
Deep Computing Visualization

Installation and User Guide

Version 1 Release 3

G224-9183-02

���

Deep Computing Visualization

Installation and User Guide

Version 1 Release 3

G224-9183-02

���

Note:

Before using this information and the product it supports, read the information in “Notices” on page 97.

Third edition (January 2007)

This edition replaces G224-9183-01 for program number 5724-K69. Significant changes or additions to the text or

illustrations are indicated by a vertical line (|) to the left of the change.

IBM welcomes your comments. A form for readers’ comments may be provided at the back of this publication, or you

can address your comments to the following address:

International Business Machines Corporation

 Department 55JA, Mail Station P181

 2455 South Road

 Poughkeepsie, NY 12601-5400

 United States of America

 FAX (United States & Canada): 1+845+432-9405

 FAX (Other Countries):

Your International Access Code+1+845+432-9405

 IBMLink (United States customers only): IBMUSM10(MHVRCFS)

 Internet e-mail: mhvrcfs@us.ibm.com

If you would like a reply, be sure to include your name, address, telephone number, or FAX number.

Make sure to include the following in your comment or note:

v Title and order number of this book

v Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2005, 2007. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

|
|

Contents

Figures . vii

Tables . ix

About this document . xi

Who should use this document xi

Typographic conventions . xi

Related information . xii

Accessibility information . xii

User’s responsibilities . xii

How to send your comments . xii

What’s new . xiii

G224-9183-02 . xiii

G224-9183-01 . xiv

Part 1. Using IBM Deep Computing Visualization software 1

Chapter 1. Introduction to visual networking 3

Chapter 2. Scalable Visual Networking 5

The svn_sender command . 8

Command-line options for svn_sender 8

Starting SVN . 11

Starting SVN using Scali MPI 11

Starting SVN using Cisco/TopSpin MPI 12

Starting SVN using MPICH 12

OpenGL overloads with SVN . 12

The basic overload . 13

System interface for overloads 15

Using multiple overload sets 17

Chapter 3. Remote Visual Networking 21

RVN sessions . 22

Connecting to an RVN session 23

Configurations for RVN sessions 24

User interface for working with RVN 26

The RVN application launcher 28

The RVN dashboard . 31

The rvn_sender command . 36

The rvn_receiver command (X11 DISPLAY export sessions only) 37

The rvn_viewer command (Linux end stations in VNC mode only) 39

The RVN coordinator . 39

Running RVN . 40

Using X11 export mode with RVN (Linux application servers only) 40

Using VNC with RVN . 41

Using VNC with RVN for desktop isolation (Linux application servers only) 41

Using VNC with RVN to run multiple applications (Linux application servers

only) . 42

Chapter 4. SVN and RVN interoperability 45

Chapter 5. SVN support for DMX servers 47

© Copyright IBM Corp. 2005, 2007 iii

||

||

||
||
||
||

||

|
||

||

Installing the DMX server . 47

Starting the DMX server . 47

Starting SVN using DMX support 48

Part 2. Installing IBM Deep Computing Visualization software 49

Chapter 6. Prerequisites for installing Deep Computing Visualization . . . 51

General prerequisites and configuration requirements for Deep Computing

Visualization . 51

SVN prerequisites . 52

Requirements for 32-bit and 64-bit SVN implementations 54

RVN prerequisites . 55

Chapter 7. Installing Deep Computing Visualization 57

Installing Deep Computing Visualization on Linux application hosts 57

Installing Deep Computing Visualization RVN on Linux end stations 58

Installing Deep Computing Visualization RVN on Microsoft Windows application

hosts . 59

Installing Deep Computing Visualization RVN on Microsoft Windows end

stations . 59

Chapter 8. RVN setup . 61

Configuring the RVN coordinator (Linux only) 61

Configuring RVN with VNC for remote desktopping 62

Configuring VNC under Linux 62

Configuring VNC under Windows 63

Chapter 9. Installation verification for Deep Computing Visualization . . . 65

Chapter 10. Problem determination 69

SVN problems . 69

RVN problems . 70

X server display problems . 71

Display problems . 71

NVIDIA display problems . 71

Appendix A. Messages . 73

Product installation messages 73

RVN messages . 74

SVN script messages . 79

SVN application host (client) messages 81

SVN rendering server messages 82

Appendix B. Environment variables 85

Environment variables for svn_sender 85

Environment variables for rvn_sender 88

Environment variables for rvn_receiver 92

Environment variables for rvn_coordinator 93

Appendix C. Programming considerations for SVN and RVN 95

Notices . 97

Trademarks . 99

Glossary . 101

iv Installation and User Guide

||
||
||

|
||

||

||
|
||
|
||

||
||
||
||

||

Index . 103

Contents v

vi Installation and User Guide

Figures

 1. Hardware configuration for Scalable Visual Networking 5

 2. Virtual display with 2 x 2 tile array . 7

 3. Multiple overload sets . 19

 4. RVN with X11 DISPLAY export (Linux application servers only) 24

 5. RVN with VNC . 25

 6. RVN with VNC and multiple end stations . 25

 7. RVN with VNC and desktop isolation (Linux application servers only) 26

 8. RVN application launcher: Main window (Windows) 29

 9. RVN application launcher: Main window (Linux) 29

10. RVN application launcher: Additional options . 30

11. RVN dashboard: Main window (Windows) . 32

12. RVN dashboard: Main window (Linux, VNC mode) 32

13. RVN dashboard: Main window (Linux, X11 mode) 32

14. RVN dashboard: Advanced options . 34

© Copyright IBM Corp. 2005, 2007 vii

|
|
|
||
||
||
||
||
||
||

viii Installation and User Guide

Tables

1. Interactions with the user interface for RVN . 27

2. Default options for the RVN dashboard, based on network type 33

3. Hardware requirements for SVN . 53

4. Software requirements for SVN . 54

5. Hardware requirements for RVN . 55

6. Software requirements for RVN . 55

© Copyright IBM Corp. 2005, 2007 ix

||
||

x Installation and User Guide

About this document

This document describes the IBM® Deep Computing Visualization (DCV) software

offering. It describes how to use DCV to:

v Enhance graphical rendering of complex applications

v Provide high-performance visualization across low-bandwidth, high-latency

networks to remote or distributed locations

This document is divided into two parts:

v Part 1 provides user information for working with DCV software, including:

– Using Scalable Visual Networking (SVN)

– Using Remote Visual Networking (RVN)

– Setting up combined SVN and RVN sessions

– Information about SVN and RVN command options

v Part 2 provides information for installing DCV software, including:

– Installation prerequisites, including setting up the MPI library for SVN

– Installing DCV

– Installation verification and problem determination

v Appendixes provide information about messages, environment variables, and

programming considerations.

Save this book

Retain this book with your original system. This book emphasizes recent

system information and does not include complete information about previous

releases.

Who should use this document

This document is designed for:

v End users of applications that are able to utilize the features provided by DCV

software

v System administrators responsible for installing DCV software

Typographic conventions

This document uses the following typographic conventions:

v Commands appear in bold, monospace font when they appear in text.

– Example: logon

v File and directory names are italicized when they appear in text.

– Example: /etc/passwd

v Variables for user-supplied information on commands are indicated by italics.

– Example: telnet app_host

v Literals in commands appear in monospace font:

– Example: rpm -i --force abc.rpm

v Greater than and less than symbols (< >) indicate that you must make a

substitution.

– Example: <username> indicates that you must supply your own username

value.

© Copyright IBM Corp. 2005, 2007 xi

|

|

|

|

|

|
|

|
|

v Square brackets ([]) indicate that the enclosed values are optional.

v Curly brackets ({ }) indicate that you must select one of the enclosed values.

v Multiple options for a value are separated by a vertical bar (|).

v Default values are underlined.

Related information

For the latest information about Deep Computing Visualization (DCV), refer to the

documents at:

 http://www.ibm.com/servers/deepcomputing/visualization/

 http://techsupport.services.ibm.com/server/cluster/home.html

Accessibility information

Accessibility information for IBM products is available online at the IBM Accessibility

Center. Go to http://www.ibm.com/able/, then click Product accessibility

information.

User’s responsibilities

Before contacting IBM for service, the system administrator should refer to the

README files provided on the DCV page listed under “Related information” and

then, if necessary, use the problem determination procedures described in this

document for initial problem determination. If the recommendations described in the

README have been followed and there is nothing wrong with the customer

operating procedures, the customer should then call IBM for service.

How to send your comments

Your feedback is important in helping to provide the most accurate and highest

quality information. If you have any comments about this book:

v Send your comments by e-mail to mhvrcfs@us.ibm.com. Be sure to include:

– The name of this book

– The order number of the book

– If applicable, the specific location of the text you are commenting on (for

example, a page number or table number)

v Fill out one of the forms at the back of this book and return it by mail, by fax, or

by giving it to an IBM representative.

xii Installation and User Guide

|

|

|

|
|
|

|
|
|
|
|

http://www.ibm.com/servers/deepcomputing/visualization/

What’s new

G224-9183-02

Changes made since the previous edition (G224-9183-01) are indicated throughout

this book by a vertical bar on the left margin of the page. Changes in this edition

include:

v New information:

– Added information about VNC Visualization Edition.

- Use of this version of VNC improves the usability of the interface to DCV.

For example, it eliminates the need for specifying an additional conference

ID and conference key when joining an RVN session.

- VNC Visualization Edition is now the only supported VNC software (other

VNC products from RealVNC or other companies are not supported).

– Added support for RVN on application servers that run under Microsoft®

Windows®.

- VNC Visualization Edition must be used for RVN sessions with these

application servers. X11 export mode is not supported.

- The new rvn_sender.bat command can be used from these application

servers, similar to the rvn_sender command for Linux® application servers.

– Added information about the RVN launcher, a graphical user interface for

Linux and Windows users that can be used instead of the rvn_sender or

rvn_sender.bat command.

– Added information about SVN support for DMX servers.

– Added information about the rvn_viewer command, which is used instead of

the vncviewer command by Linux end stations to start the VNC viewer.

v Updated information:

– Revised the information about X11 export mode for RVN sessions to clarify

that it can be used only for application servers running under Linux.

– Updated the description of the RVN dashboard to reflect the new graphical

user interface for Linux and Windows.

– Noted that SVN supports OpenGL up through specification level 2.0, including

support for shader programming.

– Changed references to the SSC component of RVN to accelerated graphics.

– Corrected the name of the SVN_SYNC_ON_RETRACE environment variable. The

correct name is SVN_SWAP_ON_RETRACE.

– Moved information about environment variables to an appendix.

– Moved information about programming considerations for SVN and RVN to an

appendix.

v Deleted information:

– Removed the requirement for the pthreads compatibility library when running

RVN under Windows.

– Removed information about Microsoft Windows 2000 as a platform for RVN

end stations.

– Removed the RVN_DASHBOARD_DELAY and RVN_DASHBOARD_PERMIT_CLOSE

environment variables.

© Copyright IBM Corp. 2005, 2007 xiii

|

|
|
|

|

|

|
|
|

|
|

|
|

|
|

|
|

|
|
|

|

|
|

|

|
|

|
|

|
|

|

|
|

|

|
|

|

|
|

|
|

|
|

G224-9183-01

Changes in this edition include:

v New information:

– Added RVN end station support for xSeries® nodes using Microsoft Windows

2000 or Microsoft Windows XP

– Added support for simultaneous SVN and RVN sessions

– Added support for RVN nodes to dynamically join and leave a session

– Added the ability to override OpenGL functions with user-implemented

modules

v Updated information:

– Revised SVN commands

– Revised RVN commands

– Revised installation procedures

v Deleted information:

– Removed -any and -loop options for the rvn_receiver command

– Removed -n option and endstation list for the rvn_sender command

– Removed RVN_LISTEN_ANY and RVN_LISTEN environment variables

xiv Installation and User Guide

Part 1. Using IBM Deep Computing Visualization software

Deep Computing Visualization (DCV) software allows you to display complex visual

data:

v On massive local displays capable of immersing the audience in stereo

visualizations

v Across distributed displays using existing low-bandwidth networks

Part 1 of this book provides information for end users of applications that are able

to utilize the enhancements provided by DCV software. This information includes:

v Chapter 1, “Introduction to visual networking,” on page 3

v Chapter 2, “Scalable Visual Networking,” on page 5

v Chapter 3, “Remote Visual Networking,” on page 21

v Chapter 4, “SVN and RVN interoperability,” on page 45

v Chapter 5, “SVN support for DMX servers,” on page 47

© Copyright IBM Corp. 2005, 2007 1

|

|

2 Installation and User Guide

Chapter 1. Introduction to visual networking

In a typical visualization scenario, a software application running on a workstation

sends a stream of graphics commands to a graphics adapter installed in one of the

I/O interfaces of the system. The graphics adapter then renders the data into pixels

that are stored as raster content in the video memory of the adapter and outputs

them to the local display as a video signal. Many areas of scientific or engineering

data visualization can benefit from the ability to expand or extend the representation

of three-dimensional (3-D) graphics beyond a simple local display. Two useful

alternative modes of display are:

v Raster representations of high-performance graphics across a composite array of

display devices (display wall)

v Raster representations of high-performance graphics on a remote display

connected by a network communication link

Deep Computing Visualization (DCV) enables both of these alternative display

modes by virtualizing the local display through the use of high-speed local networks

linking a rendering cluster, or slow-speed, wide-area networks linking a display end

station. In both cases, DCV works by inserting an intercept OpenGL library into the

graphics software stack on a host system running a 3-D graphics application. This

inserted library intercepts the function calls of the application to the OpenGL API,

and transports appropriate data from the graphics pipeline over a network.

v In the high-speed, local-area case, scene geometry and graphics state are

transmitted to a set of nodes for rendering. This is referred to as Scalable Visual

Networking (SVN).

v In the slow-speed, wide-area case, scene geometry and graphics state are

rendered locally, and pixels are sent to remote end stations. This is known as

Remote Visual Networking (RVN).

An SVN-enabled application virtualizes the rendering pipeline over a high-speed,

local-area network. For SVN configurations, you must install the intercept OpenGL

library on a server running a 3-D visualization application. The library accepts the

OpenGL calls made by the application, encodes them, and broadcasts the call data

to a cluster of rendering servers using the Message Passing Interface (MPI). Each

member of the cluster receives the call data, decodes it, and calls the OpenGL

library on the rendering server. This allows each member of the cluster to render

and display its portion of the final image as a tile of a display wall or projection

system.

An RVN-enabled application allows for remote interaction with a 3-D scene across a

slow-speed network, such as the Internet. As with SVN, the OpenGL calls are

intercepted. However, the 3-D geometry is rendered locally, and a (possibly)

compressed pixel stream is transported to a remote end station for display.

Notes:

1. If you require additional security, the SVN transport mechanism supports the

use of Secure Shell (OpenSSH).

2. For information about the hardware and software requirements for SVN

application hosts, refer to Chapter 6, “Prerequisites for installing Deep

Computing Visualization,” on page 51 and “SVN prerequisites” on page 52.

© Copyright IBM Corp. 2005, 2007 3

|

|
|
|

3. For information about the hardware and software requirements for RVN

application servers and end stations, refer to Chapter 6, “Prerequisites for

installing Deep Computing Visualization,” on page 51 and “RVN prerequisites”

on page 55.

This document details the installation, configuration and operation of the SVN and

RVN components of DCV. It also describes the interaction with software

components that work with the DCV system, such as a communication library

implementing the MPI standard for SVN, or VNC to enable remote desktopping with

RVN. For more information about using DCV, refer to:

v Chapter 2, “Scalable Visual Networking,” on page 5

v Chapter 3, “Remote Visual Networking,” on page 21

v Chapter 4, “SVN and RVN interoperability,” on page 45

v Chapter 5, “SVN support for DMX servers,” on page 47

DCV introduction

4 Installation and User Guide

|
|
|
|

|
|

Chapter 2. Scalable Visual Networking

Scalable Visual Networking (SVN) converts a 3-D OpenGL display running on a

single application workstation or server into a multi-tile display running on a cluster

of supported servers. For information about the supported hardware for SVN

configurations, refer to Chapter 6, “Prerequisites for installing Deep Computing

Visualization,” on page 51 and “SVN prerequisites” on page 52.

Note: Figure 1 provides an example of the hardware configuration required for

SVN.

Running an application with SVN involves these steps:

1. Define which part of the scene geometry is to be displayed by which rendering

server, also called tiling (described later in this section).

Application host

OpenGL calls

SVN intercept

library

System OpenGL

library

Local display

Rendering

server

Rendering

server

Rendering

server

Rendering

server

Shared file system

High-speed
network

Figure 1. Hardware configuration for Scalable Visual Networking

© Copyright IBM Corp. 2005, 2007 5

|
|
|

|
|

2. Set environment variables to locate the SVN libraries and the MPI environment

used to transport the encoded geometry between the application host and the

rendering servers (described in “Environment variables for svn_sender” on page

85).

3. Run the svn_sender command to invoke the application (described in

“Command-line options for svn_sender” on page 8 and “Starting SVN” on page

11).

The tiling is defined in a wall configuration file, which is a text file with one entry for

each rendering server. You can name the wall configuration file anything you want.

This is the format of a server entry:

server_name[:d.s] vwidth vheight x_offset y_offset width height [display_group]

This is the definition of the syntax for a server entry:

v server_name[:d.s] is the X display name for the rendering server.

– If a private network is being used, server_name should be the private IP alias

or dotted decimal address.

v d is the server instance and s is the screen number.

– If :d.s is not supplied, the default is :0.0.

v vwidth and vheight are the width and height of the entire (multi-tiled) display

surface.

v x_offset and y_offset are the starting point of the lower-left corner of the

display area (tile) for this server within the entire display surface.

v width and height are the total width and height for the tile assigned to this

server.

v display_group allows you to group individual displays into multiple display walls,

and to group rendering servers so that each group acts as a single logical

display.

– The default value for this field is 1.

– Display group 1 is the reply display that returns results to the application as

needed.

– If you define display groups, one of these groups must be defined as display

group 1.

Notes:

1. All values are expressed in pixels at the pixel pitch of the individual server.

2. If needed, the display areas specified among servers can overlap, and the pixel

pitch of each tile can be different.

3. Lines starting with the # symbol are ignored, as are blank lines.

4. You must create a wall configuration file before running your application under

SVN control.

5. The wall configuration file must be in a shared file system that is readable by

the application host and by all rendering servers.

6. You must identify the wall configuration to SVN through either an option on the

svn_sender command or the related environment variable. For more

information, refer to “The svn_sender command” on page 8.

Example 1: Wall configuration file to define a symmetric display

This example of a wall configuration file defines a virtual display area of

3120 x 2048 pixels. The display area has four tiles, with each tile having an

User guide: SVN

6 Installation and User Guide

|
|
|
|

|
|
|

|
|
|

|

|
|

|
|

|
|
|

|

area of 1560 x 1024 pixels. DCV arranges the tiles in a 2 x 2 array with the

top two tiles being separate displays on the node render56 (refer to

Figure 2).

render54:0.0 3120 2048 0 0 1560 1024

render55:0.0 3120 2048 1560 0 1560 1024

render56:0.0 3120 2048 0 1024 1560 1024

render56:0.1 3120 2048 1560 1024 1560 1024

Example 2: Wall configuration file to define display groups

Display groups enable multiple rendering servers to act as a single logical

display. Using display groups has two effects:

v Operations that require a collective function across the servers forming

the logical display (such as glCopyPixels) can be handled within the

logical display.

v By assigning multiple servers to display group 1, you include them in the

specific logical display that replies to OpenGL queries from the

application.

Therefore, if the system issues a call to glReadPixels, pixels are sent to the

application host from each server in display group 1. Pixels are not sent by

any nodes driving portions of other logical displays.

 To assign servers to SVN display groups, specify the display-group

identifier in the wall configuration file. Make sure to use 1 as the first

identifier, and number additional display groups sequentially.

 This example of a wall configuration file uses display groups to define

multiple display walls.

srvr1:0.0 1280 1024 0 0 1280 1024 1

srvr2:0.0 2560 2048 0 0 1280 1024 2

srvr3:0.0 2560 2048 1280 0 1280 1024 2

srvr4:0.0 2560 2048 0 1024 1280 1024 2

srvr5:0.0 2560 2048 1280 1024 1280 1024 2

Example 3: Wall configuration file to define overlap for a projector

This example of a wall configuration file defines a projector display that

requires some overlap.

v Horizontally, vis22 overlaps vis23, and vis24 overlaps vis25.

v Vertically, vis24 overlaps vis22, and vis25 overlaps vis23.

From render node56 From render node56

From render node55From render node54

Figure 2. Virtual display with 2 x 2 tile array

User guide: SVN

Chapter 2. Scalable Visual Networking 7

|
|
|

|
|
|

|
|
|

|
|

|
|
|

|

|

vis22:0.0 2360 1848 0 0 1280 1024

vis23:0.0 2360 1848 1180 0 1280 1024

vis24:0.0 2360 1848 0 924 1280 1024

vis25:0.0 2360 1848 1180 924 1280 1024

The svn_sender command

The svn_sender command is used to start SVN and run the visualization

application on the application host.

This is the syntax of the svn_sender command:

The svn_sender command analyzes the options that were specified on the

command, as well as the settings of related environment variables.

v For a description of the command-line options, see “Command-line options for

svn_sender.”

v For a description of the related environment variables, see “Environment

variables for svn_sender” on page 85.

v For examples of using the svn_sender command and related environment

variables, see “Starting SVN” on page 11.

Command-line options for svn_sender

This section defines the options that can be specified on the svn_sender

command. Some of these options have a corresponding environment variable that

you can set before running svn_sender.

Note: If you set both the command-line option and its corresponding environment

variable, the command-line option takes precedence.

-clientdpy {host-display-suffix | :0.0}

The -clientdpy option specifies the X display that the client should use for

the local display. The host display suffix information (:1.0, :0.0) can be

useful if multiple screens are available to the application host.

Notes:

1. The default for this option is :0.0.

2. For information about using this option for DMX servers, refer to

Chapter 5, “SVN support for DMX servers,” on page 47.

-clienthost {host-alias-address | application-host-name}

The application always runs on the node on which you run the svn_sender

command. However, the -clienthost option allows the MPI implementation

to use an alternate IP address to identify the source for the broadcast

graphic data. For example, if the application host has multiple network

adapters and IP addresses, the clienthost option can specify which IP

address or adapter should be used for sending the graphics data to the

rendering servers.

Note: If you do not supply the clienthost information, the svn_sender

command uses the results of the hostname command as the MPI

node name to be used as the source for the broadcast graphic data.

-clientrender {0 | 1}

The -clientrender option forces client-side image rendering. To the

application, this makes it appear as if SVN is not being used. This option

[</opt/IBM/dcv/svn/bin/>]svn_sender [<svn_sender_options>] <appname> [<app-args>]

User guide: SVN

8 Installation and User Guide

|
|
|
|

|
|

|
|
|
|
|
|
|
|

|
|
|

|
|

causes the SVN OpenGL library to pass all application OpenGL instructions

to the local OpenGL subsystem as well as the SVN server nodes.

Notes:

1. The -clientrender option is enabled by default.

2. If you export the application GUI to a remote display, you must use GLX

to ship the OpenGL commands to the remote X server. This will have a

substantial effect on performance. You can reduce the effect by using

RVN or, if the system is connected by InfiniBand, by specifying -svnrvn

on the svn_sender command on the remote system. For more

information, refer to Chapter 4, “SVN and RVN interoperability,” on page

45.

-firstwindowonly {0 | 1}

The -firstwindowonly option provides a solution for an NVIDIA graphics

driver limitation. The current NVIDIA drivers require this option because they

do not support multiple OpenGL windows being framelocked across

systems. If you are using NVIDIA graphics drivers, opening multiple

windows on the rendering servers prevents framelock from working. If you

enable the -firstwindowonly option, the SVN intercept library sends only

the OpenGL information related to the first OpenGL window to the rendering

servers. The -firstwindowonly option guarantees that only the first window

is created on the rendering servers, and prevents the window selector

function from taking effect. In other words, this allows framelocking on the

first window. As a result, only the first window will ever be visible on the

rendering servers.

Notes:

1. The -firstwindowonly option is disabled by default.

2. The -firstwindowonly option can also be enabled by setting the

SVN_FIRST_WINDOW_ONLY environment variable to 1.

3. This feature is not compatible with the SVN_INITIAL_SCALED_WINDOW

environment variable and does not have any effect when

SVN_INITIAL_SCALED_WINDOW is set to any value other than 1.

-mpicomm

SVN provides startup scripts to initialize the MPI subsystem for supported

implementations. To use these scripts, specify the appropriate value on the

-mpicomm option. These are the supported values for -mpicomm:

v mpicomm.ib.rsh: Initializes MPI for InfiniBand and the rsh command for

rendering server access

v mpicomm.ib.ssh: Initializes MPI for InfiniBand and OpenSSH commands

for rendering server access

v mpicomm.p4: Initializes an MPI implementation that has the same startup

mechanism as the publicly available MPICH implementation from

Argonne National Laboratory

v mpicomm.scali: Initializes MPI for Scali MPI over Infiniband

Notes:

1. The startup script is required. You must specify it using one of these

methods:

v The -mpicomm option on the svn_sender command

v The SVN_MPICOMM environment variable

User guide: SVN

Chapter 2. Scalable Visual Networking 9

|
|
|
|

|

|

|
|

|

|

2. The scripts listed for this option are not the MPI startup scripts provided

by the vendor of your MPI implementation. However, the scripts that are

listed invoke the MPI startup scripts provided by the vendor.

3. If MPI was not installed in the default location, you must update the MPI

scripts accordingly.

-mpitest {0 | 1}

If you enable the -mpitest option, the specified program (application.name)

is run on all nodes as a Single Program Multiple Data (SPMD) MPI

program. Any application options are passed to the program on the

application host node only. This provides a test mechanism for verifying that

MPI is running correctly within the SVN environment. Refer to Chapter 9,

“Installation verification for Deep Computing Visualization,” on page 65 for

SVN verification procedures.

Note: The -mpitest option is disabled by default.

-svndpy wall-configuration-file-full-path

The -svndpy option defines the full path for the wall configuration file. The

wall configuration file lists the names of the rendering servers, the virtual

size of the display wall, and the portion of the geometry to be shown by

each server. The svn_sender command uses all the (non-commented)

rendering servers supplied in the wall configuration file. For more

information about the wall configuration file, including display groups, refer

to Chapter 2, “Scalable Visual Networking,” on page 5.

Note: The full path for the wall configuration file is required. You must

specify it using one of these methods:

v The -svndpy option on the svn_sender command

v The SVN_DISPLAY environment variable

-svnrvn hostname

The -svnrvn option identifies the host name for the machine that will serve

as the RVN sender when you run DCV in interoperability mode, using a

joint SVN-RVN session. In a joint SVN-RVN session, end stations connect

to the specified machine to received the rendered images from the remote

application, just as they would in an RVN-only session. For more

information about setting up a joint SVN-RVN session, refer to Chapter 4,

“SVN and RVN interoperability,” on page 45.

 The type of connection affects what you must specify on the -svnrvn

option, as well as whether you must include or exclude other options on the

svn_sender command.

v VNC:

– Specify the -v option to use VNC.

– On the -svnrvn option, specify the SVNRVN server as an X display

name, for instance -svnrvn myhost:0 /bin/myapp.

– Do not specify the -clientdpy option.

v X11 mode:

– Specify -conf confID to identify the conference ID string for the

SVN-RVN session. This information must be conveyed to each

participant before the start of the conference.

– Specify -key confkey to identify the conference access key for the

SVN-RVN session. This information must be conveyed to each

participant before the start of the conference.

User guide: SVN

10 Installation and User Guide

|

|

|
|

|

|

|
|
|
|
|
|
|

|
|
|

|

|

|
|

|

|

|
|
|

|
|
|

– On the svnrvn option, specify the host name of the server node used

as a SVNRVN server (and which will be the target of the

rvn_receiver command), for instance -svnrvn myhost.

– On the clientdpy option, specify the X display that is used to render

the application graphics, for instance -clientdpy myhost:0

/bin/myapp.

-sync {0 | 1}

If you enable -sync, the frame updates of the host and rendering servers

are synchronized so that the host does not render frames ahead of the

rendering servers.

Note: The -sync option is disabled by default.

-windowselector { 0 | 1 }

If you leave -windowselector enabled, the SVN intercept library displays a

small X Window on the local display screen. This allows you to control

which OpenGL application window should be displayed on the rendering

servers. To use this feature:

1. Click the selector window and highlight its frame.

2. Click in the selector window.

3. The selector window turns red and displays the mouse cursor as a

small plus sign (+).

4. Click in the window that you want to display.

5. The rendering servers display the indicated window.

Notes:

1. If you have several coincident windows, this process might have to be

repeated.

2. You can also enable the window selector by setting the

SVN_WINDOW_SELECTOR environment variable.

3. The default value for -windowselector is 1 (window selector enabled).

Starting SVN

To start SVN, you set the required environment variables, and use the svn_sender

command to run the visualization application on the application host. The method

that you use to start SVN depends on the MPI configuration for your system. For

examples, see the following sections:

v “Starting SVN using Scali MPI”

v “Starting SVN using Cisco/TopSpin MPI” on page 12

v “Starting SVN using MPICH” on page 12

For details about the svn_sender command and the related environment variables,

see “The svn_sender command” on page 8.

Starting SVN using Scali MPI

The following example illustrates the environment variables and the commands

needed to invoke SVN using Scali MPI. This example displays a 64-bit sample

application on the nodes defined in the wall.cfg file.

User guide: SVN

Chapter 2. Scalable Visual Networking 11

|
|
|

|
|
|

|

|
|
|
|

|

|

|

|
|

$ export SVN_HOME=/scratch/jr/rpmtest64

$ export SVN_DISPLAY=$SVN_HOME/wall.cfg

$ export SVN_MPILIB=/opt/scali/lib64/

$ export SVN_MPIBIN=/opt/scali/bin

$ export SVN_MPICOMM=mpicomm.scali

$ svn_sender app64

Starting SVN using Cisco/TopSpin MPI

The following example illustrates the environment variables and the commands

needed to invoke SVN using the Cisco/TopSpin MPI. This example displays a 64-bit

sample application on the nodes defined in the wall.cfg file.

$ export SVN_HOME=/scratch/jr/rpmtest64

$ export SVN_DISPLAY=/scratch/jr/rpmtest64/wall.cfg

$ export SVN_MPILIB=/usr/local/topspin/mpi/mpich/lib64

$ export SVN_MPIBIN=/usr/local/topspin/mpi/mpich/bin

$ export SVN_MPICOMM=mpicomm.ib.rsh

$ svn_sender app64

Starting SVN using MPICH

The following example illustrates the environment variables, the wall configuration

file, and the commands needed to invoke SVN using MPICH. This example displays

a 32-bit sample application on a 2 x 2 wall.

Notes:

1. This example assumes that you installed MPICH in /usr/local/mpich-1.2.7.

Depending on how MPICH was installed on your system, that location might be

different.

2. For information about the level of MPICH that is required, refer to “SVN

prerequisites” on page 52.
$ cd /scratch/jr/rpmtest

$ export SVN_HOME=/scratch/jr/rpmtest

$ export SVN_DISPLAY=$SVN_HOME/wall.cfg

$ export SVN_MPILIB=/usr/local/mpich-1.2.7/lib/shared

$ export SVN_MPIBIN=/usr/local/mpich-1.2.7/bin

$ export SVN_MPICOMM=mpicomm.p4

$ cat $SVN_DISPLAY

node3:0.0 2560 2048 0 0 1280 1024

node4:0.0 2560 2048 1280 0 1280 1024

node5:0.0 2560 2048 0 1024 1280 1024

node6:0.0 2560 2048 1280 1024 1280 1024

$ svn_sender /usr/X11R6/bin/glxgears

OpenGL overloads with SVN

SVN uses built-in programs called overloads to initiate several functions, such as

creating a multi-tiled output for a single display application. You can also create

your own overloads to modify the behavior of any OpenGL function. Using these

custom overloads, you can affect the behavior of specific applications during an

SVN session. In addition, you can also group individual overloads together and

create an overload set. With an overload set, the individual overloads work in

sequence to achieve specific application functions.

Notes:

1. To use an overload or an overload set, you must load it with SVN at run time.

2. For sample overload files, look in /opt/IBM/dcv/svn/examples/overload.

All SVN overloads and overload sets achieve their results by intercepting OpenGL

calls. After the call is intercepted, the overload replaces the information in the call

User guide: SVN

12 Installation and User Guide

|
|
|

|
|

|
|

|

with the modified instructions contained in the overload. The overload process

works because the SVN graphics pipeline follows a specific sequence of events:

1. The SVN OpenGL library installed on the application host intercepts OpenGL

calls.

2. SVN encodes the OpenGL calls and, using MPI, sends the encoded calls over

the network to the rendering servers.

3. The rendering servers receive and decode the data.

4. Each of the rendering servers displays its portion of the final image.

At various stages of this pipeline you can modify the parameters of an intercepted

OpenGL call. This process is called overloading an OpenGL call.

The basic overload

The following example introduces a simple overload that intercepts an OpenGL call

and modifies its parameters to invert colors. The mechanism for this overload

functions by intercepting all calls that the target application makes to glColor** and

modifying the associated OpenGL parameters.

Note: In this example, the overload version of glColor** refers to glColor3f.

However, this example easily extends to similar calls.

static void

o_glColor3f(float original_r, float original_g, float original_b)

{

float modified_r = 1 - original_r;

float modified_g = 1 - original_g;

float modified_b = 1 - original_b;

//call system OpenGL glColor3f passing it as arguments

//modified_r, modified_g, modified_b

}

Now, SVN must fill in the missing call to the system OpenGL glColor3f and make

sure that any application call to glColor3f is diverted to the overloaded version,

o_glColor3f. Before we proceed, however, we need to go into more detail

regarding SVN behavior when loading and using a custom set of overloads. The

main requirement for the custom overload set is that it must implement the

Overload function, whose prototype is:

void Overload(glOp *glOperationsTable, glOp *glSystemOperationsTable);

When loading the custom overload set, SVN automatically calls the Overload

function contained within the set and passes it pointers to an array of current SVN

OpenGL operations and an array of the original system OpenGL operations. These

arrays, especially the SVN OpenGL operations table, play a central role in the

overload mechanism:

v The entry in the SVN operations table that corresponds to glColor3f provides a

handle that calls the current SVN glColor3f from the overloaded version

o_glColor3f.

v By replacing the entry in the SVN operations table that corresponds to glColor3f

with a new entry that points to our overload version o_glColor3f, SVN always

calls the overload version instead of the original.

v The array of original system OpenGL operations is provided in case the newly

written overload needs to make OpenGL calls using the system OpenGL library

rather than the current (possibly overloaded) versions that SVN is using.

User guide: SVN

Chapter 2. Scalable Visual Networking 13

|
|

|

|
|
|

|
|

|

|
|
|

To access these arrays, SVN provides a series of numeric constants, and each of

these constants corresponds to an OpenGL call. For example,

glOperationsTable[GLCOLOR3F] provides access to the entry that corresponds to

glColor3f. All these constants have the form of the OpenGL call they are referring

to, and the reference must be written in capital letters. In addition, you must include

the file wire.h in the source file for the overload module.

Note: The wire.h file is located in the directory $SVN_ROOT/include/wire.h.

Using these requirements, you can complete the overload code file:

#include ”wire.h”

static void(*s_glColor3f)(float,float,float);

static void o_glColor3f(float,float,float);

//this function will be automatically called by SVN:

void Overload(glOp *glOperationsTable, glOp *glSystemOperationsTable)

{

 // save a handle to the system glColor3f(...) call:

 s_glColor3f = (void(*)(float,float,float)) glOperationsTable [GLCOLOR3F];

 //replace the entry with a handle to the overloaded version:

 glOperationsTable[GLCOLOR3F] = (glOp)o_glColor3f;

}

static void

o_glColor3f(float original_r, float original_g, float original_b)

{

 float modified_r = 1 - original_r;

 float modified_g = 1 - original_g;

 float modified_b = 1 - original_b;

 (*s_glColor3f)(modified_r,modified_g,modified_b);

}

Note: For this overload to operate, the overload o_glColor3f(..) calls the OpenGL

version of the glColor3f(..) function with modified parameters. Although

this is the common method, such behavior is not always required. In some

cases, an overload might need to call different OpenGL methods or maybe

none whatsoever. As long as the overload produces the desired output, this

is perfectly acceptable.

After you finish writing the overload, you need to configure SVN to load and use the

code. Follow these steps:

1. Compile the overload code into a named, shared object (for example,

invert_colors.so).

v You can use the sample Makefile provided with the SVN code.

2. Create a file named overload_files.txt that contains a list of overload modules

for SVN to use.

v The overload_files.txt file has one line for each overload module.

v The format for each entry has the form /...correct_path.../invert_colors.so.

3. Set the $SVN_OVERLOAD_FILE environment variable to point to

overload_files.txt.

v This variable might require the full path to the text file.

User guide: SVN

14 Installation and User Guide

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

After you complete these steps, run SVN as you normally would, on an application

that uses glColor3f. You can use the provided rotvp test application for this

purpose. All the colors in the application should be the opposite of the normal colors

displayed during standard operation.

System interface for overloads

The basic overload described in the previous section performs the same in all

cases. However, more complex overloads (like the one in this section) might need

to differentiate between SVN instances. In this case, the overload set must obtain

information that is specific to the calling instance of SVN (client or one of the

servers). This is accomplished through an internal SVN function

DVGetDisplayName() that returns the name of the X display used by the calling

instance of SVN. Here is the syntax for using this function:

char *DVGetDisplayName();

Note: Overload functions will be called by all SVN instances, client and servers.

This call returns a pointer to a string that is set as follows:

v On an SVN server, the return value of DVGetDisplayName() points to a string

containing the name of the X display that it outputs to.

– This string has the format server_name[:d.s].

– The display name is identical to the one found in the file that the environment

variable $SVN_DISPLAY points to.

v On the SVN client, the return value of DVGetDisplayName() points to a string

containing the word "client".

v If the DVGetDisplayName() call fails, the result will be NULL.

In order to call this function, an overload set must use the glOperationsTable array

method required for making system OpenGL calls. The entry in this array

corresponding to index DVGETDISPLAYNAME provides a handle to the function:

char*(*DVGetDisplayNameHandle)() =

 char*(*)()) glOperationsTable[DVGETDISPLAYNAME];

char* myDisplayName = DVGetDisplayNameHandle();

Note: The DVGETDISPLAYNAME constant is also declared in the file

$SVN_ROOT/include/wire.h. The wire.h file needs to be included in the

overload source code file.

For example, assume that you want to invert application colors on the SVN servers

only. In this case, the new version of the Overload(...) function would be:

void Overload(glOp *glOperationsTable, glOp *glSystemOperationsTable)

{

char*(*DVGetDisplayNameHandle)() =

 char*(*)()) glOperationsTable[DVGETDISPLAYNAME];

char* myDisplayName = DVGetDisplayNameHandle();

if (myDisplayName==NULL)

{

 fprintf(stderr,"Failed to obtain SVN system info;\n");

return;

}

else if (!strcmp(myDisplayName,"client"))

{

 fprintf(stderr,"SVN client: aborting color inversion overload...;\n");

return;

}

User guide: SVN

Chapter 2. Scalable Visual Networking 15

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

fprintf(stderr,"SVN server rendering on display %s

 using color inversion overload... \n", myDisplayName);

s_glColor3f = (void(*)(float,float,float)) glOperationsTable [GLCOLOR3F];

glOperationsTable[GLCOLOR3F] = (glOp)o_glColor3f;

}

Another example of differentiating between SVN instances is the Stereo Overload

set. By using this set, you can display a regular (non-stereo) OpenGL application in

stereo vision (active or passive). This is accomplished as follows:

v The application runs on the client node and displays on two SVN rendering

servers, one for left eye and one for right eye.

v Each server uses the Stereo Overload set to output either a left eye or a right

eye view for stereo viewing.

v SVN delivers the output from the servers into a stereo projection system.

v The SVN client can have different behaviors:

– It can be used instead of one of the servers displaying the left eye or right eye

image.

– It can bypass the overload set and display the standard (non-stereo)

application output.

In order to obtain left and right eye views through the Stereo Overload set, SVN

applies the following methods:

v The overload set on each SVN instance obtains its own display name by using a

handle to the function DVGetDisplayName(). You can then specify whether the

output should be left eye, right eye or non-stereo for each display.

v In order to produce a left or right eye image, a stereo transformation needs to be

added to the OpenGL projection matrix. Therefore, the Stereo Overload set

overloads all OpenGL calls that affect the projection matrix and makes sure that

the stereo transformation is always applied.

When you are using the Stereo Overload set, you follow the steps that are used for

a simple overload, plus some additional steps.

v These are the basic steps that are required for all overload sets:

1. Compile the overload code into a named, shared object (for example,

invert_colors.so).

– You can use the sample Makefile provided with the SVN code.

2. Create a file named overload_files.txt that contains a list of overload modules

for SVN to use.

– The overload_files.txt file has one line for each overload module.

– The format for each entry has the form /...correct_path.../invert_colors.so.

3. Set the $SVN_OVERLOAD_FILE environment variable to point to

overload_files.txt.

– This variable might require the full path to the text file.

v In addition to the basic steps, the Stereo Overload set also requires the following

steps:

1. Set up a stereo configuration file.

– This file should contain one entry for each display that will be used for

stereo vision.

– The entry uses the form:

server_name[:d.s] {STEREO_LEFT|STEREO_RIGHT}

User guide: SVN

16 Installation and User Guide

|
|
|
|
|
|

|

|

Note: You must use the exact server and display names that are used in

the $SVN_DISPLAY configuration file.

2. If the client is to be used for stereo vision, add an entry using the form:

client {STEREO_LEFT|STEREO_RIGHT}

3. Set the environment variable $SVN_STEREO_FILE to point to the stereo

configuration file.

4. Run the desired OpenGL application through SVN and feed the left eye and

right eye displays to stereo projection hardware.

Notes:

1. If an entry corresponding to any of the SVN displays is missing from the stereo

configuration file, the SVN instance running that display simply bypasses the

Stereo Overload set and produces standard (non-stereo) output.

2. The steps listed in this section are specific to this particular implementation of

the Stereo Overload set. They are not typically required by SVN.

3. Other developers might implement the same functionality through overloads

using other methods to determine whether to output left eye, right eye or a

standard image on a particular display.

Using multiple overload sets

The previous example described an overload list file with one entry that pointed to

the associated overload shared object. The overload list file can also have more

than one entry. In such a case, SVN loads and uses all the provided overload sets.

For example, you could use both sets developed in the previous examples. If you

did so, the resulting display would have stereo images with inverted colors. To

accomplish this, you would create an overload list file that would look like this:

/...correct_path.../stereo_overload.so

/...correct_path.../invert_colors.so

Notes:

1. You must update the $SVN_OVERLOAD_FILE environment variable to point to the

overload list file.

2. You could create a single overload with multiple functions. However, if you use

an overload list file that points to multiple overloads, you can define specific end

results by combining different overloads in an overload list file.

3. Although you can achieve positive results with multiple overloads, you can also

create system conflicts if you are not careful with how you combine overloads in

the overload file list. Review the overload list file and the associated overloads

to confirm that you will achieve the desired results.

The following example illustrates what happens when two overload sets try to

overload the same OpenGL call. In this case, overload_set_1 and overload_set_2

both overload glColor3f(..). This is done using the following code fragments:

overload_set_1

void Overload(glOp *glOperationsTable, glOp *glSystemOperationsTable)

{

 s_glColor3f = (void(*)(float,float,float)) glOperationsTable [GLCOLOR3F];

 glOperationsTable[GLCOLOR3F] = (glOp)o_1_glColor3f;

}

static void

o_1_glColor3f(float r, float g, float b)

{

 ...

 (*s_glColor3f)(...)

 ...

}

User guide: SVN

Chapter 2. Scalable Visual Networking 17

|
|
|
|
|
|
|
|
|
|
|
|

overload_set_2

void Overload(glOp *glOperationsTable, glOp *glSystemOperationsTable)

{

 s_glColor3f = (void(*)(float,float,float)) glOperationsTable [GLCOLOR3F];

 glOperationsTable[GLCOLOR3F] = (glOp)o_2_glColor3f;

}

static void

o_2_glColor3f(float r, float g, float b)

{

 ...

 (*s_glColor3f)(...)

 ...

}

Note: For this example, the overload list file contains two entries:

/...correct_path.../overload_set_1.so

/...correct_path.../overload_set_2.so

When SVN loads the overload sets, these actions occur:

1. SVN calls the Overload(...) function of overload_set_1 and passes it a pointer

to the glOperationsTable.

2. overload_set_1 stores the handle to glColor3f(...) that it finds in

glOperationsTable.

3. overload_set_1 replaces the handle to glColor3f(...) with a handle to its own

o_1_glColor3f(...).

4. SVN calls the Overload(...) function of overload_set_2 and passes it a pointer

to the glOperationsTable.

5. overload_set_2 stores the handle it finds in glOperationsTable. However, that

handle was replaced by overload_set_1 and it is now a handle to

o_1_glColor3f(...).

v As a result, whenever overload_set_2 is using the handle it found in

glOperationsTable, overload_set_2 is actually calling o_1_glColor3f(...).

6. overload_set_2 replaces the handle from glOperationsTable with a handle to

its own o_2_glColor3f(...).

7. Because the handle in glOperationsTable was replaced twice, SVN calls are

diverted to o_2_glColor3f.

Figure 3 on page 19 shows the effect multiple overload sets have when they make

application calls to the same glColor3f(...) handle. The illustrated pipeline might

be broken if, for example, o_2_glColor3f(...) would not attempt to use the handle

it receives from SVN and stores in s_glColor3f(...). In general, when multiple

sets overload the same OpenGL call, that call triggers the execution of the overload

function from the last set of overloads contained in the overload list. Then,

depending on the implementation of each overload, the call might propagate to the

overload version of the same function defined in a set that is higher in the list.

User guide: SVN

18 Installation and User Guide

|
|
|
|
|
|
|
|
|
|
|
|
|

|

Application call to
glColor3f(…) SVN encoder SVN decoder

o_2_glColor3f(…)

s_glColor3f
calls

(…)

overload 2_set_ :

System call to

glColor3f(…)

o_1_glColor3f(…)

s_glColor3f
calls

(…)

overload_set_1:

Figure 3. Multiple overload sets

Chapter 2. Scalable Visual Networking 19

20 Installation and User Guide

Chapter 3. Remote Visual Networking

Remote Visual Networking (RVN) allows remote, collaborative access to

OpenGL-based 3-D graphics applications. RVN intercepts data within the rendering

pipeline, uses local resources for rendering, and then redirects the finished images

to the remote displays (end stations). It permits the use of applications despite

higher-latency and lower-bandwidth networks. Because it uses local rendering

resources, RVN allows machines with limited 3-D rendering capability to display

highly interactive 3-D applications. RVN can be configured to send images to

multiple destinations, facilitating the simultaneous interaction of several

collaborators.

Central to every RVN session is the notion of an RVN sender and an RVN receiver.

A sender, also known as an application host or application server, is the host on

which the graphics application runs. An RVN receiver or end station consists of a

computer that is reachable from the sender through TCP/IP and a display.

Supported operating systems

RVN supports application servers and end stations under both Linux and

Microsoft Windows. The application server and end stations do not need to

run under the same operating system in order to participate in the same RVN

session. For more information about operating systems and other software

requirements for RVN, refer to “RVN prerequisites” on page 55.

 Each RVN session involves exactly one sender and up to eight receivers. Both

senders and receivers involve:

v Processing hardware

v Application (or RVN) software

v Display hardware

Note: The terms sender and receiver refer to some combination of the hardware,

software and display on the application or end station side, respectively,

depending on context. For additional information about sender and receiver,

refer to “RVN sessions” on page 22.

To intercept data along the rendering pipeline on the sender, RVN uses an OpenGL

intercept library that the application loads in place of the conventional OpenGL

library. The RVN OpenGL library in turn loads the conventional OpenGL library.

Graphics applications are invoked by the RVN launcher, which sets up the

environment to load the RVN OpenGL library before the system OpenGL library.

The execution of an RVN session is fully configurable by environment variable

settings, options set through the RVN launcher, and a runtime dashboard that

allows you to change RVN settings throughout application execution.

For maximum flexibility and data transfer rates, you should install RVN on the

receiving end station as well as on the application server. Doing so allows you to

take advantage of the accelerated graphics support in RVN, which provides fast

transport of pixel data by using highly optimized image-compression methods well

suited to most 3-D application domains.

© Copyright IBM Corp. 2005, 2007 21

|

|
|
|
|
|

|

|
|
|
|
|
|
|
|

|
|
|
|
|

In an RVN session, the application user interface is transferred to the end station

through the remote desktopping support provided by VNC, or by the conventional

X11 DISPLAY environment variable mechanism (Linux application servers only).

Required version of VNC

VNC Visualization Edition is the only supported VNC product. Using a different

VNC product (whether from RealVNC or another company) on the RVN

sender, the RVN receiver, or both, is not supported. For more information

about the required version of VNC, see “RVN prerequisites” on page 55.

 When the RVN sender gets the application commands to display a rendered image

in 3-D, the RVN sender obtains the image, compresses it, and sends it over the

network to the RVN receiver. The receiver decompresses the image and puts it into

one of two locations:

v If you are using VNC, the image fills the application window in the vncviewer.

v If you are using X11 DISPLAY export, the image is displayed in the application

window.

RVN typically performs 3-D rendering in off-screen memory. Therefore, 3-D images

are usually not displayed on the application server. A blank graphics window is

usually displayed in place of the 2-D interface for the application. If you are using

VNC, you can configure RVN to write to the application server display by either

setting the environment variable RVN_HOST_SHOW_PIXELS=1 or by selecting the Show

on server option in the RVN dashboard.

RVN sessions

An RVN session consists of the interaction among several hardware and software

components. Under RVN, a 3-D visualization runs on an application server and is

displayed on up to eight end stations. The end stations and application server must

be connected by a local or wide area network that supports IP communication. Pixel

data (and X events, in the case of Linux) each require a transport mechanism

between the application server and the end stations. For each RVN session:

v Where the 3-D rendering occurs depends on whether RVN is running with SVN.

– If you are running an RVN session without SVN, all 3-D rendering takes place

on the application server.

– If you are running an SVN-RVN interoperability session, 3-D rendering moves

off of the application server and onto a separate rendering server that

processes the 3-D image.

v RVN manages the transport of the image pixel data across the network to the

remote end stations.

With RVN, each end station receives pixel data from the application server and

sends user events (such as mouse or keyboard actions) to the server. Depending

on the software components and transport mechanism involved, you can have up to

eight end stations in a given RVN session. The application server is responsible for

pushing updates to its application window (in the form of pixel data) across the

transport to each connected end station. Each end station is responsible for:

v Displaying one or more application windows

v Interpreting user events on those application windows

v Sending user events back to the application server for processing

User guide: RVN

22 Installation and User Guide

|
|

|
|
|
|

|

|

|
|
|
|
|
|

|

|
|
|
|

|

|
|

|
|
|

|
|

Notes:

1. RVN does not handle any of the event processing or transport back to the

application server. It relies on either VNC transport or the X remote DISPLAY

mechanism (Linux application servers only) for that function.

2. When the X remote DISPLAY mechanism is used by an application server

running under Linux, the end station RVN code primarily runs within an

application called endstation (for Linux) or endstation.exe (for Windows). That

application is invoked by a front-end rvn_receiver script (for Linux) or

rvn_receiver.bat file (for Windows) that sets up the internal environment and

then invokes endstation.

References to the RVN transport layer or accelerated graphics pertain to the

mechanism by which pixel data are sent from the application server to the end

stations. It is assumed that the transport of desktop pixels (other than within the

application window) to the end stations and the input events from the end stations

get transported by other means. For sessions between a single application server

and multiple end stations, VNC is required. For sessions between a single

application server and a single end station, either VNC or X (through the remote

DISPLAY mechanism) can be used for this transport.

Connecting to an RVN session

A convenient comparison for a connection to an RVN session is a business

conference call. Like a conference call, each RVN session requires:

v A chairman (the graphics application running with RVN on the application server

and specified in the RVN launcher or with the rvn_sender command)

v One or more participants (the vncviewer or rvn_receiver process running on the

remote machines, or end stations)

v An operator (the rvn_coordinator process running on the application server)

– The coordinator process arranges for the applications and participants to

connect.

– Typically, the coordinator runs automatically, behind the scenes, requiring no

user involvement.

How participants are authorized to connect to an RVN session depends on whether

VNC or X11 export mode is being used.

Authentication when VNC is used

If VNC Visualization Edition is being used on the RVN sender and the RVN

receivers, authorization to connect to the RVN session is automatically handled by

VNC password authentication. There is no need for the sender and receiver to

provide additional information in order to join the RVN session.

Authentication when X11 DISPLAY export is used

RVN sessions using the X remote DISPLAY mechanism require the use of RVN

session authentication. In addition to the hardware and software requirements listed

above, each end station requires three pieces of information to "dial into" and join a

session:

v The host name of the application server

v The conference ID string

v The conference access key

User guide: RVN

Chapter 3. Remote Visual Networking 23

|
|

|
|
|
|
|

|

|
|
|

|
|

|
|

|

|
|

|
|

|
|
|
|
|

Note: For security purposes, you must convey the host name, ID string, and

access key to each participant. Each participant must have this information

before attempting to log in to the session.

Using the supplied host name, each participant attempts to connect to the RVN

session. As part of establishing the connection, the coordinator checks the

conference ID string. If the ID strings match, the coordinator directs the RVN sender

and the RVN receiver to meet on a specific port and continue negotiating for a

direct connection between the sender and receiver. During this negotiation, the

participant must supply the conference access key. Having the correct access key

authenticates the end station and enables it to join the session (also called a

conference).

Configurations for RVN sessions

RVN sessions use one of the following configurations:

v Linux application servers only: RVN with X11 DISPLAY export (refer to Figure 4)

v RVN with VNC (refer to Figure 5 on page 25)

v RVN with VNC and multiple end stations, or collaborators (refer to Figure 6 on

page 25)

v Linux application servers only: RVN with VNC and desktop isolation (refer to

Figure 7 on page 26)

Figure 4 shows RVN using the X11 DISPLAY export mechanism. This configuration

can be used only when the application server is running under Linux, and requires

RVN code on the end station. Two-dimensional user data is transported by the X11

remote mechanism. Three-dimensional data is transported through the accelerated

graphics function of RVN.

Note: This configuration permits only a single end station. The X11 DISPLAY export

mechanism is best used when the application server and end station are on

the same local area network (LAN).

App Receiver :0

RVN libGL.so

:0 (hardware) rvn_receiver

Sender Receiver

X11 (2D)

Accelerated
graphics

Figure 4. RVN with X11 DISPLAY export (Linux application servers only)

User guide: RVN

24 Installation and User Guide

|
|

|

|

|

|

|
|

|
|

|

|
|

|
|
|

Figure 5 illustrates how you can use VNC for remote desktopping. The RVN sender

writes 3-D data to the local application windows in a manner that triggers VNC to

send updates to the end station. In this mode, VNC provides both the 2-D and pixel

transport mechanisms.

Note: VNC also allows multiple end stations to operate in a mode similar to that

shown in Figure 5.

Figure 6 illustrates the collaborative (multiple end station) versions of VNC and the

accelerated graphics function of RVN. Note that the setup is similar to the VNC

base configuration shown in Figure 5. However, in the collaborative version there

are multiple receivers and all receivers behave similarly. In addition, 2-D data

transport to multiple end stations is made possible by VNC, and pixel transport is

enabled by the RVN receiver software running on each end station. Information

about each receiver is passed to the RVN sender, causing RVN to send data to

multiple receivers.

App

Receiver :0

RVN libGL.so
or openGL32.dll

:0 (VNC/hardware)

Sender Receiver

X11
(2D)

vncviewer

3D

rvn_receiver

Accelerated
graphics

Figure 5. RVN with VNC

App

vncviewer vncviewer

RVN libGL.so
or openGL32.dll

rvn_receiver rvn_receiver

:0 (VNC/hardware) Receiver 0:0 Receiver n:0

Sender Receiver 0 Receiver n

3D

X11
(2D)

Figure 6. RVN with VNC and multiple end stations

User guide: RVN

Chapter 3. Remote Visual Networking 25

|

|
|
|

|

|
|

|

Figure 7 illustrates the ability to exploit VNC desktop isolation mode using RVN. In

this mode, VNC can create multiple X11 desktops on the application server for

remote viewing. In addition, RVN can be configured to operate on an application

running on one of the additional desktops.

Note: Although the application server must be running under Linux, the end

stations can run under Linux or Windows.

User interface for working with RVN

The following elements form the core user interface for an RVN session:

v The RVN application launcher

v The RVN dashboard

v The rvn_sender command (Linux) or rvn_sender.bat command (Windows)

v The rvn_receiver command (Linux) or rvn_receiver.bat command (Windows)

v The rvn_viewer command (Linux only)

v The RVN coordinator (Linux only)

Table 1 on page 27 summarizes how the RVN session participants use the

elements of the interface. Typically, the receiver initiates the session by starting the

VNC viewer. However, either the sender or the receiver can start the session. For

detailed examples of the sequence in which these elements operate in an RVN

session, refer to “Running RVN” on page 40.

App

Receiver :0

RVN libGL.so rvn_receiver

:0 (hardware)

Sender Receiver

X11
(2D)

vncviewer

3D

:1 (VNC)

Accelerated
graphics

Figure 7. RVN with VNC and desktop isolation (Linux application servers only)

User guide: RVN

26 Installation and User Guide

|

|
|

|
|

|

|

|

|

|

|

|

|

|
|
|
|
|

Table 1. Interactions with the user interface for RVN

Step Notes

The receiver (on the end station) connects

to the session.

Any of these methods can be used:

v For sessions that use VNC, this is done

through normal VNC password

authentication after launching the VNC

viewer with one of the following

commands:

– For Linux end stations, use the

rvn_viewer command.

– For Windows end stations, use the

vncviewer command.

v For sessions that use X11 export mode,

this is done by running the rvn_receiver

command (Linux) or rvn_receiver.bat

command (Windows).

The sender (on the application server)

launches the application and connects to the

session.

Any of these methods can be used:

v Run the RVN application launcher, using

one of the following options:

– Run the rvn_sender command (Linux)

or rvn_sender.bat command

(Windows) without arguments.

– Windows only: Use the RVN Sender

shortcut from the Windows Start menu

(Start > All Programs > IBM > IBM

Deep Computing Visualization > RVN

Sender).

v Bypass the launcher, using one of the

following options:

– Run the rvn_sender command (Linux)

or rvn_sender.bat command

(Windows) and specify the application

with arguments.

– Windows only: Copy the RVN OpenGL

library (openGL32.dll) to the the same

directory as the process that loads

openGL32.dll, then launch the

application directly.

The RVN coordinator handles the initial

setup for connections between the sender

and receiver.

A graphical user interface (the RVN

dashboard) can be used on the application

server to configure RVN parameters while

the application is running in an RVN session.

You can use the RVN launcher and dashboard in various combinations:

v Launcher and dashboard (recommended approach): Run the launcher using

one of the methods listed in Table 1. Then click Launch in the launcher window.

This automatically launches the application and opens the dashboard.

v Launcher without dashboard: Set the RVN_SUPPRESS_DASHBOARD environment

variable to 1. Then run the launcher using one of the methods listed in Table 1.

No dashboard will be available during the session, and you will not be able to

change settings at run time.

User guide: RVN

Chapter 3. Remote Visual Networking 27

||

||

|
|
|

|
|
|
|
|

|
|

|
|

|
|
|
|

|
|
|

|

|
|

|
|
|

|
|
|
|
|

|
|

|
|
|
|

|
|
|
|
|

|
|
|

|

|
|
|
|

|

|

|

|
|
|

|
|
|
|

v Dashboard without launcher: This option is the same as has been available in

the past under Linux. Under Linux or Windows, set the desired environment

variables. Then start RVN and bypass the launcher, using one of the methods

listed in Table 1 on page 27.

v No launcher and no dashboard: This option is the same as has been available

in the past under Linux. Under Linux or Windows, set the desired environment

variables (including RVN_SUPPRESS_DASHBOARD to disable the dashboard). Then

start RVN and bypass the launcher, using one of the methods listed in Table 1 on

page 27.

For more information about using these elements of the user interface for RVN, see

the following sections:

v “The RVN application launcher”

v “The RVN dashboard” on page 31

v “The rvn_sender command” on page 36

v “The rvn_receiver command (X11 DISPLAY export sessions only)” on page 37

v “The rvn_viewer command (Linux end stations in VNC mode only)” on page 39

v “The RVN coordinator” on page 39

The RVN application launcher

The RVN application launcher sets up certain environment variables for running the

graphics application under RVN, ensures access to the system OpenGL library and

the RVN OpenGL library, and identifies the application to be launched. After

completing this setup, it calls the RVN dashboard so that you can configure RVN

parameters while the application is running in an RVN session.

These are the environment variables that the RVN launcher sets:

v RVN_USE_VNC (Linux only; Windows always uses VNC)

v RVN_EXTERNAL_TRANSPORT

v DISPLAY (VNC mode only)

Before starting the RVN launcher, set any necessary additional environment

variables needed for this RVN session, including the path to the system OpenGL

library (unless that path was set during installation). For a complete list, refer to

“Environment variables for rvn_sender” on page 88.

Note: For X11 mode sessions, you must set the DISPLAY environment variable to

the IP address of the receiver before you start the launcher: export

DISPLAY=receiver:0.0. You must also set RVN_DASHBOARD_DISPLAY=:0.0.

Then start the RVN launcher. Figure 8 on page 29 and Figure 9 on page 29 show

the main window for the RVN launcher on Windows or Linux application servers.

Note: You can start the launcher by either of these methods:

v Run the rvn_sender or rvn_sender.bat command with no arguments. For

more information, refer to “The rvn_sender command” on page 36.

v Windows only: Use the RVN Sender shortcut from the Windows Start

menu (Start > All Programs > IBM > IBM Deep Computing

Visualization > RVN Sender).

User guide: RVN

28 Installation and User Guide

|
|
|
|

|
|
|
|
|

|

|

|

|
|
|
|
|

|

|

|

|

|
|
|
|

|
|
|

|
|

|

|
|

|
|
|

|

These are the options that you must specify in the main window for the RVN

launcher:

Mode options (Linux only)

VNC mode

Tells RVN to look for a VNC window when writing application

images.

Note: Using this option disables the accelerated graphics function

of RVN and sets the following environment variables:

v RVN_USE_VNC=1

v RVN_EXTERNAL_TRANSPORT=0

v DISPLAY=:0

X11 export mode

Tells RVN to use the X server that is running on the receiver.

Note: Using this option sets the following environment variables:

v RVN_USE_VNC=0

v RVN_EXTERNAL_TRANSPORT=0

Select an application

Specifies the path to the graphics application. Either enter the full path, or

click Browse and navigate to the application. (Launch is not available if

you have not provided this information.)

Application arguments

Specifies any additional arguments needed by the application.

Figure 8. RVN application launcher: Main window (Windows)

Figure 9. RVN application launcher: Main window (Linux)

User guide: RVN

Chapter 3. Remote Visual Networking 29

|

|
|
|

|

|
|
|

|

|
|

|

|
|
|

|
|

|

|

|

|
|

|

|

|

|
|
|
|

|
|

If you need to provide any of the following information, click Options to enter the

data in a window for additional options, as shown in Figure 10.

v The paths for RVN_HOME and the system OpenGL library. If these are not

supplied, defaults will be used.

v Windows only: A user-specified directory to use as the destination of the RVN

OpenGL library (openGL32.dll). If this is not supplied, the file will be copied to the

application directory.

v A user-specified port for socket communication with the application. If this is not

supplied, the port will be selected automatically.

These are the additional options that you can specify in the RVN launcher:

Path to RVN_HOME

Specifies the location of RVN OpenGL library, which is copied to the

application directory or (for Windows only) to the location specified in the

DLL destination directory field. This information is required, and might

have been preset during installation. If you did not use an environment

variable to set the location, provide that information now. Either type the full

path, or click Browse and navigate to the file.

Path to the system OpenGL library

Specifies the location of the system OpenGL library, which is used along

with the RVN OpenGL library. This information is required, and might have

been preset during installation. If you did not use an environment variable

to set the location, provide that information now. Either type the full path, or

click Browse and navigate to the file.

DLL destination directory (Windows only)

Indicates whether the openGL32.dll file should be copied to a user-specified

directory instead of to the application directory (the directory from which the

application was started). Some applications load executable libraries from

other directories or start other underlying processes from other directories

that in turn load openGL32.dll.

v To copy the openGL32.dll file to the application directory, leave this

option not selected. This is the default.

Figure 10. RVN application launcher: Additional options

User guide: RVN

30 Installation and User Guide

|

|
|
|

|
|

|
|

|
|
|

|
|

|

|

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|

v To copy the openGL32.dll file to a user-specified directory, select this

option, then provide the path for the directory. Either type the full path, or

click Browse and navigate to the directory.

Note: Normally, you should not need to separately specify the DLL

destination directory unless you know that the openGL32.dll file must

be in a specific location other than the application directory.

However, if you do not specify the DLL destination directory and

openGL32.dll is not subsequently loaded, you need to specify the

correct location. To determine that location, search for all directories

that contain .exe and .dll files that were installed when the

application was installed (excepting the system directory). This might

reveal directories that could be appropriate for the openGL32.dll file.

Possible locations can include directories and subdirectories in the

\Program Files\Common Files\ directory for the application, if it has

one, as well as the root directory and subdirectories for the

application itself, normally in the Program Files directory. Try each of

the locations until one of them works.

Automatic port selection

Indicates whether the port for socket communication with the application

should be automatically selected. To specify a specific port, clear

Automatic port selection, then select the port that you want to use for

communication.

 After you provide the required information and click OK in the Options window, you

return to the main window for the RVN launcher and click Launch. This sets the

environment variables for this RVN session, indicates the application to be invoked

(along with the specified arguments), and launches the RVN dashboard.

Note: If you selected X11 export mode, you are prompted to provide the following

information in the "Conference coordination" window:

Conference ID

Supplies the conference ID string for the RVN session.

Notes:

1. This information must be conveyed to each participant before the

start of the conference.

2. Using this option overrides the setting of the RVN_CONFERENCE_ID

environment variable.

Conference key

Supplies the conference access key.

Notes:

1. This information must be conveyed to each participant before the

start of the conference.

2. Using this option overrides the setting of the RVN_CONFERENCE_KEY

environment variable.

The RVN dashboard

The RVN dashboard allows you to control certain runtime options while the

application is running in an RVN session. Figure 11 on page 32, Figure 12 on page

32, and Figure 13 on page 32 show the main window for the RVN dashboard for

VNC mode sessions and X11 mode sessions.

User guide: RVN

Chapter 3. Remote Visual Networking 31

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|

|
|

|

|
|

|
|

|
|

|

|
|

|
|

|

|
|
|
|

The RVN dashboard provides the following options:

Network type

Enables you to use predefined settings for environment variables, based on

network speed, or to specify your own values for these settings.

v To use predefined settings based on your network speed, select one of

the network types. Table 2 on page 33 lists the options that are used by

Figure 11. RVN dashboard: Main window (Windows)

Figure 12. RVN dashboard: Main window (Linux, VNC mode)

Figure 13. RVN dashboard: Main window (Linux, X11 mode)

User guide: RVN

32 Installation and User Guide

|

|
|
|

|

|
|
|

|

|
|
|

|

|

|

|

|
|
|

|
|

default for each type of network. All of the settings apply to all of the

connected end stations. To override any of these defaults, select a

network type, then click Advanced. Then specify your settings in the

"Advanced options" window, shown in Figure 14 on page 34.

 Table 2. Default options for the RVN dashboard, based on network type

Network type Default options

High performance network

 Accelerated graphics: selected (Linux

only)

 Interactive mode: selected

 Static image boost: not selected

 Dynamic compression quality: 80

 Low bandwidth - automatic

Medium performance network

 Accelerated graphics: selected (Linux

only)

 Interactive mode: selected

 Static image boost: not selected

 Dynamic compression quality: 50

 Low bandwidth - automatic

Low performance network

 Accelerated graphics: selected (Linux

only)

 Interactive mode: selected

 Static image boost: not selected

 Low bandwidth - automatic

 Display partial frames: selected

v To specify your own settings for these options, select User options, then

click Advanced. Then specify your settings in the "Advanced options"

window, shown in Figure 14 on page 34.

Show on server

Enables or disables displaying pixels on the local screen of the application

server in addition to sending it to the RVN end station. If this option is

selected and the accelerated graphics function of RVN is being used, RVN

updates the application server screen directly. The initial setting of this

option is determined by the environment variable RVN_HOST_SHOW_PIXELS.

Note: This option is available only in VNC mode.

Accelerated graphics (Linux only)

When this option is selected, the RVN pixel backchannel is enabled, and

OpenGL graphics output is transferred to the viewer much more quickly.

RVN will write data to a local window and not send it out across an

accelerated graphics link.

Note: This option is available only in VNC mode.

Dynamic compression quality

Controls the balance between image compression and image quality when

the image is changing. The range is a percent from 1 to 100. Choosing a

high quality value (a large number) improves the visual quality of the

dynamic images, but requires more data to be sent for each image, which

can reduce responsiveness or lower the frame rate. If you select 100%

compression, lossless compression will be used.

User guide: RVN

Chapter 3. Remote Visual Networking 33

|
|
|
|

||

||

||
|

|

|

|

|

||
|

|

|

|

|

||
|

|

|

|

|
|

|
|
|

|
|
|
|
|
|

|

|
|
|
|
|

|

|
|
|
|
|
|
|

Note: This option can also be specified in the "Advanced options" window.

If you clicked Advanced in the main window of the RVN dashboard, the following

options are available in the "Advanced options" window, as shown in Figure 14:

v Frame sending modes

Interactive mode

Attempts to allow the application to run as fast as possible (with the least

RVN delay). It always transmits the most recently generated frame to the

end-station display. In doing so, it might drop stale images before trying

to compress and send them, in favor of sending newer images. Use this

mode if you are most interested in always viewing the most recent frame,

and not concerned with seeing every generated frame.

Note: This option is the default.

Paced mode

Sends every frame that the application generates and, in so doing, can

often significantly slow the application. Paced mode allows the users at

the end stations to see all of the rendered data. It also addresses the

issue of frame-rate jitter, where image frames are not displayed at

regular intervals. This variability in the frame-to-frame interval is typically

the result of network jitter or a variability in computation loads on the

sender or viewer. To "smooth out" the jitter, paced mode introduces

interval delays, causing the frames to be displayed at regular intervals.

This creates a regular paced viewing experience.

Figure 14. RVN dashboard: Advanced options

User guide: RVN

34 Installation and User Guide

|

|
|
|

|

|

|
|

|

|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|

After selecting Paced mode, increase the pacing period slider until the

frame rate becomes sufficiently smooth and pleasing to the eye. (The

slider determines the length of the delay, from 0 to 1000 ms.)

v Quality settings

Static image boost

Sends a higher quality image when the image is not being rapidly

updated by the application. When this option is selected, RVN rapidly

transfers lower-quality images when the image is changing, then updates

the image with a high-quality update, thereby enhancing the quality of the

static image. By default, this option is not selected.

Note: In some circumstances, rapid flickering occurs when Static image

boost is selected. To avoid this condition, do not select this

option.

Static image boost quality

Controls the balance between image compression and image quality

when the image is not changing. The range is a percent from the current

dynamic compression quality to 100. If you select 100% compression,

lossless compression will be used.

Note: This option is available only if the Static image boost option is

selected.

Dynamic compression quality

Controls the balance between image compression and image quality

when the image is changing. The range is a percent from 1 to 100.

Choosing a high quality value (a large number) improves the visual

quality of the dynamic images, but requires more data to be sent for

each image, which can reduce responsiveness or lower the frame rate. If

you select 100% compression, lossless compression will be used.

v Long Distance Transport

The setting of this option determines how pixels are sent when latency is high.

Using the low bandwidth option provides a more responsive view when

Interactive mode is selected and a sequence of dynamic frames is being sent.

Select one of the following options:

Low bandwidth - automatic

Allows RVN to automatically determine whether to use the low bandwidth

option, based on throughput, latency, and packet-loss threshold.

Low bandwidth ON

Indicates that the low bandwidth option will be used.

Low bandwidth OFF

Indicates that the low bandwidth option will not be used.

If you select Low bandwidth - automatic or Low bandwidth ON, the following

options are available:

Display Partial Frames

Indicates whether to display partially updated frames. Select this option

to see a "frameless" display in the event of network losses, and to use

old data to fill occasional gaps in the image when some data segments

are lost.

Image quality slider

Adjusts the image quality when the low bandwidth option is selected

manually or automatically. Because fewer frames are transmitted when a

User guide: RVN

Chapter 3. Remote Visual Networking 35

|
|
|

|

|
|
|
|
|
|

|
|
|

|
|
|
|
|

|
|

|
|
|
|
|
|
|

|

|
|
|
|

|
|
|

|
|

|
|

|
|

|
|
|
|
|

|
|
|

low bandwidth is used, you might want to reduce the quality of the image

to increase the compression and, therefore, speed. Low values mean

high compression and poor image quality; high values mean little

compression and high image quality.

The rvn_sender command

The rvn_sender command (Linux) or rvn_sender.bat command (Windows) starts

the graphics application on the sender. Similar to rvn_receiver, rvn_sender sets

up the internal RVN environment before invoking the application.

Note: Unless indicated otherwise, all references to the rvn_sender command also

apply to the rvn_sender.bat command.

You can use the rvn_sender command to invoke the RVN application launcher or

to bypass the launcher. For details, see “User interface for working with RVN” on

page 26.

v To invoke the RVN application launcher, omit the application name and

arguments from the rvn_sender command. This approach enables you to

continue using the rvn_sender command in existing scripts, and to use the new

launcher to set environment variables and invoke the application. For more

information about the launcher, refer to “The RVN application launcher” on page

28.

v To bypass the RVN application launcher, include the application name and

arguments on the rvn_sender command, as in previous DCV releases.

Notes:

1. With this approach, if RVN is not installed in the default directories, make

sure to specify the location on the RVN_HOME and DCV_ROOT environment

variables.

2. Windows only: This approach sets environment variables and copies the

openGL32.dll library to the application directory, just as the launcher does.

This is the syntax of the rvn_sender command:

For example, suppose you want to start an RVN session with the following

parameters:

v Using X11 DISPLAY export mode, not VNC

v With the conference name myconf

v Having the access key mykey

v Running the program my_prog

v Using the default port for socket communication with the application

v Bypassing the RVN application launcher

This is what you would specify on the rvn_sender command:

 rvn_sender -conf myconf -key mykey my_prog

Note: When VNC Visualization Edition is used on the sender and the receivers,

there is no need to specify the conference name and access key on the

rvn_sender command. This information is automatically generated with VNC

authentication and is not exposed.

rvn_sender [-v] [-conf <confID>] [-key <confkey>] [-port <portnum>] <appname> [<app-args>]

User guide: RVN

36 Installation and User Guide

|
|

|
|
|
|

|

|

|
|

|
|
|

|
|
|
|
|
|

|
|

|

|
|
|

|
|

|
|

|

|

|

|

|

|
|

The rvn_sender command analyzes the options that were specified on the

command, as well as the settings of related environment variables.

v For a description of the command-line options, see “Command-line options for

rvn_sender.”

v For a description of the related environment variables, see “Environment

variables for rvn_sender” on page 88.

v For examples of using the rvn_sender command and related environment

variables, see “Running RVN” on page 40.

Command-line options for rvn_sender

This section defines the options that can be specified on the rvn_sender command.

-v Tells RVN to look for a VNC window when writing application images.

Notes:

1. Linux only: If this option is not specified, X11 export mode is used.

2. Windows only: This option is required.

3. Using this option disables the accelerated graphics function of RVN and

sets the value of the environment variables RVN_USE_VNC and

RVN_EXTERNAL_TRANSPORT to 1.

-conf confID

Supplies the conference ID string for the RVN session.

Notes:

1. This information is needed only for X11 export mode under Linux. When

VNC Visualization Edition is used on the sender and receivers, this

information is automatically generated during VNC authentication.

2. This information must be conveyed to each participant before the start

of the conference.

3. Using this option overrides the setting of the RVN_CONFERENCE_ID

environment variable.

-key confkey

Supplies the conference access key.

Notes:

1. This information is needed only for X11 export mode under Linux. When

VNC Visualization Edition is used on the sender and receivers, this

information is automatically generated during VNC authentication.

2. This information must be conveyed to each participant before the start

of the conference.

3. Using this option overrides the setting of the RVN_CONFERENCE_KEY

environment variable.

-port portnum

Specifies a port for socket communication with the application, instead of

letting the port be selected automatically.

The rvn_receiver command (X11 DISPLAY export sessions only)

The rvn_receiver command is used in X11 DISPLAY export configurations where

RVN code runs on the end stations. The primary purpose of this command is to

invoke the endstation executable file. Before invoking endstation, rvn_receiver

sets up some internal environment variables, such as the required LD_LIBRARY_PATH

value on Linux.

User guide: RVN

Chapter 3. Remote Visual Networking 37

|
|
|
|
|
|
|
|

|
|

|

|

|

|

|

|
|
|

|
|

|
|

|
|
|

|

|
|
|

|

|

Notes:

1. The rvn_receiver and endstation code uses the default port 7200.

2. If the default port is used by another application, or, if the application server is

using a different port number, you can override the default value by setting the

RVN_COORDINATOR_PORT environment variable to an available port number.

3. If you are invoking rvn_receiver from an end station that is running under

Microsoft Windows, you must do so from a command prompt. For more

information, refer to “Microsoft Windows considerations for rvn_receiver.”

This is the syntax of the rvn_receiver command for Linux:

The rvn_receiver command analyzes the options that were specified on the

command, as well as the settings of related environment variables.

v For a description of the command-line options, see “Command-line options for

rvn_receiver.”

v For information about running rvn_receiver in a Windows environment, see

“Microsoft Windows considerations for rvn_receiver.”

v For a description of the related environment variables, see “Environment

variables for rvn_receiver” on page 92.

v For examples of using the rvn_receiver command and related environment

variables, see “Running RVN” on page 40.

Command-line options for rvn_receiver

This section defines the options that can be specified on the rvn_receiver

command.

host The name of the host where rvn_sender is invoked.

confID A string identifying the RVN conference session you are connecting to. This

information must be distributed to all conference participants before the

conference starts, using the method of your choice. The person responsible

for providing this information is the conference initiator (the person invoking

rvn_sender).

confkey

The security password required to access the RVN conference session.

This information must be distributed to all conference participants before the

conference starts, using the method of your choice.

nickname

A string that provides an on-screen identity for each conference participant.

Microsoft Windows considerations for rvn_receiver

To participate in an X11 export session from a Windows end station, run the

rvn_receiver.bat command in a command prompt window to invoke

endstation.exe. To open a command prompt window, click Start > All Programs >

Accessories > Command Prompt. Update the path so that rvn_receiver.bat can

be typed directly at the command prompt. If the path is not set up correctly, run

rvn_receiver.bat from the default location C:\Program Files\IBM\DCV Endstation\

or from the directory where it was installed.

Here is the syntax:

rvn_receiver[.bat] <host> <confID> <confkey> <nickname>

rvn_receiver [host] <confID> <confkey> <nickname>

User guide: RVN

38 Installation and User Guide

|
|

|

|

|

|
|

|
|
|
|
|
|
|
|
|
|

|
|
|

|

|
|

|

rvn_receiver.bat launches endstation.exe for connecting to an RVN session, and

it matches the syntax of the Linux command line for the rvn_receiver shell script.

For details about this syntax, refer to “Command-line options for rvn_receiver” on

page 38.

To run endstation.exe, rvn_receiver.bat works with an X server running on the

end station. For information about the programs that are supported, refer to “RVN

prerequisites” on page 55.

Note: A Win32 X server is necessary to operate without VNC. If you are not using

VNC, you must configure the DISPLAY environment variable for the

application to use X11 export mode.

The rvn_viewer command (Linux end stations in VNC mode only)

The rvn_viewer command starts the VNC viewer on a Linux end station.

Note: On a Windows end station, use the vncviewer command to start the VNC

viewer directly.

This is the syntax of the rvn_viewer command:

v For a description of the command-line options, see “Command-line options for

rvn_viewer.”

v For examples of using the rvn_viewer command, see “Running RVN” on page

40.

Command-line options for rvn_viewer

This section defines the options that can be specified on the rvn_viewer command.

servername

Specifies the name of the server to connect to.

port If desktop isolation will be used, specifies the port for the virtual session.

other viewer options

Specifies any necessary additional options, as documented by RealVNC for

the Enterprise Edition VNC viewer command.

-h Displays help information for the command.

The RVN coordinator

The rvn_coordinator process handles the initial setup for connecting an RVN

sender to an RVN receiver that is participating in the same session. Under both

Linux and Windows, rvn_coordinator is designed to be started automatically.

v With VNC, the automatic startup is handled internally by the sender on both

Windows and Linux.

v With X11 export, the automatic startup is handled by the xinetd command.

However, you can start rvn_coordinator manually in these situations:

– Your system administrator has not configured xinetd to start rvn_coordinator

automatically.

– You need to use a different set of ports than those defined by the default

rvn_coordinator configuration.

- This could occur if you experience conflicts with the usage of other ports in

your network.

rvn_viewer <servername[:port]> [<other viewer options>] [-h]

User guide: RVN

Chapter 3. Remote Visual Networking 39

|
|

|

|
|
|

|
|
|

|

|

|
|

|
|

|
|
|
|

|
|

|
|

||

|
|
|

||

|
|

|
|

|

Notes:

1. rvn_coordinator runs on the same system as the RVN sender (the application

server).

2. For information about the environment variables for rvn_coordinator, see

“Environment variables for rvn_coordinator” on page 93.

3. The following information pertains only to application servers that are running

under Linux:

v To manually invoke the RVN coordinator, use the rvn_coordinator

command.

v For information about setting up rvn_coordinator, refer to “Configuring the

RVN coordinator (Linux only)” on page 61.

v For details about configuring xinetd, refer to the xinetd and xinetd.conf

man pages.

Running RVN

“RVN sessions” on page 22 provided several illustrations for common RVN

configurations. The information in this section describes the basic steps necessary

to run RVN using the following configurations:

v “Using X11 export mode with RVN (Linux application servers only)”

v “Using VNC with RVN” on page 41

v “Using VNC with RVN for desktop isolation (Linux application servers only)” on

page 41

v “Using VNC with RVN to run multiple applications (Linux application servers

only)” on page 42

Using X11 export mode with RVN (Linux application servers only)

When you are using X11 export mode, RVN permits only one receiver. In this

configuration, RVN code runs on the end station without VNC. Figure 4 on page 24

illustrates the interaction between sender and receiver for this RVN configuration.

Note: Although the application server must be running under Linux, the end

stations can run under Linux or Windows.

On the receiver

1. export DISPLAY=:0

2. xhost +

v You can also use alternative methods for allowing X connections.

3. rvn_receiver <host> <confID> <confkey> <nickname>

On the sender

1. export DISPLAY=receiver:0.0

2. RVN_DASHBOARD_DISPLAY=:0.0

3. Start the RVN launcher.

Note: You can bypass the launcher by setting the necessary

environment variables and then running the rvn_sender

command with the application name and arguments.

4. In the main window for the RVN launcher, click X11 export mode and

provide the path to the application.

User guide: RVN

40 Installation and User Guide

|
|

|
|

|
|

|
|

|
|

|

|
|

|

|

|

|
|
|

5. If the application requires any arguments, click Options and specify the

arguments in the Options window. Then click OK to return to the main

window.

6. Click Launch.

7. In the "Conference coordination" window, provide the conference key

and the conference ID. Then click OK.

Note: The values for the conference key and conference ID must be

conveyed to all participants before the start of the conference.

Using VNC with RVN

In a basic VNC configuration or in a collaborative configuration with multiple end

stations, RVN code runs on the end station with the VNC code. Figure 5 on page

25 illustrates the interaction between sender and receiver for a basic VNC

configuration. Figure 6 on page 25 illustrates the interaction between sender and

receiver for the RVN collaborative configuration (which can have up to eight end

stations). There is no need to specify a conference ID and conference key in either

case, because this information is automatically generated and processed during

VNC authentication.

On each end station

Start the vncviewer.

v Linux: Enter rvn_viewer <servername> on the command line.

v Windows: Launch the vncviewer with the same information as indicated

on the rvn_viewer command, using either its desktop icon or the Start

menu.

On the sender

1. Start the RVN launcher.

Note: You can bypass the launcher by setting the necessary

environment variables and then running the rvn_sender

command with the application name and arguments.

2. In the main window for the RVN launcher, click VNC mode and provide

the path to the application.

3. If the application requires any arguments, click Options and specify the

arguments in the Options window. Then click OK to return to the main

window.

4. Click Launch.

Using VNC with RVN for desktop isolation (Linux application servers

only)

This example starts a new vncserver (display number 9 in the following example)

on the application sender. This example displays only the OpenGL application using

RVN on the remote end stations (refer to Figure 7 on page 26). There is no need to

specify a conference ID and conference key, because this information is

automatically generated and processed during VNC authentication.

Notes:

1. Although the application server must be running under Linux, the end stations

can run under Linux or Windows.

2. The new vncserver uses the display number explicitly specified on the

command line (:9 in the following example). If you do not specify a display, RVN

defaults to the next available display number.

User guide: RVN

Chapter 3. Remote Visual Networking 41

|
|

|
|

|
|
|

|
|
|

|

|

|
|
|

|

|
|
|

|
|
|

|
|

On the sender

1. Log in to the sender and run the following commands:

vncserver –depth 24 -pixelformat rgb888 :9

export DISPLAY=:9

export RVN_ALTERNATE_VISUALS=1 #only if needed

Note: If an application works on the root console but not for desktop

isolation, you might be able to address the problem by specifying

export RVN_ALTERNATE_VISUALS=1 on the next attempt. This

setting asks for a 24-bit true-color non-stereo visual, irrespective

of what the application tried to request.

2. Start the RVN launcher.

Note: You can bypass the launcher by setting the necessary

environment variables and then running the rvn_sender

command with the application name and arguments.

3. In the main window for the RVN launcher, click VNC mode and provide

the path to the application.

4. If the application requires any arguments, click Options and specify the

arguments in the Options window. Then click OK to return to the main

window.

5. Click Launch.

On each end station

Start the vncviewer.

v Linux: Enter rvn_viewer -shared <servername>:9 on the command line.

v Windows: Launch the vncviewer with the same information as indicated

on the rvn_viewer command, using either its desktop icon or the Start

menu.

Using VNC with RVN to run multiple applications (Linux application

servers only)

In this example, multiple applications will be run on the RVN sender. Each

application will be viewed on multiple end stations. These end stations have DCV

code installed.

Note: Although the application server must be running under Linux, the end

stations can run under Linux or Windows.

On the sender

Note: Someone (such as the system administrator) might have already

completed the setup in the steps that precede starting RVN sessions

for the applications.

1. Configure the xstartup script in ∼/.vnc This is typically a one-time

setup for configuring VNC, such as to define the desktop properties.

#!/bin/sh

[-r $HOME/.Xresources] && xrdb $HOME/.Xresources

xsetroot -solid grey

#vncconfig -iconic &

xterm -geometry 80x24+10+10 -ls -title "$VNCDESKTOP Desktop" &

#twm &

gnome-session &

User guide: RVN

42 Installation and User Guide

|
|
|

|
|
|
|
|

|
|
|

|

|

|
|
|

|

|

|

|
|
|

|
|

Note: This is one possible configuration for the xstartup script.

2. Ensure that X is started on :0 and that xhost + localhost gives every

local user access to it.

3. Using the command vncserver -geometry 1024x768 -depth 24

-pixelformat rgb888, initiate one vncserver session for each application

that you will run on the sender.

Notes:

a. Record the display number shown after invoking each vncserver

session. The end stations will need this information to connect to the

appropriate vncserver session.

b. The geometry described in the command must match the desired

display geometry.

4. For each application, start a separate RVN session using the RVN

application launcher to invoke the application and its arguments. The

launcher will set the appropriate DISPLAY=:<n> value for the associated

vncserver session, and will set RVN_USE_VNC=1.

Note: If an application works on the root console but not on the end

stations, you might be able to address the problem by specifying

export RVN_ALTERNATE_VISUALS=1 on the next attempt. This

setting asks for a 24-bit true-color non-stereo visual, irrespective

of what the application tried to request.

On each end station

Start the vncviewer, and specify the host name of the sender and the

display number associated with the vncserver session for the running

application.

v Linux: Enter rvn_viewer -shared <servername>:<n> on the command

line.

v Windows: Launch the vncviewer with the same information as indicated

on the rvn_viewer command, using either its desktop icon or the Start

menu.

User guide: RVN

Chapter 3. Remote Visual Networking 43

|
|

|
|
|
|

|
|
|
|
|

|
|
|

|
|

|
|
|

User guide: RVN

44 Installation and User Guide

Chapter 4. SVN and RVN interoperability

When running in interoperability mode, both the SVN and RVN functions of DCV

function simultaneously, in a joint SVN-RVN session. This allows both remote

visualization and immersive visualization of OpenGL applications within a single

DCV session. With interoperability, the application runs on the client machine and

loads the SVN OpenGL library. The SVN OpenGL library encodes the OpenGL calls

for transmission to the SVN rendering servers. As in a standard SVN session, the

rendering servers must be listed in the SVN wall configuration file.

In addition to the rendering servers, the SVN OpenGL library also transmits the

encoded OpenGL calls to the machine identified as the RVN sender by using the

-svnrvn option on the svn_sender command. On the normal SVN rendering

servers, OpenGL calls are decoded and then passed to the system OpenGL library

(not the SVN OpenGL library). The specified RVN sender uses a modified

svn_server executable file that decodes the transmitted OpenGL calls and passes

them to the RVN OpenGL library. This allows the specified node to act as an RVN

sender and allows end stations to connect and receive rendered pixels.

In most cases, the vncserver runs on the RVN sender. Therefore, users interact

with the application on the sender even though the application is running on the

original client machine. Because of that, you must set the DISPLAY environment

variable to the RVN sender before running the joint SVN-RVN session. After the

user starts the joint session, SVN functions as it would if RVN were not part of the

session. In addition, the user can also invoke RVN scripts and establish end station

connections as if RVN was functioning in stand-alone mode.

Notes:

1. Before you invoke svn_sender using interoperability mode, you must set the

RVN options using the appropriate RVN environment variables (refer to

“Environment variables for rvn_sender” on page 88).

2. The type of RVN connection affects the options that must be specified on the

svn_sender command For more information, see the description of the -svnrvn

option in “Command-line options for svn_sender” on page 8.

3. You no longer need to specify an SVN wall display with the -svndpy option or

the SVN_DISPLAY environment variable.

For example, suppose you have an OpenGL application named atlantis, and an

RVN sender named vis99.watson.ibm.com. This command invokes a joint

SVN-RVN session using VNC:

export DISPLAY=vis99.watson.ibm.com:0.0

svn_sender -v -svnrvn myhost:0 ./atlantis

Note: This example does not illustrate usage of additional SVN command-line

options. Your application might require other functions defined by those

options. Refer to “Command-line options for svn_sender” on page 8 for

additional information.

© Copyright IBM Corp. 2005, 2007 45

|

|
|

|

|
|

|
|

|

|
|
|

|
|

|
|

|
|

46 Installation and User Guide

Chapter 5. SVN support for DMX servers

Distributed Multihead X (DMX) servers can be used to render the application

display. SVN support for DMX servers allows an OpenGL application to export its

entire user interface, including the 2-D graphics elements (windows and widgets), to

a single composite display (wall display), providing better performance than a

DMX-only implementation. An application can also take advantage of existing SVN

features to export the graphics display to additional composite displays, without the

2-D graphics elements visible, or to an SVN-RVN session at the same time.

To use SVN support for DMX servers, follow these steps:

1. Install the DMX server. For more information, refer to “Installing the DMX

server.”

2. Start the DMX server. For more information, refer to “Starting the DMX server.”

3. Start SVN using DMX support. For more information, refer to “Starting SVN

using DMX support” on page 48.

Installing the DMX server

Before you can use DMX support in SVN, you must install the DMX server.

To download the DMX server RPM:

1. On the DMX Web site (http://dmx.sourceforge.net/), click the Download DMX

link, then select the RPM for i386 systems.

2. Log in as root and use the rpm -i command to install the RPM. Here is an

example: rpm -i dmx-1.2.20040630-1.i386.rpm

Starting the DMX server

Before starting an SVN session using DMX support, you must start a DMX server.

The DMX server can be either a root window display server or a non-root window

display server.

Here is a sample invocation of a DMX server as a non-root window display server:

v -nowindowopt disables a lazy window creation option.

v +xinerama enables spanning the logical display across multiple physical displays.

v -fontpath specifies the path to the fonts to be used by the DMX server.

v -configfile specifies the path to the DMX configuration file.

v -config specifies the name of a configuration defined in the DMX configuration

file.

v -input specifies the source to use for input.

v -ac suppresses authorization checks by the DMX server.

The mwm command in the example invokes the Motif window manager as the

window manager for the DMX display. You can substitute the window manager of

your choice.

Xdmx :1 -nowindowopt +xinerama -fontpath /usr/X11R6/lib/X11/fonts/misc

-configfile wall.config -config dv -input $DISPLAY -ac &

sleep 3

mwm -display :1 &

© Copyright IBM Corp. 2005, 2007 47

|
|
|
|

|

|

|
|
|
|
|
|
|

|

|
|

|

|
|

|
|

|

|

|
|

|
|

|
|

|
|
|

|
|

|

|

|

|

|
|

|

|

|
|
|

Here is a sample wall configuration file for a 2 x 1 display:

virtual dv {

wall 2x1 deepview3:0.0 deepview4:0.0 ;

}

For more information, refer to the Xdmx man page or to the DMX Web site at

http://dmx.sourceforge.net/.

Starting SVN using DMX support

To invoke DMX support when starting SVN, include the -clientdpy option on the

svn_sender command, specifying the name of the DMX server to be used. Use the

same format for the server name as when setting the DISPLAY environment

variable before invoking an X application. When you specify a DMX server on the

-clientdpy option, the -clientrender option is ignored.

Additional displays are optional. To specify them, use the -svndpy and -svnrvn

options on the svn_sender command, or the SVN_DISPLAY environment variable.

Here is a sample SVN invocation for a DMX-only session, assuming all other

required SVN environment variables are set. In this example, the SVN_DISPLAY

environment variable is not set.

svn_sender -clientdpy deepview5:1 /usr/local/bin/atlantis

Here is a sample SVN invocation where a DMX session and a SVN wall display are

used.

For more information about the svn_sender command, refer to “The svn_sender

command” on page 8. For more information about related environment variables,

refer to “Environment variables for svn_sender” on page 85.

svn_sender -svndpy /home/deepview/wall.cfg -clientdpy deepview5:1 /usr/local/bin/atlantis

User guide: DMX servers

48 Installation and User Guide

|

|

|
|
|

|
|

|
|

|
|
|
|
|

|
|

|
|
|

|

|
|
|

|
|
|

Part 2. Installing IBM Deep Computing Visualization software

Part 2 of this book provides installation and problem determination information for

system administrators who are responsible for managing DCV. Refer to the

following chapters:

v Chapter 6, “Prerequisites for installing Deep Computing Visualization,” on page

51

v Chapter 7, “Installing Deep Computing Visualization,” on page 57

v Chapter 8, “RVN setup,” on page 61

v Chapter 9, “Installation verification for Deep Computing Visualization,” on page 65

v Chapter 10, “Problem determination,” on page 69

© Copyright IBM Corp. 2005, 2007 49

50 Installation and User Guide

Chapter 6. Prerequisites for installing Deep Computing

Visualization

This section lists the hardware and software prerequisites for installing DCV.

General prerequisites and configuration requirements for Deep

Computing Visualization

User name (SVN)

The user name must be able to log in to each of the rendering servers and

the application host.

Multiple displays (SVN)

If you intend to run more than a single display attached to an application

host or a rendering server, set the Linux runmode value to 3. In addition, log

in as the user of the SVN application and manually run the following

commands on each rendering server:

v startx

v xhost + <application host name>

Notes:

1. If you intend to run only a single display, SVN supports setting the Linux

runmode value to 5. This starts the X server when the node is booted.

However, this might also export the desktop for the root user.

2. You can specify multiple nodes, such as an application host and

associated rendering servers. Here is an example: xhost + appl1

render52 render53 render54

3. If you encounter problems, refer to “X server display problems” on page

71.

Required software for Linux systems

In addition to any software required for your application, the following

packages should be installed with Linux:

v OpenGL

v X Windows

v C++ Runtime

v Secure Shell (OpenSSH), if required for remote access

v Remote shell (RSH), if required for remote access

v SVN only: DMX, if desired for a specific configuration

Shared file systems (SVN)

The wall configuration file should be in a shared file system that is readable

by the application host and all of the rendering servers. Also, the default

directory specified by $SVN_HOME or $HOME must be in a shared file system

writable by the application host and readable by the rendering servers.

Notes:

1. It is the user's file system that should be shared, and not the root file

system.

2. A shared file system is not required for RVN.

© Copyright IBM Corp. 2005, 2007 51

|

|

|

|

|

|
|
|

|
|

|

|

|

X server configuration (SVN)

Ensure that the X servers are configured consistently across all of the

rendering nodes.

X server configuration (RVN)

If you are installing DCV on a supported X server, you must configure the X

server with 24-bit color depth. To do so, specify -depth 24 on the

vncserver command. In addition, you must also use the startx command

with -depth 24 specified. If the pixel format is not rgb888 (meaning 8 bits

for red, green, and blue components), you must also specify -pixelformat

rgb888 on the vncserver command. Otherwise, the system will not display

the correct colors.

Notes:

1. After you install DCV but before you start RVN for the first time, either

the XF86 configuration file /etc/X11/XF86Config (RHEL3) or the xorg

configuration file /etc/X11/xorg.conf (RHEL4) must be updated with

24-bit color depth.

2. After you reconfigure the X server, either the XF86 configuration file

/etc/X11/XF86Config (RHEL3) or the xorg configuration file

/etc/X11/xorg.conf (RHEL4) must be updated with 24-bit color depth.

The following example illustrates a pragma from an XF86 configuration file

with the default 24-bit color depth:

SVN prerequisites

If you are going to use rsh for remote access, the installation should enable remote

shell, and include all the rendering servers and the application host in the

authorization files for rsh (/etc/hosts or $HOME/.rhosts) on each node (including the

application host).

If you are going to use ssh, the public key of the user on the host needs to be

generated and made accessible to the user on each rendering server and to the

application host itself. Typically this information is found in ~/.ssh/authorized_keys.

This allows remote access without requiring passwords to be supplied by the user.

If you are using SVN with an IntelliStation® workstation or System x™ server, install

an InfiniBand high-performance network to interconnect the application host node

and the rendering server nodes.

Section "Screen"

 Identifier "Screen0"

 Device "Videocard0"

 Monitor "Benq"

 DefaultDepth 24

 SubSection "Display"

 Depth 24

 Modes "1920x1200_60" "1600x1200"

 "1400x1050" "1280x1024" "1280x960"

 "1152x864" "1024x768" "800x600" "640x480"

 EndSubSection

 SubSection "Display"

 Depth 16

 Modes "800x600" "640x480"

 EndSubSection

EndSection

Installation guide: Prerequisites

52 Installation and User Guide

|
|
|

For SVN, ensure that IP works correctly between the application host node and the

rendering server nodes, and that both the Direct Access Transport and MPI libraries

from the vendor are installed on each node.

Note: Direct Access Transport is required only with IntelliStation application host

nodes.

SVN requires a shared MPI library, named libmpich.so, on the application host and

rendering server nodes. Most vendors (such as Cisco/TopSpin) provide this shared

library or allow you to compile one yourself. In some cases, the MPI library might

be called something other than libmpich.so (for example, the Scali MPI shared

library is called libmpi.so). If the vendor does not name their library libmpich.so,

you must copy or link the vendor supplied libraries and create the needed

libmpich.so library for SVN to run properly. For example, in the case of Scali MPI,

running the command /bin/ln -s libmpi.so libmpich.so would create the required

SVN library.

Create a shared file system that is accessible to the application host and the

rendering servers for SVN. The full path-name of a directory in this file system must

be specified as the SVN_HOME environment variable.

To run SVN, you must install one of the following MPI implementations. For details

about the required level, refer to Table 4 on page 54.

Scali MPI Connect

The Scali Web site lists a Technical FAQs section that includes the following

information:

v Tech FAQ Installation

v Tech FAQ Scali MPI

Cisco/TopSpin

Cisco/TopSpin provides a switch, adapters, drivers, an InfiniBand library,

and an MPI library.

MPICH

MPICH is a freely available implementation of the MPI Standard. This MPI

implementation was developed jointly with Mississippi State University.

Notes:

1. MPICH is not customized to run over InfiniBand. (This is different from

the Scali and Cisco/TopSpin MPI implementations.) As a result, there is

a drop in performance when using MPICH in comparison to using Scali

or Cisco/TopSpin.

2. To work without passwords, MPICH requires rsh (set up the ~/.rhosts

file).

3. MPICH can use ssh instead of rsh if you set up ssh to work without

passwords.

Table 3 lists the hardware requirements for SVN implementation.

 Table 3. Hardware requirements for SVN

Device Requirement

Application hosts One of the following machines:

v IBM IntelliStation A Pro or Z Pro workstation,

32-bit or 64-bit

v IBM System x 3950 or 3755 system

Installation guide: Prerequisites

Chapter 6. Prerequisites for installing Deep Computing Visualization 53

|

|

|
|

|
|
|
|

|

|
|

|

Table 3. Hardware requirements for SVN (continued)

Device Requirement

Rendering servers IBM IntelliStation A Pro or Z Pro workstation,

32-bit or 64-bit

Cisco/TopSpin switch Cisco/TopSpin 120 InfiniBand

Graphics card NVIDIA Quadro FX family of ultra-high-end

graphics adapters

Table 4 lists the software requirements for SVN implementation.

 Table 4. Software requirements for SVN

Software Level Notes

DCV 1.3

Operating system Red Hat Enterprise Linux (RHEL)

Workstation Edition using either:

v Release 3 Update 7 or later (with

availability of appropriate drivers)

v Release 4 Update 3 (with availability

of appropriate drivers)

NVIDIA driver 1.0-8776 To download the latest NVIDIA graphic

adapter driver version for 32-bit or 64-bit

versions of Linux and the adapters

installed, go to the IBM support Web site

at http://www.ibm.com/products/finder

(use the links for Support and

downloads).

Configure the device driver by modifying

/etc/X11/XF86Config to specify which of

the adapter ports are associated with

which X Windows servers.

MPI implementation One of the following products:

v Cisco/TopSpin driver: 3.1.0-113 or

later update

v Scali MPI Connect: 4.4.0 + Fix

SSP44 or later update

v MPICH: 1.2.7

v Cisco/TopSpin driver:

http://www.topspin.com/index.html

v Scali MPI Connect:

http://www.scali.com

v MPICH: http://www-unix.mcs.anl.gov/
mpi/mpich/download.html

OpenGL library From device driver or RHEL distribution

DCV supports OpenGL up through

specification level 2.0, including support

for shader programming

DMX RPM for i386 systems http://dmx.sourceforge.net/

Requirements for 32-bit and 64-bit SVN implementations

For SVN, the application host node and rendering server nodes must have the

same version of Linux installed (all 32-bit or all 64-bit), and the address mode of the

application must be the same as the version of Linux. In particular, SVN does not

support 32-bit applications running on 64-bit Linux. Therefore, SVN has the

following requirements for 32-bit and 64-bit implementations:

v Nodes running 32-bit and 64-bit kernels cannot be mixed.

Installation guide: Prerequisites

54 Installation and User Guide

|

|
|

|

|

|
|

|
|

||
|
|
|
|
|
|

|
|

|

|

|
|
|

|

v The application host and the rendering servers must either all run 32-bit kernels

or all run 64-bit kernels.

v If the application host is running a 64-bit kernel, 32-bit applications cannot be run

there.

– Note: This limitation is at the MPI transport layer. Refer to your MPI

documentation to see if this limitation has been removed.

Attention: The DCV 64-bit RPM is a delta to the 32-bit RPM. Therefore, when

you are installing DCV on a 64-bit system, you must install the 32-bit RPM before

you install the 64-bit RPM.

RVN prerequisites

Table 5 lists the hardware requirements for RVN implementation.

 Table 5. Hardware requirements for RVN

Device Requirement

Application servers One of the following machines:

v IBM IntelliStation A Pro or Z Pro workstation,

32-bit or 64-bit

v IBM System x 3950 or 3755 system

End stations Most systems (including laptop computers) are

supported, because RVN uses that hardware only

as a display

Graphics card (application server only) NVIDIA Quadro FX family of ultra-high-end

graphics adapters

Table 6 lists the software requirements for RVN.

 Table 6. Software requirements for RVN

Software Level Notes

DCV 1.3

Operating system One of the following products:

v Red Hat Enterprise Linux (RHEL)

Workstation Edition

– Release 3 Update 7, or later (with

availability of appropriate drivers)

– Release 4 Update 3, or later (with

availability of appropriate drivers)

v Windows XP Professional, Service

Pack 2 (32-bit only)

For RVN, both 32-bit and 64-bit

executable files are supported on 64-bit

Linux. The end station can run either

32-bit or 64-bit Linux, but the server for

the accelerated graphics function of

RVN is a 32-bit executable file.

VNC

v vncserver on the application

server

v vncviewer on the end stations

VNC Visualization Edition v For details about how to obtain VNC

Visualization Edition, see the

README for DCV 1.3.

v Using any other VNC product

(whether from RealVNC or another

company) on the application server

or end stations is not supported.

v To obtain maximum stability,

performance, and function, install

DCV 1.3 and VNC Visualization

Edition on the application server and

the end stations.

Installation guide: Prerequisites

Chapter 6. Prerequisites for installing Deep Computing Visualization 55

|
|

|

|
|

|
|

|

|

|
|
|
|

|
|

|
|
|

|

|
|

|

||
|
|

|
|
|
|

Table 6. Software requirements for RVN (continued)

Software Level Notes

OpenGL library (application

server only)

From device driver or RHEL distribution

DCV supports OpenGL up through

specification level 2.0, including support

for shader programming

NVIDIA video driver (application

server only)

v Linux: 1.0-8776

v Windows: 91.36

v Linux: To download the latest NVIDIA

graphic adapter driver version for

32-bit or 64-bit versions of Linux and

the adapters installed, go to the IBM

support Web site at

http://www.ibm.com/products/finder

(use the links for Support and

downloads).

Configure the device driver by

modifying /etc/X11/XF86Config to

specify which of the adapter ports are

associated with which X Windows

servers.

v Windows: Download the NVIDIA

video driver from

http://www.ibm.com/support/
docview.wss?uid=psg1MIGR-66220

Note: For sessions that use X11 DISPLAY export mode, an X server must be

running on the application server. You can use one of the following software

packages for this purpose:

v Exceed X server, available at www.hummingbird.com

v Cygwin X server, available at www.cygwin.com

v vncserver from RealVNC (for details, refer to Table 6 on page 55)

Installation guide: Prerequisites

56 Installation and User Guide

|
|
|
|
|

|
|
|

|

|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|

|

|

|

Chapter 7. Installing Deep Computing Visualization

Refer to the following sections for hardware-specific installation instructions:

v “Installing Deep Computing Visualization on Linux application hosts”

v “Installing Deep Computing Visualization RVN on Linux end stations” on page 58

v “Installing Deep Computing Visualization RVN on Microsoft Windows application

hosts” on page 59

v “Installing Deep Computing Visualization RVN on Microsoft Windows end

stations” on page 59

Notes:

1. DCV 1.2 and DCV 1.3 cannot coexist on the same machine.

2. For RVN, DCV 1.2 end stations are compatible with DCV 1.3 application

servers. However, DCV 1.3 end stations are not compatible with DCV 1.2

application servers.

3. Check the following Web sites:

v For the latest information about DCV, including FAQs, go to

http://www.ibm.com/servers/deepcomputing/visualization.

v For the latest updates to DCV, go to http://techsupport.services.ibm.com/
server/cluster/home.html.

4. The version-release numbers shown here relate to Version 1 Release 3. If you

are installing a subsequent version or release, or both, use the appropriate v-r

numbers from the installation medium.

Installing Deep Computing Visualization on Linux application hosts

To install DCV on a machine running Linux that will be used as an SVN application

host or as an RVN application server and end station, use the following procedure.

Note: For information about installing DCV on a machine running Linux that will be

used only as an RVN end station, refer to “Installing Deep Computing

Visualization RVN on Linux end stations” on page 58.

1. If you are migrating from DCV 1.2 to DCV 1.3, use the rpm -e command to

uninstall DCV 1.2, then proceed to the next step to install DCV 1.3.

2. Copy the following DCV RPMs to a convenient directory:

v dcv.license_acceptance-1-3.i686.rpm

– This RPM is required only the first time you install DCV on each node.

v dcv-1.3.0-0.i686.rpm

v If you require 64-bit enabled DCV, you must also copy:

– dcv64-1.3.0-0.x86_64.rpm

Note: If you are using the product CD, you only have to mount the CD media in

a suitable drive.

3. Log in as the root user.

4. Change directory (cd) to the directory containing the RPMs.

5. If you want to pre-accept the license agreement and avoid the license prompt,

set the environment variable DCV_LICENSE_PROMPT using the command export

DCV_LICENSE_PROMPT=0.

© Copyright IBM Corp. 2005, 2007 57

|

|
|

|

|
|
|

|
|

|
|
|

|
|

|
|

|

|

|

Notes:

a. You should not pre-accept the license agreement during the original DCV

installation.

b. If you do not pre-accept the license agreement, make sure the DISPLAY

environment variable is set to an appropriate value using the following

command: export DISPLAY=:0

6. Run the following command:

rpm –i dcv.license_acceptance-1-3.i686.rpm dcv-1.3.0-0.i686.rpm

Notes:

a. If you did not pre-accept DCV_LICENSE_PROMPT, this command displays the

license terms and prompts you for acceptance.

v If you accept the license, the system continues with the installation.

v If you do not accept the license, installation stops.

b. On successful completion, DCV installs:

v The operational files in /opt/IBM/dcv

v The license agreements in /etc/opt/IBM/dcv/license

In addition, an IBM JRE is installed along with the code for the RVN

application host. This is for use by the RVN application launcher and

dashboard, which are Java™ applications.

7. If you are installing 64-bit enabled DCV, you must also run the following

command:

rpm –i dcv64-1.3.0-0.x86_64.rpm

8. Refer to Chapter 9, “Installation verification for Deep Computing Visualization,”

on page 65 to complete the installation.

Installing Deep Computing Visualization RVN on Linux end stations

To install RVN on a machine running Linux that will be used as an RVN end station,

use the following procedure.

Note: For information about installing DCV on application servers that are running

under Linux, refer to “Installing Deep Computing Visualization on Linux

application hosts” on page 57.

1. If you are migrating from DCV 1.2 to DCV 1.3, use the rpm -e command to

uninstall DCV 1.2, then proceed to the next step to install DCV 1.3.

2. Copy the following DCV RPMs to a convenient directory:

v dcv.endstation-1.3.0-0.i686.rpm

Note: If you are using the product CD, you only have to mount the CD media in

a suitable drive.

3. Log in as the root user.

4. Change directory (cd) to the directory containing the RPMs.

5. Run the following command:

rpm -i --nodeps dcv.endstation-1.3.0-0.i686.rpm

6. Refer to Chapter 9, “Installation verification for Deep Computing Visualization,”

on page 65 to complete the installation.

Installation guide: Installing DCV

58 Installation and User Guide

|

|

|
|
|

|

|

|
|

|
|

|

|

Installing Deep Computing Visualization RVN on Microsoft Windows

application hosts

To install DCV RVN on a machine running Windows that will be used as an RVN

application server (or application host), use the following procedure.

Note: For information about installing DCV on a machine running Windows that will

be used only as an RVN end station, refer to “Installing Deep Computing

Visualization RVN on Microsoft Windows end stations.”

To install DCV RVN on an application server that is running under Windows, run

Setup.exe. The DCV code is installed in C:\Program Files\IBM\IBM Deep

Computing Visualization.

In addition to installing the DCV RVN code and the Deep Computing Installation

and User Guide manual, Setup.exe completes these steps:

v Deletes the previous release of DCV.

v Installs IBM JRE. This is for use by the RVN application launcher and dashboard,

which are Java applications.

v Modifies the environment path to make the DCV files available to VNC.

v Creates a shortcut to rvn_sender.bat called RVN Sender in Start > Programs >

IBM > IBM Deep Computing Visualization. This shortcut does not have any

arguments and will therefore start the RVN application launcher. For more

information about using the launcher, refer to “The RVN application launcher” on

page 28.

Installing Deep Computing Visualization RVN on Microsoft Windows

end stations

Follow this procedure for each Windows workstation that will be used as an RVN

end station.

Note: For information about installing RVN on application servers, refer to

“Installing Deep Computing Visualization RVN on Microsoft Windows

application hosts.”

To install DCV RVN on an end station that is running under Windows, run End

station setup.exe. The DCV code is installed in C:\Program Files\IBM\IBM Deep

Computing Visualization.

In addition to installing the DCV RVN code and the Deep Computing Installation

and User Guide manual, End station setup.exe completes these steps:

v Deletes the previous release of DCV.

v Modifies the environment path to make the DCV files available to VNC.

Installation guide: Installing DCV

Chapter 7. Installing Deep Computing Visualization 59

|

|

|
|

|
|
|

|
|
|

|
|

|

|
|

|

|
|
|
|
|

|

|

|
|

|
|
|

|
|
|

|
|

|

|

Installation guide: Installing DCV

60 Installation and User Guide

Chapter 8. RVN setup

RVN assumes that at least one receiver is able to run applications on the

application server. This can be done using one of the following methods:

v The VNC desktop

v Through remote login

v A remote shell

v OpenSSH

As part of the system setup:

v A vncviewer must be installed on each end station. For more information about

DCV requirements for VNC, refer to “RVN prerequisites” on page 55 and

Chapter 7, “Installing Deep Computing Visualization,” on page 57.

v Linux only: You must configure the Linux application server to run a remotely

viewed X server.

– This requires modifying the X server configuration file (such as

/etc/X11/XF86Config).

v Linux only: If you are using OpenSSH, each end station should create a

public/private key pair, and you must verify that OpenSSH added the public key

to the $HOME/.ssh/authorized_keys files on the application server.

For details about additional RVN setup tasks, refer to:

v “Configuring the RVN coordinator (Linux only)”

v “Configuring RVN with VNC for remote desktopping” on page 62

Configuring the RVN coordinator (Linux only)

The rvn_coordinator process handles the initial setup for connecting an RVN

sender to an RVN receiver that is participating in the same conference.

rvn_coordinator is designed to be started automatically by xinetd on the same

system as the RVN sender (the application server).

The DCV code supplies two sample files to help you use the RVN coordinator:

/opt/IBM/dcv/rvn/etc/services and /opt/IBM/dcv/rvn/etc/dcv.xinetd. The code

also includes instructions for adding a low-privilege user ID for running the

coordinator. In order to set up rvn_coordinator, you need to make changes to

/etc/services and create a new file, dcv-rvn in the /etc/xinetd.d directory.

To do this, add the following entries to the /etc/services file:

dcv-rvn 7200/tcp # IBM dcv rvn coordinator

port dcv-rvn-top 7220/tcp # ports from dcv-rvn to dcv-rvn-top reserved by IBM

Notes:

1. The dcv-rvn service specifies the default port number used by RVN when

establishing a RVN conference.

2. The dcv-rvn-top service:

v Specifies the highest port number that the rvn_coordinator process will use

when allocating ports used in RVN conferences.

v Must specify a port number higher than dcv-rvn and be large enough to

support the maximum number of simultaneous RVN conferences allowed on

your system.

© Copyright IBM Corp. 2005, 2007 61

|
|
|

|

|

|

|
|
|
|

3. You can change the dcv-rvn and dcv-rvn-top values to avoid port conflicts with

other applications. However, you must also transmit those values to any users

who will be participating in an RVN conference on this system.

4. You can also reserve additional ports between dcv-rvn and dcv-rvn-top for

RVN usage by specifying them in the /etc/services file.

In addition to updating dcv-rvn and dcv-rvn-top in the /etc/services file, you must

also create a dcv-rvn file in the /etc/xinetd.d directory. This file uses the following

format:

 service dcv-rvn

{

 socket_type = stream

 wait = yes

 user = pdk

 log_on_success += USERID

 log_on_failure += USERID

 server = /opt/IBM/dcv/rvn/bin/rvn_coordinator

 server_args = daemon

 disable = no

}

Notes:

1. When you create the dcv-rvn file, make sure that user specifies a user ID with

general user privileges that will be used to start the rvn_coordinator process.

Do not specify a user with root privileges.

2. After you have made these changes, you must restart xinetd to enable the

rvn_coordinator process. You can do this by issuing the following command:

/sbin/service xinetd restart

3. An example /etc/services file fragment (/opt/IBM/dcv/rvn/etc/services) and

xinetd.d file (/opt/IBM/dcv/rvn/etc/dcv.xinetd) are provided.

Configuring RVN with VNC for remote desktopping

The use of VNC for remote desktopping along with RVN provides a powerful

mechanism for collaboration in 3-D graphics environments. VNC provides a

mechanism for distributing the 2-D application interface to multiple collaborators,

and RVN provides a mechanism for distributing the graphically intensive 3-D

images. VNC involves:

v A vncserver running on the RVN sender

v One or more vncviewer instances running on the RVN receivers

Configuring VNC under Linux

In the X11 environment under Linux, VNC can run as a runtime-loaded extension to

the existing XFree86 or Xorg X server, or as a software desktop using its own X

server. To enable the existing X server for VNC, you must make several entries in

the configuration file for the X server, typically /etc/X11/XF86Config or

/etc/X11/xorg.conf. For detailed information about configuring the authentication and

security features of VNC, go to http://www.realvnc.com/products/enterprise/4.2/
x0.htm and http://www.realvnc.com/products/enterprise/4.2/unixconfig.html.

Notes:

1. DCV requires a specific level of VNC. For more information about DCV

requirements for VNC, refer to “RVN prerequisites” on page 55 and Chapter 7,

“Installing Deep Computing Visualization,” on page 57.

2. For more information about vncserver and vncviewer, go to www.realvnc.com.

Installation guide: RVN setup

62 Installation and User Guide

|

|

|
|

|

|

|

|

|
|
|

|

Configuring VNC under Windows

Most of the defaults do not need to be changed. However, you should define the

following settings:

v Select full-color.

v Set 32-bit or 24-bit color 32-bit or 24-bit color for Windows desktop properties.

v Select shared connection for collaboration.

Installation guide: RVN setup

Chapter 8. RVN setup 63

|

|
|

|

|

|

Installation guide: RVN setup

64 Installation and User Guide

Chapter 9. Installation verification for Deep Computing

Visualization

Follow these steps to verify DCV installation:

1. Log on to the application host as the user for which DCV is being installed.

Note: Do not log in as root during installation verification.

2. On the application host, make a subdirectory dcv_ivt in the file system shared

by the application host and the rendering servers.

Notes:

a. Make sure that the subdirectory is writable and searchable by the

application host.

b. Make sure that the subdirectory is readable and searchable by the rendering

servers.

c. If you are only going to use RVN, you do not have to make the subdirectory

shared.

3. Copy all the files in the directory /opt/IBM/dcv/svn/test to dcv_ivt

4. Change directory (cd) to dcv_ivt

Depending on your application, select the appropriate procedure and continue:

v For SVN

v For RVN

For SVN, also perform these steps:

1. Set the appropriate environment variables for building MPI executable

files such as MPI location and others.

2. "make" the rotvp executable file.

Note: Use the executable file that was provided. Do not make

bcast_bandwidth or bcast_bandwidth64.

3. Create a wall configuration file wall.cfg in dcv_ivt that describes each

rendering server.

Notes:

a. For the geometry specifications, use vwidth = width = horizontal

display size, vheight = height = vertical display size, and x_offset =

y_offset = 0.

b. Refer to Chapter 2, “Scalable Visual Networking,” on page 5 for

additional information.

4. Set the following environment variables:

a. export SVN_MPICOMM=mpicomm.ib.rsh (or .ssh if using OpenSSH)

b. export SVN_HOME=full-path to dcv_ivt

c. export SVN_DISPLAY=wall.cfg

d. export SVN_MPIBIN=full path to the mpirun command for the MPI

implementation

e. export SVN_MPILIB=full path to the libmpich.so shared object for the

MPI implementation

5. Run the svn_sender command with the mpitest option set:

svn_sender –mpitest 1 ./bcast_bandwidth 100000 100

© Copyright IBM Corp. 2005, 2007 65

This should produce output similar to the following (shown for four

rendering servers):

Note: Successful execution of this step ensures that the MPI

environment is set up correctly and that the application host can

communicate with the application servers.

6. Run the svn_sender command for the rotvp application:

svn_sender ./rotvp 1000

Each server screen should display a blue background with copyright

information (the SVN server banner) for five seconds. Each server

should then display a copy of the application host screen, which is two

rotating squares. In the window in which the svn_sender command was

run, each server and the application host should display messages

indicating that they have started.

Note: Successful performance of this step ensures that the OpenGL

intercept library and servers have been installed correctly.

For an RVN sender running under Linux and using X11 DISPLAY EXPORT,

also perform these steps:

1. Make sure that you are in the dcv_ivt directory as described in the initial

steps.

2. "make" the rotvp executable file on the application host.

Note: Use the executable file that was provided. Do not make

bcast_bandwidth or bcast_bandwidth64.

3. On the application server, set up and run the rotvp application:

a. export DISPLAY=endstat0:0.0

b. rvn_sender –conf <myconf> -key <mkey>

4. Start RVN on the end station (assume name is endstat0):

a. export DISPLAY=:0.0

b. rvn_receiver <host> <myconf> <mkey> <nickname>

5. Verify that the desktop for the RVN sender displays the RVN dashboard,

and that the end-station screen displays the rotating squares.

Note: Successful performance of this step ensures that the RVN

component and its OpenGL intercept library are installed correctly.

For an RVN sender running under Windows, also perform these steps:

1. From the Windows end station, launch the vncviewer.

2. In the Sender field of the viewer, enter the name of the RVN sender for

the application. Then click OK.

SVN: bcast_bandwidth: Task 1 running on node deepview3.pok.ibm.com

SVN: bcast_bandwidth: Task 3 running on node deepview5.pok.ibm.com

SVN: bcast_bandwidth: Task 2 running on node deepview4.pok.ibm.com

SVN: bcast_bandwidth: Task 0 running on node deepview2.pok.ibm.com

SVN: broadcasting 100000 doublewords, 100 iterations

SVN: bcast_bandwidth: Task 4 running on node deepview6.pok.ibm.com

Start timer value = 850000.0 us

End timer value = 1220000.0 us

Average Elapsed time = 3700.0 useconds per loop

BROADCAST BANDWIDTH TO OTHERS = 864.865*10**6 Bytes/sec

BROADCAST BANDWIDTH WITH SELF = 1081.081*10**6 Bytes/sec

Installation guide: Installation verification

66 Installation and User Guide

|
|

|

|
|

|

|

|
|

3. Enter your password to authenticate to the RVN sender.

4. When you see the desktop for the RVN sender, follow these steps:

a. From the Start menu, launch rvn_sender.bat.

b. In the Select an application field of the RVN "Application launcher"

window, enter the path to any OpenGL 3-D rendering test

application, then click Launch.

c. Verify that the desktop for the RVN sender displays the RVN

dashboard, and that the end-station screen displays the appropriate

graphic.

d. Close the test application.

5. Close the vncviewer (if you are in full-screen mode, press F8).

Installation guide: Installation verification

Chapter 9. Installation verification for Deep Computing Visualization 67

|

|

|

|
|
|

|
|
|

|

|

Installation guide: Installation verification

68 Installation and User Guide

Chapter 10. Problem determination

Refer to the following sections for diagnostic information:

v “SVN problems”

v “RVN problems” on page 70

v “X server display problems” on page 71

v “Display problems” on page 71

v “NVIDIA display problems” on page 71

Notes:

1. If the diagnostic procedures indicate that device-specific procedures are

required, the information in this book will direct you to any additional manuals

you might need.

2. Before contacting IBM for service, refer to the README files provided on the

DCV page listed under “Related information” on page xii.

3. If you cannot determine the cause of failure, request the assistance of the IBM

Field Support Center.

4. Appendix A, “Messages” provides additional diagnostic information, including

“Product installation messages” on page 73.

SVN problems

If you encounter any problems using the SVN component, set SVN_VERBOSE=1 to

echo the script lines issued and to preserve any work files generated.

If the svn_sender script exits with an error, examine the error message and follow

the suggested action. If that does not solve the problem, use local problem

reporting procedures. In addition, here are some additional things to check:

v If the problem seems to be on the server side, check that the required libraries

and executable files are installed on the node.

– If needed, reinstall the libraries and executable files, and follow local problem

reporting procedures if the system requires additional diagnostics.

v If rsh is used to start the remote MPI tasks, remember that it does not run the

user profile $HOME/.bash_profile. However, rsh does run the $HOME/.bashrc

file. This can affect which library paths are actually searched.

– If needed, update the libraries path defined in the $HOME/.bashrc file, and

follow local problem reporting procedures if the system requires additional

diagnostics.

If the application runs but nothing is displayed on the server after the initial banner:

v Try enabling the -windowselector option on the svn_sender command and

selecting the display window several times.

v Try the test application (rotvp) that is distributed with DCV.

v If the problem persists and the system requires additional diagnostics, follow

local problem reporting procedures.

If performance is slow, make sure that a high-performance network is being used by

both the application host and the servers. Run an MPI bandwidth test using the

same configuration to see if MPI performance is acceptable. If MPI performance is

not acceptable, verify that MPI and the supporting network hardware are properly

© Copyright IBM Corp. 2005, 2007 69

|

|
|
|

|
|

|
|

|
|

installed and configured as described in the vendor documentation. If system

performance is still slow, follow local problem reporting procedures.

If the server or application halts or generates a core dump:

1. Verify that the application runs correctly as a stand-alone application on the

node.

2. Collect the failure information and the core dump.

3. Contact IBM Service.

If one of the servers reports that it cannot open the display, make sure that the

server has enabled all X connections by running the xhost + command. If you

receive an application message indicating that it cannot open the display:

v Verify that you have enabled the application to access the display through the

xhost + command (or equivalent authorization commands).

v If you cannot get the application to open the display, follow local problem

reporting procedures.

If you receive a permission denied message:

v Review the appropriate rsh or ssh documentation and ensure that the access for

rsh or OpenSSH has been set up.

v Make sure that the pass-phrases have been supplied to the SSH agents on the

application host and on all of the rendering servers, as described in the ssh

documentation.

v If you are still receiving the permission denied message, follow local problem

reporting procedures.

Attention: If you cannot determine the cause for any of the problems listed

above, contact IBM Service.

RVN problems

If one of the servers reports that it cannot open the display, make sure that the

server has enabled all X connections by running the xhost + command. If you

receive an application message indicating that it cannot open the display:

v Verify that you have enabled the application to access the display through the

xhost + command (or equivalent authorization commands).

v If you cannot get the application to open the display, follow local problem

reporting procedures.

If you encounter any problems using RVN, isolate the component causing the

problem by varying the configuration as described in the following list. If any of

these actions causes the system to issue a message, follow the actions suggested

for the message. If a command is not working correctly, verify that the proper

command-line options and environment variables are set (refer to Chapter 3,

“Remote Visual Networking,” on page 21). If these actions do not solve the

problem, follow local problem reporting procedures.

1. Use only a single end station.

2. Run without VNC.

3. Run with VNC but without enabling the accelerated graphics function.

4. Run with and without OpenSSH tunneling.

5. Run the installation verification procedure.

Installation guide: Problem determination

70 Installation and User Guide

|

|

X server display problems

If you are having problems related to X server display, check the following:

v /var/log/XFree86.0.log

– This file contains information about X.

v xdpyinfo

– This display utility provides information for X.

v xhost + vis80

– This command allows vis80 to show X windows on the display.

v Run glxgears

– If you are using the correct 3-D accelerated drivers, you should get more than

1000 frames per second.

Display problems

If you are having display problems, check the following:

v Confirm that the DISPLAY variable is correctly set.

v Confirm that you can invoke xclock and that it appears on the intended display.

– If this fails, the display owner might need to issue the xhost + localhost

command.

v From the server, verify that you can you access the local DISPLAY (:0).

– If this fails, the display owner might need to issue the xhost + localhost

command.

– The display owner might also need to issue the chmod a+rw /dev/nv*

command.

NVIDIA display problems

If you are having NVIDIA display problems, check the following directories and take

the suggested corrective actions if needed:

v cat /proc/driver/nvidia/version

– Verify the correct driver level is installed, and reinstall if necessary. For

information about the correct driver level, refer to “SVN prerequisites” on page

52.

v cat /proc/driver/nvidia/cards/0

– Verify that the reported card is a supported display adapter. If the adapter is

not supported, install a supported card and its associated driver.

v cat /proc/driver/nvidia/agp/card

– Verify that you are receiving the expected output. If not, check the NVIDIA

documentation for steps to resolve the problem.

v cat /proc/driver/nvidia/agp/host-bridge

– Verify that you are receiving the expected output. If not, check the NVIDIA

documentation for steps to resolve the problem.

v cat /proc/driver/nvidia/agp/status

– Verify that you are receiving the expected output. If not, check the NVIDIA

documentation for steps to resolve the problem.

v If these actions do not solve the problem, follow local problem reporting

procedures.

Installation guide: Problem determination

Chapter 10. Problem determination 71

|

|
|
|

72 Installation and User Guide

Appendix A. Messages

Under special circumstances, DCV displays messages related to specific activities.

These messages include:

v “Product installation messages”

v “RVN messages” on page 74

v “SVN script messages” on page 79

v “SVN application host (client) messages” on page 81

v “SVN rendering server messages” on page 82

Product installation messages

DCV License only requested. Product install is not attempted.

Explanation: You specified the environment variable DCV_LICENSE_ONLY as 1 so only the license acceptance process

is run. This is appropriate if you are installing the executable files on a shared file system and the user only needs to

license additional nodes for execution.

User response: If you intended to install DCV, reset the DCV_LICENSE_ONLY environment variable and rerun the install

command.

DCV License agreement not accepted. Product install is abandoned.

Explanation: You have not responded yes to the prompt asking if the DCV license is to be accepted.

User response: If you intended to install DCV, you must rerun the install command and accept the license

agreement when prompted.

© Copyright IBM Corp. 2005, 2007 73

RVN messages

DCV returns the following messages from the rvn_receiver command.

RVN: keys different length incoming = key local=key

Explanation: The conference key given to rvn_sender is a different length than the conference key given to

rvn_receiver.

User response: Specify the same conference key to rvn_sender and rvn_receiver.

RVN: keys do not match

Explanation: The conference key given to rvn_sender does not match the conference key given to rvn_receiver.

User response: Specify the same conference key to rvn_sender and rvn_receiver.

RVN: keys different length incoming longer than local=key

Explanation: The conference key given to rvn_sender is a different length than the conference key given to

rvn_receiver.

User response: Specify the same conference key to rvn_sender and rvn_receiver.

RVN failed to detach shared memory

Explanation: Internal error.

User response: Contact IBM Service.

RVN: error loading libraries

Explanation: RVN was unable to load required libraries.

User response: Ensure that the system libGL.so is accessible at the default location or that RVN_SYSTEM_OPENGL_LIB

is correctly set.

RVN: dashboard execv returns return_code errno hex_errno decimal_errno

Explanation: Failure when attempting to exec the dashboard.

User response: Contact IBM Service.

RVN: fork of dashboard fails

Explanation: Maximum number of user processes running.

User response: Reset maximum number of processes.

RVN: Initialization failure: RVN_SYSTEM_OPENGL_LIB not set

Explanation: RVN was unable to load the system OpenGL library.

User response: Ensure that RVN_SYSTEM_OPENGL_LIB is properly set.

RVN: dlopen of library_name fails with: dlerror()

Explanation: RVN was unable to load the specified library.

User response: Ensure that RVN_SYSTEM_OPENGL_LIB is properly set.

Messages

74 Installation and User Guide

RVN: Fatal error. No FBConfigs returned from OpenGL library.

Explanation: RVN was unable to find a visual with the required attributes.

User response: Ensure that the X server is configured with the required attributes.

RVN: Memory allocation fails

Explanation: RVN was unable to allocate needed memory.

User response: Examine system memory usage. If unable to diagnose the problem, contact IBM Service.

RVN: LoadLibrary of library_name: error dlerror(), ...

Explanation: An error occurred attempting to load the Intel® Performance Primitives libraries.

User response: Ensure that the Intel Performance Primitives are properly installed.

RVN: LoadLibrary of library_name: dlerror(), aborting

Explanation: An error occurred attempting to load the Intel Performance Primitives libraries.

User response: Ensure that the Intel Performance Primitives are properly installed.

RVN: Error: Compression failed to initialize

Explanation: Internal error.

User response: Contact IBM Service.

RVN: unable to create shared memory segment: bytes_per_line bpl, h height

Explanation: RVN was unable to create a shared memory segment.

User response: Ensure that the system is configured with sufficient shared memory.

RVN: specify an executable

Explanation: There was no executable file specified on the rvn_sender command.

User response: Reissue the rvn_sender command and specify an executable file for the graphics application.

DCV/RVN License agreement file not found on node hostname

Explanation: A copy of the license agreement file could not be found on the application host.

User response: Ensure that RVN is correctly installed.

RVN: unable to open display: display_name

Explanation: RVN was unable to open the specified display.

User response: Check the value of the DISPLAY environment variable and ensure that access has been granted

through a mechanism such as xhost or Xauthority.

RVN: Compression encoder returns error

Explanation: An error was returned by the RVN internal compression encoding mechanism.

User response: Contact IBM Service.

Messages

Appendix A. Messages 75

|

RVN: sender error writing handshake

Explanation: An error was returned when writing from the sender to a receiver.

User response: Ensure that no network issues exist, then contact IBM Service.

RVN: sender error reading handshake

Explanation: An error was returned when attempting to read from a receiver.

User response: Ensure that no network issues exist, then contact IBM Service.

RVN: Compression decoder returns error

Explanation: An error was returned by the RVN internal compression decoder.

User response: Contact IBM Service.

RVN: error errno writing to receiver

Explanation: An error was detected when trying to write to the receiver.

User response: Ensure that no network issues exist, then contact IBM Service.

RVN: unable to create shared memory segment

Explanation: An error was returned when attempting to create a shared memory segment.

User response: Ensure that the system has sufficient memory and that old shared memory instances have been

correctly cleaned up. If there are no memory issues, contact IBM Service.

RVN: unable to attach shared memory segment

Explanation: An error was returned when attempting to attach a shared memory segment.

User response: Contact IBM Service.

RVN: unable to XShmAttach

Explanation: An error was returned when attempting to call XShmAttach.

User response: Contact IBM Service.

RVN: glxChooseVisual returns error

Explanation: An error was returned from a call to glxChooseVisual.

User response: Contact IBM Service.

RVN: glxCreateContext returns error

Explanation: An error was returned from a call to glxCreateContext.

User response: Contact IBM Service.

RVN: receiver error reading handshake

Explanation: An error was detected when trying to read from the sender.

User response: Ensure that no network issues exist, then contact IBM Service.

Messages

76 Installation and User Guide

RVN: receiver error writing handshake

Explanation: An error was detected when trying to write to the sender.

User response: Ensure that network connectivity exists between the sender and receiver. If no network issues exist,

contact IBM Service.

RVN: receiver error in select

Explanation: RVN encountered an error when calling the select system call.

User response: Contact IBM Service.

RVN: Memory allocation fails

Explanation: RVN was unable to allocate needed memory.

User response: Examine system memory usage. If unable to diagnose the problem, contact IBM Service.

RVN: compression decoder returns error

Explanation: The RVN internal compression decoder returned an error.

User response: Contact IBM Service.

RVN: listen call returns error err

Explanation: Calling listen for the socket returns error err.

User response: Contact IBM Service.

RVN: read call returns error err

Explanation: Attempting to read from socket returns error err.

User response: Contact IBM Service.

RVN: Bad magic number number

Explanation: RVN received a corrupt packet.

User response: Contact IBM Service.

RVN: unable to open display display

Explanation: An attempt to open display display failed.

User response: Check settings of environment variables.

RVN: sender (client_id:rvn_component_id): error writing handshake

Explanation: Internal error.

User response: Contact IBM Service.

RVN: sender (client_id:rvn_component_id): error reading handshake fd file_descriptor

Explanation: Internal error.

User response: Contact IBM Service.

Messages

Appendix A. Messages 77

RVN: bind returns error return_code, errno: errno

Explanation: Internal error.

User response: Contact IBM Service.

RVN: read numBytes num calls returns error errno

Explanation: Internal error.

User response: Contact IBM Service.

RVN: receiver read error

Explanation: Internal error.

User response: Contact IBM Service.

RVN: receiver setup failure

Explanation: Internal error.

User response: Contact IBM Service.

Messages

78 Installation and User Guide

SVN script messages

Error SVN: Path SVN_ROOT=svn_root does not exist

Explanation: The specified file path does not point to the installed version of DCV.

User response: Verify the location of DCV, usually in /opt/IBM/dcv, and set the correct value of SVN_ROOT if

necessary.

Error SVN: Path SVN_HOME=svn_home does not exist

Explanation: The specified file path to a shared directory does not exist.

User response: Verify that the indicated directory is accessible from each application and server node.

Attention: Path SVN_BIN=svn_bin does not exist

Explanation: The specified file path to the executable files of DCV does not exist, or perhaps is a concatenation of

two or more file paths.

User response: If the command does not run, verify that the executable file can be found using the value of

$SVN_ROOT/bin or $SVN_BIN.

Note: If the command runs normally, you can ignore this message.

Attention: Path SVN_SHELL=svn_shell does not exist

Explanation: The specified file path to the service shell scripts of DCV does not exist, or perhaps is a concatenation

of two or more file paths.

User response: If the command does not run, verify that the shell script can be found using the value of

$SVN_ROOT/bin, $SVN_BIN, or $SVN_SHELL.

Note: If the command runs normally, you can ignore this message.

Attention: SVN_MPICOMM = svn_shell/svn_mpicomm does not exist or is not executable

Explanation: The specified file for the SVN setup script does not exist, or is not an executable file.

User response: Verify that the MPI startup scripts reside in the path described in the message and that the scripts

are executable.

Note: If the command runs normally, you can ignore this message.

Attention: Path SVN_MPILIB=svn_mpilib does not exist

Explanation: The specified file path to the MPI library does not exist, or perhaps is a concatenation of two or more

file paths.

User response: Verify that the MPI library can be found in the path described in the message.

Note: If the command runs normally, you can ignore this message.

Attention: Path SVN_MPIBIN=svn_mpibin does not exist

Explanation: The specified file path to the MPI startup command (mpirun) does not exist, or perhaps is a

concatenation of two or more file paths.

User response: Verify that the MPI startup command can be found in the path described in the message.

Note: If the command runs normally, you can ignore this message.

Messages

Appendix A. Messages 79

|
|

Error SVN: unable to create directory svn_home /.dv

Explanation: SVN creates the indicated working directory in a shared file system to store commands to the

application host and to the rendering servers.

User response: Verify that the top-level directory is shared and writable by the application host.

Error SVN: unable to open file SVN_DISPLAY: svn_display

Explanation: SVN is unable to find the indicated wall configuration file.

User response: Correct the environment value or command-line option and retry.

Attention SVN: executable program program not found

Explanation: SVN is unable to verify that the indicated program exists or is executable.

User response: Verify that the executable program can be found using the PATH environment variable, or specify the

executable program using a fully qualified path.

Error SVN: Executable program is mode program_addrmode, address mode addrmode specified

Explanation: SVN has determined that the address mode of the executable program does not match the address

mode supported on this version of Linux.

User response: Specify an executable program with the correct address mode.

Error SVN: Path SVN_LIB=svn_lib does not exist

Explanation: The file path to the SVN intercept library does not exist.

User response: Verify that DCV is installed correctly and retry.

Error SVN: DCV/SVN License agreement file not found on node hostname

Explanation: DCV is unable to locate the files indicating that the DCV license agreement has been accepted on this

node.

User response: Install the license on this node and retry.

Messages

80 Installation and User Guide

SVN application host (client) messages

Attention SVN: **** UNKNOWN FORMAT IN GLxxxxxxx ****

Attention SVN: **** UNKNOWN TYPE IN GLxxxxxxxx ****

Attention SVN: Unknown type in glxxxxxxxx....ignoring call

Explanation: The current version of DCV is intended to support a specific level of OpenGL, plus some extensions.

(For information about the supported level of OpenGL, refer to “SVN prerequisites” on page 52.) However, not all

options of every call are supported. The application has probably used an option in an OpenGL call that is not

supported by SVN.

User response: Contact IBM Service.

Error SVN: XQueryTree failed

Error SVN: XGetGeometry failed

Error SVN: unable to open display

Error SVN: unable to create window

Error SVN: select error in selector

Explanation: The SVN client has encountered an internal error trying to create the selector window

(-windowselector = 1).

User response: Verify that the DISPLAY environment variable is set correctly. If DISPLAY is correct and the message

still occurs, you might be able to work around the problem by disabling the selector window. If that does not help,

contact IBM Service.

Attention SVN: typeSize using default statement: type = %d We are returning 4 bytes

Explanation: An OpenGL datatype was not recognized. The application has probably used an option in an OpenGL

call that is not supported by SVN.

User response: If your application does not encounter any problems, the 4 byte guess was probably good. However,

if you are having trouble with your application after encountering this message, contact IBM Service.

Messages

Appendix A. Messages 81

|
|

SVN rendering server messages

Attention SVN: unresolved OpenGL op called: OpenGL_call

Explanation: The current version of DCV is intended to support a specific level of OpenGL, plus some extensions.

(For information about the supported level of OpenGL, refer to “SVN prerequisites” on page 52.) However, not all calls

are supported. The application has probably used an OpenGL call that is not supported by SVN.

User response: Contact IBM Service.

SVN: glBitmap does not support GL_UNPACK_ALIGNMENT != 1

Explanation: SVN does not support this feature.

User response: Modify the application to avoid use of this feature.

Attention SVN: X Color color not found. Using white

Explanation: This color is not available on the SVN display node.

User response: Modify the rgb.txt file to include the missing color.

SVN: No conforming visual exists on server!

 =====================================

 Visual Attributes Requested

 =====================================

Explanation: This is a header that indicates some visual was not available in the server. The specific visual

attributes will be listed.

User response: Ensure that the X server on the display node is configured with the missing capabilities.

SVN: Texture ID conflict.

Explanation: A texture with the same ID has been defined previously.

User response: Correct the application to use unique texture IDs.

Attention SVN: Unable to allocate cell for color color

Explanation: Be aware that the selector window colors might be affected.

User response: The selector window will continue to work.

SVN: Texture ID texture_id could not be found for deletion.

Explanation: The indicated texture_ID could not be found.

User response: Ensure the application is attempting to delete an existing texture.

Error: The SVN option option is not recognized.

Explanation: An unrecognized option was specified on the svn_sender command.

User response: Check the svn_sender command syntax and reissue the command.

Error: No SVN program name specified.

Explanation: No application name was specified on the svn_sender command.

User response: Rerun the svn_sender command and specify the application name.

Messages

82 Installation and User Guide

|
|
|

Error SVN: Host addrmode svn_addrmode does not match server addrmode srvr_addrmode on server server

Explanation: The application host and rendering server are not running compatible versions of the operating system.

One is 32-bit and one is 64-bit.

User response: Install compatible versions of Linux and retry.

Error SVN: Host version version does not match server version srvr_version on server server

Explanation: The application host and rendering server are not running compatible versions of DCV.

User response: Install compatible versions of DCV on the nodes and retry.

Error SVN: unable to create decode thread

Explanation: A server was unable to create one of the required service threads.

User response: Contact IBM Service.

Error SVN: unable to open wall configuration file configfile

Explanation: The file specified by the message cannot be opened by the server.

User response: Check that the file exists in a shared file system and that the file system is mounted on the server

node.

Error SVN: not enough entries in wall configuration file configfile

Explanation: The svn_sender command counts the number of active entries in the file, and tells each server which

entry to process. The server has not found the entry it is looking for.

User response: Contact IBM Service.

Error SVN: invalid X display string in wall configuration file configfile

Explanation: The server name in the wall configuration file should be in the form server:d.s.

User response: Correct the entry and retry the command.

Error SVN: unable to open display: display

Explanation: The indicated display is unknown or cannot be initialized.

User response: Check that the command xhost + has been issued on the node.

Error SVN: BAD OPCODE (nnn)!!

Explanation: The indicated number is not in the range of the numbers associated with the supported OpenGL calls.

However, because the client and server use the same set of numbers, this probably means that a prior call was

incorrectly processed by the server.

User response: Contact IBM Service.

Error SVN: something bad happened at line line in routine routine

Explanation: Internal error at indicated location.

User response: Contact IBM Service.

Messages

Appendix A. Messages 83

Attention SVN: NVIDIA framelock is not supported on the graphics hardware on node

Explanation: SVN is attempting to use framelock between graphic adapters to synchronize screen updates but the

hardware on the specified node does not support framelock.

User response: Set the environment variable SVN_SWAP_ON_RETRACE to 0, or do not set it at all and allow it to default

to 0.

Error SVN: Error querying MaxSwapGroupsNV on node

Explanation: Internal error trying to get information about the framelock capabilities of the hardware.

User response: Set the environment variable SVN_SWAP_ON_RETRACE to 0, or do not set it at all and allow it to default

to 0. If this is not acceptable, contact IBM Service.

Error SVN: Insufficient number of swap groups (groups) and/or swap barriers (barriers)

Explanation: Probable internal error in trying to use the framelock capabilities of the hardware.

User response: Set the environment variable SVN_SWAP_ON_RETRACE to 0, or do not set it at all and allow it to default

to 0. If this is not acceptable, contact IBM Service.

Messages

84 Installation and User Guide

|

|

|

Appendix B. Environment variables

In addition to options that you can specify on SVN and RVN commands, and in the

launcher and dashboard for RVN, you can set environment variables to further

customize the processing that is done. For more information, refer to these

sections:

v “Environment variables for svn_sender”

v “Environment variables for rvn_sender” on page 88

v “Environment variables for rvn_receiver” on page 92

v “Environment variables for rvn_coordinator” on page 93

Environment variables for svn_sender

In addition to the options listed in “Command-line options for svn_sender” on page

8, you can also define the following environment variables to control svn_sender

processing.

Notes:

1. Unless you have specified the corresponding command-line option, you must

define all environmental variables marked with an asterisk (*).

2. The following definitions assume that you are using the Bash shell.

3. The environment variables listed in this section should be exported.

4. If you set both the environment variable and its corresponding command-line

option, the command-line option takes precedence.

5. Where applicable, the underlined value is the default.

 SVN_BANNER_COLOR=X_display_color_name

This environment variable specifies the color used for the initial server

banner display. The default is SkyBlue.

 SVN_BANNER_FONT=X_display_font_name

This environment variable specifies the font used by the rendering X server

to display the banner text. The default is variable.

 SVN_BANNER_TIME=display_time_in_seconds

When the rendering server is started, it displays a banner showing the

overall geometry and its portion of it. This environment variable controls

how long the banner will be displayed. The default is 5 seconds.

 SVN_BIN=installation_binary_path

If the SVN rendering servers are installed in a directory path other than

$SVN_ROOT/bin, this environment variable should point to the alternate path.

 SVN_CLIENT_OVERLOAD_FILE=overload-file-path

This environment variable identifies SVN overloads that will be loaded in

the client application process. It overrides the SVN_OVERLOAD_FILE setting for

the specified process. For more information about overloads, refer to

“OpenGL overloads with SVN” on page 12.

* SVN_DISPLAY=wall-configuration-file-path

The wall configuration file lists the names of the rendering servers, the

virtual size of the display wall, and the portion of the geometry to be shown

by each server. If this environment variable is not set, you must supply the

–svndpy option. For more information about the wall configuration file,

including display groups, refer to Chapter 2, “Scalable Visual Networking,”

on page 5.

© Copyright IBM Corp. 2005, 2007 85

|
|
|
|

|

|

|

|

|
|
|
|
|

SVN_DMX_OVERLOAD_FILE=overload-file-path

This environment variable identifies SVN overloads that will be loaded in

the DMX server processes on the DMX display nodes. It overrides the

SVN_OVERLOAD_FILE setting for the specified process. For more information

about overloads, refer to “OpenGL overloads with SVN” on page 12.

 SVN_FIRST_WINDOW_ONLY={0 | 1}

This environment variable provides a solution for an NVIDIA graphics driver

limitation. When this variable is set to 1, it instructs SVN to send information

to the rendering servers that relates only to the first window that was

opened by the application. Refer to the -firstwindowonly command-line

option for additional information.

 SVN_HOME=shared_file_home_directory

SVN requires a shared file system directory into which the host node can

write startup files and from which the rendering servers can read them. If

this environment variable is not set, SVN assumes that $HOME is shared.

 SVN_INITIAL_SCALED_WINDOW=n

When you set this variable, it instructs SVN to initially display the nth

OpenGL window that was opened by the application, rather than the first

window that was opened (which is the default behavior). The window

selector can subsequently be used to change which window is shown on

the display wall.

Note: If you set this environment variable, the -firstwindowonly

command-line option and the SVN_FIRST_WINDOW_ONLY environment

variable are ignored.

 SVN_LIB=installation_library_path

If the SVN intercept library (libGL.so) is installed in a directory path other

than $SVN_ROOT/lib, this environment variable should point to the alternate

path. The svn_sender command assumes that 64-bit libraries, if installed

and required, are in the corresponding lib64 directory. This is the standard

Linux convention. You should not supply the "64" suffix.

* SVN_MPIBIN=MPI_binary_path

This variable is used to pick up the appropriate variant of the mpirun

command for your MPI implementation. You must set this environment

variable to the directory containing the appropriate MPI startup command.

Note: Setting PATH in $HOME/.bash_profile is not an effective substitute,

because that script is not run when rsh is used by MPI to start task

0 on the host node.

* SVN_MPICOMM=SVN_startup_script_base_name

If you do not set the –mpicomm command-line option, you must use this

environment variable to identify the SVN startup script that selects the MPI

startup option. These scripts are normally found in the same directory as

the svn_sender command.

Note: Refer to the –mpicomm description for a list of supported MPI options.

* SVN_MPILIB=MPI_library_path

This environment variable is added to the LD_LIBRARY_PATH environment

variable on all nodes. It is used to pick up the shared MPI library

(libmpich.so) on each node. You must set this variable to the directory

containing the MPI library.

Environment variables

86 Installation and User Guide

|
|
|
|
|

|
|
|

|
|
|
|
|

Notes:

1. Setting LD_LIBRARY_PATH in $HOME/.bash_profile is not an effective

substitute, because that script is not run when rsh is used by MPI to

start jobs on the rendering servers.

2. If libmpich.so is not in the same directory as the other shared objects

required for MPI implementation, this environment variable can provide

a search path.

 SVN_OVERLOAD_FILE=overload-file-path

This environment variable identifies a set of overloads that will be loaded

into all SVN processes, on both the application host and the rendering

server. For more information about overloads, refer to “OpenGL overloads

with SVN” on page 12.

 SVN_ROOT=installation_path

If the SVN component is installed in a directory other than

/opt/IBM/dcv/svn, this environment variable should point to the alternate

path.

 SVN_SERVER_OVERLOAD_FILE=overload-file-path

This environment variable identifies SVN overloads that will be loaded in

the SVN server processes. It overrides the SVN_OVERLOAD_FILE setting for

the specified process. For more information about overloads, refer to

“OpenGL overloads with SVN” on page 12.

 SVN_SHELL=installation_SVN_shell_path

If the SVN startup scripts are installed in a directory other than $SVN_BIN,

this environment variable should point to the alternate path.

 SVN_SVNRVN_OVERLOAD_FILE=overload-file-path

This environment variable identifies SVN overloads that will be loaded in

the SVNRVN server process. It overrides the SVN_OVERLOAD_FILE setting for

the specified process. For more information about overloads, refer to

“OpenGL overloads with SVN” on page 12.

 SVN_SWAP_ON_RETRACE ={ 0 | 1 }

This environment variable delays synchronization until the displays retrace

on the server.

Note: If you are using NVIDIA graphics G Series adapters, setting

SVN_SWAP_ON_RETRACE to 1 enables the framelock function.

 SVN_VERBOSE={ 0 | 1 }

This environment variable performs the following functions:

v Turns on echoing of each line in the svn_sender script for debugging

purposes

v Saves intermediate work files for analysis and problem determination

 SVN_WINDOW_SELECTOR={0 | 1}

This environment variable sets the default value for the window selector

function described in the –windowselector command option. This variable

can be overridden by the value set for the -windowselector command-line

option.

Environment variables

Appendix B. Environment variables 87

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|

|
|

Environment variables for rvn_sender

In addition to the options listed in “The RVN application launcher” on page 28 and

in “Command-line options for rvn_sender” on page 37, you can also define the

following environment variables to control rvn_sender processing.

Two environment variables are commonly used with rvn_sender:

v DISPLAY

v RVN_USE_VNC=1

If you are using the RVN application launcher under Windows or Linux, you

generally do not need to set these two environment variables yourself. The launcher

sets them for you. However, if you are using the X11 export mechanism, you must

set the DISPLAY variable before starting the launcher. For more information, refer to

“The RVN application launcher” on page 28.

If you are running the rvn_sender command and bypassing the launcher, set these

two variables before invoking rvn_sender.

v Set the DISPLAY variable to correspond to the X server on which the 2-D

graphical application interface should be displayed.

– If you are using VNC, the 2-D interface is technically being displayed on the

application host, and so the DISPLAY should be set to :0.

– Linux only: If you are using the X11 export mechanism (refer to Figure 4 on

page 24), you should set the DISPLAY to the X server running on the receiver

(receiver:0).

v If you are using VNC, set RVN_USE_VNC=1. Both the sender and receiver require

this information to define how pixels are written to the application window.

Note: You do not need to set the RVN_USE_VNC=1 variable on the receiver. The

sender passes the setting information to the receiver upon connecting.

Here is the complete list of environment variables that you can set for the RVN

sender.

RVN_ALTERNATE_VISUALS=1

Set this environment variable only if rvn_sender fails when this variable is

not set.

Note: This environment variable is not normally used, and it might be

required only when you are using an X server with limited function. It

asks for a 24-bit true-color non-stereo visual, irrespective of what the

application tried to request.

RVN_CONFERENCE_ID=confID

(X11 export mode only) Specifies the name of the RVN conference session.

Notes:

1. This information is needed only for X11 export mode. When you are

using VNC, this information is automatically generated during VNC

authentication.

2. This information must be conveyed to each conference participant

before the start of the conference.

RVN_CONFERENCE_KEY=confkey

(X11 export mode only) Specifies the key required to access the specified

RVN conference session.

Environment variables

88 Installation and User Guide

|
|
|

|
|
|
|
|

|
|

|

|

|
|

|
|
|

|
|
|
|

|

|
|
|

|

Notes:

1. This information is needed only for X11 export mode. When you are

using VNC, this information is automatically generated during VNC

authentication.

2. This information must be conveyed to each conference participant

before the start of the conference.

RVN_COORDINATOR_PORT=port

Specifies the port on the application host used by rvn_sender,

rvn_receiver, and rvn_coordinator to establish an RVN conference

session. This environment variable must have the same value for all three

processes (rvn_sender, rvn_receiver, and rvn_coordinator) participating in

the RVN conference.

Notes:

1. The default port is 7200.

2. This information must be conveyed to each conference participant

before the start of the conference.

RVN_DASHBOARD_DISPLAY=display

(Linux only) Causes the RVN dashboard to open on the specified display.

RVN_EXTERNAL_TRANSPORT=[1|0]

When this environment variable is set to 1, the RVN pixel backchannel is

enabled, and OpenGL output is transferred to the viewer much more

quickly. RVN will write data to a local window and not send it out across an

accelerated graphics link.

Note: The default value for this environment variable is 0 (RVN does not

rely on the pixel backchannel).

RVN_HOST_SHOW_PIXELS=[1|0]

Enables or disables displaying pixels on the local display of the application

server in addition to sending it to the RVN end station.

Note: The default value for this environment variable is 0 (RVN does not

write the image to the local display).

RVN_IMAGE_QUALITY=[1...100]

Controls the balance between image compression and image quality when

the image is changing. The range is a percent from 1 to 100. Choosing a

high quality value (a large number) improves the visual quality of the

dynamic images, but requires more data to be sent for each image, which

can reduce responsiveness or lower the frame rate. If you select 100%

compression, lossless compression will be used.

Note: The default value for this environment variable is 80 (100 is the

highest quality).

RVN_INTERACT_MODE=[1|0]

Specifies the mode for sending frames from the application to the

end-station display.

v If you specify 1 (interactive mode), RVN attempts to allow the application

to run as fast as possible (with the least RVN delay). It always transmits

the most recently generated frame to the end-station display. In doing so,

it might drop stale images before trying to compress and send them, in

Environment variables

Appendix B. Environment variables 89

|
|
|

|
|

|
|
|
|

|

|

|
|
|
|
|
|
|

|
|
|

|
|
|
|

favor of sending newer images. Select this mode if you are most

interested in always viewing the most recent frame, and not concerned

with seeing every generated frame.

v If you specify 0 (pacing mode), RVN sends every frame that the

application generates and, in so doing, can often significantly slow the

application. Pacing mode allows the users at the end stations to see all

of the rendered data. It also addresses the issue of frame-rate jitter,

where image frames are not displayed at regular intervals. This variability

in the frame-to-frame interval is typically the result of network jitter or a

variability in computation loads on the sender or viewer. To "smooth out"

the jitter, paced mode introduces interval delays, causing the frames to

be displayed at regular intervals. This creates a regular paced viewing

experience.

Note: The default value for this environment variable is 1.

RVN_LOCAL_DISPLAY=display

The default hardware rendering adapter is :0. Use this environment variable

to specify non-default hardware.

RVN_PACING_TIME=[0...1000]

Specifies the length of delay to be used for pacing mode, which is selected

by setting RVN_INTERACT_MODE=0. The time is specified in milliseconds.

Increase the value until the frame rate becomes sufficiently smooth and

pleasing to the eye.

Note: The default value for this environment variable is 0.

RVN_QUALITY_UPDATE=[1|0]

Sends a higher quality image when the image is not being rapidly updated

by the application. When this option is selected, RVN rapidly transfers

lower-quality images when the image is changing, then updates the image

with a high-quality update, thereby enhancing the quality of the static

image.

Notes:

1. The default value for this environment variable is 0.

2. In some circumstances, rapid flickering occurs when

RVN_QUALITY_UPDATE is enabled. To avoid this condition, do not enable

this variable.

RVN_SUBSAMPLING=[1|2|4]

Set this environment variable to adjust image quality through pixel

subsampling.

v Specify 1 for 411 subsampling, which uses every other x and every other

y pixel. 411 subsampling creates a compressed image by reducing the

number of bits to approximately half, and so is likely to perceptibly

decrease image quality.

v Specify 2 for 422 subsampling, which uses every other pixel in x. 422

subsampling generally provides sufficient quality for human perception.

v Specify 4 for 444 subsampling, which uses all pixels. 444 subsampling

approximately doubles the data requirements.

Note: The default value for this variable is 2.

Environment variables

90 Installation and User Guide

|
|
|

|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|

|

|

|
|

|

|

|
|
|

|
|
|

|
|
|
|

|
|

|
|

|

RVN_SUPPRESS_DASHBOARD=[1|0]

Set this environment variable if you do not want the RVN dashboard to be

displayed.

Note: The default value for this variable is 0 (RVN does not prevent the

dashboard from being enabled).

RVN_SYSTEM_OPENGL_LIB=complete_path_to_system_openGL_library

Specifies the path to the System_OpenGL library.

RVN_UDP=[0|1|2]

Determines how pixels are sent when latency is high. Specifying 1 or 2 for

the RVN_UDP environment variable provides a more responsive view when

interactive mode is being used (RVN_INTERACT_MODE is set to 1) and a

sequence of dynamic frames is being sent over a low bandwidth. Specify

one of the following options:

0 Indicates that the low bandwidth option will not be used.

1 Indicates that the low bandwidth option will be used.

2 Allows RVN to automatically determine whether to use the low

bandwidth option, based on throughput, latency, and packet-loss

threshold.

Note: The default value for this environment variable is 2.

RVN_UDP_QUALITY=[1...100]

Adjusts the image quality when RVN_UDP is set to ON or AUTO. Because fewer

frames are transmitted when a low bandwidth is used, you might want to

reduce the quality of the image to increase the compression and, therefore,

speed. Low values mean high compression and poor image quality; high

values mean little compression and high image quality.

Note: The default value for this environment variable is 10.

RVN_UDP_SHOW_PARTIAL=[1|0]

Indicates whether to display partially updated frames. Set this variable to 1

to see a "frameless" display in the event of network losses, and to use old

data to fill occasional gaps in the image when some data segments are

lost.

Note: The default value for this environment variable is 1.

RVN_UNIQIFY_CONFERENCE_ID=[1|0]

(X11 export mode only) Set this environment variable to 1 if you are running

an OpenGL application that forks multiple processes that each load the

OpenGL library, libGL.so. This ensures that each application process that is

forked after the initial application process is assigned a unique conference

ID, based on the conference ID for the session followed by a sequential

number. For example, if the specified conference ID is abc123, the initial

application process will use that conference ID, the second application

process will use the conference ID abc123_1, the third will use abc123_2,

and so on.

Notes:

1. This variable is relevant only for sessions that use X11 export. It is not

needed for sessions that use VNC.

2. The default value for this variable is 0.

Environment variables

Appendix B. Environment variables 91

|
|

|

|

|

|

|
|
|
|
|
|

|

|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|

|

|
|

|

RVN_UPDATE_QUALITY=[1...100]

Controls the balance between image compression and image quality when

the image is not changing. The range is a percent from the current dynamic

compression quality to 100. If you select 100% compression, lossless

compression will be used.

Note: The default value for this environment variable is 95 (100 is the

highest quality).

RVN_USE_VNC=[1|0]

When set to 1, tells RVN to look for a VNC window when writing application

images.

Notes:

1. On a Linux application server, the default value for this environment

variable is 0 (RVN does not look for a VNC window, and uses X11

export mode instead).

2. On a Windows application server, this environment variable must be set

to 1.

Environment variables for rvn_receiver

One primary environment variable is used with the rvn_receiver command:

v DISPLAY

The DISPLAY environment variable is used in the standard method for X

applications. In most cases, you should set the sender variable to DISPLAY=":0"

before calling rvn_receiver. In addition, it is also necessary to ensure that you set

the X access control to allow the required connections. For example, when using

RVN in X11 export mode, the sender must have access to the X server running on

the receiver.

Here is the complete list of environment variables that you can set to control

rvn_receiver processing.

DISPLAY=standard_X_DISPLAY_syntax

Describes where 2-D receiver-side images will be displayed.

RVN_CONFERENCE_ID=confID

Specifies the name of the conference session.

Note: If RVN_CONFERENCE_ID and RVN_CONFERENCE_KEY are not specified,

default values are used. As a result, the connection is not secure.

RVN_CONFERENCE_KEY=confkey

Specifies the key required to access the specified conference session.

Note: If RVN_CONFERENCE_ID and RVN_CONFERENCE_KEY are not specified,

default values are used. As a result, the connection is not secure.

RVN_COORDINATOR_PORT=port

Specifies the port used by rvn_sender, rvn_receiver, and rvn_coordinator

to establish an RVN session. This environment variable must have the

same value for all three processes (rvn_sender, rvn_receiver, and

rvn_coordinator) participating in the RVN conference.

Note: If RVN_COORDINATOR_PORT is not specified, the default port is 7200.

Environment variables

92 Installation and User Guide

|
|
|
|
|

|
|

|

|
|

|

|
|

|

|
|

|

|

RVN_VIEWER_TITLE=window_title

Causes the RVN receiver to look for a specific window title (for example, a

vncviewer) as the destination window. By default, if you set RVN_USE_VNC on

the sender and do not set both RVN_VIEWER_TITLE and WINDOWID, this

environment variable uses some known vncviewer such as VNC: x11.

RVN_VIEWER_WINDOWID=window_ID

Causes the RVN receiver to use a specific X-window ID as the pixel

destination.

Note: The default value is none.

Environment variables for rvn_coordinator

You can set the following environment variables to control rvn_coordinator

processing.

RVN_COORDINATOR_PORT=port

Specifies the port used by rvn_sender, rvn_receiver, and rvn_coordinator

to establish an RVN session. This environment variable must have the

same value for all three processes (rvn_sender, rvn_receiver, and

rvn_coordinator) participating in the RVN conference.

Notes:

1. The default port is 7200.

2. This information must be conveyed to each conference participant

before the start of the conference.

RVN_TOP_PORT=top-port

Specifies the highest port number used by rvn_coordinator when allocating

ports for use in an RVN conference. This value must be higher than the

value of RVN_COORDINATOR_PORT.

Note: The default value is 7220.

Environment variables

Appendix B. Environment variables 93

|

|

Environment variables

94 Installation and User Guide

Appendix C. Programming considerations for SVN and RVN

You must consider the following information when you are programming applications

that will run under SVN and RVN:

Front-buffer programs

If a program renders to the front buffer, graphics commands might be

delayed reaching the SVN rendering servers. This delay occurs while the

SVN client fills its output buffers with rendering commands. SVN requires

that an explicit or implicit flush occur in order to guarantee that the SVN

rendering servers are updated on a timely basis. OpenGL commands that

explicitly or implicitly cause a flush are:

v glFlush()

v glXSwapBuffers()

v glFinish()

v glXMakeCurrent()

Offscreen buffer and pixmap rendering programs

Programs that render to an offscreen buffer and then retrieve the rendered

data might not work correctly. The same is true of programs that render

pixmaps.

Non-OpenGL programs

Programs that do not use OpenGL to produce their graphic images will not

work correctly in SVN or RVN.

© Copyright IBM Corp. 2005, 2007 95

|

Programming considerations

96 Installation and User Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may be

used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not grant you any

license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS

OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES

OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A

PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply to

you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements and/or

changes in the product(s) and/or the program(s) described in this publication at any

time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those

Web sites. The materials at those Web sites are not part of the materials for this

IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes

appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2005, 2007 97

Licensees of this program who wish to have information about it for the purpose of

enabling: (i) the exchange of information between independently created programs

and other programs (including this one) and (ii) the mutual use of the information

which has been exchanged, should contact:

IBM Corporation

Dept LJEB/P905

2455 South Rd.

Poughkeepsie, NY 12601-5400

U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this document and all licensed material available

for it are provided by IBM under terms of the IBM Customer Agreement, IBM

International Program License Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those

products, their published announcements or other publicly available sources. IBM

has not tested those products and cannot confirm the accuracy of performance,

compatibility or any other claims related to non-IBM products. Questions on the

capabilities of non-IBM products should be addressed to the suppliers of those

products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

This information is for planning purposes only. The information herein is subject to

change before the products described become available.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrate programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to IBM,

for the purposes of developing, using, marketing or distributing application programs

conforming to the application programming interface for the operating platform for

which the sample programs are written. These examples have not been thoroughly

tested under all conditions. IBM, therefore, cannot guarantee or imply reliability,

serviceability, or function of these programs.

98 Installation and User Guide

If you are viewing this information softcopy, the photographs and color illustrations

may not appear.

Trademarks

The following terms are trademarks of the International Business Machines

Corporation in the United States or other countries or both:

v IBM

v IBMLink™

v IntelliStation

v System x

v xSeries

Microsoft and Windows are trademarks of Microsoft Corporation in the United

States, other countries, or both.

Intel is a trademark or registered trademark of Intel Corporation or its subsidiaries in

the United States and other countries.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in

the United States, other countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product and service names may be the trademarks or service

marks of others.

Notices 99

|
|

100 Installation and User Guide

Glossary

B

backchannel. A second data path between the

application host and an end station, which uses data

compression to efficiently transport pixel images.

Bash shell (Borne Again SHell). A command

interpreter based on the Borne shell from AT®&T that is

commonly used in Linux to run command scripts.

C

coincident. Occurring or operating at the same time

(or at the same location).

convenience script. A command script that

encapsulates several commands to avoid having to type

them individually.

D

display wall. A large display surface, typically hung

from or installed in a wall. Typically, display walls are

assembled from individual components, each of which

shows a portion of the picture. For example, a display

wall might be a screen on which several projectors are

focused, each projector pointing to a different portion of

the screen. It is usually convenient to organize a display

wall as a set of tiles, which might overlap slightly to

avoid the visual impact of a sharp edge between them.

E

end station. A node and associated display which is

used to actually display graphics.

F

framelock. The ability of the several graphic adapters

driving a display wall or multiadapter monitor to

synchronize their screen updates so that all portions of

the display change simultaneously. This is usually

accomplished by having one of the adapters send the

update signal to cause all the adapters to update their

screens.

G

geometry coverage. The location and dimensions of a

portion of a three-dimensional graphic display.

I

InfiniBand. A specification and products for

communication adapters and switches for

high-performance communication within a limited area.

The specification includes a description and standards

for software interfaces as well as for hardware.

intercept library. A library that is loaded as an

alternate to the shared library intended by the

application programmer. The intercept library provides

the same functions to the calling program, but often

performs additional functions, such as capturing

debugging information, or routing data to alternate

locations.

M

Message Passing Interface (MPI). An

industry-standard application programming interface for

message exchange between two or more cooperating

tasks. Widely used in high-performance and scientific

computing applications.

MPI. See Message Passing Interface.

O

OpenGL. An application programming interface for

representing three-dimensional objects and models.

Originally developed by Silicon Graphics, Inc. (now SGI,

Inc.), it has become a de facto standard for

high-performance, three-dimensional graphics

programming.

P

pass-phrase. An extension of the concept of

password, but allowing a phrase, rather than a single

word, to be handled. Pass-phrase is used and

recommended by Secure Shell.

port forwarding. See tunneling.

R

remote desktopping. A software feature whereby a

display’s entire desktop is shown and can be

manipulated on a remote display.

remote visual networking (RVN). A component of

Deep Computing Visualization (DCV) in which the

image of a three-dimensional graphic object is efficiently

transmitted to a remote display running on an end

station.

© Copyright IBM Corp. 2005, 2007 101

render. To create an image or visual display from data

that describes the scene.

rendering server. A computer with a display which

receives a set of graphic elements and a description of

the desired geometry coverage, and creates (renders) a

corresponding image.

RVN. See remote visual networking.

S

scalable visual networking (SVN). A component of

Deep Computing Visualization (DCV) in which the

elements of a three-dimensional graphic object are

broadcast to a cluster of displays, such as a display

wall.

scene geometry. The location, dimensions and

orientation of all the objects being represented by a

three-dimensional application.

Secure Shell (OpenSSH). A method of authenticating

and encrypting data between two computing systems

that provides a high level of security. OpenSSH is a

version of the Secure Shell (SSH) protocol that is

distributed with Linux systems.

shuffle algorithm. An algorithm for broadcasting data

in which the data buffer is broken into pieces by the

originator of the broadcast, and each piece is given first

to a different member of the broadcast recipients, who

then have the responsibility to exchange the pieces with

each other until each recipient has the entire message.

single program, multiple data (SPMD). A form of

parallel computing in which several copies of the same

program are started simultaneously, but each copy

works with different data, and might be executing

different instructions.

SPMD. See single program, multiple data.

SVN. See scalable visual networking.

T

tar. Acronym for tape archive. A method for

compressing and packing files and directories so that

they can be moved to another computing system.

tarred. A file that is in tar format.

tile (n.). One of several non-overlapping, rectangular

divisions of a display screen.

tile (v.). To arrange multiple windows so that they

appear side by side and top to bottom.

tunneling. A technique provided by SSH which allows

secure access to a remote computer by a variety of

applications. Also called port forwarding.

U

untar. To decompress files, similar to unzipping in

Microsoft Windows environments.

V

virtualize. To provide the appearance of a function

while actually performing the function in a different

placed or time.

visualization. The act or process of putting into or

interpreting in visual terms or in visual form.

W

wall configuration file. A computer file that describes

the components of a display wall. An entry in the wall

configuration file identifies the component (computer)

responsible for updating a particular tile of the display,

and tells that component which portion it is responsible

for.

wall display. See display wall.

102 Installation and User Guide

Index

A
accelerated graphics function of RVN

enabling or disabling
Accelerated graphics option on the RVN

dashboard 31

RVN_EXTERNAL_TRANSPORT environment

variable 89

overview 3

used with RVN on end stations 21

application hosts
installing DCV

Linux 57

Windows 59

SVN messages 81

application launcher, RVN 28

applications, programming considerations for SVN and

RVN 95

audience of this book xi

C
Cisco/TopSpin MPI

required level 54

starting SVN 12

collaborative configuration, RVN 41

combined SVN and RVN sessions 45

commands
rvn_coordinator

environment variables 93

overview 39

rvn_receiver
command-line options 38

environment variables 92

overview 37

rvn_sender
command-line options 37

environment variables 88

overview 36

rvn_viewer
command-line options 39

overview 39

svn_sender
command-line options 8

environment variables 85

overview 8

configuration
RVN 61

RVN coordinator 61

RVN remote desktopping software 62

RVN with VNC 62

connection, RVN session 23

conventions, typographic xi

coordinator, RVN
configuration 61

environment variables 93

overview 39

D
dashboard, RVN 31

DCV installation
Linux

application hosts 57

end stations 58

prerequisites 51

verification 65

Windows
application hosts 59

end stations 59

desktop isolation using VNC with RVN 41

desktopping, remote
configuring RVN 62

display
problem determination 71

DISPLAY 92

display configurations for RVN 24

display groups, SVN 6, 7

DMX servers
installing 47

invoking when starting SVN 48

required level 54

starting 47

SVN support for 47

E
end stations

collaborative configuration, RVN 41

installing RVN
Linux 58

Windows 59

environment variables
RVN

rvn_coordinator command 93

rvn_receiver command 92

rvn_sender command 88

SVN
svn_sender command 85

examples
RVN

basic VNC configuration 41

collaborative configuration 41

desktop isolation using VNC 41

multiple applications using VNC 42

multiple end stations using VNC 41

X11 export mode 40

SVN
basic overload 13

multiple overload sets 17

system interface for overloads 15

G
groups, SVN display 6, 7

© Copyright IBM Corp. 2005, 2007 103

I
information, related xii

installation
application hosts

Linux 57

Windows 59

DCV prerequisites 51

end stations
Linux 58

Windows 59

messages 73

RVN prerequisites 55

SVN prerequisites 52

SVN requirements for 32-bit and 64-bit

implementation 54

verification 65

interface for overloads 15

interoperability, SVN and RVN 45

introduction to visual networking 3

J
joint SVN and RVN sessions 45

L
launcher, RVN 28

launching the VNC viewer under Linux
rvn_viewer 39

Linux
installing DCV RPMs

application hosts 57

end stations 58

M
messages

product installation 73

RVN 74

SVN application host node 81

SVN rendering server 82

SVN script 79

Microsoft Windows
installing RVN

application hosts 59

end stations 59

using RVN
application host using rvn_sender 36

end station using rvn_receiver 38

MPI
providing shared libraries used by SVN 53

required level 54

starting SVN
using Cisco/TopSpin 12

using MPICH 12

using Scali 11

MPICH
required level 54

starting SVN 12

multiple applications using VNC and RVN 42

multiple end stations using VNC 25, 41

multiple overload sets 17

N
Networking, Remote Visual

See RVN

Networking, Scalable Visual
See SVN

nodes
end station

See end stations

rendering server
See rendering servers

NVIDIA
downloading the graphic adapter driver 54, 56

framelock capability
enabling through

SVN_SWAP_ON_RETRACE 87

framelock limitation
addressing through FIRSTWINDOWONLY 9

addressing through

SVN_FIRST_WINDOW_ONLY 86

addressing through

SVN_INITIAL_SCALED_WINDOW 86

problem determination 71

required level
RVN 56

SVN 54

supported graphics cards 53, 55

O
OpenGL

overloads with SVN 12

required level
RVN 56

SVN 54

options
rvn_receiver command 38

rvn_sender command 37

rvn_viewer command 39

svn_sender command 8

overloads
basic example 13

multiple overload sets 17

OpenGL with SVN 12

system interface 15

overview
RVN 22

SVN 5

visual networking 3

P
prerequisite knowledge for this book xi

prerequisites
DCV installation 51

RVN 55

SVN 52

104 Installation and User Guide

problem determination
display 71

NVIDIA 71

RVN 70

SVN 69

X server display 71

programming considerations for SVN and RVN 95

purpose of this book xi

R
receiver variables

RVN environment variables 92

related information xii

remote desktopping
configuring RVN 62

Remote Visual Networking
See RVN

rendering servers
OpenGL overloads 12

overview 3

SVN messages 82

used with SVN 5

requirements, 32-bit and 64-bit SVN

implementations 54

RPMs for DCV
installing

application hosts with Linux 57

end stations with Linux 58

running RVN 40

RVN 21

application launcher 28

command-line options
rvn_receiver 38

rvn_sender 37

rvn_viewer 39

configuration 61

coordinator 61

remote desktopping software 62

VNC 62

desktop isolation using VNC 41

display configurations 24

environment variables
receiver variables 92, 93

sender variables 88

interoperability with SVN 45

messages 74

Microsoft Windows
application host using rvn_sender 36

end station using rvn_receiver 38

overview 3

prerequisites 55

problem determination 70

programming considerations for 95

running 40

RVN coordinator 39

RVN dashboard 31

rvn_receiver 37

rvn_sender 36

rvn_viewer 39

session connection 23

RVN (continued)
using 26

RVN application launcher 28

RVN coordinator
configuration 61

environment variables 93

overview 39

RVN coordinator environment variables
RVN_COORDINATOR_PORT 93

RVN_TOP_PORT 93

RVN dashboard 31

RVN examples
basic VNC configuration 41

collaborative configuration 41

multiple applications using VNC 42

multiple end stations using VNC 41

X11 export mode 40

RVN receiver environment variables
DISPLAY 92

RVN_CONFERENCE_ID 92

RVN_CONFERENCE_KEY 92

RVN_COORDINATOR_PORT 92

RVN_VIEWER_TITLE 92

RVN_VIEWER_WINDOWID 92

RVN sender environment variables
RVN_ALTERNATE_VISUALS 88

RVN_CONFERENCE_ID 88

RVN_CONFERENCE_KEY 88

RVN_COORDINATOR_PORT 88

RVN_DASHBOARD_DISPLAY 88

RVN_EXTERNAL_TRANSPORT 88

RVN_HOST_SHOW_PIXELS 88

RVN_IMAGE_QUALITY 88

RVN_INTERACT_MODE 88

RVN_LOCAL_DISPLAY 88

RVN_PACING_TIME 88

RVN_QUALITY_UPDATE 88

RVN_SUBSAMPLING 88

RVN_SUPPRESS_DASHBOARD 88

RVN_SYSTEM_OPENGL_LIB 88

RVN_UDP 88

RVN_UDP_QUALITY 88

RVN_UDP_SHOW_PARTIAL 88

RVN_UNIQIFY_CONFERENCE_ID 88

RVN_UPDATE_QUALITY 88

RVN_USE_VNC 88

RVN sessions 22

RVN setup
configuring coordinator 61

configuring remote desktopping software 62

configuring VNC 62

RVN_ALTERNATE_VISUALS 88

RVN_CONFERENCE_ID 88, 92

RVN_CONFERENCE_KEY 88, 92

rvn_coordinator command
environment variables 93

overview 39

RVN_COORDINATOR_PORT 88, 92, 93

RVN_DASHBOARD_DISPLAY 88

RVN_EXTERNAL_TRANSPORT 88

RVN_HOST_SHOW_PIXELS 88

Index 105

RVN_IMAGE_QUALITY 88

RVN_INTERACT_MODE 88

RVN_LOCAL_DISPLAY 88

RVN_PACING_TIME 88

RVN_QUALITY_UPDATE 88

rvn_receiver command
command-line options 38

environment variables 92

syntax 37

syntax definitions 38

rvn_sender command
command-line options 37

environment variables 88

syntax 36

syntax definitions 37

RVN_SUBSAMPLING 88

RVN_SUPPRESS_DASHBOARD 88

RVN_SYSTEM_OPENGL_LIB 88

RVN_TOP_PORT 93

RVN_UDP 88

RVN_UDP_QUALITY 88

RVN_UDP_SHOW_PARTIAL 88

RVN_UNIQIFY_CONFERENCE_ID 88

RVN_UPDATE_QUALITY 88

RVN_USE_VNC 88

rvn_viewer command
command-line options 39

syntax 39

syntax definitions 39

RVN_VIEWER_TITLE 92

RVN_VIEWER_WINDOWID 92

S
Scalable Software Concentrator

See accelerated graphics function of RVN

Scalable Visual Networking
See SVN

Scali MPI
required level 54

starting SVN 11

sender variables
RVN environment variables 88

SVN environment variables 85

server, rendering
See rendering servers

session connection, RVN 23

sessions
combined SVN and RVN 45

sets, multiple overload 17

setup, RVN 61

configuring coordinator 61

configuring remote desktopping software 62

configuring VNC 62

software
installation messages 73

RVN messages 74

SVN application host messages 81

SVN rendering server messages 82

SVN script messages 79

SSC
See accelerated graphics function of RVN

starting SVN 11

using Cisco/TopSpin MPI 12

using MPICH 12

using Scali MPI 11

starting the VNC viewer under Linux
rvn_viewer 39

SVN 5

application host messages 81

command-line options
svn_sender 8

display groups 6, 7

DMX server support 47

environment variables
sender variables 85

interoperability with RVN 45

OpenGL overloads 12

overview 3

prerequisites 52

problem determination 69

programming considerations 95

rendering server messages 82

requirements for 32-bit and 64-bit

implementations 54

script messages 79

starting 11

using Cisco/TopSpin MPI 12

using MPICH 12

using Scali MPI 11

svn_sender 8

SVN sender environment variables
SVN_BANNER_COLOR 85

SVN_BANNER_FONT 85

SVN_BANNER_TIME 85

SVN_BIN 85

SVN_CLIENT_OVERLOAD_FILE 85

SVN_DISPLAY 85

SVN_DMX_OVERLOAD_FILE 85

SVN_FIRST_WINDOW_ONLY 85

SVN_HOME 85

SVN_INITIAL_SCALED_WINDOW 85

SVN_LIB 85

SVN_MPIBIN 85

SVN_MPICOMM 85

SVN_MPILIB 85

SVN_OVERLOAD_FILE 85

SVN_ROOT 85

SVN_SERVER_OVERLOAD_FILE 85

SVN_SHELL 85

SVN_SVNRVN_OVERLOAD_FILE 85

SVN_SWAP_ON_RETRACE 85

SVN_VERBOSE 85

SVN_WINDOW_SELECTOR 85

SVN_BANNER_COLOR 85

SVN_BANNER_FONT 85

SVN_BANNER_TIME 85

SVN_BIN 85

SVN_CLIENT_OVERLOAD_FILE 85

SVN_DISPLAY 85

SVN_DMX_OVERLOAD_FILE 85

106 Installation and User Guide

SVN_FIRST_WINDOW_ONLY 85

SVN_HOME 85

SVN_INITIAL_SCALED_WINDOW 85

SVN_LIB 85

SVN_MPIBIN 85

SVN_MPICOMM 85

SVN_MPILIB 85

SVN_OVERLOAD_FILE 85

SVN_ROOT 85

svn_sender command
command-line options 8

environment variables 85

syntax 8

syntax definitions 8

SVN_SERVER_OVERLOAD_FILE 85

SVN_SHELL 85

SVN_SVNRVN_OVERLOAD_FILE 85

SVN_SWAP_ON_RETRACE 85

SVN_VERBOSE 85

SVN_WINDOW_SELECTOR 85

syntax
rvn_receiver command 37

rvn_sender command 36

rvn_viewer command 39

svn_sender command 8

system interface for overloads 15

T
trademarks 99

typographic conventions xi

U
user guide

RVN 21

SVN 5

user’s responsibilities xii

using RVN
examples

basic VNC configuration 41

collaborative configuration 41

multiple applications using VNC 42

multiple end stations using VNC 41

X11 export mode 40

overview 26

running 40

RVN application launcher 28

RVN coordinator 39

RVN dashboard 31

rvn_receiver 37

rvn_sender 36

using SVN
svn_sender 8

V
variables, environment

rvn_coordinator 93

rvn_receiver 92

rvn_sender 88

variables, environment (continued)
svn_sender 85

verification, DCV installation 65

visual networking, introduction 3

Visual Networking, Remote
See RVN

Visual Networking, Scalable
See SVN

VNC
configuring RVN 62

RVN configurations
basic VNC configuration 25, 41

collaborative configuration 25, 41

desktop isolation 26, 41

multiple applications using VNC 42

multiple end stations using VNC 25, 41

viewer, starting under Linux
rvn_viewer 39

W
wall configuration file

examples 6, 7

syntax 6

who should use book xi

Windows
installing RVN

application hosts 59

end stations 59

using RVN
application host using rvn_sender 36

end station using rvn_receiver 38

working with RVN
examples

basic VNC configuration 41

collaborative configuration 41

multiple applications using VNC 42

multiple end stations using VNC 41

X11 export mode 40

overview 26

RVN application launcher 28

RVN coordinator 39

RVN dashboard 31

rvn_receiver 37

rvn_sender 36

X
X server

configuring 24-bit color depth for RVN 52

configuring for SVN 52

display, problem determination 71

supported programs 56

X11 export mode, RVN 24, 40

Index 107

108 Installation and User Guide

Reader’s comments – We’d like to hear from you

Deep Computing Visualization

Installation and User Guide

Version 1 Release 3

 Publication No. G224-9183-02

 We appreciate your comments about this publication. Please comment on specific errors or omissions, accuracy,

organization, subject matter, or completeness of this book. The comments you send should pertain to only the

information in this manual or product and the way in which the information is presented.

For technical questions and information about products and prices, please contact your IBM branch office, your IBM

business partner, or your authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any

way it believes appropriate without incurring any obligation to you. IBM or any other organizations will only use the

personal information that you supply to contact you about the issues that you state on this form.

Comments:

 Thank you for your support.

Submit your comments using one of these channels:

v Send your comments to the address on the reverse side of this form.

If you would like a response from IBM, please fill in the following information:

Name

Address

Company or Organization

Phone No. E-mail address

Readers’ Comments — We’d Like to Hear from You
 G224-9183-02

G224-9183-02

����

Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
 FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

 POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation

Department 55JA, Mail Station P181

2455 South Road

Poughkeepsie NY 12601-5400

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Printed in USA

G224-9183-02

	Contents
	Figures
	Tables
	About this document
	Who should use this document
	Typographic conventions
	Related information
	Accessibility information
	User's responsibilities
	How to send your comments

	What’s new
	G224-9183-02
	G224-9183-01

	Part 1. Using IBM Deep Computing Visualization software
	Chapter 1. Introduction to visual networking
	Chapter 2. Scalable Visual Networking
	The svn_sender command
	Command-line options for svn_sender

	Starting SVN
	Starting SVN using Scali MPI
	Starting SVN using Cisco/TopSpin MPI
	Starting SVN using MPICH

	OpenGL overloads with SVN
	The basic overload
	System interface for overloads
	Using multiple overload sets

	Chapter 3. Remote Visual Networking
	RVN sessions
	Connecting to an RVN session
	Authentication when VNC is used
	Authentication when X11 DISPLAY export is used

	Configurations for RVN sessions

	User interface for working with RVN
	The RVN application launcher
	The RVN dashboard
	The rvn_sender command
	Command-line options for rvn_sender

	The rvn_receiver command (X11 DISPLAY export sessions only)
	Command-line options for rvn_receiver
	Microsoft Windows considerations for rvn_receiver

	The rvn_viewer command (Linux end stations in VNC mode only)
	Command-line options for rvn_viewer

	The RVN coordinator

	Running RVN
	Using X11 export mode with RVN (Linux application servers only)
	Using VNC with RVN
	Using VNC with RVN for desktop isolation (Linux application servers only)
	Using VNC with RVN to run multiple applications (Linux application servers only)

	Chapter 4. SVN and RVN interoperability
	Chapter 5. SVN support for DMX servers
	Installing the DMX server
	Starting the DMX server
	Starting SVN using DMX support

	Part 2. Installing IBM Deep Computing Visualization software
	Chapter 6. Prerequisites for installing Deep Computing Visualization
	General prerequisites and configuration requirements for Deep Computing Visualization
	SVN prerequisites
	Requirements for 32-bit and 64-bit SVN implementations

	RVN prerequisites

	Chapter 7. Installing Deep Computing Visualization
	Installing Deep Computing Visualization on Linux application hosts
	Installing Deep Computing Visualization RVN on Linux end stations
	Installing Deep Computing Visualization RVN on Microsoft Windows application hosts
	Installing Deep Computing Visualization RVN on Microsoft Windows end stations

	Chapter 8. RVN setup
	Configuring the RVN coordinator (Linux only)
	Configuring RVN with VNC for remote desktopping
	Configuring VNC under Linux
	Configuring VNC under Windows

	Chapter 9. Installation verification for Deep Computing Visualization
	Chapter 10. Problem determination
	SVN problems
	RVN problems
	X server display problems
	Display problems
	NVIDIA display problems

	Appendix A. Messages
	Product installation messages
	RVN messages
	SVN script messages
	SVN application host (client) messages
	SVN rendering server messages

	Appendix B. Environment variables
	Environment variables for svn_sender
	Environment variables for rvn_sender
	Environment variables for rvn_receiver
	Environment variables for rvn_coordinator

	Appendix C. Programming considerations for SVN and RVN
	Notices
	Trademarks

	Glossary
	Index
	Reader's comments – We'd like to hear from you

