

Vertica® Analytic Database 5.0

Concepts Guide
Copyright© 2006-2011 Vertica, An HP Company

Date of Publication: June 20, 2011

CONFIDENTIAL

-ii-

Contents

Technical Support 1

About the Documentation 2

Where to Find the Vertica Documentation ...2
Reading the Online Documentation ...2
Printing Full Books ...4
Suggested Reading Paths ...4
Where to Find Additional Information ..6
Typographical Conventions...7

Preface 9

Welcome to Vertica 10

The Vertica Approach 11

Vertica Components 13

Column Store Architecture with FlexStore ...14
Data Encoding and Compression..16
High Availability and Recovery ...17
Hybrid Storage Model ..19
Physical Architecture ..21
Logical Schema..22
Physical Schema ..23

How Pro jections are Created ..23
Anatomy of a Projection ..24
Projection Concepts..25
Projection Performance..25
Projection Segmentation..27
High Availability Through Pro jections ...28
Projection Naming ..29

-iii-

 Contents

Database Setup...31
Database Connections...33
The Administration Tools ..34
The Database Designer ...36
K-Safety ..36
Database Security ..41
Data Loading and Modification ..42
Workload Management ..42

SQL Overview 44

Query Execution 45

Transactions 46

Automatic Rollback ..47
Savepoints...47
READ COMMITTED Isolation..47
SERIALIZABLE Isolation ..49

International Languages and Character Sets 51

Unicode Character Encoding...51
Locales...51
String Functions...52
Character String Literals ..52

Get Started 53

Glossary 54

Access rank...54
ACID ...54
Administration host ...54
Administration Tools ..54
AHM ..55
Anchor table ...55
Ancient History Mark ...55
TM..55
Authentication ..55
Authorizat ion..55
Blade server ..55
Bit ...55
Bitstring...56
Byte ..56
Buddy projection ...56
Bulk loading ...56
C-Store...56
Card inality ..56

-iv-

Concepts Guide

Case-folded ...57
Catalog...57
Catalog path..57
Checkpoint ..57
Cluster ...57
Cold backup ..57
Comprehensive design..57
Compression ...58
Connection..58
Critical node ...58
CSV..58
Current epoch ...58
Data path ...58
Data warehouse..58
Database ..59
Database administrator ...59
Database Designer ...59
Database superuser ..59
DBA ...59
DDL ...59
DELTAVAL (delta encoding) ..59
Derived column..60
Design..60
Deterministic ..60
Dialog ..60
Dimension table ...60
Dirty read ..60
DML ..60
Dynamic SQL...60
EOF ..61
Encoding ...61
Epoch ...61
Epoch map ..61
ETL ..61
Executor node...61
Expression...61
External procedure ..61
Event series...61
Fact table ...62
FIFO...62
Foreign key ...62
Flattening (subqueries and views) ..62
Full backup ...62
General pool ...62
Grid computing ..63
Grouped ROS ...63
Hash function ...63
Hash join ...63
Hash segmentation ..63
Hexadecimal ...63
Histogram..64
Historical data ..64
Historical query..64
Host ..64

-v-

 Contents

Hot backup..64
ICU...64
ISO Week-Year..64
Incremental backup ...65
Initiator node ..65
Instance..65
Interpolation ...65
Immutable (invariant) functions..65
JDBC ...65
K-Safety ..66
LGE..66
LZO..66
Last epoch ...66
Last Good Epoch ...66
Locale ..67
Logical schema ..67
Man-in-the-middle attack...67
Manual recovery ..67
Materialized view ..67
Mergeout ...67
Meta-functions ...68
Metadata..68
Moveout ..68
Multi-homed ...68
NaN ..68
Nibble ..68
Node...68
Node definit ion ..69
Nondeterministic ...69
Non-repeatable read ..69
NUL ...69
NULL ..69
Octal...69
Octet...69
ODBC ..70
OLAP...70
OLTP ...70
Out-of-date..70
Partit ion key ...70
Partit ioning ...70
Phantom read ..70
Physical schema...70
Physical schema design ..70
Pinned projection ...71
Pre-join pro jection ...71
Predicate ..71
Primary co lumn..71
Primary key ..71
Projection ..71
Projection set ..71
Purge ..72
Query cluster level...72
Query optimizer ...72
Query-specific design ...72

-vi-

Concepts Guide

Query-specific projection ...72
RDBMS...72
RLE (Run Length Encoding)...72
RM ...73
Range segmentation ..73
Recovery ...73
Referential integrity ..73
Refresh...73
Replication ..74
Resource pool...74
Resource Manager ...74
Role ..74
Rollback ..74
ROS (Read Optimized Store) ..75
ROS container ..75
RPM ...75
Safe ..75
SAN ...75
Savepoint...76
Schema ..76
Secure Shell ..76
Seed..76
Segmentation ..76
Select list ...77
Session...77
Site ...77
Snapshot isolation..77
Snowflake schema ...77
Spread ..77
Sort-merge join ..78
SQL ..78
SSH ..78
Stable functions..78
Star schema...78
Standalone resource pool ...78
Storage location ...78
Strict ...79
Superprojection ..79
Superuser...79
TM..79
Table ..79
Temp location...79
Temp space ...79
Transaction ...79
Tuple ..80
Tuple Mover ...80
UDP ...80
UTC ...80
UTF-8 ..80
Unary operator ...80
Up to date..80
Up-to-date ...81
User agent ...81
View...81

-vii-

 Contents

Volatile functions ..81
Volatility ...81
vsql ...81
Window (analytic) ...81
Workload Analyzer ...82
Workload management...82
WOS (Write Optimized Store) ..82

Index 83

Copyright Notice 87

-1-

Technical Support

To submit problem reports, questions, comments, and suggestions, use the Technical Support
page on the Vertica Web site.

Notes:

 You must be a registered user in order to access the MyVertica Portal
http://myvertica.vertica.com/v-zone/overview.

 If you are not a registered user, you can request access at the Technical Support
Web page http://www.vertica.com/support.

Before you report a problem, run the Diagnostics Utility described in the Troubleshooting Guide
and attach the resulting .zip file to your ticket.

http://myvertica.vertica.com/v-zone/overview
http://www.vertica.com/support

-2-

About the Documentation

This section describes how to access and print Vertica documentation. It also includes suggested
reading paths (page 4).

Where to Find the Vertica Documentation

You can read or download the Vertica documentation for the current release of Vertica® Analytic
Database from the Product Documentation Page
http://www.vertica.com/v-zone/product_documentation. You must be a registered user to
access this page.

The documentation is available as a compressed tarball (.tar) or a zip archive (.zip) file. When
you extract the file on the database server system or locally on the client, contents are placed in a
/vertica50_doc/ directory.

Notes:

 The documentation on the Vertica Web site is updated each time a new release is issued.

 A more recent version of the product documentation might be available online. To check for
critical product or document information added after the product release, see the Vertica
Product Documentation downloads site. You can download the PDF version or browse
books online

 If you are using an older version of the software, refer to the documentation on your
database server or client systems.

See Installing Vertica Documentation in the Installation Guide.

Reading the Online Documentation

Reading the HTML documentation files

The Vertica documentation files are provided in HTML browser format for platform independence.
The HTML files require only a browser that displays frames properly with JavaScript enabled. The
HTML files do not require a Web (HTTP) server.

The Vertica documentation is supported on the following browsers:

 Mozilla FireFox

 Internet Explorer

 Apple Safari

 Opera

 Google Chrome (server-side installations only)

http://www.vertica.com/v-zone/product_documentation

-3-

 About the Documentation

The instructions that follow assume you have installed the documentation on a client or server
machine.

Mozilla Firefox

1 Open a browser window.

2 Choose one of the following methods to access the documentation:

 Select File > Open File, navigate to ..\HTML-WEBHELP\index.htm, and click Open.

 OR drag and drop index.htm into a browser window.

 OR press CTRL+O, navigate to index.htm, and click Open.

Internet Explorer

Use one of the following methods:

1 Open a browser window.

2 Choose one of the following methods to access the documentation:

 Select File > Open > Browse, navigate to ..\HTML-WEBHELP\index.htm, click Open,
and click OK.

 OR drag and drop index.htm into the browser window.

 OR press CTRL+O, Browse to the file, click Open, and click OK.

Note: If a message warns you that Internet Explorer has restricted the web page from running
scripts or ActiveX controls, right-click anywhere within the message and select Allow Blocked
Content.

Apple Safari

1 Open a browser window.

2 Choose one of the following methods to access the documentation:

 Select File > Open File, navigate to ..\HTML-WEBHELP\index.htm, and click Open.

 OR drag and drop index.htm into the browser window.

 OR press CTRL+O, navigate to index.htm, and click Open.

Opera

1 Open a browser window.

2 Position your cursor in the title bar and right click > Customize > Appearance, click the
Toolbar tab and select Main Bar.

3 Choose one of the following methods to access the documentation:

 Open a browser window and click Open, navigate to ..\HTML-WEBHELP\index.htm,
and click Open.

 OR drag and drop index.htm into the browser window.

 OR press CTRL+O, navigate to index.htm, and click Open.

Google Chrome

Google does not support access to client-side installations of the documentation. You'll have to
point to the documentation installed on a server system.

-4-

Concepts Guide

1 Open a browser window.

2 Choose one of the following methods to access the documentation:

In the address bar, type the location of the index.htm file on the server. For example:
file://<servername>//vertica50_doc//HTML/Master/index.htm

 OR drag and drop index.htm into the browser window.

 OR press CTRL+O, navigate to index.htm, and click Open.

Notes

The .tar or .zip file you download contains a complete documentation set.

The documentation page of the Downloads Web site
http://www.vertica.com/v-zone/download_vertica is updated as new versions of Vertica are
released. When the version you download is no longer the most recent release, refer only to the
documentation included in your RPM.

The Vertica documentation contains links to Web sites of other companies or organizations that
Vertica does not own or control. If you find broken links, please let us know.

Report any script, image rendering, or text formatting problems to Technical Support (on page
1).

Printing Full Books

Vertica also publishes books as Adobe Acrobat™ PDF. The books are designed to be printed on
standard 8½ x 11 paper using full duplex (two-sided) printing.

Note: Vertica manuals are topic driven and not meant to be read in a linear fashion. Therefore,
the PDFs do not resemble the format of typical books.

Open and print the PDF documents using Acrobat Acrobat Reader. You can download the latest
version of the free Reader from the Adobe Web site
(http://www.adobe.com/products/acrobat/readstep2.html).

The following list provides links to the PDFs.

 Concepts Guide

 Installation Guide

 Getting Started Guide

 Administrator's Guide

 Programmer's Guide

 SQL Reference Manual

 Troubleshooting Guide

Suggested Reading Paths
This section provides a suggested reading path for various users. Vertica recommends that you
read the manuals listed under All Users first.

http://www.vertica.com/v-zone/download_vertica
http://www.adobe.com/products/acrobat/readstep2.html

-5-

 About the Documentation

All Users

 New Features — Release-specific information, including new features and behavior changes
to the product and documentation

 Concepts Guide — Basic concepts critical to understanding Vertica

 Getting Started Guide — A tutorial that takes you through the process of configuring a Vertica
database and running example queries

 Troubleshooting Guide — General troubleshooting information

System Administrators

 New Features — Release-specific information, including new features and behavior changes
to the product and documentation

 Installation Guide — Platform configuration and software installation

Database Administrators

 Installation Guide — Platform configuration and software installation

 Administrator's Guide — Database configuration, loading, security, and maintenance

Application Developers

 Programmer's Guide — Connecting to a database, queries, transactions, and so on

 SQL Reference Manual — SQL and Vertica-specific language information

-6-

Where to Find Additional Information
Visit the Vertica Web site (http://www.vertica.com) to keep up to date with:

 Downloads

 Frequently Asked Questions (FAQs)

 Discussion forums

 News, tips, and techniques

 Training

http://www.vertica.com/

-7-

 7

Typographical Conventions
The following are the typographical and syntax conventions used in the Vertica documentation.

Typographical Convention Description

Bold Indicates areas of emphasis, such as a special menu command.

Button Indicates the word is a button on the window or screen.

Code SQL and program code displays in a monospaced (fixed -width) font.

Database objects Names of database objects, such as tables, are shown in san-serif
type.

Emphasis Indicates emphasis and the titles of other documents or system files.

monospace Indicates literal interactive or programmatic input/output.

monospace italics Indicates user-supplied information in interactive or programmatic
input/output.

UPPERCASE Indicates the name of a SQL command or keyword. SQL keywords
are case insensitive; SELECT is the same as Select, which is the

same as select.

User input Text entered by the user is shown in bold san serif type.

 indicates the Return/Enter key; implicit on all user input that includes

text

Right -angle bracket > Indicates a flow of events, usually from a drop-down menu.

Click Indicates that the reader clicks options, such as menu command

buttons, radio buttons, and mouse selections; for example, "Click OK
to proceed."

Press Indicates that the reader perform some action on the keyboard; for

example, "Press Enter."

Syntax Convention Description

Text without brackets/braces Indicates content you type as shown.

< Text inside angle brackets > Placeholder for which you must supply a value. The variable is usually
shown in italics. See Placeholders below.

[Text inside brackets] Indicates optional items; for example, CREATE TABLE

[schema_name.]table_name

The brackets indicate that the schema_name is optional. Do not type
the square brackets.

{ Text inside braces } Indicates a set of options from which you choose one; for example:

QUOTES { ON | OFF } indicates that exactly one of ON or OFF must

-8-

Concepts Guide

be provided.You do not type the braces: QUOTES ON

Backslash \ Continuation character used to indicate text that is too long to fit on a
single line.

Ellipses ... Indicate a repetition of the previous parameter. For example,

option[,...] means that you can enter multiple,

comma-separated options.

Note: Showing an ellipses in code examples might also mean that
part of the text has been omitted for readability, such as in multi-row
result sets.

 Indentation Is an attempt to maximize readability; SQL is a free-form language.

Placeholders Items that must be replaced with appropriate identifiers or

expressions are shown in italics.

Vertical bar | Is a separator for mutually exclusive items. For example: [ASC |

DESC]

Choose one or neither. You do not type the square brackets.

-9-

Preface

This document presents a high-level overview of the Vertica® Analytic Database, an innovative
system that represents a vast improvement in performance over products currently available from
major DBMS software and appliance vendors. It introduces the basic concepts that get you started
in effectively designing, building, operating, and maintaining a Vertica database.

Prerequisites

The Concepts Guide assumes that you are familiar with the basic concepts and terminology of
relational database management systems and SQL.

Audience

This guide is intended for all users of Vertica® Analytic Database.

-10-

Welcome to Vertica

The Vertica® Analytic Database is an innovative, ground-up implementation of a relational
database management system optimized for read-intensive workloads. The Vertica® Analytic
Database (referred to as Vertica from this point) provides extremely fast ad hoc SQL query
performance, even for very large databases, making it well suited for:

 Data warehousing

 Data marts

 Clickstream analysis

 Fraud detection

 Call detail analysis

 Consumer customer analytics

 Business intelligence

 Other query-intensive applications

Data Warehousing

A relational database that is designed for query and analysis rather than transaction processing.
Data warehouses:

 Are often subjected to a heavy load of periodic and ad hoc queries.

 Contain historical information that enables analysis of correlations and trends over long
periods of time.

 Integrate data from various production (transactional) databases. Extraction, transformation,
and loading (ETL) software converts the data to a common format and copies it into a data
warehouse at regular intervals.

 Typically consist of one or more star or snowflake schemas.

-11-

The Vertica Approach

Vertica is built from the Ground Up on the 4 C’s:

Column storage

Stores data the way it is typically queried for best performance. Column storage is ideal for
read-intensive workloads because it can dramatically reduce disk I/O.

Compression

Stores more data, provides more views, and uses less hardware, which lets you keep much more
historical data in physical storage.

 When similar data is grouped, you have even more compression options

 Vertica applies over twelve compression schemas

 Dependent on data

 System chooses which to apply

 NULLs take virtually no space

 Typically see 50% - 90% compression

 Vertica queries data in encoded form

-12-

Concepts Guide

Clustering

Lets you scale out your database cluster infinitely by adding more hardware.

 Columns are duplicated so if one machine goes down, you still have a copy

 Data warehouse log based recovery is impractical

 Instead, store enough projections for k-safety

 New hardware queries rest of system for data it needs

 Rebuilds missing objects from other nodes

 Another benefit of multiple sort orders

Continuous performance

Queries and loads data 24x7 with virtually no database administration.

 Concurrent loading and querying means that you get real-time views and eliminate nightly
―load windows.‖

 On-the-fly schema changes means that you can add columns and projections without
database downtime.

 Automatic data replication, failover, and recovery provides for ―active‖ redundancy, which
increases performance. Nodes recover automatically by querying the system.

-13-

Vertica Components

This section describes the unique components that make up Vertica.

-14-

 14

Column Store Architecture with FlexStore

Traditionally databases were designed for OLTP (on page 70) and used a row-store architecture.
To process a query, a row store reads all of the columns in all of the tables named in the query,
regardless of how wide the tables might be or how many columns are actually needed. Quite
often, analytic queries use only two or three columns from tables containing up to several hundred
columns, resulting in a great deal of unnecessary data retrieval.

Unlike other RDBMS (on page 72), Vertica reads the columns from database objects called
projections (see "Projection" on page 71), which are described in the Physical Schema (page
23) section of this guide. No resources are wasted by reading large numbers of unused columns.
Every byte of data is used by the execution engine. For example, consider this simple two-table
schema:

Suppose you want to run this query:

SELECT A, C, N

FROM Table1 JOIN Table2

ON H = J;

A row store must read 16 columns (A through H and J through Q) from physical storage for each
record in the result set. A column store with a query-specific projection reads only three columns:
A, C, and N.

How FlexStore™ enhances your column-based architecture

FlexStore™ is a combination of physical design, database storage, and query execution
techniques that Vertica applies to the database to optimize it for the analytic workload supports at
the time. These techniques include:

 Column grouping. Multiple columns can be grouped into a single disk file. This grouping

minimizes file input/output (I/O) for workloads that read a large percentage of the columns in a
table, that do single row look-ups, that query against many small columns, or that frequently
update data in these columns. Grouped columns also benefit from special compression and
retrieval techniques.

By Default, Vertica automatically groups all columns together for small loads, such as trickle
loads. If you have highly correlated data that is always accessed together and it is not used in
predicates, you can increase query performance by grouping these columns. See CREATE
PROJECTION in the SQL Reference Manual for details.

-15-

 Vertica Components

 Intelligent disk use. Vertica supports the use of multiple storage locations on each node. By

default, data is striped across all storage locations based on available disk space such that all
locations are uniformly used. However, you can control disk usage and increase I/O
performance further by isolating files that have different I/O or access patterns in different
storage locations. For example, you can isolate execution engine temporary files from data
files and create a tiered-disk architecture, in which columns are stored on different disks,
based on predicted or measured access patterns.

See Creating and Configuring Storage Locations in the Administrator's Guide for details.

 Fast Deletes. Vertica can be optimized to enhance delete performance for applications that

frequently purge data. See Optimizing Deletes and Updates for Performance and Best
Practices for DELETE and UPDATE in the the Administrator's Guide for details.

-16-

 16

Data Encoding and Compression

Encoding

The process of transforming data from one format into another. In Vertica, encoded data can be
processed directly, which distinguishes it from compression. Vertica uses a number of different
encoding strategies, depending on column data type, table cardinality, and sort order.

The query executor in Vertica operates on the encoded data representation whenever possible to
avoid the cost of decoding. It also passes encoded values to other operations, saving memory
bandwidth. In contrast, row stores and most other column stores typically decode data elements
before performing any operation.

Compression

The process of transforming data into a more compact format. Compressed data cannot be
directly processed; it must first be decompressed. Vertica uses integer packing for unencoded
integers and LZO for compressible data. Although compression is generally considered to be a
form of encoding, the terms have different meanings in Vertica.

The size of a database is often limited by the availability of storage resources. Typically, when a
database exceeds its size limitations, the administrator archives data that is older than a specific
historical threshold.

The extensive use of compression allows a column store to occupy substantially less storage than
a row store. In a column store, every value stored in a column of a projection has the same data
type. This greatly facilitates compression, particularly in sorted columns. In a row store, each
value of a row can have a different data type, resulting in a much less effective use of
compression.

Vertica's efficient storage allows the database administrator to keep much more historical data in
physical storage. In other words, the archiving threshold can be set to a much earlier date than in
a less efficient store.

-17-

 17

High Availability and Recovery

Vertica's unique approach to failure recovery is based on the distributed nature of a database. A
Vertica database is said to be K-safe (see "K-Safety" on page 66) if any node can fail at any given
time without causing the database to shut down. When the lost node comes back online and
rejoins the database, it recovers its lost objects by querying the other nodes. See Managing Nodes
and Monitoring Recovery in the Administrator's Guide.

In Vertica, the value of K can be 0, 1, or 2. If a database that has a K-safety of one (K=1) loses a
node, the database continues to run normally. Potentially, the database could continue running if
additional nodes fail, as long as at least one other node in the cluster has a copy of the failed
node's data. Increasing K-safety to 2 ensures that Vertica can run normally if any two nodes fail.
When the failed node or nodes return and successfully recover, they can participate in database
operations again.

K-Safety Requirements

Your database must have a minimum number of nodes to be able to have a K-safety level greater
than zero, as shown in the following table.:

K-level Number of Nodes Required

0 1+

1 3+

2 5+

K (K+1)/2

Note: Vertica does not officially support values of K higher than 2.

The value of K can be 1 or 2 only when the physical schema design meets certain redundancy
requirements. See Physical Schema (page 23). To create designs that are K-safe, Vertica
recommends that you use the Database Designer (on page 59).

By default, Vertica creates K-safe superprojections when the database has a K-safety greater
than 0 (K>0). When creating projections with the Database Designer, projection definitions that
meet K-safe design requirements are recommended and marked with the K-safety level. Note the
output from running the optimized design script generated by the Database Designer in the
following example:

=> \i VMart_Schema_design_opt_1.sql

CREATE PROJECTION

CREATE PROJECTION

mark_design_ksafe

Marked design 1-safe

(1 row)

Determining K-Safety

To determine the K-safety state of a running database, run the following SQL command:

-18-

Concepts Guide

SELECT current_fault_tolerance FROM system;

current_fault_tolerance

 1

(1 row)

Monitoring K-Safety

Monitoring tables can be accessed programmatically to enable external actions, such as alerts.
You monitor the K-safety level by polling the SYSTEM table and checking the value. See SYSTEM
in the SQL Reference Manual.

Loss of K-Safety

When K nodes in your cluster fail, your database continues to run, although performance is
affected. Further node failures could potentially cause the database to shut down if the failed
node's data is not available from another functioning node in the cluster.

-19-

 19

Hybrid Storage Model

To support Data Manipulation Language commands (INSERT, UPDATE, and DELETE) and bulk
load operations (COPY) intermixed with queries in a typical data warehouse workload, Vertica
implements the storage model shown in the illustration below. This model is the same on each
Vertica node.

An abbreviation for Write Optimized Store, WOS is a memory-resident data structure into which
INSERT, UPDATE, DELETE, and COPY (without DIRECT hint) actions are recorded. Like the
ROS, the WOS is arranged by projection but it stores records without sorting, compression, or
indexing and thus supports very fast load speeds. The WOS organizes data by epoch and holds
uncommitted transaction data.

The Tuple Mover (TM) is the database optimizer component of Vertica that runs in the
background. It moves data from memory (WOS) to disk (ROS), combines small ROS containers
into larger ones, and purges deleted data.

An abbreviation for Read Optimized Store, ROS is a highly optimized, read-oriented, physical
storage structure that is organized by projection and that makes heavy use of compression and
indexing. You can use the COPY...DIRECT and INSERT (with /*+direct*/ hint) statements to load
data directly into the ROS.

-20-

Concepts Guide

Note: Vertica allows optional spaces before and after the plus sign in direct hints (e.g., between

the /* and the +).

Like a ROS, a Grouped ROS is a highly-optimized, read-oriented physical storage structure
organized by projection that makes heavy use of compression and indexing. However, a Grouped
ROS stores data for two or more grouped columns in one disk file.

The COPY command is designed for bulk load operations and can load data into the WOS or the
ROS.

-21-

 21

Physical Architecture

Terminology

In Vertica, the physical architecture is designed to distribute physical storage and to allow parallel
query execution over a potentially large collection of computing resources.

The most important terms to understand are host, instance, node, cluster, and database:

Host — A computer system with a 32-bit (non-production use only) or 64-bit Intel or AMD

processor, RAM, hard disk, and TCP/IP network interface (IP address and hostname). Hosts
share neither disk space nor main memory with each other.

Instance — An instance of Vertica consists of the running Vertica process and disk storage

(catalog and data) on a host. There can be only one instance of Vertica running on a host at any
time.

Node — A host configured to run an instance of Vertica. It is a member of a database cluster. For

a database to have the ability to recover from the failure of a node requires at least three nodes.
Vertica recommends that you use a minimum of four nodes.

Cluster — Refers a collection of hosts (nodes) bound to a database. A cluster is not part of a

database definition and does not have a name.

Database — A cluster of nodes that, when active, can perform distributed data storage and SQL

statement execution through administrative, interactive, and programmatic user interfaces.

-22-

 22

Logical Schema

From a SQL user's point of view, Vertica supports the standard relational data model, in which a
schema consists of a collection of tables (relations), each with a collection of columns (attributes)
and rows (tuples), and other SQL objects.

As in most relational systems, specific columns in Vertica tables can be designated as a primary
key, or as a foreign key that references a primary key in another table. The tables in a Vertica
database are assumed to obey the Dimensional Modeling concepts of a star schema or snowflake
schema design. These are typical schema designs used in data warehouses.

Star Schema

Sometimes called a star join schema, a star schema is the simplest data warehouse schema. In a
star schema design there is a central fact table with a large number of records, optionally
surrounded by a collection of dimension tables, each with a lesser number of records. Every
dimension table participates in a 1::n join with the fact table.

Snowflake Schema

The same as a star schema except that a dimension table can be normalized (hierarchically
decomposed) into additional dimension tables. Every dimension table participates in a 1::n join
with the fact table or another dimension table.

For more information, see Designing a Logical Schema in the Administrator's Guide.

-23-

 23

Physical Schema

In traditional database architectures, data is primarily stored in tables. Additionally, secondary
tuning structures such as index and materialized view structures are created for improved query
performance. In contrast, tables do not occupy any physical storage at all in Vertica. Instead,
physical storage consists of collections of table columns called projections.

Projections store data in a format that optimizes query execution. They are similar to materialized
views in that they store result sets on disk rather than compute them each time they are used in a
query. The result sets are automatically refreshed whenever data values are inserted or loaded.

Using projections provides the following benefits:

 Projections compress and encode data to greatly reduce the space required for storing data.
Additionally, Vertica operates on the encoded data representation whenever possible to avoid
the cost of decoding. This combination of compression and encoding optimizes disk space
while maximizing query performance. See Projection Performance (page 25).

 Projections for fact and large dimension tables are distributed across database nodes to
distribute the work load. See Projection Performance (page 25).

 Projections are transparent to end-users of SQL. The Vertica query optimizer automatically
picks the best projections to use for any query.

 Projections also provide high availability and recovery. To ensure high availability and
recovery, Vertica duplicates table columns on all nodes within the cluster. Thus, if one
machine fails in a K-Safe (see "K-Safety" on page 66) environment, the database continues to
operate normally using duplicate data on the remaining nodes. Once the node resumes its
normal operation, it automatically recovers its data and lost objects by querying other nodes.
See High Availability and Recovery (page 17) for an overview of this feature and High
Availability Through Projections (page 28) for an explanation of how Vertica uses
projections to ensure high availability and recovery.

How Projections are Created

For each table in the database, Vertica requires a minimum of one projection, called a
superprojection (on page 79). A superprojection is a projection for a single table that contains all
the columns in the table.

To get your database up and running quickly, Vertica automatically creates a default
superprojection for each table created through the CREATE TABLE and CREATE TEMPORARY
TABLE statements. See these statements for additional details about the superprojections
created through these statements.

By creating a superprojection for each table in the database, Vertica ensures that all SQL queries
can be answered. However, default superprojections do not optimize database performance.
Vertica recommends that you start with the default projections and then use Database Designer
(on page 59) to optimize your database. Database Designer creates new projections that optimize
your database based on its data statistics and the queries you use. Database Designer:

1 Analyzes your logical schema (on page 67), sample data, and sample queries (optional).

-24-

Concepts Guide

2 Creates a physical schema (on page 70) design (projections) in the form of a SQL script that
can be deployed automatically or manually.

In most cases, the designs created by the Database Designer provide excellent query
performance within physical constraints. The Database Designer uses sophisticated strategies to
provide excellent ad-hoc query performance while using disk space efficiently. If you prefer, you
can design custom projections. This option is intended for advanced users only, under the
guidance of Technical Support (on page 1).

For more information about creating projections, see Designing a Physical Schema in the
Administrator's Guide.

Anatomy of a Projection
The CREATE PROJECTION statement specifies individual projections. The following sample
depicts the elements of a projection.

The previous example contains the following significant elements:

Column list and encoding

Lists every column within the projection and defines the encoding for each columns. Unlike
traditional database architectures, Vertica operates on encoded data representations. Therefore,
Vertica encourages you to use data encoding because it results in less disk I/O.

Base query

Identifies all the columns to incorporate in the projection through column name and table name
references. The base query for fact table projections can contain PK/FK joins to dimension tables.

-25-

 Vertica Components

Sort order

The ORDER BY clause specifies a projection's sort order, which localizes logically-grouped
values so that a disk read can pick up many results at once. The sort order optimizes for a specific
query or commonalities in a class of queries based on the query predicate. The best sort orders

are determined by the WHERE clauses. For example, if a projection's sort order is (x, y), and

the query's WHERE clause specifies (x=1 AND y=2), all of the needed data is found together in
the sort order, so the query runs almost instantaneously.

You can also optimize a query by matching the projection's sort order to the query's GROUP BY
clause. If you do not specify a sort order, Vertica uses the order in which columns are specified in
the column definition as the projection's sort order.

Segmentation

The segmentation clause determines whether a projection is segmented or replicated across
nodes within the database. Replication stores identical copies of projections for dimension tables
across all nodes in the cluster. This ensures high availability and recovery. Segmentation
distributes contiguous pieces of projections, called segments, for fact and large dimension tables
across database nodes. This maximizes database performance by distributing the load.

Projection Concepts
For each table in the database, Vertica requires a projection, called a superprojection (on page
79). A superprojection is a projection for a single table that contains all the columns in the table. By
creating a superprojection for each table in the database, Vertica ensures that all SQL queries can
be answered.

In addition to superprojections, you can create one or more single-table projections that each
contain a subset of columns from a table. These projections are used to optimize queries and they
require only the columns necessary to process these queries. They are referred to as
query-specific projections (see "Query-specific projection" on page 72).

Both superprojections and query-specific projections for fact tables support PK/FK joins to
dimension tables to store the results of a join between a single fact table in the logical schema (the
anchor table) with one or more dimension tables. Projections that contain joins are called pre-join
projections (see "Pre-join projection" on page 71) because they store the results of a join.
Pre-join projections can have only inner joins between tables on their primary and foreign key
columns. Outer joins are not allowed. Pre-join projections provide a significant performance
advantage over joining tables when queries are run.

Projection Performance
Vertica provides the following methods for maximizing the performance of all projections:

Encoding and Compression

Vertica operates on encoded data representations. Therefore, Vertica encourages you to use data
encoding whenever possible because it results in less disk I/O and requires less disk space. For a
description of the available encoding types, see encoding-type in the SQL Reference Manual.

-26-

Concepts Guide

Sort Order

The sort order optimizes for a specific query or commonalities in a class of queries based on the
query predicate. For example, if the WHERE clause of a query is (X=1 AND Y=2) and a projection
is sorted on (X,Y), the query runs almost instantaneously. It is also useful for sorting a projection to
optimize a group by query. Simply match the sort order for the projection to the query group by
clause.

Segmentation

Segmentation distributes contiguous pieces of projections, called segments, for fact and large
dimension tables across database nodes. This maximizes database performance by distributing
the load. See Projection Segmentation (page 27).

In many cases, the performance gain for superprojections (see "Superprojection" on page 79)
provided through these methods is sufficient enough that creating additional query-specific
projections is unnecessary.

-27-

 27

Projection Segmentation

Projection segmentation splits individual projections into chunks of data of similar size, called
segments. One segment is created for and stored on each node. The following illustration shows
the segmentation for a projection called A for a three node cluster.

Projection segmentation provides high availability and recovery and optimizes query execution.
Specifically, it:

 Ensures high availability and recovery through K-Safety.

 Spreads the query execution workload across multiple nodes.

 Allows each node to be optimized for different query workloads.

Projections for fact tables are typically very large, so they are segmented to spread the query
execution workload across multiple nodes. Projections for dimension tables are smaller so they
are usually replicated. However, projections for large dimension tables can be segmented. A
dimension table is considered to be large when it is approximately the same size as a fact table.

Types of Projection Segmentation

Vertica provides two ways in which to determine how data is segmented: hash and range
segmentation. By default, Vertica uses hash segmentation.

 Hash Segmentation

Hash segmentation is the preferred method of segmentation. It allows you to segment a
projection based on a built-in hash function that provides even distribution of data across
multiple nodes, resulting in optimal query execution. In a projection, the data to be hashed
consists of one or more column values, each having a large number of unique values and an
acceptable amount of skew in the value distribution. Primary key columns that meet the criteria
could be an excellent choice for hash segmentation.

 Range Segmentation

Range segmentation is accomplished by dividing up the range of possible values of an
expression into disjoint sub-ranges, which are then allocated to specific nodes. The
expression used to determine segmentation is known as the segmentation expression or
segmentation criteria and can consist of a single projection column or an expression or
function involving multiple projection columns. Range segmentation is useful when you have
an artificial segmentation key.

Note: Range segmentation based on dates or timestamps is not recommended because it

results in a skewed data distribution. For example, suppose you segment by year using a
DATE column. All rows inserted within the current year would be loaded into the same
segments on specific nodes. Thus, a query asking for rows inserted during any specific year
would be run only on those nodes. The rest of the nodes would be idle.

-28-

Concepts Guide

High Availability Through Projections

To ensure high availability and recovery for database clusters of three or more nodes, Vertica
copies projections and stores them on multiple nodes within the database. This is feasible
because the data in a Vertica database is compressed and encoded. Vertica provides two ways
for storing copies of projections: projection replication and the creation of buddy projections.

Projection Replication

Replication consists of creating duplicates of unsegmented projections on all nodes in a database.

Replication has two purposes:

 Distributed query execution across multiple nodes.

 High availability and recovery. In a K-safe database, replicated projections serve as buddy
projections. This means that a replicated projection on any node can be used for recovery.

Typically projections for dimension tables are replicated because they are small enough that
segmenting them provides no significant advantage. However, projections for large dimension
tables can be segmented. (See Projection Segmentation (page 27).)

The following illustration shows two projections, B and C, replicated across a three node cluster.

Buddy Projections

Buddy projections are copies of segmented projections, and they are distributed across database
nodes. (See Projection Segmentation (page 27).) However the distribution is modified so that
segments that contain the same data are distributed to different nodes. This ensures that if a node
goes down, all the data is available on the remaining nodes. Vertica distributes segments to
different nodes by using offsets. For example, segments that comprise the first buddy projection
(A_BP1) would be offset from projection A by one node and segments from the second buddy
projection (A_BP2) would be offset from projection A by two nodes.

-29-

 Vertica Components

The following illustration shows the segmentation for a projection called A and its buddy
projections, A_BP1 and A_BP2, for a three node cluster.

The following illustration shows how Vertica uses offsets to ensure that every node has a full set of
data for the projection.

This example illustrates how one projection and its buddies are segmented across nodes.
However, each node can easily store a collection of segments from various projections.

Projection Naming
Whether a projection is created automatically or you use Database Designer, Vertica uses a
standard set of naming conventions which include the base name of the table with a suffix
appended to it that indicates the type of projection. If the projection name would not be unique,
Vertica automatically appends either v1 or v2 to it.

Projection Type Suffix Examples Unique Name Example

Replicated
(unsegmented)

or unsegmented
on one node

_super customer_dimension_vmart_super customer_dimension_vmart_super_v1

-30-

Concepts Guide

Replicated

(unsegmented)
on all nodes

_<nodename

>

customer_dimension_vmart_node01

customer_dimension_vmart_node02

customer_dimension_vmart_node03

customer_dimension_vmart_v1_node01

customer_dimension_vmart_v1_node02

customer_dimension_vmart_v1_node03

Segmented on

more than one
node

_b<offset> customer_dimension_vmart_b0

customer_dimension_vmart_b1

customer_dimension_vmart_v1_b0

customer_dimension_vmart_v2_b1

Note: Vertica might truncate the base table name to ensure the projection name fits the length
limit.

-31-

 31

Database Setup

The process of setting up a Vertica database is described in detail in the Administrator's Guide. It
involves the following tasks:

Prepare SQL scripts and data files

The first part of the setup procedure can be done well before Vertica is installed. It consists of
preparing the following files:

 Logical schema script

 Loadable data files (dimension table and fact tables)

 Load scripts

 Sample query script (training set)

Create the database

This part requires that Vertica be installed on at least one host. The following tasks are not in
sequential order.

 Use the Administration Tools (on page 54) to:

 Create a database

 Connect to the database

 Use the Database Designer (on page 59) to design the physical schema.

 Use the vsql (on page 81) interactive interface to run SQL scripts that:

 Create tables and constraints

 Create projections (see "Projection" on page 71)

Test the empty database

 Test for sufficient projections using the sample query script

 Test the projections for K-safety (on page 66)

Test the partially-loaded database

 Load the dimension tables

 Partially load the fact table

 Check system resource usage

 Check query execution times

 Check projection usage

Complete the fact table load

 Monitor system usage

 Complete the fact table load

Set up security

For security-related tasks, see Implementing Security.

-32-

Concepts Guide

 [Optional] Set up SSL

 [Optional] Set up client authentication

 Set up database users and privileges

Set up incremental loads

Set up periodic ("trickle") loads.

-33-

 33

Database Connections
You can connect to a Vertica database in the following ways:

 Interactively using the vsql client, as described in Using vsql in the Administrator's Guide.

vsql is a character-based, interactive, front-end utility that lets you type SQL statements and
see the results. It also provides a number of meta-commands and various shell-like features
that facilitate writing scripts and automating a variety of tasks.

You can run vsql on any node within a database. To start vsql, use the Administration Tools
(on page 54) or the shell command described in Using vsql.

 Programmatically using the JDBC driver provided by Vertica, as described in Using JDBC in

the Programmer's Guide.

An abbreviation for Java Database Connectivity, JDBC is a call-level application programming
interface (API) that provides connectivity between Java programs and data sources (SQL
databases and other non-relational data sources, such as spreadsheets or flat files). JDBC is
included in the Java 2 Standard and Enterprise editions.

 Programmatically using the ODBC driver provided by Vertica, as described in Using ODBC in

the Programmer's Guide.

An abbreviation for Open DataBase Connectivity, ODBC is a standard application
programming interface (API) for access to database management systems.

 Programmatically using the ADO.NET driver provided by Vertica, as described in Using

ADO.NET in the Programmer's Guide.

The Vertica driver for ADO.NET allows applications written in C# and Visual Studio 2008 to
read data from, update, and load data into Vertica databases. It provides a data adapter that
facilitates reading data from a database into a data set, and then writing changed data from the
data set back to the database. It also provides a data reader (VerticaDataReader) for reading
data and autocommit functionality for committing transactions automatically.

 Programmatically using Perl and the DBI driver, as described in Using Perl in the

Programmer's Guide.

Perl is a free, stable, open source, cross-platform programming language licensed under its
Artistic License, or the GNU General Public License (GPL).

 Programmatically using Python and the pyodbc driver, as described in Using Python in the

Programmer's Guide.

Python is a free, agile, object-oriented, cross-platform programming language designed to
emphasize rapid development and code readability.

Vertica recommends that you deploy Vertica as the only active process on each machine in the
cluster and connect to it from applications on different machines. Vertica expects to use all
available resources on the machine, and to the extent that other applications are also using these
resources, suboptimal performance could result.

-34-

 34

The Administration Tools

Vertica provides a set of tools that allows you to perform administrative tasks quickly and easily.
Most of the database administration tasks in Vertica can be done using the Administration Tools.

Note: Always run the Administration Tools using the Database Administrator (on page 59)

account on the Administration Host (on page 54) if possible. Make sure that no other
Administration Tools processes are running.

If the Administration Host is down, run the Administration Tools on a different node in the cluster.
That node permanently takes over the role of Administration Host.

Running the Administration Tools

At the Linux command line:

$ /opt/vertica/bin/admintools [-t | --tool] toolname [options]

toolname Is one of the tools described in the Administration Tools

Reference.

options

-h

--help

Shows a brief help message and exits.

-a

--help_all

Lists all command-line subcommands and
options as described in Writing Administration

Tools Scripts.

If you omit the toolname and options, the Main Menu dialog box appears inside your console or
terminal window with a dark blue background and a title on top. The screen captures used in this
documentation set are cropped down to the dialog box itself, as shown below.

If you are unfamiliar with this type of graphical user interface, read Using the Graphical User
Interface before you do anything else.

-35-

 Vertica Components

First Time Only

The first time you log in as the Database Administrator (on page 59) and run the Administration
Tools, the user interface displays.

1 In the EULA (license agreement) window, type accept to proceed.

A window displays, requesting the location of the license key file you downloaded from the
Vertica Web site. The default path is /tmp/vlicense.dat.

2 Type the absolute path to your license key (for example, /tmp/vlicense.dat) and click OK.

Between Dialogs

While the Administration Tools are working, you see the command line processing in a window
similar to the one shown below. Do not interrupt the processing.

-36-

 36

The Database Designer
The Vertica Database Designer (on page 59) is a UI-based tool that :

1 Analyzes your logical schema (on page 67), sample data, and sample queries

2 Creates a physical schema (on page 70) design (projections) in the form of a SQL script that
you can redirect to a file and run.

In most cases, the designs created by the Database Designer provide excellent query
performance within physical constraints. The Database Designer uses sophisticated strategies to
provide excellent ad-hoc query performance while using disk space efficiently.

You can also design custom projections as described in the Administrator's Guide. This option is
intended for advanced users only and should be done only under the guidance of Vertica
Technical Support (on page 1).

See Also

Physical Schema (page 23) in this guide

Designing a Physical Schema in the Administrator's Guide

K-Safety

K-safety is a measure of fault tolerance in the database cluster. The value K represents the
number of replicas of the data in the database that exist in the database cluster. These replicas
allow other nodes to take over for failed nodes, allowing the database to continue running while
still ensuring data integrity. If more than K nodes in the database fail, some of the data in the
database may become unavailable. In that case, the database is considered unsafe and
automatically shuts down.

It is possible for a Vertica database to have more than K nodes fail and still safely continue
running. The database continues to run as long as every data segment is available on at least one
functioning node in the cluster. Potentially, up to half the nodes in a database with a K-safety level
of 1 could fail without causing the database to shut down. As long as the data on each failed node
is available from another active node, the database continues to run.

Note: If half or more of the nodes in the database cluster fail, the database will automatically

shut down even if all of the data in the database is technically available from replicas. This
behavior prevents issues due to network partitioning.

In Vertica, the value of K can be zero (0), one (1), or two (2). The physical schema design must
meet certain requirements. To create designs that are K-safe, Vertica recommends using the
Database Designer (on page 59).

-37-

 Vertica Components

K-Safety Example

The diagram above shows a 5-node cluster that has a K-safety level of 1. Each of the nodes
contains buddy projections for the data stored in the next higher node (node 1 has buddy
projections for node 2, node 2 has buddy projections for node 3, etc.). Any of the nodes in the
cluster could fail, and the database would still be able to continue running (although with lower
performance, since one of the nodes has to handle its own workload and the workload of the failed
node).

-38-

Concepts Guide

If node 2 fails, node 1 handles requests on its behalf using its replica of node 2's data, in addition
to performing its own role in processing requests. The fault tolerance of the database will fall from
1 to 0, since a single node could cause the database to become unsafe. In this example, if either
node 1 or node 3 fail, the database would become unsafe since not all of its data would be
available. If node 1 fails, then node 2's data will no longer be available. If node 3 fails, its data will
no longer be available, since node 2 is also down and could not fill in for it. In this case, nodes 1
and 3 are considered critical nodes (see "Critical node" on page 58). In a database with a
K-safety level of 1, the node that contains the buddy projection of a failed node and the node
whose buddy projections were on the failed node will always become critical nodes.

-39-

 Vertica Components

With node 2 down, either node 4 or 5 in the cluster could fail and the database would still have all
of its data available. For example, if node 4 fails, node 3 is able to use its buddy projections to fill in
for it. In this situation, any further loss of nodes would result in a database shutdown, since all of
the nodes in the cluster are now critical nodes. (In addition, if one more node were to fail, half or
more of the nodes would be down, requiring Vertica to automatically shut down, no matter if all of
the data were available or not.)

In a database with a K-safety level of 2, any node in the cluster could fail after node 2 and the
database would be able to continue running. For example, if in the 5-node cluster each node
contained buddy projections for both its neighbors (i.e. node 1 contained buddy projections for
both node 5 and node 2), then nodes 2 and 3 could fail and the database could continue running.
Node 1 could fill in for node 2, and node 4 could fill in for node 3. Due to the requirement that half
or more nodes in the cluster be available in order for the database to continue running, the cluster
could not continue running if node 5 were to fail as well, even though nodes 1 and 4 both have
buddy projections for its data.

K-Safety Requirements

When creating projections with the Database Designer, projection definitions that meet K-Safe
design requirements are recommended and marked with the K-safety level. Note the output from
running the optimized design script generated by the Database Designer in the following example:

=> \i VMart_Schema_design_opt_1.sql

CREATE PROJECTION

CREATE PROJECTION

mark_design_ksafe

Marked design 1-safe

(1 row)

Determining K-Safety

To determine the K-safety state of a running database, execute the following SQL command:

=> SELECT current_fault_tolerance FROM system;

current_fault_tolerance

-40-

Concepts Guide

 1

(1 row)

Monitoring K-Safety

Monitoring tables can be accessed programmatically to enable external actions, such as alerts.
You monitor the K-safety level by polling the SYSTEM table column and checking the value. See
SYSTEM in the SQL Reference Manual.

Finding Critical Nodes

You can view a list of critical nodes in your database by querying the v_monitor.critical_nodes
table:

=> SELECT * FROM v_monitor.critical_nodes;

 node_name

 v_exampleDB_node0001

 v_exampleDB_node0003

(2 rows)

-41-

 41

Database Security

Vertica secures access to the database and its resources by enabling you to control who has
access to the database and what they are authorized to do with database resources once they
have gained access. See Implementing Security.

-42-

 42

Data Loading and Modification

SQL data manipulation language (DML) commands INSERT, UPDATE, and DELETE perform the
same functions in Vertica as they do in row-oriented databases. These commands follow the
SQL-92 transaction model and can be intermixed.

In Vertica, the COPY statement is designed for bulk loading data into the database. COPY reads
data from text files or data pipes and inserts it into WOS (see "WOS (Write Optimized Store)" on
page 82) (memory) or directly into the ROS (see "ROS (Read Optimized Store)" on page 75)
(disk). COPY automatically commits itself and any current transaction but is not atomic; some
rows could be rejected. Note that COPY does not automatically commit when copying data into
temporary tables.

Note: You can use the COPY statement's NO COMMIT option to prevent COPY from

committing a transaction when it finishes copying data. You often want to use this option when
sequentially running several COPY statements to ensure the data in the bulk load is either
committed or rolled back at the same time. Also, combining multiple smaller data loads into a
single transaction allows Vertica to more efficiently load the data. See the entry for the COPY
statement in the SQL Reference Manual for more information.

You can use multiple, simultaneous database connections to load and/or modify data.

Workload Management
Vertica provides a sophisticated workload management scheme to enable diverse concurrent
workloads to run efficiently against the database. For basic operations, Vertica provides a built-in
GENERAL pool that is pre-configured based on RAM and machine cores and can be customized
further to handle specific concurrency requirements.

For more advanced needs, the database administrator can establish new resource pools
configured with limits on memory usage, concurrency, and priority. Each database user can
optionally be restricted to use a specific resource pool and also be given quotas on memory usage
to control resources used by their requests.

User-defined pools are useful when there are competing resource requirements across different
classes of workloads. Some examples of scenarios that can make use of user-defined pools
include:

 A large batch job takes up all of the server resources, leaving small jobs that update a web
page to starve, thereby degrading user experience. To solve this problem, a dedicated
resource pool can be created for web page requests to ensure they always get resources.
Alternatively, a limited resource pool can be created for the batch job, so it cannot use up all
the resources in the system.

 A certain application has lower priority and you would like to limit the amount of memory and
number of concurrent users of this application. To solve this problem, a resource pool with an
upper limit on the memory usage of a query can be created and associated with users of this
application.

-43-

 Vertica Components

For more information, best practices, and additional scenarios, see Managing Workloads in the
Administrator's Guide.

-44-

SQL Overview

An abbreviation for Structured Query Language, SQL is a widely-used, industry standard data
definition and data manipulation language for relational databases.

Note: In Vertica, use a semicolon to end a statement or to combine multiple statements on one

line.

Vertica Support for ANSI SQL Standards

Vertica SQL supports a subset of ANSI SQL-99.

See BNF Grammar for SQL-99 (http://savage.net.au/SQL/sql-99.bnf.html)

Support for Historical Queries

Unlike most databases, the DELETE command in Vertica does not delete data; it marks records
as deleted. The UPDATE command performs an INSERT and a DELETE. This behavior is
necessary for historical queries (see "Historical data" on page 64). See Historical (Snapshot)
Queries in the Programmer's Guide.

Joins

Vertica supports typical data warehousing query joins. For details, see Joins in the Programmer's
Guide.

Vertica also provides the INTERPOLATE predicate, which allows for a special type of join. The
event series join is a Vertica SQL extension that lets you analyze two event series (on page 61)
when their measurement intervals don’t align precisely—such as when timestamps don't match.
These joins provide a natural and efficient way to query misaligned event data directly, rather than
having to normalize the series to the same measurement interval. See Event Series Joins in the
Programmer's Guide for details.

Transactions

Session-scoped isolation levels determine transaction characteristics for transactions (see
"Transaction" on page 79) within a specific user session (on page 77). You set them through the
SET SESSION CHARACTERISTICS command. Specifically, they determine what data a
transaction can access when other transactions are running concurrently. See Transactions
(page 46) in the Concepts Guide.

http://savage.net.au/SQL/sql-99.bnf.html

-45-

Query Execution

This topic provides a brief overview of how queries are executed in Vertica. For detailed
information about writing and executing queries, see the Programmer's Guide.

Snapshot Isolation Mode

Vertica can run any SQL query in snapshot isolation mode in order to obtain the fastest possible
execution. To be precise, snapshot isolation mode is actually a form of a historical query. The
syntax is:

AT EPOCH LATEST SELECT...

The command queries all data in the database up to but not including the current epoch without
holding a lock or blocking write operations, which could cause the query to miss rows loaded by
other users up to (but no more than) a specific number of minutes before execution.

Historical Queries

The DELETE command in Vertica does not actually delete data; it marks records as deleted. (The
UPDATE command is actually a combined INSERT and a DELETE.) Thus, Vertica can run a
query from a snapshot of the database taken at a specific date and time. The syntax is:

 AT TIME 'timestamp' SELECT...

The command queries all data in the database up to and including the epoch representing the
specified date and time, without holding a lock or blocking write operations. The specified
TIMESTAMP value must be greater than or equal to the Ancient History Mark epoch.

You can control how much deleted data is stored on disk. See Managing Disk Space in the
Administrator's Guide for details.

Parallel Query Execution

The query optimizer chooses the projections to use for any given incoming query and forms an
optimized query plan for the ones chosen. The query plan that the optimizer produces is
decomposed into ―mini-plans,‖ which are run on various nodes in parallel, interspersed with data
movement operations. A local executor at each node runs its assigned mini-plan.

-46-

Transactions

Session-scoped isolation levels determine transaction characteristics for transactions (see
"Transaction" on page 79) within a specific user session (on page 77). You set them through the

SET SESSION CHARACTERISTICS command. Specifically, they determine what data a
transaction can access when other transactions are running concurrently.

A transaction retains its isolation level until it completes, even if the session's transaction isolation
level has changed mid-transaction. Vertica internal processes (such as the Tuple Mover (see
"Tuple" on page 80) and refresh (on page 73) operations) and DDL operations are run at
SERIALIZABLE isolation to ensure consistency.

Although the Vertica query parser understands all four standard SQL isolation levels (READ

UNCOMMITTED, READ COMMITTED, REPEATABLE READ, and SERIALIZABLE) for a user session,

internally Vertica uses only READ COMMITTED and SERIALIZABLE. Vertica automatically

translates READ UNCOMMITTED to READ COMMITTED and REPEATABLE READ to

SERIALIZABLE. Therefore, the isolation level Vertica uses could be more strict than the isolation

level you choose.

By default, Vertica uses the READ COMMITTED isolation level. However, you can change the
isolation level for the database or individual transactions. See Change Transaction Isolation
Levels.

The following table highlights the behaviors of transaction isolation. For specific information see,
SERIALIZABLE Isolation (page 49) and READ COMMITTED Isolation (page 47).

Isolation Level Dirty Read (on page 60) Non Repeatable Read (see
"Non-repeatable read" on

page 69)

Phantom Read (on
page 70)

READ COMMITTED Not Possible Possible Possible

SERIALIZABLE Not Possible Not Possible Not Possible

Implementation Details

Vertica supports conventional SQL transactions with standard ACID (on page 54) properties:

 ANSI SQL 92 style-implicit transactions. You do not need to run a BEGIN or START
TRANSACTION command.

 No redo/undo log or two-phase commits.

 The COPY command automatically commits itself and any current transaction (except when

loading temporary tables). Vertica recommends that you COMMIT or ROLLBACK the current
transaction before you use COPY.

-47-

 Transactions

Automatic Rollback
Reverts data in a database to an earlier state by discarding any changes to the database state that
have been performed by a transaction's statements. In addition, it releases any locks that the
transaction might have held. A rollback can be done automatically in response to an error or
through an explicit ROLLBACK transaction.

Vertica supports transaction-level and statement-level rollbacks. A transaction-level rollback
discards all modifications made by a transaction. A statement-level rollback reverses just the
effects made by a particular statement. Most errors caused by a statement result in a

statement-level rollback to undo the effects of the erroneous statement. Vertica uses ERROR
messages to indicate this type of error. DDL errors, systemic failures, dead locks, and resource

constraints result in transaction-level rollback. Vertica uses ROLLBACK messages to indicate this
type of error.

To implement automatic, statement-level rollbacks in response to errors, Vertica automatically
inserts an implicit savepoint after each successful statement one at a time. This marker allows the
next statement, and only the next statement, to be rolled back if it results in an error. If the
statement is successful, the marker automatically rolls forward. Implicit savepoints are available to
Vertica only and cannot be referenced directly.

To explicitly roll back an entire transaction, use the ROLLBACK statement. To explicitly roll back

individual statements, use explicit savepoints.

Savepoints
Vertica supports using savepoints. A savepoint is a special mark inside a transaction that allows
all commands run after the savepoint was established to be rolled back, restoring the transaction
to its former state in which the savepoint was established.

Savepoints are useful when creating nested transactions. For example, a savepoint could be
created at the beginning of a subroutine. That way, the result of the subroutine could be rolled
back, if necessary.

Use the SAVEPOINT statement to establish a savepoint, the RELEASE SAVEPOINT statement to

destroy it, or the ROLLBACK TO SAVEPOINT statement to roll back all operations that occur within
the transaction after the savepoint was established.

READ COMMITTED Isolation
A SELECT query sees a snapshot of the committed data at the start of the transaction. It also sees

the results of updates run within its transaction, even if they have not been committed. This is
standard ANSI SQL semantics for ACID (on page 54) transactions. Any SELECT query within a

transaction should see the transactions's own changes regardless of isolation level.

DML statements acquire write locks to prevent other READ COMMITTED transactions from

modifying the same data. SELECT statements do not acquire locks, which prevents read and write
statements from conflicting.

-48-

Concepts Guide

READ COMMITTED is the default isolation level used by Vertica. For most general querying

purposes, the READ COMMITTED isolation effectively balances database consistency and

concurrency. However, data can be changed by other transactions between individual statements
within the current transaction. This can result in nonrepeatable (see "Non-repeatable read" on
page 69) and phantom reads (see "Phantom read" on page 70). Applications that require
complex queries and updates might need a more consistent view of the database. If this is the
case, use SERIALIZABLE isolation.

The following example illustrates reads and writes using READ COMMITTED isolation.

Session A Session B Description

SELECT C1 FROM T1;

C1

--

(0 rows)

The SELECT statement in Session A reads committed data

from T1.

COMMIT;

INSERT INTO T1 (C1)

VALUES (1);
 Session A inserts a row, but does not yet commit.

SELECT C1 FROM T1;

C1

--

1

(1 rows)

SELECT C1 FROM T1;

C1

--

(0 rows)

Session A reads the inserted row because it was inserted
during the same transaction. However, Session B does not

see the inserted value because it can only read committed
data.

COMMIT; Session A commits the INSERT and ends the transaction.

SELECT C1 FROM T1;

C1

--

1

(1 rows)

The SELECT statement in Session B now observes the insert

that session A committed.

This is an example of a non-repeatable read (on page 69).

SELECT C1 FROM T1;

C1

--

1

(1 rows)

The SELECT statement in Session A begins a new

transaction. It sees the previous inserted value because it
was committed.

COMMIT;

READ COMMITTED isolation uses exclusive (X) write locks that are maintained until the end of the
transaction. The following example illustrates this.

Session A Session B Description

INSERT INTO T1 (C1)

VALUES (2);

(1 rows)

The transaction in session A acquires an insert (I) lock to
insert row 2 into table T1.

DELETE FROM T1

WHERE C1 >1;

The DELETE statement in Session B is blocked because the

transaction cannot acquire an exclusive lock (X lock) until the
entire transaction in Session A is completed and the insert (I)

lock is released.

INSERT INTO T1 (C1)

VALUES (3);

(1 rows)

The transaction in session A inserts row 3. (It already has an
insert (I) lock.)

COMMIT; The COMMIT statement ends the transaction in Session A

-49-

 Transactions

and releases its insert (I) lock.

 (2 rows)
The transaction in Session B obtains its X lock and deletes

rows 2 and 3.

See Also

LOCKS and SET SESSION CHARACTERISTICS in the SQL Reference Manual

Configuration Parameters in the Administrator's Guide

SERIALIZABLE Isolation
SERIALIZABLE is the strictest level of SQL transaction isolation. Although this isolation level

permits transactions to run concurrently, it creates the effect that transactions are running in serial

order. It acquires locks for both read and write operations, which ensures that successive SELECT

commands within a single transaction always produce the same results. SERIALIZABLE isolation
establishes the following locks:

 Table-level read locks are acquired on selected tables and released at the end of the
transaction. This prevents a transaction from modifying rows that are currently being read by
another transaction.

 Table-level write locks are acquired on update and are released at the end of the transaction.
This prevents a transaction from reading uncommitted changes to rows made within another
transaction.

A SELECT sees, in effect, a snapshot of the committed data at the start of the transaction. It also

sees the results of updates run within its transaction, even if they have not been committed.

The following example illustrates locking within concurrent transactions running with
SERIALIZABLE isolation.

Session A Session B Description

SELECT C1 FROM T1;

C1

--

(0 rows)

SELECT C1 FROM T1;

C1

--

(0 rows)

Transactions in sessions A and B acquire shared locks. Both
transactions can read from table T1.

 COMMIT;
The COMMIT statement in Session 2 ends the t ransaction and

releases its read lock.

INSERT INTO T1 (C1)

VALUES (1);

The transaction in Session A acquires an exclusive lock (X
lock) and inserts a new row.

COMMIT;
The COMMIT statement in Session 1 ends the t ransaction and

releases its X lock.

SELECT C1 FROM T1;

C1

--

1

(1 rows)

SELECT C1 FROM T1;

C1

--

1

(1 rows)

New transactions in Sessions A and B use a SELECT

statement to see the new row previously created in Session

A. They acquire shared locks.

INSERT INTO T1 (C1)

VALUES (2);

The transaction in Session A is blocked from inserting

a row because it cannot upgrade to an X lock.

-50-

Concepts Guide

The advantage of SERIALIZABLE isolation is that it provides a consistent view. This is useful for

applications that require complex queries and updates. However, it reduces concurrency. For
example, it is not possible to perform queries during a bulk load.

Additionally, applications using SERIALIZABLE must be prepared to retry transactions due to
serialization failures. Serialization failures can occur due to deadlocks. When a deadlock occurs,
the transaction that is waiting for the lock automatically times out after five (5) minutes. The
following example illustrates a condition that can create a deadlock.

Session A Session B Description

SELECT C1 FROM T1;

C1

--

(0 rows)

SELECT C1 FROM T1;

C1

--

(0 rows)

Transactions in sessions A and B acquire shared locks on

table T1. Both transactions can read from T1.

INSERT INTO T1 (C1)

VALUES (1);

The transaction in Session A is blocked because it cannot

upgrade to an exclusive lock (X lock) on T1 unless the
transaction in Session B releases its lock on T1.

INSERT INTO T1 (C1)

VALUES (2);

The transaction in Session B is blocked because it cannot

acquire an exclusive lock (X lock) unless the transaction in
Session A releases its lock on T1. Neither session can

proceed because each one is waiting for the other.

 ROLLBACK
Vertica automatically breaks the deadlock by rolling back the
transaction in Session B and releasing the locks.

(1 rows)

COMMIT;

The transaction in session A is able to upgrade to an X lock

on T1 and insert the row.

Note: SERIALIZABLE isolation does not acquire locks on temporary tables, which are isolated

by their transaction scope.

-51-

International Languages and Character Sets

Vertica provides the following support for international languages and character sets:

 Unicode character encoding (page 51)

 Locales (page 51)

 String functions (page 52)

 String literals (character)

Unicode Character Encoding

Vertica stores character data in UTF-8. UTF-8 is an abbreviation for Unicode Transformation
Format-8 (where 8 equals 8-bit) and is a variable-length character encoding for Unicode created
by Ken Thompson and Rob Pike. UTF-8 can represent any universal character in the Unicode
standard, yet the initial encoding of byte codes and character assignments for UTF-8 is coincident
with ASCII (requiring little or no change for software that handles ASCII but preserves other
values).

All input data received by the database server is expected to be in UTF-8, and all data output by
Vertica is in UTF-8. The ODBC API operates on data in UCS-2, and JDBC and ADO.NET APIs
operate on data in UTF-16. The client drivers automatically convert data to (from) UTF-8 when
sending to (receiving from) the database server.

See Implement Locales for International Data Sets in the Administrator's Guide for details.

Locales

The locale is a parameter that defines the user's language, country, and any special variant
preferences, such as collation. Vertica uses the locale to determine the behavior of various string
functions as well for collation for various SQL commands that require ordering and comparison; for
example, GROUP BY, ORDER BY, joins, the analytic ORDER BY clause, and so forth.

By default, the locale for the database is en_US@collation=binary (English US). You can
establish a new default locale that is used for all sessions on the database, as well as override
individual sessions with different locales. Additionally the locale can be set through ODBC,
JDBC, and ADO.net.

See the following topics in the Administrator's Guidefor details:

 Implement Locales for International Data Sets

 Supported Locales in the Appendix

-52-

Concepts Guide

String Functions

Vertica provides string functions to support internationalization. Unless otherwise specified, these
string functions can optionally specify whether VARCHAR arguments should be interpreted as
octet (on page 69) (byte) sequences, or as (locale-aware) sequences of characters. This is
accomplished by adding "USING OCTETS" and "USING CHARACTERS" (default) as a
parameter to the function.

See String Functions in the SQL Reference Manual for details.

Character String Literals
By default, string literals ('...') treat back slashes literally, as specified in the SQL standard.

Tip: If you have used previous releases of Vertica and you do not want string literals to treat
back slashes literally (for example, you are using a back slash as part of an escape sequence),

you can turn off the StandardConformingStrings configuration parameter. See

Internationalization Parameters in the Administrator's Guide. You can also use the
EscapeStringWarning parameter to locate back slashes which have been incorporated into

string literals, in order to remove them.

See String Literals (Character) in the SQL Reference Manual for details.

-53-

Get Started

To get started using Vertica, follow the Tutorial presented in the Getting Started Guide. The tutorial
requires that you install Vertica on one or more hosts as described in the Installation Guide.

-54-

 54

Glossary

Many HTML links in the Glossary jump to the target term rather than displaying it in an expanding
block, as is common in the rest of the Vertica documentation. This is due to a limitation in the
HTML generator program, which does not handle circular references correctly.

Access rank

Determines the speed at which a column can be accessed. Columns are stored on disk from the
highest ranking to the lowest ranking in which the highest ranking columns are placed on the
fastest disks and the lowest ranking columns are placed on the slowest disks.

ACID

ACID (Atomicity, Consistency, Isolation, Durability) is a set of properties that guarantee that
database transactions are processed reliably, as follows:

 Atomicity — All of the tasks of a transaction are performed or none of them are. This means
that if the entire transaction succeeds, it is committed. If any part of the transaction fails, the
entire transaction fails and is rolled back.

 Consistency — Data integrity constraints are maintained. This ensures that the database
remains in a consistent state before the start of the transaction and after the transaction is over
(whether successful or not). Vertica provides limited constraint checking.

 Isolation — Concurrent transactions do not interact with one another.

 Durability — Short of catastrophic failure, the effects of committed transactions persist.

Administration host

The host on which the Vertica rpm package was manually installed. Always run the Administration
Tools on this host if possible.

Administration Tools

The tools needed for administering a Vertica database are provided in the form of a graphical user
interface that lets you perform various tasks quickly and easily. The tools also provide a
convenient way to connect to a database using vsql. Always run the Administration Tools on the
Administration Host if possible.

$ /opt/vertica/bin/adminTools

-55-

 Glossary

Note: Throughout the Vertica documentation, you might see Administration Tools referred to
as Admin Tools or admintools or adminTools. They all refer to the same utility.

AHM
Is the epoch prior to which historical data can be purged from physical storage. Abbreviated
throughout the documentation as AHM.

Anchor table
The anchor table of a join can be:

 A large (fact) table in a star schema

 The central fact table in a snowflake schema

 A dimension table in a snowflake schema that functions as a fact table (with a restriction
(page 77))

Ancient History Mark
Is the epoch prior to which historical data can be purged from physical storage. Abbreviated
throughout the documentation as AHM.

TM

An abbreviation for the Tuple Mover. The Tuple Mover (TM) is the database optimizer component
of Vertica that runs in the background. It moves data from memory (WOS) to disk (ROS),
combines small ROS containers into larger ones, and purges deleted data.

Authentication
The process of verifying the identity of a user attempting to connect to a database.

Authorization

The process of verifying that a user has permission to perform a certain operation, such as query
a specific table.

Blade server

Consists of some number of small servers, called blades, in a common chassis that allows blades
to share common components such as power supplies, cooling fans, and switching capabilities.

Bit
An abbreviation for binary digit and is the smallest unit of data in a computer. Bits have a single

binary value, 1 or 0, and these settings can be implemented as logical values (true or false) or as
a switch (on or off).

-56-

Concepts Guide

Computers generally store data and execute instructions in bit multiples called bytes. There are
eight bits in a byte.

Note: In some systems, the term octet is used for an eight-bit unit instead of byte.

Bitstring
A sequence of bits.

Byte

A basic unit of measurement of information storage in computers. In most systems a byte is made
up of of eight bits. Half a byte (four bits) is called a nibble.

Buddy projection

Required for K-safety. Two projections are considered to be buddies if they contain the same
columns and have the same range segmentation or hash segmentation, using different node
ordering. Buddy projections can have different sort orders for query performance purposes.

Bulk loading
A process of loading large amounts of data, such as an initial load of historic data.

C-Store

A research project at MIT, Brandeis, Brown, and the University of Massachusetts (Boston), on
which Vertica is based.

Cardinality
Refers to the number of unique values for a given column in a relational table:

 High cardinality — Refers to columns containing values that are highly unique, such as a
customer ID or an employee e-mail address. For example, in the Vertica VMart schema, the

employee_dimension table contains an employee_key column. This column contains
values that uniquely identify each employee. Since the values in this column are unique and
could be numerous, the column's cardinality type is referred to as high cardinality.

 Normal cardinality — Refers to columns containing values that are less unique, such as job
titles and street addresses. An example of a normal-cardinality column would be

employee_title or employee_first_name in the employee_dimension table, where
many employees could share the same job title or same first name.

 Low cardinality — Refers to a low number of unique values, relative to the overall number of

records in a table. For example, in the employee_dimension table, the column called

employee_gender would contain two unique values: 'Male' or 'Female'. Since there are only
two values possible in this column, cardinality is low.

-57-

 Glossary

Case-folded
Uppercase is converted to lowercase or lowercase is converted to uppercase.

Catalog

A set of files that contains information (metadata) about the objects in a database (nodes, tables,
constraints, projections, etc.) Vertica maintains a catalog on each node in the cluster.

Catalog path
A storage location used to store the database catalog.

Checkpoint
Every time the Tuple Mover performs a move-out operation for a given projection, it records a
Checkpoint Epoch for that projection, representing an epoch up to which the projection has no
data in the WOS. The minimum checkpoint epoch across all projections on that node is called the
node’s Checkpoint Epoch. It represents a point in time up to which all the data was moved out to

disk. If a K-safe=1 database experiences a single-node failure, the node's recovery process
attempts to rebuild the data beyond the Checkpoint Epochs from other nodes. If all nodes fail,
such as during a power outage, Vertica recovers the database back to the minimum Checkpoint
Epochs across all the nodes, known as the Last Good Epoch (LGE).

Cluster

Refers a collection of hosts (nodes) bound to a database. A cluster is not part of a database
definition and does not have a name.

Cold backup

Involves shutting down the Vertica database completely before backing it up. The advantage of a
cold backup is that it is the fastest way to perform a backup because it ensures that there are no
competing processes that require resources on the server. The disadvantage of a cold backup is
that the database must be shut down. Cold backups can be full or incremental.

Comprehensive design

Using the Database Designer, a comprehensive design creates a complete initial or replacement
design. If you have reasonably representative data, you can create a comprehensive design that
is optimized for storage and load. If you provide queries, the design is optimized for those queries.

-58-

Concepts Guide

Compression

The process of transforming data into a more compact format. Compressed data cannot be
directly processed; it must first be decompressed. Vertica uses integer packing for unencoded
integers and LZO for compressible data. Although compression is generally considered to be a
form of encoding, the terms have different meanings in Vertica.

Connection
A SQL connection is an occurrence of an interactive user or an application program requesting
and being granted access to a database through a network connection. In Vertica, the scope of a
connection is the same as that of a session.

Critical node

A critical node is a node a whose failure would cause the database to become unsafe and force a
shutdown. A node is critical when the loss of the node would result in:

 some data becoming unavailable.

 more than half the nodes in the cluster being down.

Critical nodes are listed in the V_MONITOR.CRITICAL_NODES system table.

CSV

Short for comma-separated values, another name for the comma-delimited format of data
representation. For example: Smith,Joe,555-4615.

Current epoch

The epoch into which data (COPY, INSERT, UPDATE, and DELETE operations) is currently being
written. The current epoch advances automatically every three minutes.

Data path
A storage location that contains actual database data files.

Data warehouse

A relational database that is designed for query and analysis rather than transaction processing.
Data warehouses:

 Are often subjected to a heavy load of periodic and ad hoc queries.

 Contain historical information that enables analysis of correlations and trends over long
periods of time.

 Integrate data from various production (transactional) databases. Extraction, transformation,
and loading (ETL) software converts the data to a common format and copies it into a data
warehouse at regular intervals.

-59-

 Glossary

 Typically consist of one or more star or snowflake schemas.

Database
A cluster of nodes that, when active, can perform distributed data storage and SQL statement
execution through administrative, interactive, and programmatic user interfaces.

Database administrator

Is the Linux user account that owns the database catalog and data storage on disk. The The
database administrator (DBA) can bypass all database authorization rules. However, the DBA
must supply a password to connect to a running database and to use Administration Tools
commands that affect a running database. The DBA can drop a stopped database without
supplying a password.

Database Designer

A tool that analyzes a logical schema definition, sample queries, and sample data, and creates a
physical schema (projections (see "Projection" on page 71)) in the form of a SQL script that you
deploy automatically or manually. The script creates a minimal set of superprojections to ensure
K-safety, and, optionally, pre-join projections. In most cases, the projections created by
theDatabase Designer provide excellent query performance within physical constraints. You can
also create custom designs if the Database Designer does not meet your needs.

Database superuser

The automatically-created database user who has the same name as the Linux database
administrator account and who can bypass all GRANT/REVOKE authorization, or any user that
has been granted the PSEUDOSUPERUSER role. Do not confuse the concept of a database
superuser with Linux superuser (root) privilege. A database superuser cannot have Linux
superuser privilege.

DBA

Is the Linux user account that owns the database catalog and data storage on disk. The The
database administrator (DBA) can bypass all database authorization rules. However, the DBA
must supply a password to connect to a running database and to use Administration Tools
commands that affect a running database. The DBA can drop a stopped database without
supplying a password.

DDL

SQL Data Definition Language generally consists of CREATE, ALTER, and DROP commands,
which operate on the logical schema metadata (tables, users, and so on)

DELTAVAL (delta encoding)
Stores only the differences between sequential data values instead of the values themselves.

-60-

Concepts Guide

Derived column

A column whose values are calculated by an expression at load time. The expression is specified
within the COPY statement, and the column exists in the target database.

Design

Specific to the Database Designer, a design is made up of parameters (K-safety, design policy,
and design type), projections, and queries. The design contains the design queries for which
designs are wanted, including query information tables and the design output tables.

Deterministic

Deterministic functions return the same result every time they are called if given the same input
values. For example, DATE_DIFF, ABS, and CEILING are deterministic functions.

Dialog

A Linux utility that creates user interfaces to shell scripts or other scripting languages, such as
perl. In Vertica 5.0, Dialog is used to implement the Administration Tools, which run in a terminal
window.

Dimension table

Sometimes called a lookup or reference table, a dimension table is one of a set of companion
tables to a large (fact/anchor) table in a star schema. It contains the PRIMARY KEY column
corresponding to the join columns in fact tables. For example, a business might use a dimension
table to contain item codes and descriptions.

Dimension tables can be connected to other dimension tables to form a hierarchy of dimensions in
a snowflake schema.

Dirty read

Occurs when one transaction reads uncommitted changes made by another concurrent
transaction. Vertica prevents dirty reads from occurring.

DML
SQL Data Manipulation Language generally consists of INSERT, UPDATE, and DELETE
commands, which modify existing data (single records or sets of records) in the logical schema.

Dynamic SQL

A programmatic interface to a database management system that lets SQL statements be defined
and run at run time, usually based on user input.

-61-

 Glossary

EOF

Is a condition in a computer operating system where no more data can be read from a data source.
It refers to end-of-file. The data source is usually called a file or stream.

Source: Wikipedia

Encoding

The process of transforming data from one format into another. In Vertica, encoded data can be
processed directly, which distinguishes it from compression. Vertica uses a number of different
encoding strategies, depending on column data type, table cardinality, and sort order.

Epoch
A logical unit of time in which a single change is made to data in the system.

Epoch map

A catalog object that provides mapping between time and epochs. Specifically, an epoch map
contains a list of epoch numbers and their associated timestamps.

ETL

(Extract, Transform, Load) is a process in data warehousing that involves extracting data from
outside sources, transforming it to fit a specific schema, and ultimately loading it into the database.

Executor node

Any node that participates in executing a specific SQL statement. The initiator node can, and
usually does, also function as an executor node.

Expression

The components of a query (columns, constants, functions) that compare one or more values
against other values. Expressions can perform calculations when they are combined using
arithmetic and/or logical operators and are generally used in a conditional statement.

External procedure
A procedure external to Vertica that you create, maintain, and store on the server.

Event series
Tables with a time column, most typically a timestamp data type.

-62-

Concepts Guide

Fact table

The table that represents quantitative or factual data. For example, in a business, a fact table
might represent orders.

A fact table is often located at the center of a star schema or snowflake schema and might also be
referred to as the anchor table. It typically has a large number of records and is surrounded by a
collection of dimension tables, each with fewer records. The fact table participates in a join with
every dimension table. It can contain data but generally contains many join columns (with optional
FOREIGN KEY constraints), each of which corresponds to the primary key column of a dimension
table.

FIFO

An acronym for First In/First Out, FIFO is an abstraction for organizing and manipulating data
relative to time and prioritization. The expression describes the principle of a queue processing
technique or servicing conflicting demands by ordering process by first-come, first-served (FCFS)
behavior: what comes in first is handled first, what comes in next waits until the first is finished, and
so on.

Source: Wikipedia

Foreign key

A column that is used to join a table to other tables to ensure referential integrity of the data. A
FOREIGN KEY constraint is a rule that states that a column can contain only values from the
PRIMARY KEY column on a specific table.

Flattening (subqueries and views)

Occurs when a subquery or named view is internally rewritten so the subquery is combined with
the outer query block. The result sets of the original and flattened queries are exactly the same,
but the flattened query usually benefits from significant performance improvements.

Full backup

Consists of copying each catalog and all the data files (ROS containers) on each node as well as
the complete /opt/vertica/config directory.

General pool

A special built-in pool that represents the total amount of RAM available to the resource manager
for use by queries. Other pools can borrow memory from the GENERAL pool. See also Built-in
Pools.

-63-

 Glossary

Grid computing

A software environment based on open standards and protocols that make it possible to share
disparate, loosely-coupled resources across organizations and geographies. Resources can
potentially include almost any component: computer cycles, storage spaces, databases,
applications, files, sensors, or scientific instruments.

Grouped ROS

Like a ROS, a Grouped ROS is a highly-optimized, read-oriented physical storage structure
organized by projection that makes heavy use of compression and indexing. However, a Grouped
ROS stores data for two or more grouped columns in one disk file.

Hash function

A reproducible method of converting data into a number that can serve as a digital fingerprint of
the data. Hash functions take up to 32 arguments, usually column names, and select a specific
node for each row, based on the values of the columns for that row. Use one of the built-in hash
functions to segment projections. These functions provide even distribution of data over a set of
nodes in a cluster.

Hash join

Are used only for equi-joins where hashed values are compared for equality, not for other
relationships.

Hash segmentation

Allows you to segment a projection based on a built-in hash function that provides even
distribution of data across some or all of the nodes in a cluster, resulting in optimal query
execution.

Hexadecimal

A numeral system with a base of 16. It uses sixteen distinct symbols: 0–9 (representing values
zero to nine) and A-F (representing values ten to fifteen). For example:

 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B, 0C, 0D, 0E, 0F, 10 ...

Each hexadecimal digit represents four binary digits (bits)—also called a nibble.

To convert the base-16 hexadecimal value 0xA0FF to its base-10 decimal equivalent,
hexadecimal progresses from right to left using the following places that represent a power of 16,
starting with 16^0:

 4096 256 16 1

 A 0 F F

Given that A=10 and F=15 in hex, the decimal result is calculated as follows:

 (10 x 4096) + (0 x 256) + (15 x 16) + (15 x 1) = 41215

-64-

Concepts Guide

Source: Wikipedia

Histogram

Provides a compact summary of large tables to permit efficient query planning. Histograms store
information about how the column's values are distributed within its range.

Historical data

Refers to any data in memory or physical storage other than the current epoch. It includes all
COPY, INSERT, UPDATE, and DELETE operations, including deleted rows. This allows Vertica
to run a historical query on data written up to and including the epoch representing the specified
date and time.

Historical query

Vertica can run a query from a snapshot of the database taken at a specific date and time. The
syntax is:

 AT TIME 'timestamp' SELECT...

The command queries all data in the database up to and including the epoch representing the
specified date and time, without holding a lock or blocking write operations. The specified
TIMESTAMP value must be greater than or equal to the Ancient History Mark epoch.

Host

A computer system with a 32-bit (non-production use only) or 64-bit Intel or AMD processor, RAM,
hard disk, and TCP/IP network interface (IP address and hostname). Hosts share neither disk
space nor main memory with each other.

Hot backup

Allows you to make a backup while the database is running and available to users. The advantage
of a hot backup is that the database can continue to handle normal requests while the database is
being backed up. The disadvantage of a hot backup is that it is slightly more complex to
implement. Hot backups can be full or incremental.

ICU

An abbreviation for International Components for Unicode, ICU is an open source library that
provides Unicode support.

ISO Week-Year
By definition, the ISO-8601 week starts on Monday, and the first week of a year contains January 4 of that
year. In other words, the first Thursday of a year is in week 1 of that year.

-65-

 Glossary

Because of this, it is possible for early January dates to be part of the 52nd or 53rd week of the previous
year. For example, 2005-01-01 is part of the 53rd week of year 2004, and 2006-01-01 is part of the 52nd

week of year 2005.

Incremental backup
Backs up only those files that have been added to the database since the last backup was
performed. Vertica supports incremental backups through file management utilities such as rsync.
This is possible because Vertica never modifies data files, it adds files to and deletes them from
the database. Once you have created a full backup, you can use your file management utility to
synchronize the backup with your database.

Initiator node

In the context of a client connection, the initiator node is the node associated with the specific host
to which the connection was made. The initiator node can, and usually does, also function as an
executor node.

Instance

An instance of Vertica consists of the running Vertica process and disk storage (catalog and data)
on a host. There can be only one instance of Vertica running on a host at any time.

Interpolation
The process of constructing new data points within a range of known data points.

Immutable (invariant) functions

When run with a given set of arguments, immutable functions always produces the same result.
The function is independent on any environment or session settings, such as locale. For example,
2+2 always equals 4. Another immutable function is AVG(). Some immutable functions can take
an optional stable argument; in this case they are treated as stable functions.

JDBC
An abbreviation for Java Database Connectivity, JDBC is a call-level application programming
interface (API) that provides connectivity between Java programs and data sources (SQL
databases and other non-relational data sources, such as spreadsheets or flat files). JDBC is
included in the Java 2 Standard and Enterprise editions.

-66-

Concepts Guide

K-Safety

K-safety is a measure of fault tolerance in the database cluster. The value K represents the
number of replicas of the data in the database that exist in the database cluster. These replicas
allow other nodes to take over for failed nodes, allowing the database to continue running while
still ensuring data integrity. If more than K nodes in the database fail, some of the data in the
database may become unavailable. In that case, the database is considered unsafe and
automatically shuts down.

It is possible for a Vertica database to have more than K nodes fail and still safely continue
running. The database continues to run as long as every data segment is available on at least one
functioning node in the cluster. Potentially, up to half the nodes in a database with a K-safety level
of 1 could fail without causing the database to shut down. As long as the data on each failed node
is available from another active node, the database continues to run.

Note: If half or more of the nodes in the database cluster fail, the database will automatically

shut down even if all of the data in the database is technically available from replicas. This
behavior prevents issues due to network partitioning.

In Vertica, the value of K can be zero (0), one (1), or two (2). The physical schema design must
meet certain requirements. To create designs that are K-safe, Vertica recommends using the
Database Designer (on page 59).

LGE

An abbreviation for Last Good Epoch. A term used in manual recovery, LGE (Last Good Epoch)
refers to the most recent epoch that can be recovered.

LZO

An abbreviation for Lempel-Ziv-Oberhumer, LZO is a data compression algorithm that focuses on
decompression speed. The algorithm is lossless, and the reference implementation is thread safe.

Last epoch

The last epoch is the current epoch minus one. SELECT statements under READ COMMITTED
isolation read from the last epoch.

Last Good Epoch

A term used in manual recovery, LGE (Last Good Epoch) refers to the most recent epoch that can
be recovered.

-67-

 Glossary

Locale

The locale is a parameter that defines the user's language, country, and any special variant
preferences, such as collation. Vertica uses the locale to determine the behavior of various string
functions as well for collation for various SQL commands that require ordering and comparison; for
example, GROUP BY, ORDER BY, joins, the analytic ORDER BY clause, and so forth.

By default, the locale for the database is en_US@collation=binary (English US). You can
establish a new default locale that is used for all sessions on the database, as well as override
individual sessions with different locales. Additionally the locale can be set through ODBC,
JDBC, and ADO.net.

Logical schema

Consists of a set of tables and referential integrity constraints in a Vertica database. The objects in
the logical schema are visible to SQL users. The logical schema does not include projections,
which make up the physical schema.

Man-in-the-middle attack

A network security breach in which a third party makes independent connections with a client and
server and relays messages between them, intercepting data throughout the process. Vertica
supports using SSL to avoid this type of attack.

Manual recovery

The process of recovery after an unclean shutdown of the database, where the administrator must
accept recovery from the Last Good Epoch (on page 66), which could lead to loss of some
recently loaded data. See Failure Recovery.

Materialized view

Similar to a standard SQL view with one major exception: The data is actually stored on disk rather
than computed each time the view is used in a query. A materialized view, then, must be refreshed
whenever the data in the underlying tables changes. A projection is a special case of a
materialized view.

Mergeout
A mergeout is the process of consolidating ROS containers and purging deleted records. Subsets
of the Read Optimized Store (ROS) and sometimes referred to as ROSs, ROS containers are
created by changes to the data stored within a projection as a result of bulk loads and DML. The
Tuple Mover periodically merges ROS containers to maximize performance.

-68-

Concepts Guide

Meta-functions

Used to query or change the internal state of Vertica and are not part of the SQL standard. Since
meta-functions access internal data structures, they cannot be called in DML, DDL, or SELECT
queries. See Vertica Functions in the SQL Reference Manual.

Metadata

Data that describes the data in a database, such as data type, compression, constraints, and so
forth, for each column in the tables. Metadata is stored in the Vertica catalog.

Moveout

The process of moving data from the WOS (Write Optimized Store), which is kept in memory, to
the ROS (Read Optimized Store), which is kept on disk. This operation is performed by the Tuple
Mover.

Multi-homed
A computer host that has multiple IP addresses to connected networks.

NaN

An abbreviation for Not A Number, "NaN" (disregarding case) is optionally followed by a sequence
of characters enclosed in parentheses. The character string specifies the value of NaN in an
implementation-dependent manner. The Vertica internal representation of NAN, for example, is
0xfff8000000000000LL on x86 machines.

Nibble

A four-bit aggregation (half a byte or half an octet) that can represent the decimal values 0 to 15
(16 distinct values). Since there are sixteen (24) possible values, a nibble corresponds to a single
hexadecimal digit and is sometimes referred to as a "hex digit" or "hexit".

The following is a 4-bit nibble:

1 0 0 1

Note: In some systems, the term octet is used for an eight-bit unit instead of byte

Source: Wikipedia

Node

A host configured to run an instance of Vertica. It is a member of a database cluster. For a
database to have the ability to recover from the failure of a node requires at least three nodes.
Vertica recommends that you use a minimum of four nodes.

-69-

 Glossary

Node definition

A metadata object that binds a host to a database. A node definition contains a symbolic node
name that is used to specify segmentation in projections.

Nondeterministic

Nondeterministic functions could return different results each time they are called, even when the
same input values are provided. For example, GETDATE and CURRENT_TIMESTAMP are
nondeterministic functions.

Non-repeatable read

Occurs in a READ COMMITTED isolation level when two identical queries in the same transaction
produce different results. This occurs when another transaction commits changes that alter the
results of the query after the first query has completed and before the second query has begun.

NUL
Represents a character whose ASCII/Unicode code is zero, sometimes qualified "ASCII NUL".

NULL
Means no value, and is true of a field (column) or constant but not of a character.

Octal

The base-8 number system that uses eight unique symbols (0, 1, 2, 3, 4, 5, 6, and 7), where each
digit represents three binary digits, starting from the right.

For example, the binary representation for decimal 74 is 0b1001010, which groups into 001 001
010 — so the octal representation is 112.

Whereas in decimal systems, each decimal place is a base of 10

 74 = 7 x 10^1 + 4 x 10^0

in octal numerals, each place is a power with base 8:

 112 = 1 x 8^2 + 1 x 8^1 + 2 x 8^0

By performing the octal calculation, you can see 112 (octal) = 64 + 8 + 2 = 74 (in decimal).

Though octal is sometimes used in computing, instead of hexadecimal, hexadecimal is generally
the more straightforward format and is used throughout the Vertica documentation.

Source: Wikipedia

Octet
A series of eight bits to form a single byte.

-70-

Concepts Guide

ODBC

An abbreviation for Open DataBase Connectivity, ODBC is a standard application programming
interface (API) for access to database management systems.

OLAP

An abbreviation for Online Analytical Processing, OLAP answers multi-dimensional SQL
analytical queries.

OLTP

An abbreviation for Online Transaction Processing, OLTP facilitates and manages real-time,
transaction-oriented applications, such as data entry and retrieval transactions, for
decision-support servers. OLTP technology is used in industries, such as financial services
(e-trading and e-banking), manufacturing and mail order (e-commerce and order processing)

Out-of-date
A projection is out-of-date if it requires a refresh to participate in query execution.

Partition key
A table column that specifies how the table is partitioned.

Partitioning

Specifies how data is organized within individual nodes. Logically, the partition clause is applied
after the segmented by clause.

Phantom read

Occurs in a READ COMMITTED isolation level when two identical queries in the same transaction
produce different collections of rows. This occurs because a table lock is not acquired on SELECT
during the initial query.

Physical schema

Consists of a set of projections used to store data on disk. The projections in the physical schema
are based on the objects in the logical schema.

Physical schema design

A usable K=1 design based on an analysis of the sample data files and queries (if available). The
physical schema design contains segmented (fact table) superprojections and replicated
(dimension table) superprojections. It might also contain pre-join projections.

-71-

 Glossary

Pinned projection

A projection for a temporary table that is only on the initiator node. It is neither segmented nor
replicated on other nodes.

Pre-join projection

A subset of query specific projections that are used to store the results of a join between a single
large (fact/anchor) table in the logical schema with one or more dimension tables. As with other
query-specific projections, Vertica calculates and stores a new result set each time data is
inserted or loaded into these tables. This provides a significant performance advantage over
joining tables when queries are run.

The result set of a pre-join projection is typically sorted for a specific query or commonalities in a
class of queries based on the query predicate. This provides optimal query performance.

Pre-join projections can have only inner joins between tables on their primary and foreign key
columns. Outer joins are not allowed in pre-join projections.

Predicate

Specify conditions that can be evaluated to SQL three-valued logic
http://en.wikipedia.org/wiki/Ternary_logic (3VL) Boolean truth values. Predicates are also
used to limit the effects of statements and queries.

Primary column
A column that is loaded from raw data, and not derived from an expression.

Primary key

A single column or combination of columns (called a compound key) that uniquely identifies each
row in a table. A PRIMARY KEY constraint contains unique, non-null values.

Projection

A special case of a materialized view that provides physical storage for data. A projection can
contain some or all of the columns of one or more tables. A projection that contains all of the
columns of a table is called a superprojection. A projection that joins one or more tables is called a
pre-join projection.

Projection set
A group of buddy projections that are safe for a given level of K-safety. (When K=1 there are two
buddies in a set; when K=2 there are three buddies.) A projection must be part of a projection set
before it is refreshed. Once a projection set is created (by creating buddies) the set is refreshed in
a single transaction.

http://en.wikipedia.org/wiki/Ternary_logic

-72-

Concepts Guide

Purge

Permanently removes deleted data from physical storage so that the disk space can be reused.
You can purge historical data up to and including the epoch in which the Ancient History Mark is
contained.

Query cluster level

Determines the number of sets used to group similar queries. The query cluster level can be any
integer from one (1) to the number of queries to be included in the physical schema design.

Queries are generally grouped based on the columns they access and the way in which they are
used. The following work loads typically use different types of queries and are placed in different
query clusters: drill downs, large aggregations, and large joins. For example, if a reporting tool and
dashboard both access the same database, the reporting tool is likely to use a drill down to access
a subset of data and the dashboard is likely to use a large aggregation to look across a large range
of data. In this case, there would be at least two (2) query clusters.

Query optimizer
The component that evaluates different strategies for running a query and picks the best one.

Query-specific design
Using the Database Designer, a query-specific design creates a design with additional projections
optimized for one or more queries that you provide to the design process.

Query-specific projection

Usually a custom pre-join projection designed to provide maximum performance for one or more
specific queries. The Administrator's Guide describes how to write custom projections.

RDBMS
An abbreviation for relational database management system.

RLE (Run Length Encoding)

The abbreviation for Run Length Encoding, RLE replaces sequences of the same data values
within a column by a single value and a count number.

-73-

 Glossary

RM

An abbreviation for Resource Manager. In a single-user environment, the system can devote all
resources to a single query and get the most efficient execution for that one query. However, in a
environment where several concurrent queries are expected to run at once, there is tension
between providing each query the maximum amount of resources (thereby getting fastest run time
for that query) and serving multiple queries simultaneously with a reasonable run time. The
Resource Manager (RM) provides options and controls for resolving this tension, while ensuring
that every query eventually gets serviced and that true system limits are respected at all times.

Range segmentation

Allows you to segment a projection based on a known range of values stored in a specific column
chosen to provide even distribution of data across a set of nodes, resulting in optimal query
execution.

Recovery
the process of restoring the database to a fully-functional state after one or more nodes in the
system has experienced a software or hardware related failure. Vertica recovers nodes by
querying replicas of the data stored on other nodes. For example, a hardware failure could cause
a node to lose database objects or to miss changes made to the database (INSERTs, UPDATEs,
and so on) while offline. When the node comes back online, it recovers lost objects and catches up
with changes by querying the other nodes.

Referential integrity

Consists of a set of constraints (logical schema objects) that define primary key and foreign key
columns.

 Each dimension table must have a PRIMARY KEY constraint.

 The fact table must contain columns that can be used to join the fact table to dimension tables.

 Fact table join columns must have FOREIGN KEY constraints in order to participate in pre-join
projections.

 Outer join queries produce the same results as the corresponding inner join query if there is a
FOREIGN KEY constraint on the outer table. Note that the inner table of the outer join query
must always have a PRIMARY KEY constraint on its join columns

Refresh
Ensures that all projections on a node are up-to-date (can participate in query execution). This
process could take a long time, depending on how much data is in the table(s).

Vertica internal operations (mergeout, refresh, and recovery) maintain partition separation except
in certain cases:

-74-

Concepts Guide

 Recovery of a projection when the buddy projection from which the partition is recovering is
identically sorted. If the projection is undergoing a full rebuild, it is recovered one ROS
container at a time. The projection ends up with a storage layout identical to its buddy and is,
therefore, properly segmented.

Note: In the case of a partial rebuild, all recovered data goes into a single ROS container and

must be partitioned manually.

 Manual tuple mover operations often output a single storage container, combining any existing
partitions; for example, after executing any of the PURGE() operations.

Replication
The Vertica process of storing identical copies of data across all nodes in a cluster.

Resource pool

A resource pool comprises a pre-allocated subset of the system resources, with an associated
queue. A resource pool is created using the CREATE RESOURCE POOL command as
described in the SQL Reference Manual.

Resource Manager

In a single-user environment, the system can devote all resources to a single query and get the
most efficient execution for that one query. However, in a environment where several concurrent
queries are expected to run at once, there is tension between providing each query the maximum
amount of resources (thereby getting fastest run time for that query) and serving multiple queries
simultaneously with a reasonable run time. The Resource Manager (RM) provides options and
controls for resolving this tension, while ensuring that every query eventually gets serviced and
that true system limits are respected at all times.

Role
A role groups together a set of privileges that can be assigned to a user or another role. You can
use roles to quickly grant or revoke privileges on multiple tables, schemas, functions or other
database entities to one or more users with a single command.

Vertica's implementation of roles conforms to the SQL Standard T331 for basic roles.

Rollback
Reverts data in a database to an earlier state by discarding any changes to the database state that
have been performed by a transaction's statements. In addition, it releases any locks that the
transaction might have held. A rollback can be done automatically in response to an error or
through an explicit ROLLBACK transaction.

-75-

 Glossary

Vertica supports transaction-level and statement-level rollbacks. A transaction-level rollback
discards all modifications made by a transaction. A statement-level rollback reverses just the
effects made by a particular statement. Most errors caused by a statement result in a
statement-level rollback to undo the effects of the erroneous statement. Vertica uses ERROR

messages to indicate this type of error. DDL errors, systemic failures, dead locks, and resource

constraints result in transaction-level rollback. Vertica uses ROLLBACK messages to indicate this
type of error.

ROS (Read Optimized Store)
An abbreviation for Read Optimized Store, ROS is a highly optimized, read-oriented, physical
storage structure that is organized by projection and that makes heavy use of compression and
indexing. You can use the COPY...DIRECT and INSERT (with /*+direct*/ hint) statements to load
data directly into the ROS.

Note: Vertica allows optional spaces before and after the plus sign in direct hints (e.g., between

the /* and the +).

ROS container

Subsets of the Read Optimized Store (ROS) and sometimes referred to as ROSs, ROS containers
are created by changes to the data stored within a projection as a result of bulk loads and DML.
The Tuple Mover periodically merges ROS containers to maximize performance.

RPM
A powerful package manager, which can be used to build, install, query, verify, update, and erase
individual software packages. A package consists of an archive of files and metadata used to
install and erase the archive files. The metadata includes helper scripts, file attributes, and
descriptive information about the package. Packages come in two varieties: binary packages,
used to encapsulate software to be installed, and source packages, containing the source code
and recipe necessary to produce binary packages.

Safe
A projection is safe if it has enough buddy projections for the current K-safety level.

SAN

An abbreviation for Storage Area Network, SAN is a dedicated hardware/software platform
consisting of networked servers that provide access to storage-related resources such as such as
disk array controllers. It provides high data transfer speeds similar to those used for internal disk
drives (ATA, SCSI, etc.) and is highly scalable.

-76-

Concepts Guide

Savepoint

A savepoint is a special mark inside a transaction that allows all commands run after the savepoint
was established to be rolled back, restoring the transaction to its former state in which the
savepoint was established.

Savepoints are useful when creating nested transactions. For example, a savepoint could be
created at the beginning of a subroutine. That way, the result of the subroutine could be rolled
back, if necessary.

Schema
Has several related meanings in Vertica:

 In SQL statements, a schema refers to named namespace for a logical schema.

 Logical schema refers to a set of tables and constraints.

 Physical schema refers to a set of projections.

 Star schema and snowflake schema.

Secure Shell

A set of standards and an associated network protocol that establishes a secure TCP/IP data
transmission channel between a local and a remote computer. Secure Shell (SSH) utilizes strong
encryption and authentication to ensure confidentiality, integrity, and authenticity of the transferred
data.

SSH is typically used to log in to a remote machine and run commands. Use SSH only between
two devices that are both under your own administration, when both devices are trustworthy.

Seed
The starting value used by a random number generation routine to create random numbers.

Segmentation

The horizontal partitioning of a projection so that it can be stored on multiple nodes in a database
cluster. The goal is to distribute physical data storage evenly across a database so that all nodes
can participate in query execution.

Note: Segmentation and partitioning are terms often used interchangeably for other

databases, but they have completely separate functions in Vertica, where partitioning specifies
how data is organized within individual nodes. Logically, the partition clause is applied after the
segmented by clause.

-77-

 Glossary

Select list
The list of expressions that appears after the SELECT keyword and before the FROM clause is
called the select list. The select list is where you specify the columns in the set of records you want
Vertica to return from one or more tables or views.

Session

An occurrence of a user interacting with a database through the use of SQL statements. A session
can be invoked using vsql or a JDBC application. In Vertica, the scope of a session is the same as
that of a connection.

Session-scoped data is preserved beyond the lifetime of a single transaction. The table is
truncated (all rows deleted) when you terminate a session.

Site

A deprecated term in Vertica that is used to mean node or host in some contexts, such as the
CREATE PROJECTION statement.

Snapshot isolation

Vertica can run any SQL query in snapshot isolation mode in order to obtain the fastest possible
execution. To be precise, snapshot isolation mode is actually a form of a historical query. The
syntax is:

AT EPOCH LATEST SELECT...

The command queries all data in the database up to but not including the current epoch without
holding a lock or blocking write operations, which could cause the query to miss rows loaded by
other users up to (but no more than) a specific number of minutes before execution.

Snowflake schema

The same as a star schema except that a dimension table can be normalized (hierarchically
decomposed) into additional dimension tables. Every dimension table participates in a 1::n join
with the fact table or another dimension table.

Spread

An open source toolkit used in Vertica to provide a high performance messaging service that is
resilient to network faults. Each running node in a database includes a Spread daemon in addition
to a Vertica process. Spread daemons start automatically when a database starts up for the first
time.

-78-

Concepts Guide

Sort-merge join

If both inputs are pre-sorted, merge joins do not have to do any pre-processing. Vertica uses the
term sort-merge join to refer to the case when one of the inputs must be sorted prior to the merge
join. Vertica sorts the inner input side but only if the outer input side is already sorted on the join
keys.

SQL
An abbreviation for Structured Query Language, SQL is a widely-used, industry standard data
definition and data manipulation language for relational databases.

SSH

An abbreviation for Secure Shell, SSH is a set of standards and an associated network protocol
that establishes a secure TCP/IP data transmission channel between a local and a remote
computer. Secure Shell (SSH) uses strong encryption and authentication to ensure confidentiality,
integrity, and authenticity of the transferred data.

SSH is typically used to log in to a remote machine and run commands. Use SSH only between
two devices that are both under your own administration, when both devices are trustworthy.

Stable functions

When run with a given set of arguments, stable functions produce the same result within a single
query or scan operation. However, a stable function could produce different results when issued
under a different environment, such as a change of locale and time zone. Expressions that could
give different results in the future are also stable, for example SYSDATE() or 'today'.

Star schema

Sometimes called a star join schema, a star schema is the simplest data warehouse schema. In a
star schema design there is a central fact table with a large number of records, optionally
surrounded by a collection of dimension tables, each with a lesser number of records. Every
dimension table participates in a 1::n join with the fact table.

Standalone resource pool

A pool that is configured such that it cannot borrow memory from the GENERAL pool. A
standalone pool has MEMORYSIZE = MAXMEMORYSIZE.

Storage location
A directory path used by Vertica to store catalog, actual data files or temporary data files.

-79-

 Glossary

Strict
Indicates that a function always returns null when any of its input arguments is null.

Superprojection
A projection that contains every column of a table in the logical schema. A table can have multiple
superprojections with different sort orders.

Superuser

The automatically-created database user who has the same name as the Linux database
administrator account and who can bypass all GRANT/REVOKE authorization, or any user that
has been granted the PSEUDOSUPERUSER role. Do not confuse the concept of a database
superuser with Linux superuser (root) privilege. A database superuser cannot have Linux
superuser privilege.

TM

An abbreviation for the Tuple Mover. The Tuple Mover (TM) is the database optimizer component
of Vertica that runs in the background. It moves data from memory (WOS) to disk (ROS),
combines small ROS containers into larger ones, and purges deleted data.

Table

In the relational model, a table (relation) is a set of data elements (values) organized into
horizontal rows (tuples) and vertical columns. A table has a specified number of columns but can
have any number of rows.

In Vertica, a table is a metadata-only entity referred to in queries. The physical representation of
data is a projection.

Temp location
A storage location used as temp space (page 79) by Vertica.

Temp space

Disk space temporarily occupied by temporary files created by certain query execution operations,
such as hash joins and sorts, in the case when they have to spill to disk. Such operations might
also be encountered during queries, recovery, refreshing projections, and so on. If a temp
location (on page 79) is provided to the database, Vertica uses it as temp space.

Transaction

A unit of work within a database management system that consists of an associated set of SQL
statements. Vertica supports Atomicity, Consistency, Isolation, and Durability (ACID) for SQL
transactions.

-80-

Concepts Guide

Transaction-scoped data is truncated (all rows deletes) after each COMMIT or rollback.

Tuple

A collection of data values corresponding conceptually to a row of a table, projection, or result set.
A tuple in Vertica does not have the same physical representation as in a traditional RDBMS; it is
a virtual entity that could have entirely different storage representations.

Tuple Mover

The Tuple Mover (TM) is the database optimizer component of Vertica that runs in the
background. It moves data from memory (WOS) to disk (ROS), combines small ROS containers
into larger ones, and purges deleted data.

UDP

An abbreviation for User Datagram Protocol, UDP is an Open Systems Interconnection (OSI)
transport layer protocol for client/server network applications based on Internet Protocol (IP). UDP
is the primary alternative to the Transmission Control Protocol (TCP) and is used to send
messages (datagrams), to other hosts on an IP network.

UTC

An abbreviation for Coordinated Universal Time (in English), UTC is the high-precision atomic
time standard that replaced Greenwich Mean Time on 1 January 1972 as the basis for the main
reference time scale or civil time in various regions. UTC is also referred to by the military and civil
aviation as Zulu time (Z).

UTF-8
UTF-8 is an abbreviation for Unicode Transformation Format-8 (where 8 equals 8-bit) and is a
variable-length character encoding for Unicode created by Ken Thompson and Rob Pike. UTF-8
can represent any universal character in the Unicode standard, yet the initial encoding of byte
codes and character assignments for UTF-8 is coincident with ASCII (requiring little or no change
for software that handles ASCII but preserves other values).

All input data received by the database server is expected to be in UTF-8, and all data output by
Vertica is in UTF-8. The ODBC API operates on data in UCS-2, and JDBC and ADO.NET APIs
operate on data in UTF-16. The client drivers automatically convert data to (from) UTF-8 when
sending to (receiving from) the database server.

Unary operator
An operation with a single input.

Up to date
See Up-to-date (page 81).

-81-

 Glossary

Up-to-date

A projection is up-to-date (or up to date) if it is eligible to participate in query execution. Projections
on empty tables are up-to-date upon creation. If the table has data loaded already, newly created
projections are marked not up-to-date until refreshed. If a projection is refreshed while a node is
down, that projection can be marked up-to-date even though it is missing data on one of the
nodes. This is because the node will build the data during the recovery process before
participating in queries.

User agent

A client application program used to access resources on networks such as the World Wide Web.
User agents include web browsers, search engine crawlers, PDAs, cell phones, and so forth.

View
A named logical relation specified by an associated query that can be accessed similarly to a table
in the FROM clause of a SQL statement. The results of the query are not stored but obtained on
the fly when the SQL referencing the view is executed.

Volatile functions

Regardless of the arguments or environment, volatile functions can return different results on
multiple invocations. RANDOM() is one example.

Volatility
Indicates whether a function returns the same output given the same input. There are 3 types:

 Immutable (page 65) (same output given same input)

 Stable (page 78) (same output within the same row)

 Volatile (page 81) (different output for each invocation, such as RANDOM())

vsql
vsql is a character-based, interactive, front-end utility that lets you type SQL statements and see
the results. It also provides a number of meta-commands and various shell-like features that
facilitate writing scripts and automating a variety of tasks.

Window (analytic)

A window specifies partitioning, ordering, and framing for an analytic function—important
elements that determine what data the analytic function takes as input with respect to the current

row. The window OVER() clause specifies that the analytic function operates on a query result set

(the rows that are returned after the FROM, WHERE, GROUP BY, and HAVING clauses have been

evaluated). You use then use the OVER() clause to define a moving window of data for every row
in a partition with certain analytic functions.

-82-

Concepts Guide

Workload Analyzer

A utility that intelligently monitors the performance of SQL queries and analyzes the system
workload history, resources, and configurations to identify underperforming queries and the root
causes of poor query performance. You interface with Workload Manager using the
ANALYZE_WORKLOAD() function, which returns a set of tuning recommendations.

Workload management
In a single-user environment, the system can devote all resources to a single query and get the
most efficient execution for that one query. However, in a environment where several concurrent
queries are expected to run at once, there is tension between providing each query the maximum
amount of resources (thereby getting fastest run time for that query) and serving multiple queries
simultaneously with a reasonable run time. The Resource Manager (RM) provides options and
controls for resolving this tension, while ensuring that every query eventually gets serviced and
that true system limits are respected at all times.

WOS (Write Optimized Store)

An abbreviation for Write Optimized Store, WOS is a memory-resident data structure into which
INSERT, UPDATE, DELETE, and COPY (without DIRECT hint) actions are recorded. Like the
ROS, the WOS is arranged by projection but it stores records without sorting, compression, or
indexing and thus supports very fast load speeds. The WOS organizes data by epoch and holds
uncommitted transaction data.

-83-

Index

A

About the Documentation • 2
Access rank • 55
ACID • 47, 48, 55
Acrobat • 6
Administration host • 35, 55
Administration Tools • 32, 34, 55
Adobe Acrobat • 6
AHM • 56
Anatomy of a Projection • 25
Anchor table • 56
Anchor Table • 24, 28
Ancient History Mark • 56
Authentication • 56
Authorization • 56
Automatic Rollback • 48

B

Bit • 57
Bitstring • 57
Blade server • 57
Bold text • 7
Braces • 7
Brackets • 7
Buddy projection • 57
Bulk loading • 57
Byte • 57

C

Cardinality • 58
Case-folded • 58
Catalog • 58
Catalog path • 58
Character String Literals • 53
Checkpoint • 58
Cluster • 59
Cold backup • 59
Colored bold text • 7
Column store • 11
Column Store Architecture with FlexStore • 14
Comprehensive design • 59
Compression • 11, 16, 59
Connection • 59
Copyright Notice • 91
Critical node • 39, 59

C-Store • 57
CSV • 60
Current epoch • 60

D

Data Encoding and Compression • 16
Data Loading and Modification • 43
Data path • 60
Data warehouse • 60
Database • 60
Database administrator • 35, 36, 60
Database Connections • 34
Database Designer • 17, 24, 32, 37, 61, 68
Database Security • 42
Database Setup • 32
Database superuser • 61
DBA • 61
DDL • 61
DELTAVAL (delta encoding) • 61
Derived column • 61
Design • 62
Deterministic • 62
Dialog • 62
Dimension table • 62
Dimensional Modeling • 22
Dirty read • 47, 62
DML • 62
Documentation • 6
Dynamic SQL • 62

E

Ellipses • 7
Encoding • 63
EOF • 63
Epoch • 63
Epoch map • 63
ETL • 63
Event series • 45, 64
Executor node • 63
Expression • 63
External procedure • 63

F

Fact table • 64
FIFO • 64
Flattening (subqueries and views) • 64
Foreign key • 64
Full backup • 64

-84-

Concepts Guide

G

General pool • 65
Get Started • 54
Glossary • 55
Grid computing • 65
Grouped ROS • 65

H

Hash function • 65
Hash join • 65
Hash segmentation • 65
Hexadecimal • 65
High Availability and Recovery • 17, 24
High Availability Through Projections • 24, 29
Histogram • 66
Historical data • 45, 66
Historical query • 66
Host • 21, 66
Hot backup • 67
How Projections are Created • 24
HTML • 6
Hybrid Storage Model • 19

I

ICU • 67
Immutable (invariant) functions • 68, 85
Incremental backup • 67
Indentation • 7
Initiator node • 67
INSERT • 43
Instance • 67
International Languages and Character Sets • 52
Interpolation • 67
ISO Week-Year • 67
Italic text • 7

J

JDBC • 68

K

K-Safety • 17, 24, 32, 37, 68

L

Last epoch • 69
Last Good Epoch • 69, 70
LGE • 68
Locale • 69

Locales • 52
Logical schema • 25, 37, 69
Logical Schema • 22
LZO • 69

M

Man-in-the-middle attack • 69
Manual recovery • 70
Materialized view • 22, 24, 70
Mergeout • 70
Metadata • 70
Meta-functions • 70
Monospace text • 7
Moveout • 70
Multi-homed • 70

N

NaN • 71
Nibble • 71
Node • 71
Node definition • 71
Nondeterministic • 71
Non-repeatable read • 47, 49, 71
NUL • 72
NULL • 72

O

Octal • 72
Octet • 53, 72
ODBC • 72
OLAP • 72
OLTP • 14, 73
Out-of-date • 73

P

Partition key • 73
Partitioning • 73
PDF • 6
Phantom read • 47, 49, 73
Physical Architecture • 21
Physical schema • 25, 37, 73
Physical Schema • 14, 17, 24, 37
Physical schema design • 73
Pinned projection • 74
Predicate • 74
Preface • 9
Pre-join projection • 26, 74
Primary column • 74

-85-

 Index

Primary key • 74
Printing Full Books • 4
Projection • 14, 32, 61, 74
Projection Concepts • 26
Projection Naming • 30
Projection Performance • 24, 26
Projection Segmentation • 27, 28, 29
Projection set • 75
Projections • 14, 24, 25, 26, 28, 29
Purge • 75

Q

Query cluster level • 75
Query Execution • 46
Query optimizer • 75
Query-specific design • 75
Query-specific projection • 26, 75

R

Range segmentation • 76
RDBMS • 14, 75
READ COMMITTED Isolation • 47, 48
Reading the Online Documentation • 2
Recovery • 76
Referential integrity • 22, 76
Refresh • 47, 77
Replication • 77
Resource Manager • 77
Resource pool • 77
RLE (Run Length Encoding) • 76
RM • 76
Role • 78
Rollback • 78
ROS (Read Optimized Store) • 19, 43, 78
ROS container • 78
RPM • 79

S

Safe • 79
SAN • 79
Savepoint • 79
Savepoints • 48
Schema • 79
Secure Shell • 80
Security • 42
Seed • 80
Segmentation • 80
Select list • 80
SERIALIZABLE Isolation • 47, 50

Session • 45, 47, 80
Shell script • 7
Site • 21, 81
Snapshot isolation • 81
Snowflake schema • 22, 56, 81
Sort-merge join • 81
Spread • 81
SQL • 81
SQL extensions • 45
SQL Overview • 45
SSH • 82
Stable functions • 82, 85
Standalone resource pool • 82
Star schema • 22, 82
Storage location • 82
Strict • 82
String Functions • 52, 53
Suggested Reading Paths • 2, 5
Superprojection • 24, 26, 27, 82
Superuser • 83
Support • 1
Syntax conventions • 7

T

Table • 83
Technical Support • 1, 4, 25, 37
Temp location • 83
Temp space • 83
The Administration Tools • 35
The Database Designer • 37
The Vertica Approach • 11
TM • 56, 83
Transaction • 43, 45, 47, 83
Transactions • 45, 47
Tuple • 47, 84
Tuple Mover • 19, 84
Typographical Conventions • 7

U

UDP • 84
Unary operator • 84
Unicode Character Encoding • 52
Up to date • 85
UPDATE • 43
Uppercase text • 7
Up-to-date • 85
User agent • 85
UTC • 84
UTF-8 • 84

-86-

Concepts Guide

V

Vertica Components • 13
Vertical line • 7
View • 85
Volatile functions • 85
Volatility • 85
vsql • 32, 85

W

Welcome to Vertica • 10
Where to Find Additional Information • 6
Where to Find the Vertica Documentation • 2
Window (analytic) • 86
Workload Analyzer • 86
Workload management • 86
Workload Management • 43
WOS (Write Optimized Store) • 19, 43, 86
WOS Overload • 43

-87-

Copyright Notice

Copyright© 2006-2011 Vertica, An HP Company, and its licensors. All rights reserved.

Vertica, An HP Company

8 Federal Street

Billerica, MA 01821

Phone: (978) 600-1000

Fax: (978) 600-1001

E-Mail: info@vertica.com

Web site: http://www.vertica.com
(http://www.vertica.com)

The software described in this copyright notice is furnished under a license and may be used or
copied only in accordance with the terms of such license. Vertica, An HP Company software
contains proprietary information, as well as trade secrets of Vertica, An HP Company, and is
protected under international copyright law. Reproduction, adaptation, or translation, in whole or in
part, by any means — graphic, electronic or mechanical, including photocopying, recording,
taping, or storage in an information retrieval system — of any part of this work covered by
copyright is prohibited without prior written permission of the copyright owner, except as allowed
under the copyright laws.

This product or products depicted herein may be protected by one or more U.S. or international
patents or pending patents.

Trademarks

Vertica™, the Vertica® Analytic Database™, and FlexStore™ are trademarks of Vertica, An HP Company.

Adobe®, Acrobat®, and Acrobat® Reader® are registered trademarks of Adobe Systems Incorporated.

AMD™ is a trademark of Advanced Micro Devices, Inc., in the United States and other countries.

DataDirect® and DataDirect Connect® are registered trademarks of Progress Software Corporation in the
U.S. and other countries.

Fedora™ is a trademark of Red Hat, Inc.

Intel® is a registered trademark of Intel.

Linux® is a registered trademark of Linus Torvalds.

Microsoft® is a registered trademark of Microsoft Corporation.

Novell® is a registered trademark and SUSE™ is a trademark of Novell, Inc., in the United States and other
countries.

Oracle® is a registered trademark of Oracle Corporation.

Red Hat® is a registered trademark of Red Hat, Inc.

VMware® is a registered trademark or trademark of VMware, Inc., in the United States and/or ot her
jurisdictions.

Other products mentioned may be trademarks or registered trademarks of their respective
companies.

mailto:info@vertica.com
http://www.vertica.com/
http://www.vertica.com/

-88-

Concepts Guide

Open Source Software Acknowledgments

Vertica makes no representations or warranties regarding any third party software. All third-party
software is provided or recommended by Vertica on an AS IS basis.

This product includes cryptographic software written by Eric Young (eay@cryptsoft.com).

ASMJIT

Copyright (c) 2008-2010, Petr Kobalicek <kobalicek.petr@gmail.com>

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

Boost

Boost Software License - Version 1.38 - February 8th, 2009

Permission is hereby granted, free of charge, to any person or organization obtaining a copy of the
software and accompanying documentation covered by this license (the "Software") to use,
reproduce, display, distribute, execute, and transmit the Software, and to prepare derivative works
of the Software, and to permit third-parties to whom the Software is furnished to do so, all subject
to the following:

The copyright notices in the Software and this entire statement, including the above license grant,
this restriction and the following disclaimer, must be included in all copies of the Software, in whole
or in part, and all derivative works of the Software, unless such copies or derivative works are
solely in the form of machine-executable object code generated by a source language processor.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE
LIABLE FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR
THE USE OR OTHER DEALINGS IN THE SOFTWARE.

mailto:eay@cryptsoft.com
mailto:kobalicek.petr@gmail.com

-89-

 Copyright Notice

bzip2

This file is a part of bzip2 and/or libbzip2, a program and library for lossless, block-sorting data
compression.

Copyright © 1996-2005 Julian R Seward. All rights reserved.

1 Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

2 Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

3 The origin of this software must not be misrepresented; you must not claim that you wrote the
original software. If you use this software in a product, an acknowledgment in the product
documentation would be appreciated but is not required.

4 Altered source versions must be plainly marked as such, and must not be misrepresented as
being the original software.

5 The name of the author may not be used to endorse or promote products derived from this
software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Julian Seward, Cambridge, UK.

jseward@bzip.org <mailto:jseward@bzip.org>

bzip2/libbzip2 version 1.0 of 21 March 2000

This program is based on (at least) the work of:

Mike Burrows

David Wheeler

Peter Fenwick

Alistair Moffat

Radioed Neal

Ian H. Witten

Robert Sedgewick

Jon L. Bentley

Daemonize

Copyright © 2003-2007 Brian M. Clapper.

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

mailto:jseward@bzip.org
mailto:jseward@bzip.org

-90-

Concepts Guide

 Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

 Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

 Neither the name of the clapper.org nor the names of its contributors may be used to endorse
or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Ganglia Open Source License

Copyright © 2001 by Matt Massie and The Regents of the University of California.

All rights reserved.

Permission to use, copy, modify, and distribute this software and its documentation for any
purpose, without fee, and without written agreement is hereby granted, provided that the above
copyright notice and the following two paragraphs appear in all copies of this software.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR
DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE
UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER
IS ON AN "AS IS" BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATION TO
PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

ICU (International Components for Unicode) License - ICU 1.8.1 and later

COPYRIGHT AND PERMISSION NOTICE

Copyright © 1995-2009 International Business Machines Corporation and others

All rights reserved.

-91-

 Copyright Notice

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, and/or sell
copies of the Software, and to permit persons to whom the Software is furnished to do so, provided
that the above copyright notice(s) and this permission notice appear in all copies of the Software
and that both the above copyright notice(s) and this permission notice appear in supporting
documentation.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY
RIGHTS. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS
NOTICE BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL
DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
THIS SOFTWARE.

Except as contained in this notice, the name of a copyright holder shall not be used in advertising
or otherwise to promote the sale, use or other dealings in this Software without prior written
authorization of the copyright holder.

All trademarks and registered trademarks mentioned herein are the property of their respective
owners.

jQuery

Copyright © 2009 John Resig, http://jquery.com/

All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

Keepalived Vertica IPVS (IP Virtual Server) Load Balancer

Copyright © 2007 Free Software Foundation, Inc.

http://fsf.org/

http://jquery.com/
http://fsf.org/

-92-

Concepts Guide

The keepalived software contained in the
VerticaIPVSLoadBalancer-5.0.x-0.RHEL5.x86_64.rpm software package is licensed

under the GNU General Public License ("GPL"). You are entitled to receive the source code for
such software. For no less than three years from the date you obtained this software package, you
may download a copy of the source code for the software in this package licensed under the GPL
at no charge by visiting http://www.vertica.com/licenses/keepalived-1.1.17.tar.gz
http://www.vertica.com/licenses/keepalived-1.1.17.tar.gz. You may download this source
code so that it remains separate from other software on your computer system.

Lighttpd Open Source License

Copyright © 2004, Jan Kneschke, incremental

All rights reserved.

1 Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

2 Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

3 Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

4 Neither the name of the 'incremental' nor the names of its contributors may be used to endorse
or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

MersenneTwister.h

Copyright © 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,

Copyright © 2000 - 2009, Richard J. Wagner

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1 Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

2 Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

http://www.vertica.com/licenses/keepalived-1.1.17.tar.gz
http://www.vertica.com/licenses/keepalived-1.1.17.tar.gz

-93-

 Copyright Notice

3 The names of its contributors may not be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

MIT Kerberos

Copyright © 1985-2007 by the Massachusetts Institute of Technology.

Export of software employing encryption from the United States of America may require a specific
license from the United States Government. It is the responsibility of any person or organization
contemplating export to obtain such a license before exporting.

WITHIN THAT CONSTRAINT, permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted, provided that the above
copyright notice appear in all copies and that both that copyright notice and this permission notice
appear in supporting documentation, and that the name of M.I.T. not be used in advertising or
publicity pertaining to distribution of the software without specific, written prior permission.
Furthermore if you modify this software you must label your software as modified software and not
distribute it in such a fashion that it might be confused with the original MIT software. M.I.T. makes
no representations about the suitability of this software for any purpose. It is provided ―as is‖
without express or implied warranty.

Individual source code files are copyright MIT, Cygnus Support, Novell, OpenVision Technologies,
Oracle, Red Hat, Sun Microsystems, FundsXpress, and others.

Project Athena, Athena, Athena MUSE, Discuss, Hesiod, Kerberos, Moira, and Zephyr are
trademarks of the Massachusetts Institute of Technology (MIT). No commercial use of these
trademarks may be made without prior written permission of MIT.

―Commercial use‖ means use of a name in a product or other for-profit manner. It does NOT
prevent a commercial firm from referring to the MIT trademarks in order to convey information
(although in doing so, recognition of their trademark status should be given).

Portions of src/lib/crypto have the following copyright:

Copyright © 1998 by the FundsXpress, INC.

All rights reserved.

Export of this software from the United States of America may require a specific license from the
United States Government. It is the responsibility of any person or organization contemplating
export to obtain such a license before exporting.

-94-

Concepts Guide

WITHIN THAT CONSTRAINT, permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted, provided that the above
copyright notice appear in all copies and that both that copyright notice and this permission notice
appear in supporting documentation, and that the name of FundsXpress. not be used in
advertising or publicity pertaining to distribution of the software without specific, written prior
permission. FundsXpress makes no representations about the suitability of this software for any
purpose. It is provided ―as is‖ without express or implied warranty.

THIS SOFTWARE IS PROVIDED ―AS IS‖ AND WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.

The implementation of the AES encryption algorithm in src/lib/crypto/aes has the following
copyright:

Copyright © 2001, Dr Brian Gladman <brg@gladman.uk.net>, Worcester, UK.
All rights reserved.

LICENSE TERMS

The free distribution and use of this software in both source and binary form is allowed (with or
without changes) provided that:

1 Distributions of this source code include the above copyright notice, this list of conditions and
the following disclaimer.

2 Distributions in binary form include the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other associated materials.

3 The copyright holder's name is not used to endorse products built using this software without
specific written permission.

DISCLAIMER

This software is provided 'as is' with no explicit or implied warranties in respect of any properties,
including, but not limited to, correctness and fitness for purpose.

The implementations of GSSAPI mechglue in GSSAPI-SPNEGO in src/lib/gssapi, including the
following files:

 lib/gssapi/generic/gssapi_err_generic.et

 lib/gssapi/mechglue/g_accept_sec_context.c

 lib/gssapi/mechglue/g_acquire_cred.c

 lib/gssapi/mechglue/g_canon_name.c

 lib/gssapi/mechglue/g_compare_name.c

 lib/gssapi/mechglue/g_context_time.c

 lib/gssapi/mechglue/g_delete_sec_context.c

 lib/gssapi/mechglue/g_dsp_name.c

 lib/gssapi/mechglue/g_dsp_status.c

 lib/gssapi/mechglue/g_dup_name.c

 lib/gssapi/mechglue/g_exp_sec_context.c

 lib/gssapi/mechglue/g_export_name.c

 lib/gssapi/mechglue/g_glue.c

 lib/gssapi/mechglue/g_imp_name.c

mailto:brg@gladman.uk.net

-95-

 Copyright Notice

 lib/gssapi/mechglue/g_imp_sec_context.c

 lib/gssapi/mechglue/g_init_sec_context.c

 lib/gssapi/mechglue/g_initialize.c

 lib/gssapi/mechglue/g_inquire_context.c

 lib/gssapi/mechglue/g_inquire_cred.c

 lib/gssapi/mechglue/g_inquire_names.c

 lib/gssapi/mechglue/g_process_context.c

 lib/gssapi/mechglue/g_rel_buffer.c

 lib/gssapi/mechglue/g_rel_cred.c

 lib/gssapi/mechglue/g_rel_name.c

 lib/gssapi/mechglue/g_rel_oid_set.c

 lib/gssapi/mechglue/g_seal.c

 lib/gssapi/mechglue/g_sign.c

 lib/gssapi/mechglue/g_store_cred.c

 lib/gssapi/mechglue/g_unseal.c

 lib/gssapi/mechglue/g_userok.c

 lib/gssapi/mechglue/g_utils.c

 lib/gssapi/mechglue/g_verify.c

 lib/gssapi/mechglue/gssd_pname_to_uid.c

 lib/gssapi/mechglue/mglueP.h

 lib/gssapi/mechglue/oid_ops.c

 lib/gssapi/spnego/gssapiP_spnego.h

 lib/gssapi/spnego/spnego_mech.c

are subject to the following license:

Copyright © 2004 Sun Microsystems, Inc.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the ―Software‖), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED ―AS IS‖, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

Npgsql-.Net Data Provider for Postgresql

Copyright © 2002-2008, The Npgsql Development Team

Permission to use, copy, modify, and distribute this software and its documentation for any
purpose, without fee, and without a written agreement is hereby granted, provided that the above
copyright notice and this paragraph and the following two paragraphs appear in all copies.

-96-

Concepts Guide

IN NO EVENT SHALL THE NPGSQL DEVELOPMENT TEAM BE LIABLE TO ANY PARTY FOR
DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING
LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS
DOCUMENTATION, EVEN IF THE NPGSQL DEVELOPMENT TEAM HAS BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.

THE NPGSQL DEVELOPMENT TEAM SPECIFICALLY DISCLAIMS ANY WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER
IS ON AN "AS IS" BASIS, AND THE NPGSQL DEVELOPMENT TEAM HAS NO OBLIGATIONS
TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR
MODIFICATIONS.

Open LDAP

The OpenLDAP Public License

Version 2.8, 17 August 2003

Redistribution and use of this software and associated documentation ("Software"), with or without
modification, are permitted provided that the following conditions are met:

1 Redistributions in source form must retain copyright statements and notices,

2 Redistributions in binary form must reproduce applicable copyright statements and notices,
this list of conditions, and the following disclaimer in the documentation and/or other materials
provided with the distribution, and

3 Redistributions must contain a verbatim copy of this document.

The OpenLDAP Foundation may revise this license from time to time. Each revision is
distinguished by a version number. You may use this Software under terms of this license
revision or under the terms of any subsequent revision of the license.

THIS SOFTWARE IS PROVIDED BY THE OPENLDAP FOUNDATION AND ITS
CONTRIBUTORS ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OPENLDAP
FOUNDATION, ITS CONTRIBUTORS, OR THE AUTHOR(S) OR OWNER(S) OF THE
SOFTWARE BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

The names of the authors and copyright holders must not be used in advertising or otherwise to
promote the sale, use or other dealing in this Software without specific, written prior permission.
Title to copyright in this Software shall at all times remain with copyright holders.

OpenLDAP is a registered trademark of the OpenLDAP Foundation.

Copyright 1999-2003 The OpenLDAP Foundation, Redwood City, California, USA. All Rights Reserved.
Permission to copy and distribute verbatim copies of this document is granted.

-97-

 Copyright Notice

Open SSL

OpenSSL License

Copyright © 1998-2008 The OpenSSL Project. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1 Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

2 Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

3 All advertising materials mentioning features or use of this software must display the following
acknowledgment: "This product includes software developed by the OpenSSL Project for use
in the OpenSSL Toolkit. (http://www.openssl.org/)"

4 The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to endorse or
promote products derived from this software without prior written permission. For written
permission, please contact openssl-core@openssl.org.

5 Products derived from this software may not be called "OpenSSL" nor may "OpenSSL" appear
in their names without prior written permission of the OpenSSL Project.

6 Redistributions of any form whatsoever must retain the following acknowledgment: "This
product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit
(http://www.openssl.org/)"

THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ̀ `AS IS'' AND ANY EXPRESSED
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR ITS CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

PCRE LICENCE

PCRE is a library of functions to support regular expressions whose syntax and semantics are as
close as possible to those of the Perl 5 language.

Release 8 of PCRE is distributed under the terms of the "BSD" licence, as specified below. The
documentation for PCRE, supplied in the "doc" directory, is distributed under the same terms as
the software itself.

The basic library functions are written in C and are freestanding. Also included in the distribution is
a set of C++ wrapper functions.

THE BASIC LIBRARY FUNCTIONS

Written by: Philip Hazel

http://www.openssl.org/
mailto:openssl-core@openssl.org
http://www.openssl.org/

-98-

Concepts Guide

Email local part: ph10

Email domain: cam.ac.uk

University of Cambridge Computing Service,

Cambridge, England.

Copyright (c) 1997-2010 University of Cambridge

All rights reserved.

THE C++ WRAPPER FUNCTIONS

Contributed by: Google Inc.

Copyright (c) 2007-2010, Google Inc.

All rights reserved.

THE "BSD" LICENCE

 Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

 Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

 Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

Neither the name of the University of Cambridge nor the name of Google Inc. nor the names of
their contributors may be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF ERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

End

Perl Artistic License

Copyright © August 15, 1997

Preamble

The intent of this document is to state the conditions under which a Package may be copied, such
that the Copyright Holder maintains some semblance of artistic control over the development of
the package, while giving the users of the package the right to use and distribute the Package in a
more-or-less customary fashion, plus the right to make reasonable modifications.

-99-

 Copyright Notice

Definitions

"Package" refers to the collection of files distributed by the Copyright Holder, and derivatives of
that collection of files created through textual modification.

"Standard Version" refers to such a Package if it has not been modified, or has been modified in
accordance with the wishes of the Copyright Holder as specified below.

"Copyright Holder" is whoever is named in the copyright or copyrights for the package.

"You" is you, if you're thinking about copying or distributing this Package.

"Reasonable copying fee" is whatever you can justify on the basis of media cost, duplication
charges, time of people involved, and so on. (You will not be required to justify it to the Copyright
Holder, but only to the computing community at large as a market that must bear the fee.)

"Freely Available" means that no fee is charged for the item itself, though there may be fees
involved in handling the item. It also means that recipients of the item may redistribute it under the
same conditions they received it.

1 You may make and give away verbatim copies of the source form of the Standard Version of
this Package without restriction, provided that you duplicate all of the original copyright notices
and associated disclaimers.

2 You may apply bug fixes, portability fixes and other modifications derived from the Public
Domain or from the Copyright Holder. A Package modified in such a way shall still be
considered the Standard Version.

3 You may otherwise modify your copy of this Package in any way, provided that you insert a
prominent notice in each changed file stating how and when you changed that file, and
provided that you do at least ONE of the following:

4 place your modifications in the Public Domain or otherwise make them Freely Available, such
as by posting said modifications to Usenet or an equivalent medium, or placing the
modifications on a major archive site such as uunet.uu.net, or by allowing the Copyright Holder
to include your modifications in the Standard Version of the Package.

1. use the modified Package only within your corporation or organization.

2. rename any non-standard executables so the names do not conflict with standard
executables, which must also be provided, and provide a separate manual page for each
non-standard executable that clearly documents how it differs from the Standard Version.

3. make other distribution arrangements with the Copyright Holder.

5 You may distribute the programs of this Package in object code or executable form, provided
that you do at least ONE of the following:

1. distribute a Standard Version of the executables and library files, together with instructions
(in the manual page or equivalent) on where to get the Standard Version.

2. accompany the distribution with the machine-readable source of the Package with your
modifications.

3. give non-standard executables non-standard names, and clearly document the
differences in manual pages (or equivalent), together with instructions on where to get the
Standard Version.

4. make other distribution arrangements with the Copyright Holder.

-100-

Concepts Guide

6 You may charge a reasonable copying fee for any distribution of this Package. You may
charge any fee you choose for support of this Package. You may not charge a fee for this
Package itself. However, you may distribute this Package in aggregate with other (possibly
commercial) programs as part of a larger (possibly commercial) software distribution provided
that you do not advertise this Package as a product of your own. You may embed this
Package's interpreter within an executable of yours (by linking); this shall be construed as a
mere form of aggregation, provided that the complete Standard Version of the interpreter is so
embedded.

7 The scripts and library files supplied as input to or produced as output from the programs of
this Package do not automatically fall under the copyright of this Package, but belong to
whomever generated them, and may be sold commercially, and may be aggregated with this
Package. If such scripts or library files are aggregated with this Package via the so-called
"undump" or "unexec" methods of producing a binary executable image, then distribution of
such an image shall neither be construed as a distribution of this Package nor shall it fall under
the restrictions of Paragraphs 3 and 4, provided that you do not represent such an executable
image as a Standard Version of this Package.

8 C subroutines (or comparably compiled subroutines in other languages) supplied by you and
linked into this Package in order to emulate subroutines and variables of the language defined
by this Package shall not be considered part of this Package, but are the equivalent of input as
in Paragraph 6, provided these subroutines do not change the language in any way that would
cause it to fail the regression tests for the language.

9 Aggregation of this Package with a commercial distribution is always permitted provided that
the use of this Package is embedded; that is, when no overt attempt is made to make this
Package's interfaces visible to the end user of the commercial distribution. Such use shall not
be construed as a distribution of this Package.

10 The name of the Copyright Holder may not be used to endorse or promote products derived
from this software without specific prior written permission.

THIS PACKAGE IS PROVIDED "AS IS" AND WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.

The End

Pexpect

Copyright © 2010 Noah Spurrier

Credits: Noah Spurrier, Richard Holden, Marco Molteni, Kimberley Burchett, Robert Stone,
Hartmut Goebel, Chad Schroeder, Erick Tryzelaar, Dave Kirby, Ids vander Molen, George
Todd, Noel Taylor, Nicolas D. Cesar, Alexander Gattin, Geoffrey Marshall, Francisco
Lourenco, Glen Mabey, Karthik Gurusamy, Fernando Perez, Corey Minyard, Jon Cohen,
Guillaume Chazarain, Andrew Ryan, Nick Craig-Wood, Andrew Stone, Jorgen Grahn (Let me
know if I forgot anyone.)

Free, open source, and all that good stuff.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:

-101-

 Copyright Notice

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

PHP License

The PHP License, version 3.01

Copyright © 1999 - 2009 The PHP Group. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, is permitted
provided that the following conditions are met:

1 Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

2 Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

3 The name "PHP" must not be used to endorse or promote products derived from this software
without prior written permission. For written permission, please contact group@php.net.

4 Products derived from this software may not be called "PHP", nor may "PHP" appear in their
name, without prior written permission from group@php.net. You may indicate that your
software works in conjunction with PHP by saying "Foo for PHP" instead of calling it "PHP Foo"
or "phpfoo"

5 The PHP Group may publish revised and/or new versions of the license from time to time.
Each version will be given a distinguishing version number.

 Once covered code has been published under a particular version of the license, you may always

continue to use it under the terms of that version. You may also choose to use such covered code under
the terms of any subsequent version of the license published by the PHP Group. No one other than the
PHP Group has the right to modify the terms applicable to covered code created under this
License.

6 Redistributions of any form whatsoever must retain the following acknowledgment:

"This product includes PHP software, freely available from <http://www.php.net/software/>".

THIS SOFTWARE IS PROVIDED BY THE PHP DEVELOPMENT TEAM ``AS IS'' AND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE PHP DEVELOPMENT TEAM OR ITS
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

mailto:group@php.net
mailto:group@php.net
http://www.php.net/software/

-102-

Concepts Guide

This software consists of voluntary contributions made by many individuals on behalf of the PHP
Group.

The PHP Group can be contacted via Email at group@php.net.

For more information on the PHP Group and the PHP project, please see <http://www.php.net>.

PHP includes the Zend Engine, freely available at <http://www.zend.com>.

PostgreSQL

This product uses the PostgreSQL Database Management System(formerly known as Postgres,
then as Postgres95)

Portions Copyright © 1996-2005, The PostgreSQL Global Development Group

Portions Copyright © 1994, The Regents of the University of California

Permission to use, copy, modify, and distribute this software and its documentation for any
purpose, without fee, and without a written agreement is hereby granted, provided that the above
copyright notice and this paragraph and the following two paragraphs appear in all copies.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR
DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING
LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS
DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER
IS ON AN "AS IS" BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATIONS TO
PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

Psqlodbc

The client drivers for Vertica Analytic Database use psqlodbc library, the Postgresql ODBC driver.

License:

This package is free software; you can redistribute it and/or modify it under the terms of the GNU
Lesser General Public License as published by the Free Software Foundation; either version 2 of
the License, or (at your option) any later version.

This package is distributed in the hope that it is useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with this
package; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
02110-1301 USA

The complete source code of the library and complete text of the GNU Lesser General Public
License can be obtained by contacting Vertica support.

mailto:group@php.net
http://www.php.net/
http://www.zend.com/

-103-

 Copyright Notice

Python 2.7

This is the official license for the Python 2.7 release:

A. HISTORY OF THE SOFTWARE

Python was created in the early 1990s by Guido van Rossum at Stichting Mathematisch Centrum
(CWI, see http://www.cwi.nl) in the Netherlands as a successor of a language called ABC. Guido
remains Python's principal author, although it includes many contributions from others.

In 1995, Guido continued his work on Python at the Corporation for National Research Initiatives
(CNRI, see http://www.cnri.reston.va.us) in Reston, Virginia where he released several versions of
the software.

In May 2000, Guido and the Python core development team moved to BeOpen.com to form the
BeOpen PythonLabs team. In October of the same year, the PythonLabs team moved to Digital
Creations (now Zope Corporation, see http://www.zope.com). In 2001, the Python Software
Foundation (PSF, see http://www.python.org/psf/) was formed, a non-profit organization created
specifically to own Python-related Intellectual Property. Zope Corporation is a sponsoring
member of the PSF.

All Python releases are Open Source (see http://www.opensource.org for the Open Source
Definition). Historically, most, but not all, Python releases have also been GPL-compatible; the
table below summarizes the various releases.

 Release Derived Year Owner GPL-

 from compatible? (1)

 0.9.0 thru 1.2 1991-1995 CWI yes

 1.3 thru 1.5.2 1.2 1995-1999 CNRI yes

 1.6 1.5.2 2000 CNRI no

 2.0 1.6 2000 BeOpen.com no

 1.6.1 1.6 2001 CNRI yes (2)

 2.1 2.0+1.6.1 2001 PSF no

 2.0.1 2.0+1.6.1 2001 PSF yes

 2.1.1 2.1+2.0.1 2001 PSF yes

 2.2 2.1.1 2001 PSF yes

 2.1.2 2.1.1 2002 PSF yes

 2.1.3 2.1.2 2002 PSF yes

 2.2.1 2.2 2002 PSF yes

 2.2.2 2.2.1 2002 PSF yes

 2.2.3 2.2.2 2003 PSF yes

 2.3 2.2.2 2002-2003 PSF yes

 2.3.1 2.3 2002-2003 PSF yes

 2.3.2 2.3.1 2002-2003 PSF yes

 2.3.3 2.3.2 2002-2003 PSF yes

 2.3.4 2.3.3 2004 PSF yes

 2.3.5 2.3.4 2005 PSF yes

 2.4 2.3 2004 PSF yes

 2.4.1 2.4 2005 PSF yes

 2.4.2 2.4.1 2005 PSF yes

 2.4.3 2.4.2 2006 PSF yes

 2.5 2.4 2006 PSF yes

 2.7 2.6 2010 PSF yes

Footnotes:

http://www.cwi.nl/
http://www.cnri.reston.va.us/
http://www.zope.com/
http://www.python.org/psf/
http://www.opensource.org/

-104-

Concepts Guide

1 GPL-compatible doesn't mean that we're distributing Python under the GPL. All Python
licenses, unlike the GPL, let you distribute a modified version without making your changes
open source. The GPL-compatible licenses make it possible to combine Python with other
software that is released under the GPL; the others don't.

2 According to Richard Stallman, 1.6.1 is not GPL-compatible, because its license has a choice
of law clause. According to CNRI, however, Stallman's lawyer has told CNRI's lawyer that
1.6.1 is "not incompatible" with the GPL.

Thanks to the many outside volunteers who have worked under Guido's direction to make these
releases possible.

B. TERMS AND CONDITIONS FOR ACCESSING OR OTHERWISE USING PYTHON

PYTHON SOFTWARE FOUNDATION LICENSE VERSION 2

--

1 This LICENSE AGREEMENT is between the Python Software Foundation ("PSF"), and the
Individual or Organization ("Licensee") accessing and otherwise using this software ("Python")
in source or binary form and its associated documentation.

2 Subject to the terms and conditions of this License Agreement, PSF hereby grants Licensee a
nonexclusive, royalty-free, world-wide license to reproduce, analyze, test, perform and/or
display publicly, prepare derivative works, distribute, and otherwise use Python alone or in any
derivative version, provided, however, that PSF's License Agreement and PSF's notice of
copyright, i.e., "Copyright (c) 2001, 2002, 2003, 2004, 2005, 2006 Python Software
Foundation; All Rights Reserved" are retained in Python alone or in any derivative version
prepared by Licensee.

3 In the event Licensee prepares a derivative work that is based on or incorporates Python or
any part thereof, and wants to make the derivative work available to others as provided herein,
then Licensee hereby agrees to include in any such work a brief summary of the changes
made to Python.

4 PSF is making Python available to Licensee on an "AS IS" basis. PSF MAKES NO
REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, PSF MAKES NO AND DISCLAIMS ANY
REPRESENTATION OR WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY
PARTICULAR PURPOSE OR THAT THE USE OF PYTHON WILL NOT INFRINGE ANY
THIRD PARTY RIGHTS.

5 PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT
OF MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON, OR ANY
DERIVATIVE THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6 This License Agreement will automatically terminate upon a material breach of its terms and
conditions.

7 Nothing in this License Agreement shall be deemed to create any relationship of agency,
partnership, or joint venture between PSF and Licensee. This License Agreement does not
grant permission to use PSF trademarks or trade name in a trademark sense to endorse or
promote products or services of Licensee, or any third party.

8 By copying, installing or otherwise using Python, Licensee agrees to be bound by the terms
and conditions of this License Agreement.

-105-

 Copyright Notice

BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0

BEOPEN PYTHON OPEN SOURCE LICENSE AGREEMENT VERSION 1

1 This LICENSE AGREEMENT is between BeOpen.com ("BeOpen"), having an office at 160
Saratoga Avenue, Santa Clara, CA 95051, and the Individual or Organization ("Licensee")
accessing and otherwise using this software in source or binary form and its associated
documentation ("the Software").

2 Subject to the terms and conditions of this BeOpen Python License Agreement, BeOpen
hereby grants Licensee a non-exclusive, royalty-free, world-wide license to reproduce,
analyze, test, perform and/or display publicly, prepare derivative works, distribute, and
otherwise use the Software alone or in any derivative version, provided, however, that the
BeOpen Python License is retained in the Software, alone or in any derivative version
prepared by Licensee.

3 BeOpen is making the Software available to Licensee on an "AS IS" basis. BEOPEN MAKES
NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, BEOPEN MAKES NO AND DISCLAIMS ANY
REPRESENTATION OR WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY
PARTICULAR PURPOSE OR THAT THE USE OF THE SOFTWARE WILL NOT INFRINGE
ANY THIRD PARTY RIGHTS.

4 BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE
SOFTWARE FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR
LOSS AS A RESULT OF USING, MODIFYING OR DISTRIBUTING THE SOFTWARE, OR
ANY DERIVATIVE THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF

5 This License Agreement will automatically terminate upon a material breach of its terms and
conditions.

6 This License Agreement shall be governed by and interpreted in all respects by the law of the
State of California, excluding conflict of law provisions. Nothing in this License Agreement
shall be deemed to create any relationship of agency, partnership, or joint venture between
BeOpen and Licensee. This License Agreement does not grant permission to use BeOpen
trademarks or trade names in a trademark sense to endorse or promote products or services
of Licensee, or any third party. As an exception, the "BeOpen Python" logos available at
http://www.pythonlabs.com/logos.html may be used according to the permissions granted on
that web page.

7 By copying, installing or otherwise using the software, Licensee agrees to be bound by the
terms and conditions of this License Agreement.

CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1

1 This LICENSE AGREEMENT is between the Corporation for National Research Initiatives,
having an office at 1895 Preston White Drive, Reston, VA 20191 ("CNRI"), and the Individual
or Organization ("Licensee") accessing and otherwise using Python 1.6.1 software in source or
binary form and its associated documentation.

http://www.pythonlabs.com/logos.html

-106-

Concepts Guide

2 Subject to the terms and conditions of this License Agreement, CNRI hereby grants Licensee a
nonexclusive, royalty-free, world-wide license to reproduce, analyze, test, perform and/or
display publicly, prepare derivative works, distribute, and otherwise use Python 1.6.1 alone or
in any derivative version, provided, however, that CNRI's License Agreement and CNRI's
notice of copyright, i.e., "Copyright (c) 1995-2001 Corporation for National Research
Initiatives; All Rights Reserved" are retained in Python 1.6.1 alone or in any derivative version
prepared by Licensee. Alternately, in lieu of CNRI's License Agreement, Licensee may
substitute the following text (omitting the quotes): "Python 1.6.1 is made available subject to
the terms and conditions in CNRI's License Agreement. This Agreement together with
Python 1.6.1 may be located on the Internet using the following unique, persistent identifier
(known as a handle): 1895.22/1013. This Agreement may also be obtained from a proxy
server on the Internet using the following URL: http://hdl.handle.net/1895.22/1013".

3 In the event Licensee prepares a derivative work that is based on or incorporates Python 1.6.1
or any part thereof, and wants to make the derivative work available to others as provided
herein, then Licensee hereby agrees to include in any such work a brief summary of the
changes made to Python 1.6.1.

4 CNRI is making Python 1.6.1 available to Licensee on an "AS IS" basis. CNRI MAKES NO
REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, CNRI MAKES NO AND DISCLAIMS ANY
REPRESENTATION OR WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY
PARTICULAR PURPOSE OR THAT THE USE OF PYTHON 1.6.1 WILL NOT INFRINGE ANY
THIRD PARTY RIGHTS.

5 CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1
FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A
RESULT OF MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR
ANY DERIVATIVE THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6 This License Agreement will automatically terminate upon a material breach of its terms and
conditions.

7 This License Agreement shall be governed by the federal intellectual property law of the United
States, including without limitation the federal copyright law, and, to the extent such U.S.
federal law does not apply, by the law of the Commonwealth of Virginia, excluding Virginia's
conflict of law provisions. Notwithstanding the foregoing, with regard to derivative works based
on Python 1.6.1 that incorporate non-separable material that was previously distributed under
the GNU General Public License (GPL), the law of the Commonwealth of Virginia shall govern
this License Agreement only as to issues arising under or with respect to Paragraphs 4, 5, and
7 of this License Agreement. Nothing in this License Agreement shall be deemed to create
any relationship of agency, partnership, or joint venture between CNRI and Licensee. This
License Agreement does not grant permission to use CNRI trademarks or trade name in a
trademark sense to endorse or promote products or services of Licensee, or any third party.

8 By clicking on the "ACCEPT" button where indicated, or by copying, installing or otherwise
using Python 1.6.1, Licensee agrees to be bound by the terms and conditions of this License
Agreement.

 ACCEPT

CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2

--

http://hdl.handle.net/1895.22/1013

-107-

 Copyright Notice

Copyright (c) 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The Netherlands. All
rights reserved.

Permission to use, copy, modify, and distribute this software and its documentation for any
purpose and without fee is hereby granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission notice appear in supporting
documentation, and that the name of Stichting Mathematisch Centrum or CWI not be used in
advertising or publicity pertaining to distribution of the software without specific, written prior
permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR
ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Python Dialog

The Administration Tools part of this product uses Python Dialog, a Python module for doing
console-mode user interaction.

Upstream Author:

Peter Astrand <peter@cendio.se>

Robb Shecter <robb@acm.org>

Sultanbek Tezadov

Florent Rougon <flo@via.ecp.fr>

Copyright © 2000 Robb Shecter, Sultanbek Tezadov

Copyright © 2002, 2003, 2004 Florent Rougon

License:

This package is free software; you can redistribute it and/or modify it under the terms of the GNU
Lesser General Public License as published by the Free Software Foundation; either version 2 of
the License, or (at your option) any later version.

This package is distributed in the hope that it is useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTIC ULAR PURPOSE.
See the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with this
package; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
02110-1301 USA

The complete source code of the Python dialog package and complete text of the GNU Lesser
General Public License can be found on the Vertica Systems Web site at
http://www.vertica.com/licenses/pythondialog-2.7.tar.bz2
http://www.vertica.com/licenses/pythondialog-2.7.tar.bz2

mailto:peter@cendio.se
mailto:robb@acm.org
mailto:flo@via.ecp.fr
http://www.vertica.com/licenses/pythondialog-2.7.tar.bz2
http://www.vertica.com/licenses/pythondialog-2.7.tar.bz2

-108-

Concepts Guide

Rsync

COPYRIGHT

Rsync was originally written by Andrew Tridgell and is currently maintained by Wayne Davison.
It has been improved by many developers from around the world.

Rsync may be used, modified and redistributed only under the terms of the GNU General Public
License, found in the file COPYING in this distribution, or at:

 http://www.fsf.org/licenses/gpl.html

The following GNU General Public License applies only to the version of rsync distributed with

Vertica.

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

 Copyright (C) 1989, 1991 Free Software Foundation, Inc.

 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

 Everyone is permitted to copy and distribute verbatim copies of this license document, but
changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change it.
By contrast, the GNU General Public License is intended to guarantee your freedom to share and
change free software--to make sure the software is free for all its users. This General Public
License applies to most of the Free Software Foundation's software and to any other program
whose authors commit to using it. (Some other Free Software Foundation software is covered by
the GNU Library General Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public
Licenses are designed to make sure that you have the freedom to distribute copies of free
software (and charge for this service if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new free programs; and that you
know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or
to ask you to surrender the rights. These restrictions translate to certain responsibilities for you if
you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give
the recipients all the rights that you have. You must make sure that they, too, receive or can get
the source code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license
which gives you legal permission to copy, distribute and/or modify the software.

http://www.fsf.org/licenses/gpl.html

-109-

 Copyright Notice

Also, for each author's protection and ours, we want to make certain that everyone understands
that there is no warranty for this free software. If the software is modified by someone else and
passed on, we want its recipients to know that what they have is not the original, so that any
problems introduced by others will not reflect on the original authors' reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the
danger that redistributors of a free program will individually obtain patent licenses, in effect making
the program proprietary. To prevent this, we have made it clear that any patent must be licensed
for everyone's free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

GNU GENERAL PUBLIC LICENSE

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

 0. This License applies to any program or other work which contains a notice placed by the
copyright holder saying it may be distributed under the terms of this General Public License. The
"Program", below, refers to any such program or work, and a "work based on the Program" means
either the Program or any derivative work under copyright law: that is to say, a work containing the
Program or a portion of it, either verbatim or with modifications and/or translated into another
language. (Hereinafter, translation is included without limitation in the term "modification".)
Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not covered by this License; they
are outside its scope. The act of running the Program is not restricted, and the output from the
Program is covered only if its contents constitute a work based on the Program (independent of
having been made by running the Program). Whether that is true depends on what the Program
does.

 1. You may copy and distribute verbatim copies of the Program's source code as you receive it,
in any medium, provided that you conspicuously and appropriately publish on each copy an
appropriate copyright notice and disclaimer of warranty; keep intact all the notices that refer to this
License and to the absence of any warranty; and give any other recipients of the Program a copy
of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer
warranty protection in exchange for a fee.

 2. You may modify your copy or copies of the Program or any portion of it, thus forming a work
based on the Program, and copy and distribute such modifications or work under the terms of
Section 1 above, provided that you also meet all of these conditions:

 a) You must cause the modified files to carry prominent notices stating that you changed the
files and the date of any change.

 b) You must cause any work that you distribute or publish, that in whole or in part contains or is
derived from the Program or any part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.

-110-

Concepts Guide

 c) If the modified program normally reads commands interactively when run, you must cause
it, when started running for such interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a notice that there is no warranty (or
else, saying that you provide a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this License. (Exception: if the
Program itself is interactive but does not normally print such an announcement, your work based
on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work
are not derived from the Program, and can be reasonably considered independent and separate
works in themselves, then this License, and its terms, do not apply to those sections when you
distribute them as separate works. But when you distribute the same sections as part of a whole
which is a work based on the Program, the distribution of the whole must be on the terms of this
License, whose permissions for other licensees extend to the entire whole, and thus to each and
every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely
by you; rather, the intent is to exercise the right to control the distribution of derivative or collective
works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with
a work based on the Program) on a volume of a storage or distribution medium does not bring the
other work under the scope of this License.

 3. You may copy and distribute the Program (or a work based on it, under Section 2) in object
code or executable form under the terms of Sections 1 and 2 above provided that you also do one
of the following:

 a) Accompany it with the complete corresponding machine-readable source code, which
must be distributed under the terms of Sections 1 and 2 above on a medium customarily used for
software interchange; or,

 b) Accompany it with a written offer, valid for at least three years, to give any third party, for a
charge no more than your cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be distributed under the terms of
Sections 1 and 2 above on a medium customarily used for software interchange; or,

 c) Accompany it with the information you received as to the offer to distribute corresponding
source code. (This alternative is allowed only for noncommercial distribution and only if you
received the program in object code or executable form with such an offer, in accord with
Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to it.
For an executable work, complete source code means all the source code for all modules it
contains, plus any associated interface definition files, plus the scripts used to control compilation
and installation of the executable. However, as a special exception, the source code distributed
need not include anything that is normally distributed (in either source or binary form) with the
major components (compiler, kernel, and so on) of the operating system on which the executable
runs, unless that component itself accompanies the executable.

-111-

 Copyright Notice

If distribution of executable or object code is made by offering access to copy from a designated
place, then offering equivalent access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not compelled to copy the source
along with the object code.

 4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided
under this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program
is void, and will automatically terminate your rights under this License. However, parties who have
received copies, or rights, from you under this License will not have their licenses terminated so
long as such parties remain in full compliance.

 5. You are not required to accept this License, since you have not signed it. However, nothing
else grants you permission to modify or distribute the Program or its derivative works. These
actions are prohibited by law if you do not accept this License. Therefore, by modifying or
distributing the Program (or any work based on the Program), you indicate your acceptance of this
License to do so, and all its terms and conditions for copying, distributing or modifying the Program
or works based on it.

 6. Each time you redistribute the Program (or any work based on the Program), the recipient
automatically receives a license from the original licensor to copy, distribute or modify the Program
subject to these terms and conditions. You may not impose any further restrictions on the
recipients' exercise of the rights granted herein. You are not responsible for enforcing compliance
by third parties to this License.

 7. If, as a consequence of a court judgment or allegation of patent infringement or for any other
reason (not limited to patent issues), conditions are imposed on you (whether by court order,
agreement or otherwise) that contradict the conditions of this License, they do not excuse you
from the conditions of this License. If you cannot distribute so as to satisfy simultaneously your
obligations under this License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all. For example, if a patent license would not permit
royalty-free redistribution of the Program by all those who receive copies directly or indirectly
through you, then the only way you could satisfy both it and this License would be to refrain
entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the
balance of the section is intended to apply and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right
claims or to contest validity of any such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is implemented by public license practices.
Many people have made generous contributions to the wide range of software distributed through
that system in reliance on consistent application of that system; it is up to the author/donor to
decide if he or she is willing to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest
of this License.

-112-

Concepts Guide

 8. If the distribution and/or use of the Program is restricted in certain countries either by patents
or by copyrighted interfaces, the original copyright holder who places the Program under this
License may add an explicit geographical distribution limitation excluding those countries, so that
distribution is permitted only in or among countries not thus excluded. In such case, this License
incorporates the limitation as if written in the body of this License.

 9. The Free Software Foundation may publish revised and/or new versions of the General Public
License from time to time. Such new versions will be similar in spirit to the present version, but
may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version number
of this License which applies to it and "any later version", you have the option of following the
terms and conditions either of that version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of this License, you may choose
any version ever published by the Free Software Foundation.

 10. If you wish to incorporate parts of the Program into other free programs whose distribution
conditions are different, write to the author to ask for permission. For software which is
copyrighted by the Free Software Foundation, write to the Free Software Foundation; we
sometimes make exceptions for this. Our decision will be guided by the two goals of preserving
the free status of all derivatives of our free software and of promoting the sharing and reuse of
software generally.

NO WARRANTY

 11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE
ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU.
SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL
NECESSARY SERVICING, REPAIR OR CORRECTION.

 12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR
DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL
DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING
BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO
OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

-113-

 Copyright Notice

 If you develop a new program, and you want it to be of the greatest possible use to the public,
the best way to achieve this is to make it free software which everyone can redistribute and
change under these terms.

 To do so, attach the following notices to the program. It is safest to attach them to the start of
each source file to most effectively convey the exclusion of warranty; and each file should have at
least the "copyright" line and a pointer to where the full notice is found.

 <one line to give the program's name and a brief idea of what it does.>

 Copyright (C) <year> <name of author>

 This program is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version 2 of
the License, or (at your option) any later version.

 This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public License for more details.

 You should have received a copy of the GNU General Public License along with this program;
if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an interactive
mode:

 Gnomovision version 69, Copyright (C) year name of author Gnomovision comes with
ABSOLUTELY NO WARRANTY; for details type `show w'. This is free software, and you are
welcome to redistribute it under certain conditions; type `show c' for details.

The hypothetical commands ̀ show w' and `show c' should show the appropriate parts of the
General Public License. Of course, the commands you use may be called something other than
`show w' and `show c'; they could even be mouse-clicks or menu items--whatever suits your
program.

You should also get your employer (if you work as a programmer) or your school, if any, to sign a
"copyright disclaimer" for the program, if necessary. Here is a sample; alter the names:

 Yoyodyne, Inc., hereby disclaims all copyright interest in the program `Gnomovision' (which
makes passes at compilers) written by James Hacker.

 <signature of Ty Coon>, 1 April 1989

 Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary
programs. If your program is a subroutine library, you may consider it more useful to permit
linking proprietary applications with the library. If this is what you want to do, use the GNU Library
General Public License instead of this License.

-114-

Concepts Guide

RRDTool Open Source License

Note: rrdtool is a dependency of using the ganglia-web third-party tool. RRDTool allows the
graphs displayed by ganglia-web to be produced.

RRDTOOL - Round Robin Database Tool

A tool for fast logging of numerical data graphical display of this data.

Copyright © 1998-2008 Tobias Oetiker

All rights reserved.

GNU GPL License

This program is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if
not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA

FLOSS License Exception

(Adapted from http://www.mysql.com/company/legal/licensing/foss-exception.html)

I want specified Free/Libre and Open Source Software ("FLOSS") applications to be able to use
specified GPL-licensed RRDtool libraries (the "Program") despite the fact that not all FLOSS
licenses are compatible with version 2 of the GNU General Public License (the "GPL").

As a special exception to the terms and conditions of version 2.0 of the GPL:

You are free to distribute a Derivative Work that is formed entirely from the Program and one or
more works (each, a "FLOSS Work") licensed under one or more of the licenses listed below, as
long as:

1 You obey the GPL in all respects for the Program and the Derivative Work, except for
identifiable sections of the Derivative Work which are not derived from the Program, and which
can reasonably be considered independent and separate works in themselves

2 All identifiable sections of the Derivative Work which are not derived from the Program, and
which can reasonably be considered independent and separate works in themselves

 are distributed subject to one of the FLOSS licenses listed below, and

 the object code or executable form of those sections are accompanied by the complete
corresponding machine-readable source code for those sections on the same medium and
under the same FLOSS license as the corresponding object code or executable forms of
those sections.

3 Any works which are aggregated with the Program or with a Derivative Work on a volume of a
storage or distribution medium in accordance with the GPL, can reasonably be considered
independent and separate works in themselves which are not derivatives of either the
Program, a Derivative Work or a FLOSS Work.

http://www.mysql.com/company/legal/licensing/foss-exception.html

-115-

 Copyright Notice

If the above conditions are not met, then the Program may only be copied, modified, distributed or
used under the terms and conditions of the GPL.

FLOSS License List

License name Version(s)/Copyright Date

Academic Free License 2.0

Apache Software License 1.0/1.1/2.0

Apple Public Source License 2.0

Artistic license From Perl 5.8.0

BSD license "July 22 1999"

Common Public License 1.0

GNU Library or "Lesser" General Public License (LGPL) 2.0/2.1

IBM Public License, Version 1.0

Jabber Open Source License 1.0

MIT License (As listed in file MIT-License.txt) -

Mozilla Public License (MPL) 1.0/1.1

Open Software License 2.0

OpenSSL license (with original SSLeay license) "2003" ("1998")

PHP License 3.0

Python license (CNRI Python License) -

Python Software Foundation License 2.1.1

Sleepycat License "1999"

W3C License "2001"

X11 License "2001"

Zlib/libpng License -

Zope Public License 2.0/2.1

Spread

This product uses software developed by Spread Concepts LLC for use in the Spread toolkit. For
more information about Spread see http://www.spread.org (http://www.spread.org).

Copyright © 1993-2006 Spread Concepts LLC.

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1 Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer and request.

2 Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer and request in the documentation and/or other materials provided
with the distribution.

3 All advertising materials (including web pages) mentioning features or use of this software, or
software that uses this software, must display the following acknowledgment: "This product
uses software developed by Spread Concepts LLC for use in the Spread toolkit. For more
information about Spread see http://www.spread.org"

http://www.spread.org/
http://www.spread.org/
http://www.spread.org/

-116-

Concepts Guide

4 The names "Spread" or "Spread toolkit" must not be used to endorse or promote products
derived from this software without prior written permission.

5 Redistributions of any form whatsoever must retain the following acknowledgment:

6 "This product uses software developed by Spread Concepts LLC for use in the Spread toolkit.
For more information about Spread, see http://www.spread.org"

7 This license shall be governed by and construed and enforced in accordance with the laws of
the State of Maryland, without reference to its conflicts of law provisions. The exclusive
jurisdiction and venue for all legal actions relating to this license shall be in courts of competent
subject matter jurisdiction located in the State of Maryland.

TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, SPREAD IS PROVIDED
UNDER THIS LICENSE ON AN AS IS BASIS, WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, WARRANTIES THAT
SPREAD IS FREE OF DEFECTS, MERCHANTABLE, FIT FOR A PARTICULAR PURPOSE OR
NON-INFRINGING. ALL WARRANTIES ARE DISCLAIMED AND THE ENTIRE RISK AS TO THE
QUALITY AND PERFORMANCE OF THE CODE IS WITH YOU. SHOULD ANY CODE PROVE
DEFECTIVE IN ANY RESPECT, YOU (NOT THE COPYRIGHT HOLDER OR ANY OTHER
CONTRIBUTOR) ASSUME THE COST OF ANY NECESSARY SERVICING, REPAIR OR
CORRECTION. THIS DISCLAIMER OF WARRANTY CONSTITUTES AN ESSENTIAL PART OF
THIS LICENSE. NO USE OF ANY CODE IS AUTHORIZED HEREUNDER EXCEPT UNDER
THIS DISCLAIMER.

TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, IN NO EVENT SHALL THE
COPYRIGHT HOLDER OR ANY OTHER CONTRIBUTOR BE LIABLE FOR ANY SPECIAL,
INCIDENTAL, INDIRECT, OR CONSEQUENTIAL DAMAGES FOR LOSS OF PROFITS,
REVENUE, OR FOR LOSS OF INFORMATION OR ANY OTHER LOSS.

YOU EXPRESSLY AGREE TO FOREVER INDEMNIFY, DEFEND AND HOLD HARMLESS THE
COPYRIGHT HOLDERS AND CONTRIBUTORS OF SPREAD AGAINST ALL CLAIMS,
DEMANDS, SUITS OR OTHER ACTIONS ARISING DIRECTLY OR INDIRECTLY FROM YOUR
ACCEPTANCE AND USE OF SPREAD.

Although NOT REQUIRED, we at Spread Concepts would appreciate it if active users of Spread
put a link on their web site to Spread's web site when possible. We also encourage users to let us
know who they are, how they are using Spread, and any comments they have through either
e-mail (spread@spread.org) or our web site at (http://www.spread.org/comments).

SNMP

Various copyrights apply to this package, listed in various separate parts below. Please make
sure that you read all the parts. Up until 2001, the project was based at UC Davis, and the first part
covers all code written during this time. From 2001 onwards, the project has been based at
SourceForge, and Networks Associates Technology, Inc hold the copyright on behalf of the wider
Net-SNMP community, covering all derivative work done since then. An additional copyright
section has been added as Part 3 below also under a BSD license for the work contributed by
Cambridge Broadband Ltd. to the project since 2001. An additional copyright section has been
added as Part 4 below also under a BSD license for the work contributed by Sun Microsystems,
Inc. to the project since 2003.

http://www.spread.org/
mailto:spread@spread.org
http://www.spread.org/comments

-117-

 Copyright Notice

Code has been contributed to this project by many people over the years it has been in
development, and a full list of contributors can be found in the README file under the THANKS
section.

Part 1: CMU/UCD copyright notice: (BSD like)

Copyright © 1989, 1991, 1992 by Carnegie Mellon University

Derivative Work - 1996, 1998-2000

Copyright © 1996, 1998-2000 The Regents of the University of California

All Rights Reserved

Permission to use, copy, modify and distribute this software and its documentation for any
purpose and without fee is hereby granted, provided that the above copyright notice appears in all
copies and that both that copyright notice and this permission notice appear in supporting
documentation, and that the name of CMU and The Regents of the University of California not be
used in advertising or publicity pertaining to distribution of the software without specific written
permission.

CMU AND THE REGENTS OF THE UNIVERSITY OF CALIFORNIA DISCLAIM ALL
WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL CMU OR THE
REGENTS OF THE UNIVERSITY OF CALIFORNIA BE LIABLE FOR ANY SPECIAL, INDIRECT
OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
THE LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH
THE USE OR PERFORMANCE OF THIS SOFTWARE.

Part 2: Networks Associates Technology, Inc copyright notice (BSD)

Copyright © 2001-2003, Networks Associates Technology, Inc

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

 Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

 Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

 Neither the name of the Networks Associates Technology, Inc nor the names of its contributors
may be used to endorse or promote products derived from this software without specific prior
written permission.

-118-

Concepts Guide

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ̀ `AS
IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Part 3: Cambridge Broadband Ltd. copyright notice (BSD)

Portions of this code are copyright (c) 2001-2003, Cambridge Broadband Ltd.

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

 Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

 Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

 The name of Cambridge Broadband Ltd. may not be used to endorse or promote products
derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER ``AS IS'' AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

Part 4: Sun Microsystems, Inc. copyright notice (BSD)

Copyright © 2003 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,

California 95054, U.S.A. All rights reserved.

Use is subject to license terms below.

This distribution may include materials developed by third parties.

Sun, Sun Microsystems, the Sun logo and Solaris are trademarks or registered trademarks of
Sun Microsystems, Inc. in the U.S. and other countries.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

-119-

 Copyright Notice

 Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

 Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

 Neither the name of the Sun Microsystems, Inc. nor the names of its contributors may be used
to endorse or promote products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ̀ `AS
IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Part 5: Sparta, Inc copyright notice (BSD)

Copyright © 2003-2006, Sparta, Inc

All rights reserved.

 Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

 Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

 Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

 Neither the name of Sparta, Inc nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ̀ `AS
IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Part 6: Cisco/BUPTNIC copyright notice (BSD)

-120-

Concepts Guide

Copyright © 2004, Cisco, Inc and Information Network Center of Beijing University of Posts
and Telecommunications.

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

 Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

 Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

 Neither the name of Cisco, Inc, Beijing University of Posts and Telecommunications, nor the
names of their contributors may be used to endorse or promote products derived from this
software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ̀ `AS
IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Part 7: Fabasoft R&D Software GmbH & Co KG copyright notice (BSD)

Copyright © Fabasoft R&D Software GmbH & Co KG, 2003

oss@fabasoft.com

Author: Bernhard Penz

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

 Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

 Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

 The name of Fabasoft R&D Software GmbH & Co KG or any of its subsidiaries, brand or
product names may not be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER ``AS IS'' AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER BE

mailto:oss@fabasoft.com

-121-

 Copyright Notice

LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

Tecla Command-line Editing

Copyright © 2000 by Martin C. Shepherd.

All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, and/or sell
copies of the Software, and to permit persons to whom the Software is furnished to do so, provided
that the above copyright notice(s) and this permission notice appear in all copies of the Software
and that both the above copyright notice(s) and this permission notice appear in supporting
documentation.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY
RIGHTS. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS
NOTICE BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL
DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
THIS SOFTWARE.

Except as contained in this notice, the name of a copyright holder shall not be used in advertising
or otherwise to promote the sale, use or other dealings in this Software without prior written
authorization of the copyright holder.

Webmin Open Source License

Copyright © Jamie Cameron

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1 Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

2 Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

3 Neither the name of the developer nor the names of contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

-122-

Concepts Guide

THIS SOFTWARE IS PROVIDED BY THE DEVELOPER ``AS IS'' AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
NO EVENT SHALL THE DEVELOPER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

xerces

NOTICE file corresponding to section 4(d) of the Apache License,

Version 2.0, in this case for the Apache Xerces distribution.

This product includes software developed by The Apache Software Foundation
(http://www.apache.org/).

Portions of this software were originally based on the following:

Software copyright © 1999, IBM Corporation., http://www.ibm.com.

zlib

This is used by the project to load zipped files directly by COPY command. www.zlib.net/

zlib.h -- interface of the 'zlib' general purpose compression library version 1.2.3, July 18th, 2005

Copyright © 1995-2005 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied warranty. In no event will the
authors be held liable for any damages arising from the use of this software.

Permission is granted to anyone to use this software for any purpose, including commercial
applications, and to alter it and redistribute it freely, subject to the following restrictions:

1 The origin of this software must not be misrepresented; you must not claim that you wrote the
original software. If you use this software in a product, an acknowledgment in the product
documentation would be appreciated but is not required.

2 Altered source versions must be plainly marked as such, and must not be misrepresented as
being the original software.

3 This notice may not be removed or altered from any source distribution.

Jean-loup Gailly jloup@gzip.org

Mark Adler madler@alumni.caltech.edu

http://www.apache.org/
http://www.ibm.com/
http://www.zlib.net/
mailto:jloup@gzip.org
mailto:madler@alumni.caltech.edu

	Technical Support
	About the Documentation
	Where to Find the Vertica Documentation
	Reading the Online Documentation
	Printing Full Books
	Suggested Reading Paths
	Where to Find Additional Information
	Typographical Conventions

	Preface
	Welcome to Vertica
	The Vertica Approach
	Vertica Components
	Column Store Architecture with FlexStore
	Data Encoding and Compression
	High Availability and Recovery
	Hybrid Storage Model
	Physical Architecture
	Logical Schema
	Physical Schema
	How Projections are Created
	Anatomy of a Projection
	Projection Concepts
	Projection Performance
	Projection Segmentation
	High Availability Through Projections
	Projection Naming

	Database Setup
	Database Connections
	The Administration Tools
	The Database Designer
	K-Safety
	Database Security
	Data Loading and Modification
	Workload Management

	SQL Overview
	Query Execution
	Transactions
	Automatic Rollback
	Savepoints
	READ COMMITTED Isolation
	SERIALIZABLE Isolation

	International Languages and Character Sets
	Unicode Character Encoding
	Locales
	String Functions
	Character String Literals

	Get Started
	Glossary
	Access rank
	ACID
	Administration host
	Administration Tools
	AHM
	Anchor table
	Ancient History Mark
	TM
	Authentication
	Authorization
	Blade server
	Bit
	Bitstring
	Byte
	Buddy projection
	Bulk loading
	C-Store
	Cardinality
	Case-folded
	Catalog
	Catalog path
	Checkpoint
	Cluster
	Cold backup
	Comprehensive design
	Compression
	Connection
	Critical node
	CSV
	Current epoch
	Data path
	Data warehouse
	Database
	Database administrator
	Database Designer
	Database superuser
	DBA
	DDL
	DELTAVAL (delta encoding)
	Derived column
	Design
	Deterministic
	Dialog
	Dimension table
	Dirty read
	DML
	Dynamic SQL
	EOF
	Encoding
	Epoch
	Epoch map
	ETL
	Executor node
	Expression
	External procedure
	Event series
	Fact table
	FIFO
	Foreign key
	Flattening (subqueries and views)
	Full backup
	General pool
	Grid computing
	Grouped ROS
	Hash function
	Hash join
	Hash segmentation
	Hexadecimal
	Histogram
	Historical data
	Historical query
	Host
	Hot backup
	ICU
	ISO Week-Year
	Incremental backup
	Initiator node
	Instance
	Interpolation
	Immutable (invariant) functions
	JDBC
	K-Safety
	LGE
	LZO
	Last epoch
	Last Good Epoch
	Locale
	Logical schema
	Man-in-the-middle attack
	Manual recovery
	Materialized view
	Mergeout
	Meta-functions
	Metadata
	Moveout
	Multi-homed
	NaN
	Nibble
	Node
	Node definition
	Nondeterministic
	Non-repeatable read
	NUL
	NULL
	Octal
	Octet
	ODBC
	OLAP
	OLTP
	Out-of-date
	Partition key
	Partitioning
	Phantom read
	Physical schema
	Physical schema design
	Pinned projection
	Pre-join projection
	Predicate
	Primary column
	Primary key
	Projection
	Projection set
	Purge
	Query cluster level
	Query optimizer
	Query-specific design
	Query-specific projection
	RDBMS
	RLE (Run Length Encoding)
	RM
	Range segmentation
	Recovery
	Referential integrity
	Refresh
	Replication
	Resource pool
	Resource Manager
	Role
	Rollback
	ROS (Read Optimized Store)
	ROS container
	RPM
	Safe
	SAN
	Savepoint
	Schema
	Secure Shell
	Seed
	Segmentation
	Select list
	Session
	Site
	Snapshot isolation
	Snowflake schema
	Spread
	Sort-merge join
	SQL
	SSH
	Stable functions
	Star schema
	Standalone resource pool
	Storage location
	Strict
	Superprojection
	Superuser
	TM
	Table
	Temp location
	Temp space
	Transaction
	Tuple
	Tuple Mover
	UDP
	UTC
	UTF-8
	Unary operator
	Up to date
	Up-to-date
	User agent
	View
	Volatile functions
	Volatility
	vsql
	Window (analytic)
	Workload Analyzer
	Workload management
	WOS (Write Optimized Store)

	Index
	Copyright Notice

