The password for the database administrator.

-o Redirects the output of the script to specified file.

Note

 The Linux user for the administrator must have passwordless SSH access from each of the
source hosts to the backup host.

 The directory paths on target hosts must be writable by the Linux user for the database
administrator.

 If specifying the database paths using the -D parameter, the paths must be identical on the
source and target nodes or the script returns an error.

 If you are using external procedures owned by users other than the administrator user, the
script might not be able to retain the SUID permissions of the procedure executable files. Upon
restore, manually restore the permissions of these files. See Requirements for External
Procedures in Programmer's Guide. The output of the script alerts you to such discrepancies.

While copying, you may see the following error message from rsync: rsync:

failed to set times on "/directory": Operation not permitted (1) rsync

error: some files/attrs were not transferred (see previous errors)

These errors occur when rsync attempts to update the datetime stamp on the parent directory
of the directory where the data is being stored, but the database administrator doesn't own
the parent directory. These errors have no effect on the data copy process and can be ignored.

Note: There is no way to specify the point in time up to which to copy the data; it always picks
the latest committed epoch at the start of the script. Therefore, data backed up might not
include data that is being loaded after the script starts executing.

Example

The following example copies data from the cluster containing node01 to the cluster containing

node_a on the target database located at /home/dbadmin/database:

copy_vertica_database.sh -s node01 \

 -t node_a \

 -D /home/dbadmin/database \

 -S VMart \

 -T /tmp \

 -u bGlover \

 -w password6309

-261-

 Operating the Database

Best Practices for Disaster Recovery

In order to protect your database from site failures caused by disasters like fire, flood, earthquake
or catastrophic power failure, you might consider maintaining an off-site replica of your database
as a standby database. In case of disaster, the end-users can fail over to use the standby
database.

The solution to employ depends upon two factors that you must determine for your application:

 Recovery point objective (RPO): How much data loss is tolerated upon recovery from the
disaster

 Recovery time objective (RTO): How quickly do you need to make the database available
after the disaster

Depending on your RPO and RTO, Vertica recommends choosing from the following solutions:

1 Dual-load: During the load process for the database, simultaneously load a second
database. This could be easily achievable using off-the-shelf ETL software.

2 Periodic Incremental Backups: Use the procedure described in Copying a Database to
Another Cluster (page 258) to periodically copy the data to the target database. Remember
that the script will only copy files that have changed.

3 Replication solutions provided by Storage Vendors: If you are using a SAN, evaluate your
storage vendor's replication (SRDF) solutions.

The following table discusses the RPO and RTO that can be achieved as well as the pros and
cons of the three approaches:

Dual Load Periodic Incremental Backups Storage Replication

RPO: Up to the minute data

RTO: Available at all times

RPO: Up to last backup

RTO: Available except when

backup in progress

RPO: Recover to the minute

RTO: Available at all times

Pros:

 Standby database can
have different configuration

 Can use the standby
database for queries

 No additional Vertica
license costs

Pros:

 Built-in scripts

 Fast due to compressed file
transfers

 No additional Vertica
license costs

Pros:

 Transparent to the
database

Cons:

 Possibly incur addition ETL
licenses

 Needs application logic to

Cons:

 Need identical standby
system

Cons:

 More expensive

 Media corruptions are also

-262-

Administrator's Guide

handle errors replicated

-263-

 263

Managing Nodes
Vertica provides the ability to add (page 264), remove (page 271), and replace (page 275) nodes
on a live cluster that is actively processing queries. This ability lets you scale the database without
interrupting users.

You might also consider refreshing (page 280) or dropping (page 281) projections.

-264-

 264

Adding Nodes

There are many reasons for adding one more more nodes to an installation of Vertica:

 Increase system performance. Add additional nodes due to a high query load or load latency
or increase disk space without adding storage locations to existing nodes.

 Increase storage. Permanently add single nodes to a cluster at some rate over time. That rate
of adding new nodes is determined by the rate at which the available capacity decreases.

 Make the database K-safe (K-safety=1) or increase K-safety to 2. Increasing K-safety to one
(1) allows the database to lose a node and keep running as if nothing happened. Increasing
K-safety to two (2) allows Vertica to run normally if up to two nodes fail. See Failure Recovery
(page 235) for details.

 Swap a node for maintenance: Use a spare machine to temporarily take over the activities of
an existing node that needs maintenance. The node that requires maintenance is known
ahead of time so that when it is temporarily removed from service, the cluster is not vulnerable
to additional node failures.

 Replace a node. Permanently add a node to remove obsoleted hardware.

IMPORTANT: If you installed Vertica on a single node without specifying the IP address or

hostname (you used localhost), it is not possible to expand the cluster. You must reinstall

Vertica and specify an IP address or hostname.

Adding nodes consists of the following general tasks:

1 Backing up the database (page 253).

Vertica strongly recommends that you back up the database before you perform this significant
operation because it entails creating new projections, refreshing them, and then deleting the
old projections.

The process of migrating the projection design to include the additional nodes could take a
while; however during this time, all user activity on the database can proceed normally, using
the old projections.

2 Configuring the hosts you want to add to the cluster.

See Before you Install in the Installation Guide.

3 Adding one or more hosts to the cluster (page 265).

4 Adding the hosts (page 267) you added to the cluster (in step 3) to the database

Note: When a host is added to the database, it becomes a node.

5 Distributing configuration files to the new host (page 267).

6 Rebalancing (page 268) the projection design data to be distributed across all nodes.

If going from a single node database to a cluster, consider increasing K-safety.

7 Testing the modified database design (page 282).

8 Dropping the original, unused projections (page 281) (if following a manual process).

-265-

 265

Adding Hosts to a Cluster

After you have backed up the database and configured the hosts you want to add to the cluster,

you can now add hosts to the cluster using the update_vertica script.

Prerequisites and Restrictions

 Follow the instructions in Configure Hostname Resolution to ensure that the newly-added
hosts are reachable by the existing nodes in the cluster.

 If you installed Vertica on a single node without specifying the IP address or hostname (you
used localhost), it is not possible to expand the cluster. You must reinstall Vertica and specify
an IP address or hostname.

 If your database has more than one node already, you can add a node without stopping the
server. However, if you are adding a node to a single-node, non-localhost installation, you
must shut down both the database and spread. If you do not, the system returns an error like
the following:

[dbadmin@node01 tmp]$ sudo /opt/vertica/sbin/update_vertica -A node0x0

-rvertica-3.5.1-20091002010202.x86_64.RHEL5.DBG.rpm -u release -p

V3rt1qa -PV3rt1qa

Vertica Analytic Database 3.5.1-20091002010202 Installation Tool

Starting installation tasks...

Getting system information for cluster (this may take a while)....

Spread is running on ['node01']. Vertica and spread must be stopped before

adding nodes to a 1 node cluster.

Use the admin tools to stop the database, if running, then use the

following command to stop spread:

 /etc/init.d/spread stop (as root or with sudo)

Installation completed with errors.

Installation failed.

Procedure to Add Hosts

From one of the existing cluster hosts, run the update_vertica script with a minimum of the –A

parameter (where host is the hostname or IP address of the system you are adding to the cluster)

and the -r parameter:

/opt/vertica/sbin/update_vertica -A hostname -r rpm_package

Note: See The install_vertica Script for the full list of parameters.

The update_vertica script uses all the same options as install_vertica and:

 Installs the Vertica RPM on the new host.

 Performs post-installation checks, including RPM version and N-way network connectivity
checks.

 Modifies spread to encompass the larger cluster.

 Configures the Administration Tools (page 336) to work with the larger cluster.

-266-

Administrator's Guide

Important Tips:

 A host can be specified by the hostname or IP address of the system you are adding to the
cluster.

 Do not use include spaces in the hostname list provided with -A if you specified more than one

host.

 If a new RPM is specified, Vertica first installs it on the existing cluster hosts before the
newly-added hosts.

 Use the same command line parameters you used when you installed the original cluster.
Specifically, if you used non-default values for the database administrator username,
password, or directory path, provide the same when you add new hosts; otherwise the
procedure will not work. It may be beneficial to create a properties file to save the parameters
during install and then re-using it on subsequent install and update operations. See Installing
Vertica Silently.

 If you are installing using sudo, the database administrator user (dbadmin) must already exist
on the hosts you are adding and must be configured with passwords and home directory paths
identical to the existing hosts. Vertica sets up passwordless ssh from existing hosts to the new
hosts, if needed.

 If you initially used the -T option to configure spread to use direct, point-to-point communication

between nodes on the subnet, and you want to continue to do so, use the -T option when you

add the new host. Otherwise, the entire cluster is reconfigured to use the default UDP
broadcast.

Examples:

-A host01

-A 192.168.233.101

-A host02,host03

-267-

 267

Adding Hosts to a Database

Once you have added one or more hosts to the cluster, you can add them to the database.

To add one or more hosts to a database:

1 Open the Administration Tools. (See Using the Administration Tools (page 329).)

2 On the Main Menu, select View Database Cluster State to verify that the database is
running. If it is not, start it.

3 From the Main Menu, select Advanced and click OK.

4 In the Advanced Menu, select Cluster Management and click OK.

5 In the Cluster Management menu, select Add Host(s) and click OK.

6 Select the database to which you want to add one or more hosts, and then select OK.

A list of unused hosts is displayed.

7 Select the hosts you want to add to the database and click OK.

8 When prompted, click Yes to confirm that you want to add the hosts.

9 When prompted, enter the password for the database, and then select OK.

10 When prompted that the hosts were successfully added, select OK.

11 Rebalance your data (page 268) across all the nodes.

Distributing Configuration Files to the New Host

Once you have created the new host, you need to distribute the configuration file

(vertica.conf) to the new host. If you are using Secure Socket Layer (SSL) you also need to

distribute the SSL configuration to the new host.

To distribute these files to the new host:

1 Log on to a host that contains these files and start the Administration Tools.

See Using the Administration Tools (page 329) for information about accessing the
Administration Tools.

2 On the Main Menu in the Administration Tools, select Configuration Menu and click OK.

3 On the Configuration Menu, select Distribute Config Files and click OK.

4 Select Database Configuration.

5 Select the database in which you want to distribute the files and click OK.

The vertica.conf file is distributed to all the other hosts in the database. If it previously existed
on a host, it is overwritten.

6 On the Configuration Menu, select Distribute Config Files and click OK.

7 Select SSL Keys.

The certifications and keys for the host are distributed to all the other hosts in the database. If
they previously existed on a host, they are overwritten.

8 On the Configuration Menu, select Distribute Config Files and click OK.

Select AdminTools Meta-Data.

The Administration Tools metadata is distributed to every host in the cluster.

9 Restart the database (page 248).

-268-

Administrator's Guide

Rebalancing Data Across Nodes

If you used the Administration Tools UI to add hosts to your database (page 267), the UI next
prompts you to rebalance the existing data across all nodes, including newly-added nodes.

In one simple click, data rebalancing redistributes your database projections' data across all
nodes, refreshes projections, sets the Ancient History Mark, and drops projections that are no
longer needed.

The Administration Tools UI offers two choices:

 Automatically rebalance the data (page 270) immediately using the Administration Tools.

 For segmented projections, creates new (renamed), segmented projections that are
identical in structure to the existing projections, but data is distributed cross all nodes; then
it refreshes them, sets the Ancient History Mark (AHM) to the greatest allowable epoch
(now), and drops old segmented projections.

 For unsegmented projections, leaves existing projections unmodified, creates new
projections on the new nodes, and refreshes them. No projections are dropped.

 Generate a script (page 270) that you can run manually at a later time.

Note: Even if you decide to rebalance the data immediately, the system still generates a script

called extend_catalog_rebalance.sql.

The following code fragment is an example based on the vmart database, after a single host was
added to a three-node cluster. If your projections are segmented, when you run the script, it
creates new, segmented projections, refreshes all projections, sets the AHM, and drops the old
projections.

CREATE PROJECTION call_center_dimension_DBD_32_seg_rebalance_design_rebalance_design_v1(

 call_center_key ENCODING COMMONDELTA_COMP,

 cc_closed_date,

 cc_open_date,

 cc_name,

 cc_class,

 cc_employees,

 cc_hours,

 cc_manager,

 cc_address,

 cc_city,

 cc_state,

 cc_region

)

AS

 SELECT call_center_dimension.call_center_key,

 call_center_dimension.cc_closed_date,

 call_center_dimension.cc_open_date,

 call_center_dimension.cc_name,

 call_center_dimension.cc_class,

 call_center_dimension.cc_employees,

 call_center_dimension.cc_hours,

 call_center_dimension.cc_manager,

 call_center_dimension.cc_address,

 call_center_dimension.cc_city,

 call_center_dimension.cc_state,

 call_center_dimension.cc_region

 FROM online_sales.call_center_dimension

-269-

 Operating the Database

 ORDER BY call_center_dimension.call_center_key

SEGMENTED BY hash(call_center_dimension.call_center_key) ALL NODES OFFSET 0;

CREATE PROJECTION call_center_dimension_DBD_8_seg_rebalance_design_rebalance_design_v1(

 call_center_key ENCODING COMMONDELTA_COMP,

 cc_closed_date,

 cc_open_date,

 cc_name,

 cc_class,

 cc_employees,

 cc_hours,

 cc_manager,

 cc_address,

 cc_city,

 cc_state,

 cc_region

)

AS

 SELECT call_center_dimension.call_center_key,

 call_center_dimension.cc_closed_date,

 call_center_dimension.cc_open_date,

 call_center_dimension.cc_name,

 call_center_dimension.cc_class,

 call_center_dimension.cc_employees,

 call_center_dimension.cc_hours,

 call_center_dimension.cc_manager,

 call_center_dimension.cc_address,

 call_center_dimension.cc_city,

 call_center_dimension.cc_state,

 call_center_dimension.cc_region

 FROM online_sales.call_center_dimension

 ORDER BY call_center_dimension.call_center_key

SEGMENTED BY hash(call_center_dimension.call_center_key) ALL NODES OFFSET 1;

select refresh('online_sales.call_center_dimension');

select make_ahm_now();

DROP PROJECTION online_sales.call_center_dimension_DBD_32_seg_rebalance_design_rebalance_design,

online_sales.call_center_dimension_DBD_8_seg_rebalance_design_rebalance_design CASCADE;

...

Notes and Restrictions

 Only the superuser has permissions to rebalance data.

 Before data rebalancing completes, Vertica operates with the existing k-safe value. After
rebalance completes, Vertica operates with the k-safe value specified during the rebalance
operation.

 You can maintain existing K-safety or specify a new value (0 to 2) for the modified database
cluster.Vertica does not support downgrading K-safety and returns a warning if you attempt to

reduce it from its current value: Design k-safety cannot be less than system

k-safety level.

 Rebalancing data does not work on range segmented projections. If such projections exist and
you upgrade K-safety using the Re-Balance Data utility, the system attempts to rebalance the
data across all nodes, but it cannot be marked K-safe. You must manually rebalance range
segmented projections and then reset the system K-safety. See Modifying Database
Designs for Updated Nodes (page 279).

-270-

Administrator's Guide

 If a failure occurs during a data rebalance, the superuser can rebalance again (using either the
Administration Tools or the script), and if the issues were resolved, the rebalance operation
continues from where it failed. A failed data rebalance could leave projections in a non
up-to-date state, which are not automatically removed. You must remove those projections
manually using the DROP PROJECTION function. See Refreshing Projections (page 280)
and Dropping Projections (page 281) in this guide.

 To find only the non up-to-date projections, query the V_CATALOG.PROJECTIONS system
table. For example:

=> SELECT projection_name, anchor_table_name, is_prejoin, is_up_to_date

FROM projections WHERE is_up_to_date = false;

Rebalancing Data Using the Administration Tools UI

The following procedure assumes you are continuing from the final step in Adding Hosts to a
Database (page 267) and that you are rebalancing your data now.

1 In the Re-balance Data window, select Automatically re-balance data across all nodes
and click OK.

2 Select the database and click OK.

3 Enter the directory for the Database Designer outputs (for example /tmp) and click OK.

4 Accept the proposed K-safety value or provide a new value. Valid values are 0 to 2.

5 Review the message and click Proceed to begin rebalancing data.

The Database Designer modifies existing projections in order to rebalance data across all
nodes in the database with the K-safety you provided. A script to rebalance data, which you
can run manually at a later time, is also generated and resides in the path you specified; for

example /tmp/extend_catalog_rebalance.sql.

IMPORTANT: Rebalancing data can take some time, depending on the number of projections
and the amount of data in them. Vertica recommends that you allow the process to complete. If
you must cancel the operation, use Ctrl+C.

The terminal window notifies you when the rebalancing operation is complete.

6 Press Enter to return to the Administration Tools.

Generating a Rebalance Script for Later Use

To generate a script for later use:

1 In the Re-balance Data window, select Generate the script ... and click OK.

2 Select the database and click OK.

3 Enter the directory for the Database Designer outputs (for example /tmp) and click OK.

4 Accept the proposed K-safety value or provide a new value. Valid values are 0 to 2.

5 Review the message and click Proceed to generate the script.

The script is saved to the path you specified in the previous step. For example

/tmp/extend_catalog_rebalance.sql.

-271-

 271

Removing Nodes

Although less common than adding a node, permanently removing a node is useful if the host
system is obsolete or over-provisioned.

Removing one or more nodes consists of the following general steps:

1 Backing Up the Database (page 253).

Vertica recommends that you back up the database before performing this significant
operation because it entails creating new projections, deleting old projections, and reloading
data.

2 Creating projections that exclude the nodes that you want to remove from the database, and
then refreshing data within these projections. See Modifying Database Designs for Updated
Nodes (page 279).

3 Testing the modified database design (page 282).

4 Dropping the original, unused projections as described in Dropping Projections (page 281).

Note: Be sure to follow this procedure or Vertica might not allow you to drop some projections.

5 Removing hosts from the database (page 272).

6 Removing hosts from the cluster (page 273) if they are not used by any other databases.

Tip: You can perform steps 2 - 5 incrementally for each projection set you need to
replace.
For example, you might want to create, test, and drop one projection and its buddy
projections at a time. This would reduce the amount of disk space required to perform
the overall operation to the space required by the largest projection set.

-272-

 272

Removing Hosts from a Database

Prerequisites

 The node must be empty, in other words there should be no projections referring to the node.
Ensure you have followed the steps listed in Removing Nodes (page 271) to modify your
database design.

 The database must be UP.

Procedure to Remove Hosts

To remove one or more unused hosts from the database:

1 Open the Administration Tools. See Using the Administration Tools (page 329) for
information about accessing the Administration Tools.

2 On the Main Menu, select View Database Cluster State to verify that the database is
running. If the database isn't running, start it.

3 From the Main Menu, select Advanced, and then select OK.

4 In the Advanced menu, select Cluster Management, and then select OK.

5 In the Cluster Management menu, select Remove Host(s) from Database, and then select
OK.

6 When warned that you must redesign your database and create projections that exclude the
hosts you are going to drop, select Yes.

7 Select the database from which you want to remove the hosts, and then select OK.

A list of all the hosts that are currently being used is displayed.

8 Select the hosts you want to remove from the database, and then select OK.

9 When prompted, select OK to confirm that you want to remove the hosts.

10 Enter the password for the database, and select OK.

11 When prompted that the hosts were successfully removed, select OK.

-273-

 273

Removing Hosts from a Cluster

If a host that you removed from the database is not used by any other database, you can remove

it from the cluster using the update_vertica script. You can leave the database running (UP)

during this operation.

Prerequisites

The host must not be used by any database

Procedure to Remove Hosts

From one of the hosts in the cluster, run update_vertica with the –R switch, where -R specifies

a comma-separated list of hosts to remove from an existing Vertica cluster. A host can be
specified by the hostname or IP address of the system.:

/opt/vertica/sbin/update_vertica -R host

For example:

/opt/vertica/sbin/update_vertica -R R host01,Host01.vertica.com

Note: See The install_vertica Script for the full list of parameters.

The update_vertica script uses all the same options as install_vertica and:

 Modifies the spread to match the smaller cluster.

 Configures the Administration Tools to work with the smaller cluster.

Important Tips:

 A host does not need to be functional, or even exist, to be removed as long as the database
design no longer includes a node on it. Specify the hostname or IP address that you used
originally for the installation. Adding hosts to and removing them from VM-based clusters can
lead to a situation in which a host doesn't exist.

 If you have identified a node using various forms of the hostname and IP address, you must
identify all the forms you used. For example, you might identify a node with both short and
fully-qualified names. Use a comma-separated list to identify two or more forms of the host
name.

 Do not include spaces in the hostname list provided with -R if you specified more than one

host.

 If a new RPM is specified, Vertica will first install it on the existing cluster hosts before
proceeding.

 Use the same command line parameters as those used when you installed the original cluster.
Specifically if you used non-default values for the database administrator username,
password, or directory path, provide the same when you remove hosts; otherwise; the
procedure fails. Consider creating a properties file in which you save the parameters during
the installation, which you can reuse on subsequent install and update operations. See
Installing Vertica Silently.

-274-

Administrator's Guide

Examples:

-R host01

-R 192.168.233.101

-R host01,Host01.vertica.com

-275-

 275

Replacing Nodes

If you have a K-Safe database, you can replace nodes as necessary without bringing the system
down. For example, you might want to replace an existing node if you:

 Need to repair an existing host system that no longer functions and restore it to the cluster

 Want to exchange an existing host system for another more powerful system

Note: Replacing a node is not supported with a k-safety=0 database. Use the procedures to
add (page 264) and remove (page 271) nodes instead.

The process you use to replace a node depends on whether you are replacing the node with:

 A host that uses the same name and IP address

 A host that uses a different name and IP address

Prerequisites:

 Configure the replacement hosts for Vertica. See Before you Install in the Installation Guide.

 Read the Important Tips sections under Adding Hosts to a Cluster (page 265) and
Removing Hosts from a Cluster (page 273).

 Ensure that the database administrator user exists on the new host and is configured
identically to the existing hosts. Vertica will setup passwordless ssh as needed.

 Ensure that the directories for Catalog Path, Data Path and any storage locations added to the
database are created and/or mounted correctly on the new host and have read and write
access permissions for the database administrator user. Also ensure that there is sufficient
disk space.

 Follow the best practice procedure below for introducing the failed hardware back into the
cluster to avoid spurious full-node rebuilds.

Best Practice for Restoring Failed Hardware

Following this procedure will prevent Vertica from misdiagnosing missing disk or bad mounts as
data corruptions, which would result in a time-consuming, full-node recovery.

If a server fails due to hardware issues, for example a bad disk or a failed controller, upon repairing
the hardware:

1 Reboot the machine into runlevel 1, which is a root and console-only mode.

Runlevel 1 prevents network connectivity and keeps Vertica from attempting to reconnect to
the cluster.

2 In runlevel 1, validate that the hardware has been repaired, the controllers are online, and any
RAID recover is able to proceed.

Note: You do not need to initialize RAID recover in runlevel 1; simply validate that it can
recover.

3 Once the hardware is confirmed consistent, only then reboot to runlevel 3 or higher.

At this point, the network activates, and Vertica rejoins the cluster and automatically recovers any
missing data.

-276-

Administrator's Guide

Replacing a Node with a Host that Uses the Same Name and IP Address

To replace a node with a host system that has the same IP address and host name as the original:

1 From a functioning node in the cluster, run the install_vertica script with the -s

parameter:

/opt/vertica/sbin/install_vertica -s host

Where host is the hostname or IP address of the system you are restoring to the cluster; for

example:

-s host01

-s 192.168.233.101

The installation script verifies system configuration and that Vertica, spread, and the
Administration Tools metadata are installed on the host.

2 Use the procedure in Distributing configuration files to the new host (page 267) to transfer
metadata to the new host.

3 Use the Administration Tools to restart the host you just replaced.

The node automatically joins the database and recovers its data by querying the other nodes
within the database. It then transitions to an UP state.

Note: Do not connect two hosts with the same name and IP address to the same network. If
this occurs, traffic is unlikely to be routed properly.

Replacing a Failed Host with a Host that Uses a Different Name and IP Address

Replacing a failed node with a host system that has a different IP address and host name from the
original consists of the following steps:

1 Back up the database (page 253).

Vertica recommends that you back up the database before you perform this significant
operation because it entails creating new projections, deleting old projections, and reloading
data.

2 Run update_vertica with the –A, -R, -E and -r parameters to replace the failed host:

/opt/vertica/sbin/update_vertica -A NewHostName -R OldHostName -E -r

rpm_package

Where:

 NewHostName is the hostname or IP address of the system you are adding to the cluster.

 OldHostName is the hostname or IP address of the system you are removing from the

cluster.

 The -E parameter forces Vertica to drop the failed node from the cluster.

 -r is the name of the rpm package; for example -r
vertica_4.1.x.x86_64.RHEL5.rpm

Note: The update_vertica script uses all the same options as install_vertica. See

The install_vertica Script for the full list of parameters.

3 Use the Administration Tools to replace the original host with the new host. If you are using
more than one database, replace the original host in all the databases in which it is used. See
Replacing Hosts (page 277).

-277-

 Operating the Database

4 Use the procedure in Distributing Configuration Files to the New Host (page 267) to
transfer metadata to the new host.

5 Run update_vertica again with just the -R parameter to clear the node that you replaced

from the Administration Tools metadata.

/opt/vertica/sbin/update_vertica -R OldHostName

OldHostName is the hostname or IP address of the system you removed from the cluster.

6 Use the Administration Tools to restart Vertica on the host. On the Main Menu, select Restart
Vertica on Host, and click OK. See Starting a Database (page 337) for more information.

Once you have completed this process, the replacement node automatically recovers the data
that was stored in the original node by querying other nodes within the database.

Replacing a Functioning Node with a Host that Uses a Different Name and IP Address

Replacing a node with a host system that has a different IP address and host name from the
original consists of the following general steps:

1 Back up the database (page 253).

Vertica recommends that you back up the database before you perform this significant
operation because it entails creating new projections, deleting old projections, and reloading
data.

2 Add the replacement hosts to the cluster (page 265).

At point, both the original host that you want to remove and the new replacement host are
members of the cluster.

3 Use the Administration Tools to shut down the original host.

4 Use the Administration Tools to replacing the original host (page 277)with the new host. If
you are using more than one database, replace the original host in all the databases in which it
is used.

5 Remove the host from the cluster (page 273).

6 Restart Vertica on the host.

Once you have completed this process, the replacement node automatically recovers the data
that was stored in the original node by querying the other nodes within the database. It then
transitions to an UP state.

Note: If you do not remove the original host from the cluster and you attempt to restart the
database, the host is not invited to join the database because its node address does not match
the new address stored in the database catalog. Therefore, it remains in the INITIALIZING
state.

Replacing Hosts

If you are replacing a node with a host that uses a different name and IP address, use the
Administration Tools to replace the original host with the new host.

To replace the original host with a new host:

1 Open the Administration Tools.

-278-

Administrator's Guide

2 On the Main Menu, select View Database Cluster State to verify that the database is
running. If it‘s not running, use the Start Database command on the Main Menu to restart it.

3 On the Main Menu, select Advanced Menu.

4 In the Advanced Menu, select Stop Vertica on Host.

5 Select the host you want to replace, and then click OK to stop the node.

6 When prompted if you want to stop the host, select Yes.

7 In the Advanced Menu, select Cluster Management, and then click OK.

8 In the Cluster Management menu, select Replace Host, and then click OK.

9 Select the database that contains the host you want to replace, and then click OK.

A list of all the hosts that are currently being used displays.

10 Select the host you want to replace, and then click OK.

11 Select the host you want to use as the replacement, and then click OK.

12 When prompted, enter the password for the database, and then click OK.

13 When prompted, click Yes to confirm that you want to replace the host.

14 When prompted that the host was successfully replaced, click OK.

15 In the Main Menu, select View Database Cluster State to verify that all the hosts are running.
You might need to start Vertica on the host you just replaced. Use Restart Vertica on Host.

The node enters a RECOVERING state.

Caution: If you are using a K-Safe database, keep in mind that the recovering node counts as
one node down even though it might not yet contain a complete copy of the data. This means
that if you have a database in which K safety=1, the current fault tolerance for your database is
at a critical level. If you lose one more node, the database shuts down. Be sure that you do not
stop any other nodes.

-279-

 279

Modifying Database Designs for Updated Nodes

As previously discussed, you can modify a database design in one simple step using the
Administration Tools UI or a script that the Administration Tools generates. See Rebalancing
Data Across Nodes (page 268) for details.

There are situations, however, in which automatic data rebalancing does not work:

 A node has been removed from the database cluster (projections cannot include the removed
node)

 The design was not created by the Database Designer using the Administration Tools UI

 You want to add custom projections to your design

 You want to export a design to recreate it on another cluster

 You have custom projections (such as for a specific query) that you want to add to an existing
database design

 Range segmented projections exist on one or more nodes in the cluster.

For each of the above scenarios, you need to modify the database design manually using the
procedures described in this section:

1 Create new projections (page 279)

2 Refresh projections (page 280)

3 Drop unused projections (page 281)

Creating New Projections

1 Create new projections.

1. For each existing table with segmented projections, create a new projection that spans all
the nodes within the database.

2. For each existing table with replicated projections, add an unsegmented (replicated)
projection on each additional node being added.

3. Copy existing projection statements, modify them as necessary, and run the new projection
statements.

TIP: For syntax and examples of creating both segmented and replicated projections on a new
node, see Add Node to a Database (page 110). (See also Creating Custom Designs (page
91) for a more comprehensive overview.)

2 Generate a script that contains the catalog, system schemas, system views, system tables,
and projections for the tables.

SELECT EXPORT_CATALOG('filename','design_all')

For filename, specify the name of the file you want to create.

3 Open the script and locate each segmented and unsegmented projection.

Projections take the form:

CREATE PROJECTION projection_name (...)

AS SELECT ...

[SEGMENTED | UNSEGMENTED] ALL NODES;

-280-

Administrator's Guide

4 Create a copy of each projection for each additional node using the following form:

CREATE PROJECTION projection_name_<NewNodeName>(...)

AS SELECT ...

[SEGMENTED | UNSEGMENTED] [ALL NODES | NODE <NewNodeName>];

Where NewNodeName is the name of the node you added to the cluster, which you can find by
querying the NODE_RESOURCES system table, described in the SQL Reference Manual.

5 Examine the projections in the PROJECTIONS system table and ensure that the
VERIFIED_FAULT_TOLERANCE column is greater than what you require. If it is not then
check that each projection has the appropriate buddy projections defined. This is particularly
relevant if you are increasing k-safety.

6 Load data into the new projections as described in Refreshing Projections (page 280).

Refreshing Projections

New projections are out-of-date (not available for query processing) until they are refreshed.

1 Use the Administration Tools to verify that all nodes are up. (On the Administration Tool's Main
Menu, select View Database Cluster State, and then click OK.) If they are not up, bring them
up before you proceed.

2 Use the START_REFRESH function described in the SQL Reference Manual to copy data into
the new projection from other projections.

A refresh runs simultaneously on all nodes. During a refresh, the new projection:

 Cannot participate in query execution.

 Cannot be used as a buddy of another projection.

3 Optionally monitor the progress of the refresh operation by viewing the following system
tables:

 The IS_UP_TO_DATE column in the PROJECTIONS table

 The REFRESH_STATUS and IS_EXECUTING columns in the
PROJECTION_REFRESHES table

The refresh status can be queued, refreshing, refreshed, or failed.

IS_EXECUTING indicates if the refresh is currently running or if the entry pertains to a prior
attempt that could have succeeded or failed.

You can also use the LOCKS system table to determine if a refresh has been blocked on a
table lock.

4 Optionally use the REFRESH function, which invokes refresh synchronously rather than as a
background process.

Notes

Information about a refresh operation—whether successful or unsuccessful—is maintained in the
PROJECTION_REFRESHES system table until either the
CLEAR_PROJECTION_REFRESHES() function is executed or the storage quota for the table is

exceeded. The PROJECTION_REFRESHES.IS_EXECUTING column returns a boolean value that

indicates whether the refresh is currently running (t) or occurred in the past (f).

-281-

 Operating the Database

When a new projection is created and refreshed, Vertica does not reconstruct historical data for
that projection unless it is a buddy projection of an existing projection. The newly-refreshed
projection maintains history only beyond the epoch in which the refresh operation commits. (See
SYSTEM.REFRESH_EPOCH in the SQL Reference Manual.) Therefore, the query optimizer
cannot choose the new projection for AT EPOCH queries that request historical data at epochs
older than the refresh epoch.

Dropping Projections

To manually drop a projection that is no longer being used:

1 Use the Administration Tools to verify that all nodes are up. (On the Administration Tool's Main
Menu, select View Database Cluster State, and then click OK.) If they are not up, bring them
up before you proceed.

2 Call the MAKE_AHM_NOW function, described in the SQL Reference Manual.

 MAKE_AHM_NOW sets the Ancient History Mark (AHM) to the greatest allowable value
and lets you drop any projections that existed before the issue occurred.

 If you do not set the AHM to the current epoch, Vertica could prevent the drop if it violates
K-safety.

 Optionally, you can use the true parameter (SELECT MAKE_AHM_NOW(true);) to allow

the AHM to advance when nodes are down, but note that if the AHM advances after the last
good epoch of the failed nodes, those nodes must recover all data from scratch. Use this
option with care.

 Once you have set the AHM, you can no longer perform historical queries based on any
date that precedes the date you set for the AHM.

3 Use the DROP_PROJECTION statement to drop the projection. If it has buddies, drop the
buddy projections as well.

For example, the following statement drops the schema.fact_proj_a and

schema.fact_proj_b projections:

DROP PROJECTION schema1.fact_proj_a, schema1.fact_proj_b;

-282-

 282

Testing Modified Database Designs

Testing a new database design consists of verifying that the new projections:

 Are safe and up-to-date.

Examine the projections using the PROJECTIONS system table and ensure that the
VERIFIED_FAULT_TOLERANCE column is greater than what you require. If it is not then
check that each projection has the appropriate buddy projections defined. This is particularly
relevant if you are increasing K-safety.

 Provide the same results as the original projections. (See Comparing Projections below.)

Comparing Projections

To verify that the new projections produce the same results as the original projections:

1 Run reports using each set of projections and compare the reports. (Save the reports so you
can use them for further comparisons after you delete the original projections.)

2 Create queries and run them on both the original and new projections.

For example:

SELECT "P1", COUNT(*) FROM P1

UNION ALL

SELECT "P2", COUNT(*) FROM P2;

In the above example, P1 is the name of the original projection and P2 is the name of the new

projection.

-283-

Managing Disk Space
Vertica detects and reports low disk space conditions in the log file so that the issue can be
addressed before serious problems occur. It also detects and reports low disk space conditions
via SNMP traps (page 212) if enabled.

Critical disk space issues are reported sooner than other issues. For example, running out of
catalog space is fatal; therefore, Vertica reports the condition earlier than less critical conditions.
To avoid database corruption when the disk space falls beyond a certain threshold, Vertica begins
to reject transactions that update the catalog or data.

Caution: A low disk space report indicates one or more hosts are running low on disk space or
have a failing disk. It is imperative to add more disk space (or replace a failing disk) as soon as
possible.

When Vertica reports a low disk space condition, use the DISK_RESOURCE_REJECTIONS
system table to determine the types of disk space requests that are being rejected and the hosts
on which they are being rejected.

These and the other SQL Monitoring API (page 199) system tables are described in detail in the
SQL Reference Manual.

To add disk space, see Adding Disk Space to a Node (page 283) or Adding Disk Space
Across the Cluster (page 284). To replace a failed disk, see Replacing Failed Disks (page
285).

Monitoring Disk Space Usage

You can use these system tables to monitor disk space usage on your cluster:

System Table Description

DISK_STORAGE Monitors the amount of disk storage used by the
database on each node.

COLUMN_STORAGE Monitors the amount of disk storage used by each
column of each projection on each node.

PROJECTION_STORAGE Monitors the amount of disk storage used by each
projection on each node.

Adding Disk Space to a Node

This procedure describes how to add disk space to a node in the Vertica cluster:

1 Shut down Vertica on the host where disk space is being added.

2 Turn off the system, if required by your hardware environment.

3 Insert the new disk.

4 Power on the system, if required.

5 Partition, format, and mount the new disk, as required by the hardware environment.

-284-

Administrator's Guide

For example:

mount /myNewPath/ on new volume

6 Create a data directory path on the new volume.

For example:

mkdir –p /myNewPath/myDB/host01_data2/

7 Restart Vertica on the host.

8 Open a database connection on the host where you installed the new disk and add a storage
location. This adds the new data directory path to the host.

See Adding Storage Locations (page 286) in this guide and the ADD_LOCATION function in
the SQL Reference Manual.

9 Note: ADD_LOCATION is a local command, which must be run on each node to which space
is added.

Adding Disk Space Across the Cluster

Use the following procedures to add disk space to all sites in an optimal cluster environment.

If the cluster can be taken offline:

1 Shut down the cluster from the Administration Tools.

2 Use the following steps to add a disk on each host:

1. Shut down Vertica.

2. Power off system, if required by your hardware environment.

3. Insert the new disk.

4. Power on the system, if required.

5. Partition/format/mount the new disk, if required by the hardware environment.

6. Create a database path on the new volume.

3 Start the Vertica database from Administrative Tools.

4 For each host, open a database connection and add a storage location. This adds the new
data directory path to the host.

See Adding Storage Locations (page 286) in this guide and the ADD_LOCATION function in
the SQL Reference Manual.

Note: ADD_LOCATION is a local command, which must be run on each host to which space is
added.

If the cluster cannot be taken offline (and assuming K-safety=1 or higher) :

Use the following procedure for each node, one node at a time:

1 Shut down Vertica on the host where disk space is being added.

2 Turn off the system, if required by your hardware environment.

3 Insert the new disk.

4 Power on the system, if required.

5 Partition, format, and mount the new disk, as required by the hardware environment.

For example:

-285-

 Operating the Database

mount /myNewPath/ on new volume

6 Create a data directory path on the new volume.

For example:

mkdir –p /myNewPath/myDB/host01_data2/

7 Restart Vertica on the host.

8 Open a database connection on the host where you installed the new disk and add a storage
location. This adds the new data directory path to the host.

See Adding Storage Locations (page 286) in this guide and the ADD_LOCATION function in
the SQL Reference Manual.

9 Note: ADD_LOCATION is a local command, which must be run on each node to which space
is added.

Replacing Failed Disks

If the disk on which the data or catalog directory resides fails, causing full or partial disk loss,
perform the following steps:

1 Replace the disk and recreate the data or catalog directory.

2 Distribute the configuration file (vertica.conf) to the new host. See Distributing

Configuration Files to the New Host (page 267) for details.

3 Restart the database following the steps in Restarting the Database (page 248).

See Catalog and Data Files (page 285) for information about finding your
DATABASE_HOME_DIR.

Catalog and Data Files

For the recovery process to complete successfully, it is essential that catalog and data files be in
the proper directories.

In Vertica, the catalog is a set of files that contains information (metadata) about the objects in a
database, such as the nodes, tables, constraints, and projections. The catalog files are replicated
on all nodes in a cluster, while the data files are unique to each node. These files are installed by
default in the following directories:

/DATABASE_HOME_DIR/DATABASE_NAME/v_db_nodexxxx_catalog/

/DATABASE_HOME_DIR/DATABASE_NAME/v_db_nodexxxx_catalog/

Note: DATABASE_HOME_DIR is the path, which you can see from the Administration Tools.
See Using the Administration Tools (page 329) in the Administrator's Guide for details on
using the interface.

To view the path of your database:

1 Run the Administration Tools.

#/opt/vertica/bin/admintools

2 From the Main Menu, select Configuration Menu and click OK.

3 Select View Database and click OK.

-286-

Administrator's Guide

4 Select the database you want would like to view and click OK to see the database profile.

The following example includes the kind of information typically returned: database path name,
the host or hosts your database is running on (in this example a 4-node cluster), the port, and
that your database is K-Safe:

Creating and Configuring Storage Locations

Each node must contain a minimum of one storage location in which to store data. However, you
can add and configure additional storage locations to provide additional storage space. (See
Prepare Disk Storage Locations (page 12) in the Installation Guide for disk space
requirements.)

By default, data is randomly distributed to all storage locations. However, you can control disk
usage and increase I/O performance by isolating files that have different I/O or access patterns in
different storage locations. For example, consider:

 Isolating execution engine temporary files from data files.

 Creating a tiered disk architecture in which columns are stored on different disks based on
predicted or measured access patterns.

This section describes how to:

 Add storage locations (page 286)

 Measure storage location performance (page 287)

 Set storage location performance (page 288)

 Modify storage locations (page 289)

 Retire storage locations (page 289)

 Restore retired storage locations (page 290)

 Drop storage locations (page 290)

Adding Storage Locations

Configuring additional storage locations not only provides additional storage space, it provides
you with the option to control disk usage and increase I/O performance by isolating files that have
different I/O or access patterns.

-287-

 Operating the Database

Before adding a location:

 Verify that the directory you want to use for the location is an empty directory with write
permissions for the Vertica process.

 Determine the type of information you want to store in the storage location:

 DATA — Persistent data and temp table data

 TEMP — Temporary files that are generate and dumped to disk such as those generated
by sort, group by, join, and so on

 DATA,TEMP — Both data and temp files (the default)

Tip: The advantage of storing temp files and data in different storage locations is that they
have different disk I/O access patterns. Temp data is distributed across available storage
locations based on available storage space. However, data can be stored on different storage
locations based on predicted or measured access patterns.

To add a location:

1 use the ADD_LOCATION function to specify the new data directory path to the host, the node
where the location is available (optional), and the type of information to be stored (optional).

The following example adds a location that is available on node2 to store data only:

SELECT ADD_LOCATION ('/secondVerticaStorageLocation/' , 'node2' ,

'DATA');

The following example adds a location that is available on the initiator node to store data and
temporary files:

SELECT ADD_LOCATION ('/secondVerticaStorageLocation/');

2 If the storage location is used to store data or data and temp files and you want to create a
tiered disk architecture in which columns are stored on different disks based on predicted or
measure access patterns, you need to:

1. Measure the performance of the storage location (page 287).

2. Set the performance of the storage location (page 288).

Note: Once you have created a storage location, you can modify the type of information it
stores. See Modifying Storage Locations (page 289).

Measuring Location Performance

If you intend to create a tiered disk architecture in which columns are stored on different disks
based on predicted or measured access patterns, you need to measure storage location
performance for each location in which data is stored. Measuring location performance is not
applicable for temp storage locations.

Note: Measuring Disk I/O is an intensive operation. Therefore, start this operation only when no
other operations are running.

Storage location performance equates to the amount of time it takes to read a fixed amount of data
from the disk. This read time equates to the disk throughput in MB per second plus the time it takes
to seek data based on the number of seeks per second, as follows:

Read Time (seconds) = 1/Throughput (MB/second) + 1/Latency (seeks/second)

Therefore, a disk is faster than another disk if its Read Time is smaller.

-288-

Administrator's Guide

Vertica provides two methods for measuring storage location performance depending upon
whether or not the database is functioning. Both of these methods return the throughput and
latency for the storage location. Write down the throughput and latency information because you
need it to set the location performance.

Measuring Location Performance for a Functioning Vertica Database

To measure performance for a storage location on a functioning database, use
MEASURE_LOCATION_PERFORMANCE. This function has the following requirements:

 The storage path must already exist in the database.

 You need RAM*2 free space available in a storage location to measure its performance. For
example, if you have 16GB RAM, you need 32GB of available disk space. If you do not have
enough disk space, the function errors out.

Use the virtual table DISK_STORAGE to obtain information about disk storage on each database
node.

The following example measures the performance of a storage location on node2:

SELECT MEASURE_LOCATION_PERFORMANCE('/secondVerticaStorageLocation/','node2');

WARNING: measure_location_performance can take a long time. Please check logs for

progress

 measure_location_performance

--

 Throughput : 122 MB/sec. Latency : 140 seeks/sec

Measuring Location performance Before a Cluster is Set Up

Measuring disk performance before setting up a cluster is useful for verifying that the disk is
functioning within normal parameters. This method requires only that Vertica be installed.

To measure disk performance, use the following vsql command:

opt/vertica/bin/vertica -m <path to disk mount>

For example:

opt/vertica/bin/vertica -m /secondVerticaStorageLocation/site01_data

Setting Location Performance

Once you have measured the performance for each location that stores data files (page
287), you need to set the performance for each of these locations.

To set the performance for a location, use the SET_LOCATION_PERFORMANCE function and
specify the performance data you gathered from measuring the location's performance.

Note: Both the throughput and latency must be set to 1 or more.

The following example sets the performance of a storage location on node2 to a throughput of 122
MB/second and a latency of 140 seeks/second.

SELECT
SET_LOCATION_PERFORMANCE('node2','/secondVerticaStorageLocation/','122','140');

-289-

 Operating the Database

How Vertica Uses Location performance Settings

Once set, Vertica automatically uses this information to determine how to store projection
columns.

Vertica stores columns that are included in the sort order of projections on the fastest disks and
columns that are not included within the sort order of projections on slower disks. It accomplishes
this by ranking columns for each projection as follows:

 Columns in the sort order are given the highest priority (numbers>1000).

 The last column in the sort order is given the rank number 1001.

 The next to the last column in the sort order is given the rank number 1002, and so on until the
first column in the sort order is given 1000 + # of sort columns.

 The remaining columns are given numbers from 1000 - 1, starting with 1000 and working down
from there.

Then it stores these columns on disk as follows:

Columns are stored on disk from the highest ranking to the lowest ranking in which the highest
ranking columns are placed on the fastest disks and the lowest ranking columns are placed on the
slowest disks.

Modifying Storage Locations

You can modify the type of files Vertica stores at any storage location. This is useful if you create
additional storage locations and you want to isolate execution engine temporary files from data
files.

At least one location must remain for storing data and temp files. These files can be stored in the
same storage location or separate storage locations.

To modify a storage location, use the ALTER_LOCATION_USE function. When a storage location
is altered, it stores only the type of information indicated from that point forward. If, for example,
you modify a storage location so that it stores only temp files instead of data and temporary files,
the data previously stored on that location is eventually merged out through the ATM as per its
policies. You can also merge it out manually.

If you modify a storage location that stores temp files or temp and data files to store only data files,
all currently running statements, such as queries and loads that use these temp files, continue to
run. Subsequent statements no longer use this location for temp files.

The following example alters the storage location on node3 to store data only:

SELECT ALTER_LOCATION_USE ('/thirdVerticaStorageLocation/' , 'node3' , 'DATA');

Retiring Storage Locations

Retiring a location prevents Vertica from storing data or temp files to it. It does not remove the
actual location. Any data previously stored in the retired location is eventually merged out by the
ATM as per its policies.

Tip: If the location you are retiring was used to store temp files only, you can remove it. See
Dropping Storage Locations (page 290).

-290-

Administrator's Guide

Before retiring a location, be sure that at least one location remains for storing data and temp files.
Data and temp files can be stored in either one storage location or separate storage locations.

To retire a storage location, use the RETIRE_LOCATION function.

The following example retires a storage location on node2:

SELECT RETIRE_LOCATION('/secondVerticaStorageLocation/' , 'node2');

Restoring Retired Storage Locations

If you determine that you want to use a storage location that you have retired, you can restore that
location. Once restored, Vertica re-ranks the storage locations and use the restored location to
process queries as determined by its rank.

To restore a retired storage location, use the RESTORE_LOCATION function.

The following example restores a retired storage location on node2:

=> SELECT RESTORE_LOCATION('/secondVerticaStorageLocation/' , 'node2');

Dropping Storage Locations

Only storage locations that are configured to store temp files can be dropped. You cannot drop
storage locations that store data files.

If a location used to store data and you modified it to store only temp files, the location may still
contain data files. If the storage location contains data files, Vertica will not allow you to drop it.
You can manually merge out all the data in this location, wait for the ATM to mergeout the data
files automatically, or you can drop partitions (page 186). Deleting data files will lead to database
corruption.

Dropping a storage location is a permanent operation and cannot be undone. Therefore, Vertica
recommends that you retire a storage location before dropping it. This will allow you to verify that
you actually want to drop a storage location before doing so. Additionally, you can easily restore a
retired storage location (page 290).

To drop a storage location, use the DROP_LOCATION function.

The following example drops a storage location on node3 that was used to store temp files:

=> SELECT DROP_LOCATION('/secondVerticaStorageLocation/' , 'node3');

Reclaiming Disk Space

You can reclaim the disk space held by deleted records by purging the deleted records (page
180), rebuilding the table (page 290) or dropping a partition (page 186).

Rebuilding a Table

When it is necessary to do large-scale disk reclamation operations, consider rebuilding the table
by following sequence of operations:

1 Create a new table.

2 Create projections for the new table.

3 Populate the new table using INSERT ... SELECT to copy the desired table from the old table.

-291-

 Operating the Database

4 Drop the old table and its projections.

5 Use ALTER TABLE ... RENAME to give the new table the name of the old table.

Notes

 You must have enough disk space to contain the old and new projections at the same time. If
necessary, you can drop some of the old projections before loading the new table. You must,
however, retain at least one superprojection of the old table (or two buddy superprojections to
maintain K-Safety) until the new table is loaded. (See Prepare Disk Storage Locations (page
12) in the Installation Guide for disk space requirements.)

 You can specify different names for the new projections or use the ALTER PROJECTION ...
RENAME command to change the names of the old projections.

 The relationship between tables and projections does not depend on object names. Instead, it
depends on object identifiers that are not affected by rename operations. Thus, if you rename
a table, its projections continue to work normally.

 Manually purging a table continues to retain history for rows deleted after the Ancient History
Mark. Rebuilding the table results in purging all the history of the table, which means you
cannot do historical queries on any older epoch.

 Rather than dropping the old table in Step 4, you might rename it to a different name and use
it as a backup copy. Note, however, that you must have sufficient disk space.

-292-

Managing Workloads
Vertica provides a sophisticated workload management scheme to enable diverse concurrent
workloads to run efficiently against the database. For basic operations, Vertica provides a built-in
GENERAL pool that is pre-configured based on RAM and machine cores and can be customized
further to handle specific concurrency requirements.

For more advanced needs, the database administrator can establish new resource pools
configured with limits on memory usage, concurrency, and priority. Each database user can
optionally be restricted to use a specific resource pool and also be given quotas on memory usage
to control resources used by their requests.

User-defined pools are useful when there are competing resource requirements across different
classes of workloads. Some examples of scenarios that can make use of user-defined pools
include:

 A large batch job takes up all of the server resources, leaving small jobs that update a web
page to starve, thereby degrading user experience. To solve this problem, a dedicated
resource pool can be created for web page requests to ensure they always get resources.
Alternatively, a limited resource pool can be created for the batch job, so it cannot use up all
the resources in the system.

 A certain application has lower priority and you would like to limit the amount of memory and
number of concurrent users of this application. To solve this problem, a resource pool with an
upper limit on the memory usage of a query can be created and associated with users of this
application.

For detailed syntax of creating and managing resource pool see the following topics in the SQL
Reference Manual:

Statements

 ALTER RESOURCE POOL alters a resource pool.

 ALTER USER associates a user with the RESOURCE POOL and MEMORYCAP parameters.

 CREATE RESOURCE POOL creates a resource pool.

 CREATE USER adds a name to the list of authorized database users and specifies that user's
RESOURCE POOL and MEMORYCAP parameters.

 DROP RESOURCE POOL drops a user-created resource pool.

 SET SESSION MEMORYCAP sets the limit on amount of memory that any request issued by
the session can consume.

 SET SESSION RESOURCE POOL associates a user session with specified resource pool.

System Tables

 RESOURCE_ACQUISITIONS provides details of resources (memory, open file handles,
threads) acquired by each request for each resource pool in the system.

 RESOURCE_ACQUISITIONS_HISTORY provides details of resources (memory, open file
handles, threads) acquired by any profiled query for each resource pool in the system.

-293-

 Operating the Database

 RESOURCE_POOL_STATUS provides configuration settings of the various resource pools in
the system, including internal pools.

 RESOURCE_POOLS displays information about the parameters the resource pool was
configured with.

 RESOURCE_QUEUES provides information about requests pending for various resource
pools.

 RESOURCE_REJECTIONS monitors requests for resources that are rejected by the
Resource Manager.

The Resource Manager

In a single-user environment, the system can devote all resources to a single query and, thereby,
get the most efficient execution for that one query. However, in a environment where several
concurrent queries are expected to run at once, there is tension between providing each query the
maximum amount of resources (thereby getting fastest run time for that query) and serving
multiple queries simultaneously with a reasonable run time. The Resource Manager (RM)
provides options and controls for resolving this tension, while ensuring that every query eventually
gets serviced and that true system limits are respected at all times.

When the system experiences resource pressure, the Resource Manager might queue queries
until the resources become available (or a timeout value is reached). Also, by configuring various
RM settings, the target memory of each query can be tuned based on the expected number of
concurrent queries running against the system.

The following sections discuss the detailed architecture and operation of the Resource Manager.

Resource Manager Impact on Query Execution

The Resource Manager (RM) impacts individual query execution in various ways. When a query is
submitted to the database, the following series of events occur:

1 The query is parsed and optimized to determine an execution plan.

2 The Resource Manager is invoked on the initiator node to estimate resources required to run
the query. If the resource requirements violate true system limits, one of the following could
occur:

 If the memory required by the query alone would exceed the machine's physical memory,
the query is rejected.

 If the resource requirements are within limits that are not currently available, the query is
queued.

Otherwise the query is allowed to run.

3 Eventually the query either times out on the queue or is allowed to run.

4 When allowed to run, the query is distributed to other nodes, called executor nodes.

-294-

Administrator's Guide

5 On the executor nodes, the plan is augmented to consider local ROS container distribution.
Because the initiator node is not fully aware of the ROS layout on the other nodes and of the
exact resource usage by queries running on other nodes, it is possible, though rare, that actual
resources needed by the query are more than the estimated resources calculated at the
initiator, or the requested resources are not available at the executor. If this happens, then
query is rejected.

Notes

 No resources are reserved or held while the query is in the queue.

 Apportioning of resources for the query and maximum number of queries allowed to run
depends on the resource pool configuration. See Resource Pool Architecture (page 294).

 When a query is rejected at the initiator node, the system returns an ―Insufficient resources to
initiate plan‖ message to the user. When a query is rejected at an executor node, the system
returns an ―Insufficient resources to execute localized plan‖ message to the user. The term
‗resource rejection‘ describes these error conditions. See RESOURCE_REJECTIONS in the
SQL Reference Manual, a table that monitors requests for resources that are rejected by the
Resource Manager.

Resource Pool Architecture

The Resource Manager manages resources as one or more resource pools. A resource pool
comprises a pre-allocated subset of the system resources, with an associated queue.

Out-of-the-box, Vertica comes pre-configured with a set of built-in pools, which Vertica uses to
allocate resources to different types of requests. By default, Vertica provides the pools described
in Built-in Pools in the SQL Reference Manual.

For basic operation of Vertica, the built-in GENERAL pool comes preconfigured for a certain
concurrency level based on the RAM and cores in the machines. This pool can be customized
further based on actual concurrency and performance requirements. See Guidelines for Setting
Pool Parameters (page 301).

Advanced users can create custom pools to handle various classes of workloads. User requests
can then be restricted to use these custom resource pools.

Note: A resource pool is created using the CREATE RESOURCE POOL command as
described in the SQL Reference Manual.

The GENERAL Pool

Note: This topic provides a simplified description of the GENERAL pool concept. For a detailed
list of built-in pools (including GENERAL) and their default configuration settings, see CREATE
RESOURCE POOL in the SQL Reference Manual.

-295-

 Operating the Database

The GENERAL pool is a special, catch-all pool used to answer requests that have no specific
resource pool associated with them. Any memory left over after memory has been allocated to all
other pools is automatically allocated to the GENERAL pool. Any user-defined pool can be
configured to ―borrow‖ memory from the GENERAL pool to satisfy requests that need extra
memory. If the pool is configured so that it cannot borrow any memory from the GENERAL pool, it
is said to be standalone. When multiple pools request memory from the GENERAL pool, they are
granted access to GENERAL pool memory according to their priority setting.

In this manner, the GENERAL pool provides some elasticity to account for point-in-time deviations
from normal usage of individual resource pools.

Resource Tracking in a Pool

If you want to know what resources are tracked within a resource pool and how are the overall
system limits determined, the Vertica Resource Manager tracks the following:

 Memory (KB) – memory used by the requests running against the pool.

 Threads – amount of concurrent execution.

 File handles – number of open files

The resource pool configuration parameters include only memory and concurrency related
parameters, not threads and file handles. Vertica automatically apportions threads and file handle
resources to the pools, in proportion to their memory usage.

The true system limits for various types of resources managed by the Resource Manager are as
follows:

 Memory – set by default to 95% of physical RAM on the node. The assumption is that the
remainder is used by the rest of the processes running on the machine, or by other
components within Vertica itself. Memory is customized by setting the MAXMEMORYSIZE
parameter of the GENERAL pool.

 Threads – /proc/sys/kernel/threads-max * 3/4 (Default thread-max 80896)

 File Handles – OS limit * 7/8 (Default OS limit 65536)

Query Queue/Rejection Process

Every resource pool has an internal memory threshold called the Queuing Threshold, such that if
the memory usage of requests running against the pool exceeds this threshold, subsequent
requests are queued. (See RESOURCE_POOL_STATUS.QUEUEING_THRESHOLD_KB in the
SQL Reference Manual.)

Queries issued against a pool can be rejected for one of following reasons:

 If the absolute amount of resources required by the query exceeds the memory available in the
system, the query is immediately rejected.

Note: This should be a fairly rare condition if the system has been well designed with adequate
resources.

-296-

Administrator's Guide

 The query stays on the queue but is unable to acquire resources even after a specified timeout

period. (See the QUEUETIMEOUT parameter in CREATE RESOURCE POOL in the SQL

Reference Manual) In this case, the query is rejected, and this is the most likely scenario for
query rejection in Vertica 4.0.

 The query is admitted to run at the initiator node but then gets rejected at the executor node.
This rejection can happen if the actual resources needed by the query are more than the
estimated resources calculated at the initiator, or the requested resources are not available at
the executor. The system returns an error like the following:

Query required more resources than initiator resource manager estimated,

likely due to high storage container counts or a heavier workload on node

XXX

 The number of queries currently running against the pool has reached its specified

concurrency limit. (See the MAXCONCURRENCY parameter in CREATE RESOURCE POOL in

the SQL Reference Manual.)

Note: This limit applies only to queries actually running and not queries queued against the
pool.

 The user had set up a MEMORYCAP on how much memory could be used by the query. See

User Profiles (page 299).

See Also

V_MONITOR.RESOURCE_POOL_STATUS and
V_MONITOR.RESOURCE_REJECTIONS.REASON in the SQL Reference Manual

Target Memory Determination for Queries in Concurrent Environments

The resource pool parameters of MEMORYSIZE and PLANNEDCONCURRENCY (CREATE
RESOURCE POOL in the SQL Reference Manual) provide the options that let you tune the target
memory allocated to queries.

 If MEMORYSIZE is set to 0, in which case the pool borrows all memory as needed from the
GENERAL pool, the target amount of memory for the query is calculated using the Queueing
Threshold of the GENERAL pool / PLANNEDCONCURRENCY.

 If the resource pool for the query has the MEMORYSIZE parameter set, and the pool is
standalone (i.e. cannot borrow from General pool) then the target memory is to use the
Queueing Threshold of the pool / PLANNEDCONCURRENCY amount of memory.

 Otherwise, if MEMORYSIZE is set but the pool is not standalone, the target memory is set to
MEMORYSIZE / PLANNEDCONCURRENCY of the pool.

Therefore, by carefully tuning the MEMORYSIZE and PLANNEDCONCURRENCY parameters, it
is possible to restrict the amount of memory used by a query to a desired size.

See Also

MEMORYCAP setting in User Profiles (page 299)

RESOURCE_POOL_STATUS.QUEUEING_THRESHOLD_KB in the SQL Reference Manual

-297-

 Operating the Database

Monitoring Resource Pools and Resource Usage by Queries

The Linux top command http://linux.die.net/man/1/top can be used to determine the overall

CPU usage and I/O waits across the system. However, resident memory size indicated by top is

not a good indicator of actual memory use or reservation because of file system caching and so
forth. Instead, Vertica provides several monitoring tables that provide detailed information about
resource pools, their current memory usage, resources requested and acquired by various
requests and the state of the queues.

The RESOURCE_POOLS table lets you view various resource pools defined in the system (both
internal and user-defined), and the RESOURCE_POOL_STATUS table lets you view the current
state of the resource pools.

Examples

The following command returns the various resource pools defined in the system.

=> SELECT * FROM V_CATALOG.RESOURCE_POOLS;
 name | is_internal | memorysize | maxmemorysize | priority | queuetimeout | plannedconcurrency

| maxconcurrency | singleinitiator

----------+-------------+------------+---------------+----------+--------------+-----------------

---+----------------+-----------------

 general | t | | Special: 95% | 0 | 300 | 4

| | f

 sysquery | t | 64M | | 20 | 300 | 4

| | f

 sysdata | t | 100M | 10% | | |

| |

 wosdata | t | 0% | 25% | | | 2

| |

 tm | t | 200M | | 10 | 300 | 2

| 3 | t

 refresh | t | 0% | | -10 | 300 | 4

| | t

 recovery | t | 0% | | 15 | 300 | 10

| 5 | t

 dbd | t | 0% | | 0 | 0 | 4

| | t

(8 rows)

To see only the user-defined resource pools, you can limit your query to return records where

IS_INTERNAL is false.

Note: The user-defined pools below are used as examples in subsequent sections related to
Workload Management.

The following command returns information on user-defined resource pools:

=> SELECT name, memorysize, maxmemorysize, priority, maxconcurrency

 FROM V_CATALOG.RESOURCE_POOLS where is_internal ='f';

 name | memorysize | maxmemorysize | priority | maxconcurrency

--------------+------------+---------------+----------+----------------

 load_pool | 0% | | 10 |

 ceo_pool | 250M | | 10 |

 ad hoc_pool | 200M | 200M | 0 |

 billing_pool | 0% | | 0 | 3

 web_pool | 25M | | 10 | 5

 batch_pool | 150M | 150M | 0 | 10

 dept1_pool | 0% | | 5 |

 dept2_pool | 0% | | 8 |

(8 rows)

http://linux.die.net/man/1/top

-298-

Administrator's Guide

The queries borrow memory from the GENERAL pool (page 294) and show the amount of memory

in use from the GENERAL pool.

The following command uses the V_MONITOR.RESOURCE_POOL_STATUS table to return the

current state of all resource pools on node0001:

=> SELECT pool_name, memory_size_kb, memory_size_actual_kb, memory_inuse_kb,

general_memory_borrowed_kb,

 running_query_count FROM V_MONITOR.RESOURCE_POOL_STATUS where node_name ilike '%node0001';

 pool_name | memory_size_kb | memory_size_actual_kb | memory_inuse_kb | general_memory_borrowed_kb

| running_query_count

-----------+----------------+-----------------------+-----------------+--------------------------

--+---------------------

 general | 15108517 | 15108517 | 0 | 0

| 0

 sysquery | 65536 | 65536 | 0 | 0

| 0

 sysdata | 102400 | 102400 | 4096 | 0

| 0

 wosdata | 0 | 0 | 0 | 0

| 0

 tm | 204800 | 204800 | 0 | 0

| 0

 refresh | 0 | 0 | 0 | 0

| 0

 recovery | 0 | 0 | 0 | 0

| 0

 dbd | 0 | 0 | 0 | 0

| 0

(8 rows)

The following command uses the V_MONITOR.RESOURCE_ACQUISITIONS table to show all

resources granted to the queries that are currently running:

Note: While running vmart_query_04.sql from the VMart example database, notice that

the query uses memory_inuse_kb = 219270 from the GENERAL pool.

=> SELECT pool_name, thread_count, open_file_handle_count, memory_inuse_kb, queue_entry_timestamp,

acquisition_timestamp FROM V_MONITOR.RESOURCE_ACQUISITIONS WHERE node_name ILIKE '%node0001';

 pool_name | thread_count | open_file_handle_count | memory_inuse_kb | queue_entry_timestamp

| acquisition_timestamp

-----------+--------------+------------------------+-----------------+---------------------------

----+-------------------------------

 sysquery | 4 | 0 | 4103 | 2010-04-12 15:57:05.526678-04

| 2010-04-12 15:57:05.526684-04

 general | 4 | 5 | 219270 | 2010-04-12 15:56:38.95516-04

| 2010-04-12 15:56:38.956373-04

 sysdata | 0 | 0 | 4096 | 2010-04-12 12:58:06.063178-04

| 2010-04-12 13:11:54.930346-04

 wosdata | 0 | 0 | 0 | 2010-04-12 15:22:33.454542-04

| 2010-04-12 15:22:33.454548-04

(4 rows)

To determine how long a query waits in the queue before it is admitted to run, you can get the

difference between the acquisition_timestamp and the queue_entry_timestamp using

a query like the following:

=> SELECT pool_name, queue_entry_timestamp, acquisition_timestamp,

(acquisition_timestamp-queue_entry_timestamp)

 AS 'queue wait' FROM V_MONITOR.RESOURCE_ACQUISITIONS WHERE node_name ILIKE '%node0001';

 pool_name | queue_entry_timestamp | acquisition_timestamp | queue wait

--------------+-------------------------------+-------------------------------+-----------------

 sysquery | 2010-04-14 10:43:45.931525-04 | 2010-04-14 10:43:45.931532-04 | 00:00:00.000007

-299-

 Operating the Database

 billing_pool | 2010-04-14 10:39:24.295196-04 | 2010-04-14 10:39:24.296469-04 | 00:00:00.001273

 ceo_pool | 2010-04-14 10:40:07.281384-04 | 2010-04-14 10:40:07.29919-04 | 00:00:00.017806

 sysdata | 2010-04-12 12:58:06.063178-04 | 2010-04-12 13:11:54.930346-04 | 00:13:48.867168

 wosdata | 2010-04-12 15:22:33.454542-04 | 2010-04-12 15:22:33.454548-04 | 00:00:00.000006

(5 rows)

See the SQL Reference Manual for detailed descriptions of the monitoring tables described in this
topic.

User Profiles

User profiles are attributes associated with a user that control that user's access to several system
resources. These resources include:

 the resource pool to which a user is assigned (RESOURCE POOL)

 the maximum amount of memory a user's session can use (MEMORYCAP)

 the maximum amount of temporary file storage a user's session can use (TEMPSPACECAP)

 the maximum amount of time a user's query can run (RUNTIMECAP)

You can set these attributes when calling CREATE USER and changed later using ALTER USER.

There are two strategies for limiting a user's access to resources: setting attributes on the user
directly to control resource use, or assigning the user to a resource pool. The first method allows
you to fine tune individual users, while the second makes it easier to group many users together
and set their collective resource usage. For examples, see the scenarios described in Using
User-defined Pools and User-Profiles for Workload Management (page 303).

Example

Set the user's RESOURCE POOL attribute to assign the user to a resource pool. To create a user
named user1 who has access to the resource pool my_pool, use the command:

=> CREATE USER user1 RESOURCE POOL my_pool;

To limit the amount of memory for a user without designating a pool, set the user's MEMORYCAP
to either a particular unit or a percentage of the total memory available. For example, to create a
user named user2 whose sessions are limited to using 200 megabytes memory each, use the
command:

=> CREATE USER user2 MEMORYCAP '200M';

To limit the time a user's queries are allowed to run, set the RUNTIMECAP attribute. To prevent
user2's queries from running more than 5 minutes, you can use the command:

=> ALTER USER user2 RUNTIMECAP '5 minutes';

To limit the amount of temporary disk space that the user's sessions can use, set the
TEMPSPACECAP to either a particular size or a percentage of temporary disk space available.
This example creates user3 who is limited to using 1 gigabyte of temporary space:

=> CREATE USER user3 TEMPSPACECAP '1G';

You can combine different attributes into a single command. For example, to limit a user3's
MEMORYCAP and RUNTIMECAP, include both attributes in an ALTER USER command:

=> ALTER USER user3 MEMORYCAP '750M' RUNTIMECAP '10 minutes';

ALTER USER

-300-

Administrator's Guide

=> \x

Expanded display is on.

=> SELECT * FROM USERS;

-[RECORD 1]-----+------------------

user_id | 45035996273704962

user_name | release

is_super_user | t

resource_pool | general

memory_cap_kb | unlimited

temp_space_cap_kb | unlimited

run_time_cap | unlimited

-[RECORD 2]-----+------------------

user_id | 45035996273964824

user_name | user1

is_super_user | f

resource_pool | my_pool

memory_cap_kb | unlimited

temp_space_cap_kb | unlimited

run_time_cap | unlimited

-[RECORD 3]-----+------------------

user_id | 45035996273964832

user_name | user2

is_super_user | f

resource_pool | general

memory_cap_kb | 204800

temp_space_cap_kb | unlimited

run_time_cap | 00:05

-[RECORD 4]-----+------------------

user_id | 45035996273970230

user_name | user3

is_super_user | f

resource_pool | general

memory_cap_kb | 768000

temp_space_cap_kb | 1048576

run_time_cap | 00:10

See Also

ALTER USER and CREATE USER in the SQL Reference Manual

-301-

Best Practices for Workload Management

This section provides general guidelines and best practices on how to set up and tune resource
pools for various common scenarios.

Note: The exact settings for the pool parameters are heavily dependent on your query mix,
data size, hardware configuration, and concurrency requirements. Vertica recommends
performing your own experiments to determine the optimal configuration for your system.

Basic Principles for Scalability and Concurrency Tuning

A Vertica database runs on a cluster of commodity hardware. All loads and queries running
against the database take up system resources, such as CPU, memory, disk I/O bandwidth, file
handles, and so forth. The performance (run time) of a given query depends on how much
resource it has been allocated.

When running more than one query concurrently on the system, both queries are sharing the
resources; therefore, each query could take longer to run than if it was running by itself. In an
efficient and scalable system, if a query takes up all the resources on the machine and runs in X
time, then running two such queries would double the run time of each query to 2X. If the query
runs in > 2X, the system is not linearly scalable, and if the query runs in < 2X then the single query
was wasteful in its use of resources. Note that the above is true as long as the query obtains the
minimum resources necessary for it to run and is limited by CPU cycles. Instead, if the system
becomes bottlenecked so the query does not get enough of a particular resource to run, then the
system has reached a limit. In order to increase concurrency in such cases, the system must be
expanded by adding more of that resource.

In practice, Vertica should achieve near linear scalability in run times, with increasing concurrency,
until a system resource limit is reached. When adequate concurrency is reached without hitting
bottlenecks, then the system can be considered as ideally sized for the workload.

Note: Typically Vertica queries on segmented tables run on multiple (likely all) nodes of the
cluster. Adding more nodes generally improves the run time of the query almost linearly.

Guidelines for Setting Pool Parameters

This section provides guidelines on setting the various parameters of any resource pool. When
using Vertica with out-of-the-box resource pools, you typically need to tune only the GENERAL
pool parameters, PLANNEDCONCURRENCY and MAXCONCURRENCY, using the guidelines
described here. See Using User-defined Pools and User-profiles for Workload Management
(page 303) for examples of situations where you might want to create your own pools.

Parameter Guideline

MEMORYSIZE Ignore if tuning the GENERAL pool.

For other pools, you can leave the setting to the default (0%), which
allows the pool to borrow memory from the General pool, as
needed. Consider setting this in the following situations:

 To set aside memory for exclusive use of requests issued to that
pool. This memory then cannot be used for other purposes, even if
there are no requests made to that pool.

 In combination with PLANNEDCONCURRENCY, to tune the memory

-302-

Administrator's Guide

used by a certain query to a certain size, where applicable. This is
for expert use only.

See Target Memory Determination for Queries in Concurrent
Environments (page 296).

MAXMEMORYSIZE Ignore if tuning the GENERAL pool.

For other pools, use this parameter to to set up the resource pool as a
standalone pool or to limit how much memory the resource pool can borrow

from the GENERAL pool. This provides a mechanism to enforce a hard limit

on the memory usage by certain classes of workload; for example, loads
should take up no more than 4GB of total available memory.

See Scenario: Restricting resource usage and concurrency of ad-hoc
application (page 306)

QUEUETIMEOUT Use this parameter to change the timeout of the pool from the 5-minute
default.

The timeout can be customized if you need different queuing durations for
different classes of workloads. For example, long-running batch workloads
could be configured to run on a pool with high timeout values, possibly
unlimited, since completion of the task is more critical than response time.

For interactive application queries, the timeouts could be set to low or 0 to
ensure application gets an immediate error if the query cannot run.

Note: Be mindful that increased timeouts will lead to longer queue lengths

and will not necessarily improve the overall throughput of the system.

PRIORITY Use this parameter to prioritize the use of GENERAL pool resources, either

by requests made directly to the GENERAL pool, or by requests made to

other pools borrowing memory from the GENERAL pool. For instance,

requests made to the RecoveryPool have highest priority out of the box so
that Vertica can expeditiously provide resources to recover nodes that are
down.

Note: The PRIORITY setting has no meaning for a standalone pool,

which does not borrow memory from the GENERAL pool. See examples in

Scenario: Periodic Batch Loads (page 303) and Scenario: Setting
Priorities on Queries Issued by Different Users (page 309).

PLANNEDCONCURRENCY Use this parameter to represent the typical number of queries running
concurrently in the system. By default, this setting is configured using the
number of cores and RAM in the system, so as to provide each query with
its optimal amount of memory and use of at least one core.

This parameter must be set by experimentation to ensure individual query
performance meets requirements. As discussed in Query Memory in
Concurrent Environments (page 296), there is a tradeoff between giving
each query maximum amount of resources versus allowing many
concurrent queries to run in a reasonable amount of time.

Notes:

 This parameter can be used in combination with MEMORYSIZE to
tune the memory used by a query down to a specific size.

 If you created or upgraded your database in 4.0 or 4.1, the

PLANNEDCONCURRENCY setting on the GENERAL pool defaults to

-303-

 Operating the Database

a too-small value for machines with large numbers of cores. To
adjust to a more appropriate value:

 => ALTER RESOURCE POOL general PLANNEDCONCURRENCY

<#cores>;

 This parameter only needs to be set if you created a database before
4.1, patchset 1.

MAXCONCURRENCY Use this parameter if you want to impose a hard limit on the number of
concurrent requests that are allowed to run against any pool, including the
GENERAL pool.

Instead of limiting this at the pool level, it is also possible to limit at the
connection level using MaxClientSessions (page 25).

SINGLEINITIATOR This parameter can be left to its default (false) value in most situations,
unless advised otherwise by Vertica Technical Support (on page 1).
SINGLEINITIATOR is set to ‗true‘ by some built-in pools used for
operations that are local to the node, such as Tuple Mover and Recovery.

Using User-defined Pools and User-Profiles for Workload Management

The scenarios in this section describe some commonly encountered workload-management
problems and provide some solutions with examples.

Scenario: Periodic Batch Loads

Scenario

We do batch loads every night, or occasionally during the day but infrequently. When loads are
running, it is acceptable to reduce resource usage by queries, but at all other times we want all
resources to be available to queries.

Solution

Create a separate resource pool for loads with a higher priority than the GENERAL pool.

During nightly loads, the loads get preference when borrowing memory from the GENERAL pool.
When loads are not running, all memory is automatically available for queries.

If using the WOS, tune the PLANNEDCONCURRENCY parameter of the WOSDATA pool to the

number of concurrent loads. This ensures that AUTO spill to ROS is configured in an optimal
fashion.

Example

Create a resource pool with the PRIORITY of the pool set higher than the GENERAL pool.

For example, to create a pool designated for loads that has a higher priority then the GENERAL
pool, set load_pool with a priority of 10:

CREATE RESOURCE POOL load_pool PRIORITY 10;

Edit the WOSDATA pool PLANNEDCONCURRENCY:

-304-

Administrator's Guide

ALTER RESOURCE POOL WOSDATA PLANNEDCONCURRENCY 6;

Modify the user's resource pool:

ALTER USER load_user RESOURCE POOL load_pool;

Scenario: The CEO Query

Scenario

The CEO runs a report every Monday at 9AM. How can we ensure the report always runs?

Solution

To ensure that a certain query or class of queries always gets resources, you could create a
dedicated pool for it as follows:

1 Using the PROFILE command, run the query that the CEO runs every week to determine how
much memory should be allocated:

PROFILE SELECT DISTINCT s.product_key, p.product_description

FROM store.store_sales_fact s, public.product_dimension p

WHERE s.product_key = p.product_key AND s.product_version =

p.product_version

AND s.store_key IN (

 SELECT store_key FROM store.store_dimension

 WHERE store_state = 'MA')

ORDER BY s.product_key;

2 At the end of the query, the system returns a notice with resource usage:

NOTICE: Statement is being profiled.

HINT: select * from v_monitor.execution_engine_profiles where

transaction_id=45035996273751349 and statement_id=6;

NOTICE: Initiator memory estimate for query: [on pool general: 1723648

KB,

minimum: 355920 KB]

3 Create a resource pool with MEMORYSIZE reported by the above hint to ensure that the CEO
query has at least this memory reserved for it:

CREATE RESOURCE POOL ceo_pool MEMORYSIZE '110M' PRIORITY 10;

\x

Expanded display is on.

=> SELECT * FROM resource_pools WHERE name = 'ceo_pool';

-[RECORD 1]-------+-------------

name | ceo_pool

is_internal | f

memorysize | 110M

maxmemorysize |

priority | 10

queuetimeout | 300

plannedconcurrency | 4

maxconcurrency |

singleinitiator | f

-305-

 Operating the Database

4 Assuming the CEO report user already exists, associate this user with the above resource pool
using ALTER USER statement.

=> ALTER USER ceo_user RESOURCE POOL ceo_pool;

5 Issue the following command to confirm that the ceo_user is associated with the ceo_pool:

=> SELECT * FROM users WHERE user_name ='ceo_user';

-[RECORD 1]-+------------------

user_id | 45035996273713548

user_name | ceo_user

is_super_user | f

resource_pool | ceo_pool

memory_cap_kb | unlimited

If the memory usage by the CEO query is too large, you could ask the Resource Manager to tune
it down to fit within certain budget. See Target Memory Determination for Queries in
Concurrent Environments (page 296).

Scenario: Preventing Run-away Queries

Scenario

Joe, a business analyst often runs big reports in the middle of the day that take up the whole
machine. How can we prevent Joe from taking up more than 100MB of memory?

Solution

User Profiles (page 299) provides a solution to this scenario. To restrict the amount of memory
business analyst Joe can use at one time, set a MEMORYCAP for Joe to 100MB using the ALTER
USER command. If any query run by Joe takes up more than its cap, Vertica rejects the query.

Example

ALTER USER analyst_user MEMORYCAP '100M';

If Joe attempts to issue a query that exceeds 100M the system returns an error that the request
exceeds the memory session limit. For example:

\i vmart_query_04.sql

vsql:vmart_query_04.sql:12: ERROR: Insufficient resources to initiate plan

on pool general [Request exceeds memory session limit: 137669KB > 102400KB]

Only the system database administrator (dbadmin) can increase only the MEMORYCAP setting.
Users cannot increase their own MEMORYCAP settings.

If users attempts to increase the MEMORYCAP, the system returns a "permission denied" error:

ALTER USER analyst_user MEMORYCAP '135M';

ROLLBACK: permission denied

-306-

Administrator's Guide

Scenario: Restricting Resource Usage of Ad-hoc Query Application

Scenario

We recently opened up our data warehouse to a large group of users who are not very
experienced with poor SQL. Occasionally, many of them run reports that operate on a large
number of rows and overwhelm the system. How can we throttle usage of the system by such
users?

Solution

The simplest solution is to create a standalone resource pool for the ad-hoc applications so that
the total MEMORYSIZE is fixed. Recall that in a standalone pool, MAXMEMORYSIZE is set equal
to MEMORYSIZE so no memory can be borrowed from the GENERAL pool. Associate this user
pool with the database user(s) from which the application uses to connect to the database.

Other solutions include limiting the memory usage of individual users such as in the Scenario:
Preventing run-away Queries (page 305).

Tip: Besides adding limits such as the above, it is also a great idea to train the user community
on writing good SQL.

Example

To create a standalone resource pool for the adhoc users, set the MEMORYSIZE equal to the
MAXMEMORYSIZE:

CREATE RESOURCE POOL adhoc_pool MEMORYSIZE '200M' MAXMEMORYSIZE '200M'

PRIORITY 0 QUEUETIMEOUT 300 PLANNEDCONCURRENCY 4;

SELECT pool_name, memory_size_kb, queueing_threshold_kb

FROM V_MONITOR.RESOURCE_POOL_STATUS w

WHERE is_standalone = 'true' AND is_internal = 'false';

 pool_name | memory_size_kb | queueing_threshold_kb

------------+----------------+-----------------------

 adhoc_pool | 204800 | 153600

(1 row)

Once the pool has been created, associate the adhoc users with the adhoc_pool:

ALTER USER app1_user RESOURCE POOL adhoc_pool;

ALTER RESOURCE POOL adhoc_pool MEMORYSIZE '10M' MAXMEMORYSIZE '10M';

\i vmart_query_04.sql vsql:vmart_query_04.sql:12: ERROR: Insufficient resources

to initiate plan on pool adhoc_pool [Request Too Large:Memory(KB)

Exceeded: Requested = 84528, Free = 10240 (Limit = 10240, Used = 0)]

The query will not borrow memory from the GENERAL pool and gets rejected with a 'Request Too
Large' message.

Scenario: Setting a Hard Limit on Concurrency For An Application

Scenario

For billing purposes, analyst Jane would like to impose a hard limit on concurrency for this
application. How can she achieve this?

-307-

 Operating the Database

Solution

The simplest solution is to create a separate resource pool for the users of that application and set
its MAXCONCURRENCY to the desired concurrency level. Any queries beyond
MAXCONCURRENCY are rejected.

Tip: Vertica recommends leaving PLANNEDCONCURRENCY to the default level so the
queries get their maximum amount of resources. The system as a whole thus runs with the
highest efficiency.

Example

In this example, there are four billing users associated with the billing pool. The objective is to set
a hard limit on the resource pool so a maximum of five concurrent queries can be executed at one
time. All other queries will queue and complete as resources are freed.

=> CREATE RESOURCE POOL billing_pool MAXCONCURRENCY 5 QUEUETIMEOUT 2;

=> CREATE USER bill1_user RESOURCE POOL billing_pool;

=> CREATE USER bill2_user RESOURCE POOL billing_pool;

=> CREATE USER bill3_user RESOURCE POOL billing_pool;

=> CREATE USER bill4_user RESOURCE POOL billing_pool;

=> \x

Expanded display is on.

=> SELECT * FROM users WHERE resource_pool = 'billing_pool';
 user_id | user_name | is_super_user | profile_name | is_locked | lock_time | resource_pool

| memory_cap_kb | temp_space_cap_kb | run_time_cap

-------------------+------------+---------------+--------------+-----------+-----------+---------

------+---------------+-------------------+--------------

 45035996273910978 | bill1_user | f | default | f | | billing_pool

| unlimited | unlimited | unlimited

 45035996273910982 | bill2_user | f | default | f | | billing_pool

| unlimited | unlimited | unlimited

 45035996273910986 | bill3_user | f | default | f | | billing_pool

| unlimited | unlimited | unlimited

 45035996273910990 | bill4_user | f | default | f | | billing_pool

| unlimited | unlimited | unlimited

(4 rows)

=> SELECT reason, resource_type, rejection_count, first_rejected_timestamp,

last_rejected_timestamp, last_rejected_value

 FROM RESOURCE_REJECTIONS

 WHERE pool_name = 'billing_pool' AND node_name ilike '%node0001';

 reason | resource_type | rejection_count |

first_rejected_timestamp | last_rejected_timestamp | last_rejected_value

---------------------------------------+---------------+-----------------+-----------------------

--------+-------------------------------+---------------------

 Timedout waiting for resource request | Queries | 16 | 2010-04-13

16:28:12.640383-04 | 2010-04-14 09:35:00.056489-04 | 1

(1 row)

If three queries are running and do not complete in the allotted time (default timeout setting is 5
minutes), the next query requested gets an error similar to the following:

ERROR: Insufficient resources to initiate plan on pool billing_pool

[Timedout waiting for resource request: Request exceeds limits:

Queries Exceeded: Requested = 1, Free = 0 (Limit = 3, Used = 3)]

The table below shows that there are three active queries on the billing pool.

-308-

Administrator's Guide

=> SELECT pool_name, thread_count, open_file_handle_count, memory_inuse_kb,

queue_entry_timestamp, acquisition_timestamp

 FROM RESOURCE_ACQUISITIONS

 WHERE pool_name = 'billing_pool';
 pool_name | thread_count | open_file_handle_count | memory_inuse_kb | queue_entry_timestamp

| acquisition_timestamp

--------------+--------------+------------------------+-----------------+------------------------

-------+-------------------------------

 billing_pool | 4 | 5 | 132870 | 2010-04-14

16:24:30.136789-04 | 2010-04-14 16:24:30.138028-04

 billing_pool | 4 | 5 | 132870 | 2010-04-14

16:24:28.119842-04 | 2010-04-14 16:24:28.121261-04

 billing_pool | 4 | 5 | 132870 | 2010-04-14

16:24:26.209174-04 | 2010-04-14 16:24:26.210571-04

(3 rows)

Scenario: Handling Mixed Workloads (Batch vs. Interactive)

Scenario

We have a web application with an interactive portal. Sometimes when IT is running batch reports,
the web page takes ages to refresh and our users complain. How can we provide a better
experience to our web site users?

Solution

The principles learned from the previous scenarios can be applied to solve this problem. The basic
idea is to segregate the queries into two groups associated with different resource pools. (The
prerequisite is that there are two distinct database users issuing the different types of queries. If
this is not the case, do consider this a best practice for application design.)

There are two ways to do this.

 METHOD 1: Create a dedicated pool for the web page refresh queries where you:

1. Size the pool based on the average resource needs of the queries and expected number of
concurrent queries issued from the portal.

2. Associate this pool with the database user that runs the web site queries. (See Scenario:
The CEO Query (page 304) for detailed procedure on creating a dedicated pool.)

This ensures that the web site queries always run and never queue behind the large batch
jobs. Leave the batch jobs to run off the GENERAL pool.

For example, the following pool is based on the average resources needed for the queries
running from the web and the expected number of concurrent queries. It also has a higher
PRIORITY to the web queries over any running batch jobs and assumes the queries are
being tuned to take 250M each:

CREATE RESOURCE POOL web_pool MEMORYSIZE '250M' MAXMEMORYSIZE NONE

PRIORITY 10 MAXCONCURRENCY 5 PLANNEDCONCURRENCY 1

 METHOD 2: Create a standalone pool to limit the batch reports down to a fixed memory size
so memory is always left available for other purposes. (See Scenario: Restricting Resource
Usage of Ad-hoc Query Application (page 306).)

For example:

CREATE RESOURCE POOL batch_pool MEMORYSIZE '4G'

-309-

 Operating the Database

MAXMEMORYSIZE '4G' MAXCONCURRENCY 10:

The same principle can be applied if you have three or more distinct classes of workloads.

Scenario: Setting Priorities on Queries Issued by Different Users

Scenario

We would like user queries from one department to have a higher priority than another
department.

Solution

The solution is very similar to the one discussed for mixed workload case (page 308). In this
case, the issue is not to limit resource usage but to set different priorities. To do so, create two
different pools each with MEMORYSIZE=0% and a different PRIORITY parameter. Both pools
borrow from the GENERAL pool, however when competing for resources, the priority determine
the order in which each pool's request is granted. For example:

CREATE RESOURCE POOL dept1_pool PRIORITY 5;

CREATE RESOURCE POOL dept2_pool PRIORITY 8;

If you find that this solution is not sufficient, or if one department continuously starves another
department‘s users, you could add a reservation for each pool by setting MEMORYSIZE so some
memory is guaranteed to be available for each department.

For example, since both resources are using the GENERAL pool for memory, you could allocate
some memory to each resource pool by using the ALTER RESOURCE POOL command to
change the MEMORYSIZE for each pool:

ALTER RESOURCE POOL dept1_pool MEMORYSIZE '100M';

ALTER RESOURCE POOL dept2_pool MEMORYSIZE '150M';

Scenario: Continuous Load and Query

Scenario

Our application would like to run continuous load streams, and many have up concurrent query
streams. How can we ensure that performance is predictable?

Solution

The solution to this scenario will depend a lot on your query mix, however below are the general
steps to take:

1 Determine the number of continuous load streams required. This may be related to the desired
load rate if a single stream does not provide adequate throughput, or may be more directly
related to the number of sources of data to load. Also determine if automatic storage is best,
or if DIRECT is required. Create a dedicated resource pool for the loads, and associate it with
the database user that will perform them. See CREATE RESOURCE POOL for details.

-310-

Administrator's Guide

In general, the concurrency settings for the load pool should be less than the number of cores
per node. Unless the source processes are slow, it is more efficient to dedicate more memory
per load, and have additional loads queue. Adjust the load pool's QUEUETIMEOUT setting if
queueing is expected.

2 If using automatic targeting of COPY and INSERT, set the PLANNEDCONCURRENCY
parameter of the WOSDATA pool to the number of concurrent loads expected. Also, set
MEMORYSIZE of the WOS to the expected size of the loaded data to ensure that small loads
don't spill to ROS immediately. See Built-in Pools for details.

3 Run the load workload for a while and observe whether the load performance is as expected. If
the Tuple Mover is not tuned adequately to cover the load behavior, see Tuning the Tuple
Mover (page 167) in Administrator's Guide.

4 If there is more than one kind of query in the system (say some queries that must be answered
quickly for interactive users, and others that are part of a batch reporting process), follow the
advice in Scenario: Handling Mixed Workloads (page 308).

5 Let the queries run and observe the performance. If some classes of queries are not getting
the desired performance, then it may be necessary to tune the GENERAL pool (page 294) as
outlined in Scenario: Restricting Resource Usage of Ad-hoc Query Application (page
306), or to create further dedicated resource pools for those queries. See Scenario: The CEO
Query (page 304) and Scenario: Handling Mixed Workloads (page 308).

See the sections on Managing Workloads (page 292) and CREATE RESOURCE POOL for
additional details and tips for obtaining predictable results in mixed workload environments.

Tuning the Built-in Pools

The scenarios in this section describe how to tune the built-in pools.

Scenario: Restricting Vertica to Take Only 60% of Memory

Scenario

We have a single node application embedding Vertica, and some portion of the RAM needs to be
devoted to the application process. Can we limit Vertica to use only 60% of the available RAM?

Solution

Set the MAXMEMORYSIZE parameter of the GENERAL pool to the desired memory size. See
Resource Pool Architecture (page 294) for a discussion on resource limits.

Scenario: Tuning for Recovery

Scenario

We have a large database containing a single large table with two projections. With out-of-the-box
settings, recovery is taking too long. Is there a way to give recovery more memory to improve
speed?

Solution

Set the PLANNEDCONCURRENCY and MAXCONCURRENCY setting of the recovery pool to 1
so that recovery can take as much memory as possible from the GENERAL pool and run only one
thread at once.

-311-

 Operating the Database

Note: This setting could slow down other queries in your system.

Scenario: Tuning for Refresh

Scenario

When refresh is running, the system performance is impacted and user queries get rejected. Can
we reduce the memory usage of the refresh job?

Solution

Set the MEMORYSIZE parameter of the refresh pool to a fixed value. The Resource Manager
then tunes the refresh query to only use this amount of memory.

Tip: Remember to reset the refresh pool MEMORYSIZE back to 0% after refresh is finished so
the memory can be used for other operations.

Scenario: Tuning Tuple Mover Pool Settings

Scenario

During loads, we occasionally see spikes in number of ROS containers. How can we make the
Tuple Mover more aggressive?

Solution

Increase the MAXCONCURRENCY parameter of the TM pool to 3 or higher. This setting ensures

that the Tuple Mover can run more than one mergeout thread, so if a large mergeout is in
progress, smaller ROS containers can also be merged, thus preventing a buildup of ROS
containers.

Reducing Run-time of Queries

The run time of queries depends on the complexity of the query, the number of operators in the
plan, data volumes, and projection design. If the system is bottlenecked on either I/O or CPU,
queries could run more slowly than expected. In most cases, high CPU usage can be alleviated by
better projection design, and high I/O is usually due to contention because of operations like joins
and sorts that spill to disk. However, there is no one-size fix for high CPU or high I/O usage, so
queries must be examined and tuned individually.

Two primary ways to determine why a query is slow are:

 Examine the query plan via EXPLAIN

 Examine the execution profile (EXECUTION_ENGINE_PROFILES).

Examining the plan will reveal one more more of the following:

 Suboptimal sort order

 Cases when predicate evaluation occurs on an unsorted or unencoded column

 Cases where data is uncompressed prematurely

 Occurrence of a partition hash join instead of merge join

 Presence of Group by Hash rather than pipeline

-312-

Administrator's Guide

See Creating Custom Designs (page 91) to understand projection design techniques. The
Database Designer automatically applies these techniques to suggest optimal designs for queries.

Real-time Profiling

Vertica provides profiling mechanisms that let you determine how well the database is performing.
For example, Vertica can collect profiling data for a single statement, a single session, or for all
sessions on all nodes.

Real-time profiling is always "on", without profiling being explicitly enabled.

For details, see Profiling Database Performance in the Troubleshooting Guide and, in particular:

 Profiling a Single Statement

 Real-time Profiling

 Viewing Profiling Data

 Viewing Real-time Profiling Data

See also EXECUTION_ENGINE_PROFILES in the SQL Reference Manual

Managing System Resource Usage

You can use the SQL Monitoring APIs (system tables) (page 199) to track overall resource
usage on your cluster. These and the other system tables are described in the SQL Reference
Manual.

If your queries are experiencing errors due to resource unavailability, you can use the following
system tables to obtain more details:

System Table Description

RESOURCE_REJECTIONS Monitors requests for resources that are rejected by the
Resource Manager.

DISK_RESOURCE_REJECTIO
NS

Monitors requests for resources that are rejected due to
disk space shortages. See Managing Disk Space
(page 283) for more information.

When requests for resources of a certain type are being rejected, do one of the following:

 Increase the resources available on the node by adding more memory, more disk space, and
so on. See Managing Disk Space (page 283).

 Reduce the demand for the resource by reducing the number of users on the system (see
Managing Sessions (page 313)), rescheduling operations, and so on.

The LAST_REQUEST_REJECTED_REASON field in RESOURCE_REJECTIONS indicates the

cause of the problem. For example:

 The message Usage of a single requests exceeds high limit means that the

system does not have enough of the resource available for the single request. A common
example occurs when the file handle limit is set too low and you are loading a table with a large
number of columns.

-313-

 Operating the Database

See Increase the Maximum Number of Files Open in the Installation Guide for more
information.

 The message Timed out or Canceled waiting for resource reservation usually

means that there is too much contention for the resource because the hardware platform
cannot support the number of concurrent users using it. Contact Technical Support (on page
1) for assistance in this area.

See Also

Guidelines for Setting Pool Parameters (page 301)

Managing Sessions

Vertica provides powerful methods for database administrators to view and control sessions. The
methods vary according to the type of session:

 External (user) sessions are initiated by vsql or programmatic (ODBC or JDBC) connections
and have associated client state.

 Internal (system) sessions are initiated by the Vertica database process and have no client
state.

You can view a list of currently active sessions (including internal sessions) and can interrupt or
close external sessions when necessary, particularly when shutting down the database (page
338).

By default Vertica allows 50 client sessions and an additional 5 administrator sessions. You can

modify connection settings with the MaxClientSessions parameter. For example, to increase

the number of MaxClientSessions to 100, issue the following command at a vsql prompt:

=> SELECT SET_CONFIG_PARAMETER('MaxClientSessions', 100);

To prevent new non-dbadmin sessions from connecting, set MaxClientSessions to 0:

=> SELECT SET_CONFIG_PARAMETER('MaxClientSessions', 0);

Viewing Sessions

Vertica provides the SESSIONS table to view the session status of your database. SESSIONS
contains information about external sessions and returns one row per session. This table is
described in the SQL Reference Manual.

Note: Superuser has unrestricted access to all database metadata. Users have significantly
reduced access to metadata based on their privileges. See Metadata Privileges (page 139).

Interrupting and Closing Sessions

 Interrupting a running statement returns an enclosing session to an idle state, meaning no
statements or transactions are running, no locks are held, and the database is doing no work
on behalf of the session. If no statement is running, you get an error.

 Closing a session interrupts the session and disposes of all state related to the session,
including client socket connections for external sessions.

These actions are provided in the form of SQL functions, described in the SQL Reference Manual:

 INTERRUPT_STATEMENT

-314-

Administrator's Guide

 CLOSE_SESSION

 CLOSE_ALL_SESSIONS

 SHUTDOWN

SELECT statements that call these functions return when the interrupt or close message has been
delivered to all nodes, not after the interrupt or close has completed. This means there might be a
delay after the statement returns and the interrupt or close taking effect throughout the cluster. To
determine if the session or transaction has ended, you can monitor the SESSIONS system table.

Controlling Sessions

The database administrator must be able to disallow new incoming connections in order to shut
down the database. On a busy system, database shutdown is prevented if new sessions connect
after the CLOSE_SESSION or CLOSE_ALL_SESSIONS() command is invoked — and before the
database actually shuts down.

One option is for the administrator to issue the SHUTDOWN('true') command, which forces the

database to shut down and disallow new connections. See SHUTDOWN in the SQL Reference
Manual.

Another option is to modify the MaxClientSessions parameter from its original value to 0, in

order to prevent new non-dbadmin users from connecting to the database.

1 Determine the original value for the MaxClientSessions parameter by querying the

V_MONITOR.CONFIGURATIONS_PARAMETERS system table:

=> SELECT CURRENT_VALUE FROM CONFIGURATION_PARAMETERS WHERE

parameter_name='MaxClientSessions';

 CURRENT_VALUE

 50

(1 row)

2 Set the MaxClientSessions parameter to 0 to prevent new non-dbadmin connections:

=> SELECT SET_CONFIG_PARAMETER('MaxClientSessions', 0);

Note: The previous command allows up to five administrators to log in.

3 Issue the CLOSE_ALL_SESSIONS() command to remove existing sessions:

=> SELECT CLOSE_ALL_SESSIONS();

4 Query the SESSIONS table:

=> SELECT * FROM SESSIONS;

When the session no longer appears in the SESSIONS table, disconnect and run the Stop

Database (page 338) command.

5 Restart the database.

6 Restore the MaxClientSessions parameter to its original value:

=> SELECT SET_CONFIG_PARAMETER('MaxClientSessions', 50);

See Also

Administrator's Guide

-315-

 Operating the Database

 Configuration Parameters (page 25)

 Stop Database (page 338)

 Shutdown Problems (page 237)

SQL Reference Manual

 SESSIONS

 CONFIGURATION_PARAMETERS

 CLOSE_ALL_SESSIONS

 CLOSE_SESSION

 INTERRUPT_STATEMENT

 SESSIONS

 SHUTDOWN

Troubleshooting Guide

 New Session Rejected Due to Limit

 ... Users are connected (page 238)

Managing Load Streams

You can use the SQL Monitoring API (page 199) to keep track of data being loaded on your
cluster.

System Table Description

LOAD_STREAMS Monitors load metrics for each load stream on each node.

These and the other SQL Monitoring API system tables are described in detail in the SQL
Reference Manual.

If a COPY ... DIRECT operation is in progress, the ACCEPTED_ROW_COUNT field could increase

up to the maximum number of rows in the input file as the rows are being parsed. If COPY reads

from many named pipes, PARSE_COMPLETE_PERCENT shows 0 until it receives an EOF from all

named pipes. This can take a significant amount of time, and it is easy to mistake this state as a
hang. Check your system CPU and disk accesses (page 215) to determine if any activity is in
progress before canceling COPY or reporting a hang.

In a typical load, you might notice PARSE_COMPLETE_PERCENT creep up to 100% or jump to

100% if loading from named pipes or STDIN, while SORT_COMPLETE_PERCENT is at 0. Once

PARSE_COMPLETE_PERCENT reaches 100%, SORT_COMPLETE_PERCENT creeps up to 100%.

Depending on the data sizes, there could be significant lag between the time

PARSE_COMPLETE_PERCENT reaches 100% and the time SORT_COMPLETE_PERCENT begins to

increase.

-316-

Load Balancing
In Vertica, load balancing supports multiple client connections through a single Virtual IP (VIP)
address that is shared among all nodes in a cluster. This is useful for balancing incoming client
requests across nodes, as well as preventing node exclusion from clients in the case of node
failure.

The IP Virtual Server (IPVS) is a network bridge that balances the connection streams. IPVS is
made up of the following components:

 The Virtual IP (VIP): The IP address that is accessed by all client connections.

 Real server IPs (RIP): The IP addresses of client network interfaces used for connecting
database clients to the database engine.

 Cluster: A cluster of real Vertica servers (nodes).

 Virtual server: The single point of entry (network bridge) that provides access to a cluster.

Client connections made through the Virtual IP (VIP) are managed by a primary (master) director
node, which is one of the real server nodes (RIP). The master director handles the routing of
requests by determining which node has the fewest connections and sending connections to that
node. If the director node fails for any reason, a failover (slave) director takes over request routing
until the primary (master) director comes back online.

If a user connects to node03 in a three-node cluster and node03 fails, the current transaction rolls
back, the client connection fails, and a connection must be reestablished on another node.

The following graphic illustrates a three-node database cluster where all nodes share a single VIP.
The cluster contains a master director (node01), a slave director (node02), and an additional host
(node03) that together provide the minimum configuration for high availability (K-safety). In this
setup (and in the configuration and examples that follow), node01 and node02 play dual roles as
IPVS directors and Vertica nodes.

Notes

 Load balancing on a VIP is supported for Linux Red Hat Enterprise Linux 5, 64-bit.

 Vertica must be installed on each node in the cluster; the database can be installed on any
node, but only one database can be running on a Vertica cluster at a time.

-317-

 Operating the Database

 Although a 0 K-safety (two-node) design is supported, Vertica strongly recommends that you
create the load-balancing network using a minimum three-node cluster with K-safety set to 1.
This way if one node fails, the database stays up. See Designing for K-Safety (page 92) for
details.

 Subsequent topics in this section describe how to set up two directors (master and slave), but
you can set up more than two directors. See the Keepalived User Guide
http://www.keepalived.org/pdf/UserGuide.pdf for details. See also the Linux Virtual
Server Web site http://www.linux-vs.org/.

Configuring Vertica Nodes

This section describes how to configure a Vertica cluster of nodes for load balancing. You'll set up
two directors in a master/slave configuration and include a third node for K-safety.

A Vertica cluster designed for load balancing uses the following configuration:

 Real IP (RIP) address is the public interface and includes:

 The master director/node, which handles the routing of requests.

 The slave director/node, which communicates with the master and takes over routing
requests in the event of a master node failure.

 Unlimited n nodes, such as at least one failover node to provide the minimum configuration
for high availability (K-safety).

 Virtual IP (VIP) address (generally assigned to eth0 in Linux) is the public network interface
over which database clients connect.

Note: The VIP must be public so that clients outside the cluster can contact it.

Once you have set up a Vertica cluster and created a database, you can choose any two nodes to
be directors. The instructions in this section use the following node configuration:

Preconfigured IP Node assignment Public IPs Private IPs

VIP shared among all
nodes

10.10.51.180

RIP master director node01 10.10.51.55 192.168.51.1

RIP slave director node02 10.10.51.56 192.168.51.2

RIP failover node node03 10.10.51.57 192.168.51.3

Notes

 In the above table, the private IPs determine which node to send a request to. They are not the
same as the RIPs.

 The VIP must be on the same subnet as the nodes in the Vertica cluster.

 Both the master and slave nodes (node01 and node02 in this section) require additional
installation and configuration, as described in Configuring the Directors (page 320).

 Use the command $ cat /etc/hosts to display a list of all hosts in your cluster

http://www.keepalived.org/pdf/UserGuide.pdf
http://www.linux-vs.org/

-318-

Administrator's Guide

See Also

The following external web sites might be useful. The links worked at the last date of publication,
but Vertica does not manage this content. Please report any broken links to Technical Support
(on page 1).

Linux Virtual Server Web site http://www.linux-vs.org/

LVS-HOWTO Page http://www.austintek.com/LVS/LVS-HOWTO/HOWTO/

Keepalived.conf(5) man page http://linux.die.net/man/5/keepalived.conf

ipvsadm man page
http://at.gnucash.org/.vhost/linuxcommand.org/man_pages/ipvsadm8.html

Set Up the Loopback Interface

This procedure sets up the loopback (lo) interface with an alias on each node.

1 Log in as root on the master director (node01):

$ su - root

2 Use the text editor of your choice to open ifcfg-lo:

[root@node01]# vi /etc/sysconfig/network-scripts/ifcfg-lo

3 Set up the loopback adapter with an alias for the VIP by adding the following block to the end of
the file:

vip device

DEVICE=lo:0

IPADDR=10.10.51.180

NETMASK=255.255.255.255

ONBOOT=yes

NAME=loopback

Note: When you add the above block to your file, be careful not to overwrite the 127.0.0.1

parameter, which is required for proper system operations.

4 Repeat steps 1-3 on each node in the Vertica cluster.

Disable Address Resolution Protocol (ARP)

This procedure disables ARP (Address Resolution Protocol) for the VIP.

1 On the master director (node01), log in as root:

$ su - root

2 Use the text editor of your choice to open the sysctl configuration file:

[root@node01]# vi /etc/sysctl.conf

3 Add the following block to the end of the file:

#LVS

net.ipv4.conf.eth0.arp_ignore =1

net.ipv4.conf.eth0.arp_announce = 2

Enables packet forwarding

net.ipv4.ip_forward =1

http://www.linux-vs.org/
http://www.austintek.com/LVS/LVS-HOWTO/HOWTO/
http://linux.die.net/man/5/keepalived.conf
http://at.gnucash.org/.vhost/linuxcommand.org/man_pages/ipvsadm8.html

-319-

 Operating the Database

Note: For additional details, refer to the LVS-HOWTO Page
http://www.austintek.com/LVS/LVS-HOWTO/HOWTO/. You might also refer to the Linux
Virtual Server Wiki page
http://kb.linuxvirtualserver.org/wiki/Using_arp_announce/arp_ignore_to_disable_ARP

for information on using arp_announce/arp_ignore to disable the Address Resolution

Protocol.

4 Use ifconfig to verify that the interface is on the same subnet as the VIP:

[root@node01]# /sbin/ifconfig

In the following output, the eth0 inet addr is the VIP, and subnet 51 matches the private RIP

under the eth1 heading:

eth0 Link encap:Ethernet HWaddr 84:2B:2B:55:4B:BE

 inet addr:10.10.51.55 Bcast:10.10.51.255 Mask:255.255.255.0

 inet6 addr: fe80::862b:2bff:fe55:4bbe/64 Scope:Link

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:91694543 errors:0 dropped:0 overruns:0 frame:0

 TX packets:373212 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:1000

 RX bytes:49294294011 (45.9 GiB) TX bytes:66149943 (63.0 MiB)

 Interrupt:15 Memory:da000000-da012800

eth1 Link encap:Ethernet HWaddr 84:2B:2B:55:4B:BF

 inet addr:192.168.51.55 Bcast:192.168.51.255

Mask:255.255.255.0

 inet6 addr: fe80::862b:2bff:fe55:4bbf/64 Scope:Link

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:937079543 errors:0 dropped:2780 overruns:0 frame:0

 TX packets:477401433 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:1000

 RX bytes:449050544237 (418.2 GiB) TX bytes:46302821625 (43.1

GiB)

 Interrupt:14 Memory:dc000000-dc012800

lo Link encap:Local Loopback

 inet addr:127.0.0.1 Mask:255.0.0.0

 inet6 addr: ::1/128 Scope:Host

 UP LOOPBACK RUNNING MTU:16436 Metric:1

 RX packets:6604 errors:0 dropped:0 overruns:0 frame:0

 TX packets:6604 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:0

 RX bytes:21956498 (20.9 MiB) TX bytes:21956498 (20.9 MiB)

lo:0 Link encap:Local Loopback

 inet addr:10.10.51.180 Mask:255.255.255.255

 UP LOOPBACK RUNNING MTU:16436 Metric:1

5 Use ifconfig to verify that the loopback interface is up:

[root@node01]# /sbin/ifconfig lo:0

You should see output similar to the following:

http://www.austintek.com/LVS/LVS-HOWTO/HOWTO/
http://kb.linuxvirtualserver.org/wiki/Using_arp_announce/arp_ignore_to_disable_ARP

-320-

Administrator's Guide

lo:0 Link encap:Local Loopback

 inet addr:10.10.51.180 Mask:255.255.255.255

 UP LOOPBACK RUNNING MTU:16436 Metric:1

If you do not see UP LOOPBACK RUNNING, bring up the loopback interface:

[root@node01]# /sbin/ifup lo

6 Issue the following command to commit changes to the kernel from the configuration file:

[root@node01]# /sbin/sysctl -p

7 Repeat steps 1-6 on all nodes in the Vertica cluster.

Configuring the Directors

Now you are ready to install the Vertica IPVS Load Balancer package and configure the master
(node01) and slave (node02) directors.

Install the Vertica IPVS Load Balancer Package

In this procedure you download and install the Vertica IPVS Load Balancer package.

1 On the master director (node01) log in as root:

$ su - root

2 Download the VerticaIPVSLoadBalancer package from the Vertica Downloads page

http://www.vertica.com/v-zone/download_vertica.

3 Install (or upgrade) the Load Balancer package:

[root@node01]# rpm -Uvh VerticaIPVSLoadBalancer-4.1.x.RHEL5.x86_64.rpm

4 Repeat steps 1-3 on the slave director (node02).

Configure the Vertica IPVS Load Balancer

Vertica provides a script called configure-keepalived.pl in the IPVS Load Balancer

package.

The script is located in /sbin, and if you run it with no options it prints a usage summary:

--ripips | Comma separated list of Vertica nodes; public IPs (e.g., 10.10.51.55, etc.)

--ripport | Port on which Vertica runs. Default is 5433

--iface | Public ethernet interface Vertica is configured to use (e.g., eth0)

--emailto | Address that should get alerts (e.g., user@server.com)

--emailfrom | Address that mail should come from (e.g., user@server.com)

--mailserver | E-mail server IP or hostname (e.g., mail.server.com)

--master | If this director is the master (default), specify --master

--slave | If this director is the slave, specify --slave

--authpass | Password for keepalived

--vip | Virtual IP address (e.g., 10.10.51.180)

--delayloop | Seconds keepalived waits between healthchecks. Default is 2

--algo | Sets the algorithm to use: rr, wrr, lc (default), wlc, lblc, lblcr, dh, sh, sed, nq

--kind | Sets the routing method to use. Default is DR.

--priority | By default, master has priority of 100 and the backup has priority of 50

For details about each of these parameters, particularly, --algo and --kind, refer to the

ipvsadm(8) - Linux man page
http://at.gnucash.org/.vhost/linuxcommand.org/man_pages/ipvsadm8.html.

http://www.vertica.com/v-zone/download_vertica
mailto:user@server.com
mailto:user@server.com
http://at.gnucash.org/.vhost/linuxcommand.org/man_pages/ipvsadm8.html

-321-

 Operating the Database

Set up the Vertica IPVS Load Balancer configuration file

1 On the master director (node01) log in as root:

$ su - root

2 Run the Vertica-supplied configuration script with the appropriate switches; for example:

[root@node01]# /sbin/configure-keepalived.pl --ripips

192.168.51.55,192.168.51.56,

192.168.51.57 --ripport 5433 --iface eth0 --emailto

dbadmin@companyname.com

--emailfrom dbadmin@companyname.com --mailserver mail.server.com

--master

--authpass password --vip 10.10.51.180 --delayloop 2 --algo lc --kind

DR

--priority 100

IMPORTANT: The --authpass (password) switch must be the same on both the master and

slave directors.

3 Check the keepalived configuration file to make sure the real_server IP address is public.

You might need to edit this file to make sure the assignments are correct.

 The real_server line contains IP addresses that are RIPs (e.g., 10.10.51.55)

 The MISC_CHECK line requires that the RIPs be private (e.g., 192.168.51.55). Thus, the

--rips parameter should be the private interface (Vertica-supplied IPs or names that

resolve to these IPs) and not the public interface.

They should be IP addresses, not node names because otherwise the spread.pl script would
fail.

[root@p6 keepalived]# cat /etc/keepalived/keepalived.conf

! Configuration File for keepalived

global_defs {

 notification_email {

 dbadmin@companyname.com !

 }

 notification_email_from dbadmin@companyname.com !Email comes from

this address

 smtp_server mail.server.com !Your email server

 smtp_connect_timeout 30

 router_id node1

}

vrrp_instance VI_1 {

 state MASTER

 interface eth0

 smtp_alert

 virtual_router_id 1

 priority 100

 advert_int 10

 authentication {

 auth_type PASS

 auth_pass password

 }

mailto:dbadmin@companyname.com
mailto:dbadmin@companyname.com
mailto:dbadmin@companyname.com
mailto:dbadmin@companyname.com

-322-

Administrator's Guide

 virtual_ipaddress {

 10.10.51.180

 }

 # Invoked to master transition

 notify_master "/etc/keepalived/bypass_ipvs.pl del 10.10.51.180"

 # Invoked to slave transition

 notify_backup "/etc/keepalived/bypass_ipvs.pl add 10.10.51.180"

 # Invoked to fault transition

 notify_fault "/etc/keepalived/bypass_ipvs.pl add 10.10.51.180"

}

virtual_server 10.10.51.180 5433

{

 delay_loop 2

 lb_algo lc

 lb_kind DR

 protocol TCP

 real_server 10.10.51.55 5433 {

 MISC_CHECK {

 misc_path "/etc/keepalived/check.pl 192.168.51.55"

 }

 }

 real_server 10.10.51.56 5433 {

 MISC_CHECK {

 misc_path "/etc/keepalived/check.pl 192.168.51.56"

 }

 }

 real_server 10.10.51.57 5433 {

 MISC_CHECK {

 misc_path "/etc/keepalived/check.pl 192.168.51.57"

 }

 }

}

4 Start spread:

[root@node01]# /etc/init.d/spread.pl start

The spread.pl script writes to the check.txt file, which is is rewritten to include only the

remaining nodes in the event of a node failure. Thus, the virtual server knows to stop sending
vsql requests to the failed node.

5 Start keepalived on node01:

[root@node01]# /etc/init.d/keepalived start

6 If not already started, start sendmail to allow mail messages to be sent by the directors:

[root@node01]# /etc/init.d/sendmail start

7 Repeat steps 1-5 on the slave director (node02), using the same switches, except

(IMPORTANT) replace the --master switch with the --slave switch. For example:

[root@node01]# /sbin/configure-keepalived.pl --ripips

192.168.51.55,192.168.51.56,

192.168.51.57 --ripport 5433 --iface eth0 --emailto

dbadmin@companyname.com

mailto:dbadmin@companyname.com

-323-

 Operating the Database

--emailfrom dbadmin@companyname.com --mailserver mail.server.com

--slave

--authpass password --vip 10.10.51.180 --delayloop 2 --algo lc --kind

DR

--priority 100

See Also

Keepalived.conf(5) -Linux man page http://linux.die.net/man/5/keepalived.conf

Connecting to the Virtual IP (VIP)

To connect to the Virtual IP address using vsql, issue a command similar to the following. The IP
address, which could also be a DNS address, is the VIP that is shared among all nodes in the
Vertica cluster.

$ /opt/vertica/bin/vsql -h 10.10.51.180 -U dbadmin

To verify connection distribution over multiple nodes, repeat the following statement multiple times

and observe connection distribution in an lc (least amount of connections) fashion.

$ vsql -h <VIP> -c "SELECT node_name FROM sessions"

Replace <VIP> in the above script with the IP address of your virtual server; for example:

$ vsql -h 10.10.51.180 -c "SELECT node_name FROM sessions"

 node_name

 v_ipvs_node01

 v_ipvs_node02

 v_ipvs_node03

(3 rows)

Monitoring Which Nodes Are Connected

If you want to monitor which nodes are sharing connections, view the check.txt file by issuing

the following command at a shell prompt:

watch cat /etc/keepalived/check.txt

Every 2.0s: cat /etc/keepalived/check.txt Wed Nov 3 10:02:20 2010

N192168051057

N192168051056

N192168051055

The check.txt is a file located in the /etc/keepalived/ directory, and it gets updated when

you submit changes to the kernel using sysctl -p, described in Disable the Address

Resolution Protocol (ARP) (page 115). For example, the spread.pl script (see Configuring

the Directors (page 320)), writes to the check.txt file, which is then modified to include only

the remaining nodes in the event of a node failure. Thus, the virtual server knows to stop sending
vsql requests to the failed node.

You can also look for messages by issuing the following command at a shell prompt:

tail -f /var/log/messages

mailto:dbadmin@companyname.com
http://linux.die.net/man/5/keepalived.conf

-324-

Administrator's Guide

Nov 3 09:21:00 p6 Keepalived: Starting Keepalived v1.1.17 (05/17,2010)

Nov 3 09:21:00 p6 Keepalived: Starting Healthcheck child process, pid=32468

Nov 3 09:21:00 p6 Keepalived: Starting VRRP child process, pid=32469

Nov 3 09:21:00 p6 Keepalived_healthcheckers: Using LinkWatch kernel netlink reflector...

Nov 3 09:21:00 p6 Keepalived_vrrp: Using LinkWatch kernel netlink reflector...

Nov 3 09:21:00 p6 Keepalived_healthcheckers: Netlink reflector reports IP 10.10.51.55 added

Nov 3 09:21:00 p6 Keepalived_vrrp: Netlink reflector reports IP 10.10.51.55 added

Nov 3 09:21:00 p6 Keepalived_healthcheckers: Netlink reflector reports IP 192.168.51.55 added

Nov 3 09:21:00 p6 Keepalived_vrrp: Netlink reflector reports IP 192.168.51.55 added

Nov 3 09:21:00 p6 Keepalived_vrrp: Registering Kernel netlink reflector

Nov 3 09:21:00 p6 Keepalived_healthcheckers: Registering Kernel netlink reflector

Nov 3 09:21:00 p6 Keepalived_vrrp: Registering Kernel netlink command channel

Nov 3 09:21:00 p6 Keepalived_vrrp: Registering gratutious ARP shared channel

Nov 3 09:21:00 p6 Keepalived_healthcheckers: Registering Kernel netlink command channel

Nov 3 09:21:00 p6 Keepalived_vrrp: Opening file '/etc/keepalived/keepalived.conf'.

Nov 3 09:21:00 p6 Keepalived_healthcheckers: Opening file '/etc/keepalived/keepalived.conf'.

Nov 3 09:21:00 p6 Keepalived_vrrp: Configuration is using : 63730 Bytes

Nov 3 09:21:00 p6 Keepalived_healthcheckers: Configuration is using : 16211 Bytes

Nov 3 09:21:00 p6 Keepalived_healthcheckers: Activating healtchecker for service [10.10.51.55:5433]

Nov 3 09:21:00 p6 Keepalived_healthcheckers: Activating healtchecker for service [10.10.51.56:5433]

Nov 3 09:21:00 p6 Keepalived_healthcheckers: Activating healtchecker for service [10.10.51.57:5433]

Nov 3 09:21:00 p6 Keepalived_vrrp: VRRP sockpool: [ifindex(2), proto(112), fd(10,11)]

Nov 3 09:21:01 p6 Keepalived_healthcheckers: Misc check to [10.10.51.56] for

[/etc/keepalived/check.pl 192.168.51.56] failed.

Nov 3 09:21:01 p6 Keepalived_healthcheckers: Removing service [10.10.51.56:5433] from VS

[10.10.51.180:5433]

Nov 3 09:21:01 p6 Keepalived_healthcheckers: Remote SMTP server [127.0.0.1:25] connected.

Nov 3 09:21:01 p6 Keepalived_healthcheckers: Misc check to [10.10.51.55] for

[/etc/keepalived/check.pl 192.168.51.55] failed.

Nov 3 09:21:01 p6 Keepalived_healthcheckers: Removing service [10.10.51.55:5433] from VS

[10.10.51.180:5433]

Nov 3 09:21:01 p6 Keepalived_healthcheckers: Remote SMTP server [127.0.0.1:25] connected.

Nov 3 09:21:01 p6 Keepalived_healthcheckers: Misc check to [10.10.51.57] for

[/etc/keepalived/check.pl 192.168.51.57] failed.

Nov 3 09:21:01 p6 Keepalived_healthcheckers: Removing service [10.10.51.57:5433] from VS

[10.10.51.180:5433]

Nov 3 09:21:01 p6 Keepalived_healthcheckers: Remote SMTP server [127.0.0.1:25] connected.

Nov 3 09:21:01 p6 Keepalived_healthcheckers: SMTP alert successfully sent.

Nov 3 09:21:10 p6 Keepalived_vrrp: VRRP_Instance(VI_1) Transition to MASTER STATE

Nov 3 09:21:20 p6 Keepalived_vrrp: VRRP_Instance(VI_1) Entering MASTER STATE

Nov 3 09:21:20 p6 Keepalived_vrrp: VRRP_Instance(VI_1) setting protocol VIPs.

Nov 3 09:21:20 p6 Keepalived_vrrp: VRRP_Instance(VI_1) Sending gratuitous ARPs on eth0 for

10.10.51.180

Nov 3 09:21:20 p6 Keepalived_healthcheckers: Netlink reflector reports IP 10.10.51.180 added

Nov 3 09:21:20 p6 Keepalived_vrrp: Remote SMTP server [127.0.0.1:25] connected.

Nov 3 09:21:20 p6 Keepalived_vrrp: Netlink reflector reports IP 10.10.51.180 added

Nov 3 09:21:20 p6 Keepalived_vrrp: SMTP alert successfully sent.

Nov 3 09:21:25 p6 Keepalived_vrrp: VRRP_Instance(VI_1) Sending gratuitous ARPs on eth0 for 10.10.51.1

Determining Where Connections Are Going

Ipvsadm is the user code interface to the IP Virtual Server. It is used to set up, maintain, or inspect
the virtual server table in the Linux kernel.

If you want to identify where user connections are going, install ipvsadm.

1 Log in to the master director (node01) as root:

$ su - root

2 Install ipvsadm:

[root@node01]# yum install ipvsadm

Loading "installonlyn" plugin

Setting up Install Process

Setting up repositories

-325-

 Operating the Database

Reading repository metadata in from local files

Parsing package install arguments

Resolving Dependencies

--> Populating transaction set with selected packages. Please wait.

---> Downloading header for ipvsadm to pack into transaction set.

ipvsadm-1.24-10.x86_64.rp 100% |=========================| 6.6 kB

00:00

---> Package ipvsadm.x86_64 0:1.24-10 set to be updated

--> Running transaction check

Dependencies Resolved

 Package Arch Version Repository

Size

==

=========

Installing:

 ipvsadm x86_64 1.24-10 base

32 k

Transaction Summary

==

=========

Install 1 Package(s)

Update 0 Package(s)

Remove 0 Package(s)

Total download size: 32 k

Is this ok [y/N]: y

Downloading Packages:

(1/1): ipvsadm-1.24-10.x8 100% |=========================| 32 kB

00:00

Running Transaction Test

Finished Transaction Test

Transaction Test Succeeded

Running Transaction

 Installing: ipvsadm #########################

[1/1]

Installed: ipvsadm.x86_64 0:1.24-10

Complete!

3 Run ipvsadm:

[root@node01 ~]# ipvsadm

IP Virtual Server version 1.2.1 (size=4096)

Prot LocalAddress:Port Scheduler Flags

 -> RemoteAddress:Port Forward Weight ActiveConn InActConn

TCP vs-wks1.verticacorp.com:pyrr lc

 -> node03.verticacorp.com:pyr Route 1 1 8

 -> node02.verticacorp.com:pyr Route 1 0 8

-326-

Administrator's Guide

 -> node01.verticacorp.com:pyr Local 1 0 8

See Also

ipvsadm man page
http://at.gnucash.org/.vhost/linuxcommand.org/man_pages/ipvsadm8.html

Virtual IP Connection Problems

Issue

Users cannot connect to the database through the Virtual IP (VIP) address.

Resolution

1 Check if spread is running:

$ ps ax | grep spread

11895 ? S<s 4:30 /opt/vertica/spread/sbin/spread -n

N192168051055 -c

 /opt/vertica/config/vspread.conf

29617 pts/3 S+ 0:00 grep spread

1. If spread is not running, start spread as root or using sudo:

[root@node01]# /etc/init.d/spreadd start

2. If spread is running, restart spread as root or using sudo:

[root@node01]# /etc/init.d/spreadd restart

3. Check the spread status as root or using sudo:

[root@node01]# /etc/init.d/spreadd status

4. Issue the ifconfig command to check the current IP addresses of the hosts, and verify

that those IP addresses are listed in /opt/vertica/config/vspread.conf.

[root@node01]# ifconfig

If spread fails to start, examine the following files for problems:

/tmp/spread*.log

/var/log/spreadd.log

Permission problems and syntax problems are identified in the log files.

2 Check if keepalived is running:

$ ps ax | grep keepalived

29622 pts/3 S+ 0:00 grep keepalived

1. If keepalived is not running, start keepalived as root or using sudo:

/etc/init.d/keepalived start

2. If keepalived is running, restart keepalived as root or using sudo:

/etc/init.d/keepalived restart

Issue

Users cannot connect to the database.

http://at.gnucash.org/.vhost/linuxcommand.org/man_pages/ipvsadm8.html

-327-

 Operating the Database

Resolution

Try to telnet to the VIP and port:

telnet 10.10.51.180 5433

If telnet reports no route to host, recheck your /etc/keepalived/keepalived.conf file to

make sure you entered the correct VIP and RIPs.

Errors and informational messages from the keepalived daemon are written to the

/var/log/messages file, so check the messages file first:

tail -f /var/log/messages

May 18 09:04:32 dell02 Keepalived_vrrp: VRRP_Instance(VI_1) Sending gratuitous

ARPs on eth0 for 10.10.10.100

May 18 09:04:32 dell02 avahi-daemon[3191]: Registering new address record for

10.10.10.100 on eth0.

May 18 09:04:32 dell02 Keepalived_healthcheckers: Netlink reflector reports IP

10.10.10.100 added

Expected e-mail messages from the keepalived daemon

 Upon startup:

Subject: [node01] VRRP Instance VI_1 - Entering MASTER state

=> VRRP Instance is now owning VRRP VIPs <=

 When a node fails:

Subject: [node01] Realserver 10.10.10.1:5433 - DOWN

=> MISC CHECK failed on service <=

 When a node comes back up:

Subject: [node02] Realserver 10.10.10.1:5433 - UP

=> MISC CHECK succeed on service <=

Troubleshooting Keepalived Issues

If there are connection or other issues related to the Virtual IP server and Keepalived, try some of
the following tips:

 Set KEEPALIVED_OPTIONS="-D -d" in the /etc/sysconfig/keepalived file to enable

both debug mode and dump configuration.

 Monitor the system log in /var/log/messages. If keepalived.conf is incorrect, the only

indication is in the messages log file. For example:

$ tail /var/log/messages

Errors and informational messages from the keepalived daemon are also written to the

/var/log/messages files.

 Type ip addr list and see the configured VIP addresses for eth0. For example:

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 16436 qdisc noqueue

 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

 inet 127.0.0.1/8 scope host lo

 inet 10.10.51.180/32 brd 127.255.255.255 scope global lo:0

 inet6 ::1/128 scope host

 valid_lft forever preferred_lft forever

-328-

Administrator's Guide

2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast qlen

1000

 link/ether 84:2b:2b:55:4b:be brd ff:ff:ff:ff:ff:ff

 inet 10.10.51.55/24 brd 10.10.51.255 scope global eth0

 inet6 fe80::862b:2bff:fe55:4bbe/64 scope link

 valid_lft forever preferred_lft forever

3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast

qlen 1000

 link/ether 84:2b:2b:55:4b:bf brd ff:ff:ff:ff:ff:ff

 inet 192.168.51.55/24 brd 192.168.51.255 scope global eth1

 inet6 fe80::862b:2bff:fe55:4bbf/64 scope link

 valid_lft forever preferred_lft forever

4: sit0: <NOARP> mtu 1480 qdisc noop

 link/sit 0.0.0.0 brd 0.0.0.0

 Check iptables and notice the PREROUTING rule on the BACKUP (slave) director. Even

though ipvsadm has a complete list of real servers to manage, it does not route anything as

the prerouting rule redirects packets to the loopback interface.

/sbin/iptables -t nat -n -L

Chain PREROUTING (policy ACCEPT)

target prot opt source destination

Chain POSTROUTING (policy ACCEPT)

target prot opt source destination

Chain OUTPUT (policy ACCEPT)

target prot opt source destination

Note: On some kernels, the nat tables does not show by default without the -t parameter,

and -n is used to avoid long DNS lookups. See the iptables(8) - Linux man page

http://linux.die.net/man/8/iptables for details.

 During failover, it is normal to expect delay in new connection establishment until the slave
node takes control. The delay could be several minutes depending on the load on the cluster.
If you cannot connect to the database, try to telnet to the VIP and port:

telnet 10.10.51.180 5433

If telnet reports no route to host, recheck the keepalived configuration file

(/etc/keepalived/keepalived.conf) to make sure you entered the correct VIP and

RIPs.

http://linux.die.net/man/8/iptables

-329-

Using the Administration Tools

Vertica provides a set of tools that allows you to perform administrative tasks quickly and easily.
Most of the database administration tasks in Vertica can be done using the Administration Tools.

Note: Always run the Administration Tools using the Database Administrator account on the
Administration Host if possible. Make sure that no other Administration Tools processes are
running.

If the Administration Host is down, run the Administration Tools on a different node in the cluster.
That node permanently takes over the role of Administration Host.

Running the Administration Tools

At the Linux command line:

$ /opt/vertica/bin/admintools [-t | --tool] toolname [options]

toolname Is one of the tools described in the Administration Tools
Reference (page 336).

options

-h

--help

Shows a brief help message and exits.

-a

--help_all

Lists all command-line subcommands and
options as described in Writing
Administration Tools Scripts (page 351).

If you omit the toolname and options, the Main Menu dialog box appears inside your console or
terminal window with a dark blue background and a title on top. The screen captures used in this
documentation set are cropped down to the dialog box itself, as shown below.

If you are unfamiliar with this type of graphical user interface, read Using the Graphical User
Interface (page 330) before you do anything else.

-330-

Administrator's Guide

First Time Only

The first time you log in as the Database Administrator and run the Administration Tools, the user
interface displays.

1 In the EULA (license agreement) window, type accept to proceed.

A window displays, requesting the location of the license key file you downloaded from the

Vertica Web site. The default path is /tmp/vlicense.key.

2 Type the absolute path to your license key (for example, /tmp/vlicense.txt) and click OK.

Between Dialogs

While the Administration Tools are working, you see the command line processing in a window
similar to the one shown below. Do not interrupt the processing.

Using the Graphical User Interface
The Vertica Administration Tools are implemented using Dialog, a graphical user interface that
works in terminal (character-cell) windows.The interface responds to mouse clicks in some
terminal windows, particularly local Linux windows, but you might find that it responds only to
keystrokes. Thus, this section describes how to use the Administration Tools using only
keystrokes.

Note: This section does not describe every possible combination of keystrokes that can be
used to accomplish a particular task. Feel free to experiment and to use whatever keystrokes
you prefer.

Enter [Return]

In all dialogs, when you are ready to run a command, select a file, or cancel the dialog, press the
Enter key. The command descriptions in this section do not explicitly instruct you to press Enter.

-331-

 Using the Administration Tools

OK - Cancel - Help

The OK, Cancel, and Help buttons are
present on virtually all dialogs. Use the
tab, space bar, or right and left arrow keys
to select an option and then press Enter.
The same keystrokes apply to dialogs
that present a choice of Yes or No.

Menu Dialogs

Some dialogs require that you choose one
command from a menu. Type the
alphanumeric character shown or use the
up and down arrow keys to select a
command and then press Enter.

List Dialogs

In a list dialog, use the up and down arrow
keys to highlight items, then use the space
bar to select the items (which marks them
with an X). Some list dialogs allow you to
select multiple items. When you have
finished selecting items, press Enter.

Form Dialogs

In a form dialog (also referred to as a dialog box), use the tab key to cycle between OK, Cancel,
Help, and the form field area. Once the cursor is in the form field area, use the up and down arrow
keys to select an individual field (highlighted) and enter information. When you have finished
entering information in all fields, press Enter.

-332-

Administrator's Guide

Help Buttons

Online help is provided in the form of text dialogs. If you have trouble viewing the help, see Notes
for Remote Terminal Users (page 333) in this document.

K-Safety Support in Administration Tools
The Administration Tools allow certain operations on a K-Safe database, even if up to K nodes are
down.

Note: The database must have been marked as K-Safe using the MARK_DESIGN_KSAFE
function.

The following management functions within the Administration Tools are operational when up to K
nodes are down:

 Start Database (including Manual Recovery)

 Shutdown Database

 Connect to database

 Replace Node (assuming node that is down is the one being replaced)

 View database cluster state

 View database parameters

 Upgrade license key

The following operations work with nodes down; however, you might have to repeat the operation
on the failed nodes after they are back in operation:

 Edit Authentication

 Distribute Config Files

 Install External Procedure

 (Setting) Database Parameters

The following management functions within the Administration Tools require that all nodes be UP
in order to be operational:

 Create Database

 Run Database Designer

 Drop database

 Set Restart Policy

 RollBack Database To Last Good Epoch

-333-

 333

Notes for Remote Terminal Users
The appearance of the graphical interface depends on the color and font settings used by your
terminal window. The screen captures in this document were made using the default color and font
settings in a PuTTy terminal application running on Windows XP.

Note: If you are using a remote terminal application, such as PuTTY or a Cygwin bash shell,
make sure your window is at least 81 characters wide and 23 characters high

If you are using PuTTY, you can make the Administration Tools look like the screen captures in
this document:

1 In a PuTTY window, right click the title area and select Change Settings.

2 Create or load a saved session.

3 In the Category dialog, click Window > Appearance.

4 In the Font settings, click the Change... button.

5 Select Font: Courier New: Regular Size: 10

6 Click Apply.

Repeat these steps for each existing session that you use to run the Administration Tools.

You can also change the translation to support UTF-8:

1 In a PuTTY window, right click the title area and select Change Settings.

2 Create or load a saved session.

3 In the Category dialog, click Window > Translation.

4 In the "Received data assumed to be in which character set" drop-down menu, select UTF-8.

5 Click Apply.

Using the Online Help

In a Menu Dialog

1 Use the up and down arrow keys to choose the command for which you want help.

2 Use the Tab key to move the cursor to the Help button.

3 Press Enter (Return).

-334-

Administrator's Guide

In a Dialog Box

1 Use the up and down arrow keys to choose the field on which you want help.

2 Use the Tab key to move the cursor to the Help button.

3 Press Enter (Return).

Scrolling

Some help files are too long for a single screen. Use the up and down arrow keys to scroll through
the text.

Password Authentication
When you create a new user with the CREATE USER command, you can configure the password
or leave it empty. You cannot bypass the password if the user was created with a password
configured. Change passwords using the ALTER USER command.

See Implementing Security (page 112) for more information about controlling database
authorization through passwords.

Tip: Unless the database is used solely for evaluation purposes, Vertica recommends that all
database users have encrypted passwords.

Distributing Changes Made to the Administration Tools
Metadata
Metadata (specific to the Administration Tools) for a failed node falls out of synchronization with
the other nodes in the cluster if you make the following changes:

 Modify the restart policy.

 Add one or more nodes.

 Drop one or more nodes.

When the node is restored, you can use the Administration Tools to update the node with the latest
Administration Tools metadata:

1 Log on to a host that contains the metadata you want to transfer and start the Administration
Tools. (See Using the Administration Tools (page 329).)

2 On the Main Menu in the Administration Tools, select Configuration Menu and click OK.

-335-

 Using the Administration Tools

3 On the Configuration Menu, select Distribute Config Files and click OK.

4 Select AdminTools Meta-Data.

The Administration Tools metadata is distributed to every host in the cluster.

5 Restart the database (page 142).

-336-

 336

Administration Tools Reference

Viewing Database Cluster State

This tool shows the current state of the nodes in the database.

1 On the Main Menu, select View Database Cluster State, and click OK.
The normal state of a running database is ALL UP. The normal state of a stopped database is
ALL DOWN.

2 If some hosts are UP and some DOWN, restart the specific host that is down using Restart
Vertica on Host from the Administration Tools, or you can start the database as described in
Starting and Stopping the Database (page 142) (unless you have a known node failure and
want to continue in that state.)

Nodes that are INITIALIZING or RECOVERING indicate that failure recovery (page 235) is in
progress.

Nodes in other states (such as NEEDS_CATCHUP) are transitional and can be ignored unless
they persist. In that case, contact Technical Support (on page 1).

-337-

 Using the Administration Tools

See Also

 Advanced Menu Options (page 346)

 Startup Problems (page 241)

 Shutdown Problems (page 237)

Connecting to the Database

This tool connects to a running database with vsql. You can use the Administration Tools to
connect to a database from any node within the database while logged into any user account with
access privileges. You cannot use the Administration Tools to connect from a host that is not a
database node. To connect from other hosts, run vsql as described in Connecting From the
Command Line (page 360) in the Programmer's Guide.

1 On the Main Menu, click Connect to Database, and then click OK.

2 Supply the database password if asked:

Password:

When creating a new user via CREATE USER you can configure the password or leave it
empty. There is no way to bypass the password if the user was created with a password
configured. Passwords can be changed via the ALTER USER command.

3 The Administration Tools connect to the database and transfer control to vsql.

Welcome to the vsql, Vertica_Database v4.1.x interactive terminal.

Type: \h for help with SQL commands

 \? for help with vsql commands

 \g or terminate with semicolon to execute query

 \q to quit

vmartdb=>

See Using vsql (page 358) for more information.

Note: After entering your password, you may be prompted to change your password if it has
expired. See Implementing Client Authentication (page 114) for details of password
security.

Starting a Database

This tool starts an existing database.

1 Use View Database Cluster State (page 336) to make sure that all nodes are down and that
no other database is running. If not all nodes are down, see Shutdown Problems (page 237).

2 On the Main Menu, select Start Database,and then select OK.

3 Select the database to start, and click OK.

Note: Vertica Systems, Inc. strongly recommends that you start only one database at a time. If
you start more than one database at any time, the results are unpredictable. Users could
encounter resource conflicts or perform operations in the wrong database.

4 Enter the database password, and click OK.

When you create a new user with the CREATE USER command, you can configure the
password or leave it empty. You cannot bypass the password if the user was created with a
password configured. Change passwords using the ALTER USER command.

-338-

Administrator's Guide

5 A message confirms that the database started successfully. Click OK.

6 Check the log files to make sure that no startup problems occurred, as described in
Monitoring the Database (page 197).

Notes

If the database does not start successfully, see Startup Problems (page 241).

Stopping a Database

This tool stops a running database.

1 Use View Database Cluster State (page 336) to make sure that all nodes are up. If not all
nodes are up, see Restarting Vertica on Host (page 341).

2 On the Main Menu, select Stop Database, and click OK.

3 Select the database you want to stop, and click OK.

4 Enter the password if asked, and click OK.

5 A message confirms that the database has been successfully stopped. Click OK.

Error

If users are connected during shutdown operations, the Administration Tools displays a message
similar to the following:

 Database Stock_Schema did not appear to stop in the allotted time.

 NOTICE: Cannot shut down while users are connected

 shutdown

 Shutdown: aborting shutdown

 (1 row)

 If you need to force a database shutdown, use the

 'Stop Vertica on Node' command in the Advanced menu,

 selecting the appropriate nodes to stop.

Description

The message indicates that there are active user connections (sessions). See Managing
Sessions (page 313) in the Administrator's Guide for more information.

Resolution

The following examples were taken from a different database.

1 To see which users are connected, connect to the database and query the SESSIONS

system table described in the SQL Reference Manual. For example:

=> \pset expanded

Expanded display is on.

=> SELECT * FROM SESSIONS;

 -[RECORD 1]

-339-

 Using the Administration Tools

 node_name | site01

 user_name | dbadmin

 client_hostname | 127.0.0.1:57141

 login_timestamp | 2009-06-07 14:41:26

 session_id | rhel4-1-30361:0xd7e3e:994462853

 transaction_start | 2009-06-07 14:48:54

 transaction_id | 45035996273741092

 transaction_description | user dbadmin (select * from session;)

 statement_start | 2009-06-07 14:53:31

 statement_id | 0

 last_statement_duration | 1

 current_statement | select * from sessions;

 ssl_state | None

 authentication_method | Trust

 -[RECORD 2]

 node_name | site01

 user_name | dbadmin

 client_hostname | 127.0.0.1:57142

 login_timestamp | 2009-06-07 14:52:55

 session_id | rhel4-1-30361:0xd83ac:1017578618

 transaction_start | 2009-06-07 14:53:26

 transaction_id | 45035996273741096

 transaction_description | user dbadmin (COPY ClickStream_Fact FROM

'/data/clickstream/1g/ClickStream_Fact.tbl' DELIMITER '|' NULL '\\n' DIRECT;)

 statement_start | 2009-06-07 14:53:26

 statement_id | 17179869528

 last_statement_duration | 0

 current_statement | COPY ClickStream_Fact FROM '/data/clickstream/1g/ClickStream_Fact.tbl'

DELIMITER '|' NULL '\\n' DIRECT;

 ssl_state | None

 authentication_method | Trust

The current statement column of Record 1 shows that session is the one you are using to
query the system table. Record 2 shows the session that must end before the database can be
shut down.

2 If a statement is running in a session, that session must be closed. Use the function

CLOSE_SESSION or CLOSE_ALL_SESSIONS described in the SQL Reference Manual.

Note: CLOSE_ALL_SESSIONS is the more common command because it forcefully

disconnects all user sessions.

 => SELECT * FROM SESSIONS;

 -[RECORD 1]

 node_name | site01

 user_name | dbadmin

 client_hostname | 127.0.0.1:57141

 client_pid | 17838

 login_timestamp | 2009-06-07 14:41:26

 session_id | rhel4-1-30361:0xd7e3e:994462853

 client_label |

 transaction_start | 2009-06-07 14:48:54

 transaction_id | 45035996273741092

 transaction_description | user dbadmin (select * from sessions;)

 statement_start | 2009-06-07 14:53:31

 statement_id | 0

 last_statement_duration_us | 1

 current_statement | select * from sessions;

 ssl_state | None

 authentication_method | Trust

 -[RECORD 2]

 node_name | site01

 user_name | dbadmin

 client_hostname | 127.0.0.1:57142

 client_pid | 17839

-340-

Administrator's Guide

 login_timestamp | 2009-06-07 14:52:55

 session_id | rhel4-1-30361:0xd83ac:1017578618

 client_label |

 transaction_start | 2009-06-07 14:53:26

 transaction_id | 45035996273741096

 transaction_description | user dbadmin (COPY ClickStream_Fact FROM

 '/data/clickstream/1g/ClickStream_Fact.tbl'

 DELIMITER '|' NULL '\\n' DIRECT;)

 statement_start | 2009-06-07 14:53:26

 statement_id | 17179869528

 last_statement_duration_us | 0

 current_statement | COPY ClickStream_Fact FROM

 '/data/clickstream/1g/ClickStream_Fact.tbl'

 DELIMITER '|' NULL '\\n' DIRECT;

 ssl_state | None

 authentication_method | Trust

 => SELECT CLOSE_SESSION('rhel4-1-30361:0xd83ac:1017578618');
 -[RECORD 1]

 close_session | Session close command sent. Check sessions for progress.

 => SELECT * FROM SESSIONS;

 -[RECORD 1]

 node_name | site01

 user_name | dbadmin

 client_hostname | 127.0.0.1:57141

 client_pid | 17838

 login_timestamp | 2009-06-07 14:41:26

 session_id | rhel4-1-30361:0xd7e3e:994462853

 client_label |

 transaction_start | 2009-06-07 14:48:54

 transaction_id | 45035996273741092

 transaction_description | user dbadmin (select * from sessions;)

 statement_start | 2009-06-07 14:54:11

 statement_id | 0

 last_statement_duration_us | 98

 current_statement | select * from sessions;

 ssl_state | None

 authentication_method | Trust

3 Query the SESSIONS table again. For example, two columns have changed:

 stmtid is now 0, indicating that no statement is in progress.

 stmt_duration now indicates how long the statement ran in milliseconds before being
interrupted.

The SELECT statements that call these functions return when the interrupt or close message
has been delivered to all nodes, not after the interrupt or close has completed.

4 Query the SESSIONS table again. When the session no longer appears in the SESSION table,
disconnect and run the Stop Database (page 338) command.

Controlling Sessions

The database administrator must be able to disallow new incoming connections in order to shut
down the database. On a busy system, database shutdown is prevented if new sessions connect
after the CLOSE_SESSION or CLOSE_ALL_SESSIONS() command is invoked — and before the
database actually shuts down.

One option is for the administrator to issue the SHUTDOWN('true') command, which forces the

database to shut down and disallow new connections. See SHUTDOWN in the SQL Reference
Manual.

-341-

 Using the Administration Tools

Another option is to modify the MaxClientSessions parameter from its original value to 0, in

order to prevent new non-dbadmin users from connecting to the database.

1 Determine the original value for the MaxClientSessions parameter by querying the

V_MONITOR.CONFIGURATIONS_PARAMETERS system table:

=> SELECT CURRENT_VALUE FROM CONFIGURATION_PARAMETERS WHERE

parameter_name='MaxClientSessions';

 CURRENT_VALUE

 50

(1 row)

2 Set the MaxClientSessions parameter to 0 to prevent new non-dbadmin connections:

=> SELECT SET_CONFIG_PARAMETER('MaxClientSessions', 0);

Note: The previous command allows up to five administrators to log in.

3 Issue the CLOSE_ALL_SESSIONS() command to remove existing sessions:

=> SELECT CLOSE_ALL_SESSIONS();

4 Query the SESSIONS table:

=> SELECT * FROM SESSIONS;

When the session no longer appears in the SESSIONS table, disconnect and run the Stop

Database (page 338) command.

5 Restart the database.

6 Restore the MaxClientSessions parameter to its original value:

=> SELECT SET_CONFIG_PARAMETER('MaxClientSessions', 50);

See Also

CLOSE_SESSION, CLOSE_ALL_SESSIONS, CONFIGURATION_PARAMETERS, and
SESSIONS in the SQL Reference Manual

Managing Sessions (page 313) and Configuration Parameters (page 25) in the Administrator's
Guide

Notes

If the database does not stop successfully, see Shutdown Problems (page 237).

You cannot stop databases if your password has expired. The Administration Tools displays an
error message if you attempt to do so. You need to change your expired password using vsql
before you can shut down a database.

Restarting Vertica on Host

This tool restarts the Vertica process one or more nodes in a running database. Use this tool
when a cluster host reboots while the database is running. The Spread daemon starts
automatically but the Vertica process does not, thus the node does not automatically rejoin the
cluster.

-342-

Administrator's Guide

1 On the Main Menu, select View Database Cluster State, and click OK.

2 If one or more nodes are down, select Restart Vertica on Host, and click OK.

3 Select the database that contains the host that you want to restart, and click OK.

4 Select the Host that you want to restart, and click OK.

5 Select View Database Cluster State again to make sure that all nodes are up.

Configuration Menu Item

The main configuration menu allows you to:

 Create, drop, and view databases

 Use the Database Designer to create or modify a physical schema design

1 On the Main Menu, click Configuration, and then click OK.

Creating a Database

1 On the Configuration menu, click Create Database and then click OK.

2 Enter the name of the database and an optional comment. Click OK.

3 Enter a password.

If you do not enter a password, you are prompted to indicate whether you want to enter a
password. Click Yes to enter a password or No to create a database without a superuser
password.

-343-

 Using the Administration Tools

Warning: If you do not enter a password at this point, superuser password is set to empty.
Unless the database is for evaluation or academic purposes, Vertica Systems, Inc. strongly
recommends that you enter a superuser password.

4 If you entered a password, enter the password again.

5 Select the hosts to include in the database. The hosts in this list are the ones that were

specified at installation time (install_vertica -s).

6 Specify the directories in which to store the data and catalog files.

Note: Catalog and data paths must contain only alphanumeric characters and cannot have
leading space characters. Failure to comply with these restrictions could result in database
creation failure.

-344-

Administrator's Guide

7 Check the current database definition for correctness, and click Yes to proceed.

8 A message indicates that you have successfully created a database. Click OK.

Notes

If you get an error message, see Startup Problems (page 241)

Dropping a Database

This tool drops an existing database. Only the Database Administrator is allowed to drop a
database.

1 Stop the database as described in Stopping a Database (page 338).

2 On the Configure Database dialog, click Drop Database and then click OK.

3 Select the database to drop and click OK.

4 Click Yes to confirm that you want to drop the database.

5 Type yes and click OK to reconfirm that you really want to drop the database.

6 A message indicates that you have successfully dropped the database. Click OK.

Notes

In addition to dropping the database, Vertica automatically drops the node definitions that refer to
the database unless:

 Another database uses a node definition. If another database refers to any of these node
definitions, none of the node definitions are dropped.

 A node definition is the only node defined for the host. (Vertica uses node definitions to locate
hosts that are available for database creation, so removing the only node defined for a host
would make the host unavailable for new databases.)

Viewing a Database

This tool displays the characteristics of an existing database.

1 On the Configure Database dialog, select View Database and click OK.

-345-

 Using the Administration Tools

2 Select the database to view.

3 Vertica displays the following information about the database:

 The name of the database.

 The name and location of the log file for the database.

 The hosts within the database cluster.

 The value of the Restart Policy setting. This setting determines whether or not nodes within
a K-Safe database are restarted when they are rebooted. See Set Restart Policy.

 The database port.

Setting the Restart Policy

The Restart Policy enables you to determine whether or not nodes in a K-Safe database are
automatically restarted when they are rebooted. Since this feature does not automatically restart
nodes if the entire database is DOWN, it is not useful for databases that are not K-Safe.

To set the Restart Policy for a database:

1 Open the Administration Tools.

2 On the Main Menu, select Configuration Menu, and click OK.

3 In the Configuration Menu, select Set Restart Policy, and click OK.

4 Select the database for which you want to set the Restart Policy, and click OK.

5 Select one of the following policies for the database:

 Never — Nodes are never restarted automatically.

 K-Safe — Nodes are automatically restarted if the database cluster is still UP. This is the
default setting.

 Always - Node on a single node database is restarted automatically

6 Click OK.

Best Practice for Restoring Failed Hardware

Following this procedure will prevent Vertica from misdiagnosing missing disk or bad mounts as
data corruptions, which would result in a time-consuming, full-node recovery.

If a server fails due to hardware issues, for example a bad disk or a failed controller, upon repairing
the hardware:

1 Reboot the machine into runlevel 1, which is a root and console-only mode.

Runlevel 1 prevents network connectivity and keeps Vertica from attempting to reconnect to
the cluster.

-346-

Administrator's Guide

2 In runlevel 1, validate that the hardware has been repaired, the controllers are online, and any
RAID recover is able to proceed.

Note: You do not need to initialize RAID recover in runlevel 1; simply validate that it can
recover.

3 Once the hardware is confirmed consistent, only then reboot to runlevel 3 or higher.

At this point, the network activates, and Vertica rejoins the cluster and automatically recovers any
missing data.

Advanced Menu Options

This Advanced Menu provides interactive recovery and repair commands.

Note: Use these commands only when instructed to do so by Technical Support (on page 1).

1 On the Main Menu, click Advanced Menu and then OK.

Rolling Back Database to the Last Good Epoch

IMPORTANT! Use this command only when instructed to do so by Technical Support (on
page 1).

Vertica provides the ability to roll the entire database back to a specific epoch primarily to assist in
the correction of human errors during data loads or other accidental corruptions. For example,
suppose that you have been performing a bulk load and the cluster went down during a particular
COPY command. You might want to discard all epochs back to the point at which the previous
COPY command committed and run the one that did not finish again. You can determine that point
by examining the log files (see Monitoring the Log Files (page 197)).

1 On the Advanced menu, select Roll Back Database to Last Good Epoch.

2 Select the database to roll back. The database must be stopped.

3 Accept the suggested restart epoch or specify a different one.

4 Confirm that you want to discard the changes after the specified epoch.

The database restarts successfully.

-347-

 Using the Administration Tools

Important note:

In Vertica 4.1, the default for the HistoryRetentionTime configuration parameter changed to

0, which means that Vertica only keeps historical data when nodes are down. This new setting
effectively prevents the use of the Administration Tools 'Roll Back Database to Last Good Epoch'
option because the AHM remains close to the current epoch and a rollback is not permitted to an
epoch prior to the AHM. If you rely on the Roll Back option to remove recently loaded data,
consider setting a day-wide window for removing loaded data; for example:

=> SELECT SET_CONFIG_PARAMETER ('HistoryRetentionTime', '86400');

Stopping Vertica on Host

This command attempts to gracefully shut down the Vertica process on a single node.

Caution: Do not use this command if you are intending to shut down the entire cluster. Use
Stop Database (page 338) instead, which performs a clean shutdown to minimize data loss.

1 On the Advanced menu, select Stop Vertica on Host and click OK.

2 Select the hosts to stop.

3 Confirm that you want to stop the hosts.

-348-

Administrator's Guide

If the command succeeds View Database Cluster State (page 336) shows that the selected
hosts are DOWN.

If the command fails to stop any selected nodes, proceed to Killing Vertica Process on
(page 348)Host.

Killing a Vertica Process on Host

This command sends a kill signal to the Vertica process on a node.

Caution: Do not use this command unless you have already tried Stop Database (page 338)
and Stop Vertica on Node (page 347) and both were unsuccessful.

1 On the Advanced menu, select Kill Vertica Process on Host and click OK.

2 Select the hosts on which to kills the Vertica process.

-349-

 Using the Administration Tools

3 Confirm that you want to stop the processes.

4 If the command succeeds View Database Cluster State (page 336) shows that the selected
hosts are DOWN.

5 If the command fails to stop any selected processes, see Shutdown Problems (page 237).

Upgrading the License Key

This command copies a license key file into the database. See Managing Your License Key
(page 140) for more information.

1 On the Advanced menu select Upgrade License Key and click OK.

2 Select the database for which to upgrade the license key.

3 Enter the absolute pathname of your downloaded license key file (for example,

/tmp/vlicense.txt) and click OK.

4 Click OK when you see a message that indicates that the upgrade succeeded.

Managing Clusters

Cluster Management lets you add, replace, or remove hosts from a database cluster. These
processes are usually part of a larger process of adding (page 264), removing (page 271), or
replacing (page 275) a database node.

Before Using Cluster Management: View the database state to verify that it is running. See
View Database Cluster State (page 336). If the database isn't running, restart it. See Starting
a Database (page 337).

-350-

Administrator's Guide

Using Cluster Management

To use Cluster Management:

1 From the Main Menu, select Advanced, and then click OK.

2 In the Advanced Menu, select Cluster Management, and then click OK.

3 Select one of the following, and then click OK.

 Add Hosts to Database: See Adding Hosts to a Database (page 267).

 Replace Host: See Replacing Hosts (page 277).

 Remove Host from Database: See Removing Hosts from a Database (page 272).

Using the Administration Tools

The Help on Using the Administration Tools command displays a help screen about using the
Administration Tools.

Most of the online help in the Administration Tools is context-sensitive. For example, if you up the
use up/down arrows to select a command, press tab to move to the Help button, and press return,
you get help on the selected command.

-351-

 351

Writing Administration Tools Scripts
You can invoke any of the Administration Tools from the command line or a shell script.

Syntax

> /opt/vertica/bin/admintools [-t | --tool] toolname [options]

Note: For convenience, you can add /opt/vertica/bin to your search path.

Parameters

[-t] | [--tool] Instructs the Administration Tools to run the specified tool.

Note: If you use the --no-log option to run the Administration

Tools silently, --no-log must appear before the -t option.

toolname Is one of the tools described in the help output below.

[options]

-h

--help
Shows a brief help message and exits.

-a

--help_all
Lists all command-line subcommands and
options as shown below.

Tools

To return a description of all the tools, issue the following command at a vsql prompt:

$ admintools -a
Usage:

 adminTools [-t | --tool] toolName [options]

Valid tools are:

 host_to_node

 rebalance_data

 stop_host

 kill_node

 run_designer

 logrotate

 list_db

 node_map

 db_replace_node

 view_cluster

 upgrade_license_key

 edit_auth

 uninstall_node

 create_db

 stop_db

 db_status

 install_procedure

 show_active_db

 return_epoch

 list_node

 install_node

 list_allnodes

 drop_db

 db_add_node

 stop_node

 kill_host

 set_restart_policy

 config_nodes

-352-

Administrator's Guide

 drop_node

 restart_db

 database_parameters

 restart_node

 check_spread

 list_host

 start_db

 command_host

 connect_db

 db_remove_node

usage: host_to_node [options]

options:

 -h, --help show this help message and exit

 -s HOST, --host=HOST comma separated list of hostnames which is to be

 converted into its corresponding nodenames

 -d DB, --database=DB show only node/host mapping for this database.

usage: rebalance_data [options]

options:

 -h, --help show this help message and exit

 -d DBNAME, --dbname=DBNAME

 database name

 -k KSAFETY, --ksafety=KSAFETY

 specify the new k value to use

 -p PASSWORD, --password=PASSWORD

 --script Don't re-balance the data, just provide a script for later use.

usage: stop_host [options]

options:

 -h, --help show this help message and exit

 -s HOSTS, --hosts=HOSTS

 comma-separated list of hosts on which the vertica

 process is to be killed

 --compat21 Use Vertica 2.1 method using node names instead of

 hostnames

usage: kill_node [options]

options:

 -h, --help show this help message and exit

 -s HOSTS, --hosts=HOSTS

 comma-separated list of hosts on which the vertica

 process is to be killed

 --compat21 Use Vertica 2.1 method using node names instead of

 hostnames

usage: logrotateconfig [options]

options:

 -h, --help show this help message and exit

 -d DBNAME, --dbname=DBNAME

 database name

 -r ROTATION, --rotation=ROTATION

 set how often the log is rotated.[

 daily|weekly|monthly]

 -s MAXLOGSZ, --maxsize=MAXLOGSZ

 set maximum log size before rotation is forced.

 -k KEEP, --keep=KEEP set # of old logs to keep

usage: list_db [options]

options:

 -h, --help show this help message and exit

 -d DB, --database=DB Name of database to be listed

usage: node_map [options]

options:

 -h, --help show this help message and exit

 -d DB, --database=DB List only data for this database.

-353-

 Using the Administration Tools

usage: db_replace_node [options]

options:

 -h, --help show this help message and exit

 -d DB, --database=DB Name of database to be restarted

 -o ORIGINAL, --original=ORIGINAL

 Name of host you wish to replace

 -n NEWHOST, --new=NEWHOST

 Name of the replacement host

 -p DBPASSWORD, --password=DBPASSWORD

 Database password in single quotes

 -i, --noprompts do not stop and wait for user input(default false)

usage: view_cluster [options]

options:

 -h, --help show this help message and exit

 -x, --xpand show the full cluster state, node by node

 -d DB, --database=DB filter the output for a single database

usage: upgrade_license_key [options]

options:

 -h, --help show this help message and exit

 -d DB, --database=DB Name of database[optional]

 -l LICENSE, --license=LICENSE

 Database license

 -i INSTALL, --install=INSTALL

 argument '-i install' to Install license else without

 '-i install' Upgrade license

 -p PASSWORD, --password=PASSWORD

 Database password[optional]

usage: edit_auth [options]

options:

 -h, --help show this help message and exit

 -d DATABASE, --database=DATABASE

 database to edit authentication parameters for

usage: uninstall_node [options]

options:

 -h, --help show this help message and exit

 -s HOSTNAME, --host=HOSTNAME

 Comma separated list of hostnames upon which to

 uninstall

 -p PASSWORD, --password=PASSWORD

 Name of file containing root password for machines in

 the list

 -d, --delete Delete configuration data during uninstall

 --compat21 Use Vertica 2.1 method using node names instead of

 hostnames

usage: create_db [options]

options:

 -h, --help show this help message and exit

 -s NODES, --hosts=NODES

 comma-separated list of hosts to participate in

 database

 -d DB, --database=DB Name of database to be created

 -c CATALOG, --catalog_path=CATALOG

 Path of catalog directory[optional] if not using

 compat21

 -D DATA, --data_path=DATA

 Path of data directory[optional] if not using compat21

 -p DBPASSWORD, --password=DBPASSWORD

 Database password in single quotes [optional]

 -l LICENSEFILE, --license=LICENSEFILE

 Database license [optional]

 -P POLICY, --policy=POLICY

 Database restart policy [optional]

 --compat21 Use Vertica 2.1 method using node names instead of

-354-

Administrator's Guide

 hostnames

usage: stop_db [options]

options:

 -h, --help show this help message and exit

 -d DB, --database=DB Name of database to be stopped

 -p DBPASSWORD, --password=DBPASSWORD

 Database password in single quotes

 -i, --noprompts do not stop and wait for user input(default false)

usage: db_status [options]

options:

 -h, --help show this help message and exit

 -s STATUS, --status=STATUS

 Database status UP,DOWN or ALL(list running dbs -

 UP,list down dbs - DOWN list all dbs - ALL

usage: install_procedure [options]

options:

 -h, --help show this help message and exit

 -d DBNAME, --database=DBNAME

 Name of database for installed procedure

 -f PROCPATH, --file=PROCPATH

 Path of procedure file to install

 -p OWNERPASSWORD, --password=OWNERPASSWORD

 Password of procedure file onwer

usage: show_active_db [options]

options:

 -h, --help show this help message and exit

usage: return_epoch [options]

options:

 -h, --help show this help message and exit

 -d DB, --database=DB Name of database

usage: list_node [options]

options:

 -h, --help show this help message and exit

 -n NODENAME, --node=NODENAME

 Name of the node to be listed

usage: install_node [options]

options:

 -h, --help show this help message and exit

 -s HOSTNAME, --host=HOSTNAME

 Comma separated list of hostnames upon which to

 install

 -r RPMNAME, --rpm=RPMNAME

 Fully qualified file name of the RPM to be used on

 install

 -p PASSWORD, --password=PASSWORD

 Name of file containing root password for machines in

 the list

 --compat21 Use Vertica 2.1 method using node names instead of

 hostnames

usage: list_allnodes [options]

options:

 -h, --help show this help message and exit

usage: drop_db [options]

options:

 -h, --help show this help message and exit

 -d DB, --database=DB Database to be dropped

usage: db_add_node [options]

options:

-355-

 Using the Administration Tools

 -h, --help show this help message and exit

 -d DB, --database=DB Name of database to be restarted

 -s HOSTS, --hosts=HOSTS

 Comma separated list of hosts to add to database

 -p DBPASSWORD, --password=DBPASSWORD

 Database password in single quotes

 -a AHOSTS, --add=AHOSTS

 Comma separated list of hosts to add to database

 -i, --noprompts do not stop and wait for user input(default false)

 --compat21 Use Vertica 2.1 method using node names instead of

 hostnames

usage: stop_node [options]

options:

 -h, --help show this help message and exit

 -s HOSTS, --hosts=HOSTS

 comma-separated list of hosts on which the vertica

 process is to be killed

 --compat21 Use Vertica 2.1 method using node names instead of

 hostnames

usage: kill_host [options]

options:

 -h, --help show this help message and exit

 -s HOSTS, --hosts=HOSTS

 comma-separated list of hosts on which the vertica

 process is to be killed

 --compat21 Use Vertica 2.1 method using node names instead of

 hostnames

usage: set_restart_policy [options]

options:

 -h, --help show this help message and exit

 -d DB, --database=DB Name of database for which to set policy

 -p POLICY, --policy=POLICY

 Restart policy: ('never', 'ksafe', 'always')

usage: config_nodes [options]

options:

 -h, --help show this help message and exit

 -f NODEHOSTFILE, --file=NODEHOSTFILE

 File containing list of nodes, hostnames, catalog

 path, and datapath (node<whitespace>host<whitespace>ca

 talogPath<whitespace>dataPath one per line)

 -i, --install Attempt to install from RPM on all nodes in the list

 -r RPMNAME, --rpm=RPMNAME

 Fully qualified file name of the RPM to be used on

 install

 -p PASSWORD, --password=PASSWORD

 Name of file containing Root password for machines in

 the list

 -c, --check Check all nodes to make sure they can interconnect

 -s SKIPANALYZENODE, --skipanalyzenode=SKIPANALYZENODE

 skipanalyzenode

usage: drop_node [options]

options:

 -h, --help show this help message and exit

 -n NODENAME, --node=NODENAME

 Name of the node to be dropped

 --force Force a node to be dropped if its the last reference to the host.

usage: restart_db [options]

options:

 -h, --help show this help message and exit

 -d DB, --database=DB Name of database to be restarted

 -e EPOCH, --epoch=EPOCH

 Epoch at which the database is to be restarted. If

-356-

Administrator's Guide

 'last' is given as argument the db is restarted from

 the last good epoch.

 -p DBPASSWORD, --password=DBPASSWORD

 Database password in single quotes

 -i, --noprompts do not stop and wait for user input(default false)

usage: database_parameters [options]

options:

 -h, --help show this help message and exit

 -d DB, --database=DB Name of database

 -P PARAMETER, --parameter=PARAMETER

 Database parameter

 -c COMPONENT, --component=COMPONENT

 Component[optional]

 -s SUBCOMPONENT, --subcomponent=SUBCOMPONENT

 Sub Component[optional]

 -p PASSWORD, --password=PASSWORD

 Database password[optional]

usage: restart_node [options]

options:

 -h, --help show this help message and exit

 -s NODES, --hosts=NODES

 comma-separated list of hosts to be restarted

 -d DB, --database=DB Name of database whose node is to be restarted

 -p DBPASSWORD, --password=DBPASSWORD

 Database password in single quotes

 -i, --noprompts do not stop and wait for user input(default false)

 --compat21 Use Vertica 2.1 method using node names instead of

 hostnames

usage: check_spread [options]

options:

 -h, --help show this help message and exit

usage: list_host [options]

options:

 -h, --help show this help message and exit

usage: start_db [options]

options:

 -h, --help show this help message and exit

 -d DB, --database=DB Name of database to be started

 -p DBPASSWORD, --password=DBPASSWORD

 Database password in single quotes

 -i, --noprompts do not stop and wait for user input(default false)

usage: command_host [options]

options:

 -h, --help show this help message and exit

 -c CMD, --command=CMD

 Command to run

usage: connect_db [options]

options:

 -h, --help show this help message and exit

 -d DB, --database=DB Name of database to connect

 -p DBPASSWORD, --password=DBPASSWORD

 Database password in single quotes

usage: db_remove_node [options]

options:

 -h, --help show this help message and exit

 -d DB, --database=DB Name of database to be modified

 -s HOSTS, --hosts=HOSTS

 Name of the host to remove from the db

 -p DBPASSWORD, --password=DBPASSWORD

 Database password in single quotes

-357-

 Using the Administration Tools

 -i, --noprompts do not stop and wait for user input(default false)

 --compat21 Use Vertica 2.1 method using node names instead of

 hostnames

To run the help command:

$ admintools -h
options:

 -h, --help Display this help. Can be combined with -t <tool> for help on a specific tool

 -a, --help_all List all command line sub-commands and switches

Available tools:

check_spread command_host

config_nodes connect_db

create_db database_parameters

db_add_node db_remove_node

db_replace_node db_status

drop_db drop_node

edit_auth host_to_node

install_node

install_procedure kill_host

kill_node list_allnodes

list_db list_host

list_node logrotate

node_map rebalance_data

restart_db restart_node

return_epoch set_restart_policy

show_active_db

start_db stop_db

stop_host stop_node

uninstall_node upgrade_license_key

view_cluster

-358-

Using vsql

vsql is a character-based, interactive, front-end utility that lets you type SQL statements and see
the results. It also provides a number of meta-commands and various shell-like features that
facilitate writing scripts and automating a variety of tasks.

You can connect to vsql from the:

 Administration Tools (page 359)

 Linux command line (page 360)

General Notes

 SQL statements can be spread over several lines for clarity.

 vsql can handles input and output in UTF-8 encoding. Note that the terminal emulator running
vsql must be set up to display the UTF-8 characters correctly. Follow the documentation of
your terminal emulator. The following example shows the settings in PuTTy from the Change
Settings > Window > Translation option:

See also Best Practices for Working with Locales (page 21).

 Cancel SQL statements by typing Ctrl+C.

 Traverse command history by typing Ctrl+R.

 When you disconnect a user session, any transactions in progress are automatically rolled
back.

 To view wide result sets, use the Linux less utility to truncate long lines.

1. Before connecting to the database, specify that you want to use less for query output:

$ export PAGER=less

2. Connect to the database.

-359-

 Using vsql

3. Query a wide table:

=> select * from wide_table;

4. At the less prompt, type:

-S

 If a shell running vsql fails (crashes or freezes), the vsql processes continue to run even if you
stop the database. In that case, log in as root on the machine on which the shell was running
and manually kill the vsql process. For example:

ps -ef | grep vertica

fred 2401 1 0 06:02 pts/1 00:00:00 /opt/vertica/bin/vsql -p

5433 -h test01_site01 quick_start_single

kill -9 2401

Connecting From the Administration Tools
You can use the Administration Tools to connect to a database using vsql on any node in the
cluster.

1 Log in as any user that does not have root privileges. (Vertica does not allow users with root
privileges to connect to a database for security reasons).

2 Run the Administration Tools.

/opt/vertica/bin/admintools

3 On the Main Menu, select Connect to Database.

4 Supply the database password if asked:

Password:

5 The Administration Tools connect to the database and transfer control to vsql.

Welcome to the vsql, Vertica_Database v4.1.x interactive terminal.

Type: \h for help with SQL commands

 \? for help with vsql commands

 \g or terminate with semicolon to execute query

 \q to quit

vmartdb=>

Note: See Meta-Commands (page 366) for the various commands you can run while
connected to the database through the Administration Tools.

-360-

Administrator's Guide

Connecting from the Command Line
You can use vsql from the command line to connect to a database from any Linux machine,

including those not part of the cluster. Copy /opt/vertica/bin/vsql to your machine.

Syntax

/opt/vertica/bin/vsql [option...] [dbname [username]]

Parameters

option One or more of the vsql command line options (on page
360)

dbname The name of the target database

username The name of the user to connect as

Notes

 If the database is password protected, you must specify the -w (see "w password" on page

364) or --password command line option.

 The default dbname and username is your Linux user name.

 If the connection cannot be made for any reason (for example, insufficient privileges, server is
not running on the targeted host, etc.), vsql returns an error and terminates.

 vsql returns the following informational messages:

 0 to the shell if it finished normally

 1 if a fatal error of its own (out of memory, file not found) occurs

 2 if the connection to the server went bad and the session was not interactive

 3 if an error occurred in a script and the variable ON_ERROR_STOP was set

 Unrecognized words in the command line might be interpreted as database or user names.

Example

The following example redirects vsql output and error messages into an output file called
retail_queries.out and captures any error messages:

$ vsql --echo-all < retail_queries.sql > retail_queries.out 2>&1

Command Line Options

This section contains the command-line options.

? --help

-? --help displays help about vsql command line arguments and exits.

-361-

 Using vsql

a --echo-all

-a --echo-all prints all input lines to standard output as they are read. This is more useful for

script processing than interactive mode. It is equivalent to setting the variable ECHO (page 384) to

all.

A --no-align

-A --no-align switches to unaligned output mode. (The default output mode is aligned.)

c command --command command

-c command --command command runs one command and exits. This is useful in shell scripts.

The command must be either a command string that is completely parsable by the server (it
contains no vsql specific features), or a single meta-command. In other words, you cannot mix
SQL and vsql meta-commands. To achieve that, you can pipe the string into vsql like this:

echo "\\timing\\\\select * from t" | ../Linux64/bin/vsql

Timing is on.

 i | c | v

---+---+---

(0 rows)

Note: If you use double quotes with echo, you must double the backslashes.

d dbname --dbname dbname

-d dbname --dbname dbname specifies the name of the database to connect to. This is

equivalent to specifying dbname as the first non-option argument on the command line.

e --echo-queries

-e --echo-queries copies all SQL commands sent to the server to standard output as well.

This is equivalent to setting the variable ECHO (page 384) to queries.

E

-E displays queries generated by internal commands.

f filename --file filename

-f filename --file filename uses the file filename as the source of commands instead of

reading commands interactively. After the file is processed, vsql terminates. This is in many ways

equivalent to the internal command \i (see "i FILE" on page 377).

If filename is - (hyphen), the standard input is read.

file:\\timing\select%20*%20from%20t

-362-

Administrator's Guide

Using this option is subtly different from writing vsql < filename. In general, both do what you

expect, but using -f enables some nice features such as error messages with line numbers.

There is also a slight chance that using this option reduces the start-up overhead. On the other
hand, the variant using the shell's input redirection is (in theory) guaranteed to yield exactly the
same output that you would have gotten had you entered everything by hand.

Using f filename to Read Data Piped into vsql

To read data piped into vsql from a data file:

1 Create the following:

 A named pipe.

For example, to create a named pipe called pipe1:

mkfifo pipe1

 A data file. The data file in this example is called data_file.

 The command file that selects the table into which you want to copy data, copies the data
from the pipe file (pipe1), and removes the pipe file. The command file in this example is
called command_line.

2 From the command line, run a command that pipes the data file (data_file) into the appropriate
table through vsql. The following example pipes the data file into public.shipping_dimension in
the VMart database.

cat data_file > pipe1 | vsql -f 'command_line'

Example data_file:

110|EXPRESS|SEA|FEDEX

111|EXPRESS|HAND CARRY|MSC

112|OVERNIGHT|COURIER|USPS

Example command_line file:

SELECT * FROM public.shipping_dimension;

\set dir `pwd`/

\set file '''':dir'pipe1'''

COPY public.shipping_dimension FROM :file delimiter '|';

SELECT * FROM public.shipping_dimension;

--Remove the pipe1

\! rm pipe1

F separator --field-separator separator

-F separator --field-separator separator specifies the field separator for unaligned

output (default: "|") (-P fieldsep=). (See -A --no-align (page 361).) This is equivalent to \pset

(page 379) fieldsep or \f (see "f [string]" on page 376).

h hostname --host hostname

-h hostname --host hostname specifies the host name of the machine on which the server

is running.

-363-

 Using vsql

Notes:

 If you are using client authentication with a connection method of either "gss" or" "krb5"
(Kerberos), you are required to specify -h hostname.

 If you are using client authentication with a "local" connection type specified, avoid using -h

hostname if you want to match the client authentication entry.

H --html

-H --html turns on HTML tabular output. This is equivalent to \pset (page 379) format

html or the \H (see "H" on page 376) command.

l --list

-l --list returns all available databases, then exits. Other non-connection options are ignored.

This command is similar to the internal command \list.

n

-n disables command line editing.

o filename --output filename

-o filename --output filename writes all query output into file filename. This is equivalent

to the command \o (page 378).

p port --port port

-p port --port port specifies the TCP port or the local socket file extension on which the

server is listening for connections. Defaults to port 5433.

P assignment --pset assignment

-P assignment --pset assignment lets you specify printing options in the style of \pset

(page 379) on the command line. Note that you have to separate name and value with an equal

sign instead of a space. Thus to set the output format to LaTeX, you could write -P

format=latex.

q --quiet

-q --quiet specifies that vsql do its work quietly. By default, it prints welcome messages and

various informational output. If this option is used, none of this appears. This is useful with the -c

(page 361) option. Within vsql you can also set the QUIET (page 386) variable to achieve the

same effect.

R separator --record-separator separator

-R separator --record-separator separator uses separator as the record separator.

This is equivalent to the \pset (page 379) recordsep command.

-364-

Administrator's Guide

s --single-step

-s --single-step runs in single-step mode for debugging scripts. Forces vsql to prompt before

each statement is sent to the database and allows you to cancel execution.

S --single-line

-S --single-line runs in single-line mode where a newline terminates a SQL command, like

the semicolon does.

Note: This mode is provided for those who insist on it, but you are not necessarily encouraged
to use it, particularly if you mix SQL and meta-commands on a line. The order of execution
might not always be clear to the inexperienced user.

t --tuples-only

-t --tuples-only disables printing of column names, result row count footers, and so on. This

is equivalent to the \t (see "t" on page 381) command.

T table_options --table-attr table_options

-T table_options --table-attr table_options allows you to specify options to be

placed within the HTML table tag. See \pset (page 379) for details.

U username --username username

-U username --username username connects to the database as the user username

instead of the default.

v assignment --set assignment --variable assignment

-v assignment --set assignment --variable assignment performs a variable

assignment, like the \set (see "set [NAME [VALUE [...]]]" on page 381) internal

command.

Note: You must separate name and value, if any, by an equal sign on the command line.

To unset a variable, omit the equal sign. To set a variable without a value, use the equal sign but
omit the value. These assignments are done during a very early stage of start-up, so variables
reserved for internal purposes can get overwritten later.

V --version

-V --version prints the vsql version and exits.

w password

-w password specifies the password for a database user.

Note: Using this command line option displays the database password in plain text on the
screen. Use it with care, particularly if you are connecting as the database administrator.

-365-

 Using vsql

W --password

-W --password forces vsql to prompt for a password before connecting to a database.

The password is not displayed on the screen. This option remains set for the entire session, even

if you change the database connection with the meta-command \connect (see "c (or

\connect) [dbname [username]]" on page 368).

x --expanded

-x --expanded enables extended table formatting mode. This is equivalent to the command \ x

(see "x" on page 382).

X, --no-vsqlrc

-X, --no-vsqlrc prevents the start-up file from being read (the system-wide vsqlrc file or the

user's ~/.vsqlrc file).

Connecting From a Non-Cluster Host

You can use the Vertica vsql executable image on a non-cluster Linux host to connect to a Vertica
database.

 On Red Hat 5.0 64-bit and SUSE 10/11 64-bit, you can install the client driver RPM, which
includes the vsql executable. See Installing the Client RPM on Red Hat 5 64-bit, and SUSE
64-bit for details.

 If the non-cluster host is running the same version of Linux as the cluster, copy the image file to
the remote system. For example:

$ scp host01:/opt/vertica/bin/vsql .

$./vsql

 If the non-cluster host is running a different version of Linux than your cluster hosts, and that
operating system is not Red Hat version 5 64-bit or SUSE 10/11 64-bit, you must install the
Vertica server RPM in order to get vsql. Download the appropriate rpm package from the
Vertica Download Website http://www.vertica.com/v-zone/download_vertica then log into
the non-cluster host as root and install the rpm package using the command:

rpm -Uvh filename

In the above command, filename is package you downloaded. Note that you do not have to run

the install_Vertica script on the non-cluster host in order to use vsql.

Notes

 Use the same command line options (on page 360) that you would on a cluster host.

 You cannot run vsql on a Cygwin bash shell (Windows). Use ssh to connect to a cluster host,
then run vsql.

http://www.vertica.com/v-zone/download_vertica

-366-

Administrator's Guide

Meta-Commands
Anything you enter in vsql that begins with an unquoted backslash is a vsql meta-command that is
processed by vsql itself. These commands help make vsql more useful for administration or
scripting. Meta-commands are more commonly called slash or backslash commands.

The format of a vsql command is the backslash, followed immediately by a command verb, then
any arguments. The arguments are separated from the command verb and each other by any
number of whitespace characters.

To include whitespace into an argument you can quote it with a single quote. To include a single
quote into such an argument, precede it by a backslash. Anything contained in single quotes is

furthermore subject to C-like substitutions for \n (new line), \t (tab), \digits, \0digits, and

\0xdigits (the character with the given decimal, octal, or hexadecimal code).

If an unquoted argument begins with a colon (:), it is taken as a vsql variable and the value of the

variable is used as the argument instead.

Arguments that are enclosed in backquotes (`) are taken as a command line that is passed to the

shell. The output of the command (with any trailing newline removed) is taken as the argument
value. The above escape sequences also apply in backquotes.

Some commands take a SQL identifier (such as a table name) as argument. These arguments

follow the syntax rules of SQL: Unquoted letters are forced to lowercase, while double quotes (")

protect letters from case conversion and allow incorporation of whitespace into the identifier.
Within double quotes, paired double quotes reduce to a single double quote in the resulting name.

For example, FOO"BAR"BAZ is interpreted as fooBARbaz, and "A weird"" name" becomes A

weird" name.

Parsing for arguments stops when another unquoted backslash occurs. This is taken as the

beginning of a new meta-command. The special sequence \\ (two backslashes) marks the end of

arguments and continues parsing SQL commands, if any. That way SQL and vsql commands can
be freely mixed on a line. But in any case, the arguments of a meta-command cannot continue
beyond the end of the line.

! [COMMAND]

\! [COMMAND] executes a command in a Linux shell (passing arguments as entered) or starts

an interactive shell.

?

\? displays help information about the meta-commands.

=> \?

General

-367-

 Using vsql

 \c[onnect] [DBNAME|- [USER]]

 connect to new database (currently "vmartdb")

 \cd [DIR] change the current working directory

 \q quit vsql

 \set [NAME [VALUE]]

 set internal variable, or list all if no parameters

 \timing toggle timing of commands (currently off)

 \unset NAME unset (delete) internal variable

 \! [COMMAND] execute command in shell or start interactive shell

 \password [USER]

 change user's password

Query Buffer

 \e [FILE] edit the query buffer (or file) with external editor

 \g send query buffer to server

 \g FILE send query buffer to server and results to file

 \g | COMMAND send query buffer to server and pipe results to command

 \p show the contents of the query buffer

 \r reset (clear) the query buffer

 \s [FILE] display history or save it to file

 \w FILE write query buffer to file

Input/Output

 \echo [STRING] write string to standard output

 \i FILE execute commands from file

 \o FILE send all query results to file

 \o | COMMAND pipe all query results to command

 \o close query-results file or pipe

 \qecho [STRING]

 write string to query output stream (see \o)

Informational

 \d [PATTERN] describe tables (list tables if no argument is supplied)

 \df [PATTERN] list functions

 \dj [PATTERN] list projections

 \dn [PATTERN] list schemas

 \dp [PATTERN] list table access privileges

 \ds [PATTERN] list sequences

 \dS [PATTERN] list system tables

 \dt [PATTERN] list tables

 \dtv [PATTERN] list tables and views

 \dT [PATTERN] list data types

 \du [PATTERN] list users

 \dv [PATTERN] list views

 \l list all databases

 \z [PATTERN] list table access privileges (same as \dp)

Formatting

 \a toggle between unaligned and aligned output mode

 \b toggle beep on command completion

 \C [STRING] set table title, or unset if none

 \f [STRING] show or set field separator for unaligned query output

 \H toggle HTML output mode (currently off)

 \pset NAME [VALUE]

 set table output option

 (NAME := {format|border|expanded|fieldsep|footer|null|

-368-

Administrator's Guide

 recordsep|tuples_only|title|tableattr|pager})

 \t show only rows (currently off)

 \T [STRING] set HTML <table> tag attributes, or unset if none

 \x toggle expanded output (currently off)

a

\a toggles output format alignment. This command is kept for backwards compatibility. See \pset

(page 379) for a more general solution.

\a is similar to the command line option -A --no-align (page 361), which only disables

alignment.

b

\b toggles beep on command completion.

c (or \connect) [dbname [username]]

\c (or \connect) [dbname [username]] establishes a connection to a new database

and/or under a user name. The previous connection is closed. If dbname is - the current database
name is assumed.

If username is omitted the current user name is assumed.

As a special rule, \connect without any arguments connects to the default database as the

default user (as you would have gotten by starting vsql without any arguments).

If the connection attempt fails (wrong user name, access denied, etc.), the previous connection is
kept if and only if vsql is in interactive mode. When executing a non-interactive script, processing
immediately stops with an error. This distinction that avoids typos and a prevent scripts from
accidentally acting on the wrong database.

C [STRING]

\C [STRING] sets the title of any tables being printed as the result of a query or unsets any such

title. This command is equivalent to \pset (page 379) title title. (The name of this command

derives from "caption", as it was previously only used to set the caption in an HTML table.)

cd [DIR]

\cd [DIR] changes the current working directory to directory. Without argument, changes to

the current user's home directory.

To print your current working directory, use \! (see "! [COMMAND]" on page 366)pwd. For
example:

=> \!pwd

/home/dbadmin

The \d [PATTERN] meta-commands

This section describes the various \d meta-commands

-369-

 Using vsql

All \d meta-commands take an optional pattern (asterisk [*] or question mark [?]) and return

only the records that match that pattern.

The ? argument is useful if you can't remember if a table name uses an underscore or a dash:

=> \dn v?internal

 List of schemas

 Name | Owner

------------+---------

 v_internal | dbadmin

(1 row)

The output from the \d metacommands places double quotes around non-alphanumeric table

names and table names that are keywords, such as in the following example.

=> CREATE TABLE my_keywords.precision(x numeric (4,2));

CREATE TABLE

=> \d

 List of tables

 Schema | Name | Kind | Owner

--------------+-----------------------+-------+---------

 my_keywords | "precision" | table | dbadmin

Double quotes are optional when you use a \d command with pattern matching.

d [PATTERN]

The \d [PATTERN] meta-command lists all tables in the database and returns their schema,

table name, kind (e.g., table), and owner. For example, the following is the result of \d in the vmart

schema.

vmartdb=> \d

 List of tables

 Schema | Name | Kind | Owner

--------------+-----------------------+-------+---------

 online_sales | call_center_dimension | table | dbadmin

 online_sales | online_page_dimension | table | dbadmin

 online_sales | online_sales_fact | table | dbadmin

 public | customer_dimension | table | dbadmin

 public | date_dimension | table | dbadmin

 public | employee_dimension | table | dbadmin

 public | inventory_fact | table | dbadmin

 public | product_dimension | table | dbadmin

 public | promotion_dimension | table | dbadmin

 public | shipping_dimension | table | dbadmin

 public | vendor_dimension | table | dbadmin

 public | warehouse_dimension | table | dbadmin

 store | store_dimension | table | dbadmin

 store | store_orders_fact | table | dbadmin

 store | store_sales_fact | table | dbadmin

(15 rows)

-370-

Administrator's Guide

If you provide the table name as an argument, the result shows the schema name, table name,
column name, column data type, data type size, default value, whether it is Nullable or has a NOT
NULL constraint, and whether there is a primary key or foreign key constraint.

vmartdb=> \d inventory_fact
 List of Fields by Tables

 Schema | Table | Column | Type | Size | Default | Not Null | Primary Key |

Foreign Key

--------+----------------+-----------------+------+------+---------+----------+-------------+----

 public | inventory_fact | date_key | int | 8 | | t | f |

public.date_dimension(date_key)

 public | inventory_fact | product_key | int | 8 | | t | f |

public.product_dimension(product_key)

 public | inventory_fact | product_version | int | 8 | | t | f |

public.product_dimension(product_version)

 public | inventory_fact | warehouse_key | int | 8 | | t | f |

public.warehouse_dimension(warehouse_key)

 public | inventory_fact | qty_in_stock | int | 8 | | f | f |

(5 rows)

You can also use the question mark [?] argument to replace a single character. For example, the

? argument replaces the last character in the SubQ1 and SubQ2 tables, so the command returns

information about both:

=> \d SubQ?
 List of Fields by Tables

 Schema | Table | Column | Type | Size | Default | Not Null | Primary Key | Foreign Key

--------+-------+--------+------+------+---------+----------+-------------+-------------

 public | SubQ1 | a | int | 8 | | f | f |

 public | SubQ1 | b | int | 8 | | f | f |

 public | SubQ1 | c | int | 8 | | f | f |

 public | SubQ2 | x | int | 8 | | f | f |

 public | SubQ2 | y | int | 8 | | f | f |

 public | SubQ2 | z | int | 8 | | f | f |

(6 rows)

d \d <table> \df \dj \dn \dp \ds \dS \dt \dT \dtv \du \dv

The \df [PATTERN] meta-command returns all function names, the function return data type,

and the function argument data type. Also returns the procedure names and arguments for all
procedures that are available to the user.

vmartdb=> \df

 List of functions

 procedure_name | procedure_return_type | procedure_argument_types

-----------------+-----------------------+---------------------------

 abs | Float | Float

 abs | Integer | Integer

 abs | Interval | Interval

 abs | Interval | Interval

 abs | Numeric | Numeric

 acos | Float | Float

 add_location | Varchar | Varchar

 add_location | Varchar | Varchar, Varchar, Varchar

...

 width_bucket | Integer | Float, Float, Float, Integer

 width_bucket | Integer | Interval, Interval, Interval, Integer

-371-

 Using vsql

 width_bucket | Integer | Interval, Interval, Interval, Integer

 width_bucket | Integer | Timestamp, Timestamp, Timestamp,

Integer

...

The following example uses the wildcard character to search for all functions that begin with as:

vmartdb=> \df as*

 List of functions

 procedure_name | procedure_return_type | procedure_argument_types

----------------+-----------------------+--------------------------

 ascii | Integer | Varchar

 asin | Float | Float

(2 rows)

dj [PATTERN]

The \dj [PATTERN] meta-command returns all projections showing the schema, projection

name, owner, and node:

vmartdb=> \dj

 List of projections

 Schema | Name | Owner | Node

--------------+--------------------------------+---------+--------------------

 public | product_dimension_node0001 | dbadmin | v_wmartdb_node0001

 public | product_dimension_node0002 | dbadmin | v_wmartdb_node0002

 public | product_dimension_node0003 | dbadmin | v_wmartdb_node0003

 online_sales | call_center_dimension_node0001 | dbadmin | v_wmartdb_node0001

 online_sales | call_center_dimension_node0002 | dbadmin | v_wmartdb_node0002

 online_sales | call_center_dimension_node0003 | dbadmin | v_wmartdb_node0003

...

If you supply a projection name as an argument, the system returns fewer records:

vmartdb=> \dj call_center_dimension_n*

 List of projections

 Schema | Name | Owner | Node

--------------+--------------------------------+---------+--------------------

 online_sales | call_center_dimension_node0001 | dbadmin | v_wmartdb_node0001

 online_sales | call_center_dimension_node0002 | dbadmin | v_wmartdb_node0002

 online_sales | call_center_dimension_node0003 | dbadmin | v_wmartdb_node0003

(3 rows)

dn [PATTERN]

The \dn [PATTERN] meta-command returns the schema names and schema owner.

vmartdb=> \dn

 List of schemas

 Name | Owner

--------------+---------

 v_internal | dbadmin

 v_catalog | dbadmin

 v_monitor | dbadmin

 public | dbadmin

 store | dbadmin

 online_sales | dbadmin

-372-

Administrator's Guide

(6 rows)

The following command returns all schemas that begin with the letter v:

=> \dn v*

 List of schemas

 Name | Owner

------------+---------

 v_internal | dbadmin

 v_catalog | dbadmin

 v_monitor | dbadmin

(3 rows)

dp [PATTERN]

The \dp [PATTERN] meta-command returns the grantee, grantor, privileges, schema, and

name for all table access privileges in each schema:

vmartdb=> \dp

 Access privileges for database "vmartdb"

 Grantee | Grantor | Privileges | Schema | Name

---------+---------+------------+--------+------------

 | dbadmin | USAGE | | public

 | dbadmin | USAGE | | v_internal

 | dbadmin | USAGE | | v_catalog

 | dbadmin | USAGE | | v_monitor

(4 rows)

Note: \dp is the same as \z (see "z" on page 382).

ds [PATTERN]

The \ds [PATTERN]meta-command (lowercase s) returns a list of sequences and their

parameters.

The following series of commands creates a sequence called my_seq and uses the vsql command
to display its parameters:

=> CREATE SEQUENCE my_seq MAXVALUE 5000 START 150;

CREATE SEQUENCE

=> \ds

 List of Sequences

 Schema | Sequence | CurrentValue | IncrementBy | Minimum | Maximum | AllowCycle

--------+----------+--------------+-------------+---------+---------+---------

 public | my_seq | 149 | 1 | 1 | 5000 | f

(1 row)

Note: You can return additional information about sequences by issuing SELECT * FROM

V_CATALOG_SEQUENCES, as described in the SQL Reference Manual.

dS [PATTERN]

The \dS [PATTERN] meta-command (uppercase S) returns all system table (monitoring API)

names. You can get identical results issuing SELECT * FROM system_tables;

-373-

 Using vsql

vmartdb=> \dS

 List of tables

 Schema | Name | Kind | Description

-----------+--------------------+--------+------------------------------------

 v_catalog | columns | system | Table column information

 v_catalog | dual | system | Oracle(TM) compatibility DUAL table

 v_catalog | foreign_keys | system | Foreign key information

 v_catalog | grants | system | Grant information

 v_catalog | passwords | system | User password history and password reuse

policy

 v_catalog | primary_keys | system | Primary key information

 v_catalog | profile_parameters | system | Profile Parameters information

 v_catalog | profiles | system | Profile information

 v_catalog | projection_columns | system | Projection columns information

 v_catalog | projections | system | Projection information

...

 v_monitor | host_resources | system | Per host profiling information

 v_monitor | load_streams | system | Load metrics for each load stream on

each node

 v_monitor | locks | system | Lock grants and requests for all nodes

 v_monitor | node_resources | system | Per node profiling information

...

dt [PATTERN]

The \dt [PATTERN] meta-command (lowercase t) is identical to \d and returns all tables in the

database—unless a table name is specified—in which case the command lists only the schema,
name, kind and owner for the specified table (or tables if wildcards used).

vmartdb=> \dt inventory_fact

 List of tables

 Schema | Name | Kind | Owner

--------+----------------+-------+---------

 public | inventory_fact | table | dbadmin

(1 row)

The following command returns all table names that begin with "st":

vmartdb=> \dt st*

 List of tables

 Schema | Name | Kind | Owner

--------+-------------------+-------+---------

 store | store_dimension | table | dbadmin

 store | store_orders_fact | table | dbadmin

 store | store_sales_fact | table | dbadmin

(3 rows)

dT [PATTERN]

The \dT [PATTERN] meta-command (uppercase T) lists all supported data types.

vmartdb=> \dT

List of data types

-374-

Administrator's Guide

 type_name

 Binary

 Boolean

 Char

 Date

 Float

 Integer

 Interval

 Numeric

 Time

 TimeTz

 Timestamp

 TimestampTz

 Varbinary

 Varchar

(14 rows)

dtv [PATTERN]

The \dtv [PATTERN] meta-command lists all tables and views, returning the schema, table or

view name, kind (table of view), and owner.

vmartdb=> \dtv

 List of tables

 Schema | Name | Kind | Owner

--------------+-----------------------+-------+---------

 online_sales | call_center_dimension | table | release

 online_sales | online_page_dimension | table | release

 online_sales | online_sales_fact | table | release

 public | customer_dimension | table | release

 public | date_dimension | table | release

 public | employee_dimension | table | release

 public | inventory_fact | table | release

 public | my_seqview | view | release

 public | product_dimension | table | release

 public | promotion_dimension | table | release

 public | shipping_dimension | table | release

 public | vendor_dimension | table | release

 public | warehouse_dimension | table | release

 store | store_dimension | table | release

 store | store_orders_fact | table | release

 store | store_sales_fact | table | release

(16 rows)

du [PATTERN]

The \du [PATTERN] meta-command returns all database users and attributes, such as if user

is a superuser.

vmartdb=> \du

 List of users

 User name | Is Superuser

-375-

 Using vsql

-----------+--------------

 dbadmin | t

(1 row)

dv [PATTERN]

The \dv [PATTERN] meta-command returns the schema name, view name, and view owner.

The following example defines a view using the SEQUENCES system table:

vmartdb=> CREATE VIEW my_seqview AS (SELECT * FROM sequences);

CREATE VIEW

vmartdb=> \dv

 List of views

 Schema | Name | Owner

--------+------------+---------

 public | my_seqview | dbadmin

(1 row)

If a view name is provided as an argument, the result shows the schema, view name, and the
following for all columns within the view's result set: schema name, view name, column name,
column data type, and data type size.

vmartdb=> \dv my_seqview

 List of View Fields

 Schema | View | Column | Type | Size

--------+------------+---------------------+--------------+------

 public | my_seqview | sequence_schema | varchar(128) | 128

 public | my_seqview | sequence_name | varchar(128) | 128

 public | my_seqview | owner_name | varchar(128) | 128

 public | my_seqview | identity_table_name | varchar(128) | 128

 public | my_seqview | session_cache_count | int | 8

 public | my_seqview | allow_cycle | boolean | 1

 public | my_seqview | output_ordered | boolean | 1

 public | my_seqview | increment_by | int | 8

 public | my_seqview | minimum | int | 8

 public | my_seqview | maximum | int | 8

 public | my_seqview | current_value | int | 8

 public | my_seqview | sequence_schema_id | int | 8

 public | my_seqview | sequence_id | int | 8

 public | my_seqview | owner_id | int | 8

 public | my_seqview | identity_table_id | int | 8

(15 rows)

e \edit [FILE]

\e \edit [FILE] edits the query buffer (or specified file) with an external editor. When the

editor exits, its content is copied back to the query buffer. If no argument is given, the current query
buffer is copied to a temporary file which is then edited in the same fashion.

-376-

Administrator's Guide

The new query buffer is then re-parsed according to the normal rules of vsql, where the whole
buffer up to the first semicolon is treated as a single line. (Thus you cannot make scripts this way.

Use \i (see "i FILE" on page 377) for that.) If there is no semicolon, vsql waits for one to be

entered (it does not execute the query buffer).

Tip: vsql searches the environment variables VSQL_EDITOR, EDITOR, and VISUAL (in that
order) for an editor to use. If all of them are unset, vi is used on Linux systems, notepad.exe on
Windows systems.

echo [STRING]

\echo [STRING] writes the string to standard output

Tip: If you use the \o (page 378) command to redirect your query output you might want to use
\qecho (page 380) instead of this command.

f [string]

\f [string] sets the field separator for unaligned query output. The default is the vertical bar

(|). See also \pset (page 379) for a generic way of setting output options.

g

The \g meta-command sends the query in the input buffer (see \p (see "p" on page 378)) to the

server. With no arguments, it displays the results in the standard way.

\g FILE sends the query input buffer to the server, and writes the results to FILE.

\g | COMMAND sends the query buffer to the server, and pipes the results to a shell COMMAND.

See Also

\o meta-command (see "o" on page 378)

H

\H toggles HTML query output format. This command is for compatibility and convenience, but

see \pset (page 379) about setting other output options.

h \help [command]

\h \help [command] gives syntax help on the specified SQL command. If command is not

specified, vsql lists all the commands for which syntax help is available. If command is an asterisk

(*), syntax help on all SQL commands is shown.

Note: To simplify typing, commands that consists of several words do not have to be quoted.
For example:
\help alter table.

-377-

 Using vsql

i FILE

\i filename command reads input from the file filename and executes it as though it had been

typed on the keyboard.

Note: To see the lines on the screen as they are read, set the variable ECHO (page 384) to all.

l

\l provides a list of databases and their owners.

vmartdb=> \l

 List of databases

 name | user_name

---------+-----------

 vmartdb | dbadmin

(1 row)

locale

The vsql \locale command displays the current locale setting or lets you set a new locale for the

session.

This command does not alter the default locale for all database sessions. To change the default

for all sessions, set the DefaultSessionLocale configuration parameter (page 25).

Viewing the Current Locale Setting

To view the current locale setting, use the vsql command \locale, as follows:

vmartdb=> \locale

en_US@collation=binary

Overriding the Default Local for a Session

To override the default local for a specific session, use the vsql command \locale
<ICU-locale-identifier>. The session locale setting applies to any subsequent commands issued in
the session.

For example:

\locale en_GB

INFO: Locale: 'en_GB'

INFO: English (United Kingdom)

INFO: Short form: 'LEN'

You can also use the short form (page 403) of an ICU locale identifier:

\locale LEN

INFO: Locale: 'en'

INFO: English

INFO: Short form: 'LEN'

-378-

Administrator's Guide

Notes

The server locale settings impact only the collation behavior for server-side query processing. The
client application is responsible for ensuring that the correct locale is set in order to display the
characters correctly. Below are the best practices recommended by Vertica to ensure predictable
results:

 The locale setting in the terminal emulator for vsql (POSIX) should be set to be equivalent to
session locale setting on server side (ICU) so data is collated correctly on the server and
displayed correctly on the client.

 The vsql locale should be set using the POSIX LANG environment variable in terminal
emulator. Refer to the documentation of your terminal emulator for how to set locale.

 Server session locale should be set using the set as described in Specify the Default Locale
for the Database (page 20).

 Note that all input data for vsql should be in UTF-8 and all output data is encoded in UTF-8

 Non UTF-8 encodings and associated locale values are not supported.

o

The \o meta-command is used to control where vsql directs its query output. The output can be

written to a file, piped to a shell command, or sent to the standard output.

\o FILE sends all subsequent query output to FILE.

\o | COMMAND pipes all subsequent query output to a shell COMMAND.

\o with no argument closes any open file or pipe, and switches back to normal query result output.

Notes

 Query results includes all tables, command responses, and notices obtained from the
database server.

 To intersperse text output with query results, use \qecho (page 380).

See Also

\g meta-command (page 376)

p

\p prints the current query buffer to the standard output. For example:

=> \p

CREATE VIEW my_seqview AS (SELECT * FROM sequences);

password [USER]

\password starts the password change process. Users can only change their own passwords.

They are prompted for their old password, their new password, and then their new password again
to confirm.

-379-

 Using vsql

The superuser can change the password of another user by supplying the username. The
superuser is not prompted for the old password, either when changing his or her own password, or
when changing another user's password.

Note: If you want to cancel the password change process, press ENTER until you return the to
vsql prompt.

pset NAME [VALUE]

\pset NAME [VALUE] sets options affecting the output of query result tables. NAME describes

which option to set, as illustrated in the following table. The parameters of VALUE depend
thereon.

It is an error to call \pset without arguments

Adjustable printing options are:

format Sets the output format to one of unaligned, aligned, html, or latex.

Unique abbreviations are allowed. (That would mean one letter is enough.)

"Unaligned" writes all columns of a row on a line, separated by the currently
active field separator. This is intended to create output that might be
intended to be read in by other programs (tab- separated,
comma-separated). "Aligned" mode is the standard, human-readable,
nicely formatted text output that is default. The "HTML" and "LaTeX" modes
put out tables that are intended to be included in documents using the
respective mark-up language. They are not complete documents! (This
might not be so dramatic in HTML, but in LaTeX you must have a complete
document wrapper.)

border The second argument must be a number. In general, the higher the number
the more borders and lines the tables have, but this depends on the
particular format. In HTML mode, this translates directly into the

border=... attribute, in the others only values 0 (no border), 1 (internal

dividing lines), and 2 (table frame) make sense.

expanded Toggles between regular and expanded format. When expanded format is
enabled, all output has two columns with the column name on the left and
the data on the right. This mode is useful if the data wouldn't fit on the
screen in the normal "horizontal" mode.

Expanded mode is supported by all four output formats.

\x is the same as \pset expanded.

fieldsep Specifies the field separator to be used in unaligned output mode. That way
one can create, for example, tab- or comma-separated output, which other

programs might prefer. To set a tab as field separator, type \pset

fieldsep '\t'. The default field separator is '|' (a vertical bar).

footer Toggles the display of the default footer (x rows).

null The second argument is a string that is printed whenever a column is null.
The default is not to print anything, which can easily be mistaken for, say, an

empty string. Thus, one might choose to write \pset null '(null)'.

recordsep Specifies the record (line) separator to use in unaligned output mode. The

-380-

Administrator's Guide

default is a newline character.

tuples_only (or t) Toggles between tuples only and full display. Full display might show extra
information such as column headers, titles, and various footers. In tuples
only mode, only actual table data is shown.

title [text] Sets the table title for any subsequently printed tables. This can be used to
give your output descriptive tags. If no argument is given, the title is unset.

tableattr (or T)

[text]
Allows you to specify any attributes to be placed inside the HTML table

tag. This could for example be cellpadding or bgcolor. Note that you

probably don't want to specify border here, as that is already taken care of

by \pset border.

pager Controls use of a pager for query and vsql help output. If the environment

variable PAGER is set, the output is piped to the specified program.

Otherwise a platform-dependent default (such as more) is used.

When the pager is off, the pager is not used. When the pager is on, the
pager is used only when appropriate; that is, the output is to a terminal and
does not fit on the screen. (vsql does not do a perfect job of estimating when

to use the pager.) \pset pager turns the pager on and off. Pager can also

be set to always, which causes the pager to be always used.

See illustrations on how these different formats look in the Examples (page 393) section.

Tip: There are various shortcut commands for \pset. See \a (see "a" on page 368), \C (see "C [
STRING]" on page 368), \H (see "H" on page 376), \t (see "t" on page 381), \T (see "T [
STRING]" on page 381), and \ x (see "x" on page 382).

q

\q quits the vsql program.

qecho [STRING]

\qecho [STRING] is identical to \echo (see "echo [STRING]" on page 376) except that

the output is written to the query output stream, as set by \o (see "o" on page 378).

r

\r resets (clears) the query buffer.

For example, run the \p (see "p" on page 378) meta-command to see what is in the query buffer:

=> \p

CREATE VIEW my_seqview AS (SELECT * FROM sequences);

Now reset the query buffer:

=> \r

Query buffer reset (cleared).

-381-

 Using vsql

If you reissue the command to see what's in the query buffer, you can see it is now empty:

=> \p

Query buffer is empty.

s [FILE]

\s [FILE] prints or saves the command line history to filename. If a filename is not specified,

\s writes the history to the standard output. This option is only available if vsql is configured to use
the GNU Readline library.

set [NAME [VALUE [...]]]

\set [name [value [...]]] sets the internal variable name to value or, if more than

one value is given, to the concatenation of all of values. If no second argument is given, the
variable is set with no value.

It no argument is provided, \set lists all internal variables; for example:

vmartdb=> \set

VERSION = 'Vertica Analytic Database v4.1.6-0'

AUTOCOMMIT = 'off'

VERBOSITY = 'default'

PROMPT1 = '%/%R%# '

PROMPT2 = '%/%R%# '

PROMPT3 = '>> '

ROWS_AT_A_TIME = '1000'

DBNAME = 'vmartdb'

USER = 'dbadmin'

PORT = '5433'

LOCALE = 'en_US@collation=binary'

HISTSIZE = '500'

Notes

 Valid variable names are case sensitive and can contain characters, digits, and underscores.
vsql treats several variables as special, which are described in Variables (page 382).

 The \set parameter ROWS_AT_A_TIME defaults to 1000. It retrieves results as blocks of rows

of that size. The column formatting for the first block is used for all blocks, so in later blocks
some entries could overflow. See \timing (page 382) for examples.

 To unset a variable, use the \unset (page 382) command.

t

\t toggles the display of output column name headings and row count footer. This command is

equivalent to \pset (page 379) tuples_only and is provided for convenience.

T [STRING]

\T [STRING] specifies attributes to be placed within the table tag in HTML tabular output

mode. This command is equivalent to \pset (page 379) tableattr table_options.

-382-

Administrator's Guide

timing

\timing toggles toggles the timing of commands (currently off). The meta-command displays

how long each SQL statement takes, in milliseconds, and reports both the time required to fetch
the first block of rows from the server and the total until the last block is formatted.

Example

=> \o /dev/null

=> SELECT * FROM fact LIMIT 100000;

Time: First fetch (1000 rows): 22.054 ms. All rows formatted: 235.056 ms

Note that the database retrieved the first 1000 rows in 22 ms and completed retrieving and
formatting all rows in 235 ms.

=> \unset ROWS_AT_A_TIME

=> select * from fact limit 100000;

Time: First fetch (100000 rows): 220.286 ms. All rows formatted: 231.778 ms

In this case, the database retrieved all 100000 rows in 220 ms and spent 11 ms formatting them.

Note: Use \unset (page 382) with the ROWS_AT_A_TIME (page 381) parameter to get results

comparable to Vertica 2.5.

See Also

\set (page 381)

unset [NAME]

\unset [NAME] unsets (deletes) the internal variable name that was set using the \set (page

381) meta-command.

w [FILE]

\w [FILE] outputs the current query buffer to the file filename.

x

\x toggles extended table formatting mode. Is equivalent to \pset (page 379) expanded.

Note: There is no space between the backslash and the x.

z

\z lists table access privileges (grantee, grantor, privilege, and name) for all table access

privileges in each schema. Is the same as \dp (see "dp [PATTERN]" on page 372)

Variables
vsql provides variable substitution features similar to common Linux command shells. Variables
are simply name/value pairs, where the value can be any string of any length. To set variables,

use the vsql meta-command \set (see "set [NAME [VALUE [...]]]" on page 381):

-383-

 Using vsql

testdb=> \set fact dim

sets the variable fact to the value dim. To retrieve the content of the variable, precede the name

with a colon and use it as the argument of any slash command:

testdb=> \echo :fact
dim

Note: The arguments of \set are subject to the same substitution rules as with other
commands. For example, \set dim :fact is a valid way to copy a variable.

If you call \set without a second argument, the variable is set, with an empty string as value. To

unset (or delete) a variable, use the command \unset (see "unset [NAME]" on page 382).

vsql's internal variable names can consist of letters, numbers, and underscores in any order and
any number. Some of these variables are treated specially by vsql. They indicate certain option
settings that can be changed at run time by altering the value of the variable or represent some
state of the application. Although you can use these variables for any other purpose, this is not
recommended. By convention, all specially treated variables consist of all upper-case letters (and
possibly numbers and underscores). To ensure maximum compatibility in the future, avoid using
such variable names for your own purposes.

SQL Interpolation

An additional useful feature of vsql variables is that you can substitute ("interpolate") them into

regular SQL statements. The syntax for this is again to prepend the variable name with a colon (:).

testdb=> \set fact 'my_table'
testdb=> SELECT * FROM :fact;

would then query the table my_table. The value of the variable is copied literally, so it can even

contain unbalanced quotes or backslash commands. Make sure that it makes sense where you
put it. Variable interpolation is not performed into quoted SQL entities.

AUTOCOMMIT

When AUTOCOMMIT is set 'on', each SQL command is automatically committed upon successful
completion; for example:

\set (see "set [NAME [VALUE [...]]]" on page 381) AUTOCOMMIT on

To postpone COMMIT in this mode, set the value as off.

\set AUTOCOMMIT off

If AUTOCOMMIT is empty or defined as off, SQL commands are not committed unless you
explicitly issue COMMIT.

Notes

 AUTOCOMMIT is off by default.

 AUTOCOMMIT must be in uppercase, but the values, on or off, are case insensitive.

 In autocommit-off mode, you must explicitly abandon any failed transaction by entering
ABORT or ROLLBACK.

 If you exit the session without committing, your work is rolled back.

 Validation on vsql variables is done when they are run, not when they are set.

-384-

Administrator's Guide

 The COPY statement, by default, commits on completion, so it does not matter which
AUTOCOMMIT mode you use, unless you issue COPY NO COMMIT.

 To tell if AUTOCOMMIT is on or off, issue the set command:

$ \set

...

AUTOCOMMIT = 'off'

...

 AUTOCOMMIT is off if a SELECT * FROM LOCKS shows locks from the statement you just ran.

$ \set AUTOCOMMIT off

$ \set

...

AUTOCOMMIT = 'off'

...

SELECT COUNT(*) FROM customer_dimension;

 count

 50000

(1 row)

SELECT node_names, object_name, lock_mode, lock_scope

FROM LOCKS;

 node_names | object_name | lock_mode | lock_scope

------------+--------------------------+-----------+-------------

 site01 | Table:customer_dimension | S | TRANSACTION

(1 row)

DBNAME

The name of the database to which you are currently connected. DBNAME is set every time you
connect to a database (including program startup), but it can be unset.

ECHO

If set to all, all lines entered from the keyboard or from a script are written to the standard output

before they are parsed or run.

To select this behavior on program start-up, use the switch -a (see "a --echo-all" on page

361). If set to queries, vsql merely prints all queries as they are sent to the server. The switch for

this is -e (see "e --echo-queries" on page 361).

ECHO_HIDDEN

When this variable is set and a backslash command queries the database, the query is first
shown. This way you can study the Vertica internals and provide similar functionality in your own

programs. (To select this behavior on program start-up, use the switch -E (see "E" on page 361).)

If you set the variable to the value noexec, the queries are just shown but are not actually sent to

the server and run.

-385-

 Using vsql

ENCODING

The current client character set encoding.

HISTCONTROL

If this variable is set to ignorespace, lines that begin with a space are not entered into the history

list. If set to a value of ignoredups, lines matching the previous history line are not entered. A

value of ignoreboth combines the two options. If unset, or if set to any other value than those

previously mentioned, all lines read in interactive mode are saved on the history list.

Source: Bash.

HISTSIZE

The number of commands to store in the command history. The default value is 500.

Source: Bash.

HOST

The database server host you are currently connected to. This is set every time you connect to a
database (including program startup), but can be unset.

IGNOREEOF

If unset, sending an EOF character (usually Control+D) to an interactive session of vsql terminates
the application. If set to a numeric value, that many EOF characters are ignored before the
application terminates. If the variable is set but has no numeric value, the default is 10.

Source: Bash.

ON_ERROR_STOP

By default, if non-interactive scripts encounter an error, such as a malformed SQL command or
internal meta-command, processing continues. This has been the traditional behavior of vsql but it
is sometimes not desirable. If this variable is set, script processing immediately terminates. If the
script was called from another script it terminates in the same manner. If the outermost script was

not called from an interactive vsql session but rather using the -f (see "f filename --file

filename" on page 361) option, vsql returns error code 3, to distinguish this case from fatal error

conditions (error code 1).

PORT

The database server port to which you are currently connected. This is set every time you connect
to a database (including program start-up), but can be unset.

PROMPT1 PROMPT2 PROMPT3

These specify what the prompts vsql issues look like. See Prompting (page 387) below.

-386-

Administrator's Guide

QUIET

This variable is equivalent to the command line option -q (see "q" on page 380). It is probably not

too useful in interactive mode.

SINGLELINE

This variable is equivalent to the command line option -S (see "S --single-line" on page

364).

SINGLESTEP

This variable is equivalent to the command line option -s (page 364).

USER

The database user you are currently connected as. This is set every time you connect to a
database (including program startup), but can be unset.

VERBOSITY

This variable can be set to the values default, verbose, or terse to control the verbosity of

error reports.

VSQL_HOME

By default, the vsql program reads configuration files from the user's home directory. In cases
where this is not desirable, the configuration file location can be overridden by setting the
VSQL_HOME environment variable in a way that does not require modifying a shared resource.

In the following example, vsql reads configuration information out of /tmp/jsmith rather than out of
~.

Make an alternate configuration file in /tmp/jsmith

mkdir -p /tmp/jsmith

echo "\\echo Using VSQLRC in tmp/jsmith" > /tmp/jsmith/.vsqlrc

Note that nothing is echoed when invoked normally

vsql

Note that the .vsqlrc is read and the following is

displayed before the vsql prompt

Using VSQLRC in tmp/jsmith

VSQL_HOME=/tmp/jsmith vsql

-387-

 Using vsql

Prompting
The prompts vsql issues can be customized to your preference. The three variables PROMPT1,

PROMPT2, and PROMPT3 contain strings and special escape sequences that describe the

appearance of the prompt. Prompt 1 is the normal prompt that is issued when vsql requests a new
command. Prompt 2 is issued when more input is expected during command input because the
command was not terminated with a semicolon or a quote was not closed. Prompt 3 is issued

when you run a SQL COPY command and you are expected to type in the row values on the

terminal.

The value of the selected prompt variable is printed literally, except where a percent sign (%) is
encountered. Depending on the next character, certain other text is substituted instead. Defined
substitutions are:

%M The full host name (with domain name) of the database server, or [local] if the
connection is over a socket, or [local:/dir/name], if the socket is not at the compiled in
default location.

%m The host name of the database server, truncated at the first dot, or [local].

%> The port number at which the database server is listening.

%n The database session user name.

%/ The name of the current database.

%~ Like %/, but the output is ~ (tilde) if the database is your default database.

%# If the session user is a database superuser, then a #, otherwise a >. (The expansion
of this value might change during a database session as the result of the command
SET SESSION AUTHORIZATION.)

%R In prompt 1 normally =, but ̂ if in single-line mode, and ! if the session is disconnected
from the database (which can happen if \connect fails). In prompt 2 the sequence is
replaced by -, *, a single quote, a double quote, or a dollar sign, depending on
whether vsql expects more input because the command wasn't terminated yet,
because you are inside a /* ... */ comment, or because you are inside a quoted or
dollar-escaped string. In prompt 3 the sequence doesn't produce anything.

%x Transaction status: an empty string when not in a transaction block, or * when in a
transaction block, or ! when in a failed transaction block, or ? when the transaction
state is indeterminate (for example, because there is no connection).

%digits The character with the indicated numeric code is substituted. If digits starts with 0x
the rest of the characters are interpreted as hexadecimal; otherwise if the first digit is
0 the digits are interpreted as octal; otherwise the digits are read as a decimal
number.

%:name: The value of the vsql variable name. See the section Variables for details.

%`command` The output of command, similar to ordinary "back- tick" substitution.

%[... %] Prompts may contain terminal control characters which, for example, change the
color, background, or style of the prompt text, or change the title of the terminal
window. In order for the line editing features of Readline to work properly, these
non-printing control characters must be designated as invisible by surrounding them

-388-

Administrator's Guide

with %[and %]. Multiple pairs of these may occur within the prompt. The following
example results in a boldfaced (1;) yellow-on-black (33;40) prompt on
VT100-compatible, color-capable terminals:

testdb=> \set PROMPT1 '%[%033[1;33;40m%]%n@%/%R%[%033[0m%#%] '

To insert a percent sign into your prompt, write %%. The default prompts are
'%/%R%# ' for prompts 1 and 2, and '>> ' for prompt 3.

Note: This feature was adapted from tcsh.

Command Line Editing
vsql supports the tecla library for convenient line editing and retrieval.

The command history is automatically saved when vsql exits and is reloaded when vsql starts up.
Tab-completion is also supported, although the completion logic makes no claim to be a SQL
parser. If for some reason you do not like the tab completion, you can turn it off by putting this in a

file named .teclarc in your home directory:

bind ^I

Read the tecla documentation for further details.

Notes

The vsql implementation of the tecla library deviates from the tecla documentation as follows:

 Recalling Previously Typed Lines

Under pure tecla, all new lines are appended to a list of historical input lines maintained within
the GetLine resource object. In vsql, only different, non-empty lines are appended to the list of
historical input lines.

 History Files

tecla has no standard name for the history file. In vsql, the file name is called ~/.vsql_hist.

 International Character Sets (Meta keys and locales)

In vsql, 8-bit meta characters are no longer supported. Make sure that meta characters send
an escape by setting their EightBitInput X resource to False. You can do this in one of the
following ways:

 Edit the ~/.Xdefaults file by adding the following line:

XTerm*EightBitInput: False

 Start an xterm with an -xrm '*EightBitInput: False' command-line argument.

 Key Bindings:

 The following key bindings are specific to vsql:

 Insert switches between insert mode (the default) and overwrite mode.

 Delete deletes the character to the right of the cursor.

 Home moves the cursor to the front of the line.

 End moves the cursor to the end of the line.

 ^R Performs a history backwards search.

-389-

 Using vsql

Environment
PAGER

If the query results do not fit on the screen, they are piped through this command. Typical values

are more or less. The default is platform-dependent. The use of the pager can be disabled by

using the \pset (see "pset NAME [VALUE]" on page 379) command.

PGDATABASE

Default connection database

PGHOST
PGPORT
PGUSER

Default connection parameters

VSQL_EDITOR
EDITOR
VISUAL

Editor used by the \e command. The variables are examined in the order listed; the first that is set
is used.

SHELL

Command run by the \! (see "! [COMMAND]" on page 366) command.

TMPDIR

Directory for storing temporary files. The default is /tmp.

Locales
The default terminal emulator under Linux is gnome-terminal, although xterm can also be used.

Vertica recommends that you use gnome-terminal with vsql in UTF-8 mode, which is its default.

To change settings on Linux

1 From the tabs at the top of the vsql screen, select Terminal.

2 Click Set Character Encoding.

3 Select Unicode (UTF-8).

Note: This works well for standard keyboards. xterm has a similar UTF-8 option.

To change settings on Windows using PuTTy

1 Right click the vsql screen title bar and select Change Settings.

2 Click Window and click Translation.

3 Select UTF-8 in the drop-down menu on the right.

-390-

Administrator's Guide

Notes

 vsql has no way of knowing how you have set your terminal emulator options.

 The tecla library is prepared to do POSIX-type translations from a local encoding to UTF-8 on
interactive input, using the POSIX LANG, etc., environment variables. This could be useful to
international users who have a non-UTF-8 keyboard. See the tecla documentation for
details.

Vertica recommends the following (or whatever other .UTF-8 locale setting you find
appropriate):

export LANG=en_US.UTF-8

 The vsql \locale (see "locale" on page 377) command invokes and tracks the server SET
LOCALE TO command, described in the SQL Reference Manual. vsql itself currently does
nothing with this locale setting, but rather treats its input (from files or from tecla), all its output,
and all its interactions with the server as UTF-8. vsql ignores the POSIX locale variables,

except for any "automatic" uses in printf, and so on.

Files
Before starting up, vsql attempts to read and execute commands from the system-wide vsqlrc

file and the user's ~/.vsqlrc file. The command-line history is stored in the file
~/.vsql_history.

Tip: If you want to save your old history file, open another terminal window and save a copy to
a different file name.

Exporting Data Using vsql
You can use vsql for simple data exports tasks by changing its output format options so the output
is suitable for importing into other systems (tab delimited or comma-separated files, for example).
These options can be set either from within an interactive vsql session, or through command-line
arguments to the vsql command (making the export process suitable for automation through
scripting). After you have set vsql's options so it outputs the data in a format your target system
can read, you run a query and capture the result in a text file.

The following table lists the meta-commands and command-line options that are useful for
changing the format of vsql's output.

Description Meta-command Command-line Option

Disable padding used to align output. \a (page 368) -A (page 361) or
--no-align

Show only tuples, disabling column headings
and row counts.

\t (page 381) -t (page 364) or
--tuples-only

Set the field separator character. \pset (page 379) -F (page 362) or

-391-

 Using vsql

fieldsep --field-separator

Send output to a file. \o (page 378) -o (page 363) or
--output

Specify a SQL statement to execute. N/A -c (page 361) or
--command

The following example demonstrates disabling padding and column headers in the output, and
setting a field separator to dump a table to a tab-separated text file within an interactive session.

=> SELECT * FROM my_table;

 a | b | c

---+-------+---

 a | one | 1

 b | two | 2

 c | three | 3

 d | four | 4

 e | five | 5

(5 rows)

=> \a

Output format is unaligned.

=> \t

Showing only tuples.

=> \pset fieldsep '\t'

Field separator is " ".

=> \o dumpfile.txt

=> select * from my_table;

=> \o

=> \! cat dumpfile.txt

a one 1

b two 2

c three 3

d four 4

e five 5

Note: You could encounter issues with empty strings being converted to NULLs or the reverse
using this technique. You can prevent any confusion by explicitely setting null values to output

a unique string such as NULLNULLNULL (for example, \pset null 'NULLNULLNULL').

Then, on the import end, convert the unique string back to a null value. For example, if you are

copying the file back into a Vertica database, you would give the argument NULL

'NULLNULLNULL' to the COPY statement.

When logged into one of the database nodes, you can create the same output file directly from the
command line by passing the right parameters to vsql:

> vsql -U username -F $'\t' -At -o dumpfile.txt -c "SELECT * FROM my_table;"

Password:

> cat dumpfile.txt

a one 1

b two 2

c three 3

d four 4

e five 5

-392-

Administrator's Guide

Note: $'...' is a BASH-specific string format that interprets backslash escapes, so it will

pass a literal tab character to the vsql command as the argument for the -F parameter. Shells
other than BASH may have other string literal syntax.

If you want to convert null values to a unique string as mentioned earlier, you can add the

argument -P null='NULLNULLNULL' (or whatever unique string you choose).

By adding the -w vsql command-line option to the example command line, you could use the

command within a batch script to automate the data export. However, the script would contain the
database password as plain text. If you take this approach, you should prevent unauthorized
access to the batch script, and also have the script use a database user account that has limited
access.

Copying Data Using vsql
You can use vsql to copy data between two Vertica databases. This technique is similar to the
technique explained in Exporting Data via vsql (page 390), except instead of having vsql save
data to a file for export, you pipe one vsql's output to the input of another vsql command that runs
a COPY statement from STDIN. This technique can also work for other databases or applications
that accept data from an input stream.

The easiest way to copy using vsql is to log into a node of the target database, then issue a vsql
command that connects to the source Vertica database to dump the data you want. For example,
the following command copies the store.store_sales_fact table from the vmart database on node
testdb01 to the vmart database on the node you are logged into:

vsql -U username -w passwd -h testdb01 -d vmart -At -c "SELECT * from store.store_sales_fact" \

| vsql -U username -w passwd -d vmart -c "COPY store.store_sales_fact FROM STDIN DELIMITER '|';"

Note: The above example copies the data only, not the table design. The target table for the
data copy must already exist in the target database. You can export the design of the table
using EXPORT_OBJECTS or EXPORT_CATALOG.

Monitoring Progress (optional)

You may want some way of monitoring progress when copying large amounts of data between
Vertica databases. One way of monitoring the progress of the copy operation is to use a utility
such as Pipe Viewer (http://www.ivarch.com/programs/pv.shtml) that pipes its input directly to
its output while displaying the amount and speed of data it passes along. Pipe Viewer can even
display a progress bar if you give it the total number of bytes or lines you expect to be processed.
You can get the number of lines to be processed by running a separate vsql command that
executes a SELECT COUNT query.

Note: Pipe Viewer isn't a standard Linux or Solaris command, so you will need download and
install it yourself. See the Pipe Viewer (http://www.ivarch.com/programs/pv.shtml) page for
download packages and instructions. Vertica Systems, Inc. does not support Pipe Viewer.
Install and use it at your own risk.

http://www.ivarch.com/programs/pv.shtml
http://www.ivarch.com/programs/pv.shtml

-393-

 Using vsql

The following command demonstrates how you can use Pipe Viewer to monitor the progress of
the copy shown in the prior example. The command is complicated by the need to get the number
of rows that will be copied, which is done using a separate vsql command within a BASH
backquote string, which executes the strings contents and inserts the output of the command into
the command line. This vsql command just counts the number of rows in the
store.store_sales_fact table.

vsql -U username -w passwd -h testdb01 -d vmart -At -c "SELECT * from store.store_sales_fact" \

| pv -lpetr -s `vsql -U username -w passwd -h testdb01 -d vmart -At -c "SELECT COUNT (*) FROM

store.store_sales_fact;"` \

| vsql -U username -w passwd -d vmart -c "COPY store.store_sales_fact FROM STDIN DELIMITER '|';"

While running, the above command displays a progress bar that looks like this:

0:00:39 [12.6M/s] [=============================>] 50% ETA 00:00:40

Notes for Windows Users
vsql is built as a "console application." The Windows console windows use a different encoding
than the rest of the system, so take care when you use 8-bit characters within vsql. If vsql detects
a problematic console code page, it warns you at startup. To change the console code page, two
things are necessary:

 Set the code page by entering cmd.exe /c chcp 1252.

1252 is a code page that is appropriate for German; replace it with your value.

Note: If you use Cygwin, you can put this command in /etc/profile.

 Set the console font to "Lucida Console", because the raster font does not work with the ANSI
code page.

Output Formatting Examples
The first example shows how to spread a command over several lines of input. Notice the
changing prompt:

testdb=> CREATE TABLE my_table (

testdb(> first integer not null default 0,

testdb(> second text) testdb-> ;

CREATE TABLE

Assume you have filled the table with data and want to take a look at it:

testdb=> SELECT * FROM my_table;

 first | second

-------+--------

 1 | one

 2 | two

 3 | three

 4 | four

(4 rows)

You can display tables in different ways by using the \pset command:

testdb=> \pset border 2

Border style is 2.

-394-

Administrator's Guide

testdb=> SELECT * FROM my_table;

+-------+--------+

| first | second |

+-------+--------+

| 1 | one |

| 2 | two |

| 3 | three |

| 4 | four |

+-------+--------+

(4 rows)

testdb=> \pset border 0

Border style is 0.

testdb=> SELECT * FROM my_table;

first second

----- ------

 1 one

 2 two

 3 three

 4 four

(4 rows)

testdb=>

\pset border 1

Border style is 1.

testdb=> \pset format unaligned

Output format is unaligned.

testdb=> \pset fieldsep ","

Field separator is ",".

testdb=> \pset tuples_only

Showing only tuples.

testdb=> SELECT second, first FROM my_table; one,1

two,2

three,3

four,4

Alternatively, use the short commands:

testdb=> \a \t \ x

Output format is aligned.

Tuples only is off.

Expanded display is on.

testdb=> SELECT * FROM my_table;

-[RECORD 1]-

first | 1

second | one

-[RECORD 2]-

first | 2

second | two

-[RECORD 3]-

first | 3

second | three

-[RECORD 4]-

first | 4

second | four

-395-

Appendix: Locales

Vertica supports the following internationalization features:

Unicode Character Encoding: UTF-8 (8-bit UCS/Unicode Transformation Format)

Vertica 4.1 stores character data in UTF-8 is an abbreviation for Unicode Transformation Format-8
(where 8 equals 8-bit) and is a variable-length character encoding for Unicode created by Ken
Thompson and Rob Pike. UTF-8 can represent any universal character in the Unicode standard,
yet the initial encoding of byte codes and character assignments for UTF-8 is coincident with
ASCII (requiring little or no change for software that handles ASCII but preserves other values).

All input data received by the database server is expected to be in UTF-8, and all data output by
Vertica is in UTF-8. The ODBC API operates on data in UCS-2, and JDBC and ADO.NET APIs
operate on data in UTF-16. The client drivers automatically convert data to (from) UTF-8 when
sending to (receiving from) the database server.

Locales

The locale is a parameter that defines the user's language, country, and any special variant
preferences, such as collation. Vertica uses the locale to determine the behavior of various string
functions as well for collation for various SQL commands that require ordering and comparison; for
example, GROUP BY, ORDER BY, joins, the analytic ORDER BY clause, and so forth.

By default, the locale for the database is en_US@collation=binary (English US). You can

establish a new default locale that is used for all sessions on the database, as well as override
individual sessions with different locales. Additionally the locale can be set through ODBC,
JDBC, and ADO.net.

See the following topics in the Administrator's Guide

 Implement Locales for International Data Sets (page 19)

 Supported Locales (page 404)

 Appendix (page 395)

Notes

 Projections are always collated using the en_US@collation=binary collation regardless of

the session collation. Any locale-specific collation is applied at query time.

 The maximum length parameter for VARCHAR and CHAR data type refers to the number of
octets (bytes) that can be stored in that field and not number of characters. When using
multi-byte UTF-8 characters, the fields must be sized to accommodate from 1 to 4 bytes per
character, depending on the data.

 When the locale is non-binary, the collation function is used to transform the input to a binary
string which sorts in the proper order.

This transformation increases the number of bytes required for the input according to this
formula:

result_column_width = input_octet_width * CollationExpansion + 4

-396-

Administrator's Guide

CollationExpansion defaults to 5 and should be changed only under the supervision of Vertica
Technical Support (on page 1).

String Functions

Vertica provides new and updated string functions to support internationalization. Unless
otherwise specified, these string functions can optionally specify whether VARCHAR arguments
should be interpreted as octet (byte) sequences, or as (locale-aware) sequences of characters.
This is accomplished by adding "USING OCTETS" and "USING CHARACTERS" (default) as a
parameter to the function. The following is the full list of string functions that are now locale aware:

 BTRIM removes the longest string consisting only of specified characters from the start and
end of a string.

 CHARACTER_LENGTH returns an integer value representing the number of characters or
octets in a string.

 GREATEST returns the largest value in a list of expressions.

 GREATESTB returns its greatest argument, using binary ordering, not UTF-8 character
ordering.

 INITCAP capitalizes first letter of each alphanumeric word and puts the rest in lowercase.

 INITCAPB capitalizes first letter of each alphanumeric word and puts the rest in lowercase.

 INSTR searches string for substring and returns an integer indicating the position of the
character in string that is the first character of this occurrence.

 INSTRB searches string for substring and returns an integer indicating the octet position of the
byte in string that is the first byte of this occurrence.

 LEAST returns the smallest value in a list of expressions.

 LEASTB returns its least argument, using binary ordering, not UTF-8 character ordering.

 LEFT returns the specified characters from the left side of a string.

 LENGTH takes one argument as an input and returns returns an integer value representing
the number of characters in a string.

 LOWER returns a VARCHAR value containing the argument converted to lowercase letters.

 LOWERB returns a character string with each ASCII character converted to lowercase;
multibyte UTF-8 characters are not converted.

 LTRIM returns a VARCHAR value representing a string with leading blanks removed from the
left side (beginning).

 OVERLAY returns a VARCHAR value representing a string having had a substring replaced
by another string.

 OVERLAYB returns an octet value representing a string having had a substring replaced by
another string.

 POSITION returns an integer value representing the character location of a specified substring
with a string (counting from one).

 POSITIONB returns an integer value representing the octet location of a specified substring
with a string (counting from one).

 REPLACE replaces all occurrences of characters in a string with another set of characters.

 RIGHT returns the length right-most characters of string.

-397-

 Appendix: Locales

 SPLIT_PART splits string on the delimiter and returns the location of the beginning of the given
field (counting from one).

 SPLIT_PARTB splits string on the delimiter and returns the octet location of the beginning of
the given field (counting from one)

 STRPOS returns an integer value representing the character location of a specified substring
within a string (counting from one).

 STRPOSB returns an integer value representing the octet location of a specified substring
within a string (counting from one).

 SUBSTR returns a VARCHAR value representing a substring of a specified string.

 SUBSTRB returns a byte value representing a substring of a specified string.

 SUBSTRING given a value, a position, and an optional length, returns a value representing a
substring of the specified string at the given position.

 TRANSLATE replaces individual characters in string_to_replace with other characters.

 UPPER returns a VARCHAR value containing the argument converted to uppercase letters.

 UPPERB returns a character string with each ASCII character converted to uppercase;
multibyte UTF-8 characters are not converted.

See Also

String Literals in the SQL Reference Manual.

Locale Specification
The locale is a parameter that defines the user's language, country, and any special variant
preferences, such as collation. Vertica uses the locale to determine the behavior of various string
functions as well for collation for various SQL commands that require ordering and comparison; for
example, GROUP BY, ORDER BY, joins, the analytic ORDER BY clause, and so forth.

By default, the locale for the database is en_US@collation=binary (English US). You can

establish a new default locale that is used for all sessions on the database, as well as override
individual sessions with different locales. Additionally the locale can be set through ODBC,
JDBC, and ADO.net.

Vertica locale specifications follow a subset of the Unicode LDML
http://www.unicode.org/reports/tr35 standard as implemented by the ICU library.

Locales are specified using long (page 397) or short (page 403) forms.

Long Form

The long form uses full keyname pair/value names.

Syntax

[language][_script][_country][_variant][@keyword=type[;keyword=type]...]

Note: Only collation-related keywords are supported by Vertica 4.0.

http://www.unicode.org/reports/tr35

-398-

Administrator's Guide

Parameters

language A two- or three-letter lowercase code for a particular language. For example,
Spanish is "es", English is "en" and French is "fr". The two-letter language code uses
the ISO-639 standard.

_script An optional four-letter script code that follows the language code. If specified, it
should be a valid script code as listed on the Unicode ISO 15924 Registry.

_country A specific language convention within a generic language for a specific country or
region. For example, French is spoken in many countries, but the currencies are
different in each country. To allow for these differences among specific
geographical, political, or cultural regions, locales are specified by two-letter,
uppercase codes. For example, "FR" represents France and "CA" represents
Canada. The two letter country code uses the ISO-3166 standard.

_variant Differences may also appear in language conventions used within the same country.
For example, the Euro currency is used in several European countries while the
individual country's currency is still in circulation. To handle variations inside a
language and country pair, add a third code, the variant code. The variant code is
arbitrary and completely application-specific. ICU adds "_EURO" to its locale
designations for locales that support the Euro currency. Variants can have any
number of underscored key words. For example, "EURO_WIN" is a variant for the
Euro currency on a Windows computer.

Another use of the variant code is to designate the Collation (sorting order) of a
locale. For instance, the "es__TRADITIONAL" locale uses the traditional sorting
order which is different from the default modern sorting of Spanish.

-399-

 Appendix: Locales

keyword Use optional keywords and their values to specify collation order and currency
instead of variants (as desired). If used, keywords must be unique, but their order is
not significant. If a keyword is unknown or unsupported an error is reported.
Keywords and values are not case sensitive.

Vertica supports the following keywords:

Keyword Short form Description

collation K If present, the collation keyword modifies how the
collation service searches through the locale data
when instantiating a collator. Collation supports the
following values:

 big5han — Pinyin ordering for Latin, big5
charset ordering for CJK characters (used
in Chinese).

 dict — For a dictionary-style ordering (such
as in Sinhala).

 direct — Hindi variant.

 gb2312/gb2312han — Pinyin ordering for
Latin, gb2312han charset ordering for CJK
characters (used in Chinese).

 phonebook — For a phonebook-style
ordering (such as in German).

 pinyin — Pinyin ordering for Latin and for
CJK characters; that is, an ordering for
CJK characters based on a
character-by-character transliteration into
a pinyin (used in Chinese).

 reformed — Reformed collation (such as in
Swedish).

 standard — The default ordering for each
language. For root it is [UCA] order; for
each other locale it is the same as UCA
(Unicode Collation Algorithm
http://unicode.org/reports/tr10/)
ordering except for appropriate
modifications to certain characters for that
language. The following are additional
choices for certain locales; they have
effect only in certain locales.

 stroke — Pinyin ordering for Latin, stroke
order for CJK characters (used in Chinese)
not supported.

 traditional — For a traditional-style
ordering (such as in Spanish).

 unihan — Pinyin ordering for Latin, Unihan
radical-stroke ordering for CJK characters
(used in Chinese) not supported.

 binary — the Vertica default, providing
UTF-8 octet ordering, compatible with
Vertica 3.5.

http://unicode.org/reports/tr10/

-400-

Administrator's Guide

Collation Keyword Parameters

The following parameters support the collation keyword:

Parameter Short
form

Description

colstrength S Sets the default strength for comparison. This feature is
locale dependant.

Values can be any of the following:

-401-

 Appendix: Locales

 1 (primary) — Ignores case and accents. Only
primary differences are used during comparison.
For example, "a" versus "z".

 2 (secondary) — Ignores case. Only secondary
and above differences are considered for
comparison. For example, different accented
forms of the same base letter ("a" versus
"\u00E4").

 3 (tertiary) — Is the default. Only tertiary and
above differences are considered for
comparison. Tertiary comparisons are typically
used to evaluate case differences. For example
"Z" versus "z".

 4 (quarternary) — Used with Hiragana, for
example.

 5 (identical) — All differences are considered
significant during comparison.

colAlternate A Sets alternate handling for variable weights, as described
in UCA.

Values can be any of the following:

 Non-ignorable (short form N or D)

 Shifted (short form S)

colBackwards F For Latin with accents, this parameter determines which
accents are sorted. It sets the comparison for the second
level to be backwards.

Note: colBackwards is automatically set for French

accents.

If on (short form O), then the normal UCA algorithm is
used. If off (short form X), then all strings that are in Fast
C or D Normalization Form (FCD
http://unicode.org/notes/tn5/#FCD-Test) sort correctly,
but others do not necessarily sort correctly. So it should
only be set off if the the strings to be compared are in
FCD.

colNormalization N If on (short form O), then the normal UCA algorithm is
used. If off (short form X), all strings that are in [FCD] sort
correctly, but others won't necessarily sort correctly. So it
should only be set off if the strings to be compared are in
FCD.

colCaseLevel E If set to on (short form O), a level consisting only of case
characteristics is inserted in front of tertiary level. To
ignore accents but take cases into account, set strength
to primary and case level to on. If set to off (short form X),
this level is omitted.

colCaseFirst C If set to upper (short form U), causes upper case to sort
before lower case. If set to lower (short form L)), lower
case sorts before upper case. This is useful for locales
that have already supported ordering but require different

http://unicode.org/notes/tn5/#FCD-Test

-402-

Administrator's Guide

order of cases. It affects case and tertiary levels.

If set to off (short form X), tertiary weights are not
affected.

colHiraganaQuarternary H Controls special treatment of Hiragana code points on
quaternary level. If turned on (short form O), Hiragana
codepoints get lower values than all the other
non-variable code points. The strength must be greater
or equal than quaternary for this attribute to take effect. If
turned off (short form X), Hiragana letters are treated
normally.

colNumeric D If set to on, any sequence of Decimal Digits
(General_Category = Nd in the [UCD]) is sorted at a
primary level with its numeric value. For example, "A-21"
< "A-123".

variableTop B If set to on, any sequence of Decimal Digits
(General_Category = Nd in the [UCD]) is sorted at a
primary level with its numeric value. For example, "A-21"
< "A-123".

Notes

 Locale specification strings are case insensitive. The following are all equivalent: en_us,
EN_US, and En_uS.

 You can substitute underscores with hyphens. For example: [-script]

 The ICU library works by adding options, such as S=1 separately after the long-form locale has
been accepted. Vertica has extended its long-form processing to accept options as keywords,
as suggested by the Unicode Consortium.

 Collations may default to root, the ICU default collation.

 Incorrect locale strings are accepted if the prefix can be resolved to a known locale version.

For example, the following works because the language can be resolved:

\locale en_XX

INFO: Locale: 'en_XX'

INFO: English (XX)

INFO: Short form: 'LEN'

 The following does not work because the language cannot be resolved:

\locale xx_XX

xx_XX: invalid locale identifier

 Invalid values of the collation keyword and its synonyms do not cause an error. For example,
the following does not generate an error. It simply ignores the invalid value:

\locale en_GB@collation=xyz

INFO: Locale: 'en_GB@collation=xyz'

INFO: English (United Kingdom, collation=xyz)

INFO: Short form: 'LEN'

 POSIX-type locales, such as en_US.UTF-8 work to some extent in that the encoding part
"UTF-8" is ignored.

-403-

 Appendix: Locales

 Vertica 4.0 uses the icu4c-4_2_1 library to support basic locale/collation processing with some
extensions as noted here. This does not yet meet the current standard for locale processing,
http://tools.ietf.org/html/rfc5646.

 To learn more about collation options, consult
http://www.unicode.org/reports/tr35/#Locale_Extension_Key_and_Type_Data.

Examples

The following specifies a locale for english as used in the United States:

en_US

The following specifies a locale for english as used in the United Kingdom:

en_GB

The following specifies a locale for German as used in Deutschland and uses phonebook-style
collation.

\locale de_DE@collation=phonebook

INFO: Locale: 'de_DE@collation=phonebook'

INFO: German (Germany, collation=Phonebook Sort Order)

INFO: Deutsch (Deutschland, Sortierung=Telefonbuch-Sortierregeln)

INFO: Short form: 'KPHONEBOOK_LDE'

The following specifies a locale for German as used in Deutschland. It uses phonebook-style
collation with a strength of secondary.

\locale de_DE@collation=phonebook;colStrength=secondary

INFO: Locale: 'de_DE@collation=phonebook'

INFO: German (Germany, collation=Phonebook Sort Order)

INFO: Deutsch (Deutschland, Sortierung=Telefonbuch-Sortierregeln)

INFO: Short form: 'KPHONEBOOK_LDE_S2'

Short Form

Vertica accepts locales in short form. You can use the short form to specify the locale and
keyname pair/value names.

Determining the Short Form of a Locale

To determine the short form for a locale, type in the long form and view the last line of INFO, as
follows:

\locale fr

INFO: Locale: 'fr'

INFO: French

INFO: franÃ§ais

INFO: Short form: 'LFR'

Specifying a Short Form Locale

The following example specifies the en (English) locale:

\locale LEN

INFO: Locale: 'en'

INFO: English

http://tools.ietf.org/html/rfc5646
http://www.unicode.org/reports/tr35/#Locale_Extension_Key_and_Type_Data

-404-

Administrator's Guide

INFO: Short form: 'LEN'

The following example specifies a locale for German as used in Deutschland, and it uses
phonebook-style collation.

\locale LDE_KPHONEBOOK

INFO: Locale: 'de@collation=phonebook'

INFO: German (collation=Phonebook Sort Order)

INFO: Deutsch (Sortierung=Telefonbuch-Sortierregeln)

INFO: Short form: 'KPHONEBOOK_LDE'

The following example specifies a locale for German as used in Deutschland. It uses

phonebook-style collation with a strength of secondary (see "Collation Keyword Parameters" in

Long Form (page 397)).

\locale LDE_KPHONEBOOK_S2

INFO: Locale: 'de@collation=phonebook'

INFO: German (collation=Phonebook Sort Order)

INFO: Deutsch (Sortierung=Telefonbuch-Sortierregeln)

INFO: Short form: 'KPHONEBOOK_LDE_S2'

Supported Locales
The following are the supported locale strings for Vertica. Each locale can optionally have a list of
key/value pairs (see Long Form (page 397)).

Locale Name Language or Variant Region

af Afrikaans

af_NA Afrikaans Namibian Afrikaans

af_ZA Afrikaans South Africa

am Ethiopic

am_ET Ethiopic Ethiopia

ar Arabic

ar_AE Arabic United Arab Emirates

ar_BH Arabic Bahrain

ar_DZ Arabic Algeria

ar_EG Arabic Egypt

ar_IQ Arabic Iraq

ar_JO Arabic Jordan

ar_KW Arabic Kuwait

ar_LB Arabic Lebanon

ar_LY Arabic Libya

ar_MA Arabic Morocco

-405-

 Appendix: Locales

ar_OM Arabic Oman

ar_QA Arabic Qatar

ar_SA Arabic Saudi Arabia

ar_SD Arabic Sudan

ar_SY Arabic Syria

ar_TN Arabic Tunisia

ar_YE Arabic Yemen

as Assamese

as_IN Assamese India

az Azerbaijani

az_Cyrl Azerbaijani Cyrillic

az_Cyrl_AZ Azerbaijani Azerbaijan Cyrillic

az_Latn Azerbaijani Latin

az_Latn_AZ Azerbaijani Azerbaijan Latin

be Belarusian

be_BY Belarusian Belarus

bg Bulgarian

bg_BG Bulgarian Bulgaria

bn Bengali

bn_BD Bengali Bangladesh

bn_IN Bengali India

bo Tibetan

bo_CN Tibetan PR China

bo_IN Tibetan India

ca Catalan

ca_ES Catalan Spain

cs Czech

cs_CZ Czech Czech Republic

cy Welsh

cy_GB Welsh United Kingdom

da Danish

da_DK Danish Denmark

de German

de_AT German Austria

-406-

Administrator's Guide

de_BE German Belgium

de_CH German Switzerland

de_DE German Germany

de_LI German Liechtenstein

de_LU German Luxembourg

el Greek

el_CY Greek Cyprus

el_GR Greek Greece

en English

en_AU English Australia

en_BE English Belgium

en_BW English Botswana

en_BZ English Belize

en_CA English Canada

en_GB English United Kingdom

en_HK English Hong Kong S.A.R. of
China

en_IE English Ireland

en_IN English India

en_JM English Jamaica

en_MH English Marshall Islands

en_MT English Malta

en_NA English Namibia

en_NZ English New Zealand

en_PH English Philippines

en_PK English Pakistan

en_SG English Singapore

en_TT English Trinidad and Tobago

en_US_POSIX English United States Posix

en_VI English U.S. Virgin Islands

en_ZA English Zimbabwe or South
Africa

en_ZW English Zimbabwe

eo Esperanto

es Spanish

-407-

 Appendix: Locales

es_AR Spanish Argentina

es_BO Spanish Bolivia

es_CL Spanish Chile

es_CO Spanish Columbia

es_CR Spanish Costa Rica

es_DO Spanish Dominican Republic

es_EC Spanish Ecuador

es_ES Spanish Spain

es_GT Spanish Guatemala

es_HN Spanish Honduras

es_MX Spanish Mexico

es_NI Spanish Nicaragua

es_PA Spanish Panama

es_PE Spanish Peru

es_PR Spanish Puerto Rico

es_PY Spanish Paraguay

es_SV Spanish El Salvador

es_US Spanish United States

es_UY Spanish Uruguay

es_VE Spanish Venezuela

et Estonian

et_EE Estonian Estonia

eu Basque Spain

eu_ES Basque Spain

fa Persian

fa_AF Persian Afghanistan

fa_IR Persian Iran

fi Finnish

fi_FI Finnish Finland

fo Faroese

fo_FO Faroese Faroe Islands

fr French

fr_BE French Belgium

-408-

Administrator's Guide

fr_CA French Canada

fr_CH French Switzerland

fr_FR French France

fr_LU French Luxembourg

fr_MC French Monaco

fr_SN French Senegal

ga Gaelic

ga_IE Gaelic Ireland

gl Gallegan

gl_ES Gallegan Spain

gsw German

gsw_CH German Switzerland

gu Gujurati

gu_IN Gujurati India

gv Manx

gv_GB Manx United Kingdom

ha Hausa

ha_Latn Hausa Latin

ha_Latn_GH Hausa Ghana (Latin)

ha_Latn_NE Hausa Niger (Latin)

ha_Latn_NG Hausa Nigeria (Latin)

-409-

 Appendix: Locales

haw Hawaiian Hawaiian

haw_US Hawaiian United States

he Hebrew

he_IL Hebrew Israel

hi Hindi

hi_IN Hindi India

hr Croation

hr_HR Croation Croatia

hu Hungarian

hu_HU Hungarian Hungary

hy Armenian

hy_AM Armenian Armenia

hy_AM_REVISED Armenian Revised Armenia

id Indonesian

id_ID Indonesian Indonesia

ii Sichuan

ii_CN Sichuan Yi

is Icelandic

is_IS Icelandic Iceland

it Italian

-410-

Administrator's Guide

it_CH Italian Switzerland

it_IT Italian Italy

ja Japanese

ja_JP Japanese Japan

ka Georgian

ka_GE Georgian Georgia

kk Kazakh

kk_Cyrl Kazakh Cyrillic

kk_Cyrl_KZ Kazakh Kazakhstan (Cyrillic)

kl Kalaallisut

kl_GL Kalaallisut Greenland

km Khmer

km_KH Khmer Cambodia

kn Kannada

kn-IN Kannada India

ko Korean

ko_KR Korean Korea

kok Konkani

kok_IN Konkani India

kw Cornish

-411-

 Appendix: Locales

kw_GB Cornish United Kingdom

lt Lithuanian

lt_LT Lithuanian Lithuania

lv Latvian

lv_LV Latvian Latvia

mk Macedonian

mk_MK Macedonian Macedonia

ml Malayalam

ml_IN Malayalam India

mr Marathi

mr_IN Marathi India

ms Malay

ms_BN Malay Brunei

ms_MY Malay Malaysia

mt Maltese

mt_MT Maltese Malta

nb Norwegian Bokml

nb_NO Norwegian Bokml Norway

ne Nepali

ne_IN Nepali India

-412-

Administrator's Guide

ne_NP Nepali Nepal

nl Dutch

nl_BE Dutch Belgium

nl_NL Dutch Netherlands

nn Norwegian nynorsk

nn_NO Norwegian nynorsk Norway

om Oromo

om_ET Oromo Ethiopia

om_KE Oromo Kenya

or Oriya

or_IN Oriya India

pa Punjabi

pa_Arab Punjabi Arabic

pa_Arab_PK Punjabi Pakistan (Arabic)

pa_Guru Punjabi Gurmukhi

pa_Guru_IN Punjabi India (Gurmukhi)

pl Polish

pl_PL Polish Poland

ps Pashto

ps_AF Pashto Afghanistan

-413-

 Appendix: Locales

pt Portuguese

pt_BR Portuguese Brazil

pt_PT Portuguese Portugal

ro Romanian

ro_MD Romanian Moldavia

ro_RO Romanian Romania

ru Russian

ru_RU Russian Russia

ru_UA Russian Ukraine

si Sinhala

si_LK Sinhala Sri Lanka

sk Slovak

sk_SK Slovak Slovakia

sl Slovenian

sl_SL Slovenian Slovenia

so Somali

so_DJ Somali Djibouti

so_ET Somali Ethiopia

so_KE Somali Kenya

so_SO Somali Somalia

-414-

Administrator's Guide

sq Albanian

sq_AL Albanian Albania

sr Serbian

sr_Cyrl Serbian Cyrillic

sr_Cyrl_BA Serbian Bosnia and
Herzegovina (Cyrillic)

sr_Cyrl_ME Serbian Montenegro (Cyrillic)

sr_Cyrl_RS Serbian Serbia (Cyrillic)

sr_Latn Serbian Latin

sr_Latn_BA Serbian Bosnia and
Herzegovina (Latin)

sr_Latn_ME Serbian Montenegro (Latin)

sr_Latn_RS Serbian Serbia (Latin)

sv Swedish

sv_FI Swedish Finland

sv_SE Swedish Sweden

sw Swahili

sw_KE Swahili Kenya

sw_TZ Swahili Tanzania

ta Tamil

ta_IN Tamil India

te Telugu

-415-

 Appendix: Locales

te_IN Telugu India

th Thai

th_TH Thai Thailand

ti Tigrinya

ti_ER Tigrinya Eritrea

ti_ET Tigrinya Ethiopia

tr Turkish

tr_TR Turkish Turkey

uk Ukrainian

uk_UA Ukrainian Ukraine

ur Urdu

ur_IN Urdu India

ur_PK Urdu Pakistan

uz Uzbek

uz_Arab Uzbek Arabic

uz_Arab_AF Uzbek Afghanistan (Arabic)

uz_Cryl Uzbek Cyrillic

uz_Cryl_UZ Uzbek Uzbekistan (Cyrillic)

uz_Latin Uzbek Latin

us_Latin_UZ Uzbekistan (Latin)

-416-

Administrator's Guide

vi Vietnamese

vi_VN Vietnamese Vietnam

zh Chinese

zh_Hans Chinese Simplified Han

zh_Hans_CN Chinese China (Simplified Han)

zh_Hans_HK Chinese Hong Kong SAR China
(Simplified Han)

zh_Hans_MO Chinese Macao SAR China
(Simplified Han)

zh_Hans_SG Chinese Singapore (Simplified
Han)

zh_Hant Chinese Traditional Han

zh_Hant_HK Chinese Hong Kong SAR China
(Traditional Han)

zh_Hant_MO Chinese Macao SAR China
(Traditional Han)

zh_Hant_TW Chinese Taiwan (Traditional
Han)

zu Zulu

zu_ZA Zulu South Africa

Locale Restrictions and Workarounds
The following list contains the known restrictions for locales for international data sets.

Session related:

 The locale setting is session scoped and applies to queries only (no DML/DDL) run in that
session. You cannot specify a locale for an individual query.

 The default locale for new sessions can be set using a configuration parameter

-417-

 Appendix: Locales

Query related:

The following restrictions apply when queries are run with locale other than the default
en_US@collation=binary:

 Multicolumn NOT IN subqueries are not supported when one or more of the left-side NOT IN
columns is of CHAR or VARCHAR data type. For example:

=> CREATE TABLE test (x VARCHAR(10), y INT);

=> SELECT ... FROM test WHERE (x,y) NOT IN (SELECT ...);

 ERROR: Multi-expression NOT IN subquery is not supported because a

left hand expression could be NULL

Note: An error is reported even if columns test.x and test.y have a "NOT NULL"

constraint.

 Correlated HAVING clause subqueries are not supported if the outer query contains a GROUP

BY on a CHAR or a VARCHAR column. In the following example, the GROUP BY x in the outer

query causes the error:

=> DROP TABLE test CASCADE;

=> CREATE TABLE test (x VARCHAR(10));

=> SELECT COUNT(*) FROM test t GROUP BY x HAVING x IN (SELECT x FROM test

WHERE t.x||'a' = test.x||'a');

 ERROR: subquery uses ungrouped column "t.x" from outer query

 Subqueries that use analytic functions in the HAVING clause are not supported. For example:

=> DROP TABLE test CASCADE;

=> CREATE TABLE test (x VARCHAR(10));

=> SELECT MAX(x)OVER(PARTITION BY 1 ORDER BY 1)

 FROM test GROUP BY x HAVING x IN (

 SELECT MAX(x) FROM test);

 ERROR: Analytics query with having clause expression that involves

aggregates

 and subquery is not supported

 The operators LIKE/ILIKE do not currently respect UTF-8 character boundaries. Therefore,
expressions such as 'SS' LIKE 'ß' and 'SS' ILIKE 'ß' always return false even in locales where
'SS' = 'ß' return true.

DML/DDL related:

 SQL identifiers (such as table names, column names, and so on) are restricted to ASCII
characters. For example, the following CREATE TABLE statement fails because it uses the
non-ASCII ß in the table name:

=> CREATE TABLE straße(x int, y int);

 ERROR: Non-ASCII characters are not supported in names

 Projection sort orders are made according to the default en_US@collation=binary collation.
Thus, regardless of the session setting, issuing the following command creates a projection

sorted by col1 according to the binary collation:

=> CREATE PROJECTION p1 AS SELECT * FROM table1 ORDER BY col1;

Note that in such cases, straße and strasse would not be near each other on disk.

-418-

Administrator's Guide

Sorting by binary collation also means that sort optimizations do not work in locales other than
binary. Vertica returns the following warning if you create tables or projections in a non-binary
locale:

WARNING: Projections are always created and persisted in the default

Vertica locale. The current locale is de_DE

 When creating pre-join projections, the projection definition query does not respect the locale
or collation setting. This means that when you insert data into the fact table of a pre-join
projection, referential integrity checks are not locale or collation aware.

For example:

\locale LDE_S1 -- German

=> CREATE TABLE dim (col1 varchar(20) primary key);

=> CREATE TABLE fact (col1 varchar(20) references dim(col1));

=> CREATE PROJECTION pj AS SELECT * FROM fact JOIN dim ON fact.col1 =

dim.col1 UNSEGMENTED ALL NODES;

=> INSERT INTO dim VALUES('ß');

=> COMMIT;

The following INSERT statement fails with a "nonexistent FK" error even though 'ß' is in the
dim table, and in the German locale 'SS' and 'ß' refer to the same character.

=> INSERT INTO fact VALUES('SS');

 ERROR: Nonexistent foreign key value detected in FK-PK join (fact

x dim)

 using subquery and dim_node0001; value SS

=> => ROLLBACK;

=> DROP TABLE dim, fact CASCADE;

 When the locale is non-binary, the collation function is used to transform the input to a binary
string which sorts in the proper order.

This transformation increases the number of bytes required for the input according to this
formula:

result_column_width = input_octet_width * CollationExpansion + 4

CollationExpansion defaults to 5 and should be changed only under the supervision of Vertica
Technical Support (on page 1).

 CHAR fields are displayed as fixed length, including any trailing spaces. When CHAR fields
are processed internally, they are first stripped of trailing spaces. For VARCHAR fields, trailing
spaces are usually treated as significant characters; however, trailing spaces are ignored
when sorting or comparing either type of character string field using a non-BINARY locale.

-419-

Index

!

! [COMMAND] • 375, 378, 399

.

... large moveout is in progress • 241

... users are connected • 242, 322

?

? • 375

? --help • 370

A

a • 377, 390, 400

a --echo-all • 370, 394

A --no-align • 370, 371, 377, 400

About Load Errors • 15, 160

About the Documentation • 2

About the gmond.conf file • 231

Account Locking • 118

Acrobat • 6

Active data partitions • 169

ActivePartitionCount • 26, 169

Add a cron job • 236

Add Node to a Database • 107, 111, 285

Adding Constraints • 49

Adding Disk Space Across the Cluster • 289, 290

Adding Disk Space to a Node • 289

Adding Hosts to a Cluster • 268, 270, 281, 283

Adding Hosts to a Database • 268, 272, 273, 275,

357

Adding Nodes • 267, 268, 281, 357

Adding Storage Locations • 290, 291, 292, 293

Administration Overview • 10

Administration Tools Reference • 11, 239, 270,

336, 343

Administration Tools shows node state as

UNKNOWN • 250

Adobe Acrobat • 6

AdvanceAHMInterval • 29

Advanced Formats for Loading Data • 151, 160

Advanced Menu Options • 246, 344, 353

AdvanceEpochInterval • 29

Altering Sequences • 64

Altering Tables • 77

AnalyzeRowCountInterval • 25, 175

Analyzing Constraints (Detecting Constraint

Violations) • 51, 55, 56, 149

Anatomy of a Projection • 97

Appendix

Locales • 20, 406

Authenticating Using LDAP or Kerberos • 124

Authentication • 115, 119, 120, 121, 123, 124,

125, 126, 129

Auto Partitioning • 190, 195

AUTOCOMMIT • 393

B

b • 377

Backing Up the Database • 255, 257, 262, 268,

277, 282, 283

Backup • 255, 257, 259

Backup and Restore • 256

Basic Principles for Scalability and Concurrency

Tuning • 307

Best Practices for DELETE and UPDATE • 180

Best Practices for Disaster Recovery • 265

Best Practices for Statistics Collection • 176

Best Practices for Working with Locales • 21, 367

Best Practices for Workload Management • 151,

173, 307

Binary data • 153, 160, 161

Binary format file header • 161

Binary format records • 161

Binary native format • 153, 160, 161

Binary varchar format • 153, 160, 161

Bold text • 7

border • 388

Braces • 7

Brackets • 7

Bulk Deleting and Purging Data • 179

Bulk Loading • 15, 146, 177

C

c (or \connect) [dbname [username]] • 374, 377

C [STRING] • 377, 390

c command --command command • 370, 372, 401

Catalog and Data Files • 291

cd [DIR] • 378

Change Transaction Isolation Levels • 24, 26, 150

Character data • 152

check_spread • 359

Choosing Sort-orders for High Cardinality

Predicates • 99, 104

Choosing Sort-orders for Low Cardinality

Predicates • 99, 103, 181

-420-

Administrator's Guide

CleanQueryRepoInterval • 33

Client authentication • 115, 119, 120, 121, 123,

125, 126, 129

Client connections, balancing • 324, 327, 330,

331, 333, 334

ClientAuthentication • 34, 121, 123, 125

Collecting Statistics • 25, 175

Colored bold text • 7

Command Line Editing • 398

Command Line Options • 369, 374

command_host • 359

Complete the Data Load • 18

Comprehensive Design • 78

CompressNetworkData • 25

config_nodes • 359

Configuration Menu Item • 349

Configuration parameters

AnalyzeRowCountInterval • 25, 175

CompressNetworkData • 25

MaxClientSessions • 25, 144, 307, 320

RefreshHistoryDuration • 25

Configuration Parameters • 11, 24, 135, 176, 216,

218, 245, 321, 348, 386

Configuration parameters, epoch management

AdvanceAHMInterval • 29

AdvanceEpochInterval • 29

DefaultIntervalStyle • 29

EpochAdvancementMode • 29

EpochMapInterval • 29

HistoryRetentionEpochs • 29, 184

HistoryRetentionTime • 29, 184

Configuration parameters, internationalization

DefaultSessionLocale • 20, 28, 386

EscapeStringWarning • 28

StandardConformingStrings • 28

Configuration parameters, Kerberos

authentication

KerberosHostname • 35, 125, 126

KerberosKeytabFile • 35, 125

KerberosRealm • 35, 125, 126

KerberosServiceName • 35, 125, 126

Configuration parameters, monitoring

SnmpTrapDestinationsList • 31, 216

SnmpTrapEvents • 31, 216

SnmpTrapsEnabled • 31, 216

SyslogEnabled • 31

SyslogEvents • 31

SyslogFacility • 31

Configuration parameters, profiling

GlobalEEProfiling • 32

GlobalQueryProfiling • 32

GlobalSessionProfiling • 32

Configuration parameters, query repository

CleanQueryRepoInterval • 33

QueryRepoMemoryLimit • 33

QueryRepoRetentionTime • 33

QueryRepositoryEnabled • 33

SaveQueryRepoInterval • 33

Configuration parameters, security • 34

ClientAuthentication • 34, 121, 123, 125

EnableSSL • 34, 135

Configuration parameters, Tuple Mover

ActivePartitionCount • 26, 169

EnableStrataBasedMrgOutPolicy • 26, 169

MaxMrgOutROSSizeMB • 26, 169

MergeOutInterval • 26, 169

MergeOutPolicySizeList • 26, 169

MoveOutInterval • 26, 169

MoveOutMaxAgeTime • 26

MoveOutSizePct • 26

Configuration Procedure • 11, 147

Configure the Vertica IPVS Load Balancer • 327

Configuring and Starting lighttpd • 233

Configuring Authentication Through Kerberos

and GSS • 35, 125

Configuring Disk Usage to Optimize

Performance • 12, 13

Configuring Event Reporting • 210, 214

Configuring External Authentication Methods in

vertica.conf file • 114, 119

Configuring Ganglia • 227, 228, 229

Configuring Gmetad on the Monitoring Node •

229, 230

Configuring Gmond on All Nodes • 229, 231

Configuring PROJECTION_REFRESHES

History • 208

Configuring Reporting for SNMP • 31, 32, 214,

216, 289

Configuring Reporting for syslog • 32, 214

Configuring SSL • 131, 132, 135

Configuring SSL for JDBC Clients • 133, 135,

136

Configuring SSL for ODBC Clients • 133, 135,

136

Configuring the Database • 11

Configuring the Directors • 324, 327, 330

Configuring the Vertica Monitoring Package •

233

-421-

 Index

Configuring Vertica Extension Files • 234

Configuring Vertica Nodes • 324

connect_db • 359

Connecting From a Non-Cluster Host • 374

Connecting From the Administration Tools • 367,

368

Connecting from the Command Line • 344, 367,

369

Connecting to the Database • 344

Connecting to the Virtual IP (VIP) • 330

Constraints • 49, 51, 52, 53, 54, 55

defining multicolumn constraints • 49

defining single-column constraints • 49

removing constraints • 54

COPY • 146, 148, 150, 152, 155, 262, 393

Copying a Database to Another Cluster • 238,

260, 262, 265

Copying Data Using vsql • 402

Copyright Notice • 441

Create an Empty Database • 16

Create an Optional Sample Query Script • 16

CREATE TABLE • 14

Create the Logical Schema • 14, 17

create_db • 359

Creating a Comprehensive Design Using the

Database Designer • 80

Creating a Database • 13, 201, 250, 350

Creating a Physical Design • 11, 18, 77

Creating a Query-specific Design Using the

Database Designer • 19, 80, 88

Creating and Configuring Storage Locations • 13,

292

Creating Base Tables • 45

Creating Custom Designs • 45, 47, 78, 92, 285,

318

Creating Native-Format Files to Load Data • 160,

161

Creating New Projections • 285

Creating Objects that Span Multiple Schemas •

44

Creating Records • 34, 120, 123

Creating Schemas • 42

Creating Sequences • 62

Creating Tables • 44

Creating Temporary Tables • 46

Creating Views • 75

CRITICAL • 201

cron job • 236

D

d [PATTERN] • 378

d \d <table> \df \dj \dn \dp \ds \dS \dt \dT \dtv \du

\dv • 379

d dbname --dbname dbname • 370

Data partitions, active • 169

Data Warehouse Schema Types • 36

Database did not start cleanly on initiator node! •

247

Database recovery • 238, 251, 252, 255, 262

Database startup successful, but it could be

incomplete • 246

database_parameters • 339, 359

db_add_node • 359

db_remove_node • 359

db_replace_node • 359

db_status • 359

dbLog • 201, 202, 222, 248

DBNAME • 394

DEBUG • 201

DefaultIntervalStyle • 29

DefaultSessionLocale • 20, 28, 386

Defining Partitions • 186, 187, 190

DELETE and UPDATE best practices • 180

Deleting data • 146, 180, 181, 183

DELIMITER • 152

Deploying Designs • 91

Deploying Designs Manually • 91

Design Fundamentals • 92, 96

Design Requirements • 92, 93

Design Types • 78

Design, comprehensive • 78

Design, query-specific • 79

Designing a Logical Schema • 11, 14, 36

Designing for Group By Queries • 99

Designing for K-Safety • 92, 93, 94, 98, 102, 324

Designing for Segmentation • 94, 102

Designing Replicated Projections for K-Safety •

94, 101

Designing Segmented Projections for K-Safety •

94, 102

Designing Superprojections • 98

Determining the Number of Projections to Use •

92, 93

Determining Where Connections Are Going •

331

Diagnosing spread problems • 250

Diagnostics • 1, 359

-422-

Administrator's Guide

Dimension table • 36, 37

DIRECT • 146

Director, master • 324, 327, 331

Director, slave • 324, 327

DISABLE • 201

Disable Address Resolution Protocol (ARP) • 325

Disaster recovery best practices • 265

Disk Space Requirements for Vertica • 12

Disk space, managing • 186, 187, 189, 191, 289,

290, 291, 292, 293, 294, 295, 296, 297

Distributed Sequences • 65

Distributing Certifications and Keys • 132, 133,

135

Distributing Changes Made to the Administration

Tools Metadata • 341

Distributing Configuration Files to the New Host

• 268, 272, 282, 283, 291

dj [PATTERN] • 380

dn [PATTERN] • 381

Documentation • 6

dp [PATTERN] • 381, 392

drop_db • 359

drop_node • 359

Dropping a Database • 351

Dropping Partitions • 187, 189, 296, 297

Dropping Projections • 91, 97, 267, 268, 275,

277, 285, 287

Dropping Sequences • 74

Dropping Storage Locations • 292, 296

ds [PATTERN] • 381

dS [PATTERN] • 382

dt [PATTERN] • 382

dT [PATTERN] • 383

dtv [PATTERN] • 383

du [PATTERN] • 384

dv [PATTERN] • 384

E

E • 370, 394

e --echo-queries • 370, 394

e \edit [FILE] • 385

ECHO • 370, 386, 394

echo [STRING] • 385, 390

ECHO_HIDDEN • 394

Edit the gmond.conf file • 232, 233

Edit the vertica-dashboard.xml file • 234

Edit the verticadefines.php file [Optional] • 235

edit_auth • 120, 339, 359

Ellipses • 7

EnableSSL • 34, 135

EnableStrataBasedMrgOutPolicy • 26, 169

ENCODING • 394

Enforcing Constraints • 15, 51, 55

Environment • 399

Epoch Management Parameters • 29, 184, 185,

240

EpochAdvancementMode • 29

EpochMapInterval • 29

Error starting database, no nodes are up • 246

EscapeStringWarning • 28

Event monitoring • 210, 214, 216, 218

Event Reporting Examples • 216, 218

events, monitoring • 210, 214, 216, 218

events, reporting • 214, 216, 218

Example Records • 123

Expanded • 388, 392

Exporting a Catalog • 238, 255

Exporting Data Using vsql • 400, 402

External Procedure Privileges • 114, 140

F

f [string] • 371, 385

f filename --file filename • 370, 395

F separator --field-separator separator • 371, 401

Fact table • 36, 37

file command • 152

Failure Recovery • 17, 30, 144, 211, 238, 239,

260, 268, 343

fieldsep • 388

File header, binary format specification • 161

Files • 400

Fixing Constraint Violations • 58

footer • 388

FOREIGN KEY • 52, 55

FOREIGN KEY Constraints • 49, 52

format • 388

Formatting Rules for Records • 120, 123

G

g • 385, 388

Ganglia

-423-

 Index

Architecture • 222

Configuring • 229, 233

Dependencies • 223, 224

Installing • 225, 226, 228

Requirements • 223, 224

Uninstalling • 237

Upgrading • 236

Ganglia Architecture • 222

Ganglia Prerequisites • 223, 226, 227, 228

General Parameters • 25, 144, 309

Generating a Rebalance Script for Later Use •

273, 276

Generating Certifications and Keys • 133, 137

GlobalEEProfiling • 32

GlobalQueryProfiling • 32

GlobalSessionProfiling • 32

Gmetad • 222, 225, 226, 228, 230

Gmond • 222, 225, 226, 228, 230, 231, 232, 233

gmond configurationfile • 232

Good epoch logs are available on all nodes • 247

Guidelines for Setting Pool Parameters • 300,

307, 319

H

H • 372, 386, 390

h \help [command] • 386

h hostname --host hostname • 121, 122, 372

H --html • 372

Hash segmentation • 65, 94, 102, 186, 191

HISTCONTROL • 395

HistoryRetentionEpochs • 29, 184

HistoryRetentionTime • 29, 184

HISTSIZE • 395

HOST • 395

host_to_node • 359

How Statistics are Computed • 176

HTML • 6

I

i FILE • 17, 19, 91, 96, 370, 385, 386

IGNOREEOF • 395

Ignoring Columns and Fields in the Load File •

159

Implement Locales for International Data Sets •

11, 19, 406

Implement Security • 11, 19

Implementing Client Authentication • 34, 115,

344

Implementing Database Authorization • 137

Implementing Security • 19, 113, 341

Implementing SSL • 34, 114, 115, 116, 131

Implementing Views • 74

Importing and Exporting Statistics • 177

Indentation • 7

INFO • 201

INSERT • 146

Install the Vertica IPVS Load Balancer Package •

327

install_node • 359

install_procedure • 359

Installing Gmond on All Nodes • 229, 230

Installing the Vertica Monitoring Package • 224,

225, 230, 237

Internationalization Parameters • 28

IP Virtual Server • 327, 331, 334

IP Virtual Server (IPVS) • 324, 327, 330, 331,

333, 334

IPVS • 327, 331, 334

Italic text • 7

K

Kerberos Authentication Parameters • 35

Kerberos Client Code Example Written in C •

125, 129

Kerberos Client Code Example Written in Java •

125, 126

KerberosHostname • 35, 125, 126

KerberosKeytabFile • 35, 125

KerberosRealm • 35, 125, 126

KerberosServiceName • 35, 125, 126

kill_host • 359

Killing a Vertica Process on Host • 241, 356

K-Safety Support in Administration Tools • 339

L

l • 386

l --list • 372

Large Tuple Mover operations, scheduling • 169

License key • 142, 357

lighttpd • 222, 233

Linux resource usage • 220

list_allnodes • 359

list_db • 234, 359

list_host • 230, 359

list_node • 359

Load balancing • 324, 327, 330, 331, 333, 334

Load Balancing • 323

Loading and Modifying Data • 15, 146, 186

-424-

Administrator's Guide

Loading data • 15, 19, 146, 148, 150, 152, 153,

155, 159, 160, 167, 169

Loading Data into Binary Data Types • 153, 160

Loading Data into Character Data Types • 152

Loading Data into Pre-join Projections • 15, 155

Loading Sequences • 74

locale • 20, 386, 400

Locale best practices • 21

Locale Restrictions and Workarounds • 427

Locale Specification • 408

Locales • 399

Log files • 201, 202, 222

Logical schema • 14, 36

logrotate • 202, 359

Long Form • 408, 414

M

Managing Clusters • 357

Managing Disk Space • 210, 289, 319

Managing Load Streams • 322

Managing Nodes • 12, 267

Managing Partitions • 193

Managing Sessions • 25, 241, 242, 245, 319, 320,

345, 348

Managing System Resource Usage • 319

Managing Workloads • 171, 298, 316

Managing Your License Key • 16, 142, 357

Manual Tuper Mover operations • 173

Manually Purging Data • 184, 185

Master director • 324, 327, 331

Master node • 324, 327

MaxClientSessions • 25, 144, 307, 320

Maximizing Projection Performance • 103

MaxMrgOutROSSizeMB • 26, 169

Measuring Location Performance • 292, 293, 294

Mergeout • 167, 169

MergeOutInterval • 26, 169

MergeOutPolicySizeList • 26, 169

Meta-Commands • 369, 375

Metadata Privileges • 114, 138, 140, 320

Modifying Database Designs for Updated Nodes

• 275, 277, 285

Modifying Records • 123

Modifying Storage Locations • 292, 293, 295

Monitoring Events • 210, 217

Monitoring Linux Resource Usage • 18, 220, 322

Monitoring Parameters • 31

Monitoring Processes • 209

Monitoring Recovery • 238, 255

Monitoring Resource Pools and Resource Usage

by Queries • 303

Monitoring the Database • 201, 255, 345

Monitoring the Log Files • 201, 203, 210, 248,

354

Monitoring Vertica Using Ganglia • 144, 222

Monitoring Which Nodes Are Connected • 330

Monospace text • 7

Moveout • 167, 168

MoveOutInterval • 26, 169

MoveOutMaxAgeTime • 26

MoveOutSizePct • 26

Multicast IP Support • 233

Multiple Schema Examples • 39

N

n • 372

Native (binary) format • 153, 160, 161

Native (Binary) Format • 160

Native varchar format • 160, 161

Native Varchar Format • 161

New K-Safe=2 Database • 107, 108

No good epoch log available on node • 248

No running statement, that session is idle • 245

Node does not recover because of lock timeouts •

249

Nodes stuck in INITIALIZING state • 248

Nodes, managing • 268, 270, 272

Nodes, removing • 277, 278, 279

Nodes, replacing • 281, 284

NOT NULL • 54

NOT NULL Constraints • 49, 54

Notes for Remote Terminal Users • 16, 339, 340

Notes for Windows Users • 403

O

o • 372, 385, 386, 387, 390, 401

o filename --output filename • 372, 401

ON_ERROR_STOP • 395

Operating the Database • 142

Optimize Query Performance • 18

Optimizing Deletes and Updates for Performance

• 180, 181

Output Formatting Examples • 390, 403

Override the Default Locale for a Session • 20, 21

P

p • 385, 388, 390

-425-

 Index

P assignment --pset assignment • 372

p port --port port • 372

pager • 388

Partition Elimination • 193, 195, 198

Partitioning • 186, 187, 189, 191

Partitioning and Data Storage • 192

Partitioning and Segmenting Data • 187, 191

Partitioning best practices • 187

Partitioning Tables • 179, 181, 184, 186

password [USER] • 116, 388

Password Authentication • 114, 116, 330, 341

Password Expiration • 117

Password Guidelines • 118, 119

PDF • 6

Perform a Partial Data Load • 15, 17

Performance best practices • 176

Performance Considerations for Deletes and

Updates • 180

Performing the Initial Database Load • 146

Performing Tuple Mover Operations Manually •

167, 173

Planning Your Design • 92, 96

PORT • 395

Preface • 9

Prepare Data Files • 14, 18

Prepare Disk Storage Locations • 12, 292, 297

Prepare Load Scripts • 15, 18

Prepare the Logical Schema Script • 14, 17

PRIMARY KEY • 51, 55

PRIMARY KEY Constraints • 49, 51

Printing Full Books • 4

Prioritizing Column Access Speed • 105

Privileges • 139, 140

Process monitoring • 209

Profiles • 116

Profiling Parameters • 32

Projection Examples • 107

Projection Privileges • 114, 138, 139, 140

PROMPT1 PROMPT2 PROMPT3 • 395

Prompting • 395, 397

pset NAME [VALUE] • 371, 372, 373, 377, 385,

386, 388, 391, 392, 399, 401

PSTACK • 220

Purging Deleted Data • 179, 183, 297

Q

q • 17, 390, 396

q --quiet • 372

qecho [STRING] • 385, 388, 390

Query Queue/Rejection Process • 301

Query Repository Parameters • 33

Querying Case-sensitive data in System Tables •

209

QueryRepoMemoryLimit • 33

QueryRepoRetentionTime • 33

QueryRepositoryEnabled • 33

Query-specific Design • 79

QUIET • 372, 396

R

r • 390

R separator --record-separator separator • 373

Range segmentation • 94, 186

Reading the Online Documentation • 2

Real IP server • 324, 334

Rebalancing Data Across Nodes • 268, 272, 273,

285

Rebalancing Data Using the Administration

Tools UI • 273, 275

Rebuilding a Table • 184, 297

Reclaiming Disk Space • 192, 297

Record Content • 120, 121, 124

Record header, binary format specification • 161

recordsep • 388

Recovering the Cluster from a Backup • 238, 240,

255

Recovering the Database • 238

Reducing Run-time of Queries • 318

Reenabling error reporting • 60

Referencing Objects When Multiple Schemas are

Used • 42

Refreshing Projections • 91, 97, 177, 267, 275,

285, 286

Removing Constraints • 54

Removing Hosts from a Cluster • 277, 279, 281,

283

Removing Hosts from a Database • 277, 278, 357

Removing Nodes • 267, 277, 278, 281, 357

Removing Statistics • 178

Replacing Failed Disks • 238, 289, 291

Replacing Hosts • 283, 284, 357

Replacing Nodes • 259, 267, 281, 357

Required Packages • 223, 224, 226, 227, 228, 229

Resource Manager Impact on Query Execution •

299

Resource Pool Architecture • 171, 300, 317

Resource pool settings • 169, 298, 305, 307

Resource Tracking in a Pool • 301

-426-

Administrator's Guide

Resource usage • 220

restart_db • 359

restart_node • 352, 359

Restarting the Database • 238, 240, 252, 272, 291

Restarting Vertica on a Host • 238, 251

Restarting Vertica on Host • 144, 239, 345, 349

Restore • 259, 260

Restoring Retired Storage Locations • 292, 296

Restoring the Database • 259, 260

Restoring the Database from a Backup • 255, 259

Restoring to the Same Cluster • 259

Retiring Storage Locations • 292, 296

return_epoch • 359

RHEL5 • 225, 226

RIP • 327

Rolling Back Database to the Last Good Epoch •

354

Rotating the Log Files • 201, 202

run_designer • 359

S

s [FILE] • 390

S --single-line • 373, 396

s --single-step • 373, 396

SaveQueryRepoInterval • 33

Scenario

Continuous Load and Query • 316

Handling Mixed Workloads (Batch vs.

Interactive) • 314, 315, 316

Periodic Batch Loads • 308, 309

Preventing Run-away Queries • 311, 312

Restricting Resource Usage of Ad-hoc Query

Application • 308, 312, 315, 316

Restricting Vertica to Take Only 60% of

Memory • 317

Setting a Hard Limit on Concurrency For An

Application • 313

Setting Priorities on Queries Issued by

Different Users • 308, 315

The CEO Query • 310, 314, 316

Tuning for Recovery • 317

Tuning for Refresh • 317

Tuning Tuple Mover Pool Settings • 318

Scheduling large Tuple Mover operations • 169

Schema Privileges • 41, 114, 138, 140

Script • 14, 148, 150

Security Parameters • 34

Segmentation • 92, 94

Sequence Privileges • 61, 140

Servers without Internet Access • 225, 226, 228

set [NAME [VALUE [...]]] • 373, 390, 391,

392, 393

Set Up Incremental (Trickle) Loads • 19

Set Up the Loopback Interface • 325

set_restart_policy • 339, 352, 359

Setting a Purge Policy • 31, 184

Setting Location Performance • 105, 292, 293,

294

Setting Schema Search Paths • 42, 43, 204

Setting the Restart Policy • 352

Shell script • 7

Short Form • 21, 387, 408, 413

show_active_db • 359

Shutdown Problems • 144, 145, 241, 321, 344,

349, 357

SINGLELINE • 396

SINGLESTEP • 396

Slave • 324, 327

Slave director • 324, 327

SNMP • 216

SNMP, configuring reporting • 216

SnmpTrapDestinationsList • 31, 216

SnmpTrapEvents • 31, 216

SnmpTrapsEnabled • 31, 216

Snowflake Schema • 37

Specification of data fields • 161

Specify the Default Locale for the Database • 20,

21, 387

Specifying Default Values for Columns • 158

Specifying Disk Storage at Database Creation

Time • 13

Specifying Disk Storage at Installation Time • 12

Spread • 250, 327, 359

Spread is not running • 249, 250

Spread Problems • 249

SSL • 131, 132, 133, 135, 136

SSL Prerequisites • 131, 132, 135

StandardConformingStrings • 28

Star Schema • 36, 146

start_db • 359

Starting a Database • 248, 283, 344, 357

Starting the Database • 120, 135, 144, 260, 342,

343

Startup Problems • 17, 144, 241, 245, 344, 345,

351

Startup successful, but some nodes are recovering

• 245

Statistics

-427-

 Index

AnalyzeRowCountInterval • 25, 175

and the Query Optimizer • 175

best practices and guidelines • 175, 176

collection • 175, 176

computing • 176

dropping • 178

exporting • 177

for manually-deployed designs • 91

for projections • 96

troubleshooting • 178

updating for query-specific designs • 79

Statistics Collection Guidelines • 175

Statistics Used by the Query Optimizer • 175

stop_db • 359

stop_host • 359

Stopping a Database • 241, 244, 245, 320, 321,

345, 348, 351, 355, 356

Stopping the Database • 144, 259

Stopping Vertica on Host • 241, 246, 248, 354,

356

Storage • 167, 173

Suggested Reading Paths • 2, 4

Support • 1

Supported Locales • 20, 406, 414

SuSE SLE 10 and SLE 11 • 225, 227

Syntax conventions • 7

syslog • 214

syslog, configuring reporting • 214

SyslogEnabled • 31

SyslogEvents • 31

SyslogFacility • 31

SYSSTAT • 220

System tables • 204, 209

T

t • 373, 388, 390, 391, 400

T • 388

T [STRING] • 390, 391

T table_options --table-attr table_options • 373

t --tuples-only • 373, 400

Table Privileges • 114, 139, 140

tableattr • 388, 391

Target Memory Determination for Queries in

Concurrent Environments • 302, 307, 308, 311

Technical Support • 1, 4, 14, 23, 27, 36, 96, 142,

170, 173, 178, 213, 220, 246, 247, 248, 250,

309, 319, 325, 343, 353, 354, 407, 428

Test the Database • 18

Test the Optimized Database • 18

Testing Modified Database Designs • 268, 277,

288

The \d [PATTERN] meta-commands • 378

The Design Process • 92

The GENERAL Pool • 300, 304, 316

The Resource Manager • 299

Threads, using more • 169

TIMEOUT ERROR

Could not login with SSH • 247

timing • 18, 391

TIMING • 201

title • 377, 388

top utility • 220

TRACE • 201

Tracking Load Status • 149

Transforming Data During Loads • 158, 159

Trickle Loading • 19, 148, 150

Troubleshooting Issues Using Statistics • 178

Troubleshooting Keepalived Issues • 334

Tuning the Built-in Pools • 316

Tuning the Tuple Mover • 169, 212, 316

Tuple Mover • 167, 169, 173

Tuple Mover behavior in 3.5 (reverting) • 169

Tuple Mover best practices • 169

Tuple Mover Parameters • 26

tuples_only • 388, 391

Typographical Conventions • 7

U

U username --username username • 373

Understanding the Tuple Mover • 167

uninstall_node • 359

Uninstalling the Vertica Monitoring Package •

237

UNIQUE Constraints • 49, 53

unset [NAME] • 391, 392

UPDATE • 146

upgrade_license_key • 142, 339, 357, 359

Upgrading • 236

Upgrading the License Key • 357

Upgrading the Vertica Monitoring Package • 224,

236

Uppercase text • 7

USER • 396

User Profiles • 302, 305, 311

Using INSERT, UPDATE, and DELETE • 150,

180

Using Load Scripts • 15, 149, 150, 160

Using more threads • 169

-428-

Administrator's Guide

Using Multiple Schemas • 14, 39

Using Parallel Load Streams • 15, 151

Using Sequences • 55, 61, 159

Using Shared Storage with Vertica • 14

Using the Administration Tools • 135, 144, 272,

278, 291, 336, 341, 358

Using the COPY and LCOPY Statements • 148

Using the COPY Command • 150

Using the Database Designer • 78

Using the Graphical User Interface • 11, 336, 337

Using the Online Help • 340

Using the SQL Monitoring API • 204, 210, 289,

319, 322

Using User-defined Pools and User-Profiles for

Workload Management • 305, 307, 309

Using Views • 75

Using vsql • 344, 367

V

v assignment --set assignment --variable

assignment • 373

V --version • 373

Variables • 391, 392

VERBOSITY • 396

vertica-dashboard.xml • 234

verticadefines.php • 235

Vertical line • 7

View Privileges • 114, 139

view_cluster • 249, 250, 359

Viewing a Database • 101, 201, 257, 260, 264,

352

Viewing Database Cluster State • 144, 343, 344,

345, 355, 357

Views • 74, 75, 139

Virtual IP address • 324, 330, 333

Virtual IP Connection Problems • 333

VSQL_HOME • 396

W

w [FILE] • 392

w password • 369, 374

W --password • 374

WARNING • 201

When to Back Up the Database • 256

Where to Find Additional Information • 6

Where to Find the Vertica Documentation • 2

Workload management best practices • 307

WOS Overflow • 146, 150

Writing Administration Tools Scripts • 202, 336,

359

Writing and Deploying Custom Projections • 92,

96

X

x • 374, 390, 392

x --expanded • 374

X, --no-vsqlrc • 374

Z

z • 381, 392

-429-

Copyright Notice

Copyright© 2006-2011 Vertica Systems, Inc., and its licensors. All rights reserved.

Vertica Systems, Inc.

8 Federal Street

Billerica, MA 01821

Phone: (978) 600-1000

Fax: (978) 600-1001

E-Mail: info@vertica.com

Web site: http://www.vertica.com
(http://www.vertica.com)

The software described in this copyright notice is furnished under a license and may be used or
copied only in accordance with the terms of such license. Vertica Systems, Inc. software contains
proprietary information, as well as trade secrets of Vertica Systems, Inc., and is protected under
international copyright law. Reproduction, adaptation, or translation, in whole or in part, by any
means — graphic, electronic or mechanical, including photocopying, recording, taping, or
storage in an information retrieval system — of any part of this work covered by copyright is
prohibited without prior written permission of the copyright owner, except as allowed under the
copyright laws.

This product or products depicted herein may be protected by one or more U.S. or international
patents or pending patents.

Trademarks

Vertica™, the Vertica® Analytic Database™, and FlexStore™ are trademarks of Vertica Systems, Inc..

Adobe®, Acrobat®, and Acrobat® Reader® are registered trademarks of Adobe Systems Incorporated.

AMD™ is a trademark of Advanced Micro Devices, Inc., in the United States and other countries.

DataDirect® and DataDirect Connect® are registered trademarks of Progress Software Corporation in the
U.S. and other countries.

Fedora™ is a trademark of Red Hat, Inc.

Intel® is a registered trademark of Intel.

Linux® is a registered trademark of Linus Torvalds.

Microsoft® is a registered trademark of Microsoft Corporation.

Novell® is a registered trademark and SUSE™ is a trademark of Novell, Inc., in the United States and other
countries.

Oracle® is a registered trademark of Oracle Corporation.

Red Hat® is a registered trademark of Red Hat, Inc.

VMware® is a registered trademark or trademark of VMware, Inc., in the United States and/or other
jurisdictions.

Other products mentioned may be trademarks or registered trademarks of their respective
companies.

mailto:info@vertica.com
http://www.vertica.com/
http://www.vertica.com/

-430-

Administrator's Guide

Open Source Software Acknowledgments

Vertica makes no representations or warranties regarding any third party software. All third-party
software is provided or recommended by Vertica on an AS IS basis.

This product includes cryptographic software written by Eric Young (eay@cryptsoft.com).

ASMJIT

Copyright (c) 2008-2010, Petr Kobalicek <kobalicek.petr@gmail.com>

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

Boost

Boost Software License - Version 1.38 - February 8th, 2009

Permission is hereby granted, free of charge, to any person or organization obtaining a copy of the
software and accompanying documentation covered by this license (the "Software") to use,
reproduce, display, distribute, execute, and transmit the Software, and to prepare derivative works
of the Software, and to permit third-parties to whom the Software is furnished to do so, all subject
to the following:

The copyright notices in the Software and this entire statement, including the above license grant,
this restriction and the following disclaimer, must be included in all copies of the Software, in whole
or in part, and all derivative works of the Software, unless such copies or derivative works are
solely in the form of machine-executable object code generated by a source language processor.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE
LIABLE FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR
THE USE OR OTHER DEALINGS IN THE SOFTWARE.

mailto:eay@cryptsoft.com
mailto:kobalicek.petr@gmail.com

-431-

 Copyright Notice

bzip2

This file is a part of bzip2 and/or libbzip2, a program and library for lossless, block-sorting data
compression.

Copyright © 1996-2005 Julian R Seward. All rights reserved.

1 Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

2 Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

3 The origin of this software must not be misrepresented; you must not claim that you wrote the
original software. If you use this software in a product, an acknowledgment in the product
documentation would be appreciated but is not required.

4 Altered source versions must be plainly marked as such, and must not be misrepresented as
being the original software.

5 The name of the author may not be used to endorse or promote products derived from this
software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Julian Seward, Cambridge, UK.

jseward@bzip.org <mailto:jseward@bzip.org>

bzip2/libbzip2 version 1.0 of 21 March 2000

This program is based on (at least) the work of:

Mike Burrows

David Wheeler

Peter Fenwick

Alistair Moffat

Radioed Neal

Ian H. Witten

Robert Sedgewick

Jon L. Bentley

Daemonize

Copyright © 2003-2007 Brian M. Clapper.

All rights reserved.

mailto:jseward@bzip.org
mailto:jseward@bzip.org

-432-

Administrator's Guide

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

 Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

 Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

 Neither the name of the clapper.org nor the names of its contributors may be used to endorse
or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Ganglia Open Source License

Copyright © 2001 by Matt Massie and The Regents of the University of California.

All rights reserved.

Permission to use, copy, modify, and distribute this software and its documentation for any
purpose, without fee, and without written agreement is hereby granted, provided that the above
copyright notice and the following two paragraphs appear in all copies of this software.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR
DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE
UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER
IS ON AN "AS IS" BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATION TO
PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

ICU (International Components for Unicode) License - ICU 1.8.1 and later

COPYRIGHT AND PERMISSION NOTICE

Copyright © 1995-2009 International Business Machines Corporation and others

All rights reserved.

-433-

 Copyright Notice

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, and/or sell
copies of the Software, and to permit persons to whom the Software is furnished to do so, provided
that the above copyright notice(s) and this permission notice appear in all copies of the Software
and that both the above copyright notice(s) and this permission notice appear in supporting
documentation.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY
RIGHTS. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS
NOTICE BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL
DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
THIS SOFTWARE.

Except as contained in this notice, the name of a copyright holder shall not be used in advertising
or otherwise to promote the sale, use or other dealings in this Software without prior written
authorization of the copyright holder.

All trademarks and registered trademarks mentioned herein are the property of their respective
owners.

Keepalived Vertica IPVS (IP Virtual Server) Load Balancer

Copyright © 2007 Free Software Foundation, Inc.

http://fsf.org/

The keepalived software contained in the

VerticaIPVSLoadBalancer-4.1.x.RHEL5.x86_64.rpm software package is licensed

under the GNU General Public License ("GPL"). You are entitled to receive the source code for
such software. For no less than three years from the date you obtained this software package, you
may download a copy of the source code for the software in this package licensed under the GPL
at no charge by visiting http://www.vertica.com/licenses/keepalived-1.1.17.tar.gz
http://www.vertica.com/licenses/keepalived-1.1.17.tar.gz. You may download this source
code so that it remains separate from other software on your computer system.

jQuery

Copyright © 2009 John Resig, http://jquery.com/

All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

http://fsf.org/
http://www.vertica.com/licenses/keepalived-1.1.17.tar.gz
http://www.vertica.com/licenses/keepalived-1.1.17.tar.gz
http://jquery.com/

-434-

Administrator's Guide

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

Lighttpd Open Source License

Copyright © 2004, Jan Kneschke, incremental

All rights reserved.

1 Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

2 Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

3 Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

4 Neither the name of the 'incremental' nor the names of its contributors may be used to endorse
or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

MersenneTwister.h

Copyright © 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,

Copyright © 2000 - 2009, Richard J. Wagner

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1 Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

2 Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

3 The names of its contributors may not be used to endorse or promote products derived from
this software without specific prior written permission.

-435-

 Copyright Notice

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

MIT Kerberos

Copyright © 1985-2007 by the Massachusetts Institute of Technology.

Export of software employing encryption from the United States of America may require a specific
license from the United States Government. It is the responsibility of any person or organization
contemplating export to obtain such a license before exporting.

WITHIN THAT CONSTRAINT, permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted, provided that the above
copyright notice appear in all copies and that both that copyright notice and this permission notice
appear in supporting documentation, and that the name of M.I.T. not be used in advertising or
publicity pertaining to distribution of the software without specific, written prior permission.
Furthermore if you modify this software you must label your software as modified software and not
distribute it in such a fashion that it might be confused with the original MIT software. M.I.T. makes
no representations about the suitability of this software for any purpose. It is provided ―as is‖
without express or implied warranty.

Individual source code files are copyright MIT, Cygnus Support, Novell, OpenVision Technologies,
Oracle, Red Hat, Sun Microsystems, FundsXpress, and others.

Project Athena, Athena, Athena MUSE, Discuss, Hesiod, Kerberos, Moira, and Zephyr are
trademarks of the Massachusetts Institute of Technology (MIT). No commercial use of these
trademarks may be made without prior written permission of MIT.

―Commercial use‖ means use of a name in a product or other for-profit manner. It does NOT
prevent a commercial firm from referring to the MIT trademarks in order to convey information
(although in doing so, recognition of their trademark status should be given).

Portions of src/lib/crypto have the following copyright:

Copyright © 1998 by the FundsXpress, INC.

All rights reserved.

Export of this software from the United States of America may require a specific license from the
United States Government. It is the responsibility of any person or organization contemplating
export to obtain such a license before exporting.

-436-

Administrator's Guide

WITHIN THAT CONSTRAINT, permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted, provided that the above
copyright notice appear in all copies and that both that copyright notice and this permission notice
appear in supporting documentation, and that the name of FundsXpress. not be used in
advertising or publicity pertaining to distribution of the software without specific, written prior
permission. FundsXpress makes no representations about the suitability of this software for any
purpose. It is provided ―as is‖ without express or implied warranty.

THIS SOFTWARE IS PROVIDED ―AS IS‖ AND WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.

The implementation of the AES encryption algorithm in src/lib/crypto/aes has the following
copyright:

Copyright © 2001, Dr Brian Gladman <brg@gladman.uk.net>, Worcester, UK.
All rights reserved.

LICENSE TERMS

The free distribution and use of this software in both source and binary form is allowed (with or
without changes) provided that:

1 Distributions of this source code include the above copyright notice, this list of conditions and
the following disclaimer.

2 Distributions in binary form include the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other associated materials.

3 The copyright holder's name is not used to endorse products built using this software without
specific written permission.

DISCLAIMER

This software is provided 'as is' with no explicit or implied warranties in respect of any properties,
including, but not limited to, correctness and fitness for purpose.

The implementations of GSSAPI mechglue in GSSAPI-SPNEGO in src/lib/gssapi, including the
following files:

 lib/gssapi/generic/gssapi_err_generic.et

 lib/gssapi/mechglue/g_accept_sec_context.c

 lib/gssapi/mechglue/g_acquire_cred.c

 lib/gssapi/mechglue/g_canon_name.c

 lib/gssapi/mechglue/g_compare_name.c

 lib/gssapi/mechglue/g_context_time.c

 lib/gssapi/mechglue/g_delete_sec_context.c

 lib/gssapi/mechglue/g_dsp_name.c

 lib/gssapi/mechglue/g_dsp_status.c

 lib/gssapi/mechglue/g_dup_name.c

 lib/gssapi/mechglue/g_exp_sec_context.c

 lib/gssapi/mechglue/g_export_name.c

 lib/gssapi/mechglue/g_glue.c

 lib/gssapi/mechglue/g_imp_name.c

mailto:brg@gladman.uk.net

-437-

 Copyright Notice

 lib/gssapi/mechglue/g_imp_sec_context.c

 lib/gssapi/mechglue/g_init_sec_context.c

 lib/gssapi/mechglue/g_initialize.c

 lib/gssapi/mechglue/g_inquire_context.c

 lib/gssapi/mechglue/g_inquire_cred.c

 lib/gssapi/mechglue/g_inquire_names.c

 lib/gssapi/mechglue/g_process_context.c

 lib/gssapi/mechglue/g_rel_buffer.c

 lib/gssapi/mechglue/g_rel_cred.c

 lib/gssapi/mechglue/g_rel_name.c

 lib/gssapi/mechglue/g_rel_oid_set.c

 lib/gssapi/mechglue/g_seal.c

 lib/gssapi/mechglue/g_sign.c

 lib/gssapi/mechglue/g_store_cred.c

 lib/gssapi/mechglue/g_unseal.c

 lib/gssapi/mechglue/g_userok.c

 lib/gssapi/mechglue/g_utils.c

 lib/gssapi/mechglue/g_verify.c

 lib/gssapi/mechglue/gssd_pname_to_uid.c

 lib/gssapi/mechglue/mglueP.h

 lib/gssapi/mechglue/oid_ops.c

 lib/gssapi/spnego/gssapiP_spnego.h

 lib/gssapi/spnego/spnego_mech.c

are subject to the following license:

Copyright © 2004 Sun Microsystems, Inc.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the ―Software‖), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED ―AS IS‖, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

Npgsql-.Net Data Provider for Postgresql

Copyright © 2002-2008, The Npgsql Development Team

-438-

Administrator's Guide

Permission to use, copy, modify, and distribute this software and its documentation for any
purpose, without fee, and without a written agreement is hereby granted, provided that the above
copyright notice and this paragraph and the following two paragraphs appear in all copies.

IN NO EVENT SHALL THE NPGSQL DEVELOPMENT TEAM BE LIABLE TO ANY PARTY FOR
DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING
LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS
DOCUMENTATION, EVEN IF THE NPGSQL DEVELOPMENT TEAM HAS BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.

THE NPGSQL DEVELOPMENT TEAM SPECIFICALLY DISCLAIMS ANY WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER
IS ON AN "AS IS" BASIS, AND THE NPGSQL DEVELOPMENT TEAM HAS NO OBLIGATIONS
TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR
MODIFICATIONS.

Open LDAP

The OpenLDAP Public License

Version 2.8, 17 August 2003

Redistribution and use of this software and associated documentation ("Software"), with or without
modification, are permitted provided that the following conditions are met:

1 Redistributions in source form must retain copyright statements and notices,

2 Redistributions in binary form must reproduce applicable copyright statements and notices,
this list of conditions, and the following disclaimer in the documentation and/or other materials
provided with the distribution, and

3 Redistributions must contain a verbatim copy of this document.

The OpenLDAP Foundation may revise this license from time to time. Each revision is
distinguished by a version number. You may use this Software under terms of this license
revision or under the terms of any subsequent revision of the license.

THIS SOFTWARE IS PROVIDED BY THE OPENLDAP FOUNDATION AND ITS
CONTRIBUTORS ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OPENLDAP
FOUNDATION, ITS CONTRIBUTORS, OR THE AUTHOR(S) OR OWNER(S) OF THE
SOFTWARE BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

The names of the authors and copyright holders must not be used in advertising or otherwise to
promote the sale, use or other dealing in this Software without specific, written prior permission.
Title to copyright in this Software shall at all times remain with copyright holders.

-439-

 Copyright Notice

OpenLDAP is a registered trademark of the OpenLDAP Foundation.

Copyright 1999-2003 The OpenLDAP Foundation, Redwood City, California, USA. All Rights Reserved.
Permission to copy and distribute verbatim copies of this document is granted.

Open SSL

OpenSSL License

Copyright © 1998-2008 The OpenSSL Project. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1 Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

2 Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

3 All advertising materials mentioning features or use of this software must display the following
acknowledgment: "This product includes software developed by the OpenSSL Project for use
in the OpenSSL Toolkit. (http://www.openssl.org/)"

4 The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to endorse or
promote products derived from this software without prior written permission. For written
permission, please contact openssl-core@openssl.org.

5 Products derived from this software may not be called "OpenSSL" nor may "OpenSSL" appear
in their names without prior written permission of the OpenSSL Project.

6 Redistributions of any form whatsoever must retain the following acknowledgment: "This
product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit
(http://www.openssl.org/)"

THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ̀ `AS IS'' AND ANY EXPRESSED
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR ITS CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

PCRE LICENCE

PCRE is a library of functions to support regular expressions whose syntax and semantics are as
close as possible to those of the Perl 5 language.

Release 8 of PCRE is distributed under the terms of the "BSD" licence, as specified below. The
documentation for PCRE, supplied in the "doc" directory, is distributed under the same terms as
the software itself.

http://www.openssl.org/
mailto:openssl-core@openssl.org
http://www.openssl.org/

-440-

Administrator's Guide

The basic library functions are written in C and are freestanding. Also included in the distribution is
a set of C++ wrapper functions.

THE BASIC LIBRARY FUNCTIONS

Written by: Philip Hazel

Email local part: ph10

Email domain: cam.ac.uk

University of Cambridge Computing Service,

Cambridge, England.

Copyright (c) 1997-2010 University of Cambridge

All rights reserved.

THE C++ WRAPPER FUNCTIONS

Contributed by: Google Inc.

Copyright (c) 2007-2010, Google Inc.

All rights reserved.

THE "BSD" LICENCE

 Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

 Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

 Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

Neither the name of the University of Cambridge nor the name of Google Inc. nor the names of
their contributors may be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF ERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

End

Perl Artistic License

Copyright © August 15, 1997

Preamble

-441-

 Copyright Notice

The intent of this document is to state the conditions under which a Package may be copied, such
that the Copyright Holder maintains some semblance of artistic control over the development of
the package, while giving the users of the package the right to use and distribute the Package in a
more-or-less customary fashion, plus the right to make reasonable modifications.

Definitions

"Package" refers to the collection of files distributed by the Copyright Holder, and derivatives of
that collection of files created through textual modification.

"Standard Version" refers to such a Package if it has not been modified, or has been modified in
accordance with the wishes of the Copyright Holder as specified below.

"Copyright Holder" is whoever is named in the copyright or copyrights for the package.

"You" is you, if you're thinking about copying or distributing this Package.

"Reasonable copying fee" is whatever you can justify on the basis of media cost, duplication
charges, time of people involved, and so on. (You will not be required to justify it to the Copyright
Holder, but only to the computing community at large as a market that must bear the fee.)

"Freely Available" means that no fee is charged for the item itself, though there may be fees
involved in handling the item. It also means that recipients of the item may redistribute it under the
same conditions they received it.

1 You may make and give away verbatim copies of the source form of the Standard Version of
this Package without restriction, provided that you duplicate all of the original copyright notices
and associated disclaimers.

2 You may apply bug fixes, portability fixes and other modifications derived from the Public
Domain or from the Copyright Holder. A Package modified in such a way shall still be
considered the Standard Version.

3 You may otherwise modify your copy of this Package in any way, provided that you insert a
prominent notice in each changed file stating how and when you changed that file, and
provided that you do at least ONE of the following:

4 place your modifications in the Public Domain or otherwise make them Freely Available, such
as by posting said modifications to Usenet or an equivalent medium, or placing the
modifications on a major archive site such as uunet.uu.net, or by allowing the Copyright Holder
to include your modifications in the Standard Version of the Package.

1. use the modified Package only within your corporation or organization.

2. rename any non-standard executables so the names do not conflict with standard
executables, which must also be provided, and provide a separate manual page for each
non-standard executable that clearly documents how it differs from the Standard Version.

3. make other distribution arrangements with the Copyright Holder.

5 You may distribute the programs of this Package in object code or executable form, provided
that you do at least ONE of the following:

1. distribute a Standard Version of the executables and library files, together with instructions
(in the manual page or equivalent) on where to get the Standard Version.

2. accompany the distribution with the machine-readable source of the Package with your
modifications.

-442-

Administrator's Guide

3. give non-standard executables non-standard names, and clearly document the
differences in manual pages (or equivalent), together with instructions on where to get the
Standard Version.

4. make other distribution arrangements with the Copyright Holder.

6 You may charge a reasonable copying fee for any distribution of this Package. You may
charge any fee you choose for support of this Package. You may not charge a fee for this
Package itself. However, you may distribute this Package in aggregate with other (possibly
commercial) programs as part of a larger (possibly commercial) software distribution provided
that you do not advertise this Package as a product of your own. You may embed this
Package's interpreter within an executable of yours (by linking); this shall be construed as a
mere form of aggregation, provided that the complete Standard Version of the interpreter is so
embedded.

7 The scripts and library files supplied as input to or produced as output from the programs of
this Package do not automatically fall under the copyright of this Package, but belong to
whomever generated them, and may be sold commercially, and may be aggregated with this
Package. If such scripts or library files are aggregated with this Package via the so-called
"undump" or "unexec" methods of producing a binary executable image, then distribution of
such an image shall neither be construed as a distribution of this Package nor shall it fall under
the restrictions of Paragraphs 3 and 4, provided that you do not represent such an executable
image as a Standard Version of this Package.

8 C subroutines (or comparably compiled subroutines in other languages) supplied by you and
linked into this Package in order to emulate subroutines and variables of the language defined
by this Package shall not be considered part of this Package, but are the equivalent of input as
in Paragraph 6, provided these subroutines do not change the language in any way that would
cause it to fail the regression tests for the language.

9 Aggregation of this Package with a commercial distribution is always permitted provided that
the use of this Package is embedded; that is, when no overt attempt is made to make this
Package's interfaces visible to the end user of the commercial distribution. Such use shall not
be construed as a distribution of this Package.

10 The name of the Copyright Holder may not be used to endorse or promote products derived
from this software without specific prior written permission.

THIS PACKAGE IS PROVIDED "AS IS" AND WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.

The End

Pexpect

Copyright © 2010 Noah Spurrier

Credits: Noah Spurrier, Richard Holden, Marco Molteni, Kimberley Burchett, Robert Stone,
Hartmut Goebel, Chad Schroeder, Erick Tryzelaar, Dave Kirby, Ids vander Molen, George
Todd, Noel Taylor, Nicolas D. Cesar, Alexander Gattin, Geoffrey Marshall, Francisco
Lourenco, Glen Mabey, Karthik Gurusamy, Fernando Perez, Corey Minyard, Jon Cohen,
Guillaume Chazarain, Andrew Ryan, Nick Craig-Wood, Andrew Stone, Jorgen Grahn (Let me
know if I forgot anyone.)

Free, open source, and all that good stuff.

-443-

 Copyright Notice

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

PHP License

The PHP License, version 3.01

Copyright © 1999 - 2009 The PHP Group. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, is permitted
provided that the following conditions are met:

1 Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

2 Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

3 The name "PHP" must not be used to endorse or promote products derived from this software
without prior written permission. For written permission, please contact group@php.net.

4 Products derived from this software may not be called "PHP", nor may "PHP" appear in their
name, without prior written permission from group@php.net. You may indicate that your
software works in conjunction with PHP by saying "Foo for PHP" instead of calling it "PHP Foo"
or "phpfoo"

5 The PHP Group may publish revised and/or new versions of the license from time to time.
Each version will be given a distinguishing version number.

 Once covered code has been published under a particular version of the license, you may always
continue to use it under the terms of that version. You may also choose to use such covered code under
the terms of any subsequent version of the license published by the PHP Group. No one other than the
PHP Group has the right to modify the terms applicable to covered code created under this
License.

6 Redistributions of any form whatsoever must retain the following acknowledgment:

"This product includes PHP software, freely available from <http://www.php.net/software/>".

mailto:group@php.net
mailto:group@php.net
http://www.php.net/software/

-444-

Administrator's Guide

THIS SOFTWARE IS PROVIDED BY THE PHP DEVELOPMENT TEAM ``AS IS'' AND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE PHP DEVELOPMENT TEAM OR ITS
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

This software consists of voluntary contributions made by many individuals on behalf of the PHP
Group.

The PHP Group can be contacted via Email at group@php.net.

For more information on the PHP Group and the PHP project, please see <http://www.php.net>.

PHP includes the Zend Engine, freely available at <http://www.zend.com>.

PostgreSQL

This product uses the PostgreSQL Database Management System(formerly known as Postgres,
then as Postgres95)

Portions Copyright © 1996-2005, The PostgreSQL Global Development Group

Portions Copyright © 1994, The Regents of the University of California

Permission to use, copy, modify, and distribute this software and its documentation for any
purpose, without fee, and without a written agreement is hereby granted, provided that the above
copyright notice and this paragraph and the following two paragraphs appear in all copies.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR
DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING
LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS
DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER
IS ON AN "AS IS" BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATIONS TO
PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

Python Dialog

The Administration Tools part of this product uses Python Dialog, a Python module for doing
console-mode user interaction.

Upstream Author:

Peter Astrand <peter@cendio.se>

Robb Shecter <robb@acm.org>

mailto:group@php.net
http://www.php.net/
http://www.zend.com/
mailto:peter@cendio.se
mailto:robb@acm.org

-445-

 Copyright Notice

Sultanbek Tezadov <http://sultan.da.ru>

Florent Rougon <flo@via.ecp.fr>

Copyright © 2000 Robb Shecter, Sultanbek Tezadov

Copyright © 2002, 2003, 2004 Florent Rougon

License:

This package is free software; you can redistribute it and/or modify it under the terms of the GNU
Lesser General Public License as published by the Free Software Foundation; either version 2 of
the License, or (at your option) any later version.

This package is distributed in the hope that it is useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with this
package; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
02110-1301 USA

The complete source code of the Python dialog package and complete text of the GNU Lesser
General Public License can be found on the Vertica Systems Web site at
http://www.vertica.com/licenses/pythondialog-2.7.tar.bz2
http://www.vertica.com/licenses/pythondialog-2.7.tar.bz2

RRDTool Open Source License

Note: rrdtool is a dependency of using the ganglia-web third-party tool. RRDTool allows the
graphs displayed by ganglia-web to be produced.

RRDTOOL - Round Robin Database Tool

A tool for fast logging of numerical data graphical display of this data.

Copyright © 1998-2008 Tobias Oetiker

All rights reserved.

GNU GPL License

This program is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if
not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA

FLOSS License Exception

(Adapted from http://www.mysql.com/company/legal/licensing/foss-exception.html)

http://sultan.da.ru/
mailto:flo@via.ecp.fr
http://www.vertica.com/licenses/pythondialog-2.7.tar.bz2
http://www.vertica.com/licenses/pythondialog-2.7.tar.bz2
http://www.mysql.com/company/legal/licensing/foss-exception.html

-446-

Administrator's Guide

I want specified Free/Libre and Open Source Software ("FLOSS") applications to be able to use
specified GPL-licensed RRDtool libraries (the "Program") despite the fact that not all FLOSS
licenses are compatible with version 2 of the GNU General Public License (the "GPL").

As a special exception to the terms and conditions of version 2.0 of the GPL:

You are free to distribute a Derivative Work that is formed entirely from the Program and one or
more works (each, a "FLOSS Work") licensed under one or more of the licenses listed below, as
long as:

1 You obey the GPL in all respects for the Program and the Derivative Work, except for
identifiable sections of the Derivative Work which are not derived from the Program, and which
can reasonably be considered independent and separate works in themselves

2 All identifiable sections of the Derivative Work which are not derived from the Program, and
which can reasonably be considered independent and separate works in themselves

 are distributed subject to one of the FLOSS licenses listed below, and

 the object code or executable form of those sections are accompanied by the complete
corresponding machine-readable source code for those sections on the same medium and
under the same FLOSS license as the corresponding object code or executable forms of
those sections.

3 Any works which are aggregated with the Program or with a Derivative Work on a volume of a
storage or distribution medium in accordance with the GPL, can reasonably be considered
independent and separate works in themselves which are not derivatives of either the
Program, a Derivative Work or a FLOSS Work.

If the above conditions are not met, then the Program may only be copied, modified, distributed or
used under the terms and conditions of the GPL.

FLOSS License List

License name Version(s)/Copyright Date

Academic Free License 2.0

Apache Software License 1.0/1.1/2.0

Apple Public Source License 2.0

Artistic license From Perl 5.8.0

BSD license "July 22 1999"

Common Public License 1.0

GNU Library or "Lesser" General Public License (LGPL) 2.0/2.1

IBM Public License, Version 1.0

Jabber Open Source License 1.0

MIT License (As listed in file MIT-License.txt) -

Mozilla Public License (MPL) 1.0/1.1

Open Software License 2.0

OpenSSL license (with original SSLeay license) "2003" ("1998")

PHP License 3.0

Python license (CNRI Python License) -

Python Software Foundation License 2.1.1

Sleepycat License "1999"

-447-

 Copyright Notice

W3C License "2001"

X11 License "2001"

Zlib/libpng License -

Zope Public License 2.0/2.1

Spread

This product uses software developed by Spread Concepts LLC for use in the Spread toolkit. For
more information about Spread see http://www.spread.org (http://www.spread.org).

Copyright © 1993-2006 Spread Concepts LLC.

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1 Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer and request.

2 Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer and request in the documentation and/or other materials provided
with the distribution.

3 All advertising materials (including web pages) mentioning features or use of this software, or
software that uses this software, must display the following acknowledgment: "This product
uses software developed by Spread Concepts LLC for use in the Spread toolkit. For more
information about Spread see http://www.spread.org"

4 The names "Spread" or "Spread toolkit" must not be used to endorse or promote products
derived from this software without prior written permission.

5 Redistributions of any form whatsoever must retain the following acknowledgment:

6 "This product uses software developed by Spread Concepts LLC for use in the Spread toolkit.
For more information about Spread, see http://www.spread.org"

7 This license shall be governed by and construed and enforced in accordance with the laws of
the State of Maryland, without reference to its conflicts of law provisions. The exclusive
jurisdiction and venue for all legal actions relating to this license shall be in courts of competent
subject matter jurisdiction located in the State of Maryland.

TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, SPREAD IS PROVIDED
UNDER THIS LICENSE ON AN AS IS BASIS, WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, WARRANTIES THAT
SPREAD IS FREE OF DEFECTS, MERCHANTABLE, FIT FOR A PARTICULAR PURPOSE OR
NON-INFRINGING. ALL WARRANTIES ARE DISCLAIMED AND THE ENTIRE RISK AS TO THE
QUALITY AND PERFORMANCE OF THE CODE IS WITH YOU. SHOULD ANY CODE PROVE
DEFECTIVE IN ANY RESPECT, YOU (NOT THE COPYRIGHT HOLDER OR ANY OTHER
CONTRIBUTOR) ASSUME THE COST OF ANY NECESSARY SERVICING, REPAIR OR
CORRECTION. THIS DISCLAIMER OF WARRANTY CONSTITUTES AN ESSENTIAL PART OF
THIS LICENSE. NO USE OF ANY CODE IS AUTHORIZED HEREUNDER EXCEPT UNDER
THIS DISCLAIMER.

http://www.spread.org/
http://www.spread.org/
http://www.spread.org/
http://www.spread.org/

-448-

Administrator's Guide

TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, IN NO EVENT SHALL THE
COPYRIGHT HOLDER OR ANY OTHER CONTRIBUTOR BE LIABLE FOR ANY SPECIAL,
INCIDENTAL, INDIRECT, OR CONSEQUENTIAL DAMAGES FOR LOSS OF PROFITS,
REVENUE, OR FOR LOSS OF INFORMATION OR ANY OTHER LOSS.

YOU EXPRESSLY AGREE TO FOREVER INDEMNIFY, DEFEND AND HOLD HARMLESS THE
COPYRIGHT HOLDERS AND CONTRIBUTORS OF SPREAD AGAINST ALL CLAIMS,
DEMANDS, SUITS OR OTHER ACTIONS ARISING DIRECTLY OR INDIRECTLY FROM YOUR
ACCEPTANCE AND USE OF SPREAD.

Although NOT REQUIRED, we at Spread Concepts would appreciate it if active users of Spread
put a link on their web site to Spread's web site when possible. We also encourage users to let us
know who they are, how they are using Spread, and any comments they have through either
e-mail (spread@spread.org) or our web site at (http://www.spread.org/comments).

SNMP

Various copyrights apply to this package, listed in various separate parts below. Please make
sure that you read all the parts. Up until 2001, the project was based at UC Davis, and the first part
covers all code written during this time. From 2001 onwards, the project has been based at
SourceForge, and Networks Associates Technology, Inc hold the copyright on behalf of the wider
Net-SNMP community, covering all derivative work done since then. An additional copyright
section has been added as Part 3 below also under a BSD license for the work contributed by
Cambridge Broadband Ltd. to the project since 2001. An additional copyright section has been
added as Part 4 below also under a BSD license for the work contributed by Sun Microsystems,
Inc. to the project since 2003.

Code has been contributed to this project by many people over the years it has been in
development, and a full list of contributors can be found in the README file under the THANKS
section.

Part 1: CMU/UCD copyright notice: (BSD like)

Copyright © 1989, 1991, 1992 by Carnegie Mellon University

Derivative Work - 1996, 1998-2000

Copyright © 1996, 1998-2000 The Regents of the University of California

All Rights Reserved

Permission to use, copy, modify and distribute this software and its documentation for any
purpose and without fee is hereby granted, provided that the above copyright notice appears in all
copies and that both that copyright notice and this permission notice appear in supporting
documentation, and that the name of CMU and The Regents of the University of California not be
used in advertising or publicity pertaining to distribution of the software without specific written
permission.

mailto:spread@spread.org
http://www.spread.org/comments

-449-

 Copyright Notice

CMU AND THE REGENTS OF THE UNIVERSITY OF CALIFORNIA DISCLAIM ALL
WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL CMU OR THE
REGENTS OF THE UNIVERSITY OF CALIFORNIA BE LIABLE FOR ANY SPECIAL, INDIRECT
OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
THE LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH
THE USE OR PERFORMANCE OF THIS SOFTWARE.

Part 2: Networks Associates Technology, Inc copyright notice (BSD)

Copyright © 2001-2003, Networks Associates Technology, Inc

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

 Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

 Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

 Neither the name of the Networks Associates Technology, Inc nor the names of its contributors
may be used to endorse or promote products derived from this software without specific prior
written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS
IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Part 3: Cambridge Broadband Ltd. copyright notice (BSD)

Portions of this code are copyright (c) 2001-2003, Cambridge Broadband Ltd.

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

 Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

 Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

-450-

Administrator's Guide

 The name of Cambridge Broadband Ltd. may not be used to endorse or promote products
derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER ``AS IS'' AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

Part 4: Sun Microsystems, Inc. copyright notice (BSD)

Copyright © 2003 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,

California 95054, U.S.A. All rights reserved.

Use is subject to license terms below.

This distribution may include materials developed by third parties.

Sun, Sun Microsystems, the Sun logo and Solaris are trademarks or registered trademarks of
Sun Microsystems, Inc. in the U.S. and other countries.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

 Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

 Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

 Neither the name of the Sun Microsystems, Inc. nor the names of its contributors may be used
to endorse or promote products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS
IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Part 5: Sparta, Inc copyright notice (BSD)

Copyright © 2003-2006, Sparta, Inc

-451-

 Copyright Notice

All rights reserved.

 Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

 Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

 Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

 Neither the name of Sparta, Inc nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS
IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Part 6: Cisco/BUPTNIC copyright notice (BSD)

Copyright © 2004, Cisco, Inc and Information Network Center of Beijing University of Posts
and Telecommunications.

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

 Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

 Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

 Neither the name of Cisco, Inc, Beijing University of Posts and Telecommunications, nor the
names of their contributors may be used to endorse or promote products derived from this
software without specific prior written permission.

-452-

Administrator's Guide

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS
IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Part 7: Fabasoft R&D Software GmbH & Co KG copyright notice (BSD)

Copyright © Fabasoft R&D Software GmbH & Co KG, 2003

oss@fabasoft.com

Author: Bernhard Penz

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

 Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

 Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

 The name of Fabasoft R&D Software GmbH & Co KG or any of its subsidiaries, brand or
product names may not be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER ``AS IS'' AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER BE

LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

Tecla Command-line Editing

Copyright © 2000 by Martin C. Shepherd.

All rights reserved.

mailto:oss@fabasoft.com

-453-

 Copyright Notice

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, and/or sell
copies of the Software, and to permit persons to whom the Software is furnished to do so, provided
that the above copyright notice(s) and this permission notice appear in all copies of the Software
and that both the above copyright notice(s) and this permission notice appear in supporting
documentation.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY
RIGHTS. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS
NOTICE BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL
DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
THIS SOFTWARE.

Except as contained in this notice, the name of a copyright holder shall not be used in advertising
or otherwise to promote the sale, use or other dealings in this Software without prior written
authorization of the copyright holder.

Webmin Open Source License

Copyright © Jamie Cameron

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1 Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

2 Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

3 Neither the name of the developer nor the names of contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE DEVELOPER ``AS IS'' AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
NO EVENT SHALL THE DEVELOPER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

-454-

Administrator's Guide

xerces

NOTICE file corresponding to section 4(d) of the Apache License,

Version 2.0, in this case for the Apache Xerces distribution.

This product includes software developed by The Apache Software Foundation
(http://www.apache.org/).

Portions of this software were originally based on the following:

Software copyright © 1999, IBM Corporation., http://www.ibm.com.

zlib

This is used by the project to load zipped files directly by COPY command. www.zlib.net/

zlib.h -- interface of the 'zlib' general purpose compression library version 1.2.3, July 18th, 2005

Copyright © 1995-2005 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied warranty. In no event will the
authors be held liable for any damages arising from the use of this software.

Permission is granted to anyone to use this software for any purpose, including commercial
applications, and to alter it and redistribute it freely, subject to the following restrictions:

1 The origin of this software must not be misrepresented; you must not claim that you wrote the
original software. If you use this software in a product, an acknowledgment in the product
documentation would be appreciated but is not required.

2 Altered source versions must be plainly marked as such, and must not be misrepresented as
being the original software.

3 This notice may not be removed or altered from any source distribution.

Jean-loup Gailly jloup@gzip.org

Mark Adler madler@alumni.caltech.edu

http://www.apache.org/
http://www.ibm.com/
http://www.zlib.net/
mailto:jloup@gzip.org
mailto:madler@alumni.caltech.edu

	Technical Support
	About the Documentation
	Where to Find the Vertica Documentation
	Reading the Online Documentation
	Printing Full Books
	Suggested Reading Paths
	Where to Find Additional Information
	Typographical Conventions

	Preface
	Administration Overview
	Configuring the Database
	Configuration Procedure
	Prepare Disk Storage Locations
	Disk Space Requirements for Vertica
	Specifying Disk Storage at Installation Time
	Specifying Disk Storage at Database Creation Time
	Configuring Disk Usage to Optimize Performance
	Using Shared Storage with Vertica

	Prepare the Logical Schema Script
	Prepare Data Files
	Prepare Load Scripts
	Create an Optional Sample Query Script
	Create an Empty Database
	Create the Logical Schema
	Perform a Partial Data Load
	Test the Database
	Optimize Query Performance
	Complete the Data Load
	Test the Optimized Database
	Set Up Incremental (Trickle) Loads
	Implement Security
	Implement Locales for International Data Sets
	Specify the Default Locale for the Database
	Override the Default Locale for a Session
	Best Practices for Working with Locales

	Change Transaction Isolation Levels

	Configuration Parameters
	General Parameters
	Tuple Mover Parameters
	Internationalization Parameters
	Epoch Management Parameters
	Monitoring Parameters
	Profiling Parameters
	Query Repository Parameters
	Security Parameters
	Kerberos Authentication Parameters

	Designing a Logical Schema
	Data Warehouse Schema Types
	Star Schema
	Snowflake Schema

	Using Multiple Schemas
	Multiple Schema Examples
	Creating Schemas
	Referencing Objects When Multiple Schemas are Used
	Setting Schema Search Paths
	Creating Objects that Span Multiple Schemas

	Creating Tables
	Creating Base Tables
	Creating Temporary Tables

	Adding Constraints
	PRIMARY KEY Constraints
	FOREIGN KEY Constraints
	UNIQUE Constraints
	NOT NULL Constraints

	Removing Constraints
	Enforcing Constraints
	Analyzing Constraints (Detecting Constraint Violations)
	Fixing Constraint Violations
	Reenabling error reporting

	Using Sequences
	Creating Sequences
	Altering Sequences
	Distributed Sequences
	Loading Sequences
	Dropping Sequences

	Implementing Views
	Creating Views
	Using Views

	Altering Tables

	Creating a Physical Design
	Using the Database Designer
	Design Types
	Comprehensive Design
	Query-specific Design

	Creating a Comprehensive Design Using the Database Designer
	Creating a Query-specific Design Using the Database Designer
	Deploying Designs
	Deploying Designs Manually

	Creating Custom Designs
	The Design Process
	Planning Your Design
	Design Requirements
	Determining the Number of Projections to Use
	Designing for K-Safety
	Designing for Segmentation

	Design Fundamentals
	Writing and Deploying Custom Projections
	Anatomy of a Projection
	Designing Superprojections
	Designing for Group By Queries
	Designing Replicated Projections for K-Safety
	Designing Segmented Projections for K-Safety
	Maximizing Projection Performance
	Choosing Sort-orders for Low Cardinality Predicates
	Choosing Sort-orders for High Cardinality Predicates
	Prioritizing Column Access Speed

	Projection Examples
	New K-Safe=2 Database
	Add Node to a Database

	Implementing Security
	Implementing Client Authentication
	Password Authentication
	Profiles
	Password Expiration
	Account Locking
	Password Guidelines

	Configuring External Authentication Methods in vertica.conf file
	Creating Records
	Record Content
	Formatting Rules for Records
	Example Records
	Modifying Records

	Authenticating Using LDAP or Kerberos
	Configuring Authentication Through Kerberos and GSS
	Kerberos Client Code Example Written in Java
	Kerberos Client Code Example Written in C

	Implementing SSL
	SSL Prerequisites
	Generating Certifications and Keys
	Distributing Certifications and Keys
	Configuring SSL
	Configuring SSL for ODBC Clients
	Configuring SSL for JDBC Clients

	Implementing Database Authorization
	Schema Privileges
	Table Privileges
	View Privileges
	Projection Privileges
	Sequence Privileges
	External Procedure Privileges
	Metadata Privileges

	Operating the Database
	Managing Your License Key
	Starting the Database
	Stopping the Database
	Loading and Modifying Data
	Bulk Loading
	Performing the Initial Database Load
	Using the COPY and LCOPY Statements
	Tracking Load Status

	Trickle Loading
	Using INSERT, UPDATE, and DELETE
	WOS Overflow

	Using the COPY Command
	Using Load Scripts
	Using Parallel Load Streams
	Loading Data into Character Data Types
	Loading Data into Binary Data Types
	Loading Data into Pre-join Projections
	Specifying Default Values for Columns
	Transforming Data During Loads
	Ignoring Columns and Fields in the Load File
	About Load Errors
	Advanced Formats for Loading Data
	Native (Binary) Format
	Native Varchar Format

	Creating Native-Format Files to Load Data

	Tuple Mover
	Understanding the Tuple Mover
	Moveout
	Mergeout

	Tuning the Tuple Mover
	Performing Tuple Mover Operations Manually

	Collecting Statistics
	Statistics Used by the Query Optimizer
	Statistics Collection Guidelines
	How Statistics are Computed
	Best Practices for Statistics Collection
	Importing and Exporting Statistics
	Removing Statistics
	Troubleshooting Issues Using Statistics

	Bulk Deleting and Purging Data
	Best Practices for DELETE and UPDATE
	Performance Considerations for Deletes and Updates
	Optimizing Deletes and Updates for Performance

	Purging Deleted Data
	Setting a Purge Policy
	Manually Purging Data

	Partitioning Tables
	Defining Partitions
	Dropping Partitions
	Partitioning and Segmenting Data
	Partitioning and Data Storage
	Managing Partitions
	Auto Partitioning
	Partition Elimination

	Monitoring the Database
	Monitoring the Log Files
	Rotating the Log Files
	Using the SQL Monitoring API
	Configuring PROJECTION_REFRESHES History
	Querying Case-sensitive data in System Tables

	Monitoring Processes
	Monitoring Events
	Configuring Event Reporting
	Configuring Reporting for syslog
	Configuring Reporting for SNMP

	Event Reporting Examples

	Monitoring Linux Resource Usage
	Monitoring Vertica Using Ganglia
	Ganglia Architecture
	Ganglia Prerequisites
	Required Packages
	Installing the Vertica Monitoring Package
	RHEL5
	SuSE SLE 10 and SLE 11
	Servers without Internet Access

	Configuring Ganglia
	Installing Gmond on All Nodes
	Configuring Gmetad on the Monitoring Node
	Configuring Gmond on All Nodes
	About the gmond.conf file
	Edit the gmond.conf file
	Multicast IP Support

	Configuring the Vertica Monitoring Package
	Configuring and Starting lighttpd
	Configuring Vertica Extension Files
	Edit the vertica-dashboard.xml file
	Edit the verticadefines.php file [Optional]
	Add a cron job

	Upgrading the Vertica Monitoring Package
	Uninstalling the Vertica Monitoring Package

	Recovering the Database
	Failure Recovery
	Shutdown Problems
	... large moveout is in progress
	... users are connected
	No running statement, that session is idle

	Startup Problems
	Startup successful, but some nodes are recovering
	Error starting database, no nodes are up
	Database startup successful, but it could be incomplete
	Database did not start cleanly on initiator node!
	TIMEOUT ERROR: Could not login with SSH
	Good epoch logs are available on all nodes
	No good epoch log available on node
	Nodes stuck in INITIALIZING state
	Node does not recover because of lock timeouts

	Spread Problems
	Spread is not running
	Administration Tools shows node state as UNKNOWN
	Diagnosing spread problems

	Restarting Vertica on a Host
	Restarting the Database
	Recovering the Cluster from a Backup
	Monitoring Recovery
	Exporting a Catalog

	Backup and Restore
	When to Back Up the Database
	Backing Up the Database
	Restoring the Database from a Backup
	Restoring to the Same Cluster
	Restoring the Database
	Copying a Database to Another Cluster
	Best Practices for Disaster Recovery

	Managing Nodes
	Adding Nodes
	Adding Hosts to a Cluster
	Adding Hosts to a Database
	Distributing Configuration Files to the New Host

	Rebalancing Data Across Nodes
	Rebalancing Data Using the Administration Tools UI
	Generating a Rebalance Script for Later Use

	Removing Nodes
	Removing Hosts from a Database
	Removing Hosts from a Cluster

	Replacing Nodes
	Replacing Hosts

	Modifying Database Designs for Updated Nodes
	Creating New Projections
	Refreshing Projections
	Dropping Projections

	Testing Modified Database Designs

	Managing Disk Space
	Adding Disk Space to a Node
	Adding Disk Space Across the Cluster
	Replacing Failed Disks
	Catalog and Data Files

	Creating and Configuring Storage Locations
	Adding Storage Locations
	Measuring Location Performance
	Setting Location Performance
	Modifying Storage Locations
	Retiring Storage Locations
	Restoring Retired Storage Locations
	Dropping Storage Locations

	Reclaiming Disk Space
	Rebuilding a Table

	Managing Workloads
	The Resource Manager
	Resource Manager Impact on Query Execution
	Resource Pool Architecture
	The GENERAL Pool
	Resource Tracking in a Pool
	Query Queue/Rejection Process
	Target Memory Determination for Queries in Concurrent Environments

	Monitoring Resource Pools and Resource Usage by Queries
	User Profiles
	Best Practices for Workload Management
	Basic Principles for Scalability and Concurrency Tuning
	Guidelines for Setting Pool Parameters
	Using User-defined Pools and User-Profiles for Workload Management
	Scenario: Periodic Batch Loads
	Scenario: The CEO Query
	Scenario: Preventing Run-away Queries
	Scenario: Restricting Resource Usage of Ad-hoc Query Application
	Scenario: Setting a Hard Limit on Concurrency For An Application
	Scenario: Handling Mixed Workloads (Batch vs. Interactive)
	Scenario: Setting Priorities on Queries Issued by Different Users
	Scenario: Continuous Load and Query

	Tuning the Built-in Pools
	Scenario: Restricting Vertica to Take Only 60% of Memory
	Scenario: Tuning for Recovery
	Scenario: Tuning for Refresh
	Scenario: Tuning Tuple Mover Pool Settings

	Reducing Run-time of Queries

	Managing System Resource Usage
	Managing Sessions
	Managing Load Streams

	Load Balancing
	Configuring Vertica Nodes
	Set Up the Loopback Interface
	Disable Address Resolution Protocol (ARP)

	Configuring the Directors
	Install the Vertica IPVS Load Balancer Package
	Configure the Vertica IPVS Load Balancer
	Set up the Vertica IPVS Load Balancer configuration file

	Connecting to the Virtual IP (VIP)
	Monitoring Which Nodes Are Connected
	Determining Where Connections Are Going
	Virtual IP Connection Problems
	Troubleshooting Keepalived Issues

	Using the Administration Tools
	Using the Graphical User Interface
	K-Safety Support in Administration Tools
	Notes for Remote Terminal Users
	Using the Online Help
	Password Authentication
	Distributing Changes Made to the Administration Tools Metadata
	Administration Tools Reference
	Viewing Database Cluster State
	Connecting to the Database
	Starting a Database
	Stopping a Database
	Restarting Vertica on Host
	Configuration Menu Item
	Creating a Database
	Dropping a Database
	Viewing a Database
	Setting the Restart Policy

	Advanced Menu Options
	Rolling Back Database to the Last Good Epoch
	Stopping Vertica on Host
	Killing a Vertica Process on Host
	Upgrading the License Key
	Managing Clusters
	Using the Administration Tools

	Writing Administration Tools Scripts

	Using vsql
	Connecting From the Administration Tools
	Connecting from the Command Line
	Command Line Options
	? --help
	a --echo-all
	A --no-align
	c command --command command
	d dbname --dbname dbname
	e --echo-queries
	E
	f filename --file filename
	F separator --field-separator separator
	h hostname --host hostname
	H --html
	l --list
	n
	o filename --output filename
	p port --port port
	P assignment --pset assignment
	q --quiet
	R separator --record-separator separator
	s --single-step
	S --single-line
	t --tuples-only
	T table_options --table-attr table_options
	U username --username username
	v assignment --set assignment --variable assignment
	V --version
	w password
	W --password
	x --expanded
	X, --no-vsqlrc

	Connecting From a Non-Cluster Host

	Meta-Commands
	! [COMMAND]
	?
	a
	b
	c (or \connect) [dbname [username]]
	C [STRING]
	cd [DIR]
	The \d [PATTERN] meta-commands
	d [PATTERN]
	d \d <table> \df \dj \dn \dp \ds \dS \dt \dT \dtv \du \dv
	dj [PATTERN]
	dn [PATTERN]
	dp [PATTERN]
	ds [PATTERN]
	dS [PATTERN]
	dt [PATTERN]
	dT [PATTERN]
	dtv [PATTERN]
	du [PATTERN]
	dv [PATTERN]

	e \edit [FILE]
	echo [STRING]
	f [string]
	g
	H
	h \help [command]
	i FILE
	l
	locale
	o
	p
	password [USER]
	pset NAME [VALUE]
	q
	qecho [STRING]
	r
	s [FILE]
	set [NAME [VALUE [...]]]
	t
	T [STRING]
	timing
	unset [NAME]
	w [FILE]
	x
	z

	Variables
	AUTOCOMMIT
	DBNAME
	ECHO
	ECHO_HIDDEN
	ENCODING
	HISTCONTROL
	HISTSIZE
	HOST
	IGNOREEOF
	ON_ERROR_STOP
	PORT
	PROMPT1 PROMPT2 PROMPT3
	QUIET
	SINGLELINE
	SINGLESTEP
	USER
	VERBOSITY
	VSQL_HOME

	Prompting
	Command Line Editing
	Environment
	Locales
	Files
	Exporting Data Using vsql
	Copying Data Using vsql
	Notes for Windows Users
	Output Formatting Examples

	Appendix: Locales
	Locale Specification
	Long Form
	Short Form

	Supported Locales
	Locale Restrictions and Workarounds

	Index
	Copyright Notice

